


Lecture Notes in Computer Science 5775
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Bettina Buth Gerd Rabe Till Seyfarth (Eds.)

Computer Safety,
Reliability,
and Security

28th International Conference, SAFECOMP 2009
Hamburg, Germany, September 15-18, 2009
Proceedings

13



Volume Editors

Bettina Buth
Department of Informatik, Faculty TI
HAW Hamburg
Hamburg, Germany
E-mail: buth@informatik.haw-hamburg.de

Gerd Rabe
TÜV Nord SysTec GmbH & Co. KG
Competence Center Digital I&C Systems
SEELAB Software and Electronics Laboratory
Hamburg, Germany
E-mail: grabe@tuev-nord.de

Till Seyfarth
TÜV Nord SysTec GmbH & Co. KG
Competence Center Digital I&C Systems
SEELAB Software and Electronics Laboratory
Hamburg, Germany
E-mail: tseyfarth@tuev-nord.de

Library of Congress Control Number: 2009934307

CR Subject Classification (1998): B.8, C.4, D.2.4, D.4.5, H.2.7, K.4.4, K.6.5, D.4.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-04467-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04467-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12753260 06/3180 5 4 3 2 1 0



Preface

Computer-based systems have become omnipresent commodities within our en-
vironment. While for a large variety of these systems such as transportation
systems, nuclear or chemical plants, or medical systems their relation to safety
is obvious, we often do not reflect that others are as directly related to risks
concerning harm done to persons or matter as, for example, elevator control or
mobile phones. At least we are not aware of the risk in our daily use of them.

Safecomp as a community and a conference series has accompanied this de-
velopment for 30 years up to Safecomp 2009, which was the 28th of the series.
During this time the topics and methods as well as the community have under-
gone changes. These changes reflect the requirements of the above-mentioned
ubiquitious presence of safety-related systems. Safecomp has always encouraged
and will further encourage academia and industry to share and exchange their
ideas and experiences.

After 30 years, we as the organizers of Safecomp 2009, found it imperative
to take stock: which methods found their way into the application areas; which
new approaches need to be checked for their practical applicability. As different
application domains developed their own approaches over the previous decades,
we tried to attract people with different backgrounds for this conference. Al-
though the years 2008 and 2009 were not easy with regard to the overall global
economic situation, we succeeded with this goal.

We received 72 contributions from 14 countries, including 33 contributions
from industry and research agencies. Of these, we selected 25 for the presen-
tation as conference talks and for these proceedings. We invited two persons
with a practical and theoretical background to provide the invited talks—our
special thanks to Anne Haxthausen and Walt Boyes for their time and effort.
The International Programme Committee further decided to include a joint ses-
sion with the GfSE (Gesellschaft für Systems Engineering, German chapter of
INCOSE) on model-based systems engineering in the conference programme in
order to emphasize the system aspect and initiate a new liason. Unfortunately,
it was not possible to include the related material in these proceedings since the
session had a workshop character. Taking all this into account, we are positive
that readers of these proceedings will gain as much insight into the current state
of the art in safety engineering within various relevant application domains as
the participants of the conference already have.

We would like to thank the International Programme Committee and the ex-
ternal reviewers for their work and the constructive comments regarding both the
conference organization and the improvement of individual papers for Safecomp
2009. We look forward to further joint work for future Safecomp conferences.
Special thanks go to Massimo Felici, who maintained the Cyberchair interface
for the conference organization and always reacted immediately to any of our



VI Preface

questions or cries for help. We would also like to thank those people at HAW
Hamburg without whom the conference website would not have worked at all,
especially Norbert Kasperczyk-Borgmann and Oliver Neumann. Last but not
least we would like to thank Clarissa Hörnke and Markus Schweers of the TÜV
NORD Akademie for supporting the local organization, registration and financial
aspects of the conference.

During the organization of the conference and the preparation of these pro-
ceeding there were times where we were in panic and times where we had a lot
of fun. Overall the fun prevailed. We do hope that this will also be the case for
the local organizers of Safecomp 2010 in Vienna.

July 2009 Bettina Buth
Gerd Rabe

Till Seyfarth



Organization

Programme Chair

Bettina Buth, Germany
Gerd Rabe, Germany
Till Seyfarth, Germany

Local Organization

Bettina Buth, Germany
Gerd Rabe, Germany
Till Seyfarth, Germany

EWICS Chair

Francesca Saglietti, Germany

International Programme Committee

S. Anderson, UK
T. Anderson, UK
R. Bloomfield, UK
J. Braband, Germany
B. Buth, Germany
P. Daniel, UK
W. Ehrenberger, Germany
M. Felici, UK
F. Flammini, Italy
G. Glöe, Germany
J. Gorski, Poland
B. A. Gran, Norway
W. Halang, Germany
M. Harrison, UK
M. Heisel, Germany
C. Heitmeyer, USA
E. Hollnagel, France
M. Hübner, Germany
C. Johnson, UK
M. Kaniche, France
K. Kanoun, France

T. Kelly, UK
J. C. Knight, USA
F. Koornneef, The Netherlands
P. Ladkin, Germany
T. Lehmann, Germany
S. Lindskov Hansen, Denmark
B. Littlewood, UK
J. McDermid, UK
O. Nordland, Norway
A. Pasquini, Italy
P. Pareigis, Germany
J. Peleska, Germany
G. Rabe, Germany
F. Redmill, UK
F. Saglietti, Germany
E. Schoitsch, Austria
S. Schulze, Germany
T. Seyfarth, Germany
L. Strigini, UK
M. Sujan, UK
P. Traverse, France



VIII Organization

J. Trienekens, The Netherlands
M. van der Meulen, The Netherlands
U. Voges, Germany

A. Weinert, Germany
S. Wittmann, Belgium
Z. Zurakowski, Poland

External Reviewers

O. Meyer
A. Tedeschi
R. Lock

H. Unger
A. Povyakalo
P. Hopkins

Scientific Sponsors

Austrian Research Centers
ENCRESS (European Network of Clubs for Reliability and Safety in

Software-Intensive Systems)
DECOS (Dependable Embedded Components and Systems)
GfSE (Gesellschaft für Systems Engineering)
GI (Gesellschaft für Informatik)
ifip (International Federation for Information Processing)
IFAC (International Federation for Automatic Control)
OCG (Österreichische Computer Gesellschaft)
SCSC (Safety Critical Systems Club)



Table of Contents

Invited Talks

A Domain-Specific Framework for Automated Construction and
Verification of Railway Control Systems (Extended Abstract) . . . . . . . . . . 1

Anne E. Haxthausen

Medical Systems

Model-Based Development of Medical Devices . . . . . . . . . . . . . . . . . . . . . . . 4
Uwe Becker

Why Are People’s Decisions Sometimes Worse with Computer
Support? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Eugenio Alberdi, Lorenzo Strigini, Andrey A. Povyakalo, and
Peter Ayton

Industrial Experience

Safety-Related Application Conditions – A Balance between Safety
Relevance and Handicaps for Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Friedemann Bitsch, Ulrich Feucht, and Huw Gough

Probability of Failure on Demand – The Why and the How . . . . . . . . . . . 46
Jens Braband, Rüdiger vom Hövel, and Hendrik Schäbe

Establishing the Correlation between Complexity and a Reliability
Metric for Software Digital I&C-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

John Eidar Simensen, Christian Gerst, Bjørn Axel Gran,
Josef Märtz, and Horst Miedl

Security Risk Analysis

Exploring Network Security in PROFIsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Johan Åkerberg and Mats Björkman

Modelling Critical Infrastructures in Presence of Lack of Data with
Simulated Annealing – Like Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Vincenzo Fioriti, Silvia Ruzzante, Elisa Castorini,
A. Di Pietro, and Alberto Tofani

Environment Characterization and System Modeling Approach for the
Quantitative Evaluation of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Geraldine Vache



X Table of Contents

Safety Guidelines

Experiences with the Certification of a Generic Functional Safety
Management Structure According to IEC 61508 . . . . . . . . . . . . . . . . . . . . . . 103

Carlos G. Bilich and Zaijun Hu

Analysing Dependability Case Arguments Using Quality Models . . . . . . . 118
Michaela Huhn and Axel Zechner

Experience with Establishment of Reusable and Certifiable Safety
Lifecycle Model within ABB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Zaijun Hu and Carlos G. Bilich

Automotive

Automotive IT-Security as a Challenge: Basic Attacks from the Black
Box Perspective on the Example of Privacy Threats . . . . . . . . . . . . . . . . . . 145

Tobias Hoppe, Stefan Kiltz, and Jana Dittmann

Safety Requirements for a Cooperative Traffic Management System:
The Human Interface Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Thomas Gruber, Egbert Althammer, and Erwin Schoitsch

Aerospace

The COMPASS Approach: Correctness, Modelling and Performability
of Aerospace Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen,
Viet Yen Nguyen, Thomas Noll, and Marco Roveri

Formal Verification of a Microkernel Used in Dependable Software
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Christoph Baumann, Bernhard Beckert, Holger Blasum, and
Thorsten Bormer

Issues in Tool Qualification for Safety-Critical Hardware: What Formal
Approaches Can and Cannot Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Brian Butka, Janusz Zalewski, and Andrew J. Kornecki

Verification, Validation, Test

Probabilistic Failure Propagation and Transformation Analysis . . . . . . . . 215
Xiaocheng Ge, Richard F. Paige, and John A. McDermid

Towards Model-Based Automatic Testing of Attack Scenarios . . . . . . . . . . 229
M. Zulkernine, M.F. Raihan, and M.G. Uddin



Table of Contents XI

CRIOP: A Human Factors Verification and Validation Methodology
That Works in an Industrial Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Andreas Lumbe Aas, Stig Ole Johnsen, and Torbjørn Skramstad

Fault Tolerance

Reliability Analysis for the Advanced Electric Power Grid: From Cyber
Control and Communication to Physical Manifestations of Failure . . . . . . 257

Ayman Z. Faza, Sahra Sedigh, and Bruce M. McMillin

Increasing the Reliability of High Redundancy Actuators by Using
Elements in Series and Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Thomas Steffen, Frank Schiller, Michael Blum, and Roger Dixon

AN-Encoding Compiler: Building Safety-Critical Systems with
Commodity Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Christof Fetzer, Ute Schiffel, and Martin Süßkraut

Dependability

Component-Based Abstraction in Fault Tree Analysis . . . . . . . . . . . . . . . . 297
Dominik Domis and Mario Trapp

A Foundation for Requirements Analysis of Dependable Software . . . . . . 311
Denis Hatebur and Maritta Heisel

Establishing a Framework for Dynamic Risk Management in
‘Intelligent’ Aero-Engine Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Zeshan Kurd, Tim Kelly, John McDermid, Radu Calinescu, and
Marta Kwiatkowska

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343



A Domain-Specific Framework

for Automated Construction and Verification of
Railway Control Systems

(Extended Abstract)

Anne E. Haxthausen

Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby
ah@imm.dtu.dk

1 Introduction

The development of modern railway and tramway control systems represents a
considerable challenge to both systems and software engineers: The goal to in-
crease the traffic throughput while at the same time increasing the availability
and reliability of railway operations leads to a demand for more elaborate safety
mechanisms in order to keep the risk at the same low level that has been estab-
lished for European railways until today. The challenge is further increased by
the demand for shorter time-to-market periods and higher competition among
suppliers of the railway domain; both factors resulting in a demand for a higher
degree of automation for the development verification, validation and test phases
of projects, without impairing the thoroughness of safety-related quality mea-
sures and certification activities. Motivated by these considerations, this pre-
sentation describes an approach for automated construction and verification of
railway control systems.

2 Development and Verification Approach

We are suggesting a framework consisting of a domain-specific specification lan-
guage, some tools, and a method for using the language and tools to construct
and verify railway control systems that have a common kernel and only differ
wrt. some configuration data.

2.1 Automated Construction

In recent years, domain-specific methods for software development have gained
wide interest. One of the main objectives addressed by these techniques is the
possibility for a given domain to reuse various assets when developing software,
e.g. to develop a generic system from which one can instantiate concrete sys-
tems. Additionally, the use of domain-specific languages (DSLs) as front-ends
for development tools is advocated. In contrast to general-purpose specification
and programming languages, DSLs facilitate their utilisation by domain experts

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 1–3, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 A.E. Haxthausen

who are not specialists in the field of information technology, because they use
the terminology of the application domain. Inspired by these considerations, our
framework provides a generic railway control system model that can be instan-
tiated with configuration data, a domain-specific language (DSL) for specifying
application-specific parameters, and a generator from DSL specifications into
configuration data. Hence, for each control system to be developed, the railway
specialists specify the application-specific parameters (such as railway network
geography and train routes) in the domain-specific language and apply the gen-
erator to automatically generate a control system model. An advantage of the
front-end consists in the fact that it is much simpler to specify the parameters of
a system in the domain-specific language and then apply the generator, than it is
to program the configuration data directly. This speeds up the production time
and reduces the risk of errors; furthermore, it can be done by domain experts
without requiring the assistance of programming specialists. As “programming”
language for the control system models we have chosen SystemC that both al-
lows for formal reasoning based on an operational transition system semantics
and can be compiled into executable code.

2.2 Automated Verification

Our method prescribes that verification shall be performed at three stages.

Static specification checking. First, when a domain-specific specification has been
created, this has to be checked to be statically well-formed by a specification
checker provided by the framework.

Bounded model checking. Secondly, when a control system model has been gen-
erated from the domain-specific specification, this has to be verified to satisfy
required safety properties (as, for example, the requirement that trains never
meet at a track segment). A common practise to perform such a verification
task fully automated is to use model checking. However, conventional model
checking would lead to state space explosions for train control tasks of realistic
size. To overcome this problem, we have adopted a bounded model checking
strategy combined with inductive reasoning.

Object code verification. Finally, when the control system model has been com-
piled into object code, it should be verified that the object code correctly im-
plements the control system model. This process can be automated by tools
that should also be provided by the framework. Automated object code verifi-
cation for safety-critical control systems is motivated by the fact that applicable
standards for these safety-critical applications, e.g. for railways [3], require a sub-
stantial justification with respect to the consistency between high-level software
code and the object code generated by the applied compilers.



A Domain-Specific Framework for Automated Construction and Verification 3

3 Related Work

The overview given in this presentation is based on results [4] that have been
elaborated by the author and Jan Peleska during the last decade. For other
complementary and competing approaches for the development and verification
of railway control systems the reader is referred to the contributions in [5,6,2],
and for a survey of new results and current trends the reader is referred to the
paper [1].

References

1. Bjørner, D.: New Results and Current Trends in Formal Techniques for the Devel-
opment of Software for Transportation Systems. In: Proceedings of the Symposium
on Formal Methods for Railway Operation and Control Systems (FORMS 2003),
Budapest, Hungary, May 15-16 (2003)

2. Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E.,
Westkämper, E. (eds.): INT 2004. LNCS, vol. 3147, pp. 1–8. Springer, Heidelberg
(2004)

3. European Committee for Electrotechnical Standardization. EN 50128 – Railway
applications – Communications, signalling and processing systems – Software for
railway control and protection systems. CENELEC, Brussels (2001)

4. Haxthausen, A.E., Peleska, J.: A Domain-Oriented, Model-Based Approach for
Construction and Verification of Railway Control Systems. In: Jones, C.B., Liu,
Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS,
vol. 4700, pp. 320–348. Springer, Heidelberg (2007)

5. Schnieder, E., Tarnai, G. (eds.): Proceedings of Formal Methods for Automation
and Safety in Railway and Automotive Systems (FORMS/FORMAT 2004), Braun-
schweig, Germany. Technical University of Braunschweig (December 2004)

6. Schnieder, E., Tarnai, G. (eds.): Proceedings of Formal Methods for Automation
and Safety in Railway and Automotive Systems (FORMS/FORMAT 2007), Braun-
schweig, Germany. GZVB e.V (2007) ISBN 13:978-3-937655-09-3



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 4–17, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Model-Based Development of Medical Devices 

Uwe Becker 

Dräger Medical AG & Co KG 
Moislinger Allee 53 – 55 
23542 Lübeck, Germany 

uwe.becker @ draeger.com 

Abstract. Model-based development can offer many advantages compared to 
other techniques. This paper will demonstrate how models are used to develop 
safe systems in a medical devices company. The approach described uses a 
combination of model-driven analysis, model-driven design, model-driven test 
and model-driven safety analysis. Different approaches have been developed 
and followed in the past. The approach presented has been developed in an evo-
lutionary manner and by combining approaches described in literature. It turned 
out to be well suited for the medical device domain and is considered to be a 
best practice approach. As such it is part of the development process that must 
be followed when developing new medical devices. The development process 
has to be defined in a written way and is checked by TÜV and FDA auditors on 
a yearly base. It is considered to be well above-average and thus may be 
adopted by other companies developing safety-relevant devices. During the au-
dit process it is verified that the documentation of the process is as expected and 
that the actual development process is performed according to the defined proc-
ess. This assures for companies adopting the approach that it is authenticated by 
daily practice and its use requires only modest overhead. 

Keywords: medical devices, design process, model-driven analysis, MDRE, 
model- driven design, model-driven test, and model-driven safety analysis. 

1   Introduction 

There are more than 900 standards in the medical devices domain. By law, and in 
order to receive the respective certifications required, the devices must adhere to all 
applicable standards. Safety standards are very high to ensure patient safety even in 
the presence of a fault. Therefore companies in the medical devices domain have to 
spend considerable effort to fulfill the required level of safety. In addition, every 
company strives to improve the safety of their devices even further and thus has some 
internal standards with which the devices must comply. In some cases, formal verifi-
cation is considered but it is currently only applied for small parts of the system. In 
most cases, though, formal verification is not considered applicable due to the very 
high complexity the products have today. Some parts of the devices may require dif-
ferent amounts of verification effort. Parts considered especially safety-relevant are 
tested very thoroughly in either case.  



 Model-Based Development of Medical Devices 5 

 

MDRE 

R
eq

ui
re

m
en

ts
 

ch
ec

k 
FMEA / FTA

MDA 

Model-driven SA / Risk Management 

MDD 
Implementation 

Validation Field Verification 
Model-driven 

Tests / Test Cases

 

Fig. 1. Development Process Overview 

As stated above, companies in the medical device field spend considerable 
amounts of time, and thus money, to ensure the safety of their devices. It would be 
very much appreciated by the industry if things could be automated without compro-
mising safety. This is where model-based verification comes in. Using the right tools, 
many tests can be generated directly from the model and test execution can be auto-
mated. Especially regression tests which are applied very frequently benefit from this 
fact. Following the general trend in the industry, even software for medical devices is 
now written in a more agile way. In most cases, though, the development process is 
not purely agile but a mixture of traditional and agile methods. In addition, not every 
agile method is suitable for use in the medical device domain. Though the selection of 
the right software development method is not within the scope of this paper, it shall 
be mentioned that the method has to be chosen very carefully in order not to compro-
mise safety. 

This paper describes how safe systems are developed in a medical device com-
pany. The approach described uses a combination of model-driven analysis, model-
driven design, model-driven test and model-driven safety analysis (see fig. 1). It is 
considered to be a best practice approach. When using concrete examples, the project 
of developing a new incubator system is used.  

In order to demonstrate the different steps of the complete development process, 
this paper is organized as follows: Section 2 describes the requirements engineering 
process. This is partly interleaved with the risk management process described in sec-
tion 3. Section 4 briefly describes the implementation process being followed by the 
testing and verification process described in section 5. The paper concludes with a 
short summary. 

2   Requirements Engineering 

Requirements engineering is a difficult task to perform. Even though the people writ-
ing requirements are skilled and trained to do so, a certain amount of ambiguity or 
room for interpretation may exist. This should of course be avoided because different 
people might interpret the requirements in a different manner. To cope with the ever 
increasing complexity, systems are divided in smaller subsystems or modules and 
subsystems from earlier projects are re-used. If two modules of such a system inter-
pret requirements in a different way, this might only be noticed at a very late state of 
the development effort. Thus, it can be very costly to fix such a problem at the system  
 



6 U. Becker 

Changes in User 
Requirements 

43% 

Changes in Data 
Formats 

17% 

Emergency
Fixes 
12% 

Routine 
Debugging

9% 

Hardware 
Changes 

6% 
Documentation 

6% Efficiency 
Improvements 

4% 

Other 
3% 

70-85% of Total Project 
Costs are Rework due to 

Requirements Errors 

 
Fig. 2. Survey of 500 Major Projects Maintenance Costs 

assembly stage. In addition, if a requirement is misinterpreted, development can be 
conducted incorrectly. The resulting product may not be what the customer wants. It 
is well known that the earlier errors can be found and corrected, the cheaper it is. 
Every later stage adds additional costs which may rise in an exponential manner. De-
tecting errors in the requirements, therefore, is very effective both in cost and in time-
savings. An internal study including different projects showed that the main benefit of 
the model-based test approaches was in finding errors in the specification. Most of 
them were found in the early stage of creating models from the user requirements. 
Some other errors were found after the models had been created. Running the models 
showed that the system modeled did not exhibit the behavior required or desired. Here 
again most of the errors did not originate by creating a faulty model from a correct 
specification, but from an incorrect specification. 

Fig. 2 illustrates that investment in requirements engineering pays off well. About 
three quarters of the development costs are caused by the 43% of changes related to 
user requirements [15]. Users expect high quality, functionality, and low costs. Unre-
alistic schedule and/or modification of or unclear requirements cause projects to be 
expensive, late to market, scrapped or to miss key features. Writing a good specifica-
tion and finding/removing errors from it is time well invested. The time saved in later 
steps of development will even convince management that is reluctant to allow spend-
ing more time in the specification-writing phase.  

Each requirement for a medical device has to be written in such a way that it is 
testable. At the end of the development cycle, verification and validation of the prod-
uct has to be performed. This is meant to guarantee that the product developed is the 
product desired by the user. The verification step is simplified if the requirement 
specification is written in a form that every requirement is testable. Therefore, the test 
department is included in the process of writing the requirements. In generating a 
model and in writing the requirements in a testable way, the test department can plan 
and develop tests for the system verification phase. Having the tests be developed in 
parallel to the system itself saves valuable time and leads to shorter time to market. 
The verification phase is usually followed by a validation phase. This validation phase 
is somewhat comparable to a beta test phase common with software products. The 
devices are given to a defined number of users for validation. Of course, this phase 
should not lead to requirement changes. 



 Model-Based Development of Medical Devices 7 

Safety, in most cases, is not an explicit customer requirement. Customers do not 
ask for it; they just expect the device to be safe. They expect it to be a system property 
just like functionality or efficiency. For this reason there is a two-step requirements 
generation process. In the first step, the “real” user requirements are gathered. The 
user requirements are provided in the language of the users about the user domain. 
The vast majority of these are transferred into a model. The model describes use-cases 
and represents operational scenarios. They clearly demonstrate the results that opera-
tional users get from the device. Of course, there are different types of users. There 
are use-cases for end users, for training users, for maintenance, installation and ser-
vice users as well as others. All theses kinds of users have different expectations and 
require different outcomes in certain situations. The modeling helps to clarify any 
discrepancy in the requirements from different use-types and the specification. In a 
second step, two very important users add their requirements. One part of these re-
quirements represents the business aspects. This includes something like, “Function 
XY is an option the user has to pay for”. The other part of those requirements repre-
sents the safety aspects. After the device type and the customer requirements for the 
device are clearly defined, the safety department can start to add the safety require-
ments to achieve the required goals. This is done using a combined approach. 

The user requirements are used to generate the validation or acceptance tests. The 
system requirements are used to generate the system tests. The user requirements 
document is reviewed. After it is considered to be free of errors, the system require-
ments document is generated from it. The system requirements document is more 
detailed than the user requirements document. This document is input to the system 
architecture specification document. This document is at a very detailed level and 
describes the architecture of the system. For more complex systems, the architecture 
specification document is further detailed into component or sub-system specification 
documents. Once the architecture of the system is defined, the implementation phase 
of the system can start.  

It is generally a good idea to have the test department develop the tests based on 
their own models and in parallel to the development activities of the hardware or 
software department. This, on one hand, keeps the test department or at least a part of 
it busy during the whole implementation phase. On the other hand, it shortens the gap 
between the end of the implementation phase and start of the tests in the test phase. 

We had a student check the advantages of model-based testing in our development 
process. He found out that most errors were found in the specification. When deriving 
the model from the specification, the test department, having a different view on the 
product, uncovered many errors in the specification itself. The models they generated 
were different from the models the programmers derived. It is generally difficult to 
predict who generates the right model. It is our experience that on average, the devel-
opers had chosen the correct assumptions when generating the model only in 50% of 
the cases. This may vary from project to project. If the programmer is very experi-
enced in the application domain, he already knows what to do and how. The models 
generated by these programmers are correct in most cases. However, the risk may be 
present that the programmers only have a cursory look at the requirements. Some de-
tails may go overlooked.  

For some of the use-cases it is very hard to automatically generate test cases and 
tests. Other use-cases may be completely resistant to this approach. It is our  



8 U. Becker 

experience that if the use-cases can be converted into state diagrams things are rela-
tively easy. This holds true for both test generation and programming. Nevertheless, 
generating the model is always worth the work, even if there is no way to automati-
cally generate tests from it. 

Lately some tools have been developed advocating model-driven requirements en-
gineering. These tools fit nicely in a development process that uses model-based test-
ing. For this reason, a tool of this sort was used during the development of the new 
incubator system. The model-driven requirements engineering tool we use describes 
the requirements in two different ways. Every requirement that can be described with 
a use-case is described using a use-case model. There are, of course, some require-
ments that cannot be described by applying a use-case. Conformity to a standard is an 
example for a requirement that cannot be described by a use-case. Each use-case can 
contain additional data to further describe the requirement. The additional data, the 
requirements, and the use-cases are stored in a data base. For example: a user wants to 
change the O2 concentration within the incubator. The respective standards require a 
certain level of accuracy and a maximum time in which the new O2 concentration has 
to be reached. 

The model-driven requirements engineering approach has three major advantages. 
The first is that users and product managers usually would rather think in terms of 
use-cases than in abstract and distinct requirements. The new product can be de-
scribed in a more intuitive way. Therefore, it is easier to detect errors or gaps in the 
planned behavior. The second advantage is that there is already a model that can be 
used as input for model-based testing. There is no ambiguity in the requirements that 
leads to different models for tests and implementation. The correctness of the model, 
and thus the requirements themselves, can be verified easily. An additional advantage 
of this approach is that many of the use-cases can be converted to executable models. 
This allows product management to verify the requirements even by showing the ex-
ecutable models to customers. Customer input can be gained at a very early stage of 
development and thus costly errors can easily be avoided. This is a major advantage 
especially for new features. The user interface and operation of the new feature can be 
shown to customers. Valuable feedback can be gained and execution can be optimized 
even before the feature is really implemented. Such early feedback saves a lot of time 
and costly improvement loops. On the other hand the test department can already be-
gin to design tests. For some of the requirements it may even be possible to automati-
cally generate the appropriate tests. In either case, development of features and test 
cases can be performed in parallel. This keeps the test department busy and saves 
additional time at the end of the development phase. Testing can begin directly after 
the development is finished or with only a slight delay. There is no additional analysis 
and test generating phase which usually is in the range of some months. 

3   Risk Management Process 

The systems risk analysis is performed in two steps. As a first step there is a FMEA 
and a conventional fault tree analysis. This is done for two reasons. The FMEA is 
done at a very early point in the project. At this early stage, the system architecture 
definition is not yet complete. High level errors and possible unsafe states are  



 Model-Based Development of Medical Devices 9 

identified using the user requirements. This information is added to the user require-
ments to form the system requirements. The latter are part of the input when defining 
the architecture of the new system. With a given initial system architecture in place, a 
high level FTA can be applied to it. The results of this FTA can be used to fine tune 
the system architecture and to increase system safety as a first step. The information 
gained from this step may be used to improve the system requirements. In terms of 
the incubator example there is the risk that the O2 concentration is above the level set. 
This may harm the eyes of neonates. Risk management will require a measure to stop 
O2 flow if measured concentration is above the desired value plus a tolerated limit. 
Based on the improved system requirements, a model is generated. This model is de-
scribed in the SysML language and has some additional attributes when compared to 
other models. These additional attributes result from the fact that the model ought to 
serve two very different purposes. The first is to help the system test department. The 
model is either used to generate tests and test vectors directly from the model or used 
as a high level hierarchical model, which is refined in further steps of model-based 
testing. The other purpose the model ought to serve is for model-driven safety analy-
sis. The approach thus independently developed is somewhat similar to other ap-
proaches [9, 10, 11, 14, 16, 17, 18]. It is our opinion that the analysis should start, as 
our approach does, in a very early stage of the project. The requirements and the ar-
chitecture both may be changed based on the results. In addition, we take a combined 
approach both for the safety analysis of the system and from the test perspective. It is 
our experience that the main benefits of model-based testing are in the field of test 
automation and requirements check. 

Safety analysis is an essential part in the development of medical devices. Safety is 
an essential property of the systems just like efficiency and reliability are. Some of the 
devices developed are life-supporting. This means that a failure of such a device may 
lead to the death of a patient if no adequate safety measures are applied. As complex-
ity of the devices increases, the demand for automation in safety analysis grows. It is 
common sense that the traditional techniques are not necessarily complete. In addi-
tion, the results of such techniques largely depend on the experience of the analyst. 
Knowing that it is not sufficient to just replace the traditional manual techniques for 
automated counterparts, we follow a combined approach. The trend with new devel-
opments indicates a steady increase in the software portion of the systems. For some 
systems, the portion of total development time dedicated to hard-ware development is 
between 10 and 20%. This shift towards software is accompanied with an increase in 
the complexity of the systems. For this reason, the techniques used for safety analysis 
have to cope with the increased complexity. Automated tools can be effective in deal-
ing with the inherent complexity of largely software-based systems. While for tradi-
tional techniques emphasis is placed on completeness, this changes to accuracy of the 
model for the automated techniques. 

One part of the safety analysis is based on traditional manual techniques. The ana-
lysts perform an FMEA of the system. If the analysts are very experienced, first re-
sults from this step can be obtained very quickly. Despite these early results, the 
analysis based on the traditional techniques continues throughout the whole develop-
ment cycle. The results are used to improve specification and design. It is our strong 
belief that model checking is a very effective technique if used with caution. For this 
reason, first models of the systems are being built in parallel with the manual analysis. 



10 U. Becker 

Two different types of models are used during this second step. One is an operational 
model. This model describes how the system operates. The other is a property-based 
model. This model describes the required system properties. The combined approach 
guarantees that no false confidence is obtained from model checking, and that no in-
appropriate guidance for risk reduction of the system is followed. Model checking can 
only confirm the presence of faults in the model, but not the absence thereof. Though 
safety analysis continues throughout the whole development cycle to evaluate every 
design change, it is advantageous if results are obtained in a relatively early stage of 
the design. This is crucial because of the huge costs for correcting defects later in  
development. 

In order to have the risk management process continue throughout the whole de-
velopment process, planning the different activities along the development chain is 
required. The international standard ISO 9126 defines a set of properties a system 
should have. For each of these properties, we defined a set of measures and a set of 
testing activities. The measures may well be split over different development steps. 

The models generated have to be precise in describing the system and its environ-
ment. In addition, not only the desired behavior of the system but also the undesired 
hazardous behavior, together with component failures, has to be modeled.  

Model-checking algorithms often explore the state space to determine whether the 
system satisfies the properties required. In general, the models generated are rather 
complex and state space is large. Therefore some abstraction steps are performed to 
reduce state space. Abstractions have to be done very carefully to avoid discarding 
details of the model during the transformation that could be the cause for a hazardous 
state. There are some well known algorithms for variable restriction and variable ab-
straction that can be used [6, 18]. To obtain valid results, the abstraction model has to 
be both sound and complete. Even though completeness cannot be guaranteed in 
every case, it is given in far the most cases. This is the trade-off that has to be made in 
order to be able to repeatedly apply the abstraction. The state space of the resulting 
model is reduced greatly – often by some orders of magnitude. 

The operational model is less likely to omit required behavior. In addition, it is, in 
almost every case, executable. The property of being executable remains unchanged 
during model transformation. Therefore a more abstract model can easily be checked 
against functional requirements. Functional restrictions after transformation can be 
detected and the model or the abstraction step can be modified accordingly. The prop-
erty-based model, on the other hand, is concise, abstract, and minimizes implementa-
tion bias. If the operational model shows the desired functionality, the model can be 
cross-checked with the property-based model. Inconsistencies between the two mod-
els can be found in a relatively easy manner. 

4   Implementation Process 

This phase again starts with generating models. The models in this phase usually de-
scribe the interfaces between the different parts of the software. Additional models 
refine the model down to the respective classes present in a specific module of the 
software. In general, model-driven architecture (MDA) is focused on forward engi-
neering, i.e. producing code from abstract, human-elaborated specifications. One of 



 Model-Based Development of Medical Devices 11 

the main aims of the MDA is to separate design from architecture. As the different 
concepts and technologies used to realize designs and architectures have changed at 
their own pace, decoupling them allows system developers to choose from the best 
and most fitting in both domains. The design addresses the functional (use-case) re-
quirements while architecture provides the infrastructure through which non-
functional requirements like scalability, reliability and performance are realized. 
MDA envisages that the platform-independent model (PIM), which represents a con-
ceptual design realizing the functional requirements, will survive changes in realiza-
tion technologies and software architectures. 

Medical devices require a high safety level. A life-supporting device not safe 
enough could likely kill a patient. Thus, such devices have to be safe, even in the 
presence of a fault. If the fault can be detected during runtime, the system has to be 
safe in the presence of a single fault. If the system can only detect the fault during 
start-up, it has to ensure that safety is not compromised until the next start. If the sys-
tem is not able to detect the fault, it is considered fault free and has to be safe even in 
the presence of a second fault. In general, life-supporting devices have a SIL safety 
level above 2 (acc. IEC 61508). A lot of testing is done while developing such de-
vices. Most of the code is developed using the test-first approach. We determined that 
the advantages of such an approach are twofold. First, there is a test for every unit of 
code. This results in high code coverage of the tests. Second, and most important, 
there is no rush-to-code. Programmers consider the code more carefully and think 
more about the implementation and its advantages than they did before using the test-
first approach. This in turn leads to higher code quality containing fewer errors.  

Programmers often tend to consider unit testing as keeping them from their work. 
Furthermore, they consider writing tests a large waste of time. For these reasons, they 
often fear that they are not able to keep delivery dates. It is our practical experience 
that none of this is the case. Due to the higher quality of the code, they are more pro-
ductive and spend less time debugging. There is no delay caused by the test-first ap-
proach. In addition, the tests have to be performed either way. If the programmers 
would not write the tests, the test people would. This would, on one hand, only shift 
the work from one group to another and, on the other hand, would take much longer. 
The test people first have to understand the code and then think about tests. The pro-
grammers know all about their code and thus can write tests faster. The only small 
disadvantage is that programmers have to possess some knowledge about testing. This 
requires some extra training. But this is worth the investment. 

It is common practice to model the code before implementing it. An UML-based 
tool is used for this purpose. As a first step, the models were only used for documen-
tation and to provide a standardized stub for classes and programs. As a second step, 
this changed to model-driven design and model-driven architecture. Thus a model-
driven design using a test-first approach is used. Programmers and testers use  
different models. The models of the programmers are used to verify the models of the 
testers, but not to generate tests from them. 

It is tempting to derive tests from pre-existing models. This is only a good idea for 
tests that the programmers need. The testers often have a very different view of 
things. Furthermore, they derive their models directly from the specification. This is 
the way to find errors on the path from specification to code. If programmers and test-
ers come to a different model, the cause for this discrepancy must be investigated. For  
 



12 U. Becker 

 

IC 

SB 

SV 

SG 

OP 

CC 

 
Fig. 3. State machine example from the project 

 
instance, it may result from an ambiguous specification. If this is the case, the true 
customer requirement must be determined. This avoids developing a completely 
tested device which no customer wants. 

It is our strong belief that producing a life-supporting device is not contradictory to 
a more agile development process. Software is developed using a test-first approach. 
Credo of Agility is to release early and to release often. Thus, only little functionality 
is added to a module in every release cycle. (Release in this context is an integration 
step with other modules or other parts of the software of that module). Programmers 
will realize the O2 control loop in cycle #i and the superimposed warming control 
loop in cycle #n for instance. Every cycle consists of programming tests for a module 
in a first step. Module function is added in a second step. Practical experience shows 
that this leads to improved code quality. There is a test for each function of the mod-
ule and there is no rush-to-code. Writing tests first causes programmers to think about 
the problem in a different way. Thinking about the code more thoroughly leads to 
better code quality. A programmer may only deliver code tested to work. Automatic 
code integration begins after code is delivered to the central code pool. There is a test 
for each piece of module functionality. Every test is run in the automatic integration 
stage. This gives three results. First, it is known if the code will compile with the 
other code of the module. Second, the results of the unit tests show if there are any 
side effects. If this is the case, unit tests from other parts of the module will fail. 
Third, there is always a functional base-line of the code. This can be tested as soon as 
hardware is available. 

As far as possible, the automatic integration phase will also integrate a test using 
hardware-in-the-loop tests. This is a very interesting and a very important test. Some 
functionality or some behavior can only be tested with hardware in the loop. Timing 
issues may be mentioned as an example. It is our goal to test early and to find errors 
or undesired behavior as early as possible. The earlier an error is found the easier and 
the cheaper it is to correct it. 

Let us consider the example state machine of figure 3. This is the usual way the de-
signer develops such. The designer will draw a so-called bubble diagram. Arrows are 
used to indicate if the respective state is entered or left if a certain event occurs. Hav-
ing completed the bubble diagram, there are two possible ways to get from it to code. 
The first way is to draw the bubble diagram in an UML tool. The tool will generate 
some stubs of code from the diagram. The code produced from the UML tool may or 
may not be easy to understand by a human being. The other way to get to code is 



 Model-Based Development of Medical Devices 13 

again to start with the UML tool. Now the tool is not used to produce code directly, 
but is merely used as a drawing aid as far as code is considered. If a tool having some 
extensions to UML is used, the diagram can be used to generate tests from it. Some 
UML tools may support generating a state transition table from the bubble diagram. If 
this is not the case, some additional tool is used to generate such. Even if the UML 
tool is able to generate a state transition table, some additional work is required to 
convert it into code. Using an additional tool, generating the state transition table di-
rectly from the UML diagram may have the advantage that the table and additional 
code required can be generated in a single step. Using the BOOST library allows for 
generating the code for the state machine at compile time. Some kind of template 
meta-programming is used to perform the magic. This has the great advantage that the 
code is in a form that can be read and checked by humans very easily. Automatic gen-
eration of code from a bubble diagram helps to eliminate errors and to increase the 
maintainability of the code.  

If the UML tool supports the extensions of UML, which are required for automatic 
test generation, the diagram really saves a lot of time and effort. Automatic generation 
of test vectors and of the test suite for the state machine can be triggered by pressing a 
single button. This allows for automatic testing of the state machine behavior. It is 
well known that automated tests are capable of saving huge amounts of time, espe-
cially when performing regression tests. For safety-critical systems, such regression 
tests are performed rather frequently. If things are automated, the tests can run over 
night and thus do not keep the programmers from working. Safety-critical systems 
usually require adequate documentation. This again is easily accomplished if the code 
is directly derived from the bubble diagram. Furthermore, it is easier to check if the 
code exhibits the required behavior. During requirements inspection, the tester usually 
generates his/her own bubble diagram. It is much easier to perform the check on such 
a high level as on a bubble diagram. In some cases, it may even be possible to let a 
tool perform the comparison of the two diagrams. This, of course, is the preferred 
method because it will eliminate possible errors and omissions that can occur when 
humans compare the diagrams. Generally speaking, it is always a good idea to let 
things be tested or checked using a tool. Tools usually do not get tired and do not tend 
to overlook things. The time required to automate tests or to automatically generate 
tests is well invested if the respective test is performed frequently. It is, in most cases, 
not worth doing it if the test is performed only once or very seldom. 

The use of some type of template meta-programming has the advantage of being 
very intuitive. It does not generate overhead after the compilation. Only the compila-
tion itself will take somewhat longer. As this additional time is only in the range of a 
few seconds, this really is not an issue. As in the example above, the additional time 
required to resolve the template meta-programming is negligible. Traditionally, state 
machines are programmed using some kind of switch statements. If the state machine 
is in a certain state and a certain event is detected, a certain action is performed. There 
has to be an entry for every state in the switch tree. For every event there has to be a 
separate “if” or “case” statement in the respective switch block. If the programming 
scheme proposed is used, there is only a list of functions having the events as parame-
ters. This is easy to check for omissions. In addition, the compiler will check if all the 
code required is available. If there is an event triggering a transition and the function 
describing the transition is not available, there will be an error at compile time. The 



14 U. Becker 

code simply will not compile and thus everything required has been considered if the 
code will get compiled and linked. In addition, the usage of the templates will make 
the code type safe. If a programmer inadvertently changes the automatically generated 
code during code-writing, the compiler will detect this and will issue an error.  

5   Testing and Verification Process 

In the medical devices domain, users expect high quality, high safety and high func-
tionality. When starting the implementation phase, functionality is prioritized as a first 
step. The functionality having the highest device or project risk is implemented first. 
The same holds true for software testing. The software portions generating the highest 
risk for the patient are tested with highest priority and highest amount of effort. Other 
parts of the software are tested with less effort. For a ventilator system, the functional-
ity that might generate the highest risk to the patient is the pressure control of the res-
piratory pressure. If this pressure is too high or pressure limiting does not work as a 
result of an error, the patient may be injured or even die. For an incubator system, the 
functions having the highest risks are warming and control of the O2 concentration. 
For this reason, very intensive testing is performed in the areas mentioned. Testers 
will check various settings and control system reaction using calibrated O2 sensors to 
check accuracy and response time. Changing between day- and night-view, which is 
essentially applying a different skin to the GUI, imposes no risk to the patient. Testing 
effort in this area may thus be limited to a modest amount. 

By law, the development process of medical devices has to be of high quality. The 
testing and verification process is an essential part of the development process of 
medical devices and systems because producing life-supporting devices requires a 
high amount of testing. Every function has to be tested. Virtually no function may slip 
through inadvertently and remain untested. Annual auditing helps to ensure this qual-
ity. Model-based testing and the test-first approach are used to reach this goal. Parts 
of the software can be generated right from the models. Model-based testing can be 
used for those parts of the software. The test department generates its own models and 
tests the software against this model. This allows for automatic generation of tests. 
Using the right tools, the tests generated can be applied to the software and automatic 
testing can be performed. It is essential, though, that tests and test cases are generated 
from different models than those from which the software is generated. This ensures 
that errors and omissions in the models used to generate the software can be detected. 
If the same model is used to generate both the software and the tests, errors in the 
model stay undetected. This would just check the automated generation process of the 
software which is assumed to be correct anyway. 

Other parts of the software cannot be fully generated from models. In these cases, 
only stubs or parts of the software are generated. Some functionality has to be imple-
mented by hand. It is part of the development process that this kind of implementation 
is performed using the test-first approach. A test is specified for each function. The 
automated testing will return an error for each function as long as it is not yet fully 
implemented. Each intermediate release of the software may only contain the  
functionality that does not return an error during the automated testing. The new  



 Model-Based Development of Medical Devices 15 

functionality will be added in a later release. This ensures that there is always fully 
functional software available for testing.  

To parallelize development, system software is divided into modules. Within a 
module, every class and some larger clusters both have their own unit tests. Every 
time a programmer commits code to the code repository of a module, a so-called build 
servant starts. In addition to compiling the code, this tool also executes the unit tests 
of the respective module. In this way, programmers are forced to deliver both code 
that compiles and tests for the code that run without errors. Basic code quality is im-
proved. Integration tests may start earlier. Even if a module does not have all of its 
functionality implemented, integration tests may make sense. The interface at the 
module boundaries may be tested anyway. Errors may be found early and the inter-
face may be corrected. From certain milestones on, regression integration tests are 
performed on a regular basis. These are automated tests that ensure that all modules of 
a system work together. The aim is to have a functional/running system after every 
integration/development step. Even though not all functionality is implemented, the 
test department may gain valuable insight from early tests. A design freeze is per-
formed if the code of a module has reached a predefined level of maturity and all 
functionality is implemented. This is usually the point at which code reading starts.  

The test department develops a verification test plan. To shorten time to market, 
test development or even some testing starts early and is largely done in parallel with 
the development of the systems itself. As far as feasible, models are developed to 
automatically generate tests and test suites. Regression tests that are performed with a 
certain frequency are automated, too. This allows for a large part of the tests to be 
automated and run frequently. 

Usually some tests remain that either cannot be automated, require manual interac-
tion, or are exploratory. Experience shows that some faults in the software or some 
behavior can only be found using exploratory tests. This holds true especially if mod-
els have been generated for modules but not for the combination of them. In addition, 
these kinds of tests are used to verify completeness of the models. 

In general, the test department schedules testing effort with the help of a matrix. As 
a first step, the functionality of the system is split into sub-functionalities. The result 
may be a considerable list of functions to be tested. As a second step, the functions on 
the list will be prioritized. Usually, three variables are considered to determine the 
priority of a certain function. One is the criticality of a function. A function may gain 
a high value for criticality if it is of potential danger to the patient, as in the case of 
pressure control of breathing gas, for instance. It will gain a low value if it is not criti-
cal, as the input of a patient's name, for example. The second and third variables are 
marketing and user convenience respectively. In such a way every function of the 
system is equipped with a score. After that, clusters holding functions with certain 
ranges of the score are generated. The cluster holding the functions having the highest 
scores will be assigned the largest part of the testing time. The cluster holding the 
functions having the lowest scores will be assigned the shortest testing time. This will 
help to focus the testers on those parts/functions of the system that are most critical. 

In a further step, each functionality’s score is distributed across the properties set 
down by ISO 9126: Functionality, Reliability, Usability, Efficiency, Changeability, 
and Portability. The test department has defined a set of five test phases. These  
are: Unit testing, SW integration testing (integrating modules together), SW/HW  



16 U. Becker 

integration testing, system testing, and acceptance/verification testing. The test de-
partment further defines to which extend the properties of ISO 9126 are tested in the 
defined test phases. Having all these parameters, testing time for the above- men-
tioned sub-functionalities may not only be scheduled as a whole block, but also split 
across the testing phases and thus along the development cycle of the product. 

The final system has to undergo rigorous testing with regard to the respective stan-
dards. Company internal standards may require further qualification or may require 
that tests are more stringent than required by a standard. In addition, every require-
ment of the specification has to be checked by at least one test. If a system has passed 
all the required tests, it is ready to receive the CE mark, for example. At that point the 
system is given to so-called beta testers for clinical evaluation. The system will only 
be marketed if it has passed this additional clinical evaluation phase. 

6   Conclusion 

Successful projects spend considerably more time or effort in the requirements and 
concept phase than failing projects do. Safe systems require a good concept. Model-
driven requirements engineering leads to more effort being spent in the requirements 
phase. Even though the supporting tools allow the requirements phase to be com-
pleted in the same amount of time as before when using the traditional method, there 
are more checks and a deeper analysis of the requirements. For these reasons, model-
driven requirements engineering is one key feature for the development of a  
life-supporting medical device. Due to the fact that more effort is spent in the re-
quirements phase, the probability for starting a successful project increases. If the test 
department starts generating models for model-based testing at an early stage of the 
project, this in turn will lead to further auditing of the requirements. All these activi-
ties aid in providing a sound base for the start of a new project. 

In sum, the development process shown uses models throughout the whole devel-
opment chain. Model-based safety analysis and the test-first approach, together with 
model-based design, lead to sound development concepts. Use of models provides the 
benefit that quality of design and design output are increased. Programmers do not 
“rush-to-code” but perform a more thorough analysis of the code to be written. Thus, 
the approach results in better code quality and better code design. The code produced 
contains fewer errors and thus less time is required for debugging and fixing bugs. 
The projects are more likely to be on schedule and thus are completed earlier than 
projects not using models, which are likely to be delayed. Crosby states that quality is 
free. We would like to add that it is not only free, but saves time and money and thus 
pays off instantly. We showed that around 75% of project costs are generated by 
faults and changes in the requirements. For this reason, the development process de-
scribed using models and automated checking in very early phases definitely will save 
project costs. 

Some improvements are still possible in the area of transferring models from cer-
tain phases into other phases. In addition, more formal auditing is much appreciated. 
We are rather confident that we can take benefit from the advances in the area of 
model-based requirements engineering and model-based safety analysis. 



 Model-Based Development of Medical Devices 17 

References 
1. Cepin, M., de Lemos, R., Mavko, B., Riddle, S., Saeed, A.: An Object–Based Approach to 

Modelling and Analysis of Failure Properties. In: Daniel, P. (ed.) Proceedings of the 16th 
International Conference on Computer Safety, Reliability and Security (SAFECOMP 
1997), September 1997, pp. 281–294. Springer, Berlin (1997) 

2. Cepin, M., Riddle, S.: Object Modelling and Safety Analysis of Engineered Safety Fea-
tures Actuation System, Technical Report TR ISAT 96/11 University of Newcastle upon 
Tyne (December 1996) 

3. de Lemos, R., Saeed, A., Anderson, T.: On the Integration of Requirements Analysis and 
Safety Analysis for Safety-Critical Software, Department of Computing Science, Univer-
sity of Newcastle upon Tyne. Technical Report Series No. 630 (May 1998) 

4. de Lemos, R., Saeed, A.: Validating Formal Verification using Safety Analysis Tech-
niques, Computing Science, Technical Report Series, No. 668 (March 1999) 

5. de Lemos, R., Saeed, A., Anderson, T.: On the Safety Analysis of Requirements Specifica-
tions. In: Maggioli, V. (ed.) Proceedings of the 13th International Conference on Computer 
Safety, Reliability and Security (SAFECOMP 1994), October 1994, pp. 217–227 (1994) 

6. Heitemeyer, C., Kirby, J., Labaw, B., Archer, M., Bharadwaj, R.: Using Abstraction and 
Model Checking to Detect Safety Violations in Requirements Specifications. IEEE Trans-
actions on Software Engineering 24(11) (November 1998) 

7. Holcombe, M., Ipate, F., Groundoudis, A.: Complete Functional Testing of Safety Critical 
Systems. In: Proceedings of the IFAC Workshop on Safety Reliabity in Emerging Control 
Technologies, November 1995, pp. 199–204. Pergamon Press, Oxford (1996) 

8. Hussey, A.: HAZOP Analysis of Formal Models of Safety-Critical Interactive Systems. In: 
Koornneef, F., van der Meulen, M.J.P. (eds.) SAFECOMP 2000. LNCS, vol. 1943, pp. 
371–381. Springer, Heidelberg (2000) 

9. Ortmeier, F., Reif, W.: Failure-sensitive specification: A formal method for finding failure 
modes, Technical Report 3, Institut fuer Informatik, University Augsburg (2004) 

10. Ortmeier, F., Reif, W.: Safety optimization: A combination of fault tree analysis and opti-
mization techniques. In: Proceedings of the Conference on Dependable Systems and Net-
works (DSN 2004). IEEE Computer Society, Los Alamitos (2004) 

11. Ortmeier, F., Schellhorn, G., Thums, A., Reif, W., Hering, B., Trappschuh, H.: Safety Analy-
sis of the Height Control System for the Elbtunnel. In: Anderson, S., Bologna, S., Felici, M. 
(eds.) SAFECOMP 2002. LNCS, vol. 2434, pp. 296–308. Springer, Heidelberg (2002) 

12. Ortmeier, F., Thums, A., Schellhorn, G., Reif, W.: Combining formal methods and safety 
analysis – the forMoSA approach. In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., 
Reif, W., Schnieder, E., Westkämper, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 474–493. 
Springer, Heidelberg (2004) 

13. Saeed, A., de Lemos, R., Anderson, T.: An Approach for the Risk Analysis of Safety 
Specifications, In: Proceedings of the 9th Annual Conference on Computer Assurance 
(COMPASS 1994), pp. 209–221 (June 1994) 

14. Saeed, A., de Lemos, R., Anderson, T.: Safety Analysis for Requirements Specifications: 
Methods and Techniques. In: Proceedings of the 15th International Conference on Computer 
Safety, Reliability and Security (SAFECOMP 1995), October 1995, pp. 27–41 (1995) 

15. Telelogic, A.B.: Writing Effective User Requirements; Education Material 
16. Thums, A., Ortmeier, F.: Formale Methoden und Sicherheitsanalyse, Technical Report, 

University Augsburg, Institut fuer Informatik (2002) 
17. Thums, A., Schellhorn, G., Ortmeier, F., Reif, W.: Interactive verification of statecharts. 

In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkäm-
per, E. (eds.) INT 2004. LNCS, vol. 3147, pp. 355–373. Springer, Heidelberg (2004) 

18. Chan, W.: Model Checking Large Software Specifications. IEEE Transactions on Software 
Engineering 27(7), 498–520 (1998) 

 



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 18–31, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Why Are People’s Decisions Sometimes Worse with 
Computer Support? 

Eugenio Alberdi1, Lorenzo Strigini1, Andrey A. Povyakalo1, and Peter Ayton2 

1 Centre for Software Reliability, City University London, London, UK 
2 Psychology Department, City University London, London, UK 

{e.alberdi,strigini,povyakalo}@csr.city.ac.uk, 
P.Ayton@city.ac.uk 

Abstract. In many applications of computerised decision support, a recognised 
source of undesired outcomes is operators’ apparent over-reliance on automa-
tion. For instance, an operator may fail to react to a potentially dangerous situa-
tion because a computer fails to generate an alarm. However, the very use of 
terms like “over-reliance” betrays possible misunderstandings of these phenom-
ena and their causes, which may lead to ineffective corrective action (e.g. train-
ing or procedures that do not counteract all the causes of the apparently “over-
reliant” behaviour). We review relevant literature in the area of “automation 
bias” and describe the diverse mechanisms that may be involved in human  
errors when using computer support. We discuss these mechanisms, with refer-
ence to errors of omission when using “alerting systems”, with the help of ex-
amples of novel counterintuitive findings we obtained from a case study in a 
health care application, as well as other examples from the literature. 

Keywords: decision support, computer aided decision making, alerting sys-
tems, human-machine diversity, omission errors. 

1   Introduction 

It has long been known that introducing automation might have unexpected side ef-
fects on human performance [1, 2]. For instance, consider a computer tool designed to 
highlight targets of interest on a radar screen. If the computer does not highlight one 
such target, even an experienced radar operator could be led to miss that target, even 
if he would not have missed it without the computer aid. Such phenomena are often 
attributed to complacency, which makes operators abdicate their responsibility to the 
automated support. Given this interpretation, a tool designer may assume this to be 
the main risk, and so proper training and indoctrination is the natural defence (e.g.  
[3]); this attitude is widespread in practice. We argue that this view is too simplistic 
and present a much richer picture of unintended, subtle effects that automation may 
have and which a designer needs to be prepared to guard against. 

Automation is increasingly taking on the role of supporting knowledge-intensive 
human tasks rather than directly replacing some of the human’s functions. This actu-
ally makes the problem of computer-related human errors subtler. The responsibility 



 Why Are People’s Decisions Sometimes Worse with Computer Support? 19 

for correct action rests with the user. One might think that user mistakes can be re-
duced by simple training or, sometimes, by a user interface that prevents those mis-
takes. But in practice computers and their users form human-computer systems, or 
“socio-technical systems”, which need to be assessed as whole systems from the 
viewpoints of reliability and safety. Examples of these supportive systems are alerting 
systems: from spell-checkers to alarm-filtering systems for industrial control rooms 
through collision warning systems in transportation or computerised monitoring in 
health care. In these monitoring applications, automation typically assists the operator 
in judgement-oriented tasks – like dealing with anomalies and taking high-level deci-
sions – by adding to situational data broadly “advisory” input: attention cues, pre-
filtered alarms, suggested diagnoses, or even recommended manoeuvres. If operators 
“trust” the computer's help too much or too little [4-6], compared to their own judge-
ment skills, reliability and safety of operation may suffer. Labels used in the literature 
are: “automation bias”, automation-induced “complacency” [7-9], “over-reliance” on 
automation [10], “automation dependence” [11] or computer induced “confirmation 
bias” [12].  

The purpose of this paper is to both review and broaden the set of explanatory 
mechanisms proposed in the literature as potential causes of undesired effects of 
automation. We argue that such effects may indeed result from “complacency” but 
often, instead, from complex cognitive mechanisms in decision making under uncer-
tainty. It is easy to view the user as culpable for reduced performance, but our analy-
ses suggest that this is a simplistic, and thus often misleading, assumption. At each 
demand for a decision, the operator's use of computer help depends on the details of 
that individual demand as well as on the operator's skills and the computer's de-
sign. Performance can be influenced by all of these factors as well as interactions 
among them. We present a (non exhaustive) set of possible   cause-effect mechanisms 
contributing to human error. Due to space restrictions, we focus on: errors of omis-
sion (human failure to react to target events) when using computerised alerting tools. 
The intention is to help designers of these socio-technical systems (i.e., the combina-
tion of computer algorithms, user interfaces, procedures, training protocols, etc.) to 
adopt appropriate defences to match these diverse threats.   

In the rest of the paper, we present: an overview of the human factors literature on 
automation bias and related concepts (section 2); a brief description of a case study in 
the area of computer-assisted cancer detection, which has motivated many of the 
analyses and conclusions presented in this paper (section 3); an outline of the mecha-
nisms contributing to errors of omission by computer-assisted operators (section 4); a 
discussion of the uses and limitations of this descriptive approach (section 5); and 
conclusions (section 6).  

2   Literature on Automation Bias, Complacency and Trust 

2.1   Scope and Terminology 

This review focuses on computer assisted monitoring or decision making, where an 
automated alerting tool supports human decisions with some form of non-binding “ad-
vice”, which can take the form of filtered or enhanced information, alerts and prompts.  



20 E. Alberdi et al. 

The scenario of operation we envisage is that for the user or operator, demands 
for action may arise (for instance, a patient’s vital sign indicate an impending crisis, 
two vehicles are approaching a potential collision, a word is misspelled in a docu-
ment). The user sees the raw data about the situation (pulse, blood pressure, etc. for 
a patient; position and motion vectors of vehicles, visually estimated or displayed 
on a radar screen; the text of the document) in which s/he needs to detect cues (spe-
cific combinations of ranges of vital signs, or distance and velocities, or the mis-
spelled word itself) and assess them and, if necessary, take an alarm response, such 
as recalling a patient for further examinations, initiate evasive manoeuvres, search 
for an alternative spelling of a word. A cue may indicate a target (real need for an 
alarm response: a demand implies the presence of at least one target), but the user 
needs to apply skill and knowledge to decide whether a given cue actually repre-
sents a target.  To support the user, the computerised warning tool is designed to 
provide prompts (e.g. visual highlights on a screen) that point at cues for considera-
tion. In this initial analysis, we do not consider the possibility that the tools also 
suggest specific actions. There is the possibility of the tool missing targets (false 
negative error, or FN), as well as of false prompts (false positive error, or FP). The 
tool can be assessed in terms of its probabilities of FN or FP errors, or equivalent 
pairs of measures (e.g. sensitivity/specificity are often used in signal detection the-
ory and in the medical literature).  

The errors of the human-computer system are also classified into false negatives 
(the user fails to initiate an alarm response despite a target being present) and false 
positives (the user initiates an alarm response in the absence of a target) and the sys-
tem’s dependability is described by FN and FP error probabilities (or equivalent pairs 
of measures). Another important figure is the alarm response rate – the cumulative 
frequency of alarm responses, either correct or spurious – since these are costly and 
most systems can only function if this rate is less than a certain threshold.  

It is useful to introduce some terminology from the human factors literature to con-
textualise the scope of systems and of errors that we cover here.  

Parasuraman and Riley [10] discussed different ways in which human-computer in-
teraction can go wrong and talked about three aspects of ineffective human use of 
automation: disuse, i.e., underutilization of automation, where humans ignore auto-
mated warning signals; misuse, i.e., over-reliance on automation, where humans are 
more likely to rely on computer advice (even if wrong) than on their own judgement; 
abuse, when technology is developed without due regard for human needs or the 
consequences for human (and hence system) performance and the operator’s authority 
in the system. 

Skitka and colleagues [13] focused on the misuse of automation, in particular on 
the “automation bias” effects occurring when people used wrong computer advice for 
monitoring tasks in aviation. They distinguished two types of computer-induced error: 
a) errors of commission: decision-makers follow automated advice even in the face of 
more valid or reliable indicators suggesting that the automated aid is wrong; b) errors 
of omission: decision makers do not take appropriate action, despite non-automated 
indications of problems, because the automated tool did not prompt them. 



 Why Are People’s Decisions Sometimes Worse with Computer Support? 21 

Focusing on  warnings generated by automated tools, Meyer [14], distinguishes be-
tween two alternative ways in which humans can “follow” or “conform to” the advice 
from a alerting system: compliance and reliance. Compliance indicates that the opera-
tor acts according to a warning signal and takes an action. Reliance is used to describe 
those situations where the alerting system indicates that “things are OK” and the op-
erator accordingly – i.e. not merely coincidentally – takes no action.  

As a result, combining Skitka’s and Meyer's terminologies, undue compliance 
(complying with an incorrect automated warning) would lead to errors of commission 
and undue reliance (failing to take action when no automated warning is issued) 
would lead to errors of omission. 

2.2   Automation Bias, Complacency and Trust 

The phrase “automation bias” was introduced by Mosier et al. [15] when studying the 
behaviour of pilots in a simulated flight. In this study, they encountered both omission 
and commission errors. These findings were then replicated with non-pilot samples 
(student participants) in laboratory settings simulating aviation monitoring tasks [13]. 
They found that, when the automated tool was reliable, the participants in the auto-
mated condition made more correct responses. However, participants with automation 
that was imperfect (i.e. occasionally giving unreliable support) were more likely to 
make errors than those who performed the same task without automated advice. In 
Skitka and colleagues’ studies, the decision-makers had access to other (non auto-
mated) sources of information. In the automated condition they were informed that 
the automated tool was not completely reliable but all other instruments were 100% 
reliable. Still, many chose to follow the advice of the automated tool even when it was 
wrong and was contradicted by the other sources of information. The authors con-
cluded that these participants had been biased by automation and interpreted their 
errors (especially their errors of omission) as a result of complacency or reduction in 
vigilance. 

Factors that have been investigated in empirical studies as possible influences in 
people’s vulnerability to automation bias include: individual differences among op-
erators [5, 13, 16, 17]; people’s accountability for their own decisions [17]; the levels 
of automation at which the computer support is provided [12, 18]; the location of 
computer advice/warnings with respect to raw data or other non-automated sources of 
information [19, 20]; people’s exposure to automation failures [21]. 

People’s ineffective use of computerised tools is often described in terms of “com-
placency”, which is said to cause over-reliance or “uncritical reliance”  on automation 
[7-10]. However, there is no general agreement about what exactly is “complacency” 
and what are the best ways to measure it [16]. What seems to be common to most char-
acterisations is a sense of contentment, unawareness of dangers or deficiencies and 
failure to look for evidence or to examine the raw data in a careful enough manner. 

A problem with terms like “complacency” is that they suggest value judgments on 
the human experts. Moray [22] points out that the claim that automation fosters com-
placency suggests that operators are at fault and  argues that the problem often lies in 
the characteristics of the automated tools, not in the human operators’ performance. 



22 E. Alberdi et al. 

Similarly, Wickens and Dixon [23] question the notions of complacency or reduced 
vigilance as explanations of automation bias. Instead, they argue that operators, whilst 
being aware of the unreliability of the diagnostic tools, choose to depend on the im-
perfect computer output to keep their cognitive processing resources for other tasks, 
particularly in situations with high workload.  

Another concept that is frequently invoked when talking about automation bias or 
(over)reliance on automation is “trust” [4-6, 8, 10, 24-29].  The common assumption 
is that the more a human operator trusts an automated aid the more likely s/he is to 
rely on or comply with the advice provided by the aid. If a human trusts an aid that is 
adequately reliable or fails to trust an aid that is indeed too unreliable, appropriate use 
of automation should occur as a result. However if a human trusts (and therefore fol-
lows the advice of) an unreliable tool, then automation bias may occur (or misuse of 
automation as defined above). Similarly if a person does not trust a highly reliable 
tool, the person may end up disusing (as defined above) or under-using the tool, hence 
the full potential benefits of automation will not be fulfilled. 

Subjective measures of the trust of human operators in a computer tool have been 
found to be highly predictive of people’s frequency of use of the tool [5, 30]. Use of 
automation (or reliance in its generic sense) is usually assessed with observations of 
the proportion of times during which a device is used by operators or by assessing the 
probability of operators’ detecting automation failures [19]. 

Factors that have been investigated in empirical studies as possible influences in 
people’s trust in automation include: people’s exposure to automation errors [5, 30, 
31], the consistency of the tool’s reliability [16, 32], the invasiveness or intrusiveness 
of the tool’s advice [33, 34]. 

3   A Case Study: Computer Aided Detection (CAD) for 
Mammography 

Many of the considerations we present originate from a case study we conducted in 
the area of CAD for breast cancer screening [35-40]. In breast screening, expert clini-
cians (“readers”) examine mammograms (X-ray images of a woman's breasts), and 
decide whether the patient should be “recalled” for further tests because they suspect 
cancer. A CAD tool is designed to assist the interpretation of mammograms primarily 
by alerting readers to potentially cancerous areas that they may otherwise overlook. 
CAD is not meant to be a diagnostic tool, in the sense that it only marks areas, which 
should be subsequently classified by the reader to reach the “recall/no recall” deci-
sion. In the intention of the designers, it can only avoid a cancer being missed but not 
cause a cancer to be missed. 

Our case study provided evidence of automation bias effects in the use of CAD; ef-
fects which could not be attributed to complacency and could actually coexist with 
users’ reported mistrust towards the tool [35]. Previous studies had concluded that on 
average using CAD was either beneficial or ineffectual. Our analyses indicated in-
stead that CAD reduced decision errors by some readers on some cases but increased 
errors by other readers on some cases. In short, this simple computer-assisted task hid 
subtle effects, easy to miss by designers and assessors [37]. 



 Why Are People’s Decisions Sometimes Worse with Computer Support? 23 

 

Fig. 1. Cause-effect chains leading to omission errors by computer-supported operators 
 



24 E. Alberdi et al. 

4   Diverse Causes of Errors by Humans with Computer Support 

Figure 1 shows a graphical representation of cause-effect chains involved in “errors of 
omission”, as an incomplete but complex account of “automation bias”. In the graph, 
rectangles denote observable behaviours; oval shapes represent causal factors (charac-
teristics of the tool and/or of the user, including cognitive mechanisms and affective 
states) that may be present in the human-computer system, although perhaps not di-
rectly observable; and the diamond-like shapes (all at the bottom of the graph), char-
acteristics of a specific demand and/or user that may trigger the effects of one or the 
other of the oval nodes. The lines between nodes indicate causal links. A black arrow 
indicates an “increase” relationship (i.e., an increase or intensification of the factor 
identified by the source node leads to a change in the same direction for the target 
node); a white arrow indicates a “decrease” relationship (an increase of the source 
node factor leads to a decrease of the target node factor); lines with both a black and a 
white arrow indicate that there is an influence but the direction of change can go ei-
ther up or down depending on the circumstances. Multiple arrows into a node have an 
“OR” semantics: any one of the source nodes may affect the target node, irrespective 
of whether other source nodes do.   

As noted, we focus on human errors of omission, exemplified by node 1 in the 
graph: “Human FN (false negative) rate”. This node denotes the increased likelihood 
that a human’s FN rate is higher when using computer support than when not using it. 
In mammography, a human FN is a radiologist’s failure to recall a patient whose 
mammogram contains indications of cancer that s/he has missed or misinterpreted; in 
collision warning systems, a human FN is an operator’s failure to notice the proximity 
between two vehicles or aircraft and her/his consequent failure to initiate evasive 
manoeuvres or give the necessary directions to colleagues.  

We represent in nodes 2-4 our three main conjectures about how this increase in 
operator’s FN rate comes about (possibly just three very plausible examples out of 
many other possible contributing mechanisms). Node 2 refers to the processing of raw 
data (the detection of or search for target cues). Nodes 3 and 4 refer to “diagnostic” 
aspects of the decision making (i.e., the interpretation or classification of the raw data 
once the operator has collected or detected them). More specifically: 

 

• Node 2, “Reduced Search”: the operator fails to either complete the search for all 
possible cues (e.g. suspicious features in a mammogram) or to examine all the nec-
essary raw data to make a decision.  

• Node 3, “Explicit Diagnostic Misuse”: the operator, in deciding the value of a cue 
towards a decision, gives the tool’s prompts more weight than intended by the de-
signers. For example, in CAD for mammography, the prompts are meant as pure 
alerts, without diagnostic value and the procedure prescribed that if a user had  
decided to recall a case before seeing the prompts, s/he should not change her/his 
decision to “no recall” after seeing the prompts [37]. If a reader performs this for-
bidden action, it is explicit diagnostic misuse. By “explicit” we mean that such vio-
lations could be identified, e.g. by the user her/himself, differently from the form 
of potential tool misuse represented by the next node, 4. 



 Why Are People’s Decisions Sometimes Worse with Computer Support? 25 

• Node 4, “Raised Diagnostic Threshold”: an operator raises the degree of “strength” 
or “severity” of cues that s/he requires in order to initiate an alarm response with-
out a prompt from the tool. For certain borderline cases the user, when not using 
computer support, might be cautious and give an alarm response; for example, 
when seeing a moderately suspicious feature on a mammogram, a reader recalls the 
patient for further examinations even if it is not clear that she may have cancer. But 
if “supported” by the tool, the operator may become “less cautious” when inter-
preting those cues; for example, in a first examination, the reader decides not to re-
call the patient and waits to see the CAD prompts before committing her/himself to 
a recall decision.  

 
Let us discuss some of the different paths that can lead to these three “top level” 
nodes (and, ultimately, to raised human FN rate).  

We start with node 8, the tool’s sensitivity (“Tool’s hit rate”), an “obviously” bene-
ficial characteristic. Increasing tool sensitivity is, in principle, desirable; and this is a 
goal tool designers normally aim for. However, it may actually lead to undesirable 
effects because increasing it usually increases the rate of false prompts (link to node 6 
in the graph). Processing false prompts can be costly. Radiologists, for example, are 
known to be concerned with explaining why each prompt is present [37, 41]. Also, in 
aviation, pilots using TCAS (Traffic Collision Avoidance System) are strictly in-
structed to regard all automated messages as genuine alerts demanding an immediate, 
high-priority response [42]. Processing false prompts demands time and cognitive 
resources, and thus can lead to “Time Pressure” (node 9) and “Cognitive Overload” 
(node 5: presence of confusion that does not allow the operator to process information 
properly). Time pressure and cognitive overload are indeed interconnected and both 
reduce the operator’s ability to complete the search for cues (links to node 2). It is 
important to note that none of the mechanisms just described (in connection with the 
tool’s sensitivity) imply “over-reliance” on automation or “complacency”. The tool 
affects the operators, but they are not conforming to its advice. In fact, operators’ 
performance could be worse with computer support even for demands for which the 
tool provides correct advice. Evidence from the case study on CAD in breast screen-
ing strongly supports this view [35, 36]. Nodes 18 and 16, in conjunction with node 6, 
illustrate the “cry wolf” situation that may explain phenomena like this. Imagine that 
a true prompt (e.g., one signalling cancer in a mammogram) is surrounded by a cluster 
of many obviously false prompts (node 18). The user may infer that prompts in this 
case are not correlated with the presence of cancer (node 16); the value of the true 
prompt gets diminished for the radiologist, leading her/him to overlook correct 
prompts. 

The tool’s sensitivity (node 8) can lead to unanticipated human error through what 
we call “Normative reliance” on the tool (node 15). By “normative” we mean it fits a 
“normatively correct”, rational decision making process. This can take, at least, two 
different forms: 

 

• Based on their experience with a highly sensitive tool, operators correctly use 
prompts as a sign of possible missed targets. This can lead to “Raised Diagnostic 
Threshold” (link to node 4) and eventually to increased operator FN rate (node 1) 



26 E. Alberdi et al. 

in the following way. If the tool is useful, it causes an increase of correct “alarm 
responses” but it may also increase the number of false alarm responses (human 
FPs). Operators know that too high an “alarm response rate” is unacceptable; for 
instance, too many false recalls may make a cancer screening program unable to 
cope with the true cases. Therefore, raising the operator’s own threshold is a rea-
sonable reaction, irrespective of whether it is intentional or not. However it may 
overcompensate, or at least make the operator miss some targets that s/he would 
not have missed without the tool, although overall s/he misses fewer with the tool. 

• Many of the prompts are spurious, so operators correctly learn to associate “no 
prompt” with likely absence of target (node 17). This can lead to reduced data 
search (node 2). As a result, given a FN from the tool, the user’s normative reliance 
on the tool will lead him/her to miss the target (node 1). A “rational” user will be 
especially likely to reduce the search in the light of absence of prompts if detailed 
analysis of every prompt is too demanding and, especially, if it is practically infea-
sible. 

The association between absence of prompts and absence of target can lead to a dif-
ferent, less “rational”, path, involving trust (node 11), an “affective” (rather than 
cognitive) state, which may be affected by experience of reliability, but also by many 
other factors, and may be far stronger or far weaker than warranted by experience. 
Here we envisage complacency, represented by “Abdicating responsibility to tool” 
(node 10) as the result of a person’s “negotiation” between the trust s/he has in her/his 
own abilities (node 13) and her/his trust in the tool. Expert operators often have be-
liefs about what tasks they are good at and what tasks they are less competent at [37]. 
If the user trusts the tool more than her/himself for a particular task, s/he will be more 
likely to over-rely on it (i.e., relinquishing responsibility to automation). Various (non 
exhaustive) links in the graph indicate the various factors or mechanisms that may 
affect trust.  

There are also situations when people abdicate responsibility to the tool even if 
they do not trust it. For example, just the fact that the operator knows that computer 
support is available could in itself lead to complacency (links from node 14, “Avail-
ability of the computer tool” per se, to node 10), in a process equivalent to what some 
psychologists term “social loafing”: when people work with other people, diffusion of 
responsibility often takes place [43, 44]. Importantly, specific situations with high 
degrees of uncertainty (node 21), especially when other more reliable sources of in-
formation are missing (node 23), may make operators vulnerable and cause them to 
rely on computer support more than they would normally do, even if they do not trust 
its reliability. We found evidence for this in our study of CAD use with difficult-to-
detect cancers. 

Node 14 designates other ways in which the “Presence of the Tool” per se (no mat-
ter how reliable) can also contribute to human error without over-reliance or compla-
cency. For instance, the need to examine and process the tool’s output may in itself 
increase time pressure (node 9) and cognitive load (node 5).   

For the sake of brevity, we leave out of this exposition a few of the nodes and links 
in the graph, which we believe are self-explanatory. 



 Why Are People’s Decisions Sometimes Worse with Computer Support? 27 

5    Discussion 

5.1   Uses of This Approach 

The main purpose of the diagram in Fig 1 is to assist a designer or assessor in identi-
fying the causal chains leading to undesired effects. A designer can try to interrupt the 
chain by appropriate design decisions. The fact that the graph represents multiple 
interacting causal chains should help against tunnel vision, i.e., focusing on one  
obvious concern while ignoring others. For instance, a designer might try to counter-
act factor 2 in the graph, assuming it is mainly caused by factor 17, via procedural 
restrictions, such as requiring that the user reach a provisional decision and take re-
sponsibility for it (e.g. by recording it in  a log) before seeing the tool's prompts. But 
this remedy might not work against factor 2, or might even make it worse if mandat-
ing this more complex procedure exacerbates factor 9; or if, despite factor 2 being 
alleviated or eliminated, the main (neglected) mechanism through which the tool 
causes certain extra false negative decisions is factor 4.  

So far we have talked about the need for completeness in analyses. In designing a 
human-computer system, it would be good to focus on those possible causal chains 
that will be important in a specific system and context of operation. For this kind of 
optimisation, one needs empirical observations in the environment of use, if feasible. 
To help when these observations are not available, further research should try to iden-
tify general rules for forecasting the relative importance of the different mechanisms 
in a future system and environment of use. Last, system designers may wish to incor-
porate in the design degrees of “tuneability” for the parameters (of the algorithms in 
the tool, the procedure for using it, etc.) to allow adjustments in operation, so as to 
achieve good trade-offs between positive and negative effects. 

5.2   Limitations, Quantitative Aspects 

We highlight next some problems that this descriptive approach does not address. 
Quantitative trade-offs may be necessary in design. The relative importance of the 
various causal mechanisms in the graph will vary between systems, between users in 
the same system and between demands. This is because the parameters of human 
reactions to cues and prompts may well vary between categories of demands, just as 
those of the tool's reactions do (e.g., being better at detecting and prompting certain 
kinds of cues than others). Especially with increasing experience, a user might, for 
instance, learn to trust a computer’s prompts highly for certain types of demand, an 
only little for others. A support tool may have a positive effect on the reactions of 
certain population of users to most demands, but still have a detrimental effect on 
some categories of demands for a subset of those users. These factors may require 
designers to consider quantitative trade-offs, and to assess the effects of uncertainties 
about the environment of use of an alerting tool.  

We modelled in [40] the cumulative effect of these different reaction patterns, to 
quantitatively identify possible design trade-offs, showing that complex effects are 
possible. 

Depending on the trade-offs made by designers and their effects on various classes 
of demand (and the frequencies of these classes of demands), a tool designed to help 



28 E. Alberdi et al. 

might have a damaging effect (aggregated over the whole population of users and 
distribution of demands). Much more commonly, improving the aggregated depend-
ability of the socio-technical system requires consideration of the various design 
trade-offs affecting the overall FN and FP rates for all classes of demands. For in-
stance, if factor 4 in the graph causes, on average, operators to end up with a few 
more false negatives on a difficult but rare class of demands, while allowing them to 
reduce false negatives – without an excessive increase in false positives – on a  more 
common class of demands, the net effect may be beneficial. A possible complication 
is that of errors causing different degrees of loss depending on the class of demands: 
in the above example, if FNs on the class of “difficult” demands tended to cause more 
serious consequences, using the tool might increase the overall amount of loss caused 
by the decisions compared to the unaided user. Even with a tool whose aggregated 
effect is unambiguously positive, its potential for increasing human FNs on specific 
classes of demands may cause concerns. For example, for a medical decision aid, the 
net effect may be a transfer of risk from certain patients to others: introducing the aid 
might reduce risk for the average patient and yet increase risk for the average patient 
from a certain age or ethnic group. Or the aid may have the effect of improving the 
performance of most doctors but making it worse for some specific doctors. 

6   Conclusions 

With reference to a category of computer-assisted human tasks, we have highlighted a 
variety of alternative mechanisms that could lead to omission errors by the computer 
assisted operators. We have shown that errors that are often ascribed to “compla-
cency” or “over-reliance” on computers, can actually be caused by other mechanisms, 
in fact even when the operators do not trust the automated tool. 

The various mechanisms are interrelated in complex ways, so that the presence and 
characteristics of the alerting tool may affect the FN rate in more than one way. If a 
designer focused on only part of the graph in our Fig. 1, trying to “cut” one of the 
edges so as to defeat one of these damaging mechanisms, succeeding might not bring 
any benefit because, in the system, the predominant damaging mechanism may be 
another one. 

So, when designing a tool and the human-computer system to include it, it is cer-
tainly important to be aware of the risk of complacency (e.g. by prescribing appropri-
ate training or procedures), but this may not be enough. In particular, we have shown 
that some of these error mechanisms may be an inherent part of the human cognitive 
apparatus for reacting to cues and alarms, so they cannot be effectively shut off. A 
proper design of the human-machine system would look for the best trade-off be-
tween the positive and negative effects, rather than assuming that negative effects can 
be completely eliminated; and evaluators and adopters, when assessing a design, need 
to be aware of these various facets of the effects of a tool. 

The graph presented in Fig. 1, based on our deductions from empirical work and 
from prior literature, is likely to be incomplete; but it indicates a useful way towards 
more explicit and complete ways of considering error causes when designing human-
computer systems. 

 



 Why Are People’s Decisions Sometimes Worse with Computer Support? 29 

Acknowledgments. This work was supported in part by the U.K. Engineering and 
Physical Sciences Research Council via project INDEED, “Interdisciplinary Design 
and Evaluation of Dependability” (EP/E000517/1) and by the European Union’s 
Framework Programme 6 via the ReSIST Network of Excellence, contract IST-4-
026764-NOE. 

References 

1. Bainbridge, L.: Ironies of Automation. Automatica 19, 775–779 (1983) 
2. Sorkin, R.D., Woods, D.D.: Systems with human monitors: A signal detection analysis. 

Human-Computer Interaction 1, 49–75 (1985) 
3. Hawley, J.K.: Looking Back at 20 Years of MANPRINT on Patriot: Observations and Les-

sons. Report ARL-SR-0158, U.S. Army Research Laboratory (2007) 
4. Bisantz, A.M., Seong, Y.: Assessment of operator trust in and utilization of automated de-

cision-aids under different framing conditions. International Journal of Industrial Ergo-
nomics 28(2), 85–97 (2001) 

5. Dzindolet, M.T., Peterson, S.A., Pomranky, R.A., Pierce, L.G., Beck, H.P.: The role of 
trust in automation reliance. International Journal of Human-Computer Studies 58(6), 697–
718 (2003) 

6. Muir, B.M.: Trust between humans and machines, and the design of decision aids. Interna-
tional Journal of Man-Machine Studies 27, 527–539 (1987) 

7. Azar, B.: Danger of automation: It makes us complacent. APA monitor 29(7), 3 (1998) 
8. Singh, I.L., Molloy, R., Parasuraman, R.: Automation-induced “complacency": develop-

ment of the complacency-potential rating scale. International Journal of Aviation Psychol-
ogy 3, 111–122 (1993) 

9. Wiener, E.L.: Complacency: is the term useful for air safety. In: 26th Corporate Aviation 
Safety Seminar, pp. 116–125. Flight Safety Foundation, Inc. (1981) 

10. Parasuraman, R., Riley, V.: Humans and automation: Use, misuse, disuse, abuse. Hum. 
Factors 39, 230–253 (1997) 

11. Wickens, C., Dixon, S., Goh, J., Hammer, B.: Pilot Dependence on Imperfect Diagnostic 
Automation in Simulated UAV Flights: An Attentional Visual Scanning Analysis. In: Pro-
ceedings of the13th International Symposium on Aviation Psychology (2005) 

12. Cummings, M.L.: Automation bias in intelligent time critical decision support systems. In: 
AIAA 1st Intelligent Systems Technical Conference, AIAA 2004 (2004) 

13. Skitka, L.J., Mosier, K., Burdick, M.D.: Does automation bias decision making? Interna-
tional Journal of Human-Computer Studies 51(5), 991–1006 (1999) 

14. Meyer, J.: Conceptual issues in the study of dynamic hazard warnings. Human Fac-
tors 46(2), 196–204 (2004) 

15. Mosier, K.L., Skitka, L.J., Heers, S., Burdick, M.: Automation bias: Decision making and 
performance in high-tech cockpits. International Journal of Aviation Psychology 8(1), 47–
63 (1998) 

16. Prinzel, L.J., De Vries, H., Freeman, F.G., Mikulka, P.: Examination of Automation-
Induced Complacency and Individual Difference Variates. Technical Memorandum No. 
TM-2001-211413, NASA Langley Research Center, Hampton, VA (2001) 

17. Skitka, L.J., Mosier, K., Burdick, M.D.: Accountability and automation bias. International 
Journal of Human-Computer Studies 52(4), 701–717 (2000) 



30 E. Alberdi et al. 

18. Meyer, J., Feinshreiber, L., Parmet, Y.: Levels of automation in a simulated failure detec-
tion task. In: IEEE International Conference on Systems, Man and Cybernetics 2003, pp. 
2101–2106 (2003) 

19. Meyer, J.: Effects of warning validity and proximity on responses to warnings. Hum. Fac-
tors 43, 563–572 (2001) 

20. Singh, I.L., Molloy, R., Parasuraman, R.: Automation-induced monitoring inefficiency: 
role of display location. International Journal of Human-Computer Studies 46(1), 17–30 
(1997) 

21. Bahner, J.E., Huper, A.-D., Manzey, D.: Misuse of automated decision aids: Complacency, 
automation bias and the impact of training experience. Int. J. Human-Computer Studies 66, 
688–699 (2008) 

22. Moray, N.: Monitoring, complacency, scepticism and eutactic behaviour. International 
Journal of Industrial Ergonomics 31(3), 175–178 (2003) 

23. Wickens, C.D., Dixon, S.R.: Is there a Magic Number 7 (to the Minus 1)? The Benefits of 
Imperfect Diagnostic Automation: A Synthesis of the Literature, University of Illinois at 
Urbana-Champaign, Savoy, Illinois, pp. 1–11 (2005) 

24. Dassonville, I., Jolly, D., Desodt, A.M.: Trust between man and machine in a teleoperation 
system. Reliability Engineering & System Safety (Safety of Robotic Systems) 53(3), 319–
325 (1996) 

25. Lee, J.D., Moray, N.: Trust, self-confidence, and operators’ adaptation to automation. In-
ternational Journal of Human-Computer Studies 40, 153–184 (1994) 

26. Lee, J.D., See, K.A.: Trust in computer technology. Designing for appropriate reliance. 
Human Factors, 50–80 (2003) 

27. Muir, B.M.: Trust in automation: Part I. Theoretical issues in the study of trust and human 
intervention in automated systems. Ergonomics 37, 1905–1922 (1994) 

28. Muir, B.M., Moray, N.: Trust in automation: Part II. Experimental studies of trust and hu-
man intervention in a process control simulation. Ergonomics 39, 429–460 (1996) 

29. Tan, G., Lewandowsky, S.: A comparison of operator trust in humans versus machines. In: 
Presentation of First International Cyberspace Conference on Ergonomics (1996) 

30. de Vries, P., Midden, C., Bouwhuis, D.: The effects of errors on system trust, self-
confidence, and the allocation of control in route planning. International Journal of Hu-
man-Computer Studies 58(6), 719–735 (2003) 

31. Dzindolet, M.T., Pierce, L.G., Beck, H.P., Dawe, L.A.: The perceived utility of human and 
automated aids in a visual detection task. Human Factors 44(1), 79–94 (2002) 

32. Parasuraman, R., Molloy, R., Singh, I.L.: Performance consequences of automation-
induced “complacency”. International Journal of Aviation Psychology 3, 1–23 (1993) 

33. Bliss, J.P., Acton, S.A.: Alarm mistrust in automobiles: how collision alarm reliability af-
fects driving. Applied Ergonomics 34(6), 499–509 (2003) 

34. Parasuraman, R., Miller, C.A.: Trust and etiquette in high-criticality automated systems. 
Communications of the ACM 47(4), 51–55 (2004) 

35. Alberdi, E., Povyakalo, A.A., Strigini, L., Ayton, P.: Effects of incorrect CAD output on 
human decision making in mammography. Acad. Radiol. 11(8), 909–918 (2004) 

36. Alberdi, E., Povyakalo, A.A., Strigini, L., Ayton, P., Given-Wilson, R.: CAD in mammog-
raphy: lesion-level versus case-level analysis of the effects of prompts on human decisions. 
Journal of Computer Assisted Radiology and Surgery 3(1-2), 115–122 (2008) 

37. Alberdi, E., Povyakalo, A.A., Strigini, L., Ayton, P., Hartswood, M., Procter, R., Slack, R.: 
Use of computer-aided detection (CAD) tools in screening mammography: a multidiscipli-
nary investigation. Br. J. Radiol. 78(suppl_1), S31–S40 (2005) 



 Why Are People’s Decisions Sometimes Worse with Computer Support? 31 

38. Povyakalo, A.A., Alberdi, E., Strigini, L., Ayton, P.: Evaluating ’Human + Advisory com-
puter’ systems: A case study. In: HCI 2004,18th British HCI Group Annual Conference, 
British HCI Group, pp. 93–96 (2004) 

39. Povyakalo, A.A., Alberdi, E., Strigini, L., Ayton, P.: Divergent effects of computer 
prompting on the sensitivity of mammogram readers, Technical Report, Centre for Soft-
ware Reliability, City University, London, UK (2006) 

40. Strigini, L., Povyakalo, A.A., Alberdi, E.: Human-machine diversity in the use of comput-
erised advisory systems: a case study. In: 2003 Int. Conf. on Dependable Systems and 
Networks (DSN 2003). IEEE, Los Alamitos (2003) 

41. Hartswood, M., Procter, R., Rouncefield, M., Slack, R., Soutter, J., Voss, A.: ’Repairing’ 
the Machine: A Case Study of the Evaluation of Computer-Aided Detection Tools in 
Breast Screening. In: Eighth European Conference on Computer Supported Cooperative 
Work, ECSCW 2003 (2003) 

42. Pritchett, A.R., Vandor, B., Edwards, K.: Testing and implementing cockpit alerting sys-
tems. Reliability Engineering & System Safety 75(2), 193–206 (2002) 

43. Karau, S.J., Williams, K.D.: Social loafing: a meta-analytic review and theoretical integra-
tion. Journal of Personality and Social Psychology 65, 681–706 (1993) 

44. Latanedo, B., Williams, K., Harkins, S.: Many hands make light the work: the causes and 
consequences of social loafing. Journal of Personality and Social Psychology 37, 822–832 
(1979) 

 



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 32–45, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Safety-Related Application Conditions –  
 A Balance between Safety Relevance and Handicaps for 

Applications 

Friedemann Bitsch1, Ulrich Feucht2, and Huw Gough2 

1 Informatik Consulting Systems AG, Sonnenbergstr. 13, D-70184 Stuttgart, Germany 
friedemann.bitsch@ics-ag.de 

2 Thales Rail Signalling Solutions GmbH, Lorenzstraße 10, D-70435 Stuttgart, Germany 
{ulrich.feucht,huw-michael.gough}@thalesgroup.com 

Abstract. Railway standards prescribe the use of Safety-related Application 
Conditions (SACs). SACs are demands to be observed when using a safety re-
lated system or a sub-system. The use of SACs can, however, easily be associ-
ated with difficulties. SACs of sub-systems can imply high efforts regarding 
their fulfillment at system level. Furthermore, SACs at sub-system level may 
become very obstructive for the user of the sub-system, if the safe application 
on system level has strong restrictions. Additionally, a large number of SACs 
may be very difficult to manage. In this way, SACs may obstruct the introduc-
tion of a system or a sub-system into the field. Particular hazards could arise 
from SACs, if they are formulated ambiguously, so that the originally intended 
safety-related measures are not taken at all. This paper presents the objectives 
and benefits of SACs and depicts difficulties and challenges associated with the 
use of SACs. The paper not only explains what should be the SAC content but 
also the quality criteria, the conditions for SAC creation and SAC fulfillment 
are described. The SAC management process introduced at Thales Rail Signal-
ling Solutions GmbH is outlined. On the one hand, this process shall support the 
quality of SACs and on the other hand reduce the effort for SAC creation, ful-
fillment and evidence. 

Keywords: Safety-related Application Conditions, SAC quality, conditions for 
defining SACs, process for defining and complying with SACs. 

1   Introduction 

Safety cases for safety-related railway control systems must be created for safety-
related items1. A majority of the argumentation in the safety case is directed towards 
the internal attributes of the item. Moreover, also hazards are identified which cannot 
be covered by the internal attributes of the item itself, but rather through the adher-
ence to certain requirements during the usage of the item in the intended superior 
                                                           
1 The term “item” is used in this paper as an umbrella term for a system, a subsystem, a product 

or a component. A system can include several subsystems which can include several products. 
A product can be constructed from several components.  



 SACs –  A Balance between Safety Relevance and Handicaps for Applications 33 

context. These requirements are Safety-related Application Conditions (SACs). They 
must be documented in the item safety case and handed over to the responsibility of 
the user of the item. The superior context means either the application by an end user 
or the application in the development on a superior level (compare with the levels 
described in section 2 and Fig. 1). SACs document the conditions which must be 
followed during the usage of the item in a superior context due to safety-related rea-
sons, so that hazards are avoided. The adherence to conditions remains the responsi-
bility of the user. However, it is safety critical if SACs are not fulfilled by the user 
e.g. because of communication problems about the content of the SAC or because the 
user does not perceive why the instruction of the SAC is necessary for safety.   

An example of non-compliance with a safety-related regulation is explained in the 
judgment [2] for the Transrapid accident in Emsland, Germany in 2006. According to 
[2] the regulation of the manufacturing company was not fulfilled which defined that 
the electronic route gate has to be set obligatory in case of shunting operations. [2] 
explains that this was not implemented in the operating rules.  

It is often possible to decide whether a SAC which has been formulated can be 
solved by avoiding the SAC altogether if measures are designed within the boundaries 
of the item itself, otherwise the decision is made to make development improvements 
on superior system level. Such SACs which could have been avoided, can implicate 
high efforts at fulfillment on superior system level. Avoidable SACs also may be 
unneeded and unreasonable demands for appliers when the required safe application 
of a system or product is very extensive, highly restrictive, if the SACs are difficult to 
interpret or if the amount of SACs is unmanageably large. In this way SACs may 
obstruct the introduction of a product in the market. SACs without real safety charac-
ter complicate and handicap the application of the item unnecessarily. 

Therefore approaches are necessary which support the creation of SACs with clear 
and precise description of their content and clearness about their safety relevance, the 
decision in which cases SACs are necessary and in which other cases SACs should be 
avoided and the compliancy with SACs without high efforts.  

In section 2 the benefit of SACs is pointed out and a definition for SACs is given. 
Requirements of safety standards and related works for the SAC topic are explained 
in section 3. On that basis challenges and risks with SACs are handled in section 4 
and needs for creating, complying with and demonstrating SACs are derived. In the 
sections 5 and 6 criteria for SAC creation and quality are introduced. Processes for 
defining and handling SACs are presented in section 7. Important issues for SAC 
quality and efficient handling with SACs are summarized in section 8.   

2   Meaning and Purpose of SACs 

2.1   Benefits of SACs 

Before it is defined what SACs exactly are the question shall be pursued for what SACs 
are useful and necessary. SACs involve several benefits in the Product Life Cycle. 
SACs assure safe operation of products by prescribing demands, which ensure the safe 
deployment of a system. SACs are important to give users clear safety-relevant instruc-
tions. Consequently, SACs are necessary for safety. They are prescribed compellingly  
 



34 F. Bitsch, U. Feucht, and H. Gough 

system

product 2

product 1

comp. 1

comp. 2

• SACs of component 1 
which are fulfilled by 
product 2

• SACs of component 1 
which can be complied
only by the end user

• SACs of product 2 
are fulfilled by the 
system

• SACs of the system are
complied by the end user

end user

• SACs of component 2 
which can be fulfilled
only by the system  

Fig. 1. Examples on which levels SACs are forwarded for fulfillment 

by the railway standard EN50129 [1]. SACs can clarify safety responsibilities when 
using a system or a product in the phases after the development and the safety case have 
been completed, e.g. who of the end users has which safety responsibility. SACs clarify 
which safety responsibilities the maintenance staff, the rail traffic controller and the 
operating company have. SACs from subordinate items can clarify which safety respon-
sibilities are on component, on product and on system levels. In Fig. 1 examples are 
given on which levels SACs could be forwarded to superior levels.  

A typical example of a SAC which has to be fulfilled at development of a superior 
item, here a generic platform: The application must ensure that a restart is possible 
only after the hardware has been reset. Reasoning: A soft reset is not sufficient for a 
safe restart. As the generic platform is designed the hardware has to be reset for a 
safe restart. It is the task of the application development to ensure this.  

A typical example of a SAC for an end user for any device is: At least once within 
12 months, the maintenance engineers have to check the device outputs with a certain 
test program. Reasoning: The calculated hazard rates are valid, only if the user com-
plies with the Failure Detection Time of 12 months for the output circuits.  

Furthermore SACs can also be contributions to an economical development. SACs 
can allow the deployment of an item by definition of rules for safe application also 
with inexpensive design decisions. This is the case if easily to fulfill SACs can be 
defined instead of cost-intensive complex design solutions which are hard to realize. 

2.2   Definition of SACs 

SACs can be defined as followed which complies also EN50129 [1]. SACs are: 
 

• regulations, that must be observed during the usage of an item in a superior context 
due to safety reasons,  

• regulations, whose compliance lies in the responsibility of the user and 
• regulations, which can avoid hazards, that are not covered through internal charac-

teristics of the item itself, but which can be covered through the adherence of ex-
ternal measures or conditions during the usage of the item. 

 

An example of a SAC is: A point has to be switched once in 12 months. The superior 
context for this example is the application of the point by the railway operator. The 
hazard is that the point switch is not in the correct position when it is run over because 



 SACs –  A Balance between Safety Relevance and Handicaps for Applications 35 

of an undetected failure in the switchover circuit. For avoidance of the hazard the 
external measure is the passing of the point in the test cycle of 12 months. 

3   Related Works and State of the Art 

A well-known accident which demonstrates the meaning of SACs is the Chernobyl 
disaster in 1986. This accident and the consequences of violating safety rules (SACs) 
for end users have been analyzed in detail in [3]. In this context psychological factors 
for violating safety rules are in focus and have been investigated in detail.  

According to [3] an essential part of the accident causes were human failures. But 
“everything the [plant] operators did they did consciously and apparently with com-
plete conviction that they were acting properly”. [4] explains: “The plant operators, 
[…] however, thought in terms of linear networks of causation rather than considering 
potential side effects of their decisions and actions” . To handle these kinds of prob-
lems the consideration of safety regulations is absolute necessary. The human errors 
of Chernobyl were the consequences of the contempt of safety related regulations.  

One reason for violation of safety rules according to [3] is that safety reasons for 
the rule are unclear for the operators. Furthermore, safety rules often bring a special 
effort for application. Therefore the violation of rules can lead to a simplified applica-
tion. If a safety rule has been violated sometimes without any negative consequences 
then the tendency is in succession that the rule would be violated regularly. Then 
actions are based on own estimation of the situation. But this is hazardous because the 
user does not know the internal system states and the side effects.  

IEC 61508 [5] only requires mandatorily that there must be operational and main-
tenance instructions to avoid mistakes during operation and maintenance procedures. 
In addition it is stated that all instructions must be easily understood. Explicit re-
quirements for instructions related to safety are missing.  

However in the railway standard EN50129 [1] SACs creation and compliance is 
prescribed compellingly. But there is little guidance related to handling and quality of 
SACs. The meaning of SACs is explained and it is prescribed in which parts of the 
safety case SACs have to be handled. SACs are defined as rules, conditions and con-
straints which shall be observed in the application of the system/sub-system/equip-
ment. SACs from the current item to the superior items are part of the current item 
Technical Safety Report. Beside possible general topics the following specific topics 
are named and explained which shall be addressed in SACs: Sub-system/equipment 
configuration and system build, operation and maintenance, operational safety moni-
toring and decommissioning and disposal. In “Part 5” of the Safety Case with the 
topic “Related Safety Cases” it shall be demonstrated that all the safety-related appli-
cation conditions specified in each of the related sub-system/equipment Safety Cases 
are either fulfilled, or carried forward into the safety-related application conditions of 
the item under consideration.  

[6] describes a concept, which divides a safety case into modular safety cases ac-
cording to modular architecture designs. Safety case ‘contracts’ are used to record the 
interdependencies that exist between safety case modules – e.g. to show how  
the claims of one module support the arguments of another. Safety contracts constrain 



36 F. Bitsch, U. Feucht, and H. Gough 

the interactions that occur between objects, and hence can ensure system behavior is 
safe. These contracts are broken down into individual requirements placed on the 
parts of the system. In difference to safety contracts SACs as a rule are directed bot-
tom-up in a system architecture, i.e. an item addresses rules for a safety-related cor-
rect application to the superior architectural level.  

As explained in section 7 a related topic is the specification, the fulfillment and the 
evidence of safety requirements. According to [1] safety requirements specifications 
contain functional safety requirements and systematic and random failure integrity 
requirements. Functional safety requirements concern all safety relevant control and 
monitoring functions of the system. Failure integrity requirements are the require-
ments regarding systematic and random failures.  

Safety requirements are as other requirements part of requirements engineering. 
According to IEEE requirements engineering has to be divided into requirements 
elicitation, requirements analysis, requirements specification and requirements valida-
tion [7]. [5] gives criteria fort he quality of safety requirements. They have to be clear, 
precise, unambiguous, verifiable, testable, maintainable and feasible; and written to 
aid comprehension by those who are likely to utilize the information. 

Generally there are two strategies to fulfill safety requirements [8], p. 398. The first 
strategy is to avoid safety critical faults and failures. The second strategy is the avoid-
ance of hazardous consequences from faults and failures. The fulfillment of functional 
safety requirements is demonstrated by requirements tracing, verification of the sev-
eral development phases, testing and validation. The compliance with random failure 
integrity requirements (quantitative safety targets) is shown by hazard analyses. The 
fulfillment of systematic failure integrity requirements is based on the evidence that 
adequate means of quality and safety management have been performed and that 
techniques and measures have been used to reach the necessary level of confidence in 
the development (Safety Integrity Level) [1] [9].  

In comparison to conventional safety requirements the peculiarity of SACs is their 
origin and the kind of addressees. The origin of SACs are item safety cases. SACs are 
relevant for other development projects or the users of the customers. They are di-
rected bottom-up to the superior architectural levels while conventional safety re-
quirements concern top-down relations. 

4   What Is Necessary for Defining and Handling SACs? 

4.1   Challenges and Risks with SACs  

Beside the benefits of SACs problems have to be considered which may arise in con-
nection with SACs. Furthermore at SAC formulation and handling the purpose of 
SACs can be missed if some difficulties with SACs are not dealt with and are not 
avoided. A consequence could be that the SACs are only handicaps in the develop-
ment of the concerned items instead of being useful for safe application. In the fol-
lowing those problems and difficulties are listed: 

 
 



 SACs –  A Balance between Safety Relevance and Handicaps for Applications 37 

• Poor comprehensibility of SACs for the user. 
• Declaration of SACs, which in fact are no SACs. This could lead to a large quan-

tity of unnecessary SACs. That would be hardly manageable and could lead to the 
possibility of individual SACs not being taken seriously. 

• Declaration of SACs that could have been avoided during product development. 
• Missing or late information about SACs which must be fulfilled. 
• High time investment for the proof of compliancy with SACs. 
• Unrealizable SACs for the user, so that SACs counteract against the introduction of 

a product in the market.  
• SACs as unreasonable demands for appliers, when the required safe application of 

a system or product is very expensive, very complex or highly restricted. 
• Uncertainties: At what time do SACs arise in the Development Life Cycle? When 

are SACs necessary? In which documents should SACs be located and verified? 
How are SACs fulfilled? Who is jointly responsible for the compliancy and its 
proof? 

• SACs that seem to be fulfilled but are not e.g. because they are ambiguous or mis-
interpreted or the compliance with the SACs or the evidence has been insufficient. 

Challenges bring also the different view points and objectives of the different roles 
involved in the SAC topic and there are role specific thinking pitfalls. E.g. a safety 
manager may tend to the view that many SACs increase the safety of the item. With 
this point of view it can easily be overseen that there could be avoidable SACs which 
make the amount of SACs unmanageable (see explanation of avoidable SACs in sec-
tion 1). E.g. a product responsible person easily tends to the view point that SACs are 
unreasonable demands for the clients. Here, the problem could be missing SACs 
which would be safety critical. A third view e.g. is this of the project which focuses 
on efforts and costs. It might seem to be more comfortable to define a SAC which has 
to be solved in the project of the superior item instead of solving the issues within the 
own project by technical measures. But it has to be considered, also, that often it is 
easier to solve safety issues in the own project than in the project of the superior item.  

These kinds of problems arise if the conditions are not specified in which cases 
SACs have to be defined and what the quality criteria of the SACs of an item are. 

4.2   Demands for Defining and Handling SACs 

The problems and difficulties listed in the last section already lead to needs related to 
defining and handling SACs. The described different objectives of the different roles 
in projects can be useful for SAC quality, if there are defined rules for SAC formula-
tion. SAC rules for compliancy must also be available. Rules have to be laid down 
for: Which aspects are SACs and which will not? What are SAC quality criteria? 
What are the processes of SAC formulation, compliance and demonstration of SAC 
fulfillment? Who is responsible for what in these processes? How shall SACs and 
their compliance be documented? When shall SACs be fulfilled? What is important to 
achieve efficiency? For Thales Rail Signalling Solutions GmbH these demands have 
lead to the development and introduction of a process instruction which is the basis 
for this paper. 



38 F. Bitsch, U. Feucht, and H. Gough 

5   Conditions for Defining SACs 

In EN50129 [1] SACs are prescribed between items with separate Safety Cases. But if 
for a compound system only one safety case is used, then there could be the problem 
that the safety responsibilities between the items are unclear in detail. For that reason, 
it is meaningful that the SAC principles are used, this is also true for a compound 
system using only one Safety Case.  

In the following, criteria are listed, stating in which cases SACs must be formu-
lated. Criterion 1 must always be fulfilled together with criterion 2, 3 or 4. 

1. Safety risk for non-compliance with an application instruction 
A SAC must be created if the reasoning in the safety case or in corresponding docu-
ments is dependent upon the compliancy with certain safety rules. If the safety-related 
argumentation of the safety case requires certain activities of users then these activi-
ties will have to be described in SACs. Precondition for a SAC is that the internal 
attributes of the item are not sufficient for safety argumentation. A SAC should be 
defined, only if the hazard for which the SAC is a countermeasure for has not already 
been mitigated by another measure.  

A SAC must be formulated if a safety risk occurs as a result of a regulation being 
ignored by the user, stipulated in a handbook (e.g. Operation Manual or Maintenance 
Handbook). The evaluation of the risk may result directly from the standards (e.g. 
demands for channel separation), or the gravity and the frequency of the particular 
case must be evaluated. In the best case, the degree of risk of the event which requires 
certain application rules should be examined within the scope of a hazard analysis. 
SACs should only be generated if the safety aim would fail without it.  

2. SACs are reasonable demands for the appliers   
SACs often mean that during the application of the considered item, special expendi-
tures or special restrictions are necessary (examples for special expenditures: mainte-
nance expenditures or development expenditures in the project of the superior item; 
examples for special restrictions: project planning restrictions and operation con-
straints). If such application expenditures or restrictions are to be avoided, then on the 
one hand higher development expenditures can be implicated for the own item. For 
example, there might be application cases which are not required by the customer but 
which are safety critical and must be excluded by certain SACs (e.g. the use of an 
interface for a safety related purpose). On the other hand also the benefits have to be 
considered, which SACs can have in the total Product Life Cycle. 

For example, if a generic platform has a watch dog timer for which it is unknown 
and un-probable that any application will ever use this timer, a reasonable SAC would 
be: The safety analysis shall be extended, if the watch dog timer of the hardware is 
used for safety related functions. But if it is not expensive to involve this topic also in 
the generic safety analysis, then the SAC can be avoided.  

SACs similar to all other requirements have implications on expenditures concern-
ing realization and proof. Therefore, on the one hand it has to be checked, if a planned 
SAC is acceptable and reasonable for the user. On the other hand SACs can enable 
concept and design decisions, which altogether allow an economic development or 
deployment of a system if the SACs are reasonable for the users.  



 SACs –  A Balance between Safety Relevance and Handicaps for Applications 39 

SACs are only useful if benefits in the whole Product Life Cycle justify the accep-
tance of special application expenditures and application restrictions. The result could 
be that SACs must be avoided by changes or extensions of the item. In other cases 
SACs can avoid extensive analyses in projects of superior items. E.g. a SAC which 
specifies that an item is not usable for open networks according to EN50159-2, avoids 
analyses on higher levels if the item is usable for open networks. Such SACs, which 
are justified in the item concept or design, can be avoided by early planning, about 
which SACs are necessary, compare with section 6. The requirements and the archi-
tecture of the considered item can be changed most easily at an early phase.  

3. Eliminating defects in the scope of a project is no longer possible 
The formulation of a SAC to bypass defects in the considered item is only acceptable 
if a change of the item is no longer possible within the scope of the project and an 
emergency solution (workaround) is reasonable. A precondition is of course that the 
defect can be adequately bypassed with the issue of a SAC. In this case, an entry in 
the defect management system is always required. As long as this entry exists, the 
issued SAC is necessary.  

Such SACs can be avoided through careful planning early enough in the project, 
about which SACs are required, see last but one point in section 6. 

4. Acceptance of SACs 
If a SAC is addressed to a superior item, in which the requirements specification is 
already completed, then the SAC has to be placed there in form of a change request, 
compare with section 7.2. For such change requests, a voting process is required if the 
SACs in the superior project can still be fulfilled or if it is easier to avoid them in the 
original project. E.g. there can be the case that a superior item could have already 
been approved and a new release would be possible, only with very high effort. Con-
sequently, the acceptance of a SAC is a condition of SAC creation.  

6   Quality Criteria for SACs 

The following items lists and explains criteria for the quality of SACs:  

SAC character 
A SAC must have SAC eligibility and fulfill criteria listed in section 5.  

User addressing 
The author of a SAC must always take care to whom the SAC should be addressed to. 
The phrasing must be correspondingly chosen and the user (according to the listed 
addressees in section 7.1) must always be explicitly named in the SAC. He must be 
able to understand and apply the SAC.  

Context independent comprehensiveness 
A SAC must be able to be understood from the SAC addressees, without the reader 
having to know the source document from which the SAC has been derived (e.g. a 
Technical Safety Report). Therefore the SAC must be formulated in such a way to 
allow the user to understand and fulfill the SAC.  



40 F. Bitsch, U. Feucht, and H. Gough 

Explanations 
Explanations about a SAC are important in addition to the formulation of the SAC:  

 

• Background information: Background information is useful for the context inde-
pendent comprehensiveness. A SAC must be described so that it can be understood 
without special knowledge of the project in which the SAC was issued, even with 
or without explanations. 

• Cause and source document: Even after, e.g. personnel fluctuations, it must be 
clear why the particular SAC was required. E.g. the safety manager of the next 
product release must know, what was the cause, origin and what the source docu-
ment for the SAC is or from which SACs from a subordinate item did the SAC de-
rive from (traceability). 

• Hazard / safety reference: There must always be a comprehensive safety reference 
in the SAC. This reference should be clarified through explanatory notes or 
through a link to the hazard logbook or to the document where the reference is 
stated. It must be clear what hazard will be avoided through the SAC. Example:  
• SAC-Formulation:  “If the system is in regular operation the diagnosis device 

must not be plugged in the diagnosis interface.”   
• Explanation: „The maintenance staff has to observe that the safe operation is not 

guaranteed in case of diagnosis. If the diagnosis interface is used, there will be 
no channel independence of the system which is a basic safety principal of the 
system.“ 

• Relation to the defect management system: For SACs that have been defined be-
cause certain product faults could not be corrected, due to hard project constraints 
(this kind of SACs should be avoided), there must be a reference to the defect 
management system. It must be clear which defects must be corrected in a con-
secutive release, so that the SACs will be corrected and thus, made irrelevant.  

Feasibility 
The demands that are set in the SACs must be able to be realized by the addressed 
users. The requirements must always be in the responsibility of the addressed user, so 
that he can fulfill the requirements according to the means available to him and the 
knowledge that is expected of him. Often, feasibility can be improved, if it is clear for 
the creator of a SAC, how the SAC can be fulfilled in general. If the SAC creator 
already records such hints, the expenditures of SAC handling could be reduced.  

No overlaps between SACs 
Overlaps between SACs must be avoided. This is why it must be checked in the SAC 
formulation process, if the topic has been covered already through existing SACs.  

SAC amount 
The amount of SACs is dependent upon the type of considered item. Generic items 
require typically a larger number of SACs than application specific items. However, it 
must be made sure that only necessary SACs are defined: 
• A large amount of SACs is difficult to manage during the development of superior 

systems, so that the effort for compliancy proof is too large and difficult to control. 
• A large number of SACs has the danger that the important SACs are lost in the 

bulk and are not taken seriously enough. If SACs are incomprehensive and there 



 SACs –  A Balance between Safety Relevance and Handicaps for Applications 41 

are too many (unnecessary) SACs then nothing will be taken into consideration 
anymore! 

• A large number of SACs delays the entry of the product into the market.  

A sensible amount of SACs can be obtained by paying attention to the listed condi-
tions for SAC formulation, listed in section 5. All SACs written according to the 
criteria mentioned in section 2.2 have SAC justification. SACs as a temporary 
means (workaround) for product defects should be avoided. The requirement for the 
limitation on the amount of SACs should not lead to important SACs being omitted 
and not defined. If the amount is too large however, the project must examine, 
which SACs could be avoided through improvements to the item. For understand-
ability and for traceability of SACs it can be useful to define several smaller but 
understandable SACs, rather than having one extensive SAC. The number of SACs  
increases on the one hand but on the other hand, smaller SACs are easier to be ful-
filled. 

Earliest possible definition and distribution of SACs 
An earliest possible definition of SACs is useful for different reasons: 

 

• Avoiding SACs: If SACs are defined already in early development stages of an 
item it can be decided easier if the SAC can be withdrawn by changes in the con-
cept, the specifications or the design of the item. 

• Complying with SACs in other projects: Normally, SACs are embedded in the 
development process of concerned projects by taking them over as safety require-
ments (compare with section 7.2). Therefore SACs should be recognized already in 
the requirement phase of the respective project. It is inevitable that in the case of 
projects running in parallel those SACs or SAC concepts are made known to the 
other projects as early as possible. Then potential users in the other projects may 
react easier and quicker. This can also be reached by involving potential users in 
SAC consolidations (compare with section 7.1). If SACs are forwarded to superior 
projects after the requirements phase has been finished, then these SACs can be in-
troduced in the respective project only by using change requests. 

Compliancy with guidelines for the structure and description of SACs 
SACs should be described, named and structured in a uniform manner. This can be set 
by company guidelines. Also a SAC should be recognized through a uniform layout.  

7   Procedures for SAC Formulation and Handling 

7.1   SAC Formulation 

Fig. 2 gives an overview on possible procedures for SAC creation. To ensure that 
SACs have safety relevance a SAC draft shall be defined, only if a respective hazard 
has been defined for which it is not possible or sensible to counteract with item inter-
nal measures. The SACs are collected by the safety manager. In the best case a data-
base is used for SAC storage, compare with the benefits explained in section 7.2.  



42 F. Bitsch, U. Feucht, and H. Gough 

 

Fig. 2. Process overview for SAC creation 

As explained in section 4.1 the consideration of the different role specific views is 
important for SAC quality. All relevant roles (compare with Fig. 2) must be involved 
in this process. Known potential users who will have to comply with the SACs e.g. in 
the development of the superior system should also be involved. They can give im-
portant feedback on unambiguity and feasibility. In this way the consolidation of 
SACs is essential for SAC quality. 

At consolidation the fulfillment of the quality criteria introduced in section 6 has to 
be checked. The consolidation is especially necessary for clarity, feasibility and iden-
tification of contradictions and overlaps. Here also the question should be treated if 
there are possibilities to avoid the SACs by realization of internal measures.  

The SACs identification and creation should be done as soon as possible in a 
project (compare with section 6) e.g. either during development of the Safety Con-
cept or while performing the Preliminary Hazard Analysis. But generally at anytime 
during a project, SACs are possible, e.g. even during the creation of the validation 
report.  

The product of the described process is the SAC document, compare also with sec-
tion 7.2. It must be part of the Technical Safety Report according to EN50129 [1]. It 
can be administered as a separate document and must contain all SACs of the  



 SACs –  A Balance between Safety Relevance and Handicaps for Applications 43 

considered item. As a consequence it is regulated unambiguously, where SACs of an 
item can be found exclusively.  

The first version of the SAC document should be created with the Technical 
Safety Report because it is strongly related to the argumentation in this document. 
Furthermore the SACs must be available in a form that they can be transferred into 
the user handbooks. The end version of the SAC document must be created after 
completion of the validation report and together with finalization of the Safety 
Case. Fig. 2 lists also all potential kinds of SAC users who have to be informed 
about the SACs. 

7.2   Compliance with and Evidence of SACs of Subordinated Items 

For an item, it must be specified which SACs of other items are relevant and have to 
be fulfilled. It is obvious to specify this in the Safety Concept, System Concept or in 
the Preliminary Architecture document.  

It can be very time consuming if the SACs in all their origin documents have to be 
searched for and gathered. If all SACs of one item are listed in its SAC document then 
it is not necessary to go through all documents where SACs could be specified and 
there is no uncertainty if all relevant SACs have been found. Another important step 
is to use a database over the SACs of all items as it is depicted in Fig. 2 and Fig. 3. 
Then the SACs can be simply queried from the SAC database and time and costs can 
be saved. 

In EN50129 [1], complying with SACs is separated from fulfilling safety re-
quirements. But a separated treatment in projects with different responsibilities for 
evidence of compliancy leads to additional project efforts. Therefore, if possible, 
SACs from subordinate items are usually taken over as safety requirements, form-
ing a basis for verifications, being considered in test cases and being treated in the 
validation, compare with Fig. 3. Consequently, the techniques and measures, ac-
cording to EN50128 [9] and EN50129 [1], to be used for the compliancy with SACs 
are the same as for safety requirements. They must always be determined project 
specifically.  

If additional SACs from subordinate items appear after requirements specification 
has been finished, the safety manager must introduce the SACs to the project as a 
change request. Then, it has to be discussed, if it is easier to add a safety requirement 
in the affected project or if it is easier to avoid the SAC by concept or design changes 
in the source project, compare with section 5.  

According to EN50129 [1] the safety management has to describe the relationship 
to the subordinate safety cases, which is normally in the document “Related Safety 
Cases”, part 5 of the safety case. In this document the safety management confirms 
the process of SAC compliance with references to verification and validation reports. 
Also it has to be judged if all SACs of subordinate items have been fulfilled and 
proved or forwarded to a further level. SACs that could not be fulfilled within the 
scope of the own development project, but that are directed to the superior application 
level (compare with Fig. 2 and Fig. 3) must be passed on. Part 5 of the safety case 
contains a list of these SACs. 



44 F. Bitsch, U. Feucht, and H. Gough 

SAC-DB with filter 
for the relevant 

subordinate items

Check the fulfill-
ment of saf. requ. 
by VAL; contribu-

tion of SAF in case 
of safety technical 

clarifications

Confirmation by 
SAF that all SACs 

are proved or 
passed 

SACA (Part 5)

SAC transfer in 
PRS/SRS by DEV 

and review by 
VER and SAF

SAC-DB with 
comments about 
the fulfillment of 

SACs 

Generation of 
SAC list with 
reasons for 

fulfillment by VER 

Attachement of 
Verification 

Reports

Safety 
requirements in 

PRS/SRS

Validation Report 
for the item

Passing of 
unfulfilled SACs by 

SAF; see Fig. 2

Reasons for the 
fulfillment of the 
safety require-
ments through 

DEV and VER and 
review by SAF

SAC-DB with 
identification of 

fulfillment of  
SACs for item 

Legend: 
DEV: Developer; PRS/SRS: Product/System Requirements Specification; SAC-DB: SAC Data Base; SAF: Safety Manager; 
SACA: Safety Case; VER: Verifier  

Fig. 3. Process overview about the handling of SACs from subordinate items 

The proof must be justified for every SAC which has been identified as fulfilled. This 
can be achieved through: 

 

• Reference to requirements specification with corresponding safety requirements 
and argumentations in a verification report.  

• If the above point is not possible, a direct argumentative reason and, if required, a 
reference to safety analysis, to test results or to other documents is possible. A test-
able SAC must, however, be covered with a test case at all means.   

• It is possible that SACs from subordinate items are only valid under certain pre-
conditions or only for a certain context (e.g. customer specific, only valid for cer-
tain hardware or only for certain configurations). If these preconditions are not ful-
filled, the SAC is not applicable and can be set as fulfilled.  

• It can be reasoned, that another solution has been realized than this one which has 
been required in the SAC. Precondition in this case is that the solution is sufficient 
to reach the safety targets. 

 

The decisive element for efficiency of SAC compliance and evidence is the quality of 
the SACs. If time has been invested in the quality of the SACs, then this would have a 
favorable effect. In addition the systematic cooperation between the roles involved 
with clear responsibilities is essential for this efficiency.  

8   Conclusions 

This paper addresses benefits and challenges of SACs. SACs are the necessary means 
if hazards cannot be avoided by internal attributes of a item itself, but through the 
adherence of certain regulations during the usage of the item in the intended superior 
context. We analyzed what are difficulties of formulating SACs, complying with 



 SACs –  A Balance between Safety Relevance and Handicaps for Applications 45 

SACs and providing evidence of the compliance with SACs. The paper describes 
what is essential for SAC quality and for efficient handling of SACs: 

 

• Rules have been introduced which define what are SACs and also what are not 
SACs. These should lead to a manageable amount of SACs which are taken seri-
ously for safety. SACs always must have relevance for safety. Whenever a SAC is 
defined then the relation to a hazard has also to be specified.  

• We defined quality criteria for SACs. A good quality of SACs simplifies and sup-
ports compliancy with SACs and its evidence. Therefore the SAC quality support 
to achieve the safety targets. 

• We proposed a management process for formulating SACs, compliance with SACs 
and evidence of fulfilling SACs.  
• The creation of the SACs in early development phases is essential. It gives op-

portunity to avoid SACs and to react in time on SACs in affected projects.  
• Consolidation is fundamental to check the compliance with the quality criteria.  
• The SAC document and the use of a SAC database are important for a clear 

SAC storage and management so that efforts can be saved for gathering SACs. 
Clearly defined processes and responsibilities for SAC creation and handling of 
SACs on the one hand support the fulfillment of time and budget requirements. 
On the other hand it is important for safety as the amount of SACs must remain 
manageable and that the SACs give clear safety instructions. 

 

The result is a process instruction which affects many other processes in the system 
life cycle and which therefore is complex. To support the handling and the compli-
ance of this process instruction trainings are established. 

References 

1. CENELEC: Railway applications – Communication, signalling and processing systems – 
Safety related electronic systems for signalling, EN50129:2003-05-07 (2003)  

2. Reuters: Geldstrafen im Transrapid-Prozess verhängt, 2008-05-23 (2008)  
3. Dörner, D.: The Logic of Failure: Why Things Go Wrong and What We Can Do To Make 

Them Right. Metropolitan Books. Henry Holt and Co., New York (1996) 
4. Hewison, N.S.: Book Review: The Logic of Failure: Why Things Go Wrong and What We 

Can Do To Make Them Right. Group Facilitation: A Research and Applications Journal 3, 
86–89 (spring 2001) 

5. International Electrotechnical Commission: Functional Safety of Electrical/Electronic/ Pro-
grammable Electronic Safety Related Systems, IEC 61508. Geneva, Switzerland (2000)  

6. Bate, I., Bates, S., Hawkins, R., Kelly, T., McDermid, J.: Safety case architectures to com-
plement a contract-based approach to designing safe systems. In: 21st International System 
Safety Conference, System Safety Society (2003) 

7. Abran, A., Moore, J.W. (eds.): SWEBOK: Guide to the Software Engineering Body of 
Knowledge. IEEE Computer Society, Los Alamitos (2004) 

8. Lauber, R., Göhner, P.: Prozessautomatisierung II. Springer, Heidelberg (1999) 
9. CENELEC: Railway applications – Communications, signalling and processing systems – 

Software for railway control and protection systems, EN50128:2001-05-15 (2001)  
 



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 46–54, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Probability of Failure on Demand – The Why and the 
How 

Jens Braband1, Rüdiger vom Hövel2, and Hendrik Schäbe2 

1 Siemens AG, Industry Sector, Mobility Division, Rail Automation,  
Research & Development, I MO RA R&D R, Ackerstr. 22,  

38126 Brunswick, Germany 
2 TÜV Rheinland InterTraffic GmbH, Assessment & Certification Rail, Am Grauen Stein,  

51105 Cologne, Germany 

Abstract. In the paper, we will study the PFD and its connection with the prob-
ability of failure per hour  and failure rates of equipment using very simple 
models. We describe the philosophies that are standing behind the PFD and the 
THR. A comparison shows, how the philosophies are connected and which 
connections between PFH and PFD are implied. Depending on additional pa-
rameters, there can be deviations between safety integrity levels that are derived 
on the basis of the PFD and the PFH. Problems are discussed, which can arise 
when working with the PFD. We describe, how PFD and PFH in IEC 61508 are 
connected with the THR defined in the standard EN 50129. 

We discuss arguments that show, why care is needed when using the PFD. 
Moreover, we present a reasoning, why a probability of failure on demand 
(PFD) might be misleading. 

Keywords: Probability of failure on demand, rate of dangerous failures, safety 
integrity level. 

1   The Problem 

The standard IEC 61508 defines the following numerical characteristics per safety 
integrity level: 

 

• PFD, average probability of failure to perform its design function on demand 
[1] (average probability of dangerous failure on demand of the safety func-
tion according to [2]), i.e. the probability of unavailability of the safety func-
tion leading to dangerous consequences 

• PFH, the probability of a dangerous failure per hour (average frequency of 
dangerous failure of the safety function), which, until now, has been referred 
to as a failure rate. According to the most recent proposal [2] of IEC 61508, 
this is now interpreted as a frequency. 

 

The numerical requirements are applied for the low-demand mode of operation (prob-
ability of failure on demand) and the high-demand or continuous mode of operation 
(probability of failure per hour), i.e. for continuous-run systems. 



 PFD – The Why and the How 47 

In many cases, analogous systems are used as well in continuous (in the standard 
called “high demand mode”) as well as in demand mode (in the standards called “low 
demand mode”). Therefore, both concepts must be consistent. Note that, the terms in 
the standard (high demand mode and low demand mode) are misleading. 

In EN 50129 [3], only one numerical characteristic is defined per safety integrity 
level. This is  

• tolerable hazard rate per hour and function (THR). 
In some cases, there are different approaches in both standards and differences in the 
various language versions. In addition to these differences, for the user the question 
arises why PFD (average probability of failure to perform its design function on de-
mand) is not used in EN 50129 any more. Note that, in earlier draft versions of EN 
50126 and EN 50129, PFD was still defined and used. A simple answer to this ques-
tion would be the explanation that all control command and signalling systems in 
railway systems are continuously used or used according to high demand rates. This 
argument holds mainly true, but distracts attention from a deeper view of the PFD 
approach, its problems and its background. 

Another formal but substantial difference is that EN 50126 considers a system 
function, whereas IE 61508 distinguishes the following equipment (see Figure 1): 

• the equipment / machine itself, carrying out a certain task (Equipment Under 
Control (EUC)) 

• the EUC control system, which controls the EUC 
• the programmable electronic system (PES), which is responsible for the 

safety of the EUC and the EUC operating device. 

IEC 61508 has its origin in process industry. Traditionally, only the PES is considered 
there, whereas in railway technology the entire system is in focus. 

 

 

Fig. 1. System definition according to IEC 61508 



48 J. Braband, R. vom Hövel, and H. Schäbe 

When considering the low-demand mode of operation, it is assumed that the EUC 
and the EUC control device have a certain level of dependability. The PES then has 
only to intervene in cases where the EUC and the EUC control device are outside 
their normal functioning areas. For the high-demand or continuous mode of operation, 
it is assumed that a dangerous failure of the PES immediately leads to a dangerous 
failure of the system. 

In this paper, we will study the THR and the PFD. We will show how they are in-
terrelated and which problems can arise from the use of both these approaches. 

Note that, software failures are treated as by IEC 61508: it is assumed that the nec-
essary measures in software engineering have been taken, so that software failures can 
be neglected, compared with random hardware failures. Moreover, we only use con-
stant failure rates of hardware, in order not to complicate the model. 
This instruction file for Word users (there is a separate instruction file for LaTeX 
users) may be used as a template. Kindly send the final and checked Word and PDF 
files of your paper to the Contact Volume Editor. This is usually one of the organizers 
of the conference. You should make sure that the Word and the PDF files are identical 
and correct and that only one version of your paper is sent. It is not possible to update 
files at a later stage. Please note that we do not need the printed paper. 

We would like to draw your attention to the fact that it is not possible to modify a 
paper in any way, once it has been published. This applies to both the printed book 
and the online version of the publication. Every detail, including the order of the 
names of the authors, should be checked before the paper is sent to the Volume  
Editors. 

2   Risk 

Safety-related systems are necessary to reduce risk. Safety analyses are carried out to 
determine risk and risk reduction achieved by safety-related systems. 

Risk is usually given as damage (e.g. number of fatalities, injuries, material losses) 
per time unit [4 – 13]. To be precise, an event rate is given per severity class (e.g. 
single fatality), i.e. an average number of events per time unit. According to EN 
50129, this can also be the probability of an event, “the combination of the frequency, 
or probability, and the consequence of a specified hazardous event”. 

This risk must be compared with the THR and the PFD. In both cases, the underly-
ing concepts are different. 

In order to simplify the following considerations, we restrict ourselves to the indi-
vidual risk, i.e. the risk of a single, arbitrary but fixed individual. Furthermore, we 
restrict considerations to the risk of fatality of this individual. In order to better show 
the main relations, we will use a simplified formula for computation of the risk, com-
pared with [14]. 

2.1   Risk Reduction According to the Philosophy of the THR 

As a starting point, a safety system is taken, e.g. an interlocking. The system is oper-
ating continuously. Dangerous failures occur with a certain rate that must be smaller 
than the THR, e.g. a dangerous failure can be the composition of an inadmissible 



 PFD – The Why and the How 49 

route in the interlocking. Here, no difference is made between the EUC, the EUC 
control device and the PES, i.e. the THR applies to the entire technical system. 

A dangerous failure does not always lead to an accident, since other compensating 
measures (e.g. attention of the locomotive driver) or circumstances (e.g. there are no 
crossing trains at the moment) prevent an accident or reduce accident severity so that 
no fatalities occur. Let the probability that these other factors cannot prevent the acci-
dent be pA, provided the conditions leading to the accident occurred.. Moreover, let 
pI denote the probability that the considered individual is killed in the accident, pro-
vided the accident happened. Both probabilities are conditional probabilities. Then we 
have 

IR = THR * pA * pI . (1) 

In this philosophy, the safety-related system generates the dangerous events that can 
lead to the death of the considered individual under certain circumstances. 

2.2   Risk Reduction According to the Philosophy of the PFD 

Here, the safety-related system has a supervisory function. The safety-related system 
has to act only in cases where potentially dangerous events occur. This means that 
only the PES is considered. The demand for the PES is due to the failures of other 
components of the system, e.g. the EUC or the EUC control device. The demand rate 
is denoted by λ. 

Only when the safety-related system fails in a demand situation, the individual is in 
danger. The coinciding rate is λ * PFD. 

With this rate, at the output of the safety-related system, a dangerous failure oc-
curs. The individual risk is then 

IR = λ * PFD * pA * pI , (2)

taking into account other measures and circumstances that might prevent the fatal 
accident. 

2.3   Comparison of the Philosophies 

The safety-related system is used in order to reduce the individual risk (IR), so that it 
does not exceed the admissible (tolerable) value of the individual risk (TIR), , i.e. the 
following requirement has to be fulfilled:: 

IR ≤ TIR . (3) 

For both philosophies, we derive from (1), (2) and (3) the following conditions 

IR = THR * pA * pI ≤ TIR  (4)

for the THR philosophy and 

IR = λ * PFD * pA * pI ≤ TIR (5)

for the PFD philosophy. We then arrive at the requirements for the THR and the PFD, 
respectively 



50 J. Braband, R. vom Hövel, and H. Schäbe 

THR ≤ TIR /(pA*pI) , (6)

PFD ≤ TIR /( pA*pI*λ) . (7)

It is obvious that the requirement for the PFD depends directly on the intensity of 
requests for the supervisory function induced by other parts of the safety-related sys-
tem, the EUC or the EUC control device. If the intensity of the requests changes with 
time, the requirement for the PFD would also change, leading to a changed safety 
integrity level. 

In the THR philosophy, this connection does not exist. Changes of the implementa-
tion conditions influence probabilities pA and pI. However, this additional influence 

is present in both models. 
Since both considerations – although different – apply to the same system, the in-

dividual risk must be the same, provided the same technical solutions have been ap-
plied. Therefore, we deduce 

THR=λ * PFD . (8)

The THR is the THR of the entire system. Confusion might arise, since IEC 61508 
considers only the PES so that the PFH for systems in continuous mode is related to 
the PES only. 

2.4   Relation between the PFD and the PFH 

The PFH is usually obtained when the system is analysed with the help of FMECA 
and the fault tree and after having distinguished the failure modes into dangerous and 
safe, detectable and non-detectable ones. This applies to the entity PES, too. 

The PFD value is then computed from the PFH value. Two simple cases exist: 

a) System (PES) with regular proof test 

Assume the system is regularly checked with time interval τ.  Assume further that, 
at the end of the interval and only then all dangerous failures are detected completely. 

We then have 

PFD = PFH * τ/2 , (9)

where the requests to the system have been assumed as uniformly distributed in the 
proof test interval, giving mean time τ/2 of the request. 

b) System (PES) with permanent test and maintenance 

Assume that the system is permanently tested and maintained, if necessary. Let the 
critical time (time at risk) be the time that elapses between testing and completion of the 
maintenance action that restores the system to a state as good as new. Again, this time is 
denoted by τ. Alternatively, τ can denote the time from the last test until the system is 
brought into a safe state for cases where the system is switched off, when a dangerous 
failure is detected. Equation (9) still holds. However, τ has another meaning. 

If the failures cannot be detected completely, the PFD is not a constant but in-
creases with time t: 



 PFD – The Why and the How 51 

PFD = PFHd*τ/2+ PFHu*t . (10)

Here, PFHd denotes the rate of detectable failures and PFHu denotes the rate of unde-

tectable failures. 
It can be observed that the PFD, which is important for determination of the safety 

integrity level, depends on proof test intervals and reaction times. 
We may notice that the PFD in addition depends on the time in service for systems, 

where not all failures are detectable (see (10). The average probability which is men-
tioned in the standard IEC 61508 is then  

PFD = PFHd*τ /2+ PFHu*T/2 . (11)

where T is the lifetime of the system, i.e. the PFD depends on the lifetime and on 
proof test interval τ. 

2.5   Relation between the PFD / PFH and the THR 

For the low-demand mode of operation, it can be derived from (8) and (9)  

THR=λ * PFD= λ * PFHPES * τ/2 , (12)

and for the continuous-demand mode of operation, there is  

THR=PFHentire system . (13)

This relation has been proven formally in [15] with the help of Markov models. 

2.6   Relation between the PFD and PFH in the Table of IEC 61508 

The numerical values for the PFH and PFD as given in IEC 61508 (Part 1, Section 
7.6.2.9) are related by a factor of 10,000, i.e. the value for τ is 20,000 h, which is 
about two years. This holds only if all dangerous failures are detected and removed.  

If dangerous failures cannot be detected and removed, the lifetime should be about 
20,000 h. Depending on fault detection coverage, combinations can be possible. The 
relation then becomes more complicated. This shows that defining a system with the 
low-demand mode of operation as a system with not more than one request per year is 
at least problematic. Thus, a correct and logical relation of both tables for the PFH 
and PFD cannot be given. 

2.7   Problems with the PFD 

We can conclude the following: 
 

• A PFH can be derived directly by analysis as FMECA und the fault tree and 
by distinguishing dangerous and safe failures. For the PFD, an additional 
step is necessary. 

• The PFD derived by this procedure depends on other parameters such as the 
proof test interval. 

• The PFD that must be achieved by the system (PES) depends on the demand 
rate of the system. 



52 J. Braband, R. vom Hövel, and H. Schäbe 

• The relation between the PFD and the PFH as given in IEC 61508 lacks a 
sufficient logic. 

• When considering the entire system which is the important point for safety 
considerations, a THR can be derived. This characteristic is identical with the 
PFH for systems with continuous demand. 

 

Hence, when using the PFD, care is needed with the problems mentioned above. 
Moreover, the safety integrity level can change when parameters that influence the 
PFD are changed. This has implications on measures against systematic failures, too. 

EN 50129 does not use a PFD and protects its user from problems arising from the 
factors mentioned above. 

3   An Alternative Approach 

The discussion above leads directly to the question of whether the approaches repre-
sented by the target failure measures PFD, PFH and THR can be harmonised. An 
initial idea has already been presented [16], which is developed here in more detail. 

The basic observation is that all the target failure measures have relatively little 
meaning for the practitioner or user who usually simply asks the question: “How long 
will it take until the system fails for the first time?”. Another observation is that, for 
him, the mathematics of fault trees or Markov models are usually too intricate and it 
is often desired to have a target failure measure which can be calculated much more 
easily. 

This immediately leads to a simpler measure which is similar to the “Mean Time 
To (First) Failure” (MTTF) in reliability theory, namely the “Mean Time To (First) 
Hazard” (MTTH), which can be defined by the simple Markov model in Figure 2. 

 

PFH 

λ 

μ 

PFH 

2/τ 
00 

10 

01 

11

λ 

 

Fig. 2. Simple alternative Markov model  



 PFD – The Why and the How 53 

Table 1. Alternative SIL table 

SIL MTTH 
4 > 10,000 years 
3 > 1,000 years 
2 > 100 years 
1 > 10 years 

 
 

The parameters and states in Figure 2 have the following interpretation: 
 

λ failure rate of the EUC and the EUC control system 
μ restoration rate of the EUC and the EUC control system 
PFH failure rate of the safety system  
τ proof-test interval of the safety system 
00 no failure 
01 demand  
10 failure of the safety system 
11 failure of the safety system during a demand  
 

In this model (starting in state 00), either the PES may fail (transition to 10) or a de-
mand may occur (transition to 01). If, in the first case, a demand occurs before failure 
of the PES is detected (transition to 11), then a hazard occurs. Alternatively, the PES 
may fail while the demand is still active. The model is stopped in the absorbing state 
as we are only interested in the initial transition from 00 to 11. 

This approach has the advantage that it is not necessary to define different modes 
of operation and thus the problems with the distinction of the modes and different SIL 
tables are not present in this approach. Table 1 gives the unique SIL table which also 
relates better to real-life operating experience. 

Last but not least, also the determination of the target measure is much easier, as, 
according to an approach by Birolini [17], the MTTH can be calculated as a solution 
of a set of linear equations (see (14-16) and the final result can even be given directly. 
So, not even a tool is necessary but a pocket calculator suffices. 

1001

1
MTTH

PFH

PFH
MTTH

PFHPFH
MTTH

+
+

+
+

+
=

λλ
λ

λ  (14)

MTTH
PFHPFH

MTTH
+

+
+

=
μ

μ
μ

1
01  (15)

MTTHMTTH

τλ
τ

τλ 2

2

2
1

10 +
+

+
=  (16)



54 J. Braband, R. vom Hövel, and H. Schäbe 

4   Conclusion 

When considering the PFD and the PFH as defined in IEC 61508 and the THR as 
defined in EN 50129, the authors have found arguments that special care has to be 
taken when working with the PFD. The PFD is not present any more in EN 50129 and 
the other CENELEC railway standards. This is appreciated and makes the use of these 
standards simpler. 

In addition, an alternative approach is presented which harmonises the different 
target failure measures and makes the necessary calculations much simpler. 

References 

1. IEC 61508-1 Functional safety of electrical / electronic / programmable electronic safety-
related systems – Part 1: General requirements, 1st edn. (1998) 

2. IEC 61508-1 Functional safety of electrical / electronic / programmable electronic safety-
related systems, Part 1: General requirements, Committee Draft For Vote (CDV) (2008)  

3. EN 50129 Railway applications – Communication, signalling and processing systems –
Safety-related electronic systems for signalling (2003) 

4. JAR 25 Large Aeroplanes  
5. Kafka, P.: How safe is safe enough? – An unresolved issue for all technologies, Safety and Re-

liability. In: Schueller, G.I., Kafka, P. (eds.), vol. 1, pp. 385–390. Balkema, Rotterdam (1999) 
6. Kuhlmann, A.: Introduction to Safety Science. Springer, New York (1986) 
7. Saint-Onge, D.: Environmental Cleanup: What is Acceptable Risk, TriMediaConsultants, 

http://www.trimediaconsultants.com/risk.pdf 
8. Skjong, R., Eknes, M.: Economic activity and societal risk acceptance. In: Zio, E., 

Demichela, M., Piccinini, N. (eds.) ESREL 2001 Towards a safer world, vol. 1, pp.  
109–116. Politecnico die Torino, Torino (2001) 

9. Schäbe, H.: Different Approaches for Determination of Tolerable Hazard Rates. In: Zio, 
E., Demichela, M., Piccinini, N. (eds.) ESREL 2001 Towards a safer world, vol. 1, pp. 
435–442. Politecnico die Torino, Torino (2001) 

10. Schäbe, H.: The Safety Philosophy behind the CENELEC Railway Standards. In: Decision 
Making and risk management, Proceedings of the conference ESREL 2002, Lyon, March 
19 – 21, pp. 788–790 (2002) 

11. Schäbe, H.: Apportionment of safety integrity levels in complex electronically controlled 
systems. In: Bedford, T., van Gelder, P.H.A.J.M. (eds.) Safety & Reliability – ESREL 
2003, vol. 2, pp. 1395–1400. Balkema, Lisse (2003) 

12. Schäbe, H., Wigger, P.: Experience with SIL Allocation in Railway Applications. In: Pro-
ceedings of the 4th International Symposium ”Programmable Electronic Systems in Safety 
Related Applications”, TÜV, Cologne, May 3 – 4 (2000) 

13. Vatn, J.A.: Discussion of the Acceptable Risk Problem. Reliability Engineering and Sys-
tem Safety 61, 11–19 (1998) 

14. Braband, J.: Risikoanalysen in der Eisenbahn-Automatisierung. Eurailpress (2005) 
15. Braband, J.: Ein Ansatz zur Vereinheitlichung der Betriebsarten und Sicherheitsziele nach 

IEC 61508. In: Schnieder, E. (ed.) Entwurf komplexer Automatisierungssysteme, Proceed-
ings EKA 2006, Brunswick, pp. 153–160 (2006) 

16. Braband, J.: Safety Analysis based on IEC 61508: Lessons Learned and the Way Forward, 
Invited Talk. In: SAFECOMP 2006, Gdansk (2006) 

17. Birolini, S.: Reliability Engineering. Springer, Berlin (2007) 
 



Establishing the Correlation between

Complexity and a Reliability Metric for
Software Digital I&C-Systems

John Eidar Simensen1, Christian Gerst2, Bjørn Axel Gran1, Josef Märtz2,
and Horst Miedl2

1 Institute for energy technology, NO-1751 Halden, Norway
{John.Eidar.Simensen,Bjorn.Axel.Gran}@hrp.no

2 Institute for Safety Technology GmbH, D-85748 Garching near Munchen, Germany
{Christian.Gerst,Josef.Maertz,Horst.Miedl}@istec.grs.de

Abstract. Faults introduced in design or during implementation might
be prevented by design validation and by evaluation during implemen-
tation. There are numerous methods available for validating and eval-
uating software. Expert judgment is a much used approach to identify
problematic areas in design or target challenges related to implementa-
tion. ISTec and IFE cooperate on a project on automated complexity
measurements of software of digital instrumentation and control (I&C)
systems. Metrics measured from the function blocks and logic diagrams
specifying I&C-systems are used as input to a Bayesian Belief Net de-
scribing correlation between inputs and a complexity metric. By applying
expert judgment in the algorithms for the automatic complexity evalu-
ation, expert judgment is applied to entire software systems. The re-
sults from this approach can be used to identify parts of software which
from a complexity viewpoint is eligible for closer inspection. In this pa-
per we describe the approach in detail as well as plans for testing the
approach.

1 Introduction

In software, possible faults to the system are introduced during the design phase
or are due to erroneous usage. Unlike hardware systems, where e.g. the aging of
components can cause a failure, software systems have faults inherent from their
construction. If a software is fault-free after being designed and implemented, it
is fault free during its entire life cycle, or as stated in [1]; all software failures
are due to design faults. Designing fault-free software is considered difficult and
proving that the software actually is fault-free is even more challenging. There
are several methods available for the assessment of software [2], e.g. Fault Tree
Analysis (FTA) and Failure Mode, Effect and Criticality Analysis (FMECA). An
approach which is becoming more common is expert judgment. Expert judgment
is defined as the consultation of one or more experts [3]. An expert expresses his
belief in a system according to available information. Such information can be

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 55–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



56 J.E. Simensen et al.

Fig. 1. Erroneously coupled function blocks

anything from user manuals and information on development tools and meth-
ods, to detailed specification about the system like e.g. its source code or logic
diagrams specifying the system. Function blocks and logic diagrams are often
used to specify the functionality of both analogue and digital instrumentation
and control (I&C) systems. In many cases the number of logic diagrams speci-
fying such systems is high and for an expert it is very difficult to assess most,
yet alone all of these diagrams.

The purpose of the approach is to create a connection between system infor-
mation and a reliability metric. To alleviate the amount of work for the expert,
we present an approach for creating a connection between available system infor-
mation and a reliability metric through the use of a Bayesian Belief Net (BBN)
[4]. The choice of a BBN approach is also chosen due to long research interest
on the applicability of BBN’s at IFE [5][6][7][8]. The BBN is created on basis of
the metrics available from the function blocks and the logic diagrams, and their
combination in the BBN is decided using experts. The BBN is then adjusted
on a smaller set of logic diagrams before the logic diagrams of an I&C system
is evaluated by the BBN. The reliability metric can be used to indicate which
LDs qualify for a closer inspection. In the following we give two examples on
the difficulty of assessing LDs as a motivation for the automated complexity
evaluation of digital I&C systems.

Two equal function blocks, A and B, consisting of two input signals and
two output signals is shown in Figure 1. The output from block A is crossed
erroneously to the input of block B. If the two signals 1 and 2 are of the same
type the erroneous coupling is possible. In this very simple example the erroneous
coupling is easy to identify.

Figure 2 shows an excerpt of an LD consisting of two types of seemingly sim-
ilar, but different, function blocks. All input and output signals to the function
blocks are of the same type. However, input signals going into function blocks of
type B should be switched so that the output signals from the previous blocks
are input correctly. Imagine an logic diagram with a large number of function
blocks of the two types, e.g. in a ratio 70% A and 30% B. Manual verification of
such a logic diagram is difficult and with a large number of diagrams to verify
for experts, choosing the most important is a problem.

This paper is structured as followed. Chapter 2 describes the different sub-
packages of the project and introduction to how complexity measurement of
function blocks and logic diagrams is performed in the project is given. In chap-
ter 3 different possible approaches are suggested and reasons for using BBN in
the approach are given. The construction of the BBN and its structure can be



Establishing the Correlation between Complexity and a Reliability Metric 57

Fig. 2. Example of a Logic Diagram which can be difficult to assess

found in chapter 4. In chapter 5 the session were experts assigned conditional
probabilities to the BBN nodes is described. In addition the plan for validating
the BBN is suggested. Discussions on the approach and the case can be found
in chapter 6. Chapter 7 contains a quick overview of the project and suggestions
for further work.

2 Background

The work presented in this paper is part of a joint project on complexity1 mea-
surement of software in digital I&C-systems between the Institute for Safety
Technology in Germany and the Institute for energy technology in Norway. The
two institutes have been cooperating on several projects for many years, e.g.
the VeNuS-project (Procedure for the efficient demonstration of usability and
safety of computerised control systems) and the PODS-project [9] (Project On
Diversity of Software). The project Complexity Measurement of Software Digital
I&C-Systems is divided in four work-packages (WP), where:

– WP-1 is a methodology for automated complexity measurement of LDs. The
outcome or result of the automated complexity measurement is represented
in a complexity vector for each LD.

– WP-2 is dedicated to an automated complexity measurement tool consisting
of an extractor and an evaluator. The extractor extracts complexity-relevant
information from a database containing LDs and the evaluator generates a
complexity-vector for each LD based on data mined with the extractor.

– WP-3 deals with the evaluation of the complexity measurements of LDs,
evaluated on size and range of complexity-relevant items of a prototype-
system. These items are found in tables generated by the extractor from
WP-2.

– WP-4, for an which approach is suggested in this paper, is to develop a
method to establish a correlation between complexity and reliability for LDs.

1 By complexity we refer to the degree of difficulty involved in predicting the properties
of a system when the properties of the induvidual parts of the system are known.



58 J.E. Simensen et al.

Work package 4, for which an approach is presented in this paper, utilizes com-
plexity measurements from the first three packages as input to a BBN describing
the correlation to a reliability metric. The suggested concept is that the BBN
will single out logic diagrams which deviate in complexity and qualifies for closer
inspection. More detailed information regarding the first three packages can be
found in [10].

2.1 Complexity Measurement of Function Blocks and Logic
Diagrams

Function blocks (FBs) constitute a set of software functions implemented in a
high level, standardized programming language and represent some elementary
function such as [10]:

– Logic or arithmetic functions, e.g. AND-, OR-, ADD-, XOR-gates.
– Basic I&C functions, e.g. an interpolation curve.
– Specific functions, e.g. ramp generator or sorter.

FBs can be defined as atomic software components [12] in a modern digital I&C-
System and are implemented as modules of a software library. The functionality
of a I&C-System can be implemented by combining different FBs. A FB is rep-
resented in a function block diagram and is defined as a graphical programming
language standard in the international standard IEC 61131. A combination of
FBs representing some I&C functionality is here referred to as a Logic Diagram
(LD).

Complexity measurement of FBs and LDs is performed on two levels [10].
First, evaluation and measurement of the FBs is performed. The FBs form the
basis for the evaluation of the LDs. The evaluation of the FBs outputs a matrix
describing the complexity of each FB in the library. Second, evaluation and
measurement of the LDs is performed. This evaluation takes into account the
FBs represented in the specific LD and their belonging complexity matrices from
the FB evaluation. In the following the FB evaluation and the LD evaluation is
described in more detail.

2.2 Complexity Evaluation of the Function Blocks

The complexity measurement of the FBs is based on two approaches, white-
box view and black-box view, depending on which information is available. E.g.
when the source code of a FB is known, i.e. the provider of a digital I&C-
System has made the code available, we have a white-box view. A white-box
view presents the possibility to perform statistical analysis and extract metrics
for the source code representing the FB. Measures available from a white-box
view can be seen in Table 1. On the other hand, when such code is not made
available by the system providers, we have a black-box view. Since source code is
unavailable in the black-box view, other sources of information on the FBs e.g.
product specifications and user manuals are taken into consideration instead.
Information measures in a black-box view is given in Table 2.



Establishing the Correlation between Complexity and a Reliability Metric 59

Table 1. White-Box View Measures [10]

Volume Measures Number of basic blocks
Average length of basics blocks
Lines of code
Procedure entry- and exit-points

Control McCabe’s cyclomatic complexity
Organization Nesting Depth
Measures Reducibility

Linear code sequence and jump (LCSAJ)

Data Organization Information Fan-in
Measures Information Fan-Out

Parameters

Table 2. Black-Box View Measures [10]

Signals Number and type of signals

Parameters Number of parameters
Type of parameters

Failure handling Failure propagation
and status processing Failure barriers
of signals Signal status

Internal status Internal memories
Return codes

Resources needed Time
Memory

The I&C functionality is designed on basis of the available FBs. The higher the
complexity of a FB is, the higher is the probability of erroneous implementation
of the I&C function, due to e.g. erroneous usage of the FB or misinterpretation
of the manual.

2.3 Complexity Evaluation of the Logic Diagrams

From the first three work packages of the complexity measurement project [10]
at ISTec, the complexity of an LD is divided in three; basic counting metrics
extracted from the graphic representation of the LD, variability features impact-
ing the complexity, and metrics describing the interconnection complexity of the
FBs of digital I&C-Systems. The counting metrics consists of basic counting size
characteristics e.g. lines of code, number of operands etc. The variability features
represent the flexibility or changeability of the FBs, e.g. number of internal states
or changeable parameters. The interconnection complexity consists of two parts
where one describes how an FB, or a set of FBs, produce more than one output
signal, and the second part describes how an input signal is utilized by one or
more FBs. A special metric V(LD) was created for the representation of the two
types of interconnection complexity.



60 J.E. Simensen et al.

2.4 Available Sources of Information

Detailed information regarding the FBs and the complexity measurements of the
LD is preserved in a vector consisting of the following:

– The number of function blocks.
– Complexity of the function blocks.
– Number of input signals.
– Number of output signals.
– Interconnection complexity V(LD) of the function blocks.
– Number of changeable parameters.
– Number of internal memories (internal states).

These 7 metrics serves as the input to the Bayesian Belief Net providing a
correlation to a reliability metric for the LD.

3 Approach

The purpose of the approach is to create a link between available system infor-
mation and a reliability metric. The aim is not to find the true reliability of a
system but rather use the reliability metric as a mean or a tool for adjusting
the analysis work. The methods for identifying and collecting system informa-
tion was described in Chapter 2 and they are performed in the three first work
packages of the project. For the creation of a connection between the input and
the reliability metric there are several viable approaches.

A neural network [11] is a traditional solution which is well documented as
a successful decision engine. With a large set of training data the accuracy of
a neural net is hard to match. Unfortunately, in our case the size of available
training data is small and the black box attributes of a neural net is a problem
for evaluation.

Expert judgment is another approach to decide the information to reliability
metric connection. For each LD an expert can decide the corresponding reliability
metric. As earlier stated this is time consuming work. With the large number of
LDs available this approach is not good. With the size of the input information
available in this project, and similarly so with most digital I&C-Systems specified
using LDs, neural nets nor expert judgment are good methods for our approach.

The Bayesian belief net [4][6] approach has been selected because its mod-
eling is divided into two distinct parts; the modeling of the node connections
and the modeling of the dependencies. Describing the target system is straight-
forward when assigning subparts of the system as distinct nodes before describ-
ing the relationship between these system parts using conditional dependencies.
More importantly it is possible to decompose a system using intermediate nodes
to better describe the functionality of the system parts and the relationship be-
tween them. Compared to a neural net, a BBN is transparent and its contents
can be described and altered in detail. This is a great benefit when the aim is
to include expert judgment in the BBN.



Establishing the Correlation between Complexity and a Reliability Metric 61

4 Building the BBN

The construction of the BBN is done in two parts where one is selecting the
nodes and the second is the selection of conditional probability tables (CPTs).
In this chapter the process of selecting and grouping of nodes performed in the
BBN is explained. The process consisted of two steps, where experts on BBNs,
FBs and LDs decided the grouping of the available input metrics in the first
step and decided the relationship between the input combinations in the second.
The aim was to combine all relevant information, i.e. the input metrics, into the
net.

The available input metrics (as mentioned in Chapter 2.4) were combined in
three branches in the BBN, each using different input metrics in their top nodes
and eventually, through a series of intermediate nodes, end in one leaf node
describing the reliability metric. The experts decided the combination of inputs
into the intermediate nodes.

4.1 Nodes in the BBN

The experts grouped the different input nodes together to form intermediate
nodes. The input nodes considered the most important by the experts are pre-
sented first and their respective branch is explained before presenting the next
branch. Figure 3 shows the BBN.

Fig. 3. Overview of the nodes in the BBN

The first branch. The input nodes C FB (Complexity of the FB) and V FB
(Interconnection complexity of the FB) were connected by the experts into an
intermediate node representing the shape of the logical complexity. This in-
termediate node represents complexity on a FB level. When the intermedi-
ate node Shape Logical Complexity was combined with the number of FBs it
resulted in a new intermediate node named Size Logical Complexity. This in-
termediate node represents complexity on a both the FB and the LD level.
The experts connected Size Logical Complexity with the node Variability to ex-
press complexity variability of the FBs and the LD in the intermediate node



62 J.E. Simensen et al.

Logical Complexity Variability. The first branch is from the last intermediate
node connected to the node representing the reliability metric, namely Reliabil-
ity Metric.

The second branch represents the connectivity within the LD. The first input
node, Number FDI FDO, represents the number of connected LDs to the input
and number of connected LDs to the output of the LD. The second input node,
Number Input Output, is the total inputs and outputs to the LD. The two input
nodes were joined by the experts in the intermediate node Connectivity which
represents the number of connected inputs and outputs to the LD in total, and
the number of other LDs connected. The intermediate node Connectivity was
connected to the reliability metric node.

The third branch represents the external shape of the LD. The external shape
of an LD represents the connections to and from the LD and indicates how de-
pendent the LD is on other LDs. It also gives an indication as to which degree
one or more other LDs are affected by the current. The first input node, Ra-
tio Input Output, is the ratio between all inputs and outputs to the LD The
second input node, Ratio FDI FDO, represents the ratio number of connected
LDs to the input and number of connected LDs to the output of the LD. The
input nodes representing the ratio were combined in the intermediate node
Shape external which in turn was connected to the reliability metric node.

5 Assigning Conditional Probability Tables and
Validating the BBN

In this chapter the process establishing the CPTs is explained and the plans
for validating the BBN are presented. The process of creating all the CPTs is
ongoing work.

5.1 Conditional Probability Tables

Assigning the CPTs was done in a session where experts expressed how they
believed different nodes should be coupled, how the nodes would relate to each
other and how this in turn would impact the complexity metric node. Rather
than coming up with complete CPTs directly, the session was structured so
that the experts decided the CPT framework through the use of numbers, lead
words and color maps; the CPTs were decided indirectly. Some benefits from
this approach were that the experts were able to express their beliefs about the
entire BBN. Detailed discussions on the CPTs were avoided and simplification
of the node relations ensured that the experts had an easier time understanding
each other. Based on the results from the session, the initial CPTs will be created
and adjusted using a subset of 20 LDs.

An example from the session can be seen in Figure 4. Here the size of the
logical complexity is given as the combination of the shape of the logical com-
plexity (Shape LC) and the number of FBs. The Shape LC was divided in three



Establishing the Correlation between Complexity and a Reliability Metric 63

Fig. 4. Size of the logical complexity, grouped using the colors: green, yellow, orange,
red, purple

categories (Low, Medium and High) and the number of FBs divided in five cat-
egories (Low, Median, Average, High and Very High). The experts decided on
which fields should indicate the same complexity. A color map spanning from
green to purple shows which fields that are grouped together and how complex
a combination of Shape LC and number of FBs is.

5.2 Validating the BBN

For validating the BBN it is planned to use a set of 20 LDs. These LDs will be
used as input in the BBN to adjust the net and update the priori distribution.
Which LDs to use is decided by an expert where the aim us to represent a broad
specter of different LDs and FBs. There is a total of 1067 FBs in the system
and the highest number of FBs in a LD is 265. The median number of FBs in
a LD is between 4 to 8 and since the number of FBs is not evenly spread, but
appearing in 5 groups (approx: 6, 20, 50, 100, 500 FBs in an LD), we believe 20
LDs should be sufficient for the validation of the net provided LDs from all 5
groups are represented. This work is ongoing.

6 Discussion

The discussion is divided in three parts. The first part address the available input
metrics. The second part discuss the layout of the BBN and the motivation for
our BBN structure. In the third part the applicability of the approach to other
problems is discussed.

6.1 Input Parameters

The seven input parameters given in chapter 2 is well documented in the three
first work packages of the project. One question is if there are more metrics avail-
able that better suited for evaluating complexity of FBs and LDs. For example, a



64 J.E. Simensen et al.

metric identifying LDs that are different but contain the same FDs could be use-
ful for identifying erroneous implementation directly. Another question relates
to how much detail should be included. An example is information regarding
different pedigrees; should knowledge on developer information, e.g. tools used
in design or the qualification and experience of the designers, be included in the
BBN as well? Would such information contribute with meaningful information
when compared to the three types of metrics (counting, variability and inter-
connection) already available? For this project we believe the identified metrics
should be sufficient to differ between LDs of different complexity. Moreover, the
experts did not request additional metrics when making decisions on the BBN,
which indicates that the available metrics were suitable.

6.2 Node Combination and the BBN

The arrangement of the BBN nodes is very much dependent on the experts. Input
nodes are provided, but their combination and their importance are targets for
discussion. The same applies to the intermediate nodes in the net. The main
argument for deciding the layout and combination of nodes is that it should be
explainable and make sense. In that manner we are confident in our selection
of the intermediate nodes in particular. We also believe that by combining few
inputs to an intermediate node we are able to keep the net simple enough for
the experts to express their beliefs confidently.

It is obvious that different nets can be argued for but this is one of the features
of BBN. Our goal is to have a net which is easily explainable and provides
reasonable output values. We believe the first goal is already covered by the fact
that the experts were able to communicate their ideas and beliefs about the
BBN quite easily in a short amount of time. The second goal is subject of more
work as the creation of CPTs is still in progress and the evaluation of the BBN
has not yet commenced.

6.3 Applying the BBN to Other Problems

The change from analogue systems to digital systems is becomming more usual,
e.g. changing analogue power range monitoring system (PRM) with a digital
PRM. Both implementations serve the same function and although their imple-
mentation may differ there are similarities in their inputs and their outputs. An
interesting question in this situation is if analogue and digital systems perform-
ing the same job have the same complexity? How about the reliability metric;
is one approach more reliable than the other? Experts will most certainly differ
in their opinions. Given that both digital and analogue systems can be specified
graphically in a similar fashion it should be possible to apply the method to
analogue systems as well.

Are there other uses for the approach suggested in this paper? E.g. can the
approach be used for all state diagrams, control flow diagrams or static analysis
in general? Graphical system specifications are in theory accepted in in the
automated complexity measurement and evaluation approach suggested in this



Establishing the Correlation between Complexity and a Reliability Metric 65

paper. However, there would be a need to come up with new metrics for each
type of diagram and to have the building blocks (e.g. FB) available in a library.
The same applies for the combination of inputs and the selection of nodes in
the BBN; experts will possibly be required to assess each system based on their
specification to come up with the framework for the CPTs. At the moment we
are not able to say something definitive about this methods applicability to other
systems and specifications as the work is ongoing.

7 Conclusion

In this paper an approach for the complexity measurement of digital I&C-
Systems was presented. The approach utilizes metrics extracted from FBs and
LDs specifying a digital I&C-System to find a correlation between complexity
and a reliability.

A case was presented where inputs, based on metrics available from a set of
FBs and LDs specifying a digital I&C-System, were combined by experts in a
BBN to express a relationship between complexity of a logic diagram and a re-
liability metric for that diagram. In the project, data from system specification
have been extracted and complexity calculation for the metrics has been per-
formed. A meeting with experts was facilitated for the creation of a Bayesian
Belief Net connecting complexity with a reliability metric.

Further work includes finishing the CPTs of the BBN based on a meeting
already held with the expert. The validation of the BBN is then performed
before the BBN is used to evaluate the digital I&C-System. Results from this
automated evaluation will be compared to manual expert judgment on the digital
I&C-System performed separately.

References

1. Fenton, N., Littlewood, B., Neil, M., Strigini, L., Sutcliffe, A., Wright, D.: As-
sessing Dependability of Safety Critical Systems using Diverse Evidence. In: IEEE
Proceedings Software Engineering, vol. 145(1), pp. 35–39 (1998)

2. Dahll, G.: Safety Assessment of Software Based Systems. In: SAFECOMP - The
International Conference on Computer Safety, Reliability and Security, pp. 14–24.
Springer, Heidelberg (1997)

3. Boehm, B.W.: Software engineering economics. IEEE Transitional on Software
Engineering 10(1), 7–19 (1984)

4. Jensen, F.: An Introduction to Bayesian Network. UCL Press, University College
London (1996)

5. Gran, B.A., Dahll, G., Eisinger, S., Lund, E.J., Norstrm, J.G., Strocka, P., Ys-
tanes, B.J.: Estimating Dependability of Programmable Systems Using BBNs. In:
Koornneef, F., van der Meulen, M.J.P. (eds.) SAFECOMP 2000. LNCS, vol. 1943,
pp. 309–320. Springer, Heidelberg (2000)

6. Gran, B.A.: The use of Bayesian Belief Networks for combining disparate sources
of information in the safety assessment of software based systems. Thesis 2002:35,
NTNU, Trondheim, Norway (2002)



66 J.E. Simensen et al.

7. Gran, B.A.: Use of Bayesian Belief Networks when Combining Disparate Sources
of Information in the Safety Assessment of Software Based Systems. International
Journal of Systems Science 33(6), 529–542 (2002)

8. Gran, B.A., Helminen, A.: A Bayesian Belief Network for Reliability Assessment.
In: Voges, U. (ed.) SAFECOMP 2001. LNCS, vol. 2187, pp. 35–45. Springer, Hei-
delberg (2001)

9. Bishop, P.G., Esp, D.G., Barnes, M., Humphreys, P., Dahll, G.: PODSA project
on diverse software. IEEE Trans. Softw. Eng. 12(9), 929–940 (1986)

10. Märtz, J., Lindner, A., Miedl, H.: Complexity Measurement of Software in Digi-
tal I&C-Systems. In: Sixth American Nuclear Society Int. Topic Meeting on Nu-
clear Plant Instrumentation, Control, and Human-Machine Interface Technologies.
NPIC&HMIT 2009, Knoxville Tennessee (2009)m American Nuclear Society, La-
Grange Park (2009)

11. Lyu, M.R.: Handbook of Software Reliability Engineering, pp. 699–705. IEEE Com-
puter Society Press, McGraw-Hill (1996)

12. Lyu, M.R.: Handbook of Software Reliability Engineering, pp. 41–43. IEEE Com-
puter Society Press, McGraw-Hill (1996)



Exploring Network Security in PROFIsafe

Johan Åkerberg1 and Mats Björkman2

1 ABB AB, Corporate Research, 721 78 Väster̊as, Sweden
johan.akerberg@se.abb.com

2 Mälardalens University, Academy of Innovation, Design, and Technology
P.O. Box 883 Väster̊as, Sweden

mats.bjorkman@mdh.se

Abstract. Safety critical systems are used to reduce the probability of
failure that could cause danger to person, equipment or environment.
The increasing level of vertical and horizontal integration increases the
security risks in automation. Since the risk of security attacks can not
be treated as negligible anymore, there is a need to investigate possible
security attacks on safety critical communication.

In this paper we show that it is possible to attack PROFIsafe and
change the safety-related process data without any of the safety measures
in the protocol detecting the attack. As a countermeasure to network
security attacks, the concept of security modules in combination with
PROFIsafe will reduce the risk of security attacks, and is in line with
the security concept defense-in-depth.

1 Introduction

In process automation, automation equipment is normally located within locked
buildings were only authorized personnel may enter. The plant or fieldbus net-
works carrying information of production speed, quality, quantity as well as
individual commands and feedback from actuators and sensors belong to closed
networks, without any connections outside the physical building. New technolog-
ical advancements in for example condition monitoring, wireless communication,
and industrial Ethernet in combination with the demand of horizontal and ver-
tical integration to master the complexities in production [1], increase the risk
of security attacks on automation systems. An example of vertical integration
is when a route is opened from the upper layer systems to access web servers
in field devices. Wireless bridges, interlocking, or distributed control are some
examples where horizontal integration is utilized in the plants. The previously
hierarchical and natural borders are gradually disappearing due to horizontal
and vertical integration and it is not that easy anymore to state that the risks of
security attacks on automation systems are negligible. From the IT domain we
know about viruses and Trojans that cause a great deal of efforts and problems.
Consider a scenario with a virus residing on a PC belonging to an automation
system, that instead of sending e-mails, is sending altered telegrams to affect the
plant production and availability.

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 67–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



68 J. Åkerberg and M. Björkman

Some of the most important security concerns are [2][3][4]:

– Confidentiality, only authorized entities may read confidential data
– Integrity, unauthorized entities may not change data without detection
– Availability, the services should be available when needed
– Authentication, confirmation that an entity is what is claims to be.

The state-of-the-art in automation security is to use perimeter defense, firewalls,
to restrict incoming and outgoing messages to the networks. This can be done in
multiple layers, to protect even a single production cell with a firewall [5]. Within
the network, protected by the same perimeter defense, communication is based
on trust and nodes can communicate with each other without any restrictions.
To communicate between network borders, the use of virtual private networks
(VPNs) are recommended. Howwill laptops being moved on the networks formain-
tenance and tuning with various on-board wireless radios, or wireless sensor net-
works at fieldbus level, affect security? Using wireless radio communication could
compromise security as malicious attackers can use the wireless radio communi-
cation to access the local networks. Focusing at the communication closest to the
process, some Ethernet based fieldbus protocols are not even using layer 3 commu-
nication and cannot easily be protected by VPNs. This might implicate problems
with horizontal and vertical integration since firewalls cannot be used in such cases
and there is a trade off between horizontal and vertical integration versus security.

From the railway domain, especially in railway signaling, where communica-
tion cannot always be transmitted on trusted networks, measures must be taken
to ensure authorization, integrity and even confidentiality of messages. As there
are existing standards to cover safety-relevant communication on non-trusted
networks in the railway domain, those standards will be used as reference when
appropriate. This paper focuses on the security aspects of safety-relevant com-
munication using PROFIsafe [6].

The main contributions in this paper are summarized as follows:

– It is shown that it is possible to take control over PROFIsafe nodes
– It is shown that attacks can be done without any of the peers detecting the

attack
– The concept of security modules can be used to retrofit security to PROFIsafe

when using PROFINET IO

The paper is structured as follows. In Section 2 related work is presented,
Section 3 introduces PROFIsafe and in Section 4 the attack scenario and results
are presented. In Section 5 network security countermeasures are introduced and
finally in Section 6 conclusions are presented.

2 Related Work

The security threats to automation systems have been researched as well as
evaluation of existing IT security solutions to automation networks and are
summarized in [2][4][7]. In [2] and [4] existing IT security protocols, such as



Exploring Network Security in PROFIsafe 69

Transport Layer Security and Secure Sockets Layer (TLS and SSL), and IPsec,
are summarized and evaluated for use in the automation domain.

Different attempts and methods to attack PROFINET IO nodes were ex-
ecuted in [8] without success. The authors claimed that if standard Ethernet
switches are used, it should be possible to deploy a successful man-in-the-middle
attack, where an attacker can get in a position between the nodes, relaying and
manipulating messages. In [9] it is shown that it is possible to deploy a successful
man-in-the-middle attack on PROFINET IO and the concept of security mod-
ules is introduced to deal with authentication and integrity of PROFINET IO
real-time communication.

A Denial-of-Service (DoS) attack, draining network and CPU resources to
reduce the availability or deny service completely, is a non-trivial security threat
that can not be prevented with cryptography. A generic approach to deal with
DoS attacks in automation systems is presented in [10].

Since the encryption keys have to be exchanged at some point in time they
might be exposed, and the weakest point of encryption and integrity is normally
not the algorithms themselves, but the way the “secret keys” are distributed.
Such key distribution schemes are an even bigger challenge to implement in
existing systems than to find resources for executing the security algorithms.
One such key distribution scheme has been presented for building automation
in [11].

A Virtual Automation Network (VAN) [12][13][14] is a heterogeneous network
consisting of wired and wireless Local Area Networks, the Internet and wired
and/or wireless communication systems. VAN is not a new set of protocols; it
aims at reusing as much as possible from the LAN, WAN and industrial commu-
nication. The aim of VAN is to transfer data through a heterogeneous network,
through an end-to-end communication path, in the context of an automation
application.

3 Basics of PROFIsafe

PROFIsafe is one out of four safety protocols described in the IEC 61784-3
standard [15]. PROFIsafe or functional safety communication profile 3/1 (FSCP
3/1) as it is referred to in the standard [6] can be used with both PROFIBUS
and PROFINET. There are two versions of PROFIsafe, V1 that was originally
designed to run on PROFIBUS and V2 is the extended version to handle com-
munication on Ethernet and the extended functionality provided by PROFINET
compared to PROFIBUS [16].

3.1 Black Channel

PROFIsafe’s way of safety communication is based on the experience from the
railway signaling domain and is documented in IEC 62280-1 [17] and IEC 62280-
2 [18]. Safe applications and standard applications can share the same stan-
dard PROFINET IO communication system, the black channel, at the same



70 J. Åkerberg and M. Björkman

Fig. 1. The Black Channel principle, where safety-related and non safety-related com-
munication co-exist on the same standard transmission system, which is excluded from
functional safety certification

time. The safe transmission function comprises all measures to deterministically
discover all possible faults and hazards that could be infiltrated by the black
channel, or to keep the residual error probability under a certain limit [6]. In-
cluding

– random malfunctions, for example due to electromagnetic interference (EMI)
impact on the transmission channel

– failures and faults on the standard transmission hardware
– systematic malfunctions of components within the standards hardware and

software

Using the black channel, PROFIsafe perform safe communication by using

– a standard transmission system and
– an additional safety transmission protocol on top of the standard transmis-

sion system

and is illustrated in Fig. 1.
The black channel principle limits the certification effort to the safe trans-

mission functions and the standard transmission system can be excluded from
certification[6]. PROFIsafe is approved to apply on black channels with a bit
error probability up to 10−2 [6].

3.2 Safety Measures of PROFIsafe

The selection of the generic safety measures in IEC 61784-3, section 5.5 is re-
quired for PROFIsafe [6]. The safety measures shall be processed and monitored
within one safety unit. Table 1 describes possible communication error types as
described in IEC 61784-3.

PROFIsafe specifies four different safety measures out of the total 8 specified
in IEC 61784-3 [6]. Table 2 describes the safety measures and their coverage to
master communication errors [6].



Exploring Network Security in PROFIsafe 71

Table 1. Description of possible communication errors [15]

Error Type Description

Corruption Messages may be corrupted due to errors within a bus par-
ticipant, due to errors on the transmission medium, or due to
message interference

Unintended repetition Due to an error, fault or interference, old not updated messages
are repeated at an incorrect point in time

Unacceptable delay Messages may be delayed beyond their permitted arrival time
window, for example due to errors in the transmission medium,
congested lines, interference, or due to bus participants sending
messages in such manner that services are delayed or denied
(for example FIFOs in switches, bridges, routers)

Incorrect sequence Due to an error, fault or interference, the predefined sequence
(for example natural numbers, time references) associated with
messages from a particular source is incorrect

Loss Due to an error, fault or interference, a message is not received
or not acknowledged

Insertion Due to a fault or interference, a message is inserted that relates
to an unexpected or unknown source entity

Masquerade Due to a fault or interference, a message is inserted that relates
to an apparently valid source entity, so a non-safety relevant
message may be received by a safety relevant participant, which
then treats it as safety relevant

Addressing Due to a fault or interference, a safety relevant message is sent
to the wrong safety relevant participant, which then treats re-
ception as correct.

Table 2. Deployed measures in PROFIsafe to master errors [6]

Communication error Safety measures
(Virtual)
Consecu-

tive
Number 1

Timeout
with

receipt 2

Codename
for sender

and
receiver 3

Data con-
sistency
check 4

Corruption x

Unintended repetition x

Incorrect sequence x

Loss x x

Unacceptable delay x

Insertion x x x

Masquerade x x x

Addressing x

Revolving memory failures within
switches

x

1 Instance of ”sequence number” of IEC 61784-3.
2 Instance of ”time expectation” and ”feedback message” of IEC 61784-3.
3 Instance of ”connection authentication” of IEC 61784-3.
4 Instance of ”data integrity assurance” of IEC 61784-3.



72 J. Åkerberg and M. Björkman

3.3 PROFIsafe Container Structure

In Fig. 2 one single PROFIsafe container is illustrated that contains the safety-
related IO data and an additional safety code (status / control byte). A PROFI-
NET IO real-time frame may contain more than one PROFIsafe container, for
example in the case of a modular IO device with several safety modules.

Fig. 2. A single PROFIsafe container

PROFIsafe uses several different CRCs to protect the integrity of safety-
related messages, therefore CRCs with different numbers appear to differentiate
them. The different CRCs are described Section 3.4. Factory automation and
process automation have different requirements on number of IO and type of
IO. Factory automation deals with binary IO processed at a very high speed
and process automation normally deals with longer IO values as well (bit, in-
teger, floating point), that take more processing time. PROFIsafe supports two
different safety-related input/output data lengths that require CRC protection
of different complexity to fulfill Safety Integrity Level 3 (SIL3) [19] requirements
with an error probability requirement of < 10−9 [6]. The choice between the two
operational modes is done in the application relation creation phase by safety
parameterization

– safety IO data up to 12 bytes together with a 24 bit CRC2 or
– safety IO data up to 123 bytes together with a 32 bit CRC2

The safety-related IO data of a safe node is collected in the safety payload data
unit (PDU), and the data type coding corresponds to PROFINET IO. In the
case of a few safety-related IO data up to 12 bytes the 24 bit CRC2 option shall
be chosen for performance reasons. There are modular devices, beside compact
devices, with safety and standard I/O units and sub-addresses. A PROFINET
IO head station (Device Access Point) is considered to be part of the “Black
Channel” and is used to agree upon the structure of a PROFINET IO message
with several safety containers via start-up parameterization. One safety container
corresponds to one subslot in PROFINET IO.



Exploring Network Security in PROFIsafe 73

Fig. 3. CRC2 generation

3.4 Consistency Check of PROFIsafe Container

When the safety parameters have been transferred to the safe device, the safe
host and safe device/module produces a 2 byte CRC1 signature [6] over the safety
parameters. The CRC1 signature, safe IO data, Status or Control byte and the
corresponding Consecutive Number are used to produce the CRC2 signature as
illustrated in Fig 3. The CRC1 signature provides the initial value for CRC2
calculation that is transferred cyclically, thus limiting the CRC calculation for
each cyclic PROFIsafe container to CRC2.

3.5 Virtual Consecutive Number

The consecutive number is used as a measure to deal with some of the possi-
ble communication errors, illustrated in Tab. 2. It is also used to monitor the
propagation delay between transmission and reception. A 24 bit counter is used
for consecutive numbering, thus the consecutive number counts in a cyclic mode
from 1. . . FF FF FFh wrapping over to 1 at the end [6]. The consecutive number
0 is reserved for error conditions and synchronization of the VCNs.

The consecutive number is called Virtual Consecutive Number (VCN), since
it is not visible in the safety PDU. The mechanism uses 24 bit counters located
in the safety host and safety device and the Toggle Bit within the Status Byte
and the Control Byte increment the counters synchronously. Figure 4 illustrates
the VCN mechanism. To verify the correctness and to synchronize the two inde-
pendent counters, the consecutive number is included in the CRC2 calculation
that is transmitted with each safety PDU (Fig. 3).

The transmitted part of the VCN is reduced to a Toggle Bit which indicates
an increment of the local counter. The counters within the safe host and safe
device are incremented at each edge of the Toggle Bits. In case of a detected
error the consecutive number will be reset to zero in both safe host and safe
device [6]. Figure 4 illustrates the mechanism.



74 J. Åkerberg and M. Björkman

Fig. 4. The Toggle Bit function

4 Security Attack on PROFIsafe

The hypothesis used to deploy a successful security attack on PROFIsafe is that
it will succeed if and only if the CRC2 is correctly recalculated after changes
in safety-related IO data within the timing constraints of the protocol. To be
able to recalculate CRC2, and bypass the data consistency check, the following
information have to be obtained

– The current VCN
– The codename for the sender and receiver
– The actual set of safety parameters

The CRC1 is calculated over the codename for the sender and receiver and the
actual set of safety parameters. It is known that the CRC1 will not change during
the lifetime of the session. This knowledge will simplify the attempts to bypass
the data consistency check later on. What is left before a security attack can be
deployed is information on

– The current VCN
– The CRC1 that is static over the session lifetime

Next section will describe how to obtain the VCN and the CRC1.

4.1 Breaking the Code

By receiving one safety container, and applying brute force to calculate all valid
combinations of CRC1 and VCN that generates the same CRC2 as in the received
message, a set of possible CRC1 will be obtained. With the knowledge of that
the CRC1 is static over the session lifetime, the remaining combinations can be
reduced down to the CRC1 that is in use. This has to be done in an iterative
process that terminates when the correct CRC1 has been found. CRC1 and VCN
pairs can be eliminated if the next frame generates a VCN that is smaller than
the previous frame. This can be done as the standard specifies that the VCN
shall increase monotonically and wrap around at FF FF FFh to 1 and the CRC1
is static over the session lifetime.

Algorithm 1 will terminate with the correct CRC1, or in very seldom cases
it will terminate with no CRC1 at all, if the VCN did wrap around during



Exploring Network Security in PROFIsafe 75

steps 3-11. The purpose of the research is not to find optimal algorithms, but
to investigate the possibilities of security attacks on safety protocols. Thus the
algorithm will not be refined any further.

Algorithm 1. Retrieving the CRC1 and V CN

1: Receive a safety container
2: Calculate and store all permutations of V CN and CRC1 that generate the same

CRC2 as the received safety container in step 1
3: repeat
4: Receive another safety container
5: for all stored permutations of CRC1 and V CN from step 2 do
6: Calculate CRC2 of safety container from step 4 with stored permutation of

CRC1 and V CN
7: if calculated CRC2 = received CRC2 and V CN < previous V CN then
8: Discard the permutation as a possible candidate
9: end if

10: end for
11: until one or zero valid permutations of CRC1 and V CN remain

When the CRC1 and the latest VCN has been obtained, it should be possible
to bypass the safety measures of PROFIsafe according to the hypothesis if the
safety frame can be changed within given time constraints.

4.2 Attacking PROFIsafe Containers

The remaining challenge is to find the actual VCN very fast for all received safety
containers. When the VCN has been obtained for the actual safety container,
the safety-related IO has to be changed and the CRC2 has to recalculated. It
is known that the VCN will increase monotonically at a rate depending on the
bus period time, host and device period time executing the safety layer. If the
attacking application is fast and can receive all safety containers, the VCN would
not update for each and every frame received, thus relaxing the computational
efforts to derive the VCN in “real-time”.

A reasonable approach would be to start with the latest known VCN and
recalculate the CRC2. If the CRC2 is not the same as the received one, continue
by increasing the VCN until a match is found. The proof-of-concept implementa-
tion shows that this approach is fast and accurate. An alternative solution would
be to increase the VCN when the toggle bit changes and reset it to zero in case
of errors reported by the status bits in the control or status byte of the safety
container. The advantage of the previous method is that the CRC1 and VCN
will be validated for each frame, before they are used, to avoid wrong CRC2
calculation and thus detection by the safety nodes.

4.3 Test Setup

As PROFIsafe is designed and approved according to the Black Channel princi-
ple, it is independent of the transmission system used. The test setup is simplified



76 J. Åkerberg and M. Björkman

but still relevant due to the Black Channel concept. For sake of simplicity the
test is not performed on an industrial fieldbus like PROFINET IO, and the
safety containers are transported directly on TCP/IP. It has been shown in [9]
that it is possible to deploy a successful man-in-the-middle attack on PROFI-
NET IO therefore PROFIsafe implementations for PROFINET IO has been used
throughout the tests.

The test setup contains three applications that can be distributed freely over
an Ethernet network.

1. PROFIsafe host, implements a PROFIsafe host according to IEC 61784-3-3.
2. PROFIsafe device, uses a SIL 3 certified PROFIsafe device implementation

for PROFINET IO.
3. PROFIsafe simulator, application that can capture and influence the traffic

sent between the PROFIsafe host and PROFIsafe device. Also implements
the algorithms described in Section 4.1-4.2.

The PROFIsafe host and PROFIsafe device are exchanging safety containers at
a relative fast rate of 5 ms, PROFINET IO is carrying data at a rate of 10 ms-
100 ms. The communication is parameterized to use 32 bit CRC2 with CRC1 as
start value.

4.4 Attack Results

The fist step was to find the value of CRC1 with brute force. Step 2 in Section 4.1
takes almost 11 hours on a 2 GHz laptop. In addition it takes approximately two
minutes to eliminate the “wrong” CRC1 values and terminate with the correct
value of CRC1. The algorithm and the implementation can most probably be
optimized for shorter run time, but the most important result is that it is possible
to derive the correct CRC1 value and the corresponding VCN within a reasonable
time frame.

With the CRC1 and VCN value, the modification of the safety containers
can begin. Safety containers in both directions are modified according to the
algorithm described in Section 4.2. The algorithm works very well and the safety-
relevant data can be changed in both directions without neither the PROFIsafe
host nor the PROFIsafe device detecting any abnormalities. The safety layers
carry on as usual, but forward wrong information to the application layers.

The most difficult part is to find the CRC1 and VCN out of a safety container.
However, 11 hours of brute force is a long time to derive them, but it could have
taken much longer time since the VCN is limited to 24 bits. The limitation of
24 bits is due to reasonable testing times during safety certification, as the wrap-
around of VCN from FF FF FFh to 1 is part of a test case [6]. Ironically this
reduction also reduces the time to derive the CRC1 and VCN out of a security
container. On the other hand, the CRC1 is static during the lifetime of the
session, which could last for years, and secondly attackers have probably much
time to spend and will most probable refine the method and implementation for
shorter run-time.



Exploring Network Security in PROFIsafe 77

While running simulations in the PROFIsafe simulator to statistically drop
and/or change safety-related packets without recalculating the CRC2, some in-
teresting findings were made. In the case packets are dropped, the PROFIsafe
implementation do not end up in fail-safe mode, setting the outputs in a safe
state. This can be the case if a safety container is dropped due to a detected
CRC error caused by EMI influence. When safety containers are intentionally
changed, the PROFIsafe implementations enter fail-safe directly. This can be the
case of an undetected error due to EMI influence or malfunctioning hardware.
This is also safe and sound, we do not want to run the safety critical process
with detected errors. The PROFIsafe standard states that all detected CRC2
errors, even if it is a duplicate of a previously received correct safety container,
should trigger fail-safe mode. The reason for this statement is that the most
probable cause is due to problems in the underlying transmission system, hard-
ware or software, has been detected as sabotage is not assumed. Still safe and
sound, but what if the safety container was intentionally changed by a malicious
attacker? The system will end up in fail-safe mode, the staff has to investigate
what has happened, probably not find any errors and reset the safety system.
This means that by very simple means it is possible to affect the availability of
the system, in case of a unsuccessful security attack. Or simply that this is the
intention, to spuriously change safety containers. This will cause a great deal of
headache, loss of production and in the end, reduced income.

5 Network Security Countermeasures

The safety measures from Tab. 2 from IEC 61784-3-3 are derived from IEC 62280-
2, and are almost identical except that the cryptographic techniques are left
out. However, it is written in IEC 61784-3-3, section 7.3.7, that sabotage is not
assumed when using the CRC2 to ensure authentication. As a measure against
masquerade, the source and destination relationship is included in the CRC1
signature that is used to calculate the CRC2 signature for message integrity.

The integrity of the messages have to be protected by Message Authentica-
tion Codes (MAC), also referred as cryptographic checksums, to secure integrity
and authentication in case of threats from malicious attackers. The goal with
a message authentication code MAC, given a plaintext message P and a se-
cret key K, is that it should be exceedingly difficult to generate a valid pair
(P ′, MACK(P ′)), where P ′ is an altered plaintext message, even after eaves-
dropping one valid pair (P, MACK(P )). CRCs do not have this property, and
that is the main reason that this kind of attack is possible.

According to IEC 62280-1 a proper CRC is sufficient if the risk of unautho-
rized access is considered negligible [17]. If the risks could not be considered
negligible, cryptographic techniques have to be used instead of CRC signatures
[18]. Usually when the safety-related transmission system uses a public network,
radio transmission system, or a transmission system with connections to public
networks, malicious attacks cannot be ruled out [18].



78 J. Åkerberg and M. Björkman

Fig. 5. Using security modules to protect the integrity and authentication of
PROFIsafe containers, transmitted with PROFINET IO, when risk of malicious at-
tacks cannot be treated as negligible

According to IEC 61784-3-3 it is required to use encryption and authentication
if there are security threats when using wireless communication [6]. The use
of WLAN and Bluetooth and how to configure the wireless access points are
described in details in [6]. In addition the PROFINET IO security concept is
based on the concept of “trusted zones”, where each zone is protected by a
perimeter defense. Within this zone, communication is based on trust and all
nodes can communicate with each other freely without restrictions [20].

As we have shown in the previous sections, it is possible to deploy a man-in-
the-middle attack on the network and alter safety-relevant data without detec-
tion. Security is a broad topic, ranging from physical security, device security
to network security. Even if device security, preventing unauthorized access to
the device, is addressed it would still be possible to deploy a man-in-the-middle
attack. The other way around, only protecting the safety-related data with cryp-
tographic checksums would not help either, as an unauthorized person can gain
access to the device and change safety-related data before the cryptographic
checksum is calculated. With this in mind we propose using the concept of se-
curity modules [9], a security software layer where the PROFINET IO real-time
data is protected by a MAC, as a countermeasure to deal with integrity and
authentication in the context of network security.

Using for example IPsec with PROFINET IO is not always possible, as PROFI-
NET IO real-time frames do not always use layer 3 for the sake of processing
speed, predictability and jitter. The security modules can be used with or without
layer 3, i.e. IP, as the message authentication codes are calculated and verified
at application level, thus providing end-to-end security. The concept of security
modules is in line with both IEC 62280-2 and the principle of the black channel,
and is possible to retrofit on PROFINET IO without any changes in the stan-
dards, transmission system or re-certification with respect to functional safety
and IEC 61508. An alternative would be to exchange the CRC algorithm used
in PROFIsafe to calculate CRC2 with a MAC instead to achieve authentication
and integrity of the PROFIsafe containers directly. The drawback would be that
then you always have security countermeasures even if there are no significant
threats, aside from changes in the PROFIsafe standard and re-certification of
the safety implementation.



Exploring Network Security in PROFIsafe 79

By using the security modules, the system will not end up in fail-safe mode in
the case of altered content in the PROFIsafe container, since such failures and/or
modifications will be discarded by the security layer, as discussed in section 4.4.
This is a positive side effect that will contribute to the overall availability.

6 Conclusions

As we show in this paper, it is possible to attack SIL3 certified implementations
of the PROFIsafe safety protocol without being detected. In this particular case,
network security was not even addressed, as sabotage is not assumed. Not sur-
prisingly, n-programming, redundant hardware, hardware or software voting to
mention some safety techniques, will not help much in the case of single path
communication in an environment with malicious attackers.

The result is surprising, that it is possible to bypass all the safety measures,
with quite simple techniques. One must not forget, physical access to the net-
work is a precondition, and the probability of succeeding this kind of attack in
practice is not significant. However, we recommend shifting focus from for ex-
ample robustness testing of nodes to deal with network security on embedded
systems. The consequences of man-in-the-middle attacks on safety-critical sys-
tems can be enormous compared to an denial-of-service attack, as DoS attack
will trigger the safety-critical system to fail-safe mode. We also believe the same
argumentation holds for non safety-critical systems as well. However, security
is not better than the weakest link and security has to be addressed in several
ways. We believe that it is easier to deploy a man-in-the-middle attack as we
show in this paper, compared to trying to access the internal buffers holding the
safety-relevant data in the embedded systems from the network.

In Section 5 we propose and discuss the concept of security modules, a security
software layer, to retrofit security in PROFINET IO and PROFIsafe without any
changes in the transmission system or standards. If the risk of security threats
is not negligible, security modules can be used to add a security layer between
PROFINET IO and PROFIsafe to reduce the possibilities of security attacks,
and increase the overall availability. In addition for the studied system, the
security modules will not forward safety containers that indicate compromised
integrity, thus not putting the system in fail-safe mode due to spurious attacks
on safety containers.

References

1. Sirkka, L., Jämsä, J.: Future trends in process automation. Annual Reviews in
Control 31, 211–220 (2007)

2. Dzung, D., Naedele, M., Von Hoff, T., Crevatin, M.: Security for industrial com-
munication systems. Proceedings of the IEEE 93(6), 1152–1177 (2005)

3. Tanenbaum, A.S.: Computer Networks, 4th edn. Pearson Education International,
London (2003)



80 J. Åkerberg and M. Björkman

4. Treytl, A., Sauter, T., Schwaiger, C.: Security measures for industrial fieldbus
systems - state of the art and solutions for ip-based approaches. In: IEEE In-
ternational Workshop on Factory Communication Systems, September 2004, pp.
201–209 (2004)

5. Harada, M.: Security management of factory automation. In: SICE, 2007 Annual
Conference, September 2007, pp. 2914–2917 (2007)

6. IEC: IEC 61784-3-3. Industrial communication networks - Profiles - Part 3-3: Func-
tional safety fieldbuses - Additional specifications for CPF 3. International Elec-
trotechnical Commission (2007)

7. Treytl, A., Sauter, T., Schwaiger, C.: Security measures in automation systems-a
practice-oriented approach. In: 10th IEEE Conference on Emerging Technologies
and Factory Automation, September 2005, vol. 2, p. 9 (2005)

8. Baud, M., Felser, M.: Profinet io-device emulator based on the man-in-the-middle
attack. In: 11th IEEE Conference on Emerging Technologies and Factory Automa-
tion, pp. 437–440 (2006)

9. Åkerberg, J., Björkman, M.: Exploring security in profinet io. 33rd Annual IEEE
International Computer Software and Applications Conference (2009) (in press)

10. Granzer, W., Reinisch, C., Kastner, W.: Denial-of-service in automation systems.
In: 13th IEEE Conference on Emerging Technologies and Factory Automation, pp.
468–471 (2008)

11. Granzer, W., Reinisch, C., Kastner, W.: Key Set Management in Networked Build-
ing Automation Systems using Multiple Key Servers. In: Proc. 7th IEEE Interna-
tional Workshop on Factory Communication Systems (WFCS 2008), May 2008,
pp. 205–214 (2008)

12. Neumann, P.: Virtual automation network - reality or dream. In: IEEE Interna-
tional Conference on Industrial Technology, December 2003, vol. 2, pp. 994–999
(2003)

13. Neumann, P.: Communication in industrial automation-what is going on? Control
Engineering Practice 15, 1332–1347 (2006)

14. Neumann, P., Poeschmann, A., Messerschmidt, R.: Architectural concept of virtual
automation networks. In: IFAC World Congress (2008)

15. IEC: IEC 61784-3. Industrial communication networks - Profiles - Part 3: Func-
tional safety fieldbuses - General rules and profile definitions. International Elec-
trotechnical Commission (2007)

16. PNO: PROFIsafe - Profile for Safety Technology on PROFIBUS DP and PROFI-
NET IO. Version 2.0. Order No: 3.192. PROFIBUS Nutzerorganisation e.V. (2005)

17. IEC: IEC 62280-1. Railway applications - Communication, signaling and processing
systems - Part 1: Safety-related communication in closed transmission systems.
International Electrotechnical Commission (2002)

18. IEC: IEC 62280-2. Railway applications - Communication, signaling and process-
ing systems - Part 2: Safety-related communication in open transmission systems.
International Electrotechnical Commission (2002)

19. IEC: IEC 61508. Functional safety of electrical/electronic/programmable electronic
safety-related systems - Part 1: General requirements. International Electrotechni-
cal Commission (1998)

20. PNO: PROFINET Security Guideline, Version 1.0. PROFIBUS Neutzerorganisa-
tion e.V. (2005)



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 81–88, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Modelling Critical Infrastructures in Presence of Lack of 
Data with Simulated Annealing – Like Algorithms 

Vincenzo Fioriti1, Silvia Ruzzante2, Elisa Castorini1, A. Di Pietro1,  
and Alberto Tofani1 

1 ENEA, Centro Ricerche Casaccia, Via Anguillarese 301, S. Maria di Galeria, 
00123 Roma, Italy 

2 ENEA, Centro Ricerche Portici, Via Vecchio Macello 
 00122  Napoli, Italy 

(vincenzo.fioriti,silvia.ruzzante,elisa.castorini, 
antonio.dipietro,alberto.tofani)@enea.it 

Abstract. We propose a method to analyze inter-dependencies of technological 
networks and infrastructures when dealing with few available data or missing 
data. We suggest a simple inclusive index for inter-dependencies and note that 
even introducing broad simplifications, it is not possible to provide enough in-
formation to whatever analysis framework. Hence we resort to a Simulated An-
nealing–like algorithm (SAFE) to calculate the most probable cascading failure 
scenarios following a given unfavourable event in the network, compatibly with 
the previously known data. SAFE gives an exact definition of the otherwise 
vague notion of criticality and individuates the “critical” links/nodes. Moreover, 
a uniform probability distribution is used to approximate the unknown or miss-
ing data in order to cope with the recent finding that Critical Infrastructures 
such as the power system exhibit the self-organizing criticality phenomenon. A 
toy example based on a real topology is given; SAFE proves to be a reasonably 
fast, accurate and computationally simple evaluation tool in presence of more 
than 50% missing data.  

Keywords: interdependencies, simulated annealing, Critical Infrastructures. 

PACS number(s): 9.75.Fb - Structures and organization in complex systems. 

1   Introduction  

The study of the technological networks (energy, transportation, communication, oil, 
gas, water, finance and ICT infrastructures) is showing a huge interest, because of its 
deep implications with safety and economics. These networks constitute the basis of 
the modern society, but they are threatened by unfavourable events, attacks and  
cascading failures. Many efforts have been spent in the last years to gasp a deeper un-
derstanding of the relations among these networks, efforts that require an interdisci-
plinary nature of the research in the fields of physics, reliability, statistics, applied 
mathematics Ref.[1], [5], [6], [7], [8], [10]. Central to our problem are the inter-
dependencies among the elements of the networks, present in all the well-known four 



82 V. Fioriti et al. 

“dimensions” defined by Rinaldi Ref.[9]. Describing the inter-dependencies is a diffi-
cult task: not only at least four “dimensions” (physical, geographic, cyber, logical) are 
to be taken into consideration, but are present feedbacks, feedforwards, non-physical 
paths, a variety of dynamical modifications, non-linear relations among components, 
time delays, different temporal scales ranging from milliseconds to years, granularity 
levels, stochastic events. Moreover, the online monitoring is a prohibitive task: lack of 
sensors, low sampling, disturbances, multidimensional data. Even in the most fortu-
nate cases, in the real world it is not possible to provide enough data for each infra-
structure or device, i.e. we do face the problem of missing data Ref.[11].   

2   Simulated Annealing and Graphs   

The problem of missing data affects different disciplines and several approaches are 
been proposed to deal with it. Ref.[9] deals with missing data related to HIV sero-
prevalence data from an antenatal study survey performed in 2001.The problem is 
coped with different methods: random forests, autoassociative neural networks with ge-
netic algorithm, autoassociative neuro-fuzzy configurations, and two random forest and 
neural network based hybrids. Ref.[10] compares two approaches, max expectation al-
gorithm and the auto-associative neural networks and genetic algorithm combination, 
with respect to the problem of missing data evaluation in different application fields (in-
dustrial power plant, industrial winding process, and HIV sero-prevalence survey data). 
In order to deal with the missing data problem, we propose a variant of Simulated An-
nealing (SA) Ref.[11] that is a random-search technique which exploits an analogy be-
tween the cooling of a material to a state of minimum energy (the annealing process) 
and the search for a minimum in a more general system. SA behavior is similar to a ball 
that can bounce over mountains from valley to valley. The initial temperature is so high 
that the ball can bounce overcoming several mountains. As the temperature decreases, 
bounces become more and more low and the ball can be trapped in a small set of valleys 
(states to be explored). Probabilistic methods establish to stay in a new lower valley or 
to bounce out of it. It has been proved that by carefully controlling the cooling of the 
temperature, SA can find the global minimum. Although the SA algorithm avoids be-
coming trapped in local minima a lot of parameters have to be set in a suitable way. 

3   Modelling the Inter-dependency   

Dependence should be primary intended as a causal relation between two entities; here 
we will focus on nodes of an oriented graph (network). A qualitative good definition is 
the Rinaldi’s one: ”Dependency is a linkage between two infrastructure through which 
the state of one influences or is correlated to the state of the other” Ref.[8]. Deciding the 
direction of the dependence is usually a hard problem, but in the technological networks 
is a good practice Ref.[8] to find out only the clearly oriented dependencies. In our 
framework this is not a limitation. If we can observe input-output data, dependencies are 
naturally defined. Otherwise it makes no sense assessing a probable hidden dependence 
that acts on the unrecheable/unossevable parts of the system (node). Actually, we should 
consider the inter-dependency meaning one or more nodes react to inputs by means of a 
direct feedback reducing every inter-dependence to simple dependences. A dependence 



 Modelling Critical Infrastructures in Presence of Lack of Data with SAFE 83 

between two nodes will be a link on the graph and characterized by direction, position, 
strength.  In our framework the strength is a generic index of the functionality of the 
node derived directly from sensors: if a device or an element or a group of them is cor-
rectly working the operator will have an “on” signal. Summing up the signals it is easy 
to get a percentage of the overall functionality of the node transmitted as a causal action 
to other nodes (time delays were not considered in this simulation, as an extension to the 
time dependent case is straightforward). Consider our toy example (Table 1), a network 
of 11 nodes and 18 links where any known (monitored) node ( 4, 5, 7, 11, 12 ) has 100 
on/off (1, 0) sensors : 

Table 1. Nodes are indicated in the rows, sensors are indicated in the columns.  “Functionality” 
is to be understood as operational capacity and “sensors” are SCADA equipments.  

 1 2 3…………..99 100 Functionality 

1 1 1 1.......................1  1 100%

2 1 1 1........................1 1 100%

3 1 1 1........................1  1 100%

4 1 1 1 ……………...1 1 100%

5 1 1 1 ……………...1 1 100%

6 1 1 1...................... .1 1 100%

7 1 1 1 ……………...1 1 100%

8 1 1 1........................1 1 100%

9 1 1 1........................1 1 100%

10 1 1 1........................1 1 100%

11 1 1 1 ………….…..1 1 100%

12 0 1 00………….......0 0     1% 

 
 
Thus the % functionality is immediately derived; of course this procedure is very 

rough, nevertheless, often it is an handy way to earn a low cost picture of a network.    

3.1   Description of the SAFE Algorithm                

In the real world we have to face a dramatic shortage of information and data because 
either stakeholders are not willing to divulge their industrial secrets, sensors are not as 
many as needed, maybe ICT links are not online, and so on. To cope with these miss-
ing data we propose the SAFE algorithm to provide a number of cascading scenarios 



84 V. Fioriti et al. 

compatibly with the known data, minimizing the simulation error. To fix ideas we ap-
ply SAFE to a toy example, let’s say we have the graph of Fig. 1 (representing a real 
topology of a technological network), knowing a priori the functionality values of 
some links (6 out of 18):          

 
Link 4_1   = 100 %                                                                  (4.1) 
link   5_4   = 100 %       
link   5_6   = 100 %       
link   7_4   = 100 %      
link 11_12 = 100 %   
link 12_5   =     1 %       

 
and their transition rules (in order to simplify the work we consider the same transi-
tion rule for every node as the three state threshold 4.3). Each node gives a constraint 
to the simulation: 

                            

                             yj = TRSH ( ∑ (yi)/n )                                          (4.2) 
 

 
where yi is the generic functionality value in input to node j, n is the number of inputs 
to j, TRSH is a threshold rule (see Fig. 2): 

                     
                       if  ∑ (yi)/n > 85           then yj є[90, 100] ,                                     (4.3) 
                     if  10 < ∑ (yi)/n < 85  then yj є[40, 90] , 
                     if  ∑ (yi)/n <10              then yj є[0, 10], 
 
 

with yj chosen randomly or according to some statistics. The threshold function TRSH 
is useful to simulate a non linear behaviour or a node which is partially operating but 
not completely out of work, as usually happens in the real world (the numerical pa-
rameters have to be chosen by experience and statistics). 
 
 

 
 

Fig. 1. Bold arrows (11_12, 12_5, 5_6, 5_4, 7_4, 4_1) indicate known functionality data 



 Modelling Critical Infrastructures in Presence of Lack of Data with SAFE 85 

 
 
 
 
 
 
 
 
 

.

.

yi

f ( yi ) = yj yj

 

Fig. 2. yi are the functionality values in input to the node j.  f(yi) = TRSH ( ∑ yi  / n )simulates 
the nonlinear behaviour of the node. 

 
The same procedure is used backward to evaluate yi, till a known link value is 

reached. Now we have a weighted graph whose values depend partially from con-
straints, partially were previously known and the remaining are completely unknown. 
The first two data sets represent a target vector v to be compared with corresponding 
randomly generated values c from a uniform distribution. Therefore the missing data 
are estimated minimizing an error function εerr:  

 

                              εerr  =  ∑ i (vi - ci)   ↔  Gh           i=1,2, … n                           (4.4) 
 

in presence of (4.3) constraints related to the subgraph  Gh  of G (G: N nodes, M 
links). 

Actually, this is a brute force attempt to produce scenarios which minimize the error 
εerr and clearly it is the most time-consuming calculation of the algorithm. Note that we 
use an uniform distribution to generate the missing data to approximate extreme failures 
(i.e. very low functionality values) at the same probability level with respect to the sup-
posed more frequent failures (i.e. average functionality values) in order to consider re-
cent findings. In fact, Carreras et alt. Ref.[2], [4], [12], [13], [15] have shown that as a 
consequence of the self-organizing criticality phenomenon (SOC), large failures in the 
power systems are not as rare as supposed a few years ago, instead they appear to follow 
a “fat tail” probability distribution Ref[14], a mark of the power law. If this is the case, 
the right side events (the extreme events) on the probability distribution function will be 
much more frequent with respect to the usual standard distributions. Clear evidences 
have been provided at least for large power systems outages in the USA (reports from 
other countries are known, see Ref.[16]); the ubiquity of power laws is a strong clue that 
the same situation is actually present also in other technological networks. Finally, we 
associate at every scenario a global error εerr , ranking it accordingly to the descending 
error. Establishing a desired error level, we iterate the algorithm until we get a number 
of scenarios below the desired error. Then we simply extract links that most frequently 
show a failure, i.e. links below 30% of functionality (this percentage is not significant). 
Some of these links may be present in every scenario among those showing the lower 
errors. Since the values of these links are the most probable and are always present in 



86 V. Fioriti et al. 

the most probable scenarios, they should be regarded as “critical” links. Moreover, if the 
departing and entering links from/to a node are failed links, then the node is a “critical” 
node. In this approach to the definition of criticality the impact plays no role, neverthe-
less it would be easy to associate an impact parameter to nodes or links and rank them 
this way, but here we prefer to stress the topological point of view. In our example of 
Fig 1 an initial failure is detected on link 12_5 with a functionality reduced to 1%, while 
the other known links (5_4, 4_1, 7_4, 5_6, 11_12) are at 100% functionality, which 
means we supposed to know 6 out of 18 links. As said, a link whose functionality value 
is below the 30% level is considered in failure, at least partially. It may be argued that 
these values are non-stationary i.e. they do vary over time; however, to face this prob-
lem the most important component and devices (and only them) could be real-time up-
dated in order to provide node/links with reliable data. Clearly, the SAFE algorithm 
supports the online mode depending on the available computer power (in any case, the 
actual Simulated Annealing algorithm would request a much larger computing effort). 

3.2   Results 

In Figures 3, 4, 5 are depicted the best, average and worst scenario, with probability 
0.67, 0.57, 0.40. They are evaluated as the most probable scenarios and suggest that 
the critical links are 5_8 and 11_6, (12_5 is the initiating failure) and the critical 
nodes are 8, 10, 11. 

In fact, these links are always present in the three cases: 
 

12_5,   5_8                                                                                             (4.5) 
12_5,   5_8                            11_6 
12_5,   5_8,   8_10,  10_11,  11_6 
 

The algorithm was iterated for 35000 cycles until the desired (78%) εerr level was 
reached. 
 

 
 
Fig. 3. The best case scenario. The initiating event is on the link 12_5 (node 12), dotted arrows 
indicate estimated failed links (functionality value below 30%). 



 Modelling Critical Infrastructures in Presence of Lack of Data with SAFE 87 

 

Fig. 4. The average case scenario. Dotted arrows indicate estimated failed links. 

 

Fig. 5. The worst case scenario. Dotted arrows indicate estimated failed links. 

4   Conclusions  

The study of technological networks in the real world is hindered by the unavailable  
information about components, devices or the whole infrastructure. Even under the 
most favourable circumstances is not possible to monitor each important part of the 
infrastructures, or maybe it is too expensive. However, in some cases we are not in-
terested in a deep understanding or a complete description of the situation, it would 
suffice an analysis of the most probable cascading failure scenarios. For these cases 
we propose a general functionality index as a suitable tool to collect and synthesize all 
available information according to a simple procedure, but again we have to face the 
lack of data problem. Hence we suggest the simulated annealing-like algorithm SAFE 



88 V. Fioriti et al. 

to evaluate scenarios congruent with the previously known data. Critical nodes of the 
graph are defined as those that are the  most frequent in the most probable scenarios 
and are easily detected from SAFE.  Although the SAFE random search requires a 
heavy calculation, efforts with respect to the classical SA are reduced so that an 
online implementation is feasible even for large (N ≥ 1000) graphs.          

 
Acknowledgements. Authors gratefully acknowledge S. Bologna, E. Ciancamerla, G. 
D’Agostino, G. Dipoppa, A. Fioriti, M. Minichino, V. Rosato, N. Sigismondi, K. 
Ykeda, M. Ruscitti, for useful discussions. One of the Authors (V. F.) was supported 
by the UE JLS EPCIP founded MIA Project.                                                                     

References 

1. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286 (1999) 
2. Carreras, A., Dobson, A.: Evidence of self organized criticality in power systems. In: Ha-

waii International Conference on System Science (2001) 
3. Carreras, A., Dobson, A.: Critical points in an electric power transmission model for cas-

cading failure. Chaos 12, 985–992 (2002) 
4. http://www.spectrum.ieee.org/print/4195 
5. Ahmed, W., Sheta, A.: Optimization of electric power distribution using hybrid simulate 

annealing approach. Am. J. App. Sci. 5, 559–564 (2008) 
6. Strogatz, S.: Exploring complex networks. Nature 3, 410–412 (2001) 
7. Zio, E.: From complexity to reliability efficiency. Int. J. Critical Infrastructures 3, 3–31 

(2007) 
8. Wu, W.: Nonlinear system theory: another look at dependence. PNAS 102 (2005) 
9. Rinaldi, J., et al.: Identifying critical infrastructure interdependencies. IEEE Control Sys-

tem Magazine 21, 337–351 (2001) 
10. Rosas-Casals, R.: Topological vulnerability of the EU power grid, DELIS-TR-437, EU In-

tegrated Project (2006) 
11. Nelwamondo, V., Marwala, T.: Teciques for handling missing data. Int. J. Inn, Comp. 4, 

1426–1507 (2008) 
12. Carreras, B., et al.: Evidence of self-organizing criticality in a time series of electric power 

system blackouts. IEEE Trans. Circ. Sys. 51(9), 1733 (2004) 
13. Carreras, A., Dobson, A.: Critical points in an electric power transmission model for cas-

cading failure. Chaos 12, 985–992 (2002) 
14. http://www.spectrum.ieee.org/print/4195 
15. Carreras, B., et al.: Evidence of self-organizing criticality in a time series of electric power 

system blackouts. IEEE Trans. Circ. Sys. 51(9), 1733 (2004) 
16. http://www.dcs.gla.ac.uk/johnson/papers/blackout_comparison/

Johnson_Power.pdf 

 



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 89–102, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Environment Characterization and System Modeling 
Approach for the Quantitative Evaluation of Security 

Geraldine Vache 

CNRS; LAAS; Université de Toulouse - 7, Avenue du colonel Roche, F-31077 Toulouse, 
France 

Université de Toulouse ; UPS, INSA, INP ; LAAS ; F-31077 Toulouse, France 
gvache@laas.fr 

Abstract. This article aims at proposing a new approach for the quantitative 
evaluation of information system security. Our approach focuses on system 
vulnerabilities caused by design and implementation errors and studies how 
system environment, considering such vulnerabilities, may endanger the sys-
tem. The two main contributions of this paper are: 1) the identification of the 
environmental factors which influence the security system state; 2) the devel-
opment a Stochastic Activity Network model taking into account the system 
and these environmental factors. Measures resulting from our modeling are 
aimed at helping the system designers in the assessment of vulnerability exploi-
tation risks. 

1   Introduction 

Making an information system secure is a very hard work: since 2006, more than 
7000 vulnerabilities have been published every year. In front of such a danger, evalu-
ating information system security appears to be necessary in order to analyse and 
prevent risks. Our approach focuses on this issue and aims at producing quantitative 
security measures to assess the level of risk faced by an operational system consider-
ing an evolving environment. To this purpose, we first identify environmental factors 
that have an influence on the system vulnerability exploitation process: 1) the vulner-
ability life cycle events; 2) the attacker population behaviour; 3) the system adminis-
trator’s behaviour. We study the evolution of these factors and model them and their 
interactions with the system, to evaluate their consequences on the system security. 

This paper is structured as follows: Section 2 presents related work about security 
evaluation and introduces our approach. Section 3 describes our modeling approach in 
details and presents the first results obtained. Section 4 presents the main conclusions 
and some perspectives for future work. 

2   Related Work 

First approaches for the security evaluation of information systems appeared in the 
80's with the development security evaluation criteria such the TCSEC [1], the ITSEC 
[2] and more recently the Common Criteria [3]. These criteria have given rise to the 



90 G. Vache 

ISO 27000 standards [4,5]. They define security levels, guidelines and processes to 
support the assessment, during the design, of the level of protection provided by an 
information system to cope with vulnerabilities and security related risks. The secu-
rity levels defined in these criteria are considered as qualitative, in spite of the not 
well-defined boundary between quantitative and qualitative measure in security1. 
Indeed, the ISO 27000 standards define security level classes, depending on the func-
tionalities implemented in the system and the level of rigour and formalisation of the 
development processes, that are mostly considered as qualitative measures. Moreover, 
these security evaluation criteria are not well suited for the evaluation of security risks 
considering a changing environment: the evaluation processes are too complicated 
and take too much time to be run regularly during the operational life of the system. 

Considering these problems, alternative approaches have been proposed to make 
quantitative security assessment feasible during the operational life of the system. In 
1993, [8] argues that security can be evaluated in terms of effort, without proposing a 
measure and a practical model for assessing security. During the same year, [9,10] 
presented the privilege graph model. Based on the identification and analysis of a 
known vulnerabilities set of the system, the privilege graph highlights the different 
paths of vulnerability exploitation an attacker may use to reach security target. The 
privilege graph is a state-based model where arcs model vulnerability exploitation, 
and a weight is assigned to each arc to quantify the effort needed to exploit the vul-
nerability. These weights are used to evaluate a quantitative measure corresponding to 
the Mean Effort To security Failure, which is aimed at characterizing the capacity of 
the system to resist to attacks [11]. 

The attack graph formalism is described in [12]: each state in the graph represents 
the privilege owned by the attacker and also the attacker's knowledge and system 
environment state. In fact, any change brings the system in a new state even if privi-
leges owned by the attacker are still the same. Studies to generate and reduce similar 
attack graphs are presented in [12-14]. The attack tree is another formalism used for 
example in [15]: an exploitability measure presented there weights each arc of the 
attack tree. The final measure is an exploitability measure taking the whole attack tree 
into account. These formalisms focus on the attack cost but quantify it objectively is 
an hard work. 

Another measure called "Time To Compromise", was presented in [16], based on 
three different processes corresponding to three attack situations: 1) the attacker 
knows at least one vulnerability giving the wanted privileges and there is at least one 
known exploit; 2) there is at least one known vulnerability giving the privileges the 
attacker wants and the attacker does not know any successful exploit for the vulner-
ability; 3) the attacker is continuously looking for new vulnerabilities and new ex-
ploits. Processes 1 and 2 are exclusive and concern the exploitation of already known 
vulnerabilities. Process 2 is executed only if process 1 ends without success and if 
process 1 initial conditions are not valid anymore. Process 3 is executed in back-
ground of processes 1 and 2. The measure "Time To Compromise" results of this 
modeling and depends on probabilities of process occurrences and the time needed by 
the attacker to be successful for each process. Knowing how many vulnerabilities are 

                                                           
1 In fact different considerations are made about quantitative and qualitative measure defini-

tions, as discussed in [6,7]. 



 Environment Characterization and System Modeling Approach 91 

present in the studied system is necessary for the evaluation of this measure. More-
over, the measure is valid considering only one attacker. 

These quantitative approaches provide security measures for systems in operation 
and are considering an important factor of the environment: the attacker. However, the 
attacker is not the only environmental factor that may influence the system security. 
Indeed, three complementary metrics, presented in [17], take into account several envi-
ronmental factors: 1) a base metric that is focused on the needed access rights to exploit 
the vulnerability and on the impact on confidentiality, integrity and availability; 2) a 
time metric that is focused on exploit and patch existence; 3) an environment metric that 
is focused on computer system neighbourhood having the same vulnerability. It also 
takes into account the measurement of damage on system environment. Numerical 
equations are provided to compute quantitative values for the proposed metrics, how-
ever it is not explained how the parameters involved in these equations can be esti-
mated. These quantitative metrics aim at quantifying security in operational system life 
and take into account the system environment as a static factor: the environment influ-
ence is considered but changes that may happen are not taken into account. 

The modeling approach and the results presented in this paper are aimed at ad-
dressing these issues. Indeed, we consider that the likelihood of an attack against a 
system exploiting a vulnerability is not constant in time: the likelihood that an at-
tacker chooses to exploit a new vulnerability for which a patch does not exist yet may 
be higher than the likelihood that an attacker tries to exploit an old patched vulner-
ability, under the condition that the attacker has sufficient knowledge or an easy way 
to do it. So, one vulnerability and its effects on the system depend on the environment 
evolution, as presented in the next section. 

3   Approach Description 

In the previous section, we highlighted the high influence of environment evolution 
we want to take into account in our approach. Our purpose is to be able to 1) produce 
quantitative measures taking into account a more complex and realistic system envi-
ronment; 2) study how a change in the environment may change the security of the 
system, evaluating the evolution of the likelihood for a system to be secure or com-
promised. Of course, environnement may change considering particular systems as 
military or bank systems. We do not pretend to consider all information systems but 
choose too focus on mass-market information systems. In this section, we focus on 
identifying important environmental factors and we study how these factors interact 
with the information system and with themselves. Secondly, we describe the conse-
quences of these interactions and present details of our modeling. Finally, the third 
part analyses the obtained measures. 

3.1   Environment Study 

To study the environment evolution and its influence on the system, a first step is to 
identify important evolving factors of the environment that have a significant influ-
ence on the system, and then to define their influences on the system and their inter-
dependencies. 



92 G. Vache 

The vulnerability
has been created

WH discovers
the vulnerability

The vulnerability
is discovered

The vulnerability
is disclosed

WH informs vulnerability
organism or producer

An exploit
is created

BH learns vulnerability existence
and creates an exploit

The vulnerability
has been created

BH discovers
the vulnerability

The vulnerability
is discovered

An exploit
is created

BH learns vulnerability existence
and creates an exploit

The vulnerability
is disclosed

Attacks lead the vulnerability
to be disclosed

Scenario 1 : the vulnerability is discovered by a non
malicious person

Scenario 2 : the vulnerability is discovered by a malicious
person  

Fig. 1. Influence between vulnerability life cycle and exploit creation 

Let us first consider the risk induced by the presence of one vulnerability. The first 
element to be analyzed concerns the vulnerability life cycle that defines the set of 
important events that may occur and bring a change. As discussed in [18,19], we can 
take into account three main events: 1) the vulnerability discovery; 2) the vulner-
ability disclosure; 3) the vulnerability patch publication. The vulnerability discov-
ery event occurs when somebody notices the vulnerability being in a component  
already available for sale or download. The vulnerability may be discovered by mali-
cious or non malicious people. The vulnerability disclosure event is the official  
disclosure of the vulnerability by the component producer or by security alert and 
vulnerability publication centres like CVE [20] or Security Focus [21]. Other defini-
tions of vulnerability disclosure are more restrictive: for example, [18] argues that 
vulnerability databases are not official sources for vulnerability disclosure. The last 
event of vulnerability life cycle is the vulnerability patch publication. When this event 
occurs, it is possible to remove the vulnerability from the system or to mask it. These 
events of the vulnerability life cycle have a direct influence on the system but also on 
another environmental factor: the existence of an exploit. As defined into [22], an 
exploit is a script, a software, a mechanism or other technique in which a vulnerability 
is used to realize an attack or a part of attack. The creation of an exploit by the at-
tacker population is an important event that may occur only if a competent attacker 
knows that the vulnerability exists. Before the creation of the exploit, we suppose that 
only few attackers know about the vulnerability and have sufficient knowledge to be 
able to compromise the system exploiting the vulnerability. To simplify our approach, 
we make the assumption that the system may be compromised through one vulner-
ability only if an exploit is available. In this way, we focus on the biggest proportion 



 Environment Characterization and System Modeling Approach 93 

of attacker population. The event of exploit creation is also influenced by the vulner-
ability life cycle: there will be much more attackers knowing about the vulnerability 
after the vulnerability disclosure. Thus, 1) more competent attackers will be able to 
create an exploit if none is available; 2) more attackers will know about the vulner-
ability and try to exploit it. Moreover, depending on the origin of the discovery (mali-
cious or non malicious people), different scenarios can be observed from the vulner-
ability discovery to the exploit creation (see Figure 1). Attackers – or malicious peo-
ple – are denoted by BH (meaning "Black Hats"). Non malicious people are denoted 
by WH (meaning "White Hats"). 

In the first described scenario, the vulnerability is discovered by a non malicious 
person. This one will inform the system producer or a vulnerability repository centre 
that the vulnerability exists. So, the vulnerability will be disclosed, making the at-
tacker population aware of the existence of the vulnerability. In this way, attackers 
may create an exploit for this vulnerability. In the second scenario, the vulnerability is 
discovered by a malicious source. The vulnerability existence will be known only by 
the attacker population until an exploit is created, as attacks using the exploit will 
cause the vulnerability disclosure event. 

The last environmental factor that is investigated in our approach is the administra-
tor’s awareness about information system security. This parameter is central in our 
approach. Indeed, whether the administrator is aware about security risks or not, may 
have high consequences for the system: the vulnerability patch publication is not 
enough to protect the system against attacks, the patch needs to be installed on the 
system in order to prevent the vulnerability exploitation. We consider the administra-
tor as a third significant environmental factor in our approach. We know that the im-
pact of the administrator’s behaviour on the security of the system depends on the 
vulnerability life cycle: even if the administrator is very cautious, he cannot do any-
thing as long as the vulnerability patch does not exist. Considering that the security 
risks faced by the system are depending on the vulnerability life cycle, [23] notices 
that the system is in the most serious danger between the vulnerability discovery and 
the vulnerability disclosure, as people are not aware of the vulnerability existence. 
However, [24] shows that many attacks occur just after the vulnerability disclosure. 
We are inclined to follow this interpretation: when many people know that the vulner-
ability exists, many attackers know about it as well. However, considering this envi-
ronment study and this trend, we assume that the system is in very high danger  
between the disclosure of the vulnerability and the application of the corresponding 
patch. We call this time interval between vulnerability disclosure and patch installa-
tion "high risk zone" (see Figure 2). Let us denote THR this interval which can be 
measured as THR =(tc – tp) + (tapp – tc) where tp, tc and tapp are respectively dates of 
 

patch application 
disclosure patch disclosure 

THR 

tp tc tapp 

 

Fig. 2. High Risk Zone definition 



94 G. Vache 

Vulnerability life cycle

Administrator’s behaviourExploit existence

System state  

Fig. 3. Environmental factors' influence 

vulnerability disclosure, vulnerability patch publication and patch application. This 
measure highlights the time period in which the system is in high danger taking into 
account system environment. 

Let us consider as an example the Slammer worm vulnerability: the vulnerability 
and the patch were disclosed in the same time [25], July 24th, 2002. However, the 
Slammer worm epidemic began on January 25th, 2003, i.e. 185 days after [26]. An 
information system with an administrator aware about security who had applied the 
vulnerability patch was safe (THR = 0 day). In the other case of administrators who did 
not apply the patch, the THR was positive and often higher than 185 days. Many in-
formation systems were in this case and so were infected. This example shows the 
importance of administrator's security awareness. Of course, the patch application is 
not as simple that it seems to be described here: the patch installation via an software 
update for example may bring uncompatibility between systems components or install 
other vulnerabilities. 

We sum up the system environmental factors we consider and their mutual influ-
ences in Figure 3. An arrow means that the destination factor is influenced by the 
origin factorLet us consider as an example the Slammer worm vulnerability: the vul-
nerability and the patch were disclosed in the same time [25], July 24th, 2002. How-
ever, the Slammer worm epidemic began on January 25th, 2003, i.e. 185 days after 
[26]. An information system with an administrator aware about security who had 
applied the vulnerability patch was safe (THR = 0 day). In the other case of administra-
tors who did not apply the patch, the THR was positive and often higher than 185 days. 
Many information systems were in this case and so were infected. This example 
shows the importance of administrator's security awareness. 

We sum up the system environmental factors we consider and their mutual influ-
ences in Figure 3. An arrow means that the destination factor is influenced by the 
origin factor 

In the next section, we present our modeling approach of the system and the envi-
ronmental factors we introduced here: the vulnerability life cycle, the exploit exis-
tence and the administrator's security awareness. 

3.2   Model Description 

In the previous section, we presented several environmental factors we have to take 
into account in our approach. In this section, we present a modeling approach aimed 
at the description of the system state evolution taking into account the environmental 



 Environment Characterization and System Modeling Approach 95 

factors. Then, the model obtained can be used to evaluate quantitative measures char-
acterizing the probabilities associated to the different states of the system. Our model-
ing approach is decomposed into two main steps: the first one consists in modeling 
the system and the environmental factors in the presence of one vulnerability. This 
modeling is a revised version of the one presented in [27]. We call that part of model-
ing a pattern. The second part addresses the modeling of multiple vulnerabilities; it 
describes how patterns interact with each other and identifies the dependencies be-
tween them. 

The modeling is based on Stochastic Activity Networks [28] as this formalism 
can be easily used to describe the evolution of the system state and to express event 
occurrence conditions considering different types of stochastic distributions. SAN 
are composed of four modeling elements: 1) places: they contain one or more to-
kens and model the system and environment states; 2) activities: they model events 
that have an effect on the system or its environment; they can follow probabilistic 
or deterministic laws; 3) input gates: they contain activity firing conditions; it is 
possible to define predicates specifying the conditions to be satisfied for the firing 
of the activity, depending e.g. on the marking of some places; 4) output gates: they 
can be used to specify the consequences of an activity firing on the marking of the 
SAN places.In the next section, we describe our SAN modeling for one single  
vulnerability. 

3.2.1 Single Vulnerability Model  
We present how we model the system and environment states, considering one 
vulnerability. We create two pattern models, considering the two scenarios we 
described in the previous section depending on whether the vulnerability is discovered 
by an attacker or by a non malicious person  (see Figure 4 et 5). This single 
vulnerability pattern is composed of three main parts: at the top of the pattern, we 
model the vulnerability life cycle; just below, we model the attackers and the exploit 
creation; the rest of the model describes the different states of the system including 
the administrator's behaviour considering these two environmental factors. In this 
section, we describe the pattern model more in details, beginning by the vulnerability 
life cycle. 
 

 

3.2.1.1   Vulnerability Lifecycle Modeling. First, we model the three main events of 
the vulnerability life cycle that may influence the system state. Three activities {dis-
covery, disclosure, patch} model the three events of vulnerability discovery, vulner-
ability disclosure and vulnerability patch publication. States between these events are 
modeled by a set of four places {Ve, Vd, Vp, Vc} defined as follows: 1) Ve (meaning 
“existence”) models the system state in which the vulnerability exists but has not yet 
been discovered; 2) Vd (meaning “discovery”) models the system state in which the 
vulnerability has been discovered but has not been disclosed yet; 3) Vp (meaning 
“publication”) models the system state in which the vulnerability has been discovered 
and disclosed but there is no patch available yet; 4) Vc (meaning “correction”) models 
the system state in which the vulnerability has been discovered, disclosed and there is 
a patch available. 



96 G. Vache 

 

Fig. 4. Pattern SAN modeling with non malicious discovery 

 

Fig. 5. Pattern SAN modeling with malicious discovery 

3.2.1.2   Attackers and Exploit Creation Modeling. The exploit creation is modeled by 
an activity with different conditions reflecting the mutual influence between exploit 
creation and vulnerability disclosure, with respect to the two scenarios described in 
Section 2. So, the activity exploit shown in Figure 4 models exploit creation after 
vulnerability disclosure and the activity exploit in the Figure 5 models exploit crea-
tion before vulnerability disclosure. Like input and output conditions, parameters of 
the activity are also different. Indeed, the disclosure of the vulnerability will increase 
the likelihood that attacker population creates an exploit as much more attackers are 
able to know the vulnerability. The existence or the non existence of exploit are mod-
eled by two places named respectively E (meaning “exploit”) and NE (meaning “no 



 Environment Characterization and System Modeling Approach 97 

exploit”). We noticed in the previous section the mutual influence between the vul-
nerability life cycle and the exploit existence depending on whether the origin of the 
vulnerability discovery is malicious or non malicious. Thus, we designed two basic 
patterns corresponding to the scenarios we described; they are shown in Figures 4 and 
5. In the first pattern, Figure 4, we describe the scenario in which a non malicious 
person discovers the vulnerability. So, the exploit cannot appear before the vulnerabil-
ity disclosure. This condition is included in the input gate inExploit. In the second 
scenario, Figure 5, we describe the scenario in which a malicious person discovers the 
vulnerability. In this case, the vulnerability disclosure coincides with the exploit crea-
tion. This condition is included in the input gate igDisclosure. 
 
 

3.2.1.3   Administrator's Behaviour and Systems States Modeling. The third factor of 
the environment, the administrator’s behaviour, is modeled in the system states them-
selves. Before the system is vulnerable, i.e. contains the vulnerable component, the 
system is in the state ok in which it is not in danger. The activity Install models the 
vulnerable component installation. So, the system becomes vulnerable, as it is mod-
eled by the place Vul. Once the system is vulnerable, the system becomes exploitable 
as soon as an exploit exists (state modeled by the place E). This event is modeled by 
the instantaneous activity ti, conditions for the firing of this activity are defined in the 
input gate igTI: the existence of the exploit and the vulnerable state of the system are 
necessary conditions for the system to become exploitable. This exploitable state is 
modeled by the place Exp. The use of the exploit by an attacker on the system may be 
successful and this action is modeled by three activities {attackVd, attackVp, at-
tackVc} corresponding to an attack event during the different phases of the vulner-
ability life cycle. We have to notice that the activity attackVd does not exist if we 
consider the first scenario in which the vulnerability is discovered by a non malicious 
person (see Figure 4). As a result of such attack, the system is compromised through 
the vulnerability exploitation, modeled by a place C. The two places C2 and C3 are 
related to the compromised state. Their role in the model is explained in next section. 
From this compromised state, only the vulnerability patch application by the adminis-
trator brings the system to another state, provided that, the vulnerability patch is 
available. This action is modeled by the activity patchC: it means that the vulnerabil-
ity has been patched and cannot be exploited again. However, the system is not secure 
yet as the damage caused by the intrusion have not been fixed. This transient state is 
modeled by the place Nexp. From this state, the administrator has to clean the system, 
that brings it in the secure state S. However, the vulnerability patch application is an 
action from the administrator that may occur as soon as the patch is available and so 
before a vulnerability exploitation. The patch application may occur in two more 
different situations: 1) the system is only vulnerable – there is no exploit available 
yet; 2) the system is in the state exploitable but has not been the target of an attack. In 
these two cases, the system becomes secure (state S). 

The two basic patterns presented in Figures 4 and 5, corresponding to the two sce-
narios described in the previous section, allow us to model the system and its envi-
ronment behaviour with respect to one vulnerability. However, the system state does 
not depend on the presence of only one vulnerability. The modeling of multiple vul-
nerabilities is addressed in section 3.2.2. 



98 G. Vache 

3.2.2   Modeling of Mutiple Vulnerabilities 
The modeling of several vulnerabilities could be done by considering several patterns 
running in parallel, each one associated to a vulnerability. In the SAN model, each 
single vulnerability pattern is modeled as a submodel. All patterns are composed 
using the JOIN operator to create the system model. As one event occurring in a 
pattern may have consequences on the system and on the other patterns running at the 
same time, studying dependencies between patterns is necessary. The modeling of 
such dependencies is facilitated by the use of shared places between the submodels 
(patterns) associated to the concerned vulnerabilities.  

The first aspects we study are the consequences on a system induced by the exploi-
tation of one vulnerability in a pattern. First, the exploited vulnerability may have 
more or less serious consequences on the system. That means that many functional-
ities of the system may become unavailable leading to the impossibility: 1) for the 
administrator to perform some of the actions (patch application, vulnerable compo-
nent installation, system cleaning), and 2) for the attacker population to perform an 
attack. Thus, we define three degrees of compromised state seriousness: C1) the ex-
ploitation of the vulnerability has no effect on other vulnerability patterns; C2) only 
the application of the patch corresponding to the exploited vulnerability is possible; 
all other activities are blocked until the patch is applied; C3) the system is down: in 
every pattern, the administrator and attackers actions cannot be performed. The com-
promised state becomes absorbing. Each vulnerability is assigned a seriousness de-
gree that induces vulnerability exploitation consequences.  

To model these dependencies in the SAN, two places called C2 and C3 are added 
and shared by every running pattern (see Figures 4 and 5). The seriousness degree C1 
having no consequences on other running patterns, we do not add one C1 shared 
place. For example, an exploitation of C3 seriousness degree vulnerability increases 
the marking of place C3 of one token, as it is illustrated by Figures 4 and 5, which 
describes a C3 seriousness vulnerability. The place C3 marking is monitored in each 
input gate of activities modeling an human action on the system. The same principle 
is applied for vulnerabilities of C2 seriousness degree. These shared places allow us 
to control the impact of a vulnerability exploitation on other vulnerability patterns. 

Vulnerability exploitation is not the only situation in which we have to consider 
dependencies between patterns. Indeed, a vulnerability patch application may lead the 
administrator to update all the system, and so to apply patches corresponding to other 
vulnerabilities. We distinguish two administrator’s behaviours: 1) if the administrator 
is aware about security issues, a patch application may induce a general security up-
date for the system; all vulnerability patches available will be applied; 2) the adminis-
trator is not aware about security issues and applies only the patch corresponding to 
the vulnerability. We can assign different probabilities corresponding to the likelihood 
of occurrence of each of these administrator behaviours. These probabilities may be 
influenced by the context of the vulnerability patch application according to the exis-
tence or the non existence of the exploit. 

3.3   Numerical Analysis 

To illustrate our modeling approach, we considered the example of the vulnerability 
exploited by the Slammer worm. The measure we study in this example is the  



 Environment Characterization and System Modeling Approach 99 

probability for the system to be in a compromised state considering different adminis-
trator’s behaviours. This example has two purposes: 1) to validate our approach con-
sidering the well known Slammer worm epidemic; 2) to produce a usable security 
measure. Thus, it is necessary to assign parameters and distributions for our model. 
The next subsection (3.3.1) outlines the probability distributions and the parameters 
considered in this example. The second subsection analyses our results. 

3.3.1   Parameters Description 
We describe here the probability distributions and the numerical parameters used in 
the model for the study of the Slammer worm vulnerability. First, we study the 
modeling of the first environmental factor: the vulnerability life cycle. As we knew 
the life cycle of the vulnerability, we chose an exponential distribution with very high 
rate to model the vulnerability patch publication event, as the vulnerability disclosure 
and the patch publication have been made at the same time [29]. The parameters 
applied are shown in the table 1 below. The considered unit of time is the day. 

The second environmental factor is the attacker population. [18] shows that the ex-
ploit creation may occur according to a Pareto probabilistic distribution. However, 
knowing the exact date of Slammer worm creation, we modeled the worm creation 
event by a deterministically. To model system attacks, we assume exponential prob-
abilistic distributions. This choice was motivated by the need of having a density 
function with a high decrease and not by the need of the memory less property of this 
density distribution. The data published in [29,30] help us to calculate the attack rate. 
Nevertheless, the SAN model developed in our study can be run using other types of 
distributions. 

 

Table 1. Experiment parameters definition 

Activity Distribution Parameter Value 

discovery Exponential Rate 100 days-1 

disclosure Exponential Rate 100 days-1 

patch Exponential Rate 1000 days-1 

Exploit Deterministic Instant 185 days 

Install Exponential Rate 1000 days-1 

Mean (αVul) 10  300 days 
patchVul Normal 

Variance 0.5 days2 

Mean (αExp) 5  150 days 
patchExp  Normal 

Variance 0.5 days2 

Mean(αC) 0.1  3 days 
patchC Normal 

Variance 0,5 days2 

attackVp Exponential Rate 23.4 days-1 

attackVc Exponential Rate 23.4 days-1 

Cleaning Exponential Rate 1 day-1 

 
 



100 G. Vache 

The last part of the model is the system state considering the administrator's behav-
iour. This is the environmental factor we vary, to show its influence on the system 
security. The administrator's behaviour has an influence on two kinds of events in the 
presence of the vulnerability: 1) the vulnerability component installation; 2) the vul-
nerability patch application. The vulnerability component installation is modeled by 
an exponential distribution with a high rate. The administrator's behaviour is espe-
cially an important factor considering the time to vulnerability patch application. We 
model this behaviour according to a normal distribution. We define the mean time 
parameter considering the three different system state circumstances: 1) the system is 
vulnerable; 2) the system is exploitable; 3) the system is compromised. These three 
mean time parameters are called αVul, αExp, αC and correspond respectively to these 
three circumstances and describe a particular administrator’s behaviour. We defined 
30 experiments corresponding to different possible administrator's behaviours. For 
each experiment, the correspondence between the parameters is as follows: αVul = 
2.αExp = 100.αC. 

3.3.2   Sensitivity Analysis 
The model presented in section 3.2 allows us to quantify the probabilities associated 
to different states of the system. For the example, we evaluated the probability to have 
the system compromised by the Slammer worm, denoted as PC(t). To this purpose, we 
used Mobiüs tool simulation [31]. The results are given in Figure 6. They show the 
high influence of the administrator’s behaviour on the probability of vulnerability 
exploitation. The more the administrator is aware of information system security 
issues, the less is the probability of vulnerability exploitation. The curves follow the 
trend describing the real Slammer epidemic: before the 185th day, the probability for 
the system to be compromised is null. Once the worm has been created, the 
probability to be in the compromised state increases quickly as soon as the worm 
exists, before decreasing gradually. This result is positive because our model reflects 
the observed trends. Moreover, the sensitivity experiments considering different 
values for the parameters αVul, αExp and αC show the high influence of the 
administrator's behaviour: until the experiment 17, the probability of vulnerability 
exploitation is null, that means that the security awareness is sufficient to reduce the 
security risk induced by the Slammer worm. From the experiment 17, the security 
awareness of the administrator is not sufficient to protect the system. From this 
experiment, the less is the administrator’s security awareness, the more is the 
probability for the system to be compromised, as it is shown by experiment 18 to 30. 
We verify that the probability to have a secure system increases with the 
administrator’s security awareness.  

This study may help to evaluate if the administrator's behaviour is corresponding to 
the security level the system needs. For example, the graph shows that a behaviour 
described by the experiment 18 (αVul = 180, αExp = 90, αC = 1,8) is sufficient to main-
tain exploitation vulnerability probability under 30%. From this study, the administra-
tor may choose a behaviour considering the security level needed to be kept in from 
of a such danger. 



 Environment Characterization and System Modeling Approach 101 

probability p_C(t) from disclosure time

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

184,5 185,0 185,5 186,0 186,5 187,0 187,5 188,0 188,5 189,0 189,5 190,0 190,5 191,0 191,5 192,0 192,5 days

probability experiment 10
experiment 17
experiment 18
experiment 19
experiment 20
experiment 25
experiment 30

 
Fig. 6. Evolution of likelihood of vulnerability exploitation from disclosure time 

4   Conclusion and Perspectives 

Our approach aims at modeling dependencies between several important environmental 
factors to highlight system security risks. Our modeling allows us to quantify the prob-
ability that a system is compromised related to administrator’s behaviour. So far, we 
have illustrated our approach considering the case of a single vulnerability. The analysis 
of an example taking into account multiple vulnerabilities is currently under investiga-
tion. Taking into account several vulnerabilities and considering the severity damage of 
vulnerability exploitation may be useful to risk management. Moreover, we plan to do a 
vulnerability classification to provide more generic parameters patterns. Such an ap-
proach may allow to study the tradeoff between the security level of the system and the 
security monitoring cost required to achieve this level. 

Our modeling provides quantitative time measures to answer questions such as: 
how much time before having a likelihood of vulnerability exploitation higher than 
80%? However, at this stage, the evaluation is not done with respect to specific secu-
rity attributes (e.g., confidentiality, integrity, availability). This aspect will be studied 
in future work to complete our approach. 

Acknowledgments. This work is partially funded by the European Commission through 

the ReSIST Network of Excellence (IST-4-026764-NOE). My special thanks go to my 

adviser Jean-Claude Laprie for his contributions and constructive feedbacks on this 

work. Also I would like to thank Vincent Nicomette and Mohamed Kaâniche for their 

help and their comments on the preliminary versions of this paper. 

References 

[1] U.S. Department of Defence Trusted Computer Security Evaluation Criteria (1985) 
[2] European Communities, Information Technology Security Evaluation Criteria (1991) 
[3] Common Criteria for Information Technology Security Evaluation (1996)  
[4] ISO/IEC 27001:2005, Requirements for Information security management systems (2005) 
[5] ISO/IEC 27002:2005, Code of practice for information security management (2005) 



102 G. Vache 

[6] Jaquith, A.: Security metrics-Replacing fear, uncertainty, and doubt. Addison Wesley 
Professional, Reading (2007) 

[7] Laprie, J., Arlat, J., Blanquart, J., Costes, A., Deswarte, Y., Fabre, J., Guillermain, H., 
Kaâniche, M., Kanoun, K., Mazet, C., Powell, D., Rabéjac, C., Thévenod, P.: Guide de la 
Sûreté de Fonctionnement, Cépaduès (1995) 

[8] Brocklehurst, S., Littlewood, B., Olovsson, T., Jonsson, E.: On measurement of opera-
tional security. Aerospace and Electronic Systems Magazine, IEEE 9, 7–16 (1994) 

[9] Dacier, M.: Vers une évaluation quantitative de la sécurité informatique, Thèse de doc-
torat LAAS-CNRS (1994) (in french) 

[10] Dacier, M., Deswarte, Y., Kaâniche, M.: Quantitative assessment of operational security: 
models and tools. CNRS-LAAS (1996) 

[11] Ortalo, R., Deswarte, Y., Kaaniche, M.: Experimenting with quantitative evaluation tools 
for monitoring operational security. IEEE Transactions on Software Engineering 25, 633–
650 (1999) 

[12] Sheyner, O.M.: Scenario Graphs and Attack Graphs, PhD Thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA (2004) 

[13] Jha, S., Sheyner, O., Wing, J.: Two formal analyses of attack graphs. In: Proceedings of 
15th IEEE Computer Security Foundations Workshop, 2002, pp. 49–63 (2002) 

[14] Swiler, L., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation tool. 
In: Proceedings of DARPA Information Survivability Conference & Exposition II, DIS-
CEX 2001, vol. 2, pp. 307–321 (2001) 

[15] Balzarotti, D., Monga, M., Sicari, S.: Assessing the risk of using vulnerable component, 
Quality of Protection, pp. 65–77. Springer, Heidelberg (2006) 

[16] McQueen, M.A., Boyer, W.F., Flynn, M.A., Beitel, G.A.: Time-to-Compromise model for cy-
ber risk reduction estimation, Quality of Protection, pp. 49–64. Springer, Heidelberg (2006) 

[17] Mell, P., Scarfone, K., Romanovsky, S.: CVSS v2 Complete Documentation. ccvs (June 2007) 
[18] Frei, S., May, M., Fiedler, U., Plattner, B.: Large-scale vulnerability analysis. In: Pro-

ceedings of the 2006 SIGCOMM workshop on Large-scale attack defense, Pisa, Italy, pp. 
131–138. ACM, New York (2006) 

[19] Jones, J.R.: Estimating Software Vulnerabilities. IEEE Security and Privacy 5, 28–32 (2007) 
[20] CVE - Common Vulnerabilities and Exposures (CVE), http://cve.mitre.org/ 
[21] SecurityFocus, http://www.securityfocus.org 
[22] MAFTIA Consortium, Conceptual Model and Architecture of MAFTIA, MAFTIA (Mali-

cious and Accidental Fault Tolerance for Internet Applications) project deliverable D21, 
LAAS-CNRS Report 03011 (1993) 

[23] Frei, S.: 0-day patch - Exposing vendors (In)security Performance, Amsterdam, NL 
[24] Fischbach, N.: Le cycle de vie d’une vulnérabilité (2003) (in french) 
[25] Microsoft Security Bulletin MS02-039  
[26] Computer Security Research - McAfee Avert Labs Blog  
[27] Vache, G.: Towards Information System Security Metrics. In: Proceedings of Seventh 

European Dependable Computing Conference, Kaunas, Lithuania, pp. 41–44 (2008) 
[28] Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: Formal definitions and con-

cepts. Lectures on Formal Methods and Performance Analysis, pp. 315–343. Springer, 
Heidelberg (2001) 

[29] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the 
Slammer worm. Security & Privacy 1, 33–39 (2003) 

[30] The Spread of the Sapphire/Slammer Worm, http://www.caida.org/ 
publications/papers/2003/sapphire/sapphire.html 

[31] The Mobiüs Tool, http://www.mobius.uiuc.edu/ 
 



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 103–117, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Experiences with the Certification of a Generic 
Functional Safety Management Structure According to 

IEC 61508 

Carlos G. Bilich and Zaijun Hu 

Industrial Software Technologies, ABB AG  
Corporate Research Center Germany,  

Wallstadter Str. 59, 68526 Ladenburg, Germany 
{carlos.bilich,zaijun.hu}@de.abb.com 

Abstract. This article summarizes the experiences undergone while supporting 
ABB Business Units (BUs) in achieving functional safety certification according 
to IEC 61508 for their safety related products. Being part of a large global organi-
zation, ABB BUs enjoy certain freedom in the way they implement their product 
development process both for hardware and software. Many times these processes 
are inherited from long standing and successful development tradition from  
companies that have been later incorporated by ABB. Given so, when faced to the 
increased demand of IEC 61508 compliant products, the BUs find themselves im-
plementing IEC 61508 and adapting their development processes from scratch for 
each new product. As a consequence, there are many different ways throughout 
the organization of implementing similar artifacts with the same scope (i.e. tem-
plates, lifecycles, reports, etc.). Since the BUs have recognized that this is clearly 
not efficient for redundancy, repetition, and finally costs reasons we have under-
taken the task of creating a generic process to be used as framework for develop-
ing safety compliant products according to IEC 61508 that can be reused for dif-
ferent products across BUs. The requirements of this framework are that it has to 
be easier to use than the original standard; self-contained (i.e. no need to look up 
information over the original standard), flexible (i.e. applicable for different kind 
of products across different BUs); be certifiable by any major certification body; 
coupled with ABB’s stage-gate business decision model; and most importantly: 
be attractive to BUs so that it can be widely adopted throughouto the organization. 
In order to satisfy those requirements we have developed a method and a set of 
components that we call “Safety Add-on”, to create and manage functional safety 
design and development activities according to IEC 61508. The Functional Safety 
Management module of the Safety Add-on has been certified by TÜV Rheinland 
and is being successfully used by several BUs across ABB.  

Keywords: Functional Safety, IEC 61508, reusable components. 

1   Introduction 

It has been recognized for some time already that safety critical control systems in 
process and machine automation is a high growth market with no signs of slowdown 



104 C.G. Bilich and Z. Hu 

in the short to medium term [1]. Accompanying this trend is also the increasing de-
mand for certified products according to IEC 61508 [2]. IEC 61508 is one popular, 
voluntary but nevertheless largely accepted international standard covering the func-
tional safety aspects of electrical, electronic and programmable electronic safety-
related systems (E/E/PES).  IEC 61508 is a complex standard of around 870 pages 
divided in 7 parts, covering hardware, software and containing several hundreds of 
prescriptive measures organized in 4 different Safety Integrity Levels (SIL) with 
state-of-the-art ideas and concepts which are the result of many years of research and 
discussions. As a consequence, complying with IEC 61508 is always an arduous task 
even for the most experienced practitioner.  

On the other hand, being part of a large global organization, ABB Business Units 
(BUs) enjoy certain freedom in the way they implement their product development 
process both for hardware and software. Many times these processes are inherited 
from long standing and successful development tradition from companies that have 
been later incorporated by ABB. Given so, when faced with the increasing demand of 
IEC 61508 compliant products, the BUs often find themselves implementing IEC 
61508 and adapting their development processes from scratch for each new product. 
As a consequence, there are many different ways throughout the organization of im-
plementing similar things in scope (e.g. templates, lifecycles, reports and checklists 
inter alia). Several BUs have soon recognized this approach as clearly not efficient for 
the redundancy and repeated work that it generates, which ends up impacting cost as 
well as quality and time to market. After design and/or development of a product 
comes the certification which is typically done by a recognized certification body 
such as SIRA, TÜV, UL and alike. During this stage, the certification body analyzes 
carefully all the information submitted questioning it or asking for clarification in 
case of inconsistencies with respect to the claimed standard or safety integrity level. 
This process tends to be lengthy, even when the certification body was involved early 
in the design and/or development phase, so it is always desirable to shorten it as much 
as possible. 

This paper summarizes the experiences undergone while supporting some ABB 
Business Units (BUs) in achieving functional safety certification according to IEC 
61508 for several of their safety-related products. The rest of the article is organized 
as follows: section 2 describes the solution approach starting with the requirements 
and continuing with the concept design, development, integration with ABB’s Busi-
ness Decision Model (BDM) and certification as a mean of validation of the approach 
against the requirements of the standard. Finally, section 3 highlights the technical 
accomplishments and conclusions.  

2   Solution Approach 

First of all it becomes necessary to distinguish among different certification schemes 
used inside ABB. The first scheme is the product certification, whose objective is the 
certification of a specific product or solution. In order to qualify for certification, the 
product’s development team shall provide evidence in functional safety management 
(FSM), personal competence and bring forward a meaningful safety case for the 
product among other things. This certification model is the most-expensive however 



 Experiences with the Certification of a Generic Functional Safety Management 105 

the most flexible one. The second scheme is the process certification in which the 
target is to certify the functional safety management system (FSMS) by itself. The 
certified FSMS will then be used not for a specific product but for safety-related de-
velopment in general across one BU. Thirdly comes the organization certification 
whose focus is an entire organization (e.g. ABB Oil & Gas [3]) which typically inte-
grates the products of several BUs. Under this schema organizations need to demon-
strate their functional safety capability [4]. The organizational certification is only 
valid for the certified organization while the process certification is not organization-
specific. 

The approach that will be described in this article focuses on product certification.  

2.1   Major Requirements  

As described before, the main driver behind the development of this framework was 
reusability of the elements or artifacts generated during the development of safety-
related products according to IEC 61508 (e.g. templates, lifecycles, reports, check-
lists, etc.). However as we went along we discovered other requirements that are 
equally important to achieve success: 
 

Simplicity: The framework should be easier to use than the original IEC 61508  
standard, especially with respect to the selection and evaluation of safety integrity 
measures. From the certification point of view, the framework shall be as simple as 
possible but not simpler, so that there are just enough claimable safety arguments to 
facilitate the certification process.  
 

Self-containment: The framework shall contain all the information necessary to drive 
autonomously the specification, design, development, implementation and test phases 
of a safety-related product so that the IEC 61508 standard documents are only re-
quired for consultation in case of outliers that fall outside the scope of the framework.  
 

Flexibility/Adaptability: The framework shall be suitable for usage among different 
safety-related products and adaptable to potentially different development processes 
found across BUs. 
 

Scalability: The framework shall be suitable for development of safety-related prod-
ucts of varying complexity, ranging from simple (e.g. contactors) to complex products 
(e.g. Robots).  Also it is desirable to come up with a future-proof structure that can 
later incorporate other functional safety standards without difficulties (e.g. IEC 
62061, ISO 13849-1, etc.).  
 

Certifiable: The generic framework shall be certified by a recognized certification 
body as being suitable for safety-related product developments up to and including 
SIL3. 
 
Minimum deployment impact: The safety development process included in the 
framework shall be compatible and synchronized with ABB’s BDM and introduce 
none or minimum overhead to the current BU’s product development practices. No 
changes to the current quality management system (QMS) shall be required to use the 
framework. Interfaces with quality management and project management models 
shall be clearly defined in order to avoid overlaps between activities. 



106 C.G. Bilich and Z. Hu 

Many of the requirements stated above are meant to make the framework “attrac-
tive” to the BUs in order to assure its wide adoption and consequent added value.  

Standards can hardly be used “as is” in practice, therefore there is typically a facili-
tator in charge of joining together the rigidity of the standard with the realities of the 
daily praxis. The role of the facilitator is usually played by a safety consultant, either 
internal or external to the organization. Our goal with a framework with the character-
istics stated before is to eliminate or reduce to a minimum the need of the BUs to turn 
to a human consultant to play the facilitator in their safety-related developments. The 
framework shall provide the means to achieve same levels of safety and development 
effectiveness while reducing time and cost. 

2.2   Overall Concept Design  

In order to tackle the described problem and satisfy the requirements stated before, we 
envisioned a framework that works as a safety complement to the current ABB BDM, 
therefore it was named: “Safety Add-on” for shortness [5]. As shown in Fig. 1, the 
Safety Add-on is organized in four components also named “add-ons” due to the fact 
that they can be used altogether or independently adding-on safety capabilities to 
already existing artifacts.   

The scope of the FSM Add-on is to organize the functional safety development 
process. It shall contain the specification of accountability of the related producer in 
implementation of functional safety.  

The scope of the Template Add-on is to aid in arguing about functional safety and 
contains a predefined set of document templates that help to deliver claimable  
evidence for the implemented functional safety. It shall also provide the related in-
formation or suggestion on the required approaches for documentation, semi-formal 
description, and verification and validation procedures. Templates can be structured 
based on the pre-defined phases. A structured specification for the safety require-
ments is assured by means of a meta-model for specifying safety functions and safety 
integrity requirements. The meta-model shall include descriptions of a safety func-
tion, a requirement, inputs, outputs, pre- and post-conditions, non-functional con-
straints, technical constraints, safety integrity parameters, failure behavior, etc. For 
the safety concept and design description the approaches recommended by IEEE 1471 
shall be observed. Different viewpoints and views such as logical, process, deploy-
ment, and composition [6], [7], [8]; are also being taking into account for the design 
of this add-on. 

 
 

 

Fig. 1. Key components of the Safety Add-on 



 Experiences with the Certification of a Generic Functional Safety Management 107 

The Check Add-on is intended to assure compliance with the chosen functional 
safety standard. It is a review support element covering all the lifecycles phases to 
ensure that the artifacts created deliver the required evidence. It supports simple and 
formal review (e.g. Fagan inspections [9]).  

Finally the Guideline Add-on is to provide best practices support by means of a 
module that collects and shares them. It shall include guidelines for software failure 
analysis, UML usage, requirements specification, lessons-learned from functional 
tests, etc. It shall support the addition of custom rules, policies and recommendations 
which are part of a company’s specific policies and procedures. 

Specifically referring to IEC 61508, the first and most critical step for compliance 
is to establish a meaningful Functional Safety Management (FSM) Plan [10], and so it 
made sense to begin also in this direction the development of the Safety Add-on. The 
rest of the article is therefore concerned with the development of the FSM Add-on.   

2.3   Development Process of the FSM Add-on 

In setting up a process to develop the FSM Add-on we faced the following con-
straints: there should be one FSM Add-on component that shall be of use for diverse 
products across different business units but we shall go thru the certification process 
only once due to limited resources; the timeframe for coming up with a certifiable 
reusable component was less than 1 year; leverage BUs’ interests as much as possible 
while enforcing the requirements of the standard. This last constraint is very hard 
because usually BUs’ interests and functional safety requirements go in opposite 

 

Tools
Policies

Lifecycle

IEC 61508
Current 
projects
Past 
Certification 
experiences

FS Training
External 
consultancy

Understand 
Std. & BUs’ needs

Submit 
component 

to CB

Collect feedback 
from CB

Build a basic set 
of reusable 

artifacts 

Digest std. & tailor 
to BUs’ needs 

Templates

...

FSM Add-on

Roll out 
component 

to BU

Roll out 
component 

to BU

Roll out 
component 

to BU

Roll out 
component 

to BU

Roll out 
component 

to BU

Collect feedback 
from BU

Compare
Merge
Adapt

Identify 
Potential

Reusability 

...

Degree of 
satisfaction 

OK?

Baseline 
& 

certify 
component

YES

Understand std & 
BUs needs

Refactoring

FSM Add-on

Redundan-
cies

inconsis-
tencies

Usability
issues

Misunder-
standings

END

NO

FS Training

External 
consultancy

Common-
alities

Particular-
ities

Non-
conformities

START

 

Fig. 2. Iterative development process for the FSM Add-on. It starts with an understanding 
phase that includes an early prototype which is then successively refined several times until it 
satisfies both the BUs' needs and IEC 61508 (BU: Business Unite, CB: Certification Body; 
FSM: Functional Safety Management). 



108 C.G. Bilich and Z. Hu 

directions (e.g. cost reduction vs. redundancy) therefore finding a solution with 
such constraints can be a tricky process that if not controlled can diverge consuming 
many iterations and resources. In order to satisfy the requirements under these con-
straints an iterative process was used where the final FSM Add-on component was 
obtained after a number of successive refinements. Fig. 2 shows an overview of the 
whole process. 

To deal with the complexities and intricacies of IEC 61508 the first step was to 
work together closely with one major internationally accredited Certification Body 
(CB) gaining a disentangled understanding of the FSM requirements as stated in the 
standard. A key factor to understand the degree of rigor of certain requirements was to 
bring in previous functional safety certification experiences at this stage. Analyzing 
and confronting them, we found out that the understanding of some requirements can 
slightly vary form CB to CB, and this would affect the degree of rigor or the effec-
tiveness of the implemented solution. Therefore, even tough we worked with only one 
CB, we leveraged our experience to manage the degree of rigor in order to maximize 
the chances that the solutions and criteria that forms the content of the FSM Add-on 
can also be accepted by other CBs as well. Apart from that, this stage was enriched 
with trainings on functional safety according to IEC 61508. 

The understanding gained was then applied to digest and tailor the standard accord-
ing to what our experience shows the BUs need. Throughout the process, as many 
reusable parts as possible were considered and so an early version of the FSM Add-on 
specifically optimized and tailored to ABB’s E/E/PESs product portfolio was put 
together. The structure of this early prototype of the FSM Add-on included the fol-
lowing topics: policies; roles and training; organizational structure; E/E/PES and 
software lifecycles and their associated safety integrity measures; configuration man-
agement; development tools used; change control procedures; document list; and 
verification and validation plan. 

Having reached this point, in order to continue, we had the following possible 
curses of action, each one with its own advantages and disadvantages: 

  
1. Submit this early version to the CB and continue to do so with its successive re-

finements until the final component get certified and only then roll it out to BUs 
2. Try first this early version out on one selected product, collect feedback, and 

then submit a refined version to the CB. 
3. Roll it out to as many products as possible, collect feedback, and then apply for 

certification. 
4. Apply for certification and in parallel roll it out to as many products as possible 

while concurrently reconcile the feedback obtained from the BUs and the CB, 
then put together a new version and re-submit it both to the CB and the BUs 
again in an iterative manner.  

 
Given the constraints mentioned above, the last approach was undertaken. Compared 
with well known software development paradigms, we considered the first three ap-
proaches to be somewhat too “waterfalling” whereas the last to be more “agile”. In 
the first case, according to our past experience, we felt that spending too much time 
working alone with the CB is not worth the effort because this isolation away from 
the BUs has the risk to bias the results towards aspects that have little relevance or 



 Experiences with the Certification of a Generic Functional Safety Management 109 

even hinder the daily praxis. This would have undermined the applicability of the 
FSM Add-on on the field, thus loosing an opportunity for its wide adoption among 
BUs. The second approach has the opposite effect, i.e. the results could have been too 
much “BU biased”. This could have caused delays later in the certification process as 
many aspects would have required substantial rework and adaptation. Finally, we 
think that the third approach would have made things worse, as simple including more 
products without incorporating iterative CB feedback would have only exacerbated 
the bias mentioned in the previous case.  

The chosen approach abstracts and generalizes from a normal product certification 
procedure. The usual practice for the certification of one single product is to go thru a 
number of development–CB revision iterations until a certificate that the product 
satisfies the requirements of the standard is granted. We followed a similar approach 
but with many instantiations of the FSM Add-on, one for every selected product. 
Then we interfaced with the CB at each revision step generalizing the results collected 
from all the running instances of the FSM Add-on. When processing the feedback 
coming from the BUs instances, we tried to identify the constituents of a functional 
safety management plan that exhibit high degree of acceptance and reusability across 
BUs. (e.g. lifecycle phases, policies, tools, roles and training needs inter alia). We 
classified and grouped our findings in the following sets or categories:  

 
 Commonalities  
 Particularities 
 Usability issues 
 Redundancies 
 Inconsistencies 
 Misunderstandings 
 Non-conformities 

 
Commonalities emerged as the obvious candidates for being reused. We found com-
monalities in trivial things such as the way the documents are organized (e.g. headers 
and footers, details like Id, version, revision history, etc) or definitions, abbreviations 
and acronyms, as well as other more substantial things like usage workflows (i.e. the 
order in which the different parts of the plan were instantiated); policies (e.g. relation 
to ISO 9001, security policy, archiving policy, etc); roles (e.g. safety manager, safety 
assessor); lifecycle phases; tool rating (e.g. which type of tools are recommended or 
required for which SIL) among others.  

The particularities include those things that were retained too project specific and 
therefore shall be described at instantiation time. Such things include the contents of 
the project and organization chart; the particular tools that will be actually used; the 
actual topics and schedule of the training courses; the names of the staff; the justifica-
tion of the roles; the actual inputs and outputs of each safety lifecycle phase (although 
suggestions were made in form of templates). 

Usability issues were detected for example when the users worked with the safety 
integrity measures suggested by the standard. The tabular form arrangement provided 
by IEC 61508 was cumbersome for many people especially when there is a need to 



110 C.G. Bilich and Z. Hu 

lookup for cross references in other parts of the standard or in other tables. Grouping 
similar information, outlining and guiding the usage with comments were some tech-
niques used to improve the usability of the component. 

Redundancies. Many have recognized that IEC 61508 has considerable overlap, 
repetition and some degree of ambiguity (e.g. [11] and [12] inter alia). It is our 
experience that, being a generic standard, IEC 61508 leaves much to the discretion 
and interpretation of the user, and this characteristic tends to create some redundan-
cies when the standard is being practiced that, when not revealed and removed, 
could mislead the development team. Specifically regarding the functional safety 
management plan, we found very often the definition of redundant roles, policies 
(e.g. between safety audits and safety assessments), plans (e.g. during the allocation 
of safety integrity measures during V&V planning and later in the lifecycle), among 
others.  

Inconsistencies within a FSM plan occur due to the fact that IEC 61508 is quite 
complex, long and generic. Therefore it may be the case that several people work 
drafting different parts of the FSM plan. Due to the “generality” mentioned above, 
different people –when not adequately coordinated–, can interpret and write down 
sections that could potentially be inconsistent at later stage. It is our experience that 
such inconsistencies tend to be subtle, not easily noticed during FSM review meetings 
but nevertheless enough to puzzle, for example, the development or the verification 
team at a later time, or even worse, be detected during certification. Poor coordination 
 

Table 1. Overview of the main findings encountered while analyzing the feedback collected 
from several instances of the FSM ran across different business units within ABB 

 

Category Feature / issue Solution approach 
Commonalities High reuse potential (e.g. 

generic policies; lifecycle 
phases; roles; etc.). 

Generalization, abstraction, “templati-
zation”. 

Particularities Project specifics. Selectable controls (e.g. check boxes); 
Text placeholders; customization/in-
stantiation/adaptation guidelines. 

Usability issues Cumbersome navigation 
thru information (e.g.  
information search across 
multiple cross-indexed 
tables). 

Grouping; outlining; guidance com-
ments, hyperlinks; automation (e.g. 
programming). 

Redundancies Overlapping, repetition, 
ambiguity. 

Removal and/or consolidation of re-
dundant information. 

Inconsistencies Dissimilar interpretation of 
similar concepts. 

Thorough descriptions. 

Misunderstandings Requirement misinterpreta-
tion. 

Re-stating or re-phrasing using IEC 
61508 experts (e.g. certification au-
thority);  enlightening guidelines. 

Non-conformities Some customizations in 
disagreement with IEC 
61508 

Avoidance measures like contextual 
help; predefined text; etc. 



 Experiences with the Certification of a Generic Functional Safety Management 111 

is not that infrequent in project management; therefore whenever possible inconsis-
tencies were detected in practice, they were clarified (e.g. describing concepts in 
greater detail) during the design stage of the FSM Add-on so that the risk of inconsis-
tencies arising during instantiation is minimized.   

Misunderstanding shall be interpreted here as some requirements of the standard 
being interpreted wrongly. Whenever that was repeatedly detected, we worked to-
gether with the CB to re-state the requirements such that they can be clearly under-
stood by the BUs. Also when re-phrasing or re-stating alone was not enough, we 
tried to design enlightening guidelines to improve the understanding. The guideline 
however has to be as generic as possible so that it can be understood and followed 
by potentially different BUs and applicable to different projects of varying com-
plexity. 

Non-conformities comprise all those cases in which it was detected that the instan-
tiated copies of the FSM Add-on were customized in disagreement with the require-
ments of IEC 61508. The reason for the non-conformity was discussed with the BU 
and the CB and a generic solution was elaborated to avoid it from happening again 
(e.g. templates, guided placeholders, contextual help, predefined layouts for docu-
ments, etc.). Table 1 shows an overview of the main findings encountered while ana-
lyzing the feedback collected from several instances of the FSM Add-on ran across 
different business units within ABB. 

Using the previous classification we compared, merged and analyzed the results to 
evaluate the degree of satisfaction of the major requirements stated in section 2.1. We 
used the notion of “degree of satisfaction” because, being a generic component, the 
FSM Add-on cannot directly satisfy concrete requirements until it is instantiated for a 
particular product and this is explicitly noted in the certificate that was granted. But 
considering the cardinality of the previously given categories after each iteration we 
can assess if the degree of satisfaction is acceptable and whether to go for another 
refinement iteration or stop the process, baseline the component and apply for certifi-
cation. Table 2 shows the criteria used to define an acceptable degree of satisfaction 
where ni represents the cardinality of category number i. 

Table 2. Criteria that define an acceptable degree of satisfaction of the major requirements 
imposed on the FSM Add-on 

i Category Criteria Comments 
1 Commonalities n1 >> n2  
2 Particularities n2 << n1  
3 Usability issues n3 ≤ 5  Only minor issues related mainly with intrinsic limita-

tions of the implementation platform are tolerated. 
(e.g. Microsoft Excel poor for automatic table of 
contents generation). If the platform imposes a major 
or more than 5 minor usability issues it should be 
replaced by other more flexible platform.  

4 Redundancies n4 = 0  
5 Inconsistencies n5 = 0  
6 Misunderstandings n6 = 0  
7 Non-conformities n7 = 0  



112 C.G. Bilich and Z. Hu 

The maximum number of tolerated usability issues derives from our empirical ob-
servations on how the user reacts when s/he discovers that a certain limitation on the 
implementation platform constrains him/her to use the FSM Add-on in an unnatural 
or elaborated way. We noticed that when the user finds out more than 5 limitations 
s/he starts to argue about usability even if they are only minor issues. 

When the BUs and the CB were both satisfied with the results and the above crite-
ria have been met, the refinement process was stopped because the FSM Add-on has 
reached the necessary level of acceptance required to be certified and released for 
company wide usage. After that it went into maintenance mode, where company-wide 
feedback is collected for future versions.  

2.4   Integration with ABB’s Business Decision Model 

Seamless integration with ABB’s current BDM was a feature considered equally 
important for the CB, for us and for the BUs. In order to track and manage the phases 
of complex products development, organizations use detailed procedures that have 
been assembled into models. The models are different depending on the layer they are 
aiming to control. Often, organizations divide project controlling into a business deci-
sion layer and a project execution layer.  

The project execution layer is typically controlled by some product development 
lifecycle model (PDLM). Some PDLMs widely used for software development are 
the Waterfall model, Spiral model, Agile model and the Unified Process. Due to the 
large variety of businesses and products within the ABB Group one cannot find one 
single development life cycle model which is actually being used company-wide. 
Through  the years, each business unit adopted its own approach based not only on 
the type of product but also on several other factors like market type, country, early 
company know-how, past experiences, development team culture, etc. 

At the business decision layer, business decision models (BDM) aim to facilitate 
the selection of products and projects for investment. A well known BDM is Coo-
per’s Stage-Gate model [13], which consists of a number of different development 
stages separated by business decision gates. The activities performed at the stages 
are designed to provide the information required for the Gate. The gates are the 
decision points where the project’s stakeholders decide about its future. ABB has its 
own harmonized company-wide BDM for R&D called “Gate Model”. ABB’s Gate 
Model builds upon Cooper’s model and best practices derived from former, locally 
used decision models as well as shared experiences with other companies. The ABB 
Gate Model does not explicitly define any stages because it assumes that the under-
lying execution model already defines them. Therefore the ABB Gate Model is not 
thought to be used as an independent self-contained method but coupled with the 
PDLM that best suits the needs of the project at hand. This approach harmonizes 
well with specific company needs, and does not force the development team to use 
any prescribed development model but leave up to them the decision what is best 
suited for their way of working. Fig. 3 and Table 3 show the model and an overview 
of the gates. 

 



 Experiences with the Certification of a Generic Functional Safety Management 113 

 

Fig. 3. The ABB Gate Model. Based on Cooper’s stage-gate model, it has seven decision points 
and one additional checkpoint (G7) to consider the achievements of the projects and collect 
experience useful for process improvement (reproduced from [14]). 

Table 3. Gates or decision points of the ABB Gate Model 

Gate # Name Purpose 
G0 Start Project 

(SP) 
Agree to start the project. Typically, it evaluates a feasibility study 
or a project proposal including market analysis, competitors, 
intellectual property, product strategy, risks, needed resources and 
required technology. 

G1 Start Project 
Planning (SPP) 

Agree on project scope. An outlook is defined in terms of  
functions, features and quality as well as business constraints such 
as time to market.  

G2 Start Execution 
(SE) 

Agree on requirements and project plan. This gate assesses the 
required effort, time and cost, procedures for quality assurance, 
risk management, configuration management, etc. 

G3 Confirm  
Execution (CE) 

Confirm consensus about the proposed technical solution. This 
gate evaluates all technical solutions proposed and addresses all 
major risks. 

G4 Product  
Introduction 
(PI) 

Agree on the product’s readiness for trial and market introduction. 
All functions and features should be implemented and the product 
should be ready for Beta or acceptance test and marketing. 

G5 Product  
Release (PR) 

Agree on release. A decision is made on whether the product is 
ready for release to the market or customer. 

G6 Close Project 
(CP) 

Agree on closing the project and handover the product to  
manufacturing and/or service for mass production and/or  
maintenance. 

G7 Retrospective 
Investigation 
of Project 
(RIP) 

Asses project results and evaluate its business success. 

 
 

The integration with the ABB Gate Model was solved adapting the pre-gate mile-
stone concept introduced by Wallin and Larsson [15], [16] originally thought for the 
integration of business and software development models. The concept dictates that 
all the outputs of the defined phases of the safety lifecycle must be mapped to a set of 
pre-gate milestones as shown in Fig. 4. In this way, for example, the FSM plan be-
comes itself a pre-gate milestone for G2. All pre-gate milestones must be delivered 
before a gate assessment. Therefore, it is before the gate assessment that related veri-
fications required by the safety standards shall be performed. 



114 C.G. Bilich and Z. Hu 

 

G0 Start Project

G1 Start Planning 

G2 Start Execution 

G3 Confirm 

G4 Introduce

G5 Release

Gate Model 

 
Development 
Management 

Project Management
Quality Management (ISO 9001)

Safety  
Add-on 

M
ap

pi
ng

 to
 P

re
-G

at
es

 M
ile

st
on

es
 

M
ap

pi
ng

 to
 P

re
-G

at
es

 M
ile

st
on

es
 

 

Fig. 4. Integration of the Safety Add-on using the Pre-gate milestone concept 

2.5   Certification 

The following criteria were used for the selection of a suitable certification body: 
 

 international prestige 
 years of experience in functional safety 
 size of the functional safety team 
 previous experiences and degree of appreciation within ABB 
 level of expertise in safety-related software development process 
 responsiveness 
 location 
 cost 

 
After a careful evaluation of several major certification bodies, TÜV Rheinland 
Automation, Software and Information Technology group was chosen to act as the 
certification body for the FSM Add-on.  

The certification of a generic structure not intended for any specific but for many 
and possible very diverse E/E/PES products was a challenging task for the CB as this 
is a novel idea where no previous experiences have been reported to the best of our 
knowledge. The main challenge for us was to convey the idea and for them to reach 
the same level of abstraction that we had in mind. Referring back to the process de-
picted in Fig. 2, it took in total 7 iterations and one year of work to complete a FSM 
Add-on version that can satisfy the requirements stated in section 2.1, the BUs’ needs 
and the requisites of the CB altogether at the same time. The granted certificate is 
shown in Fig. 5. 
 



 Experiences with the Certification of a Generic Functional Safety Management 115 

 

Fig. 5. Certificate of compliance of the FSM Add-on with the requirements of IEC 61508 up to 
and including SIL 3 



116 C.G. Bilich and Z. Hu 

3   Conclusions 

A SIL certification normally presupposes adjustments in the associated quality 
management system, technical development and project management to success-
fully meet the requirements imposed by the related safety standards. In addition, an 
individual and separate functional safety management system needs to be estab-
lished for each individual project that strives for a product certification. Changes in 
the QMS and establishment of the related FSM are always associated with effort, 
time and resources, which force many development organizations to think about the 
profit of development of the safety-related products. With efficiency and effective-
ness in mind we have developed a novel approach to assist and expedite the imple-
mentation of a FSM plan according to IEC 61508 which is reusable, adaptable, 
scalable, certified and can be used stand-alone or integrated with a business deci-
sional model.  

References 

1. Exida.com LLC: Safety and Critical Control Systems in Process and Machine Automation. 
Market Report (2007)  

2. Gall, H.: New Standards for Functional Safety Gain Acceptance. AutomationWorld.com 
(September 8, 2008) 

3. ABB Oil & Gas Industry Portal, http://www.abb.com/oilandgas 
4. Nunns, S.R., Prew, R.W.: Safe and sound Achieving organizational functional safety certi-

fication for IEC 61508 and IEC 61511. Special Report on Process Automation Services & 
Capabilities; ABB Review (April 2008) 

5. Hu, Z., Bilich, C.: Safety Add-on – an Efficient Way to Make Development SIL-
Compliant. In: 8th International Symposium Programmable Electronic Systems in Safety-
Related Applications, Cologne, Germany (September 2-3, 2008) 

6. Clements, P., Garlan, D., Little, R., Nord, R., Stafford, J.: Documenting software architec-
tures: views and beyond. Addison-Wesley, Reading (2002) 

7. Kruchten, P.: The Rational Unified Process: an Introduction, 2nd edn. Addison Wesley, 
Reading (2000) 

8. Hofmeister, C., Nord, R.L., Soni, D.: Describing software architecture with UML. In: Pro-
ceedings of the 1st Working IFIP Conference on Software Architecture (WICSA), pp. 
145–160. Kluwer Academic Publishers, Dordrecht (1999) 

9. Fagan, M.E.: Advances in software inspections. IEEE Trans. Softw. Eng. 12(7), 744–751 
(1986) 

10. Gall, H.: Functional safety IEC 61508 / IEC 61511 the impact to certification and the user. 
In: IEEE/ACS International Conference on Computer Systems and Applications, 2008. 
AICCSA 2008, March 31-April 4, pp. 1027–1031 (2008) 

11. Smith, D.J., Simpson, K.G.L.: Functional Safety: A Straightforward Guide to Applying 
IEC 61508 and Related Standards, 2nd edn. Butterworth Heinemann, Butterworths (2004) 

12. Faller, R.: Project Experience with IEC 61508 and Its Consequences. In: Voges, U. (ed.) 
SAFECOMP 2001. LNCS, vol. 2187, pp. 200–214. Springer, Heidelberg (2001) 

13. Cooper, R.G.: Winning at New Products, 3rd edn. Perseus Publishing, Cambridge (2001) 
 
 



 Experiences with the Certification of a Generic Functional Safety Management 117 

14. Larsson, S.B.M., Kolb, P.: Software process improvement at ABB. ABB Review (3), 10–
14 (2001) 

15. Wallin, C., Ekdahl, F., Larsson, S.: Integrating business and software development models. 
IEEE Software 19(6), 28–33 (2002) 

16. Wallin, C., Larsson, S., Ekdahl, F., Crnkovic, I.: Combining models for business decisions 
and software development. In: Proceedings of 28th Euromicro Conference, 2002, pp. 266–
271 (2002) 

 



Analysing Dependability Case Arguments Using

Quality Models

Michaela Huhn and Axel Zechner

Institute for Software Systems Engineering
Technische Universität Braunschweig

Braunschweig, Germany
{m.huhn,a.zechner}@tu-braunschweig.de

Abstract. The Goal Structuring Notation (GSN)[1] facilitates a clear
presentation of the argument structure in dependability cases for depend-
able systems. However, assessment of an argument structure with respect
to validity, sufficiency and consistency of argumentation and the provided
evidence still strongly depends on individual, tacit expert knowledge. We
propose a 2-phase analysis method for argument structures:

Firstly, syntactic completeness, consistency, and proper instantiation
of argument patterns are examined using a UML profile for GSN and
OCL constraints. For the second phase, we propose 2-dimensional qual-
ity models to assist the expert in explicitly judging on the conclusiveness
of argumentation. A quality model explicitly represents the impact of
facts on design activities and software-system’s properties relevant for
dependability. The impact value aggregates state-of-the-art knowledge
and standard’s recommendations. Missing, negative or conflicting im-
pact indicates impairment of the argument either by revealing a gap in
the line of arguments or incompatibilities or opposing principles between
decisions or techniques in the process. We show first steps towards the
integration of the analysis into model-based tool supported development.

Keywords: Safety Case, Dependability Case, Argument structures, Ar-
gument Assessment, Quality models, Model-based development.

1 Introduction

Dependability, safety, trust, and other high assurance properties of a system are
usually demonstrated in so-called dependability, assurance or safety cases. Citing
Bishop and Bloomfield - a (safety) case is “a documented body of evidence that
provides a convincing and valid argument that a system is adequately safe for a
given application in a given environment[2]. Assessing the line of arguments and
the evidence provided in the dependability case is a task assigned to certification
authorities by law (see e.g. EN50126 for the railway domain).

Dependability cases are provided by manufacturers and operating companies.
They usually comprise large, complex argument structures on the development
process, on system properties and environmental assumptions, and on operating
procedures with multiple interdependencies and references to external documents

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 118–131, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Analysing Dependability Case Arguments Using Quality Models 119

containing facts backing the evidence. As a major step towards a clear presen-
tation of arguments, Kelly proposed the Goal Structuring Notation (GSN) [1].
However, judging conclusiveness of the argument structure and strength of evi-
dence needs structured methods (1) to make the expert’s assessment explicit and
defensible and (2) to support communication on the findings to all stakeholders.

As a preparatory step to argument assessment, we propose structural well-
formedness checks: Modelling an argument structure within a UML profile for
GSN enables automated exploration by using static analysis techniques. Thus,
syntactic rules and proper instantiation of argument patterns can be analysed.

The focus of this paper is set on a method to assess the conclusiveness of
argumentation. The underlying rationale is transferred from activity-based qual-
ity models for software characteristics [3,4] like maintainability or architecture
evaluation: Relevant facts, characterising the system or its environment, develop-
ment or operation, are appraised with regard to their effects on product-oriented1

activities undertaken to achieve and assure the requested system quality. An ar-
gument is confirmed, in case it is drawn upon activities positively supported by
facts. Otherwise, the argument is marked as weak or even rebutted. We structure
facts and activities in taxonomies adjusted to dependable systems. Fact and im-
pact values reflect dependability-related aspects of the considered system. Thus,
the method fosters systematic assessment of the following issues in the concrete
system context: (1) Are the selected activities and techniques appropriate for
their purposes and criticality level? (2) Is the portfolio of techniques sufficient
and consistent? Does it conform to the relevant standards? (3) Have the selected
activities the potential to constitute conclusive evidence for the dependability
claims? If not, the causal entry in the quality model indicates a substantial
reason for rejecting the argument and for improving the system or the case.

An indispensable further step is to appraise the evidence or external references
of an argument structure. However, this part is not considered here.

2 Background

According to [5], dependability is an integrative concept composed of the at-
tributes: “availability: readiness for correct service; reliability: continuity of cor-
rect service; safety: absence of catastrophic consequences on the user(s) and the
environment; confidentiality: absence of unauthorized disclosure of information;
integrity: absence of improper system state alterations; maintainability; ability to
undergo repairs and modification. Such emergent system properties are usually
demonstrated by argumentation in so-called dependability cases.

2.1 Goal Structuring Notation

The Goal Structuring Notation (GSN) by Kelly [1] is a widely accepted concept
for concise, graphical presentation of safety cases (see Fig. 1). In principal, a
1 ”Product-oriented” focusses on artifacts, deliverables and operational actions that

directly concern the system, and is meant in opposite to a process-centric view.



120 M. Huhn and A. Zechner

Fig. 1. Elements of the Goal Structuring Notation

goal structure shows how goals (claims about the system) are successively de-
composed into sub-goals until claims are directly supported by available evidence
(solutions). Basic argumentation elements are:
Goal represents a proposition for which evidence is to be provided.
Solution Evidence for a proposition is presented via a Solution element.
Context The Context element exposes the constraints of validity of a statement

(e.g. to the system, operational environment, etc.).
Strategy Decomposing a proposition into subgoals is often ruled by a strategy.
Relationships between entities are expressed as directed edges; the whole graph
forms a goal structure. GSN is complemented with elements for justification and
assumption. For premature argumentation, goals can be marked as undeveloped,
and alternative lines of argumentation are denoted with a choice element.

2.2 Related Work

Various approaches to assess the conclusiveness of a dependability case argu-
mentation have been discussed in the literature:

Structural correctness rules and patterns: Already in the original work on
GSN, Kelly gives syntactic correctness rules for an argument structure. Addi-
tionally, Graydon, Kelly et al. list in [6,7,1] “success arguments” or “argument
patterns” which describe generic strategies for engineering argumentations as
abstract fragments of rationales. Such patterns of argumentation show up as
result from surveying established safety cases in the engineering field. Mayo
[8] proposed a framework for reviewing of GSN arguments containing logical
argumentation patterns. Such inspection techniques capture the syntactic struc-
ture of a GSN argumentation, or the conclusiveness of local neighbourhoods of
arguments elements with respect to logical fallacies and common engineering
principles. By annotating a goal structure with this knowledge, an inspection
can be performed automatically using static analysis techniques (see Sec. 3).

Quantitative approaches to confidence: To assess the compelling power
of an argumentation several authors suggest quantitative reasoning based on
credibility values assigned to individual argument elements and aggregation.
Kelly and Wu [9] use Bayesian Belief Networks to deduce the confidence in a
goal from credibility of its backing arguments. Cyra and Gorski [10] built a
credibility value for a node by combining discrete values from a decision and a
confidence scale. Starting the assessment from the leafs of an argument structure,
credibility values for goals are aggregated by rules that account for the kind of
reasoning from the premises (child nodes) to the conclusion (parent node).



Analysing Dependability Case Arguments Using Quality Models 121

In practice, assigning credibility values and weights quantifying a premise’s
impact on a goal is highly subjective. Within large argument structures, un-
certainty often accumulates on the way to upper level goals expressing the sig-
nificant dependability claims. Last but not least, in case assessment results in
rejection, backtracking is restricted to pure figures but doesn’t explain and direct
the stakeholders to the critical issues that need to be clarified.

Software Quality Models and Safety Cases: In present standards like
EN50128 or IEC61508, the impact of recommended activities and concrete meth-
ods on quality attributes specifically required for certain artefacts is not made
explicit. In practise, this leads to non-uniform interpretations of ”what and how
is safe enough”. Annex C of the Committee Draft for Voting of IEC 61508-3:2008
attempts to remedy this. Thus, it contains a classifying quality model that ex-
plains how rigorously a class of methods is expected to contribute to specific
software quality attributes considered relevant in a specific development phase.

Activity-based Quality Models: In the field of software-quality, quality mod-
els are established that hierarchically decompose key software characteristics into
contributing factors. Deissenböck, Wagner et al. [3] observed that even the de-
composition for key attributes like maintainability or usability is not agreed
among the stakeholders and even worse, evaluation results are of little value
for further development and evolution because clear indication of hot spots and
directives for improvement are missing. Similar observations are independently
reported by Salger et al. [4] on architecture evaluation of large systems. As a
solution, Deissenböck, Wagner et al. proposed 2-dimensional quality matrices to
describe the effect of relevant facts about the system on activities (see Fig. 4).
The idea behind is that a desired quality becomes manifest in the stakeholder’s
activities performed on the system. Moreover, by presenting a taxonomy of facts
and assigning an impact value, an evaluation becomes repeatable and defensible
and directives for improvement are immediate, as shown in [3].

3 Structural Analysis

3.1 UML Profile for GSN

UML and SysML are widely accepted modelling languages and well-supported by
development tools. To benefit from model-integration, we propose a UML-profile
(see Fig. 2) for GSN. The profile constitutes the types of argumentation elements
(Goal, Solution, etc.) of the GSN with Stereotypes. All types of elements inherit
from GSNElement (not depicted), a common ancestor representing shared in-
formation properties like a short and a long description. The Reason element
was introduced and stands for an implicit meta concept of Justification and As-
sumption. All relations of elements of a goal structure are semantically bound
to the context of argumentation. The tagged values ”AnnotatedElements” and
”URI” allow for referring to UML-elements or external evidence.



122 M. Huhn and A. Zechner

Goal

isUndeveloped: Boolean

subgoals

*

1..*

0..1

ContextStrategy

Solution

Choice
isUndeveloped: Boolean

0..1

subgoals

refinedBychoice

0..1
{subsets alternatives}

alternatives

selection

2..*

*justifiedBy
* justifiedBy

*justifiedBy

0..1inContextOf

inContextOf

inContextOf inContextOf

0..1

0..1 0..1

«abstract»
Reason

Justification Assumption

Fig. 2. Basic metamodel for the representation of goal structures

3.2 Structural Wellformedness

An argument structure has to obey certain rules: Each claim (Goal)
- must either be directly backed by evidence (Solution),
- or immediately refined by sub claims decomposing the higher level claim,
- or, GSN-specifically, must be refined following a strategy which in turn must

decompose into a set of goals.
- No other type of element but a Goal may be the root of a goal structure.

Furthermore, claims, strategies, and evidence must form a directed acyclic graph,
otherwise some node refers to an antecedent claim as backing.

The rules concerning the relations between elements are encoded in the pro-
file itself. The remaining rules and also constraints on relation-cardinalities have
been implemented using the Object Constraint Language (OCL) resulting in 19
formulas, e.g.: The goal structure must not contain a cycle in argumentation.

context Goal inv Goal_DAG: not

Goal.allInstances->iterate(e;

r:Set(Goal)=self.subgoals | r->iterate(g:Goal; rs:Set(Goal)=r |

rs->union(g.subgoals)->union(g.refinedBy.subgoals->flatten())

->union(g.choice.alternatives.subgoals->flatten())))->includes(self)

3.3 Argumentation Patterns

The second part of structural analysis is predicated on knowledge on well proven
argument patterns in the engineering domain. So-called “argument patterns”
[6,7,1] are made explicit by enhancing a GSN structure with explicit pattern
information. Examples for argumentation patterns are:

- Functional Decomposition
- Hazard Directed argument
- Use of Existing Evidence
- Safety Margin

- Diverse Argument
- Compliance
- Formal Method

To assure that a pattern is instantiated correctly, it has to be assured that there
exists a proper partial mapping of the goal structure to the pattern roles, i.e.
the elements in the pattern argumentation: (1) For each role there must exist



Analysing Dependability Case Arguments Using Quality Models 123

PatternSpecification
patternName: String

PatternRole
roleName : String

1
GSNElement

PatternInstance

InstanceRole
roleName : String

1..*

1..*1..*

1

Fig. 3. Extensions of the GSN metamodel for pattern

at least one corresponding entity in the goal structure. (2) The relations of a
pattern are represented properly in the goal structure. Requiring a one to one
mapping of relations seems too restrictive. Thus, we demand a directed path
between instance arguments being related in the pattern structure.

In order to represent argumentation patterns, we extend the profile for GSN
(see Fig. 3) with concepts for pattern specification, pattern instance, pattern
roles and refinement mapping that are adapted from the UML concept for Col-
laborations (c.f. [11]).The specification of a dependability argument pattern is
realized as a fragment of a goal structure and modelled using the profile. The
PatternSpecification represents the anchor element for a pattern specification.
A PatternRole links a concrete GSN element (Goal, Solution, Strategy etc.),
which inherits from GSNElement, to its specification tagged with its role name.
Each instance of a pattern is indicated by a PatternInstance which is related to
the corresponding pattern specification. The refinement mapping is realized by
relating elements from InstanceRoles and PatternRoles with identical names.

Evaluation of correct instantiation is provided by OCL constraints in the pro-
file: e.g., checking for proper mapping of pattern roles to instances
context PatternInstance inv:

self.patternSpecification.roleElements

->forAll(re|self.instanceElements->exists(ie|ie.gSNElement->notEmpty()

and re.base_Comment.body=ie.base_Comment.body))

3.4 Tool Support

One of our objectives is to leverage a tight integration of model-based software
development and dependability argumentation. We implemented tool support
as a set of extensions to the Papyrus UML / Eclipse environment: (1) graphical
and textual modelling of argumentation with clever import from MS Word, (2)
an intelligent context-sensitive outline for concurrent development, maintenance,
and assessment of software and argumentation, and (3) model-based structural
analysis of argumentation structures based on the presented OCL constraints.

4 Conclusiveness of Argumentation

The previous section dealt with structural aspects of argumentation. To comple-
ment, this section will address the software engineering substance of argumenta-
tion in a case. A dependability case shall provide strong evidence that all risks
are properly managed such that the system will deliver its service dependably.



124 M. Huhn and A. Zechner

Previous works on argument assessment (see Sec. 2.2) address knowledge on
universal engineering principles or generic logical reasoning. But, they are un-
specific to the application domain and require a per argument and per project
expert’s judgement on credibility. We aim at improving assessment of arguments
by incorporating domain knowledge, making the assessment repeatable.

Assessors and authors of software dependability cases are experienced experts
having a reasonable ”feeling” of what is a good argument founded on best prac-
tices in software engineering. In part, domain-specific standards, e.g. IEC61508
or EN50128, reflect this knowledge and complement by lists of recommendations
referring to specific process artefacts, engineering methods and technologies giv-
ing detailed information how to perform activities in a dependable system’s
life-cycle. From that observation and the literature [12] we conclude that an
assessment of an argumentation shall be activity-centric, encompass a domain-
specific viewpoint relying on profound engineering expertise: Are the selected
activities and techniques appropriate for their purposes and criticality level?
After confirming that a sufficient set of adequate activities has been performed
accurately (in development, evolution, or operation of the system) we should look
on the results of these activities in a further step. I.e., the evidence provided for
the solution elements is appraised wrt. their validity and strength, e.g.: inves-
tigation of the identified risks, of the software architecture, of test reports, or
other verification results. This step is out of the scope of this paper.

Our key idea of an activity-centric view on a dependability argument structure
is (1) to associate a claim with those life-cycle activities it addresses and (2)
to evaluate whether facts (how to derived them is explained in Sec. 4.2) have
either supportive or prejudicial impact on the activities. Activities, facts and
impact are presented in a 2-dimensional quality model described in Sec. 4.1.
Selecting information from the quality model and interpreting the impact leads
to a judgement on the compelling power of the line of arguments (see Sec. 4.3).

4.1 Quality Model for Dependability Argumentations

Quality Model. The quality model inspired from Deissenboeck et al. [3] aligns
activities and facts on the system and the process along two dimensions: The
first dimension lists facts that may be derived from evidence provided in the
case, other information known in the system context, from standards or domain
specific best practices. A fact describes a property of an artefact of investigation.
A fact can be evaluated, that means it is assigned a value by appraisal. Depending
on the kind of fact the value can be quantitative, i.e. a number, or qualitative.
Qualitative values are further categorized in nominal values (e.g. existent, non-
existent) and ordinal values, which also offer an ordering (e.g. low, high).

Along the second dimension we align activities. An activity is carried out
within the life-cycle, development, deployment, operation, maintenance and dis-
posal of a system. Development activities are those executed to produce a sys-
tem; deployment activities to install it; operation activities are performed with
the system providing its functionality; maintenance activities to keep or restore
system operation. The argument may require a certain performance-degree of



Analysing Dependability Case Arguments Using Quality Models 125

Fig. 4. Simplified excerpt of an effect relation for dependability

activities which we will annotate as an attribute2. Thus, the performance-degree
of activities has principal impact on what we understand as quality.

The connection between a fact and an activity is what we call effect. An effect
describes the impact of an evaluated fact on the activity denoted as entry in
the quality matrix. The fact’s value has to be translated to the effect’s domain,
e.g. by a table. In general the domain of effect values is subdivided into positive,
neutral and negative values. Here, the set of effect values is mostly an ordinal
scale (e.g. −−,−, 0, +, ++), which also expresses the strength of the effect. A
positive effect value improves, a negative impairs the performance of an activity:

Fact |Value
+/−Strength−→ Activity

The effect relation (translation table) encodes domain knowledge which is made
explicit this way. Fig. 4 displays a conceptual sketch of an effect relation as a
matrix; each cross ”x” stands for a fact-to-effect-translation.

Basic evaluation. In the simplest case, assessment is performed only on argu-
ments and evidence presented in the dependability case. The qualified activities
are derived from the arguments and arranged along the activity-dimension, evi-
dence along the facts-dimension. Filling the matrix yields a set of effects on each
activity column. The goal is to detect inconsistencies and tacit trade-offs: Uni-
form negative impact corresponds to strong counter-evidence that the activity
is performed adequately. Mixed directions of effects indicate implicit rebuttal of
arguments. Even a uniform positive effect may be below the quality level re-
quired for some activity which alludes to lack of strength of backing arguments
resulting in undercutting defeat. A conclusive argumentation solely relies on ac-
tivities supported by uniform impact of evidence to the required quality level.
Salger et al. employ in [4] a similar interpretation schema for architecture trade-
off analysis. The interpretation contrasts the usual understanding of quality mod-
els allowing implicit trade-off and mutual compensation of arguments.
Example: Let us consider a part of argumentation for availability relying, in-
ter alia, on quick detection and repair in case of runtime-errors (subgoal). The
2 E.g. in Functional safety (goal) is supported by a straight architectural design (strat-

egy) the strategy addresses the architectural design activity qualified as straight.



126 M. Huhn and A. Zechner

system is implemented with pre- and post-conditions for data-range checks to
detect runtime errors yielding a fact [DataMonitoring | 100%Coverage]. A met-
rics suite evaluates the code [ModuleSize, avg. | 100 LoC]. In the quality model,
a senior test expert recorded the effect of Data Monitoring and Module Size on
Detect Failure and Locate Error activities. Evaluation of present data results
in ”++” on Detect Failure, but ”−” on the Locate Error activity. Mixed ef-
fect directions occur: Although data-range errors can be detected quickly, the
argumentation is seriously weakened by the fact of expected long repair times.

If we just want to evaluate whether an argument structure is acceptably con-
clusive in the presented universe of discourse, the current model representation
would be sufficient. However, most dependability standards comprise recom-
mendations on activities to be performed with a certain quality, in particular
to achieve higher levels of dependability (so-called Safety Integrity Levels (SIL)
in EN 50128). Thus, we enhance quality model with necessary activities and
requirements to be fulfilled by the evidence on the facts’ dimension.

Example: EN50128 declares design modularization as mandatory for all safety-
critical software (SIL 1-4) to reduce effort for error-locating. If a system devel-
opment aims at conformance to EN50128, Locate Error activity is added to the
quality model (even if not mentioned in the case) and we impose a requirement
that at least ++ for the activity Locate Error has to be contributed from a
design fact about the module structure or size. Now, an acceptable argument
needs backing evidence (facts) whose effect evaluates to ++.

A requirement can also be stated as minimum level of performance of an activ-
ity to achieve a desired quality. An argument is regarded sufficiently supported
if one of the affecting facts establishes that level of performance at least.

Instead of building separate quality models for each standard and level of
criticality level, we build views on a global quality model for different levels of
criticality by simply adjusting the requirements accordingly. This way, we note
a set of requirements on the quality matrix reflecting specific recommendations
for instance EN50128 (SIL 1-2) view.

4.2 Criteria for Dependability

We propose a dependability taxonomy focussing on software development (see
Fig. 4.2) as a guideline to derive the dimensions of facts and activities.

Life-cyle. The life-cycle of a software system forms a superordinate category
of the taxonomy for dependability. Although dependability is a quality in use,
a dependability case for a newly built system is justified nearly exclusively on
evidence established in the development phase. Here we emphasize development
phases: requirements, architecture, design, implementation, validation and verifi-
cation and integration. System facts resulting from artefacts early in the life-cycle
determine the quality of latter activities, e.g. encapsulation and coherence of
functionality in design alleviates error locating during maintenance. The phases
of a system’s life-cycle incorporate in our quality model in two ways: (1) The



Analysing Dependability Case Arguments Using Quality Models 127

Fig. 5. Taxonomy of dependability criteria

life-cycle gives an order to facts and activities. (2) Phases and their results of
development phases determine the possibility of effects.

Activities. In general, activities derive from the whole life-cycle of a system,
including operation, but we focus on those activities related to software depend-
ability [5]. We regard in detail the activities of dependability management to
avoid the risk of systematic errors. Dependability management comprises ab-
stract activities originating from SW risk management as presented in [13]:

Identify. Before addressing dependability issues, they are identified. Identifica-
tion surfaces risks for dependability in the life-cycle of the software.

Analyse. Analysis serves to convert information about dependability risks into
decision-making information. It provides the basis for the software designer
to address the important issues.

Plan. Planning turns dependability risks into design and development decisions.
Planning involves developing actions to address individual issues while main-
taining a global view on systematic error avoidance.

Track. Tracking consists of monitoring the realization of actions to mitigate
dependability risks.

Control. Control corrects for deviations from planned risk mitigation. Devia-
tions originate from unforeseen problems within the advancing development.

The names of the abstract activities stand for categories of concrete activities of
the life-cycle addressing problems of that certain phase.

Facts. The third category of our dependability taxonomy is dedicated to facts.
Artefacts, modelling language, modelling infrastructure, modelling strategies and
verification strategies serve as input for facts. Artefacts are documents, models
and other products which are created during the development process. Facts
from artefacts describe product-specific information and results from analyses,
e.g. verification-results, preliminary analyses. The modelling language defines the
representation and expressiveness of a model. Here we use modelling language
for all kinds of representation formats of a system, e.g. UML, C++, flow charts,
written text. Facts about model transformation, compilation, and testing are
covered by modelling infrastructure. A modelling strategy imposes rules and



128 M. Huhn and A. Zechner

guidelines on design and implementation. Verification and validation strategies
prescribe how testing shall be realized. The facts about a system constitute the
evidence necessary to argument in a dependability case.

This taxonomy classifies criteria which we consider relevant for dependability
cases: activities to manage dependability, facts providing evidence and the life-
cycle as a principle of order and influence. Those serve as the basis for deriving
an instance of our quality model described in the previous section.

4.3 Assessment Procedure

Before assessment the underlying quality model has been stated, e.g. from an
external or internal standard. The assessment is carried out in two phases:
1. Evaluate quality model

(a) Go through the argument structure
(b) Fill in the facts presented in the arguments.
(c) Fill in the performed activities addressed in the arguments
(d) Select the requirements view for the degree of dependability and strategy
(e) Evaluate effects

2. Review potentially flawed arguments.

Argumentation to Model Input. To prepare assessment, the quality model
has to be populated with activities and facts from the argumentation or a view,
resp. The underlying reference model then yields a set of effects on each activity.

Evidence naturally is deduced from properties gained from the subject by
investigation. The representation of evidence either is itself a value or can be
evaluated to a value. The interpretation of evidence remains to the argument.
Therefore, facts can be gained directly from the evidence.

As stated earlier, argumentation in a dependability case relies on the proper
management of dependability risks. Hence, individual arguments are related to
at least one of the category of activities: identify, analyse, plan, track, control.
Regarding a instance of a quality model those activities are refined further. For
our analysis, the assessor associates the argument to the concrete activity. That
way, the evaluation of the impact on an activity is traceable to an argument.

Additional requirements rely on the evaluation strategy and form the depend-
ability view which determines a requirement value for a particular activity.

Evaluation Strategies depend on the purpose of the assessment:

1. Evaluate consistency and expressiveness within argumentation. The evalu-
ation is performed only on evidence and arguments presented in the case.
This strategy yields whether the argumentation is consistent in itself.

2. Evaluate arguments against available evidence. In addition, all known facts
represented in the quality model are considered. This strategy will addition-
ally find possible counter-evidence neglected by the dependability case.

3. Check coverage of activities. A view representing recommendations for a
certain criticality level in a norm is attached. The quality model probably
highlights more activities than addressed by the arguments. The activities
addressed in the case are compared to the view’s activities. The results of
the comparison enumerates missing activities related to a requirement.



Analysing Dependability Case Arguments Using Quality Models 129

N.b., negative findings in the evaluation only indicate a possible flaw in the pre-
sentation of arguments. Further interpretation is needed. Nevertheless, a negative
evaluation directly points to a cause in terms of facts and activities:

Guided Review. Based on the evaluation, three steps are performed: (1) look
for reasons explaining the impairment, (2) revaluate arguments, (3) create a re-
port. The evaluation reports suspicious activities. The corresponding activities
trace to arguments associated at population of the quality model. The assessor
then looks for additional explanations putting even strong findings into a per-
spective: Often, contextual information defines and constrains the actual system
requirements. Claims may be additionally supported by implicit or explicit as-
sumptions and justifications. Some arguments may already suffice (e.g. mixed
directions in weak effects, cumulative effect of weak facts) or are justified (e.g.
by new evidence, not contained in facts or operational constraints). The assessor
revaluates the arguments and facts regarding collected explanations. Revaluation
results are captured in the review report. Repair activities can be planned.

5 Case Study

To demonstrate suitability of the approach we performed a case study from the
rail automation domain. As system under design we considered an automatic
train operation platform to improve safety in regional railways along the lines
of German Zugleitbetrieb (ZLB) which is similar to track warrant control. The
ZLB-Protection System (ZLB-PS) was designed as a close-to-reality industrial
case study for research purposes during the ranTest3 research project. ZLB-PS’s
major service is simplified interlocking. Dependability obviously is an issue.
System Facts. ZLB-PS was designed from scratch. The requirements are stated
in a handbook for the operating procedure of ZLB. Behaviour of the route-
allocation logic (40%) on the architectural level is modelled using the formal
Scade-Language. However, the implementation is written in C++. All interface
signatures were prescribed in the architecture specification and implemented ac-
cordingly (98%). Behaviour was verified by manual and unit-testing (60%; route-
allocation logic: 100%). Data-Monitoring is realized by pre- and post-conditions
(only 15% of functions). Modularization was monitored using a metrics-suite for
function-code-size, parameter-count, etc. Only 10 classes have an explicit state
variable which is checked in pre-conditions (control-flow-monitoring).
Assessment. The assessment was performed on the dependability-subset of
the argumentation which is presented as a goal structure (simplified extract in
Fig.6(a)). We adopted the quality model to the EN50128. We extracted the facts
and activities from the recommendations. Requirement levels were mapped from
the level of recommendation (NR=not recommended, -, R, HR, M=Mandatory).
Accordingly, SILs map to three views (SIL0, SIL1&2, SIL3&4). The resulting
quality model is a matrix of 67 facts by 54 activities; most entries can be evalu-
ated in check-list manner. Figures 4 and 6(b) show a very simplified portion of
3 http://www.rantest.de



130 M. Huhn and A. Zechner

(a) (b)

Fig. 6. Dependability argumentation (a) and evaluation results (b) of the ZLB-PS case
study: facts aligned vertically, activities horizontally

the quality model as effect-relation and product evaluation. The evaluation was
performed for view ”SIL 1&2” relevant for ZLB-PS.
Results. Since student trainees designed, implemented and documented the
ZLB-Protection system, it was no surprise to find flawed arguments. The as-
sessment yielded severe inconsistencies (see Fig.6(b)) in the principal arguments
for dependability management: A formal design model is of limited value with-
out environment model. However, the simulation capabilities of the Scade model
could be used to identify test-cases for unit-testing.
Discussion. The taxonomy (Sec. 4.2) of criteria turned out to be of great help
for adopting the quality model. Facts from EN50128 could be extracted straight
forward. Identifying the activities and assigning effect-values needed some in-
terpretation and has yet to be confirmed by experts. The guide-words from the
dependability-risk management served well. Quality evaluation could be per-
formed by software engineers without problems. However, review and revaluation
afforded expert-knowledge. An affiliated safety expert from industry appreciated
the documentation of assessment that is a by-product of our method. However,
the technical evaluation and assessment was experienced time-consuming. Com-
puterized support and integration with existing tools would be a solution.

6 Conclusion

The paper introduced a new 2-phase method to assess GSN argument structures
in dependability cases. Firstly, structural well-formedness constraints and proper
pattern instantiation are automatically checked on a GSN structure. This part
holds off logical fallacies and violations of common engineering principles.

Secondly, conclusiveness of argumentation is assessed. This method relies on
an activity-based quality model that comprises the effect of facts on activities
relevant in dependable system’s development. The taxonomy of facts and ac-
tivities as well as the effect relation makes domain specific expert knowledge



Analysing Dependability Case Arguments Using Quality Models 131

explicit. The assessment may reveal inconsistent or insufficient argumentation
or even neglected counter-evidence. Using specific views, the quality model is
adopted and facilitates the assessment of conformance to a norm. Negative find-
ings, i.e. a lack of confidence in the argumentation, can be retraced: The cause is
given in terms of system or process facts that impair with their effects activities
needed to achieve an acceptable dependability. The method yields a reason for
rejecting an argumentation as well as a directive for improvement. In that, our
approach complements quantitative approaches like [10]. In future work we aim
at tool-support for guided assessment of argumentation.

Acknowledgements. This work was partially supported by Siemens Industry
Sector Mobility Rail Automation. We are grateful to Stefan Gerken from Siemens
and the anonymous reviewers for their helpful comments on earlier versions of
this work.

References

1. Kelly, T.: Arguing Safety – A Systemic Approach to Managing Safety Cases. PhD
thesis. University of York (1998)

2. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Safety-
Critical Systems Symposium (SAFECOMP), pp. 194–203 (1998)

3. Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.F.: An activity-
based quality model for maintainability. In: Proceedings of the 23rd International
Conference on Software Maintenance, ICSM 2007 (2007)

4. Salger, F., Bennicke, M., Engels, G., Lewerentz, C.: Comprehensive architecture
evaluation and management in large software-systems. In: Becker, S., Plasil, F.,
Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281, pp. 205–219. Springer, Heidelberg
(2008)

5. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical Report no. 01-145, UCLA, LAAS-CNRS, Univ. of Newcastle (2001)

6. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns. In:
Intl. Conf. on Computer Safety and Reliability (SAFECOMP), pp. 55–69 (1997)

7. Graydon, P., Knight, J.: Success arguments: Establishing confidence in software
development. Technical Report CS-2008-10, University of Virginia (2008)

8. Mayo, P.R.: Structured safety case evaluation: A systematic approach to safety
case review. In: Inst. of Engineering and Technology Intl. Conf. on System Safety,
pp. 164–173 (2006)

9. Wu, W., Kelly, T.: Combining bayesian belief networks and the goal structuring
notation to support architectural reasoning about safety. In: Saglietti, F., Oster,
N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 172–186. Springer, Heidelberg
(2007)

10. Cyra, L., Gorski, J.: Expert assessment of arguments: A method and its experimen-
tal evaluation. In: Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS,
vol. 5219, pp. 291–304. Springer, Heidelberg (2008)

11. OMG Object Management Group: Unified modeling language specification (2003)
12. Maibaum, T.S.E., Wassyng, A.: A product-focused approach to software certifica-

tion. IEEE Computer 41(2), 91–93 (2008)
13. Carr, M., Kondra, S., Monarch, I., Ulrich, F., Walker, C.: Taxonomy-based risk

identification. Technical Report CMU/SEI-93-TR-006, CMU/SEI (93)



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 132–144, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Experience with Establishment of Reusable and 
Certifiable Safety Lifecycle Model within ABB 

Zaijun Hu and Carlos G. Bilich  

ABB Corporate Research Center, Wallstadter Strasse 59, 
68526 Ladenburg, Germany 

{zaijun.hu,carlos.bilich}@de.abb.com 

Abstract. One basic requirement for a functional safety development project is 
to establish a SIL-compliant safety lifecycle model. For a company with a big 
family of safety-related products and a great number of development projects 
like ABB, it would be very time-consuming and cost-intensive for each safety 
development project to develop a safety lifecycle model. One approach for 
managing the corresponding costs and effort is to create a common lifecycle 
model that fulfills the SIL requirements and can be reused by safety-related pro-
jects. In this paper we are going to present such a common safety lifecycle 
model, its structure and components, and our experience on how to establish 
and apply it in safety-related product development projects.  The paper analyzes 
the design constraints for the development of a common safety lifecycle model 
such as complexity, flexibility, simplicity, conformity and the safety integrity. It 
shows how these constraints drive the design of the safety lifecycle model to be 
developed. Our design concept, design considerations, development strategy, 
and our experience in establishing such a common safety lifecycle model will 
also be discussed in the paper. 

Keywords: Safety Lifecycle, Management of Functional Safety, IEC 61508. 

1   Introduction 

IEC 61508 [1,2,3] requires a safety development project to specify and apply safety 
lifecycles (SLC). IEC 6508 specifies and recommends 3 safety lifecycles: the overall, 
E/E/PES and software safety lifecycles. To simplify the description we use the safety 
lifecycle model (SLCM) as an abbreviation for the related safety lifecycles that are 
needed in a safety development. This paper focuses on the E/E/PES and software 
safety lifecycle. A SLCM that a safety development uses provides a framework for 
specifying the management and technical activities to ensure the implementation of 
the required measures for risk reduction. Carefully and well-defined SLCM helps to 
establish repeatable and controllable management of functional safety for achieving 
the targeted safety integrity. However developing and maintaining the required SLCM 
are a time-consuming and effort-intensive activity. The overall costs even increase 
immensely if there are many safety development projects within a company and each 
project has to create its own SLCM. That is the situation that a global company like 



 Experience with Establishment of Reusable and Certifiable SLCM within ABB 133 

ABB with huge number of product families and safety development projects needs to 
manage.  To control the overall costs of the safety development within a company it is 
normally a good practice to define and specify a common SLCM or a few SLCMs, 
which can be customized and tailored for each safety development project. However 
such a kind of approach needs to manage diversity in the development environment 
and culture of different development project teams and different hardware and soft-
ware complexity of different products. In this paper we are going to present our ex-
perience with such a kind of practice. The paper is organized as follows: chapter 2 
presents the solution approach with our design considerations, key design constraints, 
the design concept, the development strategy and the framework of our SLCM. Chap-
ter 3 gives an overview on how the design constraints are considered and imple-
mented, while chapter 4 discusses our experience with the deployment of our SLCM. 
Chapter 5 gives the conclusion of the paper.  

2   Solution Approach 

As mentioned in the previous chapter our solution strategy to manage and control the 
related overall costs is to create a common and reusable safety lifecycle model that 
can be customized and tailored to a specific safety development project. The key 
success criteria for this solution strategy are reusability and low cost in the customiza-
tion and tailoring. 

2.1   Initial Consideration 

Our first consideration was to check if we can simply use the E/E/PES and software 
safety lifecycles recommended by IEC 61508 as a common model. After comprehen-
sive investigation we came to the following findings: 

 

1. The SLCM recommended in IEC 61508 only defines the requirements on 
each phase. There are no clearly defined activities and approaches that are 
sufficiently concrete for execution. This fact leads to additional effort that a 
safety development project needs to specify the concrete activities and ap-
proaches to satisfy the related requirements if it directly uses the recom-
mended lifecycles. 

2. There are no recommended documentation approaches, which help to struc-
ture and describe the required safety evidences and then to provide them to 
the related certification body. Documentation is one of most time-consuming 
and effort-intensive activities in a safety development project. 

3. There are no specified approaches or guidelines in IEC 61508 for integrating 
the SLCM of IEC 61508 into an existing development environment, which 
includes the existing development lifecycle, the quality management, the 
project management, and the supply management. 

4. There are no clearly defined design elements for hardware and software de-
velopment to manage complexity of a safety development project. Although 
system, subsystem, component and module are used in the SLCM, there is 
too much interpretation freedom, which leads to uncontrollable uncertainty 
and difficult in specifying the required outputs of each safety lifecycle phase. 



134 Z. Hu and C.G. Bilich 

5. There are no specified verification approaches for verifying the outputs of 
each safety lifecycle phase. 

6. There is no framework in the SLCM of IEC 61508 to integrate the valuable 
best practice, experience, knowledge and pitfalls of previous safety devel-
opment projects, which are an efficient way to reduce the related costs of a 
safety development.  

 

Thus the direct application of the SLCM of IEC 61508 to a safety development pro-
ject means a huge amount of additional work for a project team. It is also clear that 
those issues discussed above cannot be addressed by a common safety standard like 
IEC 61508 directly, because many of them are dependent on specific application 
domains and corresponding organizations and thus can only be treated by those or-
ganizations or the related project teams.  

Based on those findings above we decided to design and create a common ABB 
SLCM for a group of ABB business units in order to avoid the costs and effort regard-
ing the establishment of the required SLCM for the related development teams. Those 
organizations and development teams have similar product complexity and mainly 
develop E/E/PES products as components, which can be used in a safety application. 

2.2   Key Design Constraints 

The analysis of the findings of our investigation shows that the following design con-
straints will help to create an efficient and useful safety lifecycle model. 
 
Simplicity, easy-to-use, adaptability, and complexity 
Simplicity means that a SLCM shall be as simple as possible. That is very important 
for its successful use. Only in this way it can help to specify and structure the man-
agement and technical activities in an efficient way. A simple SLCM means simple 
and clear structure, simple phases, limited roles and activities. 

Easy-to-use means that a SLCM shall be easy to customize and tailor. That is the 
key factor for a success of a SLC and also the added value for a common SLCM. 
High costs in customization and tailoring makes a common SLCM no sense. Easy-to-
understand is another measure to ensure easy-to-use, i.e. a SLCM should be intuitive, 
self-explained. Furthermore it is important to help people to find the necessary infor-
mation as quickly as possible, that means the related information should be structured 
in an integrated way so that searching for and browsering the related information 
become easier. 

Adaptability means that a common SLCM shall be adaptable to different develop-
ment complexity. This constraint is very important for ABB because ABB has a great 
number of products with different complexity. It is necessary to define the adaptation 
rules for those who are responsible for specifying the SLCM that is used in a safety 
development project. 
 
Conformity 
A common SLCM shall fulfill all necessary requirements of the safety standard ( IEC 
61508). Additionally it should be compliant with the E/E/PES and software safety 
lifecycles recommended in IEC 61508. It should show that the failure avoidance and 



 Experience with Establishment of Reusable and Certifiable SLCM within ABB 135 

control measures recommended by IEC 61508 shall be considered as required for the 
safety integrity level to be achieved. 
 
Safety evidence 
A SLCM shall assist safety development teams to document the required safety evi-
dences to the related certification body.  
 
Management of functional safety (FSM) 
A SLCM shall provide assistance to safety development teams in specifying the man-
agement and technical activities and in management of functional safety, including 
role allocation, functional safety planning, safety verification and validation, and 
safety assessment.   
  
Applicability 
A SLCM to be developed shall be applicable in ABB development and organizational 
environment. It shall also take the ABB application domains into account. 
 
Integration 
A SLCM should cover all requirements contained in IEC 61508. It should also pro-
vide a framework for integrating the collected best practices, experience, knowledge 
and guidelines. Furthermore it should cover the documentation and verification ap-
proaches. In addition, it shall be possible to integrate the SLCM to be developed into 
the ABB development environment, especially in ABB Gate process [7, 8]. 

2.3   Concept for Design 

The design of the common SLCM began with answering the question on how to en-
sure conformance with IEC 61508. Although it is allowed to use a different safety 
lifecycle model from the one recommended by IEC 61508, all the objectives and 
requirements specified in IEC 61508 for the safety lifecycles shall be met. If we had 
designed a SLCM from scratch, we would have needed to define a SLCM architecture 
that systematically structured all the objectives and requirements from IEC 61508, 
including the safety integrity requirements. However, to reduce the related work on 
the one hand and ensure conformance with the safety standard on the other hand we 
decided to make use of the structure of the SLCM recommended by IEC 61508 and 
extended it by additional SLC components and mechanisms that promoted reusability, 
adaptability, and simplicity, ensured conformity and helped cost reduction and effi-
ciency increase. The following figure illustrates the concept. 

 

 

Fig. 1. Design Concept 

Structure of IEC 
61508’s SLCM

Extension + 
Concretization+

ABB SLCM 



136 Z. Hu and C.G. Bilich 

2.4   Development Strategy 

To address the design constraints we have selected several safety development pro-
jects with different hardware and software complexity in order to collect inputs, and 
to understand the related domains, the corresponding problems, needs and develop-
ment environments. They are also used to verify our SLCM. In addition, we have 
used the functional safety initiative of the automation product division (one of five 
ABB divisions) as a platform to collect the related experience and knowledge in the 
safety development to ensure reusability of our SLCM. To guarantee the conformance 
we had our SLCM assessed by TÜV in the context of the certification of our FSM 
Add-on [6], which includes our SLCM. Fig. 2 illustrates our development strategy. As 
input for the development of our SLCM we also referred to different development 
lifecycle models such as V-model [12], RUP [11], Harmony [13] and the best prac-
tice, knowledge and experience [4,5,13,14]. 

 
 

TÜV 
Pilot Products

Safety Lifecycle 
Model

Division 
Initiative

CMMI 

RUP 

Harmony V-Model 

Lesson learned 

Best practice 

 

Fig. 2. Development Strategy 

2.5   SLCM Framework 

The design of the common SLCM to be developed shall take the design constraints 
into account. Based on the structure of the SLCM of IEC 61508, the following model 
framework for creating the common SLCM is constructed in order to structure and 
describe the SLC components and mechanisms of the common SLCM. 

The SLCM framework includes not only the SLCM but also the functional safety 
management plan (FSM plan) and the product design model, which is used to de-
scribe the design structure of a product. 
 



 Experience with Establishment of Reusable and Certifiable SLCM within ABB 137 

class SLCM Framework

SLCM

Pha se

Obje ctiv e & 
Description

Input

Ouput

Verifier

Exec utor

Activ ity Documentation Verification

Safety Integrity 
Meas ure

Product De sign 
Mode l

Sys tem

Subsystem

Component Module

Know lege  & 
Exper ience

FSM Plan

Design Element

Role

Adaptation rules

 

Fig. 3. SLCM Framework 

Phase 
A SLCM consists of a set of phases. As we built upon the structure of the SLCM 
recommended by IEC 61508 our SLCM has the same number of phases as the one 
from IEC 61508. Similar to IEC 61508 a phase of our SLCM has objectives, descrip-
tion, inputs, outputs and the related safety integrity measures for failure avoidance 
recommended by IEC 61508, which shall be selected or equivalently substituted ac-
cording to the safety integrity level to be achieved. In addition, we added detailed 
activities, documentation, verification, verifier, executor and knowledge & Experi-
ence as extension to the related phases. Those additional SLC components are not 
included in the SLCM from IEC 61508, however they are necessary because a safety 
development team can save a lot of effort through such kind of support. In addition a 
phase is associated with the related design elements (as shown in Fig. 3), which help 
to manage the product complexity and to specify the outputs of that phase. 
 
Input and output 
Input stands for what kinds/types of input artifacts a phase needs for performing the 
defined activities while the output for what kinds/types of output artifacts that the 
phase shall generate after the defined activities are executed. The output artifacts of a 
phase can be input artifacts of the subsequent phase. A phase can have more than one 
input or output. For a specific safety development project it is necessary to specify 
inputs and outputs for a phase. To support the functional safety management it is 



138 Z. Hu and C.G. Bilich 

helpful to provide a mechanism to specify concrete designation of input and output 
artifacts e.g. file name.  
  
Activity 
Activity specifies a set of actions that are needed to be performed during a phase. 
Differently from the SLCM recommended by IEC 61508, which specifies the related 
requirements that a safety development should satisfy, our SLCM defines activities 
that help a safety development to fulfill the requirements. With simplicity and appli-
cability in mind, we try to define and describe the required activities in such a way 
that they shall not be misunderstood and misinterpreted. In many cases the sequence, 
in which the required actions are performed, is important. We give certain suggestion 
by numbering the activities. For those actions, which require particular knowledge 
and experience, we will give the related reference information for reference.  
 
Documentation 
Documentation stands for documentation approaches, which are used to generate the 
required artifacts as safety evidences. Documentation has direct impact on the assess-
ability of artifacts. Good documentation helps to deliver sufficient and convincing 
evidences without too much effort. Our SLCM incorporates the documentation ap-
proaches by providing the related templates. In order to support the functional safety 
management our SLCM also provide mechanism to specify the designations of arti-
facts (e.g. file name). 
 
Verification 
Verification is required for safety development. It is helpful to give certain sugges-
tions for verification approaches. Our SLCM incorporates the related verification 
approaches into each phase by referring the suggested verification approaches and 
review check lists for review. 
 
Safety integrity measure 
The safety integrity measure covers the measures that are required to fulfill the safety 
integrity requirements. Selection and implementation of the safety integration meas-
ures depends on the safety integrity level to be achieved. For us the question was how 
to structure and organize those failure avoidance measures and incorporate them into 
our SLCM. As our SLCM uses the same structure and phases as the one of  IEC 
61508, it is quite easy to realize the incorporation. All measures are associated to the 
same phases similar to the SLCM of IEC 61508. Incorporation of the failure avoid-
ance measures into a SLCM makes it different from a normal development lifecycle 
model.  
 
Knowledge and Experience 
A phase is associated with knowledge and experience, which represent the best prac-
tices, the latest state of art or pitfalls and help the execution of the activities defined 
for the phase in more efficient and effective way. The knowledge and experience are 
collected from previous safety development projects or from research results. They 
are then analyzed and incorporated into our SLCM if they can help to increase devel-
opment efficiency. Our SLCM incorporates the knowledge and experience into a 



 Experience with Establishment of Reusable and Certifiable SLCM within ABB 139 

phase by either embedding or referring to them. Through this mechanism it is possible 
to continuously incorporate the new knowledge and experience into our SLCM. In 
this way we can ensure the sustainable improvement of our SLCM. 
 
Verifier and Executor 
The verifier, who is assigned to a phase, is responsible for verifying the output arti-
facts of the phase while the executor is responsible for the execution of the defined 
activities for that phase. 
 
Product design model (PDM) 
Our SLCM incorporates a product design model to manage different complexity. A 
product design model provides a design structure to decompose a product into parts. It 
is a very important method to ensure adaptability of our SLCM. The PDM of our 
SLCM has 4 design elements: system, subsystem, component and module. Table 1 
gives definition of the four design elements. 
 

 

Table 1. Design Elements of PDM 

System System is a top-level design element, which consists of subsystems. 

Subsystem A system consists of a set of subsystems. A subsystem is composite 
hardware and software design element, which can be composed of 
further subsystems or components or modules. Examples for sub-
systems are power supply, input, output, logic unit, software, … 

Component A component is the smallest hardware design element whose fur-
ther breakdown makes no sense in managing hardware complexity. 
Examples are resistors, capacitors, comparators, operational ampli-
fiers, microcontroller, ASIC etc. 

Module A module is the smallest software design element whose further 
breakdown makes no sense in managing software complexity. Ex-
amples are scheduler, monitor, event handler, … 

   
 

Fig. 4 illustrates the hardware part of the PDM of our SLCM with the key practices 
such as system criticality analysis, system FMEA (failure mode and effect analysis), 
component FMEA and fault insertion test, which are necessary for the safety devel-
opment and will be assessed by certification bodies. The E/E/PES part of PDM has 
four levels: the top level for E/E/PES Safety Requirement Specification (E/E/PES 
SRS) and Validation, the architecture level including Architecture Design and Inte-
gration Testing, the detailed design level for Detailed Design and Subsystem Testing, 
and the implementation level. On the architecture level the system criticality analysis 
and system FMEA help to identify the safety-critical parts of a system and the poten-
tial failures that can be considered in the early phases of the SLCs while the compo-
nent criticality analysis on the detailed design level tells which components are 
safety-critical and the component FMEA provides the basis for the quantitative calcu-
lation of the related data such as probability of failures per hours. Fig. 4 also  
 



140 Z. Hu and C.G. Bilich 

 

Fig. 4. E/E/PES part of PDM 

illustrates the relationship between E/E/PES and software safety lifecycles where the 
software safety requirement specification (SW SRS) uses E/E/PES SRS and E/E/PES 
Architecture as input and the hardware and software integration is necessary.  
  
Functional safety management (FSM) plan 
In order for our SLCM to support management of functional safety management ac-
tivities, we have incorporated our SLCM into the FSM plan. This greatly helps to 
specify the management and technical activities from the FSM point of view because 
you can directly define the inputs and outputs, assign the defined roles to persons, 
plan the required activities. 

We also considered the solution where the FSM plan is separated from the SLCM. 
In this case a SLCM is created and documented in a so-called safety development 
handbook. The argument for this separation is that the SLCM is normally stable and 
has little change; therefore it is good to keep it in a separate document. Another ar-
gument is that if a modification is needed, it is only necessary to change the safety 
development handbook. All people using it will get the update. Our observation and 
experience shows that this solution has the following drawbacks 

• It is quite difficult to use the same SLCM repeatedly from one project to an-
other without any change. Normally a change or an adaptation, no matter if it 
is big or small, is necessary. In that case we will face the problem of docu-
menting the adaptation and keeping the FSM plan consistent with the SLCM. 
That means additional effort.  

• As the SLCM is used to specify the management and technical activities 
planned in the FSM plan, the person responsible for the FSM plan needs to 
search for the required information in the relevant chapters or sections of the 
document describing the SLCM and read it. 

• The certification body needs to read two documents and check them for con-
sistency. That is not good for accessability. 

Thus we decided to incorporate our SLCM into the FSM plan, which is provided as 
FSM Add-on (a kind of template) [6] to a safety development project. For a concrete 



 Experience with Establishment of Reusable and Certifiable SLCM within ABB 141 

development, the FSM Add-on will be instantiated. In this way we also solve the 
update problem. 
  
Role 
Our SLCM introduces roles: safety manager, safety assessor and audit, verifier, de-
veloper, project leader, configuration manager, and supplier. 
 
Integration into existing development environment 
One important issue in the design of our SLCM is the integration of the SLCM into 
the existing development environment. The success of using the SLCM depends how 
well it can be integrated into an existing development environment. ABB has a Gate 
process [7,8,9,10] as a business decision model for controlling a project execution 
from the business points of view. For the purpose of integration we use the concept – 
pre-gate milestone introduced in [7] and [8]. This concept was originally used to inte-
grate a product development model and a business decision model. That means all 
outputs of the defined phases of the safety lifecycles for E/E/PES and software will be 
mapped to a set of so-called pre-gate milestones. The detail can be found in [6]. 

One important advantage of our SLCM is its integration, which includes integra-
tion of documentation, best practices and experience, verification approach, safety 
integrity measures and last but not least the integration mechanism by using pre-gate 
milestones. 

3   Design Check 

The design constraints drove the design our SLCM. In this chapter we are going to 
check if and how the design constraints are fulfilled. The following table gives the 
related overview. 

 
Table 2. Design Check 

Design  
constraint 

Design measure 

Simplicity, 
easy to use, 
adaptability 
and  
complexity  

• Only necessary roles are defined for the SLCM. We try to keep 
the number of roles to minimum 

• Simple PDM, only 4 design elements are introduced 
• Simple definition of activities 
• Adaptation rules 
• Understandable and unambiguous definition of activities 
• Integration of all related information (knowledge and experience, 

documentation, verification, SLCM and FSM plan) 

Conformance • Use of the structure and phases of the SLCM of IEC 61508 
• Incorporation of the failure avoidance measures 
• The activities defined fulfill the requirements 
• Our SLCM is checked by TÜV in the context of the certification of 

FSM Add-on [6], which includes SLCM and FSM plan 
  



142 Z. Hu and C.G. Bilich 

Table 2. (continued) 
Safety  
evidence 

• Document templates 
• Incorporation of documentation into SLCM 

Management 
of functional 
safety 

• Incorporation of our SLCM into the FSM plan, i.e. SLCM is part 
of the FSM plan. Our SLCM also supports definition of inputs and 
outputs, selection of failure avoidance measures, and selection of 
the documentation approaches 

Applicability • Select several products as pilot 
• Use the functional safety initiative of the automation product 

division as a platform  

4   Our Experience 

We have selected a few safety development projects as pilot for using and verifying 
the developed SLCM. In selecting the safety development projects we considered the 
development complexity, project team size, competence of the project team regarding 
functional safety and application domains. The following table outlines our major 
findings. 

 
Table 3. Our Experience 

Context and 
findings 

Descriptions 

Application 
domain 

Motor control, switchgear system, arc protection 

Development 
complexity 

Hardware: the number of the components on PC boards ranges from 
several hundreds to over thousand components 
Software: the line of code ranges from several 10k to over 100k 

Project team 
size 

6-15 persons 

SIL to be 
achieved 

1-3 

Competence of 
the project 
teams 

No experience with the safety development based on IEC 61508 in the 
past; however some of them have experience with safety development. 
Most of them got 1-2 days training regarding functional safety and work-
shops organized by a certified functional safety engineer 

Approach for 
deploying the 
SLCM 

For use or adaptation of the SLCM, workshops were organized where the 
project team members together with a person who had good knowledge of 
the developed SLCM. At the workshops it was discussed how to customize 
or tailor the SLCM  

Actions for 
deploying the 
SLCM 

• Adaptation of the PDM to reflect the development complexity. How-
ever in most cases there is no need to adapt the PDM. The design 
elements – system, subsystem, component and module are normally 
sufficient to address most design tasks.  

 
 



 Experience with Establishment of Reusable and Certifiable SLCM within ABB 143 

Table 3. (continued) 

 • Adaptation of the phases of the SLCM to the specific development 
project. We normally experienced merging of phases. We observed 
that the hardware and software integration happened earlier than 
expected, even before the software integration. In many cases the 
software module test already required the software and hardware  
integration. 

• Adaptation of the defined activities for specific safety development 
projects. However the normal case was that there was little need to 
modify the defined activities.  

• Definition of the outputs and inputs 
• Mapping of outputs to the pre-gate milestones. Because the most 

projects used ABB Gate Model, thus such a mapping was not  
avoidable 

• Mapping of the outputs to the one of the existing development lifecy-
cles. Some project teams also use their own development lifecycles; 
in those cases it is necessary to map the outputs of our SLCM to 
those of the existing development lifecycle.  

• Selection of the documentation approaches and the related templates 
• Selection of the failure avoidance measures based on the SIL to be 

achieved. 

Effort  Adapting the SLCM normal needed several days. The effort heavily de-
pended on the competence of the participating people. We have observed 
that most of the effort was spent on the selection and discussion of the 
failure avoidance measures, followed by adaptation of the phases, PDM 
and documentation approaches. 

5   Conclusions 

In this paper we have presented our experience with development and use of a com-
mon SLCM for ABB. Our experience shows that a common SLCM will greatly re-
duce the overall costs of the safety development. It also helps to create the functional 
safety management plan more efficiently. As our SLCM is part of the FSM Add-on 
certified by TÜV, it also greatly helps the conformance of FSM with IEC 61598. 
Continuous collection of the best practice and improvement of the SLCM is an impor-
tant way to ensure the long-term benefits of using a common SLCM. 

References 

1. IEC 61508 – Part 1: Functional safety of electrical/electronic/programmable electronic 
safety-related systems – General Requirements (1998)  

2. IEC 61508 – Part 2: Functional safety of electrical/electronic/programmable electronic 
safety-related systems – Requirements for electrical/electronic/programmable electronic 
safety-related systems (2000)  

3. IEC 61508 – Part 2: Functional safety of electrical/electronic/programmable electronic 
safety-related systems – Software requirements (1998)  



144 Z. Hu and C.G. Bilich 

4. Smith, D.J., Simpson, K.G.L.: Functional Safety: A Straightforward Guide to Applying 
IEC 61508 and Related Standards, 2nd edn. Butterworth Heinemann, Butterworths (2004) 

5. Faller, R.: Project Experience with IEC 61508 and Its Consequences. In: Voges, U. (ed.) 
SAFECOMP 2001. LNCS, vol. 2187, pp. 200–214. Springer, Heidelberg (2001) 

6. Hu, Z., Bilich, C.: Safety Add-on – an Efficient Way to Make Development SIL-
Compliant. In: 8th International Symposium Programmable Electronic Systems in Safety-
Related Applications, Cologne, Germany (September 2-3, 2008) 

7. Hallqvist, S., Moström, J.: ABB Gate Model: A Process Management Model for Product 
Development in ABB, Master Thesis in Business Administration, Linköping University, 
Department of Management and Economics (2003) 

8. Wallin, C., Larsson, S., Ekdahl, F., Crnkovic, I.: Combining models for business decisions 
and software development. In: Proceedings of 28th Euromicro Conference, 2002, pp.  
266–271 (2002) 

9. Wallin, C., Ekdahl, F., Larsson, S.: Integrating business and software development models. 
IEEE Software 19(6), 28–33 (2002) 

10. Larsson, S., Kolb, P.: Software process improvement at ABB. ABB Review (3), 10–14 
(2001) 

11. Kruchten, P.: The Rational Unified Process: an Introduction, 2nd edn. Addison Wesley, 
Reading (2000) 

12. V-Modell® XT, http://v-modell.iabg.de/ 
13. Douglass, B.: Real-Time UML Workshop for Embedded Systems. Elsevier Inc.,  

Amsterdam (2007) 
14. Borcsok, J., Schaefer, S.: Software development for safety-related systems. In: Second In-

ternational Conference on Systems, ICONS 2007, April 22-28, pp. 37–37 (2007) 
 



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 145–158, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Automotive IT-Security as a Challenge: Basic Attacks 
from the Black Box Perspective on the Example of 

Privacy Threats 

Tobias Hoppe, Stefan Kiltz, and Jana Dittmann 

Research Group on Multimedia and Security 
Otto-von-Guericke University of Magdeburg 

Universitaetsplatz 2, 39106 Magdeburg, Germany 
{tobias.hoppe,jana.dittmann, 

stefan.kiltz}@iti.cs.uni-magdeburg.de 

Abstract. Since automotive IT is becoming more and more powerful, the IT-
security in this domain is an evolving area of research. In this paper we focus 
on the relevance of the black box perspective in the context of threat analyses 
for automotive IT systems and discuss typical starting points and implications 
of respective attacks. We put a special focus on potential privacy issues, which 
we expect to be of increasing relevance in future automotive systems. To moti-
vate appropriate provision for privacy protection in future cars we discuss po-
tential scenarios of privacy violations. To underline the relevance even today, 
we further present a novel attack on a recent gateway ECU enabling an attacker 
to sniff arbitrary internal communication even beyond subnetwork borders. 

1   Introduction / Motivation 

Looking at current trends in automotive IT, a clear trend of increasing complexity, 
connectivity, customisability and extendibility can be recognised. Dozens of elec-
tronic control units (ECUs) communicating via field bus networks implement a big 
part of modern car’s functionalities. However, along with these improvements on 
automotive systems’ capabilities, also the attention paid by unauthorised parties is 
on the increase. Also (or especially) in the automotive domain the spectrum of po-
tential attackers is as multifaceted as their individual motivations (e.g. see [1]). To 
face these upcoming threats and provide a solid basis for future automotive applica-
tions, holistic concepts for IT-security in automotive systems are an emerging chal-
lenge of research. 

Since especially in the automotive domain detailed technical specifications about 
the networked automotive IT systems are usually kept secret by the manufacturers, 
attackers often have to start with little detailed information. In this paper we discuss 
this black-box-perspective that is relevant to the majority of potential automotive 
attackers. We generalise typical approaches for attacks on automotive IT, e.g. in the 
shape of five basic attack principles and point out potential classes of attack implica-
tions having to be respected especially in the automotive domain. 



146 T. Hoppe, S. Kiltz, and J. Dittmann 

As an evolving aspect of automotive IT security we refer to threats to the increas-
ing amount of privacy relevant data stored and processed by modern cars. We list 
current and oncoming examples for potentially privacy relevant data in cars and dis-
cuss potential implications of the personalisation trend in automotive IT. 

To illustrate the state of the art and as a practical example for privacy-relevant 
automotive attacks already possible today we demonstrate an attack on a recent gate-
way ECU from a big international car producer. By only requiring access to the open 
On-Board Diagnostics (OBD) port in the car interior (i.e. without requiring intrusive 
actions like locating and hooking up bus wires), the attack on the gateway ECU by-
passes the software-based network isolation and can enforce the leakage of arbitrary 
(potentially privacy relevant) internal communication to the outside. Firstly presented 
at the escar 2008 workshop, this attack is now publicly presented in this work. 

In the following section 2, we point out the increasing need for privacy protecting 
measures in future IT security concepts. As a focus on current threats to automotive 
IT security, in section 3 we emphasise the relevance of the black box perspective for 
attackers in the automotive domain and discuss typical attacking principles and impli-
cations. Subsequently we introduce the practical black-box attack at the gateway ECU 
in section 4, discuss privacy preserving measures for future IT security concepts in 
section 5 and summarise the paper in section 6 with a final conclusion. 

2   Increasing Attacks on Privacy Issues in the Automotive Domain 

As a practice-oriented topic of IT-security that we expect to be of rising relevance in 
the automotive context, in this section we refer to the increasing amount of privacy 
relevant information (i.e. person-related or person-relatable data) stored and processed 
by modern cars. To sensitise the reader about the increasing relevance of this aspect 
of IT security, in subsection 2.1 current and oncoming examples for potentially pri-
vacy-relevant information in cars are identified. Subsequently, in subsection 2.2 we 
discuss the trend of the increasing individual-related processing and storage of data 
within automotive IT-systems. In two exemplary scenarios we discuss relevant parties 
potentially interested in exploiting privacy relevant data in automotive systems. 

2.1   Examples for Privacy Related Data in Automotive IT Environments 

Even current automotive systems store and process a lot of information which allow 
significant statements about the users, their habits and behaviour. We do not neglect 
the comfort offered this way to the users, but also potential threats of this trend have 
to be discussed increasingly, e.g. to also address privacy issues. Exemplary references 
to person related or person relatable data are listed in the following: 

 

• Personalisation data (i.e. customer individual settings for vehicle applications) 
o Especially for comfort and infotainment applications, for example radio (e.g. in-

dividually programmable station lists, preferred tone colour for the sound sys-
tem, etc.), navigation (user profiles e.g. containing presets for frequently used 
routes or routes recently taken), integrated hands-free phone systems (e.g. these 
often hold internal copies of the contact lists) or personal presets for climate / 
heating systems, windscreen wiper settings etc. 



Automotive IT-Security as a Challenge: Basic Attacks from the Black Box Perspective 147 

o Some manufacturers store a large part of such personal settings on a central de-
vice; on activation, it communicates these settings to the affected applications 
via the internal CAN (Controller Area Network) bus. 

• Communication data 
o Due to the increasing connectivity of automotive IT and user-centred communi-

cation services, also potentially privacy-relevant connection information are  
increasingly processed and stored by automotive IT. For example these can be 
related to phone usage (e.g. contact lists, connection data of active or even pre-
vious in/outgoing calls), mobile Internet access (email contact lists, connection 
data, cached files etc.) or Car-to-Car/Infrastructure (person related or relatable 
data processed by future C2C/C2I systems). 

• Indirect, personal characteristics 
o By a correlation of common internal status information (e.g. on the internal 

buses: diverse sensory input, current time, engine speed, GPS position etc.) of-
ten more significant personal characteristics can be inferred. Some examples are 
the personal driving style (temporary maximum speeds, acceleration/braking in-
tensity and frequency, steering characteristics, etc.), covered distances (time, 
GPS coordinates, etc.), primary time of driving like common daytime, week-
days, etc., frequently visited locations / driven routes (time, GPS coordinates, 
etc.) or the presence / absence of further occupants (seat usage sensors, belt us-
age information, etc.). 

• Personal data of future automotive applications 
o Due to the increasing provision of user-centred services in modern cars, the 

amount of stored and processed user-specific, personal information is expected 
to increase notably in the future. One example are biometric samples. These 
would have to be stored by potential future automotive biometrics systems for 
all registered users in order to provide services like automatic authentication [2]. 

 

As we discuss in the next subsection, some of these person-related of person-relatable 
information would already be of high interest to certain groups of people. Depending 
on the way the diverse information as listed above is stored and processed by the 
automotive IT system, attackers have to use different ways to collect it. We group the 
appearance of diverse kinds of data into two general classes: 

 

• Accessible permanently (stored persistently, at least for some slot of time): Stored 
in the persistent memory of ECUs (today flash memory in most cases), some can 
be read out externally, for example the lists of error codes which can be retrieved 
and reset by diagnostics software. If not retrievable otherwise, physically intrusive 
actions (like directly reading out flash chips) might be required 

• Observable live only (not stored persistently): Some live data can be found at the 
internal buses (status information like digitised sensor data that is usually transmit-
ted periodically). Other data is only evident within the relevant ECUs in normal 
operation (i.e. not communicated by default). For maintenance, some ECUs allow 
such data to be monitored from the bus level on explicit request, e.g. using live 
data queries or calibration protocols like CCP/XCP. Otherwise physically intrusive 
action (like accessing open JTAG interfaces) might be required. 

 

While already today first wireless connections from external devices to automotive IT 
networks are possible, threats of unauthorised accesses to privacy relevant data in 



148 T. Hoppe, S. Kiltz, and J. Dittmann 

automotive systems can be expected to increase even more in the future in face of the 
plans for external automotive communication on a grand scale. This motivates the 
need for privacy-preserving, holistic automotive security concepts in the context of 
oncoming C2C/C2I systems even more. Continuing our focus on potential future 
privacy threats, in subsection 2.2 we discuss scenarios of misuse of privacy-relevant, 
automotive data, the trend of increasing personalisation of automotive systems as well 
as potential future implications to their role in everyday life. 

2.2   Personalisation and Privacy Threats – Exemplary Scenarios  

Looking at automotive IT systems, a clear trend of personalisation can be noticed to 
increasingly customise them towards the users’ needs. Future user-centred automotive 
IT environments might allow similar customisability as in today’s PC domain and be 
equivalently be integrated in world wide communication networks. Users might be 
able use the automotive IT infrastructure for a considerable amount of personal activi-
ties (e.g., in current cars telephone contact lists can be managed) that today PC sys-
tems are used for. Just like desktop PCs today, automotive IT environments in ten 
years might also be regarded as integrated parts of their user’s personal lifestyle. 

Beside the positive effects regarding the increased comfort of such future cars, this 
trend would also increase the interest of third parties even more to access and evaluate 
the contained person related or relatable data. Consequently, the security and espe-
cially privacy aspects will have to be well protected in these complex systems. 

We now discuss a few exemplary scenarios of misuse of privacy related data in 
automotive systems that some adversaries might be interested in even today. 

Rental car agencies or car-pools in bigger companies might increasingly intend to 
generate user profiles to facilitate customer-dependent tariff models or to even ban 
unwanted users. E.g., they could analyse each user’s personal manner of driving that 
influences issues like fine/accident risks or mechanical wear and tear by reading out 
sensitive data after each trip or by even attaching a data recorder to each car that con-
stantly stores data snapshots like the intensity of acceleration, brake or steering inputs 
(this has already been used on a voluntary basis in insurance schemes such as 
MyRate1). Even GPS coordinates from the navigation system could be recorded to 
reconstruct the routes taken, e.g. to check if the user leaves the registered routes, fre-
quently visits dangerous areas etc. Because the companies are the legal owner of the 
vehicle and already know the person to which such recorded person-relatable data 
belongs (due to the contract), the realisation of such privacy constraints is very likely. 

In future, the interest of different parties in privacy relevant data in automotive sys-
tems might increase even more. For example biometric reference samples stored by 
future automotive biometric authentication systems would have to be especially pro-
tected to prevent potential adversaries from stealing these data. Impersonators might 
use this to generate faked biometric credentials for unauthorised access. 

Also legal guidelines justify privacy protecting measures in future automotive  
IT-security concepts: In 2008, the Federal Constitutional Court of Germany  
constituted a civil right of the provision for confidentiality and integrity of IT-based 
systems (“Grundrecht auf Gewährleistung der Vertraulichkeit und Integrität  

                                                           
1 See http://auto.progressive.com/progressive-car-insurance/myrate-default.aspx 



Automotive IT-Security as a Challenge: Basic Attacks from the Black Box Perspective 149 

informations-technischer Systeme”). This might increasingly also be relevant for cars as 
more and more powerful IT-based systems. However, such legal regulations might also 
affect more legitimate purposes of automotive data collection. E.g., the work of accident 
research teams2 might be hindered, if they first had to ask the driver and/or vehicle owner 
for permission (who might be absent or not addressable because of injuries). 

3   Respecting Automotive Attacks from the Black Box Perspective 

The broad spectrum of automotive attackers can include all sorts of people with dif-
ferent skills and detail of knowledge and having a wide range of professions. A ma-
jority of the various attacks on automotive IT can be expected to be run by attackers 
from a black-box-perspective (e.g. see [3]). Independent from the level of his personal 
skills, the attacker usually does not have access to manufacturer-specific internal 
specifications. In this section we discuss this black-box-perspective by referring to 
common starting points for attacks at partially unknown automotive IT systems. We 
also address five basic attack principles and point out potential classes of attack im-
plications having to be respected in the automotive domain. 

Except for insiders, most automotive attackers have to face modern automotive IT 
systems from the black box perspective: 

• They barely have detailed technical information accessible, e.g. underlying specifi-
cations of the manufacturer 

• Consequently, they have no knowledge about detailed internal coherences 
• A lot of information is obtained by trial-and-error 
• Some attacker classes (like tuners) are highly interconnected and actively exchange 

their experiences and resources, often in public Internet forums 
• Various attackers can browse such resources for useful information and documents 

After these initial enquiries, these attackers often follow typical approaches and basic 
attack principles which we discuss in subsection 3.1. 

3.1   Automotive Attacks: Common Starting Points and Basic Principles 

Today, automotive attackers usually have physical access to the target system (or a 
system identical in construction). In isolated locations like their home garage they can 
invest (almost) arbitrary time for its analysis and for conceiving attacks. In face of the 
frequent lack of detailed information about the target’s internals, black box attackers 
can start their examinations on specific components of its IT infrastructure which 
have a (more or less) open specification and compatible equipment available. 

Such basic starting points can, for example, be found deep inside in the internals of 
a target ECU. Automotive devices often contain off-the-shelf chips for which useful 
resources are available on the Internet. One common example are data sheets by their 
manufacturers with detailed information like their pin assignments. 

                                                           
2 E.g. in the German towns Hanover and Dresden [4] such mobile teams join specific accident 

scenes to collect relevant electronic data for the investigation of accident reasons in order to 
improve the vehicle and road safety in future. 



150 T. Hoppe, S. Kiltz, and J. Dittmann 

XXavailability

Xnon-repudiation

XXauthenticity

XXintegrity

XXXconfidentiality

steal/
remove

create/
spoof

inter-
rupt

modifyreadviolated
security aspects:

XXavailability

Xnon-repudiation

XXauthenticity

XXintegrity

XXXconfidentiality

steal/
remove

create/
spoof

inter-
rupt

modifyreadviolated
security aspects:

Dest.Source

normal data flow read modify

interrupt create / spoof steal / remove

Dest.Source

Attacker

Dest.Source

Attacker

Dest.Source

Attacker

Dest.Source

Attacker

Dest.Source

Attacker

Dest.Source

normal data flow read modify

interrupt create / spoof steal / remove

Dest.Source

Attacker

Dest.Source

Attacker

Dest.Source

Attacker

Dest.Source

Attacker

Dest.Source

Attacker  

Fig. 1. Basic attack principles and violated security aspects 

Another common starting point requiring less intrusive access are the automotive 
communication networks. Most manufacturers today install standardised field bus 
technology like CAN, LIN, MOST or FlexRay. Especially for the widely used CAN 
bus system, various hard and software equipment is available. Protocols like OBD 
have partly been standardised or reverse-engineered and cheap equipment is available 
for sale (often from independent vendors) for most car brands. The spectrum of 
equipment for analysing and interacting with automotive IT ranges from self-made 
equipment and free software to professional devices and commercial development 
suites. Locating internal bus circuits in cars is usually also no difficult task. Corre-
sponding cables in the wiring harness are often apparent by their individual colour or 
can be determined on any attached ECU with reference to the pin assignments in the 
data sheets of the contained controller chips (see above). 

After obtaining basic means of access, attackers can investigate the target system in 
a more structured way. They might be able to monitor or even generate bus communi-
cation on a raw data level even without any information about the manufacturer spe-
cific syntax of the active protocols. To gather more experiences about the observed 
system, five basic attack principles are common initial strategies. These deviations 
from the intended normal data flow are illustrated in Figure 1 with a listing of security 
aspects commonly violated by such attacks. An attacker might simply read (sniff) the 
transmitted information. Active intrusions occur if he would modify the data as a man 
in the middle, interrupt the transmission, create / spoof messages (on behalf of the 
original sender) or steal / remove transmitted data. 

Wider attacks can often be interpreted as a combination. E.g., a replay attack con-
sists of a basic read attack followed by some create / spoof activity. Beside on data 
transmissions, attackers can also apply them in offline states, e.g. on data sources or 
storage places; also combinations of these two approaches are conceivable. 

3.2   The Potential Range of Automotive Attack Implications 

Compared with attacks on desktop IT systems, violations of the IT security of auto-
motive IT (being part of moving vehicles) can have more severe implications, includ-
ing the reduction of the safety of the system, its occupants and environment. 

Even if the reduction of safety might be no intended aim of the intrusive actors, 
such risks frequently arise due to the common lack of comprehension of the complex 
coherences within the overall system (which is partly also caused by the mentioned 
lack of commonly available technical specifications). We differentiate between two 
general classes of potential attack implications: 



Automotive IT-Security as a Challenge: Basic Attacks from the Black Box Perspective 151 

• Functional implications: Direct implications that the attack has on the function of 
the targeted component, service etc.. Usually identical to the desired attack result. 

• Structural implications: Indirect implications that the attack (or its functional 
implications) has on the functionality of the overall system and its environment. 
Typically these have neither been expected nor desired by the attacker (and can 
therefore differ from his actual intentions) or are accepted carelessly. 

To illustrate these issues, we now discuss two exemplary attacking scenarios: 
 

Example 1: A car seller manipulates the mileage counter (possibly using professional 
equipment) to increase the resale value and the instrumentation presents a lower mile-
age (functional implication). Because the betrayed buyer supposedly relies on this 
false information a noncompliance with the service intervals can be expected resulting 
in higher wear and tear and, consequently, repair costs. Though not intended by the 
seller in his attack, he might have been unaware of these structural implications or 
just carelessly accepted them since they don’t affect him personally. 

Example 2: A hobby car tuner wants to unlock his TV system for the usage whilst 
driving (“TV in motion”). Depending on the implementation, the TV functionality 
might be linked to the condition that the hand brake is applied. By permanently short-
cutting the corresponding signal wire to ground or by digitally setting/clearing the 
corresponding signal in the bus system, he might succeed in removing the TV restric-
tions (functional implications). However, under certain circumstances also other 
automotive devices might react on this faked input; for example, an unexpected acti-
vation of the steering lock whilst driving could pose severe safety risks not intended 
by the attacker (structural implications). 

4   Enforcing Information Leakage Today: A Practical Attack 

In this section we illustrate the black box perspective and the basic attack principles 
by presenting an information leakage attack on a central gateway ECU from a recent 
car series (built since 2005) of a big international manufacturer. It allows an attacker 
to bypass the software-based network isolation and to enforce the leakage of arbitrary 
(potentially privacy relevant) internal communication to the outside. The attack serves 
as a practical example for privacy-relevant attacks on automotive IT-networks that are 
already possible today (even from a black-box perspective) and exemplifies the in-
creasing relevance of privacy threats to automotive IT. 

4.1   Our Test Environment and Introduction of the Selected Attack Target 

Figure 2 illustrates the generic bus topology of the target car from the perspective of 
the gateway ECU, that coordinates the communication of five CAN[5] (sub-)networks 
(i.e. only specific information is transmitted amongst them like the current speeds 
from the powertrain network that are to be displayed in the instrumentation). Beneath 
performance reasons, this filtering also provides a basic level of network security by 
dividing the entire network into several (functionally divided) subnetworks. 



152 T. Hoppe, S. Kiltz, and J. Dittmann 

Misc. ECUsGateway

Powertrain network

Instrumentation network

Infotainment network

Comfort (body electronics) network

Diagnostics Interface

Misc. ECUs Misc. ECUsGateway

Powertrain network

Instrumentation network

Infotainment network

Comfort (body electronics) network

Diagnostics Interface

Misc. ECUs

 

Fig. 2. The network topology from the gateway’s perspective 

As starting point we chose the open On-Board Diagnostics interface that is acces-
sible from the car interior and directly connected to the gateway. Unlike first attacks 
we presented in the past, this attack requires no intrusive actions like hooking up any 
internal bus wires. By connecting to the CAN bus pins of the OBD II socket via a 
USB-to-CAN device we are able to receive existing and send own CAN messages. 
Due to its open accessibility, the diagnostics CAN subnetwork has to be isolated from 
the communication in the internal CAN subnetworks, which is also evident in the 
implementation of the tested gateway device: During normal operation, the regular 
internal communication is not visible from this position. Only when an attached diag-
nostics client runs a session, belonging messages can be recorded. 

4.2   Analytically Examining the Gateway from the Black Box Perspective 

To learn about the general properties of the gateway ECU and the potential of the 
Diagnostics Interface, this section introduces further black box examinations. 

Because the sole application of the basic attack principle read from this position 
does usually not reveal any information we then additionally attached a commercial 
diagnostics solution. During regular diagnostics of arbitrary internal ECUs from the 
diagnostics product, we read out the communication in the diagnostics subnetwork for 
a subsequent analysis as a first result of, the basic attack principle read. Table 1 
shows an excerpt of the CAN communication recorded after pushing the diagnostics 
software’s button for the inspection of an exemplary ECU (located in the internal 
Comfort CAN subnetwork). Table 1 lists each message’s timestamp, CAN-ID (an 11 
bit identifier indicating its content type), the size of its payload (data length code / 
DLC) and the up to 8 bytes of payload itself as raw data bytes. 

Table 1. CAN log excerpt of the beginning of a regular diagnostics session (basic read attack) 

Timestamp CAN-ID DLC Raw Data 
147.818146 
147.824188 
147.842743 
147.844910 
147.920792 
147.923233 
147.933578 

200 
22C 
33D 
300 
33D 
300 
300 

7 
7 
6 
6 
5 
1 
5 

2C C0 00 10 00 03 01 
00 D0 00 03 3D 03 01 
A0 0F 8A FF 32 FF 
A1 0F 8A FF 4A FF 
10 00 02 10 89 
B1 
10 00 02 50 89 



Automotive IT-Security as a Challenge: Basic Attacks from the Black Box Perspective 153 

Table 2. Analyses via a replay attack (a basic create/spoof attack using previously read data) 

Timestamp CAN-ID DLC Raw Data 
134.876587 
134.883987 
134.984848 
135.084930 
135.184860 
135.284851 
135.384857 
135.484833 
135.584869 
135.685104 
135.785156 
135.885345 
135.984955 

200 
22C 
22C 
22C 
22C 
22C 
22C 
22C 
22C 
22C 
22C 
22C 
300 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
1 

2C C0 00 10 00 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
00 D0 00 03 3D 03 01 
A8 

 
 

Even without the specification of the underlying protocols, an attacker from the 
black box perspective can easily derive its rough functionality. A basic assumption 
might be, that the first message from Table 1 (ID 0x200) stems from the external 
tester, which initiates the session in the client role. This can be verified by applying 
the basic create/spoof attack principle as indicated by Table 2 (injected messages are 
indicated bold): after replaying the initially observed message onto the diagnostics 
CAN bus, the car replies by sending the second message (type 0x22C) 11 times and 
then stops communicating after a final message of type 0x300. This appears to be the 
system’s reaction to our missing response after sending the initial message. 

Also when choosing other ECUs in the diagnostics software, its initial message al-
ways uses CAN-ID 0x200; only the first payload byte is varying, which therefore 
seems to be some kind of unique identifier for the device queried. This device ID is 
then used by the gateway to select the correct internal subnetwork where this request 
is to be forwarded to. Once arrived there, the destination ECU replies with a message 
which is forwarded via the gateway ECU back to the diagnostics interface. The ID of 
this message (0x22C in Table 1) obviously depends on the device ID (0x2C) from the 
request and is different for each internal ECU (which we could verify by observing 
further diagnostics sessions). 

As it can also be noticed in Table 1, after the exchange of the first two CAN mes-
sages (type 0x200 and 0x22C) the further communication exclusively uses CAN mes-
sages of the IDs 0x300 and 0x33D. Interestingly, exactly these two integer values can 
be found in Little Endian encoding located in the fifth and sixth byte of the aforemen-
tioned two initial CAN messages. This leads to the final assumption, that each session 
partner notifies the other one during this initialisation, for which CAN-ID it will be 
listening for the rest of the session. 

However, up to this point the potential of an attacker with access to the restricted 
diagnostics interface does not exceed the options he would have anyway by directly 
using a diagnostics product, which is even more comfortable than struggling with the 
raw communication. The next subsection introduces the formation of an attack based 
on the knowledge obtained so far to exceed the limited scope of the intended diagnos-
tics functionality. 



154 T. Hoppe, S. Kiltz, and J. Dittmann 

4.3   Conceiving an Exemplary Black-Box Attack on the Gateway ECU 

By modifying the previously read 0x200 initialisation message, we could practically 
verify our final assumption: After altering the fifth and sixth byte to an increased 
value of 0x301, an equivalent create/spoof attack results in the target ECU choosing 
this different CAN-ID for its reply during the diagnostics session (see Table 3). 

Table 3. Influencing message ID usage (a basic create/spoof attack using modified data) 

Timestamp CAN-ID DLC Raw Data 
20.362113 
20.371685 
… 
21.372926 
21.472362 

200 
22C 
… 

22C 
301 

7 
7 
… 
7 
1 

2C C0 00 10 01 03 01 
00 D0 01 03 3D 03 01 
… 
00 D0 01 03 3D 03 01 
A8 

 

To summarise: The gateway only forwards internal CAN messages to the open di-
agnostics CAN interface if they belong to active diagnostics sessions. Diagnostic 
testers outside the car are able to influence the CAN-ID used for the CAN messages 
to be sent back from the internal ECUs during the session. These observations might 
enable attackers to run information leakage attacks, depending on the implementation 
of the filter functions in the gateway ECU, which can follow two general approaches: 

 

• Static Filtering: Certain ranges of CAN message IDs are reserved for the exclusive 
use during diagnostic sessions. The gateway could always let pass any messages 
with these CAN-IDs (in this case this might be 0x3**) between the internal CAN 
subnetworks and the diagnostics CAN without any further checks. To respect the 
isolation from the internal communication, it has to be ensured that these message 
types are not used by any internal devices for their regular internal communication. 

• Stateful Filtering: The gateway ECU could also evaluate the session initialisation 
message pair and dynamically unlock only the two message IDs for passing during 
the length of the session. 

 

Our gateway ECU implements a stateful approach, as another simple replay attack 
confirms: Any of the previous 0x300 messages manually replayed into the respective 
internal subnetwork does not get forwarded by the gateway to the diagnostics inter-
face in the absence of an active session. Also without directly accessing internal net-
works, trying the following attack on suspicion would have confirmed this. 

If the gateway ECU performs stateful filtering of diagnostics sessions, decisions 
about passing incoming CAN messages between an internal and the diagnostics CAN 
bus system are based on its current knowledge about active sessions. If it solely relies 
on the CAN message IDs announced for the usage during the session by both session 
partners, an attacker located at the open diagnostics interface could exploit this: 

Again, he injects a session initialisation message with a forged ID for the response 
messages. But this time he selectively chooses an ID which is supposed to be already 
used within the target subnetwork for other CAN messages as part of the local inter-
nal communication. He does this based on the suspect that the gateway in this case 
can not distinguish between CAN messages belonging to the diagnostics session (as 
sent by the target ECU) and other CAN messages with the same ID (sent by any ECU 
within the target CAN subnetwork) and, consequently, will forward all these mes-
sages too for the length of the session.  



Automotive IT-Security as a Challenge: Basic Attacks from the Black Box Perspective 155 

Table 4. Basic information leakage attack (a basic create/spoof attack using modified data) 

Timestamp CAN-ID DLC Raw Data 
17.327831 
17.333843 
17.433887 
17.534733 
17.634720 
17.734713 
17.834602 
17.934696 
18.034748 
18.135729 
18.141830 
18.235039 
18.335571 
18.435036 

200 
22C 
22C 
22C 
22C 
22C 
22C 
22C 
22C 
22C 
631 
22C 
22C 
631 

7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
4 
7 
7 
1 

2C C0 00 10 31 06 01 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
1E 1E 5F 1E 
00 D0 31 06 3D 03 01 
00 D0 31 06 3D 03 01 
A8 

 
 

Table 4 shows a log of this create/spoof attack where the session initialisation mes-
sage specifies the device ID of an ECU in the Comfort CAN subnetwork and a forged 
response message ID of 0x631. Obviously, at timestamp 18.141830 an eye-catching 
additional message of type 0x631 appears. This regular message has been sent by 
some ECU within the target subnetwork (i.e. the Comfort CAN) while the diagnostics 
session was active; the gateway could not keep it apart from CAN messages being 
authentic diagnostic reply from the target ECU and, consequently, illegitimately for-
warded also this internal bus message to the outside. This way we practically demon-
strate that an attacker can create a transparent channel from internal bus networks to 
the external, restricted diagnostics port. This allows him to read out arbitrary internal 
CAN communication by only sending a single CAN message. 

4.4   Advancements of the Attack, Further Test Results and Final Remarks 

For several tests with this information leakage attack we further extended its func-
tionality and implemented a prototypical demonstrator as a virtual device within the 
automotive development, simulation and analysis environment CANoe [6] which is 
also widely used in the automotive industry. Figure 3 shows the graphical user inter-
face (GUI) of the current implementation of our prototypical attack demonstrator. By 
specifying the CAN-ID of the message type to sniff and the target subnetwork that 
should be read from, this attack can be performed with a simple button click. The 
message ID and an appropriate device ID for the respective subnetwork are automati-
cally inserted in the generated initialisation message of type 0x200 after pushing the 
“Start” button. The extended implementation additionally includes the support to keep 
the host session alive by sending additional idle-messages, which removes the limita-
tion of the described attack to 1-2 seconds due to the session time-out. If sniffed mes-
sages arrive, these are logged and, at the same time, displayed in the bottom part of 
the user interface. Figure 3 shows an active attack on the message type 0x520 from 
the instrumentation CAN subnetwork. The sniffed messages for example contain the 
current mileage value (18123 km) as hexadecimal value (0x46CB) Little Endian en-
coded in its last 3 bytes (CB 46 00). 
 



156 T. Hoppe, S. Kiltz, and J. Dittmann 

 

Fig. 3. Graphical user interface of the prototypical attack demonstrator 

In additional tests we found another flaw that even increases the potential impact 
of this attack technique: The gateway does not only accept incoming diagnostics re-
quests when arriving from the diagnostics port but also from any of the internal sub-
networks, which bears additional security risks: Any, potentially infected, device 
within any CAN subnetwork could establish regular diagnostics sessions to any other 
ECU within the car and potentially perform malicious coding alterations like enabling 
or disabling certain features. Furthermore we could prove that using our attacking 
technique it could also read out arbitrary CAN communication from different internal 
CAN networks which might not be intended to be accessible from that location. 

Furthermore, the described attacking technique also provides basic potential to in-
directly write forged messages into internal networks exploiting the side-effect that 
the internal ECU will send at least one message with the CAN-ID controlled by the 
attacker (see Table 3). Such ambiguous messages might not only be misunderstood by 
the gateway but also by other ECUs. Beneath unintended malfunctions due to such 
misinterpreted communication (unintended, structural implications according to sec-
tion 3.2), certain diagnostic response messages could possibly be provoked by an 
attacker to indirectly inject arbitrary bus messages into the target network. 

Reviewing the results of our black box examinations, a more careful implementa-
tion of the gateway ECU could have prevented its easy success. Sound measures 
would have been the restriction of the CAN IDs to a reserved range not used by other 
internal ECUs and the rejection of diagnostics sessions from internal subnetworks. In 
future, wider security measures could improve gateway security even more, e.g. by 
content inspection techniques within automotive firewall or IDS [7] components. 
However, since direct access to internal bus systems (which is not even necessary for 
the presented attack) does also not mean much additional effort to an attacker, holistic 
measures for the IT security of future cars and their internal and external communica-
tion are inevitable in the long term. In section 5 we discuss basic approaches for the 
improvement of privacy protection in future automotive systems. 

5   Privacy Preserving Measures for Future Automotive IT Security 

When considering privacy preserving measures for the automotive domain, it helps to 
first estimate the suitability of established solutions from the desktop IT. 



Automotive IT-Security as a Challenge: Basic Attacks from the Black Box Perspective 157 

Common strategies are pseudonymisation or anonymisation techniques. Usually 
requiring little computing and storage overhead, they could be considered for automo-
tive applications. However, most cars are usually expected to only have a very small 
number of entitled users, rendering these measures inappropriate in many cases, be-
cause the privacy relevant data obviously has to belong to some of the few users of 
the car. Nevertheless, these approaches can be reasonable for other applications like 
protecting privacy relevant data in the context of external C2C communication [8].  

Another approach is the encryption of privacy relevant data during communication 
and storage. This usually requires a higher computational overhead, but is applicable 
in a much wider scope since it can principally be applied to any kind of data: while 
pseudonymisation or anonymisation approaches usually involve loss of information 
(the link to the identity), encrypted data can always be transferred back to the original 
form (i.e. decrypted by any authorised entity). This way, the entire bus communica-
tion could be secured by an additional encryption layer [9]. However, since especially 
in the automotive domain there is a high relevance of attackers with physical access, 
the keys have to be especially protected (e.g. in terms of processing and storage). One 
approach currently discussed to address this is the provision of trusted automotive 
hardware platforms based on an adaptation of Trusted Computing technology to the 
requirements of the automotive domain (see [1]). 

Even given such secure hardware bases, future IT security concepts have to respect 
the entire automotive IT system in its environment in order to provide a holistic IT 
security supporting the multitude of various requirements. With reference to the diag-
nostics field addressed by this paper, the following exemplary requirements illustrate 
the complexity of potential automotive IT security policies: accesses to (wired or 
wireless) diagnostics interfaces by unauthorised persons should be prevented; regis-
tered car service stations are authorised, but may not access privacy relevant data; 
after an emergency case, only trusted and authenticated accident research teams may 
acquire the full data from the wreck. Future systems should also incorporate the pos-
sibility to completely erase privacy relevant data by the car owner. This will be im-
portant to heighten the acceptance of future automotive systems by potential users, 
who worry about potentially leaving incriminating evidence (like remaining records 
about maximum speeds and past driving times or routes). 

6   Summary and Conclusion 

In this paper we pointed out the special relevance of attacks from the black box per-
spective in the automotive domain and discussed common starting points and basic 
attack principles of such attackers. To reduce respective risks, automotive IT security 
is an emerging topic of research. With a focus on increasing threats to privacy related 
data we discussed examples such data in current and oncoming cars and referred to 
respective scenarios. We motivated the provision for privacy preserving measures as 
part of future, holistic automotive IT security concepts and practically demonstrated 
an information leakage attack to recent automotive IT, which empowers an attacker to 
read out arbitrary internal bus communication from the (usually restricted) diagnostics 
port via an enforced transparent channel. In face of wireless diagnostics solutions (e.g. 
over GSM [10]), attackers might manage to implement remote versions of similar 



158 T. Hoppe, S. Kiltz, and J. Dittmann 

attacks, if the wireless protocols are not secured well enough. We used this example 
to illustrate the black box perspective and its main steps with reference to the basic 
attack principles. We finally discussed basic approaches of privacy-preserving strate-
gies in the context of automotive IT systems and their common environment. 

As our practical demonstration showed, effective attacks on automotive IT can be 
conceived by ambitious attackers even without the underlying specifications avail-
able. The provision for holistic security concepts is one of the main challenges within 
automotive IT research. On a secure basis, several aspects of automotive IT security 
will have to be realised to be compatible with the multifaceted environments, use 
cases and technical progress during the life time of such future vehicular IT systems. 
The provision of privacy protecting measures to reduce the threats to the expected 
multitude of personal information stored and processed by future automotive IT sys-
tems is only one of these oncoming challenges. 

 

Acknowledgements. The work described in this paper has been supported in part by 
the European Commission in the context of the programme COMO - Competence in 
Mobility (EU/EFRE) under Contract No. C(2007)5254. The research about basic 
attack strategies was additionally supported by the German BMBF (Project ViER-
forES, No. 01IM08003). The information in this document is provided as is, and no 
guarantee or warranty is given or implied that the information is fit for any particular 
purpose. The user thereof uses the information at its sole risk and liability. 

References 

1. Wolf, M., Weimerskirch, A., Wollinger, T.: State of the Art: Embedding Security in Vehi-
cles. EURASIP Journal on Embedded Systems 2007, Article ID 74706, 16 (2007) 

2. Büker, U., Schmidt, R., Fahreridentifikation, B.: Automotive Security, VDI-Berichte Nr. 
2016. In: Proceedings of the 23. VDI/VW Gemeinschaftstagung Automotive Security, 
Wolfsburg, Germany, November 27-28. VDI-Verlag (2007) 

3. Hoppe, T., Dittmann, J.: Vortäuschen von Komponentenfunktionalität im Automobil: Safety- 
und Komfort-Implikationen durch Security-Verletzungen am Beispiel des Airbags. In: Si-
cherheit 2008; Sicherheit - Schutz und Zuverlässigkeit, Saarbrücken, Germany (2008) 

4. VUFO-Verkehrsunfallforschung an der TU Dresden GmbH(January 2009),  
  http://www.verkehrsunfallforschung.de/ 

5. BOSCH CAN (January 2009), http://www.can.bosch.com/ 
6. Vector Informatik CANoe (January 2009),  

  http://www.vector.com/vi_canoe_de.html 
7. Hoppe, T., Kiltz, S., Dittmann, J.: IDS als zukünftige Ergänzung automotiver IT-

Sicherheit. In: Horster, P. (ed.) DACH Security 2008; Bestandsaufnahme, Konzepte, An-
wendungen, Perspektiven; Syssec (2008) 

8. Weyl, B.: Secure and Privacy-Preserving Car-to-X Applications: C2C-CC Baseline Con-
cepts, escar – Embedded Security In Cars, Munich, Germany, November 6-7 (2007) 

9. Wolf, M., Weimerskirch, A., Paar, C.: Sicherheit in automobilen Bussystemen, Automo-
tive - Safety & Security 2004, Oktober 6-7. Universität Stuttgart (2004) 

10. BMW Teleservice Diagnosis and Help (Teleservice of the BMW Connected Drive sys-
tem) (January 2009), http://www.bmw.com/com/en/insights/technology/ 
connecteddrive/bmw_teleservices_2.html 

 



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 159–172, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Safety Requirements for a Cooperative Traffic 
Management System: The Human Interface Perspective 

Thomas Gruber, Egbert Althammer, and Erwin Schoitsch 

Austrian Research Centers GmbH - ARC, Austria 
{thomas.gruber,egbert.althammer,erwin.schoitsch}@arcs.ac.at 

Abstract. Traffic management systems are complex networks integrating sen-
sors, actors, communication on different levels and humans as active part, con-
sisting of road-side infrastructure coupled with advanced driver assistance  
systems and on-board data collection facilities.  

COOPERS1 has the objective of co-operative traffic management by implement-
ing intelligent services interfacing vehicles, drivers, road infrastructure and highway 
operators. These services have different levels of criticality and safety impact, and 
involve different types of smart systems and wireless communications. In the initial 
phase of the COOPERS project a RAMSS2 analysis was carried out on road traffic 
scenarios, services and communications. The analysis yielded that the HMI (Human 
Machine Interface) is one of the major threats to reliability. 

After a short overview on COOPERS and the RAMSS analysis, this paper de-
scribes the risks of the HMI and human factors in the specific situation of a driver 
and gives concrete recommendations for the OBU (On-Board Unit) user interface. 

Keywords: RAMSS, dependability analysis, co-operative traffic management, 
traffic telematics, road safety, human factors, HMI dependability. 

1   Improving Road Traffic Safety by a Co-operative Integrated 
Traffic Management System 

In the sixth framework program of the European Commission, one of the thematic 
main lines deals with road traffic safety. Several projects funded by the 6th IST 
Framework Program address this topic, but COOPERS 1] takes a specific position 
with unique ways and methods to attain a safety improvement through an intelligent 
network which exploits existing technologies for co-operative services.  

COOPERS prepares the way for improving road safety on motorways at an afford-
able cost. Based on existing technologies and infrastructure, the driver is provided 
with real-time data on the current traffic situation ahead (see 1]). In each car, a  
 

                                                           
1 Research supported in part by COOPERS (Co-Operative Networks for Intelligent Road 

Safety, www.coopers-ip.eu), an integrated project funded by the EU within priority “Informa-
tion Society Technologies (IST)” in the sixth EU framework programme (contract no. 
FP6-IST-4-026814). 

2 Acronym for Reliability, Availability, Maintainability, Safety and Security. 



160 T. Gruber, E. Althammer, and E. Schoitsch 

 

Fig. 1. Intelligent infrastructure and smart cars plus individual location based services – I2V 
and V2I communication 

receiver for the I2V (infrastructure to vehicle) communication encapsulated in an 
OBU and a display offer information about accidents, traffic jams, road construction 
sites and other location and time related events. Only messages relevant for the driver 
on a particular segment are passed on. No irrelevant data about traffic congestions or 
accidents in remote areas of the country is shown like in traffic radio broadcasting 
services. The information is accurate and precise both in terms of location and time. 

COOPERS started with an assessment of existing wireless, in-car and roadside 
technologies, of the possible safety improvement and a selection of services most 
appropriate for supporting the new approach like for instance "Accident warning", 
"Weather condition warning", "In-vehicle variable speed limit information" or "Rec-
ommended next link". 

COOPERS services are expected to reduce the risk in road traffic from the current 
level to a significantly lower value, expressed by number and severity of accidents, 
injuries and fatalities counts. However, the implementation of a service may be faulty, 
and it is even possible that the driver is exposed to a higher risk by using the service 
than the risk without COOPERS. This may be caused, for instance, by dangerous 
reactions of the driver as a consequence of wrong or misinterpreted information, by 
degraded attention through distraction by the COOPERS display or through full reli-
ance on the in reality possibly unreliable COOPERS services. Therefore a RAMSS 
analysis was performed in 2006 at an early stage of the project. 

2   RAMSS Analysis for COOPERS 

Methodology as well as the results of the COOPERS RAMS analysis are described in 
detail in 3] and 4], so here we give only a short abstract. 

The RAMSS analysis was intended to give advice on how to construct COOPERS 
services, regarding their functional architecture as well as the selection of appropriate 



 Safety Requirements for a Cooperative Traffic Management System 161 

technologies. By introducing the services mentioned above a safety gain of the current 
road traffic situation is expected. It was clear that the quality aspect of safety played 
the major role and was therefore the main objective of our analysis. 

From a technical point of view, all COOPERS services represent an information 
transfer through the signal flow path as depicted in Fig. 2, and it is evident that the 
availability of the single node functions and of each signal flow through the edges in 
the information flow path will play the key role. 

 

Fig. 2. Signal flow path of the data 

In any safety or reliability analysis the first step is to define the borders of the sys-
tem and the undesired event. It had been decided early in the project that COOPERS 
services would NOT have direct influence on the car, so we defined that the car itself 
is not in the scope. As for the driver, we focused on granting positive preconditions 
for the correct perception of the COOPERS services. The proper reaction should be 
supported by creating conditions under which the driver is most likely to react cor-
rectly, while details should be investigated by driver behavior analyses in the final 
stage of the project - the COOPERS service demonstrations in six European countries. 
From the above defined scope of consideration follows that the unwanted event is the 
driver reacting in an inappropriate manner to a COOPERS service message, whether 
he does not receive or perceive the information generated by some sensor system or 
he is subjected to conditions which hamper him from reacting adequately. 

We applied the generic safety standard EN ISO/IEC 61508 [2] to the signal path 
and interpreted the COOPERS services as safety functions. The safety standard pre-
scribes measures and methods to reduce the risk from an unacceptably high level to 
one below the so-called "tolerable risk", which is typically in the magnitude of the 
natural risk to which a human is exposed without the system. For our specific case a 
modified risk reduction approach had to be chosen: In COOPERS, we start from a 
risk level which society already considers tolerable, and the services are expected to 
reduce the risk even further. 

Consequently, the question arises why we investigate system safety whilst the risk 
with COOPERS is expected to be even below an already accepted level. Well, the 
reason is the validity of the assumption that COOPERS really reduces risk. The im-
plementation may be faulty, services may show wrong or contradictory information, 
and - finally - drivers may disregard or misinterpret the warning messages or simply 
not understand them in terms of content, location and time.  

As a first step a Preliminary Hazard Analysis (PHA) was performed to investigate 
the co-operative system with the intention to identify the hazards of road traffic. 
(Read more about the PHA method in [5].) It became clear that the main risks arise 
from stored kinetic energy (vehicle collisions) and we may neglect rarely emerging 
hazards like chemical energy from fuel transports and the like. 

The second and much more detailed step was a HAZard and OPerability analysis 
(HAZOP). (A detailed description of this method can be found in [5], too.) Each node 

Car Sensor Processing TX RX Display Driver 

Perception Radio    link



162 T. Gruber, E. Althammer, and E. Schoitsch 

in the signal flow path (cf. Fig.2) was analyzed with respect to reliability and avail-
ability, and the risks associated with delayed and distorted messages were analyzed. 
Still there were no final decisions made about the technologies, but it was evident that 
all electronic components expose a reliability of at least one magnitude higher than 
the one of the nodes and paths with the lowest reliability and availability values: The 
wireless connection and the perception of the driver.  

The comparably low reliability and availability of wireless data transfer was treated 
in several work packages of COOPERS. A parallel use of two diverse wireless chan-
nels was discussed but considered too expensive. Therefore, the services were de-
signed fault-tolerant against temporary unavailability of wireless connections. 

The driver is the other comparably unreliable node in the signal flow path; we 
therefore made an extensive analysis of the requirements to the human machine inter-
face HMI, taking into account various aspects of human error. Below, this analysis 
will be described in detail. 

3   Human Factors in COOPERS 

3.1   Human Perception 

Driving on a motorway is a highly complex task because of the large amount of in-
formation the driver has to face. Most information is visual input (like road vehicles, 
pedestrian, signs, passing scenery, map), some is auditory input (radio, talking, en-
gine, wind noise, other cars), some is tactile input (vibrations, steering wheel, throttle 
control, brake control, acceleration, gearshift), and there is also some internal input 
(remembering directions, thoughts, plans). Thereby the human has to rely on limited 
resources like: perception, attention, and memory. 

Human information processing can be modeled by four stages as depicted in Fig.3. 
 

Sensory 
Processing

Decision
Making 

Perception / 
Working 
Memor

Response 
Selection y

 

Fig. 3. Simple four-stage model of human information processing [6] 

In each stage of this model specific tasks are carried out [7]:  
 

1) Sensory Processing: Acquire information, detecting and registering sensa-
tions. The time of correct detection decreases with greater signal intensity 
(brightness, contrast, size, loudness, etc.) and is faster for auditory signals 
than for visual ones. 

2) Perception/Working Memory: Analyze information and identify the situa-
tion; apply cognitive functions to the information; recognize the meaning of 
the sensation. Here the time increases with low signal probability, uncer-
tainty (signal location, time or form), and surprise. Additionally when there 



 Safety Requirements for a Cooperative Traffic Management System 163 

are multiple possible signals and responses, it is generally much slower than 
simple sensations. 

3) Decision Making: Decide which response to make and program the move-
ment. Response selection generally slows down under choice when there are 
multiple possible responses. Conversely, practice decreases the required 
time. 

4) Response Selection: Execution of functions, choice of action or movement 
to be implemented. The more complex the movement, the longer the move-
ment will take. Increased arousal and practice decrease movement time. 

3.2   Human Error  

3.2.1   Classification of Human Error  
According to M. Green [8], three principal types of human errors can be distinguished: 
- 

1) Perceptual Errors: Critical information is below the threshold to be no-
ticed, e.g. too dim, blinded by glare, low contrast, or the driver makes a per-
ceptual misjudgment, regarding speed, distance or curve radius. 

2) Skill-based Errors: Driver fails to attend or notice critical information, be-
cause his mental resources were focused elsewhere, misordering of steps in 
procedures, the manner or the technique one uses when driving a vehicle. 

3) Decision Errors: These are procedural errors (misapplied or in inappropriate 
circumstances), poor choices (simply put, sometimes we chose well, and 
sometime we do not – or even do not chose at all), and problem solving er-
rors, e. g. when the problem is not well understood, and formal procedures 
and response options are not available. 

3.2.2   Unsafe Acts Caused by Humans 
The three types of errors enumerated above match with those defined in the Human 
Factors Analysis and Classification System (HFACS), which is a general human error 
framework for classifying aviation accidents. It has been developed and used within 
the U.S. military, applied to commercial aviation accident records and proved to be a 
valuable tool in the civil aviation area. But it makes also sense to apply the classifica-
tion scheme in other areas, like in COOPERS. 
   

 

Fig. 4. Human Factors Analysis and Classification System (HFACS) 



164 T. Gruber, E. Althammer, and E. Schoitsch 

Apart from the three kinds of errors described above, the HFACS distinguishes two 
further types of unsafe acts, confer "Violations" in Fig. 4. In contrast to errors, viola-
tions represent the willful disobedience of the (legal) rules and (traffic) regulations. 

 

1) Routine Violations: These are habitual by nature and are often tolerated by 
the authority (e.g. always driving 10 km/h faster than the legal speed limit), 
sometimes also known as “bending the rules”. 

2) Exceptional Violations: These are isolated deviations from rule-
conformance; they do not necessarily characterize an individual’s behavior 
and are generally not condoned by authority. The unexpected nature of ex-
ceptional violations makes them difficult to predict and manage. Therefore 
this type of violation was not considered further for COOPERS. 

Within each of the four stages of the model of human information processing, errors 
can occur. 

Other authors like Jens Rasmussen ([14], [15]) distinguish between different levels 
of human performance and correlate them to required attention and familiarity with 
the task, cf. Fig.5. It is evident that knowledge-based actions are associated with the 
highest error probability, but most actions required from a car driver are rule based 
like obeying traffic signs, or skill-based like changing the gears. 

3.2.3   Human Error  Probability 
It is difficult to obtain valid reliability figures for humans because available data 
rarely stem from field experience but mostly from simulations and laboratory studies, 
which yield distorted results due to the artificial conditions under which they are 
measured.  

Rasmussen gives a first clue about error probabilities for different kinds of actions, 
cf. Fig.5. But error probability depends also on factors like environmental conditions 
and workload. P. J. Comer and others (cf. [9]) investigated human error in the domain 
of petroleum platform workers; the error probability values he found depend on dif-
ferent types of human behavior under various conditions and are shown in Table 1 
above.  

Attention

Familiarity

Knowledge-based

error rate ≈ 1 : 2
Inaccurate mental model

error rate ≈ 1 : 1,000
Misinterpretation

error rate ≈ 1 : 10,000
Inattention

Rule-based
Skill-based

H u m a n   e r r o r

 
Fig. 5. Jens Rasmussen's human performance model 



 Safety Requirements for a Cooperative Traffic Management System 165 

Table 1. Range of human error probability 

Type of Human Behavior 
Human Error 
Probability 

Extraordinary errors – Those for which it is difficult to 
conceive how they could occur. Stress free, with powerful cues 
pointing to success. 

10-5

Error in regularly performed, commonplace, simple tasks with 
minimum stress. 

10-4

Errors on commission, such as pressing the wrong button or 
reading wrong display. Reasonably complex tasks, little time 
available, some cues necessary. 

10-3

Errors of omission where dependence is placed on situation 
cues and memory. Complex unfamiliar tasks with little 
feedback and some distraction. 

10-2

Highly complex task, considerably stress, little time available. 10-1

Process involving creative thinking, unfamiliar, complex 
operations where time is short and stress is high. 

1 … 10-1

 

 
Although this table was developed for a different industrial sector the behavior 

types match well with the situations of a driver in road traffic, and the values can 
therefore be used for assessing the significance of human error in vehicle based  
systems. 

What can be clearly seen from the probability data in Table 1 is that there are ex-
ternal factors, which heavily influence the reliability of people. The environment, for 
example, affects the performance, which means for example that the human body 
performs best in a fairly restricted temperature range. 

Table 2. Human error probability and stress [16]  

Increase of error probability  

Stress level with experience without experience 

   Very low (monotony) * 1 * 2 

  optimal * 1 * 1 

  high * 2 * 4 

  extremely high * 5 * 10 

 



166 T. Gruber, E. Althammer, and E. Schoitsch 

Stress and fatigue can further impair human behavior, which depend often on the 
risk taking attitude, tight economic or personal conditions like the pressure to meet a 
schedule. Table 2 gives factors by which error probability increases under stress con-
ditions. Experienced people are less affected by stress, and interestingly extremely 
low stress, i.e. monotony, can even increase the error rate, at least for inexperienced 
persons. 

4   COOPERS HMI Construction 

Following the results of the RAMSS analysis, and considering the role which the 
driver plays with respect to his ability to perceive the information provided by COO-
PERS correctly and to be in a state to react properly, we had to pay special attention 
to the HMI. Therefore, a work group within the COOPERS development work pack-
age was installed in 2007 which discussed the HMI aspects applicable to the COO-
PERS OBU and finally formulated requirements for hardware as well as software, 
which are described in this paper. 

4.1   RISKS in the HMI 

In the specific environment and situation of the driver in a car, the HMI is inherently 
associated with a considerable number of risks: 
 

 Delayed information 
 Confusion through information overload 
 Visibility issues like direct sunlight or glare 
 Misunderstanding displayed information, e.g. due to language problems or 

unclear symbols 
 Lack of clarity or ambiguity cause a slow understanding process distracting 

the driver from his primary task 
 Non-intuitive interface causes difficult handling 
 Driver distraction by other sources, e.g. video playing 

 

All these risks hamper correct information perception, and they all may finally result 
in a wrong driver reaction. Impairments of the visual sense like short-sightedness and 
far-sightedness, glaucoma, cataract, colour-blindness or reduced range of visibility 
after a cerebral insult were not in our scope. 

4.2 The Range of Human Visual Perception 

Research at Fraunhofer FIRST in Berlin (cf. [11]) showed in which horizontal and 
vertical angles humans are able to recognize visually presented information. 

It was no surprise that the recognition of text is limited to a very narrow angle of 
+/- 10° in vertical as well as horizontal direction. Apart from that, the eye must focus 
on the text in order to read it, which distracts the driver's attention from the road. The 
eye needs time for accommodating, then for reading the text and finally for focusing 
back on the road. 
 



 Safety Requirements for a Cooperative Traffic Management System 167 

 

Fig. 6. Human ability to recognize text and color information 

In contrast, the range of color recognition spans a much wider angle of +/- 60° 
horizontally and +30°/-45° vertically. Coloured elements placed in this visible field 
are discernable without loss of focus; so it is possible to focus on the traffic and at the 
same time to recognize the coloured information on the screen. And humans' visual 
perception is able to recognize colours within only 200-300ms. 

The screen in a car is normally mounted on the dash board at a horizontal angle of 
15-30° and at a vertical angle of approximately ±20°. The consequence on the COO-
PERS HMI was clear: Use colour symbols and not text. 

4.3   European Standard for Automotive HMI Safety and Usability 

Since the late 1990s, the European Commission has elaborated a recommendation  
for in-car information systems, which was issued in 2007 as "Commission Recom-
mendation of 22 December 2006 on safe and efficient in-vehicle information and 
communication systems, see [13]. This recommendation is an update of the European 
Statement of Principles on Human Machine Interface (1999) and describes on a ge-
neric level how the service interaction with the driver shall be implemented; it sug-
gests driver training and gives advice regarding user as well as installation manuals 
issues. The EU recommendation was a valuable source for many of the COOPERS 
HMI requirements. 

4.4   COOPERS HMI Requirements 

4.4.1   Overview 
The following Fig. 7 gives a concise overview on which factors have to be considered 
when selecting properties for a display. Note that additional decisions had to be made 
for the keyboard, for the use of audio displays (sound), and for the possible use of 
haptic displays. Moreover, critical aspects of information presentation had to be  
considered. 

4.4.2   Types of Displays 
For COOPERS, several variants of displays were considered, based on the proposed 
devices for implementing the electronic in-car equipment: 

 



168 T. Gruber, E. Althammer, and E. Schoitsch 

 
Fig. 7. Essential properties of visual displays 

 Graphics display integrated in the OBU 
 Graphics display integrated in the dashboard 
 External graphics display 
 Graphics head-up display integrated with the windscreen 
 Alphanumeric display integrated in OBU. 

 

Text displays were excluded, due to the narrow visibility angle as described in section 
4.2, the longer time required to understand them, and also potential language prob-
lems. Head-up displays are costly and therefore not preferred. And a solution inte-
grated in the dashboard behind the steering wheel was considered less desirable than a 
lateral location because research showed that it takes more time for accommodation to 
look down than to look aside. So the recommendation was finally an external graphics 
color display mounted on the dashboard in a lateral position. 

4.4.3   Display Size 
The ideal size is from 5" upwards, typical displays have a diagonal of between 5 and 7 
inches. For nomadic devices like personal digital assistants (PDA) or enhanced mo-
bile phones, 4" is also acceptable. There are larger displays with good usability, but 
when mounted on top of the dashboard they may hamper free sight through the wind-
screen. And at least in Sweden there are even legal restrictions with respect to the 
maximum size of on-top-of-dashboard mounted displays. 

For the pixel resolution, a minimum of 320*240 is recommended. 

static 

black & white 
animated 

diagonale in inch 

visual presentation as... 

pixel resolution

colour + pixel depth  
visual display

symbols moving 

flashing screen colour 

screen visibility brightness 

contrast 

anti-reflex coating angle of viewing 

adaptability to day/night 

size 

text

on top of dash board 

integrated in dash board 

head-up display 

location 

automatic dimming 

manual dimming 



 Safety Requirements for a Cooperative Traffic Management System 169 

4.4.4   Colour 
Colour is clearly preferred to black and white displays as - on the one hand - traffic 
signs are usually in colour, and - on the other hand - research gave clear evidence that 
colour can be recognized in a very wide angle of view, cf. section 4.2. A restriction to 
a limited set of colours is a software question and had therefore no influence on the 
OBU hardware decision. Anyway, eight bit colour was considered adequate. 

4.4.5   Symbols  
Symbols are better than text as they are easier to understand. Text should preferably 
only be used for additional information. The symbols shall be identical with the na-
tional traffic signs displayed on VMS (variable message signs). The national set of 
signs displayed on the on-board unit shall be configurable. The European and many 
other states have adopted the catalogue of traffic signs contained in the "Vienna Con-
vention on Road Signs and Signals" of 1968 [17]. This standard defines the shape and 
the content of traffic signs and leaves only little space for choosing between colour 
schemes or between slightly modified graphic symbol variants. At least the symbols 
for moving traffic, which are relevant to the COOPERS services, can be well recog-
nized also by drivers with various kinds of colour-blindness. 

Usually driver distraction should be minimized by use of static symbols. Animated 
symbols are reasonable only for urgent messages. If moving symbols are used the 
movement must be meaningful. 

4.4.6   Aspects of Information Presentation 
Different presentation of critical and non-critical messages is desirable; they can be 
distinguished by animation and audio information. The latter is highly recommended. 
Symbols for hazards shall be displayed twice as big as speed limit w. r. t. area of the 
bounding rectangle (1.41. times length and width). 

Driver distraction is an issue; information overload must be avoided by prioritiza-
tion if several messages have to be shown simultaneously. Symbols on the display 
shall never obscure one another, and their number shall be limited to a maximum of 
five. Derived from the Gestalt principles [12], the speed limit symbol shall always 
appear at the same fixed position, which must not be occupied by hazard warnings, 
and the space for hazard warnings shall not be occupied by a speed limit sign. 

4.4.7   Visibility / Contrast in Sunlight and Night  
Visibility and contrast in sunlight as well as night is an important issue. Many modern 
devices expose excellent image quality including adaptive abilities for various light 
situations. Standard VGA (Video Graphics Array) screens usually don't offer a com-
parably high quality. A relevant aspect is also the anti-reflex coating. COOEPRS 
partners made the experience that an experimental comparison of the brightness of 
different displays in direct sunlight is necessary as the numeric brightness values in a 
data sheets may be misleading. 

Today only part of the displays has automatic dimming; the rest can be dimmed 
manually. Of course, the COOPERS software might control brightness using a sepa-
rate light sensor. But for the COOPERS prototypes on the test sites high display qual-
ity and automatic dimming does not play such an important role as it will for future 



170 T. Gruber, E. Althammer, and E. Schoitsch 

consumer versions. So we considered these properties for the COOPERS prototype 
OBU of minor relevance. 

4.4.8   Input Devices 
The following options were taken into consideration: 
 

 touch screen 
 hard keys 
 remote control 

 

For simple yes/no decisions hard buttons are as good as touch screens. For more com-
plex decisions touch screens are recommended. For most COOPERS services there is 
not much input expected.  

A remote control is considered not very practical as it may be displaced. 

4.4.9   Displays, Sound 
We can distinguish between different types of audio displays 
 

 Independent external loudspeaker 
 Loudspeaker coupled with car radio (mobile phone input via cable or Blue-

tooth) 
 Shared use of car radio loudspeaker 
 Independent headset 

 

and different kinds of sound 
 

 Beep tone 
 Speech synthesizer 

 

For critical information an audible message is highly recommended, but too much 
sound is nasty and causes the driver to turn off the loudspeaker. The decision between 
simple warning tones and speech generation is a software question and additionally a 
cost factor. Muting the car radio is recommended, the mobile phone input shall be 
used. A headset is not very practical. 

4.4.10   Haptic Displays 
Following types of haptic displays were considered: 
 

 Actuator for haptic sensation, e.g. trembling steering wheel or seat 
 Mechanical reaction of a car HMI component, e.g. accelerator pedal reaction 

 

Haptic displays may distract the driver's attention because the reason of the haptic 
sensation is often not clear. A tremble may, for instance, be misinterpreted as a tech-
nical defect like a flat tire. For these reasons haptic displays are not recommended. 

5   Conclusions and Future Work 

In this paper, the basic principles of human perception and human error have been 
outlined shortly. Based on the COOPERS RAMSS analysis [3], the driver has been 
detected as one of the weakest links in the information flow chain. The risks in the 
OBU have been identified and analyzed, and finally a set of COOPERS HMI re-
quirements has been elaborated. 



 Safety Requirements for a Cooperative Traffic Management System 171 

The requirements outlined here have been implemented in the COOPERS OBU 
prototype and - as a next step - need to be validated. If the HMI really supports the 
driver in a satisfactory - and especially safe - manner will be investigated in the 
COOPERS demonstrations in 2009. These will be performed by COOPERS partners 
who are or have close relations to road operators in Austria, Belgium, France, Ger-
many, Italy and the Netherlands. A specific service called "International service hand-
over" will demonstrate the interoperability when driving across national borders, i.e. 
there is an information exchange between neighbouring road operators in order to 
grant seamless traffic information. Measurement of physiological parameters of the 
drivers as well as evaluation of questionnaires will eventually prove the quality of the 
requirements presented in this publication. Further work will be based on the results 
of the demonstrations. 

 
Acknowledgments. The research for the COOPERS HMI requirements was collected 
in a special workgroup and would not have been possible without the valuable contri-
butions of several project partners. I would like to express my gratefulness to all who 
contributed to this research, in particular 
o Anne Bolling, Selina Mårdh and Matthias Hjort of Statens väg- och transport-

forskningsinstitutet in Linköping, Sweden 
o Birgit Kwella, Norbert Pieth and Matthias Schmidt of Fraunhofer-Gesellschaft 

zur Förderung der angewandten Forschung e.V. in Berlin, Germany, 
o Marianne Bezoen of ARS Traffic and Transport Technology B.V. in Leid-

schendam, The Netherlands, 
o and to Jörg Worschech who was that time with Efkon AG in Graz, Austria. 

References 

1. http://www.coopers.at 
2. EN ISO/IEC 61508, Functional Safety of Electrical/Electronic/Programmable Electronic 

Systems, Part 1 – Part 7 (1998 – 2001)  
3. Selhofer, A., Gruber, T.: COOPERS RAMS Analysis Safecomp (2007) 
4. Gruber, T., Althammer, E.: Sicherheitsanforderungen und Validierung eines kooperativen 

integrierten Verkehrsmanagementsystems. In: Proceedings Informationstagung Mikroelek-
tronik ME 2008, Vienna, pp. 320–326 (2008) 

5. American Institute of Chemical Engineers, Center for Chemical Plant Safety. Guidelines 
for Hazard Evaluation Procedures. DC, American Institute of Chemical Engineers, Wash-
ington (1992) 

6. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human 
interaction with automation. IEEE Transaction on Systems, Man, and Cybernetics A30(3), 
286–295 (2000) 

7. Green, M.: How Long Does It Take to Stop? Methodological Analysis of Driver Percep-
tion-Brake Times. IEEE Transportation Human Factors 2(3), 195–216 (2000) 

8. Green, M., Senders, J.: Human Error in Road Accidents (2003),  
  http://www.visualexpert.com/Resources/roadaccidents.html 

9. Comer, P.J., Kirwan, B.J.: A Reliability Study of a Platform Blowdown System. In: Auto-
mation for Safety in Shipping and Offshore Petroleum Operations. Elsevier, Amsterdam 
(1986) 



172 T. Gruber, E. Althammer, and E. Schoitsch 

10. Nielsen, J.: Usability Engineering. Academic Press, London (1993) 
11. Rettinger, C.: How to provide maximum possible guidance while driving; ITS in Europe, 

Hannover (June 2005) 
12. Rock, L., Palmer, S.: The legacy of gestalt psychology. Scientific American 263, 84–90 

(1990) 
13. Commission Recommendation of 22 December 2006 on safe and efficient in-vehicle in-

formation and communication systems, update of the European Statement of Principles on 
human machine interface, 2007/78/EC  

14. Rasmussen, J.: Human Errors. A taxonomy for Describing Human Malfunction in Indus-
trial Installations. Journal of Occupational Accidents 4, 311–333 (1982) 

15. Rasmussen, J.: Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other Dis-
tinctions in Human Performance Models. IEEE Transactions on Systems, Man, and Cy-
bernetics SMC-13(3) (May/June 1983) 

16. Interdisziplinäres Zentrum für Verkehrswissenschaften, Universität Würzburg  
17. Vienna Convention on Road Signs and Signals, United Nations (1968)  

 



The COMPASS Approach: Correctness,

Modelling and Performability of Aerospace
Systems�

Marco Bozzano1, Alessandro Cimatti1, Joost-Pieter Katoen2,
Viet Yen Nguyen2, Thomas Noll2, and Marco Roveri1

1 Fondazione Bruno Kessler, Trento, Italy
Tel.: +39 0461 314367; Fax: +39 0461 302040

bozzano@fbk.eu
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

Abstract. We report on a model-based approach to system-software co-
engineering which is tailored to the specific characteristics of critical on-
board systems for the aerospace domain. The approach is supported by a
System-Level Integrated Modeling (SLIM) Language by which engineers
are provided with convenient ways to describe nominal hardware and
software operation, (probabilistic) faults and their propagation, error
recovery, and degraded modes of operation.

Correctness properties, safety guarantees, and performance and de-
pendability requirements are given using property patterns which act as
parameterized “templates” to the engineers and thus offer a comprehensi-
ble and easy-to-use framework for requirement specification. Instantiated
properties are checked on the SLIM specification using state-of-the-art
formal analysis techniques such as bounded SAT-based and symbolic
model checking, and probabilistic variants thereof. The precise nature
of these techniques together with the formal SLIM semantics yield a
trustworthy modeling and analysis framework for system and software
engineers supporting, among others, automated derivation of dynamic
(i.e., randomly timed) fault trees, FMEA tables, assessment of FDIR,
and automated derivation of observability requirements.

1 Introduction

The design of modern space missions and systems poses fierce challenges. On the
one hand, the involved systems are clearly critical, and huge amounts of money
are at stake. On the other hand, the design involves the integration of a large
number of heterogeneous requirements (e.g. functional correctness, dependabil-
ity, observability, performance), for which different teams are responsible, and
that often do not communicate in the early stages of the process.

In this paper, we describe an integrated, model-based methodology for system-
software co-engineering, which is tailored to the specific characteristics of crit-
ical on-board systems for the space domain. The approach covers modeling,
� Funded by ESA/ESTEC under Contract No. 21171/07/NL/JD.

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 173–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



174 M. Bozzano et al.

functional correctness, and performance analysis. In terms of modeling, the ap-
proach is based on a System-Level Integrated Modeling (SLIM) language. The
SLIM language is inspired by the well-known AADL [30] and provides engineers
with convenient ways to describe nominal hardware and software operation, hy-
bridity, (probabilistic) faults and their propagation, error recovery, and degraded
modes of operation.

A fundamental feature of the approach is model extension: starting from a
nominal model of the system, and a set of possible faults, the extension operator
is able to generate a comprehensive description combining both the nominal
and the faulty behaviours of the model. The SLIM language also allows for a
comprehensive representation of partial observability, necessary to describe the
actual sensing capabilities at the disposal of an on-line monitoring system.

The SLIM language allows to describe discrete dynamics, real time, and con-
tinuous dynamics, both in a qualitative and in a probabilistic fashion. A formal
semantics allows to precisely characterize the complete set of nominal and non-
nominal behaviours of the model, and opens up the possibility to apply a wealth
of formal verification techniques for various forms of analysis. These include sym-
bolic model checking for functional verification and formal requirements analysis,
FTA and FMEA, testability, and performance analysis.

The activity described in this paper is inspired by the COMPASS project1

(Correctness, Modeling, and Performance of Aerospace Systems). The project
is in response to an invitation to tender by the European Space Agency. The
methodology described in this work is made practical by a comprehensive toolset,
called the COMPASS toolset, based on state of the art tools in verification, such
as NuSMV [26], FSAP [19], Sigref [31], and MRMC [25]. The toolset and the
methodology are currently under industrial evaluation and will be applied to
several case studies by a major industrial developer of aerospace systems.

The paper is structured as follows. In Section 2, we describe the features of the
SLIM language. In Section 3, we discuss how the various analyses can be reduced
to (qualitative and quantitative) problems in formal verification. In Section 4,
we present the structure of the COMPASS toolset. Finally, in Section 5 we draw
some conclusions and outline directions for future work.

2 The Modeling Language

The System-Level Integrated Modeling (SLIM) language [7] has been designed
in order to provide a cohesive and uniform approach to model heterogeneous
systems, consisting of software (e.g., processes and threads) and hardware (e.g.,
processors and buses) components, and their interactions. Furthermore, it has
been designed with the following essential features in mind.

– Modeling both the system’s nominal and non-nominal behavior. To this aim,
SLIM provides primitives to describe software and hardware faults, error
propagation (that is, turning fault occurrences into failure events), sporadic

1 http://compass.informatik.rwth-aachen.de

http://compass.informatik.rwth-aachen.de


The COMPASS Approach: Correctness, Modelling and Performability 175

������ Battery

����	
��

empty: �	� ���� ��
�;

voltage: �	� ���� ��
� 
���;

�� Battery;

������ ������������ Battery.Imp

�	���������

energy: ���� ����	�	� �������� 100.0;

�����

charged: ������ ����

����� energy ’ = -0.01 �� energy >= 20;

depleted : ����

����� energy ’ = -0.015;

�
�������

charged -[��� energy >= 15

��� voltage := f(energy)]-> charged;

charged -[empty ��� energy <20]-> depleted ;

depleted -[��� voltage := f(energy)]-> depleted ;

�� Battery.Imp;

Fig. 1. Specification of a Battery Component

(transient) and permanent faults, and degraded modes of operation (by map-
ping failures from architectural to service level).

– Modeling (partial) observability and observability requirements. These no-
tions are essential to deal with diagnosability and Fault Detection, Isolation
and Recovery (FDIR) analyses.

– Specifying timed and hybrid behavior. In particular, in order to analyze con-
tinuous physical systems such as mechanical and hydraulics, the SLIM lan-
guage supports continuous real-valued variables with (linear) time-dependent
dynamics.

– Modeling probabilistic and quantitative aspects, such as probabilistic faults
and performability measures.

The characteristics listed above make SLIM an ideal language to specify and rea-
son about the following system properties: functional correctness, in particular
in case of degraded hardware operation; safety and dependability; diagnosability
and FDIR; system performance and performability.

2.1 Specifying Nominal Behavior

A SLIM model is hierarchically organized into components, distinguished into
software (processes, threads, data), hardware (processors, memories, devices,
buses), and composite components. Components are defined by their type (spec-
ifying the functional interfaces as seen by the environment) and their implemen-
tation(representing the internal structure). The implementation part contains:



176 M. Bozzano et al.

������ Power

����	
��

voltage: �	� ���� ��
� 
���;

�� Power;

������ ������������ Power.Imp

�	���������

batt1: ������ Battery.Imp � ����� (primary );

batt2: ������ Battery.Imp � ����� (backup);

��������

���� ��
� batt1.voltage -> voltage

� ����� (primary );

���� ��
� batt2.voltage -> voltage

� ����� (backup);

�����

primary: ������ ����;

backup: ����;

�
�������

primary -[batt1.empty]-> backup;

backup -[batt2.empty]-> primary;

�� Power.Imp;

Fig. 2. The Complete Power System

the structure of the component as an assembly of subcomponents; the interaction
through (event and data) port connections; the (physical) binding at runtime;
the operational modes as an abstraction of the concrete component behavior,
possibly representing different system configurations and connection topologies,
with mode transitions which are spontaneous or triggered by events arriving
at the ports; the timing and hybrid behavior of the component. The overall
specification can be organized into packages to support modularity.

To give a more concrete idea, Fig. 1 shows an example specification of a
simple battery device. Its type interface features two ports: an outgoing event
port empty which indicates that the battery is about to become discharged, and
an outgoing data port voltage which makes its current voltage level accessible
to the environment.

The corresponding component implementation specifies the battery to be ini-
tially in the charged mode with an energy level of 100 (%). This level is con-
tinuously decreased by 1% per time unit (in Fig. 1, energy’ denotes the first
derivative of energy) until a threshold value of 20% is reached, upon which the
battery changes to the depleted mode. This mode transition triggers the empty
output event, and the loss rate of energy is increased to 1.5%. Moreover, the
voltage value is regularly computed from the energy level (the correspond-
ing function, f, is not detailed here) and automatically made accessible to the
environment via the corresponding outgoing data port.

The next specification, presented in Fig. 2, shows the usage of the battery
component in the context of a redundant power system. It contains two instances



The COMPASS Approach: Correctness, Modelling and Performability 177

�

�
 ����� BatteryFailure

����	
��

normal: ������ �����;

dead: �

�
 �����;

�� BatteryFailure ;

�

�
 ����� ������������ BatteryFailure .Imp

�����

fault: �

�
 ���� ���	

��� ������ 0.001;

�
�������

normal -[fault]-> dead;

�� BatteryFailure .Imp;

Fig. 3. An Error Model

of the battery device, being respectively active in the primary and the backup
mode. The mode switch that initiates reconfiguration is triggered by an empty
event arriving from the battery that is currently active. Moreover the voltage
information of the active battery is forwarded via an outgoing data port.

2.2 Specifying Faulty Behavior

Nominal component specifications can be extended by error models to support
safety and dependability analyses. For the sake of modularity, nominal specifica-
tions, error specifications, and their mutual association are separated from each
other.

Again, an error model is defined by its type, its implementation, and its effect.
An error model type defines an interface in terms of error states and (incoming
and outgoing) error propagations. Error states are employed to represent the
current configuration of the component with respect to the occurrence of errors.
Error propagations are used to exchange error information between components.
An error model implementation provides the structural details of the error model.
It is defined by a (probabilistic) machine over the error states declared in the
error model type. Transitions between states can be triggered by error events,
����� events, and error propagations. Error events are internal to the compo-
nent; they reflect changes of the error state caused by local faults and repair
operations, and they can be annotated with occurrence distributions to model
probabilistic error behavior. Moreover, ����� events can be sent from the nom-
inal model to the error model of the same component, trying to repair a fault
which has occurred. Outgoing error propagations report an error state to other
components. If their error states are affected, the other components will have a
corresponding incoming propagation. An error effect is specified by expressions
that overload the nominal assignments when the error occurs. Fig. 3 presents
a simple error model for the battery device. It introduces a probabilistic error
event, fault, which is assumed to occur once every 1000 time units on average.



178 M. Bozzano et al.

������ PowerSystem

����	
��

voltage: �	� ���� ��
� 
���;

alarm: �	� ���� ��
� ���� �������� ����� ����
����� ;

�� PowerSystem ;

������ ������������ PowerSystem .Imp

�	���������

pow: ������ Power.Imp;

��������

���� ��
� pow.voltage -> voltage;

�����

normal: ������ ����;

critical : ����;

�
�������

normal -[��� voltage < 4.5 ��� alarm:=�
	�]-> critical;

critical -[��� voltage > 5.5 ��� alarm:=�����]-> normal;

�� PowerSystem .Imp;

Fig. 4. The Complete Power System with an Alarm

Whenever this happens, the error model changes into the dead state, that could
for instance be associated with voltage being constantly 0.0.

2.3 Specifying Observability

In order to enable modeling of partial observability, the SLIM language allows
the specifier to explicitly define the set of observables. For instance, in the bat-
tery example, we may assume that the output voltage of the power system is
observable, whereas the internal status of the batteries and the occurrence of
faults is not. Fig. 4 shows an example in which an alarm, modeled as an ob-
servable Boolean output signal, is raised whenever the voltage is lower than 4.5
volts. Once raised, the alarm is deactivated if the voltage increases to 5.5 volts.

2.4 Formal Semantics

To enable trustworthy modeling and analysis of systems, our SLIM language
is equipped with a formal semantics (see [7]) that provides the interpretation
of SLIM specifications in a precise and unambiguous manner. The semantics
has been designed in such a way to conform to the environment described in
[3], which encompasses different aspects of the development of reactive systems,
from functional verification to safety analysis, dependability and diagnosability,
within the framework of symbolic model checking.

The semantics of a nominal specification is defined on two levels, distinguish-
ing between the local behavior of an active component and the interaction be-
tween active components via ports and connections. This interaction is highly
dynamic as local transitions can cause subcomponents to become (in-)active,



The COMPASS Approach: Correctness, Modelling and Performability 179

and can change the topology of event and data port connections. On the level
of the formal model this means that both the activation status of components
and their interconnection relation depend on the modes of the components.

When it comes to integrating faulty system behavior, first the association be-
tween nominal and error models has to be specified. In the example above, e.g.,
one would connect (every instance of) the Battery device to the BatteryFailure
error model. The occurrence of an error event, or a propagation in an error
model implementation, indicates a (local, respectively global) fault, and gener-
ally causes the transition to a new error state. Failure effects can be attached
to error states in order to specify the impact of a fault to the nominal behavior
of that component. Every such effect is defined by a list of assignments to the
component’s data elements that overrides the nominal transition effects in the
presence of an error. In the case of the battery example, one could reset the
voltage level to zero while being in error state dead.

The actual integration of the nominal and the error model, the so-called (fault)
model extension, works similarly to the procedure described in [8]. It takes the
nominal model and enriches it by the error model specification, thus producing
an integrated model which represents both the nominal and the failure behav-
ior. Informally, this model is obtained as follows. Its modes are pairs of nominal
modes and error model states. The set of event ports is obtained by adding the
error propagations to the original event ports, in order to represent the exchange
of error information via propagations as event communication. Correspondingly,
the set of event port connections has to be extended by propagation port con-
nections. Finally, in the mode transition relation of the integrated model, all
possible interleavings and interactions between the nominal and the error model
have to be considered.

2.5 Comparison with AADL

The SLIM language covers a significant subset of AADL. Many features of AADL
have been omitted (such as properties, extensions, prototypes, and flow specifi-
cations), and the set of available component categories has been reduced. Also
some “mixed” concepts (such as ����� ���� ports or 	� 
�� ports) have been
omitted to simplify the implementation. There are, however, some extensions
that have been introduced in our language to support the description of dy-
namic system behavior.

– Initialization values for data ports and data components have been added.
– To support mode history, 	�	�	�� and ��	���	
�modes are distinguished.

This allows to express that after a re-activation of a component due to a sys-
tem reconfiguration, the component should resume its operation in the state
in which it had previously been deactivated.

– Explicit binding relations between subcomponents (��
��� 	�, ����	�� 
�,
������) have been introduced.

– To support the specification of timed and hybrid behavior, mode invariants
(��	��), transition guards (����) and transition effects (����) have been
added (similarly to the AADL Behavior Annex).



180 M. Bozzano et al.

From the semantical perspective, as a difference with AADL, which supports
asynchronous communication via event queues, the SLIM language is based on
(possibly multi-way) synchronous event communication.

3 Analyzing System Specifications

In this section we discuss the main analysis capabilities of the COMPASS ap-
proach. The available functionalities are summarized by the use case diagram in
Fig. 5.

3.1 Property Specification and Validation

Formal properties are increasingly being used to describe the qualitative and the
quantitative requirements of electronic designs. These properties are used both
for verification and as a means to describe the requirements for a system before
it is built. The use of a formal language to state formal properties is a first and
substantial step towards a high quality specification, as it makes subtle questions
explicit that otherwise might be hidden in the ambiguity of natural language.

Within the COMPASS project, we use temporal logic properties to describe
both the qualitative and the quantitative properties the system under analy-
sis has to satisfy. Linear Temporal Logic (LTL) [28] and Computational Tree
Logic [13] are used to express qualitative properties. Probabilistic Computation
Tree Logic (PCTL) [21] and Continuous Stochastic Logic (CSL) [2] are used
to express quantitative properties. The definition of properties from non expert
users can be facilitated by the use of property patterns [17].

The COMPASS approach supports property validation, to check correctness
and completeness of a set of properties [27]. First, it allows to check for logical

Fig. 5. Functionalities of the COMPASS approach



The COMPASS Approach: Correctness, Modelling and Performability 181

consistency. Logical consistency can be intuitively defined as “freedom from con-
tradictions”: in fact it is possible that two properties mandate mutually incom-
patible behaviors. Consistency checking of temporal properties can be carried
out by dedicated formal verification algorithms [11].

Second, it is possible to check the set of properties is strict enough to rule out
unwanted behavior and that it is not too strict to disallow for certain desirable
behavior. Checking that the properties are not too strict amounts to verifying
whether a set of conditions (also called a scenario) is possible, given the con-
straints imposed by the considered set of properties. If the scenario is possible, we
obtain a behavior trace compatible with both the properties and the constraint
describing the scenarios. Otherwise, we obtain a subset of the considered set of
properties that prevents the scenario to happen. Checking that the properties
are strict enough to rule out unwanted behavior amounts to verifying whether
an expected property (describing the desired behaviors) is implied by the con-
sidered set of properties. This check is similar in spirit to model checking [15],
with the considered set of properties playing the role of the model. When the
property is not implied by the specification, a counterexample, witnessing the
violation of the property, is produced.

3.2 Verification of Functional Properties

A SLIM model can be evaluated using model checking techniques, in order to
guarantee that it satisfies the required functional properties. To this aim, the
model can be translated into a Labeled Transition System (LTS) and exhaus-
tively analyzed by the model checker to check whether the properties hold. If
a property does not hold, a counterexample trace can be generated to show
an execution trace of the model that violates the property. To cope with the
state explosion problem, advanced techniques can be applied, in particular sym-
bolic techniques based on Binary Decision Diagrams (BDD) [9] and SAT-based
Bounded Model Checking [4,5,22,18] (BMC). Verification can also benefit from
advanced techniques for compiling temporal properties into a symbolic LTS [12].

In order to deal with the timed and hybrid domain (i.e., SLIM models con-
taining integers and reals), standard symbolic model checking techniques cannot
be applied. The most noticeable approach is Counterexample Based Abstraction
Refinement [14] (CEGAR). Here, a property is verified in an abstraction of the
original model. If verification is not conclusive, the abstraction can be automat-
ically refined, based on analysis of the trace generated by the model checker,
and the verification process is iterated. Advanced techniques for computing and
refining the abstraction include techniques based on the emerging technology
of Satisfiability Modulo Theory (SMT) [10]. Similar techniques can also be ex-
ploited in BMC. All these techniques have been incorporated into the NuSMV
[26] model checker.

3.3 Verification of Safety/Dependability Aspects

The COMPASS methodology can be used to produce artifacts and support activ-
ities that are specific of safety assessment, such as techniques for hazard analysis.



182 M. Bozzano et al.

The use of formal techniques for such activities is relatively new. The COM-
PASS methodology relies on the seminal work carried out within the ESACS2

(Enhanced Safety Assessment for Complex Systems) and ISAAC3 (Improvement
of Safety Activities on Aeronautical Complex systems) projects, two European-
Union-sponsored projects involving various research centers and industries from
the avionics sector, and that resulted in the FSAP tool[19]. As advocated in
[8], an essential step of the methodology is the decoupling between the nominal
behavior and the faulty behavior of the system, that is realized by means of the
model-extension step (cf. Section 2.4).

The COMPASS methodology supports two of the most popular hazard anal-
ysis techniques, that is, Failure Mode and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA). FMEA uses an inductive approach; it starts by consid-
ering the initiating causes of a given hazard, and traces them forward to the
corresponding safety consequences. FTA, on the other hand, is a deductive tech-
nique; it starts by considering an unintended behavior of the system at hand,
and traces it, in a backward reasoning fashion, to the corresponding causes.
The COMPASS methodology can automatically generate (dynamic) fault trees
[16,24], given an extended model and a property representing the hazard. Fur-
thermore, (dynamic) FMEA tables can be automatically generated, given a set
of failure modes (more in general, a set of fault configurations, which may include
combinations of different faults) and a set of properties. Finally, it is possible
to compute a criticality measure, which combines probability of occurrence and
severity of the consequences.

3.4 Diagnosability Analysis

The COMPASS toolset support diagnosability analysis and FDIR (Fault Detec-
tion, Isolation and Recovery). These analyses are based on the notion of observ-
ables in the input model. In particular, fault detection analysis checks whether
an observation can be considered a fault detection means for a given fault, that
is, every occurrence of the fault eventually causes the observable to be true. All
such observables are reported as possible detection means. Fault isolation analy-
sis generates fault isolation measures, namely, for each of the observables, it gen-
erates a fault tree that contains the minimal explanations that are compatible
with the observable being true (the fault tree contains one cut set consisting of a
single fault, in case of perfect isolation). Finally, fault recovery verifies whether a
user-defined recoverability property is satisfied. The COMPASS toolset can also
check whether a system is diagnosable with respect to a diagnosability property,
and synthesize a set of observables that ensure diagnosability.

3.5 Quantitative Analyses

To guarantee the required performance, a SLIM model can be evaluated using
probabilistic model checking techniques [2]. Prior to this, the user has to specify
2 http://www.esacs.org
3 http://www.cert.fr/isaac

http://www.esacs.org
http://www.cert.fr/isaac


The COMPASS Approach: Correctness, Modelling and Performability 183

the formal performance requirements through PCTL or CSL properties: e.g.
the system under degradation always has to recover within 40 time units with
a probability of 0.98; or, that in the long run, the system will be down with a
probability of 0.005. To check whether the SLIM model meets these requirements,
it has to be transformed into its underlying Markov chain through probabilistic
information captured by the occurrences definitions in the error models. The
Markov Reward Model Checker [23] (MRMC) can then be used to evaluate
whether the Markov chain meets the expressed performance requirements.

The same probabilistic model checking techniques are used for computing the
probability of the top-level event in fault trees. They can be extended to com-
puting probabilities for dynamic fault trees [6]. Akin to checking the correctness
of FDIR measures, we use the same probabilistic techniques to evaluate FDIR
performance. For example, in addition to checking whether a fault is detected
or not, we compute the probability of detection; in case of fault recovery, we
compute the probability that the system will recover from a fault.

Finally, it is possible to analyze the timing behaviour of a SLIM model, like
for example whether the system will correctly reset a valve between 20 and 30
minutes. Clock invariants, constraints and resets expressed in the SLIM models
are used for this. Drafting the transformations from these timing constructs to
the underlying formal model, timed automata [1], is still work in progress.

4 Tool Support

The activities described in the previous sections are supported by an inte-
grated platform, which incorporates extensions of existing tools in a uniform
environment. Verification and validation functionalities of the toolset are based
on symbolic model checking techniques. In particular, the tool set builds upon
the NuSMV [26] symbolic model checker, the MRMC [25] probabilistic model
checker, and the RAT [29] requirements analysis tool. The architecture of the
tool set is shown in Fig. 6.

The toolset takes as input a model written in the SLIM language, and a
set of property patterns [17,20]. It generates several artifacts as output, among
them: traces resulting either from simulation of the SLIM specification or as
counterexample for properties not satisfied by the specification; (probabilistic)
Fault Trees and FMEA tables; diagnosability and performability measures.

In order to perform all the verification activities, the SLIM high-level specifica-
tion is parsed and an internal representation of the input files and a symbol table
are constructed. Depending on the specific verification task to be run, different
transformations of the input files are then possible, and realized by the building
blocks shown in Fig. 6. The ModelExtension block takes care of performing model
extension, when required. It generates as output another SLIM model with prob-
abilistic annotations (if any) that represent the faulty system. The Slim2SMV
translator is used to translate a SLIM specification into a semantically-equivalent
SMV file, which can be used for all NuSMV-based analyses, and to produce sep-
arate probabilistic information (if any). The safety analysis activities are per-
formed by FSAP[19], which has been integrated within NuSMV. The SMV file



184 M. Bozzano et al.

Slim2SMV

Instantiator
Slim Property

Estension
Model

Table
Symbol

Sigref2MRMCSMV2SigrefNuSMV MRMC

SMV2Slim

Viewer
Fault Tree

Viewer
Trace

RAT

Instantiator
Property

PERFORMABILITY
ANALYSIS
− Performability measures
− Probabilistic fault tree

DIAGNOSABILITY
ANALYSIS
− FDIR effectiveness measures
− Sysnthesis of Observability Requiremements

CORRECTNESS
VERIFICATION
− Property verification
− Simulation

SAFETY
ANALYSIS
− Dynamic Fault Tree
− FMEA Tables

REQUIREMENTS
VALIDATION
− Property Assurance
− Property Simulation

Slim

Model

Property

Pattern

Fig. 6. Architecture of the COMPASS Platform

and the probabilistic information are used by the SMV2Sigref and Sigref2MRMC
blocks, that collaborate to transform an SMV file into an equivalent input file
for MRMC (the latter also contains probabilistic information), which can be
used for all MRMC-based activities. Property patterns are used to create formal
properties [17,20]. These properties are processed either by the Slim Property
Instantiator, and then converted into SMV or MRMC format, or by the Property
Instantiator, that transforms them into RAT format for requirements validation.
Finally, the block SMV2Slim converts the results of the analyses back from the
internal tools’ format into SLIM format, which can be processed by the visual-
izers, namely graphical fault tree and trace viewers.

5 Conclusions and Future Work

In this paper, we presented a comprehensive, end to end methodology for the
design of complex systems. The approach covers all possible user queries in a



The COMPASS Approach: Correctness, Modelling and Performability 185

unique methodology, and it is formally well founded. It includes in a unique,
clear formal framework, a number of analyses, and has a full-fledged support by
the integration of several state of the art verification tools.

An industrial evaluation of the methodology on realistic case studies is cur-
rently ongoing within the COMPASS project. This will provide substantial in-
sights on the applicability of the proposed methodology and the effectiveness of
the tool chain. Of particular interest is the verification of reactive systems model-
ing continuous dynamics. In the future, we plan to systematically investigate the
combination of symbolic model checking techniques for the effective construction
of the state space to scale up quantitative and probabilistic analyses.

Acknowledgments

We wish to acknowledge and give special thanks to Benedikt Brütsch, Roberto
Cavada, Christian Dehnert, Friedrich Gretz and Andrei Tchaltsev, that assisted
us by programming a great part of the developed toolset and actively partic-
ipated to the fruitful discussions that came along the way when we stumbled
upon technical issues.

References

1. Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded Model Check-
ing for Timed Systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,
vol. 2529. Springer, Heidelberg (2002)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE TSE 29(6), 524–541 (2003)

3. Bertoli, P., Bozzano, M., Cimatti, A.: A Symbolic Model Checking Framework for
Safety Analysis, Diagnosis, and Synthesis. In: Edelkamp, S., Lomuscio, A. (eds.)
MoChArt IV. LNCS (LNAI), vol. 4428, pp. 1–18. Springer, Heidelberg (2007)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

5. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods in Comp. Sc. 2(5) (2006)

6. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using in-
put/output interactive Markov chains. In: DSN, pp. 708–717. IEEE, Los Alamitos
(2007)

7. Bozzano, M., Cimatti, A., Nguyen, V.Y., Noll, T., Katoen, J.P., Roveri, M.: Code-
sign of Dependable Systems: A Component-Based Modeling Language. In: Proc.
MEMOCODE 2009 (2009)

8. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform.
International Journal on Software Tools for Technology Transfer 9(1), 5–24 (2007)

9. Bryant, R.: Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams. ACM Computing Surveys 24(3), 293–318 (1992)

10. Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shya-
masundar, R.K.: Computing Predicate Abstractions by Integrating BDDs and
SMT Solvers. In: Proc. FMCAD, pp. 69–76. IEEE Computer Society, Los Alamitos
(2007)



186 M. Bozzano et al.

11. Cimatti, A., Roveri, M., Schuppan, V., Tonetta, S.: Boolean abstraction for tem-
poral logic satisfiability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 532–546. Springer, Heidelberg (2007)

12. Cimatti, A., Roveri, M., Tonetta, S.: Symbolic Compilation of PSL. IEEE Trans.
on CAD of Integrated Circuits and Systems 27(10), 1737–1750 (2008)

13. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concur-
rrent systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems 8(2), 244–263 (1986)

14. Clarke, E., Grumberg, O., Jha, S., Lua, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. JACM, 752–794 (2003)

15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

16. Dugan, J., Bavuso, S., Boyd, M.: Dynamic fault-tree models for fault-tolerant com-
puter systems. IEEE Transactions on Reliability 41(3), 363–377 (1992)

17. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-
state verification. In: Proc. ICSE, pp. 411–420. IEEE, Los Alamitos (1999)

18. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science 89(4) (2003)

19. The FSAP/NuSMV-SA platform, http://sra.itc.it/tools/FSAP
20. Grunske, L.: Specification patterns for probabilistic quality properties. In: ICSE

2008: Proceedings of the 30th international conference on Software engineering,
pp. 31–40. ACM, New York (2008)

21. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

22. Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model
checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 98–111. Springer, Heidelberg (2005)

23. Katoen, J.-P., Khattri, M., Zapreev, I.: A Markov reward model checker. In: QEST,
pp. 243–244. IEEE CS, Los Alamitos (2005)

24. Manian, R., Dugan, J., Coppit, D., Sullivan, K.: Combining Various Solution Tech-
niques for Dynamic Fault Tree Analysis of Computer Systems. In: Proc. High-
Assurance Systems Engineering Symposium (HASE 1998), pp. 21–28. IEEE Com-
puter Society Press, Los Alamitos (1998)

25. The MRMC model checker, http://wwwhome.cs.utwente.nl/~zapreevis/mrmc/
26. The NuSMV model checker, http://nusmv.itc.it
27. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal

analysis of hardware requirements. In: Proc. DAC, pp. 821–826. ACM, New York
(2006)

28. Pnueli, A.: A temporal logic of concurrent programs. Th. Comp. Sc. 13, 45–60
(1981)

29. RAT: Requirements Analysis Tool, http://rat.itc.it
30. Architecture Analysis and Design Language (AADL) V2. SAE Draft Standard

AS5506 V2, International Society of Automotive Engineers (March 2008)
31. Sigref — A Symbolic Bisimulation Tool, http://sigref.gforge.avacs.org/

http://sra.itc.it/tools/FSAP
http://wwwhome.cs.utwente.nl/~zapreevis/mrmc/
http://nusmv.itc.it
http://rat.itc.it
http://sigref.gforge.avacs.org/


Formal Verification of a Microkernel Used in

Dependable Software Systems�

Christoph Baumann1, Bernhard Beckert2, Holger Blasum3,
and Thorsten Bormer2

1 Saarland University, Dept. of Computer Science, Saarbrücken, Germany
2 University of Koblenz, Dept. of Computer Science, Germany

3 SYSGO AG, Klein-Winternheim, Germany

Abstract. In recent years, deductive program verification has improved
to a degree that makes it feasible for real-world programs. Following this
observation, the main goal of the BMBF-supported Verisoft XT project
is (a) the creation of methods and tools which allow the pervasive formal
verification of integrated computer systems, and (b) the prototypical
realization of four concrete, industrial application tasks.

In this paper, we report on the Verisoft XT subproject Avionics, where
formal verification is being applied to a commercial embedded operating
system. The goal is to use deductive techniques to verify functional cor-
rectness of the PikeOS system, which is a microkernel-based partitioning
hypervisor.

We present our approach to verifying the microkernel’s system calls,
using a system call for changing the priority of threads as an example.
In particular, (a) we give an overview of the tool chain and the verifica-
tion methodology, (b) we explain the hardware model and how assembly
semantics is specified so that functions whose implementation contain as-
sembly can be verified, and (c) we describe the verification of the system
call itself.

1 Introduction

Background. As correctness of the built-in operating system is a crucial require-
ment for the reliability of safety- and security-critical systems, the goal of the
VerisoftXT (see http://www.verisoftxt.de/) Avionics subproject is to prove
functional correctness of the microkernel in the partitioning hypervisor PikeOS,
a commercial operating system for embedded systems [3].

For verification, we use tools like VCC (the Verifying C Compiler [7]) devel-
oped by Microsoft Research, which follows the verifying compiler paradigm, i.e.,
when all specifications and other required information have been added as an-
notations to the source code (which is the actual user effort required), the tool
verifies the code automatically. First experiences with this verification paradigm
and the new tool are described in this paper.
� Work partially funded by the German Federal Ministry of Education and Research

(BMBF) in the framework of the Verisoft XT project under grant 01 IS 07 008. The
responsibility for this article lies with the authors.

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 187–200, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.verisoftxt.de/


188 C. Baumann et al.

This Paper. In Section 2, we describe the PikeOS system and motivate why the
particular system at hand is a suitable target for deductive program verification.
Then, in Section 3, we give an overview of the tool chain and the verification
methodology used in the VerisoftXT Avionics project.

The goal of the project is the full functional verification of all system calls
of PikeOS (i.e., the functionality that the kernel provides to guest systems). In
this paper, we present our approach to verifying system calls using a system
call for changing the priority of threads as an example. While this particular
call has a simple functionality, its execution spans all levels of the PikeOS mi-
crokernel, from hardware-related levels to high-level kernel functionality. Using
this example, we first give a detailed account of how we handle (inline) assembly
code blocks, which are needed to access hardware functionality that is not vis-
ible in plain C. We picture how the PowerPC assembly language semantics can
be specified, such that its functionality and especially its interaction with the
C state can be verified (Sect. 4). Then, in Section 5 we use the same example
to show how the system call has been specified and proved to be functionally
correct using the VCC tool.

The same approach is being applied to verify system calls with more complex
functionality that still span the same levels in the kernel as a call with simple
functionality.

Related Work. The Avionics subproject of VerisoftXT builds upon previous
work in the precursor project Verisoft, where the pervasive verification of an
academic microkernel written in the C0 dialect of C and running on verified DLX
hardware was undertaken [11]. Within VerisoftXT, in another subproject, the
European Microsoft Innovation Center, DFKI and Saarland Univ. are verifying
Microsoft’s Hyper-V hypervisor [5].

Related work in kernel verification was already done in the ’70s and ’80s in
the projects UCLA Secure Unix and KIT and more recently at the Universities
of Dresden and Nijmegen (VFiasco project) and in the EROS/Coyotos project.
An overview and comparison of these and other related projects is given in [13].
A current project in kernel verification is L4.verified at NICTA (Australia) [14].

2 Features of the PikeOS Hypervisor

PikeOS (see http://www.pikeos.com/) consists of a microkernel acting as para-
virtualizing hypervisor and a system software component. The PikeOS kernel is
particularly tailored to the context of embedded systems, featuring real-time
functionality and orthogonal partitioning of resources such as processor time,
user address space memory and kernel resources. The PikeOS system software
component is responsible for system configuration. Thus the allocation of re-
sources can be bound at compile-time, for example to conform to partitioning
requirements in an Integrated Modular Avionics [1,18] or in an automotive [17]
virtualization context. At the kernel level, the mechanisms for communication
between threads are IPC, events, and shared memory. High-level communication
concepts such as Integrated Modular Avionics ARINC ports can be mapped onto

http://www.pikeos.com/


Formal Verification of a Microkernel Used in Dependable Software Systems 189

Fig. 1. Exemplary structure of a running PikeOS system

these kernel-level mechanisms. For a thorough discussion of PikeOS and its evo-
lution, see [12]. For an exemplary deployment of a running PikeOS system see
Fig. 1. For concrete examples we refer to [20], e.g. one can run a Linux system in
one partition and (in avionics contexts) an ARINC-653 application or (in traffic
control contexts) a POSIX or Java runtime-environment in another.

Most parts of the PikeOS kernel, especially those that are generic, are written
in C, while other parts that are close to the hardware are necessarily implemented
in assembly. PikeOS runs on many platforms, including x86, PowerPC, MIPS,
and ARM among others and the exact amount of assembly depends on the
architecture one works on. The verification target we have chosen for our project,
is the PikeOS version for the PowerPC processor family, the OEA architecture,
and the MPC5200 platform [10], a single processor setup. In this particular case,
PowerPC assembly is about one tenth of the codebase.

3 Verification Methodology and Toolchain

The Verifying C Compiler. In the verifying compiler approach, to check
whether a program to be verified performs according to its low-level formal
specification, a logical formula is automatically generated from the source of
the program and the specification. This formula, called verification condition,
is rendered in predicate logic and has the property that, if it is valid, then the
program is correct w.r.t. its specification. Finding a proof for the validity of this
formula, which would serve as a witness for the correctness of the program, is
then a task to be solved by a theorem proving system.

Within our VerisoftXT subproject, we use the Verifying C Compiler (VCC)
developed by Microsoft Research [7]. VCC uses a specification language tailored
to C, which allows a verification engineer to write the specification in a way
close to the syntax and semantics of the programming language. In addition,
this specification is transparent to the normal C compilation process.

In the case of VCC, the verification condition generation is preceded by an
intermediate step, the compilation of the program into an imperative program-
ming language called BoogiePL [9]. This representation is further transformed



190 C. Baumann et al.

into first-order predicate logic formulas, which are in turn given to the automatic
theorem prover Z3 [8] for verification.

The possible results Z3 may return are: (1) a proof for the validity of the
formulas. (2) a counter-example. (3) Z3 runs out of resources (time or space).
In Case (1) above, the program verification was successful. In Cases (2) and (3),
the verification engineer has to analyze the problem and correct the error. In
Case (3), he/she may also find that the program indeed satisfies the annotations.
Then new annotations (stronger invariants, helpful lemmas, etc.) have to be
added. This process is repeated until Z3 finds a proof.

Specification Language. Below, we give an overview of VCC’s specification
language, as far as necessary for the examples used throughout this paper.

Annotations, Implementation Variables and Ghost Variables. Annotations are
written in the form keyword(block) where keyword gives the specification con-
straint to be enforced. In a block, the verification engineer writes (depending
on the keyword) an expression or statements (statements again may contain
expressions). Expressions are written in a C-like syntax and may use implemen-
tation variables. They also may use object variables that are not part of the
implementation state (called “ghost variables”). Declarations of ghost variables
are guarded by spec(), and statements changing values of ghost variables are
guarded by speconly(). Expressions in annotations also may use implementa-
tion variables and ghost variables simultaneously. Note that annotations must
not affect the actual behavior of the program.

Object Invariants and Ownership. One way to capture global properties of a
software system is to define invariants for data structures (i.e., structs in the
case of C) used in the program. With VCC, such invariants can be given by anno-
tating a struct with (arbitrarily many) invariant clauses. To enable modular
reasoning about properties of complex data structures (e.g., pointer structures
or nested structs), and to capture relations between data structures, the con-
cept of ownership between structured data is used (VCC’s ownership model is
an extension of the one used in the Spec# methodology [15]). Every struct has
exactly one “owner” and can itself own arbitrarily many structures. At the top
of the ownership hierarchy, structs can be owned by executing threads. The
ownership relation is provided explicitly in annotations by the verification en-
gineer, and it reflects his/her abstract knowledge about the data structure and
how it is used.

It would not be efficient to always check all invariants on all data structures.
Hence, a data object can have two states, open and closed. The convention is
that a thread only may change objects it owns and that it may force a check on
all invariants by wrapping an object, that is by moving it from open to closed.
Ignoring volatile variables, a property that VCC enforces in verification is that
members of a closed struct cannot be modified by the program. In addition, if
an object is closed, its invariants are guaranteed to hold. That is relevant in a
concurrent setting when a context switch may occur.



Formal Verification of a Microkernel Used in Dependable Software Systems 191

Function Pre- and Postconditions. The specification of a C function in the se-
quential context can be seen as a contract between the caller of the function and
the function itself and is given by pre- and postconditions. These are inserted
between the function head and the function body. The precondition of a func-
tion is labeled with the keyword requires, and the postcondition is labeled with
ensures. The keyword result represents the return value of the function. In
the examples of the following sections, the reader will also encounter ownership
relations asserted at the function level.

Further Specification Constructs. For convenience, maintains can be used for
a property that a function both requires and ensures. writes can be used to
denote the set of memory locations to which a function (at most) writes. returns
is shorthand for ensures on a result. Objects that are typed and owned by
the current thread are called wrapped, if they are closed and otherwise called
mutable if they are open, which means that they may be modified. keeps denotes
that an object owns a certain set of objects only (and nothing else).

Guidance for the Automatic Proving Engine. The verification engineer may have
to give some hints to the prover: this is achieved by, e.g. bv_lemma for bitvec-
tor related lemmas or assert for intermediate assertions to be enforced. Such
annotations are in some cases excluded from the listings for clarity.

4 Verification of Assembly Code and Low-Level Functions

Unlike ordinary C programs real-world microkernels contain a high percentage
of assembly code. It may be found in separate assembly files (macro assembly) or
be inlined into the C code using the __asm__ keyword. Moreover, this code uses
privileged mode instructions which are commonly neglected in formal definitions
of instruction set semantics for user space programs [2,4]. Because of the ubiquity
of assembly language in the near-hardware layers of PikeOS, we have to define a
hardware model that allows verifying the functionality of machine instructions
with VCC. In this paper we especially focus on the inline assembly portions,
where C and hardware semantics are mixed and data is interchanged between
the models. To our best knowledge only the Verisoft project [11,19] achieved
substantial progress in this specific field. However our approach is different in
that we chose an industrial microprocessor (Freescale MPC5200) as the target
architecture and we employ a real-world optimizing compiler (GNU C compiler).
Although we lack formal semantics for the latter one, in some places (e.g. inline
assembly, memory and branch instructions) we have to simulate the behavior of
the compiler assuming its correctness, e.g. its adherence to the ABI.

In the following, we introduce our approach to model the hardware and the
semantics of assembly instructions. Furthermore we exemplify how this method-
ology is applied to actual PikeOS functions in the second part of this section.



192 C. Baumann et al.

4.1 Defining the Semantics of Privileged Mode PowerPC Assembly

We establish the semantics of assembly instructions as a transition relation in
the set of hardware configurations. First we have to make an abstraction and
identify the hardware components that must be represented. Then the effect
of each PowerPC instruction can be stated by writing a specification function
which reflects the corresponding impact on the hardware configuration.

Modeling Hardware Components in the Global PowerPC Ghost State.
The PowerPC core of the MPC5200 microprocessor comprises a variety of differ-
ent components, such as general purpose registers (GPRs), special purpose reg-
isters and other user and system registers, caches, translation look-aside buffers
(TLBs). Also the physical memory must be taken into consideration. When
building a hardware model for a modern processor on the C level, several ques-
tions arise.

Where is the model defined and how does it interact with the kernel imple-
mentation? There are in fact several ways to implement the model and each has
its assets and drawbacks. We decided to keep the whole hardware model in the
specification-only ghost state. At first sight, with this approach one would face
the problem to transfer data between the hardware ghost state and the C state,
which VCC forbids. However, one can circumvent this issue via axiomatic specifi-
cation functions that indirectly “assign” some value to a C variable by assuming
their equality as a postcondition (cf. PPC_assign in Sect. 4.2).

Following these thoughts we defined the global hardware configuration PPC_c
in ghost state, which then can be modified by assembly instructions only

As C code runs on the underlying hardware, how can these effects be captured?
Basically this is impossible as there is no formal C and compiler semantics avail-
able to project the execution of C statements to the machine level. Hence we
simply divide the hardware components into those that are not changed by C
statements (like system and special purpose registers) and those that are affected
by the execution of C (basically the user-visible registers). The former ones are
comprised in the PPC_c structure while the latter ones only become visible as
local variables in the context of assembly code. Such code is either encapsulated
in external assembly functions or in inline assembly blocks which have their own
interface with the C environment. Thus general purpose registers in the assem-
bly context in general only depend on the effects of preceding C statements in a
few defined cases (e.g. parameter passing). However, if the programmer applies
knowledge about the C and compiler internals and assumes certain properties
about globally invisible components, they must be initialized accordingly at the
beginning of the assembly block, assuming compiler correctness.

How do we model caches, TLBs and the physical memory? In a single-processor
setting caches and TLBs (which are in fact also just caches for page address
translations) are invisible to the programmer under certain realistic assump-
tions. Therefore we do not need to model caches and TLBs. However, separate
proofs to validate these claims are in order. As we are lacking a formal compiler
semantics which would define the memory allocation of C variables and code,



Formal Verification of a Microkernel Used in Dependable Software Systems 193

modeling the complete physical data and instruction memory is also impossible.
Therefore memory does not belong to our global hardware model. For memory
and branch instructions special measures are taken locally.

Specifying PowerPC Assembly Instructions. Based on the hardware com-
ponent definitions we can specify the effect of the execution of assembly code.
For each instruction we define a specification function which is equipped with
pre- and postconditions that reflect the functionality of the particular instruc-
tion. For plain register transfer operations this is easy. E.g. there are privileged
mode instructions mfmsr and mtmsr, which move GPR contents from resp. to
the machine status register (MSR). An extract of the PPC_c definition and the
specification function for mfmsr are given below:

1 spec( struct PPC_config_struct {
2 // exemplary component:
3 PPC_MSR_t msr; // Machine State Register
4 invariant(keeps(&msr)) // ownership inv.
5 } PPC_c; )

1 spec( void PPC_MFMSR(PPC_B32_t *dest)
2 maintains(wrapped(&PPC_c))
3 maintains(mutable(dest))
4 writes(dest)
5 ensures( *dest == PPC_c.msr.reg ); )

The first two maintains-clauses refer to the memory resp. ownership-model
of VCC. The writes-clause specifies that the destination register is written by
the instruction. The last line states the postcondition of mfmsr. In this way,
most of the PowerPC instructions can be handled. However, for memory and
branch instructions there may be access to the kernel and user address spaces,
which requires additional handling. How to model these instructions is outside
the scope of this paper, though.

Assembly Code Translation. After having defined the hardware configura-
tion and instruction semantics, the remaining question is how to integrate the
hardware model into the PikeOS code. As VCC does not recognize assembly
code, for verification these commands have to be replaced by the corresponding
specification function calls, which then simulate the execution on the model. The
assembly instructions can be translated to our specification functions automat-
ically using a parser. Such a parser has already been created for x86 assembly
code in the VerisoftXT Microsoft hypervisor (Hyper-V) subproject [16].

The methodology pictured above applies to both the simulation of macro as-
sembly and that of inline assembly code. For the latter purpose additionally an
interface between the local C variables and the general purpose registers has to
be established. Their relation is specified in the PowerPC ABI [21] and compiler
specifics concerning the syntax and semantics of an __asm__ statement. It is
concealed which registers are chosen by the compiler to contain the respective
data. However, it is not necessary to know the exact distribution of data over
the registers. We can just choose any free registers which then have to be initial-
ized with values of the corresponding variables and after execution of the inline
assembly block the results are written back.



194 C. Baumann et al.

4.2 Verifying Low-Level PikeOS Functions

To demonstrate our methodology in more detail we will now apply it to two ex-
emplary functions which are called from p4syscall_fast_set_prio, a PikeOS
system call to be examined later on. The functions contain inline assembly code,
which is translated according to the approach pointed out above. Then we can
annotate and automatically verify the translated versions with VCC.

Translation of Inline Assembly Code. Firstly we look at the translation
from (inline) assembly language to hardware model functions by examining the
first auxiliary function, namely p4arch_disable_int. This function disables
the signaling of external interrupts by clearing the corresponding EE bit in the
CPU’s machine status register (MSR, bit 16). It returns the old value of the
MSR. See its code along with the translation result below.

1 static inline P4_cpureg_t
p4arch_disable_int(void)

2 {
3 P4_cpureg_t ret;
4 P4_cpureg_t val;
5 __asm__ ("mfmsr %0" : "=r"(ret));
6 val = ret & ~MSR_EE;
7 __asm__ ("mtmsr %0" : : "r"(val) :

"memory");
8 return ret;
9 }

1 static inline P4_cpureg_t
p4arch_disable_int(void)

2 {
3 P4_cpureg_t ret;
4 P4_cpureg_t val;

5 // inline asm variables and initialization
6 spec(PPC_B32_t gpr[32];) // step 1
7 void * PPC_ret; // step 1

8 // start inline asm block
9 PPC_MFMSR(spec(&gpr[3])); // step 3

10 // end of block, assign return values
11 PPC_assign(spec(&PPC_ret,gpr[3]));//step2
12 ret = (P4_cpureg_t)PPC_ret; // step 2

13 val = ret & ~MSR_EE;

14 // start inline asm block, pass parameters
15 speconly(gpr[4] = val;) // step 2
16 PPC_MTMSR(spec(gpr[4])); // step 3

17 return ret;
18 }

The translation is done in three steps and above for each new line there is a
label in which step it was produced. Old lines not resulting from the translation
are printed in grayish color. Ghost code and ghost variable declarations are
included using the speconly and spec keywords (Sect. 3). Functions and data
belonging to the hardware model are indicated by the PPC_ prefix.

At first we define the local specification and temporary variables to establish
the hardware context. The second step is only needed for inline assembly as we
parse the syntax of the __asm__ statement and extract the corresponding pairs
of register aliases and C variables. For each of them a free hardware register
is determined according to the ABI and set to the value of the C variable it
was allocated to. After the assembly block the results are written back to the
variables when necessary. This is achieved by assigning the register values to an
intermediate local variable using the specification function PPC_assign.

In the third step the assembly syntax is parsed and the commands are replaced
by their hardware model counterparts. Note that the translated version of the
code does not overwrite the original functions but is only visible to the compiler
when the verification mode is enabled.



Formal Verification of a Microkernel Used in Dependable Software Systems 195

Annotation and Verification. Replacing the assembly commands by calls
to their representative functions in the hardware model enables us to discuss
the functionality of the code. The expected behavior of each function can now
be specified by adding annotations and assertions to the code, which are then
validated by VCC.

As an example for the verification of function-level annotations and to in-
troduce the counterpart to p4arch_disable_int, we examine in the following
the method p4arch_restore_int which restores the bit MSR.EE from a given
value msr:

1 static inline void
p4arch_restore_int(P4_cpureg_t msr)

2 {
3 unsigned ret;
4 unsigned val;
5 __asm__ ("mfmsr %0" : "=r"(ret));
6 val = ret | (msr & MSR_EE);
7 __asm__ ("mtmsr %0" : : "r"(val) :

"memory");
8 }

1 static inline void
p4arch_restore_int(P4_cpureg_t msr)

2 writes(&PPC_c)
3 maintains(wrapped(&PPC_c))
4 ensures(PPC_c.msr.fld.EE ==

(old(PPC_c.msr.fld.EE)|GET_BE(msr,16)))
5 ensures(PPC_c.msr.fld.PR ==

old(PPC_c.msr.fld.PR))
6 {
7 unsigned ret;
8 unsigned val;

9 spec(PPC_B32_t gpr[32];)
10 void * PPC_ret;

11 PPC_MFMSR(spec(&gpr[3]));
12 assert(gpr[3] ==

(P4_cpureg_t)PPC_c.msr.reg);

13 PPC_assign(spec(&PPC_ret,gpr[3]));
14 ret = (P4_cpureg_t)PPC_ret;

15 val = ret | (msr & MSR_EE);

16 bv_lemma(forall(unsigned int x,y;
17 (GET_BE(x|(y & MSR_EE),16) ==

(GET_BE(x,16)|GET_BE(y,16)))));
18 bv_lemma(forall(unsigned int x,y;
19 (GET_BE(x|(y & MSR_EE),17) ==

GET_BE(x,17))));

20 speconly(gpr[4] = val;)
21 PPC_MTMSR(spec(gpr[4]));
22 }

For simplicity, here we concentrate on two properties of the function:
(1) The bit MSR.EE is set to the corresponding bit’s value in parameter msr.
(2) All other MSR bits (e.g., the current privilege mode MSR.PR) are preserved.

The translated code is shown below with all necessary annotations above as
well. The global hardware model is included in the writes clause as it is mod-
ified by the assembly portions. Using the macro GET_BE we access single bits of
the msr parameter in big endian order. The ensures clauses specify properties of
the function as a transition relation between the old (marked old) and new state
of the data structures (PPC_c in this case). To ease proving the postcondition,
intermediate asserts like in line 12 are helpful. Moreover non-linear arithmetic,
such as bit vector operations are hard for automated provers. Here VCC of-
fers an extended axiomatization via bv_lemma, which introduces and validates
bit-vector-related lemmata where they are necessary to verify corresponding C
code.

With the few additional assertions as “step stones” for the verification, VCC
is able to prove the two postconditions of the function shown above in about
5 seconds on an AMD Athlon 64 X2 Dual Core 4000+ processor. Adding the
postconditions and additional annotations for the other 15 relevant MSR bits
increases verification time to roughly 9 seconds.



196 C. Baumann et al.

Implementation state
(kglobal)

ghost state(gpr)
Local PowerPC

ghost state(PPC_c)
Global PowerPC

Kernel ghost state
(abstractModel)

Thread executing
p4syscall_fast_set_prio

ghost state(gpr)
Local PowerPC

ghost state(PPC_c)
Global PowerPC

Thread executing
p4arch_disable_int

Fig. 2. Verification setups for the exemplarily low-level function p4arch disable int

introduced in Section 4 (left) and the entire system call introduced in Section 5 (right).
Straight arrows indicate VCC ownership relations (Sect. 3), dashed arrows indicate
implicit dependencies.

5 System Call Verification

Below, we show how to verify a PikeOS system call using the hardware model and
specifications of low level kernel functions as presented in the previous section.

Verification Setup. Because system calls are at the user’s interface to the
kernel and the PikeOS system is multi-platform, the kernel’s specification has
to hide any PowerPC implementation details to ensure proper encapsulation.
In our modeling this implies that the abstraction of the kernel’s state in ghost
state, specified as abstractModel, owns the PowerPC machine model PPC_c
as formalized by the invariant keeps(currentThread, &PPC c). The complete
ownership relations of our system call example are shown in the right part of
Fig. 2.

1 spec( struct absModel_str {
2 bool interruptsEnabled;
3 invariant(interruptsEnabled == (PPC_c.msr.fld.EE == 1))
4 struct P4k_thrinfo_t *currentThread;
5 invariant(keeps(currentThread, &PPC_c))
6 invariant(currentThread != NULL && ...)
7 } abstractModel; )

The specifications of the C methods on the upper layers of the kernel, like
system calls, can now be written in terms of the elements of the abstract model.

An Exemplary System Call. As a first target for verification we have cho-
sen the system call p4syscall fast set prio, which changes the priority of a
thread. The parameter newprio of the system call may not exceed the user-
configured Maximum Controlled Priority (MCP).

This call has a rather simple functionality, but it serves very well as an example
because its execution spans all levels of the PikeOS microkernel, from high-
level kernel functionality to hardware-related levels and the user-level interface
(system calls are invoked via user interrupts). Systems calls with more complex
functionality still span the same levels.

For verifying the p4syscall_fast_set_prio system call, two components of
the abstract model are needed, namely interruptsEnabled, which indicates



Formal Verification of a Microkernel Used in Dependable Software Systems 197

whether the system currently allows external interrupts to occur, and a pointer
to the thread currently running in kernel mode that is given by currentThread.
These two elements of the abstract model are related to the underlying hardware
and hence its representation as the ghost structure PPC_c. This relation is ex-
plicitly stated as invariant (keeps(...)) of the abstractModel data structure.

Whether external interrupts are allowed or disallowed in the kernel is indicated
by the field PPC_c.msr.fld.EE in the global ghost state model of the PowerPC
hardware, as described in Section 4.2. In abstractModel, interrupts are defined
to be enabled, iff this bit in the hardware model is set to 1, as stated by the
invariant in line 3 of the specification of absModel_str.

We now consider the actual C and annotation code for the system call under
consideration. Setting the new priority values in the data structures of the thread
and, for the purpose of faster look-up, in a global info data structure of the kernel
(called kglobal), is done by the helper function p4_runner_changeprio:

1 P4_prio_t p4_runner_changeprio(P4k_thrinfo_t *proc, P4_prio_t newprio)
2 writes(&abstractModel, &kglobal)
3 requires(proc == abstractModel.currentThread)
4 maintains(wrapped(&abstractModel) && wrapped(&kglobal))
5 ensures(proc->schedprio == newprio && ...)
6 returns(old(proc->userprio))
7 {
8 P4_prio_t oldprio; P4_cpureg_t oldstat;
9 unwrap(&abstractModel);

10 oldstat = p4arch_disable_int();
11 speconly(abstractModel.interruptsEnabled = 0;)
12 unwrap(proc);
13 oldprio = proc->userprio; proc->userprio = newprio; ...;
14 wrap(proc);
15 ... //update global kernel information
16 p4arch_restore_int(oldstat);
17 speconly(abstractModel.interruptsEnabled = PPC_c.msr.fld.EE;)
18 wrap(&abstractModel);
19 return oldprio;
20 }

Firstly, this function disables handling of external interrupts by calling the
method p4arch disable int (line 10), so that from here on concurrency does
not need to be considered. Before this, the struct abstractModel has to be
unwrapped (line 9) because p4arch_disable_int writes to the struct PPC_c,
which is owned by the abstractModel.

After p4arch disable int has set the EE bit of the MSR variable in PPC_c
to 1, one invariant of abstractModel no longer holds. Before abstractModel
can be wrapped again (line 18), that invariant has to be restored. This is achieved
by updating the interruptsEnabled flag of abstractModel (line 17). After the
interrupts are disabled, the different updates on the priority values of the thread
and (left out for clarity in the code) kernel information data structure can be
performed (lines 12–15). Restoring the interrupt-enabled state (lines 16–17) and
returning the old priority of the thread complete this method.

Using VCC it is now possible to prove that the function satisfies its specifi-
cation given in lines 2–6. For this, in fact, several intermediate assertions before
and after calls to helper functions are necessary to let the verification system



198 C. Baumann et al.

validate that certain properties have been preserved during method calls (we
have omitted these “lemmas” for brevity).

Following our bottom-up approach, we arrive at p4syscall fast set prio
which calls p4_runner_changeprio (see above) among other functions. The
implementation of the system call (not shown here), uses the helper methods
p4_runner, which returns the thread data structure for the current thread, and
p4_runner_changeprio, which changes the priority values of the thread. The
method p4_runner is a wrapper for the function p4arch runner which yields
the address of the page to which the stack pointer points. The specification of
p4_runner abstracts from the concrete return value of p4arch_runner and in-
stead returns the ghost variable abstractModel.currentThread. This abstrac-
tion is valid as it is a system invariant that the stack pointer for the kernel
stack always points to the page corresponding to the current thread. The thread
data structure of the current thread is placed at the beginning of this particular
page.

This, finally, allows us to verify the following method contract for our exem-
plary system call p4syscall_fast_set_prio:

1 P4_uint32_t p4syscall_fast_set_prio(P4_uint32_t prio)
2 writes(&abstractModel, &kglobal)
3 maintains(wrapped(&abstractModel) && wrapped(&kglobal))
4 ensures(prio <= abstractModel.currentThread->mcprio ?
5 abstractModel.currentThread->schedprio == prio && ...
6 : abstractModel.currentThread->schedprio ==
7 abstractModel.currentThread->mcprio && ... )

The postcondition of this method (ensures clause in lines 4–7) directly matches
the informal specification in the kernel reference manual: “This function sets the
current thread’s priority to newprio. Invalid or too high priorities are limited to
the caller’s task MCP. Upon success, a call to this function returns the current
thread’s priority before setting it to newprio.”

Besides this postcondition, the contract specifies that the method is (only)
allowed to write to abstractModel and kglobal (line 2), and that these two data
structures are required to be wrapped according to the ownership methodology
of VCC before and after the call to the function, i.e., the thread that is currently
executing the method is in possession of these data structures, all their non-
volatile fields remain unchanged and all their invariants hold.

6 Conclusion

Verification Setup for a System Call. We have presented the use of deductive
program verification in the VerisoftXT Avionics subproject. The formalization of
PowerPC assembly language semantics enables us to verify kernel functionality
spanning all levels of the PikeOS microkernel. In particular, we have shown
how interrupts are disabled and then restored again to ensure that the bulk of
the system call is in non-concurrent mode. The same approach can be applied
to verify system calls with more complex functionality as these still span the
same levels in the kernel as a call with simple functionality (this is ongoing
work).



Formal Verification of a Microkernel Used in Dependable Software Systems 199

Future Work. It is current work to apply the verification approach presented in
this paper to all the system calls and interrupt handlers of PikeOS to get a full
functional verification of the kernel. In a next step, we will then consider the
effects of concurrency when parts of the kernel are executed without disabling of
interrupts. Support for verifying concurrency has recently been added to VCC
by its developers [6].

Our bottom-up approach is complemented by top-down paper-and-pencil proofs
of how partitioning requirements are reflected in the implementation.

Acknowledgments. We are very grateful to Sabine Schmaltz and Matthias
Daum (Saarland Univ.) for help and many fruitful discussions, and to Markus
Wagner (Univ. of Koblenz) for his work in VerisoftXT Avionics. We also thank
Alexander Züpke, Jacques Brygier, Knut Degen, Tobias Stumpf, Stephan Wag-
ner, Michael Werner (SYSGO AG), the VerisoftXT ES.1 group, Mark Hille-
brand, Dirk Leinenbach (DFKI), Marko Wolf (escrypt) and the VCC research
team at Microsoft Research (EMIC), in particular Markus Dahlweid, Micha�l
Moskal, Thomas Santen, and Stephan Tobies, and the participants of the RTCA
SC-205/EUROCAE WG-71 formal methods group meeting (Cologne, Feb 2009).

References

1. Airlines Electronic Engineering Committee. Avionics Application Software Stan-
dard Interface. Aeronautical Radio, Inc., 2551 Riva Road, Annapolis, MD 21401,
ARINC specification 653 (1997)

2. Alglave, J., et al.: The semantics of Power and ARM multiprocessor machine code.
In: DAMP 2009: Proceedings of the 4th Workshop on Declarative Aspects of Mul-
ticore Programming, Savannah, GA, USA, pp. 13–24. ACM, New York (2009)

3. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Better avionics software reli-
ability by code verification. In: Proceedings, embedded world Conference, Nurem-
berg, Germany (2009)

4. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006)

5. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C.
In: Theorem Proving in Higher Order Logics (TPHOLs 2009), Munich, Germany.
LNCS, vol. 5674. Springer, Heidelberg (to appear, 2009) (invited paper)

6. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A practical verification method-
ology for concurrent programs. Technical Report MSR-TR-2009-15, Microsoft Re-
search (2009), http://research.microsoft.com/vcc

7. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: Contract-
based modular verification of concurrent C, http://research.microsoft.com/vcc

8. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research
(2005)

http://research.microsoft.com/vcc
http://research.microsoft.com/vcc


200 C. Baumann et al.

10. Freescale Semiconductor. MPC5200B User’s Manual, Rev. 1.3 (September 2006),
http://www.freescale.com/files/32bit/doc/ref_manual/MPC5200BUM.pdf

11. In der Rieden, T., Tsyban, A.: CVM: A verified framework for microkernel pro-
grammers. In: Huuck, R., Klein, G., Schlich, B. (eds.) 3rd International Workshop
on Systems Software Verification (SSV 2008). ENTCS, vol. 217, pp. 151–168. El-
sevier Science B.V, Amsterdam (2008)

12. Kaiser, R., Wagner, S.: Evolution of the PikeOS microkernel. In: Kuz, I., Petters,
S.M. (eds.) MIKES: 1st International Workshop on Microkernels for Embedded
Systems (2007),
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf

13. Klein, G.: Operating system verification: An overview. Technical Report NRL-
955, NICTA, Sydney, Australia (June 2008), http://wwwbroy.informatik.

tu-muenchen.de/~kleing/papers/os-overview.pdf

14. Klein, G., Norrish, M., Elphinstone, K., Heiser, G.: Verifying a high-performance
micro-kernel. In: Proceedings, 7th Annual High-Confidence Software and Systems
Conf., Baltimore, USA (2007)

15. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

16. Maus, S., Moskal, M., Schulte, W.: Vx86: x86 assembler simulated in C powered
by automated theorem proving. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008.
LNCS, vol. 5140, pp. 284–298. Springer, Heidelberg (2008)

17. Pelzl, J., Wolf, M., Wollinger, T.: Virtualization technologies for cars: Solutions to
increase safety and security of vehicular ECUs. In: Proceedings, embedded world
Conference, Nuremberg, Germany (2009)

18. Radio Technical Commission for Aeronautics. Integrated Modular Avionics (IMA)
Development Guidance and Certification Considerations. DO-297. Radio Technical
Commission for Aeronautics (RTCA), Inc., 1828 L Street NW, Suite 805, Wash-
ington, D.C. 20036 (November 2005)

19. Starostin, A., Tsyban, A.: Correct microkernel primitives. In: Huuck, R., Klein,
G., Schlich, B. (eds.) 3rd International Workshop on Systems Software Verification
(SSV 2008). ENTCS, vol. 217, pp. 169–185. Elsevier Science B. V, Amsterdam
(2008)

20. SYSGO AG press releases. PikeOS selected for traffic control system (August 07,
2007), Flight management system will run on SYSGO’s PikeOS in the DIANA
project (July 17, 2008), AIRBUS selects SYSGO’s PikeOS as DO-178B reference
platform for the A350 XWB (November 18, 2008), Rheinmetall selects DO178B
certifiable PikeOS from SYSGO for A400M project (December 10, 2008),
http://www.sysgo.com

21. Zucker, S., Karhi, K.: System V Application Binary Interface: PowerPC Processor
Supplement. SunSoft, Mountain View, CA, USA, 802-3334-10 edn. (September
1995), http://refspecs.freestandards.org/elf/elfspec_ppc.pdf

http://www.freescale.com/files/32bit/doc/ref_manual/MPC5200BUM.pdf
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf
http://wwwbroy.informatik.tu-muenchen.de/~kleing/papers/os-overview.pdf
http://wwwbroy.informatik.tu-muenchen.de/~kleing/papers/os-overview.pdf
http://www.sysgo.com
http://refspecs.freestandards.org/elf/elfspec_ppc.pdf


B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 201–214, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Issues in Tool Qualification for Safety-Critical 
Hardware: What Formal Approaches  

Can and Cannot Do 

Brian Butka1, Janusz Zalewski2, and Andrew J. Kornecki3 

1 Electrical Engineering, Embry Riddle Aeronautical Univ., Daytona Beach, FL 32114 USA 
butkab@erau.edu 

2 Computer Science, Florida Gulf Coast University, Fort Meyers, FL 33965 USA 
zalewski@fgcu.edu 

3 Computer&Software Engineering, Embry-Riddle Aeronautical Univ., 
Daytona Beach, FL 32114 USA  

kornecka@erau.edu 

Abstract. Technology has improved to the point that system designers have the 
ability to trade-off implementing complex functions in either hardware or soft-
ware. However, clear distinctions exist in the design tools. This paper examines 
what is unique to hardware design, areas where formal methods can be applied 
to advantage in hardware design and how errors can exist in the hardware even 
if formal methods are used to prove the design is correct.  

Keywords: Tool Qualification, HDL, PLD, Hardware Design, Safety-Critical 
Systems, Formal Methods. 

1   Introduction 

Safety-critical applications, such as a modern aircraft use not only increasing numbers 
of microprocessors and microcontrollers but also dedicated hardware to process the 
growing amounts of data needed to control the flight and related systems, and monitor 
their status. Rapid progress of digital technology in the last 25 years can be shown on 
example from Airbus industries: the increase of number of digital units from 70 to 
300, number of transistors from 105 to 108, and number of gates per chip from ten to 
600 thousand [1]. Recent proliferation of custom micro-coded components changed 
the market and the ways how the industry operates. These complex programmable 
electronic components are not only programmed using conventional programming 
languages but their logic designs are also developed by writing code in a Hardware 
Description Language (HDL) such as VHDL, Verilog, or SystemC. The two distinc-
tive categories of modern electronic components are programmable logic devices 
(PLD) and application specific integrated circuits (ASIC). PLD is purchased as stan-
dard electronic parts and then altered (or programmed) to perform specific function. 
ASIC is developed using an expensive process of fabrication with the design embed-
ded in the layers of silicon. Once manufactured, ASIC cannot be re-programmed and 



202 B. Butka, J. Zalewski, and A.J. Kornecki 

thus it is not a PLD – although the original program for ASIC is developed in HDL, in 
the same manner as for PLD. The primary and most popular PLD components type 
are field programmable gate arrays (FPGA), often treated as a separate category. The 
scope of this research has been limited to tools supporting development of FPGA that 
have been used, or have a potential to be used, in airborne applications. 

Most of these devices can be configured to implement a particular design by 
downloading a sequence of bits. In that sense, a circuit implemented on programma-
ble logic device is literally software. Software tools are used to simulate the logic, 
synthesize the circuit, and create the placement and routing for the electronic elements 
and their connections in preparation for the final implementation, i.e., programming 
the logic devices, which used to be conventionally called “burning into the logic.” 
The development of hardware relies significantly on the quality of tools, which trans-
late the software artifacts from one form to another. Both software and hardware use 
extensively very complex tools, i.e., integrated programming environments taking the 
project from its conceptual stage into the final product.  Thus, the quality of such tools 
is essential for the proper operation of respective products in the real-life environ-
ment, especially in safety-critical systems, where computer systems may cause unin-
tended harm to human life or property. 

The objective of this work is to analyze the use of software tools in hardware de-
velopment for safety-critical systems, from the perspective of potential application of 
formal approaches to improve product quality.  The rest of the paper is structured as 
follows.  Section 2 sets the stage for the analysis, providing an overview of a design 
flow for PLD components, with emphasis on design verification. Section 3 outlines 
the potential impact of tool quality on product safety, and Section 4 discusses specific 
hardware issues that can still remain unresolved after formal verification of the  
design. 

2   PLD Design Flow and Formal Approaches 

A generic PLD design flow is shown in figure 1. The PLD design process begins by 
describing the hardware functionality in an HDL. The HDL code can then be simu-
lated to verify correct function at the behavioral level. The synthesis process converts 
the high-level HDL code into a netlist of interconnected logic functions. The place 
and route process fits the netlist to the vendor specific hardware architecture of the 
PLD. The synthesis and place and route processes provide opportunities for errors to 
be introduced to a logically correct HDL description of a design. In the rest of this 
section, we review the formal approaches addressing some of these problems from the 
tools perspective, as well as outline an engineering view based on practical experience 
with similar issues. 

2.1   Review of the Use of Formal Approaches in Hardware Design Tools 

A thorough review of literature for the last decade, or so, reveals a number of attempts 
to formalize reasoning about hardware design, for example [2], with very few of them 
related to tools. A handful of selected papers are mentioned below, in chronological 



 Issues in Tool Qualification for Safety-Critical Hardware 203 

order. For the purpose of this discussion, we follow the definition of a formal method 
as given by the NASA Langley Formal Methods Group: 

"Formal Methods" refers to mathematically rigorous techniques and tools for the 
specification, design and verification of software and hardware systems. The phrase 
"mathematically rigorous" means that the specifications used in formal methods are 
well-formed statements in a mathematical logic and that the formal verifications are 
rigorous deductions in that logic (i.e. each step follows from a rule of inference and 
hence can be checked by a mechanical process.) (http://shemesh.larc.nasa.gov/fm/fm-
what.html) 

 
Fig. 1. A generic PLD design flow  

In an overview paper [3] Kern and Greenstreet identify two main aspects of the ap-
plication of formal methods in a hardware design process: (a) the formal framework 
used to specify desired properties of a design, and (b) the verification techniques and 
tools used to reason about the relationship between a specification and a correspond-
ing implementation. They survey a variety of frameworks and techniques proposed in 
the literature as applied to actual designs. The specification frameworks include tem-
poral logic, predicate logic, regular languages, abstraction and refinement. The verifi-
cation techniques include model checking, automata-theoretic techniques, automated 
theorem proving, and approaches that integrate the above methods. The paper pre-
sents a selection of case studies where formal methods were applied to industrial-
scale designs, such as microprocessors, floating-point hardware, protocols, memory 
subsystems, and communications hardware. 



204 B. Butka, J. Zalewski, and A.J. Kornecki 

Only relatively recently authors of papers on formal methods began considering 
tools supporting these approaches.  A handful of related papers are discussed below. 
Turner and He [4] investigate specification, verification and test generation for syn-
chronous and asynchronous circuits. Their approach is based on temporal ordering 
specification using Digital Logic In LOTOS (DILL). The paper defines relations for 
strong conformance to verify a design specification against a high-level specification, 
and describes tools for automated testing and verification of conformance between an 
implementation and its specification. 

Aljer and Devienne [5] consider the use of a formal specification language as the 
foundation of real validation process.  They propose architecture based upon stepwise 
refinement of a formal model to achieve controllable implementation. Partitioning, 
fault tolerance, and system management are seen as particular cases of refinement in 
order to conceptualize systems correct by proven construction.  The methodology 
based on the refinement paradigm is described. To prove this approach, the B-HDL 
tool based on a combination of VHDL and B method formal language has been  
developed. 

Nehme and Lundqvist [6] describe a framework combining software tools for ap-
plication verification and hardware platforms for execution and real-time monitoring. 
The tool translates safety critical VHDL code into a formal representation in a form of 
finite state machine (FSM) model. Formal techniques can then be applied on FSM 
representation to verify properties such as liveness and deadlock and to validate that 
the timing constraints of the original system are met. Three aspects of the tool imple-
mentation are discussed: transformation of source code into an intermediate represen-
tation, verification of real-time properties, and some tool-related implementation 
issues. 

Dajani-Brown et al. [7] focus on the use of SCADE (Safety Critical Application 
Development Environment) and its formal verification component, the Design Veri-
fier, to assess the design correctness of a sensor voter algorithm used for management 
of three redundant sensors. The algorithm, captured as a Simulink diagram, takes 
input from three sensors and computes an output signal and a hardware flag indicating 
correctness of the output. Since synthesis of a correct environment for analysis of the 
voter's normal and off-normal behavior is a key factor when applying formal verifica-
tion tools, this paper is focused on: 1) approaches used for modeling the voter's envi-
ronment; and 2) the strengths and shortcomings of such approaches when applied to 
the discussed problem. 

Hilton in his thesis [8] proposes a process for developing a system incorporating 
both software and PLD, suitable for safety critical systems of the highest levels of 
integrity. This process incorporates the use of Synchronous Receptive Process Theory 
as a semantic basis for specifying and proving properties of programs executing on 
PLD, and extends the use of SPARK Ada to cover the interface between software and 
programmable logic.  The author claims that the demonstrated methods are not only 
feasible but also scale up to realistic system sizes, allowing development of such 
safety-critical software-hardware systems to the levels required by current system 
safety standards. 

Finally, with the emergence of the FAA endorsed document DO-254 “Design As-
surance Guidance for Airborne Electronic Hardware” [9], more papers began to ap-
pear that discuss not only tool support for formal approaches, but also compliance 



 Issues in Tool Qualification for Safety-Critical Hardware 205 

with the DO-254 standard.  This is where initial discussions of product or process 
certification and tool qualification begin to take place. 

Dallacherie et al. [10] look at a static formal approach that may be used, in  
combination with requirements traceability features, in the design and verification of 
hardware controllers to support such protocols as ARINC 429, ARINC 629, MIL-
STD-1553B, etc., with respect to compliance with DO-254.  The paper describes the 
application of a formal tool in the design and verification of airborne electronic hard-
ware developed in a DO-254 context.  imPROVE-HDL tool is a formal property 
checker that complements simulation in performing exhaustive debugging of 
VHDL/Verilog Register-Transfer-Level hardware models of complex avionics proto-
col controllers without the need to create testbenches. Another tool, Reqtify, is used to 
track the requirements and produce coverage reports throughout the verification proc-
ess.  The authors claim that using imPROVE-HDL coupled with Reqtify, avionics 
hardware designers are assured that their bus controllers meet the most stringent 
safety guidelines outlined in DO-254. 

Karlsson and Forsberg [11] discuss the additional strategies identified in RTCA DO-
254 for the highest levels of design assurance (A and B). In particular, the use of formal 
property specification language (PSL) in combination with dynamic (simulation) and 
static (formal) verification methods for programmed logic devices are addressed. Using 
these methods, a design assurance strategy for complex programmable airborne elec-
tronics compliant with the guidelines of RTCA DO-254 is suggested. The proposed 
strategy is a semi-formal solution, a hybrid of static and dynamic assertion based verifi-
cation.  The functional specification can be used for both documentation of require-
ments and verification of the design’s compliance. It is possible to tightly connect 
documents and reviews to present a complete and consistent design/verification flow.  

As shown above, formal approaches have some demonstrated successes in hard-
ware design; however, the essence of formal methods is that they require a perfect 
model of the physical system.  Thus, due to the complexity of actual systems, formal 
approaches can be only used in parts of the design process. Typically, formal methods 
are used early in the development life cycle substituting formal abstraction for a com-
plete physical model. Subsequent refinement is then used to map forward require-
ments to the later stages of the life cycle. 

2.2   Engineering Approach to PLD Design Verification 

Simulation, which requires the generation of appropriate test vectors, is an accepted 
traditional method for functional verification during the design creation phase. Verifi-
cation of the hardware using simulation may consist of both directed test vectors and 
randomly generated vectors. This method has been considered adequate to verify that 
the design specified in HDL Register Transfer Language (RTL) performs the intended 
function at the behavioral level. Verification of million-gate designs at the gate level 
requires that transitions on every gate be tracked, resulting in runtime of weeks for 
substantial million-gate designs.  

Since an RTL design can be implemented in a variety of ways on the gate level, the 
number of test vectors grows exponentially during verification. Any unintended effect 
of synthesis or timing optimization can insert a design error affecting a part of the 
circuit, and thus manifest itself with a few combinations of values on the inputs.  



206 B. Butka, J. Zalewski, and A.J. Kornecki 

 
Fig. 2. Verification with Formal Equivalence Checking [12] 

To guarantee detection of such an error with gate-level simulation, every possible 
combination of inputs must be applied, resulting in an infeasible size of test vector 
being required to ensure 100% error coverage. One solution to this problem could be 
the utilization of formal methods. The approach used is based on rigorous verification 
of RTL as an input artifact, while showing that the transition to the gate level is con-
sistent, correct, and does not change the semantic properties of the original input  
artifact.  

One such approach is an equivalence checker, which uses static verification tech-
niques to prove that the RTL and gate-level representations of digital design are an 
exact functional match. Full verification at the gate-level simulation for modern mil-
lion-gate designs is infeasible. A formal checker (figure 2 [12]) uses a formal verifica-
tion interface file (FVI) as a basis for comparison with gate-level netlists generated as 
a result of the first synthesis and subsequent place-and-route processes. FVI is a read-
able text file including setup information with file names, paths, constraints, and name 
matching. If the equivalency of these representations is assured, it can be assumed the 
final design is consistent with the original design intent.  

Assuming that the original RTL representation (in VHDL or Verilog) verified by 
extensive simulations is functionally correct, equivalence checking is an acceptable 
solution, since it ensures that transformations throughout the design flow comply with 
the original functionality. However, equivalence checking does not replace timing 



 Issues in Tool Qualification for Safety-Critical Hardware 207 

analysis. Static and dynamic timing analysis tools should still be used to confirm gate-
level timing. 

Despite the obvious advantages of the formal equivalence checking approach, there 
are limitations. Formal tools appear to provide the ultimate assurance of design cor-
rectness. At the end of a run, the program provides counter-examples for each speci-
fied property specified by developer which were found not valid. Every property is 
100% covered. But the Achilles heel of the process is determining how completely 
the set of properties covers the design intent. This requires “human-in-the-loop” - the 
skill of experienced designers. 

There are numerous safety issues for designers to consider during the synthesis and 
place and route processes of a hardware design. The related potential errors are often 
caused by unexpected optimizations occurring during the tool-driven synthesis proc-
ess. Because these errors occur while translating from the HDL description to the 
hardware implementation, the resulting design may be faulty even though the HDL 
implementation has been proven to be correct. In the next section, we take a closer 
look at the issues relevant to tool use in the design synthesis process. 

3   Safety Issues 

The case studies have been developed based on the expressed concerns of the airborne 
systems developers and certifying authorities with the reference to tools used for 
FPGA development under the FAA mandated RTCA DO-254 guidelines [9].  
Largely, these concerns are relevant to development of all safety-critical and real-time 
systems.  The approach was that the tools will be used in worst-case least-likely use 
scenarios, to test the bounds of the tools’ capability.  The black box design entered 
into the tool shall have a one-to-one mapping trace to the black box operation that is 
finally implemented.  To facilitate design independence, case studies are very simple 
cases exploring specific attributes of a tool.  This method has been selected over a 
large elaborate design to avoid unnecessary issues related to flaw in the design itself.  
The case studies address timing constraints, power integrity, and undefined in-
put/output states. Additionally, the research explored issues of differences between 
behavioral simulation and implemented circuit behavior as well as tool awareness of 
circuit implementation on a faulty hardware.  

3.1   Background 

The design synthesis process is highly customizable and varies significantly from tool 
vendor to vendor. The variety of options and configurations make it difficult for an 
inexperienced designer to know exactly what the default synthesis settings are. Cer-
tain functions of synthesis, such as VHDL interpretation, are standardized by IEEE 
[13]. However, non-standard optimization techniques constitute the trade secret and 
are considered a competitive advantage of a given vendor. The tool user or designer 
often does not know the details of synthesis algorithms and thus is not aware of how 
the tool works. The magnitude of change of the intended design in the synthesis proc-
ess and thus the impact on the final design may not be precisely known. The impact of 
the change depends upon the intricacies of the actual logic design, the selected tool 



208 B. Butka, J. Zalewski, and A.J. Kornecki 

used for synthesis, and the tool's current settings. Regrettably, synthesis is not a stan-
dardized process; each vendor's tool is different. The differences are only known by a 
comparison of input versus output of different tools. Due to obvious reasons dealing 
with intellectual property and competitive advantage, it is not easy to publicize what 
synthesis algorithms are or what specific methods and techniques are used for simpli-
fication and optimization.  

Creation of a placed and routable circuit from the HDL code that meets the per-
formance goals is accomplished by merging logical synthesis and physical implemen-
tation technologies. When such created designs cannot meet their realistic timing 
objectives, the solution is to use more traditional design methodologies. The intrica-
cies of logical and physical synthesis are closely guarded intellectual property of 
specific tool vendors. The general underlying background is well known, but the 
specifics of algorithms are not.  

Safety is obviously an overall system property depending on behavior of hardware 
circuit as well as software that are developed to monitor and control the system. The 
issues discussed in the following sections have clearly impact of the ultimate safety of 
the system. The confusion between what the designer think the circuit (or the algo-
rithm) will do versus what the actual physical circuit (or the running program) does is 
the main reason for potential safety violation.  

3.2   Synthesis Issue #1 - Getting Less Than Expected 

The default configuration for almost all FPGA design tools is that all of the compiler 
and synthesis optimizations are enabled. This can lead to unexpected implementa-
tions. For instance, to reduce a design's sensitivity to single event upsets (SEU) errors 
a designer may write HDL code to specify a triple redundant module as shown in 
figure 3(A). However, the synthesis tool may determine that most of the hardware is 
redundant and implement the system as shown in figure 3(B). The independent multi-
pliers were identified as redundant and optimized away during synthesis. 

3.3   Synthesis Issue #2 - Getting More Than Expected 

In order to meet timing, the synthesis tool will sometimes create redundant hardware 
to improve timing in what is called flip-flop replication. This can produce problems,  

 

 

Fig. 3. Triple Redundant Module with Three Multipliers 



 Issues in Tool Qualification for Safety-Critical Hardware 209 

 
Fig. 4. Flip-Flop Replication 

particularly in systems where part of the circuit is monitoring the performance of 
another circuit. In designs that are intended to be tolerant of SEU, it is common to 
monitor that a critical flip-flop's outputs are logical opposites of each other under all 
conditions. Consider the circuit of figure 4(a) where the Output and the Monitor are 
always logically opposite. A logically equivalent implementation that could be  
generated by the synthesizer to meet timing constraints is presented in 4(b). In such a 
solution, a single event upset of the top flip-flop will not affect the monitor output. 
However, the resulting circuit does not guarantee that Output and Monitor are logical 
opposites, which defeats the purpose of the monitor output.  

3.4   Synthesis Issue #3 - Hardware That Is Non-functional in Normal Operation  

The triple redundant module and metastability examples take place when design 
optimizations are applied during synthesis. Typically, the software tool would not 
generate explicit warnings that the optimization had been used. The additional cir-
cuitry should not be active during the normal operation. Therefore this error may 
not be detectable during hardware validation since validation is performed using 
working hardware. The only methods of verifying correct operation of this circuitry 
is via simulation of the HDL. Since we cannot independently verify the operation of 
this circuitry in the hardware, the gate-level implementation must be verified. For-
mal methods offer the most appealing solution to this problem. 

Since the above problems are caused by the synthesizer performing optimizations, 
we could turn off all synthesizer optimizations. Occasionally it can be a feasible solu-
tion. However, in most cases it is difficult to meet the timing and the chip area con-
straints without optimizations. An experienced designer would recognize such issues 
and configure the synthesizer optimizations appropriately. It is still difficult to assess 
if the designer has handled all possible areas of concern. There is evident need for a 
testing/design process where the experience of both the design and verification teams 
is considered in determining the level and rigor of verification that must be demon-
strated.  



210 B. Butka, J. Zalewski, and A.J. Kornecki 

4   Hardware Specific Issues 

Even if a design has been formally verified by a tool of respective pedigree, it is still 
possible for hardware circuits to produce incorrect results. The hardware-related is-
sues can be broadly classified as timing, signal, and power integrity issues.  

4.1   Timing Issues 

Perhaps the most difficult aspect in verifying the correctness of hardware is that even 
minor changes in the timing can produce major differences in the logical operation of 
a circuit. Consider a bus of many bits that instantaneously transitions from all of the 
bits being zero (0) to all of the bits being one (1). Due to differences in the routing 
and random variations in the devices, some bits will transition faster than others. This 
results in a period of time where some of the bits are stable and some of the bits are 
still transitioning. During this period, the data on the bus is invalid. Accurate simula-
tion of this timing variation requires knowledge of the exact placement and routing of 
the devices. Any simulation not incorporating timing data from the place-and-route 
process will not be able to see these differences. In addition, since the simulation 
timing step size is typically much larger than the timing differences, the timing differ-
ences will not show up in the simulation output. Designers must always be aware of 
the limits of the simulation.  

It is possible to minimize the timing variations caused by routing differences by 
placing timing constraints on the design tools. However, there is always a timing 
variation due to random device variations and these effects are rarely (if ever) in-
cluded in logic simulator models. Even when the simulations show that the data is 
always valid, random device variations guarantee there are periods where the data on 
the bus is invalid. The design tools cannot change the physics. Designs must be toler-
ant of the fact that there are always periods when the data on any bus is invalid.  

4.1.1   Synchronous Design 
To overcome the problem of not knowing when the data is valid, almost all hardware 
designs use a synchronous design with a clock. In this design style, the data is valid 
for some time before the clock edge (setup time) and for some time after the clock 
(hold time). The clock signal is generated from a master source and then distributed 
throughout the device. Special care must be taken so that the clock arrives to all de-
vices in the device at the same time. Delivery of the clock to different devices at dif-
ferent times is known as clock skew. FPGAs contain a limited number of specialized 
trees that can be used to minimize clock skew. Although the design tool attempts to 
recognize clock trees, the design must often explicitly declare these trees so that the 
synthesis tool will correctly accommodate them. The clock trees are often heavily 
loaded, driving many devices while the data lines often only drive a single device. 
This means the data is often naturally too fast and that the synthesis tool must incor-
porate delays to allow the device to meet timing. These delays are often created by 
inserting additional buffers in the data signal path or by artificially loading the data, 
without notifying the designer. Speed differences between the clock and the data path 
may result in the failures due to the data arriving too soon or too late. These failures 



 Issues in Tool Qualification for Safety-Critical Hardware 211 

are particularly sensitive to variations in temperature and voltage and often are con-
cealed in simulation.  

4.1.2   Synchronous Design -- Multiple Clock Domains 
Ideally, a design will have only a single master clock. Unfortunately, modern designs 
commonly require several independent clocks used within a single system. When 
signals move from one clock domain to another, special circuits and analyses are 
required. Correct operation of circuits crossing clock domain boundaries cannot be 
guaranteed by simulation because the timing between different clock domains can 
vary arbitrarily which would require an infinite number of simulations. Special design 
techniques are used to allow signals to cross between clock domains and designers 
must insert them where needed.  

4.1.3   Asynchronous Designs 
The most risky of all design styles is asynchronous design, where inputs and/or out-
puts are allowed to vary without respect to any clock. Modern designs use increasing 
number of clocks. Asynchronous circuits are subject to a condition called “metastabil-
ity,'' in which signals transition from one value to another via quasi-stable states ex-
hibiting an intermittent failure. Neither simulation (testing logic function) nor static 
timing analysis (testing single clock domain) can detect such failure.  

A typical example of such a situation is when the clock and data inputs of a flip-
flop change values at approximately the same time. This leads to the flip-flop output 
oscillating and not settling to a value within the appropriate delay window. It happens 
when there is communication between discrete systems using different clocks.  

Experienced designers mitigate the event by adding synchronization between clock 
domains and isolating the “metastable'' output to reduce propagation effects. This 
state introduces a delay which varies depending on the exact timing of the inputs. This 
delay can only be analyzed statistically. We cannot prevent an error from happening; 
we can only bind its probability. Although most designers avoid asynchronous design, 
there are cases where such solution is required. An example would be a reset path that 
must operate, even if the synchronizing clock is not present. 

4.2   Signal Issues 

4.2.1   Combinational Feedback and Quasi-digital Circuits 
PLDs provide the user with the ability to configure the device a nearly infinite num-
ber of ways. This flexibility can allow the designer to implement unexpected configu-
rations. For instance, it is possible to configure an odd number of inverter gates into a 
circuit known as a ring oscillator. Inverters 1, 2, and 3 form the oscillator while in-
verter 4 converts the analog sine wave back to a square wave (figure 5). This configu-
ration has an output, but no inputs, and the timing is determined by the speed of the 
inverters and is not synchronized to any clock. This makes the ring oscillator very 
sensitive to temperature variations and this configuration is often used as a tempera-
ture sensor. When the hardware is operating as a ring oscillator, the signals do not 
switch between normal digital signal levels. The oscillator is essentially an analog 
device using the gain present in the logic gates to produce oscillations. Most HDL 
simulators assume only digital logic and are unable to correctly simulate this simple  
 



212 B. Butka, J. Zalewski, and A.J. Kornecki 

 

Fig. 5. Ring Oscillator 

analog configuration. Many design tools prevent the user from implementing a com-
binational feedback configuration such as a ring oscillator. To guarantee the correct-
ness of the tools, we must restrict the designer's ability to produce problematic con-
figurations.  

4.2.2   Undefined States and Constant Signals 
FPGAs may contain large numbers of states which are defined as “don't care” for 
certain modes of operation. Many inputs and internal variables are often defined as 
constants. Different synthesis tools handle the “don't care” states and constants quite 
differently. This makes formal verification a very user intensive process requiring 
manual customization of the verification tool.  

4.3   Power Issues 

4.3.1   Power-Up and Reset  
When an FPGA or ASIC is either powered up or comes out of reset, there is often a 
period of time when the device outputs are unpredictable. The performance of a com-
ponent during power-up is difficult to predict, as there are often multiple power sup-
plies to the part which will turn on in an uncontrolled fashion. If the output drivers 
receive power before the internal logic, all of the glitches produced by the internal 
logic can be sent through the outputs to other devices in the system. Even a normal 
reset can contain internal race conditions that can produce periods where the outputs 
are unstable. The Wide-Field Infrared Explorer (WIRE) spacecraft was lost when the 
FPGA produced unexpected outputs during power-up. The unexpected output resulted 
in the system reset process not completing, which lead to the early firing of a pyro-
technic device and ultimately to the failure of the mission [14].  

4.3.2   Signal and Power Integrity Errors 
Single ended signaling is often used on aircraft to reduce the weight of the wiring. In 
single-ended signaling, inputs and outputs (I/O) share a common power and ground 
connection. If all of the I/O connected to the common power supply or ground change 
state simultaneously, a large spike in current will occur. Any parasitic inductances in 
the power supply and ground distribution network will have voltages induced across 
them which are proportional to the derivative of the current. These induced voltages 
are known as supply/ground bounce and can be large enough to lead to erroneous 
circuit operation.  

Noise can also be introduced into the system via crosstalk between signals. 
Crosstalk coupling is primarily a function of the total inductance of the current path. 
This inductance is a function of the distance between the ground (GND) and supply 
voltage (VDD) pins to the signal pin. Signal pins farther away from a GND or VDD 



 Issues in Tool Qualification for Safety-Critical Hardware 213 

pin are more susceptible to noise. This problem is exacerbated when a large number 
of I/O in the region switch simultaneously. 

5   Conclusions  

Technology has improved to the point that system designers have the ability to trade-
off implementing complex functions in either hardware or software. However in the 
design tool world there are clear distinctions between software and hardware tools. 
One of the major concerns in any hardware design is assuring that the hardware cor-
rectly implements the HDL description. As the synthesis and place and route process 
proceeds the architecture used to implement any given HDL description can be 
changed to optimize the design for area, power, or timing. The synthesis tool views all 
of the implementations as logically equivalent, but they may not be equivalent in the 
eyes of the designer. Formal tools and specifically equivalence checking approach 
seem to be an excellent method to guarantee that the designer's intent has been trans-
lated to the physical hardware. While both verification of models and hardware syn-
thesis have been successfully applied in industrial practice, there are several caveats 
in practice when physical components come in play. The issues are not due to the 
incorrectness of neither formal analyses nor errors in the synthesizers, but the inade-
quacy of the analyzed models and the not-so-simple internal conditions and related 
synthesizers' construction. 

Formal methods must never give us a false sense of confidence.  Despite the best 
design and verification efforts the hardware may still produce unexpected results. 
These errors can be due to noise, supply bounce, timing issues, or even cosmic radia-
tion. It should be noted that specialized design tool suites to address all of the above 
error conditions exist. The tradeoffs between the costs and benefits of using these 
tools must be investigated for each design. Despite all of the design tools available, 
the most important component of any safety-critical design is an experienced designer 
with the experience and ability to differentiate between what issues are critical and 
what issues are negligible. It should be also noted that a rigorous process and safety 
culture promoted by appropriate guidance in regulated industries (e.g. FAA in avia-
tion, FDA in the medical domain) is an integral element to improve safety.  

 
Acknowledgements. The presented work was supported in part by the Aviation Air-
worthiness Center of Excellence under contract DTFACT-07-C-00010 sponsored by 
the FAA. Findings contained herein are not necessarily those of the FAA. 

References 

1. Pampagnin, P., Menis, J.F.: DO254-ED80 for High Performance and High Reliable Elec-
tronic Components, Internal Paper, Barco-Siles S.A., Peynier, France (2007) 

2. Bernardo, M., Cimatti, A. (eds.): SFM 2006. LNCS, vol. 3965. Springer, Heidelberg 
(2006) 

3. Kern, C., Greenstreet, M.R.: Formal Verification in Hardware Design: A Survey. ACM 
Trans. on Design Automation of Electronic Systems 4(2), 123–193 (1999) 



214 B. Butka, J. Zalewski, and A.J. Kornecki 

4. Turner, K.J., He, J.: Formally-based Design Evaluation. In: Margaria, T., Melham, T.F. 
(eds.) CHARME 2001. LNCS, vol. 2144, pp. 104–109. Springer, Heidelberg (2001) 

5. Aljer, A., Devienne, P.: Co-design and Refinement for Safety Critical Systems. In: Proc. 
DFT 2004, 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI 
Systems, pp. 78–86. IEEE, Los Alamitos (2004) 

6. Nehme, C., Lundqvist, K.: A Tool for Translating VHDL to Finite State Machines. In: 
Proc. DACS 2003, 22nd Digital Avionics Systems Conference, October 12-16, vol. 1, pp. 
3.B.6-1-7 (2003) 

7. Dajani-Brown, S., Cofer, D., Bouali, A.: Formal Verification of an Avionics Sensor Voter 
Using SCADE. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. 
LNCS, vol. 3253, pp. 5–20. Springer, Heidelberg (2004) 

8. Hilton, A.J.: High-Integrity Hardware-Software Codesign, Ph.D. Thesis, The Open Uni-
versity (April 2004) 

9. DO-254, Design Assurance Guidance for Airborne Electronic Hardware, RTCA Inc., 
Washington, DC (April 19, 2000) 

10. Dellacherie, S., Burgaud, L., di Crescenzo, P.: imPROVE–HDL: A DO-254 Formal Prop-
erty Checker Used for Design and Verification of Avionics Protocol Controllers. In: Proc. 
DACS 2003, 22nd Digital Avionics Systems Conference, Indianapolis, Ind., October 12-
16, vol. 1, pp. 1.A.1-1.1-8 (2003) 

11. Karlsson, K., Forsberg, H.: Emerging Verification Methods for Complex Hardware in 
Avionics. In: Proc. DASC 2005, 24th Digital Avionics Systems Conference, October 30 -
November 3, vol. 1, pp. 6.B.1 - 61-12 (2005) 

12. Henson, J.: Equivalence Checking for FPGA Design, White Paper, Mentor Graphics 
Corp., Wilsonville, Ore. (May 2007) 

13. IEEE Std 1076-2002, Standard VHDL Language Reference Manual, The Institute of Elec-
trical and Electronics Engineers, New York (2002) 

14. Bridgford, B., Carmichael, C., Tseng, C.W.: Single-Event Upset Mitigation Selection 
Guide, Application Note XAPP987, Xilinx Inc., San Jose, Calif. (March 2008) 

 



Probabilistic Failure Propagation and

Transformation Analysis

Xiaocheng Ge, Richard F. Paige, and John A. McDermid

Department of Computer Science, University of York, UK
{xchge,paige,jam}@cs.york.ac.uk

Abstract. A key concern in safety engineering is understanding the
overall emergent failure behaviour of a system, i.e., behaviour exhibited
by the system that is outside its specification of acceptable behaviour. A
system can exhibit failure behaviour in many ways, including that from
failures of individual or a small number of components. It is important
for safety engineers to understand how system failure behaviour relates
to failures exhibited by individual components. In this paper, we pro-
pose a safety analysis technique, failure propagation and transformation
analysis (FPTA), which automatically and quantitatively analyses fail-
ures based on a model of failure logic. The technique integrates previous
work on automated failure analysis with probabilistic model checking
supported by the PRISM tool. We demonstrate the technique and tool
on a small, yet realistic safety-related application.

Keywords: failure, safety analysis, probabilistic analysis, component-
based system.

1 Introduction

Modern systems, comprising hardware and software components, are becoming
increasingly complex. The design and development of these complex systems
is challenging, because engineers need to deal with many functional and non-
functional requirements (e.g., safety, availability, and reliability requirements),
while keeping development cost low, and the engineering life-cycle as short and
manageable as possible.

Component-based software development has emerged as a promising approach
to developing complex systems, via an approach of composing smaller, inde-
pendently developed components into larger assemblies. This approach offers
means to increase software reuse, achieve higher flexibility and deliver shorter
time-to-market by reusing existing component, such as off-the-shelf components.
Component-based software development is realised in a number of different ways,
e.g., through model-based development or service-oriented computing.

Safety critical systems, like many other domains, may benefit from the flexibil-
ity offered by component-based software development. However, to be applicable
to safety critical systems, component-based development must directly support
modelling and analysis of key non-functional concerns, such as availability, re-
liability, and the overall failure behaviour of the system, in order to deliver a

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 215–228, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



216 X. Ge, R.F. Paige, and J.A. McDermid

system that is acceptably safe (e.g., to certifying authorities). The last concern
is particularly challenging to deal with: a system can fail in many ways. It may
be the case that a system failure arises due to failures of individual or a small
number of components. Identifying the source and likelihood of system failure
is of substantial importance to developers and safety engineers, so that they
can be sure that they have appropriately mitigated risks. Specifically, it is im-
portant that safety engineers and system developers be able to understand the
consequences of individual component failures.

1.1 Current Techniques for Failure Analysis

Several approaches to failure analysis, and understanding overall system fail-
ure behaviour, have been investigated, including research on software testing
(e.g., [4,5,8,9,10,13,14]) and system engineering (e.g., [2,3,6,12,15]). Largely, this
body of work provides evidence that understanding system failure behaviour
is more difficult than understanding specified (acceptable) behaviour. Failure
analysis techniques based on software testing (especially fault-based testing and
mutation analysis) include Interface Propagation Analysis (IPA) [14] and the
Propagation Analysis Environment (PROPANE) [5]. Both IPA and PROPANE
studied propagation behaviour at the code level. There were also studies of prop-
agation in terms of software architecture, e.g., [10]. Most of the research from
the software testing perspective focused on the study of the propagation of data
error, which occurs homogeneously — “for a given input, it appears that either
all data state errors injected at a given location tend to propagate to the output,
or else none of them do” [9]. In practice, the failure propagation behaviour of
software components may become much more complex when considering failures
caused by hardware components.

There are also approaches to analysis of failure propagation behaviour from
the system engineering perspective. Perhaps the most well known approach is
the classical safety engineering technique Failure Modes and Effects Analysis
(FMEA) [1], which is a manual process for identifying the failure modes of a
system starting from an analysis of component failures. Generally, the process
of failure analysis consists of several activities: identifying failures of individual
components, modelling the failure logic of the entire system, analysing a failure’s
effect on other components, and determining and engineering the mitigation of
potential hazards.

In safety engineering, developers and engineers general model and analyse
potential failure behaviour of a system as a whole. With the emergence of
component-based development approaches, investigations began exploring com-
ponent oriented safety analysis techniques, mainly focusing on creating encapsu-
lated failure propagation models. These failure propagation models describe how
failure modes of incoming messages (input failure) together with internal com-
ponent faults (internal failure) propagate to failure modes of outgoing messages
(output failure). Failure Propagation Transformation Notation (FPTN) [3] was
the first approach to promote the use of failure propagation models. Other rel-
evant techniques are Hierarchically Performed Hazard Origin and Propagation



Probabilistic Failure Propagation and Transformation Analysis 217

Studies (HiP-HOPS) [12] and Component Fault Trees (CFT) [6]. For specific
component-based specification languages, the later two techniques allow tool-
supported and automated generation of a safety evaluation model. A limitation
of these safety analysis techniques is their inability to handle cycles in the control-
or data-flow architecture of the system; cycles, of course, appear in most realistic
systems. Fault Propagation and Transformation Calculus (FPTC) [15] was one
of the first approaches that could automatically carry out failure analysis on
systems with cycles by using fixed-point analysis.

This paper focuses on failure propagation behaviours at the architecture level,
in which the components may be hardware or software components. Based on
our experience, we found that existing failure analysis techniques have a number
of limitations, in particular:

– FMEA and FPTN generally provide manual or non-compositional analysis.
Such analysis is expensive, especially in a typical component-based devel-
opment process, because if changes are made to components, the failure
analysis has to be carried out again, and previous analysis results will be
invalidated.

– FPTC does not provide facilities for quantitative analysis, particularly in
terms of determining the probability of specific failure behaviours. Such quan-
titative analysis can help to provide more fine-grained information to help
identify and determine suitable (cost-effective) mitigation to potential haz-
ards.

By providing an extension of FPTC technique, we are aiming to overcome the
limitations we found in existing system engineering analysis techniques.

1.2 Contribution and Structure of the Paper

In this paper, we propose a safety analysis technique, failure propagation and
transformation analysis (FPTA), which follows the direction of FPTC [15]. The
FPTA method integrates an automated failure analysis algorithm presented in
[15], and it also allows the application of model checking technique as provided
by the PRISM1 model checker [7]. The approach is therefore a probabilistic
safety analysis technique for component-based system development.

The structure of the paper is as follows. We begin by presenting background
material. We introduce the failure analysis technique in detail and outline its
underlying theory, explaining how FPTC [15] is integrated with probabilistic
model checking. Finally, we demonstrate the analysis method on an illustrative
safety-related application.

2 Background

The theory and techniques of FPTC were initially introduced in [15], and the
implementation of a supporting standards-compliant and open-source tool was
presented in [11]. We will briefly describe the modelling and analysis techniques
of FPTC in the following section.
1 http://www.prismmodelchecker.org/



218 X. Ge, R.F. Paige, and J.A. McDermid

2.1 Failure Modelling

FPTC is based on FPTN [3], and is applied to a model of system architecture.
In this approach the failure behaviours of both components and connectors are
determined and modelled. FPTC takes the view that connectors between com-
ponents are communication protocols, and because a communication protocol
also has its own potential failure behaviour, the protocols in the model must be
treated identically to the components of the system – i.e., their failures are also
modelled.

Components and connectors can (in terms of failure) behave in only a few ways
[15]. They can introduce new types of failures (e.g., because of an exception or
crash), or may propagate input failures (e.g., data that is erroneous when it
arrives at a component remains erroneous when it leaves the component), or
transforms an input failure into a different kind of failure (e.g., data that arrives
late may thereafter arrive early). Finally, a component may correct or mask
input failures that it receives.

Failure responses of a component to its input can be expressed in a simple lan-
guage based on patterns. For example, the following expressions denote examples
of failure propagation and transformation behaviours for a trivial single-input
single-output component: an omission fault at the input may propagate through
the component, but a late fault is transformed to a value fault at the output.

omission −→ omission (failure propagation)
late −→ value (failure transformation)

A typical component will have its failure behaviour modelled by a number of
clauses of this form, and the effect is its overall FPTC behaviour.

2.2 FPTC Analysis Technique

To represent the system as a whole, every element of the system architecture
– both components and connectors – is assigned FPTC behaviour. Each model
element that represents a relationship is annotated with sets of tokens (e.g.,
omission, late). The architecture as a whole is treated as a token-passing net-
work, and from this the maximal token sets on all relationships in the model
can be automatically calculated, giving us the overall failure behaviour of the
system. This calculation resolves to determining a fix-point [15]. For details of
the algorithm, see [11]; for an argument that the fix-point calculation must ul-
timately terminate, see [15]. Examples describing the use of FPTC in a number
of domains, including for analysis control logic and FPGAs, appear in [11].

2.3 Analysis of FPTC

FPTC overcomes the problem of handling cyclic data- and control-flow struc-
tures in a system architecture by using fix-point calculations. As well, experience
from a number of case studies suggests that it can be integrated into a system



Probabilistic Failure Propagation and Transformation Analysis 219

design process, thus potentially reducing safety engineering overheads. FPTC
nevertheless has some limitations which make it difficult to extend directly to
richer forms of analysis, particularly probabilistic analysis. We summarise these
limitations by example.

Example I: internal failures. Consider a simple system with a component
(e.g., a hardware sensor) that may have an internal power failure. When a power
failure occurs, there will be no output (i.e., an omission failure) from the com-
ponent, no matter what its inputs are. This can be modelled implicitly in FPTC
as shown in Equation 12.

input.∗ −→ output.omission (1)
This does not explicitly model the fact that there has been an internal failure
in the component. This is not a problem for standard FPTC, but if we desire
to extend FPTC to probabilistic analysis, we encounter difficulties: suppose an
internal omission failure occurs with probability 0.01. To model this, we need to
distinguish the case where an internal failure arises (described in Equation 1)
from the case where an omission failure is propagated by the component (i.e.,
the omission failure occurs elsewhere in the system). This requires the addition
of a new FPTC equation.

input.omission −→ output.omission
input.∗ −→ output.omission

(2)

The first line states that an omission fault on input leads to an omission fault on
output. The second line indicates that any fault on input leads to an omission
fault. But the first line is an instance of the second, and according to the defini-
tion of FPTC analysis in [15], is removed from calculations. But it is explicitly
necessary in order to support probabilistic analysis, because we must be able to
distinguish internal from external omission failure.

Unlike other techniques, such as HiP-HOPS and CFT, the FPTC technique
targets software systems where component failures are only triggered by inputs.
It is thus lacking in its support for modelling internal failure in the process of
integrated software/hardware design and assessment. Overall, input and output
failures are generally straightforward to identify, but a failure model given strictly
in terms of inputs and outputs may be insufficient to adequately capture system
failure behaviour, particularly when probabilities are involved.

Example II: non-determinism. Suppose we have a situation where a com-
ponent may not receive the inputs it requires (i.e., an omission failure on input),
and as a result, the component will, half of the time, generate no output, and
the other half of the time will generate the wrong output (i.e., a value failure).
In FPTC, this component can be partly modelled as in Equation 3.

input.omission −→ output.omission
input.omission −→ output.value

(3)

2 * Indicates any input.



220 X. Ge, R.F. Paige, and J.A. McDermid

This FPTC model is not well-formed according to [15], because the algorithm
assumes that failure behaviours on outputs are deterministic. Such behaviours
cannot be automatically analysed with the existing algorithm, but being able to
represent such behaviours is essential in order to support probabilistic analysis.

Summary. Overall, FPTC addresses one significant limitation of other safety
analyses – handling cycles in architectures – but is still insufficient. The limi-
tations we have identified are all related to how failures are modelled currently
in FPTC; the coarse nature of failure modelling in FPTC (particularly, the in-
ability to represent internal failures and non-deterministic failure behaviour on
output) makes it difficult to extend to probabilistic analysis. In the next section,
we propose an extension to FPTC models that supports probabilistic modelling,
and that eliminates these problems.

3 Probabilistic Modelling Extensions to FPTC

In this section we present an extension to FPTC for supporting probabilistic
modelling and that address the concerns presented above. We call this extension
failure propagation and transformation analysis (FPTA).

3.1 Probability Property

The first limitation presented with FPTC was the inability to explicitly model
internal failures in components (or connectors); this limitation is particularly
important to resolve in order to describe the uncertainty of a component’s tran-
sitive behaviours when considering the impact of internal failures. The overall
effect of this limitation is that internal failures are masked.

To alleviate this limitation in FPTA, we extend the model of FPTC failure
behaviour, by providing richer, more expressive means for modelling inputs and
outputs, the mode that inputs and outputs are in, and the probability associated
with each mode. We now explain this more precisely.

3.2 Transitive Behaviour Model

Components in FPTA (as in FPTC) are the principal processing objects of the
executing system, and connectors are interaction or communication mechanisms
for components. In most realistic system architectures, a component may have
multiple input ports and output ports; a port is the point of interaction between
component and connector. The values placed on an output port can be calculated
via a function that takes all input values into account. This is called the transition
function in FPTA. For example, a component with n input ports and m output
ports will have m transition functions. An instance of a transition function can
be written as:

{input1.fault, . . . , inputn.fault} −→ outputx.fault, probability (4)



Probabilistic Failure Propagation and Transformation Analysis 221

Mode is a term used in FPTA to describe the state of the contents of an input
or output port. Since an output of a component may have many modes, the
transition function of an output can have many instances of its possible modes.
We use a tuple (mode, probability) to describe each mode of an in/output port.
We call this tuple a token.

3.3 System Model

Connectors in an architectural model of a system are the links between compo-
nents. In FPTA, we provide a different semantics to connectors than in FPTC:
they are an abstraction that does not have any failure transformation behaviour.
Specifically, they propagate whatever they receive from an input port to an out-
put port. Thus, failure behaviour is modelled exclusively on components; this,
as we will see, simplifies the probability calculations.

Modes are propagated by connectors at run-time one at a time. Mathemati-
cally, what is propagated by a connector is a set of all possible input or output
modes. To model a connector, we define the contents propagated by a connector
as a collection of tokens. Formally, this is {token1, token2, . . . , tokenn} if there
are n possible modes that can be propagated.

Based on this definition, the tokens of a connector should satisfy the following
expression.

n∑

i=1

tokeni.probability = 1 (5)

The system model is thereafter constructed by connecting the models of all its
components in the same way as is done in traditional FPTC.

So far, we have explained how we model the system. Next, we will revisit the
limitations of the FPTC modelling language.

3.4 Revisiting Limitations of FPTC

Given FPTA as presented in the previous subsections, we now show that it
overcomes the limitations of FPTC discussed previously.

Consider the example presented in Section 2.3. Assume that a power failure
occurs with probability 0.01. The failure behaviour of this component can now
be expressed as:

input.omission −→ output.omission , 0.0001
input.value −→ output.omission , 0.0001

input.normal −→ output.omission , 0.0001
input.omission −→ output.omission , 0.9999

input.value −→ output.value , 0.9999
input.normal −→ output.normal , 0.9999

(6)

The example in Section 2.3 described the case where a component may have
different ways of reacting to the same failure on input. In particular, when there
is an omission failure of input, the component will half of the time generate



222 X. Ge, R.F. Paige, and J.A. McDermid

no output (omission) and half of the time will generate the wrong value (value
failure). This failure behaviour can be described as follows.

input.omission −→ output.omission , 0.5
input.omission −→ output.value , 0.5

input.value −→ output.value , 1
input.normal −→ output.normal , 1

(7)

Again, there is essential complexity that arises in modelling failure behaviour
when probabilities are introduced.

3.5 Analysing the System

Once the system model is constructed by connecting models of components, we
“execute” the model by using an algorithm similar to FPTC. Tokens in FPTA
consist of two elements: a mode and its probability. The technique to deal with
the computation of the modes is as same as the fix-point technique used in FPTC.
The law of total probability is used to calculate the probability associated with
each mode.

In FPTA, if there are n possible modes that can be transitioned to a particular
failure of an output, the law of total probability says:

P (output.fault) =
n∑

i=1

P (output.fault|input.modei)P (input.modei) (8)

In this formula, the probability values of input modes are calculated by previous
computations, and the conditional probability P (output.fault|input.modei) is
modelled in the instance of a transition function in the model of the component.
At the beginning of the “execution”, engineers provide an initial set of probability
values for modes, and then the calculation is carried out automatically until
the execution stops. Because the failure set is finite, the computation will be
guaranteed to reach a fix-point.

We now provide several examples. Given a component, assume that there
are two possible modes in which the component can fail, namely value (v) and
omission (o). As well, there is a default non-failure mode (normal (n)). First, we
consider the case where the component has one input port and one output port.
Example transitive behaviours and their probabilities (identified by a domain
expert) are listed in Table 1.

Table 1. The probability of possible transitions

Input Modes
Output Modes

normal (n) value (v) omission (o)

n 0.89 0.1 0.01

r 0 0.99 0.01

nr 0 0 1



Probabilistic Failure Propagation and Transformation Analysis 223

According to the data given by Table 1, the transition model of the component
is:

input.n −→ output.n , 0.89
input.n −→ output.r , 0.1
input.n −→ output.nr , 0.01
input.r −→ output.r , 0.99
input.r −→ output.nr , 0.01
input.nr −→ output.nr , 1

(9)

We can easily determine the set of tokens for the input port on the component;
this is {(n, 0.9), (v, 0.05), (o, 0.05)}. And from this, we can calculate the tokens,
including the modes and their probability values, for the output port by com-
puting the probability of every possible mode at the output port. For example,

P (output.n) = P (input.n) · P (output.n|input.n)
+ P (input.v) · P (output.n|input.v)
+ P (input.o) · P (output.n|input.o)

= 0.9 × 0.89
= 0.801

(10)

After carrying out a similar calculation for all other possible modes, the token
set at the output port is:

{(n, 0.801), (v, 0.1395), (o, 0.0595)} (11)

In a larger system, if this component is connected to another, we would take the
token set, {(n, 0.801), (v, 0.1395), (o, 0.0595)}, and use them as input tokens of
a component connected to this output port. This process would carry on until
the calculation reaches a fix-point and stops.

3.6 Model Checking

Our component-oriented approach for analysing failure behaviour focuses on the
transitions between modes of a component. Since we introduced a probability
property into the failure model, we need a formal mechanism to verify the proba-
bilistic model. Probabilistic model checking [7] is a suitable mechanism to use for
verification in this situation. Probabilistic model checkers encode system mod-
els using Markov chains; in this sense, they encode the probability of making
a transition between states instead of simply the existence of a transition. The
probabilistic model checking process is an automatic procedure for establishing if
a desired property holds in a probabilistic system model. We exploit probabilistic
model checking – and, in particular, PRISM – to accomplish three purposes.

1. It can be used to formally verify the probabilistic model. Since the probability
property was introduced to describe the failure behaviours of a component,
the model checker can help to check criteria that the probability values must
satisfy.



224 X. Ge, R.F. Paige, and J.A. McDermid

2. The output token set of a component can be calculated by the model checker
during the analysis. When the model becomes complex (e.g., when a com-
ponent has three or more input ports, or there are more than three possible
modes at each port), the calculation of output token set will be very difficult
without automated tool support.

3. There is also a desire that safety engineers and system developers can easily
determine how critical a component is to the entire system. Ideally, it should
be possible for the relationship between the failure behaviour of a component,
and the entire system, can be visualised.

In order to use the PRISM probabilistic model checker, we have to precisely
define the state of a component as a finite state model; note that FPTC abstracts
away from internal state and represents failures as observable external behaviour.
The state of a component can be formally defined by the modes of its input and
output ports because they can be observed and measured directly.

Once the transitive behaviour model is expressed as a state machine, then
it is very straightforward to express the model in the PRISM input language;
space limitations prevent us from presenting this simple transformation. Prop-
erties can then be checked against the model by the PRISM model checker. Any
counter-examples identified by the PRISM model checker can easily be mapped
back to the state machine, and then manually reflected against the transitive
behaviour model. Full automation of this process would be of benefit, and we
are investigating the use of model transformation technology (and automated
traceability management) to support this.

4 Example

We now illustrate the overall analysis process via a small, yet realistic example.
The system for case study is a piece of a safety-critical control system. There
are 6 components in the system —U1 to U6: Component U1 outputs the absolute
value of the input; U2 outputs the product of two inputs; U3 is an amplifier (3
times); U4 generates a constant value; U5 gives the minimum value of two inputs;
and U6 outputs the division of two inputs. Figure 1 shows its architecture. We
applied the probabilistic failure analysis technique to a logic unit used in control
systems.

U1 U2 U3

U4U5U6

constant

Fig. 1. Architecture of logic unit



Probabilistic Failure Propagation and Transformation Analysis 225

The application is a software system (though it is normally deployed with
supporting hardware, and hardware failures may lead to software failures, and
vice versa). Using HAZOPs and guide-words, we identified two kinds of failure
modes, value (v) and omission (o), and a default non-failure mode, normal (n).

Based on the knowledge of the transitive behaviours of components in the
system, we modelled the components in the architecture one by one. For example,
Equation 12 is the model of component U5.

{input.n, input.n} −→ output.n , 0.89
{input.n, input.n} −→ output.v , 0.1
{input.n, input.n} −→ output.o , 0.01
{input.n, input.v} −→ output.v , 0.99
{input.n, input.v} −→ output.o , 0.01
{input.n, input.o} −→ output.o , 1
{input.v, input.v} −→ output.v , 0.99
{input.v, input.v} −→ output.o , 0.01
{input.v, input.o} −→ output.o , 1
{input.o, input.o} −→ output.o , 1

(12)

Based on these models of the components and the architecture of the system,
we carried out several experiments. The first experiment examines the prob-
ability of the component U6 outputting normal values if the input of com-
ponent U1 is normal. In this case, the input token set of component U1 is
{(n, 1), (v, 0), (o, 0)}. Applying the probabilistic FPTA technique, the auto-
matically calculated output token set of component U6 is:

{(n, 0.4423), (v, 0.4898), (o, 0.0679)}
Similarly, we calculated the case where the input tokens are: {(n, 0), (v, 1), (o, 0)}
and {(n, 0), (v, 0), (o, 1)}. The calculated output tokens are

{(n, 0), (v, 0.9321), (o, 0.0679)}
and

{(n, 0), (v, 0), (o, 1)}
Once we have obtained the input and output token sets for the individual com-
ponents, we can model the entire logic unit, consisting of components U1 to U6,
as follows:

input.n −→ output.n , 0.4423
input.n −→ output.v , 0.4898
input.n −→ output.nr , 0.0679
input.v −→ output.v , 0.9321
input.v −→ output.o , 0.0679
input.o −→ output.o , 1

(13)

The result of our first small example shows that the FPTA technique can be
applied hierarchically, which allows the decomposition of the probabilistic eval-
uation based on the system architecture.



226 X. Ge, R.F. Paige, and J.A. McDermid

Fig. 2. Relationship of Component U4 to Overall Unit

Our second example is a variant on the first, and explores how changing a
component in an architecture can affect the overall system failure behaviour.
In particular, we show how we can use FPTA to explore different choices in
modelling. Suppose that we are unhappy with the performance of U4 (a constant
generator) in our example, and desire a design for U4 that provides a better error
rate. Through experiment, we want to understand the effect of introducing a
better-performing component on the entire system.

In the experiment, we model component U4 as follows:

input.n −→ output.n , p
input.n −→ output.v , 1 − p

(14)

In the model (Equation 14), we introduce a variable p which is the conditional
probability that the component generates a normal output. We transform the
failure model in PRISM and set up a series of experiments in which value
p is increased from 0 to 1 with step-size of 0.01. Figure 2 shows the results
of experiments, where the X-axis indicates the trend for p and the Y-axis is
the probability that the entire system outputs normal data (i.e., the output
of U6 is normal), assuming that the input of the system (i.e., input of U1) is
normal.

We can conclude from Figure 2 that there isn’t a linear relationship between
the non-failure rate of component U4 and the non-failure rate of the entire system;
the better the component U4 (i.e., the smaller its error rate) is, the better the
overall failure behaviour of the entire system.

In addition, suppose that we want the overall non-failure rate of the entire
system to be not less than 0.5. From Figure 2 we observe that the non-failure
rate of component U4 should not be less than 0.95; in fact, the overall non-failure
rate of the entire system is 0.504 if the non-failure rate of U4 is 0.95 (i.e., the
failure rate of U4 is 0.05).



Probabilistic Failure Propagation and Transformation Analysis 227

This example shows that FPTA can be applied to analyse the criticality of a
component in the system, and to help to set up criteria for component selection;
this is very important in a component-based development process.

5 Conclusions

We have presented a new technique for quantitative analysis of failure behaviour
for systems, based on architectural models. The proposed technique enables the
assessment of failure behaviour from the analysis of components of the system,
and can assess the probability of system-level failures based on failures of compo-
nents. The approach has been connected to a probabilistic model checker, which
allows verification of the failure models, but also helps to calculate input and
output token sets and helps in exploring the model. Importantly, the approach
is compositional, and can be applied to individual components and collections.

Our transformation from the failure model to input used by the PRISM tool is
currently carried out manually; this can potentially lead to errors in the PRISM
input. In our experience, errors are often found by PRISM, but many of these
could be avoided with an automated transformation from our failure models to
PRISM. We are currently building a tool which is based on our previous work
[11]. The idea is that once we model the failure behaviours of all components in
the system architecture, we then transform the model to PRISM model using
model transformation technology. We are also exploring using customised editors
to visually represent feedback from PRISM on models of system architecture.

Acknowledgements

We thank Dr. Radu Calinescu (Oxford) for his help. This research was carried
out as part of the Large-Scale Complex IT Systems (LSCITS) project, funded
by the EPSRC through grant EP/F001096/1.

References

1. IEC 60812. Functional safety of electrical/electronical/programmable electronic
safety/related systems, analysis techniques for system reliability - procedure for
failure mode and effect analysis (FMEA). Technical report, International Elec-
trotechnical Commission IEC (1991)

2. Fenelon, P., McDermid, J.A.: New directions in software safety: Causal modelling
as an aid to integration. Technical report, High Integrity Systems Engineering
Group, Dept of Computer Science, University of York (1992)

3. Fenelon, P., McDermid, J.A.: An integrated toolset for software safety analysis.
The Journal of Systems and Software 21(3), 279–290 (1993)

4. Hiller, M., Jhumka, A., Suri, N.: An approach for analysing the propagation of data
errors in software. In: Proceedings of 2001 International Conference on Dependable
Systems and Networks DSN 2001, Göteborg, Sweden, July 2001, pp. 161–172. IEEE
Computer Society, Los Alamitos (2001)



228 X. Ge, R.F. Paige, and J.A. McDermid

5. Hiller, M., Jhumka, A., Suri, N.: Propane: an environment for examining the prop-
agation of errors in software. In: Proceedings of the International Symposium on
Software Testing and Analysis, ISSTA 2002, Roma, Italy, pp. 81–85. ACM, New
York (2002)

6. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software, SCS 2003 (2003)

7. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

8. Li, B., Li, M., Ghose, S., Smidts, C.: Integrating software into PRA. In: Proceedings
of 14th International Symposium on Software Reliability Engineering, ISSRE 2003,
Denver, CO, USA, November 2003, pp. 457–467 (2003)

9. Michael, C.C., Jones, R.C.: On the uniformity of error propagation in software.
In: Proceedings of 12th Annual Conference on Computer Assurance (COMPASS
1997), pp. 68–76 (1997)

10. Nassar, D.E.M., Abdelmoez, W., Shereshevsky, M., Ammar, H.H., Mili, A., Yu,
B., Bogazzi, S.: Error propagation analysis of software architecture specifications.
In: Proceedings of the International Conference on Computer and Communication
Engineering, ICCCE 2006, Kuala Lumpur, Malaysia (May 2006)

11. Paige, R.F., Rose, L.M., Ge, X., Kolovos, D.S., Brooke, P.J.: Automated safety
analysis for domain-specific languages. In: Proceedings of Workshop on Non-
Functional System Properties in Domain Specific Modeling Languages, co-located
with 11th International Conference of Model Driven Engineering Languages and
Systems, MoDELS 2008. LNCS, vol. 5421, Springer, Heidelberg (2008)

12. Papadopoulos, Y., McDermid, J.A., Sasse, R., Heiner, G.: Analysis and synthesis of
the behaviour of complex programmable electronic systems in conditions of failure.
Reliability Engineering and System Safety 71, 229–247 (2001)

13. Voas, J.M.: Pie: A dynamic failure-based technique. IEEE Transaction of Software
Engineering 18(8), 717–727 (1992)

14. Voas, J.M.: Error propagation analysis for COTS systems. IEEE Computing and
Control Engineering Journal 8(6), 269–272 (1997)

15. Wallace, M.: Modular architectural representation and analysis of fault propagation
and transformation. Electronic Notes in Theoretical Computer Science 141(3), 53–
71 (2005)



Towards Model-Based Automatic Testing of Attack
Scenarios

M. Zulkernine1, M.F. Raihan1, and M.G. Uddin2

1School of Computing, 2Department of Electrical and Computer Engineering
Queen’s University, Kingston, Ontario, Canada K7L 3N6

{mzulker,raihan,gias}@cs.queensu.ca

Abstract. Model-based testing techniques play a vital role in producing qual-
ity software. However, compared to the testing of functional requirements, these
techniques are not prevalent that much in testing software security. This paper
presents a model-based approach to automatic testing of attack scenarios. An
attack testing framework is proposed to model attack scenarios and test the sys-
tem with respect to the modeled attack scenarios. The techniques adopted in the
framework are applicable in general to the systems, where the potential attack
scenarios can be modeled in a formalism based on extended abstract state ma-
chines. The attack events, i.e., attack test vectors chosen from the attacks hap-
pening in real-world are converted to the test driver specific events ready to be
tested against the attack signatures. The proposed framework is implemented and
evaluated using the most common attack scenarios. The framework is useful to
test software with respect to potential attacks which can significantly reduce the
risk of security vulnerabilities.

1 Introduction

A software vulnerable to different attacks can lead to catastrophic failure which can
range from hindering normal service quality to causing dangers to human life. There-
fore, software systems should be tested whether they exhibit any attack behavior when
they are under potential attacks1. A software system under security testing is tested
for security vulnerabilities with respect to specific security requirements. Model-based
testing approaches provide techniques for testing system behavioral conformance to
specific functional requirements [1,2]. A model-based approach to security testing in-
volves developing models of security requirements and then testing security properties
of the modeled system by automatically generating test vectors [3,4]. Testing attack
behavior of a system involves modeling of attack scenarios and verifying the modeled
attack scenarios against automatically generated system events. Modeling attack sce-
narios requires incorporating attack system attributes to the model which might not be
present in a traditional modeling language. Moreover, specific testing techniques have
to be developed to test the system attack behavior with respect to the modeled attack
scenarios.

1 For brevity, the behavior exhibited by a system under attack is called the attack behavior of the
system throughout the paper.

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 229–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



230 M. Zulkernine, M.F. Raihan, and M.G. Uddin

In this paper, a framework is presented for automatic model-based testing of a system
with respect to potential attacks, where the attack behavior is assumed to be modeled us-
ing formalisms based on extended abstract state machines [6,8,9]. Attack scenarios are
modeled to represent system attack behavior representing states, conditions, and transi-
tions required to characterize the attacks. The attack scenarios are made executable by
developing a suitable attack signature generator. An attack signature includes necessary
specifications using states and transitions which are directly executable against the sys-
tem events for a particular attack. The framework provides an attack test driver which
generates attack signatures and tests system attack specific behavior with respect to the
modeled attack scenarios. The attack test driver automatically generates attack test vec-
tors, i.e., system events. The system events are converted to attack test driver specific
events before being tested against the attack scenarios. The attack test driver uses an
attack testing engine which employs a generic attack testing algorithm applicable for
various target systems. The framework is evaluated, and experimental results show the
efficacy of the framework in testing wide range of attacks.

The overview of the attack testing framework is provided in the next section. The
details of the attack testing process is presented in Section 3. Section 4 presents the
implementation and experiments. The related work are discussed in Section 5. Section
6 summarizes this work and future research directions.

2 Attack Testing Framework Overview

Figure 1 presents the proposed model-based attack scenario testing framework. Attack
scenarios are modeled in extended abstract machines (ASMs), where states are instru-
mented with specific attack attributes. ASMs incorporate attack variables in the state
machines [6,8,9]. The attack variables allow more specific descriptions of system at-
tributes corresponding to different attacks. An attack is modeled as a set of states and
transitions. States represent a snapshot of different system attributes during the course
of attacks. The transitions are labeled with system events that cause changes from one
state to another. A state transition can take place only if certain conditions associated
with the transition are satisfied. The system events need to take place in certain order
to make an attack successful. Once the system reaches a state under attack, an attack
report is generated (see example in Section 3.3).

The rest of the framework consists of three major modules: signature-base module,
sensor module, and main module (see Section 3.1). The three modules form the archi-
tecture of the attack test driver. Signature-base module provides the executable attack
test scenarios called attack signatures that are ready to be used for testing by the attack
test driver. The attack signature generator is used to produce attack signatures from the
modeled attack scenarios.

The sensor module generates system events for testing those against the modeled
attack scenarios. The attack test vectors are generated automatically from the system
events using the event generator. An attack scenario can have different representation
formats based on the target system environment. Therefore, the system events have to
be captured first in an appropriate format so that they can be tested against the modeled
attack scenarios. The task of the attack schemas is to read system events and provide a



Towards Model-Based Automatic Testing of Attack Scenarios 231

Attack Scenario
Specification

Signatures
Test
Attack

Security Testing

Attack
Schemas

Test

Mapper

Event Generator
Instances

Event

Attack

Attack
Report

Driver

MainSignature−base
Module

Sensor Module

Module

Test Engine
IDSpec: Attack

System Under

Modeling
Language

Attack

Modeled

Scenario

Attack

Generator
Signature

Fig. 1. Attack testing framework

way how they can used for testing. The test driver mapper converts the system events to
the attack test driver specific events.

The main module contains an attack testing engine (called IDSpec) that in general re-
quires two types of parameters: attack signatures and test driver specific system events.
IDSpec tests the system based on the modeled attack scenarios and generates a report
when an attack is found.

3 Testing Attack Scenarios

In this section, the testing process is described in detail following the proposed frame-
work. The attack test driver architecture is described in Section 3.1. The attack testing
engine of the architecture employs the CAAT (Context-Aware Attack Testing) algo-
rithm (see Section 3.2). The testing process is further illustrated using the DosNuke
attack in Section 3.3.

3.1 Attack Test Driver Architecture

The attack test driver consists of three principal modules (see Figure 2): signature-base,
sensor, and main. The modules are discussed in the following paragraphs.

Signature-Base Module. This module contains executable attack signatures that are
used by IDSpec to match the captured events with the signatures and to test potential
attacks. Based on the security requirements, high-level descriptions of attack scenar-
ios are developed. The attack scenarios are then modeled in ASMs. The attack signa-
ture generator implemented within this framework produces executable attack signature
plug-ins from the modeled attack scenarios. During the course of execution, the plug-
ins are loaded in the knowledge base of the attack test driver.



232 M. Zulkernine, M.F. Raihan, and M.G. Uddin

Host

Windows host

Unix host

Windows host

Windows audit TCP/IP network
packet sensorlog sensor

of attack scenario

}

Compilation

Audit
records

Network
packets

TCP/IP network

Signatures

Attack information

           . . .

Signature−base Module

generation
module

Main Module

Target System

Report

Attack Report

Sensor Module

test engine
IDSpec: Attack

Attack scenario{

attack scenario

Sensor plug−ins

Sensors

Sensor plug−ins

Attack signature plug−ins

Attack signature plug−ins

Executable attack
signature plug−ins Sensor plug−ins

signature plug−ins
Executable attack

High−level descriptions

Modeled

Fig. 2. Attack test driver architecture

Sensor Module. The attack test driver analyzes the events that take place in the sys-
tem and identify ongoing attacks. It is assumed that attacks will leave a trace in the
system activity logs. The attack signatures are written based on these events. Each log
has its own format (like Windows security log and tcpdump log files). Therefore, the
primary task is to read data from the event sources and convert those to the test driver
specific form that can be easily analyzed by IDSpec. Figure 2 shows the target system
considered in the testing process. The events from windows host are considered as audit
records, while the events from TCP/IP network are regarded as network packets. How-
ever, the framework is designed in such a way so that it can incorporate other types of
data sources (like Solaris BSM audit data) in its sensor module.

Main Module. The attack test driver collects events representing ongoing system activ-
ities from the sensor module. IDSpec analyzes the event streams and identifies whether
there is an attack in progress. For this purpose, IDSpec matches the description of an
executable attack scenario against the stream of events. Once an attack has been de-
tected, the report generation module notifies the administrator. The notification consists
of information having the time and date of an attack, the source of the attack, detailed
testing information regarding the attack, and the effects it has on the system under
test. IDSpec uses a generic attack testing algorithm, CAAT, presented in the following
section.



Towards Model-Based Automatic Testing of Attack Scenarios 233

sig sig

sen sen

sig

sen

(S
et

 o
f 

tr
an

si
tio

ns
)

T

Event_
Dispatcher()

methods
Transition

S
(Set of states)

(S
et

 o
f 

tr
an

si
tio

ns
)

T

Event_
Dispatcher()

methods
Transition

S
(Set of states)

(S
et

 o
f 

tr
an

si
tio

ns
)

T

Event_
Dispatcher()

methods
Transition

S
(Set of states)

CAAT

ReadEvent()
ID

Sp
ec

ReadEvent()ReadEvent()

Driver Driver

Driver Driver Driver

specific events specific events

specific eventsspecific eventsspecific events

specific events
Driver

S
ig

S
to

re
S

en
S

to
re

. . .

. . .

. . .

sig1 sig2

sen1 sen2 senn

sign

Signatures

Sensors

. . .

1 2 n

1 2 n

Fig. 3. Attack test driver

3.2 Context-Aware Attack Testing

The CAAT algorithm is provided in Listing 1. The algorithm takes as input a set of n
attack signatures defined by Signatures= {sig1, sig2, . . . , sign}. The signature plug-ins
are provided by the signature-base module. Here, each sigi represents a particular attack
signature. During the course of execution of the attack test driver, each of the attack
signature plug-ins are loaded in a global storage space denoted by SigStore located
inside IDSpec. The second parameter of the algorithm is a set of m system events, E=
{e1, e2, . . . , em}, which are collected by the sensor modules. Here, each ei represents
a particular system event. Let Sensors be the set of p sensor plug-ins, Sensors= {sen1,
sen2, . . . , senp}, which capture events from the target system and convert them to test
driver specific event format as expected by IDSpec. This set forms the third parameter
of the CAAT algorithm. SenStore is a global storage space, where all the sensor plug-ins
from the set Sensors are instantiated and loaded during the initialization phase of the
attack test driver. IDSpec employs the algorithm, CAAT, matches the signatures from
SigStore against the driver specific system events from SenStore to test any ongoing
attack in the system. SigStore, SenStore, and the algorithm execution body of CAAT
form IDSpec.



234 M. Zulkernine, M.F. Raihan, and M.G. Uddin

The following paragraphs provide the details of the algorithm by referring to the
line numbers of Listing 1, while Figure 3 demonstrates the functionality of the test
driver. The algorithm first initializes the signature storage SigStore and the test driver
specific system event storage, SenStore. In the beginning, both sets are empty (Lines
01-02), and then SigStore is initialized by loading each of the attack signatures from the
set Signatures (Lines 03-05), and SenStore is initialized by loading the sensor plug-ins
from the set Sensors (Lines 06-08).

Listing 1. CAAT: Attack testing algorithm

Input: A set of n attack signature plug-ins (Signatures), a set of m events (E), and a set of p sensors (Sensors)
Output: Tests whether the events from E takes the system from a safe state to a state under attack by matching the events in
the attack steps defined in an attack signature. (T is set of transitions, F is state transition function, C is set of conditions, and
X is set of actions).

00. CAAT (Signatures, E, Sensors)
01. SigStore:= ∅
02. SenStore:= ∅
03. FOR EACH attack signature plug-in a ∈ Signatures DO
04. SigStore:= SigStore ∪ a
05. END FOR
06. FOR EACH sensor plug-in s ∈ Sensors DO
07. SenStore:= SenStore ∪ s
08. END FOR
09. WHILE TRUE DO
10. FOR EACH sensor plug-in s ∈ SenStore DO
11. EventInstance Ex := s.ReadEvent()
12. IF Ex = NULL THEN CONTINUE
13. FOR EACH signature plug-ins a ∈ SigStore
14. a.EventDispatcher (Ex)
15. END FOR
16. END FOR
17. END WHILE
18. EventDispatcher (EventInstance Ex)
19. FOR EACH transition t ∈ this.T
20. IF (Satisfies (Ex, t))
21. FOR EACH action statement x ∈ t.X
22. Execute (x)
23. END FOR
24. END IF
25. END FOR
26. Satisfies (EventInstane Ex, Transition t) returns Boolean
27. Boolean bResult:= FALSE
28. State X:= GetSourceState (t.F)
29. FOR EACH state instance x ∈ X DO
30. IF t.C holds for Ex bResult:= TRUE
31. END FOR
32. RETURN bResult

The next part of the algorithm is responsible for collecting events and performing anal-
ysis on the event stream to test any potential attack attempts. Each sensor plug-in pro-
vides an interfacing method ReadEvent(). This method captures data from the data
sources (e.g., Windows audit logs or TCP/IP networks), formats the data into test driver
specific events, and returns the events to their callers. The EventDispatcher()
method (Lines 13-14) matches each event in SenStore against each of the signa-
tures of SigStore. The details of the EventDispatcher() method are provided
in Lines 18-25. When the EventDispatcher()method receives an event, it checks



Towards Model-Based Automatic Testing of Attack Scenarios 235

SYN

SYN−ACK

ACK

URG=1

s0

s1
s2

s3

s4

Fig. 4. State transition diagram of the DoSNuke attack

all the possible transitions of current signature instance that could be fired by the event.
An event could fire a transition only if it satisfies the condition set of that transition
(Lines 19-20). This is checked by the Satisfies() method shown in Lines 26-
32. First, the method retrieves the source state of the transition by calling the method
GetSourceState() with the state transition function F as a parameter. Then, the
method checks if there exists any state variable instance in the source state that matches
with event attributes specified in the condition constraint set for that transition (Lines
29-31). Depending on the positive outcome of the decision, the signature plug-in exe-
cutes the set of actions associated with the transition (Lines 21-22). The set of action
statements include updating state variables, making a transition to the new state, or
generating an attack report in case of reaching the “state under attack”. Otherwise, the
current state remains unchanged.

3.3 The Testing Process Illustrated

We illustrate the testing process using the DosNuke attack. DoSNuke is a Denial of
Service (DoS) attack that exploits a bug in the Windows NT operating system of a
victim machine. At first, the attacker establishes a TCP connection to NETBIOS port
(port number 139) and then sends a series of packets with URG bit set. The URG bit is
set to represent out-of-band data (called “urgent data” in TCP) in a data stream. Figure 4
shows the state machine for the DoSNuke attack. Receiving a connection request packet
(SYN packet) from the attacker changes system state from s0 to s1. When the receiving
machine acknowledges the request with a SYN-ACK packet, the state changes from s1

to s2. Receiving acknowledgement from the attacker (ACK packet) establishes a TCP
connection between the victim and the attacker and causes the state to transit from state
s2 to s3. When the victim receives a TCP packet, destined to port 139, with URG bit
set, it takes the system to a compromised state, (i.e., s4).

While translating the modeled attack scenario to executable attack signature plug-
ins, the model is instrumented with necessary data structures as shown in Figure 5.
In this figure, the generic attack scenario model A has three states: S0, S1, and S2

with state variables SourceIP, SourcePort, AttackerIP, and AttackerPort. Moreover,
A defines three transitions T1, T2, and T3, each having the form of <F,C,X>. Each
state is implemented as a list, storing attack scenario instances, to facilitate the testing
of same type of attack taking place concurrently. Different values for state variables



236 M. Zulkernine, M.F. Raihan, and M.G. Uddin

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

SourceIP SourcePort

172.16.20.110

172.16.20.30

172.16.20.19

1225

139

80

S

T

E
ve

nt
D

is
pa

tc
he

r(
)

T2.C

T3.C

T1.C

T1.X

T2.X

T3.X

S0

S1

S2

T1

T2

T3

S0

S1

S2

M
od

el
ed

at
ta

ck
sc

en
ar

io
A

T1()

T2()

T3()

Fig. 5. Signature data structure

are stored in the list representing attack instances. For example, the three entries for
S1 (<172.16.20.110:1225>, <172.16.20.30:139>, and <172.16.20.19:80>) represent
that three instances of attack type A are in progress.

Similarly, each transition presented in the modeled attack scenario is mapped to ex-
ecutable instructions in the signature plug-in. The condition part of each transition ex-
ecutes the EventDispatcher()method in attack signatures. As mentioned before,
this method decides whether a captured system event is able to make changes in sys-
tem states. Figure 5 shows that the condition parts of T1 (T1.C), T2 (T2.C), and T3

(T3.C) are merged in the EventDispatcher() method. The action part of each
transition is mapped to a set of functions that are called by EventDispatcher()
upon satisfying the condition set for that transition. For example, if an event satisfies
T1.C, then the function T1 is called that executes the action statements corresponding
to that transition (i.e., T1.X). Therefore, CAAT provides the flexibility to test for mul-
tiple attacks of the same kind executed at the same time by providing event matching
capability to every attack signature in IDSpec. Upon the arrival of a particular system
event specific to an attack scenario, the corresponding attack signature is executed by
IDSpec. With the completion of an attack testing process, an attack report is generated.
The attack test driver keeps track of different attack instances as it analyzes each system
event with respect to the modeled attack scenarios. Figure 6 shows the DosNuke attack
testing process by providing a simulation of two simultaneous DosNuke attacks against
a victim machine.

Let the victim machine has IP address P = 172.16.20.100, and the attacker ma-
chines have IP addresses X = 172.16.115.234 and Y = 172.16.115.20. Let X and Y
attempt to carry out the DosNuke attack against host P . The TCP/IP packets that are
exchanged between these hosts are denoted as a tuple of the form <SourceIP, Source-
Port, Flag, DestIP, DestPort>, where SourceIP and SourcePort denote the sender’s IP
address and port number respectively, while DestIP and DestPort denote the receiver’s
IP address and port number respectively. Flag represents the type of the network packet.



Towards Model-Based Automatic Testing of Attack Scenarios 237

Event

<X, 1216, <X, 1216, 

<X, 1216, 

X, 1216> 

<Y, 1510, <X, 1216, 

<X, 1216, 

<Y, 1510, 

<X, 1216, <X, 1216, 

<Y, 1510, 

<Y, 1510, 

<P, 139, 

P, 139> 
ACK 

<Y, 1510, 

<Y, 1510, 

<X, 1216, 

P, 139>

<X, 1216, 

<Y, 1510, 
P, 139>

<Y, 1510, 

P, 139>

T
im

e

Attack states

P, 139>

P, 139>

P, 139>

P, 139>P, 139>

P, 139>

P, 139>

P, 139>

P, 139>

P, 139>

P, 139>

P, 139>

Y, 1510>

P, 139>

P, 139>

SYN−ACK 

<X, 1216, 

DosNuke Attack

<Y, 1510, 
P, 139>
DosNuke Attack

SYN, 

<P, 139,

SYN,

SYN−ACK, 

ACK,

URG bit set, 

URG bit set, 

S0 S1 S2 S3 S4

Fig. 6. Testing for the DosNuke attack using CAAT

The DosNuke attack signature is executed when the corresponding system event is gen-
erated by the attack test driver. The first column of the table in Figure 6 represents
system events related to DosNuke attack scenario. The rest of the columns simulates
the different testing stages of the DosNuke attack showing successive states of the Dos-
Nuke attack signature. The different states represent different attack instances of the
DosNuke attack. Moving from left to right of the table needs transitions from one state
to the next state. A transition is fired upon the arrival of a corresponding system event
necessary to satisfy the condition. System events in the upper rows are generated before
the system events in the lower rows. For example, with the arrival of a SYN packet,
transition from states s0 to s1 is performed by the EventDispatcher() method.
A transition from states s1 to s2 is performed when the packet with SYN-ACK flag is
generated. The system attributes are updated according to every state transition. The
columns representing different states store respective system attributes related to the
DosNuke attack scenario.

4 Implementation and Experiments

The three modules of the attack test driver (signature-base, sensor, and main) are im-
plemented using C#.NET programming language. To specify attack scenarios, for the
sake of widespread applications and the execution capability, a security extension of
AsmL (Abstract State Machine Language) [8] called AsmLSec (Abstract State Ma-
chine Language for Security) [9] is used in this work. The attack signature generator



238 M. Zulkernine, M.F. Raihan, and M.G. Uddin

Table 1. Attack scenarios used in evaluating the framework

Attack Type Attack Name Short description

DoS

Land Using network packets with same source and destination address
DoSNuke Using network packets with TCP URG bit set
Teardrop Using mis-fragmented UDP packets
CrashIIS Malformed HTTP request causes IIS server to crash

Probe Queso Using seven network packets with odd combination of TCP flags

R2L Netcat Using a trojan to create backdoor on victim machine

U2R
Sechole Using DLL to add the user to administrator group
Yaga Hacking the registry adds the user to administrator group
Anypw Allows the attacker to logon to the system without a password

Data NTFSDos Allows the attacker access to NT partitions without authentication

implemented in this framework is an AsmLSec compiler. Flex [23] is used to generate
the lexical analyzer unit, while Bison is used for generating the parser of the AsmLSec
compiler. The output from the two phases are compiled and linked together using a C
compiler. The compiler produces the AsmL representation from the modeled AsmLSec
attack scenarios. The AsmL specification of the modeled attack scenarios is compiled
using the AsmL compiler to generate the signature plug-ins in the form of a Dynamic
Link Library (DLL).

Each event-capturing module for the sensor module is implemented as a shared
library (Dynamic Link Libraries) written in C#.NET language. Two DLLs are im-
plemented for the two event sensors: WinLogPlugin.dll for capturing Windows audit
log events and TCPIP.dll for network packets. During the initialization phase of the
attack test driver, it loads these plug-ins dynamically thus having the flexibility to
add a new plug-in for another type of data source in future. Each plug-in provides a
method, ReadEvent() that is invoked to fetch a captured event from the event gener-
ator according to the test driver specific event format. In case of WinLogPlugin.dll, the
function returns a Windows audit log entry, WinLogRecord. Similarly, TCPIP.dll cap-
tures TCP/IP network packets and returns a record of type FrameHeader representing
the captured ethernet frame.

The framework is evaluated for by modeling the following five most common cat-
egories of attack scenarios: Denial of Service attacks (DoS) are designed to disrupt a
host or network service; Remote to Local attacks (R2L) let an attacker gain local access
to a machine even though he or she does not have an account on that machine; User to
Root attacks (U2R) allow a local user on a machine to gain administrative privileges;
Probe attacks scan a network of hosts to discover information such as IP addresses,
ports, and host operating system types; and Data attacks access to restricted files [7].
Table 1 presents the the attacks that are used to evaluate the framework. Experimen-
tal results show the effectiveness of the framework in testing those attacks against the
target system.

5 Related Work

Blackburn et al. [4] propose a model-based approach to automate software security test-
ing. The generated test vectors from the security specifications can be executed against
Oracle and Interbase database servers. The security specification is written in SCR



Towards Model-Based Automatic Testing of Attack Scenarios 239

(Software Cost Reduction) with SCRtool. SCR test specification is converted to T-VEC
test specification using an SCR-to-T-VEC translator. A T-VEC tool is used to generate
test vectors from T-VEC test specifications. Chandramouli and Blackburn [3,5] con-
tinue this model-based security testing approach by combining the security behavioral
model and the test vectors with product interface specifications. The interface speci-
fication is provided using an object mapping file which maps between the behavioral
model variables and the interface elements. The model-based testing approach in this
paper tests a system attack behavior against a state-based formalism of the modeled
attack scenarios. While their security testing processes use the SCR-to-T-VEC transla-
tor to translate the SCR specification into T-VEC test specification, the attack testing
process of this work generates different system events and automatically converts them
into attack-driver specific test vectors, i.e., attack events.

Potter and McGraw [10] argue in favor of risk-based security testing which should
be employed while the software is still under development. Software penetration testing
technique plays a vital role in security testing, where the software is tested against
all kinds of possible attacks and probing. Arkin et al. [11] propose that a penetration
test must be structured according to perceived risk. Stytz and Banks [12] suggest an
intelligent system that can test a software system while it is still in the development
phase by presenting the basic concept of dynamic security testing. They argue that a
software under development should be tested against all kinds of attacks. The risk-
based testing, penetration-based testing, and dynamic security testing approaches have
influenced the development of the attack testing framework provided in this paper. The
framework can be employed early in the software development life cycle to test a system
under development.

A security-critical system designed in UMLsec (Unified Modeling Language ex-
tension for security) can be tested for flaws automatically using effective tool sup-
port [13]. The UMLsec models have to be imported in an internal repository which
is an XMI-specific data-binding library for the XML representation of an UML dia-
gram. The access to this repository is provided by JMI (Java Metadata Interface) which
can be used for static and dynamic checking of the model. For the dynamic analysis
part, the UMLsec diagrams are translated into first-order logic formulas. Jürjens [14]
provides a list of tools supporting model-based testing where the security properties
are specified using UMLsec, and the model is verified automatically by a Prolog-based
attack generator against the system. The modeled attack behavior in this work is tested
against automatically generated system events. In this work, an automatic attack testing
framework is provided where attack scenarios are modeled in state-based formalism.
Executable attack signatures are generated from the modeled attack scenarios, and then
they are tested against automatically generated system events.

Allen et al. [18] propose an architecture for testing the security of network proto-
col implementations. A protocol specification is converted into a finite state diagram.
A valid state sequence is called a test template. Each test template accompanied with
valid data is termed as a test case or message. Valid messages are separated into relevant
blocks supported by protocol specifications and fuzzed to generate corrupted inputs to
reveal vulnerabilities in applications. In contrast, our work uses attack signatures and
matches attacks with incoming network packet sequences. Kosuga et al. [19] propose



240 M. Zulkernine, M.F. Raihan, and M.G. Uddin

an SQL (Standard Query Language) injection attack (SQLIA) testing framework named
Sania for the application development and debugging phase. Their approach initially
constructs parse trees of intended SQL queries written by developers. Terminal leafs
of parse trees typically represent vulnerable spots, which are filled with possible attack
strings. The difference between the initial parse tree and the modified parse tree gener-
ated from user supplied attack string results in warnings of SQLIAs. Salas et al. [20]
generate test cases that reveal security bugs of functional specification written in Ob-
ject Constrained Language (OCL). They perform testing of SQL injection attacks based
on the specification of login functionalities for web applications by injecting faults in
specifications. In contrast, our work tests attacks through AsmL specification. Simi-
larly, Wimmel et al. [21] generate test cases by mutating specification of cryptographic
protocol. The modification includes confusion of keys or secrets, missing or wrongly
implemented verification of authentication codes, etc. The implementation of the pro-
tocol is tested based on the mutated specification. Jayaram [22] proposes testing the
security of cryptographic protocol specified with UML state charts. The method gen-
erates initial test data sets that are adequate for control and data flow coverage criteria.
The resultant test set is measured for adequacy with respect to security mutants which
must be nullified by the generated test cases.

Tal et al. [15] propose vulnerability testing of frame-based network protocol im-
plementation, where the structure of a protocol data unit (PDU) is specified in a frame.
Their approach captures PDUs from client machines, mutates data fields of PDUs, sends
them back to the server, and observes whether the protocol daemon running in the server
crashes due to segmentation violation. Ghosh et al. [16] mutate the internal states of
program to detect vulnerabilities at runtime. They develop Fault Injection Security Tool
(FIST) which injects various types of faults such as corruption of boolean, integer, and
string variables, overwriting the return addresses of stacks. Du et al. [17] perform vul-
nerability testing of applications by perturbing environment variables during runtime
from initialization processes, file system inputs, network packets, etc. They propose
fault coverage-based test adequacy criteria. Ideally, the higher the fault coverage, the
more secure the application is.

6 Conclusions and Future Work

In this work, a framework is proposed which can test software for possible attacks
with respect to modeled attack scenarios. The architecture of the attack test driver is
presented by describing its different modules and their interactions. A generic attack
testing algorithm called CAAT (Context-aware Attack Testing) is presented. The algo-
rithm is employed by the attack test driver to test the target system with respect to the
modeled attack scenarios. The modeling and testing of attack scenarios are explained
using the DosNuke attack scenario as an example. The framework is evaluated by us-
ing the five categories of attacks: DoS, R2L, U2R, probe, and data attacks. The attack
testing engine compares the attack signature plug-ins against automatically generated
attack test vectors, i.e., system events.

This work contributes to the automatic testing of attack behavior of a system, where
the attack scenarios are modeled in a formalism based on extended abstract state



Towards Model-Based Automatic Testing of Attack Scenarios 241

machines. The proposed attack testing framework can also be used to test the software
under development with respect to potential attacks for discovering vulnerabilities early
in the software development life cycle. The framework is applicable for various types
of target systems and the most common attack scenarios. The attack testing algorithm,
CAAT, provides a generalized approach to testing which greatly improves the applica-
bility of the framework.

Attacks are of varying nature, and it is almost impossible to model and test all the
attacks against a particular system using any attack modeling language and a frame-
work. Most of the limitations and future research of this work are related to the current
implementation of the attack test driver and the expressive power of the attack scenario
modeling language. We will extend our work to cover more attack scenarios that the
current implementation of the attack test driver fails to test. Some attacks may be car-
ried out spanning over several login sessions or may be carried out after weeks. The
attack test driver cannot keep track of such attacks and therefore fails to test system
penetrations due to those attacks. Another type of attack that the driver cannot test is
when the same attacker logs in with a different username and each time carries out one
step of an attack. In future, AsmLSec grammar can be modified to express the varying
nature of many attack scenarios. Because of the variations of the attacks in different
systems and operating environments, it is not easy to measure the attack test coverage
of the proposed attack testing framework. However, the framework can be extended to
test more attacks.

Acknowledgment

This research work is partially funded by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada. We would also like to thank Hossain Shahriar of
Queen’s University, Canada for his helpful comments to improve this paper.

References

1. Dalal, S., Jain, A., Karunanithi, N., Leaton, J., Lott, C., Patton, G., Horowitz, B.: Model-
based testing in practice. In: Proc. of the Intl. Conf. on Software Engineering, USA, May
1999, pp. 285–294 (1999)

2. Rosaria, S., Robinson, H.: Applying models in your testing process. Information and Soft-
ware technology 42(12), 815–824 (2000)

3. Chandramouli, R., Blackburn, M.: Automated testing of security functions using a combined
model and interface-driven approach. In: Proc. of the 37th Annual Hawaii International Con-
ference, Hawaii, USA (January 2004)

4. Blackburn, M., Busser, R., Nauman, A., Chandramouli, R.: Model-based approach to secu-
rity test automation. In: Proc. of the 14th International Software and Internet Quality Week
Conference, San Francisco, USA (June 2001)

5. Chandramouli, R., Blackburn, M.: Security functional testing using an interface-driven
model-based test automation approach. In: Proc. of the 18th Computer Security Applications
Conference, Las Vegas, USA (December 2002)



242 M. Zulkernine, M.F. Raihan, and M.G. Uddin

6. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: To-
wards a tool environment for model-based testing with AsmL. In: Proc. of the 3rd Inter-
national Workshop on Formal Approaches to Testing of Software, pp. 252–266. Springer,
Heidelberg (2003)

7. MIT Lincoln Laboratory. DARPA Intrusion Detection Evaluation (2006),
http://www.ll.mit.edu/ist/ideval (accessed in April 2006)

8. Barnett, M., Schulte, W.: The ABCs of specification: AsmL, behavior, and components. In-
formatic (Slovania) 25(4), 517–526 (2001)

9. Raihan, M., Zulkernine, M.: AsmLSec: An extension of abstract state machine language
for attack scenario specification. In: Proc. of the 2nd International Conf. on Availability,
Reliability and Security, Vienna, Austria (April 2007)

10. Potter, B., McGraw, G.: Software security testing. IEEE Software Security & Privacy Maga-
zine 2(5), 81–85 (2004)

11. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Software Security &
Privacy Magazine 3(1), 84–87 (2005)

12. Stytz, M., Banks, S.: Dynamic software security testing. IEEE Software Security & Privacy
Magazine 4(3), 77–79 (2006)

13. Jürjens, J.: Sound methods and effective tools for model-based security engineering with
UML. In: Proc. of the 27th International Conference on Software Engineering, St. Louis,
USA, May 2005, pp. 322–331 (2005)

14. Jürjens, J., Fox, J.: Tools for model-based security engineering. In: Proc. of the 28th interna-
tional conference on Software engineering, Shanghai, China, May 2006, pp. 819–822 (2006)

15. Tal, O., Knight, S., Dean, T.R.: Syntax-based Vulnerabilities Testing of Frame-based Net-
work Protocols. In: Proc. of the 2nd Annual Conference on Privacy, Security and Trust,
Fredericton, Canada, October 2004, pp. 155–160 (2004)

16. Ghosh, A.K., O’Connor, T., McGraw, G.: An automated approach for identifying poten-
tial vulnerabilities in software. In: IEEE Symp. on Security and Privacy, USA, pp. 104–114
(1998)

17. Du, W., Mathur, A.: Testing for software vulnerabilities using environment perturbation. In:
Intl. Conf. on Dependable Systems and Networks, New York, USA, June 2000, pp. 603–612
(2000)

18. Allen, W., Chin, D., Marin, G.: A Model-based Approach to the Security Testing of Net-
work Protocol Implementations. In: Proc. of the 31st IEEE Conference on Local Computer
Networks, November 2006, pp. 1008–1015 (2006)

19. Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M., Takahama, Y.: Sania: Syntactic and
Semantic Analysis for Automated Testing against SQL Injection. In: Proc. of the 23rd Annual
Computer Security Applications Conference, Miami, December 2007, pp. 107–117 (2007)

20. Salas, P., Krishnan, P., Ross, K.J.: Model-Based Security Vulnerability Testing. In: Proc. of
Australian Software Engineering Conference, Melbourne, Australia, pp. 284–296 (2007)

21. Wimmel, G., Jürjens, J.: Specification-based Test Generation for Security-Critical Systems
Using Mutations. In: George, C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp.
471–482. Springer, Heidelberg (2002)

22. Jayaram, K.R.: Identifying and Testing for Insecure Paths in Cryptographic Protocol Imple-
mentations. In: Proc. of the 30th Annual International Computer Software and Applications
Conference, Chicago, USA, September 2006, pp. 368–369 (2006)

23. Aaby, A.: Compiler Construction using Flex and Bison, http://cs.wwc.edu/ (Ac-
cessed, April 2006)

http://www.ll.mit.edu/ist/ideval
http://cs.wwc.edu/


 

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 243–256, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

CRIOP: A Human Factors Verification and Validation 
Methodology That Works in an  

Industrial Setting 

Andreas Lumbe Aas1,∗ , Stig Ole Johnsen1,2, and Torbjørn Skramstad1 

1 Dept. of Computer and Information Science, Norwegian University of Science and  
Technology (NTNU), Sem Saelands vei 7-9, NO-7491 Trondheim, Norway 

*Phone: +47 90029602; *Fax: +47 73594466 
{andreaas,stigolj,torbjorn}@idi.ntnu.no  

2 SINTEF Technology and Society, S.P. Andersens v 5, NO-7031 Trondheim, Norway 
Stig.O.Johnsen@sintef.no 

Abstract. We evaluated CRIOP, a Human Factors (HF) based methodology, 
for the purpose of capturing the Norwegian Oil & Gas (O&G) industry’s opin-
ion of CRIOP to identify how it is used and suggest potential improvements. 
CRIOP has been a preferred method in the Norwegian O&G industry and is 
used for Verification and Validation (V&V) of a Control Centre’s ability to 
safely and effectively handle all modes of operations. CRIOP consists of one 
introduction part, one checklist part and one scenario based part. We based our 
study on interviews of 21 persons, an online survey with 23 respondents and 
firsthand experience in workshops. The results showed that CRIOP is an effec-
tive Control Centre design V&V tool. Highlighted issues were timing, stake-
holders, planning and preparation of the analysis, adapting the checklists and 
the workshop facilitators’ competence. We conclude that CRIOP is an effective 
V&V tool, applied and appreciated by the Norwegian O&G industry. 

Keywords: Human Factors, Verification, Validation, Control centre, Control 
room, Offshore, Petroleum, Oil & Gas, CRIOP. 

1   Introduction 

Human Factors (HF) has become a significant factor in the design of any large and 
complex interactive system today. HF deals with issues related to humans, human 
behaviour and physical and psychological aspects of their working environment. The 
UK Health and Safety Executive defines HF as “human factors (also known as Ergo-
nomics) is concerned with all those factors that can influence people and their behav-
iour” [1]. ISO 6385 use the definition “HF (ergonomics) is the scientific discipline 
concerned with the understanding of interactions among human and other elements of 
a system, and the profession that applies theory, principles, data and methods to de-
sign in order to optimize human well-being and overall system performance” [2]. 
Even though there are various definitions, HF represents a system view on human 
working conditions. 



244 A.L. Aas, S.O. Johnsen, and T. Skramstad 

 

1.1   Verification and Validation (V and V) 

Verification and Validation (V&V) is an important part of any design process and 
thus, effective V&V tools are important to enable a good V&V process ensuring 
proper quality of the end product. V&V is an iterative process that must be performed 
in various stages in the project life cycle. This is illustrated by e.g. the V-model [3]. 
According to the Norwegian standard for working environment in the petroleum in-
dustry, NORSOK S-002, verification is “confirmation by examination and provision 
of objective evidence that specified requirements have been fulfilled” [4]. NORSOK 
S-002 refers to validation as “confirmation by examination and provision of objective 
evidence that the particular requirements for a specified intended use are fulfilled” 
[4]. NORSOK S-002 applies the same definitions as IEEE [5]. In CRIOP, verification 
is “to satisfy stated requirements”, while validation is to “satisfy implied needs, i.e. 
that the control room is usable” [6]. 

There are, however, many definitions of V&V. In one of the most commonly 
used safety standards, IEC 61508, the objective of safety verification is “…to dem-
onstrate, for each phase of the overall, E/E/PE and software safety lifecycles (by 
review, analysis and/or tests), that the outputs meet in all respects the objectives 
and requirements specified for the phase” [7]. The objective of safety validation is 
to “…validate that the E/E/PE safety-related systems meet the specification for the 
overall safety requirements in terms of the overall safety functions requirements 
and overall safety integrity requirements…” [7]. These definitions differ in level of 
detail, but they can be summarized as verification is to answer the question; are we 
building the system right? While validation is to answer the question; are we build-
ing the right system? 

Most offshore petroleum installations have one or more control rooms, including a 
Central Control Room (CCR), in which control room operators work. The CCR and 
related rooms are often referred to as a Control Centre (CC). The introduction of new 
technology, such as Integrated Operations (IO) will give people onshore and offshore 
access to each other and share real time data [8] and thus change the way operators 
work by integrating work processes independent of physical location. IO allows for 
remote control of offshore installations and the formation of virtual organizations. 
When such major changes occur, it is vital to ensure that the available industrial tools 
are effective in use and up to date with current challenges. Thus, we have measured 
the opinion of stakeholders in the Norwegian petroleum industry regarding their use 
of the HF V&V methodology CRIOP.  

1.2   The CRIOP Methodology 

The CRIOP methodology is used to verify and validate Control Centre (CC) designs. 
The CRIOP methodology assumes that the design of the CC is based on the ISO 
11064 development process, see Fig. 1 for an overview and ISO 11064-1 [9] for a 
detailed description of the entire design process. 

A CRIOP analysis is typically conducted in a workshop with experts on the system 
to be reviewed and a facilitator who leads the workshop. CRIOP consists of three 
 



                                                 CRIOP: A HF Verification and Validation Methodology 245 

 

 

Fig. 1. Integration of CRIOP in ISO 11064 design process [6] 

parts, an introduction and context of use, a general analysis checklist and a scenario 
analysis. A scenario is a description that contain actors, background information about 
them, and assumptions about their environment, their goals or objectives, and se-
quences of actions and events [10]. Design scenarios offer a flexible approach to help 
designers and design teams propose, evaluate and modify design concepts [11]. One 
of the most important principles of the CRIOP methodology is to verify that focus has 
been on important HF issues in relation to operation and handling of normal situations 
and abnormal situations in offshore CCs, and to validate solutions and results. Key 
general principles of HF design are: improve design through iteration; conduct HF 
analyses such as function and task analysis; form an interdisciplinary team; ensure 
systematic end user participation; and document the process, and these principles has 
been incorporated in CRIOP. 

Given that the design process is iterative, CRIOP should be applied several times 
during the ISO 11064 design process, as indicated by the grey arrows in Fig. 1. 
During the last revision of CRIOP it was agreed with the industry (Statoil and Hy-
dro) to perform three CRIOP analyses during the design process. This includes the 
operation phase as well as the different design phases of a control room. Note that 
the potential for improvements is largest during the early phases of the design proc-
ess. A CRIOP analysis typically requires 2 to 5 days of effort and this is a suitably 
small scope to ensure proper V&V. CRIOP has been developed based on a sequen-
tial complex accident philosophy and the “safety barrier” philosophy as described 
by Reason [12]. 

A CRIOP analysis is initiated by a preparation and organization phase, in order to 
identify stakeholders, decide the scope and size of the analysis, identify relevant ques-
tions and scenarios to be elaborated and decide when the CRIOP should be per-
formed. After the initial phase, CRIOP consists of the following two main phases: 

 
1. General Analysis with checklists to verify that the CC satisfies the stated re-

quirements based on best industry practice. This is a standard design review 
of the CC. 

 



246 A.L. Aas, S.O. Johnsen, and T. Skramstad 

 

2. Scenario Analysis of key scenarios performed by an experienced team to 
validate that the CC satisfies the implied needs. Scenario analyses helps ana-
lyze actual specific accidents that may happen in the future rather than at a 
summary level of the traditional technical risk analysis. The analyses help to 
identify issues to be elaborated and resolved, such as remedial actions that 
will stop an accident scenario from developing. 

 
CRIOP specifies that workers, management and the design team should meet to  
discuss key scenarios and the checklists in an environment supporting open and free 
exchange of experience. Experience from operations should be discussed with the 
design team and management. Issues found in co-operation should be resolved with 
management. The goal is to achieve double loop organisational learning as opposed to 
single loop organisational learning, by taking action to change the “governing vari-
ables” as CC design, procedures or work organisation. 

2   Materials and Methods 

This chapter describes our research design and the field data we collected during in-
terviews, the online survey and the workshops. 

2.1   Research Design 

In our research design we have chosen the case study strategy, which is “an empirical 
inquiry that investigates a contemporary phenomenon within its real-life context [...]” 
[13]. The main objective of this study was to measure the perceived usefulness of 
CRIOP among its users in the Norwegian oil and gas industry. We used interviews in 
the exploratory phase and followed up with an online survey. Our observations from 
the workshops provided in-depth knowledge of the opinion of CRIOP among the 
stakeholders in the oil and gas industry and the application of CRIOP in industrial 
projects. 

Data, investigator, theory and methodology are four approaches to triangulation 
[13]. We achieved data triangulation by comparing the interview and survey data to 
identify differences and similarities. We did not include the workshop data, due to the 
form of these. We partly achieved investigator triangulation since two authors have 
analyzed the survey data. Theory triangulation was not relevant for our research. We 
achieved method triangulation by applying three different research methods; inter-
views, survey and workshop facilitation, participation and observation. 

2.2   Interviews 

During 2006 we interviewed 21 persons regarding their use of CRIOP. A detailed 
description of this study can be found in Aas and Johnsen [14]. We prepared and used 
an interview guide and we applied the constant comparison method to analyze the 
interview results. In our analysis we have focused on positive and negative opinions 
among the interviewees, as well as their comments and suggestions. See Fig. 2 for an 
overview of the stakeholders.  



                                                 CRIOP: A HF Verification and Validation Methodology 247 

 

 

Fig. 2. Interview stakeholders (n=21) 

2.3   Online Survey 

During 80 days in 2008 we carried out an online survey to follow up the interview 
results. Out of a total of 51 respondents to the survey, 22 persons had participated in 
CRIOP checklist analyses and 20 persons had participated in CRIOP scenario  
analyses. 

Before the survey was published we conducted one test survey with two HF ex-
perts, one review with five HF experts, and then one test survey with one HF expert to 
ensure the quality of the survey. See Fig. 3 for an overview of the stakeholders. 

 

 

Fig. 3. Survey stakeholders (n=23) 

We constructed the CRIOP survey questionnaire based on the research question; 
Are existing supporting tools for CC design and V&V suitable for use with ISO 
11064? Our objective was to map how the opinion of this tool among the stake-
holders. We used a balanced seven level Likert scale in our survey and we used visual 
analysis and simple statistical methods to analyze the survey results. 

2.4   Workshops 

We arranged and participated in several workshops involving users of the CRIOP 
methodology and CC users, e.g. CCR operators. The majority of the participants in 
these workshops had long and broad experience from the petroleum industry and sev-
eral participants had good HF experience. The results of these meetings have been 
well documented and the reports are available at [15]. The participants had experience 
from the Norwegian Oil and Gas sector but there were also participants from Great 
Britain and USA. 



248 A.L. Aas, S.O. Johnsen, and T. Skramstad 

 

3   Results 

In this section we present the results obtained from the interviews, the online survey 
and the workshops. 

3.1   Interviews 

Out of the 21 interviewees, 18 had experience using CRIOP checklists and 17 had 
experience using CRIOP scenario analysis. We used four categories to determine the 
level of familiarity with CRIOP among the interviewees, and the majority had good or 
very good knowledge of the CRIOP methodology. See Fig. 4 for details. 

 
 

 
Fig. 4. Interviewees’ knowledge of CRIOP 

Two thirds (67%) of the interviewees specifically responded that the CRIOP 
checklists were good or useful (Fig 5). The majority of interviewees expressing this 
opinion had good or very good knowledge of the CRIOP checklists. More than half 
(56%), representing several types of stakeholders, responded that the checklists were 
suitable for self-assessment, i.e. to use them in a desktop analysis, without conducting 
a full scale CRIOP meeting. 

The interviewees pointed out several challenges in the CRIOP checklists. One 
quarter (28%) of the interviewees pointed out that the checklists were too general or 
too superficial, while one fifth (22%) pointed out that the answers were not checked 
(i.e. verified), and thus one could give incorrect answers. It was also mentioned by 
one interviewee that people tend to focus on what is good, unwilling to reveal the 
potential problem areas in their system. 

Another identified drawback (17%) was that there was poor traceability or too gen-
eral links between some of the items in the CRIOP checklists and the corresponding 
requirements in standards or other public governing documents. Almost half of the 
interviewees (44%) also made comments on the importance of adapting the checklists 
to the current process stage and to the type of system in focus. 

Almost one third (29%) of the interviewees answered that CRIOP scenario analysis 
is a good method. It was also pointed out by one quarter (24%) that scenarios were 
good validation or at least better than checklists. On the other hand, 18% pointed out 
, 



                                                 CRIOP: A HF Verification and Validation Methodology 249 

 

 

Fig. 5. Overview of CRIOP checklist interview results (n=21) 

that scenario analyses were not necessarily a validation of the system, but rather a 
validation of the selected scenarios. The selected scenarios will normally cover only 
parts of the system behaviour, and thus a scenario analysis will not be a complete 
validation of the system. 

3.2   Online Survey 

Among all survey respondents (n=23), more than 80% held a Master’s degree or 
higher and more than 70% had at least 10 years of working experience. The most sig-
nificant CRIOP checklists results (Table 1) were that four out of five (86,4%) agreed 
that the CRIOP checklists are an effective tool to verify a CC design and three quar-
ters (77,3%) agreed that they are an effective tool to validate a CC design. None of 
the respondents strongly agreed1 to this. 

Table 1. Overview of CRIOP checklist survey results based on the percentage agreeing to 
given statements (n=22) 

Statement Percent Mean SD Median 
Effective verification 86,4% 2,95 1,36 3,0 
Effective validation 77,3% 3,27 1,64 3,0 
Always used in relevant projects 50,0% 4,41 1,68 4,5 
Not more appropriate for self-assessment 50,0% 3,77 1,93 3,5 
Not up to date with challenges in the industry 54,5% 4,50 1,57 5,0 

 
We also observed that half (50%) of the respondents disagreed that the checklists 

were more appropriate for self-assessment than to use in workshops, while almost one 
third (31.8%) agreed and the remaining respondents were neutral. All (100%) of the 
respondents who found the checklists more suitable for self-evaluation were HF-
consultants. 

Half (50%) of the respondents agreed that CRIOP checklists were always used in 
relevant projects. More than half (54.5%) meant that CRIOP checklists were up to 
date with the challenges in the industry while more than one third (36%) disagreed to 
that. 
                                                           
1 Highest agreement level on our Likert scale. 



250 A.L. Aas, S.O. Johnsen, and T. Skramstad 

 

Table 2. Overview of CRIOP scenario analysis survey results based on the percentage agreeing 
to given statements (n=20) 

Statement Percent Mean SD Median 
Effective verification 80,0% 3,05 1,19 3,0 
Effective validation 75,0% 3,15 1,53 3,0 
Always used in relevant projects 45,0% 3,90 1,92 4,5 
Not up to date with challenges in the industry 40,0% 4,35 1,87 4,5 

 
 

Twenty of the respondents had participated in CRIOP scenario analyses. The most 
significant results (Table 2) were similar to the results for the CRIOP checklists. The 
results showed that four out of five (80%) agreed that the CRIOP scenario analysis is 
an effective tool to verify a CC design and three out of four (75%) agreed that they 
are an effective tool to validate a CC design. 

We also observed that almost half (45%) agreed that CRIOP scenarios are always 
used in relevant projects, while half (50%) disagreed. More than one third (40%) 
agreed that CRIOP scenarios are up to date with challenges in the industry, while al-
most half (45%) disagreed. 

3.3   Workshops 

Several issues were highlighted during the workshop discussions. These were timing, 
stakeholders’ participation, planning and preparation of the CRIOP analysis and the 
actual results of the analysis. Timing was one of the most important of these issues. 
There must be a possibility to adjust the design based on the findings in the CRIOP 
analysis and there must be budget and time to actually implement the identified 
changes. Key design decisions must not be made prior to the involvement of HF ex-
perts and the CRIOP analysis. If the HF activities are performed too late, large costs 
could incur due to poor HF design. 

Identified key issues related to the stakeholders participating in CRIOP analyses 
were:  

 

•      The facilitator (CRIOP leader) must have knowledge of HF and challenges 
regarding CCRs (or driller’s cabins) offshore. 

•      Experienced personnel must participate in the analysis. It is important to in-
volve technical personnel (from automation and instrument) in addition to 
experienced CCR operators and HF personnel. 

•      Communication and understanding between technical personnel and HF ex-
perts can be a challenge, thus it is important to explore opinions and create 
understanding between the different experts involved in the process. 

 

One of the key issues in initiating the CRIOP analysis has been to select the relevant 
checklist items and scenarios during the planning and preparation phase. The identi-
fied issues should be further explored in the subsequent CRIOP analysis. The scenario 
analysis is an important arena for exploring challenging situations. Experienced CCR 
operators should be involved to identify scenarios to be explored. Given the limited 
time available for a CRIOP analysis, it is important not to include too many questions 
or too many scenarios. The CRIOP analysis must not be performed as a defence, or 



                                                 CRIOP: A HF Verification and Validation Methodology 251 

 

“cover your back”; but must be performed to increase quality and mitigate important 
HF issues. 

During the workshops it was also mentioned that the checklist contained many 
questions and that the questions were somewhat academic or theoretical. Some of the 
questions were difficult to answer by a clear Yes or No. But even participants who 
initially were sceptical to CRIOP were positively surprised by the discussions and the 
results of the analysis. 

The results of CRIOP analyses have been explored and used further in design pro-
jects. A good CRIOP analysis does result in recommendations that are implemented. 
The CRIOP method has been used by StatoilHydro on Oseberg C, Troll B, Njord, 
Visund, Troll C, Oseberg Sør, Grane and many other installations.  

The participants from Great Britain (GB) and USA expressed that they found the 
CRIOP method useful. The references to government standards and rules and regula-
tions had to be updated to match the legislation in GB and USA respectively, which 
was also done when CRIOP was used in these countries. 

4   Discussion 

In this section we discuss the results and we combine the results from the different 
methods to provide the full picture of our study. 

4.1   Interviews 

The CRIOP checklists appear to be appreciated and applied for V&V in the Norwe-
gian oil and gas industry. The checklists were suitable for use both in workshops and 
for self-assessment, but they were perceived as general or superficial by some. One 
reason for this can be expectations that checklists shall require specific answers and 
not arguments. On the other hand, CRIOP is supposed to be used in a group setting 
and therefore it should be - and usually is - consensus among the participants regard-
ing the answers given. 

Another identified issue was that the answers are not checked, which could be a 
weakness when the facilitator does not understand the processes of the domain in 
question, e.g. drilling or processing of oil and gas. However, as described above, 
CRIOP is supposed to be used in a group setting and when consensus is achieved, the 
group itself ensures the quality of the answers. A check of the answers would be a 
verification of the verification and thus might not give a good cost/benefit ratio. 

Almost half the interviewees pointed out the importance of adapting the checklists 
to each project, depending on scope, project size etc and to the maturity of the design, 
i.e. the current project phase. Such a process should be emphasized and might be an 
opportunity for improvement of CRIOP. 

Some interviewees pointed out that there were some poor or missing specific links 
between the checklists and the corresponding requirements in standards or other gov-
erning documents. The checklists contain many links to standards, chapters in stan-
dards etc, but there might still be an opportunity to improve the CRIOP checklists 
further to make these links even clearer.  



252 A.L. Aas, S.O. Johnsen, and T. Skramstad 

 

Several interviewees stated that the CRIOP scenario analysis was a better V&V 
tool than the CRIOP checklists. One reason for this can be that scenarios tend to be 
more specific about the system with a clear scope and thus are easier to relate to. But 
several of the interviewees also pointed out that the scenario analysis was only a vali-
dation of the scenarios, and not necessarily a validation of the entire system. Thus, the 
selection of scenarios is crucial for the success of such analyses. 

4.2   Online Survey 

4.2.1   CRIOP Checklists 
Four out of five survey respondents and two thirds of the interviewees replied that 
CRIOP checklists are an effective tool to verify and validate CC designs. However, 
none of the survey respondents strongly agreed to that. This indicates that there is still 
room for improvement of CRIOP. 

One third of the respondents agreed that the checklists were more suitable for self-
assessment than for workshops and several interviewees reported the same. The ma-
jority of the stakeholders who took this position were HF consultants. One reason for 
this could be that the HF consultants use the checklists more than other stakeholders, 
e.g. engineers, who mainly participate in CRIOP workshops. Another reason could be 
that HF consultants sometimes use the checklists as a design tool rather than for 
V&V. Yet another reason could be that the checklists not were properly adapted to the 
workshops and thus gave unsatisfactory results. 

It appears that CRIOP checklists are applied in most relevant projects, since half of 
the respondents stated that they are always used in relevant projects. One reason for 
not using CRIOP could be that other methodologies were used, e.g. that large interna-
tional oil companies have in-house methodologies that are required on their projects. 
Our survey did however not reveal the number of projects not using CRIOP and we 
thus need more data to elaborate this further. 

The checklists appeared not to be quite up to date with current industrial chal-
lenges, since half of the respondents took this position. One reason for this could be 
that the recently published ISO11064-5 “Displays and Controls” [16] is not yet incor-
porated in CRIOP. Another reason could be that changes in operation philosophy, e.g. 
following the implementation of IO, have not been well enough covered in CRIOP. 
CRIOP is continuously updated, but no change requirements have been filed, which 
could imply that there is little knowledge about how the CRIOP methodology can be 
changed or updated. 

4.2.2   CRIOP Scenarios 
Four out of five of the respondents replied that the CRIOP scenario analysis is an ef-
fective tool to verify and validate CC designs. The standard deviation values were 
relatively low for these questions; indicating consensus among the respondents How-
ever, only one respondent strongly agreed, and less than one third of the interviewees 
answered that scenario analysis was an effective tool to verify and validate CC de-
signs. One reason for this difference could be that the interviews were open ended and 
thus people might focus more on weaknesses than strengths of the methodology. 



                                                 CRIOP: A HF Verification and Validation Methodology 253 

 

Reasons why half of the respondents replied that CRIOP scenario analyses were 
not used in all relevant projects could be the same as the one discussed for the  
checklists. 

Two out of five of the respondents replied that the CRIOP scenarios were not up to 
date with current industrial challenges. One reason for this could be that the scenario 
part contains a set of checklists that are known to be too complicated. Another reason 
could be that scenarios are considered unsuitable in general. We do however not con-
sider this to be likely, since this was not mentioned in the interviews. 

4.3   Workshops 

The workshop results supports the finding that CRIOP is an effective tool to verify 
and validate CCs, even though CRIOP appears to focus more on verification than 
validation. One reason for this could be that more effort is spent on the checklists than 
on the scenario part. Facilitators of the methodology might spend more time and ef-
fort on the checklists than on the scenarios because the checklists are concrete, while 
the scenario selection requires more active participation from the system experts. 
Concluding on this requires further work. 

The CRIOP analysis must be scheduled at a time in the design process when it is 
still possible to make changes and there must be budget and time to perform these 
changes. If the analysis is done too early there is not enough information available to 
perform a good analysis. If the analysis is done too late, there might not be enough 
time or money left to implement the changes. 

It is important that the facilitator (CRIOP leader) has a background and knowledge 
about HF and at least some of the challenges regarding use of CCRs (or driller’s cab-
ins) offshore. The facilitator’s HF knowledge is important since HF is the focus of a 
CRIOP analysis. The facilitator’s knowledge of CRIOP, group dynamics and inter-
personal relationships are important to enable good facilitation. Some domain knowl-
edge (e.g. drilling) is important to be able to lead the discussions in the right direction 
and contribute in preparation of the analysis material. 

When the CRIOP analysis is planned, experienced personnel must be involved in 
order to identify relevant issues to be explored in the subsequent CRIOP analysis. It is 
important to focus both on key questions to be explored and to identify key scenarios.  

4.4   Suggested CRIOP Improvements 

Based on the findings we have presented in this paper we have some suggestions to 
improve CRIOP. We suggest including a process description of how CRIOP can be 
prepared for specific projects and a guide to planning and timing of the analyses. We 
also suggest including a short scenario selection guide. 

A process description should outline a step by step procedure on how to assess the 
relevance of each point in a checklist to match the CC design maturity and CC type, 
the basic assessment of when to exclude a checklist item and when to keep an item. 
Typically, some of the points will be easy to exclude, clearly irrelevant at a given 
stage in the design process, while others will be less obvious. The rationale for exclu-
sion should be included in the CRIOP analysis documentation. 



254 A.L. Aas, S.O. Johnsen, and T. Skramstad 

 

Domain specific checklists, e.g. for Central Control Rooms (CCRs) on production 
platforms, driller’s cabins or crane cabins, can allow for a smoother adaptation of the 
checklists. Such an approach might however introduce the possibility of making a 
checklist too narrow and thus miss out points that could be relevant for a specific  
system. 

Increased links to the requirements, e.g. standard chapters, could increase the un-
derstanding of the CRIOP checklists and their background and be an aid in the check-
list project adaptation. However, all checklist points cannot necessarily be directly 
linked to a specific requirement. Thus including such links where applicable might be 
an appropriate solution. 

CRIOP scenario selection was not specifically targeted in our study, but we sug-
gest establishing a selection guide to aid the scenario selection and help ensure that 
the most relevant scenarios are selected and that all relevant stakeholders are identi-
fied. The checklists in the CRIOP scenario part should also be updated. 

Competence requirements were identified as a weakness in the interviews and we 
thus suggest including a guide on how to identify the required competence for  
scenario analyses. 

It appears to be little knowledge about how the CRIOP methodology can be up-
dated. Change propositions can be sent to criop@sintef.no for assessment and possi-
ble incorporation in future versions. 

4.5   Limitations of Our Study 

One threat to the construct validity of our study was that we measured the partici-
pants’ opinions, which may vary depending on their understanding of terms like good 
or great. We avoided this issue by only separating between positive and negative 
opinions on our analysis. 

One threat to the internal validity of our study was that we might not have revealed 
all opinions of the participants. The interviews were however open-ended, and thus 
the interviewees could outline their personal opinions. 

One threat to the external validity of our study was that this study only focused on 
the Norwegian petroleum industry, even though there were participants representing 
international oil and gas companies and people from GB and USA. We did not at-
tempt to generalize our results outside of the Norwegian petroleum sector, since other 
countries have different legislation and thus different approaches might be in use. 
CRIOP has, however, been adapted and used in both GB and USA. Another threat 
was that we did not cover the entire Norwegian petroleum sector, only a selection. 
The participants did however represent a wide range of experienced stakeholders, so 
the most important aspects should be covered. 

5   Conclusion 

We conclude that CRIOP checklists and scenarios are effective V&V tools which are 
appreciated and used by the Norwegian petroleum industry. However, CRIOP was not 
used in all relevant projects. Based on the findings that CRIOP is not up to date with 
all challenges currently faced by the industry, we conclude that CRIOP needs to be 



                                                 CRIOP: A HF Verification and Validation Methodology 255 

 

improved. More systematic feedback appears to be required for keeping the method-
ology up to date with challenges faced by the industry. It also appears that CRIOP has 
a stronger focus on verification than it has on validation and thus it is more a verifica-
tion tool than a validation tool. 

We made several suggestions to improve CRIOP, including guidance for timing of 
CRIOP analyses and guidance to determine the appropriate competence of relevant 
stakeholders contributing to the analyses. The methodology must be adapted to each 
specific project and thus we suggested making domain specific checklists to make this 
process smoother. 

Acknowledgements 

We would like to express our gratitude to the persons who participated in the inter-
views, the survey respondents and the participants of the workshops. 

We would also like to thank the forum Human Factors in Control 
(www.hfc.sintef.no) who contributed financially to allow for the travelling required to 
perform the interviews. 

References 

1. HSE: Human factors / ergonomics - health and safety in the workplace (2009), 
http://www.hse.gov.uk/humanfactors 

2. ISO 6385: Ergonomic principles in the design work systems. International Organization 
for Standardization (2004) 

3. Redmill, F., Rajan, J.: Human factors in safety-critical systems. Butterworth-Heinemann, 
Oxford (1997) 

4. NORSOK S-002: Working environment. The Norwegian Oil Industry Association (OLF) 
and Federation of Norwegian Manufacturing Industries (TBL), Standards Norway, 
Lysaker, Norway (2004) 

5. IEEE: IEEE standard for software verification and validation. IEEE Std 1012-1998 (1998)  
6. Johnsen, S.O., Bjørkli, C., Steiro, T., Fartum, H., Haukenes, H., Ramberg, J., Skriver, J.: 

CRIOP®: A scenario method for Crisis Intervention and Operability analysis (accessed 
February 2, 2008), http://www.criop.sintef.no/The%20CRIOP%20report/ 
CRIOPReport.pdf 

7. IEC61508-1:1998: IEC 61508-1:1998 Functional safety of electrical/electronic/ 
programmable electronic safety-related systems. International Electrotechnical 
Commission (1998) 

8. OLF: Integrated Work Processes: Future work processes on the Norwegian Continental  
Shelf (2005), http://www.olf.no/getfile.php/zKonvertert/www.olf.no/ 
Rapporter/Dokumenter/051101%20Integrerte%20arbeidsprosesser,%20
rapport.pdf 

9. ISO 11064-1: Ergonomic design of control centres - Part 1: Principles for the design of 
control centres. International Organization for Standardization (2000) 

10. Go, K., Carroll, J.M.: Scenario-Based Task Analysis. In: Diaper, D., Stanton, N. (eds.) The 
Handbook of Task Analysis for Human-computer Interaction. Lawrence Erlbaum 
Associates, Mahwah (2003) 



256 A.L. Aas, S.O. Johnsen, and T. Skramstad 

 

11. Stanton, N.A., Salmon, P.M., Walker, G.H., Baber, C., Jenkins, D.P.: Human factors 
methods: a practical guide for engineering and design. Ashgate, Aldershot (2005) 

12. Reason, J.: Managing the risks of organizational accidents. Ashgate, Aldershot (1997) 
13. Yin, R.K.: Case study research: design and methods. Sage, Thousand Oaks (2003) 
14. Aas, A., Johnsen, S.O.: Improvement of Human Factors in Control Centre Design - 

Experiences Using ISO 11064 In The Norwegian Petroleum Industry And Suggestions For 
Improvements. In: International Petroleum Technology Conference (IPTC). Society of 
Petroleum Engineers (SPE), Dubai (2007) 

15. Sintef: Forum for Human Factors in Control systems (HFC) (accessed February 25, 2009), 
http://www.hfc.sintef.no 

16. ISO 11064-5: Ergonomic design of control centres - Part 5: Displays and controls. 
International Organization for Standardization (2008) 

 
 



Reliability Analysis for the Advanced Electric

Power Grid: From Cyber Control and
Communication to Physical Manifestations of

Failure

Ayman Z. Faza, Sahra Sedigh, and Bruce M. McMillin

Missouri University of Science and Technology, Rolla, MO, 65409-0040, USA
Phone: +1(573)341-7505; Fax: +1(573)341-4532

{azfdmb,sedighs,ff}@mst.edu

Abstract. The advanced electric power grid is a cyber-physical system
comprised of physical components, such as transmission lines and gen-
erators, and a network of embedded systems deployed for their cyber
control. The objective of this paper is to qualitatively and quantitatively
analyze the reliability of this cyber-physical system. The original contri-
bution of the approach lies in the scope of failures analyzed, which crosses
the cyber-physical boundary by investigating physical manifestations of
failures in cyber control. As an example of power electronics deployed
to enhance and control the operation of the grid, we study Flexible AC
Transmission System (FACTS) devices, which are used to alter the flow
of power on specific transmission lines. Through prudent fault injection,
we enumerate the failure modes of FACTS devices, as triggered by their
embedded software, and evaluate their effect on the reliability of the de-
vice and the reliability of the power grid on which they are deployed.
The IEEE118 bus system is used as our case study, where the physical
infrastructure is supplemented with seven FACTS devices to prevent the
occurrence of four previously documented potential cascading failures.

Keywords: reliability analysis, failure propagation, cyber-physical,
power grid, FACTS devices.

1 Introduction

The advanced electric power grid is a cyber-physical system comprised of physi-
cal components, such as transmission lines and generators, and a network of em-
bedded systems deployed for their cyber control. This cyber control is achieved
by using Flexible AC Transmission System (FACTS) devices. These devices can
alter the flow in the transmission lines in a fashion that can prevent failures from
occurring in the system. In this paper, a transmission line failure is defined as
the unanticipated outage of that line due to protective device actions. A typical
cyber-physical system is shown in Figure 1 below. Figure 1(a) shows a typical
physical network comprised of a number of generators, transmission lines and

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 257–269, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



258 A.Z. Faza, S. Sedigh, and B.M. McMillin

(a) Interconnected cyber and physical
components

(b) Graph-theoretic view

Fig. 1. Depiction of the electric power grid as a cyber-physical system

loads. Overlaid on this physical network is the cyber network, which includes
interconnected computers that control the operation of the physical network.
Figure 1(b) depicts a graph-theoretic version of Figure 1(a), where these two
networks are shown as parallel planes. In the lower plane, the physical layer is
represented as a number of nodes connected with edges (transmission lines) in
which electric power flows in one direction, while the upper plane represents the
cyber components, which communicate information over bidirectional channels.

While adding cyber control to the power grid aims at improving the system’s
performance and increasing its overall reliability, the addition of requisite cyber
components to an already complex system will further increase its complexity
and will introduce new vulnerabilities. In fact, we will show in Section 4.4 that
there exist cases where the deployment of a failure-prone FACTS device is detri-
mental to the overall reliability of the grid.

FACTS devices can fail in a number of ways, including software and hardware
failures. In this paper, our main focus is on software failures of the FACTS
devices, and their manifestations at the physical portion of the power grid. We
use the IEEE118 bus system as our case study, and based on the results shown
in [1] and [2], we simulate the deployment of FACTS devices at the locations
shown in Figure 2. The goal of this deployment is to protect the power grid
against potential cascading failures.

Through simulation, we examine the effect of failure of a given FACTS device
on the operation of the IEEE118 bus system. The results of this simulation are
then used to develop models for system reliability that correspond to various
failure modes of the FACTS devices.

As presented in [3] and [4], we use the Markov chain Imbeddable Structures
(MIS) technique as the basis for our reliability model. This technique requires
enumeration of “safe” and “unsafe” states of the system being analyzed. System
reliability is defined as the probability that the system will stay in a safe state for
a given amount of time.“Safe” states are defined as the states where the system
as a whole is considered functional, despite the possible failure of a number of



Reliability Analysis for the Advanced Electric Power Grid 259

Fig. 2. The IEEE118 bus system, with FACTS devices deployed

components. “Failed” states are defined as the states where the system as a
whole is considered to have failed, due to the failure of one or more components.

The main contribution in this paper is in relating the software failure modes
of FACTS devices to their manifestations in the combined cyber-physical power
grid, and quantification of this interdependency through the development of
reliability models for the grid.

The remainder of the paper is organized as follows. Section 2 provides a sum-
mary of related literature. Section 3 describes the system used as a case study,
and presents the problem in more detail, while Section 4 specifically targets the
failure modes of the FACTS devices. In Section 5, we discuss fault injection as
a means of refining our reliability model. Section 6 concludes the paper.

2 Related Work

Estimating the reliability of a cyber-physical system is significantly complicated
by interdependencies among its cyber and physical components, as a failure in
the physical network could cause a subsequent cyber failure, and vice versa. A
number of studies related to this paper describe efforts to capture these interde-
pendencies.

One such study is [5], where the authors provide a qualitative analysis of
interdependencies among the electric, water, gas, oil, and telecommunication



260 A.Z. Faza, S. Sedigh, and B.M. McMillin

networks. The paper describes how a failure in one network, such as the power
grid, can cause disruptions in other networks, such as curtailment in the produc-
tion of natural gas, or disruptions in irrigation pumps in the water distribution
system. Second- and third-order effects are also investigated, highlighting the
importance of studying interdependencies among the systems.

In another study, Lee et al. present an algorithm that identifies vulnerabili-
ties in the design of infrastructure systems by observing the interdependencies
among them [6]. They also present an example that illustrates interdependencies
between the power and telecommunication systems.

It is important to stress that in the two aforementioned studies, the analysis
of interdependencies is of a qualitative nature. Our model, however, proceeds to
quantitatively capture such interdependencies through semantic understanding
of a specific system as an example, the physical power distribution system and
the power electronics used for its cyber control.

Reliability of the physical infrastructure of the power grid has been the topic of
decades of research. These studies are vital to analysis of modern power distribu-
tion systems, however, they give no consideration to cyber control, computation,
or communication issues, and as such, their application to intelligent networks
is limited. Notable examples of reliability analysis of physical components of the
power grid include [7] and [8].

The study presented in [8] sheds light on the main challenges in modeling the
reliability of the power grid. Factors cited include conceptual difficulties in defin-
ing appropriate metrics for the evaluation, challenges in choosing appropriate
models, and computational limitations. Alleviating computational limitations
on reliability analysis is one objective of our work.

The study in [7] presents a method for evaluating the reliability of an electric
power generation system with alternative energy sources, such as solar panels
and wind turbines. The model presented attempts to capture the effects of pri-
mary energy fluctuations, in addition to failure and repair characteristics of the
alternative sources. The focus of this study is on the generation aspect of the
power grid, and its results do not extend to the remainder of the grid, in partic-
ular the transmission lines, whose failures can cause cascading power outages.

In this paper, we go beyond the physical infrastructure to explore interde-
pendencies among the cyber and physical components of the power grid, with
regard to their semantics. Our goal is the development of a quantitative relia-
bility model that captures such interdependencies. A number of related studies
take a qualitative approach to the same problem, including [9], which analyzes
interdependencies among the electric power infrastructure and the information
infrastructures supporting its management, control and maintenance.

The EU Critical Utility Infrastructural Analysis initiative (CRUTIAL) also
aims to understand interdependencies among the power and information infras-
tructures. Results published thus far include [10,11,12,13], all of which provide a
qualitative analysis of security aspects in the power grid infrastructure. In [11],
the authors present a detailed analysis of several potential intrusion scenarios in
the power grid infrastructure in an attempt to raise the issue of security in the



Reliability Analysis for the Advanced Electric Power Grid 261

system and help develop methods to defend against such intrusions. The author
of [11] tries to motivate the research towards increasing the security of the con-
trol systems that manage critical infrastructures. The paper presents reasons for
enforcing increased security based on past attacks or potential security breaches,
and provides general ideas for improving the security of those systems, in addi-
tion to identifying potential challenges. Recommendations for improvements to
the reliability and robustness of intelligent power grids are made in [12].

In another study, vulnerability assessment of cyber security in a SCADA sys-
tem used to control the operation of the power grid is presented in [14]. Two
submodels are used for the system; a firewall model that regulates the packets
flowing between the networks, and a password model, which is used to monitor
penetration attempts. Petri nets are used to model the system, and simulation
is used to provide an estimate of the vulnerability of the system to security at-
tacks launched against it. This work is similar to our work, in the sense that it
addresses control of the power grid; however, their focus is on security aspects
of the system, rather than reliability.

A number of interesting studies have been carried out on the topic of fault
injection for dependability analysis, including [15] and [16]. In [16], the authors
define a methodology for dependability assessment of a hardware/software sys-
tem by using fault injection tools. They explain the use of the “Messaline” fault
injection tool and provide examples and experimental results. While the fault
injection framework presented was mainly focused on hardware, the method-
ology provided will be useful in our efforts towards improving our model by
implementing software fault injection schemes.

The injection of software faults into a high-speed network system and as-
sessment of the effect of those faults on the network dependability is presented
in [15]. The types of faults analyzed in this paper include message corruption,
message drop, and computer hanging, which are similar to the types of software
faults that can occur in the cyber network of FACTS devices. The investigation
presented concerns a purely cyber system.

The work presented in this paper is part of an ongoing research project, and a
continuation of the work presented in [3] and [4]. Significant advances have been
made since the publication of [4], as we have investigated software failures in the
cyber network of FACTS devices, and their effect on the physical portion of the
power grid. The work presented here leads to the introduction of fault injection
as an enabling tool for refinement of our reliability model for the power grid.

3 Effects of Cyber Control on Grid Reliability

In the absence of cyber control of the physical network, the power grid is vulner-
able to cascading failures. A number of these failures can be mitigated through
prudent deployment of FACTS devices, the form of cyber control investigated
in this paper. In the IEEE118 bus system used as our case study, four cascading
scenarios were found to be mitigated by proper FACTS placement [2]. Table 1
summarizes the cascading failures, and Table 2 shows the locations where FACTS



262 A.Z. Faza, S. Sedigh, and B.M. McMillin

Table 1. Preventable Cascading Failures in the IEEE118 Bus System

Cascading Failure Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

1 4-5 5-11 7-12 3-5 16-17 14-15 failure

2 37-39 37-40 40-42 40-41 failure

3 47-69 47-49 46-48 45-49 failure

4 89-92 82-83 91-92 100-101 94-100 95-96 94-96 failure

Table 2. Locations of FACTS Devices Required for Mitigation of Failures

Cascading Failure Initiating Line 1st Device/Line 2nd Device/Line

1 (4-5) F1/(5-11) F2/(7-12)

2 (37-39) F3/(37-40)

3 (89-92) F4/(91-92) F5/(82-83)

4 (47-69) F6/(47-49) F7/(48-49)

devices can be deployed to prevent each cascading failure. These locations are
also depicted in Figure 2.

The IEEE118 bus system includes 210 transmission lines, out of which only
143 can fail without causing the system to fail, according to our simulation. Any
state where the only failed component of the physical network is one of these 143
lines is classified as a “safe” state for the grid. Any state where two or more lines
have failed is considered a “failed” state. In our work, we focus on the failures
of transmission lines, since the other physical components of the grid usually
have sufficient backup to compensate for their failures. With those arguments
in mind, application of the MIS technique yields the following model for system
reliability, when no FACTS devices are included, i.e., system reliability of the
purely physical grid.

Rsys = p210
L + 143p209

L qL (1)

where pL is the reliability of the transmission line, and qL = 1 − pL is the
unreliability of the transmission line. For tractability, all transmission lines have
been assumed to be equally reliable.

Adding FACTS devices to the system is expected to increase the reliability of
the system, as the purpose of their deployment is mitigation of failure. This is
reflected in the MIS model by an overall increase in the number of “safe” states,
which yields higher reliability.

For example, consider the simple case where a FACTS device can never do
any harm to the network, i.e., if the device fails, the system simply bypasses it
and continues to operate. This is denoted as the the “fail-bypass” failure mode.
In this failure mode, correct operation of the FACTS devices adds safe states to
the system, and failure of these devices has no effect on system operation, as a
failed device is bypassed. The additional safe states correspond to the cascading
failures prevented by introducing the FACTS devices (see Table 2). The resulting
reliability model is given by Equation 2.



Reliability Analysis for the Advanced Electric Power Grid 263

Fig. 3. System reliability, with and without FACTS devices

Rsys = p210
L + 143p209

L qL + p209
L qL(4−5)pF1pF2 + p209

L qL(37−39)pF3 (2)

+p209
L qL(89−92)pF4pF5 + p209

L qL(47−69)pF6pF7

where pFi and qFi = 1−pFi are the reliability and unreliability of FACTS device
i, respectively.

If we assume that all FACTS devices are equally reliable, the model reduces
to the following:

Rsys = p210
L + p209

L qL(143 + 3p2
F + pF ) (3)

An increase in system reliability is evident from comparing Equations 1 and 3.
Figure 3, which depicts the system reliability with and without FACTS devices,
confirms this assertion. The average increase in reliability was found to be about
0.18%. The financial savings that result from the prevention of cascading failures
magnify the impact of even the smallest improvements to grid reliability.

In the following section, we investigate more sophisticated failure modes of
the FACTS devices and evaluate their effect on system reliability.

4 Software-Induced Failures in Cyber Control

Faults in the software executed by the FACTS devices can lead to failures that
can affect the performance of the power grid. Here, we focus on failures in soft-
ware, rather than hardware, since hardware reliability is a well studied area and
hardware failures can be mitigated by redundancy. This section extends the anal-
ysis of the previous section to three non-trivial failure modes of FACTS devices.
A system reliability model is developed for each failure mode.



264 A.Z. Faza, S. Sedigh, and B.M. McMillin

4.1 Failure Mode 1: Fail-Limit to Line Capacity

This mode occurs when a FACTS device has lost its ability to decide on an
appropriate setting for the line on which it is deployed. This could be due to
loss of communication with other FACTS devices in the system. In such a case,
if the flow in the line carrying the FACTS device is already within the line
capacity, the FACTS device leaves it as is, but if the flow begins to exceed the
line capacity, the FACTS device will limit it to the line capacity. The latter will
only be necessary if a line fails elsewhere in the system.

This is a localized approach that prevents failure of the line carrying the
FACTS device, but could lead to overloads in other parts of the grid, and even
cascading failure. Due to lack of communication capability, a FACTS device that
has failed in this mode can monitor only the line on which it is deployed, and
has no information about the consequences of its actions for other lines in the
grid.

This situation was investigated for the IEEE118 bus system, and using sim-
ulation, we verified that cascading failure is a possible result of FACTS device
failure in mode 1. The results of this simulation were used to identify the “safe”
and “failed” states of the grid, leading to the reliability model of Equation 4.

Rsys = p210
L + p209

L qL(4−5)qF1pF2p
5
F + p209

L qL(4−5)pF1pF2p
5
F (4)

+p209
L qL(37−39)qF3p

6
F + p209

L qL(37−39)pF3p
6
F + p209

L qL(89−92)qF4pF5p
5
F

+p209
L qL(89−92)pF4pF5p

5
F + p209

L qL(47−69)qF6pF7p
5
F

+p209
L qL(47−69)pF6pF7p

5
F + 143p209

L qL

Assuming all transmission lines and all FACTS devices are equally reliable, re-
spectively, the model reduces to that of Equation 5.

Rsys = p210
L + 143p209

L qL + 4p209
L qLp6

F (5)

4.2 Failure Mode 2: Erroneously Set Flow to Line Capacity

In this failure mode, the FACTS device will push the flow on its corresponding
transmission line to the line’s capacity. This will happen even in the absence of
failures elsewhere in the system, unlike mode 1, where the failure of the FACTS
device only manifested when failure of a different transmission line is about to
cause overload in the line bearing the device.

As in mode 1, this erroneous operation will not cause failure on the line bearing
the device, but it may have consequences for other lines in the system. Simulation
of this failure mode confirmed that cascading failures could occur as a result of
failures in mode 2. This mode is an example of a situation where cyber control is
actually detrimental to a functional physical system. This underscores the fact
that only highly reliable cyber control will only improve a physical system.



Reliability Analysis for the Advanced Electric Power Grid 265

Using simulation, the reliability model of Equation 6 for the grid, assuming
failure mode 2 for the FACTS devices.

Rsys = p210
L (p7

F + 4p6
F qF ) + 143p209

L qL(p7
F + 4p6

F qF ) + 4p209
L qLp6

F (6)

4.3 Failure Mode 3: Erroneously Set Flow to 80% of Correct Value

This case is similar to failure mode 2, in that failure of the FACTS device
can cause the grid to fail, even when all physical components are functioning
correctly. However, instead of pushing the flow in the transmission line bearing
the FACTS device to its capacity, as in mode 2, the failure results in the flow
being set to 80% of what would have been the correct value. This fault could
occur due to malfunction of the maximum flow algorithm used to calculate the
appropriate settings for the FACTS devices [17].

As in the failure modes 1 and 2, this incorrect operation of the FACT device
will not cause an overload in the line bearing the device, but it may cause
overloads elsewhere in the grid. Simulation was used to verify that FACTS device
failure in mode 3 could lead to cascading failures. Results of the simulation were
used to develop the reliability model of Equation 7, which assumes that the
FACTS devices fail in mode 3.

Rsys = p210
L pF + p209

L qL(141pF + 3p2
F + p3

F + 1) (7)

Fig. 4. System reliability in different software failure modes



266 A.Z. Faza, S. Sedigh, and B.M. McMillin

Fig. 5. System reliability - Fail-limit to line capacity (mode 1)

4.4 Comparison of Failure Modes

Figure 4 compares system reliability for the three aforementioned failure modes,
using the reliability models of Equations 5 through 7. The figure shows that
failure mode 2, where the flow of the line bearing the FACTS device is erroneously
set to line capacity, is most detrimental to system reliability, while failure mode 1,
which only limits the flow to capacity in case of an overload, is least detrimental.

Fig. 6. System reliability - Erroneously set flow to line capacity (mode 2)



Reliability Analysis for the Advanced Electric Power Grid 267

Fig. 7. System reliability - Erroneously set flow to 80% of correct value (mode 3)

The figure illustrates that needlessly changing the flow on a line, as in modes 2
and 3, generally has worse consequences than carrying out an incorrect operation
when action is required, as happens in mode 1.

Figures 5 through 7 show the system reliability in failure modes 1 through 3,
respectively. For failure mode 1, even an unreliable FACTS device is never detri-
mental to the grid reliability. At worst, a failed FACTS device will lead to the
same reliability as a purely physical grid. In the other two modes, however, the
FACTS devices have to be extremely reliable in order to provide an improvement
to the overall system reliability. It can be seen from Figures 6 and 7 that system
reliability decreases drastically as the reliability of FACTS device decreases. This
underscores the potential damage that can be caused by an unreliable FACTS
device, or more generally, cyber control, to even a perfectly functional physical
system.

5 Software Fault Injection to the Cyber Network

The analysis presented so far describes how the impact of a faulty FACTS device
on the operation of the physical part of the power grid. We have analyzed three
failure modes in which failed FACTS devices could potentially cause cascading
failures in the physical part of the power grid. More thorough investigation on
the operation of FACTS device can help identify the causes of such failures.

In the advanced electric power grid presented in this paper, the cyber control
is intended to prevent failures through control of the power flow in specific lines.
The cyber network of FACTS devices runs a distributed version of the maximum
flow algorithm [17] to determine appropriate settings for these transmission lines.



268 A.Z. Faza, S. Sedigh, and B.M. McMillin

The main task of a FACTS device is to set the power flow in its transmis-
sion line to some predetermined value, but another very important contribution
made by each FACTS device is to help determine that value. The network of in-
terconnected FACTS devices collectively executes the maximum flow algorithm,
in a distributed fashion. Three types of faults can contribute to failure in the
operation of a FACTS device:

– A vertex fault
– An edge fault
– A message fault

The next stage of the research described in this paper will include injection of
all three types of faults into the cyber network, as it executes the maximum
flow algorithm, and investigate the effect of such faults on the operation of the
FACTS devices. We anticipate that faults injected into the system will cause
the FACTS device to operate in of the three failure modes discussed in Section
4. Additional failure modes are also possible. One objective of this research is
comprehensive identification of the failure modes for cyber control of the grid,
which will facilitate determination of the causes of failure. Our reliability model
will be refined and improved as a result, and we anticipate valuable insight into
increasing the efficacy of cyber control of the grid.

6 Conclusions

In this paper, we presented a reliability model for the advanced electric power
grid, as a cyber-physical system, with a focus on software faults. FACTS devices,
which control the flow of power in the physical infrastructure, were the tools of
choice in carrying out cyber control. The effect of this form of cyber control on
the overall reliability of the grid was quantitatively investigated using simulation,
for different failure modes of the FACTS devices.

This research described in this paper laid the groundwork for the next stage
of our analysis of cyber-physical systems: software fault injection into the cyber
control. The insight gained into root causes of FACTS device failure will be used
to further refine the reliability models, facilitating accurate quantitative analysis
of reliability of the power grid.

References

1. Chowdhury, B.H., Baravc, S.: Creating cascading failure scenarios in interconnected
power systems. In: IEEE Power Engineering Society General Meeting (June 2006)

2. Lininger, A., McMillin, B., Crow, M., Chowdhury, B.: Use of max-flow on FACTS
devices. In: North American Power Symposium (2007)

3. Faza, A., Sedigh, S., McMillin, B.: Reliability Modeling for the Advanced Electric
Power Grid. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680,
pp. 370–383. Springer, Heidelberg (2007)



Reliability Analysis for the Advanced Electric Power Grid 269

4. Faza, A., Sedigh, S., McMillin, B.: The Advanced Electric Power Grid: Complexity
Reduction Techniques for Reliability Modeling. In: Harrison, M.D., Sujan, M.-
A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 429–439. Springer, Heidelberg
(2008)

5. Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, understanding, and analyzing
critical infrastructure interdependencies. IEEE Control Systems Magazine 11(6),
11–25 (2001)

6. Lee, E.E., Mitchell, J., Wallace, W.: Assessing vulnerability of proposed designs for
interdependent infrastructure systems. In: Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (January 2004)

7. Singh, C., Lago-Gonzalez, A.: Reliability Modeling of Generation Systems Includ-
ing Unconventional Energy Sources. IEEE Transactiosn on Power Apparatus and
Systems PAS-104(5), 1049–1056 (1985)

8. Endrenyi, J., Bhavaraju, M., Clements, K., Dhir, K., McCoy, M., Medicherla, K.,
Reppen, N., Salvaderi, L., Shahidehpour, S., Singh, C., Stratton, J.: Bulk Power
System Reliability Concepts and Applications. IEEE Transactions on Power Sys-
tems 3(1), 109–117 (1988)

9. Laprie, J.C., Kanoun, K., Kaaniche, M.: Modelling interdependencies between the
electricity and information infrastructures. In: Saglietti, F., Oster, N. (eds.) SAFE-
COMP 2007. LNCS, vol. 4680, pp. 54–67. Springer, Heidelberg (2007)

10. Dondossola, G., Garrone, F., Szanto, J., Fiorenza, G.: Emerging Information Tech-
nology Scenarios for the Control and Management of the Distribution Grid. In:
Proc. of the 19th Int’l Conf. on Electricity Distribution (2007)

11. Geer, D.: Security of Critical Control Systems Sparks Concern. Computer 39(1),
20–23 (2006)

12. Rigole, T., Vanthournout, K., Deconinck, G.: Interdependencies Between an Elec-
tric Power Infrastructure with Distributed Control, and the Underlying ICT In-
frastructure. In: Proc. of Int’ Workshop on Complex Network and Infrastructure
Protection (CNIP 2006), Rome, Italy, March 2006, pp. 428–440 (2006)

13. Deconinck, G., Belmans, R., Driesem, J., Nauwelaers, B., Lil, E.V.: Reaching for
100% Reliable Electricity Services: Multi-system Interactions and Fundamental
Solutions. In: Proc. of the DIGESEC-CRIS Workshop 2006 Influence of Distributed
Generation and Renewable Generation on Power Systemm Security, Magdeburg,
Germany (December 2006)

14. Ten, C.W., Liu, C.C., Govindarasu, M.: Vulnerability Assessment of Cybersecurity
for SCADA Systems. IEEE Transactions on Power Systems (to appear, 2009)

15. Stott, D.T., Ries, G., Hsueh, M.C., Iyer, R.K.: Dependability Analysis of a High-
Speed Network Using Software-Implemented Fault Injection and Simulated Fault
Injection. IEEE Transactions on Computers 47(1), 108–119 (1998)

16. Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Martins, E., Powell, D.: Fault Injec-
tion for Dependability Validation: A Methodology and Some Applications. IEEE
Transactions on Software Engineering 16(2), 166–182 (1990)

17. Armbruster, A., Gosnell, M., McMillin, B., Crow, M.L.: Power transmission control
using distributed max flow. In: Proc. of the 29th Annual Int’l Computer Software
and Applications Conf (COMPSAC 2005), Washington, DC, USA, pp. 256–263.
IEEE Computer Society, Los Alamitos (2005)



Increasing the Reliability of High Redundancy

Actuators by Using Elements in Series and
Parallel

Thomas Steffen1, Frank Schiller2, Michael Blum2, and Roger Dixon1

1 Control Systems Group, Department of Eletronic and Electrical
Engineering, Loughborough University, Loughborough LE11 3TU, UK

{t.steffen,r.dixon}@lboro.ac.uk

www.lboro.ac.uk.departments.el
2 Institute of Information Technology in Mechanical Engineering,

Technische Universität München, Boltzmannstr. 15,
D-85748 Garching near Munich, Germany

{Blum,Schiller}@itm.tum.de

www.itm.tum.de

Abstract. A high redundancy actuator (HRA) is composed of a high
number of actuation elements, increasing both the travel and the force
above the capability of an individual element. This provides inherent
fault tolerance: if one of the elements fails, the capabilities of the actu-
ator may be reduced, but it does not become dysfunctional. This pa-
per analyses the likelihood of reductions in capabilities. The actuator is
considered as a multi-state system, and the approach for k-out-of-n:G
systems can be extended to cover the case of the HRA. The result is a
probability distribution that quantifies the capability of the HRA. By
comparing the distribution for different configurations, it is possible to
identify the optimal configuration of an HRA for a given situation.

Keywords: high redundancy actuator (HRA), fault-tolerance, fault mode
and effect analysis (FMEA), multi-state system, k-out-of-n:G system,
failure probability, dependable systems.

1 Introduction

1.1 Fault Tolerance

Fault tolerance is about dealing with faults in technical systems [Blanke et al.,
2006]. Its goal is to prevent a component fault from becoming a system failure
[Blanke et al., 2001].

So far, most theoretical considerations have focused on sensor and controller
faults. These redundant structures are very efficient. Obviously, the probability
of a fault in several identical components is much lower than the probability of
a fault in a single one. In order to avoid common causes of failures in redundant
components, redundant diversity approaches are applicable. This could mean

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 270–282, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.lboro.ac.uk.departments.el
www.itm.tum.de


Increasing the Reliability of HRA by Using Elements in Series and Parallel 271

Fig. 1. High Redundancy Actuator

e.g. to measure the same physical quantity by different principles, or to mea-
sure different physical quantities with a known correlation. Whilst significant
achievements have been made for sensors and controllers, many of these results
are not directly applicable to faults in actuators.

The reason for the difference is the effect of redundancy for actuators. Whereas
redundancy for sensors and controllers is always realized by parallel configura-
tions, the adequate configuration of actuators depends on the failure mode. For
instance, a blocked valve in the closed position can be tolerated by means of a
redundant valve in parallel, but a blocked valve in the open position by means
of a redundant valve in series. Therefore, networks of redundant actuators with
respect to their specific faults and failure modes have to investigated.

Most existing approaches for the treatment of actuator failures are derived
from the information view used to handle sensor faults. For example, the observer
based approach has been extended to cover actuator faults in the form of the
virtual actuator [Steffen, 2005]. Likewise, the idea of analytical redundancies in
sensors [Frank, 1990] has its equivalent for actuators in the form of dynamic gain
scheduling and control allocation [Oppenheimer and Doman, 2006].

Consequently, the classical fault tolerant approach for actuation is replication,
the same strategy usually used for sensors. Typically, 2, 3 or 4 actuators are used
in parallel, very much like redundant sensors. Each actuator is strong enough to
meet the performance requirements by itself. This leads to a significant amount of
over-engineering and consequently a less efficient system (e.g. because of a higher
weight). Also these parallel arrangements fail if one element locks up, and addi-
tional counter-measures are necessary to reduce the impact of such lock-up faults.

1.2 High Redundancy Actuator

The most general way to improve reliability in an efficient way is to use a greater
number of smaller actuation elements. For example, a system with ten elements
may still work with only eight of them operational. The reliability improves
because two faults can be accommodated. At the same time, the overall capacity
is only over-dimensioned by 25 %, making the system more efficient. This is the
central idea of the high redundancy actuator (HRA).

This idea is inspired by the human musculature. A muscle is composed of
many individual fibres, each of which provides only a minute contribution to the



272 T. Steffen et al.

force and the travel of the muscle. This allows the muscle as a whole to be highly
resilient to damage of individual fibres.

In an HRA, actuation elements are used both in parallel and in series (see
Fig. 1). This increases the available travel and force over the capability of an
individual element, and it makes the actuator resilient to faults where an element
becomes loose or locked up. These faults will reduce the overall capability, but
they do not render the assembly functionless.

So far, the research has focused on the modelling and control of simple con-
figurations with four elements [Du et al., 2006, 2007]. Previous studies on the
reliability of complicated electromechanical assemblies are rare: the reliability
of electro-mechanical steering is discussed by Blanke and Thomsen [2006], and
electrical machines and power electronics are analysed by Ribeiro et al. [2004].

This paper presents a method to analyse the reliability of an HRA of any size, as
long as it can be interpreted as a hierarchy of parallel and series configurations. It
is based on the concepts developed using graph theory in Steffen et al. [2007]. The
main new contribution of this paper is a systematic treatment of configurations
with multiple layers and the comparison of configurations for the 4 × 4 grid case.

A similar duality can also be found in transport networks, such as pipelines,
roads or communication channels. They use channels in parallel to increase the
capacity, and channels in series to increase the reach. Since the same basic equa-
tions apply, the results from this paper are directly applicable.

1.3 List of Symbols

This paper follows the notation used in the first part of Pham [2003], supple-
mented by the application specific interpretation of the capability c. This leads
to the following symbols.

P (·) probability of an event,
q failure probability (unreliability) of an element, typically close to 0,
p reliability of an element, typically close to 1,
ct,cf travel and force capability,
rx(c) probability of capability c of system x:

rx(c) = P (cx = c),
Rx(c) reliability of system x wrt the requirement c,

R(c) = P (cx ≥ c).
Rfx(cf ) reliability of x wrt. the force requirement cf .
Rtx(ct) reliability of x wrt. the travel requirement ct.

1.4 Structure of the Paper

Section 2 deals with the basic terms and concepts used for the reliability assess-
ment, and it defines the behaviour of individual actuation elements. In Section 3,
the effect of series or parallel arrangement of elements on reliability is investi-
gated. In Section 4, the special cases of series-in-parallel and parallel-in-series
configuration is analysed for a simple 2× 2 system. In Section 5, this concept is
extended to configuration with multiple layers, and an exhaustive study of 4× 4
systems is presented. The paper finishes with some conclusions in Section 6.



Increasing the Reliability of HRA by Using Elements in Series and Parallel 273

2 Specification of Actuation Elements

The individual actuation elements of the HRA are specified using a number
of different measures. From an abstract perspective, they can be divided into
two types: physical measures and reliability measures. The first kind contains
physical parameters related to the mechanical movement, such as force, speed,
acceleration, or distance. The second kind of parameters describes the probability
of a fault.

2.1 Specification of the Nominal Performance

An actuation element can perform a one-dimensional mechanical movement (ex-
pansion or contraction) in response to a control input as shown in Fig. 2a. To
simplify the analysis, only the static case is considered in the following. So the
central performance measurements of an element are the force f it can produce
and the amount of travel t it can provide.

While it is entirely possible to use the measurements in physical units (Newton
for the force and meter for the travel), this paper will use normalised values
instead. The force capability cf and travel capability ct of a nominal element
are defined to be one (without unit). The use of integer values simplifies the
probability analysis significantly, because discrete distributions can be used.

2.2 Specification of Faults

The two capability measures lead to two main fault modes of an element: loss
of force (loose fault, see Fig. 2b) and loss of travel (lock-up fault, see Fig. 2c).

(a) nominal (b) loose fault (c) lock-up fault

Fig. 2. A Single Actuation Element

Table 1. Influence of Faults on Capabilities

Fault Force Capability Travel Capability

None nominal (1) nominal (1)

Loose affected (0) nominal (1)

Lock-Up nominal (1) affected (0)

Both affected (0) affected (0)



274 T. Steffen et al.

Both faults are assumed to be complete: a fault reduces the relevant capability
to zero (see Table 1).

Because both faults are considered to be independent, they can also appear
together. It may seem impossible to have an element that is both loose and
locked-up at the same time. However, this analysis is concerned with the guar-
anteed performance of an element, and it is perfectly possible that it cannot
reliably provide neither force nor travel.

It is also assumed that a locked-up element is fixed in its neutral position (this
would be the medium length if the nominal travel is symmetric to both sides).
This requirement is for convenience only and can be relaxed later.

2.3 Specification of Reliability

In practical applications, different ways can be used to describe the reliability of
an element, such as mean time to failure (MTTF), availability, failure probability
over a given time, or failure probability during a specified mission. The relevant
specification depends very much on the application. However, all measures are
based on probabilities or probability densities over time. These functions over
time can then be interpreted using any of the above measures. Therefore, this
paper will use fault probabilities as a generic way to measure reliability:

P (loose) = P (cf = 0) = qf

P (lock-up) = P (ct = 0) = qt.

2.4 Capability Distributions

Together with the corresponding OK-probability P (cf = 1) = pf = 1 − qf and
P (ct = 1) = pt = 1 − qt, these values span the two capability distributions

rf (i) = P (cf = i)
rt(j) = P (ct = j).

Because there are two capabilities, the state space is two-dimensional. However,
to avoid the complexity of two-dimensional distributions, this paper deals with
one capability at a time in the following. This separation is possible because
both fault modes are assumed to be statistically independent.

In some cases, the cumulative capability distributions

Rf (i) = P (cf ≥ i) =
cf,max∑

k=i

P (cf = k) =
cf,max∑

k=i

rf (k)

Rt(j) = P (ct ≥ j) =
ct,max∑

k=j

P (ct = k) =
ct,max∑

k=j

rt(k)

are used for determining the reliability of more complex configurations.



Increasing the Reliability of HRA by Using Elements in Series and Parallel 275

3 Aggregation on a Single Level

The main reason for using several elements is that they serves to increase the
capabilities (see Fig. 3, Table 1). Two elements in parallel can produce twice the
force, and two elements in series can achieve twice the travel. In the following, it is
assumed that n equal elements are combined, and that the capability distribution
for one individual element is known.

This effect is not only observed in mechanical systems, but in most networks.
Transport networks for example have the two properties (distance and capacity)
that follow the same law. So the results found here should be generally applicable
to most uses of networks.

3.1 Limiting Capabilities

Some capabilities do not increase when subsystems are combined. Instead, the
capability of the resulting system is determined by the weakest part. This hap-
pens e.g. with the force capability cf for actuation elements used in series (see
Fig. 3b)

cfS(cf ) = min{cf1, cf2} , (1)

where cf denotes the vector (cf1 cf2)T . The same equation also applies to the
travel capability of elements in parallel

ctP(ct) = min{ct1, ct2} (2)

(see Fig. 3a). These equations follow directly from the specification and physical
laws, so they will be assumed as given for the reliability analysis.

(a) parallel (b) series (c) 2x2 PS (d) 2x2 SP

Fig. 3. Basic Configurations

Table 2. Configurations and Capabilities

Configuration Force Capability Travel Capability

Parallel increased (sum) unchanged (min)

Series unchanged (min) increased (sum)

Grid increased (times columns) increased (times rows)



276 T. Steffen et al.

In both cases, the capability of such a combined system is the minimum
capability over all the subsystems or elements:

clim(c) = min{c1, . . . , cn}. (3)

This represents a classic series arrangement of multi-state subsystems (MSS),
and the reliability has been well studied in the literature. Here, a new operator
is introduced to calculate the new cumulative reliability distribution for the
overall system.

Theorem 1: If n elements with the cumulative reliability distributions Ri(c)
are connected so that the overall capability is limited by the weakest element
according to Eqn. (3), the cumulative reliability distribution Rlim(clim) of the
new system can be calculated as

Rlim(c) = R1 ⊕ R2 ⊕ . . . ⊕ Rn(c) (4)

with the operator
(R1 ⊕ R2)(c) = R1(c)R2(c). (5)

Proof: According to the definition, the reliability Rlim(c) is the probability that
the overall capability is at least c:

clim ≥ c.

Because of Eqn. (3), this inequality holds if and only if all elements have at least
this reliability:

∀i : ci ≥ c.

Since the capability of the elements ci are considered to be independent, the
probability of this condition can be calculated as the product of the probabilities
of the individual terms:

P (∀i : ci ≥ c) =
∏

i

P (ci ≥ c) =
∏

i

Ri(c).

This is exactly the result defined by the operator ⊕.
Since the original Eqn. (3) is applicable in two cases, the same is true for the

resulting operator ⊕. It can be used to describe the force of elements in series

RfS = Rf1 ⊕ Rf2 (6)

or the travel for elements in parallel

RtP = Rt1 ⊕ Rt2. (7)



Increasing the Reliability of HRA by Using Elements in Series and Parallel 277

3.2 Additive Capabilities

If several actuation elements are used together, the capability of the combined
system may increase above the capability of any element. In fact, this increase
is the motivation for using several element in the first place.

In contrast to the maximum operator in Eqn. (1), the sum applies to the force
capability of two elements in parallel (see Fig. 3a),

cfP(cf ) = cf1 + cf2 (8)

and to the travel capability of two elements in series (see Fig. 3b)

ctS(ct) = ct1 + ct2. (9)

In both cases, the relevant capabilities of the elements add up to the capability
of the overall system:

cadd(c) = c1 + c2 + . . . + cn. (10)

This is unlike typical multi-state systems [Jenab and Dhillon, 2006], because the
state space of the system cadd can be larger than the state space of any element
ci. Again, a new operator ⊗ is introduced to calculate the cumulative reliability
distribution of the combined system of two elements.

Theorem 2: If n elements with cumulative reliability distributions Ri(ci) are
arranged so that the capabilities add up according to Eqn. (10), the cumulative
reliability distribution Radd(cadd) of the resulting system is defined by

Radd(c) = R1 ⊗ R2 ⊗ . . . ⊗ Rn(c) (11)

with the operator

(R1 ⊗ R2)(c) =
c∑

i=0

(R1(i) − R1(i + 1))R2(c − i). (12)

Proof: It is easier to work with the same statement in terms of reliability distribu-
tions r. Because only integer capabilities are used, it follows from the definition
of R and r that r(i) = R(i) − R(i + 1). Therefore, the following equation is
equivalent to (12):

radd(c) =
c∑

i=0

r1(i)r2(c − i) . (13)

Central to this proof is the set of all capability combinations c1 and c2 that lead
to the same overall capability cadd = c. According to Eqn. (10), this set is

C(c) = {(c1, c2) ∈ N
2
0 : c1 + c2 = c}.

The probability of the two elements to have the capabilities (c1, c2) is

P (c1, c2) = P (c1)P (c2) = r1(c1)r2(c2)



278 T. Steffen et al.

because both are considered to be independent. Now the probability of a given
overall capability of c can be calculated as:

P (cadd = c) =
∑

(c1,c2)∈C(c)

P (c1)P (c2)

which is equivalent to Eqn. (13).
This operator ⊗ is applicable in two situations: the force of elements in parallel

RfP = Rf1 ⊗ Rf2 (14)

and the travel for elements in series

RtS = Rt1 ⊗ Rt2. (15)

4 Hierarchical Aggregation

An HRA contains elements in series and in parallel. Thus it is important to
analyse the reliability resulting from multiple levels of aggregations. Assuming
that the configuration is given, this section explains how to find the reliability
distribution of the overall system by combining the operators defined above.

Any structure can be analysed using an iterative bottom-up approach. From
the capability distribution of the individual elements, it is possible to calculate
the distributions for the basic subsystems, which are either parallel or series
arrangements of elements. Basic subsystems can be aggregated to more complex
subsystems, and this can be repeated until the reliability of the overall system is
found. For a successful application of this iterative approach, it is required that
the actuator configuration is described as a series-parallel network.

4.1 Notation and Formalism

For the examples used here, it is assumed that two equal subsystems are used
in series or in parallel. A series configuration is denoted with the letter S, and
the parallel configuration with the letter P (cf. Section 3). A sequence of let-
ters denotes a hierarchical configuration, from the bottom level of aggregating
individual elements up to the complete system.

So two series elements, duplicated in parallel, are called SP. The dual con-
figuration (two parallel elements, and two of these blocks arranged in series) is
denoted as PS. Using two SP systems in series leads to an SPS configuration and
so on. It is also possible to have identical levels following each other, for example
a PP configuration consists of 4 elements in parallel.

Several examples are shown in Fig. 4. All systems defined by this notation
are highly regular and symmetrical, which simplifies the analysis considerably.
Following the notation from Section 3, the cumulative force capability of a con-
figuration x is denoted with Rfx(cf ), and the cumulative travel capability with
Rtx(ct). This allows an easy comparison between different configurations. In the
following, all elements are assumed to be identical as specified using the proper-
ties defined in Section 2.



Increasing the Reliability of HRA by Using Elements in Series and Parallel 279

4.2 Iterative Reliability Calculation

In each iterative step, two equal subsystems with a known reliability distribution
are combined to a new system. The configuration of a subsystem is assumed to
be x, and the cumulative force and travel reliability distributions are Rfx(cf )
and Rtx(ct).

For a parallel configuration (xP) of two identical subsystems x, the force in-
creases (cf1+cf2), and the travel is limited by the weaker subsystem (min{ct1,ct2}).
As discussed in Section 3, the following two operators can be used to calculate
the cumulative reliability distributions.

Theorem 3: The cumulative reliability distributions for a system of two iden-
tical parallel subsystems are

RfxP = Rfx ⊗ Rfx (16)
RtxP = Rtx ⊕ Rtx . (17)

Similarly, in a series configuration (xS), the force is limited by the weakest el-
ement (min{cf1, cf2}), and the travel increases (ct1 + ct2). So the cumulative
reliability distributions are determined by the other operator, respectively.

Theorem 4: The cumulative reliability distributions for a system of two identical
subsystems in series are

RfxS = Rfx ⊕ Rfx (18)
RtxS = Rtx ⊗ Rtx . (19)

The proofs for these two theorems are analogue to the proofs of Theorems 1 and 2
in Section 3. Instead of the two individual elements assumed there, two identical
subsystems specified by Rfx and Rtx are used. These subsystems satisfies all the
assumptions made about the elements, including the independence.

5 Examples

Some representation examples of 4 × 4 configurations will be discussed in this
section.

Therefore each configuration contains 2 parallel and 2 serial levels, but they
appear in different order, as shown in Fig. 4. In the nominal state, all configu-
rations are identical: both force and travel capability are four times the value of
a single element.

However, the response to faults (especially multiple faults) differs significantly.
The two Eqns. (16) and (18) are used to determine the cumulative reliability
distribution for series and parallel connections.

The results are produced using the symbolic toolbox in MATLAB, and they
are shortened by omitting coefficients of little interest. The reliabilities for a
capability of 2 out of 4 is:

RfSSPP(2) = 1 − 16q3
f + 12q4

f + 96q6
f . . . + 81q16

f

RfSPSP(2) = 1 − 32q3
f + 56q4

f − 16q5
f . . . + q16

f



280 T. Steffen et al.

(a) SSPP (b) SPSP (c) PSSP

(d) SPPS (e) PSPS (f) PPSS

Fig. 4. All Symmetrical 4 × 4 Configurations

RfPSSP(2) = 1 − 64q3
f + 192q4

f − 240q5
f . . . + 9q16

f

RfSPPS(2) = 1 − 64q3
f + 240q4

f − 352q5
f . . . − q16

f

RfPSPS(2) = 1 − 128q3
f + 640q4

f − 1248q5
f . . . − q16

f

RfPPSS(2) = 1 − 256q3
f + 1920q4

f − 7104q5
f . . . + 3q16

f .

A number of observations are interesting for high integrity systems:

1. All reliabilities have the same polynomial structure: they start at 1, the first
non-constant factor is q3

f , and order is q16
f .

2. The reliabilities maintain a partial order

RfSSPP(2) > RfSPSP(2) > RfPSSP(2),
RfSPPS(2) > RfPSPS(2) > RfPPSS(2)

for all admissible qf in [0 . . . 1].
3. The reliability of travel (Rt(2)) follows the opposite order.So the conflict

between reliable force and reliable travel is confirmed.



Increasing the Reliability of HRA by Using Elements in Series and Parallel 281

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

1

2

3

4

5
x 10

−4

q
f
3

q t3
Equal Reliability of 99% for Different Configurations

SSPP
SPSP
PSSP/SPPS
PSPS
PPSS

Fig. 5. Comparison of Overall Reliability 0.99

Based on these results, it is possible to calculate the failure probability due to
insufficient force and the probability of insufficient travel. These cases are not
100% exclusive, but it is safe (conservative) to assume so. So the sum determines
the overall failure probability, which can be compared directly to determine the
best configuration for a given combination of qt and qf .

The pareto-optimality of the different configurations is graphically shown in
Fig. 5. The coloured lines denote combinations of q3

f and q3
t that lead to the same

overall reliability of 99 %. The further right and up the line goes, the better the
reliability of the configuration, as the system is less sensitive to the element
faults. The Pareto optimal front is a combinate of all five lines, which means
that each configuration is the best choice for a certain ratio qf : qt between
the two fault modes. It is worth noting that the range of ratios where this is
happening is rather small, so in practical cases it is highly likely that one of the
two extreme configurations (SSPP or PPSS) is ideal.

6 Conclusions

This document has shown how to calculate the reliability of an HRA. Due to
the high number of actuation elements, a new generic approach had to be de-
veloped. Using probability distributions, the problem can be solved with a low
computational effort and using well understood operations.

Different configurations consist of several levels series and parallel connec-
tions are considered and modelled using multi-state systems. The results show
that even with the same number of elements in the same two dimensional ar-
rangement, the selection of the best suitable configuration (as determined by
the lateral connections) has a significant influence on the reliability of the HRA.



282 T. Steffen et al.

The influence is especially important when high element fault rates are consid-
ered, as planned for the HRA. A more comprehensive analysis is planned in a
forthcoming journal paper.

Acknowledgements. The HRA project is a cooperation of the Control Systems
group at Loughborough University, the Systems Engineering and Innovation
Centre (SEIC), and the actuator supplier SMAC Europe limited. The project is
funded by the Engineering and Physical Sciences Research Council (EPSRC) of
the UK under reference EP/D078350/1.

References

Blanke, M., Thomsen, J.S.: Electrical steering of vehicles - fault-tolerant analysis and
design. Microelectronics reliability 46, 1421–1432 (2006)

Blanke, M., Staroswiecki, M., Wu, N.E.: Concepts and methods in fault- tolerant con-
trol. In: Proceedings of the American Control Conference 2001, vol. 4 (2001)

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and faulttolerant
control. Springer, New York (2006)

Du, X., Dixon, R., Goodall, R.M., Zolotas, A.C.: Assessment of strategies for control
of high redundancy actuators. In: Proceedings of the ACTUATOR 2006 (2006)

Du, X., Dixon, R., Goodall, R.M., Zolotas, A.C.: Lqg control for a high redundancy
actuator. In: Proceedings of the 2007 IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics (2007)

Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge- based
redundancy- a survey and some new results. Automatica 26(3), 459–474 (1990)

Jenab, K., Dhillon, B.S.: Assessment of reversible multi-state k-out-of- n:g/f/load-
sharing systems with ow-graph models. Reliability Engineering & System
Safety 91(7), 765–771 (2006)

Oppenheimer, M.W., Doman, D.B.: Control allocation for overactuated systems. In:
Proceedings of the 14th Mediteranean Conference on Control Automation (June
2006)

Pham, H.: Handbook Of Reliability Engineering. Springer, Heidelberg (2003)
Ribeiro, R.L.A., Jacobina, C.B., da Silva, E.R.C., Lima, A.M.N.: Faulttolerant voltage-

fed pwm inverter ac motor drive systems. IEEE Transactions on Industrial Electron-
ics 51(2), 439–446 (2004)

Steffen, T.: Control reconfiguration of dynamical systems: linear approaches and struc-
tural tests. LNCIS. Springer, New York (2005)

Steffen, T., Davies, J., Dixon, R., Goodall, R.M., Zolotas, A.C.: Using a series of mov-
ing coils as a high redundancy actuator. In: Proceedings of the 2007 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (2007)



AN-Encoding Compiler:

Building Safety-Critical Systems with
Commodity Hardware

Christof Fetzer, Ute Schiffel, and Martin Süßkraut

Technische Universtät Dresden
Department of Computer Science

Dresden, Germany
firstname.lastname@se.inf.tu-dresden.de

http://wwwse.inf.tu-dresden.de

Abstract. In the future, we expect commodity hardware to be used
in safety-critical applications. However, in the future commodity hard-
ware is expected to become less reliable and more susceptible to soft er-
rors because of decreasing feature size and reduced power supply. Thus,
software-implemented approaches to deal with unreliable hardware will
be needed. To simplify the handling of value failures, we provide fail-
ure virtualization in the sense that we transform arbitrary value failures
caused by erroneous execution into fail-stop failures. The latter ones are
easier to handle. Therefore, we use the arithmetic AN-code because it
provides very good error detection capabilities. Arithmetic codes are suit-
able for the protection of commodity hardware because guarantees can
be provided independent of the executing hardware. This paper presents
the encoding compiler EC-AN which applies AN-encoding to arbitrary
programs. According to our knowledge, this is the first in software imple-
mented complete AN-encoding. Former encoding compilers either encode
only small parts of applications or trade-off safety to enable complete
AN-encoding.

1 Introduction

Historically, hardware reliability has been increasing with every new generation.
However, one expects that in the future, decreasing feature size of hardware will
not lead to more reliable but to less reliable hardware. Borkar in [8] impressively
describes the effects of reduced feature sizes. Even today’s CPUs already have a
variation in operating frequency of about 30% which is dealt with by using die
binning. But this variability will increase further with decreasing feature sizes.
Indeed, [16] shows that even today’s large computing systems—e. g., the Los
Alamos Neutron Science Center—experience failures because of soft errors. The
conclusion is that the uncontrollable variety of the production process will make
processor designs more and more unpredictable. Furthermore, smaller transis-
tors age faster and thus become faster unreliable and smaller features are more
susceptible to soft errors since supply voltages decrease with decreasing feature

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 283–296, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://wwwse.inf.tu-dresden.de


284 C. Fetzer, U. Schiffel, and M. Süßkraut

size. It is expected that the amount of failures caused by soft errors will increase
exponentially with every new technology generation.

Nowadays, safety related systems are typically built using special purpose
hardware. However, these solutions are expensive because the effort put into de-
sign and production is much higher and the number of units is much smaller than
for commodity systems [3]. Also, such hardware is usually an order of magni-
tude slower than commodity hardware because it lags behind new developments.
We expect that in the future there will be economic pressure to use commodity
hardware for dependable computing. Furthermore, systems will become mixed
mode, i. e., both critical and non-critical applications will be executed on the
same computer system built from unreliable hardware because it is faster and
cheaper. Such mixed mode systems will require new dependability mechanisms
which make it possible to cope with the restrictive failure detection capabilities
of commodity hardware. One crucial step in providing such mechanisms is fail-
ure virtualization, i. e., the transformation of a (more difficult to handle) failure
model into another (easier to handle) failure model. We aim at turning difficult
to handle erroneous output into easier to handle crash failures.

Encoding software using arithmetic codes facilitates software-implemented
hardware error detection. In contrast to replication, arithmetic codes enable
also the detection of permanent errors. Furthermore, the error detection capa-
bilities of arithmetically encoded applications can be determined independent of
the used hardware (see Sect. 3).

In this paper we present an encoding compiler (EC-AN) which transforms
arbitrary integer applications into their AN-encoded versions (see Sect. 3). In
contrast to similar previous approaches such as [20,10,34], we encode the whole
application with the same powerful code. This includes memory, logical oper-
ations, and handling of external functions whose source code is not available
for encoding. We do not yet support encoding applications using floating point
instructions. Those applications have to be modified to use a integer-based soft-
ware implementation of floating point instructions. Section 4 evaluates both the
runtime overhead generated by our AN-encoding compiler and the error detec-
tion capabilities.

2 Related Work

Usually soft-error tolerant hardware uses replication of large hardware parts
and voting for error detection and correction [38,27,4]. Currently research ef-
forts include more sophisticated approaches than simple replication. [18] reuses
testing circuitry for error detection and correction and [17] extends hardware
with built-in soft error resilience which is able to detect and correct soft errors
and even to predict a soon hardware failure. The hardware design presented in
[26] on-the-fly replicates executed instructions. [23] checks consistency of data
independent parts of instruction fetch and decoding for repeated traces within
an application. For this to be useful, it is required that an application consists
to large parts of traces which are repeated often. All those approaches only aim



AN-Encoding Compiler: Building Safety-Critical Systems 285

at protecting the execution logic. Memories have to be protected by separate
means such as error correcting codes. Of course this list of hardware approaches
is far from complete. There are several more but all of them have in common
that custom hardware is typically very expensive—too expensive for application
in mixed-mode systems which execute both safety-critical and non-safety criti-
cal applications. Furthermore, most of these approaches are in contrast to our
approach not able to detect permanent hardware errors. The intention is that by
providing a software-implemented error detection mechanism up-to-date hard-
ware can be also used in safety-critical systems which require certification. The
precondition is that the error detection probability of the mechanism is indepen-
dent of the actually used hardware. This can be provided by using arithmetic
codes such as the AN-code.

Control flow checking, which can be implemented in hardware [15,9,6] or soft-
ware [2,30,7,29], provides means to recognize invalid control flow for the executed
program, that is, execution of sequences of instructions which are not permitted
for the executed binary. In contrast to AN-encoding control flow checking cannot
detect errors which do only influence processed data.

Algorithm based fault tolerance [13,28] and self-checking software [36,5] use
invariants contained in the executed program to check the validity of the gen-
erated results. This requires that appropriate invariants exist. These invariants
have to be designed to provide a good failure detection capability and are not
easy—if not impossible—to find for most applications.

Other software approaches work with replicated execution and comparison
of the obtained results. The protected software is modified during or before
compilation—rarely, dynamic binary instrumentation is used [24]. Replication
can be implemented at different levels of abstraction. Some approaches dupli-
cate single instructions and execute them in one thread [22,19,10,25,24,6]. Other
approaches execute duplicates of the whole program within several threads and
provide synchronization means for them [31,12,32]. For all those approaches
which are based on redundant execution of the same program instructions, it is
not possible to provide guarantees with respect to permanent hardware errors
or soft errors which disturb the voting mechanism.

Instead of duplication, or additionally, arithmetic codes can be used to detect
errors. In that case, the program and the processed data are modified. ED4I [20],
for example, duplicates instructions but the duplicated instructions do not pro-
cess the original data but a k-multiple of it, which is a so-called AN-code. All
results of duplicate instructions have to be k-multiples of the original results.
In this way, most hardware errors are recognizable. However, whenever a pro-
gram contains logical operations, the authors choose a factor k which is a power
of two to make those operations encodable. Thereby they reduce the detection
capabilities immensely. The resulting code cannot detect bit flips in the higher
order bits of data values. But those bits contain the original functional value.
Furthermore, the authors do not discuss overflow problems with AN-codes which
we pointed out in [33]. Over- and underflows in arithmetic operations are not
conserved when AN-encoded values are used e. g. in an addition. If for example



286 C. Fetzer, U. Schiffel, and M. Süßkraut

the result of an addition overflows, ED4I will detect an error. This is a false
positive because the C standard expects over- and underflows to work correctly
for unsigned integers, i. e. to form a ring. For signed integers overflows are also
required to be correct since the addition of a negative number in the end results
in an overflow in its unsigned representation. [10] did also use an AN-code but
only for operations which easily can handle encoded values such as additions and
subtractions. They did also ignore the over-/underflow issue. Furthermore, the
encoding is only applied to registers and not to memory. In the end that leaves
supposedly only small parts of applications which are AN-encoded. As should
be expected their fault injection experiments show a non-negligible amount of
undetected failures for most of the tested applications.

Forin’s Vital Coded Processor (VCP) [11] and our previous work Software
Encoded Processing (SEP) [34] use an even more powerful arithmetic code which
is an AN-code extended with per-variable specific signatures and timestamps.
This code does not only facilitate detection of faulty execution of operations or
modification of data. It also detects the usage of wrong operands which might
be caused by address line errors and the usage of wrong operators. VCP adds
the encoding on source code level. But VCP can only be applied to applications
which do not use dynamic memory and make no use of instructions other than
arithmetic operations add, sub, and mult without over- or underflows. SEP on
the other hand, encodes applications on runtime and can be applied to arbitrary
applications. SEP generates very high runtime overhead. Furthermore, support
for encoded logical operations, shift operations, casts, unaligned memory access
and arbitrary external functions is not included in SEP.

This paper presents the encoding compiler EC-AN which in contrast to
[11,20,10,34] encodes arbitrary applications completely with an AN-code. In the
future, we will extend this compiler to support AN-code with signatures and
timestamps.

3 AN-Encoding of an Application

A long known technique to detect hardware errors during runtime are arithmetic
codes. Arithmetic codes add redundancy to processed data which results in a
larger domain of possible words. The domain of possible words contains the
smaller subset of valid code words. Arithmetic codes are conserved by correct
arithmetic operations, i. e., a correctly executed operation taking valid code
words as input produces a result which is also a valid code word. On the other
hand, faulty arithmetic operations destroy the code with a very high probability,
i. e., result in a non-valid code word [1].

The AN-code is one of the most widely known arithmetic codes. Encoding is
done by multiplying the information part xf of variable x with a constant A.
Thereby, the encoded version xc is obtained. Only multiples of A are valid code
words and every operation processing AN-encoded data has to conserve this
property. Code checking is done by computing the modulus with A. which is
zero for a valid code word. A variable is checked before it is used as a parameter
of an external function, or before it influences data or control flow.



AN-Encoding Compiler: Building Safety-Critical Systems 287

If A requires k bits and we encode values with a maximum size of n bits,
we need n + k bits to store encoded values. Assuming a failure model with
equally distributed bit flips and that the Hamming distance between all code
words is constant the resulting probability p of not detecting an error is: p =
number of valid code words-1

number of possible words ≈ 2n

2n+k = 2−k Thus, the error detection capability is
independent of the actually used hardware—it just depends on the choice of A.
A should be as large as possible and should not be a power of two because then
multiplication by A only shifts the bits to the left and no bitflips in the higher
bits can be detected. Furthermore, A should have as few factors as possible to
reduce the probability of undetected operation errors. Hence, most large prime
numbers are a good choice for A.

For encoding a program with an AN-code, every instruction and every vari-
able has to be replaced with its appropriate AN-encoded version. We use a 64-bit
data type for encoded values and support encoding up to 32-bit integers. That
leaves 32-bit for A. The encoded value is always a 64-bit type regardless of the
bitwidth of the unencoded value. We do the instrumentation statically on com-
pilation time because: (1) The protection starts with the encoding. The earlier
the encoding is done, the larger is the sphere of protection. Any errors intro-
duced by the steps following encoding, e. g., lowering the code to an executable
binary, are detectable. (2) We do not introduce further slowdowns because of
dynamic instrumentation. See [35] for a detailed discussion of advantages and
disadvantages of encoding on compile vs on runtime. We implement compile
time encoding using the LLVM compiler framework [14]. We encode LLVM’s
bitcode which is a static single assignment assembler-like language. It clearly
distinguishes static data flow which occurs within LLVM-registers and dynamic
data flow which is implemented using load and store instructions accessing mem-
ory. The advantage of LLVM’s bitcode, in comparison to any native assembler,
is its manageable amount of instructions for which we have to provide encoded
versions and the LLVM framework for analyzing and modifying LLVM bitcode.

For example, the following simple C-code snippet:
i f (d + e == b) return 1 ; else return 0 ;

is equivalent to the following LLVM bitcode
bb : %tmp = add i 3 2 %d , %e

%c = icmp eq , i 32 %tmp , %b
br i 1 %c , label %eq , label %ue

eq : ret i 3 2 1 ue : ret i 3 2 0

whose encoded version with enlarged data types, replaced operations, and en-
coded constants looks like that:
bb : %tmp c = ca l l i 6 4 @add an ( i 64 %d c , i 64 %e c )

%c c = ca l l i 6 4 @eq an ( i 64 %tmp c , i 64 %b c )
%c = ca l l i 1 decode ( i 64 %c c ) ; inc lude s i f c c i s a v a l i d code word
br i 1 %c , label %eq , label %ue

eq : ret i 3 2 65521 ; comment : A i s 65521 ue : re t i32 0

Note, that with AN-encoding the control flow itself, i. e. the actual jump, is
not encoded. Only the condition is checked if it is a valid code word. In the
future, we will extend the encoding compiler EC-AN with signatures as used by



288 C. Fetzer, U. Schiffel, and M. Süßkraut

[11,34]. Thereby, we will provide control flow checking within basic blocks and
between basic blocks. In this case, a variable is not only multiplied with A but
additionally a variable-specific signature is added.

For AN-encoding LLVM bitcode, we solved the following problems:
(1) We need encoded versions of all operations supported by LLVM. For arith-
metic, logical boolean and shift operations we did reuse our already existing
but improved implementations for the AN-code with signatures which were pre-
sented in [33]. But for type casting, arithmetic right shift and bitwise logical
operations new solutions had to be developed since they were not supported by
previous solutions.
(2) For the encoding of memory content, a specific word size had to be chosen:
All memory accesses have to be aligned to that word size because only whole
encoded words can be read.
(3) We have to provide encoded versions of all constants and intialization values.
(4) We have to handle calls to external libraries. Those are not encoded because
we have no access to their sources.

Arithmetic Operations. For arithmetic operations we use by hand encoded
operations These operations take encoded operands and produce valid encoded
results without decoding the operands for the computation. [33] describes the
implementation of these encoded arithmetic operations for an AN code with
signatures. The described problems and solutions can be applied to AN codes
likewise. Since the operations have to implement the expected overflow behavior
of normal integer operations, i. e., modulo arithmetic, their implementation is
non-trivial and will generate noticeable slowdowns. Furthermore, the multiplica-
tion of two encoded values of 64 bit size results in a 128-bit value. The division
requires to multiply the dividend with A before executing the actual division
which then has to be 128-bit division. The usage of 128-bit integer operations
results in especially large slowdowns for multiplication and division. Our new
overhead measurements are presented in Sect. 4.

Replacement Operations. Since encoding by hand is a tedious and error-
prone task we automated as much of the remaining encoding tasks as possible.
Thus, we provide a library of so-called replacement operations. Those contain
implementations of the following operations: shifts, casts, bitwise logical opera-
tions, (unaligned) memory accesses and the LLVM instruction getElementPtr
which implements address calculation. The replacement operations are written
in such a way that they can be automatically encoded by the actual encoding
pass of our encoding compiler EC-AN. Before executing the encoding pass, the
EC-AN replaces all otherwise non-encodable operations with their appropriate
encodable replacement operations which are described in the following.

Shift Operations. Encoded versions of arithmetic and logic shift operations
can be implemented using division and multiplication with powers of two since
a << k is equivalent to a∗2k and a >> k is equivalent to a

2k . For obtaining 2k we
use a tabulated power-of-two function with precomputed values. An arithmetic
right-shift additionally requires a sign-extension to be made if the shifted value



AN-Encoding Compiler: Building Safety-Critical Systems 289

is negative. The following pseudo-code represents the encodable variant of the
8-bit arithmetic right shift operations. It shifts val k bits to the right:
i n t 8 t ashr8 ( i n t 8 t val , i n t 8 t k ){

const static u i n t 8 t signExt [ ]={0 ,0 x80 , 0 xC0 , 0 xE0 , 0 xF0 ,
0xF8 , 0xFC,0xFE,0xFF} ;

i f ( va l < 0){
u i n t 8 t s h i f t e d = ( u i n t 8 t ) va l / ( u i n t 8 t )powerOfTwo ( ( u i n t 8 t )k ) ;
return s h i f t e d + signExt [ ( u i n t 8 t ) sh ] ;

} else {
return val / powerOfTwo ( ( u i n t 8 t ) k ) ;

}
}

Cast Operations. Cast operations also have to be emulated using encoded
operations. For downcasts, i. e., casts from a larger to smaller-sized type, this
can be done by doing a modulo computation which can be implemented in an
encodable way using division, multiplication, and subtraction. If, for example,
the 32-bit integer a is downcasted to 8 bit, we compute its new value using the
encoded version of a mod 28. Unsigned upcasts from smaller to larger unsigned
types require no further actions. Signed upcasts need to check if the casted
number is negative and if so, a sign extension has to be made by adding the
appropriate sign bits. Assume the 8-bit integer a is negative, i. e., its sign bit
is set, and it is casted to a 16-bit signed integer, we would have to execute the
encoded version of a = ff00hex + a.

Logical Operations. Encoding boolean logical operations can be emulated
using arithmetic operations. This implementation of boolean logical operations
requires that the processed functional values are either 1 (for true) or 0 (for
false):

original emulation original emulation

x || y x + y − x ∗ y ! x 1 − x
x && y x ∗ y x ˆ y (x + y) mod 2

Realizing encoded bitwise logical operations is more difficult. The naive approach
using shift and addition operations to compute every bit individually would gen-
erate a huge overhead. We decided to use tabulated results of logical operations.
Since tabulating all possible results for 8-, 16-, and 32-bit integers would re-
quire way too much memory, we only tabulate smaller chunks: 16-bit for the not
operation and 8-bit for the other operations. To combine those chunks, we use
arithmetic operations. The following pseudocode demonstrates this approach for
the 32-bit not operation. The other bitwise logical operations use a two dimen-
sional array and smaller chunks but are otherwise implemented similarly:
0xFFFD, . . . } ;

u i n t 32 t not ( u in t32 t a ){
a1 = a / 0x10000 ; a2 = a % 0x10000 ;
r1 = notTab [ a1 ] ; r2 = notTab [ a2 ] ;
return r1 ∗ 0x10000 + r2 ;

}

Memory Encoding. We chose to encode the memory at 32-bit granularity
because we assume that most programs mainly operate on 32-bit values. This
means every 32-bit word in memory is stored as an encoded 64-bit word. Thus,



290 C. Fetzer, U. Schiffel, and M. Süßkraut

Fig. 1. Execution of an unaligned load at address 66. The upper part represents the
memory layout of the original program, the lower part that of the encoded program
but with unmapped addresses.

we need to adapt every load and store operation because they have to map the
original address to the appropriate address of the encoded value. Furthermore,
all memory accesses in the program to encode have to be aligned to 32-bit
boundaries. Thus, we replace before encoding the program all unaligned loads
and stores with implementations which implement those operations using aligned
loads and stores. As Fig. 1 demonstrates, this requires for an unaligned 32-bit
load to read both affected 32-bit words (at addresses 64 and 68) and to use
logical operations to put together the result 32-bit word (at address 66).

Unaligned stores require to read at least one affected 32-bit word, e. g., when
executing an 8-bit store, and in worst case two if it is a 32-bit unaligned store.
The read words are than modified accordingly and written back. To prevent
accessing unallocated memory when executing an unaligned store, we adapt the
size of all allocated memory regions to be a multiple of 32 bits. Note that we
zero-initialize all allocated memory regions.

Since pointers are treated like other data items and we restrained the encod-
able data size to at most 32 bit, we have to ensure that when compiling and
executing on 64-bit architectures the encountered addresses do not exceed the
32-bit address range. Therefore, we brought all memory allocations under our
control.

getElementPtr. The getElementPtr LLVM instruction implements address
calculations. It does not access memory. Its operands are a pointer to a
(possibly nested) structure or an array and several indices which describe the
indexed element of the structure or array. Before encoding an application, we re-
place all getElementPtr instructions with explicit address computations. There-
fore, we take the architecture dependent type sizes into account and replace
getElementPtr using addition and multiplication. This step makes the result-
ing LLVM binary architecture dependent.

Constant Encoding. LLVM enables us to find and modify all initialization
values of variables and constants. We replace them with appropriate multiples
of A. In LLVM-bitcode non-integer constants are accessed using load and store,
i. e. as memory. Thus, those constants are encoded according to our rules for
memory, that is they are divided into 32-bit chunks. Therefore, we ensure that
their size is a multiple of 32 bit.

External Calls. In contrast to dynamic binary instrumentation, static instru-
mentation does not allow for protection of external libraries whose source code
is not available on compilation time. For calls to those libraries, we currently



AN-Encoding Compiler: Building Safety-Critical Systems 291

provide hand-coded decoding wrappers which decode parameters and after exe-
cuting the unencoded original, encode the obtained results. For implementing
those wrappers, we rely on the specifications of the external functions. Us-
ing the specifications of external libraries, those wrappers can be generated
automatically.

Last, we want to point out that AN-encoding leads to unexpected performance
modifications. Some operations whose unencoded versions are very fast, such as,
casts, shifts, bitwise logical operations, multiplications and divisions suddenly
induce very large overheads. Therefore, programmers should avoid these opera-
tions if developing explicitly for a system protected by AN-codes.

4 Evaluation

We evaluated our approach using five small examples:
(1) md5 calculates the md5 hash of a 20, 000 characters long string,
(2) quicksort sorts an array of 10000 integers,
(3) bubblesort sorts an array of 1000 integers,
(4) primes calculates all prime numbers up to 10, 000 and
(5) pid runs 500, 000 steps of a Proportional-Integral-Derivative controller [37].

Performance. Figure 2 compares the runtimes of an on compile time
AN-encoded application to an on runtime encoded application using SEP by
depicting the achieved speedup. In general it can be seen that the compiled
version is much faster than the interpreted version. That has several reasons:
(1) We are comparing an AN-code with an AN-code with signatures and times-
tamps. The latter one induces larger overheads for all encoded operations. After
extending the encoding compiler EC-AN to an AN-code with signatures and
timestamps, the resulting speedups surely will be smaller. (2) With EC-AN all
encoding is done at compile time as an LLVM compiler extension. Thus, the
overhead at runtime compared to SEP is smaller because the binary is natively
executed.

We observe that the obtained speedups largely depend on the executed pro-
gram. The reason for this is the incompleteness of SEP which does not support
encoded versions of logical operations, shift operations, casts, and unaligned
memory access. Those operations are just executed unencoded in SEP while they
are encoded with the help of the described replacement operations by EC-AN.

1 10 100 1000

speedup of EC-AN compared to SEP

md5

pid

bubblesort

quicksort

primes

Fig. 2. Speedup of EC-AN (AN-code) compared to SEP (AN-code with signatures and
timestamps)



292 C. Fetzer, U. Schiffel, and M. Süßkraut

not8

not16

not32

and8

and16

and32

or8

or16

or32

xor8

xor16

xor32

load8

load16

load32

store8

store16

store32

urem
8

urem
16

urem
32

srem
8

srem
16

srem
32

ashr8

ashr16

ashr32

sext-8-to-16

sext-8-to-32

sext-16-to-32

trunc-16-to-8

trunc-32-to-8

trunc-32-to-16

0

20

40

60

80

100

sl
ow

do
w

n

Fig. 3. Slowdowns of encodable versions of replacement operations compared to their
native versions

Those operations generate already in their encodable but yet unencoded version
large slowdowns compared to their native versions. See Fig. 3. Thus, applications
using many of those operations such as md5 result in a smaller speedup.

Furthermore, we see that the encodable versions of unaligned loads (loadx )
and stores (storex ) are also very expensive. Arithmetic right shifts (ashrx )
are not as expensive but still between 10 and 20 times slower than their na-
tive counterparts. Whereas the encodable versions of the signed and unsigned
modulo operations (sremx and uremx ), and upcast and downcast operations
(sext-x-to-y and trunc-x-to-y ) are very cheap.

Figure 4 evaluates the slowdowns of our AN-encoded arithmetic operations
compared to their native counterparts. We compare two versions: One imple-
ments the required 128-bit operations in software while the other one uses the
SSE-extensions of the processor. Both are as far as possible compiled using LLVM
with optimizations.

Since 128-bit operations are only used for multiplications and divisions, we see
only for them a difference – but that is immense. Nevertheless, the slowdowns
are very large. For the future, we plan to extend EC-AN so that it supports
adaptive encoding. As stated in [21] not all calculations are equally important.
We want to enable the programmer to identify safety-critical parts of an applica-
tion. The encoding will then only be applied to those parts thereby reducing the
performance impact. The rest of the program (e.g. book-keeping, user interface)
could run unencoded with native speed.

Furthermore, those safety-critical parts should be written for encodability:
All memory accesses should be aligned which would remove the overhead in-
troduced by implementing encoded aligned memory accesses. Developers should
try to avoid bitwise logical operations and shifts. By sticking to the same data
type, they can avoid explicit and implicit casts. Depending on the application,
programmers would like to check by themselves for overflows. In this case, they
could use faster encoded operations without overflow correction.

Error Detection. Figure 5 shows the results of our error injection experiments.
The used error injection tool was also implemented using LLVM. It inserts the
following types of errors according to Forin’s error model [11]:



AN-Encoding Compiler: Building Safety-Critical Systems 293

addition subtraction multiplication unsigned
division

signed
division

compare
equal

compare
unequal

unsigned
greater than

signed
greater than

unsigned
less than

signed
less than

1.0

10.0

100.0

1000.0

S
lo

w
do

w
n

128-bit operations in software with compiler optimizations
128-bit operations using sse extensions, llvm-compiled with optimizations

Fig. 4. Slowdowns of encoded arithmetic operations compared to their native versions
for two versions: (1) 128-bit arithmetic implemented as software library and (2) imple-
mented using the processors SSE extensions

bubblesort native
bubblesort encoded
m

d5 native
m

d5 encoded
pid native
pid encoded
prim

es native
prim

es encoded
quicksort native
quicksort encoded

0
10
20
30
40
50
60
70
80
90

100

no
rm

al
iz

ed
be

ha
vi

or
 in

 %

correct output failure detected incorrect output

Fig. 5. Error injection results for injection of: operation, operand and lost update errors

(1) operation errors: the result of an operation is wrong.
(2) operand errors: an operand is modified, e. g. by an bitflip.
(3) lost updates: a store operation is unsuccessful.
In each injection run exactly one error is inserted. We performed 3000 injection
runs for the native, i. e. unprotected versions, and the AN-encoded versions of
our programs.

We see that for all runs a large part of the injections does not result in a
failure (correct output), that is the program neither crashed nor produced erro-
neous results. Failure detected means that the application crashed. That is our
intended error model. We want to turn difficult to handle value failures (incor-
rect output) into easier to detect and thus to handle crash failures. For all AN-
encoded versions of the programs the amount of runs which produced incorrect
output is smaller than for the unprotected versions. But it is not zero for several
reasons:



294 C. Fetzer, U. Schiffel, and M. Süßkraut

(1) An AN-code does not provide protection from exchanged operand errors,
e. g., a store which reads the wrong address, neither from lost updates or modified
control flow.
(2) In contrast to SEP external functions such as printf are unprotected.
We also see that the relation of the amount of undetected errors between native
and AN-encoded version varies largely with the executed program. For md5 the
improvement compared to native is rather small compared to the other programs.
We believe, the reason for this is that the AN-code does not detect loads and
stores to/from the wrong address.

5 Conclusion

We presented the AN-encoding compiler EC-AN which applies the arithmetic
AN-code to arbitrary programs. In contrast to earlier approaches the encoding
is applied to the whole program. In contrast to existing solutions we do also
encode bitwise logical operations completely using a powerful AN-code. Exist-
ing solutions did either not encode bitwise logical operations at all [11,10,34]
or did if a program contained them switch to a much less safe code variant for
the whole program [20]. The measurements show that the approach is success-
ful in detecting errors but there are still undetected incorrect outputs in the
presence of errors. This further motivates our ongoing work to extend EC-AN
to support AN-encoding with signatures and timestamps. Compared to the in
principle safer SEP [34] the runtime overhead produced by with EC-AN encoded
programs is far lower. This is promising for EC-AN’s extension to support sig-
natures and timestamps which will make its error detection capabilities equal
to those of SEP and in the end even better since EC-AN does a more complete
encoding. Nevertheless, the observed slowdowns require actions to be taken to
mitigate them. We will research the concept of adaptive safety, that is to apply
the encoding only to the most safety-critical parts of an application.

References

1. Avizienis, A.: Arithmetic error codes: Cost and effectiveness studies for application
in digital system design. Transactions on Computers (1971)

2. Bagchi, S., Kalbarczyk, Z., Iyer, R., Levendel, Y.: Design and evaluation of pre-
emptive control signature(PECOS) checking. IEEE Transactions on Computers
(2003)

3. Barnaby, H.J.: Will radiation-hardening-by-design (RHBD) work? Nuclear and
Plasma Sciences, Society News (2005)

4. Bernick, D., Bruckert, B., Vigna, P.D., Garcia, D., Jardine, R., Klecka, J., Smullen,
J.: Nonstop advanced architecture. In: Proceedings of the International Conference
on Dependable Systems and Networks, DSN (2005)

5. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to nu-
merical problems. In: STOC 1990: Proceedings of the twenty-second annual ACM
symposium on Theory of computing. ACM Press, New York (1990)



AN-Encoding Compiler: Building Safety-Critical Systems 295

6. Bolchini, C., Miele, A., Rebaudengo, M., Salice, F., Sciuto, D., Sterpone, L., Vi-
olante, M.: Software and hardware techniques for SEU detection in IP processors.
J. Electron. Test. 24(1-3), 35–44 (2008)

7. Borin, E., Wang, C., Wu, Y., Araujo, G.: Software-based transparent and compre-
hensive control-flow error detection. In: Proceedings of the International Sympo-
sium on Code Generation and Optimization (CGO), pp. 333–345. IEEE Computer
Society, Washington (2006)

8. Borkar, S.: Designing reliable systems from unreliable components: The challenges
of transistor variability and degradation. IEEE Micro (2005)

9. Budiu, M., Erlingsson, Ú., Abadi, M.: Architectural support for software-based
protection. In: ASID 2006: Proceedings of the 1st workshop on Architectural and
system support for improving software dependability, pp. 42–51. ACM, New York
(2006)

10. Chang, J., Reis, G.A., August, D.I.: Automatic instruction-level software-only re-
covery. In: Proceedings of the International Conference on Dependable Systems
and Networks (DSN), Washington, USA (2006)

11. Forin, P.: Vital coded microprocessor principles and application for various transit
systems. In: IFA-GCCT, September 1989, pp. 79–84 (1989)

12. Gomaa, M., Scarbrough, C., Vijaykumar, T.N., Pomeranz, I.: Transient-fault re-
covery for chip multiprocessors. In: International Symposium on Computer Archi-
tecture (2003)

13. Huang, K.-H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. Computers 33(6), 518–528 (1984)

14. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the international symposium on Code
generation and optimization (CGO), Washington, DC, USA, vol. 75. IEEE Com-
puter Society, Los Alamitos (2004)

15. Li, X., Gaudiot, J.-L.: A compiler-assisted on-chip assigned-signature control flow
checking. In: Asia-Pacific Computer Systems Architecture Conference (2004)

16. Michalak, S.E., Harris, K.W., Hengartner, N.W., Takala, B.E., Wender, S.A.: Pre-
dicting the number of fatal soft errors in Los Alamos National Laboratory’s ASC Q
supercomputer. In: IEEE Transactions on Device and Materials Reliability (2005)

17. Mitra, S.: Globally optimized robust systems to overcome scaled CMOS reliability
challenges. In: Design, Automation and Test in Europe, DATE 2008 (2008)

18. Mitra, S., Seifert, N., Zhang, M., Shi, Q., Kim, K.S.: Robust system design with
built-in soft-error resilience. Computer 38(2), 43–52 (2005)

19. Nicolescu, B., Velazco, R.: Detecting soft errors by a purely software approach:
Method, tools and experimental results. In: Design, Automation and Test in Eu-
rope, DATE 2003 (2003)

20. Oh, N., Mitra, S., McCluskey, E.J.: ED4I: Error detection by diverse data and
duplicated instructions. IEEE Trans. Comput. 51 (2002)

21. Pattabiraman, K., Grover, V., Zorn, B.G.: Samurai: protecting critical data in unsafe
languages. In: Eurosys 2008: Proceedings of the 3rd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2008, pp. 219–232. ACM, New York (2008)

22. Rebaudengo, M., Reorda, M.S., Violante, M., Torchiano, M.: A source-to-source
compiler for generating dependable software. In: Proceedings of the First IEEE
International Workshop on Source Code Analysis and Manipulation, SCAM (2001)

23. Reddy, V., Rotenberg, E.: Inherent time redundancy (itr): Using program repeti-
tion for low-overhead fault tolerance. In: DSN 2007: Proceedings of the 37th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks,
Washington, DC, USA. IEEE Computer Society, Los Alamitos (2007)



296 C. Fetzer, U. Schiffel, and M. Süßkraut

24. Reis, G.A., Chang, J., August, D.I., Cohn, R., Mukherjee, S.S.: Configurable tran-
sient fault detection via dynamic binary translation. In: Proceedings of the 2nd
Workshop on Architectural Reliability, WAR (2006)

25. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., Mukherjee,
S.S.: Design and evaluation of hybrid fault-detection systems. In: ISCA 2005: Pro-
ceedings of the 32nd annual international symposium on Computer Architecture,
Washington, USA. IEEE Computer Society, Los Alamitos (2005)

26. Rhod, E.L., Lisbôa, C.A., Carro, L., Reorda, M.S., Violante, M.: Hardware and
software transparency in the protection of programs against SEUs and SETs. J.
Electron. Test. 24(1-3), 45–56 (2008)

27. Slegel, T.J., Averill, R.M., Check, M.A., Giamei, B.C., Krumm, B.W., Krygowski,
C.A., Li, W.H., Liptay, J.S., MacDougall, J.D., McPherson, T.J., Navarro, J.A.,
Schwarz, E.M., Shum, K., Webb, C.F.: IBM’s S/390 G5 microprocessor design.
IEEE Micro 19, 12–23 (1999)

28. Stefanidis, V.K., Margaritis, K.G.: Algorithm based fault tolerance: Review and ex-
perimental study. In: International Conference of Numerical Analysis and Applied
Mathematics (2004)

29. Vemu, R., Abraham, J.A.: CEDA: Control-flow error detection through assertions.
In: IOLTS 2006: Proceedings of the 12th IEEE International Symposium on On-
Line Testing, Washington, DC, USA. IEEE Computer Society, Los Alamitos (2006)

30. Venkatasubramanian, R., Hayes, J.P., Murray, B.T.: Low-cost on-line fault detec-
tion using control flow assertions. In: Proceedings of the 9th IEEE On-Line Testing
Symposium (IOLTS), p. 137 (2003)

31. Vijaykumar, T.N., Pomeranz, I., Cheng, K.: Transient-fault recovery using simul-
taneous multithreading. SIGARCH Comput. Archit. News 30(2), 87–98 (2002)

32. Wang, C., Kim, H.s., Wu, Y., Ying, V.: Compiler-managed software-based redun-
dant multi-threading for transient fault detection. In: International Symposium on
Code Generation and Optimization, CGO (2007)

33. Wappler, U., Fetzer, C.: Hardware failure virtualization via software encoded pro-
cessing. In: 5th IEEE International Conference on Industrial Informatics, INDIN
2007 (2007)

34. Wappler, U., Fetzer, C.: Software encoded processing: Building dependable systems
with commodity hardware. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007.
LNCS, vol. 4680, pp. 356–369. Springer, Heidelberg (2007)

35. Wappler, U., Müller, M.: Software protection mechanisms for dependable systems.
Design, Automation and Test in Europe, DATE 2008 (2008)

36. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. J.
ACM (1997)

37. Wescott, T.: PID without a PhD. Embedded Systems Programming 13(11) (2000)
38. Yeh, Y.: Triple-triple redundant 777 primary flight computer. In: Proceedings of

the 1996 IEEE Aerospace Applications Conference, vol. 1, pp. 293–307 (1996)



B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 297–310, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Component-Based Abstraction in Fault Tree Analysis 

Dominik Domis and Mario Trapp 

Fraunhofer Institute for Experimental Software Engineering, Fraunhofer-Platz 1, 
67663 Kaiserslautern, Germany 

{dominik.domis,mario.trapp}@iese.fraunhofer.de 

Abstract. To handle the complexity of safety-critical embedded systems, it is 
not appropriate to develop functionality and consider safety in separate tasks, or 
to consider software only as a black box in safety analyses. Rather, safety as-
pects have to be integrated as tightly as possible into the system and software 
development process and its models. But existing safety analyses and models 
do not fit well with software development tasks such as architectural design and 
do not take advantage of their strengths. To solve this problem, this paper ex-
tends fault tree analysis by hierarchical component-based abstraction, enabling 
fault tree analysis to be integrated into a component-oriented model-based de-
sign approach and to handle the complexity of software architectural design. 

1   Introduction 

In many different domains, the relevance of software has increased rapidly over the 
last decades. For example, health professionals are supported by visualization devices 
that help diagnose illness or injuries, and by irradiation units for cancer therapy. In the 
automotive domain, many functions have been developed that assist the driver and 
ensure active and passive safety, such as airbags or driving stability control systems. 
Because of the growing size of such functions, their complexity has increased at the 
same time. For such systems, guaranteeing high quality and safety is a difficult task. 
To handle the increasing complexity, rigorous development processes must be fol-
lowed and relevant dependability aspects have to be considered from the earliest de-
velopment phases on as an integrated part of the overall development process. This 
has to include the software, in particular, because of its high impact on the depend-
ability of the entire system. 

For this reason, more and more standards and guidelines for the development of 
safety-relevant systems demand safety analyses for the system and the software as 
part of a rigorous development process. Examples of this are IEC 61508 [1], IEC/TR 
80002 [2], MISRA safety analysis guidelines [3], and ISO 26262 [4]. ISO 26262 is a 
committee draft for the development of road vehicles. It defines requirements on the 
development of electrical and electronic systems and particularly requirements on the 
development of software, which include qualitative safety analysis for software archi-
tecture as well as for software unit design. However performing a qualitative safety 
analysis technique such as failure mode and effect analysis (FMEA) or fault tree 
analysis (FTA) on software architectural design is a complex task. One reason for this 
is that safety analyses do not fit well with software architectural design and do not 



298 D. Domis and M. Trapp 

take advantage of basic software engineering principles that help to handle complex-
ity such as hierarchical abstraction. Component-based Software Engineering (CBSE) 
[5] uses hierarchical abstraction in software architectural design to focus at one point 
in time only on one component at one hierarchy level and to systematically abstract 
from details of the levels below. In this way, unnecessary information is hidden from 
the engineer and each component of every hierarchy level is kept simple. In top-down 
development, this helps to iteratively refine and analyze the design in order to find 
weak points as early as possible and to avoid late changes. Bottom-up, it helps to 
abstract from unnecessary details as well as from complexity, and gives users a com-
pact and precise specification of how to use or reuse a component. Additionally, in 
distributed development, hierarchical abstraction guarantees information hiding and 
protection of intellectual property (IP). Existing qualitative safety analysis techniques 
of software architectures are not able to appropriately reflect hierarchical abstraction. 
Instead, they either reflect hierarchy or the data flow through the system, but they 
cannot show the relevant information on each level of hierarchy. Because of this, they 
are not able to appropriately handle the complexity of software architectures. 

In order to transfer the principles of CBSE such as hierarchical abstraction to 
safety analyses of software architectural design, we previously integrated safety 
analysis into a component-oriented model-based design approach, called Safe Com-
ponent Model (SCM) [6], which will be presented in chapter 2. In this paper, we de-
fine hierarchical component-based abstraction of FTA and explain how existing fault 
tree evaluation algorithms can be reused to automate hierarchical fault tree abstrac-
tion. The problem of missing hierarchical abstraction in fault tree analysis is analyzed 
in more detail in chapter 3. In chapter 4, the requirements on hierarchical fault tree 
abstraction are derived. Chapter 5 explains how existing algorithms can be used to 
implement abstraction. In chapter 6, the related work is discussed and chapter 7 gives 
a short summary and conclusion. 

2   Safe Component Model 

Following the principles of CBSE, hierarchical abstraction is implemented in SCM by 
rigorously separating specification and realization, i.e., the model of a component 
is divided into component specification and component realization.  

The component realization shows how a component is realized. The realization of 
simple components, which can be implemented directly, consists of models that spec-
ify the implementation in detail and on a very low level of abstraction, such as state 
machines or code, if this is appropriate. These are called modules. Complex compo-
nents cannot be implemented directly, but have to be divided into smaller subcompo-
nents (divide and conquer). The realization of such components shows the subcom-
ponents that are used by the component and how they collaborate with each other. For 
example, Figure 1a shows the functional realization of the component SpeedControl 
(S), which is a component of the traction control system of an electrical model car. 
From this data flow model it can be seen that SpeedControl consists of two subcom-
ponents: LogicalSensor(A) and Controller (B). LogicalSensor requires the wheel 
revolutions per minute of the car at the functional input A.I1 and the acceleration 
value of the car measured by an acceleration sensor at A.I2. With these values,  
 



 Component-Based Abstraction in Fault Tree Analysis 299 

     

Fig. 1. a) Functional realization and b) functional specification of SpeedControl 

 

Fig. 2. Containment tree of the component SpeedControl 

LogicalSensor calculates the reference speed of the car at the functional output A.O1 
and the reference acceleration at A.O2. A.I1 receives its value from functional input 
S.I2 and A.I2 from S.I3. Controller requires the reference speed of the car at B.I2 from 
A.O1, the reference acceleration at B.I3 from A.O2, and the set value of the speed of 
the car at B.I1 from S.I1. From these the Controller provides the new set value of the 
motor power at B.O1, which is directly connected with S.O1 of SpeedControl. In this 
way, the functional realization shows how SpeedControl is realized by using the sub-
components LogicalSensor and Controller. 

In contrast to the realization, the specification of a component has to abstract 
from and hide all inner details of the realization. It has to show only the externally 
visible properties of the component and how a component has to be used, i.e., it 
specifies its functionality, its external interfaces, and, e.g., its pre- and post-
conditions. For example, the functional specification of SpeedControl (Figure 1b) 
specifies only that it requires the wheel revolutions per minute at S.I2, the accelera-
tion value at S.I3, and the speed set value at S.I1 to provide the set value of the 
motor power at S.O1. However, it abstracts from its subcomponents. Two other 
examples, of functional specifications are the information about LogicalSensor and 
Controller that is used in the functional realization of SpeedControl. From this can 
be seen that the component realization only knows the specifications of its direct 
subcomponents, but not how these subcomponents are realized. For example, the 
containment tree in Figure 2 of SpeedContol shows that Controller is a module and 
that LogicalSensor consists of many subcomponents. These subcomponents are 
completely hidden in the realization of SpeedControl, in order to hide complexity 
and keep the component simple and manageable. This makes it easier for engineers 
to focus in large systems on the relevant properties of a single component on a sin-
gle hierarchy level. Additionally, it supports distributed development, because  



300 D. Domis and M. Trapp 

different components can be developed by different groups of people. Moreover, if 
components are developed by different companies, hierarchical abstraction guaran-
tees the protection of intellectual property. The main advantage of abstraction, how-
ever, is the handling of complexity. 

Functional specification and functional realization are the functional views of a 
component. These views are models that describe the desired data flow through a 
component on different levels of abstraction. Other functional and non-functional 
properties of a component, such as resource consumption, quality of services, or de-
pendability, are modeled and separated by additional views (models). For example, 
the propagation of failures through a component is modeled by a failure specification 
and a failure realization view. The view concept helps to focus on a single property of 
a component and thus helps to handle complexity. In this paper, we focus only on the 
functional views and on the failure views already explained above, which are the 
results of fault tree analysis of the component. This analysis, the resulting failure 
specification and failure realization, as well as the relationship between both views 
will be discussed in the remainder of this paper. 

3   Challenge: Fault Tree Analyses of Architectural Design 

Three different possibilities exist for performing fault tree analysis of, e.g., the com-
ponent realization of SpeedControl. The first one is to use the FTA to decompose 
failure modes of the component into failure causes of its subcomponents, which is the 
original idea of FTA for hardware. Following this process, the fault tree is built up 
vertically along the component hierarchy. For example, Figure 3a shows an excerpt of 
the vertical Component Fault Tree (CFT) [7] of SpeedControl based on the contain-
ment tree in Figure 2. The top event (filled triangle) is the output failure mode S.O1-
FM1, i.e., a wrong set value of the motor power (S.O1). The FMs represent the failure 
types [6] of the failure modes. For example, FM1 represents the failure type value, 
FM2 high, FM3 low and FM4 late. The output failure mode can be caused, e.g., by 
the input failure mode (triangle, open at the bottom) S.I3-FM1 of the functional 
input S.I3. Determining this cause-and-effect chain requires detailed information 
about the failure propagation paths through the subcomponents of SpeedControl, 
which is not reflected in the vertical CFT. This information is important, e.g., for 
selecting appropriate subcomponents and for initiating failure detection or mitigation 
measures. Because of this, the vertical fault tree shows the hierarchic structure of the 
components, but neglects the failure propagation paths. It is difficult to build up 
manually and prone to errors. 

For software and other systems that contain a flow of data, mass, or energy, it is 
more appropriate to build the fault tree up horizontally along this flow through the 
system [8]. This method is also used for automating safety analyses [9][10] and is 
called Failure Logic Modeling (FLM) [11]. 

In FLM, the failure propagation through every component is modeled, e.g., by a 
fault tree, and then composed into the fault tree of the entire system. Figure 3b shows 
the horizontally defined CFT of S.O1-FM1. From this can be seen how S.I3-FM1 is 
 



 Component-Based Abstraction in Fault Tree Analysis 301 

 

Fig. 3. a) Vertical fault tree b) Horizontal (FLM) fault tree 

 



302 D. Domis and M. Trapp 

        

Fig. 4. a) Failure realization and b) Failure specification of SpeedControl 

propagated through SpeedControl before it can cause S.O1-FM1. However, it does 
not only show the two direct subcomponents of SpeedControl, LogicalSensor and 
Controller, but shows all subcomponents and modules of LogicalSensor in addition. 
Imagine a distributed development in which LogicalSensor is a Component off the 
Shelf (COTS): Why do we have to see every single failure mode of module H in FTA 
if we are only responsible for the realization of the component SpeedControl and do 
not know that H exists and that H is a subcomponent of D and D a subcomponent of 
LogicalSensor (A)? In order to hide such details as well as intellectual property, and to 
provide, at the same time, exactly the information that is needed to analyze the safety 
of the component SpeedControl, hierarchical abstraction of this fault tree is necessary. 
The abstract CFT of the realization of SpeedControl has to show only the failure 
modes of exactly the two direct subcomponents LogicalSensor and Controller as well 
as the failure modes of SpeedControl itself. Accordingly, the CFT of the specification 
has to show only the failure modes of SpeedControl itself. These requirements are 
fulfilled by the failure realization in Figure 4a and the failure specification in 4b. 

Of course, like Figure 3b, Figures 4a and 4b can also be built by FLM: To get Fig-
ure 3b, all modules of Figure 2 have to be analyzed manually; to get Figure 4b, 
SpeedControl has to be analyzed manually; and to get Figure 4a, LogicalSensor and 
Controller have to be analyzed manually. However, this approach does not ensure a 
formal relation between the fault trees of Figures 3b, 4a and 4b, and thus, they may be 
inconsistent with each other, i.e., the higher-level fault trees might not be abstractions 
of the levels below and the levels below not refinements of the levels above. 

FLM is able to reflect the failure propagation of software, but not the hierarchical 
abstraction of the software architectural design. In contrast to this, vertical fault trees 
(e.g., Figure 3a) support hierarchical abstraction and refinement, but cannot appropri-
ately handle the complex failure propagation of software. Because of this, a new kind 



 Component-Based Abstraction in Fault Tree Analysis 303 

of hierarchical abstraction for fault trees is necessary that is able to reflect failure 
propagation like FLM and hierarchical abstraction like vertical fault trees, and that is 
consistent with the principles of software architectural design and CBSE. 

4   Abstraction Requirements 

Abstraction is “a view of an object that focuses on the information relevant to a par-
ticular purpose and ignores the remainder of the information” [12]. So, to define hier-
archical abstraction from the failure realization to the specification, the difference 
between their purposes has to be determined, which is only the hierarchy level. This 
means that the specification has to abstract from the same information as the realiza-
tion, plus from the inner details of the component that are shown in the realization. 
For the hierarchical abstraction of the functional specification from the functional 
realization this means that the subcomponents and their collaboration are hidden, as 
well as that the functionality of the component is specified only in terms of the com-
ponent itself. The failure realization must have the same level of hierarchical abstrac-
tion as the functional realization and the failure specification the same level as the 
functional specification. This requirement is true for SpeedControl. The hierarchy 
level of the failure realization in Figure 4a is consistent with its functional realization 
in Figure 1a, because it only shows failure modes of the functional in- and outputs as 
well as failure modes of the subcomponents that are shown in the functional realiza-
tion. The hierarchy level of the corresponding failure specification in Figure 4b is 
consistent with the functional specification in Figure 1b, because it hides all details of 
the subcomponents and only shows the failure modes of SpeedControl (S).  

In the following, the SpeedControl example is used to determine, first, the informa-
tion that is contained in the failure realization, and, afterwards, the information that 
should remain in the failure specification and the information that must be abstracted. 
The failure realization, as shown for example in Figure 4a, contains the following 
information: 

• The failure modes that can occur at the outputs of the component. (S.O1-FM1) 
• The failure modes that can occur at the inputs of the component. 

(S.I3-FM1, S.I2-FM1, S.I2-FM4, and S.I1-FM1) 
• The internal failure modes that are failure modes of the component or its subcom-

ponents (B-Int2, A-Int1, and A-Int2). Internal failure modes may also include 
(failed) failure detection or mitigation measures (A-Int3 and B-Int1). 

• The (Boolean) conditions for mitigating, propagating, or transforming [8] internal 
and input failure modes to output failure modes of the component, which are speci-
fied by the fault tree gates (e.g., AND- and OR-gates). 

• The failure propagation paths of every internal and input failure mode through the 
component realization, including its direct subcomponents and their interfaces 
(e.g., A.O2-FM1 and B.I3-FM1). 

• A detailed specification of every failure mode including name, corresponding 
component or functional interface, failure type, failure attributes, description, and 
probability distribution, if applicable. 



304 D. Domis and M. Trapp 

The failure specification of SpeedControl (Figure 4b) still has the same output failure 
mode (S.O1-FM1) as the failure realization, and the input failure modes S.I3-FM1 as 
well as S.I2-FM1 remain single points of failures. S.I2-FM4 and S.I1-FM1 are still 
covered by independent measures, but the specification of the measures has changed: 
A-Int3 is renamed to S-Int3 and B-Int1 to S-Int1. The internal failure modes of the 
realizations A-Int1, A-Int2, and B-Int2, which have the same effects on S.O1-FM1 
under the same Boolean conditions of input failure modes, are disjunctively merged 
into the abstract internal failure mode S-Int2. Additionally, the tree structure is 
changed, by removing all in- and output failure modes of the subcomponents. The 
CFT of the failure specification is the disjunction of its Minimal Cut Sets (MCS) and, 
if the described mappings are considered, equivalent to the failure realization in Fig-
ure 4a. According to this, the following four requirements are defined that have to be 
fulfilled by hierarchical fault tree abstraction to derive the failure specification: 

1. The input and output failure modes as well as the (Boolean) conditions under 
which the input failure modes are mitigated, propagated, or transformed into output 
failure modes of the component must remain equivalent. 

2. The specification must only show internal failure modes that can be seen and dis-
tinguished externally, i.e., the number of internal failure modes is minimized by 
abstracting from the realization to the specification. This is done by removing in-
ternal realization failure modes if they cannot cause an output failure mode and by 
merging internal realization failure modes if they have the same effects on the out-
put failure modes under the same Boolean conditions of the input failure modes. 

3. The failure propagation paths must be changed in such a way that no information 
about the inner structure and subcomponents is disclosed, i.e., the structure of the 
failure specification CFT must be independent of the structure of the failure reali-
zation CFT apart from the Boolean conditions of requirement 1. 

4. Apart from the input and output failure modes, any information about the inner 
details of the component must be removed from the specification of any remaining 
internal failure mode, gate, or intermediate event. For this purpose, names, descrip-
tions, and references to objects of the component realization have to be changed to 
the component specification. 

In some cases, it may be not applicable or necessary for both failure views to be 
equivalent to each other. For example, if we consider only coherent fault trees, it may 
be acceptable that the failure realization only implies the specification, i.e., every time 
an output failure mode in the realization is true, it is also true in the specification. In 
such a case, the specification is a pessimistic or conservative approximation of the 
realization. In a quantitative FTA, the probabilities of the output failure modes, which 
depend on the probabilities of the input failure modes, can be used to define other 
relations. For example, it can be requested that the output probabilities of the realiza-
tion are either equal or below the probabilities of the specification, or between two 
thresholds. However, if any relation other than equality is used, the type of relation 
between the specification and the realization must be specified as part of the failure 
specification in order to use the component correctly. Additionally, the changes and 
mappings between the failure specification and the failure realization have to be 
known and stored as part of the component realization, in order to be able to check 



 Component-Based Abstraction in Fault Tree Analysis 305 

and guarantee equivalence or any other relation between the failure specification and 
the realization. 

Through this kind of hierarchical fault tree abstraction, the failure specification of a 
component can be derived from the failure realization and will be consistent with the 
failure realization and the hierarchy level of the component specification. In this way, 
unnecessary details and complexity of the levels below are hidden and only the in-
formation that is required to evaluate and assess the failure behavior of the current 
component is provided. Additionally, it can be checked and guaranteed that fault trees 
of different hierarchy levels are consistent with each other. 

5   Abstraction Algorithms 

Like the evaluation of fault trees, hierarchical fault tree abstraction cannot be done 
manually for larger systems, because of the complexity, error-proneness, and effort 
needed. Thus, for the application of hierarchical fault tree abstraction, it is mandatory 
to have an appropriate degree of automation and tool support. For this purpose, algo-
rithms are needed that take a failure realization as input, automatically generate an 
abstract failure specification from it, and check that both are consistent to each other. 

In order to realize the requirements of hierarchical fault tree abstraction, different 
fault tree evaluation algorithms have been reviewed. The results of this survey and the 
requirements led to three major steps that can be used to abstract from a given failure 
realization. These three steps are: merging internal failure modes, building a structure-
independent form, and changing the information of internal events. 

Changing the information of internal events is the straightforward implementa-
tion of requirement 4. All information about the component realization is removed 
from internal failure modes and gates of the fault tree. For this purpose, the names of 
and the references to the component realization are substituted by the name of or 
references to the component specification, as done in the abstraction of the SpeedCon-
trol failure realization. After this step, gates and internal failure modes represent only 
information about the component specification and not about the realization. 

5.1   Structure-Independent Form  

To hide detailed failure propagation paths (req.3), the CFT is transformed into a form 
that is independent of the original structure of the tree. For this purpose, different 
forms could be used, but the best known form of coherent fault trees are minimal cut 
sets (MCS). The MCS of a fault tree are the sets of basic events (internal and input 
failure modes), where every event must be true for the top event to become true. MCS 
are used for qualitative analyses of fault trees: They show only the minimal failure 
combinations and abstract from the structure and the failure paths of the tree. Because 
MCS are only applicable for coherent fault trees, prime implicants (PI) have to be 
used for non-coherent ones, since these also include negated literals (variables). 
MCS/PI show the fault tree in its minimal disjunctive normal form (DNF), which is 
independent of the original structure of the tree, but mathematically equivalent. Other 
normal forms could also be used for abstracting from the structure, but MCS and PI 
are the most appropriate and proven ones for fault trees. Additionally, MCS and PI 



306 D. Domis and M. Trapp 

contain only failure modes that can cause an output failure mode. Failure modes that 
are contained in the tree, but cannot cause the output failure mode and, thus, cannot 
be observed from the outside, are also hidden by calculating MCS or PI. The se-
quence of the variables of MCS and PI depends on the algorithms that are used to 
calculate them. Thus, the sequence can also depend on the original structure of the 
tree. This structural dependency can be easily avoided by changing the sequence of 
the variables. 

One problem of PI, in particular, is that fault trees can have a huge number of them 
(O(3n), n number of FT variables) and that their calculation is very time consuming. 
Different algorithms exist that can be used to calculate a reduced or minimal cover of 
PI that is equivalent to the original set of PI, but they require additional computation 
time [13][14]. The advantage of a minimal cover of PI would be that less PI have to 
be stored and considered in subsequent analysis steps. But if computation time be-
comes too long, fault tree evaluation as well as abstraction are hard to apply. If the 
failure specification does not have to be equivalent to the failure realization, Minimal 
P-Cuts or Truncation [15] can be used instead of PI. Minimal P-Cuts are MCS for 
non-coherent fault trees, i.e., they calculate PI, but leave out negated variables. In this 
way, Minimal P-Cuts are a pessimistic approximation, because the failure realization 
would imply the failure specification as described before. Truncation uses the algo-
rithms to calculate PI, but sorts out PI that consist of more variables than a given 
threshold (truncation of order) or that have a probability lower than a given thresh-
old (truncation of probability). In this way, PI with a low probability or high order 
are simply left out, decreasing the probabilities of the output failure modes. Because 
of this, truncation is an optimistic approximation and the failure specification would 
imply the failure realization, but not the other way around. This is only applicable for 
abstraction if the calculation error is bounded. However, truncation of probability is 
not possible for software, because probabilities are unknown, and for the truncation of 
order it can only be assumed that PI with a very high order are sufficiently improb-
able, but this cannot be guaranteed. Because of this, MCS are the best structure-
independent form for coherent fault trees and PI for non-coherent fault trees to be 
used in hierarchical fault tree abstraction. For example, MCS are used for abstracting 
from the failure realization of SpeedControl (Figures 4a and 4b). 

5.2   Merging Internal Failure Modes 

By building a structure-independent form and changing the information of internal 
events, the abstraction requirements 1, 3, and 4 are fulfilled, but every failure mode in 
the realization would still have exactly one corresponding failure mode in the specifi-
cation. However, many internal failure modes can exist that, under exactly the same 
conditions of the input failure modes, have the same effects on the output failure 
modes such as A-Int1, A-Int2, and B-Int2 in Figure 4a. Because of this, they cannot be 
distinguished from the outside of the component and are disjunctively merged into S-
Int2 in the failure specification of SpeedControl (Figure 4b). Such a combination of 
internal failure modes that cannot be distinguished from the outside of the component 
constitutes an internal module.  

A fault tree module is a subtree that is completely independent of the rest of the 
tree and, thus, can be analyzed separately and considered as a single event by the rest 



 Component-Based Abstraction in Fault Tree Analysis 307 

of the tree. In fault tree evaluation, modules are used to reduce the complexity of 
calculations [16] or to combine different calculation techniques [17]. Modules can be 
identified by the linear time algorithm presented in [18], but in many trees, additional 
modules can be laid open by simple Boolean transformations, which eliminate, for 
example, repeated events. These transformations are called reduction [16] and combi-
nation, and were used in [17] to identify independent modules that contain dependent 
failure modes. After reduction and combination, the fault tree is still equivalent to the 
original one, has its most concise form [16], and contains all modules that will be 
identified by the modularization algorithm. For hierarchical fault tree abstraction, 
these algorithms have been adapted to identify only modules of internal events (inter-
nal modules) in the CFT of the failure realization. Each internal module of the failure 
realization becomes an abstract internal failure mode of the failure specification, 
which hides the internal module, because its internal failure modes cannot be distin-
guished from the outside. Reduction also changes the structure and the failure propa-
gation paths of the tree, and can be used to remove internal failure modes that cannot 
cause the output failure modes, but this produces a structure-independent form only in 
some cases. 

If it is sufficient that the failure realization only implies the failure specification, 
but does not need to be equivalent, internal failure modes can also be merged if they 
do not constitute an internal module. For example, if the user of a component only 
needs to know that it has a detection mechanism for some input failure modes, all 
internal failure modes of the realization that represent the relevant detection mecha-
nisms can be merged into an abstract internal detection failure mode of the failure 
specification [6]. In this way, all internal failure modes or any combination, such as 
all internal failure modes of the same failure type, can be merged into a new abstract 
internal failure mode, e.g., through the disjunction of the old ones. If probabilities are 
used, probabilities for the new internal failure modes of the specification can be cal-
culated based on the probabilities of the failure realization. 

Independent of how the internal failure modes are merged and what other abstrac-
tion algorithms are applied, the mapping between the realization and the specification 
must be specified as part of the realization. Additionally, the kind of relation must be 
specified as part of the specification. Only in this way is it possible to guarantee 
traceability and to check if the assumed relation between failure realization and speci-
fication is true. For example, if modularization is used, the internal modules of the 
failure realization and the corresponding internal failure modes of the specification 
must be known in order to check equivalence. This is also true if the internal failure 
modes are only “renamed” from the realization to the specification. To efficiently 
check the equivalence or other qualitative relations between failure specification and 
realization, Binary Decision Diagrams (BDDs) are used. 

5.3   Example 

The basic abstraction algorithms and consistency checks are already implemented as 
part of SCM in the ComposeR tool [6] and were used in the development of the trac-
tion control system. So, the failure specification of SpeedControl in Figure 4b was 
generated by abstracting from its failure realization in Figure 4a by reducing the  
OR-Gates as well as the input and output failure modes of LogicalSensor (A) and 



308 D. Domis and M. Trapp 

Controller (B), merging the internal module (A-Int1 ∨ A-Int2 ∨ B-Int2), and renaming 
A-Int3 and B-Int1. Calculation of MCS has no effect here, because reduction and 
modularization have already transformed the tree into its MCS structure. 

Reduction, modularization, MCS, and changing information of internal events 
were also applied to abstract over two hierarchy levels from the CFT in Figure 3b and 
generate the failure specification of LogicalSensor (A) in Figure 4a. In the first step of 
reduction, all subsequent OR-gates were contracted [16] into a single one. After con-
traction, S.I3-FM1 is a direct input of the OR-gate C.O2-FM1 and the law of absorp-
tion [16] is used to remove its edge to the AND-gate of H, as well as to remove the 
AND-gate of H and the internal failure mode H-Int2. Then, the internal module of 
LogicalSensor (C.Int2 ∨ K.Int1 ∨ L.Int1 ∨ N.Int1 ∨ F.Int1 ∨ (F.Int2 ∧ G.Int1∧ 
H.Int1)) under the OR-gate C.O2-FM1 is combined into the internal failure mode A-
Int1. At the OR-gate C.O1-FM1, the distributive law is used to remove the internal 
failure mode K-Int2, the NOT-gate, and the two corresponding AND-gates of K from 
the tree, and make M.O1-FM1 a direct input to the OR-gate C.O1-FM1. After this, the 
new subsequent OR-gates are contracted and, then, the internal module (C.Int1 ∨ 
M.Int1 ∨ P.Int2 ∨ P.Int3) is combined to A-Int2. During reduction, the input and out-
put failure modes of the subcomponents of LogicalSensor (A) were also removed. In 
the last step of the abstraction, P-Int1 is renamed to A-Int3. Calculation of MCS is 
already done by reduction and modularization, in this case. Considering the abstrac-
tion mappings, the resulting failure specification of SpeedControl in Figure 4a is 
equivalent to the original CFT in Figure 3b, but shows only failure modes of Logical-
Sensor (A) and Controller (B), while hiding all inner details as well as the complexity 
of LogicalSensor. This is consistent with the functional realization (Figure 1a) and 
fulfills the requirements of hierarchical abstraction. 

Now, it can be seen easily and without tool support that all four fault trees of 
SpeedControl in this paper are consistent to each other. Compare the failure specifica-
tion in Figure 4b and the vertical fault tree in Figure 3a. Both have the same top-level 
OR-gate with actually the same five inputs. The only difference is that in Figure 3a, 
each internal failure mode of the failure specification in Figure 4b is recursively sub-
stituted by the definition of its internal failure modes or modules from the next-lower 
hierarchy level. So, by the new definition of hierarchical fault tree abstraction, the 
advantages of the vertical (Figure 3a) and the horizontal FTA (Figure 3b) have been 
combined with the separation of specification and realization of CBSE. In this way, 
on each component level, exactly the relevant failure information is provided to the 
user and unnecessary complexity is hidden, according to the hierarchical abstraction 
of software architectural design. 

6   Related Work 

Hierarchical component-based abstraction is a new topic for FTA and a challenge for 
safety analyses of software architectures. Because of this, hierarchical abstraction has 
also been proposed by other approaches, but not for qualitative safety analysis such as 
FTA. In the Rich Component Model (RCM) [19], formal state machines are used to 
model the failure behavior of components. To abstract in the (black-box) specification 
from the realization (gray-box specification), all or only some combinations (e.g., 



 Component-Based Abstraction in Fault Tree Analysis 309 

“single failure”, “no failure”, and “multi failure”) of the realization failure configura-
tions are represented as a state in the specification. Additionally, a fault tree that is 
generated by Fault Injection [11] from the state machine of the realization also be-
comes a part of the specification. So, hierarchical abstraction in RCM only works on 
state machines, and the FT is a side product derived automatically from these. 

State machines are also used in the AADL error model annex [20] to describe the 
failure behavior of components, but in contrast to RCM, these are compiled into gen-
eralized stochastic petri nets (GSPNs) for evaluation. Hierarchical abstraction of the 
failure behavior is applied by summarizing states of the subordinated hierarchy level 
and building the state machine of the current component in this way. But there is no 
further guidance or automation regarding abstraction. To the best of our knowledge, 
we can say that there is no other approach that systemizes hierarchical abstraction of 
fault tree analysis similar to SCM.  

7   Summary and Conclusion 

To handle the complexity of safety analysis of software architectural design, this 
paper has provided a new definition of hierarchical component-based abstraction for 
FTA. It combines vertical structural decomposition and horizontal data flow-oriented 
failure propagation with the hierarchical abstraction of CBSE. For this purpose, the 
fault trees of the entire system are built up or lie in background, while the user only 
chooses and navigates through the component-oriented failure views that are appro-
priate for his/her purpose. In this way, the user focuses on the relevant information 
about the functionality and the failure behavior of the components, and unnecessary 
information as well as complexity are hidden. Consistency between the fault trees of 
all components on all hierarchy levels can be guaranteed at all times. This facilitates 
the application of FTA on software architectural design and enables the integration of 
safety analysis into software architectural design. Furthermore, hierarchical compo-
nent-based abstraction of fault trees also guarantees protection of intellectual property 
and supports distributed development as well as the reuse of components that have 
already been analyzed. 

References  

1. IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-
related systems, International Electrotechnical Commission (1999)  

2. IEC/TR 80002-1 Ed.1: Medical device software - Guidance on the application of ISO 
14971 to medical device software, International Electrotechnical Commission (2009)  

3. MISRA: Guidelines for safety analysis of vehicle based programmable systems. MIRA 
Limited, Warwickshire (2007)  

4. ISO/CD 26262, Road vehicles, Functional Safety Part 6: Product development software. 
Committee draft (2008) 

5. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D., 
Peach, B., Wüst, J., Zettel, J.: Component-based Product Line Engineering with UML. 
Addison-Wesley, London (2001) 



310 D. Domis and M. Trapp 

6. Domis, D., Trapp, M.: Integrating Safety Analyses and Comopnent-based Design. In: Har-
rison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 58–71. 
Springer, Heidelberg (2008) 

7. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A New Component Concept for Fault Trees. In: 
Lindsay, P., Cant, T. (eds.) Conferences in Research and Practice in Information Technol-
ogy Series, vol. 33, pp. 37–46. Australian Computer Society (2003) 

8. Fenelon, P., McDermid, J.A., Pumfrey, D.J., Nicholson, M.: Towards Integrated Safety 
Analysis and Design. ACM Computing Reviews 2(1), 21–32 (1994) 

9. Papadopoulos, Y., McDermid, J.A.: Hierarchically Performed Hazard Origin and Propaga-
tion Studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) 18th International Conference 
on Computer Safety, Reliability and Security. LNCS, vol. 1608, pp. 139–152. Springer, 
Heidelberg (1999) 

10. Grunske, L.: Towards an Integration of Standard Component-Based Safety Evaluation 
Techniques with SaveCCM. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 
2006. LNCS, vol. 4214, pp. 199–213. Springer, Heidelberg (2006) 

11. Lisagor, O., McDermid, J.A., Pumfrey, D.J.: Towards a Practicable Process for Automated 
Safety Analysis. In: 24th International System Safety Conference, pp. 596–607 (2006) 

12. IEEE Standard Glossary of Software Engineering Terminology, IEEE Std. 610.12-1990 
13. Coudert, O., Madre, J., Henri, F.: A new viewpoint on Two-Level Logic Minimization. In: 

30th ACM/IEEE Design Automation Conference, Dallas, TX, USA, pp. 625–630 (1993) 
14. Coudert, O., Madre, J., Henri, F.: New Qualitative Analysis Strategies in Metaprime. In: 

Annual Reliability and Maintainability Symposium, Anaheim, CA, USA, pp. 298–303 
(1994) 

15. Dutuit, Y., Rauzy, A.: Exact and Truncated Computations of Prime Implicants of Coherent 
and non-Coherent Fault Trees within Aralia. In: Reliability Engineering & System Safety, 
vol. 58, pp. 127–144 (1997) 

16. Remenyte-Prescott, R., Andrews, J.: Prime Implicants for modularized non-coherent fault 
tress using binary decision diagrams. Int. J. Reliability and Safety 1(4), 446–464 (2007) 

17. Sun, H., Andrews, J.: Identification of independent modules in fault trees which contain 
dependent basic events. Reliability Engineering & System Safety 86, 285–296 (2004) 

18. Dutuit, Y., Rauzy, A.: A Linear Time Algorithm to Find Modules of Fault Trees. IEEE 
Transactions on Reliability 45, 422–425 (1996) 

19. Damm, W., Votintseva, A., Metzner, A., Josko, B., Peikenkamp, T., Böde, E.: Boosting 
Re-use of Embedded Automotive Applications Through Rich Components. In: Proceed-
ings of the Foundation of Interface Technology Workshop. Elsevier Science B.V, Amster-
dam (2005) 

20. Feiler, P., Rugina, A.: Dependability Modeling with the Architecture Analysis & Design 
Language. Technical Report CMU/SEI-2007-TN-043, Carnegie Mellon University (2007) 

 



A Foundation for Requirements Analysis
of Dependable Software

Denis Hatebur1,2 and Maritta Heisel1

1 Universität Duisburg-Essen, Germany, Fakultät für Ingenieurwissenschaften
maritta.heisel@uni-due.de

2 Institut für technische Systeme GmbH, Germany
d.hatebur@itesys.de

Abstract. We present patterns for expressing dependability requirements, such
as confidentiality, integrity, availability, and reliability. The paper considers ran-
dom faults as well as certain attacks and therefore supports a combined safety
and security engineering. The patterns - attached to functional requirements - are
part of a pattern system that can be used to identify missing requirements. The
approach is illustrated on a cooperative adaptive cruise control system.

1 Introduction

Dependable systems play an increasingly important role in daily life. More and more
tasks are supported or performed by computer systems. These systems are required to
be safe, secure, available, reliable, and maintainable.

Safety is the inability of the system to have an undesirable effect on its environment,
and security is the inability of environment to have an undesirable effect on the system
[16]. To achieve safety, systematic and random faults must be handled. For security,
in contrast, certain attackers must be considered. Security can be described by con-
fidentiality, integrity and availability requirements. Confidentiality is the absence of
unauthorized disclosure of information. Integrity is the absence of improper system,
data, or a service alterations [15]. Availability is the readiness for service (up-time vs.
down-time) [14]1. Also for safety, integrity and availability must be considered. For
safety, integrity and availability mechanisms have to protect against random (and some
systematic) faults. Reliability is a measure of continuous service accomplishment [14].
A safety-critical system has to perform its safety-functions with a defined reliability
(or integrity) 2. In this case, reliability describes the probability of correct functionality
under stipulated environmental conditions [4]. This paper shows that reliability require-
ments can be defined not only from a safety point of view, but also from a security point
of view. Maintainability is the ability to undergo modifications and repairs [2]. Main-
tainability can be achieved by additional interfaces for updates (of the whole software or
components), by a maintainable structure of the software itself (e.g., documentation, ap-
propriate architectures, comments in the source code), and by maintenance plans (e.g.,
restart the software once a week to reduce memory fragmentation). Maintainability is
not considered in this paper.

1 Availability, in contrast to reliability, does not require correct service.
2 If the system can for example be safely deactivated, it is sufficient to define the integrity re-

quirement and the actions to be performed in case of an integrity error.

B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 311–325, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



312 D. Hatebur and M. Heisel

Dependability requirements must be described and analyzed. Problem frames [12]
are a means to describe and analyze functional requirements, but they can be extended
to describe also dependability features, as shown in earlier papers [7,8]. In Section 2, we
present problem frames and the parts of the problem frames meta-model [10] used for
the formalization of dependability features. In Section 3, we define a set of patterns that
can be used to describe and analyze dependability requirements. Section 4 describes
how to integrate the use of the dependability patterns into a system development pro-
cess. The case study in Section 5 applies that process to a cooperative adaptive cruise
control system. Section 6 discusses related work, and the paper closes with a summary
and perspectives in Section 7.

2 Problem Frames

Problem frames are a means to describe software development problems. They were
invented by Jackson [12], who describes them as follows: “A problem frame is a kind
of pattern. It defines an intuitively identifiable problem class in terms of its context
and the characteristics of its domains, interfaces and requirement.” Problem frames
are described by frame diagrams, which consist of rectangles, a dashed oval, and links
between these (see Fig. 1). All elements of a problem frame diagram act as placeholders,
which must be instantiated to represent concrete problems. Doing so, one obtains a
problem description that belongs to a specific problem class.

Plain rectangles denote problem domains (that already exist in the application envi-
ronment), a rectangle with a double vertical stripe denotes the machine (i.e., the soft-
ware) that shall be developed, and requirements are denoted with a dashed oval. The
connecting lines between domains represent interfaces that consist of shared
phenomena.

Shared phenomena may be events, operation calls, messages, and the like. They are
observable by at least two domains, but controlled by only one domain, as indicated by
an exclamation mark. For example, in Fig. 1 the notation O!E4 means that the phenom-
ena in the set E4 are controlled by the domain Operator.

Commanded

Operator E4

C3

B

Controlled

Control
C

CM!C1
CD!C2

O!E4

Domain

Machine
Behaviour

C1: control
C2: feedback
C3: causal relation
E4: operator commands

Fig. 1. Commanded Behaviour problem frame Fig. 2. Inheritance structure of different
domain types



A Foundation for Requirements Analysis of Dependable Software 313

A dashed line represents a requirements reference. It means that the domain is re-
ferred to in the requirements description. An arrow at the end of such a dashed line
indicates that the requirements constrain the problem domain. Such a constrained do-
main is the core of any problem description, because it has to be controlled according to
the requirements. Hence, a constrained domain triggers the need for developing a new
software (the machine), which provides the desired control. In Fig. 1, the Controlled-
Domain domain is constrained, because the ControlMachine has the role to change it
on behalf of user commands for achieving the required Commanded Behaviour.

Jackson distinguishes the domain types CausalDomains that comply with some
physical laws, LexicalDomains that are data representations, and BiddableDomains
that are usually people. In Fig. 1, the C indicates that the corresponding domain is
a CausalDomain, and B indicates that it is a BiddableDomain. In our formal meta-
model of problem frames [10] (see Fig. 2), Domains have names and abbreviations,
which are used to define interfaces. According to Jackson, domains are either designed,
given, or machine domains. These facts are modeled by the boolean attributes isGiven
and isMachine in Fig. 2. The domain types are modeled by the subclasses BiddableDo-
main, CausalDomain, and LexicalDomain of the class Domain. A lexical domain is
a special case of a causal domain. This kind of modeling allows to add further domain
types, such as DisplayDomains as introduced in [3].

Problem frames support developers in analyzing problems to be solved. They show
what domains have to be considered, and what knowledge must be described and rea-
soned about when analyzing the problem in depth. Other problem frames besides the
commanded behavior frame are required behaviour, simple workpieces, information
display, and transformation.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements, and it is not shown which domain is in control
of the shared phenomena (see Fig. 3 for an example). Then, the problem is decomposed
into subproblems. If ever possible, the decomposition is done in such a way that the
subproblems fit to given problem frames. To fit a subproblem to a problem frame, one
must instantiate its frame diagram, i.e., provide instances for its domains, phenomena,
and interfaces. The instantiated frame diagram is called a problem diagram.

Successfully fitting a problem to a given problem frame means that the concrete
problem indeed exhibits the properties that are characteristic for the problem class de-
fined by the problem frame. A problem can only be fitted to a problem frame if the
involved problem domains belong to the domain types specified in the frame diagram.
For example, the Operator domain of Fig. 1 can only be instantiated by persons, but not
for example by some physical equipment like an elevator.

To describe the problem context, a ConnectionDomain between two other domains
may be necessary. Connection domains establish a connection between other domains
by means of technical devices. Typical connection domains are CausalDomains, e.g.,
video cameras, sensors, or networks.

Since the requirements refer to the environment in which the machine must operate,
the next step consists in deriving a specification for the machine (see [13] for details).
The specification describes the machine and is the starting point for its construction.



314 D. Hatebur and M. Heisel

3 Patterns for Dependability Requirements

We developed a set of patterns for expressing and analyzing dependability requirements.
An important advantage of these patterns is that they allow dependability requirements
to be expressed without anticipating solutions. For example, we may require data to
be kept confidential during transmission without being obliged to mention encryption,
which is a means to achieve confidentiality. The benefit of considering dependability
requirements without reference to potential solutions is the clear separation of problems
from their solutions, which leads to a better understanding of the problems and enhances
the re-usability of the problem descriptions, since they are completely independent of
solution technologies.

Our dependability requirements patterns are expressed as logical predicates. They
are separated from functional requirements. On the one hand, this limits the number
of patterns; on the other hand, it allows one to apply these patterns to a wide range of
problems. For example, the functional requirements for data transmission or automated
control can be expressed using a problem diagram. Dependability requirements for con-
fidentiality, integrity, availability and reliability can be added to that description of the
functional requirement.

For each dependability requirement, a textual description pattern and a correspond-
ing predicate pattern are given. The textual description helps to state dependability re-
quirements more precisely. The patterns help to structure and classify dependability re-
quirements. For example, requirements considering integrity can be easily distinguished
from the availability requirements. It is also possible to trace all dependability require-
ments that refer to a given domain.

The logical predicate patterns have several parameters. The first parameter of a pred-
icate is the domain that is constrained by the requirement, whereas the other parameters
are only referred to. The predicate patterns are expressed using the domain types of the
meta-model described in Figure 2, i.e., Domain, BiddableDomain, CausalDomain, and
LexicalDomain. From these classes in the meta-model, subclasses with special proper-
ties are derived:

– An Attacker is a BiddableDomain that describes all subjects (with their equipment)
who want to attack the machine.

– A User is a BiddableDomain that describes subjects who have an interface to the
machine.

– A Stakeholder is a BiddableDomain (and in some special cases also a CausalDo-
main) with some relation to stored or transmitted data. It is not necessary that a
stakeholder has an interface to the machine.

– A ConstrainedDomain is a CausalDomain that is constrained by a functional or
dependability requirement.

– An InfluencedDomain is a CausalDomain that is influenced by the machine to ful-
fill the dependability requirement (it can be the same domain as the Constrained-
Domain, but also another domain).

– A Display is a CausalDomain used to inform the user of the machine.
– StoredData is a CausalDomain or LexicalDomain used to store some data as de-

fined by the functional requirement. Also the machine domain may include some
(transient) stored data that must be considered.

– TransmittedData is a CausalDomain or LexicalDomain used to transmit data (e.g.,
a network).



A Foundation for Requirements Analysis of Dependable Software 315

– A Secret is a StoredData or TransmittedData that is used to implement a set of
security requirements.

To use the predicate patterns for describing the dependability requirements of a concrete
problem, the domains of the problem diagram (and in the context diagram) must be
derived from the domains given in the dependability patterns. They must be described
in such a way that it is possible to demonstrate that the dependability predicate holds
for all objects of this class. The parts of the pattern’s textual description printed in bold
and italics should be refined according to the concrete problem.

The instantiated predicates are helpful to analyze conflicting requirements and the
interaction of different dependability requirements, as well as for finding missing de-
pendability requirements.

The patterns for integrity, reliability, and availability considering random faults are
expressed using probabilities, while for the security requirements no probabilities are
defined. We are aware of the fact that no security mechanism provides a 100 % protec-
tion and that an attacker can break the mechanism to gain data with a certain probability
[17]. But in contrast to the random faults considered for the other requirements, no prob-
ability distribution can be assumed, because, e.g., new technologies may dramatically
increase the probability that an attacker is successful. For this reason we suggest to de-
scribe a possible attacker and ensure that this attacker is not able to be successful in a
reasonable amount of time.

3.1 Confidentiality

A typical confidentiality requirement is to
Preserve confidentiality of StoredData / TransmittedData for Stakeholders
and prevent disclosure by Attackers.

The security requirement pattern can be expressed by the confidentiality predicate
confatt : CausalDomain×BiddableDomain×BiddableDomain→Bool. The suffix “att”
indicates that this predicate describes a requirement considering a certain attacker.

To apply the confidentiality requirement pattern, subclasses of StoredData or Trans-
mittedData, Stakeholder, and Attacker must be derived and described in detail. For
example, a special TransmittedData may be the PIN of a bank account, a special
Stakeholder may be the bank account owner, and a special Attacker may be the class
of all persons with no permission, who want to withdraw money and have access
to all external interfaces of the machine. The instances of Stakeholder and Attacker
must be disjoint. The Stakeholder is referred to, because we want to allow the access
only to Stakeholders with legitimate interest [5]. The reference to an Attacker is neces-
sary, because we can only ensure confidentiality with respect to an Attacker with given
properties.

Even if data is usually modeled using lexical domains, we derive StoredData or
TransmittedData from CausalDomain, because in some cases the storage device and
not the data is modeled. A LexicalDomain is a special CausalDomain. The following
patterns can be used to define confidentiality requirements:
∀ sd : StoredData; s : Stakeholder; a : Attacker • confatt(sd, s, a)
∀ td : TransmittedData; s : Stakeholder; a : Attacker • confatt(td, s, a)
They express the informal requirement given above as a logical formula. The confiden-
tiality predicate is often used together with functional requirements for data transmis-
sion and data storage.



316 D. Hatebur and M. Heisel

3.2 Integrity - Random Faults

Typical integrity requirements considering random faults are that

With a probability of Pi, one of the following things should happen: service (de-
scribed in the functional requirement) with influence on / of the Constrained-
Domain must be correct, or a specific action must be performed.

The specific action could be, e.g.:
– write a log entry into InfluencedDomain
– switch off the actuator InfluencedDomain
– do not influence ConstrainedDomain
– perform the same action as defined in the functional requirement on Constrained-

Domain.
– inform User

For this requirement it is important to distinguish ConstrainedDomain and Influenced-
Domain. The ConstrainedDomain is the domain that should work correctly or should
be influenced correctly as described in the functional requirement. The InfluencedDo-
main is the domain that should react as described in the dependability requirement.
The InfluencedDomain could be, e.g., an actuator or a log file. The last specific action
directly refers to the User. The User must be informed by some technical means, e.g.
a display. The assumption that the User sees the Display (being necessary to derive a
specification from the requirements) must be checked later for validity.

The requirement can be expressed by the integrity predicate intrnd : CausalDomain
×Domain×Probability→Bool. The suffix “rnd” indicates that this predicate describes
a requirement considering random faults.

The probability is a constant, determined by risk analysis. The standard ISO/IEC
61508 [11] provides a range of failure rates for each defined safety integrity level (SIL).
The probability Pi could be, e.g., for SIL 3 systems operating on demand 1 − 10−3 to
1 − 10−4.

The following patterns can be used to define the integrity requirements for a given
probability Pi:
∀ cd : ConstrainedDomain; u : User • intrnd(cd, u, Pi)
∀ cd : ConstrainedDomain; id : InfluencedDomain • intrnd(cd, id, Pi)
∀ cd : ConstrainedDomain • intrnd(cd, cd, Pi)
The predicate intrnd(cd, cd, Pi) expresses that the specific action is either that the Con-
strainedDomain is not influenced any longer, or that it is influenced as described in the
functional requirement (same action).

3.3 Integrity - Security

A typical security integrity requirement is that

The influence (as described in the functional requirement) on / data in Con-
strainedDomain must be either correct, or in case of any modifications by some
Attacker a specific action must be performed.

The specific action may be the same as described for random faults in Section 3.2.
In contrast to the dependability requirement considering random faults, this require-
ment can refer to the data of a domain (instead of the functionality), because security



A Foundation for Requirements Analysis of Dependable Software 317

engineering usually focuses on data. For security the ConstrainedDomain in the func-
tional requirement is usually a display or some plain data. The security requirement
pattern can be expressed by the integrity predicate intatt : CausalDomain × Domain ×
BiddableDomain → Bool.

Similarly to Section 3.2 the following patterns can be used to define integrity re-
quirements:
∀ cd : ConstrainedDomain; u : User; a : Attacker • intatt(cd, u, a)
∀ cd : ConstrainedDomain; id : InfluencedDomain; a : Attacker • intatt(cd, id, a)
∀ cd : ConstrainedDomain; a : Attacker • intatt(cd, cd, a)

3.4 Availability - Random Faults

A typical availability requirement considering random faults is that

The service (described in the functional requirement) with influence on / of
the ConstrainedDomain must be available for User with a probability of Pa.3

The requirement can be expressed by the availability predicate availrnd user :
CausalDomain × BiddableDomain × Probability → Bool.

Pa is the probability that the service (i.e., the influence on the ConstrainedDomain)
is accessible for defined users. A probability Pa of 1 − 10−5 means that the service
(influence on the ConstrainedDomain) may be unavailable on average for 315 seconds
in one year. The following pattern can be used to define the availability requirements
for a given probability Pa:
∀ cd : ConstrainedDomain; u : User • availrnd d user(cd, u, Pa)

3.5 Availability - Security

When we talk about availability in the context of security it is not possible to provide
the service to everyone due to limited resources and possible denial-of-service attacks.
Availability can be expressed with the predicate availatt user(cd, u, a) similar to the avail-
ability requirement considering random faults.

3.6 Reliability, Authentication, Management, and Secret Distribution

Reliability is defined in the same way as availability with the predicates relrnd user, relrnd,
and relatt user. The same failure rates as for integrity (see Section 3.2) can be used.
Other important security requirements are authentication (authatt(cd, sh, a)) to permit
access for Stakeholder (sh) and deny access for Attacker (a) on ConstrainedDomain
(cd), security management (manatt(sd, sh, a)) to manage security-relevant StoredData
(sd) (e.g., configure an access rule), and Secret (s) distribution (distatt(s, sh, a)) that
additionally keeps the managed secret s confidential.

4 Working with Dependability Requirement Patterns

This section describes how to work with the modular construction system built up on
the predicates defined in Section 3. It can be used to find possible interactions with other

3 In [6], a variant that does not refer to users is presented (availrnd).



318 D. Hatebur and M. Heisel

Ta
bl

e
1.

S
el

ec
te

d
de

pe
nd

ab
il

it
y

de
pe

nd
en

ci
es

R
eq

ui
re

m
en

t
G

en
er

ic
m

ec
ha

ni
sm

P
os

si
bl

e
in

te
ra

ct
io

n
In

tr
od

uc
ed

/
co

ns
id

er
ed

do
m

ai
ns

N
ec

es
sa

ry
co

nd
it

io
ns

C
on

di
ti

on
s

to
be

es
ta

bl
is

he
d

be
fo

re
R

el
at

ed

in
t rn

d
(c

1
,u

,P
i)

ch
ec

ks
um

s
av

ai
l ∗

(c
1
,∗

)4
di

:
D

is
pl

ay
in

t rn
d
(m

,u
,P

i)
∧

in
t rn

d
(d

i,
u,

P
i)
∧

us
er

se
es

di
sp

la
y

m
es

sa
ge

-
in

t a
tt

in
t rn

d
(c

1
,c

2
,P

i)
ch

ec
ks

um
s

av
ai

l ∗
(c

1
,∗

)4
-

in
t rn

d
(m

,c
2
,P

i)
∧

re
l rn

d
(c

2
,P

i)
-

in
t a

tt

in
t a

tt
(d

,u
,a

)
M

A
C

av
ai

l ∗
(d

,u
,∗

)4
s S

nd
,s

R
cv

:
Se

cr
et

di
:

D
is

pl
ay

co
nf

at
t(

m
,u

,a
)
∧

in
t a

tt
(m

,u
,a

)
∧

in
t a

tt
(d

i,
u,

a)
∧

co
nf

at
t(

s S
nd

,u
,a

)
∧

in
t a

tt
(s

Sn
d
,u

,a
)
∧

co
nf

at
t(

s R
cv
,u

,a
)
∧

in
t a

tt
(s

R
cv
,u

,a
)

di
st

at
t(

s S
nd

,u
,a

)
∧

di
st

at
t(

s R
cv
,u

,a
)

co
nf

at
t

cr
yp

to
gr

ap
hi

c
si

gn
at

ur
e

av
ai

l ∗
(d

,u
,∗

)4
s S

nd
:

Se
nd

er
Se

cr
et

s R
cv

:
R

ec
ei

ve
rS

ec
re

t
di

:
D

is
pl

ay

co
nf

at
t(

m
,u

,a
)
∧

in
t a

tt
(m

,u
,a

)
∧

in
t a

tt
(d

i,
u,

a)
∧

in
t a

tt
(s

Sn
d
,u

,a
)
∧

co
nf

at
t(

s R
cv
,u

,a
)
∧

in
t a

tt
(s

R
cv
,u

,a
)

di
st

at
t(

s S
nd

,u
,a

)
∧

di
st

at
t(

s R
cv
,u

,a
)

co
nf

at
t

av
ai

l rn
d

us
er
(c

1
,u

,P
a
)

re
li

ab
le

ha
rd

w
ar

e
an

d
so

ft
w

ar
e

-
re

l rn
d

us
er
(m

,u
,P

r)
-

re
l a

tt

re
l rn

d
(c

1
,P

r)
re

li
ab

le
ha

rd
w

ar
e

an
d

so
ft

w
ar

e

-
re

l rn
d
(m

,P
r)

-
re

l a
tt

au
th

at
t(

d,
u,

a)
dy

na
m

ic
au

th
en

ti
ca

ti
on

us
in

g
ra

nd
om

nu
m

be
rs

(s
ym

m
et

ri
c)

av
ai

l ∗
(d

,∗
)

s M
ch

n
,s

E
xt

:
Se

cr
et

co
nf

at
t(

m
,u

,a
)
∧

in
t a

tt
(m

,u
,a

)
∧

co
nf

at
t(

s M
ch

n
,u

,a
)
∧

in
t a

tt
(s

M
ch

n
,u

,a
)
∧

co
nf

at
t(

s E
xt
,u

,a
)
∧

in
t a

tt
(s

E
xt
,u

,a
)

di
st

at
t(

s M
ch

n
,u

,a
)
∧

di
st

at
t(

s E
xt
,u

,a
)

di
st

at
t(

d,
u,

a)
se

e
dy

na
m

ic
au

th
en

ti
ca

ti
on

..
.

..
.

..
.

..
.

..
.

4
A

va
il

ab
il

it
y

m
ay

be
de

sc
re

as
ed

if
m

od
ifi

ed
da

ta
is

ju
st

de
le

te
d.



A Foundation for Requirements Analysis of Dependable Software 319

dependability requirements and helps to complete the dependability requirements by a
set of defined necessary conditions for each mechanism that can be used to solve de-
pendability problem. To apply the dependability patterns, we assume that hazards and
threats are identified and a risk analysis is performed. The next step is to describe
the environment, because dependability requirements can only be guaranteed for some
specific intended environment. For example, a device may be dependable for personal
use, but not for military use with more powerful attackers or a non-reliable power sup-
ply. The functional requirements are described using patterns for this intended envi-
ronment (see Section 2). The requirements describe how the environment should behave
when the machine is in action. To describe the requirements, domains and phenomena
of the environment description should be used. From hazards and threats an initial set of
dependability requirements can be identified. These requirements are usually linked
to a previously described functional requirement.

For each dependability requirement, a pattern from our pattern catalog should be
selected, using the informal description of the dependability requirements given in Sec-
tion 3. After an appropriate pattern is determined, is must be “instantiated” with the
concrete domains from the environment description. To instantiate the domains that
represent potential attackers, a certain level of skill, equipment, and determination of
the potential attacker must be specified. Via these assumptions, threat models are in-
tegrated into the development process using dependability patterns. The values for
probabilities can be usually extracted from the risk analysis. For each dependability
requirement stated as a predicate, we select a generic mechanism that solves the prob-
lem; for example, to achieve integrity (intatt bidd) message authentication codes (MACs)
can be used. Table 1 lists for each dependability requirement pattern a set of possible
mechanisms. The dependability requirement predicates in the table refer to all instances
d of TransmittedData or StoredData, the ConstrainedDomains c1 and c2, the users u,
the Attackers a, and the Machine with all relevant connection domains m.

Table 1 supports the analysis of conflicts between the dependability patterns. For
some of the mechanisms, possible interactions with other dependability requirements
are given in the third column. These possible conflicts must be analyzed, and it must
be determined if they are relevant for the application domain. In case they are relevant,
conflicts can be resolved by modifying or prioritizing the requirements. For example, if
the MAC protection mechanism is applied and the specific action is to delete modified
data, we may have a contradiction with the availability of that data.

For many mechanisms, additional domains must be introduced or considered.
MAC protection, e.g., requires a Secret sSnd used to calculate the MAC and another
Secret sRcv used to verify the MAC. For asymmetric mechanisms, SenderSecret and
ReceiverSecret need to be introduced. They are special StoredData. For dynamic au-
thentication, the Secret sMchn (stored in the machine) and the Secret sExt (known by the
subject) are necessary. Such introduced domains must be added to the description of
the environment.

The next step is to inspect the necessary conditions and the conditions to be estab-
lished beforehand. The generic mechanisms usually have a set of necessary conditions
to be fulfilled. These necessary conditions describe conditions necessary to establish
the dependability requirement when a certain mechanism is selected. For example, the
introduced secrets for the MAC protection must be kept confidential, and their integrity
must be preserved. Before the mechanism is applied, some other activities are necessary,



320 D. Hatebur and M. Heisel

e.g., a secret must be distributed before it can be used for MAC calculation (conditions
to be established beforehand). Two alternatives are possible to guarantee that the neces-
sary conditions hold: either, they can be assumed to hold, or they have to be established
by instantiating a further dependability requirement pattern, that matches the necessary
condition. What assumptions are reasonable depends on the hazards to be avoided and
the threats the system should be protected against. Assumptions cannot be avoided com-
pletely, because otherwise it may be impossible to achieve a dependability requirement.
For example, we must assume that the user sees a warning messages on a display or
keeps a password confidential. Only in the case that necessary conditions cannot be as-
sumed to hold, one must instantiate further appropriate dependability patterns, and the
procedure is repeated until all necessary conditions of all applied mechanisms can be
proved or assumed to hold. The dependencies expressed as necessary condition are used
to develop a consolidated set of dependability requirements and solution approaches that
additionally cover all dependent requirements and corresponding solution approaches,
some of which may not have been known initially.

The next step is to check the Related column. There, dependability requirements
that are commonly used in combination with the described dependability pattern are
mentioned. This information helps to find missing dependability requirements right at
the beginning of the requirements engineering process. The dependencies for security
requirements are based on previous work [9].

Table 1 only shows some important dependencies used in Section 5. A comprehen-
sive version can be found in our technical report [6]. The next step in the software
development life-cycle is to derive a specification, which describes the machine and is
the starting point for its development.

5 Case Study

The approach is illustrated by the development of a cooperative adaptive cruise control
(CACC) maintaining string stability. Such a system controls the speed of a car according
to the desired speed given by the driver and the measured distance to the car ahead. It
also considers information about speed and acceleration of the car ahead which is sent
using a wireless network5 The hazard to be avoided is an unintended acceleration or
deceleration (that may lead to a rear-end collision). The considered threat is an attacker
who sends wrong messages to the car in order to influence its speed.6 Examples for
domain knowledge of the CACC in the described environment are physical properties
about acceleration, breaking, and measurement of the distance (relevant for safety).
Other examples are the assumed intention, knowledge and equipment of an attacker. We
assume here that the attacker can only access the WAVE/WLAN interface. The context
diagram for the CACC is shown in Fig. 3. The functional requirement for the CACC
is to maintain string stability.

R1 The CACC should control the speed of a Car using the MotorActuator Break ac-
cording to the desired speed given by the Driver and the measured Distance to the
car ahead (commanded behaviour, see Section 2).

5 cf. United States Patent 20070083318.
6 The risk analysis is left out here.



A Foundation for Requirements Analysis of Dependable Software 321

Motor
Actuator / 
Break

Break, Accelerate

CAN Interface

Other Other
CarsCars with

Driver

CACC

CACC

WAVE/WLAN
Interface

Attacker

Distance

IncreaseSpeed,
DecreasSpeed Car

Fig. 3. CACC context diagram

Motor
Actuator / 
Break

Break, Accelerate

Other Other
CarsCars with

Driver

CACC

WAVE/WLAN
Interface

Attacker

Authentic.

Authentic.

Session

Session

SS1

AS2

Interface
CAN

CACC

CACCAS1
    HW 
Interface

Software

Hardware

IncreaseSpeed,
     DecreaseSpeed

WarnDriver,

Secret

Secret

Secret Secret

SS2

Distance

Car

Fig. 4. CACC context diagram after mechanisms
have been selected

R2 The CACC should also consider information about speed and acceleration of Other
Cars with CACC ahead which is sent using a wireless network (WAVE/WLAN in-
terface) (required behaviour).

The next step is to identify an initial set of dependability requirements. For the
functional requirement R2, the following security requirement can be stated using the
textual pattern from Section 3.3:

The influence (as described in the functional requirement) on the MotorAc-
tuator Break must be either correct, or in case of any modifications by some
Attacker the ConstrainedDomain should not be influenced and the Driver
must be informed.

These requirements can be expressed using the integrity predicates
∀mab : MotorActuator Break; dr : Driver; a : Attacker •

intatt(mab, mab, a) ∧ intatt(mab, dr, a) (1)
The first occurrence of the variable mab in Equation 1 refers to the influenced domain
as described in the functional requirement, and the second occurrence of mab expresses
that this domain is not influenced in case of an attack.

A safety requirement is to keep a safe distance to the car ahead while being activated
(see R1). For each safety requirement the integrity or the reliability must be defined. For
the CACC only integrity is required, because it is safe to switch off the functionality
and inform the driver in case of a failure. The risk analysis performed in the first step
showed that a probability of at most 10−6 untreated random errors per hour (that may
lead to an accident) can be accepted. Hence, for R1 it can be stated that

With a probability of 1 − 10−6 per hour, one of the following things should
happen: service (described in the functional requirement) with influence on
the MotorActuator Break must be correct, or the ConstrainedDomain should
not be influenced and the Driver must be informed.

The corresponding predicates are:
∀mab : MotorActuator Break; dr : Driver •

intrnd(mab, mab, 1− 10−6) ∧ intatt(mab, dr, 1 − 10−6) (2)



322 D. Hatebur and M. Heisel

Additionally, to satisfy the drivers buying the CACC:

The service (described in the functional requirement) with influence on the
MotorActuator Break must be available with a probability of 1 − 10−4.

This requirement can be expressed with the predicate

∀mab : MotorActuator Break • availrnd(mab, 1 − 10−4) (3)

For availability, we only consider random faults, because for the corresponding security
requirement we have to limit the group of users (the service is provided for) as described
in Section 3.5, and this is not possible in the described environment.

The next step is to Select appropriate generic mechanisms for each dependability
requirement expressed as a predicate. Depending on the generic mechanism, additional
domains must be introduced or considered.

To establish Equation 1 messages authentication codes (MACs) can be used to check
integrity and authenticity of the messages (position, acceleration and speed data) from
other cars with trusted CACCs. According to Table 1, Secrets for sender and receiver are
necessary to calculate and verify the MAC. We decide to use SessionSecrets for Sender
(ss2) and Receiver (ss1). A SessionSecret has the advantage that it has a short life-time:
even if the attacker is able to obtain this secret, it can only be used for a short time period.
The “necessary conditions” column of Table 1 shows for the MAC mechanism that the
secrets (ss1 and ss2) and the machine processing the secrets (cacc) must be protected
from modification and disclosure. In case of any modification by the attacker, the driver
is informed, and there will be no influence on MotorActuator Break (Equation 4). The
“conditions to be established beforehand” column of Table 1 shows that the secrets
must be distributed beforehand (Equation 7), as stated with the following predicates:

∀ cacc : CACC; ss1, ss2 : SessionSecret;
mab : MotorActuator Break; dr : Driver, a : Attacker •

confatt(cacc, dr, a) ∧ intatt(cacc, dr, a) ∧ intatt(cacc, mab, a) ∧ (4)

confatt(ss1, dr, a) ∧ intatt(ss1, dr, a) ∧ intatt(ss1, mab, a) ∧ (5)

confatt(ss2, dr, a) ∧ intatt(ss2, dr, a) ∧ intatt(ss2, mab, a) ∧ (6)

distatt(ss1, cacc, a) ∧ distatt(ss2, cacc, a) (7)

The integrity and confidentiality of the CACC with its data, in particular the SessionSe-
cret ss1 (required by Equations 4 and 5), can be established by some physical protec-
tion. The SessionSecret ss2 is stored in the OtherCarsWithCACC. Its confidentiality
and integrity (Equation 6) are also established by physical protection. To establish
Equation 7, a dynamic authentication mechanism with random numbers can be used.
With this authentication mechanism additionally a session key can be generated. Since
replay attacks cannot be avoided in the described context, random numbers are used for
authentication (cf. CSPF Dynamic Authentication in [7]). The necessary conditions for
this mechanism are similar to those for MAC protection. Integrity and confidentiality of
the machines and secrets are established in the same way as for the MAC protection. Se-
cure distribution of the AuthenticationSecrets is assumed to be done in the production
environment of the CACC.

To establish Equation 2, we regard the machine CACC as consisting of two parts:
the CACCSoftware caccSW and the CACCHardware caccHW . For the hardware we use,
a reliability of only 1 − 10−4 is guaranteed. For our software we assume (and try to
achieve using several quality assurance activities, see ISO/IEC 61508 [11, Part 3]) a



A Foundation for Requirements Analysis of Dependable Software 323

reliability of 1 − 10−6. Therefore, our software must check the hardware and initiate
the required actions. Several checks on the hardware have to be performed as given,
e.g., in the standard ISO/IEC 61508, Part 2, Tables A.1 to A.15 [11]. The first row
of Table 1 shows for the checksum mechanism (as one example from [11]) that the
integrity of the Machine and of the Display have to be ensured; i.e., if these domains
are not able to forward the warning to the user, the user must be informed by other
means. The Machine is here the CACC Hardware, and the Display is here (to simplify
the example) the Car used in the following predicates (Equation 8). The warning is
given acoustically and visually to increase the probability that the Driver recognizes
the warning. Additionally, it is necessary that in this case there is no automatic control
of the speed of the car, i.e., no influence on the MotorActuator Break (Equation 9).
∀ caccHW : CACCHardware; car : Car; dr : Driver; mab : MotorActuator Break •

intrnd(caccHW , dr, 1 − 10−6) ∧ intrnd(car, dr, 1 − 10−6) ∧ (8)

intrnd(caccHW , mab, 1 − 10−6) ∧ intrnd(car, mab, 1− 10−6) ∧ (9)
The first part of Equations 8 and 9 cannot be assumed, because of the reliability of the
hardware is only 1−10−4. Therefore, our solution for this contradiction consists of two
parts. The first one is the dependability requirements for the software:

With a probability of 1 − 10−6, one of the following things should happen:
service (described in the functional requirement) of the Hardware must be
correct, or the CACC must be switched off using SwitchOffPartsOfCAC-
CHardware caccHW OFF (omitted in Fig. 4).

∀ caccHW : CACCHardware; caccHW OFF : SwitchOffPartsOfCACCHardware •
intrnd(caccHW , caccHW OFF, 1 − 10−6) (10)

To establish Equation 10, the pre-requisites according to Table 1 can be fulfilled by a re-
liability of 1−10−6 for the CACCSoftware and the SwitchOffPartsOfCACCHardware,
which is also assumed.

The second part of the solution is that the Car has to detect a switched-off CACC.
In this case the Car should warn the driver, and the Car should not use the output of
the CACC to control the MotorActuator Break. For this requirement (Rcar), the follow-
ing reliability (stated as a predicate) is necessary and must be assumed for the CACC
development7:

∀ car : Car • relrnd(car, 1 − 10−6) (11)
To establish Equation 3, reliable hardware and software can be used, because relrnd(c, P)
⇒ availrnd(c, P). The required reliabilities of the machine and all relevant connection
domains are assumed as shown in [6]. The new context diagram for the CACC result-
ing from applying dependability requirements patterns is shown in Fig. 4. New domains
were added to the description of the environment, and the connection of the attacker
to the WAVE/WLAN Interface is replaced by the more generic “window to the world”,
because the new domains SessionSecret AuthenticationSecret, and the CACC itself are
of great interest for the Attacker. Additionally, the machine CACC is split into CAC-
CHardware and CACCSoftware. Since some dependability requirements state that the
Driver must be informed, the additional phenomenon WarnDriver is introduced.

By using the dependencies given in Section 4, we systematically developed more
than 27 dependability requirements to be inspected from the 3 initial dependability
requirements.

7 Equation 11 expresses together with the functional requirement Rcar the same requirements as
Equations 8 and 9.



324 D. Hatebur and M. Heisel

6 Related Work

We are not aware of any similar approach for modeling a wide range of dependabil-
ity requirements. However, the Common Criteria [1], Part 2 define a large set of so-
called Security Functional Requirements (SFRs) with explicitly given dependencies be-
tween these SFRs. But some of these SFRs directly anticipate a solution, e.g. the SFR
cryptographic operation in the class functional requirements for cryptographic support
(FCS COP) specifies the cryptographic algorithm, key sizes, and the assigned stan-
dard to be used. The SFRs in the Common Criteria are limited to security issues. The
dependencies given in the Common Criteria are re-used for our pattern system. Our de-
pendability requirements can be regarded on the level of Security Objectives that have
to be stated according to Common Criteria, Part 3, before suitable SFRs are selected.
For example, for intatt d the SFRs Cryptographic operation (FCS COP), Cryptographic
key management (FCS CKM), and Stored data integrity (FDP SDI) can be instantiated.

7 Conclusions and Future Work

In this paper, we have presented a set of patterns for expressing and analyzing depend-
ability requirements. These patterns are separated from the functional requirements and
expressed without anticipating solutions. They can be used to create re-usable depend-
ability requirement descriptions for a wide range of problems.

This paper also describes a pattern system that can be used to identify missing re-
quirements in a systematic way. The pattern system is based on the predicates used
to express the requirements. The parameters of the predicates refer to domains of the
environment descriptions and are used to describe the dependencies precisely. The pat-
tern system may also show possible conflicts between dependability requirements in an
early requirements engineering phase.

In summary, our pattern system has the following advantages:
– The dependability patterns are re-usable for different projects.
– A manageable number of patterns can be applied on a wide range of problems,

because they are separated from the functional requirements.
– Requirements expressed by instantiated patterns only refer to the environment de-

scription and are independent from solutions. Hence, they can be easily re-used for
new product versions.

– The patterns closely relate predicates and their textual descriptions. The textual
description helps to state the dependability requirements more precisely.

– The patterns help to structure and classify the dependability requirements. For ex-
ample, requirements considering integrity can be easily distinguished from avail-
ability requirements. It is also possible to trace all dependability requirements that
refer to one domain.

– The predicates are the basis of a modular construction system used to identify de-
pendencies and possible interactions with other dependability requirements.

In the future, we plan to elaborate more on the later phases of software development.
For example, we want to apply our patterns to software components to show that a
certain architecture is dependable enough for its intended usage. Additionally, we plan
to systematically search for missing dependability requirements and dependencies using
existing specifications (e.g., public Security Targets).



A Foundation for Requirements Analysis of Dependable Software 325

References

1. Common Criteria for Information Technology Security Evaluation, Version 3.1 (September
2006), http://www.commoncriteriaportal.org/public/expert/

2. Avizienis, A., Laprie, J.-C., Randall, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on Dependable and Secure Comput-
ing 1(1), 11–33 (2004),
http://se2c.uni.lu/tiki/se2c-bib_download.php?id=2433

3. Côté, I., Hatebur, D., Heisel, M., Schmidt, H., Wentzlaff, I.: A systematic account of prob-
lem frames. In: Proceedings of the European Conference on Pattern Languages of Programs
(EuroPLoP 2007). Universitätsverlag Konstanz (2008)

4. Courtois, P.-J.: Safety, reliability and software based systems requirements. In: Contribution
to the UK ACSNI Report of the Study Group on the safety of Operational Computer Systems
(June 1997)

5. Gürses, S., Jahnke, J.H., Obry, C., Onabajo, A., Santen, T., Price, M.: Eliciting confidentiality
requirements in practice. In: CASCON 2005: Proceedings of the 2005 conference of the
Centre for Advanced Studies on Collaborative research, pp. 101–116. IBM Press (2005)

6. Hatebur, D., Heisel, M.: A foundation for requirements analysis of dependable software
(technical report). Technical report, Universität Duisburg-Essen (2009),
http://swe.uni-due.de/techrep/founddep.pdf

7. Hatebur, D., Heisel, M., Schmidt, H.: Security engineering using problem frames. In: Müller,
G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 238–253. Springer, Heidelberg (2006)

8. Hatebur, D., Heisel, M., Schmidt, H.: A pattern system for security requirements engineering.
In: Werner, B. (ed.) Proceedings of the International Conference on Availability, Reliability
and Security (AReS), IEEE Transactions, pp. 356–365. IEEE, Los Alamitos (2007)

9. Hatebur, D., Heisel, M., Schmidt, H.: Analysis and component-based realization of security
requirements. In: Proceedings of the International Conference on Availability, Reliability and
Security (AReS), IEEE Transactions, pp. 195–203. IEEE, Los Alamitos (2008)

10. Hatebur, D., Heisel, M., Schmidt, H.: A formal metamodel for problem frames. In: Czar-
necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 68–82. Springer, Heidelberg (2008)

11. International Electrotechnical Commission IEC. Functional safety of electrical/electronic/
programmable electronic safty-relevant systems (2000)

12. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, Reading (2001)

13. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In: Proceed-
ings 17th Int. Conf. on Software Engineering, Seattle, USA, pp. 15–24. ACM Press, New
York (1995)

14. Laprie, J.-C.: Dependability computing and fault tolerance: Concepts and terminology.
Fault-Tolerant Computing – Highlights from Twenty-Five Years, 2–13 (June 1995),
http://lion.ee.ntu.edu.tw/Class/FTDS 2008/
Laprie-Definitions.pdf

15. Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, unobservability, pseudonymity, and
identity management - a consolidated proposal for terminology. Technical report, TU Dres-
den and ULD Kiel, 5 (2006),
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

16. Røstad, L., Tøndel, I.A., Line, M.B., Nordland, O.: Safety vs. security. In: Stamatelatos,
M.G., Blackman, H.S. (eds.) Safety Assessment and Management - PSAM 8, Eighth Inter-
national Conference on Probabilistic. ASME Press, New York (2006)

17. Santen, T.: Stepwise development of secure systems. In: Górski, J. (ed.) SAFECOMP 2006.
LNCS, vol. 4166, pp. 142–155. Springer, Heidelberg (2006)

http://www.commoncriteriaportal.org/public/expert/
http://se2c.uni.lu/tiki/se2c-bib_download.php?id=2433
http://swe.uni-due.de/techrep/founddep.pdf
http://lion.ee.ntu.edu.tw/Class/FTDS_2008/Laprie-Definitions.pdf
http://lion.ee.ntu.edu.tw/Class/FTDS_2008/Laprie-Definitions.pdf
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml


B. Buth, G. Rabe, T. Seyfarth (Eds.): SAFECOMP 2009, LNCS 5775, pp. 326–341, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Establishing a Framework for Dynamic Risk 
Management in ‘Intelligent’ Aero-Engine Control  

Zeshan Kurd1, Tim Kelly1, John McDermid1,  
Radu Calinescu2, and Marta Kwiatkowska2 

1 High Integrity Systems Engineering Group 
Department of Computer Science 

University of York, York, YO10 5DD, UK 
{zeshan.kurd,tim.kelly,john.mcdermid}@cs.york.ac.uk 

2 Computing Laboratory, University of Oxford, 
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK 

{radu.calinescu,marta.kwiatkowska}@comlab.ox.ac.uk 

Abstract. The behaviour of control functions in safety critical software systems 
is typically bounded to prevent the occurrence of known system level hazards. 
These bounds are typically derived through safety analyses and can be imple-
mented through the use of necessary design features. However, the unpredict-
ability of real world problems can result in changes in the operating context that 
may invalidate the behavioural bounds themselves, for example, unexpected 
hazardous operating contexts as a result of failures or degradation. For highly 
complex problems it may be infeasible to determine the precise desired behav-
ioural bounds of a function that addresses or minimises risk for hazardous op-
eration cases prior to deployment. This paper presents an overview of the safety 
challenges associated with such a problem and how such problems might be 
addressed. A self-management framework is proposed that performs on-line 
risk management. The features of the framework are shown in context of em-
ploying intelligent adaptive controllers operating within complex and highly 
dynamic problem domains such as Gas-Turbine Aero Engine control. Safety as-
surance arguments enabled by the framework necessary for certification are 
also outlined. 

1   Introduction 

The use of Artificial Intelligence (AI) in highly critical roles has long been a subject 
of scepticism and controversy within the safety community. Although such technol-
ogy is being increasingly acclaimed for its qualities and performance capabilities their 
inherent unpredictability has gained limited recognition within current safety devel-
opment standards and guidelines [1].  At the macro level, AI paradigms such as 
Multi-Agent Systems may be employed in the complex simulation management and 
control of Systems of Systems [2]. At the micro-level, intelligent machine learning 
paradigms can be employed for control systems such as Artificial Neural Networks 
(ANNs) and Fuzzy Logic Systems (FLSs).  



 Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ 327 

There are many motivations for using AI paradigms - some of which include ad-
dressing incomplete specifications, uncertainty, unexpected conditions, complexity 
and changing environments. Many of these AI paradigms fall into the category of 
self-* or autonomous systems. These are Self-Managed systems that are capable of 
self-configuration, self-adaptation, self-healing, self-monitoring and self-tuning [3].  

The emergence of self-governing or autonomous solutions to address complex, 
highly dynamical and unpredictable real world problems has led to major challenges 
in achieving compelling and acceptable safety assurance necessary for certification. 
Previous work on the safety of Intelligent Adaptive Systems [4-6]  has addressed 
these issues by employing design features and a set of behavioural (functional) safety 
bounds within which such paradigms are able to learn and adapt their behaviour once 
deployed. This can be achieved using self-* algorithms such as self-tuning and self-
generation [5]. Although this may be sufficient for problems where the functional 
safety requirements are well defined in some other problems it may be necessary to 
change the defined safety bounds themselves post certification in the event of unex-
pected failures or system degradation.  

In section 2, the problem of managing unexpected operating conditions is high-
lighted in context of the Gas Turbine Aero-Engine. Section 3 of the paper presents an 
argument about how such operating conditions can be addressed through adaptive 
systems. Section 4 presents a framework detailing key activities, how they contribute 
to safety assurance and major safety challenges in context of Gas Turbine Aero-
Engine control.  

2   Problem Definition: Managing Changing Requirements 

Gas Turbine Engines (GTE) are a real world example of a complex and a highly dy-
namical system that is comprised of many interconnected components. GTEs are  
 

 

 
Fig. 1. Typical Mechanical Layout of a Twin-Spool Gas Turbine Aero-Engine  

 



328 Z. Kurd et al. 

internal combustion heat engines which convert heat energy into mechanical energy. 
There are three main elements within the GTE namely; compressor, combustion 
chamber and a turbine placed on a common shaft. The GTE illustrated in Figure 1 
shows the typical mechanism for producing thrust and highlights the engine acro-
nyms. The initial stage involves atmospheric air entering the engine body. Air that is 
drawn in then enters the compressor which is divided into the LP and HP (Low and 
High Pressure) compressor units (twin-spool). Air pressure is first raised by the LP 
Compressor unit and then further increased by the HP Compressor unit. The Inlet 
Guide Vane (IGV) is used to match the air from the fan to the HP compressor charac-
teristics. Pressurised air then reaches the combustion chamber where engine fuel is 
mixed with the compressed air and ignited at constant pressure. This results in a rise 
in temperature and expansion of the gases. A percentage of the airflow is then mixed 
with the combusted gas from the turbine exit. This is then ejected through the jet pipe 
and variable nozzle area to produce a propulsive thrust.  

At the system-level, a major engine hazard is engine ‘surge’ which can lead to loss 
of thrust (XGN – ref. Figure 1) or engine destruction. Engine surge is caused by ex-
cessive aerodynamic pulsations transmitted across the engine and is of particular 
concern during high thrust demand. For typical GTEs, there is a ‘surge line’ which is 
used as a measure of aerodynamic stability. As shown in Figure 2 the ‘surge line’ 
defines various surge points across the engine speed range. To provide safety assur-
ance that the risk of engine surge is controlled a ‘working line’ is defined that speci-
fies an extreme of allowable engine behaviour at the system level.  

At the local level of the engine there are various controllers designed to fulfil en-
gine design objectives and performance efficiency. An example of such objectives is 
shown in the “expected operating conditions” column in Table 1. 

 

 

Fig. 2. Typical engine surge margins and working lines 

Table 1. Operating Context Dependant Engine Safety Objectives 

Objectives for Expected Operating Conditions Objectives for Collision Avoidance

,
... 

 

 



 Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ 329 

LPSM and HPSM are Low and High Pressure Surge Margins that indicate how close 
the engine is to instability and the surge condition. To avoid control system design flaws 
in such complex systems, rigorous analytical techniques are needed to cope with various 
types of changes. Such changes include changing goals, user requirements and opera-
tional and system conditions. Engine control is typically designed to accommodate for 
predicted changes such as expected engine degradation and wear between service inter-
vals. Suitable AI controllers can be employed to address operating context changes 
given specified safety objectives. For example, previous work [7] has demonstrated the 
use of fuzzy logic systems for control of Inlet Guide Vanes, fuel flow (WFE), and en-
gine nozzle (NOZZ) using Mamdani and Takagi-Sugeno [8] fuzzy rules. Such work has 
been shown to offer improved performance (such as thrust maximisation) over linear or 
non-linear polynomial schedulers [7]. 

In real world scenarios the engine may be expected to perform in the event of ‘un-
expected’ changes such as unexpected and abrupt excessive turbine blade wear or 
excessive turbine blade over-heating (i.e. prolonged   resulting in high 
risk of imminent blade failure). Such emergency scenarios may arise when the engine 
is on-line, in operation and where immediate maintenance is unavailable. For such 
cases, the assumed safety objectives may no longer be valid. For example, column 
“objectives of collision avoidance” in Table 1 defines appropriate safety objectives 
that enable maximum thrust to avoid imminent collision. These safety objectives are 
far more flexible than that defined for ‘normal’ expected operating contexts but are 
not suitable for ‘normal’ operating conditions. The implication of such changes in the 
objectives is that the intelligent controllers can adapt themselves to offer a suitable 
solution from a context-specific solution space. Forcing intelligent controllers to adapt 
according to a single fixed set of objectives could result in the inability of the adaptive 
system to find an appropriate solution to address the current operating conditions 
given engine capabilities and constraints. Such ‘intelligent’ solutions could contribute 
to exacerbating the risk of an accident when they are forcibly (an unavoidably) used 
out of context. Addressing unexpected engine changes through the use of intelligent 
self-* systems can greatly increase the probability of achieving system or mission 
goals when operating in stochastic environments.   

As an example, our previous work employed the Safety Critical Artificial Neural 
Network [5] (SCANN) within the GTE. SCANN is a ‘hybrid’ nonlinear function 
approximator that exploits both fuzzy and neural network paradigms for mutual bene-
fit and overcomes many problems traditionally associated with ANNs [9]. Through 
manual hazard analysis (prior to deployment) functional safety barriers (that only 
allow actions to be executed once defined preconditions are satisfied [10]) for the 
SCANN function are derived and guarante behaviour to lie within derived behav-
ioural bounds and prevent the occurrence of identified failure modes [4]. However, 
during on-line learning and adaptation the behavioural bounds are always fixed 
thereby leading to possible adaptations within a single pre-defined operating context. 
This means that under unexpected conditions the behavioural bounds may instantly 
become invalid and safety assurance can no longer be provided that the risk of hazard 
occurrence or accident can be minimised. Furthermore, it is shown that such low-level 
behavioural bounds are impractical for safety engineers to determine for multiple-
input controllers [4]. Further difficulties arise since each adaptive controller cannot be 
considered independently of other adaptive controllers. To address the problem of 



330 Z. Kurd et al. 

control under unexpected engine operating conditions safety assurance needs to be 
provided for determining valid controller solutions “on-the-fly”.  

3   Dynamic, Real-Time, On-Line Risk Management 

The term ‘risk’ is defined in Defence Standard 00-56 [11] as the combination of the 
probability, or frequency, and the consequence of an accident. Thus an argument 
that a system is ‘safe’ is primarily based upon demonstrating that an acceptable 
level of risk has been achieved. Risk management as defined in [11] comprises of 
six main activities which are hazard identification, risk analysis, estimation, evalua-
tion, reduction and acceptance. There are many risk management techniques  
employed when the system (engine) is off-line and during service intervals. For 
example, Grid computing [12] and multi-agent engine scheduling [13] are some 
approaches that employ artificially intelligent paradigms for diagnosis and progno-
sis. To address cases when the engine control system is required to operate outside 
the defined operating conditions an on-line risk management scheme is needed. 
This scheme is termed hereafter as Dynamic Risk Management. Already there are 
several domains that deal with the problem of Dynamic Risk Management in the 
field of robotics [14], financial critical decisions [15], security [16] and many oth-
ers. However, such approaches need to address the key issue of providing compel-
ling safety assurance required for certification and operation within ‘safety-critical 
environments’. So far, most forms of evidence are based upon empirical perform-
ance analysis results [15]. Sole reliance on such forms of evidence is inappropriate 
for certification.  

Figure 3 presents the top level of a dynamic risk management safety assurance ar-
gument for using intelligent adaptive systems to manage risk in unexpected operating 
conditions. The argument is expressed using Goal Structuring Notation (GSN) [17] 
and is commonly used for composing safety case argument patterns. The focus of the 
argument is to capture product evidence-based safety arguments (that is in the spirit of 
current UK Defence Standard 00-56 [11]).  

The top goal of the argument G1 abstractly refers to an “adaptive system”. This 
might be a single or n interconnected system of systems that have the ability to 
achieve evolving objectives through self-* algorithms. The instantiated definition of 
an adaptive system is defined by context C1 e.g. SCANN. The constraints associated 
with employing an adaptive system are that the behaviour must be controllable to 
address failures common across all operating conditions. For example, assurance must 
be provided that the behaviour of a neural network non-linear function approximator 
does not exhibit discontinuity of output. As captured by context C3, goal G1 requires 
a known and intentionally complete list of hazards that may be generated through well 
known conventional safety processes (i.e.  Preliminary Hazard Identification). The 
‘sufficiency’ of the risk reduction as stated in context C2 is dependent on the nature of 
the overarching argument G1 is used within. The management of risk is performed 
on-line, post certification and whilst the system is in operation as stated by C5.  



 Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ 331 

 

Fig. 3. GSN safety argument for Dynamic On-Line Risk Management 

Context C4 is concerned with the operating conditions for which the argument is 
applicable. ‘Unexpected’ conditions are not the same as ‘unknown’ conditions - 
overly-high TBT is ‘unexpected’ because of regular engine maintenance but such a 
condition is not ‘unknown’ in that it can be preconceived during safety analyses. 
Another example of unexpected but known condition is excessive environmental tem-
perature changes - where a change of only one degree centigrade in external can in-
crease internal temperatures by several tens of degrees [18]. Context C4 is specific to 
the type of problems addressed and the requirements of the solution – such as compo-
nent failures (blade material random failures) or degradation. As required for certifi-
cation, context C4 delineates the scope of applicability of the adaptive system. 

Strategy S1 decomposes the argument over major activities associated with manag-
ing risk “on-the-fly” and autonomously. As acknowledged by assumption A1, the 
dynamic risk management activities have to be conducted with the view that the sys-
tem states are not constant during these activities. Strategy S1 breaks the argument 
into five sub-goals. The first sub-goal G2 is concerned with determining the level of 
risk associated with the identified hazards. This presents a “situational awareness” of 
the current state in terms of the risk associated with known hazard occurrence.  The 
achievement of G2 will rely upon sufficient and appropriate monitoring of the envi-
ronment as stated by G7. This may include inputs from all levels of the system, envi-
ronment, components (such as current system state – health of components), safety 
objectives, mission objectives, current adaptive system configuration, their capabili-
ties, status etc. If there are faulty sensors resulting in incorrect or delayed readings 
then such issues may lead to unrepresentative risk determination and result in unnec-
essary or incorrect action (in terms of risk management). Work presented on smart 
sensors [19] attempt to address such problems. Goals G8 and G9 aim to assess risk for 
current and predicted future states. The prediction of risk is extremely important be-
cause of the on-line, real-time nature of the risk management. Without such predic-
tion, risk reduction plans may become immediately outdated and the process of risk 
management may never reach the execution of a suitable risk reduction plan (thereby 
becoming stuck in ‘observation’ and ‘orientation’ modes). The length of prediction of 



332 Z. Kurd et al. 

future risks in the temporal sense can be used later to ‘life’ proposed solutions and 
provide valid stopping conditions. For example, when attempting to address the issue 
of excessive NH shaft speed, in the time taken to find a solution the system enters a 
condition where TBT is over the prescribed limits. As a result, non-functional tempo-
ral issues will play an important role and must be addressed through prediction and 
‘validity’ of plans based on non-functional temporal properties. Prediction will rely 
upon the provision of a suitable model that captures the cause-consequence relation-
ship of relevant variables. Failures with the modelling and it’s output would result in 
‘invalid’ risk reduction plans and could introduce new risks. The argument of high 
fidelity modelling and how associated failure modes are addressed will therefore 
involve decomposition of goal G9.  

The next step for risk management is assuring that an adaptive system ‘configura-
tion’ or ‘solution’ can indeed by determined and that such a solution does not result in 
introducing new and unnecessary safety risks (G3). For example, safety risks can be 
prioritised based on the system level effects – maximising thrust to avoid an accident is 
acceptable given that risks associated with over-TBT and shaft overspeed are of lower 
priority. Risks are therefore managed depending on the highest level of risk and the 
solution (which may be non-dominant). This gives rise to the notion of determinability 
of managing such risks through an adaptive system configuration as stated in G10. Ap-
proaches to identify valid solutions can be used to further decompose goal G11. 

The behaviour of the adaptive components must comply with the derived adaptive 
system configuration solution (G5). One safety concern is that the enforcement itself 
may introduce new risks and failures especially since it is performed in real-time and 
whilst the system is in operation. For example, defining new functional safety barriers 
for the SCANN may result in problems with the current operating control point – this 
may result in a control output spike (or high derivative changes) resulting in local-
level failure modes. 

Finally, G6 provides assurance that the applicability of the adaptive system for the 
context in which it has been defined is valid.  

Due to space constraints a fully decomposed safety argument is not shown here. 
The following section shows how activities within a self-management framework can 
contribute to generating suitable forms of safety argument and assurance for Figure 3. 

4   A ‘Safe’ Self-management Framework 

A conceptual framework is illustrated in Figure 4 and aims to address the safety argu-
ment goals in Figure 3. The framework is based on the three layer architecture concep-
tual model for self-management of autonomous agent and intelligent systems [20]. 

The Component Control Layer consists of a set of adaptive interconnected and in-
terdependent controllers that will adhere to a derived risk reduction solution. For 
example, this may contain SCANN non-linear function controllers for IGV, WFE and 
NOZZ whose function can be adapted using self-* intelligent algorithms. This layer 
can report current status of its components to higher layers such as the current con-
figuration (i.e. fuzzy rules that define their current function or behaviour) in addition 
to component health, degradation and faults. Such data contributes to the internal 
situation awareness model of the current state that is used for analysis and prediction.  



 Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ 333 

 

Fig. 4. Conceptual framework for unexpected operating conditions on-line 

The Change Management Layer observes relevant environmental changes, main-
tains plans and effects changes to the Component Control Layer. The Change Man-
agement Layer responds to new states reported by the Component Layer and responds 
to new objectives required of the system introduced from the operating conditions and 
environment. This layer contains the “what” must be done, “why” it should be done 
and “how” in the form of a Safety Policy [21]. This layer also contains solutions gen-
erated from self-* intelligent algorithms and manages changes upon the adaptive 
controller behaviour in on-line fashion without introducing new risks. Because of the 
on-line application of the framework and the dynamic nature of the problem this layer 
also manages the ‘life’ or the ‘validity’ of the plans and solutions generated and re-
quests re-planning if the assumptions of the plans and solutions no longer hold for the 
current operating conditions. 

The Goal Management Layer deals with dynamic risk reduction through generat-
ing suitable planning and solutions using high-fidelity models for situation awareness 
and prediction. This layer takes as input the current states, safety goals, performance 
goals and constraints. A hierarchical relationship is formed from the opera-
tional\mission (macro) level down to local (micro) levels. This layer produces a Safety 
Policy that expresses what current prioritised safety (risk related) objectives need to 
be achieved, why they need to be achieved and by whom (adaptive controllers that 
will fulfil the Policy). In addition, the layer also generates solutions based on the input 
of the Safety Policy. Multi-Objective intelligent algorithms are employed with a high-
fidelity model of the system and prediction techniques. ‘Prediction’ of risk and future 
states has a major role in defining the ‘validity’ of the plans and solutions.  

The entire framework operates on-line and continuously thereby becoming the 
main approach for adaption of the controllers. The framework operation has also been 
defined in the spirit of the Observe-Orient-Decide-Act (OODA) loop commonly  
employed for highly dynamic environments for safety-based risk management. To 
understand how the framework contributes to the safety assurance argument the fol-
lowing section proposes possible solutions in context of the GTE. 



334 Z. Kurd et al. 

4.1   Goal Based Safety Policy Generator 

Control in GTEs often requires the satisfaction of competing performance and safety 
objectives that are related to engine degradation, stability, structural integrity, steady-
state, transient accuracy, thrust performance, stall margins and many others (Table 1). 
Multi-objective optimisation is the process by which optimal solutions are sought for 
two or more competing objectives under specified constraints. For highly complex 
problem domains it may become apparent that there is no single ideal optimal solu-
tion. An improvement in one of the objectives will lead to degradation in one or more 
of the remaining objectives. For example, in an effort to minimise fuel flow and re-
duce turbine blade temperature (safety objective) the maximum thrust force is reduced 
(degrading the performance objective). Such solutions are known as ‘non-dominated’ 
solutions. An additional problem is that whilst the engine is in operation, each of 
these objectives can be related to a safety or performance classification depending on 
the current operating conditions and risk levels. For example, for an aircraft to avoid 
an impending collision, “maximise fuel flow” may be seen as a safety objective dur-
ing an abrupt manoeuvre. Such a solution would be non-dominant since it would 
negatively impact the engine temperatures and reduce the surge margins (LPSM and 
HPSM). Alternatively, for a non-threat scenario “maximise fuel flow” can be classed 
as a ‘performance’ objective (whereby risk of platform destruction is no longer in the 
intolerable region).   

The Goal-Based Safety Policy Generator is used to address the problem of ‘what’ 
should be done and ‘why’ based on sound safety reasoning.  The inputs into this block 
are many and include goals and their status from the operational\mission\macro level 
(e.g. “avoid collision risk”, “no threat”). At the platform system level we may have 
goals (e.g. max(Thrust) immediately, min(Fuel Consumption) over 1 hour) and status 
e.g. “High NHDem”, “Low Fuel”. At the boundary of the engine level there may be 
goals i.e. min(TBT) immediately,   and conditions e.g. “Excessive Tur-
bine Blade Degradation”, “ ”.  At the local component level there are 
controllers, with health conditions that must be chosen to fulfil the hierarchy of identi-
fied safety objectives i.e. NOZZ & WFE control or WFE control only. There is a clear 
need to model the decomposition of goals, criteria\objectives, conditions, risk and 
temporal properties in real-time, such that guidance is provided on ‘how’ the self-* 
algorithms must adapt the controllers in order to address the prominent and prioritised 
set of risks.  

The problem can be managed through the derivation and maintenance of a Safety 
Policy whilst the engine is in operation. A Safety Policy describes how the physical 
integrity of the system can be protected, what must be done to protect the system and 
reasoning using dynamic system relationships. Figure 5 shows an example of an aero-
engine safety policy for high thrust demand during “Collision Avoidance”.  

There are several challenges associated with generating such a safety policy. The 
first is ‘perception’ – there must be sensors that reliably determine the current system 
and world state. Sensor flaws would result in invalid policy derivation (out of context) 
whereby risk of accident occurrence may not be reduced or even identified. With 
appropriate ‘perception’ there needs to be an appropriate model of the current goals 
and how such goals can be suitably decomposed. The model needs to capture objec-
tives from mission level to component level. This can be achieved through safety  
 



 Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ 335 

Platform Avoids 
imminent Collision

Current Engine 
Thrust is maximised 
(max(XGN))

Predicted high 
priority risk of 
collision within 3s

NHDem is Max

Engine Fuel Flow 
is maximised 
(max(WFE))

Derived engine 
safety objectives 
LPSM and HPSM > 
0.5%, TBT < 2000
For current context

Decompose 
argument over all 
adaptive controllers

G1
WFE adaptive controller 
maximises WFE

G1
IGV adaptive controller 
maximises WFE

Adaptive 
WFE 

controller 
solution 

Under derived 
safety objectives 
i.e. LPSM, HPSM

Best risk 
reduction solution 
derived by Multi-
objective solution 
algorithm

Adaptive 
IGV 

controller 
solution 

All controllers 
employed in order 
to find appropriate 
solution

Solution must be 
found within 1s

Max(XGN) positively 
influences collision 
avoidance

 

Fig. 5. Example of engine safety policy decomposition for collision avoidance  

analyses performed prior to certification and deployment and would include identifi-
cation of engine level objectives outlined in section 2. Missing or superfluous goals 
would mean solutions are not generated or do not address current operating condi-
tions. The cause-effect relationship between local objectives and system level effects 
(e.g. engine surge, turbine blade failure etc.) also needs to be understood and mod-
elled (e.g. increase in WFE increases XGN, increase in NH increases TBT). These 
relationships form a knowledge base and enable automated policy decomposition. 
Failures in the relationships would also result in a flawed policy that could in turn, 
lead to increased risk of hazard occurrence.  

Another aspect that must be addressed is defining the current safety objectives e.g. 
LPSM. These must be derived based on predictive techniques that understand short 
term and long term goal satisfaction. In the example presented in Figure 5, the colli-
sion avoidance is the current highest risk to the platform therefore surge margins can 
be drastically reduced. Although this may increase the risk of failure in the long term 
the new objective (LPSM > 0.5%) enables appropriate solutions to address the most 
highly prioritised safety risks. This also means that the risks associated with goals 
need to be determined dynamically, whilst on-line and prioritised. Current state in-
formation input into the Safety Policy generator would include the current risk levels 
associated with the current state e.g. turbine blades have degraded (medium risk), 
imminent collision (High Risk) etc. Such risk levels can determine the goal decompo-
sition of the Safety Policy. Contradictions and conflicts when deriving a suitable 
safety policy can occur where there are several high risks that need to be addressed 
simultaneously. For example, this may include conflict of resources, duties and objec-
tives as detailed in [21]. The occurrence of unexpected conditions at run-time is when 
such policy conflicts may arise. Such problems can be addressed through the use of 
high-fidelity models and decision making for on-line conflict prevention and resolu-
tion [21]. On-line detection of safety policies that are unable to be fulfilled due to 
temporal resource constraints need to be resolved by other ‘governing’ components or 
agents within the system e.g. Full-Authority-Digital-Electric-Control (FADEC).  



336 Z. Kurd et al. 

Non-functional temporal issues and prediction play an important role in generating 
the Safety Policy. Validity of the policy will be dependent on the current operating 
context. To reduce the probability of a generated safety policy requiring re-planning 
and drastic change, prediction techniques can be employed through the use of a suit-
able high-fidelity model. The prediction would determine expected future states of the 
system e.g. TBT is near limits, engine is being used heavily therefore the predicted 
time before blade failure is t. Time t can then be used to provide a ‘life’ of validity of 
the Safety Policy and where risk management techniques need to accomplish their 
activities within the allocated predicted temporal resources. To complete the Safety 
Policy, low level controller solutions need to be generated that define how current 
safety risks are addressed. 

The approach of using ‘intelligent’ solutions to solve multi-objective problems  
involving risk is not a new problem especially in the domain of finance [15] and secu-
rity [16]. For Safety Policy decomposition we have identified the challenge of ad-
dressing numerous risk-related objectives well above the level of adaptive controller 
solutions.  Techniques in Operations Research such as Non-linear Programming 
(NLP) [22] can be used to address such problems through minimising weighted sum 
of deviations from goals. Other techniques such as lexicographic goal programming 
described in [22]  categorises goals into levels such that a goal of a particular-level 
may be of greater priority than one assigned at a different level. For safety, this ap-
proach is appealing because it enables the distinction between performance and safety 
related objectives and is particularly effective when there is a clear priority ordering 
amongst the goals to be achieved. This can be achieved by inputting risk associated 
with known hazards and relating the current and predicted states to determine prioriti-
sation. The safety challenge is to generate Pareto-efficient solutions thereby resulting 
in the most effective risk reduction plan possible given the capabilities of the system. 
A sub-optimal plan could result in exacerbating existing risks. ‘Governor’ agents and 
multi-agent architectures [23] are seen as approaches to address such problems. In any 
case, safety assurance needs to be provided that the safety policy has been appropri-
ately decomposed, and that the safety policy is ‘valid’ for the current and predicted 
future operating contexts.  

4.2   Component (Controller) Solution Generator 

The Component Solution Generator adopts a bottom-up approach to determine ‘how’ 
adaptive controllers will meet the defined safety policy which is provided as input. 
Existing approaches to address unexpected operating conditions using adaptive con-
trollers include the Situational Controller Methodology (SCM) [18] which has been 
applied to GTE control. SCM uses neural network pattern recognition algorithms and 
predefined controller solutions to determine the ideal controller for the current operat-
ing context. Such a solution is ‘rigid’ in that the actual scenario may not fall into any 
particular pre-defined situation and there is no opportunity for re-planning using exist-
ing scenario-based solutions (interpolation problems). As highlighted in [18] this 
greatly limits the potential for acceptable risk reduction strategies by focussing on a 
limited and potentially inadequate solution space. Other work on the use of Evolu-
tionary algorithms for devising optimal Engine schedulers include the Multi-
Objective Genetic Algorithm (MOGA) [7]. As described in [7] MOGA has been  
 



 Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ 337 

 

Fig. 6. Approach for ‘safe’ dynamic control of solution space 

shown to be a competent algorithm for finding optimal fuzzy schedulers for GTE 
control. MOGA is composed of three levels and uses genetic algorithms to search for 
an optimal controller solution of fuzzy control rules. The first two levels generate and 
analyse the performance (using objectives in Table 1) of potential solutions at differ-
ent engine operation points (such as 54, 65, 75, 85, 95% NH). The last level selects 
the best fuzzy solution (by making trade-offs between objectives). However, such a 
scheme is limited to off-line aero-engine design and there is little or no safety assur-
ance that the behaviour of the scheduler will not lead to system-level hazards (such as 
discontinuity of function output). An alternative solution introduced here uses a com-
bination of the above mentioned approaches (including the SCANN) for mutual bene-
fit (in terms of safety assurance) and is illustrated in Figure 6.  

As depicted in Figure 6, the Component Solution Generator works on the principle 
of using high-fidelity cause-effect models of the system to generate valid risk reduc-
tion controller solutions. The first step is to input the safety policy which is generated 
in the previous phase of the framework and specifies safety objectives e.g. LPSM > 
0.5%, safety goals e.g. max(XGN) and the proposed actions contracted out to IGV 
and WFE adaptive controllers. The adaptive controllers (whether they are fuzzy, neu-
ral, reactive or deliberative agents) must address failure modes associated with their 
behaviour that are common to all possible configurations that may be applied (e.g. 
functional safety barriers). For example, failure modes such as ‘omission’ and ‘com-
mission’ of output given an input are applicable to all potential desired controller 
functions. The safety argument must therefore assure that the adaptive controller 
addresses such failures through appropriate design features or otherwise as described 
previously with the SCANN [4]. Such a safety argument can contribute to the decom-
position of goal G5 in Figure 3 whereby the adaptive controller will be able to adhere 
to proposed solutions without causing failures modes that are common to all potential 
system states.  
 

In Figure 6, the main role of the scenario-scheduler knowledge base is to reduce 
the time taken for Multi-Objective intelligent algorithms to find a valid solution and 
contribute to goal G12. The knowledge base would consist of a catalogue of known 
(foreseeable but unexpected) and unknown (self-generated) operating conditions, 
respective safety policies and controller based solutions (e.g. Takagi-Sugeno fuzzy 
rules that define controller behaviour). Part of the catalogue can be preconceived 
through safety analyses and updated through during post-deployment use when  
valid solutions are found. Through the philosophy of ‘expect the unexpected’ the time 
taken to generate a valid solution and re-planning can contribute to achieving  



338 Z. Kurd et al. 

non-functional temporal goals (e.g. avoid imminent collision). It is likely that the 
actual operating conditions may not match precisely with any particular item in the 
knowledge base. Instead, the mappings in the knowledge base can be used as a ‘start-
ing’ point for multi-objective solution searches. The unexpected conditions detailed in 
‘C4’ of the safety argument can provide input into this knowledge-base and provide 
assurance that a solution is determinable in the time provided if it is sufficiently close 
to the actual operating conditions.  

The next step is for the safety-based multi-objective learning and adaptation algo-
rithms to find potential solutions (and contribute to G10). This step must consider 
solutions and effects of the proposed solutions for all controllers defined in the safety 
policy. Employing MOGA is ideal in this case however given the inter-relationship of 
controlled variables, treating each controller independently would lead to flawed and 
conflicting solutions. As a result, this would lead to problems in providing assurance 
that a valid solution can be provided within the allocated temporal resources (G4). To 
further address the temporal resource and ‘validity’ issues, the knowledge base can be 
used as ‘seeds’ of the MOGA solution finding. Therefore MOGA is tasked with the 
role of finding a valid solution given the safety policy for all controllers simultane-
ously. This approach addresses the ‘rigidity’ of the SCM and solution space limita-
tions of the SCANN. The engine operating conditions are likely to be continuously 
changing and as a result, the Component Solution Generator is likely to continuously 
iterate. For each solution finding iteration, the current control scheme can be used as a 
starting point if the operating context is on a predicted path. If the operating context 
changes abruptly then the knowledge base can be used for a new ‘seed’. If none is 
available (or even close enough) then the multi-objective search algorithm can devise 
a solution using a default schedule.   

To address the safety concern that the generated solutions might be invalid for the 
current operating context the high-fidelity model is used to assess the risk reduction of 
the derived solution based on the safety policy. To delineate valid and invalid solu-
tions a dynamic safety discriminator function can be employed and also used as a 
stopping condition. This function takes in as input the proposed solutions, a high-
fidelity engine model and the safety policy. Predictive techniques are then used to 
determine whether the solution is an acceptable risk reduction plan. Unlike existing 
approaches, the safety discriminator function is required to identify the current states 
and predict future states (in accordance with G2 and G3). As the accuracy of any 
model can be affected significantly by even minute changes in the behaviour or state 
of the modelled system, special mechanisms need to be employed to maintain the 
high-fidelity of the model through these changes. Examples of such mechanisms 
include system state monitors and on-line machine learning modules that continu-
ously adjust the model in line with the actual behaviour of the system. Similarly strict 
requirements must be fulfilled by the on-line model analysis that determines valid 
controller solutions (e.g. function parameters) from the high-fidelity model. In par-
ticular, accurate predictions and a fast response time are essential for the dynamic risk 
management to be effective. Failures in the model and it’s fidelity would mean that 
the proposed solution may introduce or exacerbate risks. To address failures of the 
safety discriminator function it must be argued through product-based analytical and 
empirical means that the model of the system is indeed of high-fidelity (for G3 and 
G4). Potential safety argument goals for high-fidelity simulation and modelling  
 



 Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ 339 

NHDem

WFE

Controller

IGV

Controller

NOZZ

Controller

DESIRED 
ACTUATOR 

FAULT STATE

ACTUATOR 
FAULTS

SPEY ENGINE MODEL

DEGRADATION 
VARIABLES

ENGINE 
PARAMETERS

+                
-

ENVIRONMENTAL 
VARIABLES

 
 

Fig. 7. (a) Delineation of solutions through prediction (b) block diagram of the Rolls Royce 
Aero-Engine Model 

 
defined in [24] can be used to decompose such a safety argument goal. Safety re-
quirements defined for the Situation Awareness Model defined in [14] also apply to 
the high-fidelity system model and contribute to decomposing goals G2, G3 and G4.  

Determining potential controller solution failures such as function derivatives and 
function output extremes will rely upon the effects exhibited by the high-fidelity 
model. The limitation of such an approach is that every proposed solution needs to be 
checked against the model. This can be time consuming and places heavy reliance on 
the system model. An example of the safety discriminator function is presented in 
Figure 7 (a) and shows how controller solutions are rejected or accepted based on 
various current and predicted risk factors. This is produced using a Matlab and Simu-
link model of a Rolls Royce GTE as shown in Figure 7 (b). The model accommodates 
degradation variables of various parts of the engine as well as actuator faults and is an 
ideal example for analysing the benefits of ‘dynamically’ changing functional safety 
requirements.   

To address goal G3 in Figure 3, assurance needs be provided that the devised solu-
tions can be ‘safely’ enforced and applied to the current on-line control of actuators. 
The actual solution will inevitably depend on the precise nature of the adaptive sys-
tems employed. In this case, if we consider the SCANN operating within the GTE, the 
‘old’ controller behaviour must be switched with the ‘new’ controller behaviour. An 
approach to address this problem is to employ additional ‘smoothing’ functions that 
enable the transition between the solutions. Such ‘smoothing’ functions would ad-
dress derivative changes that would introduce new risks in terms of hardware failure 
e.g. if the rate of opening the engine nozzle is too fast. Such limiters can be defined 
on the boundaries of the adaptive controller function and must be designed to enable 
transition within the ‘life’ and temporal validity of the safety policy. The provision of 
modifications within the component layer of the framework i.e. component creation, 
deletion and interconnection provides the necessary capabilities to address the failure 
modes associated with enforcing a safety policy.  



340 Z. Kurd et al. 

5   Conclusions 

This paper has shown the challenges of exposing ‘intelligent’ adaptive systems to 
unexpected operating conditions in the context of a highly dynamical and complex 
problem domain. The presented self-management framework identifies key activities 
and shows how they contribute to the dynamic risk management safety argument. The 
framework has shown how behaviour-based approaches for generating safety argu-
ments are highly reliant on the provision of high-fidelity models. Through the frame-
work, low level component solutions are shown to be highly dependent on the man-
agement of a hierarchy of goals and constraints. Also outlined is how features of the 
framework enable controller solutions to be generated on-line and how prediction and 
historical knowledge base can contribute to addressing identified safety challenges 
such as validity and non-functional resources. Much work remains for a complete 
solution and the focus of remaining work includes the provision of safety assurance 
for automated safety policy generation, high-fidelity modelling and employing a 
multi-agent architecture for problem solving that would enable a highly scalable and 
modular solution. 

Acknowledgements 

The work described in this paper was funded by the EPSRC under the LSCITS (Large 
Scale Complex Information Technology Systems) programme.  We are also grateful 
to Parta Dutta from SRC Rolls-Royce for providing useful domain knowledge. 

References 

1. IEC, 61508: Fundamental Safety of Electrical / Electronic / Programmable Electronic 
Safety Related Systems, International Electrotechnical Commission (1999)  

2. Heo, J.S., Lee, K.Y.: A multi-agent system-based intelligent control system for a power 
plant. In: IEEE Power Engineering Society General Meeting, vol. 2, pp. 1050–1055 (2005) 

3. Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement autonomic IT 
systems. In: Proceedings of the 31st International Conference on Software Engineering 
(ICSE 2009), Vancouver, British Columbia, Canada (2009) 

4. Kurd, Z.: Artificial Neural Networks in Safety Critical Applications, PhD Thesis, Depart-
ment of Computer Science, University of York, York (2005) 

5. Kurd, Z., Kelly, T.P.: Using Safety Critical Artificial Neural Networks in Gas Turbine 
Aero-Engine Control. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005. 
LNCS, vol. 3688, pp. 136–150. Springer, Heidelberg (2005) 

6. Kurd, Z., Kelly, T.: Using Fuzzy Self-Organising Maps for Safety Critical Applications. 
Reliability Engineering & System Safety 92(11), 1563–1583 (2007) 

7. Chipperfield, A.J., Bica, B., Fleming, P.J.: Fuzzy Scheduling Control of a Gas Turbine 
Aero-Engine: A Multiobjective Approach. IEEE Trans. on Indus. Elec. 49(3) (2002) 

8. Sugeno, M., Takagi, H.: Derivation of Fuzzy Control Rules from Human Operator’s Con-
trol Actions. In: Proc. of the IFAC Symp. on Fuzzy Information, Knowledge Representa-
tion and Decision Analysis (1983) 



 Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ 341 

9. Kurd, Z., Kelly, T.P.: Safety Lifecycle for Developing Safety-critical Artificial Neural 
Networks. In: Anderson, S., Felici, M., Littlewood, B. (eds.) SAFECOMP 2003. LNCS, 
vol. 2788, pp. 77–91. Springer, Heidelberg (2003) 

10. Hollnagel, E.: Accidents and Barriers. In: Proceedings of Lex Valenciennes, Presses Uni-
versitaires de Valenciennes, pp. 175–182 (1999) 

11. MoD, Defence Standard 00-56 Issue 3: Safety Management Requirements for Defence 
Systems, Issue 3, Part 2, UK Ministry of Defence (2004) 

12. Austin, J.: A Grid Based Diagnostics and Prognosis System for Rolls Royce Aero Engines: 
The DAME Project. In: 2nd International Workshop on Challenges of Large Applications 
in Distributed Environments (CLADE 2004), Honolulu, Hawaii, USA. IEEE Computer 
Society, Los Alamitos (2004) 

13. Stranjak, A., et al.: A multi-agent simulation system for prediction and scheduling of aero 
engine overhaul. In: Proceedings of the 7th international joint conference on Autonomous 
agents and multiagent systems, International Foundation for Autonomous Agents and Mul-
tiagent Systems: Estoril, Portugal, pp. 81–88 (2008) 

14. Wardzinski, A.: Safety Assurance Strategies for Autonomous Vehicle. In: Harrison, M.D., 
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 277–290. Springer, Heidel-
berg (2008) 

15. Subramanian, H., et al.: Designing safe, profitable automated stock trading agents using 
evolutionary algorithms. In: Proceedings of the 8th annual conference on Genetic and evo-
lutionary computation, pp. 1777–1784. ACM, Seattle (2006) 

16. Torrellas, G.A.S.: A Framework for Multi-Agent System Engineering using Ontology 
Domain Modelling for Security Architecture Risk Assessment in E-Commerce Security 
Services. In: Proceedings of 3rd IEEE International Symposium on Network Computing 
and Applications (NCA 2004), pp. 409–412. IEEE Computer Society, Cambridge (2004) 

17. Kelly, T.P.: Arguing Safety – A Systematic Approach to Managing Safety Cases, Ph.D. 
Thesis, Department of Computer Science, University of York, York, UK (1998) 

18. Andoga, R., Madarasz, L., Fozo, L.: Digital Electronic Control of a Small Turbojet Engine 
- MPM 20. In: Proceedings of International Conference on Intelligent Engineering Systems 
(INES 2008). IEEE, Miami (2008) 

19. Bishop, P., et al.: Justification of smart sensors for nuclear applications. In: Winther, R., 
Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005. LNCS, vol. 3688, pp. 194–207. Springer, 
Heidelberg (2005) 

20. Magee, J., Kramer, J.: Self-Managed Systems: an Architectural Challenge. In: Interna-
tional Conference on Software Engineering 2007 Future of Software Engineering, Wash-
ington, DC, USA, pp. 259–268. IEEE Computer Society, Los Alamitos (2007) 

21. Hall-May, M., Kelly, T.P.: Towards Conflict Detection and Resolution of Safety Policies. 
In: Proceedings of 24th International System Safety Conference, System Safety Society, 
Albuquerque, USA (2006) 

22. Deb, K.: Non-linear Goal Programming Using Multi-Objective Genetic Algorithms, in 
Computational Intelligence, Universität Dortmund (2004) 

23. Hall-May, M., Kelly, T.P.: Using Agent-based Modelling Approaches to Support the De-
velopment of Safety Policy for Systems of Systems. In: Górski, J. (ed.) SAFECOMP 2006. 
LNCS, vol. 4166, pp. 330–343. Springer, Heidelberg (2006) 

24. Alexander, R.: Using Simulation for Systems of Systems Hazard Analysis, PhD Thesis, 
Department of Computer Science, University of York, York (2007) 

 



Author Index

Aas, Andreas Lumbe 243
Åkerberg, Johan 67
Alberdi, Eugenio 18
Althammer, Egbert 159
Ayton, Peter 18

Baumann, Christoph 187
Becker, Uwe 4
Beckert, Bernhard 187
Bilich, Carlos G. 103, 132
Bitsch, Friedemann 32
Björkman, Mats 67
Blasum, Holger 187
Blum, Michael 270
Bormer, Thorsten 187
Bozzano, Marco 173
Braband, Jens 46
Butka, Brian 201

Calinescu, Radu 326
Castorini, Elisa 81
Cimatti, Alessandro 173

Di Pietro, A. 81
Dittmann, Jana 145
Dixon, Roger 270
Domis, Dominik 297

Faza, Ayman Z. 257
Fetzer, Christof 283
Feucht, Ulrich 32
Fioriti, Vincenzo 81

Ge, Xiaocheng 215
Gerst, Christian 55
Gough, Huw 32
Gran, Bjørn Axel 55
Gruber, Thomas 159

Hatebur, Denis 311
Haxthausen, Anne E. 1
Heisel, Maritta 311
Hoppe, Tobias 145
Hu, Zaijun 103, 132
Huhn, Michaela 118

Johnsen, Stig Ole 243

Katoen, Joost-Pieter 173
Kelly, Tim 326
Kiltz, Stefan 145
Kornecki, Andrew J. 201
Kurd, Zeshan 326
Kwiatkowska, Marta 326

Märtz, Josef 55
McDermid, John 215, 326
McMillin, Bruce M. 257
Miedl, Horst 55

Nguyen, Viet Yen 173
Noll, Thomas 173

Paige, Richard F. 215
Povyakalo, Andrey A. 18

Raihan, M.F. 229
Roveri, Marco 173
Ruzzante, Silvia 81

Schäbe, Hendrik 46
Schiffel, Ute 283
Schiller, Frank 270
Schoitsch, Erwin 159
Sedigh, Sahra 257
Simensen, John Eidar 55
Skramstad, Torbjørn 243
Steffen, Thomas 270
Strigini, Lorenzo 18
Süßkraut, Martin 283

Tofani, Alberto 81
Trapp, Mario 297

Uddin, M.G. 229

Vache, Geraldine 89
vom Hövel, Rüdiger 46

Zalewski, Janusz 201
Zechner, Axel 118
Zulkernine, M. 229


	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	A Domain-Specific Framework for Automated Construction and Verification of Railway Control Systems
	Introduction
	Development and Verification Approach
	Automated Construction
	Automated Verification

	Related Work
	References


	Medical Systems
	Model-Based Development of Medical Devices
	Introduction
	Requirements Engineering
	Risk Management Process
	Implementation Process
	Testing and Verification Process
	Conclusion
	References

	Why Are People’s Decisions Sometimes Worse with Computer Support?
	Introduction
	Literature on Automation Bias, Complacency and Trust
	Scope and Terminology
	Automation Bias, Complacency and Trust

	A Case Study: Computer Aided Detection (CAD) for Mammography
	Diverse Causes of Errors by Humans with Computer Support
	Discussion
	Uses of This Approach
	Limitations, Quantitative Aspects

	Conclusions
	References


	Industrial Experience
	Safety-Related Application Conditions – A Balance between Safety Relevance and Handicaps for Applications
	Introduction
	Meaning and Purpose of SACs
	Benefits of SACs
	Definition of SACs

	Related Works and State of the Art
	What Is Necessary for Defining and Handling SACs?
	Challenges and Risks with SACs
	Demands for Defining and Handling SACs

	Conditions for Defining SACs
	Quality Criteria for SACs
	Procedures for SAC Formulation and Handling
	SAC Formulation
	Compliance with and Evidence of SACs of Subordinated Items

	Conclusions
	References

	Probability of Failure on Demand – The Why and the How
	The Problem
	Risk
	Risk Reduction According to the Philosophy of the THR
	Risk Reduction According to the Philosophy of the PFD
	Comparison of the Philosophies
	Relation between the PFD and the PFH
	Relation between the PFD / PFH and the THR
	Relation between the PFD and PFH in the Table of IEC 61508
	Problems with the PFD

	An Alternative Approach
	Conclusion
	References

	Establishing the Correlation between Complexity and a Reliability Metric for Software Digital I&C-Systems
	Introduction
	Background
	Complexity Measurement of Function Blocks and Logic Diagrams
	Complexity Evaluation of the Function Blocks
	Complexity Evaluation of the Logic Diagrams
	Available Sources of Information

	Approach
	Building the BBN
	Nodes in the BBN

	Assigning Conditional Probability Tables and Validating the BBN
	Conditional Probability Tables
	Validating the BBN

	Discussion
	Input Parameters
	Node Combination and the BBN
	Applying the BBN to Other Problems

	Conclusion
	References


	Security Risk Analysis
	Exploring Network Security in PROFIsafe
	Introduction
	Related Work
	BasicsofPROFIsafe
	Black Channel
	Safety Measures of PROFIsafe
	PROFIsafe Container Structure
	Consistency Check of PROFIsafe Container
	Virtual Consecutive Number

	Security Attack on PROFIsafe
	Breaking the Code
	Attacking PROFIsafe Containers
	Test Setup
	Attack Results

	Network Security Countermeasures
	Conclusions
	References

	Modelling Critical Infrastructures in Presence of Lack of Data with Simulated Annealing – Like Algorithms
	Introduction
	Simulated Annealing and Graphs
	Modelling the Inter-dependency
	Description of the SAFE Algorithm
	Results

	Conclusions
	References

	Environment Characterization and System Modeling Approach for the Quantitative Evaluation of Security
	Introduction
	Related Work
	Approach Description
	Environment Study
	Model Description
	Numerical Analysis

	Conclusion and Perspectives
	References


	Safety Guidelines
	Experiences with the Certification of a Generic Functional Safety Management Structure According to IEC 61508
	Introduction
	Solution Approach
	Major Requirements
	Overall Concept Design
	Development Process of the FSM Add-on
	Integration with ABB’s Business Decision Model
	Certification

	Conclusions
	References

	Analysing Dependability Case Arguments Using Quality Models
	Introduction
	Background
	Goal Structuring Notation
	Related Work

	Structural Analysis
	UML Profile for GSN
	Structural Wellformedness
	Argumentation Patterns
	Tool Support

	Conclusiveness of Argumentation
	Quality Model for Dependability Argumentations
	Criteria for Dependability
	Assessment Procedure

	Case Study
	Conclusion
	References

	Experience with Establishment of Reusable and Certifiable Safety Lifecycle Model within ABB
	Introduction
	Solution Approach
	Initial Consideration
	Key Design Constraints
	Concept for Design
	Development Strategy
	SLCM Framework

	Design Check
	Our Experience
	Conclusions
	References


	Automotive
	Automotive IT-Security as a Challenge: Basic Attacksfrom the Black Box Perspective on the Example of Privacy Threats
	Introduction / Motivation
	Increasing Attacks on Privacy Issues in the Automotive Domain
	Examples for Privacy Related Data in Automotive IT Environments
	Personalisation and Privacy Threats – Exemplary Scenarios

	Respecting Automotive Attacks from the Black Box Perspective
	Automotive Attacks: Common Starting Points and Basic Principles
	The Potential Range of Automotive Attack Implications

	Enforcing Information Leakage Today: A Practical Attack
	Our Test Environment and Introduction of the Selected Attack Target
	Analytically Examining the Gateway from the Black Box Perspective
	Conceiving an Exemplary Black-Box Attack on the Gateway ECU
	Advancements of the Attack, Further Test Results and Final Remarks

	Privacy Preserving Measures for Future Automotive IT Security
	Summary and Conclusion
	References

	Safety Requirements for a Cooperative Traffic Management System: The Human Interface Perspective
	Improving Road Traffic Safety by a Co-operative Integrated Traffic Management System
	RAMSS Analysis for COOPERS
	Human Factors in COOPERS
	Human Perception
	Human Error

	COOPERS HMI Construction
	RISKS in the HMI
	The Range of Human Visual Perception
	European Standard for Automotive HMI Safety and Usability
	COOPERS HMI Requirements

	Conclusions and Future Work
	References


	Aerospace
	The COMPASS Approach: Correctness, Modelling and Performability of Aerospace Systems
	Introduction
	The Modeling Language
	Specifying Nominal Behavior
	Specifying Faulty Behavior
	Specifying Observability
	Formal Semantics
	Comparison with AADL

	Analyzing System Specifications
	Property Specification and Validation
	Verification of Functional Properties
	Verification of Safety/Dependability Aspects
	Diagnosability Analysis
	Quantitative Analyses

	Tool Support
	Conclusions and Future Work
	References

	Formal Verification of a Microkernel Used in Dependable Software Systems
	Introduction
	Features of the PikeOS Hypervisor
	Verification Methodology and Toolchain
	Verification of Assembly Code and Low-Level Functions
	Defining the Semantics of Privileged Mode PowerPC Assembly
	Verifying Low-Level PikeOS Functions

	System Call Verification
	Conclusion
	References

	Issues in Tool Qualification for Safety-Critical Hardware: What Formal Approaches Can and Cannot Do
	Introduction
	PLD Design Flow and Formal Approaches
	Review of the Use of Formal Approaches in Hardware Design Tools
	Engineering Approach to PLD Design Verification

	Safety Issues
	Background
	Synthesis Issue #1 - Getting Less Than Expected
	Synthesis Issue #2 - Getting More Than Expected
	Synthesis Issue #3 - Hardware That Is Non-functional in Normal Operation

	Hardware Specific Issues
	Timing Issues
	Signal Issues
	Power Issues

	Conclusions


	Verification, Validation, Test
	Probabilistic Failure Propagation and Transformation Analysis
	Introduction
	Current Techniques for Failure Analysis
	Contribution and Structure of the Paper

	Background
	Failure Modelling
	FPTC Analysis Technique
	Analysis of FPTC

	Probabilistic Modelling Extensions to FPTC
	Probability Property
	Transitive Behaviour Model
	System Model
	Revisiting Limitations of FPTC
	Analysing the System
	Model Checking

	Example
	Conclusions
	References

	Towards Model-Based Automatic Testing of Attack Scenarios
	Introduction
	Attack Testing Framework Overview
	Testing Attack Scenarios
	Attack Test Driver Architecture
	Context-Aware Attack Testing
	The Testing Process Illustrated

	Implementation and Experiments
	Related Work
	Conclusions and Future Work
	References

	CRIOP: A Human Factors Verification and ValidationMethodology That Works in an Industrial Setting
	Introduction
	Verification and Validation (V and V)
	The CRIOP Methodology

	Materials and Methods
	Research Design
	Interviews
	Online Survey
	Workshops

	Results
	Interviews
	Online Survey
	Workshops

	Discussion
	Interviews
	Online Survey
	Workshops
	Suggested CRIOP Improvements
	Limitations of Our Study

	Conclusion
	References


	Fault Tolerance
	Reliability Analysis for the Advanced Electric Power Grid: From Cyber Control and Communication to Physical Manifestations of Failure
	Introduction
	Related Work
	Effects of Cyber Control on Grid Reliability
	Software-Induced Failures in Cyber Control
	Failure Mode 1: Fail-Limit to Line Capacity
	Failure Mode 2: Erroneously Set Flow to Line Capacity
	Failure Mode 3: Erroneously Set Flow to 80% of Correct Value
	Comparison of Failure Modes

	Software Fault Injection to the Cyber Network
	Conclusions
	References

	Increasing the Reliability of High Redundancy Actuators by Using Elements in Series and Parallel
	Introduction
	Fault Tolerance
	High Redundancy Actuator
	List of Symbols
	Structure of the Paper

	Specification of Actuation Elements
	Specification of the Nominal Performance
	Specification of Faults
	Specification of Reliability
	Capability Distributions

	Aggregation on a Single Level
	Limiting Capabilities
	Additive Capabilities

	Hierarchical Aggregation
	Notation and Formalism
	Iterative Reliability Calculation

	Examples
	Conclusions
	References

	AN-Encoding Compiler: Building Safety-Critical Systems with Commodity Hardware
	Introduction
	Related Work
	AN-Encoding of an Application
	Evaluation
	Conclusion
	References


	Dependability
	Component-Based Abstraction in Fault Tree Analysis
	Introduction
	Safe Component Model
	Challenge: Fault Tree Analyses of Architectural Design
	Abstraction Requirements
	Abstraction Algorithms
	Structure-Independent Form
	Merging Internal Failure Modes
	Example

	Related Work
	Summary and Conclusion
	References

	A Foundation for Requirements Analysis of Dependable Software
	Introduction
	Problem Frames
	Patterns for Dependability Requirements
	Confidentiality
	Integrity - Random Faults
	Integrity - Security
	Availability - Random Faults
	Availability - Security
	Reliability, Authentication,Management, and Secret Distribution

	Working with Dependability Requirement Patterns
	Case Study
	Related Work
	Conclusions and Future Work
	References

	Establishing a Framework for Dynamic Risk Management in ‘Intelligent’ Aero-Engine Control
	Introduction
	Problem Definition: Managing Changing Requirements
	Dynamic, Real-Time, On-Line Risk Management
	A ‘Safe’ Self-management Framework
	Goal Based Safety Policy Generator
	Component (Controller) Solution Generator

	Conclusions
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




