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Preface 

MobiSec 2009 was the first ICST conference on security and privacy in mobile infor-
mation and communication systems. Within the vast area of mobile technology re-
search and application, the intention behind the creation of MobiSec was to make a 
small, but unique, contribution. Our aim in conceiving this conference was to build a 
bridge between top-level research and large-scale application of novel kinds of infor-
mation security for mobile devices and communication. It has been a privilege to 
serve this event as a General Chair.   

In this, first, year, MobiSec already attracted some excellent scientific papers, ap-
plication studies, and contributions from industrial research from all over the world. 
Apart from that, the conference emphasis was on European leadership, by featuring a 
keynote from the European Commission, and contributions from the European 
Commssion-funded research projects SWIFT and OpenTC, which exhibited the 
strength of European industry and academia in the field. MobiSec's focus on knowl-
edge transfer was supported by a tutorial on the Host Identification Protocol––a very 
topical contribution, which emphasizes the need to build in security in the autono-
mous, unsupervised parts of networking, in a cross-layer approach.  

The papers at MobiSec 2009 dealt with a broad variety of subjects ranging from is-
sues of trust in and security of mobile devices and embedded hardware security, over 
efficient cryptography for resource-restricted platforms, to advanced applications such 
as wireless sensor networks, user authentication, and privacy in an environment of 
autonomously communicating objects. With hindsight a leitmotif emerged from these 
contributions, which corroborated the idea behind MobiSec. A set of powerful tools 
have been created in various branches of the security discipline, which await com-
bined application to build trust and security into mobile (that is, all future) networks, 
autonomous and personal devices, and pervasive applications.    

Many people contributed to the success of MobiSec. It was a privilege to work with 
these dedicated persons, and I would like to thank them all for their efforts. The Orga-
nizing Committee as a whole created a frictionless, collaborative work atmosphere, 
which made my task an easy one. Antonio Lioy, who also did a lot of the local organi-
zation together with Daniele Mazzocchi, and Neeli Prasad did a great job assembling 
the Technical Program Committee and running the paper submission and review proc-
ess. A high-quality conference cannot be created without the help of the distinguished 
members of the Program Committee––the soul of each scientific event. Shiguo Lian 
meticulously oversaw the preparation of the conference proceedings. The keynote 
speech by Bart van Caenegem of the EU Commission is very much appreciated, as 
well as the presentations by exponents of the EU research projects. Andrei Gurtov 
contributed a tutorial on an important and current topic. Special credit is due to Ger-
gely Nagy, our conference coordinator from ICST, and his colleagues there, for their 
excellent support during the preparation of the event. It is hard to find an administrator 
under this workload who shows such responsiveness, competence, and pragmatic 
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attitude. Beatrix Ransburg and Eszter Hajdu oversaw the compilation of the CD ROM 
proceedings and this proceedings volume with calm and professionalism. Finally, I 
thank Imrich Chlamtac and the members of the Steering Committee for their support 
and guidance during these months and for entrusting me with the task of chairing 
MobiSec 2009.   

Organizing a conference which is the first of its kind is always an adventure, if not 
venturous in the turbulent times we live in. We are delighted to have been part of it. 
Concluding, I am confident that all participants found MobiSec a stimulating and 
thought-provoking event, and enjoyed their time in Turin. We are looking forward to 
next year's MobiSec.   

 
 

July 2009 Andreas U. Schmidt 
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On Trust Evaluation in Mobile Ad Hoc Networks

Dang Quan Nguyen1, Louise Lamont1, and Peter C. Mason2

1 Communications Research Centre, Canada
{Dang.Nguyen,Louise.Lamont}@crc.gc.ca

2 Defence Research & Development, Canada
Peter.Mason@drdc-rddc.gc.ca

Abstract. Trust has been considered as a social relationship between
two individuals in human society. But, as computer science and network-
ing have succeeded in using computers to automate many tasks, the con-
cept of trust can be generalized to cover the reliability and relationships
of non-human interaction, such as, for example, information gathering
and data routing. This paper investigates the evaluation of trust in the
context of ad hoc networks. Nodes evaluate each other’s behaviour based
on observables. A node then decides whether to trust another node to
have certain innate abilities. We show how accurate such an evaluation
could be. We also provide the minimum number of observations required
to obtain an accurate evaluation, a result that indicates that observation-
based trust in ad hoc networks will remain a challenging problem. The
impact of making networking decisions using trust evaluation on the
network connectivity is also examined. In this manner, quantitative de-
cisions can be made concerning trust-based routing with the knowledge
of the potential impact on connectivity.

Keywords: Ad hoc networks, security, trust evaluation, connectivity.

1 Introduction

A Mobile ad hoc network (MANET) consists of auto-configuring nodes that
communicate with each other using wireless equipment. Such networks are in-
frastructureless, self-deploying and do not require a centralized entity. These
advantages make MANETs suitable for critical uses: tactical military networks,
disaster recovery, etc. Messages between two out-of-range nodes are routed in a
multi-hop way, through intermediate nodes selected by MANET routing proto-
cols (e.g. OLSR [1]).

These characteristics have a deep impact on security issues as they pose new
challenges to the design of security solutions. One of these issues is concerned
with trust management. The ad hoc environment is distributed and changing,
meaning nodes can join and leave the network at any time. Therefore, traditional
identification schemes based on a centralized authentication server are generally
unsuitable for ad hoc networks. Ad hoc networks require new trust management
designs to support a distributed environment and to be more robust against
topology changes. One of the main components of trust management is trust

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 1–13, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009



2 D.Q. Nguyen, L. Lamont, and P.C. Mason

evaluation, or how to estimate the degree of trust between two nodes in an ad
hoc network.

In this paper, we focus on the evaluation of trust. We define trust in the
context of ad hoc networks and show how observations can be used to build an
accurate estimate of trust. We also investigate the effect of decisions, based on
trust evaluation, on one of the important properties of ad hoc networks which is
connectivity. Indeed, trust decisions based on strict selection policy may result
in few nodes selected, thus the network topology made of trusted nodes may be
disconnected.

The remainder of this paper is organized as follows. In Section 2, we describe
the existing work on trust computation. We start our study by giving a new
definition of trust in ad hoc networks in Section 3 and discuss some aspects of
this definition. Trust evaluation and estimation accuracy are explained in Sec-
tion 4. We investigate the effect of trust evaluation on the network connectivity
in Section 5. We conclude this paper in Section 6.

2 Related Work

There has been a significant amount of work done on trust. One of the earliest
results on the topic within computer science [2] shows that trust can be formal-
ized as a computational concept. Since then, research on trust has evolved in
two main directions: trust evaluation and trust sharing.

Trust evaluation is concerned with the problem of estimating the trustworthi-
ness of an entity (called a node) within a system, usually viewed as a network
of interacting nodes. In [3], the authors propose a model for trust computation.
This model defines trust as a subjective expectation a node has about another
node based on the history of their encounters. This definition is probably closest
to the one we will present. However, the work done in [3] is limited in the sense
that it only takes into account a node’s binary actions (cooperate or defect)–
that is, the trust is discrete.

In [4], the authors use entropy to measure the uncertainty in trust relationship.
This entropy is obtained from the probability that a node will perform some
action. Such a probability is useful because it can be used as factor in predicting
the behaviour of a node; that is, it can be used to estimate its trustworthiness.
The authors do not, however, specify how this probability of node’s compliance
is arrived at in the first place.

On the other hand, trust sharing is concerned with the problem of sharing the
estimation of a node’s trustworthiness with other (usually distant) nodes and,
conversely, of synthesizing all the received estimations. In [5], the authors propose
an algorithm allowing indirect neighbours to estimate the trustworthiness of each
other based on the trustworthiness of direct neighbours, as long as there exists
a path between them. This algorithm of trust sharing treats it as a single real
value between 0 and 1. It also assumes that trust propagation is multiplicative.
Thus, given a node k which is a direct neighbour of nodes i and j, the level of
trust node i puts in node j is the product of the trust values of node i in node



On Trust Evaluation in Mobile Ad Hoc Networks 3

k and that of node k in node j. Trust sharing models such as this assume some
transitivity of trust, but put stronger emphasis on information obtained from
direct neighbours while attenuating trust values received via a multi-hop route.
That is, local information carries a greater weight yet can still contribute to a
global trust-sharing model.

In [6], the authors take a different approach to sharing trust values by consid-
ering trust as an opinion composed of a pair of real numbers (trustvalue, confi-
dence) ∈ [0, 1]× [0, 1]. While trustvalue is the estimation of the trustworthiness
that node i puts in node j, confidence is the accuracy of the trust value assign-
ment. In other words, confidence can be viewed as the quality of the estimation
of trust. Therefore, when a node synthesizes opinions about a distant node, it
must take into consideration the confidence value of each local trustvalue. We
believe that this approach can give a more objective result of trust estimation
than in [5] because it recognizes the subjectivity of each local trust estimation.
This type of approach would lend itself well to a trust model that used a fuzzy
logic reasoning engine.

In this paper, we consider the problem of trust evaluation and show how the
quality of trust estimation can be quantified. To start, we state our definition of
trust in the next Section.

3 Definition of Trust

Many existing definitions of trust are derivatives of authentication techniques
which require encryption and a centralized authentication server. While authen-
tication can provide a quick and efficient way to identify a node, implement-
ing a practical and efficient authentication algorithm in an ad hoc environment
remains an open problem [7]. We wish to decouple aspects of trust from au-
thentication so that we may create an additional factor to be used as a tool in
securing MANETs. One of the advantages of having a quantifiable and continu-
ous value of trust available is that it allows flexibility in making certain security
decisions so that trade-offs between security and functionality can be taken into
consideration. We will return to this concept in Section 5.

We define the notion of trust of a given node in a MANET as the consistency of
the node’s behaviour. The behaviour is observed by other nodes in what is known
as a watchdog approach [8]. A consequence of the watchdog approach is that it
is observer-dependent; that is, an observed node can have different observational
outcomes from the perspective of different neighbours. Let us define the capacity
of a node to be the innate properties of that node. The node’s behaviour will
then be inherently tied to, and should reflect, its capacity. If a node behaves
inconsistently, it is either because the node is being unfaithful to its capacity,
in which case it is acting in an untrustworthy manner, or external factors (e.g.
multipath and fading) are affecting its performance. In the latter case, we will
assume that the observing nodes are also monitoring the environment and the
link quality, can detect such factors, and compensate for them when making
their observations.
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Some examples of a node’s behaviour related to security could be:

– The node’s ability to reliably transmit periodic status updates that reflects
parameters such as battery level, location and configuration.

– Forwarding packets in a timely manner based on management information
base (MIB) bounded delay.

– The difference in the amount of data that should be forwarded and that is
actually forwarded.

Our working definition of trust is meant to extract all aspects related to the
capacity (as we have defined it) of a node from previous trust models. We do this
for the purpose of allowing a quantitative measure of trust to be made which can
then be used for making analytical decisions that affect network security. With
this new definition of trust, nodes can proactively measure the trustworthiness
of their neighbours through observation, without the need of challenging them.
Moreover, the network does not need any centralized authentication server to
assert signatures.

This definition of trust also allows us to decouple a node’s capacity and its
trustworthiness. For example, a node may have a large response delay because
the throughput aspect of its capacity is low, but this node can still be trusted by
other nodes as long as its response delays remain consistently large. As a result,
for certain tasks nodes in the network could be selected as a function of both
their trustworthiness and their capacities, e.g.: selecting highly capable nodes
among those who are above a specified trust threshold.

On the assumption that nodes can monitor the behaviour of their neighbours
using a variety of metrics, we will, for the rest of this paper, denote the outcome
of a behaviour observation by X , a continuous random variable. X takes values
between 0 and 1, thus the outcomes are normalized in the entire network. X is
obtained by direct observation by a node i on a node j’s behaviour. Values of
X can be propagated to the other nodes in the network who can use them as
they see fit. Therefore, a given node k can obtain many observation results of a
distant node i from different sources (or observers).

The above assumption demands that the observers accurately report all ob-
servation results and the use of some cryptography mechanisms prevents the ob-
servation results from being modified while they are propagated in the network.
The first assumption requires objectivity and the second trust propagation. These
are strong assumptions and it is well recognized that both issues are themselves
complex problems in MANET security that need to be addressed separately.

4 Accuracy of Trust Evaluation

In this Section, we are interested in trust as a measure of the consistency of a
node’s behaviour as objectively observed by one or many different observers.

4.1 Estimation of a Node’s Capacities

Let X1, X2, . . . , Xn be different observation outcomes of a node i reported by dif-
ferent sources to a node j. If node j computes a weighted average of these values to
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estimate the capacity of i, then our main concern is how accurate this estimation
would be when compared to node i’s true capacity. We can subsequently quantify
the number of observations needed by node j in order to achieve an acceptable
level of confidence in its estimation of node i’s capacity. Node j can then decide
whether it should trust node i to have such an estimated capacity.

Let Y = c1X1 + c2X2 + . . . + cnXn be an estimation of node i’s capacity,
with 0 � ci � 1 and

∑n
i=1 ci = 1. We introduce the weights ci to allow node j

to assign different importance to the values Xi, for example: recent observations
are more important than old ones. All random variables Xi are assumed to be
independent and identically distributed.

Since X measures the observational outcomes of a node’s behaviour, μ = E[X ]
represents the capacity of this node. Our problem can be formulated as follows:
given δ � 0 and ε � 0, what is the probability that an estimation Y of μ can
achieve an accuracy of δ, and conversely, how many observations (n) are needed
in order to achieve an estimation of accuracy δ with the probability 1 − ε?

Theorem 1 (Chernoff bound). Let μ = E[X ]. Denote by φX(s) =∫ ∞

−∞
esxfX(x)dx the moment generating function of X. We have

P [|Y − μ| � δ] � min
s�0

(
e−s(δ+μ)

n∏
i=1

φX(cis)

)

+ min
s�0

(
e−s(δ−μ)

n∏
i=1

φX(−cis)

)

Proof. We have
P [|Y − μ| � δ] = P [Y − μ � δ] + P [Y − μ � −δ] .

Apply Chernoff bound to random variable Y in the first term yields

P [Y − μ � δ] = P [Y � δ + μ] � min
s�0

(
e−s(δ+μ)φY (s)

)
.

Since Xi are independent and identically distributed random variables:

φY (s) = φ∑n
i=1 ciXi

(s) =
n∏

i=1

φciXi(s) =
n∏

i=1

φX(cis).

And hence

P [Y − μ � δ] � min
s�0

(
e−s(δ+μ)

n∏
i=1

φX(cis)

)
.

Similarly, applying the Chernoff bound to the random variable Z = −Y in
the second term yields

P [Y − μ � −δ] � min
s�0

(
e−s(δ−μ)

n∏
i=1

φX(−cis)

)

which ends the proof. ��
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If X is a gaussian random variable with mean μ and variance σ2, then we have
the following result.

Corollary 1. Let ξ =
∑n

i=1 c2
i . If X ∼ G(μ, σ2), then

P [|Y − μ| � δ] � 2 exp
(
− δ2

2σ2ξ

)

Proof. If X ∼ G(μ, σ2) then φX(s) = exp
(
μs + σ2s2

2

)
.

Therefore

n∏
i=1

φX(cis) =
n∏

i=1

exp
(

μcis +
σ2c2

i s
2

2

)

= exp
(
μ
∑n

i=1 cis + σ2∑n
i=1 c2

i s2

2

)
= exp

(
μs +

σ2ξs2

2

)
.

And hence

min
s�0

(
e−s(δ+μ)

n∏
i=1

φX(cis)

)
= min

s�0

(
exp
(
−δs +

σ2ξs2

2

))
.

The expression −δs + σ2ξs2

2 has a minimum value of − δ2

2σ2ξ when s = δ
σ2ξ � 0.

Thus

min
s�0

(
e−s(δ+μ)

n∏
i=1

φX(cis)

)
= exp

(
− δ2

2σ2ξ

)
.

Similar calculations give

min
s�0

(
e−s(δ−μ)

n∏
i=1

φX(−cis)

)
= exp

(
− δ2

2σ2ξ

)
.

The assertion thus follows from Theorem 1. ��
An interesting conclusion we can draw from Corollary 1 is that the accuracy of
the Y -estimation does not depend on the true capacity μ of the subject node.
That is, in other words, if node j has received n observations X1, . . . , Xn of node
i, then it can estimate the capacity of node i with a certain degree of confidence,
even if this estimation indicates that node i’s capacity is low. Conversely, when
some early-arriving reports indicate that node i’s capacity is rather high, node
j should not rely entirely on this small number of observations to conclude this
with a high degree of confidence. Since this result shows that the capacity μ of a
node and the estimation accuracy (represented by δ) are statistically unrelated,
we do not need to have a priori knowledge of a node’s capacity in order to draw
conclusions about its trustworthiness.
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4.2 Number of Observations Required

The following corollary gives a lower bound on the number of observations needed
in order to achieve a desired degree of confidence in the estimation.

Corollary 2. Suppose that X ∼ G(μ, σ2). Given 0 < ε < 1, the minimum
number of observations needed in order to achieve an estimation of accuracy δ
with the probability 1 − ε is

n � 2σ2

δ2 ln
(

2
ε

)

Proof. The inequality in Corollary 1 can be rewritten as

P [|Y − μ| � δ] � min
ξ

(
2 exp

(
− δ2

2σ2ξ

))

where ξ =
n∑

i=1

c2
i � 1

n
by Cauchy-Schwartz inequality. Equality occurs when

c1 = . . . = cn =
1
n

.
Therefore

P [|Y − μ| � δ] � 2 exp
(
− δ2n

2σ2

)
.

And hence
P [|Y − μ| < δ] � 1 − 2 exp

(
− δ2n

2σ2

)
� 1 − ε

yields the desired result. ��
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Figure 1 shows the minimum number of observations needed in order to achieve
an estimation having an accuracy of ±0.03 (δ = 0.03) with probability at least
95%, for three different values of the variance, σ2.

Corollary 2 shows that the minimum number of observations required is pro-
portional to the maliciousness of a node which is represented by the standard
deviation σ. The deviation measures the lack of consistency in a node’s behaviour
and we assume intentionally inconsistent behaviour is malicious or untrustwor-
thy. The more inconsistently a node behaves, the more observations we need in
order to accurately estimate its capacity. This implies that a greater number of
observations are required in order to identify untrustworthy nodes, a fact that
makes doing so a more onerous task.

Corollary 2 also gives a lower bound on the number of observations needed to
perform an accurate estimation. This lower bound is obtained when equal weights
are assigned to each of the observations. Equal weighting of observations is an
unlikely scenario: it is more likely a node will grant more importance to recent
observations than to stale ones, or more importance to its own observations
than to the ones reported by the other nodes. Therefore, the minimum number
of observations needed will be higher but will still be accurately quantifiable.

An additional parameter of interest that can be extracted from our calcula-
tions is the number of observations required to achieve different accuracies in
trust assessment of a node. Figure 2 shows the probability of having an esti-
mation achieve an accuracy δ as a function of the number of observations for a
given variance. This figure shows that achieving a very high level of confidence
in an assessment comes at great cost with respect to the number of observations
required. In this example, it only requires approximately twenty observations to
achieve an accuracy of within 4% (δ = 0.04) with 80% confidence but doubling
the accuracy to 2% at the same confidence level increases the number of required
observations by a factor of six, to n = 120. Again, a goal of this work is to allow
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Fig. 2. Probability that the estimations achieve accuracy δ as a function of n, with
σ2 = 0.01
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these tradeoffs to be understood so that decisions using trust as a parameter can
be weighed appropriately.

5 Trust and Network Connectivity

In this section, we study an example where decisions based on trust may have an
effect on the connectivity of the network. In particular, we are interested in the
probability of the network graph remaining connected if some nodes of the network
are untrusted and thus either do not, or are not permitted to, participate in rout-
ing. This probability of connectivity is useful for the configuration of trust-based
routing. Indeed, when a node extracts a trust topology out of the network graph by
excluding nodes having insufficient trustworthiness, it may obtain a partitioned
graph and hence trust-based routing may not be available to all destinations.

5.1 Connectivity of Trust-Based Networks

Network connectivity is an important issue in networking and distributed sys-
tems. Research on this topic ranges from graph theory [9,10,12] to physics-related
domains such as percolation theory [11]. In [12], the authors show that if n nodes
of a network are placed uniformly and independently in a unit disc, then the net-
work is connected with a probability asymptotically tending to 1 if and only if
each node has log n + c(n) neighbours and c(n) → ∞ as n → ∞.

In this section, we consider a connected random graph G characterized by
n nodes and average density d (or number of neighbours per node). We derive
an upper-bound of the connectivity probability for this graph when a subset S,
0 � |S| � n, of randomly chosen nodes in G is untrusted and removed from G.

Figure 3(a) shows an example of a random graph having 20 nodes and average
density 3. Nodes {5, 14, 16, 17}, randomly chosen, are untrusted and removed

(a) Initial network graph G (b) Trust topology, nodes
{5,14,16,17} are untrusted and
removed from G

Fig. 3. A random graph composed of 20 nodes with 3 neighbours in average per node
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from the original graph to obtain a trust topology of the network. This topology
is partitioned into two components (see Figure 3(b)).

The following theorem gives us an upper bound of the probability that the
trust topology remains connected.

Theorem 2 (Trust-based connectivity).
Let ρ = |S|

n , the probability that G\S is connected is

P [G\S is connected] � 1 − (ρ (2 − ρ))
1
2 d(1−ρ)

Proof. We prove this theorem by first quantifying the number of edges that are
removed from G due to the removal of nodes in S. Then, the remaining induced
subgraph G\S is connected if and only if it still has at least one spanning tree.

Since G has n nodes and d neighbours per node on average, the probability
that there exists a link between any two nodes is d

n . Therefore, the expected
number of induced edges of G\S, which has (1 − ρ)n nodes, is

‖G\S‖ =
1
2

((1 − ρ)n)2
d

n
= ‖G‖(1 − ρ)2.

Hence, the expected number of edges removed from G is

‖G‖ − ‖G\S‖ = ‖G‖ (1 − (1 − ρ)2
)

= ‖G‖ρ(2 − ρ)

which means an edge of G is arbitrarily removed with probability ρ(2 − ρ).
Let k be the number of edge-disjoint spanning trees in G\S. As each spanning

tree in G\S has (1 − ρ)n − 1 edges, we have

k � kmax =
‖G‖(1 − ρ)2

(1 − ρ)n − 1
≈ 1

2
d(1 − ρ).

G\S is disconnected if and only if all its k edge-disjoint spanning trees are
disconnected, i.e. at least k edges must be removed from G\S to disconnect it.
Hence

P [G\S is disconnected] � (ρ(2 − ρ))k � (ρ(2 − ρ))
1
2 d(1−ρ)

which ends the proof. ��

5.2 Validation

We validate the above analysis by simulation. To start, we fix a value of ρ
increasing from 0 to 0.95 by step 0.05, i.e. ρ = 0, 0.05, 0.1, . . . , 0.95. For each
value of ρ, we generate 10,000 random graphs. Each graph has 100 nodes and
average density log2(100)+1. Therefore, we ensure that most of the initial graphs
are connected (see [12]).

For each random graph G, 
ρn� nodes are removed from G. The edges incident
to these nodes are also removed. We calculate the percentage of graphs that
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presence of a subset S of untrusted nodes, with |S| = ρn

remain connected along with the standard deviation. In total, 200,000 random
graphs are generated. The simulations are done using Maple software ([13]).

Figure 4 compares simulation results to analysis. We see that the probabilities
of connectivity obtained by simulations closely follow the trend of the upper-
bound probabilities obtained by analysis.

The results shown in Fig. 4 demonstrate the potential impact of using strict
policies on trust to implement concepts like trust-based routing. If the thresh-
old of required trust is set too high, there is a strong likelihood that a critical
number of nodes will be excluded from the network, endangering connectivity.
Knowledge of this relationship between trust-level and potential network segre-
gation will allow security decisions to be made in which assuming different levels
of risk (routing through less-trusted nodes) can be balanced against the value of
increasing the probability of successful message transmission.

6 Conclusion

In this paper, we investigate the issue of trust evaluation and estimation ac-
curacy for ad hoc networks. We start our study by giving a clear definition of
trust in the context of ad hoc networks. This definition extracts the physically
observable aspects of a nodes behaviour so that each node in the network can
decide whether it can trust another node to have certain capacities. We then
show that a node’s true capacity and its estimation accuracy are statistically
independent, given that a node’s behaviour follows a normal distribution law.
We also provide a minimum number of observations required in order to obtain
an accurate estimation of a node’s capacity. Given that this minimum number is
large, we have shown that an implementation of an analytical trust model will
require either a large number of independent observations done in parallel or
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the ability to cache and safely propagate observation information through the
network.

A motivation of this work is to quantify the trade-offs and requirements that
will naturally arise by defining trust in this manner for ad hoc networks. To that
end, we present an example showing what effect trust-based decisions may have
on network connectivity. We derive an upper-bound probability of the network
remaining connected when some nodes in that network are untrusted. This infor-
mation could be used so that trust-based routing is available to as many nodes
in the network as possible while simultaneously having an understanding of the
measure of risk that is being assumed to do so.

In future work, we can study different mobility scenarios (e.g. time required to
compute observations versus speed of nodes) as additional parameters to better
understand the tradeoffs and practicability of using trust for security decisions.
In addition, an examination of the avenues of attack on this trust model can be
considered along with suggestions for mitigating their effects.
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Abstract. We present a data storage scheme for sensor networks that
achieves the targets of encryption and distributed storage simultane-
ously. We partition the data to be stored into numerous pieces such that
at least a specific number of them have to be brought together to recre-
ate the data. The procedure for creation of partitions does not use any
encryption key and the pieces are implicitly secure. These pieces are then
distributed over random sensors for storage. Capture or malfunction of
one or more (less than a threshold number of sensors) does not compro-
mise the data. The scheme provides protection against compromise of
data in specific sensors due to physical capture or malfunction.

Keywords: Distributed data storage, sensor networks.

1 Introduction

Sensors may deployed in hostile environment where they may be prone to dan-
gers ranging from environmental hazards to physical capture. Under such cir-
cumstances the data and encryption keys stored on these sensors is vulnerable
to compromise.

A number of techniques have been proposed for secure communication be-
tween sensors using key management and data encryption [1,2,3,4]. Some tech-
niques aim at secure routing [5,6], intrusion detection [7] and others describe a
mechanism for moving sensitive data around in the network from time to time
[8]. A few researchers propose distributed data storage [15,16,17] but do not ad-
equately address the question of security or use explicit encryption techniques to
secure data which leaves the question of secure storage of encryption/decryption
keys unanswered.

To go beyond the present approaches, one may incorporate further security
within the system by using another layer that increases the space that the in-
truder must search in order to break a cipher [9,10]. Here, we propose an im-
plicitly secure data partitioning scheme whose security is distributed amongst
many sensors. In contrast to hash-based distributed security models for wireless
sensor networks [18,19], we consider a more general method of data partitioning.
In this approach, stored data is partitioned into two or more pieces and stored
at randomly chosen sensors on the network. In scenarios where one or more

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 14–22, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009
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pieces may be at the danger of being lost or inaccessible due to sensor failure or
capture, one may employ schemes that can recreate the data from a subset of
original pieces.

A number of schemes have been proposed in the communications context for
splitting and sharing of decryption keys [11,20]. These schemes fall under the
category of “secret sharing schemes”, where the decryption key is considered
to be a secret. Motivated by the need to have an analog of the case where
several officers must simultaneously use their keys before a bank vault or a safe
deposit box can be opened, these schemes do not consider the requirement of
data protection for a single party. Further, in any secret sharing scheme it is
assumed that the encrypted data is stored in a secure place and that none of it
can be compromised without the decryption key.

In this paper, we protect data by distributing its parts over various sensors.
The idea of making these partitions is a generalization of the use of 3 or 9 roots
of a number in a cubic transformation [12]. The scheme we present is simple and
easily implementable.

We would like to stress that the presented scheme is different from Shamir’s
secret sharing scheme which takes the advantage of polynomial interpolation.
Further, Shamir’s scheme maps the secret as points on the y-axis,, whereas the
scheme proposed in this paper maps the secret as points on the x-axis, as roots
of a polynomial.

2 Proposed Data Partitioning Scheme

By the fundamental theorem of algebra, every equation of kth degree has k roots.
We use this fact to partition data into k partitions such that each of the partition
is stored on a different sensor. No explicit encryption of data is required to secure
each partition. The partitions in themselves do not reveal any information and
hence are implicitly secure. Only when all the partitions are brought together is
the data revealed.

Consider an equation of degree k

xk + ak−1x
k−1 + ak−2x

k−2 + ... + a1x + a0 = 0 (1)

Equation 1 has k roots denoted by {r1, r2, ..., rk} ⊆ {set of complex numbers}
and can be rewritten as

(x − r1)(x − r2)...(x − rk) = 0 (2)

In cryptography, it is more convenient to use the finite field Zp where p is a large
prime. If we replace a0 in (1) with the data d ∈ Zp that we wish to partition then,

xk +
k−1∑
i=1

ak−ix
k−i + d ≡ 0 mod p (3)
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where 0 ≤ ai ≤ p − 1 and 0 ≤ d ≤ p − 1. (Note that one may alternatively use
−d in (3) instead of d.) This may be rewritten as

k∏
i=1

(x − ri) ≡ 0 mod p (4)

where 1 ≤ ri ≤ p − 1. The roots, ri, are the partitions. It is clear that the term
d in (3) is independent of variable x and therefore

k∏
i=1

ri ≡ d mod p (5)

If we allow the coefficients in (3) to take values a1 = a2 = ... = ak−1 = 0,
then (3) will have k roots only if GCD(p − 1, k) �= 1 and ∃b ∈ Zp such that d
is the kth power of b. One simple way to chose such a p would be to choose a
prime of the form (k · s + 1), where s ∈ N. However, such a choice would not
provide good security because knowledge of the number of roots and one of the
partitions would be sufficient to recreate the original data by computing the kth

power of that partition. Furthermore, not all values of d will have a kth root and
hence one cannot use any arbitrary integer, which would typically be required.
Therefore, one of the restrictions on choosing the coefficients is that not all of
them are simultaneously zero.

For example, if the data needs to be divided into two parts then an equation
of second degree is chosen and the roots computed. If we represent this general
equation by

x2 + a1x + d ≡ 0 mod p (6)

then the two roots can be calculated by solving the following equation modulo p,

x =
−a1 ±

√
a2
1 − 4d

2
(7)

which has a solution in Zp only if the square root
√

a2
1 − 4d exists modulo p. If

the square root does not exist then a different value of a1 needs to be chosen. We
present a practical way of choosing the coefficients below. However, this brings
out the second restriction on the coefficients, i.e. they should be so chosen such
that a solution to the equation exists in Zp.

Theorem 1. If the coefficients ai, 1 ≤ i ≤ k − 1 in equation (3) are not all
simultaneously zero, are chosen randomly and uniformly from the field, then the
knowledge of any k − 1 roots of the equation, such that equation (4) holds, does
not provide any information about the value of d with a probability greater than
that of a random guess of 1/p.

Proof. Given a specific d, the coefficients in (3) can be chosen to satisfy (4) in
Zp in the following manner. Choose at randomly and uniformly from the field
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k−1 random roots r1, r2, ..., rk−1. Then kth root rk can be computed by solving
the following equation,

rk = d · (r1 · r2 · ... · rk−1)−1 mod p (8)

Since the roots are randomly chosen from a uniform distribution in Zp, the
probability of guessing rk without knowing the value of d is 1/p. Conversely, d
cannot be estimated with a probability greater than 1/p without knowing the
kth root rk. ��
It follows from Theorem 1 that data is represented as a multiple of k numbers
in the finite field.

Example 1. Let data d = 10, prime p = 31, and let k = 3. We need to partition
the data into three parts for which we will need to use a cubic equation, x3 +
a2x

2 + a1x − d ≡ 0 mod p.
We can find the equation satisfying the required properties using Theorem 1.

Assume, (x−r1)(x−r2)(x−r3) ≡ 0 mod 31. We randomly choose 2 roots from the
field, r1 = 19 and r2 = 22. Therefore, r3 ≡ d·(r1 ·r2)−1 ≡ 10·(19·22)−1 mod 31 ≡
11. The equation becomes (x−r1)(x−r2)(x−r3) ≡ x3−21x2+x−10 ≡ 0 mod 31,
where the coefficients are a1 = 1 and a2 = −21 and the partitions are 11, 22
and 19.

Choosing the Coefficients: We described above two conditions that must be
satisfied by the coefficients. The first condition was that not all the coefficients
are simultaneously zero and second that the choice of coefficients should result in
an equation with roots in Zp. Since no generalized method for solving equations
of degree higher than 4 exists [21], a numerical method must be used which
becomes impractical as the number of partitions grows. An easier method to
compute the coefficients is exemplified by Theorem 1 and Example 1.

One might ask why should we want to compute the coefficients if we already
have all the roots? We answer this question a little later.

Introducing Redundancy: In situations when the data pieces stored on one
or more (less than a threshold number of) sensors over the sensor network may
not be accessible, then other sensors should be able to collaborate to recreate
the data from the available pieces. The procedure outlined below extends the k
partitions to n partitions such that only k of them need to brought together to
recreate the data. If {r1, r2, . . . , rk} is the original set of partitions then they can
be mapped into a set of n partitions {p1, p2, . . . , pn} by the use of a mapping
function based on linear algebra. If we construct n linearly independent equations
such that

a11r1 + a12r2 + . . . + a1krk = c1
a21r1 + a22r2 + . . . + a2krk = c2

...
an1r1 + an2r2 + . . . + ankrk = cn
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where numbers aij are randomly and uniformly chosen from the finite field Zp,
then the n new partitions are pi = {ai1, ai2, . . . , aik, ci}, 1 ≤ i ≤ n. The above
linear equation can be written as matrix operation,⎡

⎢⎢⎢⎣
a11 a12 . . . a1k

a21 a22 . . . a2k

...
an1 an2 . . . ank

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

r1
r2
...

rk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c1
c2
...

cn

⎤
⎥⎥⎥⎦

To recreate rj , 1 ≤ j ≤ k from the new partitions, any k of them can be brought
together, ⎡

⎢⎢⎢⎣
r1
r2
...

rk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

am1 am2 . . . amk

an1 an2 . . . ank

...
ai1 ai2 . . . aik

⎤
⎥⎥⎥⎦
−1

k×k

⎡
⎢⎢⎢⎣

c1
c2
...
ck

⎤
⎥⎥⎥⎦

k×1

A feature of the presented scheme is that new partitions may be added and
deleted without affecting any of the existing partitions.

An alternate approach to partitioning: Once a sensor has computed all
the k roots then it may compute the equation resulting from (4) and store one
or all of the roots on different sensors and the coefficients on different sensors.
Recreation of original data can now be performed in two ways: either using
(5) or choosing one of the roots at random and retrieving the coefficients and
substituting the appropriate values in the equation (3) to compute

− a0 ≡ xk + ak−1x
k−1 + ak−2x

k−2 + ... + a1x mod p (9)

Therefore, the recreated data d ≡ (p − a0) mod p. Parenthetically, this may
provide a scheme for fault tolerance and partition verification. Additionally, a
sensor may store just one of the roots and k − 1 coefficients on the network.
These together represent k partitions.

Note. Distinct sets of coefficients (for a given constant term in the equation)
result in distinct sets of roots and vice versa. This is because two distinct sets
of coefficients represent distinct polynomials because two polynomials are said
to be equal if and only if they have the same coefficients. By the fundamental
theorem of algebra, every polynomial has unique set of roots.

Two sets of roots R1 and R2 are distinct if and only if ∃ri∀rj(ri �= rj),
where ri ∈ R1 and rj ∈ R2. To compute the corresponding polynomials and
the two sets coefficients C1 and C2, we perform

∏k
i=1,ri∈R1

(x − ri) ≡ 0 mod p

and
∏k

j=1,rj∈R2
(x − rj) ≡ 0 mod p and read the coefficients from the resulting

polynomials, respectively. It is clear the at least one of the factors of the two
polynomials is distinct because at least one of the roots is distinct; hence the
resulting polynomials for a distinct set of roots are distinct.

Theorem 2. Determining the coefficients of a polynomial of degree k ≥ 2 in a
finite field Zp, where p is prime, by brute force, requires Ω(� pk−1

(k−1)!�) computations.
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Proof. If A represents the set of coefficients A = {a1, a2, ..., ak−1}, where 0 ≤
ai ≤ p− 1, then by the above note each distinct instance of set A gives rise to a
distinct set of roots R = {r1, r2, ..., rk}, and, conversely, every distinct instance
of set R gives rise to a distinct set of coefficients A. Therefore, if we fix d to
a constant, then (5) can be used to compute the set of roots. Every distinct
set of roots is therefore a k − 1 combination of a multiset [13,14], where each
element has infinite multiplicity, and equivalently a k − 1 combination of set
S = {0, 1, 2, ..., p− 1} with repetition allowed. Thus, the number of possibilities
for the choices of coefficients is given by the following expression〈

p
k − 1

〉
=
(

p − 1 + (k − 1)
k − 1

)

= (p+k−2)!
(p−1)!(k−1)!

= (p+k−2)(p+k−3)...(p+k−k)(p−1)!
(p−1)!(k−1)!

= (p+k−2)(p+k−3)...p
(k−1)!

≥ � pk−1

(k−1)!�

(10)

Here we have used the fact that in practice p � k ≥ 2, hence the result. We
have ignored the one prohibited case of all coefficients being zero, which has no
effect on our result. ��

3 A Stronger Variation to the Protocol Modulo a
Composite Number

An additional layer of security may be added to the implementation by perform-
ing computations modulo a composite number n = p · q, p and q are primes, and
using an encryption exponent to encrypt the data before computing the roots of
the equation. In such a variation, knowledge of all the roots and coefficients of
the equation will not reveal any information about the data and the adversary
will require to know the secret factors of n. For this we can use an equation such
as the one below:

xk +
k−1∑
i=1

ak−ix
k−i + dy ≡ 0 mod n (11)

where y is a secretly chosen exponent and GCD(y, n) = 1. If the coefficients are
chosen such that (11) has k roots then

k∏
i=1

ri ≡ dy mod n (12)

Appropriate coefficients may be chosen in a manner similar to that described
in previous sections. It is clear that compromise of all the roots and coefficients
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will at the most reveal c = dy mod n. In order to compute the original value of
d, the adversary will require the factors of n which are held secret by the sensor
which owns the data.

4 Addressing the Data Partitions

The previous sections consider the security of the proposed scheme when prime
p and composite n are public knowledge. However, there is nothing that compels
the user to disclose the values of p and n. If we assume that p and n are secret
values, then the partitions may be stored in the form of an “encrypted link list”,
which is a list in which every pointer is in encrypted form and in order to find
out which node the present node points to, a party needs to decrypt the pointer
which can be done only if certain secret information is known.

If we assume that p and n are public values then the pointer can be so en-
crypted that each decryption either leads to multiple addresses or depends on
the knowledge of the factors or both. Only the legitimate party will know which
of the multiple addresses is to be picked.

Alternatively, one may use a random number generator and generate a random
sequence of sensor IDs using a secret seed. One way to generate this seed may
be to find the hash of the original data and use it to seed the generated sequence
and keep the hash secret.

5 Future Work and Other Applications

Our approach leads to interesting research issues such as the optimal way to
distribute the data pieces in a network of n sensors. Also in the case when the
sensors are moving, one needs to investigate as to how the partitions need to be
reallocated so that the original sensor is always able to access the pieces when
needed. Further, questions of load balancing so that no one sensor is storing a
very large number of partitions and the partitions are as evenly distributed over
the network as possible, needs to be investigated.

Yet another application of the presented scheme is in Internet voting proto-
cols. Internet voting is a challenge for cryptography because of its opposite re-
quirements of confidentiality and verifiability. There is the further restriction of
”fairness” that the intermediate election results must be kept secret. One of the
ways to solve this problem is to use multiple layers of encryption such that the de-
cryption key for each layer is available with a different authority. This obviously
leaves open the question as to who is to be entrusted the encrypted votes.

A more effective way to implement fairness would be to avoid encryption
keys altogether and divide each cast ballot into k or more pieces such that each
authority is given one of the pieces [22]. This solves the problem of entrusting
any single authority with all the votes and if any of the authorities (less than
the threshold) try to cheat by deleting or modifying some of the cast ballots,
then the votes may be recreated using the remaining partitions. Such a system
implicitly provides a back-up for the votes.
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6 Conclusions

We have introduced a new distributed data storage scheme for the sensor net-
works. In this scheme data is partitioned in such a way that each partition is
implicitly secure and does not need to be encrypted. Reconstruction of the data
requires access to a threshold number of sensors that store the data partition.

An additional variation to the scheme where the data partitions need to be
brought together in a definite sequence may be devised. One way to accomplish it
is by representing partition in the following manner: p1, p1(p2), p2(p3), ..., where
pi(pj) represents the encryption of pj by means of pi. Such a scheme will increase
the complexity of the brute-force decryption task for an adversary.
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1 University of Applied Sciences of Western Switzerland - HES-SO
HES-SO / HEIG-VD, 1400 Yverdon, Switzerland

markus.jaton@heig-vd.ch
2 HES-SO / EIA-FR, 1705 Fribourg, Switzerland

jean-frederic.wagen@hefr.ch
3 HES-SO / HES-GE, 1202 Genève, Switzerland
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Abstract. Contact lists, Emails, SMS or custom applications on a pro-
fessional smartphone could hold very confidential or sensitive informa-
tion. What could happen in case of theft or accidental loss of such
devices? Such events could be detected by the separation between the
smartphone and a Bluetooth companion device. This event should typi-
cally block the applications and delete personal and sensitive data. Here,
a solution is proposed based on a secured framework application running
on the mobile phone as a rich client connected to a security server. The
framework offers strong and customizable authentication and secured
connectivity. A security server manages all security issues. User appli-
cations are then loaded via the framework. User data can be secured,
synchronized, pushed or pulled via the framework. This contribution
proposes a convenient although secured environment based on a client-
server architecture using external authentications. Several features of the
proposed system are exposed and a practical demonstrator is described.

Keywords: mobile security, smartphone, rich client, client-server, secure
framework, authentication, transient authentication, theft detection.

1 Introduction

Smartphones are increasingly popular : their performance and recent enhance-
ments in user interface technologies (such as touchscreen, intuitive behavior, ease
of use) have popularized their use. Becoming indispensable companion devices,
they also keep sensitive information. This covers personal information, such as
contacts, addresses, phone calls, to do lists and other data. Usually there are also
business data stored on the mobile phone, such as the professional contacts of a
bank advisor, or a confidential list of customers data for example. The increasingly
popular email clients (whether push or pull) result in the storage of confidential
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messages. The loss of a mobile phone is not usually considered too critical. Most
mobile devices feature easy back-up possibilities on standard personal computers;
but the data contained in a lost or stolen smartphone is usually left unsecured, and
might be examined by unauthorized or even malicious persons.

Many authors (e.g., [1], [2], [3]) and at least one company, Research In Mo-
tion (RIM) [4], have recognized the potential security threat of such devices
and proposed interesting solutions. Focusing on readily available solutions, RIM
proposes Blackberry. Blackberry devices are very popular in business areas, as
the information kept on the device is ciphered and is usually impossible to ex-
ploit without proper authentication of the user. Thus, a lost Blackberry device
will usually not be readable. The Blackberry solution is however criticized by
some potential users, i.e. bank professionals and politics, especially. The prob-
lem with the Blackberry solution is mainly the existence within the network of
proprietary Network Operations Centers (so-called NOC’s) whose functionality
is widely opaque to the users. Although the data is fully protected throughout
the whole network, the implementation of the security features relies widely on
proprietary code located in the NOCs and in the Blackberry phone. This is
considered as a possible backdoor by professional users [5].

This contribution proposes an alternative architecture for the implementation
of a highly secured client-server infrastructure for mobile applications. The pro-
posed system is called here OSMOSYS (Open and Secure Mobile SYStem). This
system features:

– An end-to-end security scheme without opaque components. The code can
be independently audited and validated by the entity using the system.

– A convenient management of users, user groups and mobile devices is per-
formed centrally, via a security server.

– Application validations and updates performed remotely on the mobile client.
– Introduction of a so-called companion device which insures periodic user

authentication without the need of any manipulation from the user and,
thus, offers a protection against loss or theft.

– An advanced development environment allowing the creation of fully secured
custom applications.

– A set of useful applications for the secured management of personal data,
like e-mail clients, contact list, meetings and notes managers.

– The choice of various devices from several smartphone manufacturers (HTC,
LG, SAMSUNG, SONY ERICSSON, ...).

The next section will briefly review the state of the art of some existing solu-
tions to offer security to smartphone users. The requirements for a framework se-
curing user applications are then discussed in Section 3. The main authentication
and security features are also explained. The chosen client-server architecture of
the framework is then detailed in Section 4. An implementation is described in
Section 5 to field test the OSMOSYS framework. Finally, this contribution is
concluded in Section 6.
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2 State of the Art

As stated in the introduction, many solutions to secure data on mobile devices
have been proposed. For example, in [1], a wearable token is used to protect a
mobile device: this model was called ”transient authentication”. The solution
requires the author’s cryptographic file system (named ZIA). Securing applica-
tions on mobile devices also received a lot of attention, including from [2] who
designed a flexible code security architecture based on ”security-by-contract”.
Unlike [3], these works do not focus on the needs from the security managers of
a fleet of mobile devices.

On the commercial side, one of the leader is actually RIM (Research In Mo-
tion) with its BlackBerry devices and associated network [4]. Security on those
devices relies mainly on strong ciphering (AES), and optionally on a wireless
companion device that can be paired with the mobile to detect loss or theft of
the smartphone. The main drawback of the Blackberry security solutions resides
in their opacity. The hardware used is proprietary: BlackBerry or some Nokia’s
compatible devices. The support network relies on a small number of Network
Operations Centers (NOCs) whose implementation is largely opaque [4].

Another relatively strong contender is Microsoft in its latest Windows Mobile
release 6 (WM6 for short) [6]. WM 6 builds on top of the .NET framework to in-
tegrate end-to-end security for mobile applications [7]. WM6, in its version 6.1 in
particular, integrates security features that make such applications nearly as se-
cure as their BlackBerry counterparts. On the other hand, the .NET framework
code, like the Windows Mobile OS, is not open, and cannot be audited by cus-
tomers. This leaves place for potential backdoors as in the BlackBerry solution.

Another caveat of the WM6 security scheme is its usage of a mobile VPN as
secured transport channel : although the VPN is potentially secure by itself, it
remains a low level security solution : if somebody can control the mobile device,
the VPN might turn itself into an opened door to the corporate network.

It is actually impossible to speak about mobile solutions without mentioning
Apple’s iPhone which has revolutionized the way people consider their smart-
phones. The iPhone is clearly a hot piece of technology, but security is actually
not on a par with the ease of use [9]. Moreover, the relatively severe restrictions
introduced by Apple to the development of applications discourage developers
from developing strong security infrastructures on Apple’s platform, although it
should not be impossible as our recent work tends to show.

Nokia relies entirely on a clever mobile VPN solution for security. The perti-
nence of a VPN in a mobile environment may however be questioned, as for the
WM6’s solution. Third party solutions (commercial, or not [8]) allow to cipher
the voice calls or the smartphone at the OS level, but this generally involves
relatively complex installation procedures on the devices.

Ideally, it is assumed here that a secure application on a mobile device should,

– belong to fleet of devices managed by a security manager,
– be easy to install and should update itself automatically,
– require very few explicit authentication procedures (e.g., password entry),
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– be loss and theft-safe,
– expose only the very necessary subset of data required by the users,
– be able to detect if it has been modified or tampered with, and
– keep secure backup copies of valuable data whenever possible on a remote,

trusted, location,

To our knowledge, only RIM’s BlackBerry offers nearly such functionalities.
But if the user or an IT manager needs to audit the code of the whole system,
there is currently no solution. This situation might explain why smartphones
are proscribed in many governments, banks and companies using very sensitive
information.

3 A Framework for Secured Applications

The main goals of the proposed framework is to authenticate the user and the
server as well as to secure the data on the mobile phone in the most convenient
manner. Indeed, users will not use or disable annoying security features [1].

Strong authentication methods must be conceived and implemented to access
the secured applications and their relevant data. Any remote access to or from
the application must use bi-lateral authenticated sessions and ciphered transmis-
sions. Any data on the mobile phone must be either securely deleted when the
application closes or ciphered when permanently stored on the mobile device.

Theft or loss protection must be insured: in both cases, the applications and
their data should become unusable. A way must also be found to protect the
applications so they cannot be copied, modified and re-installed to jeopardize
the security.

Thus, the framework should offer convenient solutions to the following issues:

– deployment and control of the life cycle of the applications (installation,
upgrade, removal),

– configurations of the security parameters,
– user and user group management, and
– management of the required devices: mobile phones and companion devices.

To determine the required functionalities, a brief scenario is imagined in the
next sub-section. A use case follows to define the actors and to detail the au-
thentication services.

3.1 A Sample Scenario

Imagine a key account manager, Alice, having to deal with confidential data
related to her customers. Starting her workday, she turns on her smartphone
and a so-called companion device small and thin enough to be weared or to fit
in her pocket.

On her smartphone, she launches the application called OSMOSYS. This ap-
plication opens and requests her username and password. Behind the scene,
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OSMOSYS is also verifying that the companion device can be reached via Blue-
tooth, and that the smartphone itself is allowed to access the company network.

A set of user applications is then presented to her: an agenda, a to-do list, and
a contact list. She opens up her agenda. Nothing has changed since yesterday.
But she must prepare herself for an afternoon meeting. Working at her temporary
working place in the customer premises, she must go make a few photocopies. She
leaves her smartphone on the desk. Despite the fact that this could be considered
a security risk, this is not a problem, because the OSMOSYS framework detects
that the Bluetooth companion is not within 1 or 2 meters, it locks all applications
on the mobile phone and displays a lock on the screen. When Alice returns with
her photocopies, the lock disappears and she can use her application as usual.

During lunch, a new appointment is pushed on her agenda, Mr. X must see
her at 1pm before the meeting and requests a confirmation call. She calls to
confirm. But now being late for her appointment, she forgets her phone on the
table at the cafeteria. Fortunately, a colleague brings it to her at Mr. Xs office.

When she tries to use her mobile phone again, she notices that OSMOSYS
closed itself to prevent any unauthorized access. This is because the mobile was
no longer in range of the companion. All data on the smartphone have also been
wiped out. To restore her contacts and meetings, Alice restarts Osmosys, logs
onto the server using her user name and password and all her personal data are
then automatically restored on the device.

A moment later, when the meeting takes place, she meets a new VIP to be
entered on her contact list. At the end of the meeting, on her way back to the
hotel, her mobile phone and purse are stolen from her bag. She realizes this only
an hour later in the hotel because a message was waiting for her. The phone
has been detected as stolen when it lost its connection with the companion.,
thus OSMOSYS cannot be restarted anymore. In any case, Her SIM card has
also been blocked. She must go the premises of their subsidiary to destroy the
companion and pick up a new phone and a new companion. A few manual steps
in the presence of the local administrator and she will be able to continue her
stay and work.

This scenario is not intended to point out all the requirements of a secure
framework. Nor does it mention all possible ways to authenticate a user. Fur-
thermore, theft detections via the help of a Bluetooth companion is only one
way, although a very promising one. Furthermore, different users might require
different security levels.

The OSMOSYS framework aims to offer a convenient way to manage these
levels for each user. However, to ease the work of the administrator, different
users will be managed as part of different user groups. Security parameters and
settings will be defined for each user group.

The reader can imagine the above scenario from the administrator’s view
point to identify some requirements on the sever part of the OSMOSYS frame-
work. A secure connectivity to the security server, e.g., via SSL, has been im-
plied in the above scenario. Short loss of connectivity is not an issue, but the
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user name/password authentication requires in our mind a connection to an
authentication sever and the client application must authenticate the server.

OSMOSYS deals with this inconvenience using a so-called ”robust session”
concept. It is up to the security policy of the company to decide whether or not
a session may persist in absence of a server connection, and how long the session
is allowed to last without any connection to the company’s security server.

The next sub-section defines the use case describing the functionalities re-
quired to enable scenarios such as the one above.

3.2 The Use Case

There are two main actors: the end user and the security administrator.
The end user uses the applications after being identified and authenticated.

Then, existing applications can be upgraded or new applications can be installed.
The security administrator manages:

– the user and user groups,
– the applications (new installation and upgrade),
– the mobile devices,
– the security parameters for each user groups,
– the authentication companion (typically the Bluetooth companion, but pos-

sibly a secure card, a list of numbers or of printed code, etc.),
– the remote wipe of the applications and all relevant data.

Evidently the security manager must also be authenticated to use the security
server which is located in the company’s intranet. To simplify this authentication,
we consider here only a central security server. Conventional security solutions
such as a restriction to a physical log-in on the security server (Administration
console in Figure 1) can solve the main security issues.

The user authentication can be based on several non-exclusive methods. In the
considered framework, three authentication methods have been currently defined:

– formal: based on a user name and associated password; as an option the
picture of a ”turing number” can be used to deter non-human hacking,

– material: typically based on the unique identifier of the mobile phone (In-
ternational Mobile Equipment Identity: IMEI),

– external: typically using a Bluetooth companion. However, other examples
can be devised from a simple paper list of numbers, to secure card displaying
response code (in numeral form or to be read by the camera of the phone).

3.3 The Authentication Services

The use case presented here can easily be extended to combine additional authen-
tication techniques. For example, several PC brands as well as a few smartphones
can scan a finger print. This kind of biometric identification could be used in ad-
dition to other external authentication. Also, the geographic location (via GPS,
cell-ID or other means) can play a role in the settings of the security param-
eters. For example, within the headquarter area, the periodicity of the formal
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re-authentication is set to its maximum, e.g., 24 hours. Another example is the
use of the network connection: while roaming under a foreign operator, external
authentication could be verified periodically every 5 seconds, but reported only
every 10 minutes to the security server; if a WiFi connection is used then report-
ing will be more frequent, e.g., every 10 seconds. Again, these authentications
techniques can be inserted within the external authentication methods.

The examples mentioned above are provided to illustrate some possible com-
binations of the authentication methods. When one authentication fails, the pro-
cedure is to protect the OSMOSYS applications and sensitive data. The chosen
procedure depends on which authentication failed. The OSMOSYS framework
offers a set of pre-defined procedures: for example, after the failure of the IMEI
authentication and depending on the security settings, the user is either warned
or not, the OSMOSYS framework is closed and a flag is set on the security server.

Since many security managers will request their own procedures, the imple-
mentation of the OSMOSYS framework should be as open as possible to be
easily customized.

Beyond authentication and theft detection, the security framework has also to
deal with possible attacks. These features will be not be detailed here. Various
solutions have been proposed [2,9] and might be used in the future. Currently,
a pragmatic approach was taken and the OSMOSYS framework focuses on pro-
viding strong authentication, detecting theft and securing all parameters so they
can hardly be tampered with. The current solution is to store all security pa-
rameters only on a security server and to download them via a secured HTTPS
connection. The downloaded values are then ciphered when stored on the mo-
bile phone. It is recalled that the offline solution is also using the same ciphering
procedure to store the data.

The end user must also be insured that the applications used are to be trusted.
Thus, the OSMOSYS framework provides this service as explained in the fol-
lowing section.

4 Architecture of the Plaform

The architecture is based on a conventional client server scheme; this choice is
mainly dictated by the convenience to have somewhere a centralized adminis-
trative tool that controls the features mentioned in Section 3.2. This naturally
speaks for the introduction of a centralized server, which will also grant the
isolation of the mobile access network from the corporate network. The overall
client-server architecture is shown in Figure 1. The security and applications
servers on the servers’ side can obviously run on the same physical machine.

To achieve the goal of being able to check the integrity of an application, and to
make sure that a modified application could not access valuable data within the
corporate network, an obvious solution is to divide every application into server
and client stubs. Defining a very strict, although flexible, interface between client
and server part of the application insures that a modified application will not
be able to access data outside the scope of the application. To further enhance
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Fig. 1. The client-server architecture of the Open Secured Mobile System (OSMOSYS).
A companion device is linked to the client to ease theft or loss detection. The server
side is logically composed of a security server and an application server.

security, applications are systematically signed, and authenticated by the server
stub. The security and application servers are detailed in Figure 2.

Fig. 2. Details of the client-serveur interaction to access credentials and secure an
application: the application server verifies the validity of the requests on the security
server before executing them

The client application also checks the server’s identity before beginning any
transactions; beside this check, it also authenticates the user and the companion
device. Authentication is always performed with the assistance of the security
server. When the server is unreachable, it will depend on the local security
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Fig. 3. Architectural view of the OSMOSY framework from a security point of view

settings wether the protected applications are usable or not. The most stringent
conditions will require a permanent secure connection to the security server. In
this case, a temporary loss of connection due to radio coverage problems for
example, would automatically lock the secured OSMOSYS applications until a
connection can be re-established by the client.

4.1 Risk Analysis

To analyze the proposed OSMOSYS architecture against the possible threats,
the Figure 3 clarifies the client-server interactions. This section presents a brief
evaluation of the risks to the OSMOSYS system.

– Write access to the database of the Security Server: This is probably the
greater risk, but the security server will usually be physically protected within
the company. The access to the servers is then controlled at the physical and
administrative levels.

– Unauthorized user: Strong authentications can be based on using material:
IMEI (mobile device), formal: User Name, Password, and external (Bluetooth
companion). A mix of these authentication techniques can be adapted to the
customer’s requirements.

– Server authentication: The security server is authenticated via PKI. There-
fore, phishing attacks are mitigated via careful PKI implementation and testing.

– Access rights: Each user is only authorized to use his own set of of applica-
tions according to his user group profile.

– Stolen mobile: Sensitive user data (contacts, messages, ...) are ciphered at
the application level by the OSMOSYS framework. Furthermore, if the mobile is
separated from the Bluetooth companion, the OSMOSYS framework will block,
and a moment later close, all secured applications.

– Eavesdropping: The confidentiality of all exchanges (mobile-server and
administrator-server) are insured via SSL (AES128). The Bluetooth connection
to the companion should always be ciphered.

– Data integrity: SSL provides the data integrity service.
– Denial of service (DoS): On the server side, redundancy links and a restriction

to intranet access are used to minimized the risks. On the mobile side, the DoS
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risks on the access network are considered to be small. The DoS via Bluetooth
will currently close the OSMOSYS framework.

– Tracability: Logs are generated on the security server. Logs on the mobile
devices were considered only for debugging in order to simplify the mobile phone
software and to prevent any security risk.

5 The Open and Secure Mobile System

To validate the concept, a practical system has been set up corresponding to
the above specifications. First, an early prototype has been built on a J2ME
client, and a JEE server. Although the concept could be effectively validated
on this base, J2ME proved to be too restrictive for low-level control, thus a
production-ready version has been developed using Microsoft’s .NET framework
(C# managed code) on the client, but still keeping the JEE environment on the
server side.

The OSMOSYS framework is an application, from .NET’s point of view, and
thus does not rely on Windows Mobile 6 security infrastructure. Instead, it
implements its own secured environment at the application level.

5.1 OSMOSYS Client and Companion

As stated above, the client device is a conventional WM6 smartphone. Instal-
lation of OSMOSYS is easy: open Internet Explorer, write the URL of your
corporate OSMOSYS server, and click on the installation icon on the displayed
page. The network administrator should have first registered a few data such
as the IMEI and the Bluetooth address of the companion device. This condi-
tion allows to authenticate the smartphone and its Bluetooth companion device
from the server side. From this point, OSMOSYS takes all necessary measures
to insure that

– the user has the latest OSMOSYS framework version,
– the user can use the applications that are defined for him (his user group),
– the user has the latest software versions of the applications

From now on, the user may use OSMOSYS and the corresponding applications
as long as the company’s security requirements are met. Figure 4 show the
OSMOSYS client on a smartphone after a successful authentication, before any
user application has been launched.

5.2 OSMOSYS Server

The server is a conventional JEE application server. The current version has
been deployed on a Tomcat server with EasyBeans as EJB container, and the
administration dialog is implemented using conventional JSP technology, but
this configuration is in no way a must. Any JEE implementation (capable of
running servlets and featuring an EJB container) could be used. The server is
divided into an application server and a security server; currently both run on
the same machine. The role of both servers is well defined:
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Fig. 4. Screen shots from the OSMOSYS server (behind) and client (mobile in front)

– The security server deals with authentication and security parameters con-
cerning the users, user groups and devices (Figure 4),

– The application server deals with the server-side of the applications.

Any application built on top of OSMOSYS automatically inherits the security
mechanisms built into the framework; if a new application has to be developed, it
will be separated into a client part and a server part that share a common com-
munication mechanism. All security and communication issues are kept hidden
by the framework : the applications have no way to short-circuit the framework,
so they are commited to use OSMOSYS’s rules defined by the framework.

As every application has a client and a server part, it is very unlikely that a
client could be modified and still work with the server counterpart, provided its
signature could have been kept unchanged or faked by some way.

Special care has been taken to allow the full control of the whole system
from the server’s administration console. It is very unlikely that an end user has
to install anything on the smartphone before using OSMOSYS. It is however
possible that for security reasons, some companies would require to uninstall
some or all pre-installed applications. It remains to be investigated whether or
not this uninstallation can be performed remotely from the security server.

6 Conclusion and Future Work

Some important requirements to secure applications and sensitive data on smart-
phones have been presented. A rich client-server architecture was proposed to
authenticate the user, detect loss or theft with the help of an additional compan-
ion device, and to secure the use of end-user applications. The security features
include strong authentication, data ciphering, and management of the life cycle
for any customized application. The framework named OSMOSYS was described
to offer these various security services.
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An implementation of OSMOSYS using Windows Mobile 6 demonstrated the
feasibility of our approach. The security server has been audited by the last au-
thor and no flaw has been found. The OSMOSYS product is currently available
as a public service for evaluation and testing (see www.securemesa.ch). At the
time of writing, a private bank in Geneva is evaluating the service under real-
istic conditions. Preliminary results of this field trial will be presented at the
conference.
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Abstract. Recently, Lu et al. proposed an efficient conditional privacy
preservation protocol, named ECPP, based on group signature scheme
for secure vehicular communications. However, ECPP dose not provide
unlinkability and traceability when multiple RSUs are compromised. In
this paper, we make up for the limitations and propose a robust con-
ditional privacy-preserving authentication protocol without loss of ef-
ficiency as compared with ECPP. Furthermore, in our protocol, RSUs
can issue multiple anonymous certificates to an OBU to alleviate system
overheads for validity check of RSUs. In order to achieve these goals, we
consider a universal re-encryption scheme as our building block.

Keywords: Vehicular Ad-hoc Network, Conditional Privacy, Authenti-
cation, Movement Tracking, Universal Re-encryption, Group Signature.

1 Introduction

In the near future, vehicles will be equipped with on-board processing and
wireless communication modules, which enable vehicle-to-vehicle and vehicle-
to-infrastructure communications based on short-range wireless technology, e.g.,
IEEE 802.11p [16]. That is called a vehicular ad-hoc network (VANET). VANET
mainly consists of On-Board Units (OBUs) and Roadside Units (RSUs) [11],
where OBUs are installed on vehicles to provide wireless communication capa-
bility, while RSUs are deployed to provide access point to vehicles within their
radio coverages. By this organization, VANET can provide useful functions such
as cooperative driving and probe vehicle data. For example, a vehicle can warn
other vehicles about traffic accidents or traffic jam.
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Considering the useful VANET applications, it is necessary to develop a suit of
elaborate and carefully designed security mechanisms to make VANET applica-
tions viable [1,5,7,10,12,13,14,15,17]. Especially, the increasing demand for privacy
protection has brought additional requirements related with privacy preservation
in VANET such as anonymous message authentication. Therefore, conditional pri-
vacy preservation, which private information is not disclosed to other entities while
the authorities should legally trace user-related information in case of a disputed
event, becomes one of the main requirements for secure VANET.

Lin et al. [9] proposed a conditional privacy-preserving authentication protocol
for VANET by integrating the techniques of group signature and identity-based
signature. However, in [9], even though the authors reduced certificate revocation
list (CRL) size, their protocol needs the management of certificate revocation
information in OBUs. Hence, each vehicle must spend much time in message
verification when the number of revoked vehicles is increased.

Recently, Lu et al. [8] proposed an efficient conditional privacy preservation
protocol, named ECPP, which issues on-the-fly short-time anonymous certifi-
cate to OBUs by using a group signature scheme [2]. Since RSUs can check the
validity of the requesting vehicle during the short-time anonymous certificate
generation phase, such revocation check by an OBU itself of [9] is not required.
ECPP provides unlinkability and traceability under the unrealistic assumption
that most RSUs will not disclose any inner information without the authoriza-
tion of the trusted authority. However, due to the fact that there exist a large
number of RSUs, cost considerations prevent the RSUs from having sufficient
protection facilities against malicious attacks. Therefore, it is possible for an at-
tacker to access RSUs and disclose the information in the RSUs. When multiple
RSUs are compromised, an attacker is able to track the movement trace of a
vehicle by using the information stored in the compromised RSUs [3], because
each RSU stores unchanged pseudonyms for OBUs in ECPP. As a result, ECPP
does not provide unlinkability of OBUs when some RSUs were compromised.
Furthermore, since the trace protocol in ECPP is run by incorporating with an
RSU which issued a certificate corresponding to a disputed message, it is impos-
sible to trace OBUs belong to compromised RSUs. Consequently, ECPP does
not provide unlinkability and traceability when multiple RSUs are compromised.

Moreover, even though ECPP runs mutual authentication between OBUs and
RSUs, it requires validity check of RSUs by using up-to-date revocation list
in anonymous certificate generation phase by considering an attacker who can
disclose inner information in compromised RSUs.

As a result, it is necessary to design an efficient and robust conditional privacy-
preserving authentication protocol that not only provides unlinkability and trace-
ability even if multiple RSUs are compromised, but also reduces system overheads
for validity check of RSUs in OBUs’ anonymous certificate generation phase.

Our Contribution. In this paper, we propose a robust conditional privacy-
preserving authentication protocol based on universal re-encryption scheme [4]
and identity-based group signature scheme [2]. To efficiently resolve the problem
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resulted from certificate revocation in traditional PKI, the proposed protocol
employs the concept of shot-time anonymous certificate. Besides, even though
multiple RSUs are compromised, in contract to ECPP, the proposed protocol
provides unlinkability and traceability without loss of efficiency as compared with
ECPP. Furthermore, to reduce system overheads for validity checks of RSUs in
OBUs’ anonymous certificate generation phase, RSUs issue multiple anonymous
certificates to an OBU based on universal re-encryption scheme.

The rest of the paper is organized as follows. In Section 2, we describe our
design objectives and define conditional privacy level for secure VANET. We
outline our system architecture in Section 3. Section 4 presents the proposed
conditional privacy-preserving authentication protocol. In Section 5, the security
and efficiency of the proposed protocol are analyzed. Finally, we conclude the
paper in Section 6.

2 Security Requirements

In this paper, we aim at achieving the following objectives:

• Authentication. The origin of the messages should be authenticated to
guard against impersonation attack. Also, even though an attacker compro-
mises some RSUs, the attacker cannot forge a signature on safety message
in a compromised RSU’s communication range.

• Anonymity. The identities of vehicles should be hidden from normal mes-
sage receivers during the safety message authentication process. Moreover,
even if an attacker obtains inner information of compromised RSUs, the
attacker cannot disclose real identities of OBUs.

• Unlinkability. When an adversary has collected several safety messages
that have different pseudonyms from an OBU, the OBU should be still not
traceable. Moreover, even though the adversary compromised RSUs, it also
cannot link information stored in the RSUs as the same OBU.

• Traceability. The authority should be able to trace the sender of a safety
message by revealing the identity in case of any disputed situation such as
liability investigation. In addition, even if multiple RSUs are compromised,
the authority should be able to trace real identities of pseudonyms in anony-
mous certificates without assistance of compromised RSUs.

Following the above goals, we modify the definition of conditional privacy
level in [8] as Table 1.

Note that, ECPP does not provide unlinkability of an OBU since the com-
promised RSUs store the same pseudonym for same OBU. Moreover, since the
trace protocol in ECPP is run by the trust authority with an RSU (certificates
generator), it is impossible to trace real identities of OBUs belong to damaged
RSUs. As a result, ECPP provides Level 1 Privacy in Table 1.
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Table 1. Definition of Conditional Privacy Level

Authentication Anonymity Unlinkability Traceability
Level 1 Privacy O O × ×
Level 2 Privacy O O O ×
Level 3 Privacy O O O O

3 System Model

In this section, we describe our system model, in which communication nodes
are either membership manager, RSUs, or OBUs as follows:

• Membership Manager is public agencies or corporations with adminis-
trative powers in a specific field; for example, city or state transportation
authorities. The membership manager establishes and manages system pa-
rameters and system roles for secure VANET. In addition, the membership
manager should be able to reveal the identities of safety message senders in
the case of disputed traffic events.

• RSUs belong to the membership manager. When an RSU receives a request
message for certificate issue from an OBU, it checks the validity of the OBU
with the membership manager. If the OBU is legal, the RSU issues multiple
anonymous certificates to the OBU by using universal re-encryption scheme
and group signature scheme.

• OBUs periodically send a safety message by using its own short-time anony-
mous certificate. When an OBU needs anonymous certificates, it requests
certificate issue to a nearby RSU. If the OBU is legitimated, it is able to get
new multiple short-time anonymous certificates from the RSU.

To make our model more clear, we assume the followings:

• Each OBU has a unique electronic identity, e.g., ELP (Electronic License
Plate).

• OBUs change its own shot-time anonymous certificates within 1 minute
(min) as a result of [12].

• Membership manager can inspect all RSUs at high level and detect compro-
mised RSUs.

Our protocol consists of the following 5-phases:

1. Setup: The membership manager sets up its own master key and system
parameters based on identity-based group signature scheme [2] and universal
re-encryption scheme [4]

2. Registration: The membership manager assigns MAC keys to OBUs and
group signing keys to RSUs, respectively. At the same time, the membership
manger stores the pairs 〈OBU’s real ID, MAC key〉 in his secure storage.
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3. Multiple Anonymous Certificates Generation: When an OBU requests anony-
mous certificates for given time period, it generates and transmits a request
message including new pseudonym and MAC value to a nearby RSU. After
validity check for the OBU, the RSU issues multiple short-time anonymous
certificates to the OBU. Finally, the OBU verifies the issued certificates and
checks the validity of the RSU by using RL (Revocation List).

4. Safety Message Authentication: OBUs periodically sign traffic information by
using conventional digital signature scheme under its own shot-time signing
key, and then broadcast a traffic information attached with the signature
and the short-time anonymous certificate. Before accepting received traffic
information, each receiver verifies the signature with sender’s certificate.

5. OBU’s Real ID Trace: In case of problematic happening, the membership
manager traces the real identity of generator of a safety message by using
its own private key.

4 Proposed Protocol

In this section, we propose a robust conditional privacy-preserving authenti-
cation protocol based on universal re-encryption [4] and identity-based group
signature [2] for secure VANET. Table 2 describes the notations used in the
proposed protocol.

Table 2. Notations

Notation Description

GSmk master key of group signature
GSpk public key of group signature
GSparams system parameters of group signature
skMM , pkMM private/public key pair of membership manager
H,H0 cryptographic hash functions
Ki MAC key for OBUi

HK() MAC function under key K
IDi OBUi’s real identity, i.e., ELP
ID′

i pseudonym of OBUi

ID′
i,· short-time pseudonym of OBUi

Certi,· short-time anonymous certificate of OBUi

ski,·, pki,· OBUi’s short-time private/public key pair
GSig() group signature function
Sig() ordinary digital signature function
E(), D() encryption and decryption function of universal re-encryption
Re() re-encryption function of universal re-encryption
t validity period for shot-time certificate

4.1 Setup

The membership manager generates the required bilinear groups and system
parameters as it is in [2]. Given security parameter k, the membership
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manager chooses a k-bit prime number p, bilinear map groups (G1, G2) of order
p. The membership manager randomly picks generators g1 ∈ G1 and g2 ∈ G2.
Let ê : G1 × G2 → GT be a bilinear pairing. The membership manager selects
γ ∈ Z∗

p and sets GSpk = gγ
2 . After that, the membership manager chooses secure

cryptographic hash functions H : {0, 1}∗ → Z∗
p and H0 : {0, 1}∗ → G2

2. The
system parameter GSparams and master key GSmk of the membership manager
are set up as follows:

GSparams = (G1, G2, GT , ê, p, g1, g2, H, H0, GSpk), GSmk = γ

In addition, the membership manager selects its own private key skMM ∈ Z∗
p and

computes public key pkMM = gskMM , where g is a generator for the underlying
group for the ElGamal cryptosystem.

4.2 Registration

In registration phase, the membership manager issues a group signing key to
each RSU for generating anonymous certificates and a MAC key to each OBU.
All OBUs need to be registered with the trusted membership manager and pre-
loaded with public system parameters and their own MAC key before joining
VANET. Thus, the membership manager randomly chooses MAC key Ki and
then transmits Ki to OBUi over a secure channel. In addition, the membership
manager stores the pair 〈IDi, Ki〉 in its own secure storage. To generate a group
signing key, the membership manager selects xj ∈ Z∗

p such that γ + xj �= 0, and

then sets Aj = g
1/γ+xj

1 . After that, the membership manager sends (Aj , xj) to
RSUj as the group signing key over a secure channel.

4.3 Multiple Anonymous Certificates Generation

When an OBUi wants to get new multiple anonymous certificates for given time
period from a nearby RSUj, OBUi and RSUj run anonymous certificate gener-
ation protocol as follows.

Step 1. An OBUi encrypts its own real identity IDi based on universal re-
encryption under the membership manager’s public key to generate a new
pseudonym ID′

i. At the same time, the OBUi randomly selects a short-time
validity period t and multiple signing keys ski,1, . . . , ski,n, and then computes
corresponding public keys (note that, each public key is formed by signature
scheme in safety message authentication phase). Finally, the OBUi computes
MAC value MACID′

i
= HKi(ID′

i||PK||t) and transmits 〈ID′
i, PK, t, MACID′

i
〉

to a nearby RSUj for obtaining n anonymous certificates, where PK is a set of
public keys.

Step 2. The RSUj checks the valid period t since a long period will cause the
risk of continued circulation of an invalid certificate by an attacker. If t is short
valid period, RSUj transmits the received message to the membership manager
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for checking a validity of OBUi. The membership manager decrypts the received
pseudonym ID′

i for getting real identity IDi and searches MAC key Ki corre-
sponding to IDi. If MACID′

i
is valid and the OBUi is legal, the membership

manager sends the permission message and up-to-date RL (={A1, . . . , ANR},
Revocation List for revoked RSUs) to the RSUj.

Step 3. If the RSUj receives the permission message from the membership man-
ager, it repeatedly executes a re-encryption algorithm in [4] with the pseudonym
ID′

i to obtain n pseudonyms ID′
i,1, . . . , ID′

i,n for OBUi. Then, the RSUj com-
putes each σl = GSig(ID′

i,l||pki,l||t) by using group signature scheme [2] un-
der its own group signing key and forms each anonymous certificate Certi,l =
{ID′

i,l, pki,l, t, σl}, where l = 1, . . . , n. Finally, the RSUj transmits multiple
anonymous certificates Certi,1, . . . , Certi,n and RL to the OBUi.

Step 4. The OBUi checks the validity of the RSUj by using revocation checking
procedure in [2] with RL. If RSUj is not revoked, the OBUi verifies received
certificates by using GSpk. Finally, the OBUi accepts issued certificates if all the
checks are valid.

4.4 Safety Message Authentication

OBUi signs a traffic information m by using a conventional digital signature
scheme such as ECDSA under its own short-time signing key ski,l for generating
signature σm. Then, the OBUi forms the safety message Msg = {m, σm, Certi,l}
and broadcasts Msg. Upon receiving a safety message, each receiver first checks
the validity of Certi,l by using GSpk. If the Certi,l is valid, the receiver retrieves
pki,l from the Certi,l and verifies σm using the pki,l. If σm is valid, the traffic
information can be accepted, otherwise discarded.

4.5 OBU’s Real ID Trace

In case of any disputed situation, it is necessary to extract a real identity of
generator of the broadcasted safety message by the membership manager. Since
pseudonyms ID′

i,l = Re(ID′
i) of OBUi are computed by re-encryption scheme

of [4] with ID′
i = EpkMM (IDi), the pseudonyms were formed as ciphertexts for

OBU’s real identity under the pubic key of the membership manager. Note that,
due to the property of universal re-encryption, the membership manager can
output real identities from pseudonyms in the safety message by using its own
private key skMM .

5 Discussion

5.1 Security

We analyze how the proposed protocol satisfies the security requirements stated
in Section 2.
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• Authentication. Since the signature is generated by a conventional digital
signature scheme with respect to a pseudonym and a corresponding public
key, which was proven to secure against adaptive chosen message attack, no
adversary can launch a forgery attack and an impersonation attack to an
OBU.

• Anonymity. Since OBUs’ real identities are encrypted under pkMM and re-
encrypted ciphertexts are used as pseudonyms, an attacker who compromised
multiple RSUs cannot disclose a real identity from pseudonyms in certificates
without knowing skMM due to the property of universal re-encryption.

• Unlinkability. An eavesdropper cannot link the safety messages since most
safety message consists of different pseudonyms and public keys indepen-
dently. Even though multiple RSUs are compromised, the attacker does not
obtain any information from the compromised RSUs since each OBU gener-
ates and transmits different pseudonyms to RSUs in certificate generation.

• Traceability. In dispute cases, the membership manager is able to trace
a real identity of OBUi corresponding pseudonym ID′

i,· by using its own
private key skMM . Even if some RSUs are compromised, the membership
manager is able to trace OBUs since the trace procedure in the proposed
protocol is executed by the membership manager without cooperations with
RSUs.

As a result, the proposed protocol provides Level 3 Privacy in Table 1.

5.2 Efficiency

In this section, we compare the proposed protocol with ECPP to show that our
protocol provides reasonable efficiency in terms of OBU’s computational costs
and RSU valid serving ratios. For fairness in comparisons, we selected a bilinear
pairing of 80-bit security level as the same security measures of ECPP as follows;
degree k = 6, |G1| = 160 bits and |q| = 1024 bits. Table 3 shows the measures to
estimate and to compare our protocol with ECPP. Note that ECPPM is ECPP’s
multiple certificates issue type as given in Table 4.

Table 3. Cryptographic operation time and protocol execution time (implemented on
Pentium IV 3.0 GHz, NR = |RL|)

Cryptographic operation time Time(ms, millisecond)
ê bilinear pairing operation 4.5
point multiplication on G1 0.6
exponentiation on Zq 2.1
Protocol execution time ECPPM (ms) Our Protocol(ms)
time for n certificates issue 20.4+14.4n 6.3+18.6n
time for n certificates verification 17.1n 17.1n
time for validity check of RSU 9NR 9NR

total time for n certificates generation 20.4+31.5n + 9NR 6.3+35.7n+9NR
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Table 4. Modification to multiple-ECPP

Phase ECPP ECPPM

public key generation x ∈ Z∗
q , Y = xP ∀ i ≤ n, xi ∈ Z∗

q , Yi = xiP
certificate check check Cert check ∀ i ≤ n, Certi

RSU validity check × revocation check (by using RL)

To measure the valid number of requesting certificates nV at once per vehicle,
we assume that all OBUs in an RSU range request nV anonymous certificates
to the RSU and the average speed of vehicles varies from 10 m/s ∼ 40 m/s (or
36 km/hr ∼ 144 km/hr). Therefore, nV depends on vehicle density d that is
computed by 2-second rule which drivers maintain as much distance between
vehicles, as the vehicle would travel in 2 s. That is, we have d = Rrange ×
NL/(v × 2) where Rrange is RSU’s valid coverage, NL is the number of lane
and v is vehicle speed. Since TR ≥ TG × d where TR(= Rrange/v) is passing
time through an RSU range and TG(= 6.3 + 18.6nV ) is the time overhead for
generating nV certificates, nV can be measured as follow:

nV ≤ TR

18.6 × d
− 0.3 =

Rrange

v × 18.6 × d
− 0.3

Therefore, each OBU can request about 10 ∼ 50 anonymous certificates to an
RSU depending on vehicle density.

Figure 1 shows computational costs of our protocol, ECPPM and ECPP with
different NR and different n. Then, we can observe that our protocol has reason-
able efficiency to ECPPM in the matter of OBU’s computational costs. Further-
more, when compromised RSUs are increasing, both our protocol and ECPPM

which are multiple certificates issue protocols have more efficiency than single
certificate issue protocol such as ECPP.

Fig. 1. Computational costs of OBU

Let |R|n be the minimal number of passed RSUs for n min, and ρn be the
probability for each OBU to issue a request for n min. Therefore, an OBU
could request n certificates to an RSU among |R|n RSUs. Then, we have ρn =
1/|R|n (note that, since |R|n is a minimal value, we consider that ρn is maximal
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probability). When we assume that an RSU is allocated every 500 meter on
the road, |R|1 and ρ1 are (10 m/s × 60 s)/500 m=1.2 and 0.8, respectively. In
addition, we have |R|n = n × |R|1. As a result, ρn can be measured as follow:

ρn =
1

|R|n =
1

n × |R|1 =
1
n

ρ1 =
0.8
n

By following Lu et al.’s analysis method [8], RSU valid serving ratios of the
proposed protocol with ECPPM for n ≥ 10 are 100% where 10 m/s ≤ v ≤ 40
m/s, 100 ≤ d ≤ 400.

Finally, we show the valid serving ratio of the membership manager for OBUs’
requests. In our protocol, the main operation of the membership manager is
to decrypt OBUs’ pseudonyms at each n min, so the membership manager’s
performance always depends on the size of n. Then, SMM , the valid serving
ratio of the membership manager, can be defined by

SMM =

{
1, if Tms

TMM ·(Tavg/n)·NOBU
≥ 1 ;

Tms

TMM ·(Tavg/n)·NOBU
otherwise.

where Tms is a total time for a day, TMM is time overhead for authenticating
an OBU, Tavg is an average driving time per day and NOBU is the number of
OBUs.

From above equation, we can observe that the membership manager can effi-
ciently process multiple certificates requests in most cases where TMM = 2.1 ms
and Tavg = 120 min. As a result, the proposed multiple anonymous certificates
generation protocol is feasible.

6 Conclusion

In this paper, we have proposed a robust conditional privacy-preserving authen-
tication protocol based on universal re-encryption scheme and identity-based
group signature scheme for secure VANET. Compared with ECPP, the pro-
posed protocol can provide unlinkability and traceability even if an attacker
compromise multiple RSUs. Furthermore, to avoid frequent certificate requests
and to reduce computational overhead for validity check of RSUs in certificate
generation phase, RSUs can issue multiple anonymous certificates to an OBU.
We have demonstrated, through the performance evaluation, that the proposed
protocol has similar performance to ECPP in terms of OBU’s computational
costs and RSU valid serving ratios.
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Abstract. Modern communication and computing devices have the po-
tential to increase the efficiency of disaster response. Mobile agents are
a decentralized and flexible technology to leverage this potential. While
mobile agent platforms suffer from a greater variety of security risks
than the classic client-server approach, Trusted Computing is capable
of alleviating these problems. Unfortunately, Remote Attestation, a core
concept of Trusted Computing, requires a powerful networked entity to
perform trust decisions. The existence and availability of such a service
in a disaster response scenario cannot be relied upon.

In this paper we introduce the Autonomous Attestation Token (AAT),
a hardware token for mobile computing devices that is capable of guar-
anteeing the trusted state of a limited set of devices without relying on
a networked service. We propose a Local Attestation protocol with user
interaction that in conjunction with the AAT allows to prevent unau-
thorized access to an emergency mobile agent platform.

Keywords: Disaster Response, Mobile Agents, Trusted Computing, At-
testation.

1 Introduction

In recent years, it has been proposed to use agent systems in disaster response
[1,2]. Intelligent agents are envisioned to assist and help coordinating teams of
robots and humans, thus increasing their efficiency and ultimately helping to save
lives. In this scenario agent security is of paramount importance. Unfortunately,
due to the nature of mobile agent systems, mobile agent security poses challenges
that go far beyond those known from the classic client-server network paradigm.

Mobile agents are self-contained and identifiable computer programs that can
move within a network and act on behalf of a user or another entity [3]. Building
on the taxonomy of security threats against mobile agents presented by Jansen
and Karygiannis [4], we can discern different attacker roles and scenarios. From a
high level perspective, those are agent vs. platform, platform vs. agent, agent vs.
agent and other vs. agent platform. Specifically, the agent platform should have
the characteristics of a reference monitor which employs a set of technologies such
as process separation, access control, cryptography, safe code interpretation or
proof carrying code [5].

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 46–57, 2009.
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Current mobile agent systems deployed on stationary or mobile devices are
not able to proof that they actually employ those security mechanisms and that
their configuration has not been tampered with. A promising approach is to apply
TrustedComputing, as propagated by the Trusted Computing Group (TCG). Balfe
and Gallery [6] have shown that Trusted Computing can improve the security of
mobile agent systems, by building on security components integrated in off-the-
shelf hardware, public key infrastructures, and trusted third parties. However, in
a disaster response scenario the latter two services might not be available.

To overcome this challenge, we propose to enhance Trusted Computing based
stationary and mobile devices with an additional Autonomous Attestation Token
(AAT). This plug-in device additionally provides strong token based authenti-
cation for mobile agent systems.

Outline. The remainder of this paper is organized as follows: Outlines of
Trusted Computing and mobile agent systems complete Section 1. Section 2 gives
an overview of the related work and Section 3 presents the mobile agent systems
in a disaster response scenario. Section 4 elaborates the concept of Local Attes-
tation. Section 5 proposes a protocol that prevents access of unauthorized users
and compromised systems to an emergency mobile agent system and Section 6
discusses an implementation architecture. The paper concludes in Section 7.

1.1 Trusted Computing

The Trusted Computing Group1 (TCG) has specified the Trusted Platform Mod-
ule (TPM) [7] for general purpose computer systems. Similar to a smart card,
the TPM features cryptographic primitives, but it is physically bound to its host
device. A tamper-resilient integrated circuit contains implementations for public-
key cryptography, key generation, cryptographic hashing, and random-number
generation.

Likewise, for mobile platforms, the Mobile Trusted Module (MTM) [8] has
been specified. The MTM standard defines different sets of features (profiles)
that implementors can choose from. All of these profiles contain the features
required for the purpose outlined in this paper. Therefore, in this paper the
terms TPM and MTM are interchangeable.

The TPM implements high-level functionality such as reporting the current sys-
tem state and providing evidence of the integrity and authenticity of this measure-
ment, known as Remote Attestation [9]. This is done with the help of the Platform
Configuration Registers (PCRs), which can only be written via the Extend oper-
ation. A PCR with index i in state t is extended with input x by setting

PCRt+1
i = SHA-1(PCRt

i||x).

Before executable code is invoked, the caller computes the code’s hash value and
extends a PCR with the result. This process builds a chain of trust, starting
from the firmware, covering bootloader, kernel, and system libraries etc., up to
1 http://www.trustedcomputinggroup.org

http://www.trustedcomputinggroup.org
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application code. Ultimately, the exact configuration of the platform is mapped
to PCR values. This property makes it impossible to hide a malicious program
on a thus protected computer. If such a system state fulfills the given security
or policy requirements, we refer to the system state as a trusted state.

The TPM is capable of signing the current values of the PCRs together with a
supplied nonce. This is called a Quote operation. To protect the platform owner’s
privacy, the unique Endorsement Key, injected by the TPM manufacturer, is not
used for this signature. Rather, a pseudonym is used: an Attestation Identity Key
(AIK). The authenticity of an AIK can be certified by an online trusted third
party, called PrivacyCA[10]. Then a remote Verifier can analyze the Quote
result and decide whether to trust the given configuration or not.

Another high-level feature of a TPM is that it can Bind data (often a sym-
metric key) to a platform by encrypting it with a non-migratable key. Such a key
never leaves the TPM’s protected storage unencrypted. An extension to this is
Sealing. A key may be sealed to a specific (trusted) value of the PCRs. A sealed
key will not leave the TPM, and it is only used by the TPM, if the PCRs hold
the same values that were specified when the key was sealed. Thus, use of the
key can be restricted to a single trusted state of the TPM’s host computer.

1.2 Mobile Agents

Mobile agents incorporate the concepts of code mobility and user task delegation.
Mobile agents are programs that are capable of acting on behalf of a user, and
traveling between machines, to better fulfill their tasks. To start the transfer, the
mobile agent’s code, data, and state is marshaled into a package on the sending
machine. This package is then sent to the target machine, where the agent is
reconstructed and continues execution. To enable agents to fulfill tasks for their
users, they should be autonomous, interactive and adaptable. Autonomy gives
them a degree of control over themselves, interactivity allows them to interact
with other agents and the environment, and adaptability enables them to react
to other agents and the environment. The mobile agents paradigm offers reduc-
tion of network traffic and enables asynchronous interaction [11]. A host system,
consisting of hardware, firmware, operating system and agent middleware that
is capable of executing mobile agents is called agent execution environment. The
overall network of agent execution environments together composes a Mobile
Agent Platform (MAP) in which the agents may roam.

Applications for mobile agents include information gathering, web services,
remote software management, network management and many more. Schurr
et al. [2] introduce a mobile agent system that helps coordinating fire fights
by facilitating vehicle management. This includes planning of routes, resource
allocation and even deciding which fire to fight. They combine the agent sys-
tem with sophisticated visualization technology to enable informed decisions by
human personal in a different location. According to Scerri et al. [1] the use of
mobile agents to coordinate heterogeneous teams of robots, agents, and humans
provides the safest and most effective means for quick disaster response.
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2 Related Work

A challenge of Attestation is to report the result of the verification to the user
before he unveils confidential information (for example a password) to the sys-
tem, as malicious software may display fake trust reports. Parno [12] concludes
that a local channel between user and TPM is needed.

McCune et al. [13] propose the concept of an iTurtle device which can be
trusted axiomatically. To achieve user-observable verification it should be as sim-
ple as possible, and thus easy to understand and certify. McCune et al. propose
a USB device with LEDs indicating the trust status. The authors argue that
integration of the TCG’s scheme was too complex, due to the cryptographic
mechanisms involved.

Mobile agent systems suffer from a wider range of security threats than the
classic client-server paradigm, aptly described in [4]. These threats are difficult
to counter with traditional methods of computer security. Farmer et al. [14] in-
troduce a list of “impossible” security problems for mobile agent systems. The
gist is that the MAP has to be trusted to perform as expected.

Besides the TPM, hardware security modules [15] in general have a long his-
tory of protecting cryptographic material. However, mobility and integrated sup-
port for analysis and verification of a client’s state has not been considered yet.
Wilhelm et al. [16] propose a specialized, tamper-proof hardware module that
provides the so-called trusted processing environment for an agent execution en-
vironment. The idea is that if a client trusted the trusted processing environment
manufacturer, the trust could automatically be extended to a host with such an
environment. Trusted Computing, as proposed by the TCG, has been considered
to increase the security of an MAP by [17]. Balfe and Gallery propose specific
methods on how Trusted Computing can increase the security of a mobile agent
system [6]. SMASH [18] is a trust enhanced MAP that relies on SELinux and
Trusted Computing.

3 Mobile Agent Security in Disaster-Relief Scenarios

We assume that after a disaster stroke, one or more response teams are dis-
patched to the disaster area. The response teams are equipped with mobile
computing and communication devices and use a MAP to coordinate their ef-
forts. In this scenario we call these devices In-Field Devices (IFDs). Examples
for IFDs include general purpose desktop and laptop computers, PDAs and mo-
bile phones. A prerequisite is that IFDs are able to measure their chain-of-trust;
therefore being equipped with a TPM. Amongst possible applications for the
MAP are the coordination of disaster response work, allocation of resources
(like ambulances), or situation visualization.

Response teams may be supported by a command center that, amongst other
services, operates a data center and a core network. We assume that this core
network is well protected and maintained. In Figure 1 this is referred to as
the trusted network. This trusted network may also encompass several trusted
servers that execute computational expensive agents.
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Fig. 1. Mobile agent platform for disaster response scenario

We assume that the IFDs are capable of connecting to an Internet Protocol
based network. Establishing connectivity in emergency situations, possibly over
multiple bearers, is by no means an easy task. Therefore, we must assume that
at times the connection to the core network will be interrupted. Even worse,
a core network might not exists at all, because the command center is not yet
established. In this case, IFDs will form local or ad-hoc networks to support key
disaster response personal.

Regardless of the underlying network topology, we assume that the MAP
uses a secure network that connects the different agent execution environments.
Furthermore, we assume that access to this network is secured by a single cryp-
tographic key.

Security in such a scenario is of paramount importance. A malicious entity
could cause untold harm by attacks. Attacks could encompass the intentional
redirection of resources like ambulance vehicles or teams of fire fighters to wrong
locations. The danger of malicious entities is especially prominent if the disaster
was caused by deliberate actions, like arson or a terrorist attack.

The access to the MAP must therefore be solely restricted to authenticated
and authorized personnel. In addition to a basic authentication mechanism we
identify the need for Trusted Computing mechanisms to protect against tam-
pered IFDs. It is highly desirable to enable the protection of a platform against
software attacks, thus ensuring its configuration and behavioral integrity. With
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TPM equipped systems, it is possible to build a chain of trust. This chain of
trust does not prevent execution of malicious software, but makes all malicious
software on a system evident in the system Quote.

However, current TCG-based implementations of the Remote Attestation
mechanism rely on online, remote servers to certify the identity of the IFD,
verify the authenticity of system reports, analyze the configuration of the IFD,
and display the security status to the user.

The requirement for a remote party is in direct conflict with the challenges
faced in disaster response, as connections to servers may fail and also no second
device may be available to display the IFD’s trust state.

Sealing, the TCG’s alternative mechanism, may also be used off-line, but it is
too inflexible: data or agent code can only be sealed to a single configuration of a
single platform. When configurations change, for example by migrating agents, a
central authority would be needed to assess the trusted state of the new platform
and migrate the data.

For mobile platforms only, the TCG describes Secure Boot [19]. Secure Boot
builds not only a chain-of-trust, but it also verifies intermediate states and aborts
the boot process, if the system has been compromised. However, Secure Boot
is restricted to a single configuration of a single device and the process is not
under direct control of the user.

Usability, next to security, is an important requirement, especially in a disaster
response scenario. It cannot be expected of disaster relief personal to remember
twenty character passwords or to employ similar complex security measures.
Therefore, the solution must provide high security with only moderate demands
on usability. Technically, high security amounts to a cryptographic MAP access
key with sufficient length (for example a 256-bit AES key). We believe that
plugging in a security token and entering a short four to six character password
is acceptable and can also be performed in crisis situations.

4 Local Attestation

As outlined above, standard Trusted Computing mechanisms building on the
TPM alone cannot fulfill the security requirements in disaster response scenarios.
We propose to extend these concepts by introducing a second hardware security
token, the Autonomous Attestation Token (AAT). We envision the AAT to be
either the size and format of a smart card or a microSD card. This allows to
plug it into any available device, be it a laptop computer or a mobile phone.

A hardware security token like the AAT could potentially provide various
cryptographic services. In the following sections we describe a basic use case
where the AAT protects the access key to an emergency MAP in a specially
shielded hardware storage unit. The key is released to the requester, if and only
if the requester can provide sufficient authentication and evidence that it is in a
trusted state. As the user needs to be physically present, we use the term Local
Attestation to designate the process of deciding if a requester, in this case the
IFD, is in a trusted state using our proposed AAT as verifier.
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The mobile attestation token implements a true, decentralized trust decision
process, which does not rely on third parties. It can easily accommodate differ-
ent platforms with varying valid configurations, and it can implement a direct
feedback channel to the user. The AAT, in addition to performing the platform
state verification, also serves as a proof of possession in authentication protocols.
Therefore, it not only ensures a specific state of the platform, but also provides
evidence of the identity of the owner.

4.1 Operational Challenges

The Local Attestation approach poses several challenges related to the deploy-
ment and maintenance of AATs. Deployment is concerned with issuing an AAT
to every entity that requires access to the MAP. Every AAT must contain a set
of valid configurations for all devices of its owner. In addition to this, it must
also contain the public part of the Attestation Identity Keys of said devices.
These keys are used to sign the system Quotes of these devices.

Deployment includes revocation of an AAT. For our proposed scenario (cf.
Section 3), we presume that there is no permanent central authority that grants
access to the emergency MAP, thus establishing the need for Local Attesta-
tion. Local Attestation enables IFDs to ensure continuing collaboration on a
distributed, yet trusted MAP. In such a case, there is also no central author-
ity that can revoke access to the MAP. Therefore, we must rely on operational
procedures, that is physically taking away the AAT from its owner.

The maintenance challenge stems from the nature of platform configuration
measurements as defined by the TCG. A measurement is a SHA-1 hash of an
application that is computed before the application is executed. Therefore, every
time a software component of an IFD is changed, for example during an update,
its hash value changes. This change must be reflected by the known-good-values
database of the verifier.

We believe that careful operational practices, as they can be expected of
emergency response organizations, will allow to overcome these challenges in
practice.

5 An Attestation Based Key Release Protocol

In the emergency MAP scenario given above the AAT protects a single crypto-
graphic key or a set of keys that grant access to this MAP. The objective of the
protocol introduced in this work is to protect the MAP against misuse by unau-
thorized or malicious entities or maliciously modified platforms of authorized
users. In order to achieve this goal the protocol relies on both Local Attestation
and immediate user interaction. An interesting feature of our proposed protocol
is that it employs a token specific return channel in the shape of a red and a
green LED, similar to iTurtle proposed by McCune et al. [13].

On request by its user, the IFD initiates the connection procedure to the MAP
emergency network. To achieve this end, it requires the protected key material
from the AAT. The detailed key release protocol flow is illustrated in Figure 2.
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User IFD AAT

key request
platform id, key id−−−−−−−−−−−−−→

select nonce n
n←−−−−−−−−−−−−

TPM Quote
SigAIK(n,PCRs)−−−−−−−−−−−−→

verify Quote,
activate LED

password id←−−−−−−−−−−−−
password id←−−−−−−−−−−−−
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password−−−−−−−−−−−−→

password−−−−−−−−−−−−→
release key

receive key key←−−−−−−−−−−−−

Fig. 2. Key release protocol based on Local Attestation and user interaction

Initially, the IFD sends a key request containing the unique identifier (key id)
of the required key and a platform identifier (platform id). The platform iden-
tifier uniquely identifies the platform type, thus facilitating the verification pro-
cess. In response to this the AAT answers with a nonce n.

The IFD forwards n to the TPM, which incorporates it in the generation of a
Quote of the platform configuration. The Quote is signed by the TPM using the
private part of an Attestation Identity Key (AIK). The AIK must be premedi-
tated and the corresponding public key must be stored on the AAT. When the
Quote is analyzed by the AAT, the signature, the nonce and the platform config-
uration report are checked. If both the nonce and the signature are acceptable,
the actual trust decision is made based on the Platform Configuration Register
values reflected in the Quote. This is simply a comparison of the values with a
known-good-values database.

If the AAT finds the IFD trustworthy, it sends a password identification
(password id). At the same time the AAT turns on a green LED that signals
to the user that the platform is in a trusted state. In the case that the IFD is
not in a trusted state, the AAT signals this by flashing a red LED. The LEDs
guarantee a direct, trustworthy, one-way channel to the user.

After the trust in the IFD has been established and the password identification
is sent to it, it prompts the user to enter the password for the given identification.
The user checks the LED status. Only if the green LED glows, she entrusts the
IFD with the required password. This password is then forwarded to the AAT
which finally releases the connection key to the IFD, if the password is correct.
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This protocol is immune to the general Cuckoo attack. This attack is also
called grandmaster postal chess problem, and describes a technique where a
malicious party forwards requests to any entity that is capable of answering
them correctly [20]. A universal solution for this problem is an open research
topic [12,13,21]. By requiring premeditation of the AIKs between the IFD and
the AAT, it is not possible to forward the Attestation part of this protocol to
just any other IFD. The Cuckoo attack can only work if this part is forwarded
to one of the valid devices of the same user. Therefore, for a successful attack
it is necessary to physically steal one of the emergency communication devices
of the AAT owner. Furthermore, the user must be given a modified device that
forwards the Attestation part of the protocol. Also it is not sufficient to steal
just an AAT because of the specific AIKs and the need of a user supplied secret.
Therefore, our proposed protocol increases the security system by providing
protection against software attacks on the IFD.

6 The AAT Hardware Architecture

In this section, we propose a hardware architecture that is capable of implement-
ing the Local Attestation protocol. The emergency MAP application scenario
requires the AAT to cooperate with mobile devices. This influences the form
factor and interface of the AAT (microSD/smart card), as well as the digital
hardware design properties such as die area and circuit speed. The AAT is only
necessary to establish the initial connection to the MAP, that is once per power
cycle. Therefore, we conclude that circuit speed and power consumption are in-
significant factors in this scenario. Verification cycles of two or three seconds
seem acceptable and the only requirement on power consumption is that it has
to stay below the limit of what a mobile host device can supply. This can be
utilized to reduce the die area, an important factor in the total cost of the cir-
cuit. This simplifies AAT design efforts, as they can be concentrated on tamper
resistance, and area minimization. The high level hardware architecture of the
AAT we propose is depicted in Figure 3.

The AAT hardware architecture is composed of an RSA signature engine, a
SHA-1 hash engine, a true random number generator, a Static Random Access
Memory (SRAM), a Non-Volatile RAM (NV-RAM), a processor, a red LED, and
a green LED. The RSA signature engine and the SHA-1 hash engine are required
for the verification of the signature on the TPM Quote. The RSA engine must
accommodate the same key lengths as a TPM (typically 2048 bits). The random
number generator, which uses a physical randomness source with bias correction
is necessary for the generation of fresh nonces. The NV-RAM contains both the
secret key(s) that must be protected, and the known-good-values required for
verification of the host platform state. Therefore, the AAT in general and the
NV-RAM specifically must be shielded against tamper attacks [15]. The tamper
resilience must be equal or better than the tamper resilience of the host platforms
TPM, otherwise the AAT would provide a point of attack.

The actual verification of the host platform configuration is executed by the
processor in conjunction with the SRAM. The processor also serves as controlling
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Fig. 3. The AAT architecture

instance for the complete device. For an Attestation based on known-good-values
a simple 8-bit microcontroller is sufficient. The protocol supplies a platform type
identifier which confines the relevant known-good-values set, thus simplifying the
verification.

The architecture introduced above represents a minimal set of components
to implement an AAT. Actually, the AAT functionality can be implemented on
any programmable smart card or hardware security module that provides the
necessary components and possesses an interface compatible with mobile devices.

7 Conclusion

Mobile agent systems and disaster response are a mixture that combines high secu-
rity requirements with security risks that exceed those of the client-server
paradigm. Despite this fact, the advantages and applications of this combination
render it desirable. Current research indicates that Trusted Computing might pro-
vide solutions to the various security problems of mobile agent systems. In this
paper we propagate the use of a Local Attestation token, the AAT, to eliminate
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the need for a Trusted Computing specific remote verifier and allow decentralized,
possibly ad-hoc mobile agent cooperation. Expanding on the idea of the AAT, we
introduce a key release protocol that unites Attestation, a separate feedback chan-
nel, and user interaction to limit agent platform access to authorized users only.
The protocol provides security against remote or local software attacks on an in-
field device and is immune to a general Cuckoo attack. Furthermore, we argue
that a hardware implementation of the AAT is relatively simple compared to full-
featured hardware security modules or even some smart cards and propose a pos-
sible architecture. Thus, our AAT provides a powerful and simple to use security
solution for mobile agents in disaster response scenarios.
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Abstract. In a ),( nt  threshold proxy signature scheme, one original signer 
delegates a group of n proxy signers to sign messages on behalf of the original 
signer. When the proxy signature is created, at least t proxy signers cooperate to 
generate valid proxy signatures and any less than t proxy signers can’t 
cooperatively generate valid proxy signatures. So far, all of proposed threshold 
proxy signature schemes are based on public key systems with certificates, 
which have some disadvantages such as checking the certificate list when 
needing certificates. Most threshold proxy signature schemes use Shamir’s 
threshold secret share scheme. Identity-based public key system is not pretty 
mature. Self-certified public key systems have attracted more and more 
attention because of its advantages. Based on Hsu et al’s self-certified public 
key system and Li et al’s proxy signature scheme, one threshold proxy signature 
scheme based on ECDLP and self-certified public key system is proposed. As 
far as we know, it is the first scheme based on ECDLP and self-certified public 
key system. The proposed scheme can provide the security properties of proxy 
protection, verifiability, strong identifiability, strong unforgeability, strong 
repudiability, distinguishability, known signers and prevention of misuse of 
proxy signing power. That is, internal attacks, external attacks, collusion 
attacks, equation attacks and public key substitution attacks can be resisted. In 
the proxy signature verification phase, the authentication of the original and the 
proxy signers’ public keys and the verification of the threshold proxy signature 
are executed together. In addition, the computation overhead and 
communication cost of the proposed scheme are analyzed as well. 
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1   Introduction 

The proxy signature scheme [1], a variation of ordinary digital signature schemes, 
enables a proxy signer to sign messages on behalf of the original signer. Proxy 
signature schemes are very useful in many applications such as electronics transaction 
and mobile agent environment. 

Mambo et al. [1] provided three levels of delegation in proxy signature: full 
delegation, partial delegation and delegation by warrant. In full delegation, the 
original signer gives its private key to the proxy signer. In partial delegation, the 
original signer produces a proxy signature key from its private key and gives it to the 
proxy signer. The proxy signer uses the proxy key to sign. As far as delegation by 
warrant is concerned, warrant is a certificate composed of a message part and a public 
signature key. The proxy signer gets the warrant from the original signer and uses the 
corresponding private key to sign. Since the conception of the proxy signature was 
brought forward, a lot of proxy signature schemes have been proposed [2]-[19]. 

Recently, many threshold proxy signature schemes were proposed [2] [6]-[14]. In 
threshold proxy signature schemes, a group of n proxy signers share the secret proxy 
signature key. To produce a valid proxy signature on the message m, individual proxy 
signers produce their partial signatures on that message, and then combine them into a 
full proxy signature on m. In a ),( nt  threshold proxy signature scheme, the original 

signer authorizes a proxy group with n proxy members. Only the cooperation of t or 
more proxy members is allowed to generate proxy signatures. Threshold signatures 
are motivated both by the demand which arises in some organizations to have a group 
of employees agree on a given message or document before signing, and by the need 
to protect signature keys from attacks of internal and external adversaries. 

In 1999, Sun proposed a threshold proxy signature scheme with known signers [9]. 
Then Hwang et al. [7] pointed out that Sun’s scheme was insecure against collusion 
attack. By the collusion, any 1−t  proxy signers among t proxy signers can 
cooperatively obtain the secret key of the remainder one. They also proposed an 
improved scheme which can guard against the collusion attack. After that, [6] showed 
that Sun’s scheme was also insecure against the conspiracy attack. In the conspiracy 
attack, t malicious proxy signers can impersonate some other proxy signers to 
generate valid proxy signatures. To resist the attack, they also proposed a scheme. 
Hwang et al pointed out [8] that the scheme in [7] was also insecure against the attack 
by the cooperation of one malicious proxy signer and the original signer. In 2002, Li 
et al. [2] proposed a threshold proxy signature scheme with good properties and 
performance. 

All of the proposed schemes are based on Shamir’s secret share protocol and the 
public key systems using certificates, which have some disadvantages such as 
checking the certificate list when needing certificates, and high computation 
overheads and communication cost. 

So far, there are three kinds of public key systems involving using certificates, 
identity-based and self-certified public keys. Currently, identity-based public systems 
are not mature, as makes it not used in the real life. 
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The self-certified public key system was first introduced by Girault in 1991 [20]. In 
self-certified public key systems, each user’s public key is produced by the CA 
(Certification Authority), while the corresponding private key is only known to the 
user. The authenticity of public keys is implicitly verified without the certificate. That 
is, the verification of public keys can be performed with the subsequent cryptographic 
applications such as key exchange protocols and signature schemes in a single step. 
Compared with other two public systems, the system has the following advantages 
[18]: ①the storage space and the communication overheads can be reduced since the 
certificate is not needed; ②the computation overhead can be reduced as it doesn’t 
require public key verification. 

In public key cryptosystems, there are several kinds of cryptographic assumptions to 
be used. Currently, only the discrete logarithm problem and factorization problem are 
widely accepted. In addition, the elliptic curve cryptosystem (ECC) [21] is constructed 
by integer points over elliptic curves in finite fields. The advantage of ECC is that it can 
reach the same level of security constituted by DSA [22] or RSA [23] and provides 
better efficiency than both discrete logarithm and factorization systems. 

There are four trust levels for the security of public key systems [12]. Hsu et al 
[18] pointed out that the self-certified public key systems might be the ideal choice 
for realizing cryptographic applications according to security and efficiency. Further, 
Hsu et al [18] proposed a kind of self-certified public key system. In 2004, Hwang et 
al [19] proposed a generation of proxy signature based on elliptic curves. In the paper, 
based on Hsu et al’s self-certified public key system and Hwang’s et al’s proxy 
signature scheme, a threshold proxy signature scheme using self-certified public 
system is proposed by us. The main advantage of the proposed scheme is that the 
authenticity of the original and the proxy signers’ public keys, and the verification of 
the proxy signature can be simultaneously executed in a single step. As far as we 
know, this threshold proxy signature scheme is the first one using self-certified public 
key system.  

In the paper, we will organize the content as follows. In section 2, we will detail 
the proposed threshold proxy signature scheme, which is based on the self-certified 
public key system [18] and Hwang et al’s proxy signature scheme [17]. The security 
of the proposed scheme will be analyzed and discussed in section 3. In section 4, we 
will analyze the computational overheads and communication cost of the proposed 
scheme. Finally, the conclusion is given. 

2   The Proposed Scheme 

In the scheme, a system authority (SA) whose tasks are to initialize the system, the 
original signer oU , certification authority (CA) whose tasks are to generate the public 

key for each user, the proxy group of n proxy signers },...,,{
21 nPPPP UUUG = ,  one 

designated clerk C whose tasks are to collect and verify the individual proxy 
signatures generated by the proxy signers, and construct the final threshold proxy 
signature, and the signature verifier are needed. 
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Throughout the paper, q is a large prime and E is an elliptic curve over a finite 
)(qGF . G is a base point on E with order n. h is a secure one-way hash function. The 

parameters ),,( nGq  and the function h are made public. Let iID  be the identifier of 
the user iU . Assume that CAx  and CAy  are the private and public keys of the CA, 
respectively, where *

qCA Zx ∈  and 

Gxy CACA =                                                               (1) 

wm  is a warrant which records the identities of the original signer and the proxy 
signers of the proxy group, parameters t and n, message type to sign, the valid 
delegation time, etc. ASID  (Actual Signers’ ID) denotes the identities of the actual 
proxy signers.  

The proposed scheme consists of four phases: registration, proxy share generation, 
proxy signature issuing without revealing proxy shares and proxy signature 
verification. We will detail them as follows.  

2.1   Registration 

Step 1. Each user iU  selects an integer 11 −≤≤ nti  at random, computes 

GIDthv iii ),(=                                                           (2) 

and sends ),( ii IDv  to the CA.  

Step 2. Upon receiving ),( ii IDv  from iU , the CA selects 11 −≤≤ nzi , calculates 

Gzvy iii +=                                                               (3) 

nxIDyhze CAixiii mod),)((+=                                            (4) 

and returns ),( ii ey  to iU . Here x)(⋅  denotes the x-coordinate of point )(⋅  on E. 

Step 3. iU  computes 

            nIDthex iiii mod),(+=                                                    (5) 

and confirms its validity by checking that 

GxyIDyhy iiixiCA =+),)((                                                (6) 

If it holds, iU  accepts ),( ii yx  as his private and public keys. Moreover, the CA 

publishes sUi '  public key iy  when the registration is complete. Note that the CA 

needn’t issue extra certificate associated with iy . 

2.2   Proxy Share Generation 

Step 1. The original signer chooses randomly an integer nko ≤≤1 , computes 

GkK oo =                                                             (7) 
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nKmhxKk xowoxooo mod))(,()( +=σ                                       (8) 

and sends ),,( oow Km σ  to each of proxy signers. 

Step 2. After receiving ),,( oow Km σ , each of proxy signers confirms the validity of 

),,( oow Km σ  by 

]),)(()[)(,()( ooxoCAxowoxoo yIDyhyKmhKKG ++=σ               (9) 

If it holds, each of proxy signers regards oσ  as its proxy share. 

2.3   Proxy Signature Issuing without Revealing Proxy Shares 

Without loss of generality, the proposed scheme allows any t or more proxy signers to 
represent the proxy group to sign a message m cooperatively on behalf of the original 
signer oU . 

Let },...,,{ '' 21 PtPPP UUUG =  be the actual proxy signers for ntt ≤≤ ' . 'PG  as a 

group performs the following steps to generate a threshold proxy signature. 

Step 1. Each proxy signer 'PP GU
i
∈  chooses an integer *

qi Zk ∈  at random, computes 

GkK ii =                                                                   (10) 

and sends it to the other 1'−t  proxy signers in 'PG  and the designated clerk C. 
Step 2. Upon receiving jK  );',...,2,1( ijtj ≠= , each 'PP GU

i
∈  computes K and is  as 

follows: 

∑
=

=
'

1

t

j

jKK                                                                  (11) 

 ))(mod,()'()( 1 nASIDmhxtKks
iPoxii ++= −σ                                (12) 

Here, is  is an individual proxy signature which is sent to C. 
Step 3. For each received is  )',...,2,1( ti = , C checks whether the following 

congruence holds: 

),(]}),)(([

)]),)((())(,()[('{)( 1

ASIDmhyIDyhy

yIDyhyKmhKKtKKGs

PiPixPiCA

ooxoCAxowoxoxii

+
++⋅++= −

  (13) 

If it holds, ),( ii sK  is a valid individual proxy signature on m. If all the individual 

proxy signatures of m are valid, the clerk C computes 

nsS
t

i
i mod

'

1
∑

=

=                                                            (14) 

Then, ),,,,,( ASIDSKmKm ow  is the proxy signature on m. 

2.4   Proxy Signature Verification 

After receiving the proxy signature ),,,,,( ASIDSKmKm ow  for m, any verifier can 

verify the validity of the threshold proxy signature by the following steps. 
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Step 1. According to wm  and ASID , the verifier can obtain the value of t and n, the 
public keys of the original signer and proxy signers from CA and knows the number 
't  of the actual proxy signers. Then the verifier checks whether tt ≥' , if it holds, 

he/she continues the following steps, or else, he/she will regard the threshold proxy 
signature ),,,,,( ASIDSKmKm ow  invalid . 

Step 2. The verifier confirms the validity of the proxy signature on m by checking 
 

}]),)(([

)]),)((())(,()){[(,()(
'

1
∑

=

+

++⋅++=
t

i
PiPixPiCA

ooxoCAxowoxox

yIDyhy

yIDyhyKmhKKASIDmhKKSG

 (15)

 
If it holds, the proxy signature ),,,,,( ASIDSKmKm ow  is valid. 

3   Correctness of the Proposed Scheme 

In the section, we shall prove that the proposed scheme can work correctly by the 
following theorems. 
 

Theorem 1. In the registration phase, the user iU  can verify the validity of its private 

and public key pair ),( ii yx  by Equation (6). 
 

Proof. From Equations (4) and (5), we have nIDthxIDyhzx iiCAixiii mod),(),)(( ++= . 

By raising both sides of the above equation by multiplying them by the base point G, 
we have 

GIDthGxIDyhGzGx iiCAixiii ),(),)(( ++= . 

From Equations (2) and (3), we have GIDthyGz iiii ),(−= . Then, we have 

GxIDyhyGIDthGxIDyhGIDthyGx CAixiiiiCAixiiiii ),)((),(),)((),( +=++−=  

From Equation (1), the above equation can be rewritten as 

             GxyIDyhy iiixiCA =+),)((             

Theorem 2. If the proxy share is constructed correctly, it will pass the verification of 
Equation (9). 
 

Proof. By raising both sides of Equation (8) by multiplying them by the base point G, 
we have 

GKmhxGKkG xowoxooo ))(,()( +=σ  

According to Equations (6) and (7), the above equation can be rewritten as 

         ]),)(()[)(,()( ooxoCAxowoxoo yIDyhyKmhKKG ++=σ     

Theorem 3. In the proxy signature generation phase, the clerk C can verify any 
individual proxy signature is  sent from 

iPU  by Equation (13). 
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Proof. By raising both sides of Equation (12) by multiplying them by the base point 
G, we have 

),()'()( 1 ASIDmhGxGtGKkGs
iPoxii ++= −σ  

According to Equations (6), (9) and (10), the above equation can be rewritten as 

     
),(]}),)(([

)]),)((())(,()[('{)( 1

ASIDmhyIDyhy

yIDyhyKmhKKtKKGs

PiPixPiCA

ooxoCAxowoxoxii

+
++⋅++= −

  

Theorem 4. If the threshold proxy signature is constructed correctly, it will pass the 
verification of Equation (15). 
 
Proof. From Equations (12) and (14), we have 

))(mod,(),()(

))](mod,()'()([

'

1

'

1

'

1

1

nASIDmhxASIDmhKk

nASIDmhxtKkS

t

i
Po

t

i
xi

t

i
Poxi

i

i

∑∑

∑

==

=

−
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++=

σ
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By raising both sides of the above equation by multiplying them by the base point G, 
we have 

),(),()(
'

1

'

1

ASIDmhGxASIDmGhKGkSG
t

i
Po

t

i
xi i∑∑

==

++= σ  

According to Equations (6), (9), (10) and (11), the above equation can be rewritten as 

}]),)(([
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4   Security Analysis 

In the section, we will propose several theorems about the security below and prove 
that they are right. 
 
Theorem 5. The user can’t forge his/her private key without interaction with the CA 
and the CA can forge the user’s public key without the interaction with the user 
neither. 
 
Proof. From Equation (4), we know that although the user can select a random integer 

*
qi Zz ∈  and compute Gzvy iii += , because having no the knowledge of the CA’s 

private key CAx , he/she can’t get a valid value of ie  to construct his self-certified 
private key. Obviously, the user can forge a valid private key with the probability of 

n/1 . That’s, the user’s private key has to be set up by the interaction with the CA. 
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Similarly, if the CA wants to forge the user’s new public key which satisfies Equation 
(6), he/she has to solve the difficult discrete logarithm problem and the secure hash 
function, as we know it is impossible. Thus the CA can’t forge a new public key of 
the user. To generate the user’s public key, the CA has to interact with the user.                   

Theorem 6. The user can’t forge his public key by its private key without the 
interaction with the CA and the CA can’t get the user’s private key from the 
interaction with the user either. 
 

Proof. If the user wants to forge his/her new public key which satisfies Equation (6), 
he/she has to solve the difficult discrete logarithm problem and secure hash functions, 
as we know it is impossible. Thus the user can’t forge a new public key of the user 
without the interaction with the CA. From Equation (5), we know that because the 

CA has no the knowledge of *
qi Zt ∈  selected by the user, the CA can’t obtain the 

user’s private key ix . In addition, from the verification equation (6), the CA is unable 
to get the user’s private key ix  since he/she is faced with the difficulty of solving 
discrete logarithms and secure hash functions. Therefore, we can draw the above 
conclusion.                                       
 

Theorem 7. Any tt <''  proxy signers can’t generate a valid threshold proxy signature 
on a new message 'm . 
 

Proof. From Equations (12) and (14), we have 

))(mod,(),()(
'

1

'

1

nASIDmhxASIDmhKkS
t

i
Po

t

i
xi i∑∑

==

++= σ                (16) 

Because any tt <''  proxy signers have no the knowledge of ik  or ∑ ik , and 
jPx  or 

∑ jPx  of other ''tt −  proxy signers, any tt <''  proxy signers are unable to cooperate 

to generate the valid proxy signature on a new message 'm . Although any tt <''  
proxy signers can generate ),,,',,( ASIDSKmKm ow  and it can pass the verification 

Equation (15), the number of actual proxy signers is less than t, as makes it can’t pass 
the verification step 1. Thus the forged proxy signature ),,,',,( ASIDSKmKm ow  by 

tt <''  proxy signers is invalid. 
From the Equation (16), any tt <''  proxy signers are unable to get the values of ik  

or ∑ ik , and 
jPx  or ∑ jPx  of other ''tt −  proxy signers, if the message m is 

replaced with 'm , any tt <''  proxy signers can’t get the new value of 'S . Also, from 
the verification Equation (15), when m is replaced with 'm , given fixed some 
variables of the set },,,,{ ASIDSKKm ow , the values of the other variables in the set 

},,,,{ ASIDSKKm ow  will be unable to be gotten because of the difficult discrete 

logarithm and secure hash function. That is, from a known proxy signature 
),,,,,( ASIDSKmKm ow , any tt <''  proxy signers can’t generate valid threshold 

proxy signature on a new message 'm . So the theorem is proved to be true.  
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Theorem 8. Any tt <''  proxy signers can’t forge another valid threshold proxy 
signature on the original message m from the proxy signature 

),,,,,( ASIDSKmKm ow . 
 

Proof. On one hand, from Equation (16), any tt <''  proxy signers can’t get the 

knowledge of ik  or ∑ ik , and 
jPx  or ∑ jPx  of other ''tt −  proxy signers. Thus, the 

values of some variables in set },,{ ASIDSK  can’t be changed by changing the values 

of the other variables in set },,{ ASIDSK . Here note that as far as any tt <''  proxy 

signers are concerned, the values of wm  and OK  can’t be changed, as can be 
guaranteed by Equation (9). On the other hand, from the verification Equation (15), 
by fixing some variables of the set },,,,{ ASIDSKKm ow , the values of the other 

variables in the set },,,,{ ASIDSKKm ow  will not be able to be gotten because of the 

difficult discrete logarithm and secure hash functions. Therefore, the theorem is 
proved true.       
 
Theorem 9. The original signer and any tt <''  proxy signers can’t cooperatively 
generate a valid threshold proxy signature on a new message 'm . 
 
Proof. The case is similar with Theorem 7. The difference is that the original signer is 
one of the forgers. First, if the original signer does not change the values of wm  and 

OK , the difficulty of forging a valid proxy signature on 'm  is equivalent to that of 

Theorem 7 since the original signer also has no the knowledge of 
jPx  or ∑ jPx  of 

other ''tt −  proxy signers. Second, if the original signer changes the values of wm  

and oK , correspondingly, the proxy share oσ  is also changed, however, the values of 

t and n should not be changed, as is obvious in the case. Thus the condition is similar 
with that of the first case. Therefore, the original signer and any tt <''  proxy signers 
can’t cooperatively generate a valid threshold proxy signature on a new message 'm .   
 

Theorem 10. The original signer and any tt <''  proxy signers can’t cooperatively 
forge another valid threshold proxy signature on the original message m from the 
proxy signature ),,,,,( ASIDSKmKm ow . 
 
Proof. The theorem is similar with Theorem 8. The first condition is similar with that 
of the proof of Theorem 8. Here the kind of proof is omitted. Let us see the second 
condition. From the verification Equation (15), by fixing some variables of the set 

},,,,{ ASIDSKKm ow , the values of the other variables in the set },,,,{ ASIDSKKm ow  

will not be able to be obtained because of the difficult discrete logarithm and secure 
hash function, although the original signer is easy to change the values of wm  and 

oK . Thus the theorem holds. 
 
Theorem 11. Any third party, the original signer and any tt <''  proxy signers can’t 
cooperatively generate a valid threshold proxy signature on a new message 'm . 
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Proof. The theorem is the same as Theorem 9 since the third party knows less 
information than the original signer. The proof is the same as that of the Theorem 9.    
 

Theorem 12. Any third party, the original signer and any tt <''  proxy signers can’t 
cooperatively forge another valid threshold proxy signature on the original message 
m from the proxy signature ),,,,,( ASIDSKmKm ow . 
 

Proof. The theorem is the same as Theorem 10 since the third party knows less 
information than the original signer. The proof is the same as that of the Theorem 10.   
 
Theorem 13. Any can be convinced of the original signer’s agreement on the signed 
message from the proxy signature ),,,,,( ASIDSKmKm ow . 
 

Proof. From the proxy signature verification equation (15), the warrant wm , the 
identities and public keys of the original and actual proxy signers are used. In this 
case, any can be convinced of the original signer’s agreement on the signed message 
from the proxy signature ),,,,,( ASIDSKmKm ow . 
 

Theorem 14. Any can identify the actual proxy signers from the proxy signature 
),,,,,( ASIDSKmKm ow . 

 
Proof. From the proxy signature verification Equation (15), it can be seen that all 
actual proxy signers’ identities and public keys are used. Therefore, any can identify 
the actual proxy signers from the proxy signature ),,,,,( ASIDSKmKm ow . 
 
Theorem 15. Any can distinguish proxy signatures from normal signatures. 
 
Proof. In the proxy signature verification Equation (15), not only the original signer’s 
public key, but also the actual proxy signers’ public keys are used. In normal 
signature verification equation, only signers’ public keys are used. So, any can 
distinguish proxy signatures from normal signatures.  
 
Theorem 16. The proxy signers can’t repudiate having produced the proxy signature 
which has ever been signed to any one. 
 
Proof. As seen in proxy signature verification Equation (15), the actual proxy signers’ 
identities and public keys are used. Thus he can’t deny having produced the proxy 
signature which has ever been signed to any one.   

From the above several theorems, we know that the proposed scheme can fulfill the 
securities of verifiability, strong identifiability, distinguishability, strong unforgeability, 
strong nonrepudiation, proxy protection and prevention of misuse of proxy signing 
power. In other words, the proposed scheme can resist equation attacks, collaboration 
attacks, public key substitution attacks, internal attacks and external attacks. In 
addition, the certificates of users are not needed in the proposed scheme. If users want 
to change his private key or the CA wants to change users’ public key, both have to 
interact to finish it, or else neither of the two parties can succeed. The verifier only 
needs to obtain the public keys of the original signer and the proxy signers and 
needn’t verify their validity as the verification of their public keys and the proxy 
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signature is executed together. Thus, the self-certification of public keys can be 
realized. 

5   Performance Evaluation 

To facilitate the performance evaluation, we denote the following notations: 
hT : The time for performing a one-way hash function h ; mulT : The time for 

performing a modular multiplication computation; addT : The time for performing a 

modular addition computation; invT : The time for performing a modular inverse 
computation; paT : The time for performing a point addition computation; smT : The 

time for performing a scalar multiplication computation; || x : The bit-length of an 

integer x or a point x. The computational overhead and communication cost of the 
proposed scheme are stated in Table 1 and 2, respectively. 

Table 1. Computational overhead of the proposed scheme 

Phases Computational overheads 
Registration User: haddsmpa TTTT 23 +++  

The CA: haddmulsmpa TTTTT ++++  

Proxy share generation The original signer: haddmulsm TTTT +++ 2  
Each proxy signer: haddmulsmpa TTTTT 22 ++++  

Proxy signature issuing Each proxy signer: 

hinvaddmulsmpa TTTTTTt +++++− 23)1'(  

The clerk: hinvaddsmpa TtTtTtTtTt '4')1'('7'5 ++−++  

Proxy signature verification hsmpa TtTtTt )2'()3'()3'( +++++  

Table 2. Communication cost of the proposed scheme 

Phases Communication cost 
Registration ||||||2 iIDnG ++  

Proxy share generation |||||| wmnG ++  

Proxy signature issuing ||'||' ntGt +  

Proxy signature verification ||||||||||2 ASIDmmnG w ++++  

Total a ||||||2||)2'(||)3'( ASIDmmntGt w ++++++  
a The total communication cost excludes the registration phase. 

6   Conclusions 

In the paper, based on Hsu et al’s self-certified public key system and Hwang et al’s 
proxy signature scheme, one ECDLP-based threshold proxy signature scheme with 
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self-certified public key system and non Shamir’s secret share protocol has been 
proposed. As far as we know, it is the first scheme based on ECDLP using self-certified 
public key system. The proposed scheme can provide needed security properties. In the 
proxy signature verification phase, the authentication of the original and the proxy 
signers’ public keys and the verification of the threshold proxy signature are executed 
together. In addition, the computation overhead and communication cost of the 
proposed scheme are analyzed as well. 
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Abstract. Integrity measurement and attestation mechanisms have already been
developed for PC and server platforms, however, porting these technologies di-
rectly on mobile and resource-limited devices does not truly satisfy their
performance constraints. Therefore, there are ongoing research efforts on mobile-
efficient integrity measurement and attestation mechanisms. In this paper we pro-
pose a simple and efficient solution for this problem by considering the unique
features of mobile phone devices. Our customized secure boot mechanism en-
sures that a platform can boot to a secure state. During runtime an information
flow–based integrity model is leveraged to maintain high integrity status of the
system. Our solution satisfies identified security goals of integrity measurement
and attestation. We have implemented our solution on a LiMo compatible mobile
phone platform.

1 Introduction

Mobile devices such as cellular phones and smartphones have been evolved to be more
open and general-purpose so that security has become a significant issue for device
manufactures, network and service providers. On one side, today’s smartphones typi-
cally have increasing processing power, integrated functions, and network connectivity,
and hence, there are more services deployed on these devices not only voice but also
data, such as messaging, content sharing, and enterprise data processing. On the other
side, mobile phone devices face the same kind of threats that have been surging in PC
world. According to F-Secure [22], currently there are more than 350 mobile malware
in circulation. Examples of the most notorious threats to cellphones include Skull [16],
Cabir [2], and Mabir [10] targeting at Symbian operating systems. McAfee’s 2008 mo-
bile security report [11] indicates that nearly 14% of global mobile users have been di-
rectly infected or have known someone who was infected by a mobile virus, and more
than 70% of users expect mobile operators or device manufacturers to preload mobile
security functionality.

One major attack mechanism of mobile malware is to maliciously change system
files or configurations thus disable some phone or platform functions. For example,
mobile viruses like Dampig [4], Fontal [6], Locknut [9], and Skulls [16] maliciously
modify system files and configurations thus disable application manager and other le-
gal applications on a phone. Phones can even become unable to uninstall or disable

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 71–82, 2009.
c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009
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the malware once they are infected. Doomboot [5] installs corrupted system binaries
into c: drive of a Symbian phone, and when the phone re-boots these corrupted bina-
ries are loaded instead of the correct ones, and the phone crashes at boot. Similarly
Skulls [16] can break phone services like messaging and camera. For another example,
Cardblock [3] deletes system directories and destroys information about installed ap-
plications, MMS and SMS messages, phone numbers stored on the phone, and other
critical system data. According to F-Secure [22], user installed applications are ma-
jor threats to mobile platform security, including those downloaded from Internet or
received from MMS and Bluetooth.

All these existing attacks compromise the integrity of a mobile phone device.
Integrity measurement is a technique to enable a party to query the integrity status
of software running on a platform, e.g., through attestation challenges. Several integrity
measurement mechanisms have been proposed and developed. Trusted
Computing Group (TCG) has published a set of specifications to measure, store, and
report hardware and software integrity via transitive trust concept with hardware root-
of-trust called Trusted Platform Module (TPM) and Core-Root-of-Trust-Measurement
(CRTM). On a TPM-enabled platform, the CRTM measures the bootloader of the sys-
tem before it is executed, and then stores the measured value into one of the platform
configuration registers (PCRs) inside the TPM. The bootloader then loads OS image,
measures it and stores via PCR extension, and then executes it [18]. In turn, the OS mea-
sures the loaded applications and stores their integrity values in PCRs before executing
them. Upon an attestation challenge from a third party, the TPM signs a set of PCR
values with an attestation identity key (AIK) and sends back the result. The challenger
then can make decisions on the trust status of the platform by verifying the integrity
of these values and comparing with the corresponding known-good values. For mobile
phone platforms, TCG Mobile Phone Working Group has released specifications for
mobile trusted module (MTM) [17].

Problems. IBM Integrity Measurement Architecture (IMA) [26] is an implementation
of TCG specification in Linux. In IMA, GRUB is augmented to include measurement
functions for kernel, ramdisk images, and grub.conf. Also, a kernel module is imple-
mented to measure OS components after the kernel is loaded (post-boot), including
libraries, usual command and tool binaries, configuration files, and application mod-
ules. Unfortunately, there is no practical implementation of integrity measurement and
attestation for mobile platforms so far. One major reason is that, mobile devices such as
cellular phones are still limited in computing power, e.g., they typically employ proces-
sors running at 200-600 MHz and internal RAM memories of 32MB or 64MB in size.
This mandates that any security solution must be very efficient and leave only a tiny
footprint in the limited memory. However, IMA has 400-600 measurements on typical
desktop and server platforms [7], out of which around 350 measurements are post-boot
measurements. The measurements take long time during boot and introduces significant
performance delay during runtime. PRIMA [25] extends IMA on mobile phone devices
and simplifies the integrity measurements. However it still has more than 200 measure-
ments on an Openmoko phone device [25]. Although many software components (e.g.,
libs and binary images) on a phone are smaller than corresponding components in PC
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and servers, the performance overhead is still very significant and degrades the overall
user experience.

Contributions. In this paper, we first identify the security goals and requirements for
mobile platform integrity measurement. We then propose an efficient solution towards
these goals and requirements. Our major design objective is to reduce the number of
software components to be measured on a platform, and thus reduces booting and run-
time performance overhead and eases the integrity verification for attestation. Our so-
lution consists of two major steps. First, we develop a secure boot mechanism to ensure
that a secure kernel is booted, which in turn ensures a well-behaved measurement agent
and enforces an authenticated security policy during runtime of the operating system
(OS). Runtime integrity assurance is then achieved by leveraging a simple integrity
model, which efficiently identifies the trusted and untrusted domains (including pro-
cesses and resources) of a mobile platform, and restricts modifications from untrusted
domain to trusted side. The essential idea of our integrity measurement is that we only
measure integrity protection policy and enforcement mechanism based on our model,
including OS kernel and user space components that accept inputs from untrusted do-
main on a platform (mainly framework daemons providing services to other applica-
tions on a platform). For verification, if our model is correctly enforced with carefully
designed policy, we have the assurance that processes and resources in trusted domain
are protected from untrusted applications, and the platform is always in good integrity
status during runtime. The rational that makes our approach practical is that in mobile
phone and many embedded devices, it’s much easier to identify the board line between
trusted and untrusted domains, as we discuss in later sections of this paper. While in PC
and server environments, due to many network-faced services and installed software
from many unverified resources, it’s a complex task.

Outline. In the next section we analyze the general security goals of integrity mea-
surement and attestation for mobile platform. We then present our solution with secure
boot and runtime integrity model to satisfy these goals in Section 3. We briefly present
some implementation information of our approach on a LiMo compatible real smart-
phone device in Section 4. Section 5 presents some related work on platform integrity
measurement. We conclude this paper in Section 6.

2 Security Goals

In this section we explain the security goals of integrity measurement and attestation
on general computing environments. We then identify some further requirements for
mobile platforms. We note that this is not a complete list of security goals, but the
aspects considered in our solution.

Trusted Boot. TCG specification requires trusted boot, which adopts the concept simi-
lar to AEGIS [19]. Specifically, upon booting, all software components including BIOS
and OS bootloader are transitively measured by the CRTM of a platform and the results
are extended in the PCRs of TPM. The bootloader then loads OS image, measures it
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and stores via PCR extension, and then executes it [18]. In turn, the OS can measure
applications and stores their integrity values in PCRs before executing them.

Load-time Integrity Measurement. There are two different types of integrity mea-
surement for a software binary: load-time and runtime measurements. The TCG only
specifies load-time integrity measurement–a piece of code or data is measured when
it is mapped or loaded into main memory. In IMA [26], measurements are invoked in
several system call functions such as mmap and insmod when code or kernel modules
are loaded but before they are executed. After a code is mapped into memory and dur-
ing runtime, it is very difficult to measure the integrity of the process considering very
dynamic and undeterministic behaviors of typical applications, such as loading active
code, receiving external inputs, and allocating dynamic memory.

In addition to trusted boot and load-time integrity measurement, integrity protection
for mobile phones has the following extra requirements.

Secure Boot. Due to the business model of mobile industry, a mobile device is a service
convergence of many remote service stakeholders, including device manufacturer, net-
work operator, and other service providers. There is a set of mandatory engines [17] re-
side on a single mobile platform and provide critical and indispensable services, which
have to be running in known-good states, which mean that the integrity of these services
must be verified to assure their trustworthiness. Therefore TCG Mobile Phone Refer-
ence Architecture [17] states that secure boot is mandatory for MTM. As mentioned,
trusted boot requires any component during boot has to be measured and the result is
securely stored. Further, secure boot requires that a measured value has to be verified
before it is executed. If the measured result does not match a known-good value, the
booting is aborted.

Low Booting and Runtime Overhead. Most mobile devices such as cellular phones
and smartphones are still limited in computing power. Also, user experience is a key
business factor in consumer electronic (CE) market. This requires any security solution
to be very efficient not to degrade overall user experience. For example, a typical mobile
phone should boot in a reasonable time (e.g., less than 10s) and should not have a
high overhead when starting a widget or opening the keyboard screen when making a
phone call. Therefore low booting and runtime overhead is a pressing requirement for
mobile platforms and integrity measurement during boot and in post-boot state should
not degrade the performance and user experience too much.

Runtime Integrity Assurance. Although runtime integrity measurement is not practi-
cal in both PC and mobile platforms, there should be some mechanism to preserve the
integrity level of critical applications and resources during runtime, e.g., phone related
services (telephony server) and platform management agents. Both TCG and IMA do
not propose any mechanism for this purpose.

3 Our Approach

Overview. We leverage two mechanisms to achieve these security goals. First of them
is our security enhanced bootloader, which measures the kernel image, software TPM
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module, and our security policy file when the platform boots up. If all these are au-
thenticated, we can assure that the base system (i.e., kernel) is trusted to (1) carry out
the rest of the integrity measurements and (2) enforce the security policy after booting.
Our second mechanism relies on a simple integrity model (crafted specificly for mobile
platforms) to identify the boundary between trusted and untrusted domains on a typical
mobile platform and control the information flow. Security policy implementing our
integrity model is enforced in both kernel and user space. The result is that only a few
number of binaries and data objects need to be measured in post-boot phase, as they
enforce our policy and handle service requests from both trusted and untrusted appli-
cations, e.g., most service daemons for platform management, telephony service, and
other trusted third party services.

Security Assumptions. We do not consider attacks in kernel, such as installing kernel
rootkits 1 to bypass our security policy enforcement in kernel space. We further assume
that an attacker cannot re-flash the bootloader on a mobile platform, e.g., which can
be stored in ROM. That is, our integrity measurement and attestation ensures that a
system is secure against software-based attacks, which is the major objective of trusted
computing technologies [18].

3.1 Secure Boot

The challenge for secure boot is that there is no hardware implementation of TPM or
MTM available for mobile phones so far. Our secure boot leverages a measurement
agent in bootloader. For security considerations, we assume that the bootloader and
especially this agent is tightly coupled with and protected by hardware, e.g., can be
written into ROM. Moreover, a public RSA key of the device manufacturer is encoded
in the measurement agent. We assume that the following known-good integrity values
(SHA1 value) of the kernel image, software TPM module (swTPM), and security policy
are signed by the device manufacturer and the corresponding certificates are stored
along with these binaries in the platform. As an alternative, these values can be received
from a trusted service provider over-the-air, e.g., from a server and signed by the mobile
network operator of the device, in which case the credentials would include the public
key certificate of the operator. This enhances the deployment flexibility as the kernel
and security policy can be updated after the device is released to customer.

When the platform boots, the measurement agent measures the integrity of the kernel
image, the swTPM module, and the binary policy and verifies these values by compar-
ing with those in the certificates. The kernel is executed only after a success verifica-
tion. The measured integrity values of the kernel image, swTPM, and the policy file
are passed to the kernel upon start of its execution. The kernel loads the policy file and
starts enforcing the access control rules following our integrity model. Recall that in
our architecture, we rely on kernel level mandatory access control mechanism, i.e., the
kernel has the ability to fully control the entire information flow in the platform. The
kernel also initiates the swTPM and extends the PCRs using the the integrity param-
eters passed from the bootloader. Through these steps, we ensure that a secure kernel

1 According to F-Secure [22], rootkits have not been found on cellphone devices.
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is loaded, an authenticated swTPM is working, and the kernel is trusted to enforce an
authenticated security policy during runtime.

3.2 Secure Runtime

Due to very dynamic and undeterministic behaviors of typical applications, runtime in-
tegrity measurement is not practical in typical OS environment, if not impossible at all.
We propose to leverage an integrity model for runtime integrity preservation. The fun-
damental idea is, if needed, a trusted application always receives information from other
trusted applications or reads data from trusted domains, and untrusted processes cannot
write to trusted resources. Through this, the integrity of trusted services and resources
is preserved. That is, our model is a runtime information flow control mechanism.

Our model is built on the unique integrity requirements of mobile platforms. Typi-
cally, for desktop and server platforms, one of the major security objectives is to protect
network-faced applications and services such as httpd, smtpd, ftpd, and samba, which
accept unverified inputs from others [23]. As mentioned in Section 1, for mobile phone
platforms, on the other side, the major security objective is to protect system integrity
threaten by user installed applications, including those downloaded from Internet and
received from MMS and Bluetooth.

The architecture of a mobile platform is different from conventional desktop sys-
tems. For example, LiMo platform includes a set of frameworks, which provide services
to applications via function interfaces. Applications running on a mainstream Linux
OS in (e.g.) a desktop communicate directly with kernel to access hardware resources
through system call APIs. On the other hand, frameworks control the access and usage
of hardware resources on mobile phone devices. For example, mobile phone applica-
tions can access SIM data only through the interface APIs of the telephony framework.
This architecture is heavily dependent on the business model of mobile and wireless
telecommunication industry, where different stakeholders or vendors (device manufac-
tures, network carriers, and third-party service providers) provide variant frameworks
and give interfaces to application developers.

A trusted process such as a service daemon may accept requests from both trusted
and untrusted applications concurrently. Traditional integrity models are not efficient
and flexible under these scenarios. For example, LOMAC [20], UMIP [23], and CW-
lite [25] require a process dynamically downgrade its security level whenever it accesses
low integrity objects or receives inputs from low integrity processes. However, the pro-
cess needs to re-start whenever it needs to access high integrity objects later, which is
not efficient for mobile devices. Therefore, we propose our integrity model as follows.

Integrity Model. Like traditional security models, our model distinguishes subjects
and objects in OS. Basically, subjects are active entities that can access to objects,
which are passive entities in a system such as files and sockets. In our model, the set
of subjects S are mainly active processes and daemons, the set of objects O include all
possible entities that can be accessed by processes, and S ⊆ O. In an OS environment,
there are many different types of access operations. In our model, for integrity purposes,
we focus on three access operations: create, read, and write. From information flow
perspective, all other operations can be mapped to these three operations [15].
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Table 1 shows the basic integrity rules in our model, where L(o) is the integrity level
of object o. Note that by default we consider trusted entities as high integrity and un-
trusted entities as low integrity in this paper. The first two creating rules are exclusively
applied upon a single object creation. Typically, the first rule applies to objects that
are privately created by a process. For example, an application’s logs, intermediate and
output files are private data of this process. The second rule applies to objects that are
precatively created by a process upon the request of another process. In one case, s1 is
a server running as a daemon process, the s2 can be any process that leverages the func-
tion of the daemon process to create objects, e.g., to create a GPRS session, or save its
configuration data with GConf daemon (gconfd). In another case, s1 is a common tool
or facility program that can be used by s2 to create object. In these cases, the integrity
level of the created object is corresponding to that of s2.

Table 1. Integrity Rules

Policy Rule Description
r1: create(s, o): L(o) = L(s) object o is created by a process s.
r2: create(s1, s2, o): L(o) =
MIN((L(s1), L(s2))

object o is created by process s1 with input from another process s2

r3: can read(s, o): L(s) ≤ L(o) a process s only can read from an equal or higher integrity process or
object o.

r4: can write(s, o): L(s) ≥ L(o) a high integrity process s can write to an equal or lower integrity process
or object o

r5: can read(s1, s2, o): L(s1) ≥
L(s2) ∧ can write(s1, o) ∧
L(s2) ≥ L(o)

a high integrity process s1 can receive information from an equal or
lower integrity subject s2, provided that the information will be written
to lower integrity subject or object o by the high integrity process s1.

The r3 and r4 rules indicate that there is no restriction on information flow within
trusted entities, and within untrusted entities, respectively, which is, fundamentally, a
BIBA-like integrity policy. Rule r5 states that a trusted subject to behave as a commu-
nication or service channel between untrusted entities. Therefore not every subject can
be trusted for this purpose. Typically, communications between applications and ser-
vice daemons can be modelled with this rule. For example, on a mobile phone device,
a telephony daemon can create a voice conversation between an application and wire-
less modem, upon the calling of telephony APIs. A low integrity process cannot modify
any information of the connection created by a high integrity process, thus preventing
stealthily forwarding the conversation to a malicious host, or making the conversation
into a conference call.

Boundary of Trusted and Untrusted Domains. Many embedded devices (including
mobile phones) use read-only filesystems to store static binary images and data for sys-
tem and application software, which is not a typical characteristics of desktop and server
platforms. On a LiMo compatible smartphone [8] that we have evaluated, all Linux
system binaries (e.g., init, busybox), shared libraries (/lib, /usr/lib), scripts
(e.g., inetd, network, portmap), and non-mutable configuration files
(fstab.conf,inetd.conf,inittab.conf,mdev.conf) are located in a read-
only cramfs filesystem. Also, all phone related application binaries, configurations, and
framework libraries are located in another cramfs filesystem. All mutable phone related
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files are located in an ext3 filesystem, including logs, tmp files, database files, GConf
configuration resource files, and user-customizable configuration files (e.g., application
settings and GUI themes). All user applications can only be installed in a dedicated
directory of the ext3 filesystem and the /mnt/mmc, which is mounted when a flash
memory card is inserted. Based on this layout, we decide that all objects in user writable
filesystem and directories are untrusted, and the others (including read-only and read-
write filesystems and directories) are trusted. This is based on the integrity objective
of our solution – to protect system and service components from user installed appli-
cations. We have observed very similar filesystem layout on many other Linux mobile
phones, including Motorola A1200 [14] and Android [1].

We note that above approach to determine trusted and untrusted domains is just an
example mechanism. The general idea of our model is to decide the boundary between
platform system and service domains, and user installed application domains, via dif-
ferent filesystems and/or directories. Note that, filesystem layout is determined by the
device manufacturer of a platform and such a separation can be enforced quite easily.
This approach simplifies policy definitions and reduces runtime overhead compared to
traditional approaches such as SELinux on PCs, which sets the trust boundaries based
on individual files.

Integrity-aware IPC. Our integrity-aware IPC aims to control information flow be-
tween subjects. Most IPC objects (including domain sockets, pipes, fifo, message queues,
shared memory, and shared files) inherit their integrity levels from the processes that cre-
ate them. Therefore, our model restricts any access where a high integrity process tries
to receive data through an IPC object created by a low integrity process.

In many mobile Linux platforms such as LiMo, OpenMoko, GPE, Maemo, and
Qtopia, D-Bus is the major IPC, which is a message-based communication mechanism
between processes. A process builds a connection with a system- or user-wide D-Bus
daemon (dbusd). When this process wants to communicate with another process, it
sends messages to dbusd via this connection. The dbusd maintains all such connections
(from many different processes), and routes messages between them. A D-Bus message
is an object in our model, which inherits integrity level from its creating process. Ac-
cording to r5 of our model, trusted subject dbusd can receive any D-Bus message (low
or high integrity level) and forward to corresponding destination process. Typically, a
trusted process can only receive high integrity messages from dbusd. According to r5
of our model, if a process is a trusted daemon, like telephony service or GConf daemon,
it can receive high and low integrity messages from dbusd, and handle them separately
within the daemon.

Program Installation and Launching. Application installation is usually performed
by a dedicated installation program called installer. As the installer is trusted, it can
read both high and low integrity application packages according to our model. Again
according to our model, it can write (i.e., install) to trusted part of the filesystem if
it reads the data from a high integrity software package, and can write to untrusted
part of the filesystem if the data is from a low integrity software package. Similar to
installation, during the runtime of a mobile system, a process is invoked by a trusted
program called program launcher, and both high and low integrity processes can be
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invoked by the program launcher. All processes invoked from trusted program files are
in high integrity level, and all processes invoked from untrusted program files are in low
integrity level.

Mobile phones can be infected with malware via variant communication channels
between phone devices and networks. For example, many malware in Symbian-based
phones send malicious codes via Bluetooth channel, or distribute with MMS messages
(either in message contents or as attachments). Therefore in our model we treat any
code received from these network-faced applications as untrusted by default. Thus,
according to our model, any process invoked from arbitrary code by MMS agent or
browser is in low integrity level and cannot write to trusted resources and services, such
as corrupting system binaries or changing platform configurations. It is possible that
some software received from Bluetooth/MMS/browser can be trusted. For instance, a
user can download a trusted software from his PC via Bluetooth or from a trusted ser-
vice provider’s website via browser. Therefore it can be installed to the trusted side on
read-write filesystem by the application manager on the phone, after the user explicitly
indicates or confirms that this application is trusted, or with a source verification (e.g.,
via digital signature) of the software package.

3.3 Putting Together: Integrity Measurement and Protection

After introducing our secure boot mechanism and runtime integrity model, it is time
explain how to measure and verify a mobile platform integrity. The overall platform
architecture and measurements are show in Figure 1. As aforementioned, with secure
boot, a mobile platform can boot to a state with an authenticated kernel, which in turn
is trusted to enforce an authenticated policy based on our model. The integrity values
of kernel image, swTPM and the policy are stored in PCRs of the swTPM, e.g., for
attestation purposes after booting. After this, a measurement agent in the kernel and the
swTPM can perform secure measurements and storage for other modules and trusted
subjects during runtime. Specifically, when a measurement target is to be loaded, the
measurement agent captures this event, measures its integrity, extends a correspond-
ing PCR of the swTPM, and then loads the target into main memory and transfers its
execution to it.

During runtime, our objective is to minimize the number of components to be mea-
sured for performance reasons. Firstly, according to our integrity model, when the ker-
nel is genuine, we have the assurance that all code and data in read-only filesystems
cannot be altered by any means. Secondly, for any code that is located in a read-write
filesystem and regarded as trusted, we check whether the code is an executable binary
of a daemon, which is a trusted subject and enforces security policy in our model. If it
is, we need to measure it. If the code is not a trusted daemon, we do not need to mea-
sure it, as its runtime integrity is preserved with the integrity policy rules based on our
model, and the policy is honestly enforced by the kernel and daemons. We do not need
to measure any other untrusted code and data, because they are already regarded as un-
trusted subjects and objects in our model and cannot alter any trusted entities due to our
model and policy enforcement mechanisms explained above. Similar to IBM IMA [26],
we do not measure dynamic data and configuration files.
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Fig. 1. Platform architecture: integrity measurement and verification with secure boot and runtime
integrity enforcement

The attestation of our platform is similar to traditional TCG-based approach. With
an attestation service agent on the platform (not shown in Figure 1), when receiving an
attestation challenge, the agent responses with PCR values signed by the swTPM. Due
to space limitation, we ignore the details of these steps and also the procedure to obtain
an attestation identity key for the platform.

4 Implementation

We have implemented our model on a real LiMo platform [8]. We augmented the boot-
loader (u-boot) on this platform with a simple integrity measurement agent. We ported
the TPM emulator [27] on this platform. We are also porting the software MTM mod-
ule [12] to this platform.

The integrity model is implemented with SELinux, which provides comprehensive
security checks via Linux Security Module (LSM) in kernel. SELinux provides domain-
type and role-based policy specifications, which can be used to define policy rules to
implement high level security models. Actually, current SELinux does not have an in-
tegrity model built-in. On one side, our implementation simplifies SELinux policy for
mobile phone devices by leveraging trusted and untrusted subject attributes. On the
other side, our implementation augments SELinux policy with our integrity model.

D-Bus is the major IPC mechanism for most Linux-based mobile platforms. Follow-
ing our integrity model, we extend D-Bus implementation in two aspects. First, each
message is augmented with a header field to specify its integrity level based on the
process which sends the message, and the value of this field is set by dbusd when it re-
ceives the message and before dispatches it. Secondly, according to our integrity model,
if a destination bus name is a trusted daemon process, it can accept both high and low
integrity messages; otherwise, it only accepts messages with the same integrity level
as itself. We also have augmented other framework daemons of this LiMo platform to
enforce similar integrity policy, including the GConf and telephony server, as they can
access both trusted and untrusted messages via D-Bus.
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We define two domain attributes to specify high and low integrity processes: trusted
and untrusted, respectively. We use generalized filesystem labeling mechanism [13] in
SELinux to label both cramfs and ext3 filesystems. Our policy size is less than 20KB
including genfscon rules for filesystem labelling. Comparing to that in typical desk-
top Linux distributions such as Fedora Core 6 (which has 1.2MB policy file), our policy
footprint is tiny. We also studied the performance of our runtime security enforcement
with micro benchmark. Our results show that for most operations, our security enforce-
ment has less than 4% overhead, which is significantly less than the counterpart tech-
nology on PC [24].

5 Related Work

As aforementioned, IBM IMA [26,7] is the integrity measurement solution for PC plat-
forms. However, directly porting this to mobile devices is not practical due to its high
computation overhead during booting and runtime. PRIMA [25] leverages the CW-lite
information flow control to maintain a process’s integrity, where particular interfaces
of the process filter low integrity information when received by this process. However,
identifying filtering interfaces in many service processes (daemons) on a mobile phone
is not a easy task, especially many of them come from different software vendors, e.g.,
network carrier, device manufacturer, and third party service providers. Also, PRIMA
still has more than 200 measurements on an Openmoko phone device [25].

Dynamic root-of-trust-for-measurement (DRTM) [21] is a mechanism on x86 plat-
form to execute a piece of code in hardware protected trusted environment during run-
time and without physically rebooting the platform. However this is not practical in mo-
bile device. First of all, ARM processors have not built in this capability. Secondly, only
32KB size of code can be executed in the trusted environment in DRTM, which shifts
the integrity measurement problem to other mechanism after that code is launched.

Runtime integrity measurement has been proposed recently with copy-on-write
mechanism [28]. However, this is implemented on Xen-like virtualization environment,
which is so far not practical for mobile platforms.

6 Conclusion

Towards the protection of mobile platform integrity threaten from untrusted user appli-
cations, we propose a simple and efficient solution for integrity measurement and attes-
tation. Our solution uses a secure bootloader to measure the kernel and a software TPM,
which ensures that the platform can boot to a secure state. After booting, we leverage a
simple integrity model to preserve the runtime integrity of the system. Our model easily
distinguishes trusted and untrusted domains on both filesytem and memory space, thus
making the policy development very simple and verifiable. During runtime, we mea-
sure the enforcement mechanism of security policy based on our integrity model, i.e.,
trusted daemon processes, thus significantly reduce the number of components to be
measured. We are developing a formal specification and security property verification
of our proposed integrity model.
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Abstract. Current measures to enhance the security of untrusted mo-
bile applications require a user to trust the software vendor. They do
not guarantee complete protection against the behaviours that mobile
malware commonly exhibits. This paper expands execution monitoring,
building a more precise system to prevent mobile applications deviating
from their intended functions. User judgements about program execu-
tion can be specified abstractly and compiled into a monitor capable
of identifying an event’s context. We demonstrate our development of
a prototype system for the BlackBerry platform and show how it can
defend the device against unseen malware more effectively than existing
security tools.

1 Introduction

The number of mobile devices in operation today exceeds the size of the pop-
ulation in over 30 countries. Of these, roughly 30% are “smart” devices that
allow the user to download, install and execute third-party applications. Such
an expansion in device capabilities has made them more vulnerable to attack.
This paper focuses on the prevention of unseen mobile malware, distributed by
a malicious third-party in order to compromise the confidentiality, integrity and
availability of a user’s interaction with mobile data and services.

1.1 Mobile Malware Defence

Java Micro Edition (Java ME) is the most popular framework for executing
third-party mobile applications. It consists of two components: the Connection
Limited Devices Configuration (CLDC) [11], which facilitates program access to
the native methods which control device hardware, and the Mobile Information
Device Profile (MIDP) [12], which provides programmers with abstractions of
generic device functionalities (e.g., sending SMS and e-mail messages). Java ME
applications are called MIDlets.

Java ME’s security model is not flexible enough to allow guarantees to be
made about all security-relevant events an application might perform. In most
cases, it only takes into account the application provider (i.e., the signatory of
the MIDlet). Java Security Domains [14] are implemented in some architectures

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 83–96, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009



84 A. Brown and M. Ryan

to block security-relevant API calls, though this can also prevent an application
being used for its primary purpose.

Application-level virtualisation allows users to run additional security tools
to verify the identity and integrity of the downloaded application. Code signing,
discretionary access controls and signature-based anti-virus software are the most
commonly used approaches. Each has the following associated problems:

– Digitally signing a hash of an executable can confirm its author and guaran-
tee that it has not been altered since it was signed, but does not guarantee
the quality or security of code the application will execute.

– Access controls contribute to a systematic security framework1 but can be
inflexible, with default settings leaving the device vulnerable to attack and
stricter ones impeding program functionality.

– Mobile anti-virus software requires signature dictionaries to be downloaded
and updated, which is infeasible for devices with low power and/or lim-
ited network connectivity. Further, attack recovery is rather rigid; it simply
deletes executable files.

1.2 Execution Monitoring

We employ a well-known technique called execution monitoring [1, 3, 5, 7, 8, 9,
16,17, 18] to defend devices against malicious and defective software. An execu-
tion monitor is a co-routine that runs in parallel with a target program, fully
regulating its interaction with its host machine. The approach can prevent and
recover from harmful behaviour in real-time, rather than after an attack has
succeeded, with minimal disturbance to legitimate program features. Execution
monitors analyse either system calls or API calls, providing their host with a
more fine-grained view of target application behaviour.

Despite these advantages, execution monitoring has not been widely adopted
by developers building anti-malware products. The following reasons explain this:

Specifying an execution monitor is a complex process. Monitor implementation
requires sequences of triggering and recovery events to be defined. High-level
policy languages exist to counteract this problem, but most require reasoning
about misuse event sequences in an imperative fashion and so are difficult for
non-technical users comprehend.

Execution monitors cannot precisely capture malicious behaviour patterns. Iden-
tification of the context in which a target program invokes an event is required
to achieve this. Existing monitoring schemes, including those for Java ME [5],
cannot store sufficient information about an event’s properties and so restrict
application behaviour beyond the set of security-relevant events.
1 Access controls can prevent an unsigned application being linked to the CLDC APIs

which control native device functions. This type of mitigation is often still too coarse-
grained.
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1.3 Paper Structure

Section 2 presents our approach to allow more fine-grained control of mobile ap-
plications. We develop declarative language called Application Behaviour Mod-
elling Language (ABML) to express policies that identify the context of a
program event. In Section 3, we use our operational experiences in mitigating
BlackBerry intrusions to demonstrate our work and provide an empirical eval-
uation. Section 4 details our enforcement mechanism for ABML, which works
by translating a policy into Java source code, for input to a policy enforcement
engine called Polymer [3]. We conclude by relating our contributions to those of
others and proposing future work.

2 Modelling Application Behaviour

Mobile malware often uses HTTP, HTTPS, or other popular protocols to com-
pose an attack. By employing seemingly ‘legitimate’ combinations of events and
protocols to transmit sensitive information, unseen malware can avoid detec-
tion. Context-aware monitoring of event invocations can mitigate such attacks
and preserve program functionality.

2.1 Approach Summary

Our approach places application monitoring wrappers around arbitrarily
downloaded MIDlets in order to implement a security policy and so constrain un-
desirable functionality. We use these to apply user-specified policies in an aspect-
oriented manner, creating flexible security against malicious components. Our
policies are generic first-class objects and can be applied to any MIDlet as follows:

1. At download-time, a MIDlet’s bytecode is scanned to identify all API calls
it makes. Only application-relevant calls can be contained in a policy.

2. At specification-time, every high-level policy is compiled into monitor source
code, which is contained within a Java class.

3. At load-time, every API call in the libraries a MIDlet can access is instru-
mented with calls to the monitor.

4. At runtime, control is passed to the monitor when any event which the policy
reasons about is invoked.

Figure 1 illustrates the technologies we employ to implement our framework.
Our approach uses Polymer2 [3], a fully-implemented engine for enforcing exe-
cution monitoring threads on arbitrary Java programs. It responds to a policy
violation by transforming a target to adhere to conditions of the applied policy.

2 We have modified Polymer to allow it to operate on MIDlets, using MIDP2 and
CLDC libraries [11,12].
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Fig. 1. Integration of Polymer and
Java ME on the BlackBerry

Our system architecture targets two classes
of user separately:

– Administrators can construct and dis-
tribute groups of policies to the devices
which they manage, specifying them tex-
tually or by means of a comprehensive
user interface.

– Users can manage and modify policies
set by an administrator3, or select a pre-
specified policy from a repository, based
on the class of program they perceive
to have downloaded. Our MIDlet pol-
icy classes are editor, a browser, a shell,
a viewer, a transformer, a game, and a
messenger.

2.2 Application Behaviour Modelling Language (ABML)

ABML is a policy specification language for reasoning about application be-
haviour in a declarative manner using arbitrary events. It is inspired by Be-
haviour Modelling Specification Language (BMSL) [17], in which event-based
security-relevant properties can be expressed in order to capture the intended
behaviour of a system, or misuse behaviours associated with vulnerabilities and
their exploitation. ABML builds on BMSL with:

– High-level constructs for specifying event histories and recovery sequences;
– The notion and strongly- and weakly-ordered events;
– Abstraction mechanisms for referring to events and the data they use;
– Operators to increase the power of comparison between event conditions.

ABML’s primary constructs are:

1. Policies: A policy consists of a set of rules, or a set of variables followed by
a set of rules. Variable declaration may be local or global: a local variable’s
scope is limited to a single rule, whereas a global variable can be applied
within all rules in a policy.

2. Rules: A rule is of the form H → R, where H denotes a history of actions
invoked by the target application which triggered a rule, and R denotes some
postcondition which (i) either must hold true for that history, or (ii) must
specify some responsive steps to be followed where a rule is triggered.

3. History patterns: A history, H, models the target application’s instruc-
tion stream and is expressed by a pattern over a sequence of events: pat. A
pat can measure event occurrence, non-occurrence, sequencing, alternation
and repetition, providing a means of specifying the temporal properties of
application behaviour [17].

3 Where the administrator has granted the user sufficient access permissions.
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(a) Strongly-ordered patterns: A strongly-ordered pat considers events
strictly in the order they occur in. It is specified by separating events
with a semi-colon (‘;’).

(b) Weakly-ordered patterns: A weakly-ordered pat allows events which
a policy does not reason about to occur in between those events which
it does reason about. This representation is suitable where events may
happen simultaneously, or housekeeping operations are to be performed
between events. It is specified by separating events with a double semi-
colon (‘;;’).

4. Events: The following may be referred to within a rule:
(a) Atomic events have the form e(value1, value2, ..., valuen)|cond, where

e is an API call name, value is an argument to that call and cond is
a boolean-valued expression on that call’s arguments. We add compari-
son operators such as contains, startsWith and endsWith to enable more
advanced reasoning about event conditions.

(b) Abstract events, E, provide a means of concatenating atomic events
to form suitable abstractions that reflect a host’s ontology (e.g., read
from a local file, send an SMS message over carrier network, read data
from device’s GPS module). An E is referenced using the constructs zone,
resource and action, which allow one to refer to the zone a program may
interact with (e.g., internet, network, localdevice), the resources within
that zone it can access and the actions it may perform on those resources.

(c) Recovery events allow users to reason about policy violations without
having in-depth knowledge of the target application. A postcondition, R,
assists this reasoning process. It allows the policy author to:
– Deny the invocation of a triggering event (⊥);
– Enforce a condition on a triggering event (cond):

– If cond is true when a rule is evaluated, program execution is
permitted to continue;

– Otherwise, a sequence of recovery events of type E are derived
from cond at compile-time.

– Refer to an alternative event, which may be abstract (E);
– Make a call to terminate the target application (halt).

5. Event data usage: An event’s context is normally specified at the atomic
level by populating the arguments to that event (e.g., setting one or more
values in e(value1, value2, ..., valuen)). Because abstract events are collections
of atoms, each may have a different argument signature. ABML therefore
provides an event data tracking construct, which allows some abstract data
object, O, to be instantiated at runtime with the concrete data used by
that event. For example, HttpResponse represents a response over the HTTP
protocol. It contains instance variables to capture that response’s head (e.g.,
status code, date, server, content-type), body (e.g., (X)HTML, XML) and
a reference to the HttpRequest which invoked it. Section 4.2 illustrates this
process’ enforcement.
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3 Demonstration

In order to demonstrate ABML policy enforce-
ment, we present our operational experiences in
monitoring the execution of an untrusted MIDlets
on the BlackBerry 8800 series device [10]. The MI-
Dlet we consider is an instant messaging applica-
tion, which was downloaded to the device over
GPRS at the user’s request. The user wishes to
control the MIDlet’s features with the device’s in-
put apparatus; initiate ‘live’ messaging sessions
with remote devices in a contacts list; send asynchronous messages (e.g., SMS,
e-mail) to a contact; and, receive software updates from a remote server.

3.1 Existing Device Protection

The MIDlet may invoke other behaviours which the user is unaware of, some of
which may occur despite the BlackBerry’s code signing or access control mecha-
nisms. It must be linked to the CLDC libraries in order to execute and so must
be signed. The user can set the device’s access controls, as illustrated in Table
1, to prevent the signed code behaving maliciously.

Table 1. Settings for device access controls to prevent a MIDlet forwarding data

Attack on... Application Permission Set to...

1 – SMS Connections > Carrier Internet Deny
2 – E-mail User data > E-mail Deny
3 – TCP/IP Connections > Carrier Internet Deny
4 – Bluetooth Connections > Bluetooth Deny

Such measures clearly inhibit the primary functions of a messenger. For ex-
ample, the only means the user has to prevent the MIDlet intercepting and
forwarding SMS messages to an attacker is to deny its use of the BlackBerry
Internet Service. This renders it unusable for the purpose for which the user
downloaded it.

3.2 Attacks and Countermeasures

Users can apply an ABML policy which predicts and defends against attacks
in a more fine-grained way. Such a policy would be crafted by an administrator
or device vendor and applied by the user when they first download the MIDlet
(§2.1). The ABML rules we outline below are contained in our messenger policy,
from which a Java Policy is computed that generates an execution monitor.
Both the MIDlet and its monitor execute on the device as a separate threads in-
side the Polymer framework, so the device’s application permissions for Polymer
(for connections and user data) must all be set to “allow”.
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[1] Bluetooth backdoor attack: MIDlets can transmit data to and from the
device via its Bluetooth serial port. They must be signed to establish a Bluetooth
connection, but can use an open serial port without being signed. Sensitive data
(e.g., e-mail, SMS messages, Personal Information Manager (PIM) contacts) can
be captured and transmitted to other in-range devices, some of which may be
attacker-controlled. To prevent this, the following rule should be applied: “the
target may send data to the Bluetooth serial port only if it has established a
client-side Bluetooth connection with a paired device”.

Policy 1. Policy to prevent a MIDlet using a Bluetooth backdoor
ABML rule Connection b, c:

device.data.Send(Stream s, c)|c.address startsWith “btspp://” →
device.service.Connect(b)|b.address := c.address:

Rule format var1: var2: H{E2(O2)|cond(2)} → E1(O1)|cond(1,2) :
Triggering event device.data.Send(Stream s, Connnection c)
Monitored calls javax.microedition.io.Connector.<init>

net.rim.device.api.bluetooth.BluetoothSerialPort.<init>

A significant level of user interaction is required to establish such a connec-
tion, so users are unlikely to be coerced into doing so easily. The abstract event
localdevice.data.Send(Stream s, Connnection c) triggers Policy 1. It relates to the
low-level actions a MIDlet may use to stream data to some connection and is
conditional on that connection being to a Bluetooth serial port. If the policy’s
conclusion evaluates to true, the monitor has recorded that a legal client-side
Bluetooth connection has been established with a paired device and the Send
event’s address parameter matches that of the established connection – invo-
cation is allowed. Otherwise, Send is suppressed and the MIDlet’s execution
continues without that data being transmitted.

[2] SMS interception attack: Sending and receiving an SMS message uses
the MIDP 2.0 standard [12] and so does not require an application to be signed.
Once the BlackBerry user has agreed to its standard prompt “Allow Network
Access?”, they do not receive further warnings, even for subsequent executions.
An untrusted MIDlet can create an ‘SMS channel’, which remains in place where
the attacker has programmed it to run as a background process on receiving an
exit event. We therefore add the rule: “the target may send an SMS message only
if the data that message contains was entered manually by the user and the user
invoked the sending of that SMS by pressing the device’s trackwheel”.

If the application attempts to send an SMS message containing data that was
not user-entered, invocation of internet.data.Send(SMSMessage s) is suppressed.
Policy 2 uses the construct H → R, where R refers to an abstract event sequence
that must have already occurred (and any conditions on its occurrence satisfied)
for H to be invoked. If this is not the case, any event which relates to sending
an SMS message to the internet domain is prevented.

Our extensions to the Polymer engine determine the context of the triggering
event by monitoring the MIDlet getting data from a text field after the user has
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Policy 2. Policy to defend the BlackBerry against SMS interception
ABML rule SMSMessage s: Text r, t:

internet.data.Send(s) →
device.keypad.Press(r);;
device.trackwheel.Click();
device.gui.GetText(t)|t := s.body ∧ t contains r:

Rule format var1: var2: var3:
H{E4(O4)} → E1(O1);; E2(..); E3(O3)|cond(3,1,2) :

Triggering event internet.data.Send(SMSMessage s)
Monitored calls net.rim.blackberry.api.sms.OutboundMessageListener.notifyOutgoingMsg(Msg m)

net.rim.device.api.system.EventInjector.KeypadEvent(..)
net.rim.device.api.system.EventInjector.TrackwheelEvent(THUMB CLICK, .., ..)
net.rim.device.api.ui.component.TextField.getText(..)

manually entered it and pressed an interface button to send an SMS message
containing that text. Our compiler creates empty objects (O of type Text) that
refer to all live instances of Text pertaining to the user’s interaction. Further
details on this process are provided in Section 4.2.

This policy uses a strong temporal order between E2 and E3. If events which
this sequence does not reason about occur in between these, the policy is violated
and its triggering event supressed. The method call TextField.getText(..) is
tied as closely as possible to a TrackwheelEvent that uses a ‘thumb click’. More
complex reasoning here would require the policy to model the MIDlet’s user
interface, which is not possible for unseen malware.

[3] HTTP proxy attack: Unsigned MIDlets can create TCP connections on
the BlackBerry, again prompting the user with the BlackBerry’s “Allow Network
Access?” dialog only once. Attack code can then use the device as a proxy for
traffic; the attacker often having the intention of accessing illicit material or
performing denial of service attacks.

In order to mitigate this, we construct a policy to analyse the messenger’s use
of the device’s Internet connection. This states: “the target may send an HTTP
response (r) to the network only if it has not previously received an HTTP request
(n) whose host’s name matches that of r’s host; where r was proceeded by the
sending of an HTTP request (p) and the receipt of an HTTP response (q) whose
hosts match”.

Policy 3. Policy to prevent a MIDlet using the BlackBerry as an HTTP proxy
ABML rule HttpResponse r, q:

HttpRequest n, p:
internet.data.Send(r) →
internet.data.Receive(n)|n.host ¬ = r.host;;
internet.data.Send(p);;
internet.data.Receive(q)|p.host := q.host:

Rule format var1: var2: var3: var4:
H{E4(O4)} → E1(O1)|cond(3,1) ;; E2(O2);; E3(O3)|cond(4,2) :

Triggering event internet.data.Send(HttpResponse r)
Monitored calls javax.microedition.io.HttpConnection.openInputStream(..)

javax.microedition.io.HttpConnection.openDataInputStream(..)
javax.microedition.io.OutputStream.openOutputStream(..)
javax.microedition.io.DataOutputStream.openDataOutputStream(..)
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The monitor constructed here analyses request calls to HttpConnection and
ascertains whether a related HTTP response is ever sent to the network. Our en-
forcement model constructs HttpRequest and HttpResponse objects whenever
abstract events whose arguments match these are triggered (§4.2). These encap-
sulate any data being sent or received over HTTP by the messenger application.

4 Policy Compilation and Enforcement

Our compiler translates ABML policies into Java classes (of type Policy). Trans-
lation from an ABML policy to a Policy class is performed in a compositional
manner, so incremental changes can be handled with ease. Users may wish to
weaken a policy where it denies some program behaviour they wish to permit,
or strengthen it where they learn of some vulnerability in the target MIDlet.

4.1 Synthesising Monitors from ABML Specifications

Each Policy output by our compiler contains a method called query(), in which
every rule is implemented by enumerating cases in a switch() statement. A
policy is triggered where an event’s signature is matched by precisely one case.
The method then returns a Suggestion object which indicates how that event
should be dealt with. At the highest level, our compiler’s algorithms operate as
follows to compose a Policy.

1. ∀ E, select the pre-compiled AbstractAction class which E refers to. Insert
appropriate import statements into Policy to provide access to these classes.
(a) ∀ O in E, create an empty class of type AbstractDatawith instance vari-

ables to reflect O’s parameters. Insert appropriate import statements.
i. Provide appropriate accessor and mutator methods to access O’s

parameters.
2. Populate query()’s switch() statement with one case per E. Set that case’s

trigger to the AbstractAction selected in (1).
(a) If E is non-atomic, prepend each case’s trigger with the keyword “abs”4.

3. ∀ cond in E, declare one boolean variable, bn, setting its value to false.
4. ∀ E, such that E’s arguments contain O, insert a reference to that O inside

that case’s trigger5.
5. ∀ E, construct one conditional statement for each related bn in that E’s case.

Populate it with an expression to represent E’s cond6.
(a) ∀ E such that cond evaluates to true, set related bn = true.

6. Compute reasoning constructs to recover from a rule violation. ∀ rule:
(a) ∀ cond in a rule’s premise:

i. If cond = true, return an OKSug (e.g., that event can be executed);
ii. Else if cond = false, this event is irrelevant: return an IrrSug.

4 E.g., internet.data.Send(..) → case <abs void internet.data.Send(..)>:
5 E.g., internet.data.Send(Request r) → case <abs void internet.data.Send(r)>:
6 E.g., head.startsWith(‘‘http://’’)
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(b) ∀ cond in a rule’s conclusion:
i. If R = ⊥, return Suggestion to halt the MIDlet (HaltSug);
ii. Else if R = cond, and cond is false, halt the MIDlet;
iii. Else if R = E:

– If bn = false, this event is irrelevant: return an IrrSug;
– Else return ExnSug to suppress E but continue execution.

Rule precedence is determined by the order rules are listed in a policy. A mon-
itor queries its first rule implementation and always follows the Suggestion
of that rule if it considers the trigger action to be security-relevant (e.g., an
ExnSug or a HaltSug is returned, but not an IrrSug or an OKSug). Otherwise,
the Suggestion of the second rule is followed, and so on. Authors whom edit
policies in a textual manner should therefore take care, though we presume most
will modify policies using our specification GUI.

4.2 ABML Policy Enforcement

Figure 2 illustrates our monitoring model and depicts a target application and
an execution monitor in execution on the JVM. The three grey-shaded elements
represent the classical execution monitoring process, as was first described by
Schneider [16], and as is implemented by Polymer [3,2]. All events invoked by the
target program are analysed by the execution monitor: events which the policy
does not reason about are executed without analysis and those which it reasons
about are apprehended if any conditions on them evaluate to false.

Fig. 2. Operation of our ABML policy enforcement mechanism

Our extensions to this approach (white-shaded elements) “investigate” the
context in which an event occurs to achieve more precise separation between
legitimate and misuse behaviours. This process works as follows:

– Empty objects, derived from any O in a rule at compile-time, are created.
They extend AbstractData and contain the necessary instance variables to
represent O. This mapping is pre-defined in an XML file.

– Accessors and mutators for each O are set by our compiler and are mapped
to any ABML event (E) which refers to it.
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– Each AbstractData object is instantiated when a MIDlet performs a related
event which a Policy reasons about (cf. step 5 in Figure 2):

– A new class is created, whose unique reference identifies the data used
by that call;

– Garbage-collected instances of this class are checked for in classMap,
which is a hash map that collects class names and their references to
other classes;

– If an object has not been garbage-collected then it is a live instance. Its
reference is set to its associated instance variable in Policy.

– A Policy is able to query that object using the accessors and mutators it
provides.

Preventing calls which bypass APIs. Malicious programs may try to load native
code in order to mirror the functions of an API and so effectively bypass it. Our
approach can avoid such an attack. MIDlet bytecode is “pre-verified” by the
CLDC Class Verifier, which acts to sandbox an application by inserting certain
security checks as class file annotations to be carried out when the device loads
the class. Changes to bytecode after this has occurred are detected at runtime
by the JVM, which will reject the class [6]. Furthermore, our system sets a Java
SecurityManager policy which itself does not set a checkLink permission for
any native library. Attempts at executing the load() or loadLibrary()methods
therefore result in a SecurityException.

4.3 Performance Analysis

Expressing policies: We have tested our language and enforcement engine
using the attacks presented (§3.2). In order to mitigate these, our compiler
generated 356 lines policy code, split between three Policy classes and three
Combinator classes. The latter enforce rule precedence. An equivalent ABML
requires only 15 lines of code: 5 lines of global variable declarations and 10 lines of
ABML rule specifications (an arithmetic mean of 5 lines per attack). The policies
ABML can express are more readable than their imperative counterparts.

Mitigating information flow: Our model enables a class of policies which
prevent malicious programs from leaking sensitive information. We ensure that if
an information flow constraint cannot be mitigated, the events which cause it are
denied. Execution monitoring cannot capture all cases of information flow [16];
full information flow analysis is required to achieve this [13]. The significant
difference between our language and others when considering information flow
is its ability to specify live instances of data as arguments to events.

Execution-time overhead: As mobile devices have limited computing power,
we examine the costs of enforcing policies using our approach at:

– Download-time: Scanning a MIDlet’s bytecode for API calls is dependant
on the number of calls it makes. Our test code contained 83 such calls, which
our scanner took 4.4s to extract and add to an event definition file.
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– Specification-time: Compilation of a policy is also dependant on its com-
plexity. Compiling our rules to prevent attacks 1 through 3 (§3.2) took 1.2s.

– Load-time: The total time to instrument every method in the Java ME
and BlackBerry APIs (i.e., the 7352 methods in the 933 classes in the javax
and net.rim packages of the BlackBerry API v.4.5.0) was 185s, or an aver-
age 25ms per instrumented method. This cost is reasonable because library
instrumentation need only be performed once per download.

– Runtime: The cost of transferring control to and from a policy while exe-
cuting a target is very low (approximately 1.44 ms per policy decision point).
Therein, the run-time overhead of monitoring is is dependent on the com-
plexity of the security policy.

5 Related Work

The foundations of execution monitoring are described by Schneider in [16],
where a formal treatment is given to techniques which analyse the actions of
a target program and terminate it where it violates a policy. Ligatti [1,4] have
extended this model to suppress program actions, allowing program execution to
continue after a policy is violated. This class of monitor is modelled by the edit
automaton, which is implemented by Polymer [2, 3]. Its policies are separated
from the target program and are therefore easy to maintain, re-use, or compose
into a hierarchy. Furthermore, it allows only sound execution monitors to be
computed. A weakness of Polymer is its input language (a constrained Java
syntax), which has high expressive power but is difficult for end-users to write
policies in.

Much work has been undertaken in developing languages for specifying process
behaviours that signify an intrusion. Sekar et al. devised Behaviour Modelling
Specification Language (BMSL) [17, 18], a more user-friendly policy language
for reasoning about a program’s execution through combining system call ab-
stractions. BMSL can express policies that capture the values of arguments to
events, but a policy author must forecast the strong temporal order of trigger
and recovery events: an infeasible expectation of most.

Later work on policy enforcement seems not to have focussed much on enhanc-
ing its precision. Castrucci et al. [5] describe how to monitor MIDlets, although
their policy language requires imperative reasoning using atomic method call sig-
natures and cannot precisely capture the temporal order or the context of event
invocations. Those which have attempted this [9] have done so in a low-level man-
ner, focussing on system calls on traditional hosts. It is often difficult, or even
impossible, to attribute a system call sequence to a particular program event [15].

6 Conclusion

We have designed a user-operable sandboxing technique to control the execution
of untrusted mobile software. It consists of an abstract policy language and an
enforcement model based on Polymer. Our language is more expressive than
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other policy languages, but uses purely declarative constructs. Its policies require
lower development effort and can be composed and applied incrementally.

ABML’s main contribution is its association of atomic events to program
data and its mapping of this process to suitable abstractions, which helps to
increase accuracy and reduce vulnerabilities and redundancies. We have provided
an enforcement model that is more powerful than existing execution monitors
– it is aware of the context in which an event has occurred and so broadens
the functionalities of the target application. Our future work will prove that the
policies we compute are at least as strong as the ABML policies which specified
them when enforced by our model and that their translation into a Policy class
is sound. This will enable users to place guarantees in our work.
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Abstract. The Belgian Electronic Identity Card was introduced in
2002. The card enables Belgian citizens to prove their identity digitally
and to sign electronic documents. Today, only a limited number of citi-
zens really use the card in electronic applications. A major reason is the
lack of killer functionality and killer applications.

This paper presents two reusable extensions to the Belgian eID tech-
nology that opens up new opportunities for application developers. First,
a secure and ubiquitously accessible remote storage service is presented.
Second, we show how the eID card can be used to issue new certificates.
To demonstrate the applicability and feasibility of both extensions, they
are combined in the development of a secure e-mail application. The
proposed solution offers strong privacy, security and key management
properties while increasing the accessibility of confidential e-mail com-
pared to existing solutions (such as PGP and S/MIME).

Keywords: Identity Technology, Security, Privacy, Mobile Access.

1 Introduction

In 2002, Belgium has introduced an electronic identity card (eID) [1] as one of
the first countries in Europe. The card enables individuals to prove their identity
digitally and to sign electronic documents. The Belgian eID card opens up new
opportunities for the government, their citizens, service providers and application
developers. Although many eID applications have been developed, the success of
the Belgian eID technology is still limited. A major reason is the lack of essential
functionality and, more importantly, real killer applications. Moreover, the use of
the current eID card involves a few security and privacy hazards [2,3].

This paper presents two enhancements to the current Belgian eID technology
while addressing certain privacy shortcomings. A first extension defines a service
that allows users to store and update sensitive data (such as passwords, keys,
tickets, . . . ) securely at a remote location. The service is ubiquitously accessible
with the Belgian eID card. Moreover, the data that is kept at the server is
useless to internal and external attackers. A second extension defines the creation
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and use of proxy certificates that are certified by means of the Belgian eID
card. Hence, an individual can create new certificates that can be used to send
confidential messages, to setup a mutually authenticated secure channel between
two individuals, etc. An external certificate authority is no longer required to
issue these certificates.

Both extensions are bootstrapped by means of the Belgian eID Card and
can be integrated in many applications. To demonstrate their usefulness, both
extensions have been incorporated in a ubiquitously accessible secure e-mail ser-
vice. This service allows individuals to send confidential (encrypted) and signed
messages using certificates that can be validated by certificate chains. The ap-
proach is more secure than PGP (which is based on trust levels) and tackles some
key management problems in S/MIME (i.e. confidential e-mail can be retrieved
from any location at which a web browser, Internet access and a card reader is
available).

The paper is structured as follows. Section 2 gives an overview of the Belgian
eID card technology. Section 3 describes the notation used in the rest of the
paper. Two extensions to the Belgian eID technology are proposed in section 4
and section 5. Both extensions are evaluated in section 6 and validated through
the development of a secure e-mail application in section 7. Finally, the paper
draws some conclusions and describes directions for future research.

2 Belgian Electronic Identity Card Technology

The Belgian eID card is a smart card that allows Belgian citizens to prove their
identity visually and digitally and to sign electronic documents [4]. The eID card
contains three files: (1) a digital picture of the citizen, (2) an identity file which
contains the basic identity information and a hash value of the picture file; this
file is signed by the National Registry, (3) an address file which contains the
citizen’s current residence; it is signed by the National Registry together with
the identity file to guarantee the link between both files.

Two private keys SKAuth and SKSig are stored in the eID card. These keys
are used for digital authentication and signing respectively. They are stored in
a tamper-proof part of the chip and can be activated with a PIN code. Each
corresponding public key (PKAuth and PKSig) is certified by a certificate. Each
certificate also keeps the name of the card holder and his nation-wide identifica-
tion number (i.e. the National Registry Number or NRN ).

The Belgian government offers a middleware package [5,6] to facilitate inter-
action with the eID card. The middleware contains a GUI to enable end-users to
read the files and the certificates that are stored in the eID card and to change
the PIN code. Moreover, the middleware acts as an intermediary for all accesses
to the eID card by other applications. If a document has to be signed, the mid-
dleware passes a hash of the document to the card. Similarly, a hash of the
challenge is passed to the card for authentication purposes. When an applica-
tion wants to authenticate or sign a document with the eID card, the middleware
asks the user for a PIN code and forwards it to the eID card. The middleware
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can also check the validity of certificates (using CRL or OCSP). Note that the
middleware is not essential: an application can also implement the middleware
functionality and directly interact with the card.

The certificates on the eID card are part of a larger hierarchical infrastructure,
the Belgian Public Key Infrastructure [7]. The signature and authentication cer-
tificates are issued by a Citizen CA and the certificates of each Citizen CA are
issued by the Belgium Root CA, that is found at the top of the eID hierarchy.
In addition to the CA hierarchy, the PKI defines Certificate Revocation Lists [8]
that contain the serial numbers of revoked certificates issued by that CA.

The government aims at encouraging the use of the eID card in both e-
government and commercial applications. Currently, most applications use the
Belgian eID card for setting up an SSL connection with mutual authentication.
Many other applications (such as physical access control) only retrieve the iden-
tity information stored on the card.

3 Notations

The following notation is used throughout this paper:

– P1 ↔ P2 : NRN← authenticateeID() represents an interactive protocol, in
which P1 uses SKAuth in the eID card to authenticate to P2. As a result, P2
obtains P1’s NRN .

– P : sig ← signeID(hash(M)) denotes a user signing the hash of message M,
with SKSig in the eID card.

– P : K ← createSymmetricKey(PRG, seed) denotes the generation of a se-
cret/symmetric key, based on a pseudorandom number generator PRG and
a seed. Use of the same PRG and seed will always generate the same key.

– P : store(data; index) means that data is stored in a database at location
index.

4 Mobile Access to Secrets

A major challenge in today’s society is to enable access to sensitive data (e.g.
personal information, secret keys, . . . ) from various locations. Data must be
stored securely on an easily accessible remote server. Data is typically encrypted
by the owner before it is stored on the server. Hence, the encrypted data is
useless to the server or any adversary that may have access to it. In this section
a scheme is discussed based on the Belgian eID card for securely storing sensitive
data. A trivial solution consists of encrypting the data with the public key of
the authentication certificate. Whenever needed, the ciphertext is fetched from
the server and decrypted using the corresponding private key.

However, encryption/decryption with the Belgian eID card is not possible.
Moreover, when the card is lost or renewed, decryption of previously encrypted
information is no longer possible. Therefore, a new mechanism is proposed that
uses the Belgian eID card as a bootstrap. A secret/symmetric key is derived from
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Table 1. Storing sensitive data remotely

storeSensitiveData(data, tag):
(1) U : HkeyGen ← hashA(′KEY GEN ′||NRN ||CardNumber||otherUserInfo)
(2) U ↔ C : sig ← signeID(HkeyGen)
(3) U : KS ← createSymmetricKey(PRG, hashB(sig))
(4) U : Etag ← encrypt(tag,KS)
(5) U : R ← generateRandom()
(6) U : KD ← createSymmetricKey(PRG, hashC(sig||R))
(7) U : Edata ← encrypt(data,KD)
(8) U ↔ S : NRN ← authenticateeID()
(9) U → S : (Edata, R, Etag)
(10) S : index ← hashD(NRN ||Etag)
(11) S : store([Edata, R]; index)
(12) U ← S : (T imestamp, signS(hashE([T imestamp,Etag, Edata, R])))

a signature generated by the eID card. This secret key is used for encrypting data
before it is stored. When a user wants to retrieve his confidential information, the
encrypted information is fetched from the server and decrypted with the secret
key, regenerated using the same eID card. In the following paragraphs, the proto-
cols for storing and retrieving sensitive data are discussed in more detail.

Storing sensitive data. Table 1 shows the steps for storing sensitive data. The
user provides the data to be stored and a secret tag that serves as a name or
alias of the data.

First, the Belgian eID card is used to generate secret keys as follows. A message
with a fixed format is hashed using the middleware (1). The message consists
of a header ’KEYGEN’, the NRN , the serial number of the eID card and pos-
sibly some other user information, making the message card specific. The hash,
HkeyGen, is then signed with the signature key on the eID card resulting in a
1024 bits signature sig (2). The fixed format prevents that an adversary obtains
sig by requesting a signature on a forged message; any message to be signed
by the eID card should not match this format, except in this protocol. Subse-
quently, sig is used as the seed for generating two new symmetric keys, namely
KS and KD. To ensure that the same keys are generated, independent of the
platform, a specific pseudo-random generator PRG is passed as a parameter of
the createSymmetricKey function; also, the hash-functions used should be fixed.
KS is used for encrypting the secret tag associated with the data. The key is
derived from the hash of sig (3-4). The encrypted tag Etag is used in step 10 of
the protocol to derive an index to a record in the server database. KD is used for
encrypting the data. Each time information is stored (i.e. each time the protocol
is invoked), a new random number R is associated with it (5). From the hash of
R and sig the encryption key KD is derived (6) with which the data is encrypted
into the ciphertext Edata (7). In each execution of storeSensitiveData the data
will be encrypted with another key; this prevents linking of the same encrypted
data that is stored in more than one location.
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Next, the encrypted data Edata is stored on a remote server S. First, the user
authenticates with his eID, to ensure that later only the owner U can retrieve his
data (8). Next, U sends the encrypted tag Etag and the encrypted data Edata to S
(9). The NRN , disclosed during the authentication, is hashed together with Etag

and will be used as an index to the information that is stored in the server database
(10). The use of the encrypted secret tag, Etag, ensures the user’s privacy, while
making the index tag specific. A different tag* will result in another index. If the
server S is trustworthy and does not store the user’s NRN nor the Etag, dictionary
attacks on the index are no longer feasible. An adversary with full access to the
server data cannot link any data to a particular citizen.

Finally, the database stores a record with the encrypted data and the random
number R at location index (11). Although useless to the server or any other
adversary, the random number R is necessary for the owner of the data to derive
the correct symmetric key for decrypting Edata. A receipt is sent to the user,
certifying the proper storage of the encrypted data (12).

Table 2. Retrieving sensitive data remotely

retrieveSensitiveData(tag):
(1) U : HkeyGen ← hashA(′KEY GEN ′||NRN ||CardNumber||otherUserInfo)
(2) U ↔ C : sig ← signeID(HkeyGen)
(3) U : KS ← createSymmetricKey(PRG,hashB(sig))
(4) U : Etag ← encrypt(tag,KS)
(5) U ↔ S : NRN ← authenticateeID()
(6) U → S : requestRecord(Etag)
(7) U ← S : record ← getRecord(hashD(NRN ||Etag))
(8) U : KD ← createSymmetricKey(PRG,hashC(sig||record.R))
(9) U : data ← decrypt(record.Edata, KD)

Retrieving sensitive data. When the data has been stored on the remote server,
it can be retrieved by the owner from anywhere (see table 2). First, the hash
HkeyGen is regenerated (1) and signed with the eID card (2). With the signature
sig, the secret key KS (3) is regenerated for encrypting the secret tag (4). Next,
the user authenticates with his eID card (5). The encrypted secret tag, Etag is
sent to the server S and the corresponding record requested (6). The server S
fetches the record with index = hashD(NRN ||Etag) from his database; the record,
comprising of encrypted data and the random number, is sent to U (7). U can
now regenerate the data specific secret key KD from the hash of sig and R (8).
Finally, U decrypts Edata with the secret key KD (9).

Recovery of keys. This scheme exploits the property that a deterministic signa-
ture algorithm is implemented in the eID card. When creating a signature with
the eID card, the same input (HkeyGen), always results in the same signature sig.
As such, using the same PRG and the same hash-functions (hashA .. hashD), the
same secret keys KS and KD (for a certain R) are always regenerated. However,
in case of loss or renewal of the eID card, PK Sig, SKSig and CardNumber will
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have changed and the generated signature sig* no longer matches the signature
sig (generated by the previous eID card), impeding the localization and decryp-
tion of the stored information. Therefore, to protect important data, a secured
backup of the signature sig is created the first time this signature is generated.
In case of loss or renewal, sig is restored from the backup and the keys can be
recovered. This secured backup could be provided by a key escrow service.

5 Proxying the Belgian eID

As illustrated above, it is now possible to perform symmetric encryption based
on the Belgian eID card. However, when other parties are involved, asymmetric
encryption may be required. Therefore, a second encryption scheme based on
the eID card is proposed.

Proxy certificates. Although the eID card itself cannot encrypt nor decrypt data,
the right to do this can be delegated to the host. This restricted delegation
and proxying to another entity is achieved through proxy certificates [9]. A
proxy certificate is an extended version of a normal X.509 certificate. Proxy
certificates can be derived from and signed by a normal X.509 certificate or by
another proxy certificate. Once a proxy certificate is created, the proxy certificate
and its corresponding private key can be used for asymmetric encryption resp.
decryption.

Modified standard. The standards for proxy certificates, as defined in the RFC
3820, impose some problems. Therefore, some modifications have to be made (see
figure 1). First, according to the RFC, proxy certificates should be issued by the
authentication certificate, since only this certificate of the Belgian eID contains
the required key-usage attribute. The key-usage attribute defines the purpose
of the public key contained in the certificate. However, using the authentication
key SKAuth is less secure than using the signature key SKSig since the PIN is
only required for the first authentication (Single Sign On feature), while it is
required for every signature. Therefore, SKSig is used to issue proxy certificates.
Second, the Belgian legislation prohibits to store the NRN . However, the NRN
is stored in the subject field of the eID certificates. This implies that the eID
certificates may not be stored. However, the proxy certificate standard defines
that the subject of the issuing certificate is copied into the issuer and subject
fields of new proxy certificates. To solve this problem, the name of the owner
is copied into the subject field and the hash of the NRN is copied into the
issuer field instead of the subject of the eID certificate. For validation purposes,
the serial number of the issuer certificate is also included in the certificate (i.e.
issuerSN). Additionally, another extra attribute indicates the type: BEID-PROXY.
In this scheme, we assume that when the eID certificate is revoked (e.g. in case
of loss or theft), the issued proxy certificates are no longer valid. Moreover, the
proxy certificate must expire before the expiration date of the eID certificate.
The protocol in table 3 demonstrates the creation of a BeID proxy certificate.
The user U generates an asymmetric key-pair (1). A serial number is generated
from the hash of the NRN and the issueDate of the new proxy certificate (2-3).
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Fig. 1. Content of the modified proxy certificate

Table 3. Create a new proxy certificate

createBeIDProxy([attributes]):
(1) U : (SK U ,PK U ) ← generateKeyPair()
(2) U : issueDate ← getDate()
(3) U : serialNb ← hash(NRN ||issueDate)
(4) U : proxyCert ← generateProxy(BEID-PROXY, certSig, serialNb,

PK U , issueDate, crlLocation, [attributes];SKSig )

The NRN in the hash avoids collisions, while the issueDate enables users
to have more than one proxy certificate. A proxy certificate proxyCert is then
generated and certified with SKSig of the eID card (4).

Revocation. A special purpose server Rp can publish revoked proxy CRLs. To
revoke a proxy certificate (cfr. table 4), the user authenticates with his eID
card (1) and sends the proxy certificate he wants to revoke (2). If the issuer
corresponds to the eID signing certificate (i.e. hash(certSig .NRN ) = proxyC-
ert.Issuer), the proxy certificate is revoked by adding its serial number to the
latest CRL.

Table 4. Revoke a proxy certificate account

revokeBeIDProxy(proxyCert):
(1) U ↔ Rp : NRN ← authenticateeID()
(2) U → Rp : revokeCertificate(proxyCert.serialNumber)
(3) S : if (hash(certSig.SubjectName.NRN ) �= proxyCert.Issuer) abort
(4) U ← S : true ← addToCRL(proxyCert.serial)

Validation. A receiver validates a new proxy certificate by checking the validity
period, its revocation status and by verifying the rest of the certificate chain.
Since the hash of NRN is kept in the issuer field, name chaining (cfr. RFC 3280
[10]) for certification path validation will fail. However, the extra attribute is-
suerSN included in the certificate binds the eID certificate to the proxy cer-
tificate. The first step in creating the certification path is thus modified. The
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serial number of the eID certificate must match the issuerSN in the proxy cer-
tificate. To comply with Belgian legislation, the eID certificate is removed after
validation. Hence, future validation is not possible. However, verifying the va-
lidity period and the revocation status suffices. This can be performed as the
proxy certificate is stored at a trusted location. Additionally, the revocation sta-
tus of the eID certificate can be verified by checking the issuerSN of the proxy
certificate in the CRLs of the Belgian eID.

Belgian citizens can now create legitimate proxy certificates themselves, that
can be used in many applications. Moreover, once a proxy certificate has been
created, the Belgian eID is no longer required.

6 Discussion

The extensions discussed above promise new opportunities for the Belgian eID
technology. Not only can the eID card be used for digital signatures or authen-
tication, the eID technology can also be used to store and to retrieve sensitive
data. The user only needs his card to access the encrypted data that is stored
on the remote server. However, adversaries might try to retrieve the secret keys
by continuously sending challenges to the eID card. Our solution tackles the
thread by using the signature key in the eID card. The latter requires a PIN for
every signature in contrast to the authentication key, which only requires a PIN
once. Moreover, the fixed format of the message allows to detect trojan horses
or malicious applications that request users to sign a certain message.

To support recovery of sensitive data if the eID card is lost or invalid, a secure
backup of the signature sig needs to be created the first time this signature is
generated. However, the user remains responsible for making the secure backup.
An alternative approach is to support a key-escrow mechanism [11,12]. The secret
sig is then split into n parts using a secret sharing algorithm and each part is
stored on a different escrow server. To reconstruct the secret, all n parts are
retrieved from the escrow servers and the interpolation of the parts results in
the secret. To ensure that users only obtain their own keys, eID authentication
can be used with the escrow servers. Additionally, a hash of NRN and the serial
number of the eID card can be combined as an index to store a part of the secret.
Every citizen can –online– lookup his current and previous card numbers at the
National Registry.

The proxy certificate mechanism allows owners of an eID card to setup mu-
tually authenticated secure channels without the need for a trusted third party.
Secure communication is even no longer restricted to SSL. The proposed system
with proxy certificates makes it more flexible and extensible. Although not com-
pletely complying with the standards, the proposed scheme supports asymmetric
encryption with the eID card. Moreover, the proxy certificates can be used for
asynchronous communication (i.e. recipients can decrypt confidential messages
after the communication channel is closed). Once the sender has deleted the eID
certificate (as imposed by Belgian legislation), he can still check the validity of
the proxy certificate and the revocation status of the eID certificate. Although
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other certificates in the validation path (i.e. Citizen CA, Belgium Root CA, . . . )
may have been revoked, the proxy certificate can include the issuer of the eID
certificate as an extra attribute to verify the validity of the rest of the certificate
chain. Note that optional attributes in the proxy certificate may further restrict
its use.

7 A Mobile and Secure e-mail Client

Both extensions discussed above are combined into a proof-of-concept applica-
tion. An e-mail client has been developed. It supports exchanging confidential
e-mail messages using the BeID proxy mechanism described in section 5. Indi-
viduals can use the e-mail service at any location as the necessary key material
and contact information are stored securely on an easy accessible remote server.

7.1 Requirements

– R1: The secure e-mail application is simple to use.
– R2: The e-mail service is ubiquitously accessible.
– R3: Certificates can be revoked (using CRL, OCSP).
– R4: Contact information is kept private.
– R5: Data stored on a remote server is useless to any third party.

7.2 Protocols

In this discussion, abstraction is made of the message format and the e-mail
system that is responsible for the transport of e-mail messages. The protocols
are designed to be compatible with existing e-mail systems.

setupProxy-Protocol (cfr. table 5). This protocol defines the creation and storage
of an e-mail proxy certificate. The user U generates a proxy certificate with his e-
mail address as an extra attribute (1). Next, a list of already existing credentials
creds (i.e. certificates and corresponding private keys) is fetched from the remote
secure store (2). The new credential consisting of SK proxy and proxyCert is added
to the credential list (3). Finally, the updated list is uploaded to the remote
store (4).

Table 5. Creating and remote storage of a proxy

setupProxy():
(1) U : (SKproxy, proxyCert) ← createBeIDProxy([E − mail : U.email])
(2) U ← S : creds ← retrieveSensitiveData(U.email + ”.creds”)
(3) U : creds* ← addToCredentials(creds, [SKProxy, proxyCert])
(4) U → S : storeSensitiveData(creds*, U.email + ”.creds”)

receiveBeIDProxy-Protocol (cfr. table 6) defines how a user U1 requests a valid
proxyCert from another user U2 and adds it to his contacts in the remote secure
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Table 6. Retrieve the proxy certificate of a contact

receiveBeIDProxy():
(1) U1 → U2 : requestCertificate()
(2) U2 ← S2 : creds ← retrieveSensitiveData(U2.email + ”.creds”)
(3) U2 : proxyCert ← lookup(creds, U2.email)
(4) U1 ← U2 : (proxyCert, eID2.certsig, certCitizenCA , certBelgiumRootCA)
(5) U1 : if (!isValidCert(proxyCert, [eID2.certsig, . . .])) abort
(6) U1 : delete(eID2.certsig)
(7) U1 ← S1 : contacts ← retrieveSensitiveData(U1.email + ”.contacts”)
(8) U1 : contacts* ← addToContacts(contacts,

[proxyCert, certChain/eID2.certsig])
(9) U1 → S1 : storeSensitiveData(contacts*, U1.email + ”.contacts”)

store. Storing the contact certificates online is required to enable remote access
from hosts on other locations. U1 requests the proxy certificate of U2 (1). Then,
U2 fetches his certificate from his secure credential store (2-3) and sends it to
U1 (4). U1 verifies the validity of the proxy certificate, taking into account the
modified certificate path generation (5). To comply with the Belgian legislation,
eID2.certsig is deleted after validation (6). Finally, U1 adds the proxy certificate
to his secure contact store indexed with the e-mail address (7-9).

sendEncryptedEmail -Protocol. Table 7 shows the protocol to send a confidential
message between two users. First, U1 fetches the proxy certificate proxyCertU2,
which he received earlier, from his contact store (1-2). U1 verifies the validity
of the proxyCertU2 (3). To improve the performance, a symmetric encryption
scheme is used to encrypt the message. Therefore, a new random symmetric key
sK is created (4-5). Next, the symmetric key sK itself is encrypted with the
public key proxyCertU2.PK in the proxy certificate of the contact U2 (6). Both
the encrypted message and encrypted symmetric key are mailed to U2 (7). To
read the confidential message, U2 fetches the corresponding secret key SKU2
(8-9)) to decrypt the symmetric key sK* (10). Finally, the message is decrypted
with sK* (11).

Table 7. Sending and receiving an encrypted message

sendSecureEmail(message):
(1) U1 ← S : contactsU1 ← retrieveSensitiveData(U1.email + ”.contacts”)
(2) U1 : (proxyCertU2, certChain) ← lookup(contactsU1, U2.email)
(3) U1 : if (!isValidProxy(proxyCertU2, certChain))abort
(4) U1 : sK ← createSymmetricKey()
(5) U1 : Edata ← encrypt(msg, sK)
(6) U1 : EsK ← encrypt(sK, proxyCertU2.PK)
(7) U1 → U2 : sendEmail(Edata, EsK , U2.email)
(8) U2 ← S : creds ← retrieveSensitiveData(U2.email + ”.creds”)
(9) U2 : SKU2 ← lookupKey(U2.email, credsU2)
(10) U2 : symKey* ← decrypt(EsK , SKU2)
(11) U2 : message* ← decrypt(Edata,symKey*)
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7.3 Evaluation

This paragraph first evaluates the initial requirements. Next, our solution is
compared to other approaches for securing e-mail services.

– R1: Only the setup and request of a proxy certificate may imply some ad-
ditional user interaction. The other protocols can be processed transpar-
ently. Of course when accessing the remote secure store or creating new
proxy certificates, two PINs of the eID card are required: for authentication
and signing (key generation). This may seem awkward. However, a possi-
ble solution may be to detach the fetching and storing of secure data (i.e.
retrieveSensitiveData resp. storeSensitiveData) from the protocols above and
only perform them at the initialization and closing of the e-mail client: the
user will have to enter his authentication PIN once and his signing PIN
twice (of which one can be avoided if the application caches the signature
temporarily).

– R2: Confidential e-mails can be sent and received from any host with a card
reader.

– R3: A separate server maintains CRLs of revoked proxy certificates. More-
over, a sender can verify that the eID certificate of the owner of a proxy
certificate is (not) revoked.

– R4: Access to contact information is only possible using the Belgian eID.
Adversaries do not have access to the proxy certificates of the contacts.

– R5: All information stored on the remote secure storage server is encrypted
and if the server is trustworthy (i.e. the server does not store the encrypted
tag nor the NRN ), an adversary cannot link any data or even discover the
presence of data of a particular individual. Moreover, only the owner can get
access to his encrypted data.

PGP [13] has a different trust model compared to our approach. PGP was ini-
tially based on chains of trust, while our solution is based on valid certificate
chains. The trust level of public keys in PGP depends on the number of signa-
tures on these keys by other users. Verifying the validity of those keys is not
trivial and less reliable. Users have to interpret trust levels themselves. In the
more recent OpenPGP specification [14], trust signatures can be used to support
the creation of certificate authorities.

S/MIME [15] also offers a solution to send confidential messages based on
certificate chains. S/MIME typically stores keys and certificates on a user work-
station which implies that e-mail cannot be sent or retrieved on different hosts.
Some attempts have been made to store keys and certificates for e-mail services
on a remote server. Those solutions mainly use password based encryption to
support ubiquitous access. Our eID based solution provides stronger security
while maximizing the availability.

Moreover, the creation of a BeID proxy certificate does not require a complex
registration procedure. The individual can even create a proxy certificate off-line.
Some certificate authorities offer free e-mail certificates for exclusive S/MIME
usage on their web site. Users must sign up for an account. However, this does
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not automatically allow usage of one’s name in the certificate. For that, one has
to prove ones identity in person to at least two Thawte notaries that are part of
their Web of Trust.

PGP and S/MIME also support digital signatures and mechanisms to ensure
the integrity of e-mails. Since the eID card can directly be used to sign e-mail
messages, we have omitted the description of this functionality of our e-mail client.

8 Conclusion

This paper presents two reusable extensions to the Belgian eID technology,
namely a ubiquitously accessible remote secure storage service and a mechanism
to issue proxy certificates. The former allows Belgian citizens to manage sensi-
tive personal data such as contact information, passwords, keys, tickets, etc. The
latter can be used to self-certify asymmetric encryption keys. The validation of
the proxy certificates slightly deviates from the standard, because of the current
design of the eID certificates and restrictions imposed by the Belgian legislation.
However, this problem can easily be solved by redesigning the eID certificates.
Hence, this paper also offers some guidelines for countries that consider intro-
ducing an eID card in the future. As a proof-of-concept, both extensions have
been incorporated in a secure e-mail client. The approach is more secure than
PGP and avoids some key management problems in S/MIME.
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2. Verhaeghe, P., Lapon, J., De Decker, B., Naessens, V., Verslype, K.: Security and
privacy improvements for the belgian eid technology. In: 24th IFIP International
Information Security Conference (SEC). Springer, Heidelberg (2009)

3. Dumortier, J.: eID en de paradoks van het rijksregisternummer (2005)
4. Stern, M.: Belgian Electronic Identity Card content, 2nd edn., CSC, Zetes (2003)
5. Andries, P.: eID Middleware Architecture Document, 1st edn., Zetes (2003)
6. Rommelaere, J.: Belgian Electronic Identity Card Middleware Programmers Guide,

1st edn., Zetes (2003)
7. Ramlot, G.: eID Hierarchy and Certificate Profiles, 3rd edn., Zetes – Certipost

(2006)
8. Belgian certificate revocation list, http://status.eid.belgium.be
9. Tuecke, S., Welch, V., Engert, D., Pearlman, L., Thompson, M.: Rfc 3820 - Internet

x.509 public key infrastructure (pki) proxy certificate profile (2004)

http://status.eid.belgium.be


Extending the Belgian eID Technology with Mobile Security Functionality 109

10. Housley, R., Polk, W., Ford, W., Solo, D.: Rfc 3280 - Internet x. 509 public key
infrastructure certificate (pki) and certificate revocation list (crl) profile (2002)

11. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
12. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: CCS 1997: Proceed-

ings of the 4th ACM conference on Computer and communications security, pp.
78–91. ACM, New York (1997)

13. Garfinkel, S.: PGP: Pretty Good Privacy. O’Reilly Media, Sebastopol (1994)
14. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: Rfc 4880 (Proposed

Standard) – OpenPGP Message Format (2007)
15. Ramsdell, B.: Rfc 2633 – s/mime version 3 message specification (1999)



Filtering SPAM in P2PSIP Communities with
Web of Trust
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Abstract. Spam is a dominant problem on email systems today. One of
the reasons is the lack of infrastructure for security and trust. As Voice
over IP (VoIP) communication becomes increasingly popular, prolifera-
tion of spam calls is only a matter of time. As SIP identity scheme is
practically similar to email, those share the same threats. We utilized
Host Identity Protocol (HIP) to provide basic security, such as end-to-
end encryption. To provide call filtering, however, other tools are needed.
In this paper, we suggest applying trust paths familiar from the PGP web
of trust to prevent unwanted communication in P2PSIP communities.

The goal is to provide trust visibility beyond the first hop without
requiring people to openly share private data such as contact lists. Since
our distributed environment limits global solutions, our proposal bases
on scale-free distributed nodes which provide service to the social trust
neighborhood. We have implemented the service as a freely deployable
stand-alone HTTP server, which can be either independent or a part of
the P2P overlay. We have evaluated the performance of the path finding
algorithm using the social network data from the PGP web of trust.

Keywords: p2p, social networking, trust, spam prevention.

1 Introduction

One of the most significant plagues of Internet today is spam, or unsolicited
email. During the last ten years the amount of abusive email has grown from
virtually zero to what is now estimated between 80 and 95 percent of email
traffic [1][2] and to be in the order of 100 billion messages every 24 hours in June
2007 [3].

Today, spam filters are common in any aware environment, and they clear
most of the garbage so users never see it. Still, some spam comes through and
there are some false positives, not to mention the wasted bandwidth. Therefore
the spam problem is not cured, but still remains, kept in the background with
band-aids to ease the pain.

Thanks to broadband and mobile access, people are staying connected online
more and more. As high-speed wireless and flat-rate tariffs spread, another form
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of communication is becoming popular, Voice over IP (VoIP) calls, or Internet
Telephony. SIP, Skype, Messenger, and other services provide people with ability
to talk to each other in voice or video for practically no added cost. This opens
new opportunities to the spam industry. Traditionally calling people has involved
direct costs per second, but if soon more and more people are reachable without
such direct costs, the aspect of building automated recorded calling services to ad-
vertise things like Viagra and adult services can become plausible and profitable.

These unsolicited calls, nick named SPIT (Spam over IP Telephony), pose an
even greater harassment to people than traditional unsolicited email (SPAM)
does. There are two fundamental differences between these forms of communi-
cation. First, while emails go to the inbox and wait until the user reads them, a
call is made in real time and needs acute attention, disturbing anything the user
is doing at the moment. Secondly, the content of an email message in the inbox
is usually readily readable by the server running the spam filter. The content of
a call is not available until the call actually happens, so it cannot be prefiltered
based on content until the call is passed and answered. Therefore, voice calls are
much more intrusive and they cannot be filtered based on content1.

Methods for preventing SPIT need to be developed before it becomes a prob-
lem, otherwise we end up in a similar situation as with email, trying to fix
things already broken. We can see that if VoIP systems are not designed to pre-
vent SPIT, it will likely become the next pervasive medium for spammers [4].
In the worst case for VoIP, this means people will stray away from the medium,
or there will be an abundance of incompatible non-standard systems, none of
which is common enough to draw spammer attention.

Even in Finland, where unsolicited advertising is rare and prohibited, there has
been talk of cases where automated services have called traditional phones asking
for permission to make advertisement calls. As such calls are made in traditional
networks, we can assume they will become common in their inexpensive counter-
part (even if, as with SPAM, we expect the majority to come from global actors).

In this paper we will look at a distributed SIP environment and using PGP-
like grass roots approach of a social web of trust to filter out calls coming from
outside or too far in the social neighborhood.

The rest of the paper is divided as follows. Section 2 gives an overview of our
underlying P2PSIP system and issues of trust in distributed systems. Section 3
outlines the research problem of preventing SPIT. Section 4 describes the pro-
posed solution on a conceptual level, and Section 5 looks deeper into the actual
implementation. Section 6 presents the test data and performance results and
Section 7 concludes the paper.

2 A P2P SIP System

Session Initiation Protocol (SIP) [5], is a text-based IETF protocol standard
for establishing and managing multimedia sessions. SIP handles tasks such as
1 It may be noteworthy that voice-mail counters these two arguments, yet filtering

audio based content is much harder than for text.
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negotiating connection parameters and media encoding. SIP User Agents (UA),
are identified by a SIP Address of Record (AOR), an email-address-like identifier.

In traditional, non-distributed, SIP, the user agents (UAs) can connect di-
rectly to each other if they know the connection parameters for the other party.
In practice, however, a set of various trusted servers, such as SIP proxies and SIP
registrars, is required for smooth operation of the service. Since this model has
created administrative burdens, points of failure and a lack of ad-hoc capability,
several P2P SIP systems have emerged and the IETF is currently standardizing
the data protocol in the P2PSIP working group [6].

The Networking Research Group at Helsinki Institute for Information Tech-
nology (HIIT) has produced a prototype for such a decentralized SIP system [7],
which is built on top of Host Identity Protocol (HIP) [8]. HIP communication
architecture provides the tools required for achieving the identifier-locator split,
i.e., separates the identity of a host from its location, such as the IP address. HIP
hosts are identified by a Host Identifier (HI), the public key of a cryptograph-
ically generated key-pair. These are in turn dynamically mapped to network
locations, providing transparent multihoming and mobility in addition to con-
fidentiality and self-authentication. Therefore, we can use HIP to provide more
secure identities and confidentiality to used channels, than SIP alone can. While
HIP won’t completely remove bootstrapping risks in distributed environment, it
provides secure connections to verified parties. The HIP implementation used in
the prototype is HIPL [9], which is available for mobile Linux platforms, such as
the Nokia Internet Tablets.

Figure 1 presents the architecture. The P2PSIP peers are the devices of end
users. These contain the user application (or UA) and also a local P2PSIP proxy.
Instead of using large centralized proxies, the functionality is distributed to small
lightweight proxies which share the workload. Moving proxy functionality from
network servers to end devices is the basic concept behind P2PSIP systems.
Various P2PSIP designs vary in which parts of the system they focus on, but

Fig. 1. The components of the P2PSIP system. In addition to users and peers, identity
authority and overlay infrastructure can be present. The P2PSIP proxies handling the
SPIT prevention are located in each end device. Peer-to-peer connections are made
over HIP.
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the local proxies forming a P2P overlay are common. Since the same proxy
interface is still available, it has been possible to design the system to support
legacy SIP applications.

The P2PSIP overlay network is not required for the UAs to make ad-hoc
connections to each other, but it provides a global storage and an index. These
services are essential for a smooth functioning of the system. The peers locate
each other by the registrations stored in the overlay. Our implementation is not
bound to a specific overlay, but can use multiple in parallel.

Finally, the Identity Authorities are centralized components for signing up
for the system. These are trusted authorities which bind the SIP AOR to a
public key using digital certificates, thus preventing identity thefts and spoofing.
While Identity Authorities are centralized, there is no limit to their number, each
providing service to their own domain, and once the registration and certification
is done, there is no further need to stay in contact with the authority.

2.1 Trust in a Distributed System

We want to see how social trust relations could be used to filter calls. People
seen as trustworthy by others in the social neighborhood should get through,
while those seen in a negative light would be blocked.

Since our prototype is built on HIP and distributed SIP, the environment
is by design distributed. This brings in new challenges, as we cannot rely on
any centralized servers maintaining all the trust relations or reputation data.
Balancing issues of privacy and reputation in a decentralized network is always
a task requiring compromises, but our goal is to make the pay-offs greater than
the costs.

In general, the question is a traditional introductory problem. If Ann wants to
get in contact with Bob, but there is no direct link between them, Carol, who is
acquainted with both Ann and Bob, can give Ann a reference to make her appear
more trustworthy to Bob. However, in most cases we don’t want to bother Carol
explicitly, but only make it apparent to Bob that she sees Ann in a positive light.
In more distant cases, where the trust chain is longer than two hops, a single
introducer will not suffice. Further, unless Ann knows that Bob trusts Carol,
she would be blind about knowing whom to ask for the recommendation. In a
distributed network there is no node which would be guaranteed to know the
best recommenders or shortest chains.

Even with limited knowledge we can make guesses and estimates. Without a
comprehensive centralized database we cannot be certain we find the shortest or
best link. If we do find a link, we will know that there is at least some link. While
additional information could provide more trust, even a single link provides a basis
for trust estimation. In case of purely positive reputation, it is also a guaranteed
bottom estimate. Although we don’t know if there are more available trust paths,
we know those could only add to the estimate, not lessen it.

Social links can be used as credentials for contacting other people. People who
are close in the social network are less likely to make SPIT calls. Just saying
“Hi, I’m Ann, friend of Carol’s” is likely to make Bob more receptive to talking
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to Ann in a traditional telephone call. This can be contrasted to email spam,
however, where just shooting random names is commonplace. To be actually
useful in an online environment, there needs to be some more proof that the link
is real and that the person on the other end is who she claims to be.

There is a limiting factor, however. People’s contacts are private information,
and most people are not willing to publicize their contact lists. Even when there
is nothing explicit to hide, people do not wish their employer to know their
personal friends, or all their contacts to have access to the contact information
of their children. Privacy of contact lists must therefore be protected.

While counter-claims say that in the age of Facebook and MySpace people no
longer demand such level of privacy, it is fair to note that social networking sites
are voluntary. People can choose which of their real links they reveal, as well
as whether their friend list is available to the public, their friends, or nobody.
In contrast to mandatory publication of telephone contact list by an operator,
many of the most open-minded social network users would protest revealing
such information. The ability to control information about oneself is one of the
central concepts in privacy [10]. This control is not about enforcing fixed rules,
but about managing and balancing based on the environment [11].

3 Beyond the First Hop

With the need to protect private data, how do we enable people to see the social
network beyond the first hop (their own contacts). Although asking the contacts
to share their contacts could be plausible in some limited cases, it is not really
a solution which could be widely accepted. Also, adding hops in such a manner
as to pass on other people’s contact lists to achieve deeper visibility, would be a
breach of trust and privacy.

Likewise, sharing the contact lists with a trusted centralized agent could solve
the problem. However, such a solution is not applicable to distributed environ-
ment and further, would build a gigantic database of global contacts. The latter,
while not commonly seen as a major problem today, can become such after the
first major abuse of such database presents itself.

People should be able to choose who has access to their contact lists, and also,
to which part of it. Naturally, managing contacts to hide or reveal details is an
added burden for the user. However, it should be welcomed by anyone with even
slight privacy concerns.

Further, since the goal is only to present credentials for the caller, there is no
need to reveal the plain identities of the intermediaries. Therefore, obfuscating
the identities should be a standard practice when passing contact lists to other
parties. After all, the plain names have no meaning for the social trust structure,
those who’s real identity would provide any additional value are likely known
and on one’s own contact list to begin with.

Finally, making iterative searches over a distributed network is a time-
consuming effort. If one needs to query data from various nodes, and especially
nodes more than one hop away, the process is likely to take too long to pro-
cess for an incoming real-time call. Making such searches will also burden the
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recipient node, (at least its network connection, which may be limited) making
it vulnerable to Denial of Service (DOS) attacks.

We will present a method which provides trust information for nodes beyond
one’s own contact list, obfuscates user identities, hide identities of intermediary
nodes to protect their privacy. The method places majority of the burden on
the caller and on additional nodes which performance is not critical to the basic
functionality of P2P SIP system.

4 Trusted Pathfinder Service

A Trusted Pathfinder is a service node in a flat network, which acts as a trusted
third party to provide the call recipient with an anonymous trust path descrip-
tion of the caller. It fulfills this role by maintaining a protected and anonymized
database of contact lists of people and finding trust paths in this web of trust.
In a way it is similar to the web sites that find trust paths between PGP [12]
keys, such as the PGP pathfinder [13] hosted by Utrech University.

To protect the privacy of the users, we have designed two obfuscating steps
to minimize the exposure of private data. The first step is to hash all identities
using SHA-1 at the client proxy. This will obfuscate the contents of the list even
from the pathfinder service, preventing accidental exposure of administrators and
requiring malicious admins to put at least some effort to decoding the identities.
Hashing must not be confused with security, however. Secondly, the pathfinder
will not reveal the intermediary nodes along the path, nor share the trust link
data with any other parties. To preserve privacy of both private and business
users, pathfinders must not share the contact data with each other.

The trust toward the Pathfinder is two-fold. First, the user who submits her
(hashed) contact data to the service, should trust the service to keep her data
private. Secondly, the user trusts that the path descriptions provided by the
service are accurate to the extent possible with known data.

Note that both of these issues are in the human trust domain. This means that
such issues can not be enforced by technical means, especially not in a peer-to-
peer network. There is nothing to prevent a node administrator from running a
service which appears legitimate, but leaks information. Submitting private data
to a service ran by unknown actors is a risk and needs to be acknowledged as
such. The P2P environment emphasizes the responsibility and decision-making
of the user. Despite people’s wishes, trust cannot be outsourced and there is no
substitute for common sense and familiarity with the environment.

Our environment is distributed, so the pathfinder is not a global service either,
but rather we see numerous local (in trust domain) services, and that the size
distribution of the pathfinder nodes is likely scale-free [14]. Basically anyone
could run their own pathfinder service; while the smallest ones would not have
much public usage, it might be likely that circles of friends could run them, a
company could run one for internal use, universities could run their own, etc.
With client software modifications the user could further manage which contacts
are shared with which pathfinder.
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Since the pathfinders do not share their database with each other, a path
query can be performed fast within the node without propagation delays. How-
ever, since the node does not contain global knowledge, the trust description it
provides is limited. While this may sound like a limiting restriction, it may also
model the trust network of people in a more human way. There is no need to
be able to form paths with six degrees of separation, to every human on the
planet. The goal is to reach beyond the first hop, the users’ own contact lists.
Since trust is not transitive, paths longer than three hops likely provide little
introductory value. While the existence of any path could be interpreted as hint
that the caller might not be a SPITter, infiltrating social networks is in practice
easy as people find new contacts and adds only one to the length of the path.
Adding a second ’cover’ node adds two hops.

In the case of one additional hop, the friends of an infiltrating id could sta-
tistically find out who is responsible. If the path is longer, the question who has
a friend with a spitting friend is very difficult to resolve without breaching the
privacy of contact lists. Yet, the pathfinder itself, having internal access to the
whole graph, could be modified to also run algorithms to locate regions linked
by a single vertex, and consider those potential Sybil attackers similar to [15].
This functionality would be mostly useful in very large databases, however.

The pathfinder also acts as a small buffer against DoS attacks against the
recipient. Since now the recipient proxy can require a path description before
passing the call to the actual SIP client, the burden of pathfinding is on an ex-
ternal node. Certainly, the pathfinder can be taken down by an attack. However,
since it is not a part of the P2PSIP infrastructure itself, but rather an additional
service, removing it does not hinder the VoIP service. People who are one hop
away (on a local contact list) can call freely without the pathfinder (though there
may be other rules blocking the call). People can choose to accept calls without
a path statement if they want. Attacking the pathfinder will, however, make life
harder for those who are far, or not at all, in the social network, such as SPIT
callers. Since direct contacts do not need the service at all, all delays posed by
the system only apply to strangers.

Since the P2PSIP proxy is requiring the (unknown) caller to query the
pathfinder service, all the delay in making the call can be put on the caller. Al-
though, as we will show, the delay is not very long, it could be if the pathfinder
is busy. Differentiating this waiting from a ringing tone should help a (human)
caller perceive the call progressing. The recipient is not aware of this delay, his
client starts ringing only after the call is passed through the proxy.

5 Implementation of the Pathfinder

We implemented the pathfinder as a stand-alone HTTP server written in
Python [16]. The first goal was to test the performance need for tracing routes
in the social network. A deployed call filtering service is likely to receive much
higher load than the PGP pathfinder services on the web. While this is not an
issue for small local servers, any nodes servicing a larger population may run
into trouble if the workload is too high.
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While we wanted a working solution and a proof-of-concept implementation
to test, we didn’t focus on optimization of the solution at this stage. There
is likely still room for improvement in this regard for future versions of the
implementation.

For the search algorithm we decided to keep to a basic two-way search [17],
instead of putting an effort to tune a more complex algorithm. To optimize the
search we built two data structures from the contact lists. The first contains the
forward links as per the contact list. The other set contains reverse links readily
available for the backward search.

The current implementation of the pathfinder provides the shortest trust path
from the recipient of the call to the caller. This keeps the algorithm simple, as
we do not need to keep track of the path or its properties. In future work we
will consider adding metadata such as trust-weights to the links. Without such
reservations for metadata we could have used Bloom Filters [18] for more secure
obfuscation.

To begin, we add the recipient to a forward horizon, a list of nodes seen at
a particular distance from the recipient, and mark the distance as zero. Then
we add the caller to a reverse horizon and check if it matches the opposite
horizon. If yes, we return the distance. As the caller likely is not the recipient,
we increase the distance counter and return again to the other (forward) side.
Then we start building a new horizon from unseen nodes on the contact lists of
nodes on the previous, lower, horizon, and check if any of these match members
of the opposing horizon. To prevent loops and to optimize the algorithm, we keep
a record of nodes already seen, so we can ignore them in future. This process
is iterated until the horizons meet, the maximum path length is reached, or all
nodes are visited.

The algorithm, in a step by step manner:

– Take contacts from contact lists of a member of old horizon
– If these have not yet been seen, add to a new horizon
– If the new member matches the opposite horizon, return distance
– If the new horizon is completed and no match is found, increase the distance

counter and iterate on the opposite side

The server also fits a contact list parser module, which interprets the con-
tact list format(s) provided by user proxies to the database format used by the
pathfinder. The current implementation supports our own XML schema, but a
deployed implementation benefits from ability to understand various formats. As
the data is never supposed to be exported, only import functionality is needed.

Finally, to provide integrity to the path description documents, a digital sig-
nature needs to be added to the response. For this purpose we add an S/MIME
compliant signature to the document returned by the pathfinder server as a
result of the query.

Figure 2 shows the modules in the implemented system as well as the pro-
cessing paths for submitting contact lists and making path queries.
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Fig. 2. The modules in the pathfinder system. The HTTP server accesses services
provided by the database, XML-parser and signer, in addition to small help modules.

6 Performance

The pathfinder is now functional and can be used in conjunction with the P2PSIP
system [19]. Although some performance issues remain, the median performance
is suitable for small to medium scale deployment. We have a few optimization
and scalability plans for the future, even as the current performance with the
test dataset is satisfactory.

Fig. 3. The horizons in the social network are browsed by turns until they meet

6.1 Wotsap PGP Signature Data-Set

As a test dataset for the social network, we chose to use the Wotsap PGP key
signature dataset available from the Wotsap website [20].

The dataset differs slightly from a real-world contact database since it only
contains a strongly connected set of keys. In other words, each key in the set is
reachable from every key in the set. There are no isolated nodes, or ones that
have only incoming or outgoing links, unless we decide to insert them ourselves.

The links in the data-set are unidirectional, making it in similar to generic
contact lists. Here, the topology differs from many social networks such as Face-
book [21] or LinkedIn [22], but we feel that this approach is a better model for
trust issues as trust is not generally symmetric.
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The dataset contains about 35 000 keys and 350 000 signatures, giving an
average of about 10 links and median of 3 links per node. While it can be
argued that a realistic social network would be more dense, after consideration
we decided that the dataset represents a generic social network in a sufficient
manner for testing purposes.

Fig. 4. The performance of pathfinder. Times of finding a path from a random node
to a random node. 30 000 iterations shown in test order (cloud) and sorted by time
(curve).

6.2 Measurements

We fetched 30 000 random-to-random paths using the pathfinder, setting the
maximum path length at 6 hops. For real use such trust settings could be too
long, but in the spirit of the six degrees of separation theory we wanted to see
results for even longer chains. As noted above, our network is sparse, so not
every chain fitted into these 6 hops. The measurements were made on an Athlon
XP 3500+ single core PC.

The median time to find a path is 23 ms, which is quite applicable for lightly
loaded servers, but of course insufficient for heavy loaded servers processing
hundreds of requests per second. The deviation of the results is quite wide.
While 10% of the cases take less than 1 ms, the highest 10% take more than 1.9
seconds to a maximum of 104 seconds.

In over 90% of cases the added delay is acceptable, but when the delay builds
to the class of 3-5 seconds and more, it is likely irritable to a caller. Especially
when considering possible HIP base exchange delays on low-power devices, as
well as other network delays, informing the user on call set-up progress needs to
be addressed in the design of the user interface.

The delay is not directly connected to the social distance, but the work done
by the server. This can be seen from Figure 5 where the correlation between the
path search delay and the number of unique nodes encountered in the process
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Fig. 5. The performance of pathfinder. Here the path finding time is presented in
relation to the number of nodes seen on a loglog scale.

is shown on a loglog scale. We would also like to point that people who share
regular contact with each other are likely be on each others’ contact lists and
thus should not be required to fetch path credentials when calling. Path search
is a kind of introducer service, and the delay is an additional credential fetching
cost which only applies to callers who are not on recipient’s contact list.

7 Conclusion

We have designed and implemented a privacy preserving service for finding social
trust paths between nodes which are further than one hop away from each other
in the P2PSIP social network. Users submit their obfuscated contact lists to the
trusted pathfinder service, which at request provides digitally signed credentials
for the caller to present to the call recipient proxy. The pathfinders will keep the
contents of user contact lists private, and will not reveal the path itself, only a
description of it (path length in the current implementation). Large pathfinders
could also try to locate likely Sybil attackers. We ran performance tests on the
implementation and found it to be adequate.
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Abstract. In our paper we study practical aspects of random and pseu-
dorandom number generation in mobile environments. We examine and
analyze several sources of randomness available in current mobile phones
and other mobile devices at the application level. We identify good phys-
ical sources of randomness that are capable of generating data with high
entropy in reasonable time and we investigate some relevant aspects (such
as security, energy requirements, performance) of integrating selected
pseudorandom number generators in the Symbian OS environment. The
main contribution of this paper is the identification and analysis of ran-
domness sources in mobile devices and a practical proposal for their
post-processing, including a prototype implementation.

Keywords: mobile device, random sequence, source of randomness.

1 Introduction

Unpredictable cryptographic keys, padding values or per-message secrets are
critical to securing communication by modern cryptographic techniques. Their
generation typically requires an unpredictable physical source of random num-
bers and secure mechanism for their digital postprocessing.

Most common generation techniques involve truly random and pseudorandom
number generators. The former are typically based on a nondeterministic phys-
ical phenomena (e.g., radioactive decay or thermal noise), while the latter are
only deterministic algorithms where all randomness of the output is dependent
on the randomness of one or several inputs (often called seed). Generation of
pseudorandom data is typically (in most environments) faster and truly random
data is used in this process only as the initial input.

Our paper deals with issues related to the generation of truly random and
pseudorandom data (i.e., bits, numbers, and sequences) in mobile computing
environments. Mobile devices are different from general purpose computers, and
are now commonly used for security-critical applications like mobile banking, se-
cure voice and data communication, etc. However, current mobile platforms do
not provide a suitable built-in entropy source for seeding a pseudorandom gen-
erator. We consider the camera and the microphone noise as the most promising
candidates for good sources of randomness. They provide a considerable amount
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of randomness (entropy) in a given time period and can be easily (with minimal
postprocessing) used as a reliable true random number generator (TRNG).

In order to use random data for cryptographical purposes we need to ob-
tain a sequence of unpredictable random bits (i.e., with a sufficient amount of
entropy) distributed according to the uniform distribution. Since almost all ex-
ternal physical sources of randomness can be observed or influenced (gamma
rays, temperature, etc.) resulting in non-random or even constant values, we
postprocess resulting data with a pseudorandom number generator (PRNG)1.

We implemented ANSI X9.31 (former X9.17) and Fortuna PRNGs for mobile
devices with Symbian OS 9.x. Both these PRNGs are based on classical cryp-
tographic primitives (e.g., AES) and use available randomness sources during
the whole generation process. This property implies robust and secure design
with capability of recovering from internal state compromise. Both our imple-
mentations are a proof of concept that demonstrates the feasibility of generating
high-quality pseudorandom data in mobile phones at the application level.

A detailed discussion regarding identification, testing, evaluation of physical
sources of randomness, and entropy estimation can be found in [6]. Some issues
described in this paper were discussed at the conceptual level also in [7].

2 Requirements on Random Data

Let us begin with a basic description of requirements on random data for cryp-
tographic purposes. We can distinguish between qualitative and quantitative
requirements for random data. The former cover good statistical properties of
generated random data and unpredictability of such data, while the latter deal
with measuring of randomness and also cover demands of used cryptographic
techniques and the performance issues of cryptographic generators.

2.1 Qualitative Requirements

Random data generated directly from a randomness source often contains sta-
tistical defects and dependencies causing parts of the random data to be easily
predictable. These statistical defects are typically inducted by hardware gener-
ators during the sampling of the analogue randomness source or by influencing
the sampled physical randomness source (e.g., by an active adversary).

The first step towards unpredictability lies in ensuring (at least to certain
level) good statistical properties of generated random data. This can be par-
tially solved by using digital postprocessing and/or statistical testing. Digital
postprocessing is the deterministic procedure capable to reduce statistical rela-
tions and dependencies (including bias and correlation of adjacent bits). Statis-
tical testing allows to (manually) detect some design flaws of a generator or to
(automatically) avoid breaking or influencing the generator during its lifecycle.

1 Note that an ideal PRNG for cryptographic purposes produces sequences that is
unpredictable and computationally indistinguishable from the truly random data.
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Typical techniques of digital postprocessing involve use of deterministic pseu-
dorandom number generators or randomness extractors. The former serve only
for spreading simple statistical defects into a longer sequence of bits. The latter
allow to condense available input randomness to the most compact form that
has uniformly distributed bits without statistical defects. Pseudorandom number
generators as well as randomness extractors can be based on cryptographic prim-
itives (e.g., hash functions) or simple mathematical functions. However, none of
deterministic digital postprocessing methods can be used for improving initial
randomness from the physical source.

The advantage of randomness extractors lies in good theoretical and mathe-
matical background – more sophisticated randomness extractors can even pro-
vide some provable guarantees of the quality (resulting distribution) and quantity
(in terms of extracted so-called min-entropy) of its output. We can distinguish
deterministic or non-deterministic randomness extractors. The former work only
on limited classes of randomness sources. The latter do not have this restriction,
but they need an additional truly random input. Unfortunately, probability dis-
tributions of randomness sources must be in both cases precisely defined, oth-
erwise it is not possible to construct appropriate and well working randomness
extractor. In addition to that, the usage of an randomness extractor makes the
generation of random numbers even slower. More details can be found in [11].

There are several commonly used statistical test suites or batteries (e.g.,
CRYPT-X, DIEHARD, and NIST) for verification of the statistical quality of
random data by detecting deviations from true randomness (for details see [10]).
However, no finite set of statistical tests can be viewed as complete and the re-
sults of statistical testing must be always interpreted with some care and caution
to avoid wrong conclusions about a specific randomness source or generator.

2.2 Quantitative Requirements

A precise comparison of several sources of randomness requires also some mea-
sure of randomness. Basic measure is in information theory often called uncer-
tainty or entropy and referred as Shannon entropy or alternatively information
entropy. The well-known Shannon formula computes the entropy according to
all observed probabilities of values in the probability distribution. This results
only in average case entropy that is inappropriate for cryptography purposes.
To (partially) cope with this situation the worst case min-entropy measure is
often used. Min-entropy formula computes the entropy according to the most
probable value in probability distribution.

Unfortunately, both entropy formulas have one serious drawback: they work
only for exactly defined (and fixed) randomness distribution. In our case we
cannot make any assumptions about distributions dynamically formed by used
sources of randomness (e.g., they can be under ongoing attack) and this can
always imply biased results in terms of entropy. This is a fundamental problem
that can be seen also in the theory of randomness extractors. To partially cope
with this problem, we perform all our experiments and entropy estimations in the
worst conditions – i.e., under simulated attack on physical randomness source.
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3 Randomness in Mobile Devices

Mobile devices are considerably different from general purpose computers and
this also influences the process of generating random and pseudorandom data.
The possibility to change the environment where a mobile device operates is
definitely a great advantage given by the mobility nature of the device. The
existence of several embedded input devices such as microphone, radio receiver,
video camera, or touchable display is another advantage2.

On the other hand, mobility and small physical size of devices bring also a
higher possibility of theft or (temporary) loss with a potential compromise of
the generator state. The important assumption of secure generator design is thus
the impossibility of deducing the (previous/future) inner state of the generator
and fast recovery of its entropy level (after a time-limited compromise).

Well-designed and robust generator must always have a sufficient amount of
entropy – shortly after turning the device on, after letting the device out of sight,
and after an intensive generation of random data. This non-trivial task may
require employment of energetically costly sources of randomness (e.g., video
camera) and/or the user contribution. Utilization of these sources may also be
required to assure higher security – e.g., for mobile banking purposes.

3.1 Sources of Randomness in Mobile Devices

This part of the paper deals with practical experiments performed on two smart-
phones Nokia N73 with the Symbian OS and two similar PDA phones E-Ten
X500 and E-Ten M700 with the Windows Mobile OS. The goal of our experi-
ments was to assess the quality of selected sources of randomness in these mobile
devices and to estimate the amount of randomness (entropy) in these sources.
We used two identical Nokia N73 devices since we wanted to verify the correct-
ness of our results or to detect unexpected behavior of the smartphone – in a
case when one device suffers, e.g., by some manufacturing defect. Some issues
described in this section were discussed and described in more detail in [6].

Due to the API restrictions in the Symbian OS, we were forced to drop sources
of randomness like the battery level, signal strength or GPS position as mea-
surements over these sources do not provide output (at the API level) with a
sufficient precision (e.g., battery and signal values are available in the form of
an integer between 0 and 10) or frequency (e.g., external GPS provides only one
measurement per second).

On the contrary, microphone and digital camera perform a high-rate sampling
of physical sources, yielding high volumes of data. Since we can never guarantee
the quality of a physical source, our analysis is concentrated on the microphone
and the camera noise that arises, e.g., in the CCD/CMOS chip or A/D converter,
and is always present in the output data.
2 We are aware that in general purpose computers use of audio/video data for gen-

erating random numbers is not a novel idea (see, e.g., [2]), but mobile devices with
embedded cameras and microphones have a clear advantage with respect to fitness
and practical applications of such techniques.
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Microphone input: We wanted to evaluate all microphones in the worst pos-
sible conditions, therefore the first idea of our test settings involved recording
of: some music sample, audio feedback, noise in an extremely quiet room. After
several basic experiments with the built-in notebook microphone we saw that an
audio feedback (i.e., sound loop between an audio input and an audio output)
brings even more entropy than the music sample recording. Since the recorded
noise is also present in music or other audio samples, the worst conditions for
the microphone input arise from recording of noise in an extremely quiet envi-
ronment (which was in our case a closed quiet room in the night).

We analyzed several microphones that have obviously different characteristic,
e.g., due to different solidity of membrane or other manufacturing differences.
204 800 captured noise samples3 were used to form a histogram of values. Fur-
thermore, we used min-entropy (worst case) formula for quantitative analysis
and for estimation of entropy in the generated data. Our min-entropy estima-
tions, with the assumption of independency within the samples, are: 0.5 bits of
entropy per sample for Nokia N73 hands-free microphone; 0.016 bits of entropy
per sample for E-Ten M700 embedded microphone; 0.023 bits of entropy per
sample for the E-Ten X500 embedded microphone.

As the next step we tested statistical quality and independency of captured
noise samples. We used the Fast Fourier Transform for analyzing the basic fre-
quency components present in the noise – ideal noise is expected to have all
frequencies uniformly present. Several harmonic frequencies (narrow peaks in
spectrogram) were revealed in spectrum of E-Ten devices and the best result
(i.e., smoothest frequency spectrum) belongs to the Nokia N73 hands-free mi-
crophone with only few harmonic frequencies (see Figure 1).

Fig. 1. Microphone frequency spectrum Fig. 2. Overexposure by a halogen lamp

We performed also several correlation tests that found a correlation in the
recorded samples of noise. This correlation decreased as we took only every
second/third value from our samples. Sequence created from every fourth value
was without any statistically significant correlations. We therefore recommended

3 We set 16-bit pulse coded modulation (a signed PCM) at the frequency 8000 Hz for
sampling a sound wave.
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to lower the estimated entropy at least 5 times with respect to the amount
calculated for each sample value.

Camera input: Digital cameras for mobile devices can be based on several
different silicon optical sensors, typically CCD or CMOS. All of them use an
array of semiconductor photo-sensors to transfer an accumulated electric charge
to a voltage. Low-quality sensors are typically used in mobile devices, and these
sensors have a higher noise level than sensors used in standard digital cameras.

The worst conditions for these sensors involve recording of a static image
(white or black background). The input source is often available even when the
camera cover is closed or covered. This is both convenient and useful – it serves
as a defense against an active attacker that illuminates the sensors and forces
them to produce biased values. Illumination of the Nokia N73 CCD sensor by a
halogen lamp is depicted in Figure 2 – in this case the central area of a sensor
is forced to produce maximum values (225) and all noise is effectively removed.

Several components of the noise arising from optical sensors can be distin-
guished (shot noise, read-out noise, etc.), but we are interested in the overall
noise. It is a well-known fact that the predominant component of this noise
is the thermal noise and its actual level may depend on physical conditions –
namely the temperature (for details see [1]). Therefore, we performed all practi-
cal experiments with the camera set at two temperature levels: 5 ◦C and 45 ◦C.
We detected an inside decrease of the noise towards lower temperature, but the
noise is still significantly present to provide enough entropy.

We captured all the test data from the viewfinder4 rather than from a high-
resolution picture. We are aware that the viewfinder image is downsampled
from a full resolution of the optical sensor, but our primary intent was to over-
come other software post-processing techniques (noise reduction, compression,
etc.). However, performed experiments confirmed the presence of low level post-
processing (details are not provided by the manufactures, similarly as for the
downsampling algorithm) as, for example, correcting of light intensity towards
the border of lens or automatic ISO level correction. All these proprietary tech-
niques make the analysis and entropy estimation much harder.

At least 2000 noise samples (at temperatures 5–8 ◦C) have been always used to
create a histogram of values for a particular color pixel. Our analysis confirmed
that all three tested devices have clearly different camera chips and noise pat-
terns. Our min-entropy estimates, with the assumption of independency within
the pixels and frames, are: 3.2/3.3/3.9 bits of entropy per R/G/B color pixel for
Nokia N73; 3.0/2.9/3.7 bits of entropy per R/G/B color pixel for E-Ten M700;
1.3/2.2/0.8 bits of entropy per R/G/B color pixel for E-Ten X500.

For statistical testing of the quality of noise samples we used the NIST test
battery, auto- and cross-correlation functions in Matlab, and Fast Fourier Trans-
formation. Our experiments revealed no statistically significant dependencies
(significance level was set to 0.01) between neighboring pixels, rows, or even
successive pixels in frames.
4 The used resolution is at least 180×240 pixels and recording speed is within 10–15

frames per second.
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Full description of all our experiments with Nokia N73 and E-TEN X500/M700
devices and other related technical details can be found in [6].

3.2 Secure Pseudorandom Numbers

The advantage of pseudorandom number generators lies in secure masking
(smoothing) of statistical deviations caused by temporarily corrupted or influ-
enced sources of randomness. If these generators behave correctly (in a secure
computing environment), the resulting sequences have their statistical quality
assured and the only critical point remains resistance to cryptanalysis.

The majority of multi-user and mobile computing environments cannot be
considered as a secure computing environment (due to malicious admins/users,
malware, possibility of device temporary loss). A careful generator design must
thus take into account both forward and backward security after a compromise
of its internal secret state. Forward/backward security means that an attacker
with the knowledge of internal state of a generator is not able to learn anything
about previous/future states and outputs of the generator. Forward security
can be guaranteed by using one-way functions and backward security requires
periodical refreshing of the internal state with additional truly random data.

The consequence of periodical refreshing is utilizing all available random sam-
ples – with the possibility of their gathering and accumulation (so-called pooling)
even in the time when no generation is required. Such hybrid generators behave
deterministically only between two successive reseedings.

We selected ANSI X9.31 and Fortuna pseudorandom number generators for
our reference implementation – their basic properties are described below.

ANSI X9.31 PRNG: The ANSI X9.31 (former X9.17) PRNG uses in our
setting only one cryptographic primitive, a block cipher. The NIST specifica-
tion [8] suggests two implementations using the algorithm 3DES or AES. The
main difference between these two block ciphers is the supported length of a
block (3DES uses 64-bit blocks, AES operates on 128-bit blocks).

Let K be a 128-bit AES secret key, which is reserved only for the generation
of pseudorandom numbers. EK denote AES encryption (ECB) under the key
K, V is a 128-bit seed value, and DT is a 128-bit date/time vector. I is an
intermediate value, and the symbol ⊕ is the exclusive-or (XOR) operator.

Then a pseudorandom output R is in each iteration generated as follows:

I = EK(DT ), (1)
R = EK(I ⊕ V ), (2)
V = EK(R ⊕ I). (3)

The generator has no embedded pooling mechanism and the entropy gathering
is performed on the fly. The critical part of generator’s inner state is the secret
key K that is expected to be stored securely – otherwise the forward security can
be no longer guaranteed. Another part of inner state, the value R, is produced
directly as an output5. Moreover, the DT vector is based solely on low-entropy
5 The generator was originally designed for generation of single DES keys, therefore

the output was expected to be secret.
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date/time – this implies slow recovery after a state compromise and therefore
weak backward security.

Fortuna PRNG: Fortuna [3] currently represents one of the most sophisticated
generator designs with an improved and automated mechanism of pooling and
extremely simplified (almost removed) process of entropy estimation.

Fortuna PRNG consists of three components. The first part is the generator
itself, it takes a fixed-size seed and outputs an arbitrary amount (often restricted
to 1 MB per single request) of pseudorandom data. The generator is the most
primitive component of the Fortuna – a block cipher in the counter mode with
some refinements. It is recommended to use AES with a 256-bit key and a 128-bit
counter. The key and the counter form a secret internal state of the generator.

After every request another 256 bits of pseudorandom data are generated for a
new encryption key. Periodical rekeying ensures not only backward security, but
also forward security of the generator as it is infeasible to get previous output
data after the key change even when the attacker knows the secret internal state
of the generator. There is no reset of the counter and this property prevents
short cycles that could occur due to repeating key values.

The second component is called accumulator and its main purpose is to collect
and pool entropy from various sources of randomness. There are 32 pools, which
are filled with data from one or several randomness sources in a cyclical fashion.
This design ensures that random events from a single source are distributed
evenly over the pools and an attacker controlling only some randomness sources
cannot control all these pools. The accumulator is also responsible for periodical
reseeding of the generator. Reseeds are numbered (1, 2, 3, etc.) and the pool Pi

is used if and only if 2i is a divisor of the reseed counter. Thus P0 is used every
reseed, P1 every second reseed, P2 every fourth reseed, etc. The only entropy
estimate that must be done sets the minimal pool size necessary for reseeding –
but it can be quite optimistic, e.g., 64 bytes for required 128 bits of entropy.

The seed file is last component of the Fortuna PRNG that serves as the
storage of high-entropy data. It preserves the PRNG internal state and ensures
that even after rebooting the generator can produce good pseudorandom data.
Quite a simple concept in theory, but practical implementation is very difficult
and depends extremely on the environment and platform (for details see [3]).

4 Integration into Symbian OS

In this section we summarize details of our implementation and integration of
ANSI X9.31 and Fortuna PRNGs into the Symbian OS 9.x. We used the smart-
phone Nokia N73 for our practical experiments and performance tests.

4.1 ANSI X9.31 PRNG

We implemented the ANSI X9.31 PRNG as a simple GUI application6 that is
based on the AES encryption function and the SHA-1 hash function. SHA-1 is
6 The source code is available at: http://sourceforge.net/projects/ansix931prng/.
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an internal Symbian library function and the AES is implemented as a reference
code provided by the IAIK Krypto Group AES Lounge ported to the Symbian
OS by Philipp Henkel [5]. The generator itself is implemented in one class.

There are object attributes that preserve the generator secret state and that
are necessary for the generator initialization – the most important is a disposable
320-bit entropy pool. It is implemented as two SHA-1 contexts and the initial
entropy comes from 5 samples from the camera viewfinder, 20 audio samples from
the microphone and the timing of each keystroke. Construction and initialization
of the camera and microphone objects run asynchronously and the speed of
data acquisition from these sources is 1495 KB/s. Since the estimated amount
of entropy from these samples radically exceeds 320-bit, we can expect that the
pool contains 320-bit of entropy. The pool is used only for following operations:
first 128 bits are used as AES key material, next 128 bits fill in the seed and
remaining 64 bits initialize first half of the date/time vector. As the generator
is not reseeded during its runtime, it never recovers from a compromised state.

We improved the original X9.31 generator by initializing the first half of
date/time vector by truly random data that remains fixed during whole gen-
eration process, while the second half is updated in every iteration by 64-bit of
date/time. This is obviously a tradeoff between security and energy efficiency
– better backward security can be achieved by using purely truly random data
instead of low-entropy date/time, but the continuously running camera and mi-
crophone will drain the battery very soon. Another disadvantage is that the
running camera is not accessible for other applications.

This implementation can be used in applications that require some random
data at the start, but we do not recommend its continuous usage. The generator
has in fact poor forward and backward security. In case of forward security, it is
very easy to get previously generated random bits, if an attacker gets the secret
state of the generator. We also implemented another version of ANSI X9.31
based solely on a one-way hash function (in our case SHA-256), which provides
a better forward security for the mobile environment, as there are no problems
with key management and secure key storage [4].

Backward security depends crucially on the entropy of the date/time vector.
However, after a state compromise the length of DT is in fact reduced to 64
bits and we must expect that the attacker can predict a significant amount of
DT vector bits. An optimistic assumption is that the attacker knows the time
of the data request with a minute precision. Theoretical precision of the time
in Symbian is in order of microseconds, but the analysis has proved that the
time value is always divisible by 125. It reduces the number of possibilities to
480 000, and so approximately 18.87 bits of entropy. If the attacker can predict
the time with second precision, then he has only 8000 possibilities, i.e., 12.96
bits of entropy. Cryptanalytic attacks on ANSI X9.17/X9.31 are discussed in [9].

The actual speed of our implementation is only 2.44 KB/s with the reference
non-optimized AES implementation of encryption speed 75 KB/s. The average
speed of implementation based on SHA-256 is 3.9 KB/s. The above informal
security analysis and slow performance in mobile phones clearly suggests that
practical usage of the ANSI X9.31 PRNG is not advisable.
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4.2 Fortuna PRNG

In this subsection we describe the implementation of Fortuna PRNG on Nokia
Series60 mobile devices with the Symbian OS 9.x7. As compatibility is not as
straightforward as claimed by the vendors, it is worth noting we used the Nokia
N73 smartphone, as there can be some differences when using other models.

Fortuna PRNG is designed to run continually, gathering entropy and servicing
user requests for pseudorandom data. Therefore we decided to implement For-
tuna by means of the Symbian OS Client-Server Framework. The server compo-
nent is the application without a graphical user interface, implementing whole
functionality of the Fortuna PRNG. The client component is the interface to
the Fortuna PRNG, implemented as a dynamic-link library. This library with
four exported functions allows to start Fortuna server, create new session with
the running server, and perform several operations with an established sessions
(e.g., requests the Fortuna server for pseudorandom data). The Fortuna server
is a crucial part of the Fortuna PRNG, implementing all the functionality. It is a
common Symbian OS application without a GUI, running on the background as
a separate process, collecting entropy and servicing user requests. The generator
component class consists of 256 bits long AES key, 128 bits long counter and two
objects representing the cipher context and its key. The accumulator component
of the Fortuna PRNG consists of the array of 32 objects – each object represents
one pool containing entropy from random events. While the pools are parsable
strings of unbounded length, it is more practical to implement the pools just as
hash contexts.

The seed file component does not have its own implementing class. It tries
to open the seed file in the /Private folder of the application. This folder is
accessible only to this application and to processes with the capability AllFiles.
When the seed file exists and contains at least 64 bytes of data, the generator is
seeded with this data and the seed file is updated with the newly generated 64
bytes of pseudorandom data. If the seed file is not found (or is not long enough),
the generator will not be seeded and user data requests will have to wait until
the pools accumulate enough entropy to initialize the generator properly. The
Fortuna class contains two object attributes dedicated to reseeding. A new 64-
bit counter incremented at each reseeding and the time when the last reseeding
was done. At least 100 ms delay is required between two successive reseedings.

We implemented 3 randomness sources: the keyboard (CFKeyRandSrc), the
microphone (CFAudioRandSrc) and the camera (CFCamRandSrc). The first source
gathers entropy from keyboard events. The randomness source starts waiting for
the key events and when the key is pressed, the window server8 generates the
key event and sends it to our application. The key event data itself does not
contain much entropy, therefore it is not used at all. Only the time (12.96 bits
of entropy) of key event arising is sent to the appropriate pool. The second
randomness source gathers entropy from the microphone device. According to
our entropy estimation 1 KB sample contains 51 bits of entropy. The period and
7 The source code is available at: http://sourceforge.net/projects/fortunaprng/.
8 A server which manages screen, keyboard and pointer on behalf of client applications.
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the exact amount of data taken should be precisely tuned to fulfill the goals of
the target application. In our case the audio sample is taken every minute.

The last implemented randomness source gathers entropy from the camera
device. As one frame from the viewfinder yields almost 100 KB, the data is
spread over all pools. Strictly speaking, 3180 bytes of data is added to each pool.
According to our estimations, this represents 11 080 bits of entropy for each pool.
Although in theory it is possible to capture the viewfinder frames continually,
it would limit the device user considerably. The camera has a significant power
consumption and moreover it would be reserved for the Fortuna server only.
Therefore, we capture only one viewfinder frame every minute.

We performed five battery life tests9 with continuous utilization of different
sources of randomness. Keyboard events have been monitored at all times, but
no keys were pressed during measurements. The lowest speed of our implemen-
tation in the continuous capturing mode is 13.85 KB/s. The detailed results are
summarized in Table 1 – the first column presents the average time of battery
life and the second column then standard deviation of our measurements. Our

Table 1. Fortuna energy requirements – battery life

Sources of randomness Avg. time Std. deviation
(continuous sampling) [hh:mm] [mm:ss]
Keyboard, microphone 17:27 8:34
Keyboard, camera 3:48 2:24
Keyb., cam., micr. 3:24 3:36

current Fortuna implementation captures both audio and video periodically just
once a minute. In this case the battery is exhausted approximately after 3 days,
18 hours and 13 minutes. This is a non-trivial battery stress in comparison to
10 days, 11 hours and 1 minute of producing pure pseudorandom data without
any entropy pooling. Energy requirements of our current reference Fortuna im-
plementation are 2.78 times higher then energy requirements of implementation
without any entropy pooling. For non-critical applications we thus recommend
to capture data only once per 5 minutes – the battery is then exhausted approx-
imately after 7 days, 11 hours and 34 minutes.

5 Conclusions and Future Work

In this paper we show a practical approach to random data generation for the mo-
bile environment, providing a clear path to developers of many security-critical
applications for the mobile environment. We investigated several possible ways
of generating both random and pseudorandom data in mobile devices with Sym-
bian OS. We start with the identification of available sources of randomness and
assessment of their quality and performance. Our analysis showed that mobile
devices have several good sources of randomness – we confirmed that at least the
9 All measurements were performed with a Li-Pol battery type BP-6M (970 mAh).
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microphone and camera noise contain a sufficient amount of entropy and thus
can be reliably used as a good sources of truly random data.

Our work then lead to the investigation of the truly random data postpro-
cessing with the use of pseudorandom number generators that are able to utilize
all accessible sources of randomness in the generation process. We selected ANSI
X9.31 and Fortuna pseudorandom number generators that we then successfully
implemented and integrated into the Symbian-based smartphone Nokia N73.

We also want to point out that on top of the truly random data sources that
we examined further, other sources like battery and signal level (and in some
specific situations also GPS position tracking) are worth investigating. This can
be done, for example, on the completely open-source Linux-based OpenMoko
cellphone or at a higher granularity by using external devices (such as a cellular
modem or GPS unit). Work with Symbian OS phones, however, can also be
addressed by teams that have a lower-level (API) access to the devices than
that available to us and other ordinary developers.
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Abstract. The openness and heterogeneity of next generation communication 
networks are now highlighting more security issues than those of traditional 
communication environments. Moreover users’ security requirements can often 
change in mobile communication environments, depending on the situation in 
which the user is immersed. Our objective is to define a context-aware security 
framework for addressing the problems of end-to-end security on behalf of end-
users. Based on context data acquisition and aggregation features, the 
framework uses contextual graphs to define security policies encompassing 
actions at different layers of communication systems’ architecture, while 
adapting to changing circumstances.  

Keywords: context-aware security, multi-layer security policy, security 
context, contextual graph, next generation communication networks. 

1   Introduction  

The emerging vision from research in Next Generation Networks (NGN) is that of an 
All-IP network of heterogeneous networks, integrating different access technologies 
seamlessly with respect to end users. This approach implies to move from traditional 
vertical architectures towards the definition of a common architecture providing open 
interfaces for heterogeneous communication and application service providers  [15]. 

The openness and heterogeneity of NGN communication networks are now 
highlighting more security issues than those of traditional communication environments. 
Roberts et al.  [18] provide a brief analysis of challenges for security implied by NGN 
architectures. For instance, mobility and heterogeneity of user devices as envisaged by 
NGN architectures are likely to present physical security threats, since control and 
configuration of the devices are directly managed by end users and not by network 
security administrators. Another issue is how to provide end users with secure end-to-
end communication in a heterogeneous network infrastructure, with rapidly changing 
security requirements related to user’s mobile environment.  

The term “context-aware security” is widely used to identify an emerging research 
field trying to cope with the above-mentioned issues by applying a context-aware 
system design approach  [5], [13], [14]. Most existing works ( [1], [5], [14], [20]) focus on 
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context-based security policies for adaptive authentication and authorization services 
at the application layer. Such an approach is quite limited with respect to the issues of 
the upcoming NGN scenario, where a more comprehensive approach for enforcing 
security actions at different layers of the communication architecture is needed. 

Therefore, our objective is to define a context-aware security framework capable of 
defining security policies with proper adaptation to changing circumstances in order 
to address the problems of end-to-end security on behalf of end-users. Adaptive 
security policies are here conceived as a set of security actions pertaining to different 
layers of the security architecture as defined by the International Telecommunication  
Union (ITU): application layer (network-based applications), service layer (basic 
connectivity, transport and added value services) and infrastructure layer (physical 
network nodes and communication links) [11]. 

We provide a definition of security context based on a non-exhaustive 
categorization of security context items (such as user location, device capabilities, 
access network type) and we adopt contextual graphs to model the decision process 
for defining multi-layer security polices adapting to changing context.  

A significant contribution of this paper is the integration and composition of 
multiple context categories into contextual graphs in order to specify multi-layer 
security policies in the NGN scenario. With respect to the related research work, our 
aim is to propose a more general and extensible approach to face the complex security 
challenges envisaged by the NGN architectures. A possible implementation of the 
model into a NGN architecture is then proposed, by identifying proper functionalities 
to achieve the contextual-graph-based adaptation of security policies. 

The paper is organized as follows: Section 2 discusses related work in context-
aware security; in Section 3 we describe the main elements of the Context-aware 
Security Framework, namely the security context model, the security actions (by 
providing some examples for each security layer) and the use of contextual graphs for 
modeling context-based multi-layer security policies; Section 4 proposes an 
architectural model of the context-aware security framework; Section 5 concludes the 
paper and gives further research directions. 

2   Related Work  

While several works exist in the research field of context-aware computing and 
context-aware services in several application domains [7][17], only a few works have 
investigated the use of context aware computing models for designing adaptive 
security mechanisms. 

Covington et al.  [5] proposes a Context-Aware Security Architecture (CASA) 
enabling the design of security services which use security-relevant “context” 
knowledge to provide flexible access control and policy enforcement. CASA has been 
used to implement a Role-Based Access Control model based on the concept of 
“environment role” (i.e. environmental conditions that are relevant to access control).  

Masone  [12] proposes a Role Definition Language to describe roles in terms of 
context information. Other works present context-aware authentication and 
authorization policies for augmenting network security in Intranet environments  [20] 
and in ubiquitous computing environments  [1]. 
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In  [14] a model for context-based security policies specification based on the use 
of contextual graphs is proposed. The model has been applied for deducing context-
aware authorization policies to be enforced in a pervasive environment. 

Some recent works are beginning to investigate mechanisms to address security 
issues in mobile environments with such a broader perspective. In the IST MAGNET 
Project, a Context-aware Security Manager (CASM) is responsible for adapting 
security policies based on a security level determined according to two context 
categories (user location/scenario and device constraints) [13]. In [21] a context-
aware security policy agent activates new security actions according to a change of 
context parameters (i.e. user preferences, power and location of the mobile platform ). 

With respect to these contributions, our security context model mainly refers to 
[14], and takes into account a wider range of context parameters, as described in 
Section 3.3. This contextual knowledge is exploited in order to define the most 
appropriate approach for enforcing security at the infrastructure, service and 
application layer. 

3   Context-Aware Security Framework 

The proposed Contex-Aware security framework aims at providing extensible 
mechanisms for defining and enforcing security policies in NGN environments. 
Extensibility is here intended as the capability of the system to cope with new security 
requirements which may be determined by new application domains, information 
services to be secured, available sources of context information and/or new security 
actions which can be enforced thanks to technological advancement and standards 
evolution. Extensibility of the proposed framework is mainly supported by the 
contextual graph-based modeling approach  as discussed in [2]. 

Hereafter we describe the main elements of the Context-aware Security 
Framework: the Security Context, a classification of security actions and the approach 
for context-aware security policy definition based on contextual graphs. 

3.1   Security Context  

In the domain of context-aware security, a definition of security context is the one 
provided in  [14]: 
 

“A security context is a set of information collected from the user's environment 
and the application environment and that is relevant to the security infrastructure of 
both the user and the application.” 

 

Referring to communication environment, as the set of users, devices, applications, 
data and communication links that characterize the communication, we propose the 
following definition: 

 

“A security context is any information that can be used to characterize the security 
situation of a communication environment. The security situation can be characterized 
in terms of possible security threats, user status and requirements with respect to 
information protection, available communication and computing resources which can 
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be exploited by a system in order to specify and enforce proper actions to guarantee 
end-to-end security”. 

 

With respect to the first definition our definition does not mention any possible 
context source and/or context information category (e.g. user and application 
environment), as most appropriate context information and related sources can vary 
according to application purposes and the available technological infrastructure. 
Moreover, as the focus is on end-to-end security, the context should consider not only 
the situation concerning the environment of a target end-user, but also the situation of 
the destination peer (i.e. the host delivering information services, or another user 
interacting via communication services with the first one). Based on the security 
context definition proposed above, we provide an enumeration of categories for 
organizing security context items. The enumeration does not aim at being exhaustive. 
Indeed, our attempt has been to select first those context items that can be considered 
of general value for securing information exchange and, possibly, can be acquired by 
common and easily deployable sensing infrastructure. In section 3.3 we also provide 
an example of how these context categories can be applied to define context-aware 
security policy in an application scenario. 

We first defined the following basic context information categories: 
 

• User. This category includes information items representing current user personal 
sphere, surrounding environment attributes, preferences and attitudes. For instance, 
the user environment can be characterized by multiple mobile and fixed devices 
available for accessing different kind of communication services. The following 
items can be included in this category: 

 

− User Location: symbolic position of the user. Possible values are: “public” (the 
user is located in a public environment, where possible eavesdroppers may be 
close to the user accessing the network), “private” (the user is located in private 
environment – e.g., a house, an office, where eavesdropping may be feasible 
only within the core network or via side-lobes of the private wireless network).  

− User Status: user’s current activity and/or availability to interact with 
communication and information services. It can be associated to the “user 
status” typical of messaging services. Possible values are: “not available”, 
“available”, “only textual interaction”, “only voice interaction”.  

− Available Devices: devices that are associated to the target users and can be used 
to access network-based services. Examples of user devices are: mobile phones, 
Personal Digital Assistants (PDA), notebooks, desktop PCs, fixed phones. 

− Required Security Level: security level which is required by the end-user. 
Possible values are: “high” (the user is asking for a high security 
communication, this may be the case for a remote access to very critical data), 
“medium” (the user is asking for a medium security communication, this may be 
required for an access to personal, but not critical data), “low” (the user is not 
particularly asking for a specific security level, this may be the case for 
entertainment online services). 

 

Many of the above mentioned items can be directly acquired by user manual input. 
However, different mechanisms can be put in place in order to automate the process 
of context information acquisition. For instance, positioning techniques can be 
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integrated in user devices in order to localize users (e.g. GPS, RFID readers, etc.). 
Typically, localization mechanisms can acquire information on user’s physical 
position (e.g. latitude and longitude coordinates). Proper physical-symbolic positions 
association can be defined for frequently visited locations (e.g. “home” and “work” 
locations). In order to estimate user required security level from available contextual 
information, several mechanisms could be alternatively or jointly applied, such as 
machine learning and rule-based inference  mechanisms (for instance, a rule may state 
that the required security level is low when the user location is of type “private”).   
• Device. This context category aims at representing most relevant technical 

characteristics of the user “active” device, i.e. the device that the user is currently 
using to access network-based services to be secured. We selected the following 
basic context information: 

 

− Device type: possible types of end-user devices are, for instance: mobile phone, 
Personal Digital Assistant (PDA), notebook, desktop PC. 

− Device capabilities: it refers to the capabilities of the end-user devices, in terms 
of hardware, software and configuration settings. These capabilities can be 
classified as follows: hardware (es. CPU, memory), display (es. size, 
resolution), protocols (es. HTTP, SIP, SMTP), networking (es. Bluetooth, WI-
FI, GPRS, UMTS), application platform (es. JVM). 

− Security settings: This includes parameters such as antivirus signature version, 
personal firewall availability and rules setting, routing tables, and file-system 
permissions settings. 

− Available Energy Supply: this parameter takes into account device resources 
which are relevant to energy management. It can be represented as a 
combination of two components: a flag variable accounting if the system is 
powered by an external AC (alternating current) input; a second parameter 
representing the remaining battery life. 

 

This information on the active device can be useful in order to estimate security 
risks (for instance if the antivirus version is not up-to-date) and to evaluate if a 
desirable security action can be enforced on the target device, according to its 
capabilities. For instance, on a mobile device characterized by limited computational 
resources and high energy consumption, the system cannot enforce the activation of a 
VPN to secure the communication channel. Context items characterizing the device 
category can be represented by means of the composite capability/preference profile 
(CC/PP) representation scheme  [19]. 
• Communication: here we include the characteristics of the end-user device 

communication link. 
Most relevant attributes are: 
 

− Current access network type: possible values are GPRS, UMTS, Wi-Fi, etc. 
− Available bandwidth: bandwidth available for information transmission. 

Possible symbolic values are: “high” (e.g. more than 2Mbps) “medium” (e.g. 
between 2 Mbps - 56 Kbps) “low” (e.g. 56 Kbps as traditional modem). 

− Signal quality: in case of wireless access network, this parameter represents the 
quality of the transmission signal. Possible values are “high, medium, “low”. 
Mapping with physical values is dependent on the technological infrastructure 
and application domain. 
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− Access network security: security settings of the access network in use (e.g. 
encryption available/not available). This information may be useful for 
determining possible security risks (e.g. if the communication channel is not 
encrypted) and for selecting the set of possible security actions that can be 
reliably supported.  

• Application: this context category includes parameters describing end-user 
applications’ characteristics, such as: 

 

− Content Sensitiveness: content to be exchanged can be “sensitive” (e.g. user 
personal data) or “not-sensitive” (e.g. broadcast news).  

− Content Size: size of content to be exchanged. Possible symbolic values are “high”, 
“medium”, and “low”. Mapping with physical values (e.g. kB) is dependent on the 
application domain. 

− Active Application: type of network-based application to be secured. 
Applications can be distinguished in user-to-user interaction (e.g. voice over IP, 
instant messaging, etc.) and access to information services (e.g. Web browsing). 

− Currently Executing Applications: currently executing applications that can have 
conflicts of interest with the target active application. 

− User Application Profile: it represents the user’s role in a service application 
domain (e.g. patient, nurse, general practitioner in a e-health scenario). At 
lower-level, it can also be represented by a profile of permissions for accessing  
application services. In such case, possible values are “read only” (e.g. only 
“get” operations), “read & write” (e.g. only “get” and “post” operations), 
“superuser” (e.g. any operation).. 

3.2   Security Actions  

The objective of the proposed security framework is to exploit system’s knowledge of 
context to select appropriate security actions to be enforced in order to guarantee an 
expected security level. 

With respect to the state of the art [1], [14], [20], our work aims at providing a 
flexible framework which can encompass heterogeneous security actions (not just 
encryption, authentication and authorization), and, in principle, all the available tools 
and technologies capable of improving the protection of the exchanged data.  

More precisely, our objective is to adopt a multi-layered approach, i.e. to exploit 
contextual knowledge in order to adapt security policies. Such policies are defined as a 
combination of actions at the different layers of the security architecture for systems 
providing end-to-end communications, as defined by the International Telecommunication  
Union (ITU). 

The Security Layers are hereafter defined  [11]: 
 

• Application Layer: this layer focuses on security of the network-based 
applications accessed by end-users. Examples are: file transport and web browsing 
applications, voice messaging and email, as well as vertical applications (e.g., 
customer relationship management, electronic/mobile-commerce).  

• Service Layer: this layer addresses security of services provided by service 
providers. Examples are:  basic transport and connectivity services (e.g., AAA 
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services and domain name services), value-added services (QoS, VPN, location 
services).  

 

Infrastructure Layer: This security layer focuses on the hardware resources at both 
network and end users’ sites. Examples are: routers, switches and servers, 
communication links, end-user devices. 

Table 1. Security Layers and Related Actions 

Security 
Layer 

Security Action Security 
Dimension 

Security Action strength 

Infrastructure 
Layer 

Device switching 
(vertical handover) 

Availability, 
Communication Security 

Cellular phone, PDA, 
notebook, desktop PC 

MAC layer Encryption 
activation 

Confidentiality WEP, WPA (shorter key), 
WPA (longer key) 

VPN IPSec activation Confidentiality, 
Authentication, Data 
Integrity 

3DES, AES-128bit, AES-
256bit, etc. 

Services 
Layer 

Blocking of other 
concurrent session 
potentially harming the 
desired session 

Communication Security  

SSL session activation. 
 
 

Confidentiality, 
Authentication, Data 
Integrity 

Plain SSL with not-trusted 
certificates, SSL with trusted 
certificates.  

User alerting Privacy Textual alert, audio alert, 
Video alert 

Data encryption  Confidentiality Encryption algorithm (e.g. 
AES) with different key sizes 
and rounds number)  

Application 
Layer 

Adaptive authentication Authentication  Anonymous, Pseudonymous 
(weak auth), strong 
authentication 

 
For each security layer, Table 1 shows a set of possible security actions (selected 

as most meaningful for the considered NGN scenarios). These actions can be enforced 
with different strength, depending on implementation choices. A possible, non 
exhaustive, list of implementation options is shown for each selected action.  

With respect to the ITU-T X.805 standard specification, the security actions 
considered in this section address the following security dimensions: Authentication, 
Data Confidentiality, Communication Security, Data Integrity, Availability, and 
Privacy. The other Security Dimensions (Access Control, Non repudiation) have not 
been taken into account. As a matter of fact, such dimensions are already addressed 
by other works  [14], which can complement or extend the functionalities offered by 
the proposed Context-aware Security Framework. 

3.3   Context-Based Security Policies  

As described in Section 2, our work is based on the approach proposed in [14]. In 
particular, [14] specifies that rule-based formalism is often adopted for modeling 
context-based decision processes, but it suffers from the following main limitations: 
the difficulty to maintain such formalisms in case of complex systems to secure, to 
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identify all the needed contextual information from the rule-based formalism, and to 
understand the followed strategy of the policy. Therefore, we also adopted the 
contextual graph approach, which can be used to represent a set of practices to perform 
in order to solve a given problem. A path, from the input to the output of the contextual 
graph, represents a practice with the contextual elements explicitly considered.  

A contextual graph is an acyclic graph with a unique input, a unique output and a 
serial-parallel organization of nodes connected by oriented arcs. A node can be an 
action to be enforced, a contextual node, or a recombination node. A contextual node  
represents the instantiation of a context item, which is evaluated in order to direct the 
process through one path among all the possible alternatives. A recombination node 
allows to represent the convergence of different paths into a single node. An action 
node represents a security action to be enforced. 

 

 

Fig. 1. An example of Contextual Graph 

With respect to the Moustefaui proposal in [14] that has the aim to specify 
authentication and authorization policies, we extend the contextual graph theory, in 
order to cope with both the security categorization and the multi-layer approach of the 
security policy. As shown in Fig. 1, the decision process is based on the evaluation of 
the four categories of the security context and it is represented by a sequence of User, 
Application, Communication, or Device contextual nodes. Furthermore, a more 
complete end-to-end security policy is here represented by the instantiation of three 
different action node types (Infrastructure, Service and Application action nodes), in 
order to model a multi-layer security policy. Security context items which have been 
acquired by the system are evaluated in the graph at the corresponding contextual 
node, to select proper security actions, which are represented by action nodes. The 
contextual graph is thus a sequence of context evaluation nodes representing the most 
relevant attributes of the communication environment, and security enforcement 
nodes defining the security policy to be implemented in that specific communication 
environment. 
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In the following we describe a reference application scenario, used to provide an 
example of application of the contextual graph for the enforcement of multi-layer 
security policies. 

 

At 8.00 am John, a doctor, is at the railway station, on the way to visit a patient 
(Mr Smith), who has been visited last week by a colleague. John decides to discuss Mr 
Smith’s health record with his colleague. By accessing the open public WLAN 
available at the railway station, John uses his PDA to call the colleague (Situation A). 
During the conversation, John shares with the colleague the patient health record’s 
information. John goes directly to the patient’s home to visit him; then he accesses the 
information services of the hospital and update the patient record (Situation B). 

 

In Fig. 2 we provide an example of how user, application, communication and 
device-related context can be taken into account for the definition of multi-layer 
security policies. For the sake of brevity, the example has the objective of presenting 
some relevant decision steps, not a complete decision path. Situation A is 
characterized by the following decision path, that represents the security context of 
the communication environment. First, John accesses the service network through a 
public access point at the railway station; due to his public location, he is exposed  to 
greater threats then other locations. Second, the service is about transmitting sensitive 
content (the patient health record) and can be characterized as an interaction with 
another person. The access network is an “open” WLAN (i.e. link without 
encryption). As encryption is enabled on the user device (and also decryption is 
enabled at destination side) the content is encrypted before transmission. In Situation 
B, the user is accessing a service, which implies the access to sensitive content. As 
VPN is enabled at both user and destination site, the security action to be enforced is 
the VPN setup. 

 

 

Fig. 2. Example of context-aware security policies 

4   Architectural Model 

This section describes how the considered security-context aware system can fit into a 
high-level architecture for adaptive security in Next Generation Networks. In Figure 3 
we depict the main functional blocks of the architecture. 
 

Context Data Acquisition: This block collects context information about the 
communication environment, related to users, devices, applications, data and 
communication links. Context data are acquired by heterogeneous context providers,  
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Fig. 3. Architecture of the Security Context Aware Framework 

by exposing an interface, or, more precisely, a composition of different interfaces for 
push/pull data acquisition. For instance, device information may be gathered by the 
device Management Information Base via SNMP, or CC/PP messages. Information 
related to the end user may be collected either from the user profiles managed by the 
network infrastructure, via network signaling protocols, or by application-dependent 
profile information, through remote interface invocations (e.g. via Web Service 
interfaces). 
 

Context Data Aggregator: It integrates and correlates raw context data collected by 
the Context Data Acquisition in order to obtain context data at the level of abstraction 
needed in the decision process and to maintain data consistency and quality. Several 
data processing and reasoning techniques can be adopted for this purpose: a 
programmatic approach, rule-based reasoning, ontology-based reasoning, self-
learning techniques, etc. 
 

Security Policy Decision Point (PDP): This block defines the proper multi-layer 
security policy according to the current context. This component builds the above-
described contextual graph and searches for a path matching with available context 
items’ values. Security actions that are selected along the path are communicated to 
the Security Policy Enforcement Point for their actuation. 
 

Security Policy Enforcement Point (PEP): This block takes as input the context-
based security actions to drive their enforcement, by communicating with the 
appropriate actuators situated in the network nodes and/or in the end-user device. As 
security actions may involve different layers (as depicted in Fig. 2) the Security PEP 
interacts via proper interfaces with different actuators. 
 

Actuators: The actuators are active entities listening for commands sent by the Policy 
Enforcement Point and communicating with software and hardware resources for the 
realization of security actions. While the decision process can be conceived as a 
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centralized module in the considered architecture, the security policy actuation is 
typically distributed, due to the extreme heterogeneity of the possible enforcing points 
and actuators (e.g., current device, alternative devices, network access point, etc). 

 

Since it is expected that the NGN also will use the enhanced IP Multimedia 
Subsystem (IMS) to integrate IP-based multimedia services over the Internet, wireline 
telecommunications networks, and diverse wireless networks  [16], in the following a 
possible implementation of the context-aware security framework in IMS is proposed. 
It should, indeed, be noted that the above-mentioned functional blocks are basically 
standard components that are already embedded in the whole IMS architecture. 

The NGN architecture, according to the access independent principle, is 
characterized by multiple access networks converging into a common IP based core 
network. In such scenario, IMS provides specific gateways to the control plane for 
each access technology (e.g., GPRS, xDSL, WLAN, etc.), through specific Proxy Call 
State Control Function (P-CSCF). Furthermore, the suitability of the IMS as the 
environment in which our model can be implemented, results from the use of a wide 
set of Internet Engineering Task Force (IETF) protocols, in order to harmonize with 
Internet services. Specifically, IMS uses the Session Initiation Protocol (SIP)  [10] for 
signaling and session management; Diameter  [5] protocol and common open policy 
service (COPS)  [8] for operations and management. Each of these protocols can 
represent a possible, although not complete, implementation of functionalities of our 
proposed model. Session Description Protocol  (SDP  [9]), which is used for 
describing multimedia sessions in order to support a suitable resources reservation, 
contains parameters (e.g., required bandwidth, service type, connection parameters, 
etc.) that are also useful during the decision process of our model and that can be used 
by Context Acquisition and Aggregation functions in order to derive many security 
context attributes. The user presence attributes can be derived from the IETF presence 
model  [6], which is integrated in IMS through the use of an extension of the SIP 
protocol, called SIP/SIMPLE (SIP for Instant Messaging and Presence Leveraging 
Extensions)  [3]. Other user attributes, such as the addressing of the available devices,  
and access state parameters can be derived directly from the Home Subscriber Server 
(HSS) of the the IMS architecture. The main data stored in HSS include, indeed, user 
identities (the private one, and the public ones), registration information, access 
parameters and service-triggering information  [16]. 

Also regarding the enforcement functions, their implementation could be driven by 
exploiting proper mechanisms native in NGN architecture, such as session mobility 
between different devices. According to our approach, the device switching, 
supported by the control plane of NGN architecture for QoS requirements  [15], 
should be driven also by security issues. Further, relating to the enforcement of 
security actions, COPS protocol provides the suitable communication in a PDP-PEP 
mechanism, in order to manage the resource allocation for the current communication. 

For other specific exchanges between user devices and network nodes inside a 
NGN architecture, extensions of the SIP protocol could be implemented  [3].  

Then, in such a NGN architecture, the decision process of our context aware 
security model is implemented by a dedicated service node of the control plane, or, 
referring to IMS architecture, by the Serving Call State Control Function (S-CSCF), 
which represents the central element of the signaling network. The adoption of the 
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IMS architecture as an enabling environment for the implementation of the proposed 
model is supported by the consideration of IMS as the reference platform for NGN 
control plane, however our context aware security model preserves his validity 
regardless of IMS, and allows possible implementation in other policy decision and 
enforcing systems.  

Relating to a possible implementation of the Context-Aware Security in IMS, the 
sequence diagram proposed in Figure 4 refers, for example, to a session set-up, based 
on the request/response mechanism of a SIP architecture. With respect to a typical 
SIP interaction [10], the S-CSCF intercepts the communication between the SIP user 
agents, while activating the decision process and promoting the implementation of the 
consequent security policy, by exchanging “ACTION REQUEST” messages with 
enforcement points, here represented by the Control Plane Gateways (i.e., Proxies 
according to the user view) and by the SIP user agents on the user devices. 

 

Fig. 4. Session set-up in a Context-Aware Security system in IMS 

5   Conclusions 

This work presented a context-aware security framework for addressing the problems 
of end-to-end security on behalf of end-users in a Next Generation Network scenario. 
We discussed the definition of context in the security domain and proposed a set of 
categories for organizing context items. The security framework uses contextual 
graphs to define security policies encompassing actions at different layers of 
communication systems’ architecture (i.e. application, service and infrastructure 
layers of the ITU-T security architecture), while adapting to changing context. In 
order to demonstrate the feasibility of the proposed system, we also discussed a 
possible implementation in a generalized NGN architecture. Future research activities 
will be devoted to the design and development of a prototype for the Security Context 
Aware Framework in an e-health application scenario. The analysis of the target 
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scenario will also provide useful hints for refining the context items’ and security 
actions’ models. Furthermore we will investigate how the proposed approach could be 
extended in order to manage security policies at different levels of abstractions and/or 
priorities (e.g. by using sub-graphs and/or a hybrid approach integrating further 
reasoning techniques). This analysis will aim at defining high-level policies (e.g. 
matching with organizational and user requirements) and binding them with low-level 
implementation policies. 
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Abstract. As a countermeasure for eavesdroppers in wireless commu-
nications, a secret key agreement scheme using a variable directional
antenna called ESPAR antenna was developed. In this scheme, the pro-
cess of information reconciliation is necessary to correct the discrepancies
between the legitimate users’ keys. In this paper, we propose a new infor-
mation reconciliation protocol using the reliability of the raw keys. The
proposed information reconciliation protocol is a modified version of the
protocol used in quantum key distribution called Cascade. The results
of simulations show that the proposed protocol can correct errors with
less the number of disclosed bits and less the number of communications
than those of Cascade.

Keywords: key agreement, ESPAR antenna, information reconciliation,
Cascade.

1 Introduction

As wireless communications become increasingly pervasive, they are becoming
targets for attacks. Unfortunately, it is easy for an adversary to eavesdrop wire-
less communications because of the broadcast nature of wireless communications.
To establish secure communication links in wireless communications, two types
of cryptographic techniques, public-key cryptography and symmetric-key cryp-
tography, are generally used. In wireless LAN systems, the symmetric-key cryp-
tography such as AES [1] is used because of its high processing speed. However,
the symmetric-key cryptography has two operational issues: key distribution and
key management. Moreover, since cryptographic techniques used currently are
based on unproven assumptions regarding the hardness of computational prob-
lems, they would be broken if the assumptions were to be debunked.

Meanwhile, information-theoretic cryptography has been developing [2,3,4] as
a cryptographic technique for which security is proven even against an adversary
with unbounded computing power. There are several information-theoretically
secure cryptographic techniques such as one-time pad [2] and secret communi-
cations over a noisy channel [3,4]. To share one-time pad keys, an information-
theoretically secure key agreement scheme from correlated source outputs was
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proposed [5, 6]. Quantum key distribution [7] is also known as an information-
theoretically secure key agreement scheme.

Recently, novel techniques utilizing radio propagation characteristics for se-
cret key agreement have been developed [8,9,10,11] as information-theoretically
secure key agreement. They exploit the reciprocity of radio propagation charac-
teristics, which provides similar radio propagation characteristics for two commu-
nicating terminals, while it is difficult for an eavesdropper at a different location
to obtain the similar characteristics because of the locality of the radio propa-
gation characteristics. This is a good approach to solve the issues of key distri-
bution and key management because they can provide a one-time key whenever
it is needed. In particular, a secret key agreement scheme using an electronically
steerable parasitic array radiator (ESPAR) antenna [12] is more effective for en-
vironments where the fluctuation of the radio propagation characteristics is slow
such as indoor wireless LAN environments [9].

In the secret key agreement scheme using the ESPAR antenna, secret keys are
generated based on received signal strength indicator (RSSI) profiles measured
by two legitimate users. The generated raw keys, however, may contain some
errors (the discrepancies between the legitimate users’ keys), which are caused by
the noise and other effects at the receivers. In this situation, the legitimate users
need to eliminate or correct the errors by public discussion, while the amount of
the information revealed in the public discussion to eliminate or correct errors
is as little as possible. This process is called information reconciliation. So far,
various information reconciliation protocols have been proposed [7, 9, 13, 14, 15].
Among them, Cascade [13] is representative one and is widely used in quantum
key distribution because of its high performance being close to the theoretical
limit on the number of exchanged bits.

In this paper, we propose a modified version of Cascade using the reliability
of the keys in which RSSI information is used as the reliability to correct errors
effectively. We carry out numerical simulations, and the results of the simulations
show that our information reconciliation protocol is suitable for the secret key
agreement scheme using the ESPAR antenna.

2 Secret Key Agreement Scheme Using ESPAR Antenna

In this section, we recall the secret key agreement scheme using the ESPAR an-
tenna [9]. The assumed conditions are as follows. There are two legitimate users,
an access point (AP) equipped with an ESPAR antenna and an user terminal
(UT) equipped with an omni-directional antenna. There is also an eavesdropper
equipped with an omni-directional antenna. AP and UT can communicate with
an identical frequency by using a method such as time division duplex (TDD).

Figure 1 shows the procedure of the secret key agreement scheme. The pro-
cedure consists of three steps: (1) randomness sharing, (2) information recon-
ciliation, (3) privacy amplification. In the randomness sharing, AP and UT
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Fig. 1. Procedure of secret key agreement scheme using ESPAR antenna

generate key candidates from their RSSI profiles. Firstly, one terminal transmits
one packet and the other measure RSSI alternately, where the beam pattern of
the ESPAR antenna is fixed. Then, the beam pattern of the ESPAR antenna
is switched randomly by changing the reactance values of the ESPAR antenna.
This process is repeated until the sufficient length of RSSI profiles is obtained.
After measuring the RSSI profiles, AP and UT binarize their RSSI profiles in
order to generate key candidates, where the median of each RSSI profile is used
as the threshold for binarization.

In the information reconciliation, AP and UT correct the discrepancies be-
tween their key candidates by public discussion. To eliminate the errors, AP and
UT remove RSSIs around the threshold, where the positions to be removed are
sent over a public channel because such the RSSIs are susceptible to the noise.
Furthermore, the remaining errors are corrected based on the syndromes of the
key candidates by applying error correcting techniques, where the syndrome of
UT is sent over the public channel. To minimize the amount of the information
leaked to the eavesdropper, AP and UT estimate the bit error rate of the key
candidates by generating and disclosing dummy keys [16], and they set appro-
priate parameters of the information reconciliation protocol such as the length
of elimination and an error correcting code.

In the privacy amplification, AP and UT generate a secure secret key from
the identical key candidates by diminishing the partial information leaked to the
eavesdropper. The privacy amplification can be realized by using universal hash
functions [17]. Thus, AP and UT share an identical secure secret key.
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3 Cascade Protocol

In this section, we recall Cascade protocol [13]. The conventional information rec-
onciliation protocol using error correcting codes [9] may introduce additional er-
rors if the number of errors is greater than the error correcting capability, and the
reconciliation fails. In contrast, Cascade never introduces additional errors, and
the number of errors decreases exponentially by iteratively applying Cascade.

Before describing the algorithm of Cascade, we explain BINARY, which plays
the role in detecting and correcting the discrepancies of the legitimate users’ keys
in Cascade. An example of BINARY is shown in Fig. 2. When the legitimate
users’ keys have an odd number of errors, AP and UT perform an interactive
binary search to find and correct an error in the following manner.

Fig. 2. Example of BINARY

BINARY:

1. AP and UT calculate the parity of the first half of their key candidates.
2. AP sends UT the calculated parity.
3. UT determines whether an odd number of errors occurred in the first half

or in the last half by comparing the parity of UT to that of AP.
4. The steps 1∼3 are repeatedly applied to the half block determined in the

step 3 until one error is found. Finally, the found error is corrected.

Let us now describe the algorithm of Cascade. Cascade proceeds in several
passes. The number of passes is determined by the legitimate users before exe-
cution. AP and UT perform Cascade in the following manner.
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Cascade:

1. AP and UT permute their key candidates in random order.
2. In the pass i, AP and UT divide the permuted key candidates into blocks of

ki bits and calculate the parities of all the blocks.
3. AP sends the parities of all AP’s blocks to UT.
4. By using BINARY, UT corrects an error in each block whose parity differs

from that of AP’s corresponding block. At this point, the blocks of AP and
UT in the pass i have an even number of errors.

5. In the pass i (> 1), let l be the position of the bit corrected at the step 4.
AP and UT find that the blocks including l in the passes 1 ∼ i − 1 have an
odd number of errors. Let A be the set of the blocks including l.

6. AP and UT choose the smallest block in A and use BINARY to find and
correct another error.

7. Let l′ be the position of the bit corrected at the step 6 and B be the set of
the blocks including l′ in the passes 1 ∼ i. AP and UT find that the blocks
of the set (B ∪ A)\(B ∩A) have an odd number of errors.

8. AP and UT update the set A according to A ← (B ∪ A)\(B ∩A).
9. The steps 6∼8 are repeatedly applied until A = ∅, at which the pass i ends.

At the end of the pass i, each block in the passes 1 ∼ i has an even number
of errors (perhaps zero).

In Cascade, almost all errors are corrected until the end of the pass 2 when
the appropriate block length is set in each pass [18]. The block lengths k1 of
the pass 1 and k2 of the pass 2 minimizing the number of disclosed bits are as
follows:

k1 =
⌊

4 ln 2
3pe

⌋
(1)

k2 =
⌊

4 ln 2
pe

⌋
, (2)

where pe denotes the bit error rate of the keys. In the case of ki (i ≥ 3), the
block lengths have not been optimized. The original Cascade [13] sets ki (i ≥ 3)
as follows:

ki = 2ki−1 (i ≥ 3). (3)

In practice, we estimate the bit error rate pe by using dummy keys and set the
block lengths according to Eqs. (1) ∼ (3).

4 Cascade Using Reliability

In this section, we propose a modified version of Cascade using the reliability of
the keys, which is suitable for the secret key agreement scheme using the ESPAR
antenna. When we apply the conventional Cascade to the secret key agreement
using the ESPAR antenna, BINARY is not the best method to search and correct
errors because BINARY searches errors with binary search using only binary
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key data and does not utilize RSSI information. Let Kx and Ky be the random
variables of AP’s key and UT’s key, respectively. In this case, the conventional
Cascade is considered hard-decision information reconciliation, and therefore AP
and UT need to exchange at least

nhard
min = nH(Kx|Ky) = nH(Ky|Kx) (4)

of information on average for their reconciliation by the Slepian-Wolf theorem
[19], where n and H(A|B) denote the key length and the conditional entropy of
A given B, respectively.

In the proposed protocol, BINARY is replaced with error correction using
the reliability of the keys in which we utilize RSSI information as the reliability
measure to search errors effectively. Let Rx and Ry be the random variables
of AP’s RSSI and UT’s RSSI, respectively. In this case, the proposed protocol
is considered soft-decision information reconciliation, and therefore AP and UT
need to exchange at least

nsoft
min = nH(Kx|Ky, Ry)

= nH(Kx|Ry) (∵ H(Ky|Ry) = 0)
= nH(Ky|Rx)
≤ nhard

min (5)

of information on average for their reconciliation. Equation (5) shows that we can
correct errors with less the number of disclosed bits by utilizing RSSI information
than that of the conventional Cascade.

Before describing the algorithm of the error correction using the reliability, we
define the reliability of the keys by taking into account a feature of key candidate
generated from RSSI profile. Figure 3 shows examples of the bit error rate with
regard to each bit of key candidates of 1024 bit sorted in ascending order of RSSI
when SNR (Signal to Noise Ratio) is 20 dB and 30 dB. It can be seen from this
figure that the bit error rate of key bits near the threshold of binarization, i.e.
the median, is higher because key bits near the threshold are more susceptible
to the noise. This figure allows us to conclude that key bits near the threshold
of binarization have lower reliability. By taking into account the fact, we define
the reliability αi of the i th key bit as

αi = |ri − rth|, (6)

where ri and rth denote the i th measured RSSI and the threshold of binarization,
respectively.

Having defined the reliability, we will now explain the algorithm of the error
correction using the reliability. An example of the error correction using the
reliability is shown in Fig. 4. When the legitimate users’ keys have an odd number
of errors, AP and UT perform an interactive reliability-based search to find and
correct an error in the following manner.
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Fig. 3. Examples of bit error rate with regard to each bit of key candidates sorted in
ascending order of RSSI

Fig. 4. Example of error correction using reliability in proposed protocol

Error correction using reliability:

1. AP sends the least reliable bit among the undisclosed bits to UT.
2. UT compares the bit sent by AP to the corresponding bit of UT. If the

compared bits are different, UT corrects the error. If the compared bits are
equal, UT sends the least reliable bit among the undisclosed bits to AP.

3. AP compares the bit sent by UT to the corresponding bit of AP. If the
compared bits are different, AP corrects the error. If the compared bits are
equal, AP sends the least reliable bit among the undisclosed bits to UT.

4. The steps 2∼3 are repeatedly applied until one error is corrected.
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5 Simulation Setting

5.1 System Model

We developed test equipment using ZigBeeTM [20], which conforms to
IEEE802.15.4, of the secret key agreement scheme using the ESPAR antenna [9].
Therefore, we carry out numerical simulations assuming a model of IEEE802.15.4
to evaluate the performance of the proposed protocol. There are AP equipped
with an ESPAR antenna and UT equipped with an omni-directional antenna.
We assume that the eavesdropper is a passive attacker, i.e. she only listens to
communications between AP and UT and does not interfere into them.

5.2 Simulation Model

Figure 5 shows the environment of the simulation. There are AP and UT in
the same room enclosed by concrete walls on four sides in which there are no
reflecting and scattering objects. The size of the room is 10 m × 8 m. Throughout
the simulation, the position of AP is fixed to the center of the room, (0.0 m, 0.0
m), and the position of UT is fixed to (3.0 m, 2.0 m).

The parameters of the simulation are specified in Table 1. AP uses a 7-elements
ESPAR antenna. The reactance vector of the ESPAR antenna is set randomly
at every RSSI measurement. The carrier frequency is set to 2.480 GHz. The
ray-tracing technique [21] is used to generate the propagation channel charac-
teristics considering the effect of difference in receive levels and phases between
the terminals. To simplify the calculation, we assume a 2-dimentional model of
indoor environment neglecting the effect of the floor and the ceiling. We take
into account up to 6 times reflections by the walls. The key length is set to
1024 bit. We perform information reconciliation only by using Cascade or the
proposed protocol without other information reconciliation protocols such as the

Fig. 5. Simulation environment
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Table 1. Parameters of the simulations

Room size 8 m × 10 m
Positions AP: (0.0 m, 0.0 m)

UT: (3.0 m, 2.0 m)
Antennas AP: 7-elements ESPAR antenna

UT: omni-directional antenna
Carrier frequency 2.480 GHz
Channel model 2D Ray-tracing

Reflection: up to 6 times
Vertical polarization

Wall material Concrete
(εr = 6.76, σ = 0.0023 S/m, μr = 1)

Reactance vector Random
Key length 1024 bit
Information reconciliation Cascade or proposed protocol

reconciliation protocol using error correcting codes. In Cascade and the proposed
protocol, we assume the bit error rate of keys are known, and hence the block
length of each pass is optimized according to Eqs. (1) ∼ (3).

6 Simulation Results

In this section, we show the comparisons of performance between the proposed
protocol and Cascade when SNR varies.

6.1 The Number of Disclosed Bits

Figure 6 shows the number of disclosed bits in information reconciliation until
the discrepancies of the legitimate users’ keys are completely corrected. In this
figure, we also indicate the theoretical limit calculated from Eqs. (4) and (5).
From this figure, we observe that by using the proposed protocol, we can decrease
the number of disclosed bits at all values ofSNR and can achieve performance being
close to the theoretical limit of soft-decision information reconciliation.

6.2 The Number of Communications

We consider the number of communications in information reconciliation. We
defined the number of communications as the number of times a protocol dis-
closes parities or key bits until the discrepancies of the legitimate users’ keys
are completely corrected. Figure 7 shows the number of communications in in-
formation reconciliation. It can be seen from the figure that when SNR is more
than 10 dB, the proposed protocol can correct the discrepancies with less the
number of communications than that of Cascade. The reason why the number of
communications around SNR of 0 dB is fewer is because the block length around
SNR of 0 dB is so short (probably 2 bits) that the discrepancies of the keys can
be corrected with a few number of communications.
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Fig. 6. Number of disclosed bits in information reconciliation
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Fig. 7. Number of communications in information reconciliation

6.3 The Efficiency of Protocol

We consider the efficiency of a protocol [15] which indicate how close the protocol
is to the theoretical limit. The efficiency of Cascade is defined as follows:

ζhard =
H(Kx) − n−1Chard

H(Kx) − H(Kx|Ky)
≤ 1, (7)

where Chard denotes the number of disclosed bits in Cascade. On the other hand,
the efficiency of the proposed protocol is defined as follows:

ζsoft =
H(Kx) − n−1Csoft

H(Kx) − H(Kx|Ry)
≤ 1, (8)

where Csoft denotes the number of disclosed bits in the proposed protocol. Note
that the denominators of Eqs. (7) and (8) are different because Cascade is
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Fig. 8. Efficiency of protocol

hard-decision reconciliation protocol, while the proposed protocol is soft-decision
reconciliation protocol.

Figure 8 shows the efficiency of Cascade and the proposed protocol calculated
by Eqs. (7) and (8). The efficiency of the proposed protocol is almost identical
with that of Cascade. In SNRs above 20 dB, the both achieve efficiency over 0.95.
From this result, we can say that the proposed protocol successfully utilizes RSSI
information.

7 Conclusion

In this paper, we propose a new information reconciliation protocol using the
reliability of the keys for the secret key agreement scheme using the ESPAR
antenna. The proposed information reconciliation protocol is a modified version
of Cascade protocol utilizing RSSI as the reliability, which is suitable for the
secret key agreement scheme using the ESPAR antenna. As the results of the
simulations, we can conclude that the proposed protocol can correct errors with
less the number of disclosed bits and less the number of communications than
those of Cascade.
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Abstract. As wireless networks become increasingly ubiquitous, the de-
mand for a method of locating a device has increased dramatically. Lo-
cation Based Services are now commonplace but there are few methods
of verifying or guaranteeing a location provided by a user without some
specialised hardware, especially in larger scale networks. We propose a
system for the verification of location claims, using proof gathered from
neighbouring devices. In this paper we introduce a protocol to protect
this proof gathering process, protecting the privacy of all involved par-
ties and securing it from intruders and malicious claiming devices. We
present the protocol in stages, extending the security of this protocol to
allow for flexibility within its application. The Secure Location Verifica-
tion Proof Gathering Protocol (SLVPGP) has been designed to function
within the area of Vehicular Networks, although its application could be
extended to any device with wireless & cryptographic capabilities.

1 Introduction

Frequently in applications, one device is required to authenticate itself to another
in some way. This interaction often takes the form of exchanging a private secret
shared by the two, such as a password, to prove the device’s identity. However
with ubiquitous networks increasing in prevalence, the issue of context has be-
come more important. Instead of a device being required to produce a password
in order to gain access to some resource within the network, it is simply required
to prove that its current location is in the area of that network. This location
verification problem can be solved by technologies such as Active Badge [1] and
RFID [2], however these are based within a limited area and require an infras-
tructure of sensors in order to function. This restricts their usability to small
scale networks.

In order to address the issue on a larger scale, we have designed a location
verification system for use in large scale networks, specifically Vehicular Ad-
hoc Networks (VANETs), requiring no special physical infrastructure to be in
place. We have selected VANETs as a suitable environment in which to apply
this location verification scheme due to the protocol’s requirement of tamper-
resistent devices and public key cryptography.
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We propose to verify the presence of a specific device in a particular area
using a two step process. First, the claiming device distance bounds [3] with
multiple neighbouring devices, to prove that it is within range of other devices
known to be in the area. These devices then state whether or not the claiming
device successfully proved themself to be within range of them. These proofs
are supplied by the claiming device to a central verifying device, who combines
them to determine whether the claiming device is in the area.

In the rest of this paper we outline a system for the verification of location
claims (Section 3). We then put forth a basic protocol for the protection of the
distance bounding exchange. We extend the protocol incrementally to protect
the exchange from all tampering and fraudulent attempts (Section 4). Finally,
we discuss our future work on this issue (Section 7).

2 Related Work

Calculating the location of a device is a broad area of research. One of the major
approaches to solving this problem is location determination. This approach
attempts to determine the location of a device without any prior information.
GPS is the most widely used technology to locate a device. However readings
can be forged and GPS signals can be spoofed [4]. An encrypted version of GPS
exists, the Precise Positioning Service (PPS), but this technology is currently
restricted.

A second approach to the calculation of a device’s location is location verifi-
cation. Rather than attempting to discover the device’s location without apriori
knowledge, a device claims to be in a certain region or area. The system then
checks whether this claim is legitimate. This approach reduces the complexity
of the problem by minimising the area in which the device could be. In [5], the
authors introduce the concept of Integrity (I) regions to authenticate messages
within wireless networks without the use of pre-existing keys. However, the I-
region is very minimal, typically only extending to the limits of the user of a
device’s field of vision, removing its potential for use in larger scale systems.

In [6], Sastry et al proposed another approach to location verification suitable
for larger systems. The Echo protocol employs ultrasound and radio frequency
time of flight measurements to gauge the upper bound on the distance between
2 devices. However, a device can employ RF to send its response as far as a
colluding device, which can then replay the reply back to the verifier node using
ultrasound. As RF has a faster propagation time than ultrasound, the attack
would not be detected.

In [7], Waters & Felten proposed the Proximity-Providing Protocol, which
is based in wireless networks. Similar to the work done by Sastry et al, the
PPP uses round trip times of packets to calculate the upper bound on distance
between devices. It relies on a much more ubiquitous technology and is therefore
far more practically applicable. However, this protocol is still susceptible to the
terrorist fraud. A colluding device could participate in the distance bounding
aspect of the protocol in place of the prover, shrinking the latency and making
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the prover appear closer. We believe we have addressed this issue in our approach,
discussed further in Section 4. Our approach also extends the concept behind
the Proximity-Proving Protocol to remove the need for a trusted device to be
used in the Location Manager role.

Many location verification approaches utilise distance bounding, however it
is vulnerable to many circumventing attacks which render the results received
incorrect. In [8], Clulow et al outline attacks on current distance bounding ap-
proaches, illustrating common flaws in existing protocols. In particular, they cite
the use of a single nonce within the challenge-response exchange as vulnerable
to a guessing attack. This issue is negated in the Secure Location Verification
Proof Gathering Protocol (SLVPGP) through multiple iterations of single nonce
challenge-response exchanges. Clulow et al also state that requiring participants
to employ encryption during the timed phase of an exchange introduces an inac-
curacy into the distance calculations. However, due to the approach to distance
bounding employed by the SLVPGP, we believe that this issue does not apply.

3 A System for the Secure Verification of Location
Claims

3.1 System Model and Assumptions

Before discussing the design of the SLVPGP, we review the environment in which
it is employed and outline the assumptions made regarding participating devices.

1. Location Claim - A message containing the location at which a device making
a claim purports to be

2. Claimant - An untrusted device which makes a location claim.
3. Verifier - A trusted entity that decides if a location claim is valid.
4. Proof Provider - A neighbouring device contacted by a Claimant to distance

bound with, in order to provide proof of a location claim.
5. External anonymity/confidentiality - If a device is not involved in an SLVPGP

run, they cannot learn location or identity information regarding participat-
ing devices even if within range of pertinent transmissions.

6. Complete anonymity/confidentiality - A device cannot learn identity or lo-
cation information regarding another device, even if involved in the same
SLVPGP run.

A Claimant wishes to prove its location to a Verifier within an untrusted 802.11
based environment [9]. Although the Claimant and Proof Providers are untrusted
devices, we assume that they contain tamper-resistant modules in which all
cryptographic keys are stored. This prevents devices from sharing keys in an
attempt to sabotage the system’s security. The Verifier provides a list of devices
in the vicinity of the claimed location for use as Proof Providers. The Claimant
distance bounds with each of these to ascertain that it is within range of that
device. The results of these exchanges are supplied to the Verifier, which makes
its decision based on this information.
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The aim of our protocol is to secure the proof gathering process and protect
it from intruders and malicious parties within the exchange. We define a se-
cure protocol as one which satisfies the following three security properties. First,
anonymity of identity - a device’s identity should not be discoverable by any
party other than the Verifier, except where expressly given to it. Second, confi-
dentiality of location - the location of a device with a specific identity should not
be discovereable by any party other than where expressly given to it. Finally,
authentication of information - the origin of any given message must be known.

3.2 Threat Model

Honest nodes behave exactly as their roles dictate. They can communicate with
the Verifier, along with anyone within radio range. They receive all messages
broadcast within their area, but do not act on messages not intended for them.
When a node participates in distance bounding, information regarding their
location is leaked [10]. Some solutions to the issue of MAC address identification
have been proposed [11,12,13], however this is beyond the scope of this research.
The SLVPGP does not allow leaked information to be tied to a specific device’s
identity within the system, by protecting the identities of those involved.

Malicious nodes fall into one of three categories: malicious Claimants, mali-
cious Proof Providers and malicious nodes external to the exchange, i.e. intrud-
ers. Malicious nodes cannot occupy the role of the Verifier as this is a trusted,
un-compromisable entity. All malicious nodes can eavesdrop any message sent
within the system. Malicious nodes may also manipulate received messages and
retransmit them, but cannot prevent a node from receiving a specific message.

We consider multiple attacks on the SLVPGP, most of which are attempted
by malicious Claimants attempting to influence the result of their location veri-
fication. The first is the guessing attack. A malicious Claimant could attempt to
guess the correct response to a challenge and send its response prior to receiving
the challenge nonce. If successful, the malicious Claimant could prove itself to
be within range of the Proof Provider. However, this is addressed through the
use of multiple challenge-response iterations, reducing the probability of success.
Another attack attempted by a malicious Claimant is the terrorist fraud [14].
A malicious Claimant has a proxy act as a man-in-the-middle between himself
and the verifying device. This allows the malicious Claimant to convince a Proof
Provider that he is closer than he truly is. Finally, in a snooping attack, an ex-
ternal intruder node may attempt to gain access to location or identification
information through eavesdropping. These attacks are thwarted through the use
of encryption on messages containing private information. The case of a mali-
cious proof provider lying about the presence of an honest Claimant is dealt with
by the Verifier through the use of trustworthiness levels.

3.3 The Role of the Verifier

The SLVPGP relies upon the Verifier to supply suitable Proof Providers for use
in during a run of the protocol, and to determine the final verdict on a claim
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using their proofs. Unlike the Claimant and its Proof Providers, the Verifier is
a trusted device outside the system’s environment, possessing the identities and
public keys of all devices within the entire Location Verification system. The
exact functionality of the Verifier lies beyond the scope of this paper, but we
outline here the Verifier’s basic processes required by the protocol.

The Claimant does not participate in the selection of Proof Providers for use in
a location claim. If involved, it would gain the ability to manipulate the process.
Instead, the Verifier geographically routes [15] a request seeking Proof Provider
volunteers to the area in which the Claimant purports to be. Only devices in
the area of the claimed location receive this request, and Proof Providers are
only selected from the volunteers responding to this request. Therefore all Proof
Providers used within the protocol are in the correct area.

The Verifier’s principle task is to assess the possibility of a device’s loca-
tion claim, based on information gathered for it by the Claimant from Proof
Providers. However, the reliability of one Proof Provider’s verdict is different
to that of another, and so each must be weighted according to that device’s
past behaviour. This process is achieved using the beta probability density func-
tion [16]. Therefore a device with a long record of honest behaviour will have a
stronger vote than that of a device with an unreliable past.

3.4 The Use of Distance Bounding in the SLVPGP

In the SLVPGP, distance bounding is not used to calculate specific distances be-
tween the Claimant and its Proof Providers. Instead, it allows a Proof Provider
to confirm that the Claimant is not attempting to execute a terrorist fraud on
the system. In order for the Claimant to participate in distance bounding , they
must either be in that area or collude with a device that is. The round trip time
required for an exchange when the Claimant is perpetrating a terrorist fraud is
drastically different to the time required for an honest exchange. It is this time
discrepancy that is being tested when distance bounding is performed. In addi-
tion to this, employing distance bounding without requiring specific distances
between devices, “off the shelf” wireless devices become feasible, allowing the
protocol far greater scope for application.

In order for distance bounding to function as a method of detecting a terror-
ist fraud attack, the Claimant must be required to actively participate in the
exchange. The employment of authentication forces the Claimant to receive the
message and compose the corresponding reply, rather than employing a proxy.
When dealing with authentication during distance bounding, the concept of us-
ing any form of encryption is usually dismissed. When using distance bounding to
gauge physical distance, the time required to digitally sign something is thought
to overpower the time required to send a message on a round trip. However, we
require only that there is a distinction between an honest exchange and an ex-
change involving a proxy device. As the difference between honest and fraudulent
round trip times are quite dramatic prior to the inclusion of digital signatures,
we believe that the distinction will hold. We intend to investigate this further in
the future (see section 7).
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4 The Secure Location Verification Proof Gathering
Protocol (SLVPGP)

4.1 Protocol Outline

In order to understand what security risks are present in the proof gathering
process, we first model a protocol devoid of any security. We outline the protocol
as a sequence of steps taken by the parties involved in the exchange: the Verifier
(V), the Claimant (C) and N Proof Providers (Bi where i ∈{1...N}).
1. C→V: C, XC

The Claimant transmits its identity (C) and location (XC) to the Verifier,
requesting that its location claim be verified.

2. V→C: B1, B2, ...BN

The Verifier sends a list of Proof Providers to the Claimant.
3. C→Bi: Bi,N i ,N ′

i

The Claimant broadcasts a message for each Proof Provider containing their
identity and two nonces (long random integers), N iand N ′

i .
4. The Claimant and Proof Providers create a chain of M hashes for each

nonce. These are noted as Hi,k and H
′
i,k respectively, where i ∈ {1...N} and

k ∈ {1...M}.
5. Distance Bounding

This stage is performed multiple times to lessen the effect of any network
issues and to reduce the effectiveness of a guessing attack.
(a) Bi starts its timer.
(b) Bi →C: k, Hi,k, N ′′

i

Bi sends a message to the Claimant containing a new random nonce
N ′′

i , a randomly selected value from the hash chain of N i , Hi,k, and
its position in the chain, k. The value of k decreases with each distance
bounding iteration. The Claimant checks whether the kth value in the
N i hash chain matches Hi,k and if so, continues to the next step.

(c) C→Bi: H
′
i,k, N ′′

i

The Claimant sends a message to Bi containing N ′′
i and the kth value in

the N ′
i hash chain. Bi compares this with the kth value in its N ′

i hash
chain. If the two values match and the received value of N ′′

i matches its
own sent value, Bi stops its timer and calculates the round trip latency
(subtracting out its own internal processing time).

6. Bi →C: Ti, Xi, Li

Bi sends the Claimant its proof, comprised of its current location (Xi) and
overall decision regarding the presence of the Claimant in its vicinity (Li).
A timestamp is also included to tie the proof to this specific point in time.

7. C→V: C, TC , XC , {T1, X1, L1}, ..., {TN , XN , LN}
The Claimant compiles all the proofs gathered from its Proof Providers and
forwards them to the Verifier, along with its identity C, current location XC

and a timestamp TC to tie the proofs to that point in time.
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4.2 Protocol Discussion

Due to the possibility of network issues such as delays and lost packets, the
result of a location claim could be affected through the true results of a single
distance bounding exchange being distorted. We have included multiple distance
bounding exchanges within the protocol to compensate for this possibility. In
order to avoid high data overheads, we employ hashing [17] to calculate multiple
nonces from a single initial nonce. In this method, the kth nonce Hi,k in a hash
chain is calculated from Ni using the formula Hi,k = Hk(Ni), i.e. the hash of the
initial nonce is hashed and this third value is then hashed to produce a fourth
value etc.

The hash chains produced from Ni and N ′
i allow the Claimant and Proof

Provider Bi to validate that they are interacting with their expected device. Ni

proves the message’s origin is from a Proof Provider engaged in the Claimant’s
current location claim. The value from the hash chain derived from N ′

i verifies
that the message received originated from the Claimant involved in that specific
location claim. N ′′

i is used to ensure that the Claimant cannot guess which
nonce in the chain to send and transmitting his response before receiving the
Proof Provider’s message. As the Claimant’s reply contains N ′′

i , it is forced to
wait until it receives this value. This dramatically reduces the possibility of an
early transmission attack successfully being accepted as a valid response.

The use of a randomly selected hash (Hi,k) increases the unpredictability
of the Proof Provider’s distance bounding challenge message for the Claimant.
However, given the value Hi,k, an intruder could then calculate all values above
it in the hash chain. For this reason the value of k decreases with each iteration of
distance bounding, moving downwards within the chain. Although this reduces
the reusability of the hash chain, it removes the risk of a security leak.

The Proof Providers measure the latency of each exchange, and these latencies
are used to calculate the Proof Provider’s final verdict, a boolean representing
either a positive or negative result. However, the protocol as shown above upholds
none of the security protocols outlined in section 3.1. Both the distance bounding
exchange and the verdicts are susceptible to tampering, either by an intruder or
a malicious Claimant. In addition to this, proofs can be fabricated by a malicious
Claimant without any interaction with a Proof Provider. Finally, the protocol is
vulnerable to the terrorist fraud as the distance bounding messages are not tied
to the Claimant. In order to address these vulnerabilities, we have repeatedly
extended the basic protocol, increasing security with each extension.

5 Extending the Protocol

As before, we outline these protocols as a series of steps taken by the Claimant
(C), Proof Providers (Bi where i ∈ {1...N}) and Verifier (V). We assume that
all parties involved have asymmetric key pairs associated with them. These key
pairs will be noted as K−

A and K+
A for the private and public keys respectively,

where A is the owning party’s identity.
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Algorithm 1. SLVPGP Extension 1
1. C→V: {—C,XC—}

K−
C

2. V→C: {|B1, B2, ..., BN |}
K−

V

3. C→ Bi: Bi,{N i ,N ′
i}K+

Bi

4. The Claimant & Proof Providers create a chain of M hashes for each nonce.
5. Distance Bounding (executed multiple times)

(a) Bi starts its timer.
(b) Bi →C: k, Hi,k,N ′′

i

(c) C→Bi: H
′
i,k, {|N ′′

i |}
K−

C

6. Bi→C: {|Ti, Xi, Li, C|}
K−

Bi

7. C→V: {|TC , XC |}
K−

C
,{|T1, X1, L1, C|}

K−
B1

, ..., {|TN , XN , LN , C|}
K−

BN

5.1 The SLVPGP: Extension 1

The protocol extension shown in algorithm 1 removes many of the vulnerabilities
outlined regarding the basic protocol. Encrypting N i and N ′

i prevents intruding
devices from gaining knowledge of these values without collusion. The addition
of a digitial signature to the echoing nonce removes the danger of a collusion
attack going undetected & provides authentication. A malicious Claimant can no
longer fabricate proof for the Verifier, nor can it undetectably alter the content
of an existing proof. Similarly, an intruder cannot fraudulently participate in
the exchange. Finally, the inclusion of the Claimant’s identity within the signed
proof message from the Proof Provider prevents malicious Claimants from using
valid proofs pertaining to another Claimant as evidence of their location claim.

5.2 The SLVPGP: Extension 2

In algorithm 1, we extended the protocol to provide authentication and prevent
many attacks such as the terrorist fraud. In this section we further extend the
protocol (algorithm 2) to provide an increased level of anonymity and confiden-
tiality. We achieve this through the addition of encryption.

The addition of encryption builds upon this framework to include both exter-
nal anonymity and external confidentiality. While the Claimant and all involved
Proof Providers have access to the location and identity information being sent
over the run of the protocol, no other devices can discover it, whether they are
within range of the transmissions or not.

5.3 The SLVPGP: Extension 3

Though the previous extension increases the protocol’s level of security, honest
participants could still record information on the parties involved, then use this
information maliciously at some point in the future. For this reason, we wish to
provide complete anonymity and confidentiality (algorithm 3).
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Algorithm 2. SLVPGP Extension 2
1. C→V: {{—C,XC—}

K−
C
}

K+
V

2. V→C: {{—B1, B2, ..., BN—}
K−

V
}

K+
C

3. C→ Bi:{Bi,C, N i , N ′
i}K+

Bi

4. The Claimant & Proof Providers create a chain of M hashes for each nonce.
5. Distance Bounding (see notation in 1).
6. Bi →C: {{|Ti, Xi, Li, C|}

K−
Bi

}
K+

C

7. C→V:{{|XC , TC |}
K−

C
}

K+
V

,
{{|T1, X1, L1, C|}

K−
B1

}
K+

V
, ..., {{|TN , XN , LN , C|}

K−
BN

}
K+

V

Algorithm 3. SLVPGP Extension 3
1. C→V: {{—C,XC—}

K−
C
}

K+
V

2. V→C: {— {B1,N 1 ,N ′
1 ,N ′′′

1 }
K+

B1
, {N 1 ,N ′

1 ,N ′′′
1 }

K+
C

, ...,

{BN ,NN ,N ′
N ,N ′′′

N }
K+

BN

, {NN ,N ′
N ,N ′′′

N }
K+

C
—}

K−
V

3. The Claimant decrypts and stores each nonce received from the Verifier.
4. C→ Bi: {Bi,N i ,N ′

i ,N
′′′
i }

K+
Bi

,{C}
K+

V

5. The Claimant and Proof Providers create a chain of M hashes for each nonce.
6. Distance Bounding (see notation in 1).
7. Bi →C: N ′′′

i ,
{
|{|N ′′

i |}K−
C

,N ′′
i |
}

K−
Bi

, {{|Ti, Li, Xi, {C}
K+

V
|}

K−
Bi

}
K+

V

8. C→V: {{|XC , TC |}
K−

C
}

K+
V

,{
|{|N ′′

1 |}K−
C

,N ′′
1 |
}

K−
B1

, {{|T1, L1, X1, {C}
K+

V
|}

K−
B1

}
K+

V
,

...,
{
|{|N ′′

N |}
K−

C
,N ′′

N |
}

K−
BN

, {{|TN , LN , XN , {C}
K+

V
|}

K−
BN

}
K+

V

However, the protocol is now vulnerable to a denial of service attack, where
the Claimant is supplied with fraudulent proofs. This is because the Claimant is
unable to differentiate between valid and fraudulent proof messages, as they are
now encrypted with an unknown key. In order to solve this issue, the Claimant
requires a method of matching a received proof with an unknown Proof Provider.
N ′′′

i is used to verify that all proof messages received during an exchange were
created by legitimate Proof Providers, removing an intruder’s ability to unde-
tectably insert illegitimate proofs into the exchange.

The Verifier encrypts the message containing the nonces, to prevent intruders
from learning their values. However, as the Claimant also requires a copy of these
values, the Verifier is forced to create and encrypt two messages. Broadcasting al-
lows the Claimant to communicate with its Proof Providers without knowledge
of their identities and vice versa, allowing complete anonymity and confiden-
tiality. Therefore, we believe we have designed a secure protocol, satisfying our
outlined security properties.
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6 Overall Analysis

6.1 Cost Analysis

Each extension to the SLVPGP increases the security provided to those par-
ticipating. However, these improvements in security also require extra data to
be transmitted and extra time to be taken to compute encryptions or digital
signatures. We define the costs of an extension to mean this extra data and/or
time required.

The costs related to the first extension stem from the addition of digital sig-
natures to protocol messages. As signatures must be calculated and transmitted,
this generates both time and data transmission costs. However, these costs are
minimal in relation to those incurred by the second and third extensions. The
addition of encryption to these levels increases both the data and time costs
required. The third extension is the most costly, however, due to the creation
and transmission of duplicate messages to allow for complete anonymity and
confidentiality.

Each of the three extensions to the SLVPGP are fully secure against the
terrorist fraud, in addition to maintaining the integrity of the proof messages
supplied to the Verifier by the Claimant. With the exponential increase in data
overheads incurred within the third extension, complete anonymity and confi-
dentiality come at quite a high cost. The second extension to the SLVPGP is
the most widely applicable, providing anonymity and confidentiality against all
devices external to an exchange without incurring extreme costs.

6.2 Security Analysis

We believe the protocol presented above is secure and satisfies the outlined
security properties. Formal verification of the protocol hierarchy has been carried
out to confirm this using the model checker FDR [18], along with Casper [19]
to automatically generate CSP [20] descriptions. When writing in a language
such as CSP, the density and complexity of the code often result in overlooked
errors and logic flaws. Using Casper allows us to automate the production of the
mathematical model description of the protocol, reducing the liklihood of errors
occuring.

A script was created to model each extension, stipulating only the individual
security properties claimed above. After each extension’s script was checked and
passed, the intruder’s knowledge was amended to include the secure keys of in-
dividual participants. This allowed for the modelling of malicious participants.
Even with security intentionally compromised in this manner, the security prop-
erties for each extension are upheld, excluding those related to the compromised
device. This confirms that the intended security properties are supported and
the protocol does not appear to have any weaknesses vulnerable to attack by
intruders.
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7 Future Work

We intend to analyse the effect of malicious and colluding Proof Providers on the
system through simulations of the Verifier’s calculations using sample proofs. In
addition to this, we intend to analyse the number of proof providers required by
the system for a proof to be successful, in both honest and hostile environments.

Another area of focus is the simulation of distance bounding including digital
signatures. At present, our system assumes that distance bounding is capable
of detecting a terrorist fraud through differenciating between a reasonable time
for an honest exchange and the time required for a proxy exchange to complete.
However, we intend to confirm this assumption through the simulation of both
honest and proxy distance bounding exchanges encorporating digital signatures.

8 Conclusion

In this paper, we discussed the demand for a method of locating a device within
a wireless network. We then focused on the problem of location verification
and outlined our system for verifying a device’s location claim. This allows a
Claimant to prove its location to a central verifying agent through gathering
proof of its proximity to local devices. Unlike previously existing approaches
however, the system does not require trusted agents to act as Proof Providers.
Instead, we make use of unknown and untrusted devices local to the Claimant,
in possession of a tamper-resistant module, to protect all cryptographic keys. As
the system is designed for use in an untrusted environment and the participants
in the exchange are also untrusted, we noted that a Claimant merely distance
bounding with local devices would not provide valid proofs for use within the sys-
tem and that a method of protecting the integrity of information passed within
it is needed. In order to secure this process from attack by both intruders and
malicious participating devices, we have presented the Secure Location Verifica-
tion Proof Gathering Protocol. We repeatedly extended this protocol to provide
increasing levels of security, culminating in the provision of authentication, com-
plete anonymity and confidentiality within the final protocol. This incremental
approach to the protocol’s design allows for flexibility in terms of cost vs benefit.
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Abstract. Since the dissemination of Radio Frequency IDentification (RFID) 
tags is getting larger and larger, the requirement for strong security and privacy 
is also increasing. Low-cost and ultra-low-cost tags are being implemented on 
everyday products, and their limited resources constraints the security algo-
rithms to be designed especially for those tags. In this paper, a complete  
solution providing strong security and high privacy during the whole product 
lifetime is presented. Combining bit-wise operations and secret keys, the algo-
rithm proposed addresses and solves all the common security attacks. 

Keywords: RFID tags, security, bit-wise, privacy.  

1   Introduction  

In wireless communications, the security aspect has always been a big issue. Main-
taining the confidentiality and the integrity of the data is a main concern, as people 
expect to send information to a targeted authority only. Designing a system using 
wireless communications means considering a large number of security threats. Those 
threats will be listed further in this paper.   

1.1   The RFID Technology 

(RFID technology is not recent. It has been used for the first time during World War 
II with the “Identification Friend or Foe” (IFF) system to make the distinction be-
tween allied and enemies’ planes. It has been used afterwards for many years in very 
specific areas to perform particular tasks such as automatic car payment on the high-
way or cattle monitoring. Its relatively expensive price at that time made it difficult to 
be generalized. Thanks to efforts of miniaturization and improvement in the technol-
ogy, it became possible to produce RFID Tags and readers for a relatively low price, 
leading to a renewed interest in this technology.  

The RFID Technology consists of different devices that communicate over radio 
transmissions. A typical RFID network is composed of RFID Tags, a reader and a 
database (see Figure 1). The reader is able to communicate both with the database and 
the tags, while the other devices can only communicate with the reader. To retrieve 
information from the RFID Tag, the reader sends a request. The Tag (which is most 
often a passive device) uses the energy harvested from the request to send back an  
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Fig. 1. RFID Architecture 

answer. The aim of the RFID technology is to replace the barcode, introducing the 
Internet of things, where every single product has its own code. 

1.2   A New Problematic 

With the development of the RFID technology, a new kind of threat appears; the pri-
vacy threat. Privacy has become one of the most sensitive topics, since it has to deal 
with not only the privacy and integrity of the company, but also with the privacy of 
the consumer, who is the end-user in the production chain. These privacy threats be-
come a reality as the deployment of RFID tags on everyday products is propagating, 
but even more because the RFID readers are small, relatively inexpensive, and have 
sufficient processing capabilities to read most of the tags. Solving those threats is one 
of the most challenging topics regarding this technology, both for the research aspect 
as for the social aspect it introduces. 

1.3   Privacy Threats 

So far, seven main privacy threats have been identified, compromising the privacy of 
the consumer: 
 

The action threat concerns the behaviour or intent of a user that can be inferred 
from the evolution of the group of tags surrounding him.  

The association threat focuses on the product itself. Not only the kind of products 
the person owns, but the precise product can be discovered (very limited edition, for 
example).  

The location threat deals with tracking of people thanks to the tags they are wear-
ing. Since most of the readers are fixed, it can be quite easy to monitor someone’s 
location through the whole day, by checking all the places where some of the tags he 
is wearing, have been read. 

The preference threat is related to the specific kind of product someone owns and 
buys, to define his consumer profile, and thus target him more specifically (target 
advertising, for example). 

The constellation threat is highly related to the location threat except that it is not a 
targeted individual that is tracked but a random individual without knowing its identity. 
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The tracking of this person would be performed by tracking the constellation of RFID 
tags that he is wearing.  

In the transaction threat, the tracking of goods does not stop at the consumer 
step, but goes further and keep on tracking the location and ownership of the tagged 
object through its entire product life (until the chip is destroyed). If some product goes 
from one person to another, you can conclude that they know each other and draw a 
link between them. Step by step, you can draw a complete social network, connecting 
all the links between people.    

The breadcrumb threat is the issue that links someone to the objects he bought as 
long as the objects exist (i.e. the tag is working). When someone buys a product in a 
retail shop, the tag information is stored in the shop database (or even a larger data-
base), and is not updated after the consumer’s purchase. It can then create some trou-
ble to the owner in case of a misuse by a third person.  

 

We can infer from all those threats that the consumer privacy can be highly ex-
posed if no action is done to avoid them. They are described in more details in [1]. 
Many researchers have been working on this topic and their contribution to this field 
is detailed in the next section. 

2   Related Works 

While facing an issue, two options are available. One consists in finding the solutions 
to solve the issue. In this particular case, the solution is to implement encryption and 
authentication in the process. Some research has been done to compare all the avail-
able encryption algorithms for ultra-low power devices [2]. However, this work is 
more focused on Wireless Sensor Networks, which embedded more computational 
resources than RFID Tags. A similar survey is presented in [3] and goes even more 
deeply in the energy consumption of each single computational operation. Many dif-
ferent ways have been explored to ensure security in RFID technology. Some works 
focus on the physical properties of the device to maintain security, using the physical 
imperfections of the hardware to guarantee authenticity [4]. Several security algo-
rithms have been proposed as well, some relatively energy-consuming introducing 
“lightweight” elliptic curve cryptography primitives [5] or trapdoor-based mutual 
authentication [6]. Others are using considerable memory resources either through a 
key-table [7] or storing additional data to preserve untraceability [8]. Some propose a 
secured solution limited to a single reader scenario [7][9], which could be an unrealis-
tic constraint in real case deployment. Finally, a few other protocols perform strong 
security and authenticity with simple bit-wise operations [10], [11]. These two last 
mentioned protocols seem to be the best alternative for low-cost RFID solutions, since 
they are not as energy-consuming and memory-demanding as the others, and do not 
present some major constraints or security gaps.    

The other option consists in removing the issue itself. Authentication and encryp-
tion is a strong requirement in a wireless communication process to maintain privacy. 
However, this requirement becomes useless without communication. In fact, all the 
privacy threats are based on a simple assumption: tags and readers are able to com-
municate. As communications stop, the threats disappear (except the breadcrumb 
threat which is related to the physical product itself). So, the concept is to avoid 
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communication between tags and reader. In this way, a possible solution was the use 
of a battery-powered mobile device called “RFID Guardian”, supposed to create inter-
ference around the guardian to preserve the privacy of the RFID Guardian holder 
[12]. The same principle has been studied by the RFID expert A. Juels et al. who pro-
pose a “blocker tag” that selectively allow communications with authenticated readers 
[13]. Those solutions present the disadvantage to constrain the user to hold an addi-
tional device permanently with him, and open the path to security gaps in case the 
device fails. The ultimate alternative is to temporarily deactivate the tag to make sure 
it is not able to communicate anymore, without purpose. 

3   Proposed Solution 

3.1   A Few Assumptions 

In the production cycle, the privacy concerns appear at the very last link of the chain, 
when the consumer buys the product. The concept of the proposed solution is to en-
sure a strong security during the whole production process (see Fig. 2), and a strong 
privacy, once the consumer owns the product. 
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Fig. 2. Security Protocol 

The security protocol is inspired by the works done in [10] and [11] combining a 
strong authenticity and reducing the computational load of the tag, without compro-
mising the security. While the tag is created, four numbers are shared by the tag and 
the server; two Pseudo ID (PID & PID2, initially equals) and two keys, K1 and K2. All 
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of them have a length equal to the tag ID. In this protocol, we assume that the link 
between the Reader and the Server, which are two powerful devices, is secured 
against all the traditional attacks related to networks. We also assume that the reader 
will always be able to communicate with the server, since readers are often equipped 
with the GSM technology, making the communication available everywhere, anytime.  

3.2   The Protocol 

 1st step: The reader requests a certificate of authenticity to the server. The server 
decides whether or not the reader is allowed to retrieve further information from 
the server, by sending back a certificate. This first step is done only once per 
reader, per day. If the reader wants to read multiple tags at the same time, it will 
just request a certificate once, and use it for all the tags. If the reader already has 
a valid certificate (the one of the day) the protocol starts in Step 2.   

 2nd step: The reader sends a request to the tag, which replies with its PID2. If the 
reader cannot find a match in the database, it will send another request with the 
PID2 to the tag, which will reply with its PID.   

 3rd step: The reader sends the PID together with its certificate. If the certificate is 
authentic, the server replies with K1 and K2. The reader then generates 2 random 
numbers n1 and n2. It computes A, B and D with the keys shared by the tag and 
the random numbers.    

 4th step: The tag computes the values of n1, n2 and D’. If K1 and K2 are genuine, 
D’ and D will be equal. This step is necessary to authenticate the reader from the 
tag’s point of view. Since K1 and K2 are not exchanged between tag and reader, a 
match in the D value means that the reader is legitimate.   

 5th step: The tag computes E with its ID, F with the 4 secret values, and sends 
them to the reader. The reader will first check the value of F to check the authen-
ticity of the tag. If the values match, it will be able to retrieve the ID from E using 
K1, K2, n1 and n2. Both reader and tag compute a new value of Pseudo ID (PID2) 
that will be used for the next communication. 

 6th step: The reader sends an updated version of the Pseudo ID (PID2) as well as 
the previous version (PID) and its certificate, to maintain authenticity.  

 

Thanks to n1 and n2 the values A, B, D, E and F are always different. Changing the 
value of PID is a necessity to avoid tracking of the tag. In fact, it’s rather easy to track 
a tag that would always reply with the same message to a simple request. Storing the 
previous value of the PID, while the next value to be used is PID2, is to maintain the 
integrity of the network and avoid de-synchronization attacks. 

4   Security Evaluation 

4.1   Security Analysis 

In this section, we will review a bit more in detail the security threat and the solutions 
proposed by the algorithm. 
 

Eavesdropping happens when an attacker listens to the channel to retrieve infor-
mation. Even if the attacker will receive the messages, it is not possible to determine 
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the values of the secrets keys or the ID of the tag, since the messages are encrypted 
(A, B, D, E and F). 

Relay attack occurs when a fake tag and a fake reader try to counterfeit a legiti-
mate authentication. It cannot be done in the proposed solution because tag and reader 
don’t exchange data to authenticate each others directly. The reader authenticates it-
self with the server, the tag authenticates the reader through D and the reader authen-
ticates the tag through F. Any minor change in those values will be detected. 

Unauthorized tag reading and tag cloning are solved through the use of authenti-
cation. If the reader is not allowed by the server it will never get any information re-
lated to the tag. Similarly, if the tag is not genuine, it will not be able to decrypt the 
values of A, B and D. 

Tracking is done by simply listening to the data transmitted by the tag. Since the 
data sent by the tag is always different, PID2 is changing in a random way since it in-
volves n1 and n2, it is not possible to track the tags over time. Though, between two 
successful authentications, a malicious reader will always receive either PID or PID2 

from its requests and will therefore be able to track the tag. However, it assumes that 
the malicious reader is following the tag, which does not make sense in a realistic sce-
nario (i.e. if the reader follow the tag, you do not need to read it in order to track it).   

Replay attack occurs when a malicious tag tries to authenticate itself by repeating 
the authentication sequence (PID) of a genuine tag. While the reader will reply with A, 
B and D, the malicious tag won’t be able to retrieve any information from those values. 

De-synchronization attack is used by an attacker to update the values in only one 
part of the network, either the tag or the reader, in order to make it impossible for 
them to communicate further. In our scheme, before any update of data, there is a 
check (D and F) and if the values do not match, the intrusion is detected and the value 
of PID2 is not updated in the server. If it is updated by mistake, the old value (PID) will 
be used to recover from the attack.  

Forward Security is the possibility to maintain integrity of the communication 
over time. It means that even if the tag is physically compromised one day, and the 
attacker is able to recover the secret values of the tag, it will not be able to find the 
previous data, since every exchange of data includes two random numbers.  

Disclosure attack is used to retrieve some secret information from one entity by 
sending a slightly modified message to see the impact on the answer. In our scheme, 
any change is detected and the attacker won’t receive any answer. 

 

As a conclusion of the security analysis, it appears that the proposed protocol is ro-
bust to any kind of attack. The Table 1 is a comparison of security threat in different 
ultra-lightweight protocols implemented for low-cost RFID tags. Our solution is 
slightly lighter than SASI and the authentication protocol is more advanced. 

4.2   Privacy Analysis 

We will review in this section the privacy issues presented in the section I and see 
how the protocol handle with them. The action threat as well as the association 
threat is solved since it is impossible to retrieve information from the tag without 
being authenticated by the server. The preference threat, the transaction threat and 
the breadcrumb threat are not directly in the scope of this paper since they deal with 
the association of a tag to its owner. This is mainly dependant on the application used  
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Table 1. Comparison of ultra-lightweight authentication protocols 

  LMAP M²AP EMAP SASI Ours 

Resistance to de-
synchronization attacks 

No No No Yes Yes 

Resistance to disclosure 
attacks 

No No No Yes Yes 

Privacy and anonymity No No No Yes Yes 

Forward Secrecy No No No Yes Yes 

Mutual Authentication No No No Partially* Yes 

Memory size on tag 6L** 6L 6L 7L 5L 

Memory size on server 6L 6L 6L 4L 4L 

Operation types on tag m2,,, +•⊕ m2,,, +•⊕ m2,,, +•⊕ Rotm ,2,,, +•⊕ •⊕ ,  

* Authentication Reader/server is assumed, Tag/Reader is done only in one direction. 
** L denotes the bit length of one pseudonym or one key. 
2m

 denotes the addition modulo 2. 

and the usage of the tag. However, assuming the identity of someone would be re-
vealed, it still remains impossible for an adversary to read the information stored in 
the tag, insuring the privacy of the person. Finally, the location threat and the con-
stellation threat are probably the weakest link in this protocol. Both are related to 
tracking and we saw in the security analysis that between two legitimate readings, it is 
possible to track a tag. However, it assumes that it exist several malicious readers, 
placed in different strategic points, able to communicate with each others, and that no 
legitimate reading is done between the two malicious readings. The nature of the 
threat depends on the reader’s ability to retrieve the identity of the tag’s holder. 

5   Conclusion 

In this paper we presented a new solution to the security and privacy issue in RFID 
Technology. The solution we provided maintains a strong security despite its ultra-
lightweight algorithm, and can overcome any kind of attack over the radio. The com-
parison with other similar protocols shows that it is more light, simple and at least as 
robust as the others. Thanks to its light weight and bit-wise operations, it can be easily 
implemented on ultra-low-cost RFID tags.  
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Abstract. Sensor networks are one of the first examples of pervasive computing, 
which is characterized by the massive use of increasingly smaller and powerful 
devices. A cloud of sensors arranged in a given environment is in itself a great 
source of data; accessing this source in order to extract useful information is not 
a trivial problem. It requires correct sensor deployment within the environment 
and a protocol for data exchange. We also have to bear in mind the problem of 
data and sensors security: sensors are often installed in areas difficult to protect 
and monitor. In this paper we describe SensorTree, a functioning model and a 
simulator for a network of wireless sensors installed on the sea surface to 
measure parameters useful for determining the weather situation.  

Keywords: Key management in wireless/mobile environments, Data retrieval, 
Data security,  Hashchain, Network resilience. 

1   Introduction 

Recent progress in micro-electromechanical systems (MEMS), wireless communications 
and digital electronics has allowed the development of increasingly efficient and cheap 
multifunctional sensor nodes capable of communicating with other sensor nodes through 
low-range wireless technologies. 

A Wireless Sensor Network (WSN) is a set of sensor nodes arranged within or very 
close to the phenomenon to be observed [1]. It can comprise different kinds of sensors 
(e.g. seismic, magnetic, infrared, acoustic, radar) useful for monitoring many 
environmental conditions [2]. 

Sensors are able to “collaborate” and preliminarily process data, sending not just 
coarse data to collector nodes [1]. Thanks to this characteristic, sensor networks are 
suitable for many kinds of applications, such as medical, military and security. 

The creation of these networks can require some techniques originally developed 
for wireless ad hoc networks. However, the protocols and algorithms directly derived 
from ad hoc networks do not fulfill sensor network purposes. We can argue this point 
outlining the main differences between these two kinds of networks [3]: 

 

• the number of nodes in a sensor network can be much greater than in an ad hoc 
network; 

• sensor nodes are deployed with high density; 
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• sensor nodes are prone to frequent failures; 
• sensor network topology can change frequently; 
• sensor nodes mainly use broadcast communications, whereas ad hoc networks are 

based on point-to-point communications; 
• sensor nodes have very restricted power, computing and storage capabilities. 
 

The last point is one of the main constraints of sensor networks; sensor nodes are 
equipped with limited power supply units and, generally, it is not possible to recharge 
or change them. This paper is concerned with the design and implementation of a 
model for a real sensor network application, that allows for all the conditions described 
above and provides secure communication scheme and data transfer, by means of 
multiple hashchains and techniques for node protection against external attacks. 

2   Model Architecture and Network Functioning 

SensorTree model has been conceived to obtain weather conditions by monitoring 
temperature, wind speed and luminosity at the sea surface close to a beach or a coastal 
area. It uses a multi-hop communication scheme with sensors identified by a unique 
ID and one Sink node always active. Each node should be able to measure the three 
weather parameters and send the data to Sink, which should be able to determine the 
situation throughout the entire monitoring area. 

Each node lies within a rigorous level architecture defined over the stretch of sea to 
be monitored. The upper bound of the area (landwards) is delimited by Sink node and 
the lower bound (seawards) is defined by the number (indefinite) of levels. So the 
total number of levels is given by the number of nodes and their transmission range, 
which determines the level’s height and width. 

The operating area of a SensorTree network can be represented as a series of 
overlapping rectangles, as shown in figure 1. Level dimension has been chosen so that  
 

 

Fig. 1. Level architecture of SensorTree 
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transmission range of devices allows communication only between nodes at 
contiguous levels, in other words it is not possible to skip a level. The height of a 
level is a little more than half-transmission range and is equal to 5/4 of the width. 
Increasing level width risks compromising communication between a node of level n 
and a node of level n±1. 

By virtue of this structure, each node resides only in one level (there are no 
overlapping areas) and has well defined coordinates within the area. We assume the 
devices are attached to a buoy and anchored to the sea bed, hence with negligible 
variations of their position. 

2.1   Tree Construction 

SensorTree network functioning is based on a tree structure which is built up along 
the levels of the monitoring area. The start-up of the entire survey system envisages a 
downward network growth starting from the Sink node; once Sink has been started, 
network construction begins turning on a sensor node (e.g. s1) in level 1. S1 notifies 
its presence sending a PowerOn request containing its position, battery level and other 
parameters1. 

Sink receives the request and sends to s1 a PowerOn reply communicating its 
identity, adding the node to its children list and marking it as “preferred” child. S1 
immediately takes Sink as its root node (the only one for the first level). 

Switching on another node (s2) in the same level, will produce nearly the same 
operation as above, but in addition:  

 

• s1 does not reply to the PowerOn request sent by s2: requests sent by a node of the 
level n are handled only by nodes of levels n-1 and n+1; 

• as soon as Sink receives s2 request, Sink adds s2 to its children list and checks its 
battery level: if it is higher than s1,  then s2 will become the new preferred child. 

 

The rules outlined above hold for any other node turned on in level 1; updating of 
the Sink’s children list is very important.  

Tree construction proceeds in the same way for the other levels, but from the 
second level onwards each node can choose between different roots. The choice of  
“preferred” root, as happens for children, is based on battery level, and variations 
therein can cause root changes. 

2.2   Tree Maintenance and Convergence 

The tree structure changes continuously; node battery level varies constantly, a few 
nodes can switch off or be destroyed and new nodes can join the network. So, a tree 
maintenance and convergence policy is required, that always guarantees the delivery 
of active nodes data to Sink. 

Every T seconds (in simulations we chose T=10, but in similar contexts a longer 
time period can be used), each node sends to its neighbor nodes (children and roots, 
never nodes on its same level) a StatusRefresh notification containing battery level in 
addition to surveyed parameters. It is important to specify that T period starts a few 
                                                           
1 In the simulation software, besides an address and the survey data, we used ports useful to 

different services and to test many instances of the application in the same machine.   
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instants after the node is switched on, so notifications are not synchronized. 
Obviously simultaneous notifications can occur but co-channel interference problems 
only arise for contiguous levels. The destination node (can be Sink too) receives the 
essential information indicating that its neighbor is still active and updates its lists 
using just received data, perhaps modifying preferred root and child. 

Eventually some node fails; this means that it will no longer send StatusRefresh 
notifications. If a node stops sending send StatusRefresh notifications it will be 
deleted from its neighbor membership lists; if the node was a  preferred node then 
preferred root and child must also be updated according to battery level of still active 
nodes. This mechanism has been implemented using a timer started at the same time 
as the last notification acceptance. 

Should a node switch off or turn on before the timer has expired, probably no one 
would realize, except for the fact that when turned on again it sends a PowerOn request 
to detect neighbor nodes. In any case this request would be discarded (could be a 
duplicated ID) and the node would resume working as though nothing had happened. 

2.3   Routing Tree 

The tree construction described in the previous sections places much emphasis on node 
battery level and thus on estimating node life time. The choice of preferred roots and 
children is fundamental in determining routing paths used for data flow toward Sink. 

From the above described rules it should be obvious that no node has a full view of 
the tree. Each node knows nodes on contiguous levels (its children and roots) but does 
not know what lies beyond. Only Sink can, at any time, perform a query on the tree 
and know all its details. Underlying nodes (not every one) can use the query to know 
next levels but they do not know anything about the previous ones.  

In section 2.2 we stated that StatusRefresh notifications are not synchronized. This 
means that not every node has the same view of the tree at every instant. This problem 
is solved when it is required to know precisely the network status, that is when Sink 
requires a tree snapshot. This event triggers a data update of all sensors reachable 
from Sink, giving a full view of the monitoring area.  

Tree tracking, like most of the operations performed on the tree, is recursive and is 
based on two simple steps: 

 

1. Sink makes a StatusRefresh call to all its children which reply with a notification 
containing all data; Sink updates its children list and, if it is not empty, adds it to 
the procedure result; 

2. The procedure is propagated recursively until the lower level (or until a tree 
interruption occurs) and the results returned to the upper level at each step.  

 

This approach is not purely recursive because each root receives the first results 
simultaneously with propagation to next levels, not after reaching the end of the tree. 

2.4   Nodes Querying 

SensorTree simulator, in addition to tracking functionality, provides 4 modes to query 
the nodes. Queries do not require an immediate update of the lists: each node replies 
with data obtained during last refresh, such that no inconsistent data are sent. In fact, 
in these cases only one node is responsible for data sent to upper levels. Furthermore, 
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the data provided are at the most T seconds “old” and this can be neglected for T 
values within reasonable ranges. Anyway instantaneous data can be obtained 
performing a refresh, as previously described, before querying the tree.  

All query modes are based on checking children lists owned by each root and on 
query propagation to preferred child. Also in these cases the recursive technique is 
adopted with the same specification described in the previous section. 

The first query mode involves all nodes and is useful for obtaining data for all 
sensors contained in the network. The results can be used, for example, for calculating 
average values of parameters for the whole tree. The preferred root of each level is 
responsible for the data transmitted to Sink; this query is able to detect possible 
duplicated nodes on the network. 

The query on one node, detected using its ID, returns all data surveyed from that 
sensor: temperature (°C), wind speed (m/s), luminosity (lx). Moreover, it returns the 
level where the node is situated, its coordinates and its battery level. The presence of a 
duplicated ID is not detected because the procedure stops at the first matching node; 
however, retrieved information can be used to perform a consistency check with 
initial node distribution. 

Another mode is the level query, which returns all data of the nodes in the level 
specified as query parameter. It can be used to verify if a level is reachable and detect 
tree interruptions. 

Finally, the query on a point allows to obtain survey data in a particular point of 
the monitoring area, specified by its coordinates. Obviously not necessarily does a 
node exist at the exact point specified, therefore the data obtained pertain to the sensor 
closest to that point. Unlike the other queries, propagation does not follow the 
preferred child but the child closest to the requested point; along with parameter 
values survey distance is also determined.  

2.5   Automatic Rejoining 

It clearly emerges from the above sections that tree construction cannot skip any 
levels: turning on a node in a level not contiguous to the lower one, will not change 
the tree structure because this node is too distant to be reached. However it is possible 
to continue tree construction because turning on other nodes in the underlying levels 
follows the same rules explained so far, so the first non reachable node is the root of 
an independent sub-tree. This scenario can be also obtained when every node of a 
level stop working: the preferred child of the previous level and the preferred root of 
the next one have no links in that level and cannot communicate. 

This kind of situation is inconsistent because sub-tree data cannot reach Sink, but is 
not so compromising: turning on a node in the empty level suffices to join the two 
trees. The mechanism used is very simple and allows the functioning of one or more 
independent trees; while the level is empty, data arriving to the root of the lower sub-
tree are stored in a buffer so, if the period of time is enough short, survey data won’t 
be lost. When a node in the empty level is turned on, it sends a PowerOn request that 
is satisfied by the preferred nodes of the contiguous levels and the sub-tree is 
automatically rejoined. At this point, the level previously empty, works like other 
levels; the steps are shown in figure 2 (the bold line between two nodes shows 
preferred root and child):  
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Fig. 2. Automatic rejoining steps. a) the level n is empty and there is an independent sub-tree 
starting from level n+1: S1n+1 bufferizes survey data; b) S1n is turned on in the level n and 
sends a PowerOn request; c) S2n-1 and S1n+1 (respectively the preferred child and the preferred 
root of their levels) send a PowerOn reply; d) S1n is the preferred child of S2n-1 and the 
preferred root of S1n+1: the sub-tree is rejoined and data collected by S1n+1 can reach Sink.  

3   Data Integrity and Authenticity 

Data flowing through the tree are not in themselves sensitive data and do not require 
specific policies to protect users’ or third-party’s privacy. However authenticity and 
integrity of data collected by Sink need to be guaranteed. For this reason, each 
message bound for Sink is accompanied by an authentication code computed by 
node’s unique key, according to HMAC (keyed-hash message authentication code) 
standard: 

H((K0⊕opad )|| H((K0⊕ipad) || text)) (1) 

In simulations we used SHA-1 algorithm (20 byte keys) and SHA-512 (64 bytes).   

3.1   Nodes Initialization 

Nodes need a key to authenticate communications directly addressed to Sink and 
another one to initialize a hashchain with its preferred root in order to send measured 
parameters. Since we do not use a public key infrastructure (PKI), prior to initializing 
communications with Sink we need to authenticate messages. 

The initialization of a node is done during its installation, when it can load in main 
memory a key from a trusted source and use it to communicate with Sink (which 
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obviously knows keys associated to each node) without saving it in a secondary 
memory. But in this way, only the first initialization of the node can be done and only 
being able to physically reach the node. Subsequent activations may be necessary in 
the event of malfunction, temporary exclusion from the tree or after attack by 
extraneous nodes.  

In order to obtain this functionality each node has to be able to execute a hash 
function (e.g. SHA-1) and a secure deletion algorithm (e.g. Gutmann with appropriate 
passes only, Schneier, DoD-3 or other simpler ones). Moreover, the node has to store 
a list of keys to be used for subsequent activations (number of possible activations 
depends on number of keys but, then again, the device’s life is limited by its battery 
duration). Memories considered here take into account dimensional specifications of 
the sensor network.  

After the first initialization, a node that has to be remotely re-activated expects to 
receive from Sink the hash for the first key on the list (only Sink can compute it). As 
soon as this is received, the node computes the hash for the key and matches it with 
the one received, verifying that activation was actually started by Sink. At this point, 
the node loads the second key of the list in the main memory deleting it in secure 
mode from flash memory. The first key (which remained in main memory since first 
initialization) is now active and can be used to authenticate the messages directed to 
Sink. The activation sequence is shown in figure 3. 

 

 

Fig. 3. Keys activation sequence 

3.2   Data Collection and Hashchains 

Data collection passes at each level through preferred root of the nodes, which is 
responsible for data sent to Sink. Obviously, in the first level, each node can send the 
data directly to Sink, which can therefore be authenticated using HMAC standard. 
Otherwise, each node can start a hashchain with Sink to guarantee data authenticity 
and integrity. This method is used for next levels of the tree, where each preferred 
root plays the role of Sink, in order to avoid individual node data being sent directly 
to Sink for authentication and the resulting generation of excessive traffic volumes. 
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In order to initialize the chain, each node, possible root, stores the hashes of a set 
of initialization keys owned by underlying nodes. The pool of keys is loaded in main 
memory as explained in the previous section for activation keys, while the hashes of 
the keys can be stored in the flash memory.  

The chain is started by sending the key’s hash to the preferred root together with 
first data hash; the next block contains first data, the hash of the second and so on. 
The chain can be interrupted and subsequent reinitializations cannot be done using the 
same hash. To solve this problem each root can store the hashes of different keys for 
each node, otherwise can expect to receive the nth hash of the key at first 
initialization, the n-1th at the second and so on, creating a one-time password 
authentication scheme. Root node storage and hashchain are shown in figure 4:  

 

Fig. 4. Hashchains and one-time passwords 

Using this mechanism a potential attacker wanting to enter the chain should be able 
to retrieve measurement data of next block using the hash of current block. Observing 
enough transmissions, an attacker will notice that some measurement data recur in the 
chain and analyzing the hashes can try to guess the content of the next block. To 
avoid this kind of attack, means ensuring that identical survey data generate different 
hashes, introducing additional data in the computation process. Introducing values 
obtained by a pseudo-random number generator (PRNG) can be useful but this does 
not significantly enhance security; inserting values obtained by a true-random number 
generator (TRNG) is the best solution. In simulations, the true-random values has 
been generated using parameter measurement intervals: the expiry time between one 
measurement and another is not extremely rigid and is influenced by hardware delays 
due to measurement devices and clock. The delays and the total time from last 
measurement are measured with an accuracy higher than interruptions (e.g. 
milliseconds or nanoseconds) and added to data packet (which also contains unique 
IDs for each node). The probability that an attacker guesses the exact instant of data 
measurement and sending is really low. 

Once the preferred root has collected data from each child and verified their 
authenticity, it sends them directly to Sink using a JumboData packet that is 
forwarded on the routing tree path. This packet does not contain authentication data of 
individual nodes but only an authentication code computed by the root according to 
HMAC standard. 
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4   Capture-Resilience 

The most difficult problem to solve in this kind of application is the physical 
protection of the nodes. An attacker can steal them, copy their content, clone them or  
exchange them with other devices. In order to protect the nodes we need to ensure 
that even if the attacker does steal the node, he is unable to extract useful information 
for accessing the network. 

In the nodes activation procedure and for using the keys for measurement data 
sending, we have chosen to store the active key and the next key of the activation pool 
in the main memory (RAM) alone, performing a secure deletion from the secondary 
memory (flash memory) of the loaded keys. The latter step is very important because, 
even after a flash memory erase operation, the transistors do not return fully to their 
initial state, thereby allowing the attacker to distinguish between previously 
programmed and not programmed transistors, and thus restore information from 
erased memory [4]. 

We also have to prevent the attacker from accessing the main memory content, for 
example by creating tamper-protection for the node which forces node shutdown in 
the event of intrusion. But shutdown in itself is not sufficient, because RAM 
memories are also prone to data retention problems: using a key for a long period of 
time can cause long-term retention effects in the memory [5], leaving useful traces for 
restoring information. Therefore memory cells should not store data for too long a 
period of time (e.g. performing a bit flipping) and in the event of tamper detection it is 
necessary to apply a reverse current which reverses the electromigration stress due to 
long-term retention [5]. In this way node theft and access to its content render the 
node unusable for joining the network. 

In our tests and simulations we verified the functioning of solutions proposed in 
previous sections proving that latency times of joining procedures and query 
propagations allow a correct data delivery to Sink node; for this purpose we also 
considered latencies introduced by capture-resilience measures for keys activation 
sequences and nodes initialization. 

5   Conclusion 

The model described above has allowed to develop a simulator which fulfils all 
requirements for the correct functioning of SensorTree network. The proposed model 
is also the cornerstone for an ongoing development project for testing and creating the 
network. 

The use of the tree structure enables efficient communication between the nodes 
minimizing the paths to Sink. In spite of this advantage, the tree structure introduces 
geometrical constraints on level dimensions;: However, this problem can be solved by 
introducing intra-level communications and designating some groups of nodes as 
landmarks. Intra-level communication can also be useful for differentiating data 
collection modes and for simplifying pure recursive operations on the tree. 

Level subdivision enables critical network areas to be identified and to act simply 
on those areas, maintaining a regular functioning of the other levels (even with 
independent trees). Even simply adding one node to the network can create a critical 
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situation when the number of nodes is very large. This is the reason why it may be 
necessary to develop a control protocol to handle this situation, to quickly solve tree 
interruptions and to allow Sink node mobility.  

The choice to rely on hash algorithms and shared keys for message authentication 
and integrity well matches sensor node capabilities, whose most recent commercial 
versions have barely sufficient resources to operate on asymmetric key encryption 
algorithms [6]. This choice has also made it possible to reduce data overheads 
introduced by encryption algorithms, especially for very large data blocks. However, 
the use of cryptography (even if symmetric) could be useful for ensuring greater 
protection of some communications, for simplifying key redistribution and for 
ensuring data privacy when necessary. 
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Abstract. Explosive growth of the Internet and lack of mechanisms that
validate the authenticity of a packet source produced serious security and
accounting issues. In this paper, we propose validating source addresses
in LAN using Host Identity Protocol (HIP) deployed in a first-hop router.
Compared to alternative solutions such as CGA, our approach is suitable
both for IPv4 and IPv6. We have implemented SAVAH in Wi-Fi access
points and evaluated its overhead for clients and the first-hop router.
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1 Introduction

Routing of packets in the Internet is based on the destination IP address. It is
hard to identify the source of the packet. Attackers can easily spoof the source
IP address of a packet; hosts under Denial-of-Service (DoS) attacks cannot trace
the originators. Another negative result can be a blocked service for a given
source address, which can be the address of a good host compromised by an
attacker.

These issues forced the source address validation to become an urgent prob-
lem in networking research. Several existing solutions are based on cryptographic
authentication, traceback, and filtering. In this paper, we propose a solution
called Source Address Validation Architecture with Host Identity Protocol (HIP)
(SAVAH), which involves cryptographic authentication and filtering based on
the host identifiers. This method integrates with a source address validation
architecture (SAVA) [1], and acts as an alternative to proposed method of vali-
dating source addresses on the edge (or first-hop) router using Cryptographically
Generated Addresses (CGA).

Host Identity Protocol (HIP) is a new security protocol which integrates host
locator/identifier split, mobility, and multihoming. It was specified by IETF
[10,12,11,8,9,14,13,16]. Possessing important properties such as a secure and ef-
ficient session key negotiation and self generated host identifiers for authentica-
tion, HIP can help to solve the problem of source address validation.

We believe that SAVAH can be deployed in a large-scale network and in-
tegrated with existing solutions deployed on different level of granularity. In

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 190–201, 2009.
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general, we think that HIP-based source address validation can become a re-
placement for a CGA approach [1]. We also think that it provides more security
than any of the existing solutions for the source address validation in a local
network, as it relies on a cryptographically secure protocol.

The paper is organized as follows. Section 2 gives an overview of Host Identity
Protocol. Section 3 summarizes related work. In Section 4, design and imple-
mentation of SAVAH is described. In Section 5, we discuss integration of our
proposal with general SAVA architecture. Performance measurements are given
in Section 6 and Section 7 concludes the paper.

2 Background on Host Identity Protocol

The existing Internet architecture was designed for stationary hosts and faces
many non-trivial challenges today with the growing number of mobile terminals.
Currently, there are two namespaces used globally by the Internet services and
applications, domain names and IP addresses. IP addresses serve the dual role
in the Internet being both end host identifiers and topological locators. This
general principle does not allow hosts to change their location without breaking
ongoing transport protocol connections that are strictly bound to IP addresses.

The Host Identity Protocol (HIP) [8,6] was proposed to overcome the problem
of using IP addresses for host identification and routing. The idea behind HIP
is based on decoupling the network layer from the higher layers in the protocol
stack architecture (see Figure 1).

Fig. 1. HIP architecture

HIP defines a new global name space, the Host Identity name space, thereby
splitting the double meaning of IP addresses. When HIP is used, upper layers
do not anymore rely on IP addresses as host names. Instead, Host Identities are
used by the transport protocol for establishing connections. IP addresses at the
same time act purely as locators for routing packets towards the destination.
For compatibility with IPv6 legacy applications, Host Identity is represented by
a 128-bit long hash, the Host Identity Tag (HIT).



192 D. Kuptsov and A. Gurtov

HIP offers several benefits including end-to-end security, resistance to CPU
and memory exhausting denial-of-service (DoS) attacks, NAT traversal, mobility
and multihoming support.

3 Related Work

There are three main methods for source address validation: cryptographic au-
thentication, ingress/egress packet filtering, and various traceback techniques.

Cryptographic authentication appears a promising solution which brings
strong security properties for authenticating originator of the network communi-
cation. IPSec [7] is one example, which allows secure end-to-end communication.
Wu et al. [15] point out that IPSec depends on global deployment of PKI in-
frastructure. HIP [6,8] in combination with HIP-enabled firewall, in turn, can
provide basic functionality for source address authentication and validation. One
possibility will be covered in Section 4.

Another approach is SPM [5] designed for authorization of neighboring au-
tonomous systems (AS). This approach provides solution for source address au-
thorization and relies on cryptographic properties.

Filtering of malicious packets containing wrong source addresses can be con-
sidered a simple solution. Unlike solutions based on cryptographic properties, it
is straightforward to deploy, but less secure approach. Examples can be ingress
filtering, SAVE protocol [4] and HCF filtering [3].

4 SAVAH Design and Implementation

We considered three possible approaches when designing the source address val-
idation mechanism using HIP.

1. First, a so-called pure HIP communication with HIP firewall in-between.
This requires that all communicating peers support HIP. Then the HIP fire-
wall (which should be deployed on an edge of a local network) tracks base
exchange signaling packets from all hosts that try to communicate with the
hosts outside the local network and only lets through the packets with valid
HITs and IP addresses. Later, data is sent in ESP encapsulated packets so
that the firewall can check the SPI values of the packets and drop those
that do not match a previously seen base exchange. This approach requires
a large-scale deployment of HIP protocol.

2. Secondly, we assume that hosts inside the local network support HIP with
our extension. Then the HIP base exchange can replace a CGA approach [15].
This case is the main focus of the article and will be discussed in detail.

3. Finally, HIP tunneling approach can be used. It is less efficient in perfor-
mance, but can provide better security and mobility support to wireless
clients. The client creates a tunnel between itself and the SAVAH router us-
ing HIP base exchange and SAVAH extension. Later all traffic is forwarded
through this tunnel to the Internet. There were previous studies on tunneling
the traffic to home router in PISA [2].
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4.1 SAVAH Architecture

SAVAH targets to solve the source address validation problem in the edge router
of the local network serving as a default gateway. SAVAH architecture is com-
posed of two main components:

– A SAVAH-enabled client, which is a combination of a HIP daemon and a
firewall in a client mode supporting SAVAH extension.

– A SAVAH-enabled router running the HIP daemon and the firewall but in a
server mode.

DHCP server can be considered the third component in our architecture. Its
main role in the network is to offer particular configuration for SAVAH aware
hosts. For instance, DHCP can provide the default gateway IP address as well
as a HIT of the SAVAH router. Availability of a proper configured DHCP server
can help to solve the problem of opportunistic mode as discussed later in this
section. However, we consider DHCP as an optional component in the network.

SAVAH aware clients can be configured manually, meaning that the IP address
and the HIT of the SAVAH router can be setup by a system administrator prior
to any communication. However, manual configuration can be a tedious task in a
large scale network. As the third option, the SAVAH-enabled client can discover
the SAVAH router using the opportunistic mode.

The message sequence diagram for SAVAH registration and further authenti-
cation process is shown in Figure 2. It involves three entities in the local network
to perform the source address validation: the SAVAH client, the SAVAH router,
and the DHCP server (optionally). The receiver in Figure 2 is playing the role
of a legacy peer, i.e., it may or may not support HIP. Of course, if both commu-
nicating peers support HIP, whole scenario requires only a normal HIP-enabled
firewall to filter the traffic based on HITs.

Since the SAVAH router is the first-hop router, it should be placed on the edge
of the local network and serve as a default gateway. If the default gateway and
the SAVAH router are not placed physically on the same node it is meaningless,
because all network traffic flowing through the SAVAH-unaware router would
not contain the SAVAH option and would be discarded.

4.2 SAVAH Router Discovery

Unless the DHCP server offers a HIT of the SAVAH router during the address
assignment phase, the SAVAH client is obliged to discover the presence of the
SAVAH service automatically. Otherwise, the client is aware of the HIT and the
IP address of the SAVAH router and can register to the service directly. It is
also possible to preconfigure the client and specify the IP address and HIT of
the default gateway.

Optionally, the presence of a SAVAH-unaware DHCP means that the client
will obtain only the IP address of the default gateway. No prior knowledge of
the SAVAH router’s HIT forces the client to discover the service using the HIP
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Fig. 2. SAVAH service registration and authentication process

opportunistic mode [6] and a set of usual procedures for HIP service registra-
tion [11].

The drawback of such broadcasting is that in the opportunistic mode the
client is unaware of the HIT of SAVAH router and any node can thus pretend to
be a valid router. This resembles a similar problem with SSH when connecting to
unknown hosts. Hence, the opportunistic mode should be used only in a trusted
environment.

To trigger a registration in opportunistic mode, the SAVAH client requests
from the system the default gateway IP address and sends an I1 packet with the
destination HIT as a hashed source IP address. On the other side, the default
gateway running SAVAH in a server mode responds with an R1 packet containing
an offer for available services in REG INFO parameter.

Upon receiving the R1 packet the client chooses the supported services and
responds with an I2 packet containing a REG REQUEST parameter to SAVAH
server. If REG INFO parameter does not contain the SAVAH service offer, the
client completes base exchange normally and afterward falls back to normal
communication, i.e., the SAVAH mode is not supported in this network.

Finally, depending on the setup of the SAVAH router, it either grants or denies
the service to a client in an R2 packet with a REG RESPONSE or REG FAILED
parameter. Receiving a REG FAILED parameter in an R2 message during the
base exchange or experiencing a timeout in an I1 state means that either the
default gateway does not support SAVAH extension or that HIP daemon with
SAVAH extension is not running at all.

This situation should indicate the SAVAH client to fallback to normal commu-
nication, i.e., the packets to be forwarded through the default gateway would not
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contain any authentic information. As an opposite result, if the SAVAH router
grants the service to the registering client, both parties will posses a shared
secret key.

4.3 Packet Authentication

For performance reasons, the keys in use for authentication (i.e., HMAC keys) in
IPSec were selected to authenticate the source addresses. Depending on a setup,
symmetric cryptography can be selected as well.

Filtering on HITs can be applied to ensure that the peer trying to register
to the SAVAH service is legitimate. This filtering can enforce to either grant
or deny the SAVAH service to the registrars. Firewall rules in the HIP-enabled
firewall control such decisions. By default, all packets with an unknown identifier
are dropped.

After completion of the HIP base exchange, the SAVAH router adds the source
IP address of the host to a database. This works if no record with such IP address
were already present in the database. If a record with such IP address already
exists, it is likely that the host is trying to spoof someone else address and the
packet should be dropped nor any state added. Moreover, this incident can be
logged and reported for further analysis.

If the host experiences an address change, then the record is replaced with a
new IP address. To ensure the validity of the host, a HIP UPDATE packet has to
be received and handled properly. This will guarantee that the host indeed the
one it is claiming to be. The record should be removed from the database upon
a timeout or when the host removes a security association (e.g., a HIP CLOSE
packet is received from the corresponding host). To ensure that the client is alive,
the SAVAH router can also send heartbeats to the client without waiting for the
timeout.

After the secret keys are established by means of the HIP base exchange, the
SAVAH client may communicate with the nodes outside of the local network by
including an authenticated source IP address in each packet. Current implementa-
tion has two options to deliver the authenticated hash value to the router. The first
approach is to replace the original source IP address of each packet with truncated
result obtained from HMAC(key|{P}) operation, where {P} is the packet to be
transmitted. We have chosen the packet value as a feed to the HMAC function to
introduce a simple protection mechanism from replay attacks.

This approach has some drawbacks. First of all, for IPv4 networks the size
of authentication value will be only 32 bits. Secondly, that would decrease the
performance since additional address translation would be required on the router.
Finally, that method will require additional changes to the router to recognize
locally routed traffic.

A different way to carry the authenticated source IP address to SAVAH router
is to store it in an IP option. Since the SAVAH router is the first-hop router and
all SAVAH related options are striped out on the forward direction, this ensures
that no modifications are required for other routers on the path. Placing the
authentication value in the IP option can have certain advantages. First of all,
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this approach slightly optimizes the performance of the architecture. Secondly,
stronger security can be achieved by increasing the length of the authentication
value. We suggest to keep this length within wise bounds, since it affects the size
of the actual payload.

4.4 Source Address Validation

To authenticate the packet source address, the following algorithm is used. On
the router side, each packet in forward direction is checked for the SAVAH IP
option. If found, the router compares the value of the option against truncated
128-bit result from HMAC(key|{P}) operation, where {P} is the packet to be
forwarded. If matches, the SAVAH option is striped out and the packet is re-
injected to the network. If not, the pinhole is searched for a given source and
destination IP addresses. If the pinhole is found, the packet is said to be an
inbound packet for previously authenticated outbound communication. Finally,
if both fail the packet is dropped.

If the tunneling approach is used, then the authentication succeeds if the
SAVAH router can successfully decrypt the ESP packet and resend encapsulated
in ESP original packet to its final destination. Unlike in the lightweight approach
for inbound traffic, the SAVAH router in a tunnel mode should properly encrypt
and tunnel the packet to the corresponding mobile node.

Storing a mapping between the identity and the source IP address of each
accessing client on the SAVAH router, allows to keep track for the duplicate and
spoofed IP addresses, and account each packet traversing the router.

Whether the network access is controlled by the ACL or not, spoofing of the
source IP addresses is eliminated as there can be only one mapping between one
particular HIT and the IP address. The mapping can be updated or removed
once the corresponding UPDATE or CLOSE packet arrives and validated by
the SAVAH router. Even when no ACL is maintained, the client cannot forge
the source IP address because for each newly self-assigned IP address and/or
generated HIT the user needs to complete a four-way HIP handshake with the
SAVAH router.

If the address is spoofed with an address of the same subnetwork, the SAVAH
router will detect a duplicate address use (because of a locally stored mapping
table), and will prohibit the registration to the service. As an additional security
action, such activity can be logged and reported. Moreover, non-repudiation
property of HIP allows to take a counter measure against such users. If the
client tries to spoof the IP address with an address of a network other than
the local, such packets should be filtered out with ingress filtering deployed on
the SAVAH router. Hence, spoofed packets will be dropped and the user will be
logged as malicious and banned from using the network.

For the reasons discussed in the previous paragraph, several address spoofing
and denial-of-service attacks are eliminated. For instance, amplifying attacks
including various redirect attacks (e.g., DNS redirect, smurf, fraggle, etc.), DoS
attacks (those that rely on spoofing the source address), and SYN flood attacks
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(since most of the SYN flood attacks require to generate TCP SYN packets with
a spoofed source address) become hard to launch.

5 Deployment and Integration with General SAVA
Architecture

We are planning to pilot our architecture in a large-scale IPv6 network in Ts-
inghua University and CERNET2 in China. Our source address validation is
placed on the border between local network and the first autonomous system.
Instead of CGA mechanism for source address validation [1], HIP with SAVA
extension is used as shown in Figure 3.

Fig. 3. Integrating SAVAH with inter-AS source address validation

The key strength of our proposal is that in addition to basic source address
validation our implementation adds support for mobility, multihoming, data in-
tegrity and encryption. Another advantage is that accounting can be maintained
easily since the network access is controlled based on valid registered HITs. Al-
though this is not necessary to validate the source address, it can be considered
as a plus in large-scale networks. However, as with CGA mechanism, our archi-
tecture requires modifications to hosts residing in the local network to pass the
authentication procedure.

Figure 4 shows how SAVAH can be deployed and used in a public wireless net-
work, for instance in PanOULU [18] or Tsinghua University campus network, to
validate, authenticate, and account network traffic. The figure describes possible
step-by-step procedure for adding an unknown HIT to ACL:

1. First, a client tries to register with a SAVAH router using the procedure
described in Section 4.

2. In case the HIP firewall does not find the client HIT in the ACL, it drops
all packets except for HTTP traffic which is redirected to the SAVAH regis-
tration HTTP server. Otherwise, the client successfully completes the HIP
base exchange and is permitted to use the network.
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Fig. 4. A HIT registration procedure

3. A web registration form is sent to the client browser. The client provides
his email and HIT and submits the form. As an alternative the client can
identify itself by some other mechanism, for instance using Internet banking.

4. The SAVAH registration server checks if the submitted email belongs to the
list of allowed domains (pre-configured database). It generates the authen-
tication link and sends it to the given email address.

5. The client retrieves the email.
6. The client clicks the link in the email and thus authenticates the previously

submitted HIT.
7. The authenticated HIT is distributed to all SAVAH routers and HIP firewalls.

6 Performance Evaluation

In the experiential setup, we used a wireless access point and a laptop. The
wireless access point was running a modified version of OpenWRT Linux distri-
bution [17], a HIP daemon, and a firewall in a SAVAH server mode. The laptop
was running Ubuntu Linux and HIP in a SAVAH client mode.

We assume that our network is trusted, hence we use an opportunistic mode
to discover the SAVAH router presence in the network. Hardware characteristics
of the SAVAH router and client are shown in Table 1. Our testbed supports both
IPv4 and IPv6 network stacks and we can evaluate SAVAH extension in both
configurations.

We performed measurements of packet processing time in the router and the
client. Collected results are shown in Figure 5 and Figure 6 for the router and
client correspondingly. The expected time for packet processing in both ends
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Table 1. Test hardware

Parameter First-hop router Laptop
CPU 533 MHz Dual core 2.4 GHz
RAM 128 MB 3GB

Wireless Atheros BG Intel AGN
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Fig. 5. SAVAH packet processing time in the first-hop router (Avila board)
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Fig. 6. SAVAH packet processing time in a client (laptop)

(i.e., for router and client) is 9ms and 1ms. In theory, these results should allow
to process on the average 110 packets per second in the router and around 1000
packets in the client. Hence, we estimate throughput of 1.3Mbps and 13Mbps in
the router and in the client (assuming the Ethernet MTU 1500B).
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Such performance is not sufficient for a router on the edge of a network with
heavy traffic. Since our implementation is only a proof-of-concept, its optimiza-
tion should help to overcome this hurdle. On the other hand, implementation
can be faster in using RSA or DSA signatures [2]. For instance, the time re-
quired to check one DSA signature was about 63.7 ms. However, by compiling
the prototype without debugging information and with several optimizations,
the performance can be increased by 150 − 200%.

The memory costs are insignificant in the SAVAH mode. We have tested
SAVAH extension during long period of time by streaming video files. We have
noticed that memory usage on the SAVAH router stayed below 26MB boundary.
On a device such as the Avila board (used as a router), this is not significant.

The CPU usage showed 100% load when heavy traffic is streamed through
the router. The scheduler releases all CPU cycles to a demanding application.
In our case, the HIP daemon and firewall were the only applications in an active
state. Thus, this does not necessarily leads to a decrease in performance of
other applications. Instead, 100% usage of CPU tells that the application is
a resource hungry. However, memory copy operations required to strip out the
SAVAH option are currently inefficient and can be optimized. On the other hand,
calculating HMAC does stress the CPU and a packet is processed faster than if
any other (symmetric or asymmetric) cryptography would have been used.

7 Conclusions
In this paper, we proposed a secure mechanism for validating source addresses
and authenticating hosts in the local network. In SAVAH, local hosts use the ex-
tended Host Identity Protocol (HIP) to connect to legacy Internet hosts through
a first-hop router which authenticates users.

SAVAH architecture involves three network entities, a network configuration
server (DHCP), a client, and a router supporting extended HIP for host authenti-
cating and source address validation. We implemented the system by re-flashing
firmware of a wireless access point with OpenWRT Linux and HIP protocol
supporting SAVAH extension.

Performance evaluation showed that SAVAH wireless access points can vali-
date source addresses and provide reasonable protection against address spoofing.
In addition, SAVAH offers stronger cryptographic properties including authenti-
cation, authorization, accountability, non-repudiation, and consistency. Our ap-
proach enables host mobility and multihoming. In contrast to CGA-based
approach, SAVAH supports both IPv4 and IPv6, and is a patent-free technology.
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Abstract. The effective convergence of service-oriented architectures
(SOA) and peer-to-peer (P2P) is an urgent task, with many important
applications ranging from e-business to ambient intelligence. A consid-
erable standardization effort is being carried out from both SOA and
P2P communities, but a complete platform for the development of se-
cure, distributed applications is still missing. In this context, the result
of our research and development activity is JXTA-SOAP, an official ex-
tension for JXTA enabling Web Service sharing in peer-to-peer networks.
Recently we focused on security aspects, providing JXTA-SOAP with a
general security management system, and specialized policies that tar-
get both J2SE and J2ME versions of the component. Among others, we
implemented a policy based on Multimedia Internet KEYing (MIKEY),
which can be used to create a key pair and all the required parameters for
encryption and decryption of service messages in consumer and provider
peers running on resource-constrained devices.

Keywords: service, peer-to-peer, security.

1 Introduction

Peer-to-peer (P2P) is clearly arising as a disruptive paradigm enabling highly
scalable decentralized applications based on resource sharing. A peer-to-peer
architectural model defines application-level protocols and policies for the con-
struction and maintenance of an overlay network, where each peer node is itself
a resource, being discoverable and contributing to the operation of the whole
system.

While for many years the focus of P2P research has been on performance
optimization of content sharing applications, there is now a growing interest
for service-oriented P2P systems, in which peers offer consumable resources, i.e.
resources that cannot be acquired (by replication) once discovered, but may only
be directly used upon contracting with their hosts [11].

The convergence of service-oriented and peer-to-peer architectures requires
standards for (1) overlay network construction and maintenance, (2) message
routing among peers, (3) service advertising, discovery and interaction, (4) se-
curity. While SOAs have sound, widely accepted standard protocols covering
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points (3) and (4), for example within Web Service technologies, on the other
hand P2P systems lack of unified views and solutions.

Among others, Sun MicroSystems’ JXTA is probably the most advanced at-
tempt to provide a standard set of P2P protocols [12], covering all listed points to
a certain degree. JXTA protocols should allow a vast class of networked devices
(smartphones, PDAs, PCs and servers) to communicate and collaborate seam-
lessly in a highly decentralized fashion. The JXTA framework defines a naming
scheme, advertisements, peergroups, pipes, and a number of core policies, while
the JXTA middleware implements the specifications in Java and C++.

In a previous work [13] we introduced the JXTA-SOAP component, which
is an official extension for JXTA, enabling Web Service sharing in peer-to-peer
networks. Here we provide more implementation details, focusing on security
aspects, for both J2SE and J2ME versions of JXTA-SOAP.

The paper is organized as follows. In section 2 we present related work on
peer-to-peer security, focusing on service interaction issues. In section 3 we de-
scribe the architecture of JXTA-SOAP, with reference to adopted technologies.
Section 4 illustrates secure service invocation mechanisms, with different policies
depending on the characteristics of the device that hosts the peer. Finally we
conclude the paper with a summary and an outline of future work.

2 Background

Making peer-to-peer systems secure is a significant challenge. A malicious node
might give erroneous responses to requests, both at the application level, return-
ing false data, or at the network level, returning false routes and partitioning
the network. Moreover, the P2P system must be robust against a conspiracy of
a malicious collective, i.e. a group of nodes acting in concert to attack reliable
ones. Attackers may have a number of goals, including traffic analysis against
systems that try to provide anonymous communication, and denial of service
against systems that try to provide high availability.

Security attacks in P2P systems are classified into two broad categories: pas-
sive and active [5]. Passive attacks are those in which the attacker just monitors
activity and maintains an inert state. The most significant passive attacks are:

– Eavesdropping, which involves capturing and storing all traffic between some
set of peers searching for some sensitive information (such as personal data
or passwords).

– Traffic analysis, where the attacker not only captures data but tries to obtain
more information by analyzing its behavior and looking for patterns, even
when its content remains unknown.

In active attacks, communications are disrupted by the deletion, modification or
insertion of data. The most common attacks of this kind are:

– Spoofing, in which one peer impersonates another, or some outside attacker
transforms communications data in order to simulate such an outcome.
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– Man-in-the-middle, where the attacker intercepts communications between
two parties, relaying messages in such a manner that both of them still be-
lieve they are directly communicating. This category includes data alteration
between endpoints.

– Playback or replay, in which some data exchange between two legitimate
peers is intercepted by the attacker in order to reuse the exact data at a
later time and make it look like a real exchange. Even if message content
is encrypted, such attacks can succeed so long as duplicate communications
are allowed and the attacker can deduce the effect of such a repeat.

– Local data alteration, which goes beyond the assumption that attacks may
only come from the network and supposes that the attacker has local access
to the peer, where he can try to modify the local data in order to subvert it
in some malicious way.

To cope with these attacks, security policies adopted at the overlay P2P net-
work level usually consist of key management, authentication, admission control,
and authorization. These are the strategies we took into account for securing
consumer-to-service communication in JXTA-SOAP.

Transport-level security is mostly based on Secure Sockets Layer (SSL) and
on its successor Transport Layer Security (TLS) that runs beneath HTTP, the
most popular protocol for Web Services. HTTP is an inherently insecure protocol
because all information is sent in clear text between unauthenticated peers over
an insecure network. Transport-level security can be applied to secure HTTP;
the purpose of TLS is to create a secure pipe between two web servers. Authen-
tication occurs at the time the secure pipe is created, and confidentiality and
integrity mechanisms are applied only while the message is in the secure pipe.
When running over an TLS-protected session, the server and client can authenti-
cate one another and negotiate an encryption algorithm and cryptographic keys
before the application protocol transmits or receives its first byte of data. At the
receiving endpoint the messages are decrypted by the server.

Once a Web Service transmits a message it does not always know where that
message will be traveling to, and how it will be processed before it reaches its
intended destination [14]. A number of intermediary services may be involved in
the message path; a transport-level security technology will protect the privacy of
the message contents while it is being transmitted between these intermediaries
and number of additional technologies are required to facilitate the message-level
security required for end-to end protection. WS-Security (Web Services Security
Language) can be used to bridge gaps between disparate security models but also
goes beyond traditional transport-level security to provide a standard end-to-end
security model for SOAP messages through the use of header blocks that are sent
with the message. Transport-level and message-level security mechanisms can be
combined to obtain a higher level of security in service invocation.

In [8], security issues that occur in the underlying routing protocol are de-
scribed, as well as fairness and trust issues that occur in file sharing and other
P2P applications. The creation of a secure routing primitive is a technique that
can be used to address this problem. In this model, application specific objects
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are assigned unique identifiers, called keys, selected from the same id space. Each
key is mapped by the overlay to a unique live node, called the key’s root. Such a
primitive ensures that when a non-faulty node sends a message with a specified
key, the message reaches all non-faulty members in the set of replica roots with
a very high probability. Implementing the secure routing primitive requires the
solution of three problems: securely assigning identifiers to nodes, to prevent an
attacker from choosing the value of identifiers assigned to the nodes he controls;
securely maintaining the routing tables, in order to ensure that the fraction of
faulty nodes appearing in the routing tables of correct nodes does not exceed,
on average, the fraction of faulty nodes in the entire overlay; finally securely
forwarding messaging assures that at least one copy of a message sent to a key
reaches each correct replica root for that key with high probability.

In [6] a general architecture is proposed that enhances security aspects by
leveraging trusted computing technology, which is built on a trusted platform
module and provides a mechanism for building trust into the application layer.
A trusted reference monitor (TRM) in the platform of each peer can monitor
and verify the information a peer provides and ensure data authenticity. Using
credentials, a TRM can also digitally sign data from a peer and provide veri-
fication mechanisms for a remote site. The proposed general trusted platform
with a TRM assumes an homogeneous environment, i.e. each platform is evenly
equipped with the necessary trusted computing hardware.

Intrusion detection is another important issue in any security framework, in
particular for mobile ad hoc networks, for which attacks on nodes can disrupt
communications. Any node can observe part of the total traffic, making dis-
tributed intrusion detection a suitable approach: each node is responsible for de-
tecting intrusions in its local neighborhood. In this form of intrusion detection,
a node’s neighbors observe that node’s external behavior and form a judgement
about a node’ “trustworthiness”. In [7] the common problem of how to combine
observational data from multiple nodes is afforded with the Dempster-Shafer
evidence theory. This theory addresses the problem of combining evidence from
multiple observers representing uncertainty the form of belief functions. The
idea is that an observer can obtain degrees of belief about a proposition from a
related proposition’s subjective probabilities. The Dempster-Shafer theory, com-
pared for example with the Bayesian approach, is appealing because it can handle
uncertainty or ignorance.

3 JXTA-SOAP

The JXTA-SOAP component is an official extension for the Java version of JXTA
middleware, enabling Web Service sharing in peer-to-peer networks. JXTA-
SOAP has been designed having in mind ubiquitous computing needs, to re-
duce the complexity otherwise required to build and deploy peer-to-peer service-
oriented applications. In a previous work we described the internal architecture
of JXTA-SOAP, with the purpose of conceptualizing its main features at a high
abstraction level [13]. In particular we focused on service deployment, publica-
tion, lookup and invocation.
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JXTA peers use pipes in order to exchange messages and access available re-
sources. JXTA messages are XML documents with ordered message elements
which may contain any type of payload. Messages are the basic data exchange
unit in JXTA and all protocols are defined as a set of messages exchanged be-
tween peers. Pipes provide an asynchronous, unidirectional and unreliable com-
munication channel by default. However, bidirectional reliable channels may be
provided on top of them. They offer two operation methods: unicast pipes, which
allow one-to-one communications, and propagation pipes, which allow one-to-
many. JXTA pipes are an abstraction and are not bound to a specific IP address
or port. They have a unique ID and are published just like any resource in the
JXTA network, so any peer may update them whenever its physical location
changes. Both input pipes, used for message reception, and output pipes, used
for message sending, are considered pipe endpoints, an actual destination in
the physical network. JXTA-SOAP uses pipes for carrying consumer-to-service
requests, and service responses.

The internal architecture of a JXTA-SOAP peer is illustrated in figure 1.

Fig. 1. Architectural layers of service-oriented peers based on JXTA-SOAP. The J2SE
version (on the left) is based on Axis and JXSE, while the J2ME version (on the right)
is based on kSoap2 and mAS.

We implemented two (interoperable) versions of JXTA-SOAP: J2SE-based, ex-
tending JXTA-J2SE, and J2ME-based, extending JXTA-J2ME. In the following
we describe their features and the different technological solutions they rely on.

3.1 JXTA-SOAP for Java Standard Edition (J2SE)

The J2SE version of the JXTA-SOAP component supports service deployment,
discovery, and invocation, with optional use of standard mechanisms to secure
communications among peers. The core of the component is the Apache Axis
engine (v1.4), which is a producer/consumer of SOAP messages. Usually Axis is
deployed in a Web application server, such as Apache Tomcat, together with the
implementations of the Web Services to be deployed, while client applications
use the Axis Java API to create request instances. The Axis engine provides
the processing logic, either client or server. When running, it invokes a series
of Handlers according to a specific order which is determined by two factors -
deployment configuration, and whether the engine is a client or a server. The
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object which is passed to each Handler invocation is a MessageContext, i.e. is a
structure which contains several important parts: 1) a ”request” message, 2) a
”response” message, and 3) a bag of properties.

Once a service instance has been initialized, the Axis engine may dispatch
multiple remote invocations to it. After that, when the Axis engine determines
that the service instance needs to be removed from service of handling remote
invocations, it destroys it. In the implementation of the destruction functionality,
the service object releases its resources.

For remote service invocation, a consumer peer needs to instantiate a Call ob-
ject. JXTA-SOAP’s Call class extends Axis’ default one, overloading the use of
service URLs with the use of the Service Descriptor and the public pipe advertise-
ment of the service. To create Call instances, the peer uses the implementation
of the Call Factory class provided by Axis.

3.2 JXTA-SOAP for Java Micro Edition (J2ME)

The J2ME version of the architecture supports Connected Device Configuration
(CDC) and Personal Profile. We implemented the API which enables the de-
velopment of peers that are able to deploy, provide, discover and consume Web
Services in a JXTA-SOAP network. Since Axis is not available for the CDC
platform, we adopted kSoap2 [2] as SOAP parser (for consumer functionalities)
and, for service provision, we integrated the mAS [3] lightweight engine.

Service invocation is allowed by a kSoap2 based implementation of the Call
Factory class. The latter instantiates a kSoap2’s Soap Object, and sets all the
properties for message exchanging through JXTA pipes. Soap Object is a highly
generic class which allows to build SOAP calls, by setting up a SOAP envelope.
We have maintained the same structure of J2SE-based version for Call Factory, to
allow portability of service consumer applications from desktop PCs or laptops to
PDAs. Internally, the Call Factory class creates a Soap Object passing references
to the Service Descriptor, the public pipe advertisement of the service and the
peergroup as parameters for the creation of the Call object.

After instantiating the transport using the Call Factory class, the consumer
peer creates the request object, indicating the name of the remote method to
invoke and setting the input parameters as additional properties. This object is
assigned to a Soap Serialization Envelope, as the outbound message for the soap
call; Soap Serialization Envelope is a kSoap2 class that extends the basic Soap
Envelope, providing support for the SOAP Serialization format specification and
simple object serialization. The same class provides a getResponse method that
extracts the parsed response from the wrapper object and returns it.

For service provision, we integrated the Server class of the Micro Application
Server (mAS) into the basic service class of the JXTA-SOAP API. mAS imple-
ments the Chain of Responsibility pattern [4], the same used in Axis. It avoids
coupling the sender of a request to its receiver by giving more than one object a
chance to handle the request; receiving objects are chained and and the request
passed along the chain until an object handles it. Moreover, mAS allows service
invocation by users and service deployment by administrator; it also supplies
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browser management of requests, distinguishing if the HTTP message contains
a Web page request or a SOAP envelope.

4 Secure Service Invocation

Currently, JXTA-SOAP supports secure service invocation by means of two or-
thogonal mechanisms. The first one, transport-level security, allows to create a
TLS-based secure channel which guarantees the integrity and confidentiality of
exchanged information, by means of mutual authentication between parties (us-
ing X.509 certificates) and data encoding. The other approach is WSS-based
message-level security, for which SOAP messages sent by service consumers con-
tain security parameters (tokens) which are extracted by service providers to
check for consumers’ compliance with the security policy of the invoked service.
Figure 2 summarizes the interaction of a peer with a discovered secure service.

The net.soap.jxta.security.policy package provides two important mod-
ules, i.e. Policy and PolicyManager. The latter is a class which allows to asso-
ciate a service with a security policy (currently: TLS, WSS, or both). The Policy
interface provides methods which are commonly implemented by all policy classes.
They allow to extract authentication parameters from the client request message
and to verify their correctness according with the service security requirements.
If all parameters are validated, the client is allowed to invoke the service, other-
wise the request is refused. Authentication parameters are stored in a vector of
SOAPService class that is used to keep a list of authenticated peers.

Current implementations of the Policy interface are DefaultTLSPolicy,
based on JXTAUnicastSecure pipes which subsume default (unsecure) JXTAU-
nicast pipes, and DefaultWSSPolicy, which uses Apache’s WSS4J to provide
SOAP messages with security headers and fill them with tokens. Policies are
associated to services by means of two extensions of the <Parm> field of the
ModuleSpecAdvertisement. The first extension is the <security> tag, whose
value (true or false) indicates whether a service is secured or not. The other
extension is the <InvocationCharter>, a XML document which is inserted in
the <Parm> field of the ModuleSpecAdvertisement if the <security> tag is set
to true. The secure invocation model is illustrated in figure 3 (TLS-based case),
with particular emphasis on multithreaded handling of concurrent invocations.

The net.soap.jxta.security.certificatepackage provides classes that en-
able JXTA-SOAP to use X.509 certificates for authentication and to extract them
from a PeerAdvertisement; in particular, it uses the Key Store associated to JXTA
PSEMembershipService, that is initialized when the peer boots in the network
group. The net.soap.jxta.security.wss4j package implements a WSSecurity
class, that enables the client to create a custom security header for invocation re-
quests, according to the Invocation Charter (i.e. encryption, body signature).

4.1 DefaultTLSTransport

TLS is the default technology used by JXTA-SOAP when the secure service is
created. Each SOAP message between client and server is sent through a TLS
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Fig. 2. Interaction with a discovered secure service

channel which requires previous authentication of involved entities. According
to the implemented policy, a communication session is established, in which the
client sends to the server its PeerAdvertisement with the peer self-signed certifi-
cate created by JXTA. The server is able to extract additional information about
the requesting client (i.e. name, PeerID, group) and, if the authentication proce-
dure succeeds, to update the list of authenticated peers with the corresponding
entry:

[PeerID, X.509 Certificate]

Then a TTL (time to live) is associated to the authentication of the client. At
the end of the period of validity, the entry is automatically deleted from the list.

Since the default TLS policy implementation uses JXTA’s PSE keystore for
storing/retrieving certificates, it is necessary that both client and server also
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Fig. 3. TLS-based secure invocation model. Concurrent invocations are handled by
separated service threads.

authenticate to the PSEMembershipService, which is the default membership
service implemented in JXTA. When the client request is received by the server,
an output pipe is created for invocation response and validation of authentication
parameters; then the X.509 certificate is imported,a new thread is created for
secure invocation management and the associated secure pipe is sent to the client
for successive invocations.
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4.2 DefaultWSSMessage

This is the default message security policy and uses the methods of WSSecurity
class to build a security header which is included in all messages and invocation
requests. During the authentication phase, the client attaches its X.509 certifi-
cate to the header using a <wsse:BinarySecurityToken> and digitally signs the
request message body with its private key.

The WSS-based policy does not use JXTA PSE keystore, but requires that
both client and server generate a couple of private/public keys and use them to
create a self-signed X.509 certificate which is stored in their own keystore, whose
integrity and privacy are granted by means of a password.

4.3 MIKEYPolicy for Mobile Applications

Since PSE membership classes are not available for JXME version of JXTA
platform, we imported and modified them to be able to authenticate peers within
a peer group. Moreover, J2ME does not support TLS, so it was impossible to
use JXTA secure pipes for service invocation. We implemented a new type of
pipe, JxtaUnicastCrypto, by which it is possible to cipher message contents,
and we used them to define a new security policy, suitable for Connected Device
Configuration (CDC) and Personal Profile.

PipeService and PipeServiceImpl classes in the net.jxta.pipe package
create and use a SecretKey object containing the cipher algorithm and the cor-
responding key. The client and the server have to share the same key, so we intro-
duced Multimedia Internet KEYing (MIKEY) [9] protocol to create the key pair
and all the required parameters for encryption and decryption operations. Al-
though memory and processing power have dramatically improved for handheld
devices, encryption remains a resource-intensive task that requires consideration
when designing protocols. MIKEY is a schema for management of cryptographic
keys which can be used in real-time and peer to peer applications; it was de-
veloped with the intention to minimize latency when exchanging cryptographic
keys between small interactive groups that reside in heterogeneous networks. The
protocol is defined in RFC 3830 and in JXTA-SOAP project we introduced an
implementation with RSA-R algorithm [10]. The standard describes mechanisms
for negotiating keys between two or more parties who want to establish a secure
channel of communication; to transport and exchange keying material, three
methods are supported, Pre-shared secret key (PSK), Public Key encryption
(PKE) and Diffie Hellmann (DH) key exchange. Each key-exchange mechanism
(PSK, PKE, and Diffie-Hellman) defined in MIKEY is using the same approach
of sending and receiving messages, but the message attributes (that is, headers,
payloads, and values) differ from method to method.

To create a MIKEY message it is necessary to create an initial MIKEY mes-
sage starting with the Common Header payload, and then concatenate nec-
essary payloads of the message. As a last step create and concatenate the
MAC/signature payload without the MAC/signature field filled in; calculate
the MAC/signature over the entire MIKEY message, except the MAC/Signature
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field, and add the MAC/signature in the field. The common header payload must
be included at the beginning of each MIKEY message (request and response)
because it provides necessary information about the Crypto Session with which
it is associated. MIKEY defines several payloads to support the three key ex-
change methods and the corresponding architectural scenarios (that is, peer to
peer, simple one to many, many to many, without a centralized control unit).
The main characteristic of MIKEY protocol is that it minimizes message ex-
change; the negotiation of key material should be accomplished in one round
trip, as described in figure 4.

Fig. 4. MIKEY transaction example: the JXTA-SOAP Client is a peer that acts as
service consumer, while the JXTA-SOAP Server is a peer that acts as service provider.
Of course roles can be exchanged, since every peer can provide and consume services.

5 Conclusions

In this paper we presented the mechanisms that we implemented in the JXTA-
SOAP component to support secure service invocation in a peer-to-peer network
of service providers and consumers. In particular, we provided insights into the
mobile version of JXTA-SOAP, targeting mobile devices with J2ME CDC profile.

Future work will mainly focus on supporting Web Service Security mechanisms
also for the J2ME-based version of the component, in order to sign and verify
SOAP Messages through the creation of security headers. This will ensure end-
to-end security in service invocation when both server and client are resource
constrained devices.
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Abstract. The Third Generation Partnership Project (3GPP) standardisation 
group currently discusses advanced applications of mobile networks such as 
Machine-to-Machine (M2M) communication. Several security issues arise in 
these contexts which warrant a fresh look at mobile networks’ security 
foundations, resting on smart cards. This paper contributes a security/efficiency 
analysis to this discussion and highlights the role of trusted platform technology 
to approach these issues. 
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1   Introduction 

The idea of M2M is that un-manned terminals, e.g. traffic cameras, meters, cargo 
containers, can communicate with host servers using wireless global communications 
networks. This requires the usual secure authentication for network access. 

The networks will not be specially M2M-enabled, so the authentication has to 
follow the standardised schemes currently in place for mobile (e.g. 3GPP) and fixed 
(e.g. WLAN) networks. 

M2M security requirements [1] may make the conventional UICC (Universal 
Integrated Circuit Card) a less advantageous solution for secure authentication. It is 
necessary to look at the options for a non-personalised security module to which a 
network operator’s MCIMs (Machine Communications Identity Modules) can be 
downloaded [1]. This may be accomplished using an embedded Trusted Environment 
(TRE) in a terminal. The TRE acts as a hardware root of trust for the storage and 
execution of secure applications and may also have protected software functions. The 
TRE may host downloaded software MCIMs that emulate the behavior of the USIM 
(Universal Subscriber Identity Module) [2] or ISIM (Internet Multimedia Services 
Identity Module) [3] applications. 

                                                           
* Mike Meyerstein is the proprietor of Meyerstein Consulting Ltd, currently providing 

consultancy services to InterDigital Communications Corporation. 
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2   M2M Requirements 

The M2M market has some definitive characteristics [1]: 
 

• Terminals may be in hard-to-reach locations (e.g. traffic cameras) 
• Terminals may become geographically dispersed over time (e.g. cargo 

containers) 
• Owners of large populations of terminals may want to change the network 

operator without visiting the terminals (e.g. to change the UICC). 
• Terminals need to be protected against unauthorised removal of UICC 
• Terminals may require over-network provisioning after sale or installation. 

3   The Options for a TRE to Host Secure, Downloadable MCIMs 

Client-side technologies for TREs could include 
 

• UICC with download capability. 
• An embedded TRE in the terminal, to provide a secure execution and storage 

environment. MCIMs would be downloaded to the TRE over public IP 
networks. 

• Smart token such as the new multimedia card with on-card UICC (or “SMC” 
– Secure Multimedia memory Card) 

A framework of standardised specifications is needed for the above solutions. 

standards-based framework

UICC
Regular or 
USB+ large 

memory

Embedded 
Trusted 

Environment 
(TRE)

Smart Token
e.g. secured 
multimedia 

cards (SMC)

 

Fig. 1. Options for TRE to Host Downloaded MCIMs 

The discussion within standardisation about the (dis-)advantages of the various 
candidate solutions is lively and far from concluded. 

In Table 1 on the next page we collect the main arguments that have been advanced 
thus far in various forums and standardization committees (there is no reference 
document in which this information can be found). 
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Table 1. Comparison of Potential Solutions for TRE 

REQUIRED 
FEATURES 

Today’s UICC Embedded TRE SMC 

Currently standardised good medium (could 
be based partly 
on TCG specs) 

medium 

Currently available  good medium (some 
limited versions 
available) 

poor 

Protection against 
unauthorised removal 

poor (good, if M2M 
form factor UICC 
is soldered in) 

good poor 

Provides secure API good good not known 
Does not require 
connector and interface 
chips 

poor good poor 

MCIMs can be 
downloaded for initial 
provisioning and for 
replacement of MIDs 

poor. Can only 
install USIM or 
ISIM during 
manufacture 

Good poor. Can only 
install USIM or 
ISIM during 
manufacture 

Key management suits 
M2M model 

poor (pre-shared 
keys for 
authentication and 
download) 

good (can use 
PKI (Public Key 
Infrastructure)) 

poor 

Predictable costs poor (for full-
function, big 
memory, 
downloadable 
UICC) 

Good (part of 
chipset) 

poor 

Secure channel to 
terminal 

poor (standardised 
but seldom 
implemented) 

good not known 

Remote change of 
operator 

poor good poor 

Open API for download poor good poor 
Track record of trust good poor poor 
Established 
infrastructure 

good Poor Good (fits UICC 
infrastructure) 

Built into operator’s 
current trust models 

good Poor Medium  (partly fits 
UICC trust model) 

Built into operator’s 
current business models 

good poor poor 

Promotes operator’s 
current brand image 

good poor good 

 
No solution comes out as perfect, but the embedded TRE shows promise if it can 

be standardised. The UICC shows promise if its current limitations (including that of 
lack of implementation of already-standardised features in cards and terminals) can be 
overcome. In the next sections, we look at issues surrounding the use of UICC as a 
TRE. 
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4   Smart Card Security in Mobile Networks: Why Is the Smart 
Card a Trusted Anchor? 

Physical Tamper-Resistance: 
An ISO -7816 [7], [8], [9] smart card has, in practice, a single-chip architecture with 
little possibility of monitoring communications between different chips on the card. 
Smart card ICs (Integrated Circuits) are designed and implemented to prevent probing 
and reverse-engineering. They are fabricated on a dedicated production line in a 
secure facility. Measures include scrambling of busses and of memory addresses, 
bonded passivation layers, permanently disabled test points, self-generated 
programming voltage. 

Proprietary, Secure O/S (Operating System): 
The Smart card’s standardised API, e.g. [4], consists of a restricted command set that 
has no hidden commands or access methods. It is trusted because of its own built-in 
security mechanisms and because of those of the underlying hardware platform. It is 
non-updateable. 

For applications such as USIM, the K (i.e. the pre-shared authentication key)and 
OTA (Over The Air) keys are stored and accessed by the O/S in proprietary ways. 
The O/S cannot be made to reveal the values or memory locations of those data. 

Conventional GSM SIM (Subscriber Identity Module) cards did not allow adding 
applications to a live card. The advent of the Javacard [10] now allows applications 
on a multi-application UICC platform to be updated, deleted or added to an issued 
card, either remotely or locally. The potential of Javacard for Network Operators is 
currently restricted by  

• Implementation by Network Operators of only SMS (Short Messaging 
Service) as the bearer (for OTA messages to the UICC), which has a very 
limited bandwidth 

• OTA security standards [11]1 are not profiled for IP bearers 
• Lack of a sufficiently rich terminal/UICC interface on nearly all MEs2 

(Mobile Equipments) 
• General concerns about the security of multi-application Javacards. 

In the world of telecoms, it is generally the buyer’s task to perform due diligence 
tests on the smart card vendor to ensure that the O/S has been properly developed and 
evaluated.  

Other Measures: 
Smart cards include proprietary measures to prevent attacks such as slowing down the 
external clock and measures against power analysis attacks by the use of noise-free 
                                                           
1 N.B. [11] has been recently split up and its former contents have been dispersed over [18], 

[19], TS 31.115 Secured Packet Structure for (U)SIM Toolkit applications and TS 31.116 
Remote APDU Structure for (U)SIM Toolkit applications. [11] is still widely referred to in 
the telecoms sector. 

2 A few terminals have implemented the JSR177 [12] terminal/UICC interface, but it’s usually 
only the SIM toolkit part and not the general APDU (Application Protocols Data Unit) API. A 
few Windows Mobile MEs have allowed an open APDU API to the UICC, using the 
terminal’s RIL (Radio Interface Layer) but it is not clear if those are still in production. 
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computational algorithms and/or injection of artificial noise and/or damping of noise 
on the power rail. There are also said to be a large number of detailed precautionary 
measures taken, some of which are described in the public domain (e.g. [14]). 

Design and Development Process: 
Security is designed into a smart card IC in the secure facilities of a semiconductor 
manufacturer. The computers that are used for this are isolated from the rest of the 
world. Undocumented counter-measures in the IC are supported by corresponding 
design criteria. Once the O/S development is finished, the entire source code may be 
checked by an independent evaluation. 

Supply Chain: 
There are only a handful of world-class vendors of smart cards, so it is feasible for 
Network Operators (who own and specify the UICCs) to perform the necessary 
security audits. There will be an agreed arrangement for transferring the K objects 
between network operators and UICC vendors. K values cannot be retained in the 
vendors’ personalisation systems or be discovered by system operatives. 

Security Evaluations: 
Card vendors have their O/S independently evaluated and MNOs perform security 
evaluations of their card vendors’ products and facilities. GSMA (GSM association) 
[15] provides non-public guidance to its members on how to do that. Common 
Criteria Protection Profiles have been published for smart cards. One of these [16] is 
aimed at the underlying IC platform but some are aimed at payment cards issued by 
financial institutions such as Visa and Mastercard. Cost can be an issue for wider 
adoption of these evaluation regimes. There are no standard specifications or 
protection profiles for the security evaluation of telecoms smart cards such as UICCs. 

UICC-Terminal Interface Security: 
The UICC employs some security measures in the interface with the terminal: 
 

• User Authentication: PINs (Personal Identity Numbers) (called CHV1 
(Card Holder Verification) and CHV2 in a SIM card), provide some level of 
protection with user authorisation on the interface. CHV1 can be disabled 
by the user, in which case there is no PIN-protection for making calls. The 
use of CHV1 and CHV2 poses a security vulnerability since the passwords 
get transported across the UICC-ME interface in clear. The UICC does not 
authenticate itself to the user, although 3G authentication [2] provides 
mutual authentication of the card and the network. In M2M, a remote user 
could rely on two possible methods of assuring himself of the authenticity 
of a UICC, i.e. (a) using a remote access protocol that exploits a pre-shared 
or private key on the UICC and/or (b) using e.g. Liberty Alliance [22] 
protocols to trigger the UICC issuer to perform an authentication of the 
UICC and possibly binding that to the remote access session, 

• Secure channels: Commands to the UICC are not secured unless they are 
inside a 3GPP OTA envelope [11]. That is why ETSI and 3GPP have 
recently specified secure channels and their key establishment methods ([5], 
[6]) across the terminal-UICC interface. ISO (International Organisation for 
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Standardisation) 7816 [20], [21] and EN726 [17] define secure messaging 
between a terminal and a smart card but key distribution was not defined (it 
being assumed that it would be based on pre-installed keys). ISO7816 also 
defines a set of security-related commands. Neither the ISO nor CEN 
(Comité Européen de Normalisation) techniques are included in UICC 
specifications such as [4]. ETSI (European Telecommunications Standards 
Institute) and 3GPP secure channel specs [5] and [6] compliment the ISO 
and CEN standards by defining methods for key distribution between the 
terminal and UICC. There does not seem to be any reason to believe that 
normal terminals can be trusted to store the distributed keys. Protocols such 
as Global Platform [10], ETSI RAM (Remote Application Management)/ 
RFM (Remote File Management) [18], [19] and 3GPP OTA [11] provide 
end-to-end security from server to card for the purpose of loading and 
managing files and applications on the UICC. They do not require a secure 
ME/UICC interface.3 

• Protection of data across the interface: All standardised command-sets of 
a UICC are designed to be sent in the clear across the terminal/UICC 
interface. Protocols that may be subject to replay attacks must have 
counter-measures built in, e.g. the sequence numbers used in 3G 
authentication [2]. In future, the Smart Card Web Server (SCWS) [23], 
could use HTTPS (HyperText Transfer Protocol Secure)/TLS (Transport 
Layer Security) to establish a secure tunnel from card to server (or to 
terminal) via which usernames and passwords could be sent. 

• Access control: In general, ACLs (access control lists) are not used in 
today’s UICC O/Ss. Access to file operations relies on the principle that if 
the entity accessing the file can satisfy the access policy (embodied in the 
File Control Parameters [4]), then it must be an authorised entity. 

5   Meeting M2M Requirements with UICCs 

Advent of the “Big SIM” UICC 
Recent innovations in smart card technology could go a long way to enabling the 
UICC to fulfill the M2M requirements. The new features described below, plus the 
ability to store downloaded applications and multimedia files, would need the large 
memory of “Big SIM”. However, providing such features on UICCs could well be 
cost-prohibitive for M2M. 

Large Memory: Recently, UICCs with flash memory of up to 2Gbytes have 
become  available. 

                                                           
3 Remote Application Management can theoretically be used to download any Javacard 

application to a UICC and to store it in a security domain. It does not currently apply to the 
U(I)SIM applications, as there is no standardised mechanism for the UICC to extract and 
store the Ki and algorithm customisation parameters. For the case of updating existing files 
either locally or remotely, this is possible only where the access conditions in the File 
Control Parameters can be satisfied. Remote (OTA) file update is possible on files in any 
application on the UICC, but only if the files were OTA-enabled at the time the file was 
created on the UICC. 
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High-Speed I/O: The conventional I/O speed of the UICC/terminal interface is 
only a half-duplex 9.6Kbit/s4. In order to be able to move data on and off the Big SIM 
in a meaningful timeframe, a USB (Universal Serial Bus) interface has been specified 
in [13] and [8]. 

Smart Card Web Server (SCWS): The advent of “Big SIM” with USB I/O enables 
the UICC to support an IP stack and web server. There are a number of advantages to 
this, e.g. use of (X)HTML ((eXtensible or) HyperText Markup Language) to 
communicate with the UICC. UICCs could even have their own IP addresses, which 
could introduce a whole set of security issues. ETSI SCP has standardised SCWS [23] 
and IP [23] on a UICC. Use of SMS for application download is limited in practice to 
about a 1kByte payload, i.e. 7 concatenated SMSs. Even then, this requires a 
dedicated SMS-C (SMS Centre) to achieve an effective success-rate. With ordinary 
SMS-Cs whose resources are shared with mainstream SMS, the practical limit may be 
as little as 2 concatenated SMSs, i.e. about 300 bytes. The size of a download using 
an IP bearer does not suffer from such limitations. 

Internal Security Domains: Global Platform has specifications [10] that define 
security domains on a Javacard smart card. ETSI SCP (Smart Card Platform) are now 
expanding upon these in their specifications for “Confidential Applications.” This 
allows the card issuer to set up domains for the use of third parties to load applets 
onto the card. The issuer cannot examine those applets. The UICC provides a sandbox 
environment in which the domains are isolated from each other – a feature that has 
been somewhat limited in Javacard implementations up to now. 

Enhancements Required to UICCs for M2M Mass Market 
A UICC to be used in mass-market M2M applications would have to support the 
requirements of long life-time with long maintenance intervals, non-removability, 
remote download of operator’s authentication application and remote change of 
operator. Some very significant enhancements need to be considered as follows:  
 

Security Domains: Support is required for security domains for the card issuer and 
for third parties, e.g. as per the SCP specifications “Confidential Applications” 
concept. But in the M2M scenario, network operators would be classed as third parties. 
In order for the card issuer to allow the M2M equipment owner to change to a new 
network operator, the card issuer (who is therefore not a network operator) assigns a 
domain to a new network operator and closes the domain of the old network operator. 

Removable UICC vs. Downloadable UICC: unauthorised removal of a traditional 
“removable” UICC must be made very difficult, while its replacement must be easy. 
A better  alternative to this is to fix the UICC in the terminal and for it to support the 
ability to download MIDs. Such a UICC must be able to extract K objects and 
similarly sensitive data from messages from a remote server and lock them away in 
secure memory so that they cannot be revealed to entities outside the UICC. Network 
operators will demand that there be no reduction of security in UICCs that support 
these features. 

Download Protocols: Support is required for secure download protocols other than 
standardised OTA, i.e. M2M requires protocols which do not require pre-shared keys 

                                                           
4 Somewhat higher speeds can be negotiated between ME and card, but all must support the 

default speed for backward compatibility. 
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and which can be used over IP bearers. (In this respect, support for SCWS and IP 
stack could be an advantage). 

Secure Interface to UICC: Support for a secure terminal-UICC interface [5], [6] 
may be a requirement, as discussed above. 

6   Security Analysis and Comparison: Can an Embedded TRE 
Ever Be as Secure as a Smart Card? 

Successful, Publicised Attacks Against Smart Cards 
Smart Card technology had experienced some crises in the past, as follows: 
 

Side Channel Attacks (specifically Power Analysis): This type of attack relies on 
the noise on the smart card’s power contact being correlate-able with the processing 
that is going on in the UICC, especially when it is reading the values of a secret key 
into its internal registers. This can work well on an unprotected card that uses the 
DES (Data Encryption Standard) algorithm. RSA (Rivest, Shamir, Adleman) is not 
susceptible and neither is AES (Advanced Encryption Standard) (upon which 3GPP 
Milenage is based).5 It is easy to prevent this type of attack at the design stage of a 
smart card. Likewise, an embedded TRE would be designed and implemented such 
that it would not leak this information. There would be no such interface that an 
attacker could monitor and the processing in the TRE would be such that any noise 
occurring on any power rail would not contain any recoverable information. 

Probing of Broadcast TV Cards: Satellite TV smart cards have to contain global 
decryption keys, due to the nature of the service, i.e. a broadcast encrypted signal. If 
you crack one card, you have cracked the whole scheme. This is, of course, not true of 
networked telecoms systems. In the early 1990s, Cambridge University in the UK 
used physical probing to successfully recover secret keys from satellite TV cards. It is 
not necessary for embedded TREs (or UICCs, for that matter) to contain global keys 
and their embedded nature would make physical probing infeasible. 

Cloning of SIM cards: The only verifiable instance of cloning of 2G SIM cards 
was a “known plaintext” (50,000 challenge-response pairs) attack against the 
COMP128 authentication algorithm and not against the card platform itself. This 
attack has been prevented by the use of better algorithms and is not at all possible 
with 3G. The relevance of this attack to TREs is that it has gone down in the annals of 
urban mythology as an attack on the SIM card, rather than an attack on the algorithm. 
“Mud sticks,” as they say. 

Attacks Against Disposable “Eurochip” Phonecards: Two successful attacks 
exploited (1) a weaknesses in the card’s hard-wired logic and (2) the absence of a 
security module in some payphones. The relevance of this to embedded TRE is that 
many attackers seem able to acquire insider knowledge of the product. “Security by 
Obscurity” is not a viable counter-measure. 

Lack of Security Specifications and Formal Evaluations for UICC: Tamper-
Resistance: There are no standardised specifications as such that assure the degree of 

                                                           
5 This attack was successfully perpetrated against the pilot of a well publicised smart card 

payment system in the UK in the early 1990s. Although the scheme was designed to use RSA 
with unique private keys, the pilot used DES with a global key on every card. 



222 M. Meyerstein, I. Cha, and Y. Shah 

physical and logical tamper-resistance described above. It is up to the buyer to specify 
what he wants, although, in theory, protection profiles such as [16] could be adapted 
for UICCs and evaluations enforced by buyers. The same might also be true of 
embedded TREs, unless they use TCG-style technology and also conform to suitably-
created and enforced protection profiles (which might need to be wider in scope than 
those specified so far by TCG for Trusted Modules (see 
http://www.bsi.de/zertifiz/zert/reporte/pp0030b.pdf ). 

Perceptions vs Real-World Implementation of UICC: There is never a guarantee 
that, for a given advertised UICC product, all or any of the possible counter-measures 
have been implemented. It is a case of being an informed buyer. Network Operators 
can obtain un-published information about counter-measures from card vendors and 
large-volume buyers can specify their own counter-measures, within the constraints of 
the silicon manufacturing process. This should be borne in mind when some 
commentators argue that an embedded TRE cannot be as secure as a UICC. 

Secure Terminal/UICC Channel: Even if the ETSI/3GPP specifications 
concerning key establishment [5], [6] are implemented, it is not specified how the 
terminal securely stores the local key and executes the algorithms. There have been 
failed attempts in the past (e.g. the MET – Mobile Electronic Transactions forum) to 
portray the terminal as a PTD (Personal Trusted Device). It would be fair to say that 
the telecoms industry has little confidence in the ability of terminal suppliers to 
implement a secure environment. 

Arguments Against Trusting a Non-UICC TRE 
Some network operators may have the following perceptions, as expressed in some 
draft versions of [1], about a non-UICC TRE in a terminal. Counter-arguments are in 
italics. 

• Network operators can trust the UICC because they are in charge of the 
specifications and they buy them directly from their approved vendors. They 
will not be able to do this for TREs. It will be necessary to have an 
international accreditation scheme for TREs.  

• The telecoms industry has little confidence in the ability of terminal 
suppliers to implement a secure environment (see above). This is not helped 
by the suppliers who are involved in standardising M2M but who keep trying 
to limit the functionality of the TRE. Once again, a security accreditation 
scheme is needed. 

• Compared to the small number of UICC vendors, there are potentially many 
suppliers of M2M terminals and therefore of embedded TRE solutions. As is 
the case with UICCs and secure semiconductor products, the number of 
companies that decide to position themselves as TRE manufacturers could 
turn out to be limited. 

• The UICC is a product with a great track record. The O/Ss have been 
evolved over many years. A non-UICC TRE is still at the conceptual stage. 
No counter argument except that every technology is eventually superseded 
by progress. UICCs were new, once upon a time. 

• Network operators want to use OTA infrastructure for downloading MIDs. 
Current OTA is not secure enough and would need to be updated, but that 
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could cause backward-compatibility problems. Other protocols, which could 
be used over an IP bearer, could well be secure enough but would have to be 
evaluated. M2M equipment vendors will have no problem in providing the 
required APIs to an embedded TRE to allow use of an IP bearer and 
appropriate download protocols. Network Operators could possibly be 
persuaded, since some of them were very active in Liberty Alliance [22]. 
Also, IP download could be sub-contracted. 

• Today’s system for distributing K from UICC manufacturers to Network 
Operators is well understood and well tried. Network Operators take the 
view that the key distribution required in the proposed Candidate Solution 1 
in [1] would involve passing the K around an increased number of entities, 
which could introduce vulnerabilities. Scale-ability of proposed solutions in 
[1] is also an issue. The number of parties involved with the key distribution 
does not have to increase, since the required functions can be combined into 
a small number of real-world roles. Also, K could be end-to-end encrypted 
(with the TRE’s public key) by the entity that generates it. The system 
solution for embedded TRE in [1] is intended to be scale-able, requiring 
normal roaming agreements for initial connectivity and standardized, PKI-
based protocols for TRE validation/authentication and MCIM download. 

7   Conclusions 

An embedded TRE, if properly specified, implemented and certified, could provide a 
much-needed alternative to the UICC in meeting the requirements of M2M. 

An embedded TRE challenges the long-established infrastructure and practices of 
Mobile Network Operators and UICC suppliers, but it could be a key enabler for the 
potentially huge M2M market to take off, thereby becoming an important new source 
of revenue. 

If an embedded TRE is to be a competitor to the UICC for M2M, it must have 
sufficient resistance to the threats that are described in the threat analysis in [1]. 
Ongoing co-operation between TCG and standardization bodes involved with 
communications aspects of M2M could produce appropriate security specifications. 

Whether or not the previously successful attacks described above could be used to 
perpetrate such threats depends on the implementation of the embedded TRE, e.g. 
whether it is a discrete component, part of a single-chip CPU (Central Processing 
Unit), system ASIC (Application-Specific IC), or distributed across a chipset. It is not 
possible to provide an implementation-independent answer to the question: “How 
difficult would it be for an embedded TRE to have some of these measures?” because 
some of the measures might not be relevant. An ASIC makes things easier in terms of 
security evaluations and accreditations. 

Specifiers, developers and implementers of embedded TREs must bear in mind the 
lessons which a long experience of smart cards has taught us: 

 

• Side-channel attacks would be much more difficult to achieve against a TRE 
if the TRE is not a discrete component 

• One can argue that direct probing of a TRE is not important, as an individual 
TRE does not contain any global secrets. Nevertheless, there are always 
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people who will take up the challenge of attacking the TRE, for example, in 
an attempt to extract a K.  Such threats are faced by every security initiative 
and only provide further motivation to design it correctly. 

• Attacks against the cryptographic algorithms in a TRE could be publicised as 
attacks against the TRE. 

• Many attackers seem able to acquire insider knowledge of the product. 
“Security by Obscurity” is not a reliable counter-measure. Do not rely on 
attackers being unable to gather information on how a TRE works. 

• Reputation is important. The UICC vendors have enormous reputations in 
the world of security, whereas the terminal suppliers have little or none. 
TREs should be manufactured and personalised by reputable chip 
manufacturers with a proven track record in the security industry. 

• Perceptions are important. The perception of the UICC may, in some cases, 
exceed its actual specification or design. Such must not be allowed to 
become the case for TRE. 
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Abstract. In this paper, we introduce a model for enhancing privacy in
peer-to-peer communication systems. The model is based on data obfusca-
tion, preventing intermediate nodes from tracking calls, while still utiliz-
ing the shared resources of the peer network. This increases security when
moving between untrusted, limited and ad-hoc networks, when the user
is forced to rely on peer-to-peer schemes. The model is evaluated using a
Host Identity Protocol-based prototype on mobile devices, and is found
to provide good privacy, especially when combined with a source address
hiding scheme. The contribution of this paper is to present the model and
results obtained from its use, including usability considerations.

Keywords: peer-to-peer, privacy, P2PSIP, HIP.

1 Introduction

Privacy in peer-to-peer (P2P) systems has been an active topic for a number of
years, having touched upon a wide range of aspects of this area of computing.
Preventing identities or actions from being disclosed to others is difficult in P2P
systems, which per-definition rely on the close cooperation between nodes.

Much of the related work has concentrated on hiding the real identities of
users [1] [2] [3], as this has been the most pressing issue partly due to the legally
questionable use of many P2P content-sharing systems. As long as the users
cannot be traced, there is not a need to hide the actions (content requests)
unless the content itself reveals something important.

Internet telephony, such as Skype, has traditionally relied on a system of
trusted, centralized, servers for authentication and setting up connections. The
privacy of the users, with respect to the system operator, is non-existent. Al-
though phony accounts, source address hiding and voice scrambling can be used
to protect end-users, the operator has all the means to track calls made through
the system. This may not be a concern for most consumers, since they can be
assumed to trust the operator; however, for companies and governments this
raises more fundamental issues. For example, many companies block Skype, be-
cause call routing is proprietary and there is no way to guarantee privacy and
confidentiality of the calls.

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 226–237, 2009.
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As we move toward mobile and ad-hoc environments, we need fully distributed
systems that operate without the help of centralized nodes. This has resulted in
initiatives such as the IETF’s P2PSIP working group [4], aimed at standardizing
a fully distributed session signaling protocol. In these systems, the control is
shared amongst the peers, with the implication that anyone that is part of the
network can track the calls made through it. As the operations themselves (such
as call setup) implicate the users involved, simply hiding the source of these
requests does little. Indeed, a more systematic privacy mechanism is needed.

Although several proposals have addressed this problem domain in related
work, implementation results have not typically been elaborated. In this paper,
we examine a simple application-level model for enhancing privacy in fully dis-
tributed communication systems. First, we review the details of the threat in
current systems. We follow this by presenting our solution, discussing its bene-
fits, tradeoffs and possible alterations. As the model imposes restrictions on the
accessibility of users, we continue by discussing issues related to the usability of
the solution. Finally we present our implementation and results obtained from
its use.

The new contribution of this paper is to present and evaluate, through a pro-
totype implementation, a concrete model for enhancing privacy in P2P commu-
nication systems. Also, we highlight and analyze issues concerning the usability
of the model and present our solution for these. We hope that this paper would
foster discussions of how privacy is perceived in P2P environments, possibly
leading to new opportunities for further research.

2 Problem Scope

Peer-to-peer systems form a network between the participating nodes, used to
collectively perform tasks and manage resources. In P2P communication sys-
tems, this network is used to perform the duties of a service provider. Most
importantly to establish the voice or other calls, but also for managing presence,
contact lists or for other services. A common model is to use the peer network as
a distributed storage and message routing overlay, where the information needed
to contact users is stored, scattered throughout the nodes of the network.

This is also the approach taken by the IETF P2PSIP working group [4],
arguably the most prominent attempt at creating an open standard for these
systems. The name is derived from peer-to-peer Session Initiation Protocol (SIP),
as the original intent was to create a P2P version of the successful multimedia
session signaling protocol.

The current version of the P2PSIP protocol draft defines a highly modular
framework supporting different applications (called Usages) as well as overlay
network types [5]. The network module of this framework offers message routing,
key-based storage and connectivity services through a common interface, inde-
pendent of the underlying network structure. Although there are few restrictions,
the underlying network is assumed to be a distributed hash table (DHT)-like
structured network, with efficient key-based routing, where the storage service
scatters the data throughout the network.
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SIP-based applications use this framework for three primary operations, re-
ferred to as the SIP Usage; registration, lookup and connection establishment.
Registering a SIP identity (SIP Address of Record, SIP AOR) with the overlay
is done by creating a data packet containing the SIP AOR and a NodeId, the
identifiers used for nodes in the overlay, or another SIP AOR through which the
users can be reached. This packet is stored in the network under a key made
from the hash of the SIP AOR.

The session signaling is exchanged directly between peers. To establishing
this connection, peers use the Attach function provided by the network module.
This initiates an Interactive Connectivity Establishment (ICE) [6] procedure,
during which address candidates are gathered, and sent to the other peer through
the overlay network. These address candidates are all Internet protocol (IP)
address and transport-level port combinations through which the peer might be
reachable (due to multihoming, network address translation or firewalls). These
three operations offer a number of opportunities for curious, or malicious, users
to eavesdrop.

Assuming a DHT-like overlay (such as Chord [7]), where responsibility for
data is assigned using a key proximity function, any node with a suitable NodeId,
along with every node in-between, is able to intercept registrations. Even if these
nodes were trustworthy, it is trivial to request the information using the public
SIP AOR.

To establishing a SIP session, the caller fetches the registration packet for the
responder, and connects using the Attach function. Again, the node maintaining
the registration packet, and all nodes in-between, can easily monitor from whom
the user receives calls. And even though that path is secured, Attach-related
messaging offers yet another opportunity to track the call.

As noted in the draft [5], end-to-end encryption of the payload could be used
to mitigate some of these, although still leaving the storage keys and NodeIds
exposed. Also, a strong authentication mechanism and a protective identity ac-
quirement procedure would prevent peers from situating themselves suitably in
the network, decreasing the possibility for eavesdropping and sabotage in large
networks [8].

The problem at hand is to introduce privacy mechanisms to P2PSIP that
guarantee end-users that their sessions are not intercepted and tapped by pos-
sible malicious peers. The threat is anticipated by the P2PSIP Internet Draft;
however, to our understanding this paper presents the first analysis of P2PSIP
privacy issues based on experimentation.

3 Solution Model

In the design of the privacy-enhancement for P2PSIP, we identified the overlay
data storage as a crucial component. The aim was to design a simple model which
sets no additional requirements on the underlying storage service, using only the
get, put and remove primitives. This way the model can be adopted to other,
similar systems as well. Besides, this does not prevent the use of additional
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privacy-related enhancements, such as source address hiding, for even greater
security.

We did make the assumption of a strong, cryptography-based, identity scheme.
The identities are associated with the public key of a key pair, with the private key
kept secret by the rightful owner. This is a reasonable assumption, as it reflects the
current trend in these systems and is a common solution for identity management
in distributed systems in general. It allows users to protect the integrity of their
data and make it accessible only for specific peers using encryption. How these
keys are generated or bound to the identities, e.g., using a trusted third party
certificates or leap-of-faith, is not relevant for the privacy scheme.

This leads us to the first step of our solution, which is to encrypt the registra-
tion packet using the public key of peers that may want to establish a session.
To protect the integrity, the packet is signed prior to encryption, preventing
either the data, source or intended recipients from being revealed without the
proper decryption key. We thus publish this data only for a specific set of trusted
peers. As each peer uses a different key pair, we need to encrypt and publish
the package multiple times or use a common encryption key appended as a set
of attachments, each encrypted using a different public key.

3.1 Storage Key Obfuscation

As the keys used for storing registration packets map directly to the public iden-
tities, encrypting the content of these packets alone does not prevent intermedi-
ate peers from tracking the calls. Size analysis can be used identify registration
packets and by monitoring the keys used to store and request these, we can de-
termine both who is on-line as well as the recipient of a call. Although buffering
and decoy packets can be used to make it harder, it seems unavoidable that the
storage keys should also be obfuscated.

Until now, we have assumed that users need to possess only the public keys
of the trusted peers to publish registration packets. We could consider a scheme
were the storage key is also encrypted using these. However, this is easily broken
in systems were the public keys are well known, which is our assumption. An
attacker could not make a general query whether a specific user is on-line, but
being aware of even one peer which that user trusts, be able to query the state
of the user with regard to that peer.

We could also consider a scheme where all users publish their registration
packets (encrypted) for a specific peer using a common storage key. Either as
such, or under a secondary, random, key with a link stored under the common
key. As the key for this index is shared, intermediate nodes can not determine
whom the packets concern. This protects the publishers, but reveals information
about the user for whom they are intended, such as the number of friends and
call intentions. Although a minor threat, mitigated using decoys, the scheme is
inefficient and easily sabotaged, as the caller needs to process a large number of
packets before finding the right one.

The most practical solution we found is to simply use shared secrets to ob-
fuscate the storage keys. After encrypting the registration packet, the storage
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key is formed by appending a shared secret to the SIP AOR, and computing a
hash digest (using algorithms such as MD5 [9] or SHA-1 [10]) of the result. As
the hash function can not be reversed, the new key will not reveal the source or
recipient of the packet.

This concludes the core of our model. Currently the static nature of the shared
secrets is seen as the weakest link, although this can be mitigated using tech-
niques such as auto-renegotiation of the shared secret, hash chains [11] or time-
bound appendices. The use of these is left open, to be chosen suitably to best
fit the nature of the application.

Although our model does well in protecting the privacy of users from inter-
mediate nodes, it has a number of obvious tradeoffs. It significantly increases
the amount of data stored in the overlay, as the registration packets need to
be published separately for each peer. However, as the packets contain only the
information necessary to contact the user, they are relatively small. We could
also consider a slightly less secure linking-scheme, similar to the one described
previously. The packets stored using the shared secrets would contain only an en-
cryption key and a link and pointing to the actual registration packet, encrypted
with that key.

Our model requires also that peers perform a large number of public-key
cryptography operations. However, the frequency of these should be low, keeping
the load well within the range of even resource-limited computing devices.

3.2 Usability Considerations

Besides the technical complications, the scheme introduces a number of usability
issues that need consideration. The need for a privacy enhancing scheme might
be unclear for many users accustomed to traditional communication systems
operated by a trusted provider. Also, how such a scheme affects the usability of
the system, how certain contacts might become unreachable as a result, might
not be apparent.

When activated, we need to have both the public key and a shared secret with
everyone that might wish to contact us. Otherwise we will appear unavailable,
offline. This might seem as an extension of a presence scheme, allowing us to lay
hidden from certain unwanted contacts.

The purpose is not to limit who is able to contact you, but to hide who does.
This privacy scheme sits a level below presence, on top of which visibility can
be filtered. Accordingly, although shared secrets is often associated with close
relationships, the model encourages users to establish these with everyone. The
aim is to affect only the visibility the sessions, not the sessions themselves.

As the scheme requires users to possess each other’s public keys, as well as have
established a shared secret prior to contact, initialization is a problem. Operators
of high-security systems and concerned users might go through the trouble of
creating such a database manually. However, most users do not appreciate the
limitations and extra work, and would be satisfied with a partial open exposure,
at least at times, but with the privacy enhancements used whenever possible.
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The shared secrets could then be agreed on during the first contact, stored to
be used for subsequent sessions.

This leads us to the question of how to present these options, modes, to the
user. Although related to the traditional concept of presence, it has a slightly
different meaning and effect, not familiar from centralized systems. In section 4.3,
we present how this is solved in our implementation, discussing the pros and cons
of our solution.

4 Implementation

To evaluate the feasibility of our model, and investigate the usability issues, we
implemented the privacy enhancements into Helsinki Institute for Information
Technology’s (HIIT) Host Identity Protocol (HIP)-based P2P communication
prototype.

4.1 Technology

The prototype is implemented as a light Linux-based, locally run, SIP proxy for
ordinary SIP user agents (SIP UAs). It intercepts SIP signaling, converting them
into the appropriate operations in the P2P model [12]. The prototype has been
adopted to mobile and embedded Linux environments, and is currently used in
a trial on Nokia N810 Internet tablets.

HIP [13] is a communication framework which splits the notion of identifier and
locator from their union in the current Internet. HIP adds a layer between the
network and transport layer, allowing applications to address end-points using
cryptographically generated identifiers, instead of network addresses. HIP is used
in the prototype to establish secure and robust connections between the peers, as
it provides advanced features such as multihoming, mobility and NAT traversal.

HIP uniquely identifies hosts using Host Identifiers (HIs), the public part of
an asymmetric key pair. As HIs are cumbersome to manage, applications use
Host Identity Tags (HITs) for addressing remote hosts. These are 100 bit hashes
of the HIs, which combined with the ORCHID [14] prefix are expressed as IPv6
addresses. The translation of HITs to network locations (IP addresses) is done
by the underlying HIP stack, which also handles connection establishment and
mobility management.

A HIP connection is established through a four-way Diffie-Hellman compliant
handshake called the base exchange (BEX). During this denial of service (DoS)-
protected process the hosts are authenticated and keying material is established.
This keying material is used to establish a security encapsulation (using the
IPSec Bound End-to-End Tunnel (BEET) mode) to protect the data traffic. As
the encapsulation and routing are performed transparently by HIP, it provides
advanced features (including security and IP mobility) for applications with no
additional implementation effort.
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4.2 Prototype Overview

As with the IETF P2PSIP protocol, the prototype adds a level of abstraction
on top of the P2P overlay, accessing it through a hash table-like interface (get,
put and remove). This allows for flexibility in its implementation, but offers no
control over how the data is managed in the P2P overlay. As message routing
through the overlay is not supported, it is used only to retrieve the contact
information needed establish the HIP data connections between peers.

Although not the focus of the privacy model, the use of HIP could also improve
privacy during the connection set-up procedure. As described in section 2, the
IETF P2PSIP protocol embeds ICE address candidates in the Attach-message.
Even though the content is encrypted, the NodeIds of peers are still visible,
providing clues about a call. By using HIP we have a wider choice of how the
connections are established. The HIP connection handshake, could be routed
through the overlay, but we also have the option of using trusted relays according
to the HIP NAT traversal draft [15]. In addition, the use of the BLIND extensions
[16] and one-time HITs would hide the identity of the end-points.

The identity scheme of the prototype is based on trusted third-party certifi-
cates binding SIP AORs to the public keys, in line with the assumptions of
section 3. Normally the SIP AORs are used as keys when storing registration
packages. In addition to this open contact information, the privacy extensions
adds the notion of secret storage keys, constructed using the shared secrets,
under which encrypted registration packages are hidden.

4.3 Privacy Enhancements

The implementation of the privacy extensions included creating a local peer
database and modifying how the data in the distributed storage is managed.
The prototype maintains a database of the public keys and shared secrets of
all the peers it has been in contact with. Although it is possible to manually
configure a shared secret, a key-negotiation protocol was implemented, which
automatically establishes (or reconfigures) a shared secret when connected.

This protocol is a simple three-part protocol which checks whether both peers
have the same secret, and in case they differ, re-initializes one from two parts.
Both peers propose one (randomly generated) part each, which are combined
into the final secret. This allows for easy reconfiguration, in case either peer
looses it or wants to prevent intermediate nodes from tracking these between
sessions. The prototype can be configured to re-initialize these secrets each time
a new session is established.

The privacy enhancements are activated using a configurable setting of the
prototype, affecting how the registration packets are retrieved and published.
After analyzing different use-cases, we came to the conclusion that three differ-
ent modes are needed:

Open. The registration package is published using both the open and secret
storage keys. Lookup is done using only the open, even when a shared secret has
been established with the recipient.
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Relaxed. As in the Open mode, the registration package is published using
both keys. The lookup differs; if a shared secret has been established, only the
secret storage key is used, otherwise the open.

Paranoid. When set to paranoid, only the secret keys are used, both when
publishing and performing lookups.

The reasoning behind the Paranoid mode is understandable; the prototype
uses the privacy enhancement fully, revealing as little as possible. But as dis-
cussed in section 3, for the enhancements to be usable, we also need to have an
option of being openly exposed, at least temporarily. The need for two, nearly
identical, modes is based on the assumption that nodes might get reset at times,
loosing the database of shared secrets.

The Relaxed mode operates using a best-effort principle. Whenever a shared
secret has been established, the privacy extensions are used without even trying
the open key. By falling back to the open key, we would avoid the additional Open
mode. But this could be seen as a violation of the privacy of the recipient, if in
Paranoidmode. By falling back the use of open keys in the Relaxed mode, either by
using subsequent or simultaneous lookups, we might reveal a relationship between
the two. Although the risk of this may be low, the usability also seemed better,
as the user knows beforehand whether the privacy enhancements are used. This is
however something that might still change depending on the feedback we receive.

4.4 Evaluation

As a demonstration of our model, we created a small test bed of four user
accounts to simulate a group of privacy conscious peers. The prototype, with the
privacy enhancements, was deployed on hand-held Nokia N810 Internet tablets,
with an appropriate user account configured on each. The tablets were given to
a set of test users, who were asked to use them for voice- and video calls, and
instant messaging.

The tablets were connected using a standard IEEE 802.11b Wireless LAN
(WLAN) access point with a Dynamic Host Configuration Protocol (DHCP)
server to provide IP addresses. To simulate a P2P overlay, we used LAN broad-
cast as the back-end for the distributed storage. To evaluate the enhancements,
we recorded and analyzed the network traffic generated by the tablets, simulat-
ing the wost-case scenario where an intermediate can log all traffic. The purpose
was to compare what can be deduced from the logs before and after the privacy
enhancements.

Initially the prototype was set to the Open mode. Although the keys used in
the lookup are hashes of the SIP AORs, the identifiers they correspond to can
be read from the clear-text response. After a short while, we had compiled a
mapping of these, together with the IP address used by each peer (presented in
figure 1),

A sample from the recorded traffic is presented in figure 2. From the log we
see Alice establishing a connection to Carol at 157 seconds. Even though the
actual data traffic is secured using HIP, the pattern of relatively small ESP
burst provides clues about an instant messaging session. At 182 seconds, we see
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Fig. 1. The hash to SIP AOR relationships found, with responsible IP address

Fig. 2. Samples of the traffic log before the privacy enhancements

Fig. 3. Samples of the traffic log with the privacy enhancements in use

Fig. 4. Samples of the traffic log with the IP and HIT reset, and privacy enhancements
in use
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how Dave contacts Bob. The continuous flow of ESP suggests a voice- or video
call. At 195 seconds we see again traffic, most likely instant messages, exchanged
between Alice and Carol.

After the initial session, the privacy mode was set to Paranoid, and the devices
rebooted to reset any existing IPSec security associations. A short sample from
the traffic is shown in figure 3. Although we can not determine what was sought
at 91 seconds, it is fairly certain that a call was made between Dave and Alice.
The lookup response is encrypted, but the size fits within what we would expect
of an encrypted registration package, and the data traffic matches the pattern of
a voice- or video call. The IP addresses (and the HITs) reveal the peers involved.

To simulate the use of additional source address hiding techniques, the HIP
Host Identity database was reset on all devices, and the DHCP server configured
to provide addresses from a different IP range. A sample of the traffic is shown
in figure 4. We can still see that a voice- or video call is made, but the peers
remain unknown.

5 Discussion

As the traffic analysis shows, the privacy enhancements does a fair job ensuring
that the data managed in P2P communication systems reveal as little as possible
on the application-level. However, for complete privacy, we need to consider other
factors as well.

Using HIP to secure the data connections provides many benefits, but identi-
fies the end-points to outsiders as well. Even without HIP, IP, hardware Media
Access Control (MAC) addresses, or other host identification schemes might be
used for the same purpose. Although the session data is encrypted, traffic anal-
ysis may reveal the type of content. However, these issues are considered out
of scope for our work, as they relate to the general problem of communications
privacy, and is being addressed by work such as the SlyFi [17] design. Our focus
is only on the data managed by the distributed storage, and what it reveals; an
issue specific to P2P systems.

The privacy model has usability issues which need to be examined further. The
proposed Open, Relaxed and Paranoid modes seems reasonable from a technical
point of view, but the usability of these needs to be verified.

6 Summary and Future Work

In this paper, we reviewed the differences between fully distributed and central-
ized communication systems, and the privacy issues in both. We presented a
simple model for enhancing privacy in P2P communication systems, such as the
one being developed by the IETF P2PSIP working group. The model obfuscates
the data managed by the overlay-based storage by using public-key encryption
and shared secrets. As it affects only the application-level data handling, it can
be used in conjunction with addition lower-level techniques for greater security.
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We highlighted possible usability problems, and concluded with an overview
of our implementation and traffic analysis from its use, demonstrating its effect.
The model does well in protecting the privacy of users on the application-level.
It does increase the load on the system, but not unreasonably.

Future work will concentrate on evaluating the usability and combining the
model with additional techniques to improve the overall privacy. This include ex-
amining the impact of different link-layer techniques and methods for preventing
traffic pattern analysis. Also, wider trials and simulations of real user behavior,
possible on a global test-bed such as PlanetLab [18], should be conducted to
evaluate the feasibility of the solution.
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Abstract. Smart phones and computers now are able to co-work in a wireless
environment where malware can propagate. Although many investigations have
modeled the spread of malware, little has been done to take into account different
characteristics of items to see how they affect disease diffusion in an ad hoc net-
work. We have therefore developed a novel framework, consisting of two models,
which consider diversity of objects as well as interactions between their differ-
ent classes. Our framework is able to produce a huge result space thus makes
it appropriate to describe many viral proliferating scenarios. Additionally, we
have developed a formula to calculate the possible average number of newly in-
fected devices in the considered system. An important contribution of our work is
the comprehension of item diversity, which states that a mixture of device types
causes a bigger malware spread as the number of device types in the network
increases.

1 Introduction

Malware such as viruses, worms, or malicious codes/programs has long posed a signif-
icant threat to computers, regardless of fixed or mobile ones, but so far mobile phones
have been relatively safe. Recently, however, attacks by various types of viruses, trojans,
and spyware on mobile phones, especially smart phones, have been increasing. Reports
about worms such as cabir [2], [5] and trojans such as skulls and mquito [5] raise se-
rious questions about mobile phones’ vulnerabilities. Such malicious codes1 are able to
infect many users under appropriate conditions. For example, a sports event in Helsinki
in August 2005 and a public concert in Germany, Live8, were marked by outbreaks of
viruses [10]. Another peril when a phone is under control of a hacker, which can be
accomplished using a virus, is described in [16], [17]. They state that it is possible for
a malicious user to break down a phone network using SMS messages.

Smart phones, which have been undergoing an explosive growth in sheer numbers,
along with the commensurate improvements in computing ability and generality, have
become an attractive target for malware. Improvements in hardware and software for
phones, especially their communications capabilities, create a myriad of avenues for

� Corresponding author.
1 We will also call virus, worm, and trojan malicious code, malicious program, malware, or

malcode if not specifically mentioned.

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 238–252, 2009.
c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009
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hackers to exploit and attack. There is malware capable of dwelling in both computers
and phones so it is certainly possible for malcode to hit phones from computers and
vice versa. In general, then, malicious threats can infect computers or phones in one of
the followings ways [3]:

(1) Through communication interfaces such as Bluetooth, Wifi, or infrared. A malware
can directly contaminate other devices whenever they are reachable and connectable
and they have exploitable weaknesses. We count computers that have wireless in-
terfaces as susceptible objects of contagion as well. Note that, for this propagation
relation, we have to consider the bidirectional effect, since a malicious program can
move not only from computer to computer but also from computer to phone and
vice versa.

(2) Through user download programs infected with the malware.
(3) By using the Multimedia Messaging Service (MMS) to diffuse to other phones.
(4) By a memory card which already contains a malicious program. When the user uses

that card in a phone or computer, the compromised program transmits itself to the
device.

Of the above ways, only (3) is restricted to phone-phone relations, whereas the others
are risky for both computers and phones.

In addition to the improved device technologies, the mobility of users is another
factor that makes malware spread wider and faster. Indeed, when a user with an infected
device is on the move, he/she is likely to make more contacts, thus giving malicious
code an opportunity to transfer to more hosts.

In this paper, we develop a novel analytical framework, by which we are able to
explore how viral transmissions spread through a network containing devices that are
heterogeneous in terms of various characteristics (such as device types). Here in our
framework, each network item experiences states from susceptible to infected. These
states with variability and changes are carefully described by mathematical parameters.
One of the most advantageous points of our models is their huge result space. Indeed,
if we use different combinations of parameters, we consequentially get various outputs
that correspond to many spreading scenarios of malware. Our framework also takes into
account all the contamination methods mentioned above.

We then use that framework to derive the necessary conditions for the existence and
persistence of malware. With the framework, it is able for us to predict the possible av-
erage number of newly infected individuals and that may assist network administrators
to have a right strategy to combat or mitigate the malware. Investigations of malware
free equilibrium and its locally asymptotic stability are additional contributions of our
work. Moreover, we check whether diversity of participant characteristics in a network
has any influence on virus/worm propagation. It is quite intuitive to see that viral dis-
semination is wider if items in a network possess more characteristics, but we have gone
further to theoretically prove this statement.

The rest of this paper is organized as follows: in Section 2, we review and discuss
the related works. This section also differentiates our work from other studies reported
in the literature. Next, Section 3 describes the deterministic analytical models in depth.
We present a detailed discussion of the proposed models in Section 4. Numerical results



240 H.-N. Nguyen and Y. Shinoda

of conducted simulations are given in Section 5. Finally, Section 6 contains concluding
remarks and outlines our future work.

2 Related Works and Motivation

Traditional networks with fixed nodes connected through wired media have suffered
many serious virus/worm outbreaks such as those created by the Melissa [1] or Codered
[7], [20] worms. With improvements in advanced wireless technology, networks with
laptops having wireless interfaces have grown rapidly in both quantity and complexity.
A group of nodes that communicate via wireless interfaces, forming a network without
any pre-defined topological structure, is called a wireless ad hoc network. In this type of
network, a node can move freely and contact other nodes through wireless interfaces.
Modeling the spread of malware on this type of network has received considerable
attention from researchers, [6], [9] to name a few. Nevertheless, these works have not
taken smart phones into account, a new source of inspiration for attackers.

Ramachandran and Sikdar [13], [14] have studied the spread of malware in a phone
network, assuming that nodes move from one patch to the others at a specific rate.
They incorporate movement, or in their words, ”the heterogeneity of locality,” into their
model to make it more precise. However, they do not take into consideration the inner
characteristics of each class of objects in the network. They indirectly suppose the same
condition for all devices by delivering the same values for parameters. As a result, the
model is unable to distinguish individual classes if diverse entities exist concurrently.
In addition, these studies do not contain an analysis of the relationship between the
number of patches and the spread of the disease.

One of our published papers, [11], proposes a 4-compartment model to describe
how viral forces propagate in a wireless network. We used the same reasoning and
observation but adding one more state that a susceptible item may experience while
participating in a network. The added latent state is understandable as the incubation
period of the virus. That paper, however, does not provide an in-depth investigation on
the latent state such as calculating the average time a network item has to be in if it is
exposed to the spreading malware.

Proposing a model that will depict all characteristics of a set of connectable and
reachable nodes, computers and phones, is a difficult task since we have to include as
many parameters as possible. In our research, one major input of interest is the funda-
mental difference between classes of objects in the network2. We classify and arrange
items in a network into different groups based on their characteristics. It is understand-
able as item diversity and we aim to fill the gaps of not taking care of device diversity
left by previous research. With that goal, our models take the following aspects into
consideration:

– heterogeneity of entity, i.e., the existence of different types of devices in the net-
work

2 For ease of reading, we now refer to a network either as a collection of computers and phones,
computers only, or phones only, that all reside in a considered territory.
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– interactions between different classes of entities. As a matter of fact, there are many
types of operating system (OS) for smart phones and each of which has its own
particular vulnerabilities for attackers to exploit. Consequently, we count phones
with the same OS as items in the same class while those with different ones are put
into different classes. Note that computers are recognized as a separate set.

– diversity of entities. We examine whether diversity has an impact on the persistence
and stability of a disease as well as its spread dynamics.

3 Modeling Disease with Heterogeneity of Nodes

We built up our model using a typical compartmental epidemic model for two cases,
each of which has three entity classes. Under different assumptions, the last class in
each model differs while the rest remain the same. Here is the description of the two
cases: at an arbitrary point in time, a device is in one of the following three classes:
susceptible (S), infected (I), and moved back to susceptible state (S) for the first case
or recovered and immune to re-infection (R) for the second case. Every object in the
network is initially susceptible to disease if it is not already infected. The object stays in
the susceptible phase until it comes into contact with an infectious one or with the mal-
ware. As soon as the malware propagates to a susceptible item, the item moves to the
infected state. For the first case, when a device is cured of disease, it recovers and there-
fore is subject to re-infection if no immunity has been introduced. This case is the SIS
model. In the second case, after the end of contamination, a device produces resistance
to the disease and is removed from the infected condition and does not progress back to
susceptible but recovered and immune class. The SIR model represents this case.

3.1 Assumptions

In this section, we state our assumptions. We assumed that multiple items can be in-
fected but one species is the primary infectious vector. Since computers suffer by far
the most attacks and they outnumber other devices in terms of the diversity of malware,
we made computers the main attack force of offenders while the others are spillover
species. At the moment, computer viruses do not usually try to propagate to mobile
phones. However, as malware develops, it is clear that this could be a forthcoming
problem, possibly in the near future [3]. Because of the higher possibility that malcodes
transfer from computers to smart phones compared to that from the reverse direction,
we chose computers to be the main disease reservoir. Another assumption we made is
that computers in a network are of the same kind. Worms often exploit holes in software
and there are many applications that run on both computers and phones under different
operating systems. Accordingly, malware is supposedly able to diffuse to nodes using
distinct operating systems.

When several phone users coincidentally gather in an area and make calls or send
messages, it is likely that those overcrowded occurrences will overwhelm the capacity
of the network. It means that as more phones come into the congestion, the less service
they receive from the operator, and thus infection vectors for phones such as MMS or
dialing are closed off. The same thing may happen to computers as well, but in a dis-
similar scenario. For example, in an ad hoc network where data moves from computer
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to computer in a hop-by-hop manner, there is a possibility that one computer would
serve as the main transporter between two components of the network. The more data
sent through this bottleneck, the greater the risk that this computer will become over-
loaded and break down. At a certain level, the collapse of this computer will result in
a disconnected component from the network. All items in that detached component are
considered dead. The above scenarios lead us to the following definition: The number
of devices that malware can not use for propagation due to the congestion is called
density-dependent death rate.

3.2 Elaborate Models

In this section, we first derive the SIS epidemic model and then formulate the SIR
model for n different types of hosts. As mentioned, one species is considered the main
reservoir while the rest, n − 1 species, act as spillover ones.

Let S1 and I1 denote the susceptible and infected reservoir population and Sk and
Ik the susceptible and infected spillover populations, k = 2, . . . , n. Therefore, the total
population size for each type k is Nk = Sk+Ik, k = 1, . . . , n. We then find an equation
to describe the changes in the susceptible set of each population. We denote by bk the
rate at which each species has more entities, k = 1, . . . , n. In other words, bk illustrates
the birth rate of the kth type. The total number of new-born units in the kth group is
then calculated by Nkbk.

Next we denote by dk(Nk) the density-dependent death rate of the kth type. Note that
this parameter depends on the total population size of the kth group. In the following
formulae, we shorten it by using dk. Consequently, the quantity of out-of-order disease-
unrelated units from Sk is Skdk.

To demonstrate the disease-related interactions between groups through communi-
cating interfaces such as Wifi, Bluetooth, or infrared, we define a factor αki(Ni), depen-
dent on Ni, for each pair of device types k and i, k = 1, . . . , n and i = 1, . . . , n. This
rate is understood as an infected item in group i tries to infect a susceptible individual in
group k. The rate magnitude of each type i is proportional to the ratio of infective pieces
over the total population size, which is given by Ii

Ni
. Scanning through all populations,

the Sk group loses total Sk

n∑
i=1

αki
Ii

Ni
.

When a user downloads a program containing malware and incautiously executes
that program, the device in use (computer or phone) directly moves to the infective
target compartment. Let βk be the rate at which items in Sk download some program
from the Internet and let γ be the probability that a program contains malware. For ease
of analysis, we assume that when a device is infected by a specific malware, it will
not be compromised by other malcodes. Accordingly, malware only affects susceptible
items but not already infected ones. This argument gives us the number of entities that
move from Sk to Ik is βkγSk.

The third mechanism through which malware can be dispersed is use of the MMS
service. A compromised phone may randomly choose a number from the contact list or
generate a random number to dial then send the malware enclosed in an MMS message.
The rate of infected devices in the kth type that try to dial other numbers is referred to as
ηk. Nonetheless, some of the dialed numbers are out-dated (if chosen from contact list)
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or do not exist (if randomly generated) so those attempts may fail sometimes. For that
reason, we use ϑ as the probability that the malware succeeds in sending messages to
other numbers. We also note that when the target phone is off, it belongs to the exposed
class since there is a poisoned piece awaiting it in the queue and when it is on, the
phone directly moves to the infected class. However, when we count total loss of the
susceptible population, this method of dissemination shifts items from susceptible to
exposed and infected classes a change of −ηkϑSk

Ik

Nk
.

The last carrier for malware is memory cards. Analogously, we call μk the rate at
which users in susceptible group Sk use memory cards and τ the probability that a
card contains at least one malware. Hence, this carrier subtracts from Sk an amount of
μkτSk.

Finally, the recovery rate, the rate at which devices are patched, of type k is denoted
by ϕk so the total number of recovered pieces is ϕkIk.

Taking all into account, changes in Sk, k = 1, . . . , n, can be formulated as follows:

dSk

dt
= Nkbk − Skdk + ϕkIk − Sk

(
n∑

i=1

αki
Ii

Ni
+ βkγ + ηkϑ

Ik

Nk
+ μkτ

)
. (1)

We use λk to demonstrate the disease-related death rate at which infected entities are
inoperative by the malware. With the same reasoning the following equation tells us
about variations in each Ik , k = 1, . . . , n:

dIk

dt
= −Ikdk − (ϕk + λk)Ik + Sk

[
n∑

i=1

αki
Ii

Ni
+ βkγ + ηkϑ

Ik

Nk
+ μkτ

]
. (2)

Equations (1) and (2) form the SIS epidemic model.
To obtain the SIR model, we add a compartment of entities that produce immunity

after disease recovery. For each type k, k = 1, . . . , n, a class of recovered and immune
items, Rk, is added to the existing model (1) and (2) . Similarly, we build up the SIR
model as follows:

dSk

dt
= Nkbk − Skdk − Sk

(
n∑

i=1

αki
Ii

Ni
+ βkγ + ηkϑ

Ik

Nk
+ μkτ

)
, (3)

dIk

dt
= −Ikdk − (ϕk + λk)Ik + Sk

[
n∑

i=1

αki
Ii

Ni
+ βkγ + ηkϑ

Ik

Nk
+ μkτ

]
, (4)

dRk

dt
= −Rkdk + ϕkIk. (5)

All parameters are likewise understood as in the SIS model, except for the ϕk one,
which accounts for the rate at which infected entities recover and move to immune
compartment Rk. The total population is the sum of the three compartments, that is:
Nk = Sk + Ik + Rk, k = 1, . . . , n.

Note that all parameters are assumed to be greater than or equal to zero.
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4 Discussion on the Models

4.1 Assumption and Parameter Discussion

In this part, we further discuss about the assumptions, parameters, and the models. To
distinguish the dynamics of the main reservoir from other species, we assume a higher
intrinsic transmission and scanning rate from the reservoir than from the spillover
species or between groups of spillover species. Mathematically that is,

α11(N1) ≥ αk1(N1) ≥
{

αki(Ni), k, i = 2, . . . , n

α1i(Ni), i = 2, . . . , n.
(6)

When no infection occurs, we have limt→∞ Nk(t) = Hk, where Hk is the carrying
capacity for species k. Carrying capacity is the maximum number of individuals that
a system can support without degradation. This matches our assumption of the natural
density-dependent death rate.

Next we derive the disease-free equilibrium (DFE) for each model. The DFE for (1)
and (2) is the unique solution satisfying S∗

k = Hk and I∗k = 0, k = 1, . . . , n. Thus the
equilibrium point, Q, is:

Q0 = (S∗
1 , I∗1 , . . . , S∗

n, I∗n) = (H1, 0, . . . , Hn, 0). (7)

On the contrary, a nonnegative endemic equilibrium point Q1 exists with I∗k > 0 which
requires that I∗i > 0 when αik(Nk) > 0. That means if there is transmission between
two species groups, the persistence of the disease in one can result in persistence of the
disease in the other. The DFE for model (3), (4), and (5) is S∗

k = Hk and I∗k = R∗
k = 0,

k = 1, . . . , n.

4.2 Analysis of Disease Extent

The malware may have an opportunity to spread throughout the network or it may die
out at a certain time. In this section, we study the stability of the disease and derive
the necessary conditions for its stable state. We compute the basic reproduction number
R0 to examine the mean number of possible secondary infected cases introduced into a
susceptible population by a single infected case [8]. This number describes the possible
average number of newly infected devices and it will be proven that this number is
identical for the proposed SIS and SIR models.3

Theorem 1. Let ρ(M) denote the spectral radius of matrix M . The possible average
number of newly infected items, R0, for models (1), (2) and (3), (4), (5) is given by the
spectral radius of the matrix Mn = (Rij)n×n, i, j = 1, . . . , n,

R0 = ρ(Mn),

3 “Basic reproduction number” and “average number of newly infected units/item/entities/
individuals” will be used interchangeably.
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where

Rij =

⎧⎪⎨
⎪⎩

αii + ηiϑ

bi + ϕi + λi
if i = j,

Hiαij

Hj(bj + ϕj + λj)
otherwise,

(8)

is the ijth entry in the matrix Mn, i, j = 1, . . . , n.

The basic reproduction number functions as a threshold parameter in understanding the
state of disease. It is proven in [18] that if R0 < 1, then the DFE is locally asymptot-
ically stable, meaning that the disease does not spread through the whole network, but
if R0 > 1, the DFE is unstable and the disease may break out.

The following theorem gives us an important view by which we have a more pro-
found understanding of malware spread in a heterogeneous wireless network.

Theorem 2. Assume that the average number of newly infected units R0 for a n-type
system of models (1), (2) and (3), (4), (5) is given by the spectral radius of the n × n
matrix Mn defined in Theorem 1. If one more spillover species comes into the existing
network and all the parameters in the equations remain unchanged, the new SIS and
SIR models with (n + 1) types of items have the basic reproduction number, i.e., the
spectral radius of the (n + 1) × (n + 1) matrix Mn+1, ρ(Mn+1), that satisfies

ρ(Mn+1) ≥ ρ(Mn) ≥ R11. (9)

An expansion for the Theorem 2 is as follows:

Claim. Additionally, if the transmission rate for the kth species satisfies

αk1(H1)α1k(Hk) �= 0, k �= 1, (10)

then
ρ(Mn) > R11, ∀n > 1. (11)

Proofs for these theorems and claim are provided in the appendices.
Theorem 2 gives us an important result: If a new population is introduced into an

existing system and this new population has disease-related transmissions back and
forth with populations that are already in the system, the possible average number of
infected devices tends to increase. That means, the more types of individuals appear
in the network, the higher the probability that an epidemic infection spreads wider.
Although it is straightforward to see this, we have set a theoretically sound base by
the above theorem. We will show more evidence in the simulation section where the
numerical outcomes totally agree with what stated here.

5 Simulation Results

In this section, we evaluate several examples to study the dynamics of the SIS and SIR
models. Examples had unlike combinations of parameters to enhance the theoretical
findings. According to the first setting, we assumed that a malcode is newly emerged
and it is able to massively spread. The same problem of serious spread has been found in
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traditional fixed networks [15], [19] and we raise awareness about it in the wireless en-
vironment and tested by our models. To reflect the massive diffusion, high contact rates
and low recovery rates were employed. In the first simulation, we tested the variations
in a network with two device types: computers and phones with a specific operating sys-
tem, say OS1. Let b1 = 0.3 and b2 = 0.5 for the birth rate. We used a simple form for the
density-dependent death rates, d1(N1) = 0.1 + 0.01N1 and d2(N2) = 0.1 + 0.008N2.
Attempts to transfer malware by WLAN or Bluetooth were modeled by αij , i, j = 1, 2
as follows: α11 = 0.15N1, α12 = 0.05N2, α21 = 0.08N1, and α22 = 0.05N2. The
download rates for two species are β1 = 5 and β2 = 2; the probability that a program
is malware is γ = 0.005. Since MMS is only valid for phones, we let η1 = 0 for
computers and η2 = 5 for phones; and the probability a phone is successful in sending
the compromised message is ϑ = 0.1. We then describe the last infection mechanism
through memory cards. Assuming that computer users and phone users use memory
cards at the same rate, let μ1 = μ2 = 3. The probability a memory card contains
malware is τ = 0.1.

Antivirus softwares for computers are updated faster than for phones and computer
users tend to scan their computers more frequently, so the recovery rates for computers
and phones were set at ϕ1 = 0.2 and ϕ2 = 0.1, respectively. Nowadays, less malware,
upon usurpation on victims, actually causes the sufferers to break down . Thus, we set
the disease-related death rates λ1 = λ2 = 0.1.

The possible average number of infected items R0 for the SIS model therefore had
a value of 9.7. As we can see in Fig. 1(a), the infected populations, I1 and I2, go
up in the initial period while the susceptible populations sharply decrease because of
the massive infection. They all stabilize at certain numbers during the simulation. This
is in agreement with the value of R0, which indicates that the disease had obviously
prevailed.

The second simulation gives us a view of the SIR model with two types of devices,
the same as in the first simulation. All parameters in the first simulation were kept
unchanged. Outcomes in Fig. 1(b) showed that all compartments soon reach their stable
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Fig. 1. Numerical results for massive spreads in 2 species of the: (a) SIS model with S0
1 =

10, S0
2 = 30, I0

1 = 2, and I0
2 = 0; (b) SIR model with S0

1 = 10, S0
2 = 30, I0

1 = 2, I0
2 =

0, R0
1 = 0, and R0

2 = 0
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states. Similar to the SIS model, the infectious population in both computers and phones
existed and persisted.

In the third and fourth numerical simulations, we tested the SIS and SIR having
one more newly added type of phone with operating system OS2. All parameters in
the system were kept unchanged and we used the following extra parameters in need
caused by the addition: The density-dependent death rate for the third entity is d3 =
0.1 + 0.008N3. Attempt rates to transfer malware through wireless interfaces, given in
matrix form, was:

α =

⎛
⎝0.15N1 0.07N2 0.05N3

0.08N1 0.08N2 0.03N3
0.08N1 0.03N2 0.07N3

⎞
⎠ .

Items of this type download with the rate β3 = 2. We let the rate at which compromised
phones of the new type send MMS messages be 5, i.e., η3 = 5. Users using this type
of phones were assumed to use memory cards at the rate μ3 = 3. This kind of phone
had the recovery rate of 0.1, denote by ϕ3 = 0.1. The disease-related death was set
λ3 = 0.1.

For the two latter simulations, the average number of newly infected items was 12,
bigger than that for the system with two entity types. We can see the same variation
patterns of populations from Fig. 2(a) and 2(b) as what had been observed in the former
simulations. However, if we compare SIS with SIS (Fig. 1(a) vs. Fig. 2(a)) and SIR
with SIR (Fig. 1(b) vs. Fig. 2(b)) results obtained from simulations for 2-type and 3-
type networks, respectively, there are disparities. The portion of infected entities during
time in both species, computers and phones with OS1, from Fig. 1(a) and Fig. 1(b) are
smaller than that from Fig. 2(a) and Fig. 2(b), respectively paired as mentioned above.

We also conducted other numerical simulations to assess the influence of device
diversity on viral dissemination. As the theoretical result has shown, the new system
forming from the existing one with at least one more new device kind has rising aver-
age number of newly infected entities, no matter how big the recovery rate of the new
network items. For both models having 3 entity types, we changed the recovery rate of
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Fig. 2. Numerical results for massive spreads in 3 species of the: (a) SIS model with S0
1 =

10, S0
2 = 30, S0

3 = 30, I0
1 = 2, I0

2 = 0, and I0
3 = 0; (b) SIR model with S0

1 = 10, S0
2 =

30, S0
3 = 30, I0

1 = 2, I0
2 = 0, I0

3 = 0, R0
1 = 0, R0

2 = 0, and R0
3 = 0



248 H.-N. Nguyen and Y. Shinoda

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time

In
fe

ct
io

n 
ra

tio
Type1

2−type
3−type, rate = 0.1
3−type, rate = 1

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time

In
fe

ct
io

n 
ra

tio

Type2

2−type
3−type, rate = 0.1
3−type, rate = 1

(a)

0 500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

In
fe

ct
io

n 
ra

tio

Type1

2−type
3−type, rate = 0.1
3−type, rate = 1

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time

In
fe

ct
io

n 
ra

tio

Type2

2−type
3−type, rate = 0.1
3−type, rate = 1

(b)

Fig. 3. Analysis of different recovery rates of the third species for the (a) SIS and (b) SIR model
with massive spread

the third population from 0.1 to 1. The portion of infected items over the total number
of items for computers and phones with OS1, as theoretically judged, are bigger than
that for the network with 2 types of items. We report this difference in Figs. 3(a) and
3(b). The bottommost line shows that the portion of infected entities for two first de-
vice types in a 2-type network is smaller than that in a 3-type system. These numerical
results strongly agree with the new value of the basic reproduction number that when
a new entity kind is added into an existing system and there are transmissions between
this new type and existing ones, the disease is likely to span to a wider extent.

In the second scenario, the malware had lower speed of spreading and users were
more experienced in mitigating the viral contagion. Therefore, the wireless contact rates
had lower values while the recovery rates had higher ones. All parameters are given in
matrix or vector forms in Table 1. The outcomes are shown in Figs. 4(a) and 4(b). The
resulted average number of newly infected items is calculated, R0 = 0.32. A small
value of R0 infers that the disease has no opportunity to prevail.

Table 1. Parameters for the second scenario with a 2-type network

Parameters Values
b [0.3, 0.5]
d [0.1 + 0.01N1, 0.1 + 0.008N2]

α

(
0.015N1 0.005N2

0.008N1 0.005N2

)
β [5, 2]
γ 0.005
η [0, 2]
ϑ 0.1
μ [3, 3]
τ 0.1
ϕ [1.5, 1]
λ [0.01, 0.01]

We analyzed the same problems when one more type of phone appears with the
network and when this new type has variable recovery rates. Additional parameters are:
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Fig. 4. Numerical results for mitigated spreads in 2 species of the: (a) SIS model with S0
1 =

10, S0
2 = 30, I0

1 = 2, and I0
2 = 0; (b) SIR model with S0

1 = 10, S0
2 = 30, I0

1 = 2, I0
2 =

0, R0
1 = 0, and R0

2 = 0

d3 = 0.01+0.008N3, β3 = 2, η3 = 5, μ3 = 3, ϕ3 = 1, and λ3 = 0.1. Wireless contact
rates in matrix form is

α =

⎛
⎝0.015N1 0.005N2 0.005N3

0.008N1 0.005N2 0.003N3
0.008N1 0.003N2 0.004N3

⎞
⎠ .

Outcomes for this parameter combination are illustrated in Figs. 5(a) and 5(b). In this
case, the reproduction number is R0 = 0.33, just a little bit bigger than that of a
2-type system. An explanation is that all propagating mechanisms had small rates and
probabilities so the number of infected individuals did not grow much.
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Fig. 5. Numerical results for mitigated spreads in 3 species of the: (a) SIS model with S0
1 =

10, S0
2 = 30, S0

3 = 30, I0
1 = 2, I0
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3 = 0; (b) SIR model with S0
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We changed the recovery rate of the third item kind to ϕ3 = 5 to see the influence
of item heterogeneity. In these conductions, the total portion of infected items for com-
puters and phones with OS1 were higher than that of a 2-type network as easily seen in
Figs. 6(a) and 6(b).
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Fig. 6. Analysis of different recovery rates of the third species for the (a) SIS model and (b) SIR
model with mitigated spread

6 Conclusions and Future Works

In this paper, we have examined the situation that wireless devices having different
characteristics exist in a network with threats of viral infection. Various sorts of items,
e.g. computers and phones, are distinguished and taken into account to precisely for-
mulate two novel analytical models which we propose as an aid to understanding the
dynamics of the spread malware through an ad hoc network. Additionally, we have
derived a method to calculate the basic reproduction number, understandable as the
possible average number of newly infected items, and used this number to acquire a
grasp of disease diffusion as well as its stability. We also have theoretically contributed
to comprehending the influence of entity diversity on malware propagation: The more
distinct populations, with vulnerabilities to malware infection, introduced into an ex-
isting network, the bigger the viral dissemination is. Moreover, a huge result space is
also producible by our 3-compartment framework thus makes it appropriate to describe
many viral proliferating scenarios. The correctness of our models is affirmed by several
numerical results under various situations.

Our work has some restrictions as follows: The simulations were conducted based
on numerical results only and we did not use real network traces, and our models can
be more general if we consider more states that each network item may undergo while
participating in the network.

We intend to further scrutinize the basic reproduction number so that we can use-
fully utilize it for an investigation of the spread of malware and add mobility into our
model to make it better reflect the real world. Another extension of our paper can be
made on considering multiple susceptible and infected reservoirs, this could happen in
reality.
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A Proof for Theorem 1

Result from [18] can be directly applied to get a proof for this Theorem.

B Proof for Theorem 2

We augment the matrix Mn with one row and one column of zeros, the resulted matrix
M0

n has the following form:

M0
n =

(
Mn 0T

0 0

)
,

where 0 is the 1 × n vector. The next generation matrix for the new system of (n + 1)
species is built as follows:

Mn+1 =
(

Mn M∗,n+1
Mn+1,∗ Rn+1,n+1

)
,

where M∗,n+1 and Mn+1,∗ are the column and row vector with corresponding elements
computable from Theorem 1, respectively. The spectral radius of Mn+1, ρ(Mn+1), is
the basic reproduction number of the new system consisting of (n+1) types of entities.
With the assumptions made for the SIS and SIR models, it follows that the column
and row vectors M∗,n+1 and Mn+1,∗ of Mn+1 have nonnegative entries. Consequently,
from the theory of nonnegative matrices [4], [12], we have

ρ(Mn) = ρ(M0
n) ≤ ρ(Mn+1).

When n = 1, ρ(M1) = R11. Hence, the inequality (9) holds.

C Proof for Claim

In order to prove the strict inequality (11), we see that, according to the assumption (10),
R1k > 0 and Rk1 > 0 since they can not be equal to zero. Let k = 2 and consider the
basic reproduction number of a two-species system, represented by the spectral radius
of M2, ρ(M2), where

M2 =
(R11 R12
R21 R22

)
.

It is easy to see that ρ(Mn) ≥ ρ(M2) > R11, ∀n > 2. The inequality (11) holds.
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Abstract. WiMAX networks provide broadband data access to mobile as well 
as stationary users. While the wireless link is based on the 802.16e-2005 
specification developed by IEEE, a complete network architecture “behind the 
base station” with global roaming support has been specified by the WiMAX 
forum. The security architecture for these networks covers EAP/AAA-based 
secure network access, secure bootstrapping of macro mobility based on Mobile 
IP, and secure over-the-air provisioning. Specific solutions have been 
standardized to support combined or separate device and user authentication. 

1   Introduction 

WiMAX is a technology providing mobile and stationary broadband wireless access 
to IP-based services through a common radio technology, providing support for 
quality-of-service, roaming of mobile users, and strong security. The wireless link has 
been specified by as IEEE 802.16e-2005 [1]. WiMAX comprises a wireless interface 
that is sometimes hyped as the next technology disruption after IEEE 802.11 wireless 
LAN. In reality, much more is covered than the pure radio interface. The WiMAX 
forum [2] has developed a complete network architecture [11] for 802.16-2005 
wireless access that supports IP mobility and global roaming. It has similarities with 
cellular wireless standards such as 3GPP and 3GPP2 as well as with IEEE 802.11.  

After giving an overview of the WiMAX network architecture in Section 2, its 
security architecture is described, highlighting the specific security solutions. 
Section 3 focuses on network access authentication, whereas Section 4 describes the 
WiMAX security and key management solution for mobility. Section 5 concludes 
with a summary and outlook. 

2   WiMAX Network Architecture 

The WiMAX network architecture complements the IEEE 802.16e-2005 wireless link 
with a network architecture partially based on IETF protocols. It supports mobility 
and global roaming, i.e. subscribers can get serviced by any visited operator that 
maintains a business and roaming relationship with their home operator. A mobile 
WiMAX-capable device is denoted as mobile station (MS). On the network side, 
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WiMAX introduces two logical sets of network functions that can be mapped to 
corresponding business entities, or network operators, see Fig. 1. 

 

 

Fig. 1. WiMAX Network Architecture 

• The access service network (ASN), which provides network access, comprises 
WiMAX base stations (BS) and introduces the ASN Gateway as a central 
controller. The ASN loosely corresponds to the radio access network of cellular 
systems. 

• The connectivity service network (CSN), which corresponds rather to the core 
network of cellular systems, provides IP connectivity and comprises network 
entities like IP mobility anchor, DHCP server, AAA infrastructure, and subscriber 
management functions.  

Reference points define the interfaces and group the different protocols between the 
entities of a WiMAX network. Some of these reference points connect different 
networks or business entities (shown at the top of Fig. 1). R3 connects ASN and CSN, 
or a network access provider (NAP) that is operating one or more ASNs to a network 
service provider (NSP) that is operating a CSN. Others, like R6, are internal to the 
ASN and connect one or more base stations to an ASN gateway. For roaming 
scenarios where a user gets WiMAX service through a different operator’s network, 
two types of CSNs are involved, namely the visited (local) CSN and the home CSN 
the WiMAX user is subscribed to. 

For protecting network access, access authentication in WiMAX builds on the 
IETF EAP (extensible authentication protocol) framework [3] and the RADIUS [8] or 
Diameter [10] protocol. It uses the common three-party EAP/AAA model for 
authentication and authorization, involving the supplicant (Suppl) on the mobile 
station MS, the authenticator (Auth) in the ASN, AAA proxies in the visited CSN (V-
AAA) and the AAA server in the home CSN (H-AAA).  

EAP itself provides a generic “container” and a well-defined state machine for 
carrying authentication protocols. Instances of authentication protocols are called 
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EAP methods. Depending on the EAP method, authentication can be unilateral, i.e. 
server-only authentication that is similar to common SSL or TLS usage in the 
Internet, or mutual. It can be based on either shared secrets (including passwords) or 
public/private key pairs and certificates. WiMAX supports cryptographic 
authentication of both the device and the subscriber (user) as one major difference to 
WLAN or mobile cellular network deployments. It defines, but is clearly not limited 
to, a set of default methods that comprise EAP-TLS [4], EAP-TTLS and EAP-AKA 
[5]. Any other EAP method matching WiMAX security requirements can be used 
when supported by the device and the CSN operator at the same time. 

WiMAX defines two levels of mobility management, CSN anchored mobility that 
is based on Mobile IP, and ASN-anchored mobility:  

 
• In the case of CSN anchored mobility or R3 mobility, the handoff takes place 

between administrative domains. Such R3 mobility can be handled by Mobile IP 
(MIP), see e.g. [9]. Two variants of MIP are supported: In the case of standard MIP 
(called CMIP or client-MIP in the WiMAX architecture), the MS itself performs 
mobility signaling, while in the case of proxy MIP (PMIP), a proxy mobile node 
(PMIP client) located within the ASN performs MIP signaling on behalf of the MS. 
So with PMIP, R3 mobility is possible even for MSs that do not support MIP. 
PMIP does not affect network access security, but has a certain impact on the 
required key distribution scheme, as – compared with CMIP – the PMIP client is 
part of a different entity having different security properties. 

• Local handoffs in ASN-anchored mobility are handled by a single ASN gateway or 
between ASN gateways of the same administrative domain, without requiring any 
Mobile IP signaling towards the CSN. As the local handoff is realized on link 
layer, it does not affect the IP configuration of the MS.  

3   Network Access Authentication 

For fixed wireless access, IEEE 802.16-2004 [6] has a single network access 
authentication and authorization key establishment protocol Privacy Key 
Management (PKM). This protocol authenticates the MS using a public/private key 
pair. 802.16e-2005 [1] has adopted PKM for legacy reasons, but also introduced 
PKMv2 supporting EAP. Also, it allows for mutual authentication between MS and 
the backend AAA server instead of just the local BS. 

For mobile WiMAX networks following the WiMAX Forum network 
specifications [11], security for the wireless link relies on the security measures 
provided by 802.16e-2005 [1]. These are profiled to limit the number of supported 
security options of the PKMv2 protocol, while not continuing support for the former 
PKM that is used by fixed WiMAX deployments. For authentication of WiMAX 
subscribers, mobile WiMAX networks build on EAP/AAA-based authentication. This 
allows for a large set of available EAP authentication methods to give each operator a 
maximum flexibility to match specific security needs. This section gives an overview 
of the mobile WiMAX network authentication. 
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3.1   Authentication Scenarios 

For secure access to network resources a separation between authentication of the 
subscription and authentication of a mobile WiMAX device is introduced.  

The former in the most common example maps to a human user. Subscription 
authentication typically ensures – from the operator’s perspective – that the mobile 
user accessing network resources and mobile services can be uniquely and securely 
associated with a subscription. In contrast, different reasons may require 
authentication of the device itself, like for instance the protection of initial over-the-
air subscription provisioning using long-term device credentials or verification that 
the device is not a stolen one.  

Current examples of network access authentication are: 
 

• 3GPP networks: Subscription authentication is based on the tamper-resistant and 
removable SIM/USIM card that holds the subscription data and cryptographic 
keys. Device authentication happens only implicitly by verification of the mobile 
terminal’s IMEI number. A USIM card and subscription can easily move between 
different different mobile terminals, so the subscriber’s identity is not necessarily 
bound to any device identity. 

• WLAN networks: Only a single EAP authentication is supported for WPA/WPA2 
(Wi-Fi Protected Access). Authentication is performed using the EAP protocol 
towards an AAA server, or using a pre-shared key shared between WLAN devices, 
e.g. within a WLAN home network. Depending on the deployment, a 
user/subscriber or a device can be authenticated. 

• DSL or fixed WiMAX access [6]: Here the device is authenticated. Subscription 
authentication is typically performed after the device is being connected, e.g. based 
on username/password credentials. 

Device authentication becomes more important in mobile WiMAX networks. Off-the-
shelf devices like standard notebooks - in contrast to today’s mobile phones that are 
often sold and subsidized by cellular operators - cannot be expected to be under 
operator control. Hence, it makes much sense to introduce cryptographically strong 
device authentication based on certificates imprinted into the device or wireless 
interface card upon manufacturing. This will enable operators to control that only 
approved WiMAX equipment can access the operator’s network resources and it 
especially will help to simplify the process of secure device provisioning. Another 
valid scenario for device authentication is based on the fact that in a roaming 
situation, the visited network may be subject to country-specific regulations that 
mandate cryptographic authentication of the device.  

Certainly, the overall security level achieved by this depends on a number of 
challenging factors, like secure storage of keys and trusted certificates in the device, 
and the PKI (public-key infrastructure) system’s responsibility to efficiently handle 
aspects like certificate revocation. 

To cover all these scenarios, the WiMAX Forum defines means for performing 
both device and user authentication based on EAP methods, single or combined. 
Device certificates are pre-installed in all WiMAX-Forum compliant devices upon 
manufacturing, and a PKI including top-level certificate authorities to make those 
certificates work between different operators is made available through the WiMAX 
Forum. Detailed considerations related to this PKI system are provided by [12]. 
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3.2   Subscription Authentication 

Mobile WiMAX networks require secure access to their resources with authentication 
based on the EAP/AAA model. In principle, the same three-party authentication 
model of 802.1X access to WLAN networks is used. 

There are a number of technical differences between WLAN and WiMAX like 
state machines or key derivation for the involved entities. Also, a major new aspect 
for mobile WiMAX is a central controller for a set of base stations which also handles 
authentication. With such a controller the Authenticator is not directly located in the 
base station any more, but is handled centrally by the ASN Gateway which may cover 
a large number of base stations at the same time. The base station itself only acts as a 
simple relay for EAP in this scenario, and is only provided with the keys required for 
protecting the wireless link after successful EAP authentication. One main advantage 
of this architecture is that during handover, the number of re-authentications can be 
reduced significantly, thereby avoiding delays.  

 

EAP method

EAP

PKMv2 Auth. Relay Prot. 

UDP / IP 

AAA

802.16 UDP / IP 

Supplicant 
(MS) 

Authentication Relay 
(BS) 

Authenticator
(ASN-GW) 

EAP Server 
(CSN) 

 

Fig. 2. WiMAX Protocol Layering for Network Access Authorization 

An EAP method runs end-to-end between the supplicant in the MS and the 
EAP/AAA server. It is transparent to the Authenticator in the access network and to 
any intermediate RADIUS proxy or Diameter agent in the AAA path. Only MS and 
AAA server run the required security algorithms and possess the required security 
credentials. Hence, a decision on the EAP method to be used is up to the operator of 
the AAA server (as long as device vendors support the selected method). Subscription 
authentication in WiMAX always terminates in the AAA server of the subscriber’s 
home network. 

The roaming considerations shown in Fig. 1 also apply here. If the subscriber 
attaches to an ASN connected to a visited CSN operator, EAP authentication is routed 
based on the home domain indicated in the network access identifier NAI [7] 
provided by the MS. This passes through an AAA proxy in the visited CSN and is 
routed to the home CSN AAA server, where the subscription is actually authenticated.  

The NAI for subscription authentication serves as the common identity for the EAP 
and Mobile IP session in the WiMAX system. It consists of a username part and a 
realm part identifying the subscriber’s home network (“username@realm”). For 
supporting identity privacy, the NAI is allowed to carry a pseudonym as the username 
part instead of the real identity of the subscription. Hence, it is mainly used for AAA 
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routing and binding different sessions related to the same network entry of the 
subscriber in the WiMAX network. This pseudo-identity can also be changed with 
each new authentication. 

On the wireless link between MS and BS, EAP payloads are encapsulated in 
PKMv2 messages as defined by 802.16e-2005 [1] and are transferred over the 802.16 
physical link (see Fig. 2). The authentication relay function (see section 4.4.2 of [11]) 
in the BS and the authenticator in the ASN-GW exchange EAP payloads by 
encapsulating them within WiMAX-specific protocol messages across the R6 
reference point. 

3.3   Device Authentication and Subscription Provisioning 

WiMAX client devices are shipped with a device certificate that is securely imprinted 
by the device vendor upon manufacturing. These certificates are verified using a 
common root authority hosted by the WiMAX Forum [13]. This public-key 
infrastructure including root certificate authorities for both WiMAX server and device 
certificates enables certificate-based device authentication. Conceptually, the AAA 
server for device authentication is always located in the home CSN and in fact in most 
cases it will just be the same entity as the one being responsible for subscription 
authentication. However, the major use case for device authentication is currently to 
support the process of over-the-air self-provisioning of new subscriptions where the 
user looking for a WiMAX subscription does not yet have any “home” operator 
because no subscription has been established yet. This is especially important for 
devices like notebooks that are bought through common retail channels that are not 
related to any specific operator. In such cases, one of the WiMAX NSPs locally 
advertised through the radio channel during initial network attachment will be 
selected either manually by the user or automatically based on some policy 
preconfigured by the operator or device manufacturer in the MS. After successful 
initial provisioning of subscription data the selected NSP will become the home CSN 
operator for this new subscriber. 

The limitation of terminating subscription and device authentication in the same 
operator’s network currently reduces complexity and therefore interoperability issues 
due to unclear policies between the potentially different involved ASN and CSN 
operators. Future extensions may support terminating device authentication also 
locally in the access network.  

If both device and subscription authentication are to be performed for the same 
network entry, the technical choice is to use a tunneled EAP method with the default 
one being EAP-TTLS [14]. This makes use of the device certificate for setting up a 
TLS-based secure tunnel first and then runs the subscription authentication inside the 
tunnel. Options for the so-called “inner authentication” are either an MS-CHAPv2 
based challenge-response authentication of the subscription credentials or any suitable 
EAP method that is forwarded through the outer TLS tunnel.  

A different technical approach would have been to perform two subsequent but 
otherwise independent EAP protocol runs with cryptographically binding the two 
authentication exchanges in the access network (‘double-EAP’). Besides improved 
flexibility like support for the AAA servers being located in different locations and 
belonging to different operators or fewer limitations regarding the choice of EAP 
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methods, this approach would have offered slightly advanced access security due to a 
cryptographic binding of the two authentication phases that is not available for the 
EAP-TTLS version currently used by the WiMAX Forum. However, due to a higher 
complexity in the wireless access this solution has been deprecated by both IEEE 
802.16 and the WiMAX Forum NWG.  

 

Fig. 3. WiMAX Network Access with Device and Subscriber Authentication 

Figure 3 provides a high-level overview of the security-related steps that are 
performed in a mobile WiMAX network as part of successful network entry. Network 
access starts with activating the wireless link and selecting the desired NAP. The first 
EAP run after attaching to a BS of the NAP will be routed through the ASN’s 
authenticator being in charge of this BS to the subscriber’s home operator’s AAA 
server. The latter is identified by the realm information of the NAI provided by the 
attaching MS. After successful EAP method termination the subscriber and the 
network are authenticated, and optionally the device itself is authenticated based on 
the device certificate. RADIUS or Diameter will deliver the resulting master session 
key MSK (see also Section 4) to the authenticator in the ASN Gateway (ASN-GW). A 
base station specific key AK and related security context information is derived and 
passed to the respective base station for securing the wireless link (see also Fig. 4 for 
the WiMAX key hierarchy). This key is used in the 802.16e-2005 3-way handshake 
authentication between MS and BS and to establish further traffic encryption keys 
(TEK). After successful authentication, the MS registers with its assigned Mobile IP 
home agent in case IP mobility service based on MIP is used. Mobility keys for 
protecting the Mobile IP signaling are also distributed during network access 
authentication (see Section 4). 
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Let us take a further look at device authentication in WiMAX network access for 
the purpose of setting up a new subscription, that is, the dynamic self-provisioning 
[15] after an un-provisioned device retrieves information about the locally advertised 
WiMAX CSN operators from the selected ASN and the user selects one for creating a 
new subscription. The MS enters the network using the EAP-TLS authentication 
method and the device certificate as the client-side security credential. Certificate-
based server-authentication is also performed in EAP-TLS and a WiMAX device is 
expected to be shipped with pre-installed trusted root certificates to be able to verify 
the operator’s AAA server certificate that is subject to the WiMAX Forum PKI.  

After successful network entry, the user will start setting up the new subscription 
(typically by accessing a Web portal page) and the newly generated subscription data 
including security credentials and identity information has to be securely transmitted 
over-the-air to the WiMAX device.  

This initial provisioning is based on specifications developed either by the Open 
Mobile Alliance (OMA) for management of mobile devices or by the Broadband 
Forum for CPE devices targeted for the fixed-line and DSL market. Both are extended 
and profiled by the WiMAX Forum [15] to cover the specifics of WiMAX devices. 
Security keys to enable the security mechanisms in both protocols between MS and 
provisioning server are derived from the EAP-TLS based device authentication 
procedure as subordinate keys generated from EMSK. While the MS is able to 
generate those keys internally, the provisioning server will receive them from the 
AAA server. So after network access authentication, a shared secret derived from the 
device authentication is established between the MS and the provisioning server to 
protect the communication for setting up the subscription. 

4   Key Management for Mobility Support 

Two levels of mobility management are supported by WiMAX: CSN anchored 
mobility that is e.g. based on Mobile IP, and local ASN-anchored mobility. In the 
latter case, the traffic is redirected towards the new BS after hand-off, but the MIP 
Foreign Agent (FA) location or MS IP address do not change. In the case when the 
new BS is controlled by the same ASN Gateway as the previous BS, the authenticator 
in the same ASN Gateway is still in charge for securing the new wireless link after 
handover and will provide appropriate key material to the new BS over the WiMAX-
defined R6 reference point. This key material is still derived from the original EAP 
authentication session key MSK. For hand-off to a base station controlled by a new 
ASN Gateway, the Authenticator in the new ASN Gateway may take over security 
control. This requires an EAP re-authentication to be performed and fresh keys to be 
generated to protect the new wireless link. Alternatively, the authenticator of the old 
ASN Gateway can be kept to avoid re-authentication and related delays. EAP 
exchanges go all the way between the MS and the home operator’s AAA server. In 
this case it will remain the “anchor” authenticator and provide appropriate keys for 
the new BS to the new ASN Gateway, across the R4 interface.  

When CSN-anchored mobility handover via Mobile IP takes place, the MS gets 
assigned a different local IP address after hand-off. Although both Mobile IP v4 and 
v6 can be supported, this section will focus on the Mobile IPv4 [9] aspects for the 
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sake of brevity. The MS’s local IP address called care-of-address (CoA) is registered 
with the MIP home agent (HA) that resides in the CSN (see Fig. 1). The HA handles 
the MS’s long-term home IP address, which remains unchanged and tunnels data 
traffic destined to the MS to its current care-of address. The MS communicates using 
its home address. In WiMAX MIPv4, a foreign agent (FA) in the ASN gateway is the 
tunnel endpoint for all user traffic in the access network. WiMAX allows for a 
dynamic assignment of the HA and the MS’ home address. The HA may, depending 
on operator policies, be assigned and located on a per-subscriber basis either in the 
home CSN or in a visited CSN. The network elements and interfaces relevant for 
Mobile IP and AAA interaction are shown in Fig. 1.  

Two variants of MIP are supported: Either the MS performs MIP signaling itself 
(CMIP), or a PMIP client in the ASN-Gateway performs MIP signaling on behalf of 
the MS. As described above, it is possible to keep the anchor authenticator after 
handover. This means that the FA functionality moves to a new ASN Gateway, but no 
EAP re-authentication needs to be performed. The anchor authenticator is still in 
charge of providing keys for securing the wireless link. If PMIP is used in this 
scenario, the PMIP client also stays with the anchor authenticator and does not move 
to the new ASN Gateway. 

Mobility signaling has to be protected, as it controls all the user traffic. Hence, 
Mobile IP requires a security association between the Mobile IP client and the HA 
(MN-HA) for protecting MIP signaling. Also, MIP signaling between FA and HA 
(FA-HA) is protected by a security association. 

In WiMAX, the architectural approach was chosen to dynamically derive the 
mobility keys from the EAP-based network access authentication that has been 
described in Section 3. The resulting key hierarchy is illustrated in Fig. 4. Initially 
based on long-term credentials for secure authentication of the subscription for  
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network entry, EAP authentication creates two session keys MSK (master session 
key) and EMSK (extended MSK) that are known by the EAP peer (client) and the 
AAA server. The EMSK key is not used for securing the wireless link and is reserved 
to serve as master key for derivation of further application-specific session keys. Such 
applications rather include those integral to the network architecture design and 
network operation instead of being general third-party applications that are typically 
independent of the WiMAX network.  

The MSK key forms the basis for derivation of all session keys for protecting the 
802.16e-2005 wireless link. It is generated as a result of the EAP method based 
authentication in the MS and the AAA server terminating EAP in the CSN. As 
highlighted in Fig. 3, it is delivered via the RADIUS or Diameter protocol from the 
AAA server to the authenticator in the ASN Gateway. Further information on the key 
hierarchy for the wireless link can be found in [1]. 

From the second key EMSK, a Mobile IP root key MIP-RK is generated in the 
AAA server and the EAP peer, and all user-related session keys for the MN-HA 
security association for a CMIP or PMIP session are derived from the root key. 
Although for PMIP such user-related keys would not be required (instead, a PMIP 
client could use the same MN-HA key for all active user sessions), CMIP and PMIP 
is actually using the same scheme in WiMAX. This allows to simplify the network 
signalling by only defining a single mechanism for keying the different R3 mobility 
schemes. In addition, the AAA server generates an independent root key HA-RK for 
protecting signaling between a specific HA and connected FAs.  

The MIP session keys related to a specific user session are distributed to the 
authenticator in the ASN Gateway already as part of the RADIUS or Diameter 
message that the AAA server sends to the authenticator as shown in Fig. 3, to indicate 
successful authentication of the user. The HA also requires the MN-HA security 
association for protecting and verifying MIP messages. It requests keys, if not yet 
available, from the AAA server when receiving a MIP registration message. In 
contrast, the MS generates all keys on its own if CMIP is used. For PMIP, no Mobile 
IP related keys are required in the MS.  

In the ASN, the authenticator is responsible for further distributing the appropriate 
MIP keys to the FA and the PMIP client for PMIP. This is especially the case for an 
FA being located in a different ASN Gateway. HA-RK is used in the authenticator 
and HA to derive fresh FA-HA keys. It is only distributed as required, and is not 
specific to a single MS or subscriber. 

An important aspect from the security point-of-view is the secure binding between 
two otherwise independent procedures of authenticating network access and securing 
mobility service. WiMAX achieves this by using the NAI identity provided during 
network access authentication also in Mobile IP registration. This is sent by the HA 
together with a unique key identifier, the MIP security parameters index (MIP-SPI), to 
the AAA server and is subsequently used there to select the correct set of mobility keys. 
By this, the network ensures that the session created during network access 
authentication and the MIP session belong to the same user. For MIP-SPI creation, it is 
important to avoid collisions of SPI values for MN-HA security across the network. 
Such collisions would result in ambiguities for selecting the subscriber session’s related 
MIP keys, leading to dropped sessions. Hence, WiMAX networks implement a specific 
procedure to ensure that such collisions cannot happen (see section 4.3.5 of [11]). 
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The WiMAX approach of binding key management and distribution for Mobile IP 
to the EAP-based network access authentication has been an important step for the 
WiMAX network security architecture, compared to any approach based on static pre-
configuration of shared MIP keys between a subscriber’s WiMAX device and the 
home network. Such binding, however, also creates a need for synchronization of key 
lifetimes between the different EAP and MIP sessions and correct removal of session 
state when the devices log off. In an environment supporting fully mobile devices and 
globally roaming users, the benefits like increased security through dynamically 
provisioned mobility keys and reduced administrative complexity justifies the effort. 

5   Summary and Outlook 

The overall goal of the WiMAX security architecture is to create an interoperable 
security solution that covers all relevant aspects of WiMAX networks based on 
commonly accepted security protocols like EAP and RADIUS/Diameter. One major 
objective is to minimize administrative effort and therefore reduce operational 
expenses by designing dynamic mechanisms for distributing configuration data in the 
system. Looking at security, full support for dynamic over-the-air provisioning and 
dynamic generation and distribution of security associations fall into this category. 
This holds for the provisioning based on device authentication as well as for network 
services like IP mobility.  

WiMAX is designed with the clear goal of being extensible in the future. In 
particular, the security concepts are not strictly limited to the WiMAX environment, 
but can be expanded to leverage integration with other mobile communication 
technologies like those developed by 3GPP or 3GPP2. Inter-technology interworking 
has been an important factor in the design of the WiMAX security architecture and as 
one example the dynamic keying approach developed for Mobile IP is also followed 
by 3GPP in their specifications describing how to interwork with other access 
technologies like WiMAX.  

The WiMAX security architecture comes with similarities to WLAN (EAP) and 
3GPP2 (Mobile-IP/AAA), but also with a number of new approaches: For network 
access, it supports EAP-based authentication of both the user’s device and the 
subscription. Integral support for over-the-air provisioning combined with dynamic 
network selection support allow users of any type of WiMAX device to flexibly 
create a subscription with one of the available network service providers. Mobile IP 
security is dynamically bootstrapped. Furthermore, the real user identity can be 
hidden from the wireless link and from local access networks by using a pseudo-
identity mechanism.  

Certainly, the WiMAX network specifications are evolving, and ongoing work 
related to the next releases of the WiMAX network architecture will also further 
extend the security architecture. Besides obvious and already available enhancements 
like including full support for Diameter [10] as AAA protocol in addition to the initial 
RADIUS-only specifications, or support for WiMAX-specific SIM cards, improve-
ments like a cryptographically protected rejection cause indication in cases where a 
WiMAX device is denied network entry, or advanced access scenarios like the 
support for Femto cells are being worked on in the WiMAX Forum. 
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Abstract. This paper describes the design of LoPSiL, a language for
specifying location-dependent security and privacy policies. Policy-
specification languages like LoPSiL are domain-specific programming
languages intended to simplify the tasks of specifying and enforcing sound
security policies on untrusted (i.e., potentially insecure) software. As far
as we are aware, LoPSiL is the first imperative policy-specification lan-
guage to provide abstractions specifically tailored to location-dependent
policies for mobile-device applications. We have implemented a proof-of-
concept compiler that inputs a LoPSiL policy P and a mobile-device ap-
plication program A and outputs a new application program A′ equivalent
to A, except that A′ contains inlined enforcement code that ensures that
A′ satisfies P at runtime. We report our experiences using this compiler
to design and implement several policies for mobile-device applications.

Keywords: Policy-specification languages, location-dependent policies,
mobile devices, security and privacy.

1 Introduction

Policy-specification languages are domain-specific programming languages in-
tended to simplify the tasks of specifying and enforcing sound security policies
on untrusted (i.e., potentially insecure) software. There are two common moti-
vations for using policy-specification languages:

1. Users often wish to download and execute third-party software applications
but do not (and should not) trust that those applications will behave securely
or respect their privacy. Therefore, users (or other parties working on behalf
of the users, such as vendors or system administrators) may utilize policy-
specification languages to create and enforce customized, flexible constraints
(i.e., policies) on the untrusted software. For example, a policy-specification
language may be used to specify and enforce that applications downloaded
from third-party providers do not delete particular files or read particular
regions of memory.
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2. Application developers often wish to enforce security policies on their own
code. Typically, application developers implement security and privacy con-
siderations by scattering security checks throughout their code. Policy-
specification languages and compilers enable those developers to refactor
their code by moving all the scattered security checks from the application
implementation and into a separate, isolated policy module (written in a
language designed to make it easy to specify the desired policy). Separat-
ing the security policy from the core application code provides application
developers all the standard software-engineering benefits one would expect
from modularization: it makes the centralized policy easier to create, locate,
analyze, and maintain.

A rich variety of expressive (i.e., imperative and Turing-complete) policy-
specification languages and systems has been implemented [16,10,9,11,12,21,5,13].
All of these languages enable users to centrally specify security and privacy poli-
cies to be enforced on untrusted software at runtime. All of the cited languages
have also been implemented as compilers that convert untrusted into trustworthy
applications by inputting a policy P and an application program A and outputting
a new application program A′ equivalent to A, except that A′ contains inlined en-
forcement code that ensures that A′ satisfies P at runtime.

However, as far as we are aware, no imperative policy-specification languages
have yet targeted location-dependent policies for securing applications on mo-
bile devices (e.g., roaming laptops, cell phones, robots, PDAs, etc)—though re-
searchers have previously developed declarative (i.e., Turing-incomplete) policy-
specification languages limited to location-based access-control policies [7,2,1].

The lack of expressive policy-specification languages for mobile-device appli-
cations presents a problem—and an opportunity—because:

– The two motivations for policy-specification languages given above are be-
coming more relevant for mobile-device applications as mobile devices be-
come more powerful, open, and flexible and allow users to download and
execute third-party software.

– Security and privacy policies for applications on mobile devices often have to
reason about different machine states—locations in particular—than policies
for applications on immobile devices.

Hence, it is important to consider how to create a convenient policy-specification
language specifically for mobile-device applications. This paper proposes such a
language, called LoPSiL, whose primary novelty is to provide several abstrac-
tions for conveniently accessing and manipulating location information in policy
specifications.

Roadmap. We proceed as follows. Section 2 describes the design of LoPSiL, its
core constructs for simplifying the specification of location-dependent policies in
Section 2.1 and several examples highlighting its ease of use in Section 2.2. Sec-
tion 3 discusses our proof-of-concept implementation of a LoPSiL compiler and
experiences we have had designing and implementing LoPSiL policies. Section 4
concludes and describes possible future work.
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2 LoPSiL

Due to the popularity of Java, particularly Java ME, as an application program-
ming language for mobile devices [15], we have chosen to design and implement
LoPSiL constructs in Java source code. Also, to make it easy for security engi-
neers to learn and use LoPSiL, and to simplify the implementation of a LoPSiL
compiler, we have packaged LoPSiL as a Java library, to which LoPSiL policies
may refer (e.g., a LoPSiL policy may refer to the Location class in the LoPSiL
library). Although we treat LoPSiL in a Java context in this paper, we have built
LoPSiL on six core abstractions that are application-language independent, so
we expect LoPSiL to be portable to other languages and platforms.

2.1 Core Linguistic Constructs

LoPSiL is built on six core abstractions; we describe each in turn.

Locations. In LoPSiL, Locations are (possibly abstract) places. They may
refer to rooms, chairs, floors, buildings, campuses, GPS coordinates, regions of a
network topology, etc. All Locations have an identity (e.g., a room or building
name, or coordinates in GPS). LoPSiL provides many built-in utility methods
for manipulating GPS locations (e.g., to calculate distances between them), as
the examples in Section 2.2 demonstrate. However, LoPSiL users are always
free to implement custom methods for manipulating locations (e.g., to define a
containment relation over locations, useful for testing whether a room is in a
building, a building is on a campus, etc).

LocationDevices. A LocationDevice is LoPSiL’s interface to real-time lo-
cation information. Concrete LocationDevices must implement two abstract
methods. The first simply informs policies of the device’s current location, which
could be determined using GPS or by inputting location information from a user,
a file, another (networked) host, a TLTA device [22], etc. The second abstract
method LocationDevices must implement informs LoPSiL policies of the de-
vice’s granularity, that is, with what precision is the device’s location information
accurate (e.g., accurate within 1 meter, 1 room, 1 road, 1 building, 1 kilometer,
etc). LoPSiL policies can require devices to provide location information with
particular granularity thresholds.

Our LoPSiL implementation includes concrete implementations of two
LocationDevices, but users are always free to implement others. The first
LocationDevice provided with LoPSiL represents and connects to a Garmin
GPS device using Java’s communication API and the GPSLib4J library [14];
the second LocationDevice represents and connects to a simple GUI with which
users can manually select their current location from a list of known locations.

PolicyAssumptions. LoPSiL policies may make two important assumptions
about LocationDevices. First, as mentioned above, a policy may require lo-
cation information with a particular granularity (e.g., accurate within 15m).
Second, a policy may require that location updates arrive with a particular
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frequency (e.g., a new update must arrive within 10s of the previous update).
LoPSiL policies encapsulate these assumptions, along with the LocationDevices
whose location data they trust, in a PolicyAssumptions object. A LoPSiL pol-
icy gets notified automatically whenever a LocationDevice violates the policy’s
granularity or frequency-of-updates assumptions.

Actions. An Action encapsulates information about a security-relevant method
(i.e., any Java application or library method of relevance to a LoPSiL policy).
LoPSiL policies can interpose before and after any security-relevant action ex-
ecutes; the policy specification then determines whether that action is allowed
to execute. Policies may analyze Action objects to determine which security-
relevant method the action represents, that method’s signature, run-time argu-
ments, and calling object (if one exists), whether the method is about to execute
or has just finished executing, and the return value of the action if it has finished
executing.

Reactions. LoPSiL policies convey decisions about whether to allow security-
relevant Actions to execute by returning, for every Action object, a Reaction
object. An OK reaction indicates that the action is safe to execute; an exception
reaction indicates that the action is unsafe, so an exception should be raised
(which the application may catch) instead of allowing the method to execute;
a replace reaction indicates that the action is unsafe, so a precomputed return
value should be returned to the application in place of executing the unsafe
action; and a halt reaction indicates that the action is unsafe, so the application
program should be halted.

Policies. LoPSiL policies incorporate all of the previously described language
constructs. There are five parts to a LoPSiL Policy object:

1. A policy may declare PolicyAssumptions upon which it relies.
2. A policy may define a handleGranularityViolationmethod, which will be

invoked whenever all LocationDevices upon which the policy relies violate
the policy’s location-granularity assumption.

3. A policy may define a handleFrequencyViolation method, which will be
invoked whenever all LocationDevices upon which the policy relies violate
the policy’s frequency-of-update assumption. LoPSiL’s PolicyAssumptions
class implements the multithreading needed to test for frequency-of-update
violations.

4. A policy may define an onLocationUpdate method, which will be exe-
cuted any time any LocationDevice associated with the policy updates its
Location information. This method enables a policy to update its security
state and take other actions as location updates occur in real time.

5. A policy must define a reactmethod to indicate how to react to any security-
relevant method. LoPSiL requires every policy to contain a react method,
rather than providing a default allow-all reactmethod; hence, policy authors
wanting to allow all security-relevant methods to execute unconditionally
must explicitly specify their policy to do so.
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public class AllowAll extends Policy {

public LocationDevice[] devices = {new LopsilGPS(LopsilGPS.GARMIN)};

public LocationGranularityAssumption lga =

new LocationGranularityAssumption(15, Units.METERS);

public FrequencyOfUpdatesAssumption foua =

new FrequencyOfUpdatesAssumption(10, Units.SECONDS);

public PolicyAssumptions pa =

new PolicyAssumptions(this, devices, lga, foua);

public void handleGranularityViolation() {System.exit(1);}

public void handleFrequencyViolation() {System.exit(1);}

public synchronized void onLocationUpdate() {

System.out.println("new location = " + devices[0].getLocation());

}

public synchronized Reaction react(Action a) {

return new Reaction("ok");

}

}

Fig. 1. Simple LoPSiL policy that prints location information as it is updated and
allows all security-relevant methods to execute as long as its location-granularity and
frequency-of-update assumptions are not violated

Figure 1 contains a simple LoPSiL policy with all five of these components.
Existing policy-specification languages, such as Naccio [12], PSLang [11], and

Polymer [5,4], provide constructs similar to our Actions, Reactions, and Policy
modules with react-style methods. LoPSiL’s novelty is its addition of optional
location-related policy components: Locations, LocationDevices, granularity
and frequency-of-update assumptions, and methods to handle granularity and
frequency-of-update violations and to take action when location state gets up-
dated (with the onLocationUpdate method).

2.2 Example Policies

We next survey four location-dependent runtime policies and show how to specify
them in LoPSiL. The first is an example of the sort of policy a user might
wish to enforce on untrusted third-party software, while the other three are
examples of policies that application developers might wish to enforce on their
own software. We have enforced and tested versions of all these example policies
on Java applications executing on a roaming laptop.

Access-Control Policy. 1 Our first example is a privacy-based access-control
policy that constrains an application’s ability to read location data at particular
times. The policy, shown in Figure 2, requires that monitored applications can
only access the device’s GPS data from 08:00 (8am) to 18:00 (6pm) on workdays.

1 We thank Sean Barbeau at USF’s Center for Urban Transportation Research for
suggesting this policy.
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public class NoGpsOutsideWorkTime extends Policy {

public synchronized Reaction react(Action a) {

if(ActionPatterns.matchesGpsRead(a) && !TimeUtils.isWorkTime())

//return a null location to the application

return new Reaction("replace", null);

else return new Reaction("ok");

}

}

Fig. 2. LoPSiL policy preventing an application from reading GPS data outside of
work hours

public class ShowNavigation extends Policy {

public LocationDevice[] devices = {new LopsilGPS(LopsilGPS.GARMIN)};

public PolicyAssumptions pa =

...

public synchronized void onLocationUpdate() {

if(devices[0].getLocation().

distance(getExpectedCurrentLocation(), Units.METERS)>10)

AppGUI.displayNavigationalAid();

}

}

Fig. 3. Abbreviated LoPSiL policy requiring that navigational aid appear when the
device’s current location deviates from its expected path

A user might want to enforce such a policy to prevent an employer-provided
application from learning the device’s location when the employee is not at work
(e.g., so the employer does not know where the employee shops, or how much
time the employee spends in certain places during the employee’s off hours). In
fact, providing for the enforcement of such a policy might be the only way the
employer could convince the employee to run a work-related application on the
employee’s mobile device.

Deviation-from-pathPolicy. Our second example policy requires navigational
aid to appear when the device’s location deviates more than 10m off its expected
path. The policy code, shown in Figure 3, invokes a method called
getExpectedCurrentLocation to determine where the policy currently expects
the device to be. Method getExpectedCurrentLocation could return a location
based on the route being displayed to the user (as in dashboard-mounted GPS sys-
tems), on traffic conditions, on the path the user normally travels in this area, etc.

Safe-region Policy.2 Another interesting sort of policy expressible in LoPSiL is
shown in Figure 4. This policy, intended to monitor software on a robot, requires

2 We thank Robin Murphy at Texas A&M University for suggesting this policy.
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public class SafeRegion extends Policy {

private Location[] safeRegionEndpoints;

private boolean inRegion;

public SafeRegion() {

safeRegionEndpoints = getSafeRegionLocs();

inRegion=devices[0].getLocation().inRegion(safeRegionEndpoints);

}

public PolicyAssumptions pa = ...

public synchronized void onLocationUpdate() {

inRegion=devices[0].getLocation().inRegion(safeRegionEndpoints);

}

public synchronized Reaction react(Action a) {

if(!inRegion && ActionPatterns.matchesPlainWrite(a)) {

String encMsg = encrypt(a.getArgs()[0].toString());

try { //to replace the unencrypted send with an encrypted send

((BufferedWriter)(a.getCaller())).write(encMsg);

} catch(IOException e) {...}

return new Reaction("replace", null);

} else return new Reaction("ok");

}

}

Fig. 4. Abbreviated LoPSiL policy requiring robot-control software to encrypt outgoing
messages when the robot is outside a secure-region perimeter

the robot to encrypt all outgoing communications when the robot’s location is
outside a secure-region perimeter.

Social-networking Policy. Our final example is a social-networking policy in
which the user’s friends get invited to rendezvous when the user travels to a new
area. Specifically, the policy requires that if:

– the device has traveled more than 100km over the past 2 hours (i.e., average
speed has been more than 50km/hr),

– the device has traveled less than 2km over the past 20 minutes (implying
that the user’s travels have at least temporarily ended), and

– the policy enforcer has not sent invitations to friends in the past hour,

then the policy enforcer must:

– broadcast a “Where are you?” message to all friends in the user’s address
book,

– collect responses from the friends, and
– send invitations to meet to those friends now within 20km of the user.

An abbreviated LoPSiL policy specifying such constraints appears in Figure 5.
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public class InviteFriendsInNewArea extends Policy {

//maintain a buffer of two hours’ worth of location data

private LocBuffer longBuf = new LocBuffer(2, Units.HOURS);

//maintain another buffer of twenty minutes’ worth of location data

private LocBuffer shortBuf = new LocBuffer(20, Units.MINUTES);

private Time timeLastInvited = Time.NEVER;

public PolicyAssumptions pa = ...

public synchronized void onLocationUpdate() {

Location currentLoc = devices[0].getLocation();

longBuf.add(currentLoc);

shortBuf.add(currentLoc);

if(longBuf.earliest().distance(currentLoc, Units.KILOMETERS)>100

&& shortBuf.earliest().distance(currentLoc, Units.KILOMETERS)<2

&& timeLastInvited.elapsed(Time.getCurrentTime(),Units.HOURS)>1)

{

Location[] friendLocs = getFriendLocations();

inviteLocalFriends(friendLocs,currentLoc,20,Units.KILOMETERS);

timeLastInvited = Time.getCurrentTime();

}

}

}

Fig. 5. A location-dependent social-networking policy specified in LoPSiL

3 A LoPSiL Compiler

This section describes our implementation of LoPSiL and briefly reports on
our experiences designing and implementing LoPSiL policies. The implemen-
tations of LoPSiL’s basic Location, LocationDevice, Action, Reaction, and
Policy modules occupy 1588 lines of Java code, while the implementations of
our GarminGpsDevice and LopsilWindowDevice respectively occupy 847 and
107 lines of Java code. Our implementation is available online [20].

3.1 Compiler Architecture

A LoPSiL compiler needs to input a LoPSiL policy and an untrusted application,
build a trustworthy application by inserting code into the untrusted application
to enforce the input policy, and then output the trustworthy application. The
standard technique for implementing such a compiler involves inlining policy
code into the untrusted application. Several tools exist for inlining code into
an application; a convenient tool for our purposes is an AspectJ compiler [3].
AspectJ compilers inline calls to advice at control-flow points specified by point
cuts [17]. In the domain of runtime policy enforcement, advice refers to policy-
enforcement code and point cuts to the set of security-relevant methods. We wish
to interpose and allow policy-enforcement code to execute before and after any
security-relevant method invoked by the untrusted application.
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void java.io.PrintStream.println(..)

* javax.swing.JOptionPane.*(..)

java.util.Date.new()

Fig. 6. Example .srm file indicating that the accompanying LoPSiL policy consid-
ers security relevant all void-returning java.io.PrintStream.println methods, all
methods in the javax.swing.JOptionPane class, and the parameterless constructor
for java.util.Dates

LoPSiL users convert an untrusted application into a trustworthy application
as follows.

1. The user creates a specification of the desired policy in a .lopsil file.
2. The user also creates a listing of all the methods the desired LoPSiL pol-

icy considers security relevant. This listing indicates to the compiler which
application and library methods it needs to insert policy-enforcement code
around. Policies get to interpose and decide whether (and how) all security-
relevant methods may execute. The listing of security-relevant methods goes
into a .srm file, one method signature per line. Figure 6 contains an example
and illustrates how wildcards can be used in .srm files.

3. The LoPSiL compiler inputs the policy (.lopsil) and security-relevant-
methods (.srm) into a lopsil2aj converter, which converts LoPSiL code
into AspectJ code. The converter, implemented in 201 lines of Java, begins
by converting the LoPSiL policy to Java source (in a .java file) by simply
inserting three lines of code to import LoPSiL-library classes into the policy.
The converter then creates an AspectJ-code file (.aj) that defines two things.
First, the AspectJ code defines a point cut based on the declared security-
relevant methods. Second, the AspectJ code defines advice to be executed
whenever the point cut gets triggered (i.e., before and after any security-
relevant method executes). This advice builds an Action object to represent
the invoked security-relevant method, passes that Action to the LoPSiL
policy (now in a .java file), obtains the policy’s Reaction to the Action,
and guides execution appropriately based on that Reaction.

4. Finally, the LoPSiL compiler inputs the untrusted mobile-device application
(comprised of a set of .class files) and the .java and .aj files created in
Step 3 into a standard AspectJ compiler [3]. The AspectJ compiler inlines
the advice into the application before and after all security-relevant methods,
thus producing an application that is secure with respect to the original
LoPSiL policy.

Figure 7 presents an overview of this architecture.
Because LoPSiL uses AspectJ as its application rewriter, LoPSiL inherits

AspectJ’s limitations. Most importantly, the AspectJ compiler cannot rewrite
(i.e., inline code into) methods in standard Java libraries; it can only rewrite
application files. Therefore, our LoPSiL compiler can only ensure that policy-
enforcement code executes before and after security-relevant methods invoked
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Fig. 7. Overview of the LoPSiL compiler. The compiler inputs .lopsil, .srm, and
.class files and outputs the same .class files but with policy-enforcement code inlined
before and after all security-relevant methods.

by the application being monitored. The important consequence is that our im-
plementation does not allow enforcement mechanisms to interpose and make de-
cisions about the execution of library methods invoked by other library methods.
We could circumvent this limitation by writing our own LoPSiL enforcement-
code inliner (e.g., using tools like the Bytecode Engineering Library [8]), as
previous work has done [11,5,4], but at the price of significantly increased im-
plementation complexity.

3.2 Experiential Observations

Having implemented the example policies described in Section 2.2, we believe
that the six core constructs underlying LoPSiL serve as good abstractions for
specifying location-dependent runtime security policies. This belief stems from
the fact that LoPSiL was sufficiently expressive for us to specify every location-
dependent policy we considered enforcing. In addition, after implementing
LoPSiL, none of the example policies from Section 2.2 took us more than 2
hours to design, specify, and test. Although these results are encouraging, we
need more experience with LoPSiL, and feedback from other users, before we
can more completely and objectively evaluate its expressiveness and ease of use.

Another interesting outcome of designing the example policies from Sec-
tion 2.2 is that we have observed some common, recurring uses of location
information in security and privacy policies. Our location-dependent policies
consistently based policy decisions on:

– The current absolute location of the device (e.g., whether the device is in
the user’s office)

– The geographic relationship of the device’s current location with another
location (e.g., whether the device is north of or within 1km of another loca-
tion)

– The geographic relationship of the device’s current location with a region of
locations (e.g., whether the device is in an area of trusted terrain or within
10m of an expected path)

– The velocity or acceleration of the device
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Because location-dependent policies consistently use location information in
these ways, we provide several utility methods in LoPSiL for calculating dis-
tances, boundaries, velocities, and accelerations between locations. All policies
can access these utility methods (cf. Figures 3–5) and can define custom opera-
tors on locations when the built-in methods are insufficient.

We have focused our efforts to date on LoPSiL’s design, rather than the
performance of our proof-of-concept compiler. Although we have not measured
the performance overhead induced by LoPSiL-policy enforcement, we refer to
previous work to argue that this performance concern is minor in practice when
the application code runs on general-purpose, high-power, mobile machines (e.g.,
laptops), unless the policy itself specifies expensive computations or considers
frequently invoked methods to be security relevant [12,11,5]. In the future, we
would like to explore the performance impact of enforcement systems like LoPSiL
on smaller and less powerful mobile devices.

4 Conclusions and Future Work

We have presented LoPSiL, a language for specifying location-dependent run-
time security policies. LoPSiL’s novelties are its abstractions for accessing and
reasoning about location information in imperative policy specifications. In our
preliminary experiments specifying policies for applications on a mobile laptop,
we found these abstractions expressive and convenient. Given the increasing
ubiquity of mobile devices, and the unique abstractions needed to conveniently
deal with location information in security policies, we believe the research area
of location-based policy-specification languages will for some time be an impor-
tant topic of consideration for the programming-languages, computer-security,
and mobile-device-applications research communities.

There are many opportunities for future work. One unresolved question is: how
tolerable are the performance degradations that result from enforcing application-
level runtime policies on weakly powered, inexpensive, and/or computationally
constrained mobile devices? As Section 3.2 mentioned, for simplicity we have
only enforced LoPSiL policies on a powerful roaming laptop. In the future we
would like to perform a larger case study on less powerful mobile devices, such
as cell phones; this would provide a more realistic measurement of enforcement
overhead and give us more experience programming in LoPSiL.

It would also be interesting to investigate how to incorporate technologies,
such as sophisticated static analyses [6] or policy structures [5], to simplify the
task of specifying complex policies in LoPSiL. Such an investigation might lead
to technologies for specifying complex location-dependent policies more conve-
niently as compositions of simpler subpolicy modules.

Finally, previous work has shown that policy-specification languages like
LoPSiL, which allow monitoring mechanisms to store a complete trace of the
application-program execution being monitored, enable specification and en-
forcement of all safety policies (such as the access-control policy in Figure 2) and
some liveness policies (such as the social-networking policy in Figure 5) [18,19].
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In the future we would like to include location information, mobile applications,
and mobile monitoring mechanisms in formal models of policy enforcement, in
order to better understand the precise space of policies enforceable with LoPSiL.
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Abstract. This paper presents an analysis of a cryptographic security protocol 
that is designed for use in a mobile communication environment. The goal of 
the analysed protocol is to ensure secure end-to-end communication between 
two mobile users that are connected to different base stations. The analysis 
reveals a serious flaw in the used signature scheme of the security protocol. 
Exploitation of this flaw enables an intruder to use algebraic simplifications to 
forge signatures on arbitrary messages. Two attacks, which exploit this 
weakness, are detailed showing the impersonation of a mobile user and a base 
station, respectively. Corrections to the flawed protocol are proposed and 
analysed. It is established that the corrected protocol is secure against the 
presented attacks. 

Keywords: Mobile end-to-end communication, analysis of security protocols, 
impersonation attack, authentication and secrecy protocol. 

1   Introduction 

Wireless communications are driven by the need to provide network access for 
mobile computing devices. At the same time, the increase in available online services 
causes users to transmit more and more sensitive information. Security protocols are 
used to protect this sensitive information against many forms of attack. Basic security 
protocols allow agents to authenticate each other, to establish fresh session keys for 
confidential communication and to ensure the authenticity of data and services. 
Building on such basic security protocols more advanced services like non-
repudiation, electronic payment and electronic contract signing are achieved. 
However, the design of effective security protocols is a challenging problem and often 
weaknesses are discovered in published protocols [1], [2], [3]. Additionally, mobile 
communication systems have some unique difficulties, such as limited bandwidth, 
high latency and unstable connections. Further, mobile devices often have low 
computational and storage capacities. These difficulties seriously limit the choices of 
applicable techniques to provide suitable protection. Thus, many security protocols 
have been specially designed for mobile communications [4], [5], [6], [7], [8]. 
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This paper presents the analysis of the mobile end-to-end authentication and 
secrecy protocol proposed by Lee, Yang and Hwang [6]. This analysis ascertains a 
weakness in the employed signature scheme that allows an intruder to forge 
signatures on arbitrary messages. Two attacks are demonstrated that exploit this 
weakness and enable an intruder to successfully impersonate mobile users and base 
stations, respectively. Consequently, this also demonstrates that the protocol fails to 
achieve its goals of authentication and of privacy of the messages exchanged by the 
mobile users. Corrections to the flawed protocol are proposed that prevent these 
weaknesses and the immunity of the amended protocol against the presented attacks is 
established. 

2   The LYH Mobile End-to-End Authentication and Secrecy 
Protocol 

The security protocol proposed by Lee, Yang and Hwang [6] aims to provide secrecy 
and end-to-end authentication between two mobile users that are connected to 
different base stations. This protocol is divided into the following phases: 

 

Certification Phase: A trusted certification authority (CA) distributes signed 
certificates to all protocol participants: Each mobile user and base station will receive 
only its own certificate. As the certification authority is only involved in the 
certification phase, it can be considered an offline certification authority. 
 

Authentication Phase: During this phase, the two mobile users attempt to 
authenticate each other and to establish a secure common session key that is used in 
the subsequent communication phase. 
 

Communication Phase: The two mobile users use the established session key to 
communicate securely with each other.  

2.1   Certification Phase 

Initially, the CA chooses three publicly known parameters (p, q, g): p is a large 
randomly selected prime number, q is a large prime factor of p-1 and 

pmg qp mod/)1( −= , where m is an integer that satisfies 1 < m < p-1  

and pm qp mod/)1( − > 1. The CA then calculates its own public/private key pair 

(yCA,xCA), where xCA is a randomly chosen private key and yCA is the public key such 
that pgy CAx

CA mod= . Both xCA and yCA are members of GF(p)*. Then, each principal 

generates a public/private key pair with the corresponding properties and gives the 
public key as well as some proof of identity to the CA. The CA then creates the 
signed certificates (including certificate serial number, validity period, the identity 
(ID), the corresponding public key etc.) and issues them back to the owning principal. 
 
Validity of CA’s Signature. In general, a message signed by the CA consist of the 
triple (M, s, t), where M is the message itself, s is a random component of the 
signature and t is the message dependant component of the signature. The value s is 
calculated by formula (1), where r is a random number selected freshly for each 
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individual signature and h(.) is a 2m-bit iterated hash function that is based on a m-bit 
block cipher with 2m-bit key. If the underlying block cipher has no weakness, then 
the hash function can be expected to have ideal computational security against the 
five attacks: target attack, free-start target attack, collision attack, semi-free-start 
collision attack and free-start collision attack [9].  

pgs r mod=  (1) 

The message dependant component t of the signature is calculated according to 
formula (2) using the same value r and hash function h(.) as for s.  

qrxMhst CA mod)( 1−−−=  (2) 

Given a signed message (M, s, t), any principal can verify the validity of CA’s 
signature (s, t) by establishing that equation (3) holds. 

psy Mhts
CA mod1)( =+  (3) 

Assuming that (s, t) is a genuine signature, the calculation in (4) is performed to prove 
validity of the signature.  
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Fig. 1. LYH Protocol with Simplified Messages 
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2.2   Authentication Phase 

In the second phase of the protocol, two mobile users M1 and M2 aim to 
communicate privately and mutually authenticate each other. Figure 1 outlines the 
protocol with simplified messages (the detailed messages are presented below in 
Figures 2, 3 and 4). The protocol can be divided into three parts: The first part 
comprises of messages 1 and 2 and establishes communication between M1 and B1. 
The second part consists of messages 3 to 5 and establishes communication between 
B1 and B2. Finally, the third part includes messages 6, 7 and 8 and establishes 
communication between B2 and M2. 
 

Communication M1 to B1. The first set of messages establishes communication 
between the mobile user M1 and its base station B1 using the messages 1 and 2 as 
detailed in Figure 2.  
 

1. M1  B1: SETUP, CertM1 

2. B1  M1: CONNECT, CertB1, T1, pKy MBDHTfx
M

B mod))1,1(,1(
1

1−    

Fig. 2. Message exchange between the initiator M1 and the base station B1 

M1 sends a SETUP signal and his signed certificate CertM1 to base station B1. B1 
verifies the signature using equation (3). If the verification is successful, B1 sends to 
M1 the CONNECT signal together with B1’s signed certificate, CertB1, a time stamp 
T1 and ,mod))1,1(,1(

1
1 pKy MBDHTfx

M
B− where f(.) is a secure hash function and DH(B1,M1) 

is the Diffie-Hellman key [10] between M1 and B1. If the signature on the certificate 
is validated by equation (3) and the timestamp T1 is recent, M1 retrieves the session 
key K as demonstrated in equation (5). 

pKyyK MBDHTfx
M

MBDHTfx
B

BM mod))1,1(,1(
1

))1,1(,1(
1

11 −=  (5) 

 

Communication B1 to B2. In the second part, communication is established between 
the base stations B1 and B2 using messages 3, 4 and 5 as detailed in Figure 3. Base 
station B1 sends a SETUP signal and its certificate CertB1 to B2. Base station B2 
verifies the signature of B1's certificate using equation (3). 

On successful verification, B2 replies by sending a CONNECT signal and its 
certificate. If B1 validates B2’s certificate, then B1 sends a new timestamp, T2, along 
with pKy BBDHTfx

B
B mod))2,1(,2(

2
1−  to B2. 

 
3. B1  B2: SETUP, CertB1 
4. B2  B1: CONNECT, CertB2 
5. B1  B2: T2, pKy BBDHTfx

B
B mod))2,1(,2(

2
1−  

Fig. 3. Messages exchanged between the two base stations B1 and B2 

Upon receiving message 5 with a valid timestamp, B2 computes the session key K 
using equation (6). 
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pKyyK BBDHTfx
B

BBDHTfx
B

BB mod))2,1(,2(
2

))2,1(,2(
1

12 −=  (6) 

Communication B2 to M1. In the third part, communication is established between 
the base station B2 and mobile user M2 using messages 6-8 as detailed in Figure 4. 

 
6. B2  M2: SETUP, CertB2 
7. M2  B2: CONNECT, CertM2 
8. B2  M2: T3, pKy MBDHTfx

M
B mod))2,2(,3(
2

2−    

Fig. 4. Messages exchanged between the responder M2 and the base station B2 

In the third step, B2 sends a SETUP signal to mobile user M2 along with his 
certificate CertB2. The mobile user verifies the certificate and sends its certificate along 
with the CONNECT signal to B2. The base station verifies M2’s certificate and sends a 
new timestamp T3 along with pKy MBDHTfx

M
B mod))2,2(,3(
2

2− to M2. The mobile user verifies 

the validity of the timestamp and computes the session K using equation (7). 

pKyyK BMDHTfx
M

BMDHTfx
B

BM mod))2,2(,3(
2

))2,2(,3(
2

22 −=  (7) 

At this stage, the mobile users M1 and M2 have established a common session key 
that can be used for private communications. 

3   Analyzing the LYH Protocol 

The authors of the protocol claim that their protocol correctly achieves its goals of 
authentication and secrecy [6]. Authentication is ensured by the validity of the 
certification authority’s signature on the public key certificates. To bind a public key 
to its owner, principals establish whether equation (3) holds, where M is replaced by 
CertX as detailed in equation (8). If this is true, then principals will accept that the key 
contained in the certificate belongs to the principal named in the certificate.  

 

psy xCerthts
CA mod1)( =+   (8) 

 

Binding principals’ IDs to their public keys is crucial for the establishment of the 
Diffie-Hellman keys, which are used in the distribution of the session key. However, 
in this paper it will be demonstrated that the employed signature scheme is not secure. 
It will be shown, that an intruder (also called attacker) can create seemingly correct 
and valid signatures on any arbitrary message. This is possible without the intruder 
knowing the Ca’s private key xCA. Thus, an intruder can forge the CA’s signature on 
any bogus certificate. Therefore, the security requirements of the protocol are not met.  

3.1   Forging Certificates for the LYH Protocol 

Consider any arbitrary message M and its signature (s,t) as defined by equations (1) 
and (2). A principal will consider this signature valid, if it satisfies equation (3). In 
order to forge CA’s signature on message M, the intruder needs to establish the pair 
(s, t) such that (M, s, t) satisfies equation (3). This can be achieved by selecting s 
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equal to CA’s public key yCA. This is equivalent to setting the random value r equal to 
CA’s private key xCA as shown in equation (9) and (10). Note, that it is not required 
for the attacker to know the value of xCA: To calculate t the attacker simply uses the 
value 1 for the factor )1( 11 == −−

CACACA xxrx and it follows that s is equal to CA’s public 

key yCA.  
 

qMhyqxxMhyt
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CA

mod)(mod)(
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−
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(10) 

 
A principal that tries to establish the validity of the signature (s, t) on the message M 
attempts to ascertain if equation (3) holds by performing the calculations shown in 
(11). As demonstrated, the forged signature satisfies the equation and any principal 
will accept the forged signature as a legitimate signature of CA. Forging the signature 
of CA is possible, as the random number r in t appears only as a factor of a term 

containing 1−
CAx .  
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The intruder can now easily create arbitrary certificates for malicious activities. As 
trust among principals is established through certificates, an intruder can create 
certificates to obtain illegitimate privileges. Below, two attacks are presented, in 
which it is assumed that the intruder has forged a certificates in the presented way to 
impersonate principals. 

3.2   An Attack to Impersonate a Mobile User 

The intruder chooses any private key xI from GF(p)* with its corresponding public 
key pgy Ix

I mod=  and creates a mobile-type certificate CertI that includes the 

chosen bogus public key yI and the identity of the mobile M1. The signature (sI,tI) for 
this bogus certificate is obtained as per equations (9) and (10), i.e. pys CA mod=  and 

qCerthyt ICAI mod)(−−= . Using this bogus certificate the attacker can initiate a 

protocol run as M1 to communicate with the mobile user M2 as shown in Figure 5. 
Neither the mobile user M2 nor any of the base stations B1 or B2 can detect that an 
illegal certificate is used. Note that the same bogus certificate could be used to take 
part in the protocol as responder. 

In this attack the intruder makes a request to base station B1. The certificate that is 
presented to the base station appears to be valid. Therefore, B1 is fooled into 
believing that the intruder is the legitimate mobile user M1. The base station follows 
the protocol faithfully and generates the session key K, which the intruder I receives 
in the second message. As the base station B1 used the bogus key in the forged  
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1. M1(I)  B1: SETUP, CertI 

2. B1  M1(I): CONNECT, CertB1, T1, pKy MBDHTfx
I

B mod))1,1(,1(1−  

3. B1  B2:      SETUP, CertB1 
4. B2  B1:      CONNECT, CertB2 
5. B1  B2:      T2, pKy BBDHTfx

B
B mod))2,1(,2(

2
1−  

6. B2  M2:     SETUP, CertB2 
7. M2  B2:     CONNECT, CertM2 
8. B2  M2:     T3, pKy MBDHTfx

M
B mod))2,2(,3(
2

2−  

Fig. 5. Attack to impersonate a mobile user 

certificate to protect the session key, the intruder is able to retrieve it. The base station  

 

B1 continues the protocol run with B2 and eventually the mobile user M2 receives the 
session key K. M2 believes that K is shared with a legitimate user when in fact it is 
shared with the illegitimate intruder. 

 

3.3   An Attack to Impersonate a Base Station 

In another scenario the attacker can forge the signature on a base station-like 
certificate and compromise the privacy of the communication between two mobile 
users. The attacker can pose as any of the base stations B1 or B2. When the identity of 
B1 is assumed, then the intruder is in fact generating the session key K. This attack, 
presented in Figure 6, assumes that the intruder selects a public/private key pair xI,yI, 
creates a base station-like certificate CertI and signs it as outlined in (9) and (10). CertI 
contains the selected public key and the identity of B1. Alternatively, the intruder can 
also masquerade as base station B2. In this case, both B1 and M2 are convinced to 
accept the intruder as a legitimate base station. As a result, the intruder is able to 
obtain the session key K generated by B1. In both variants of the attack, the intruder 
possesses the session key K and can listen on in the communication between the 
mobile users M1 and M2, whereas they believe that they share a secret session key 
known only to themselves and legitimate base stations. Consequently, the privacy of 
the messages exchanged by the mobile users is compromised. 

 
1. M1  B1(I): SETUP, CertM1 

2. B1(I)  M1: CONNECT, CertI, T1, pKy MBDHTfx
M

I mod))1,1(,1(
1

−  

3. B1  B2:      SETUP, CertI 
4. B2  B1:      CONNECT, CertB2 
5. B1  B2:      T2, pKy BBDHTfx

B
I mod))2,1(,2(

2
−  

6. B2  M2:      SETUP, CertB2 
7. M2  B2:      CONNECT, CertM2 
8. B2  M2:      T3, pKy MBDHTfx

M
B mod))2,2(,3(
2

2−  

Fig. 6. Attack to impersonate a base station 
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4   Fixing the LYH Protocol 

The previous section demonstrated that flaws in the signature scheme of the LYH 
protocol allow an attacker to use algebraic simplifications to impersonate mobile users 
or base stations. A secure signature scheme is required to avoid the presented attacks.  

One ad-hoc solution to avoid these attacks is to discard the signatures that can be 
generated by the intruder, i.e. to disallow any signature where s equals the 
certification authority’s public key yCA. While this prevents the attacks presented in 
this paper, the signature scheme would still be subject to other weaknesses [11]. Thus, 
we propose to employ the Elgamal signature scheme [12], which does not allow the 
algebraic simplifications required for the presented attacks. 

4.1   Using the Elgamal Signature Scheme in the LYH Protocol 

The Elgamal signature scheme uses the parameters (p, q, g) with the same properties 
as in the LYH scheme: p is a large prime number, q is a large prime factor of p-1 
and pmg qp mod/)1( −= , where m is an integer that satisfies 1 < m < p-1 and 

pm qp mod/)1( −  > 1. A certification authority CA selects its secret key xCA, the 

corresponding public key pgy CAx
CA mod= and generates a fresh random number r for 

each signature.  The signature on a message M is then given by the pair (s, t) where s 
and t are as defined in (12) and (13). If either s or t evaluates to 0 then the signature 
algorithm is restarted. 

qsxMhrt

pgs

CA

r

mod))((

mod
1 −=

=
−

 
(12) 

 
(13) 

 

Principals will accept a signature, if it satisfies equation (14). 

psyg ts
CA

Mh mod)( =  (14) 

The security of this signature scheme lies in the difficulty of solving the discrete 
logarithm problem and in the difficulty of finding collisions for the employed hash 
function h(.). 

4.2   Resistance of Fixed Protocol to the Presented Impersonation Attacks 

In the impersonation attacks presented in section 3 the intruder sets the value of s 
equal to the CA’s public key – thus, implicitly, setting the value of r to CA’s private 
key xCA without explicit knowledge of the value of xCA. In the Elgamal scheme, 1−r  is 
a factor of the two terms h(M) and (-xCAs). Thus, if s is chosen to be yCA – which 
implies that r is equal to xCA – then the second term reduces to -s. However, the 
attacker still needs to know the explicit value of r to calculate the first term )(1 Mhr − . 

However, this is equivalent to knowing CA’s private key xCA, which is a contradiction 
to the basic assumption that nobody other then CA knows CA’s private key. Simply 
choosing the values according to equations (9) and (10) also fails.  The calculations in 
(15) demonstrate that this will not satisfy equation (14). 
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5   Conclusions 

This paper analysed the LYH mobile end-to-end authentication and secrecy protocol. 
The analysis revealed a serious new flaw in the used signature scheme that allows an 
intruder to use algebraic simplifications to forge signatures. In particular, it was 
demonstrated how to forge the signature of the certification authority (CA). Further, 
two attacks were presented where an attacker can impersonate a mobile user and a 
base station, respectively. In both attacks, neither any honest mobile user nor base 
station can detect that a forged certificate has been used. In consequence, the LYH 
protocol fails to achieve is goals of authentication and secrecy.  

To avoid the presented attacks, modifications to the LYH protocol were proposed 
incorporating the use of the Elgamal signature scheme. It was further shown that the 
use of the Elgamal scheme protects the protocol against the presented attacks.  
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Heikkilä, Juho 110
Hein, Daniel M. 46

Iwai, Hisato 148

Jaton, Markus 23
Jung, Chae Duk 35

Kak, Subhash 14
Koskela, Joakim 226
Krhovjak, Jan 122
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