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Abstract. This paper is devoted to preference-based recommendation
or configuration in the context of multiagent (or multicriteria) decision
making. More precisely, we study the use of decomposable utility func-
tions in the search for Choquet-optimal solutions on combinatorial do-
mains. We consider problems where the alternatives (feasible solutions)
are represented as elements of a product set of finite domains and eval-
uated according to different points of view (agents or criteria) leading
to different objectives. Assuming that objectives take the form of GAI-
utility functions over attributes, we investigate the use of GAI networks
to determine efficiently an element maximizing an overall utility function
defined by a Choquet integral.

Keywords: GAI-nets, Choquet Integral, Multiobjective Combinatorial
Optimization, Multiagent Decision-Making, Preference-based
Configuration.

1 Introduction

The multiplication of preference-based configuration problems has stressed the
need for compact preference representation languages and for preference-based
optimization algorithms. In this area, graphical models are omnipresent. One
can distinguish non-numerical models like CP-nets [1,2] and their extension to
the multiagent case mCP-nets [3] on the one hand, and numerical models based
on decomposable utility functions like UCP-nets [4] and GAI-nets [5,6,7] on the
other hand. In this paper, we investigate the potential of GAI-networks to rep-
resent and solve decision making problems where the performance of a solution
is evaluated according to different points of view. This type of problem occurs
when several criteria, possibly conflicting, must be considered in the decision
analysis, or when several agents are involved in the decision process. In both
cases, any feasible solution is represented by a vector of utilities. Assuming that
each of these utilities is defined by a GAI-decomposable model, we study the use
of GAI-nets to determine efficiently a solution having a utility vector maximizing
an overall utility function defined by a Choquet integral.

The paper is organized as follows: in Section 2 we explain how GAI-networks
are used to represent preferences in multiobjective problems. Then, after recalling
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basic notions linked to capacities and Choquet integrals (Section 3), we introduce
a vector-passing algorithm for Choquet-optimization (Section 4). Under the as-
sumption of convex capacity, we propose a refinement of the previous algorithm
and a second algorithm based on a ranking procedure (Section 5). Both algorithms
have been implemented and tested on randomly drawn instances. The solutions
times obtained are given for the sake of comparison (Section 6).

2 GAI Models for Individual and Collective Preferences

In configuration problems, alternatives (feasible solutions) are characterized by n
variables (or attributes) x1, . . . , xn taking their values in finite domains X1, . . . ,
Xn respectively. They can thus be seen as elements of the product set of these
domains X = X1 × · · · × Xn. Throughout this paper, by abuse of notation, for
any set Y ⊆ {1, ..., n}, XY refers to

∏
i∈Y Xi and xY to the projection of x ∈ X

on XY. We also consider preference relations over X representable by utility
functions, i.e., by functions u : X �→ R such that, for all x, y ∈ X , u(x) ≥ u(y) if
and only if x is preferred to y or x and y are judged equivalent. Such functions
u are used within solvers to determine the best elements in X [8].

One major difficulty in using utilities lies in their elicitation: each agent has
her own preferences and, hence, her own utility u that needs be constructed
prior to being used for optimization tasks. However, on combinatorial domains
such as X , elicitation may be impossible as it may involve asking unreasonably
large amounts of questions to the agent. Fortunately, it is often the case that
subsets of attributes are considered independent by the agent. For instance, the
brand of a car may be irrelevant to preferences over its colors, hence inducing an
independence between color and brand. In such cases, these independences can be
exploited to drastically reduce the elicitation burden. In the literature, different
types of independence have been studied such as preferential independence or
utility independence [9,8,10], that induce different decompositions of utility u as
a function of subutilities, say ui’s, defined over small sets of attributes.

The most widely used decomposition is the additive one: u(x) =
∑n

i=1 ui(xi)
for any x = (x1, . . . , xn) ∈ X . Note that this model only requires eliciting and
storing ui(xi) for any xi ∈ Xi, i = 1, . . . , n. However, such a decomposition is not
always appropriate as it inevitably rules out any interaction between attributes,
which is far from being realistic. Some generalizations of additive utilities have
thus been investigated. In particular, GAI (generalized additive independence)
decompositions introduced by [11] are especially attractive as they allow quite
general interactions between attributes while preserving some decomposability.
Actually, GAI decomposition is a generalization of the additive decomposition
in which subutilities ui’s are allowed to be defined over overlapping factors.

Definition 1. Let C1, . . . ,Ck be subsets of N = {1, . . . , n} such that N =
⋃k

i=1 Ci. A utility function u(·) over X is GAI-decomposable w.r.t. the XCi ’s if
and only if there exist functions ui : XCi �→ R such that:

u(x1, . . . , xn) =
∑k

i=1 ui(xCi), for all x = (x1, . . . , xn) ∈ X .
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For instance, u(a, b, c, d, e, f) = u1(a, b) + u2(c, d) + u3(a, c, e) + u4(e, f) defined
on A × B × C × D × E × F is a GAI-decomposable utility, with XC1 = A × B,
XC2 = C × D, XC3 = A × C × E and XC4 = E × F . GAI decompositions can
be represented by graphical structures called GAI networks [5]:

Definition 2. Let u(x)=
∑k

i=1 ui(xCi ) be a GAI utility. A GAI net representing
u is an undirected graph G = (C, E) satisfying the following properties:

Prop 1: C={XC1 , . . . , XCk
}. Vertices XCi ’s are called cliques. To each vertex

XCi is associated the corresponding factor ui from the utility function u;
Prop. 2: (XCi , XCj ) ∈ E ⇒ Ci ∩ Cj 	= ∅. Edges (XCi , XCj )’s are labeled by

XSij , where Sij = Ci ∩Cj. XSij is called a separator;
Prop. 3: for all XCi , XCj such that Ci ∩ Cj = Sij 	= ∅, there exists a path

between XCi and XCj in G such that for every clique XCh
in this path

Sij ⊆ Ch (running intersection property).

Cliques are drawn as ellipses and separators as rectangles. For any GAI decom-
position, by Definition 2, cliques should be the sets of variables of the subu-
tilities. The edges in the network represent the intersections between subsets of
attributes. Fig. 1 shows the GAI net’s structure for the example given just below
Definition 1. In this paper, we shall only be interested in GAI trees as it is not
restrictive [5]. For the elicitation of GAI networks, refer to [5,12,6].

Consider now a finite set of objectives, criteria or agents, M = {1, ..., m} and
assume that any solution x ∈ X is characterized by a utility vector (u1(x), . . . ,
um(x)) ∈ R

m where ui : X → R is the ith utility. It measures the relative utility
of alternatives with respect to the ith point of view (criterion or agent) considered
in the problem. Hence, the comparison of alternatives, say x and y, now reduces
to that of their utility vectors (u1(x), . . . , um(x)) and (u1(y), . . . , um(y)).

Each ui is actually a single utility and, as such, can be GAI decomposable.
Assume that all ui’s have the same GAI structure, that is, the ui’s are decom-
posable as sums of functions ui

j’s whose domains are the same for all i’s (but
their values differ from one j to another). Then, a GAI net compactly encoding
vectors (u1, . . . , um) can easily be constructed: its graphical structure is that of
the GAI net of any ui (since they are all identical), and each clique XCj contains
utility vectors (u1

j , . . . , u
m
j ). Fig. 1 shows how vectors of utilities ui’s decompos-

able as ui
1(a, b)+ui

2(c, d)+ui
3(a, c, e)+ui

4(e, f) can be represented by a GAI net.
In this figure, tables contain values of utility vectors (u1

j , . . . , u
m
j ), for fixed j’s.

AB

CD

EFEACE
C

A

u1 a1 a2

b1 (1, 6, 3) (5, 1, 1)

b2 (8, 2, 1) (3, 4, 4)

b3 (7, 1, 1) (6, 1, 2)

b4 (1, 4, 2) (2, 1, 3)

u3 c1e1 c1e2 c2e1 c2e2

a1 (3, 3, 1) (2, 4, 7) (1, 2, 2) (6, 2, 4)

a2 (5, 2, 3) (1, 4, 6) (4, 4, 3) (2, 5, 6)

u4 e1 e2

f1 (2, 0, 3) (3, 3, 2)

f2 (3, 3, 4) (3, 1, 2)

f3 (4, 2, 5) (2, 4, 3)

u2 c1 c2

d1 (2, 8, 1) (4, 7, 4)

d2 (3, 2, 2) (4, 8, 5)

d3 (4, 2, 2) (5, 3, 3)

Fig. 1. Example of a GAI network with three criteria
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BCDABC BC BD BDG

CD

CDEF

c) GAI network for (u1, u2)

a) u1’s GAI network

b) u2’s GAI network

AB B BG G DG D CDF E

DG D DEF E CE C AC B

Fig. 2. The GAI trees representing u1 and u2 and that for (u1, u2)

Of course, in practice, ui’s are seldom decomposable w.r.t. the same GAI
structure. For instance, if X is a set of cars, then, in a family, the utility
over X of the father may be decomposable as u1(car) = u1

1(price,brand) +
u1

2(power,speed,consumption) + u1
3(speed,security) whereas that of the mother

may be u2(car) = u2
1(price,consumption) + u2

2(color,brand), and the utility of
their son u3(car) = u3

1(brand) + u3
2(color) + u3

3(power,speed). In such a case,
we need to find a GAI net with “bigger” cliques that can contain all the ui

j ’s
functions while encompassing as much as possible the decompositions of the ui’s.
For instance, utilities u1 and u2 decomposable w.r.t. the GAI nets on the left
of Fig. 2 can both be represented (less compactly) by that of Fig. 2.c. Hence
vectors (u1, u2) are GAI decomposable according to Fig. 2.c. This graph can be
constructed by triangulation of the union of the ui’s Markov graphs [13,5].

3 Preference Aggregation with the Choquet Integral

In a multiagent/multicriteria problem, comparing elements of X amounts to
comparing their respective utility profiles. The basic preference model to com-
pare solutions is Pareto dominance defined, for any pair x, y ∈ X by: x �P y ⇔
ui(x) ≥ ui(y) for all i ∈ {1, . . . , m} and uj(x) > uj(y) for some j. This naturally
leads to a primary optimality concept known as Pareto-optimality. Pareto opti-
mal elements in a set X ⊆ X are those that are Pareto-dominated by no other
element in X , i.e., they have a utility profile that cannot be improved on one
component without downgrading another one. As shown in [14] Pareto-optimal
elements in X can be computed using vector-valued GAI-networks (see Fig. 1).
However, Pareto-dominance is only a partial weak order that leaves many pairs
of solutions uncompared. Hence, the Pareto set can be huge due to the combi-
natorial nature of the problem, and its exact determination requires, for some
instances, prohibitive computation times. Fortunately, decision theory provides
various preference models refining Pareto dominance and modeling various atti-
tudes in preference aggregation. Among them, the Choquet integral [15] is one
of the most expressive decision criteria. It is an aggregation function that gener-
alizes weighted averages when weights are not only attached to each component
(criteria or agent) but also possibly to any subset of components. These weights
are possibly non additive and are represented by a capacity on M = {1, . . . , m}.
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Definition 3. A capacity on M is a set function v : 2M → [0, 1] such that:
v(∅) = 0; v(M) = 1; ∀A, B ∈ 2M such that A ⊆ B, v(A) ≤ v(B).

For any subset A ⊆ M , v(A) represents the importance of coalition A. Let us
first recall some definitions about capacities.

Definition 4. A capacity v is said to be convex (or supermodular) when v(A ∪
B) + v(A∩B) ≥ v(A) + v(B) for all A, B ⊆ M , and it is said to be concave (or
submodular) when v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B) for all A, B ⊆ M .

Definition 5. To any capacity v, we can associate a dual capacity v̄ defined by
v̄(A) = 1 − v(M \ A) for all A ⊆ M .

It is well known that v̄ is concave if and only if v is convex and vice-versa. Remark
that when v is convex, we have v(A) + v(M \A) ≤ 1, hence v(A) ≤ v̄(A). As we
shall see later, a useful concept in this case is the core of v defined by:

core(v) = {λ ∈ L : v(A) ≤ λ(A) ≤ v̄(A)} ,
where L is the set of probability distributions on M and λ(A) =

∑
i∈A λi rep-

resents the probability of A. The core is known to be non-empty as soon as v
is convex [16]. This result will be used in Section 5. The Choquet integral of a
utility vector u(x) = (u1(x), . . . , um(x)) w.r.t. a capacity v is defined by:

Cv(u(x)) =
m∑

i=1

[
v(X(i)) − v(X(i+1))

]
u(i)(x) =

m∑

i=1

[
u(i)(x) − u(i−1)(x)

]
v(X(i))(1)

where (.) is a permutation on {1, . . . , m} such that 0 = u(0)(x) ≤ u(1)(x) ≤ . . . ≤
u(m)(x), X(i) = {j ∈ M , uj(x) ≥ u(i)(x)} = {(i),(i+1), . . ., (m)} for i ≤ m and
X(m+1) = ∅. Note that X(i+1) ⊂ X(i), hence v(X(i)) ≥ v(X(i+1)) for all i. The
Choquet integral generalizes averages with the following interpretation based on
Eq. (1): for a given utility vector (u1(x), . . . , um(x)), the outcome is at least
u(1)(x) with weight v(X(1)) = 1, then it increases from u(1)(x) to u(2)(x) with
weight v(X(2)), then from u(2)(x) to u(3)(x) with weight v(X(3)), and so on...
The overall integral thus results from aggregation of marginal utility increments
[u(i)(x) − u(i−1)(x)] weighted by v(X(i)). Note that Choquet Integral includes
weighted averages as particular cases. Indeed, when v is additively decomposable,
v(A) =

∑
i∈A vi for all A ⊆ M , where vi = v({i}). Hence v(X(i))− v(X(i+1)) =

v(i) for all i and Cv(u(x)) =
∑m

i=1 v(i)u
(i)(x) =

∑m
i=1 viu

i(x). When used with
a non-additive capacity, it offers enhanced descriptive possibilities.

Example 1. Consider a case with 3 criteria or agents (M = {1, 2, 3}) and 3
solutions x, y, z with utility vectors u(x) = (15, 5, 10), u(y) = (10, 10, 10) and
u(z) = (5, 15, 10) respectively, and the convex capacity v defined in Table 1
(we also give its dual v̄ and an additive capacity p ∈ core(v)). Cv(u(x)) =
5 × 1 + (10 − 5) × 0.5 + (15 − 10) × 0.2 = 8.5, Cv(u(y)) = 10 × 1 = 10 and
Cv(u(z)) = 5 × 1 + (10 − 5)× 0.5 + (15 − 10)× 0.1 = 8. Hence according to the
model, we get: y � x � z. If we use the dual capacity v̄, which is concave, we get
Cv̄(u(x)) = 5× 1 + (10− 5)× 0.9+ (15− 10)× 0.5 = 12, Cv̄(u(y)) = 10× 1 = 10
and Cv̄(u(z)) = 5 × 1 + (10 − 5) × 0.8 + (15 − 10) × 0.5 = 11.5. Hence with v̄
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we get: x � z � y. Note that none of the two orders obtained are representable
with a weighted sum because x � y would imply y � z, y � x would imply z � y
and conversely. When v is convex we can see that solution y with a flat utility
profile is better ranked. On the contrary, with a concave capacity, it seems that
solutions x and z with contrasted profiles are preferred to y. As we shall see in
Section 5, this is a general feature of Choquet integral: we have to use a convex
capacity to exhibit preference for well-balanced solutions and conversely.

In the next section, we investigate the determination of the optimal tuple in X
w.r.t. the Choquet integral. Note that, when choosing v(A) = 1 for all non-empty
A ⊆ M , then Cv(u(x)) = u(m)(x) = maxi∈M ui(x). Hence the determination of
a Choquet-optimal solution reduces to a min-max optimization problem which
is known to be NP-hard even when every function ui is an additive utility [17].

4 A Vector-Passing Algorithm for Choquet Optimization

All GAI message-passing algorithms rely on the same principle: a clique called
root is chosen to concentrate during a collect phase all the information relevant
to compute some quantity to be optimized. This phase is processed recursively:
root asks its neighbor cliques to send it messages containing the aforementioned
relevant information; in turn, these neighbors ask their other neighbors to send
relevant information, and so on. Once a clique has received all the information
it requested, it computes and sends the message it was asked for. Once root
has received all the information it requested, a distribute phase is applied that
propagates recursively optimal attributes instantiations from root toward the
outside of the GAI net. The result of this phase is an optimal instantiation tuple
of all the attributes of the GAI network w.r.t. the quantity to be optimized.

As an illustration in the scalar case, consider a utility decomposable according
to the graph of Fig. 1: u(a, b, c, d, e, f) = u1(a, b)+u2(c, d)+u3(a, c, e)+u4(e, f),
where each ui’s codomain is R. Assume we wish to find a tuple maximizing
u. Let clique EF act as root. Collect consists in EF asking ACE to send a
message, which in turn asks both AB and CD to send messages. Clique AB
sends message φ1(A) = {maxb u1(a, b) : a ∈ A} and clique CD sends φ2(C) =
{maxd u2(c, d) : c ∈ C}, that is, messages φ1(A) and φ2(C) contain the optimal
values of u1 and u2 for each value of separators A and C respectively. Then
clique ACE sends message φ3(E) = {maxa,c[u3(a, c, e)+φ1(a)+φ2(c)] : e ∈ E}.
Finally, root EF computes maxe,f [u4(e, f) + φ3(e)], which is the optimal value
for u. Actually, as described more formally in [7], we just computed:
max
e,f

[u4(e, f) + max
a,c

((max
b

u1(a, b)) + (max
c

u2(c, d)) + u3(a, c, e))] = max
a,b,c,d,e,f

u .

The distribute phase just traces back the Argmax’s to find the optimal tuple.
In a multiagent/multicriteria setting, where the overall criterion to optimize

is a Choquet integral, there is an additional source of complexity: the Choquet
integral is not a GAI decomposable function even when ui’s are GAI decom-
posable. As a consequence, optimality of the solutions cannot be guaranteed by
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Table 1. A capacity v for three criteria (named 1,2,3)

A ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(A) 0 0.2 0.1 0.1 0.4 0.5 0.5 1

p(A) 0 0.5 0.4 0.1 0.9 0.6 0.5 1

v(A) 0 0.5 0.5 0.6 0.9 0.9 0.8 1

passing messages containing only one locally optimal scalar per value of sep-
arator (such as φ1(a) above). Messages have to carry multiple utility vectors.
Indeed, assume we wish finding an optimal tuple w.r.t. a Choquet integral with
capacity v defined by Table 1 and utility u over A × B × C decomposable as
u1(a, b) + u2(b, c). For a given value b of B, assume that the message sent by
clique AB to BC could be u1(a, b) = (3, 2, 2) or u1(a′, b) = (2, 2, 4). Both utility
vectors yield the same Choquet integral: Cv(3, 2, 2) = Cv(2, 2, 4) = 2.2, hence it
is tempting to send only one vector to BC since both vectors seem a priori equiv-
alent. However, if the vector received by BC is added to u2(b, c) = (1, 2, 3), then
Cv(u1(a, b)+u2(b, c)) = 4.1 > Cv(u1(a′, b)+u2(b, c)) = 3.7, and if it is added to
u2(b, c′) = (3, 2, 1), then Cv(u1(a, b)+u2(b, c′)) = 3.9 < Cv(u1(a′, b)+u2(b, c′)) =
4.4. As a consequence, locally in clique AB, it is not possible to determine which
of u1(a, b) and u1(a′, b) should be sent to clique BC to determine the optimal
solution and we thus need to send both utility vectors on the separator.

Fortunately, not all utility vectors need be sent on separators: for any fixed
value of a separator, only Pareto-nondominated vectors need be. As Choquet
integral increases with each component, if x �P y, then Cv(x) ≥ Cv(y) for any
capacity v. Now, once the value of a separator is fixed in a GAI net, it breaks
its underlying utility into an additive utility. For instance, in Fig. 1, fixing the
value of E to e′ decomposes u(a, b, c, d, e′, f) into w1(a, b, c, d) + w2(f) where
w1(a, b, c, d) = u1(a, b) + u2(c, d) + u3(a, c, e′) and w2(f) = u3(e′, f). Hence,
if w1(a, b, c, d) �P w1(a′, b′, c′, d′), then adding to both vectors w2(f) results in
u(a, b, c, d, e′, f) and u(a′, b′, c′, d′, e′, f) respectively, the former Pareto dominat-
ing the latter. Hence, Cv(u(a, b, c, d, e′, f)) ≥ Cv(u(a′, b′, c′, d′, e′, f)), and tuple
(a′, b′, c′, d′, e′, f) need not be considered as the optimal tuple. Applying this re-
sult on utility u of Fig. 1, if EF is chosen as root, only nondominated utilities of
message MA of Fig. 3 need be sent from clique AB to ACE. Similarly, only non
dominated vectors of MC need be sent from CD. ACE now needs only send
vectors of ME to clique EF . Thus, considering messages containing only non-
dominated utility vectors, we need not examine all the 288 instantiation tuples of
X , but we just examine the 8 vectors in u1 and propagate 4 of them in MA; we
just propagate 4 vectors out of 6 in MC ; clique ACE combines these messages
with u3, thus creating 32 new vectors, of which only 11 are transmitted to clique
EF . Finally, EF combines ME with u4, thus creating 33 vectors, and selects
that which optimizes cv, thus highlighting the efficient optimization process.

An additional (global) pruning can be used in conjunction with the above lo-
cal pruning to speed-up the search: assume that, during our search, we exhibited
a complete instantiation x having utility vector u(x). For a new instantiation y
to be optimal, u(y) must not be Pareto dominated by u(x). As in the preceding
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AB

CD

E EFACE

MC =
c1: (2, 8, 2)(4, 2, 2)

c2: (4, 8, 5)(5, 3, 3)

MA =
a1: (1, 6, 3)(8, 2, 1)

a2: (3, 4, 4)(6, 1, 2)

A

C

ME =
e1 : (6, 17, 5)(11, 16, 12)(14, 13, 10)(15, 8, 8)

e2 : (5, 18, 11)(11, 16, 12)(18, 12, 10)(19, 7, 8)

(9, 17, 15)(12, 14, 13)(13, 9, 11)

Fig. 3. Sending nondominated messages toward root EF

paragraph, assume that the value of separator E is fixed to e′, hence decomposing
u into w1+w2 as described above and assume that we know for sure that, for any
f ∈ F , u3(e′, f) �P h for a given vector h. Then, if u(x) �P w1(a, b, c, d)+h, no
instantiation f is such that w1(a, b, c, d)+w2(f) �P u(x) and, thus, w1(a, b, c, d)
needs not be sent on separator E. In this paper, we considered the following
heuristic h: given a set of vectors Z = {(z1

i , . . . , zm
i ), i ∈ {1, . . . , r}}, h is defined

as h = ∇Z = (z1, . . . , zm) where zj = max{zj
1, . . . , z

j
r} for all j ∈ {1, . . . , m}. For

clique AB of Fig. 1, h(a) = ∇{u3(a, c, e)+u2(c, d)+u4(e, f)} for all a ∈ A. How-
ever, to speed up h’s computation, we approximate it by h′(a) = ∇{u3(a′, c, e)+
∇{u2(c′, d) : c′ = c} + ∇{u4(e′, f) : e′ = e} : a′ = a} as follows: first compute
HD

E = ∇{u4(e, f)} for all e ∈ E, then HC
C = ∇{u3(c, d)} for all c ∈ C. Fi-

nally, compute u3 +HC
C +HD

E and apply operator ∇ on it, resulting in HD
A (see

Fig. 4). The same applies to clique CD: h′(c) = ∇{u3(a, c′, e) + ∇{u1(a′, b) :
a′ = a}+∇{u4(e′, f) : e′ = e} : c′ = c}. Here again, there just needs to compute
HC

A = ∇{u1(a′, b) : a′ = a}, then u3 + HC
A + HD

E and apply operator ∇.
To avoid redundant computations, we can use the following message-passing

scheme: let EF act as root. Collect: EF asks ACE to send a message, which in
turn asks AB and CD to send messages. AC sends message HC

A = {∇{u1(a′, b) :
a′ = a} : a ∈ A}. Similarly, clique CD sends message HC

C = {∇{u3(c′, d) : c′ =
c} : c ∈ C}. Finally, ACE sends on separator E message ∇{u3 + HC

A + HC
C}

for each value e ∈ E (see Fig. 4.a). Distribute phase: EF sends on E message
HD

E = {∇{u4(e′, f) : e′ = e} : e ∈ E}. Clique ACE now computes ∇{u3 +HC
A +

HD
E} and sends it to CD, and ∇{u3 + HC

C + HD
E} and send it to AB. In other

words, before sending a message to a neighbor, a clique combines the messages
it received from all its other neighbors and, then, applies operator ∇. At the end
of the distribute phase, each message HD corresponds to heuristic h′ (Fig. 4.b).

HD
E =

e1: (4, 3, 5)

e2: (3, 4, 3)
HC

E =
e1: (15, 17, 12)

e2: (19, 18, 15)

HC
A =

a1: (8, 6, 3)

a2: (6, 4, 4)

HC
C =

c1: (4, 8, 2)

c2: (5, 8, 5)
a) collect b) distributionHD

C =
c1: (15, 14, 13)

c2: (17, 13, 13)

HD
A =

a1: (14, 16, 12)

a2: (13, 17, 14)

AB A

CD C CD C

AB A
ACE E EF ACE E EF

Fig. 4. Propagation of heuristics information
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MC =

c1d3: (4, 2, 2)

c2d2: (4, 8, 5)

ME =
a2c2e1: (11, 16, 12)

a1c2e2: (18, 12, 10)

MA =
a1b2: (8, 2, 1)

a2b2: (3, 4, 4)

EF
AB

CD
ACE E

C

A

w2 c1 c2

d1 (17, 22, 14) (21, 20, 17)

d2 (18, 16, 15) (21, 21, 18)

d3 (19, 16, 15) (22, 16, 16) w3 c1e1 c1e2 c2e1 c2e2

a1 (19, 10, 9) (17, 12, 17) (17, 15, 13) (21, 16, 13)

a2 (16, 11, 14) (11, 14, 15) (15, 19, 17) (12, 21, 18)

u′
4 e1 e2

f1 (13, 16, 15) (21, 15, 12)

f2 (14, 19, 16) (21, 13, 12)

f3 (15, 18, 17) (20, 16, 13)

w1 a1 a2

b1 (15, 22, 15) (18, 18, 15)

b2 (22, 18, 13) (16, 21, 18)

b3 (21, 17, 13) (19, 18, 16)

b4 (15, 20, 14) (15, 18, 17)

Fig. 5. The vector message-passing algorithm

We can now propose an algorithm in the spirit of MOA∗ [18] pruning dom-
inated utility vectors, thus reducing the number of vectors sent on separators.
First, using h′ and a collect, we propagate toward root (here EF ) on each sepa-
rator the most promising utility vectors, i.e., those that, given h′, have the highest
Choquet integrals: clique AB thus sends toward ACE message MA containing,
for each a ∈ A, the vector u1(a, b) maximizing Cv(w1(a, b)), where w1(a, b) =
u1(a, b)+HD

A (a). Fig. 5 shows the values of vectors w1’s. In addition, vectors u1’s
that are not inserted into MA and that are not Pareto dominated by other u1’s
are stored into a set of “open vectors” denoted by L (see Table 2). Set L thus cor-
responds to a priori less promising vectors that may yet be optimal and, as such,
that will need to be sent later on on separators to guarantee the correctness of the
algorithm. Similarly, clique CD sends message MC containing the u2’s maximiz-
ing, for each c ∈ C, Cv(w2(c, d)) where w2(c, d) = u2(c, d) +HD

C (c). In addition,
non dominated u2’s not belonging to MC are added to L. Clique ACE now com-
putes vectors u′

3 = u3 +MA +MC , which correspond to utility of instantiations
of attributes A, B, C, D, E. Clique ACE sends in ME those u′

3’s that maximize,
for each value of separator E, Cv(w3), where w3(a, c, e) = u′

3(a, c, e) + HD
E (e),

i.e., the most promising (so far) utility vectors. The other u′
3 vectors are stored

into L. Now EF can compute vectors u′
4(e, f) = u4(e, f) + ME(e), which cor-

respond to utilities of complete tuples, and select that which maximizes Cv. Let
us call u∗ this utility vector. By Fig. 5, u∗ = (15, 18, 17) and Cv(u∗) = 16.1.

To ensure correctness, we need to send messages of L toward root and check
whether they yield better Cv’s. But before, we can prune from L all vectors
ui’s such that Cv(wi) ≤ Cv(u∗), since wi = ui + h′ is an upper bound on the
utility of complete tuples compatible with ui. The set L of Table 2 thus reduces
to the utility vectors of instantiations a2b3 and c2d3. Note the efficiency of this

Table 2. The set of open vectors L

tuple ui, u
′
i Cv(wi) tuple ui, u

′
i Cv(wi) tuple ui, u

′
i Cv(wi)

a1b1 (1, 6, 3) 15.7 a2b3 (6, 1, 2) 17.2 c1d1 (2, 8, 1) 16.0
c2d3 (5, 3, 3) 17.2 a1c1e1 (15, 7, 4) 11.3 a1c2e1 (13, 12, 8) 14.4

a2c1e1 (12, 8, 9) 12.9 a1c1e2 (14, 8, 10) 13.3 a2c2e2 (9, 17, 15) 15.3
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pruning rule. We now add the most promising vector of L to its appropriate
separator (here, we can add u1(a2, b3) to MA) and remove it from L, then clique
ACE updates its u′

3 table by computing all the new combinations u′
3(a2, c, e) =

u3(a2, c, e)+u1(a2, b3)+MC(c). These new combinations are added L, provided
that their Cv(w3) > Cv(u∗) and that they are not Pareto dominated by other
u′

3’s (for fixed values of separator E). The same process is applied until L is
empty. When a vector from L is added to the separator adjacent to root, the
latter updates the value of u∗ and prunes L. When L is empty, all possible
optimal combinations have been tested and u∗ is an optimal utility vector.

This process is formalized in function Choquet below. In this function, we do
not use ui’s but rather labels, i.e., triples 〈v, XCi , xD〉, where v is a utility vector,
XCi denotes the clique that created the label and xD is the partial instantiation
yielding v. For a given clique XCi , Labels (ui) is table ui in which all vectors
are substituted by their label. For a given set of labels M, M[xE] denotes the
subset of labels 〈v, XCi , yD〉 ∈ M such that xD∩E = yD∩E, and M ⊕ N =
{〈v +w, XE, xC∪D〉 : 〈v, XCi , xC〉 ∈ M and 〈w, XCj , xD〉 ∈ N}. Finally, for any
XCi , we denote XCp(i) the clique adjacent to XCi on the path between root and
XCi , and we denote Adj(XCi) the set of cliques adjacent to XCi except XCp(i) .

Function Choquet ()
01 set of open labels L ← ∅; let root be any clique
02 for all cliques XCi from the leaves to the root do
03 U ← Labels (ui)⊕XCk

∈Adj(XCi
)
Mk

04 Mi ← { U ’s most promising label for each value of separator XSip(i)}
05 L ← L ∪ {ParetoNonDom(U [xSip(i) ]\Mi[xSip(i) ]) for all xSip(i) ∈ XSip(i)}
06 send message Mi on separator XSip(i)

07 done
08 Cbest

v ← maxL∈Mroot Cv(L)
09 while L �= ∅ do
10 let L = 〈v, XCi , xD〉 be the most promising label in L; remove L from L
11 Mi ←Mi ∪ {L}; U ′

p(i) ← {L} ⊕ Labels (up(i))⊕XCk
∈Adj(XCp(i)

)\{XCi
}Mk

12 if p(i) = root then
13 Cbest

v ← max{Cbest
v , maxL∈U′

p(i)
Cv(L)}

14 remove from L labels L’s such that Cv(L⊕HD
XCi

) ≤ Cbest
v

15 else
16 F←{L ∈ L whose clique is XCp(i)}; L ← (L\F) ∪ ParetoNonDom(F ∪ U ′

p(i))
17 done
18 return Cbest

v

5 The Case of Convex Capacities

Convex capacities are of special interest for Choquet integrals due to their inter-
pretation in terms of preference aggregation: they convey an idea of compromise
or fairness named hereafter preference for well balanced solutions, meaning in-
tuitively that smoothing or averaging a cost vector improves the alternative. A
useful formalization of this idea has been introduced in [19] through an axiom
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named “preference for diversification” due to its interpretation in the context of
portfolio management. This axiom can be reformulated in our framework as:

Definition 6 (Preference for well-balanced solutions). Preference forwell-
balanced solutions holds for a relation � on X if, for any n utility vectors u1, . . . ,
un ∈ R, and for all real numbers α1, . . . , αn ≥ 0 such that

∑n
i=1 αi = 1:

[u1 ∼ u2 ∼ . . . ∼ un] =⇒ ∑n
i=1 αiui � uk, k = 1, . . . , n .

When using a Choquet Integral, the above axiom is equivalent to choosing a
convex capacity v as shown in [19]. Coming back to Example 1, we can imagine
a fourth solution w with utility vectors u(w) = (12.5, 5, 10) such that Cv(u(w)) =
5 × 1 + (10 − 5) × 0.5 + (12.5 − 10) × 0.2 = 8. Now, remarking that Cv(u(z)) =
Cv(u(w)) = 8, preference for well-balanced solutions induced by the convexity of
v implies that vector 0.5u(z)+0.5u(w) = (9.75, 10, 10) would be preferred to u(z)
and u(w). Observing that u(y) Pareto-dominates u(w), we deduce that u(y) is
also preferred to u(z) and u(w) by monotonicity of the Choquet integral. Hence
resorting to a convex capacity might be natural in many decision situations
where a compromise is sought among conflicting points of view. Let us show
now how the convexity of v can be exploited on the algorithmic side.

Let Cv(u(x)) be the value of the Choquet integral for any x, and let ū : X �→ R

be a convex combination of marginal utilities defined by: ū(x) =
∑m

i=1 piu
i(x)

where p is a probability distribution in core(v). Such a distribution can be de-
termined using a greedy algorithm [20] (such a p is given in Table 1). Then
the following property holds: ū(x) ≥ Cv(u(x)) for all x ∈ X [21,22]. Hence
ū(x) is an upper bound for the Choquet integral. This can be exploited in the
algorithm of Section 4 in conjunction with the pruning rule of heuristic h′: af-
ter scalarizing the tables of utility vectors of Fig. 1 by ūi(x) =

∑m
j=1 pju

j
i (x),

applying the same process that enabled us to compute HD with these new ta-
bles yields a scalar heuristic Hp stored on each separator. Hp can be used to
prune any utility vector u′

j to be sent by clique XCj on a separator whenever
ūj + Hp

j ≤ Cv(u∗).
Utility ū can also be used directly for computing a Choquet-optimal element.

As a linear combination of GAI utilities, ū is also a GAI function. Hence, we
can rank efficiently elements of X by decreasing value of ū(x) [17]. Now, assume
that x1, ..., xk, the k-best elements on X w.r.t. ū, have been computed. Let x̂k =
argmaxi=1,...,kCv(u(xi)). If Cv(u(x̂k)) ≥ ū(xk), then x̂k is the optimal choice for
Cv. Indeed, as we rank elements w.r.t. ū, for any k′ > k, ū(xk′

) ≤ ū(xk), and
since ū(x) ≥ Cv(u(x)) for all x ∈ X , Cv(u(xk′

)) ≤ ū(xk′
) ≤ ū(xk) ≤ Cv(u(x̂k)).

Consequently, the optimal choice for Cv can be obtained by ranking elements
xi w.r.t. ū until the maximum value of the Cv(u(xj))’s for all the xj ’s found
so far, exceeds ū(xi). This is another way of generating Cv optimal elements
in X but, contrary to algorithm presented in Section 4, this algorithm is only
feasible for a capacity with a non-empty core. This is obviously the case when v
is convex.
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Table 3. Response times for Choquet optimization

m = 2 m = 5
n VPA∗ VPA∗
5 0.004 0.015
10 0.06 34.27
15 13.62 467.35

m = 2, v convex
n VPA∗ VPA∗+S Rank
5 0.004 0.003 0.007
10 0.06 0.05 0.47
15 11.30 6.55 >1200

m = 5, v convex
n VPA∗ VPA∗+S Rank
5 0.012 0.008 0.009
10 33.34 0.28 9.62
15 451.84 443.76 >1200

Table 3.a Table 3.b Table 3.c

6 Experimentations

In order to evaluate in practice the performance of our algorithms, we compared
the vector-passing algorithm of Section 4 (hereafter denoted VPA∗), VPA∗ with
heuristic HP (denoted VPA∗+S) and the ranking algorithm mentioned above
(Rank). In each experimentation, Xi’s domains were all of size 5. GAI networks
were randomly generated with an average of 3.5 attributes per clique. Utility
tables were filled with numbers drawn randomly between 0 and 100. All exper-
iments were performed on a 2.13GHz PC with 3GB of RAM. The tables below
report average response times in seconds over 2000 experiments. For Table 3.a,
we generated random capacities (not necessarily convex). VPA∗ reveals efficient
for instances where the ranking approach does not apply (non-convex cases). Ta-
bles 3.b and 3.c are given for the sake of comparison of the two variants of VPA∗

with Rank in the convex case. Rank is known to be very efficient when criteria
are positively correlated. We deliberately generated instances with conflicting
(negatively correlated) criteria to check whether VPA∗ was able to outperform
Rank in this case. The answer is clearly positive considering Tables 3.b and 3.c.
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