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Abstract. An optimal probabilistic-planning algorithm solves a prob-
lem, usually modeled by a Markov decision process, by finding its optimal
policy. In this paper, we study the k best policies problem. The prob-
lem is to find the k best policies. The k best policies, k > 1, cannot
be found directly using dynamic programming. Näıvely, finding the k-th
best policy can be Turing reduced to the optimal planning problem, but
the number of problems queried in the näıve algorithm is exponential
in k. We show empirically that solving k best policy problem by using
this reduction requires unreasonable amounts of time even when k = 3.
We then provide a new algorithm, based on our theoretical contribution
to prove that the k-th best policy differs from the i-th policy, for some
i < k, on exactly one state. We show that the time complexity of the
algorithm is quadratic in k, but the number of optimal planning prob-
lems it solves is linear in k. We demonstrate empirically that the new
algorithm has good scalability.

1 Introduction

Markov Decision Processes (MDPs) [1] are a powerful and widely-used formu-
lation for modeling probabilistic planning problems [2,3]. For instance, NASA
researchers use MDPs to model the Mars rover decision making problems [4,5].
MDPs are also used to formulate military operations planning [6] and coordi-
nated multi-agent planning [7], etc.

An optimal planner typically takes an MDP model of a problem and out-
puts an optimal plan. This is not always sufficient. In many cases, a planner is
expected to generate more than one solution.

Furthermore, in the modeling phase, not every aspect of nature can be easily
factored in a problem representation. For the case of NASA rover, for example,
there are many safety constraints that need to be satisfied [5]. An optimal plan
might be very close to a risky value—but another may not have many risks and
so it is better to prefer the slightly suboptimal one. Similarly there are many
decision criteria—probability of reaching the goal, expected reward, expected
risk, various preferences, etc. Combining them into a single criterion is hard,
and multi-objective planning is too slow [8,9]. Thus, a good alternative is to
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look for many suboptimal plans given a single criterion and later pick one that
looks the best according to all criteria.

In this paper, we look at the k best policies problem. Given an MDP model, the
problem is to find the k best policies, ranked by the expected value of the initial
state, tie-broken by the “closeness” to a better policy, followed by lexical order of
the policies. The classical optimal planning problem is a special case of the k best
policy problem where k = 1. The optimal planning problem can be solved by
dynamic programming, as the property of the optimality of sub-problems holds.
The k best policy problem be directly solved by dynamic programming. However,
finding the k-th best policy can be brute-force reduced to exponentially many
instances of the optimal planning problem. Our experiments show that solving
the k best policy problem this way requires unreasonable time even when k = 3.

A very similar problem has been explored by Nielsen, et al. [10,11,12]. Nielsen
and Kristensen observed that the problem of finding optimal history-dependent
policies (maps from the state space crossed with the time step to the action
space) can be modeled as finding “a minimum weight hyperpath” in directed
hypergraphs. A vertex in the hypergraph represents a state of the MDP at a
particular time; the hypergraphs are, therefore, acyclic. They present an elegant
and efficient algorithm for finding the k best time-dependent policies for an
MDP. However, their algorithm cannot handle MDPs with probabilistic cycles,
therefore its usefulness is limited.

Our new solution to the k best policy problem follows from the property: The
k-th best policy differs from a better policy on exactly one state. We propose an
original algorithm for the k best policy problem that leverages this property. We
demonstrate both theoretically and empirically that the new algorithm has low
complexity and good scalability.

2 Background

2.1 Markov Decision Processes

AI researchers often use MDPs to formulate probabilistic planning problems. An
MDP is defined as a four-tuple 〈S,A, T, C〉, where S is a finite set of discrete
states, A is a finite set of all applicable actions, T is the transition matrix
describing the domain dynamics, and C denotes the cost of action transitions.

The agent executes its actions in discrete time steps called stages. At each
stage, the system is at one distinct state s ∈ S. The agent can pick any action
a from a set of applicable actions Ap(s) ⊆ A, incurring a cost of C(s, a). The
action takes the system to a new state s′ stochastically, with probability Ta(s′|s).

The horizon of an MDP is the number of stages for which costs are accumu-
lated. We focus our attention on a special set of MDPs called stochastic shortest
path (SSP) problems. The horizon in such an MDP is indefinite and the costs are
accumulated with no discounting. There are an initial state s0, and a set of sink
goal states G ⊆ S. Reaching any state g ∈ G terminates the execution. The cost of
the execution is the sum of all costs along the path from s0 to g. Any infinite hori-
zon discounted reward MDP can easily be converted to an undiscounted SSP [13].
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To solve the MDP we need to find an optimal policy (π∗ : S → A), a prob-
abilistic execution plan that reaches a goal state with the minimum expected
cost. We evaluate any policy π by a value function.

Vπ(s) = C(s, π(s)) +
∑

s′∈S
Tπ(s)(s′|s)Vπ(s′).

Any optimal policy must satisfy the following system of Bellman equations:

V ∗(s) = 0 if s ∈ G else (1)

V ∗(s) = min
a∈Ap(s)

[C(s, a) +
∑

s′∈S
Ta(s′|s)V ∗(s′)].

The corresponding optimal policy can be extracted from the value function:

π∗(s) = argmina∈Ap(s)[C(s, a) +
∑

s′∈S
Ta(s′|s)V ∗(s′)].

2.2 Dynamic Programming

We define a sub-problem of an MDP with state space S′ ⊆ S to be a self-
contained MDP with state space S′ and associated action transitions. We define
the sub-policy of a policy π given a sub-problem with state space S′ ⊆ S to be
the mapping from all s ∈ S′ to π(s). An optimal policy satisfies the following
necessary and sufficient condition: for any sub-problem, the corresponding sub-
policy is also optimal. Many optimal MDP algorithms are based on dynamic
programming. Its usefulness was first proved by a simple yet powerful algorithm
called value iteration (VI) [1]. Value iteration first initializes the value function
arbitrarily. Then the values are updated iteratively using an operator called Bell-
man backup to create successively better approximations per state per iteration.
Value iteration stops updating when the value function converges (one future
backup can change a state value by at most ε, a pre-defined threshold).

Another algorithm, named policy iteration (PI) [14], starts from an arbitrary
policy and iteratively improves the policy. Each iteration of PI consists of two
sequential steps. The first step, policy evaluation, finds the value function of the
current policy. Values are calculated by solving the system of linear equations
(in the original PI algorithm), or by iteratively updating the value functions in
the VI manner till convergence (modified policy iteration [15]). The second step,
policy improvement, updates the current policy by choosing a greedy action per
state by a one step lookahead, based on the value function calculated in the policy
evaluation step. PI stops when the policy improvement step doesn’t change the
policy.

3 k Best Policy Problem

Classical dynamic programming successfully finds one optimal policy of an MDP
in time polynomial in |S| and |A| [16,17]. In this paper, we find the k best policies
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of an MDP. We first give the formal definition of the k best policy problem. Then
we introduce the main theoretical contribution of the paper by proving a very
strong result about the k-th best policy.

Let M be an MDP, π a policy for M . We define the policy graph of M given
π, denoted by Gπ, to be a graph constructed by: (1) the set of states (vertices)
that are reachable from s0 given π, and (2) their corresponding transitions in π
(edges).

Let s and s′ be states of M . We say that s′ is a policy descendant of s with respect
to π if there is a path from s to s′ in Gπ or if s = s′. We define Policydesc(s, π) to
be the set of all policy descendant states of s under policy π. We assume that, for
every state s ∈ S, there are at least two possible actions for s.

Note that, for a given MDP and a given value function, there may be multiple
policies with that value function. We define a notion of “best among equals”,
namely, the “closest” to better policies followed by a lexicographic ordering, so
that the notion of “best policy” is well defined.

Lemma 1. Using value iteration, we can find an optimal value function for M ,
and the optimal Vπ∗(s0). We can then find the lexicographically least policy, π1,
that has that value for Vπ1(s0) = Vπ∗(s0).

The proof of Lemma 1 is straightforward. Given the value function, for each state,
we choose the lexicographically first action that achieves the desired value. (If
A = {a0, a1, . . . , aj}, the lexicographically first action satisfying a property is
the lowest-numbered ai with that property.) Once we have the best policy, we
then need to define an ordering on policies so that we may define the k-th best.

Definition 1. Given two policies π and π′, we can consider them as vectors of
length |S| over alphabet |A|, and define the Hamming distance Ham(π, π′) to be
the number of states on which π and π′ differ. We also define <lex to be the
lexicographic ordering on such vectors.

Finally, we define an order on policies.

Definition 2. Given an MDP M and a dynamic list of p best policies gener-
ated so far {π1 . . . , πp}, the next best policy is computed based on the following
ordering ≺ on the rest of the policies for M .

π ≺ π′ if Vπ(s0) < Vπ′(s0)
else if minj≤pHam(πj , π) < minj≤pHam(πj , π

′)
else if π <lex π′.

Intuitively, two policies with the same initial state value are first compared by
how “close” each one is to some better policy, followed by lexicographic order if
they are equally close.

Theorem 1. Let M be an MDP, and let {π1, . . . , πk} be the k best policies for
M , in order. Let k ≥ 1. Then there is some m < k such that πk differs from πm

on exactly one state.

The proof sketch to Theorem 1 is provided in the Appendix.
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4 Algorithm

Consider the k-th (k > 1) best policy of an MDP M , called πk. The necessary and
sufficient condition of the optimality on sub-problems does not hold. With the
loss of the optimality on sub-problems, dynamic programming is not immediately
applicable. However, we can reduce it to many optimal planning problems, each
solved by dynamic programming. Before illustrating the reduction, we present
the high-level idea of our first algorithm in Algorithm 1. We call it k best näıve
algorithm (KBN), as it is a brute force algorithm that doesn’t use Theorem 1.
KBN is based on the following observation: The k + 1-st best policy must differ
from each of the k best policies on at least one state. We can enumerate the
possible sets of state/action pairs the new policy must avoid, and find an optimal
policy for each thus-constrained MDP, then take the best of those policies.

Algorithm 1. k best näıve (KBN)
1: Input: M (an MDP), k
2: find best policy π1 by VI
3: Π ← {π1}
4: for i← 2 to k do
5: πi ← best policy that differs from any policy π ∈ Π by at least one state
6: Π ← Π ∪ {πi}
7: return π1, . . . , πk

For instance, given the best and second best policies, π1 and π2, to find π3, we
say that either it differs from π1 on s0 and from π1 on s0, or from π1 on s0 and
from π1 on s1, or.... In this case, we solve |S|2 many optimal planning problems.
To find the k-th best policy, we solve |S|k many. Each newly-computed policy
will be compared with the best policy computed so far, so that the number of
comparisons is linear in the number of policies computed. Suppose we use VI to
solve those optimal planning problems, KBN has a complexity |S|k ×O(V I), an
exponential function of k.

Some of these combinations of constraints may constrain away all actions for
a particular state, so do not yield a next-best policy. However, the next best
policy must be among those computed, and will be the best such.

Using Theorem 1, we have a new algorithm, called k best improved (KBI).
The KBI pseudo-code is shown in Algorithm 2. KBI keeps a set of candidate
policies P , which is initially empty. We first find the optimal policy by value
iteration. To find the i-th best policy, we generate k − i + 1 distinct policies as
candidates. These candidates (1) must not be duplicates of any policy in P , and
(2) each differs from πi−1 on exactly one state. We have the following theorem.

Theorem 2. The i-th best policy must be an element of P.

Proof. As we know from Theorem 1 that the i-th (i ≤ k) best policy is exactly one
state different fromone ofπ1, . . . , πi−1, say,πj , where j < i. Therefore, itmust have
been generated when πj+1 was computed. Since it is the i-th best policy, it would
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Algorithm 2. k best improved (KBI)
1: Input: M (an MDP), k
2: find best policy π1 by VI
3: P ← empty set
4: for i← 2 to k do
5: generate distinct k− i+1 best policies that each differs from πi−1 on exactly one

state and differs from {π1, . . . , πi−1} and insert them into P in order, discarding
duplicates

6: πi ← the best policy in P
7: delete πi from P
8: return π1, . . . , πk

have been amongst the i − j-th best of those policies that are one state different
from πj , so it belongs to the k − j best policies added to P at stage j + 1.

Thus, we find the i-th best policy by picking the best policy in P . There are (|A|−
1)×|S| policies that are exactly one state different from πi. Finding the best k−i
of them has a complexity |A| × |S| ×O(policy evaluation), plus the complexity
of keeping the list P in sorted order (O(k2 log k)). KBI computes these policies
k − 1 times, so its complexity is (k − 1) × |A| × |S| × O(policy evaluation), a
linear function of k. (Note that the sorting term is dominated by |A| × |S| ×
O(policy evaluation).)

5 Experiments

We address the following three questions in our experiments: (1) How does
KBI compare with KBN on different problems and k values? (2) Does KBI scale
well on large k values? (3) How different are the k best policies from the optimal
policy?

We implementedKBN andKBI inC.Weperformedall experiments ona2.2GHz
Dual-Core Intel(R) Core(TM)2 Processor with 6GB memory. We picked problems
from three domains, namely Racetrack [18], Single-arm pendulum (SAP) and
Double-arm pendulum (DAP) [19]. We used a threshold value of ε = 10−6.

5.1 Comparing KBI and KBN

We compare KBN and KBI on a suite of six problems of various sizes. The
running times of both algorithms when k = 2 are listed in Table 1. We see
that KBI outperforms KBN on all problems. In four problems, the speedup is
an order of magnitude. According to our analysis in the Algorithm section, when
k increases by 1, the running time of KBN increases by a factor of |S|, so for
cases k = 3 and k = 4 we take the expectations of its running time based on
its performance on the same problem when k = 2. Even for small k values, the
running times of KBN are prohibitively high. For example, in SAP 2 problem,
its expected running time is approximately one thousand hours for k = 3 and
tens of millions of hours for k = 4.
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Table 1. Running time (seconds) of KBN and KBI in various problems with different k
values. The running time of KBN on k > 2 are expectations. KBI outperforms KBN on
most problems by an order of magnitude even when k = 2.

Domain States k = 2 k = 3 k = 4
|S| KBN KBI KBN KBI KBN KBI

(expected) (expected)

DAP 1 625 0.90 0.44 102 0.87 105 1.32

Racetrack 1 1,847 0.56 0.07 103 0.14 106 0.21

SAP 1 2,500 12.39 2.58 104 4.93 107 7.29

SAP 2 10,000 461.87 66.15 106 131.30 1010 196.46

DAP 2 10,000 944.14 333.97 106 665.89 1010 1001.23

Racetrack 2 21,371 11.10 2.02 105 4.03 109 6.02
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Fig. 1. Running time (seconds) of KBI when k = 2, . . . , 100 on DAP 1, Racetrack
1, SAP 1, SAP 2, DAP 2, Racetrack 2 problems (left to right, top to bottom). The
running times increase linearly in k for all problems.
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5.2 The Scalability of KBI

In this experiment we investigate whether the KBI algorithm scales to large k
values. We run KBI for k = 100 on the same set of problems, and record the
elapsed times when it finishes generating the i-th best policy (i = 2, . . . , k) of
each problem. Figure 1 clearly shows that, for all problems KBI spends times
linear in k when calculating k-th best policies. This experiment indicates that
KBI has good scalability.

5.3 How k Best Policies Differ from the Optimal

We are also curious to know how the k best policies differ from the optimal policy.
We analyze the list of k best policies calculated in the previous experiment, and
compare the total number of different states, d, between each of these policies
and the optimal policy π1 for each problem. When d is small for a problem, it
means that the k best policies are very similar to the optimal policy. This shows
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Fig. 2. The total number of different states between the k-th best policy and the
optimal policy when k = 2, . . . , 100 on DAP 1, Racetrack 1, SAP 1, SAP 2, DAP 2,
Racetrack 2 problems (left to right, top to bottom). All k best policies are quite close
to their π1’s.
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that zmany good policies can be generated by a few small changes to the optimal
policy. In other words, changes to few states can have very little impact on the
optimality of the rest of the policy. When d is large, the optimal policy is more
tightly coupled. When a sub-optimal action is chosen for a state, in order to get
a good sub-optimal plan, changes to other states are usually also required.

We plot the d values for the k best policies on the same set of problems in
Figure 2. These problems have relatively low d values (< 20 for all k). This shows
that the k best policies are always quite close the the optimal policies. Some prob-
lems have relatively higher d values than others, namely SAP 1, DAP 2, and Race-
track 2, which means they have relatively tightly coupled optimal policies. As these
problems are from diverse domains and of different sizes, it seems that the tightness
of coupling of the optimal policies is probably problem-dependent.

6 Conclusions

This paper makes several contributions. First, we introduce the k best policy prob-
lem, and argue for its importance. Second, we prove a strong and useful theorem
that the k-th best policy differs from some m(< k)-th best policy on exactly one
state. Without that result, the brute-force algorithm for solving the k best pol-
icy problem (KBN) has time complexity exponential in k. Third, we propose a
new algorithm, named k best policy improved (KBI), based on our theorem. We
show that the time complexity of KBI is dominated by a computation linear in
k. Fourth, we demonstrate that KBI outperforms KBN by an order of magnitude
when k = 2 in most cases. The KBN algorithm does not scale to larger k values,
as its running time increases exponentially in k. On the other hand, the running
time of KBI increases only linearly in k. This makes KBI suitable for problems for
which we want a long list of best policies. Fifth, we notice that the k best policies
for different MDPs are quite similar to the optimal policies, though some prob-
lems’ optimal policies are more tightly coupled than others’.

This is just the beginning of work on k best policies. There is much to be done
in improving the algorithms, and in looking at applications-driven variants.

Acknowledgments

Dai was partially supported by Office of Naval Research grant N00014-06-1-
0147. Goldsmith was partially supported by NSF grant ITR–0325063. We thank
Mausam for helpful discussions on the problem.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
2. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-

tions and computational leverage. J. of Artificial Intelligence Research 11, 1–94
(1999)



Finding Best k Policies 153

3. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search
in belief space. In: ICAPS, pp. 52–61 (2000)

4. Bresina, J.L., Dearden, R., Meuleau, N., Ramkrishnan, S., Smith, D.E., Washing-
ton, R.: Planning under continuous time and resource uncertainty: A challenge for
AI. In: UAI, pp. 77–84 (2002)

5. Bresina, J.L., Jónsson, A.K., Morris, P.H., Rajan, K.: Activity planning for the
mars exploration rovers. In: ICAPS, pp. 40–49 (2005)
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Appendix

In order to prove Theorem 1, we consider the effects of changing a policy one
state at a time.

Lemma 2. Let M be an MDP, and π and π′ be two policies for M that differ
only on state s. Suppose that Vπ(s) ≤ Vπ′(s). Then Vπ(s0) ≤ Vπ′(s0). More
strongly, if s ∈ Policydesc(s0, π) (which implies s ∈ Policydesc(s0, π

′)) and
Vπ(s) < Vπ′(s), then Vπ(s0) < Vπ′(s0).
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Proof. We know the values of Vπ(s) and Vπ′(s) are two unknown constants with
Vπ(s) ≤ Vπ′(s). We write the two systems of linear equations with respect to π
and π′ by ignoring variables Vπ(s) and Vπ′(s) on the left hand side, and replacing
them with their values whenever they are on the right hand side. We find the
two systems of equations have the same set of coefficients, but the one given
π has smaller or equal constant values on the right hand sides. If we solve the
equations by factoring out all the variables on the right hand side iteratively, the
same process as replacing a variable by its corresponding state’s influence [20],
we finally get the same value for all states where s is not a policy descendant
given π′, since all states’ influences are the same in π and π′, and a better value
in π for all states where s is a policy descendant given π′, since the influence of s
on them is decreased (due to a smaller value), where the influence of other states
remain unchanged. We call this property monotonicity of influence. This implies
Vπ(s0) ≤ Vπ′(s0). Here, we actually proved a more general result, namely that
∀s′ ∈ S[Vπ(s′) ≤ Vπ′(s′)].

Lemma 3. Let M be an MDP, and π and π′ be two policies for M that differ
only on state s. Suppose that Vπ(s0) < Vπ′(s0). Then Vπ(s) < Vπ′(s). More
strongly, ∀s′ ∈ S, [Vπ(s′) ≤ Vπ′(s′)].

Proof (Sketch). Suppose that Vπ(s) ≥ Vπ′(s).
We divide the states in Policydesc(s0, π

′) into two subsets: (1) policy ancestors
of s given π′, the set of states where s is a policy descendant given π′, and (2)
non-policy ancestors of s given π′, the complement of (1).

We claim that the values of the non-policy ancestors of s given π′ are the
same as those given π. This is because the values of those states do not depend
on s or any policy ancestors of s given π′, so their values are not influenced
by any potential value changes caused by s. For policy ancestors of s given π′,
their values cannot be improved, by the monotonicity of influence. Because their
coefficients remain unchanged while the constants (values of non-policy ancestors
of s given π′ and value of s) are equal or larger. This contradicts the assumption
that Vπ(s0) < Vπ′(s0). Now, we know that Vπ(s) < Vπ′(s). From Lemma 2 we
have that ∀s′ ∈ Policydesc(s0, π

′) [Vπ(s) ≤ Vπ′(s)].

Lemma 4. Let M be an MDP, and π and π′ be two policies for M that differ
only on two states s1 and s2. Suppose that Vπ(s0) ≤ Vπ′(s0). Consider the fol-
lowing two policies π1, π2 obtained from by starting with π by replacing exactly
one distinct action each from π(s), s ∈ {s1, s2}, with the corresponding π′(s).
Without loss of generality, suppose πi(si) = π′(si). Then π1 and π2 cannot both
have larger initial state values than π′ does.

Proof (Sketch). For either si, if si is not a policy descendant of s0 given π or π′,
then Vπ′(s0) = Vπi(s0), and we’re done.

Now suppose Vπ′(s0) < Vπi(s0) for i = 1, 2. From Lemma 3, we have

∀s′ ∈ S[Vπ′(s′) ≤ Vπ1(s′)], and Vπ′(s2) < Vπ1(s2), (2)
∀s′ ∈ S[Vπ′ (s′) ≤ Vπ2(s′)], and Vπ′(s1) < Vπ2(s1). (3)
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There are three cases. Case 1: Neither s1 nor s2 is a policy descendant of the other
given π. From Equation 2 we know Vπ′(s2) < Vπ1(s2) = Vπ(s2), as the values of
all policy descendants of s2 given π1 and π are the same, and π1(s2) = π(s2).
From Equation 3 we know Vπ′(s1) < Vπ2(s1) = Vπ(s1) for the same reason.
Then from the monotonicity of influence together with all derived inequalities,
we know Vπ′(s0) < Vπ(s0). A contradiction.

Case 2: s2 is a policy descendant of s1 given π, but s1 is not a policy descendant
of s2 given π (or vice versa). From Equation 2 we first know Vπ′(s2) < Vπ1(s2) =
Vπ(s2). From Equation 3, and Vπ′(s2) < Vπ(s2), by the monotonicity of influence
we know Vπ′(s1) < Vπ(s1). Then, from the monotonicity of influence together
with all derived inequalities, we know Vπ′(s0) < Vπ(s0). A contradiction.

Case 3: s1 and s2 are both policy descendants of each other given π′. From
both Equations 2 and 3 and the monotonicity of influence we can prove Vπ′(s1) <
Vπ(s1) and Vπ′(s2) < Vπ(s2). Then from the monotonicity of influence together
with all derived inequalities, we know Vπ′(s0) < Vπ(s0). A contradiction.

Lemma 5. Let M be an MDP, and π and π′ be two policies for M that differ
only on m states s1, s2, . . . , sm, m > 1. Suppose that Vπ(s0) = Vπ′(s0). Consider
the 2m distinct policies πT , T ⊆ {s1, s2, . . . , sm} that agree with π on all states
not in T , and agree with π′ on T . Then for at least one such T of size 1,
VπT (s0) ≤ Vπ′(s0).

This Lemma can be proved inductively from Lemma 5.
Note that a fundamental assumption underlying dynamic programming algo-

rithms for MDPs is: If M is a MDP and π a non-optimal policy (in the sense of
having a non-optimal value function), then there is some s ∈ S and a ∈ A such
that vπ(s) > C(s, a) + γ

∑
s′∈S Ta(s′|s) · vπ(s′). Bertsekas and Tsitsiklis showed

that this holds for stochastic shortest path problems, when γ = 1 [21]. Their
proof can be extended.

Lemma 6. If If Vπ(s0) is not optimal, there must be an s+ ∈ Policydesc(s0, π)
and a ∈ A such that vπ(s+) > C(s+, a) +

∑
s′∈S Ta(s′|s+, ) · vπ(s′). If we let

π′(s) = π(s) for s �= s+, and let π′(s+) = a, then Vπ′(s0) < Vπ(s0).

Proof (Theorem 1). Let M be an MDP, and Πi = {π1, . . . , πi} be the list of i
best policies, for i ≤ k. We claim that, for k > 1, there is some j < k and state
s such that πj differs from πk exactly on s.

If Vπk
(s0) = Vπ1(s0), the theorem follows from Lemma 5.

If Vπk
(s0) > Vπ1(s0), the theorem follows from Lemma 6.
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