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Preface

Algorithmic decision theory is a new interdisciplinary research area that aims
to bring together researchers from different fields such as decision theory, dis-
crete mathematics, theoretical computer science and artificial intelligence, in
order to improve decision support in the presence of massive databases, combi-
natorial structures, partial and/or uncertain information and distributed, pos-
sibly interoperating, decision makers. Such problems arise in several real-world
decision-making scenarios such as humanitarian logistics, epidemiology, risk
assessment and management, e-government, electronic commerce, and recom-
mender systems.

In 2007, the EU-funded COST Action IC0602 on Algorithmic Decision The-
ory was started, networking a number of researchers and research laboratories
around Europe (and beyond). The COST Action IC0602 now gathers over 100
participants from more than 30 countries (including non-COST countries such
as Australia, South Africa and the USA). For more details see www.algodec.org.
Within the Action, and in cooperation with the EURO Working Group on Pref-
erences, it was decided to start a new series of conferences on algorithmic decision
theory, the goal being to provide a forum for researchers interested in this area.

This volume contains the papers presented at ADT 2009, the first Interna-
tional Conference on Algorithmic Decision Theory. The conference was held in
San Servolo, a small island in the Venetian Lagoon, on October 20–23, 2009. The
program of the conference included oral presentations, posters, invited talks, and
tutorials (for more information see www.adt2009.org).

The conference received 65 submissions. Each submission was reviewed by
at least 2 program committee members, and the program committee decided to
accept 39 papers (of which 9 posters). The topics of these papers range from
computational social choice to preference modeling, from uncertainty to prefer-
ence learning, from multi-criteria decision making to game theory. We believe
that many colleagues will find this collection of papers exciting and useful for
the advancement of the state of the art in their respective disciplines.

We would like to take this opportunity to thank all authors who submitted
papers to this conference, as well as all the program committee members and
external reviewers for their useful work. ADT 2009 was made possible thanks
to the support of the COST Action IC0602 on Algorithmic Decision Theory,
the Association for Constraint Programming, the EURO (Association of Euro-
pean Operational Research Societies), the LAMSADE at the University of Paris
Dauphine, the Department of Pure and Applied Mathematics of the University
of Padova, DIMACS, Rutgers University, USA and the CNRS (Centre National
de la Recherche Scientifique, France).
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We would also like to express our appreciation of Easychair for its support
in the creation of this volume.

October 2009 Francesca Rossi
Alexis Tsoukiàs
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XII Table of Contents

A Framework for Designing a Fuzzy Rule-Based Classifier . . . . . . . . . . . . . 434
Jonas Guzaitis, Antanas Verikas, Adas Gelzinis, and
Marija Bacauskiene

Anytime Self-play Learning to Satisfy Functional Optimality Criteria . . . 446
Andriy Burkov and Brahim Chaib-draa

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459



A Complete Conclusion-Based Procedure for
Judgment Aggregation�

Gabriella Pigozzi, Marija Slavkovik, and Leendert van der Torre

Individual and Collective Reasoning, Computer Science and Communication,
University of Luxembourg, 6, Rue Richard Coudenhove Kalergi,

L-1359 – Luxembourg

Abstract. Judgment aggregation is a formal theory reasoning about
how a group of agents can aggregate individual judgments on connected
propositions into a collective judgment on the same propositions. Three
procedures for successfully aggregating judgments sets are: premise-
based procedure, conclusion-based procedure and distance-based merg-
ing. The conclusion-based procedure has been little investigated because
it provides a way to aggregate the conclusions, but not the premises,
thus it outputs an incomplete judgment set. The goal of this paper is
to present a conclusion-based procedure outputting complete judgment
sets.

1 Introduction

Judgment aggregation [9,10,12] studies the aggregation of individual judgments
of small groups such as expert panels, legal courts, boards and councils. We talk
about judgment aggregation whenever a group of individuals needs to make a
collective decision on a finite set of issues, and these propositions are logically
connected. The propositions are of two kinds: premises and a conclusion. The
first serve as supporting reasons to derive a certain judgment on the conclusion.
If, for example [1], your department has to hire a new lecturer and the decision
rule is such that a candidate X will be hired only if the candidate is good at
teaching and good at research, we will say that “hiring X” is the conclusion
while “good at teaching” and “good at research” are the premises.

How shall we derive a group decision given the individuals’ opinions on
premises and conclusion? It is assumed that each individual expresses yes/no
opinions on the propositions while respecting the logical relations. If we now
define the group opinion as the majority view on the issues, it turns out that the
collectivity may have to endorse an inconsistent position. This means that your
department may have to face a situation in which a majority does not deem X a
good candidate. However, it will not be possible to provide reasons for this as a

� A previous version of this paper appeared in the proceedings of the workshop Cin-
quième Journée Francophone Modèles Formels de l’Interaction, Lannion, France, 2-5
June 2009.

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 1–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Hiring committee example. The candidate X is hired if and only if X is good
at teaching and X is good at research.

a = X is good at teaching b = X is good at research x = hire X

prof. A yes no no

prof. B yes yes yes

prof. C no yes no

Majority yes yes no

majority of people agrees that X is actually good at teaching and (another) ma-
jority deems X to be good at research. An example of such situation is presented
in Table 1.

The problem is avoided if we decide to let the majority vote on the premises to
dictate the final decision on the hiring process, or if the agents express their judg-
ments only on the conclusion. Unlike the aggregation procedure on the premises
[14,5], the aggregation on the conclusion has not been throughly investigated.

We claim that in many decision problems the conclusion is more relevant than
the reasons for it. When deciding which candidate to hire in your department,
you may be more concerned of which new colleague you will have in your de-
partment than of the reasons for choosing her. Considering only the individual
judgments on the conclusions has also the advantage that it is a strategy-proof
procedure. The same does not hold when you aggregate on the premises.

The problem this paper addresses is how a group can make decisions on the
conclusion while providing reasons in support of the collective conclusion. Our
procedure prioritizes the individual judgments on the conclusion and outputs
sets of premises that support the collective decision.

The paper is structured as follows: in Section 2 we present the problem of
judgment aggregation. Section 3 is devoted to our formal framework, and in
Section 4 we prove some results about our procedure. Section 5 relates our
approach with existing work and, finally, Section 6 concludes the paper and
outlines directions for future work.

2 Judgment Aggregation

In judgment aggregation agents are required to express judgments (in the form
of yes/no or, equivalently, 1/0) over premises and conclusion. As in [20], to
represent the distinction between premise and conclusion in our language, we
distinguish between premise variables a, b, c, p, q . . ., and conclusion variable x.

In the hiring example, “X is good at teaching” is premise a, and “X is good
at research” is premise b. The decision rule can be formally expressed by the
rule (a∧ b)↔ x, where x is the conclusion about hiring X . Each member of the
department expresses her judgment on the propositions a, b and x such that the
rule (a ∧ b)↔ x is satisfied.



A Complete Conclusion-Based Procedure for Judgment Aggregation 3

Suppose the three professors in the department make their judgments ac-
cording to Table 1. Each member expresses a consistent opinion, i.e. she says
yes to x if and only if she says yes to both a and b. However, propositionwise
majority voting (consisting in the separate aggregation of the votes for each
proposition a, b and x via majority rule) results in a majority for a and b and
yet a majority for ¬x. This is an inconsistent collective result, in the sense that
{a, b,¬x, (a ∧ b) ↔ x} is inconsistent in propositional logic. The paradox lies in
the fact that majority voting can lead a group of rational agents to endorse an
irrational collective judgment. The literature on judgment aggregation refers to
such problems as the doctrinal paradox (or discursive dilemma).

The relevance of such aggregation problems applies to all situations in which
individual binary evaluations need to be combined into a group decision. Fur-
thermore, the problem of aggregating individual judgments is not restricted to
majority voting, but it applies to all aggregation procedures satisfying some
seemingly desirable conditions. For an overview, the reader is referred to [13].

Two ways to avoid the inconsistency are the premise-based procedure (PBP) and
the conclusion-based procedure (CBP) [17,3]. According to the PBP, each agent
votes on each premise. The conclusion is then inferred from the rule (a ∧ b) ↔ x
and from the judgment of the majority of the group on a and b. If the professors of
the example followed the premise-based procedure, the lecturer would be hired.

Because in PBP the collective judgment on the conclusion is derived from
the individual judgments on the premises, it can happen that PBP violates a
unanimous vote on the conclusion. In [16] Nehring presents a variation on the
discursive dilemma, which he calls the Paretian dilemma. In his example, a
three-judges court has

to decide whether a defendant has to pay damages to the plaintiff. Legal
doctrine requires that damages are due if and only if the following three
premises are established: 1) the defendant had a duty to take care, 2)
the defendant behaved negligently, 3) his negligence caused damage to
the plaintiff. ([16], p.1)

Suppose that the judges vote as in Table 2.
The Paretian dilemma is disturbing because, if the judges would follow PBP,

they would condemn the defendant to pay damages contradicting the unanimous
belief of the court that the defendant is not liable.

Table 2. Paretian dilemma. Premises: a = duty, b = negligence., c = causation. Con-
clusion: x = (a ∧ b ∧ c) = damages.

Agenda a b c x = (a ∧ b ∧ c)
Judge A 1 1 0 0
Judge B 0 1 1 0
Judge C 1 0 1 0
Majority 1 1 1 0
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A CBP would not lead to such a unanimity violation. According to CBP, the
judges decide privately on a and b and only express their opinions on x publicly.
The judgement of the group is then inferred from applying the majority rule to
the agents’ judgments on x. The defendant will be declared liable if and only
if a majority of the judges actually believes that she is liable. In the example,
contrary to PBP, the application of CBP would free the defendant. However, no
reasons for the court decision could be supplied.

Unlike PBP [14,5], CBP did not receive much attention in the literature. Here
we aim at filling this gap. We propose a procedure that attempts to overcome
the major limit of CBP, that is the lack of reasons supporting the decision.

3 Framework

In this section we introduce our formal framework to represent judgment aggre-
gation problems. A set of agents N = {1, 2, . . . , n} makes judgments on logically
interconnected propositions. The set P of atomic propositions is defined as the
union of two disjoint sets: Pp containing variables a, b, c, . . . , p, q for the premises,
and Pc being a singleton {x}, where x is the variable for the conclusion. We as-
sume that the conclusion is an atomic formula. L is a language built from P ,
including complex formulas as ¬a, (a ∧ b), (a ∨ b), (p → q), (a ↔ p).

The set of issues on which the judgments have to be made is called agenda
and is denoted by Φ ⊆ L. The agenda is assumed to be finite and closed under
negation: if a ∈ Φ, then ¬a ∈ Φ.1 Each double negated proposition ¬¬a is
identified with its corresponding non negated proposition a. We split the agenda
in two parts: one containing the premises (Φp), and one containing the conclusion
(Φc). We exclude agenda items such as a → x, i.e. formulas containing premises
and conclusion. Our procedure consists of two different aggregations: one on the
individual judgments on Φp and one on the individual judgments on Φc.

A subset J ⊆ Φ is the collective judgment set and contains the set of propo-
sitions believed by the group. Similarly, we define individual i’s judgment set
Ji ⊆ Φ. A collective judgment set is consistent if it is a consistent set in L, and
is complete if, for any a ∈ L, a ∈ J or ¬a ∈ J (consistent and complete indi-
vidual judgment sets are defined in the same way). We only consider consistent
complete judgment sets.

A decision rule R is a formula of L that represents the logical connections
between premises and conclusion. More precisely, R has the form Ψ ↔ x, where
Ψ ∈ L/{x}. The decision rule is not an item of the agenda. This means that
the group members do not vote on R, but each individual is required to give
judgments that satisfy the given rule.

Like the agenda, each judgment set is split in two disjoint subsets: Ji,p and
Ji,c. The first is the individual i’s judgment set on the premises, and Ji,c is the

1 To increase readability, in the tables we list only the positive issues, and assume
that, for any issue in the agenda, an individual deems that issue to be true if and
only if she deems its negation to be false.
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individual i’s judgment set on the conclusion. The collective judgment sets on
premises and conclusion will be denoted respectively by Jp and Jc.

We say that a premise a (resp. a conclusion x) is unanimously supported if
a ∈ Ji,p for all Ji,p ⊆ Φ (resp. x ∈ Ji,c for all Ji,c ⊆ Φ).

A profile J is an n-tuple (J1, J2, . . . , Jn) of agents’ judgment sets. An aggre-
gation rule F assigns a set of collective judgment sets J to each profile J . For
our procedure we need to define two aggregation rules: one for the aggregation
of the individual premises and one for the conclusion. To relate the two aggre-
gation rules, we have a set of integrity constraints IC. IC indicates the set of
admissible interpretations, i.e. the admissible collective judgment sets. Also, to
allow for situations in which the aggregated judgment set is not unique, i.e. there
are ties, we aggregate the profiles into sets of aggregated judgment sets.

A premise profile Jp is an n-tuple (J1,p, J2,p, . . . , Jn,p) of agents’ judgment sets
on premises. A premise aggregation rule FIC assigns a set of collective judgment
sets Jp to each premise profile (J1,p, J2,p, . . . , Jn,p) and set of integrity constraints
IC. Conclusion profiles (J1,c, J2,c, . . . , Jn,c) and conclusion aggregation rules Fc

are defined similarly.

3.1 Complete Conclusion-Based Procedure

Each individual provides, simultaneously, the set of premises and conclusion
that she believes. Our two-step procedure first performs a standard CBP, i.e.
it aggregates the individual judgments on the conclusion by majority rule. This
means that x (resp. ¬x) is the collective conclusion iff there are at least �n

2 	+ 1
agents voting for x (resp. ¬x). The second step consists in determining the set
of reasons which support the collective conclusion. This is done by applying a
distance-based merging operator to Ji,p.

Distance minimization merging procedures have been already applied to judg-
ment aggregation problems [18]. In this section we briefly present a majority
merging operator with integrity constraints following [8,7]. Unlike in [8,7], when
the merging operator outputs ties, we take the disjunction of the formulas which
completely characterize the tied alternatives.

An interpretation is a function v : P → {0, 1} and it is represented as the list
of the binary evaluations. For example, given three propositional variables a, b
and c, the vector (0,1,0) stands for the interpretation in which a and c are false
and b is true. LetW = {0, 1}P be the set of all interpretations. An interpretation
is a model of a propositional formula if and only if it makes the formula true in
the usual truth functional way.

Let us suppose that Φp = {a,¬a, b,¬b, c,¬c}, and that agent 1 believes that
a,¬b and ¬c, i.e. J1,p = {a,¬b,¬c}. We represent J1,p as a 0-1 vector of length
equal to the number of propositions in J1,p, i.e. (1, 0, 0). Suppose also that R =
((a ∨ b) ∧ c)↔ x and that, unlike agent 1, the majority of the individuals voted
in favor of x. Hence, the first step of our procedure sets v(x) = 1. We now want
to define an aggregation on Ji,p such that the collective judgment set on the
premises is one of the models of ((a ∨ b) ∧ c) ↔ x where v(x) = 1. This means
that Jp must be one of the following interpretations: (1,1,1), (0,1,1), (1,0,1). The
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set of premises supporting the collective conclusion will constrain the aggregation
procedure on Ji,p.

Given a premise profile Jp and IC, FIC(Jp) denotes a set of collective judg-
ment sets on the premises resulting from the IC merging on Jp. The idea of a
distance minimization merging operator is that FIC(Jp) will select those inter-
pretations in IC, which are at minimal distance from Jp. A distance d(ω, Jp)
between an interpretation ω and the premise profile Jp induces a total pre-order
(≤) on the interpretations.

In order to obtain the total pre-order on the interpretations, we first need to
determine a pseudo-distance between each admissible interpretation and each
Ji,p. Then, we need to aggregate all these values in order to obtain a pseudo-
distance value between an interpretation and Jp. Let us see this in detail (we
follow [8,7]).

A pseudo-distance between interpretations is a function d : W ×W → R+
such that for all ω, ω′ ∈ W : d(ω, ω′) = d(ω′, ω) and d(ω, ω′) = 0 iff ω = ω′.

A pseudo-distance between an interpretation ω and Jp is de-
fined with the help of an aggregation function D: Rn

+ → R+ as
Dd(ω, Jp)=D (d(ω, J1,p), . . . , d(ω, Jn,p)) [7]. Any such aggregation function
induces a total pre-order �Jp on the set W with respect to the pseudo-distances
to a given Jp. Thus, an IC majority merging operator for a profile Jp can be
defined as ΔIC(Jp) = min([IC], �Jp), i.e., the set of all models of IC (denoted
by [IC]) with minimal pseudo-distance Dd to Jp. The minimal pseudo-distance
identifies the final collective outcome on the premises, i.e. the set of premises that
support the conclusion voted by the majority of the agents and with the minimal
distance among all possible models satisfying IC.

A majority merging operator, often mentioned in the literature, is the operator
Δd,Σ

IC defined as follows:

1. d is the Hamming distance — the number of propositional letters on which
two interpretations differ, i.e., d(ω, ω′) = |{π ∈ P|ω(π) �= ω′(π)}| and

2. Dd(ω, Jp) =
∑

id(ω, Ji,p) is the sum of componentwise distances d defined
before.

For example, the Hamming distance between ω = (1, 0, 0) and ω′ = (0, 1, 0) is
d(ω, ω′) = 2. In the following we use the Hamming distance because it is a well
known and intuitive distance. But the Hamming distance is only one among
many possible distance functions that we may use.

The premise aggregation rule FIC outputs the disjunction of formulas which
completely characterize the sets of judgments selected by Δd,Σ

IC as the reasons in
support of the conclusion voted by the majority of the agents. Given a premise
profile Jp, FIC is defined as:

FIC(Jp) =
∨

Δd,Σ
IC (Jp)

The constraint IC is defined as IC = R ∧ x̂, where x̂ is the conclusion chosen
by the majority.

The best way to illustrate our procedure is with an example.
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Example 1. Consider a collegium medicum that wishes to eliminate the possi-
bility of a patient suffering from condition X before administering a treatment.
We take v(x) = 0 if the patient is free of X. The doctors consider the three
relevant alternative medical conditions a, b and c the patient may suffer from.
The patient is free of X if medical conditions a, b and c are present (v(a) = 1,
v(b) = 1 and v(c) = 1), if all three medical conditions are absent (v(a) = 0,
v(b) = 0 and v(c) = 0) or if the last condition is present while the previous two
are absent (v(a) = 0, v(b) = 0 and v(c) = 1). In all other cases the patient is
likely to suffer from X. Table 3 gives the truth table of R.

Table 3. The truth table of R for the doctor example

a 0 0 0 0 1 1 1 1
b 0 0 1 1 0 0 1 1
c 0 1 0 1 0 1 0 1
x 0 0 1 1 1 1 1 0

Three equally qualified members of the collegium medicum give their opinions
shown in Table 4. As Table 4 shows, the group is facing a dilemma. The majority
of the conclusions from the doctors opinions indicates that the patient does
not suffer from X though the majority on the premises supports the opposite
conclusion.

Our procedure (see Table 5) selects the reasons that are most compatible with
the doctors’ different opinions, i.e. the judgment set (1,1,1).

Table 4. The dilemma faced by the
doctors

Agenda a b c x

Dr. A 1 1 1 0
Dr. B 0 0 0 0
Dr. C 1 1 0 1
Majority 1 1 0 0

Table 5. Selection of the premise set from
the doctors opinions under the constraint
v(x) = 0

J1,p J2,p J3,p Σi d(ω, Ji,p)
(1,1,1) 0 3 1 4
(0,0,0) 3 0 2 5
(0,0,1) 2 1 3 6

By applying the same procedure, the premises selected for the discursive dilemma
in Table 2 with v(x) = 0 would be (0, 1) ∨ (1, 0), representing a tie between X
is good at teaching but bad at research and X is good at research but bad at
teaching.

Example 1 illustrates that, when aggregating the premises, we do not only
take into account the judgment sets of the agents that support the aggregated
conclusion, but also the judgment sets of agents that do not support the conclu-
sion. Consider for example the selection of premises with v(x) = 1 in Table 4.
We take also the judgment set of Dr. C into account, although she voted for
v(x) = 1.
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The justification for taking all individual judgments on the premises into
account is two-folded. On the one hand, from the perspective of probability
theory, if all judgments are independent, then more judgment sets mean a higher
chance to get a better judgment. On the other hand, from the perspective of
democracy, involving agents whose conclusion is not supported will give broader
basis for the decision. However, we do not exclude the possibility that there
are situations in which only the individuals’ judgments that actually supported
the aggregated conclusion should be taken into account when determining the
reasons for that conclusion.

4 Results

We now show some properties which hold for the premise aggregation rule FIC

we had defined in the previous section. We start by noticing that, in the case
of the aggregation of binary evaluations, there is an obvious correspondence
between proposition-wise majority voting and distance minimization. This has
been already observed in several contexts (see, e.g., [2]), and can be generalized
to the following folk theorem.

Proposition 1. Let J = (J1, . . . , Jn) be a profile over the agenda Φ. Let Jmaj ⊂
Φ be a complete and consistent set. Let it hold that for every premise a ∈ Jmaj,
a ∈ Ji,p for at least �n

2 	+1 premise sets in the profile Jp. Also, for the conclusion
x ∈ Jmaj, let it holds that x ∈ Ji,c for at least �n

2 	 + 1 conclusion sets in the
profile Jc. The sum of Hamming distances from Jmaj to the judgment sets in J
is minimal.

This means that, in the absence of a Paretian dilemma (i.e. when Jmaj satisfies
the decision rule R), proposition-wise majority voting, distance-based merging
and our procedure coincide.

4.1 Unanimity Preservation

One of the desirable properties for a judgment aggregation procedure is the
heeding of unanimity. If all the agents unanimously support an agenda item, then
it is natural to expect the unanimously supported item will be adopted as the
collective judgment. However, PBP does not necessarily preserve unanimity on
the conclusion (as it was the case with the Paretian dilemma shown in Table 2).

PBP aggregates each premise independently from the other premises, but
the aggregation on the conclusion depends on the collective judgments on the
premises. Therefore the unanimity on the premises will be preserved, but the
unanimity on the conclusion may be violated.

When aggregating according to the CBP, unanimity on the conclusion will
always be maintained, but unanimity on the premises may be violated. However,
our procedure offers the option to preserve unanimity on the premises as well,
by constraining the models which do not support unanimity.
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Table 6. A case in which unanimity on premises will be violated by the complete CBP

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 x

A 1 0 0 1 0 0 1 0 0 1 0 0 1 1
B 0 1 0 0 1 0 0 1 0 0 1 0 1 1
C 0 0 1 0 0 1 0 0 1 0 0 1 1 1

Maj. 0 0 0 0 0 0 0 0 0 0 0 0 1 1

We begin by giving a formal definition on when a premise aggregation rule FIC

preserves unanimity. Whether or not the unanimity on the premises is preserved
by our FIC depends on the rule R as well as the agenda Φ. We show two decision
rules for which the unanimity is preserved and then we use an example to show
that in the case of an arbitrary rule and agenda, the unanimity of the premises
is not guaranteed.

Definition 1. Let Jp = (J1,p, . . . , Jn,p) be a premise profile on the agenda Φ
and p a premise from the agenda. A premise aggregation rule FIC preserves
unanimity on the premises if and only if the following holds:
If p ∈ Ji,p for all i = {1, . . . , n} then p ∈ FIC(Jp).

Note that, since FIC can select more than one premise judgment set, p needs to
be in all of them for unanimity to be preserved.

The following theorem indicates two decision rules R, and an agenda, in the
presence of which unanimity is preserved on the premises by FIC .

Theorem 1. Let Φ be an agenda in which all the elements are atoms or nega-
tions of atoms. Let R be a decision rule of the form (a1 ∧ . . . ∧ an) ↔ x or of
the form (a1 ∨ . . . ∨ an) ↔ x. {a1, . . . , an} ⊆ Φ are premises and x ⊆ Φ is a
conclusion. FIC preserves unanimity on the premises for any profile J over Φ
and R.

Due to strict page limit constraints the proofs are omitted2.
Given an arbitrary agenda, a decision rule R corresponding to that agenda

and an arbitrary profile J , the merging operator does not necessary preserve
unanimity. We show this through an example.

Consider the profile presented in Table 6. The rule R is such that the value
of x is 1 if and only if the evaluations of the premises are one of the sets in the
first column of Table 7. For all other evaluations of premises, x is 0.

Our procedure preserves the unanimity on the conclusion and selects
v(x) = 1, but gives an aggregation for the premises which violates the unanimity
on premise p13 (Table 7).

The preservation of unanimously held premises can be imposed by IC. This
is done by making IC = R∧ x̂∧p∗, where p∗ is any unanimously voted premise.
Admissible outcomes for Jp then are those supporting the conclusion voted by
the majority and containing the premise(s) unanimously chosen.
2 The proofs can be found in [19].
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Table 7. Selection of premises for the counterexample

J1,p J2,p J3,p Σid()
(1,0,0,1,0,0,1,0,0,1,0,0,1) 0 8 8 16
(0,1,0,0,1,0,0,1,0,0,1,0,1) 8 0 8 16
(0,0,1,0,0,1,0,0,1,0,0,1,1) 8 8 0 16
(0,0,0,0,0,0,0,0,0,0,0,0,0) 5 5 5 15

4.2 Manipulability

Another property which is of interest when dealing with aggregation procedures
is that of manipulability. A judgment aggregation procedure is called manipula-
ble if an agent, who would not obtain a desired outcome by submitting her sincere
premise set, can obtain a desired outcome by choosing to submit a set of premises
different than her honest premise set. Under the context of complete-conclusion
based procedures, we will distinguish between full and preferred manipulability.

Full manipulability means that we distinguish only whether the aggregated
premise set entirely corresponds to an agent’s judgments on premises or not.

A procedure is fully manipulable if an agent can obtain her complete hon-
est premise set as an output from the procedure by submitting another (in-
sincere) premise set that supports the same conclusion. Formally, let Jp =
(J1,p, . . . , Ji,p . . . , Jn,p) be a premise profile. Let FIC(Jp) = {J◦

1,p, . . . , J
◦
m,p},

i.e. the merging operator selects the premise sets J◦
1,p, . . . , J

◦
m,p. Let Ji,p be the

“honest” premise set of an agent i.

Definition 2. Assume that a premise set J∗
i,p �= Ji,p exists, such that J∗

i,p sup-
ports the same conclusion as the premise set Ji,p. The operator FIC is fully ma-
nipulable if Ji,p ∈ FIC(J1,p, . . . , J

∗
i,p . . . , Jn,p) but Ji,p �∈ FIC(J1,p, . . . , Ji,p, . . . ,

Jn,p).

Theorem 2. FIC is not fully manipulable.

Let us now assume that an agent has a premise p which she holds most impor-
tant (has a strong preference on the evaluation of this premise). We say that
a procedure is preferred manipulable if an agent can ensure that the preferred
projection w(p) is included in the output by submitting another premise set that
supports the same conclusion. Since we do not represent the preferred premise
explicitly in our framework, any premise can be the preferred one, and preferred
manipulability therefore means that the agent is able to change her premise set
in a way such that one premise which is not a member of the aggregated set
becomes member of it.

Definition 3. Assume that a premise set J∗
i,p �= Ji,p exists, such that J∗

i,p

supports the same conclusion as the premise set Ji,p and premise ppref is in both
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of the premise sets. The operator FIC is preferred manipulable if ppref is in at
least one premise set J◦

j,p ∈ FIC(J1,p, . . . , J
∗
i,p, . . . , Jn,p), but ¬ppref is in all of

the premise sets selected by FIC(J1,p, . . . , Ji,p, . . . , Jn,p).

Theorem 3. FIC is preferred manipulable.

Full manipulability is a relatively weak condition, in the sense that it is fairly
easy to satisfy. This notion of preferred manipulability seems to conflict with
the intuition of the distance measure used to aggregate the premises, which does
take such distinctions into account. However, preferred manipulability is a very
strong condition, since it means in practice that an agent should not be able to
improve any premise (since this premise may happen to be the preferred one).
Other notions of manipulability could be studied, such as the improvement of a
preferred premise by changing the judgment on this premise only.

5 Related Work

One of the noted shortcomings of the CBP is that it is susceptible to path-
dependence [15]. Path-dependent decisions are decisions whose outcome depends
on the order in which propositions are considered. For any proposition, the col-
lective judgment on it is decided by majority rule (or by any other suitable ag-
gregation rule) unless this conflicts with the collective judgments of previously
aggregated propositions. In the latter case, the collective value of that proposi-
tion is deduced by logical implication from the previously aggregated proposi-
tions. List [11] provided necessary and sufficient conditions for path-dependence.
Furthermore, in [4] it has been shown that the absence of path-dependence is
equivalent to strategy-proofness.

Here we propose a complete CBP without assuming any order over the
premises. We aimed at a procedure that treats all premises in an even-handed
way. The absence of full manipulability is coherent with the results of [4].

Non-manipulability is one of the advantages of CBP over PBP. The question
of manipulability under operators used for merging of propositions has been
treated extensively in [6]. There, Everaere et al. explore a broad spectrum of
manipulability for various merging operators over complete and incomplete sets
of beliefs. Our work uses results from [6] on complete sets of beliefs under model-
based merging operators that use the sum of the distances between belief bases.

6 Conclusions and Future Work

The complete CBP we present keeps the desirable properties of non-
manipulability and it can be modified to preserve unanimity on the premises.
What can be considered a shortcoming of the procedure is that it may select
more than one premise judgment set to support the collective conclusion. Such
“ties” in the output from aggregation are known to be resolved with an addi-
tional approval vote [2] or by random selection. A random selection is not a
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desirable tie-breaking solution in cases when the decisions on premises can in-
fluence some future decision making process. The approval voting requires more
information to be injected in the framework and opens the questions of what
incentives an agent may have to prefer one premise judgment set over another.

In future work we plan to investigate the relevance that current group deci-
sions can have on future decisions. This “evolutionary” impact over the decision
making process has been an important issue in the work that gave rise to the
interest in judgment aggregation [9,10], but it has fallen out of scope in the more
formal study of judgment aggregation.
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Abstract. In this paper we extend Saari’s geometric approach to para-
doxes of preference aggregation to the analysis of paradoxes of majority
voting in a more general setting like Anscombe’s paradox and paradoxes
of judgment aggregation. In particular we use Saari’s representation cubes
to provide a geometric representation of profiles and majority outcomes.
Within this geometric framework, we show how profile decompositions
can be used to derive restrictions on profiles that avoid the paradoxes of
majority voting.

1 Introduction

In the last thirty years, there have been several attempts to generalize the Ar-
rovian framework of preference aggregation (e.g. Rubinstein and Fishburn [8]
or Wilson [11]). This literature on abstract aggregation has been considerably
stimulated by the growing interest in problems of judgment aggregation. The
problem of judgment aggregation consists in aggregating individual judgments
on an agenda of logically interconnected propositions into a collective set of
judgments on these propositions (see List and Puppe [5] for a survey).

As an example of a paradox in judgment aggregation, consider a variant of the
so-called discursive dilemma, in which a committee of three recruitment officers
in a firm has to decide whether a job applicant should be hired or not. There is
a written test and an oral interview and each of them is advised to recommend
hiring the applicant if and only if the applicant passes the written test and gives
a satisfiable interview. Table 1 shows the judgments of the officers and their
majority decisions.

Based on the majority of the individual decisions, the job applicant will not
be hired as a majority does not find her acceptable. However, a majority finds
the written test as well as the interview acceptable.

Problems of judgment aggregation are structurally similar to paradoxes and
problems in social choice theory like the Condorcet paradox and Arrow’s gen-
eral possibility theorem, but also related to paradoxes of compound majorities
like the Anscombe or Ostrogorski paradoxes, both nicely analysed by Nurmi [7]
(see also Nurmi [6]). Contemporarily, Saari [9] has developed and popularized a
geometric approach to Arrovian social choice theory. His approach has helped
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Table 1. Discursive Dilemma

Officer written test oral interview decision
Officer 1 1 1 1
Officer 2 1 0 0
Officer 3 0 1 0

Majority Outcome 1 1 0

to understand what drives many of the impossibility results and paradoxes in
social choice theory.

In this paper we develop - in Saari’s style - a geometric approach to ab-
stract aggregation theory starting from the Anscombe paradox and extending
this framework to typical paradoxes in judgment aggregation.

Our approach focuses on and will be exhaustive for aggregation problems
that can be represented in the three-dimensional hypercube. While this is the
smallest dimension in which interesting aggregation problems can be formulated
and particularly illuminating for problems that naturally fall into this framework,
we have to give a warning that most of our results are not easily extendable to
more than three dimensions.

A major difference of judgment aggregation to social choice theory lies in
the representation of the information involved. While binary relations over a
set of alternatives are a canonical representation of preferences, a natural rep-
resentation of judgments are binary valuations over a set of propositions, where
the logical interconnections between these propositions determine the set of ad-
missible (i.e. logically consistent) valuations. E.g. the agenda of the famous
discursive dilemma {p, q, p ∧ q} is associated the set of admissible valuations
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.

The paper is structured as follows: In section 2 we introduce the formal frame-
work with the main definitions and properties. Section 3 discusses paradoxes of
majority voting. We will use Saari’s representation cubes to provide a unified
geometric representation of profiles and majority rule outcomes and introduce
Saari’s idea of a profile decomposition. In this framework we will provide a char-
acterization of profiles leading to the Anscombe paradox. Section 4 applies the
same tools to judgment aggregation. In particular we show what drives the log-
ical inconsistency of majority outcomes and how this can be avoided with the
help of restrictions on the distribution of individual valuations, i.e. give a kind
of generalized domain restriction.

2 Abstract Aggregation Theory and Majority Voting:
Formal Framework and Central Properties

In the binary framework of abstract aggregation theory individual vectors of
binary valuations v = (v1, v2, ..., v|J|) from a set X ⊆ {0, 1}|J| of admissible
valuations over the set J of issues (the agenda) are aggregated into a collective
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valuation. (In a slight abuse of notation we will use the term valuation both for
a the binary valuation of a single issue as for vectors of binary valuations.)

Such an issue j ∈ J might be the pairwise comparison between two alterna-
tives in preference aggregation or a proposition on which a judgment needs to be
made. Typically, the interconnections between the issues constrain the set of ad-
missible valuations. In judgment aggregation a valuation v = (v1, v2, ..., v|J|) ∈
X ⊆ {0, 1}|J|, represents an individuals’ beliefs, where vj = 1 means that propo-
sition j is believed and X denotes the set of all admissible (logically consistent)
valuations (see Dokow and Holzman [3]).

Given a set N of individuals, a profile of individual valuations is then a map-
ping π : N → {0, 1}|J| which assigns to each individual a vector of binary
valuations. A desirable property of an aggregation rule, stronger than non-
dictatorship, is of course anonymity, which requires that the same collective
valuation be assigned to any permutation of the set of individuals.

If anonymity is assumed, a profile of individual valuations can be represented
by a vector p = (p1, .., p|X|) ∈ [0, 1]|X| with

∑
k

pk = 1, which associates with

every admissible valuation vk ∈ X the share pk of individuals with this valuation.
Such an anonymous representation of profiles is particularly appropriate for the
analysis of majority voting, where anonymity is typically assumed. While such
an anonymous representation is unique only up to a permutation of the original
profile, we however use the term profile for it in the following.

Geometrically any binary valuation is a vertex of the |J |-dimensional hyper-
cube and, more interestingly, any profile p ∈ [0, 1]|X| can be given a lower-
dimensional representation by a point x(p) ∈ [0, 1]|J| in the |J |-dimensional
0/1-polytope, i.e. the convex hull of the hypercube {0, 1}|J|, where for each
component j ∈ J , xj(p) =

∑
k∈{1,...,|X|}

pkvj
k denotes the average support for issue

j. Thus the |J |-dimensional 0/1-polytope will be referred to as the representation
polytope of the profiles.

An anonymous aggregation rule is a mapping f that associates with every
profile p = (p1, p2, ..., p|X|) ∈ [0, 1]|X| a valuation v = f(x(p)) ∈ {0, 1}|J|.

We will write v(p) for f(x(p)) and identify by vj(p) the jth component of
v(p) under the given aggregation rule.

In this framework majority voting on issues (or majority voting for short) is
defined as follows:

Definition 1. For any issue j ∈ J and any profile p ∈[0, 1]|X|, Mvj(p) ∈ {0, 1}
is the outcome of majority voting on issue j if

vj(p) = 1⇔ xj(p) > 0.5.

This representation immediately provides majority with a wellknown metric ra-
tionalization in terms of the Hamming distance between binary vectors. (For
any two binary vectors v, v′ ∈ {0, 1}|J|, the Hamming distance dH(v, v′) is the
number of components in which these two vectors differ.)
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Proposition 1. (Brams et al. [1]) For any profile p ∈[0, 1]|X|, the valuation
Mv(p) ∈ {0, 1}|J| is the majority outcome if and only if it minimizes the sum of
Hamming distances weighted by the population shares, or formally,

Mv(p) = argmin
v∈{0,1}|J|

|X|∑
k=1

pkdH(vk, v).

Thus, whenever the sum of Hamming distances can be interpreted as an ap-
propriate measure of social disutility, majority voting can be justified by its
minimization.

Observe however that nothing in this characterisation prevents the major-
ity outcome Mv(p) ∈ {0, 1}|J| from being an inadmissible valuation, i.e. that
Mv(p) ∈{0, 1}|J|\X .

In the hypercube, a more natural metric representation of majority voting
can be given in terms of the euclidean distance dE .

Proposition 2. For any profile p ∈[0, 1]|X|, the valuation Mv(p) ∈ {0, 1}|J| is
the majority outcome if and only if it minimizes the euclidean distance between
the corresponding vertex and the point x(p) in the representation polytope, or
formally,

Mv(p) = argmin
v∈{0,1}|J|

dE(x(p), v).

Conversely, the set of all profiles for a given majority outcome v ∈ {0, 1}|J|

defines a subcube of [0, 1]|J|, Pv = [|vj − 0.5|]|J|, which is the set of all profiles
for which v is the majority outcome. Such a subcube will be called the majority
subcube of v (or simply v-subcube) and can be seen in Figure 1 for vertex
(1, 0, 1).

Fig. 1. Majority subcube
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Table 2. Valuations in three-dimensional hypercube

valuation valuation
v1 (0, 0, 0) v5 (1, 1, 0)
v2 (1, 0, 0) v6 (1, 0, 1)
v3 (0, 1, 0) v7 (0, 1, 1)
v4 (0, 0, 1) v8 (1, 1, 1)

3 The Anscombe Paradox and the Irrationality of a
Metric Rationalization

Because majority voting on issues has a metric rationalization in terms of dis-
tance minimization, it is quite disturbing that the majority outcome need not
be the one that minimizes the distance for the majority of individuals, as the
Anscombe paradox shows. In other words the Anscombe paradox states that a
majority of the voters can be on the loosing side on a majority of issues. Formally,
the Anscombe paradox can be defined in the following way:

Definition 2. A profile p = (p1, .., p|X|) ∈ [0, 1]|X| exhibits the Anscombe para-
dox if ∑

k∈{1,...,|X|}:dH(vk,M v(p))> |J|
2

pk >
1
2

Indeed, it is the particular distribution of individual valuations that leads to
the paradox. To analyse this and further paradoxes in later sections, we will
numerate the vertices of the three-dimensional hypercube as listed in Table 2.

Now, consider the profile p = (2
5 , 0, 0, 0, 1

5 , 1
5 , 1

5 , 0), which specifies exactly an
Anscombe paradox situation. It is easily observed, that x(p) = (2

5 , 2
5 , 2

5 ) and
hence the majority outcome is Mv(p) = (0, 0, 0).

Are we able to specify profiles that lead to an Anscombe type or other paradox-
ical majority outcome? Saari [10] identifies what he calls ”Condorcet portions” as
the driving part of paradoxes of preference aggregation.1 In our three-dimensional
setting for abstract aggregation problems, we can consider such portions as triples
of valuations that have a common neighbor, i.e. a valuation that differs from each
of the three valuations in exactly one issue.2 Given that, we can now easily spec-
ify for every vertex in the hypercube its triple of neighbors. E.g. for v5 the corre-
sponding triple of neigbors is (v2, v3, v8). Table 3 indicates the triples for all eight
vertices, the set of all such triples will be denoted by P .

To analyse the paradoxical outcomes and suggest restrictions to overcome
them, we will use a profile decomposition technique developed by Saari [9]. From
1 A ”Condorcet portion” is a multiple of the set of individuals that has the following

preferences over 3 alternatives a, b, c: a �1 b �1 c, c �2 a �2 b, b �3 c �3 a leading
to the the majority cycle a � b � c � a.

2 Equivalently we could say that they are each of Hamming distance 1 from their joint
neighbor.
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Table 3. Triples of neighbors

valuation triple valuation triple
v1 (v2, v3, v4) v5 (v2, v3, v8)
v2 (v1, v5, v6) v6 (v2, v4, v8)
v3 (v1, v5, v7) v7 (v3, v4, v8)
v4 (v1, v6, v7) v8 (v5, v6, v7)

a majority point of view it is clear that two opposite valuations about an issue
cancel out, i.e. have no impact on the majority outcome. This can, however, be
extended to any number of valuations by decomposing a profile into subprofiles:

Definition 3. For any profile p = (p1, .., p|X|) ∈ [0, 1]|X| with
∑
k

pk = 1 a

subprofile is a vector p = (p
1
, .., p|X|) ∈ [0, 1]|X| such that p

k
≤ pk for all

k ∈ {1, ..., |X |}
It is obvious that the above decomposition argument for two opposite valuations
does hold for any subprofile p of p for which x(p) = (1

2 , 1
2 , 1

2 ). Such a subprofile
does not influence the majority outcome based on p at all.

As an example consider two individuals with the respective valuations v2
and v7. They are exact opposites, so from a majority point of view those two
valuations cancel out. Hence this implies that in any profile p, for all opposite
valuations we can cancel the share of the valuation held by the smaller number
of individuals (and correct for the other shares accordingly) and still have the
majority outcome unchanged.

Lemma 1. Let p and p′ be two profiles such that, for each i ∈ {1, ..., 8},

p′i =
max{pi − p9−i, 0}∑4

k=1 |pk − p9−k|
.

Then xj(p) ≥ 1
2 ⇔ xj(p′) ≥ 1

2 .

Proof. The average support for each of the three issues can be stated as follows:

x1(p) = p2 + p5 + p6 + p8
x2(p) = p3 + p5 + p7 + p8
x3(p) = p4 + p6 + p7 + p8

Now, let xj(p) = a and for some i, |pi − p9−i| = t, and assume w.l.o.g. that
1 > a ≥ 1

2 and 0 < t < a. For a
1 ≥ 1

2 we also get a−t
1−2t ≥ 1

2 . To see this suppose
this is not the case, i.e. a−t

1−2t < 1
2 . It follows that 2a − 2t < 1 − 2t. For a ≥ 1

2
this is false and therefore a−t

1−2t ≥ 1
2 is true. Repeat this for all i ∈ {1, ..., 4}. For

necessity just reverse the above arguments.



20 D. Eckert and C. Klamler

The lemma shows that in a subprofile p′ at most 4 entries can be positive.
As already previously mentioned, we can reduce a profile by any subprofile that
does not change the majority outcome. Consider a subprofile p with positive
shares only for the valuations (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1), namely
p = (1

8 , 0, 0, 0, 1
8 , 1

8 , 1
8 , 0). On each issue there is the same number of individuals

in favor of it and against it, i.e. x(p) = (1
2 , 1

2 , 1
2 ). Hence, the elimination of such

a subprofile does not change the majority outcome of the original profile and
eventually increases the number of zero entries in the profile. The only two sets
of valuations useable for such a reduction are {v1, v5, v6, v7} and {v2, v3, v4, v8}.

Both, the pairwise reduction as well as the reduction using 4 valuations, lead
to a reduced profile, the majority outcome of which is identical to the majority
outcome of the original profile.

Now we can use the above concepts for a result in a three-dimensional frame-
work, namely that the Anscombe paradox manifests itself in a particularly strong
form:

Proposition 3. For |J | = 3 the Anscombe paradox will always show up in its
strong form, i.e. a majority of the voters has a lower Hamming distance to the
valuation which is the exact opposite of the majority outcome than to the majority
outcome itself.

Proof. Assume, w.l.o.g., that we want the majority outcome to be Mv(p) =
(0, 0, 0). As |J | = 3, each voter k among a majority of the voters needs to
have dH(vk,M v(p)) ≥ 2. Starting with Mv(p) = v1 this leads to the following
conditions needed to be satisfied for the Anscombe paradox to occur, where the
first three conditions guarantee the majority outcome to be v1 and the fourth
condition ensures that a majority of voters is of a Hamming distance of at least
2 from the majority outcome:

1. x1(p) = p2 + p5 + p6 + p8 < 1
2

2. x2(p) = p3 + p5 + p7 + p8 < 1
2

3. x3(p) = p4 + p6 + p7 + p8 < 1
2

4. p5 + p6 + p7 + p8 > 1
2

Based on our previous decomposition argument (especially Lemma 1), no identi-
cal change in p8 and p1 would change the truth of any of the above inequalities.
But this is also true for any other pair of opposite valuations. Hence we can
directly look at the reduced profile p′ with at most 4 entries. For Mvj(p′) = 0
it is not possible that more than half of the shares are located on one plane
of the cube, i.e. p′8 + p′r + p′s < 1

2 for all r, s ∈ {5, 6, 7}. But this implies that
p′r > 0 for all r ∈ {5, 6, 7} and hence p′1 > 0 (and therefore p′8 = 0 to enable
Mv(p′) = v1). Now for any k ∈ {5, 6, 7}, vk is not closer to a majority of the
voters’ valuation than to Mv(p), as pk < 1

2 , and this would be the only voters
with smaller distance. For any k ∈ {2, 3, 4}, vk is not closer to a majority of the
voters’ valuation than to Mv(p), as p′r + p′s < 1

2 for all r, s ∈ {5, 6, 7} and only
two valuations out of {v5, v6, v7} are closer to vk than to Mv(p).
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Fig. 2. Representation polytope

4 Judgment Aggregation and the Logical Inconsistency
of the Majority Outcome

In judgment aggregation, the issues in the agenda are logically interconnected
propositions and thus not all valuations are admissible, i.e. logically consistent.
Given the binary structure of the problem, we see that the tools of the geometric
approach can be used to analyse paradoxes of judgment aggregation.3 The dis-
cursive dilemma with the agenda {p, q, p∧q} and the associated set of admissible
valuations X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)} can again be analysed in our
three-dimensional hypercube, in which the four admissible vertices determine
the representation polytope as seen in Figure 2.

Given the set of admissible valuations X , consider the profile p = (0, 1
3 , 1

3 , 0, 0,
0, 0, 1

3 ), i.e. no voter has valuation (0, 0, 0), one third of the voters has valuation
(1, 0, 0), and so on. As this maps into the point x(p) = (2

3 , 2
3 , 1

3 ) - a point whose
closest vertex is (1, 1, 0) - the representation polytope obviously passes through
the majority subcube of an inadmissible valuation, i.e. the set of admissible
valuations X is not closed under majority voting. In this case X is called majority
inconsistent.

That this type of paradox can easily occur with majority voting is seen from
the following lemma:

Lemma 2. Given any vertex v ∈ {0, 1}|J|, there exist 3 vertices va, vb, vc with
respective shares pa, pb, pc such that for some profile p with pk = 0 for all k /∈
{a, b, c}, x(p) lies in the v-subcube.

3 See e.g. Saari [10] for a very brief discussion of the link of his geometric approach to
judgment aggregation.
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For |J | = 3, these 3 vertices necessarily need to have v as their common neighbor.
Given that, we can now provide a simple result for the majority inconsistency
of a set of valuations X , i.e. a necessary condition for X not to be closed under
majority voting.

Proposition 4. For |J | = 3, the set of admissible valuations X is majority
inconsistent only if for some triple of vertices in the domain with a common
neighbor, this common neighbor is not contained in the domain.

In our 3-dimensional setting, we can easily specify all possible triples that could
lead to inadmissible majority outcomes. The reduced profile does have an inter-
esting feature in exactly those situations when inadmissible majority outcomes
could occur:

Proposition 5. For |J | = 3, if for some vi ∈ {0, 1}3 with pi ≤ p9−i, each valu-
ation in the triple of neigbors has a larger share in p than its opposite valuation,
then the reduced profile p̄ has at most 3 positive entries.

Proof. Let p = (p1, p2, ..., p8) s.t.
∑

k pk = 1. From Lemma 1 we know that

p′i =
max{pi − p9−i, 0}∑4

k=1 |pk − p9−k|
.

Now in p′ there are at most 4 positive entries. Given that it is not possible
that

[
p′i > 0 ∧ p′9−i > 0

]
for any i = 1, ..., 8, and that for some vk each valuation

in the triple of neigbors has a larger share than its opposite valuation, this
only leaves two possibilities, namely that we have positive shares at most either
for all of (p1, p5, p6, p7) or for all of (p2, p3, p4, p8). However, in both cases - as
was discussed before - further reductions are possible by looking for particular
subprofiles. Let - for the above two combinations - A = {i : p′i > 0} be all
valuations for which there is a positive share. Then we can reduce the profile
further to profile p̄ such that

p̄i =
maxj∈A/{i}{p′i − p′j, 0}∑

i∈A p′i −minj∈Ap′j
.

Obviously p̄ has at most 3 positive entries.

Example 1. Let us consider the following set of admissible valuations X =
{v1, v2, v3, v8}, i.e. any profile p = (p1, p2, p3, 0, 0, 0, 0, p8), where pk ≥ 0 for
all k = 1, 2, 3, 8 and

∑
k pk = 1. As v1 = (0, 0, 0) and v8 = (1, 1, 1) are exact

opposites, the reduced profile will have a share of 0 for the valuation held by
the smaller number of individuals. In the case of p1 > p4 such a reduced profile
will be p̄ = ( p1−p4

p1+p2+p3−p4
, p2

p1+p2+p3−p4
, p3

p1+p2+p3−p4
, 0, 0, 0, 0, 0), in the case of

p1 ≤ p4 we can create the reduced profile accordingly. Hence the reduced profile
maps into one of the following two planes shown in Figure 3, namely either into
the one determined by the vertices v1, v2 and v3 or the one determined by the
vertices v2, v3 and v8.
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Fig. 3. Planes

Fig. 4. Plane T

Problems may arise if the reduced profile has positive shares only for 3 val-
uations that constitute a triple in P . For the above example this would be the
triple (v2, v3, v8) on the right side of Figure 3. Now, in Figure 4 the intersection
of this plane with the (1, 1, 0) majority subcube is indicated by the shaded trian-
gle. Only if the reduced profile maps into this triangle do inadmissible majority
outcomes arise.

Now, for the 3-dimensional framework we can state the following result:

Proposition 6. A set of admissible valuations X ⊆ {0, 1}3 is majority incon-
sistent if and only if for some reduced profile p̄ the following conditions are met:

1. p̄ has 3 positive entries
2. the 3 valuations with positive shares form a triple (va, vb, vc) ∈ P whose joint

neighbor is not in X
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3. the following condition holds for all vk ∈ {va, vb, vc} with corresponding
shares p̄k ∈ {p̄a, p̄b, p̄c}:

p̄k

p̄a + p̄b + p̄c
≤ 1

2

Proof. The sufficiency part is obvious from Figure 4. For necessity, it is clear
that with less than 3 positive entries in p̄ no inadmissible outcome can occur.
Moreover, any triple not in P is closed under majority rule. In the case of 4
positive entries in p̄ problems only arise in case a triple in P has a positive share
where the joint neigbor is not contained in X . But then the fourth positive entry
must be one such that the resulting profile can still be further reduced and hence
this contradicts the assumption that p̄ was the reduced profile already. Now, the
only further option is a triple in P with a joint neigbor not in X . In this situation
inconsistency occurs exactly in the cut with the respective majority subcube (see
Figure 4) whose points are specified by the condition above.

One interesting feature of this result is that the complementary set of profiles
actually determines the domain that is closed under majority rule. As those
restrictions are based on the space of profiles, this approach is more general
than restrictions on the space of valuations which is usually used in the classical
literature on domain restrictions. E.g. List [4] introduces the unidimensional
alignment domain which has a certain resemblence to Black’s single peakedness
condition in social choice theory. It requires individuals to be ordered from left to
right such that on each proposition there occurs only one switch from believing
it to not believing it (or vice versa). For |J | = 3 a unidimensional alignment
domain would not satisfy one of the above conditions for inadmissible majority
outcomes.4

5 Conclusion

In this paper we have shown how geometry can be used to analyse paradoxes
occuring under majoritarian aggregation and (impossibility) results in judgment
aggregation, such as inadmissible majority outcomes and distance based aggre-
gation rules. In addition we gave generalized domain conditions characterizing
these paradoxes and determined the likelihood of such inadmissible majority
outcomes.

Most of the stated results do not easily extend to more than three issues
because of problems of dimensionality. E.g. an agenda with three propositions
and their conjunction, like {p, q, r, p∧q∧r}, leads to eight admissible valuations,
i.e. eight vertices out of the 16 vertices in the four-dimensional hypercube. The
extensions of our (domain) restrictions and calculations of the likelihood of the
occurrence of paradoxes to those higher dimensions are not obvious and need
further work.
4 For a more elaborated discussion on majority voting on restricted domains see also

Dietrich and List [2].
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Abstract. In sports competitions, teams can manipulate the result by,
for instance, throwing games. We show that we can decide how to ma-
nipulate round robin and cup competitions, two of the most popular
types of sporting competitions in polynomial time. In addition, we show
that finding the minimal number of games that need to be thrown to
manipulate the result can also be determined in polynomial time. Fi-
nally, we show that there are several different variations of standard cup
competitions where manipulation remains polynomial.

1 Introduction

The Gibbard-Satterthwaite theorem proves that, under some modest assump-
tions, voting systems are always manipulable. One possible escape proposed by
Bartholdi, Tovey and Trick is that the manipulation may be computationally
too difficult to find [2] (but see [13] for discussion about whether manipulation
is hard not just in the worst case). Like elections, sporting competitions can also
be manipulated. For example a coalition of teams might throw games strategi-
cally to ensure that a desired team wins or a certain team loses. We consider
here the computational complexity of computing such manipulations. We show
that, for several common types of competitions, determining when a coalition
can manipulate the result is polynomial. Our results adapt manipulation proce-
dures for elections where voters can misrepresent their preferences. We consider
two of the most common methods used for deciding sporting competitions, cups
and round robins. These correspond to elections run using sequential majority
voting (also known as the cup rule) and Copeland scoring, respectively.

Manipulating a sporting competition is slightly different to manipulating an
election as, in a sporting competition, the voters are also the candidates. A
tournament graph describes the outcome of all fair games between opponents.
Manipulating a competition therefore modifies not votes but the tournament
graph directly. Since it is hard without bribery or similar mechanisms for a team
� This work is funded by an NSERC Postgraduate Scholarship1, the Department of
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to play better than it can, we consider manipulations where teams in the coali-
tion are only able to throw games. By comparison, in an election, voters in the
manipulating coalition can mis-report their preferences in any way they choose.
Tang, Shoham and Lin [11] addressed this type of tournament manipulation
in team competitions by providing conditions for truthful reporting of player
strengths. Their method tries to encourage teams to rank their players honestly
so that, when the teams compete in bouts, the best player on one team plays
the best on the other, the second best plays the opposing second and so forth.
An example of this type of competition is Davis Cup Tennis.

Conitzer, Sandholm and Lang [3] give an algorithm to determine if a coalition
can manipulate the cup rule. We modify this algorithm to manipulate directly
the tournament graph instead of the votes. Bartholdi, Tovey and Trick [2] discuss
direct manipulations of the tournament under second order Copeland, a round
robin like rule with secondary tie breaking. Using the work of Kern and Paulusma
[7], we show that the manipulation of round robin competitions is directly tied
to the problem of winner determination in sports problems.

Altman, Procaccia and Tenneholtz [1] construct a social choice rule that is
monotonic, pairwise non-manipulable and non-imposing. Round robin and cup
competitions are monotonic as a single team losing a game does no better. Pair-
wise non-manipulability means that no two teams are better off by manipulating
the tournament. Our results show that round robin and cup competitions are
pairwise manipulable and that manipulations can be calculated in polynomial
time.

We modify our algorithms to calculate the smallest number of manipulations
needed. For cup competitions, we add dynamic programming to Conitzer, Sand-
holm and Lang’s algorithm. For round robin competitions, we modify the flow
network used to solve winner determination to include weights on manipulations
and calculate a minimum cost feasible flow. Vu, Altman and Shoham [12] used
a similar method to calculate the probability that a team wins the competi-
tion. Vu et al. [12] provide several results on determining probabilities of teams
winning given a seeding of the tournament. Hazon et al. [6] showed that it is
NP-Complete to determine if a team wins a cup with a given probability. This
is similar to determining a possible winner given random reseeding except edges
in the tournament are labelled with probabilities. We look at the complexity of
manipulation under reseeding in the deterministic case. Finally, we look at the
complexity of double elimination cups.

2 Background

In many sporting competitions, the final winner of a competition is decided by a
tree-like structure, called a cup. The most common type is a single elimination
cup, a tree structure where the root and internal nodes represent games and
leaves represent the teams in the tournament. A cup can include a bye game, a
game where a team skips a game to re-balance the schedule. Usually, the top
teams are given a bye game while the lower teams do not so that the number
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of teams in the next round is strict power of two. Cups need to be seeded to
determine which teams play against each other in each round. One method for
seeding is by rank. The most common method for ranked seeding or reseeding is
to have the top team play the worst team, the second place team play the second
worst team and so forth. An example of ranked seeding using this method is the
National Basketball Association in the US. Another method for determining
seeding is randomly, also known as a draw. An example of this is the UEFA
Champions League where teams reaching the quarter finals are randomly paired
for the remainder of the tournament. Seeding may also be more complex (for
instance, it may be based on the group from which teams qualify or some other
criteria). Another way that cups are modified is between fixed and unfixed cups.
A fixed cup is a cup where there is a single seeding at the start of the cup.
Examples of this are the National Basketball Association and the World Cup
of Football. An unfixed cup is one where seeding may occur not only before the
start but between any round. Examples with an unfixed cup are the National
Hockey League and the UEFA Champions League.

Cups are not necessarily single elimination. A double elimination cup is de-
signed so that a team can lose two games instead of one game. If a team loses,
they play other teams that have also lost until they lose a second time or they
win the final game of the tournament. These tournaments are organized as two
cups where losers enter the second cup at various stages depending on when they
lose their first game.

Finally, a round robin competition is a competition where each team plays
every other team a given number of times. In a single round robin competition,
each team plays every other team exactly once. Another common variant of this
is for teams to play a double round robin competition where each team plays
every other team twice, often at home and away.

3 Manipulating the Tournament

A tournament is a directed graph G = (V, E) where the underlying undirected
graph is a complete graph. We assume that the tournament is available for the
remainder of the paper. Every directed edge (vi, vj) ∈ E represents a victory
by vi over vj . The number of the teams in the competition is |V | = m. We
define a manipulation of the tournament as any replacement of an edge (vi, vj)
in the graph with the edge (vj , vi). This is equivalent to a manipulation of votes
but here we are changing the winner directly instead of just changing the vote.
Note that, as in election manipulation where the electoral vote is assumed to be
known, we assume that we know, via an oracle, the relative strengths of teams
and can represent the winner of the contests in the tournament graph. We restrict
manipulations by only allowing the manipulation of an edge (vi, vj) if candidate
vi is a member of the coalition. This restricts the behaviour of the manipulators
to throwing games where they could have won. This restriction is due to the fact
that it is simple to perform worse but more difficult to play better. We consider
two different types of manipulations. A constructive manipulation is one that
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ensures a specific team wins the competition. A destructive manipulation is one
that ensures a specific team loses the competition. For round robin competitions,
we generalize the concept of the tournament beyond the simple win-loss scoring
model to a complete graph where the edge (vi, vj) has a non-negative weight wij

which represents the number of points that would be earned by vi when playing
vj in a fair game. We define a manipulation in this case as an outcome where
the points earned in the match are different to those given by the tournament.
However, manipulations are restricted so that the manipulator achieves no more
points and the team being manipulated achieves no less points.

In this section, we restrict ourselves to fixed cups with a known seeding. We
also look just at single round robin tournaments though the results generalize
to multi-round robin tournaments.

3.1 Cup Competitions

For cup competitions, finding a constructive or destructive manipulation of the
tournament is polynomial. Our results make use of results in [3] which shows
that a manipulation of an election using the cup rule can be found in O(m3n)
time where m is the number of candidates and n is the number of voters.

Theorem 1. Determining if a cup competition can be constructively manipu-
lated using manipulations of the tournament takes polynomial time.

Proof. This proof is a bottom up version the proof of Theorem 2 from Conitzer,
Sandholm and Lang (CSL)[3] but substitutes tournament manipulations for vot-
ing manipulations. The basic CSL algorithm is a recursive method that treats
each node in the tree (which is not a leaf) as a sub-election (see Algorithm CSL).
Conitzer et al. [3] note that a team wins a sub-election if and only if they must
win one of its children and they can defeat one of the potential winners on the
other side. It is perhaps simpler to understand this algorithm from a bottom up
perspective. Observe that if we have two leaf nodes vi and vj and there exists an
arc in the tournament (vi, vj) then vi wins the match and is a potential winner
of the sub election between vi and vj . Now suppose that vi is in the member
of the coalition so it is possible for them to replace (vi, vj) with (vj , vi) in the
tournament and therefore vj is also a potential winner of the sub-election via
manipulation. Assume we have some sub-election in the middle of the tourna-
ment with two sets of potential winners A and B. Any team from A is a potential
winner of the sub-election if there exists a team in B that they can defeat or if a
coalition member in B throws a game. The same is true for teams in B. There-
fore, there is a constructive manipulation if the desired winner is a member of
the potential winners at the top node in the cup tree.

The original algorithm looked at O(m2) pairs of opponents as no two teams
were compared more than once. Note that the original analysis provided a looser
O(m3) bound on the number of comparisons, but this can be tightened by an
observation of Vu et al. [12]. The difference between direct manipulation of the
tournament and the method by Conitzer, Sandholm and Lang is that deter-
mining if a team could defeat another team meant summing all values of the n
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Algorithm:CSL(vw,c,T ,C)

input : A team vw, a cup tree c, a tournament graph T , and a coalition of
teams C

output: Returns true if vw can win via manipulation and false otherwise

winners ← PossibleWinners(c,T ,C);
if vw ∈ winners then

return true;
else

return false;

Procedure:PossibleWinners(c,T ,C)

input : A cup tree c, a tournament graph T and a coalition of teams C
output: Returns the set of possible winners of the cup tree via manipulation of

the tournament by the coalition

if leaf(c) then
return {c};

else
winners ← {};
LeftWinners ← PossibleWinners(left(c) ,T ,C);
RightWinners ← PossibleWinners(right(c) ,T ,C);
forall vi ∈ LeftWinners do

if ∃vj ∈ RightWinners such that (vi, vj) ∈ E ∨ vj ∈ C then
add(winners,vi);

forall vj ∈ RightWinners do
if ∃vi ∈ LeftWinners such that (vj , vi) ∈ E ∨ vi ∈ C then

add(winners,vj);

return winners;

voters requiring O(n) time whilst in the direct manipulation of the tournament
this can be done in constant time. Therefore, constructive manipulation of the
tournament under the cup rule takes just O(m2) time. ��

We observe that destructive manipulation of a competition using tournament
manipulations is similar since this simply requires determining if there is at
least one other possible winner of the tournament via manipulations.

Theorem 2. Determining if a cup tournament can be destructively manipulated
using tournament manipulations takes polynomial time.

Proof. We just determine if we can constructively manipulate the tournament
for each other team in turn than the one we wish to lose. ��

3.2 Round Robin Competition

For round robin competitions, manipulations of the tournament can be com-
puted in polynomial time for a restricted class of scoring models. We define a
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scoring model to be the set of tuples giving the possible outcomes of a game.
Copeland scoring has a simple win-loss ({(0, 1), (1, 0)}) scoring model where
the wining team earns one point and the losing team earns none. Bartholdi,
Tovey and Trick[2] showed that constructive manipulation can be determined in
polynomial time for a chess scoring model ({(0, 1), (1

2 , 1
2 ), (1, 0)}). Faliszewski et

al. [4] showed that for a range of scoring models manipulating Copeland voting
is NP-Complete.

First, we discuss the problem of determining which games need to be manip-
ulated to ensure that a given team vw wins the competition. Clearly, there are
some games that cannot be affected by the coalition and are fixed. All other
games are manipulable. Games between coalition members can earn any of the
possible scores allowed by the scoring model. We restrict games against non-
coalition members by only allowing the manipulator to earn less points and the
non-member earns more. Determining if a given team can be made a winner is
analogous to determining if a team wins a round robin tournament when the
fixed games have been played and the manipulable games have not been played.
The restriction of the outcomes on games between coalition and non-coalition
members requires that the games have outcomes within only a subset of the
scoring model. Using this observation, we obtain the following theorem.

Theorem 3. Determining if there exists a constructive manipulation of a round
robin competition is polynomial if the normalized scoring model is of the form
S = {(i, n− i) | 0 ≤ i ≤ n} and NP-complete, otherwise.

Proof. This proof uses the equivalence of determining whether a team can win a
tournament and determining if a constructive manipulation exists with a set of
fixed and manipulable games. Note that a game between a non-coalition member
vi and a coalition member vj is unfixed but the scores that can be assigned are
restricted. When the scoring model is of the form S = {(i, n − i) | 0 ≤ i ≤ n}
and the initial result of the game is (ci, cj), then the remaining valid scores that
can be assigned are those from (ci, cj) to (n, 0). By normalizing this new model,
we obtain one in which the non-coalition member earns ci points by default and
the result of the game is scored from the model {(0, cj), . . . , (n − ci, 0)} which
is of the form S = {(i, n − i) | 0 ≤ i ≤ n}. Kern and Paulusma [7] showed
that determining if a team can win a tournament (i.e. is not eliminated from
competition) takes polynomial time if the normalized scoring model is of the
form S = {(i, n− i) | 0 ≤ i ≤ n} and is NP-complete otherwise. ��
By comparison, it is always polynomial to determine if a destructive manipula-
tion exists.

Theorem 4. Determining if there is a destructive manipulation of a round robin
competition takes polynomial time.

Proof. Assume that vl is the team that the coalition desires to lose. It is suffi-
cient to check whether the maximum points of another team via manipulation
is greater than the points of vl. If vl is a member of the coalition and therefore
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a manipulator, for each team i that we check for points, we apply only manip-
ulations that increase the relative points between i and vl. For all other teams,
we apply the manipulation which decreases the points of vl the most. If vl is not
a member of the coalition, no games involving vl may be manipulated since we
restrict manipulations to allow only those manipulations that increase the points
of vl and increase the relative gap between vl and the manipulator. Therefore,
no other team is better off when games involving vl are manipulated. In both
cases, we apply the manipulation that increase the points of the team under
consideration against all other teams. If the total number of points of any other
team is greater than the points of vl under these manipulations, then there is a
destructive manipulation of vl. This algorithm can be run in O(n2) time. ��
A further complication is when the goal of manipulation is just to earn a berth
in the next round of the playoffs. It is NP-hard to decide these questions under
most playoff systems for all scoring models [9,5].

4 Minimizing Manipulations

The number of manipulations required is an important factor. It may be ad-
vantageous for the coalition to manipulate as few games as possible to avoid
detection or to minimize the cost of bribing players. We show that there is a
polynomial algorithm to calculate manipulations which throw a minimal num-
ber of games. This highlights the vulnerability of the two most common types
of competitions in sports to manipulation.

4.1 Minimal Number of Manipulations for Cup Competitions

Computing the minimal number of manipulations simply requires keeping a
count within our algorithm for computing a manipulation. We give some nota-
tion to identify a specific sub-election in the cup. We let svi

� be the sub-election
at level � where vi is a leaf node of a sub tree below svi

� . We denote the level
as the height from the bottom of the cup tree, which is assumed to be a perfect
binary tree. We also define level 0 to be the level belonging to the leaves. We
have m2 constants cij that are 1 if (vj , vi) ∈M and 0 otherwise, where M ⊆ E is
the set of edges which can be manipulated by the coalition. This corresponds to
cij = 1 when a manipulation must occur for vi to win and 0 otherwise. Finally,
we define the minimal number of manipulations needed to win a sub-election
svi

� , m(vi, s
vi

� ), to be sum of the minimal number of the manipulations for vi to
win one of the children of svi

� , and the minimum number of manipulations plus
cij over all possible winners of the other child which vi can defeat. We denote
the set of teams that vi can defeat either as described in the tournament or by
manipulation as Di. More formally, the minimal number of manipulations for vi

at svi

� (� ≥ 0) is given by:

m(vi, s
vi

� ) =
{

0 if � = 0
m(vi, s

vi

�−1) + minvj∈Di(m(vj , s
vj

�−1) + cij) if � > 0 .
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Lemma 1. The minimal number of manipulations needed to make a team vi a
winner at level n in the tree is equal to m(vi, s

vi
n ).

Proof. By induction. First, observe that the minimal number of manipulations
at a leaf is 0. Hence, m(vi, s

vi
0 ) = 0 for all leaves vi. Next note that at level

1 there are only 2 nodes in the possible winner sets of the leaves. Therefore
if vi can defeat vj , m(vi, s

vi
1 ) = m(vi, s

vi
0 ) + m(vj , s

vj

0 ) + cij = cij which is
the exact number of manipulations that have occurred to make vi a possible
winner so far. We assume the premise for 1 < n ≤ k. Now, m(vi, s

vi

k+1) =
m(vi, s

vi

k ) + minvj∈Di(m(vj , s
vj

k ) + cij). We know that m(vi, s
vi

k ) is the minimal
number of manipulations for vi up to level k by the assumption and, for every
vj ∈ Di, we know that m(vj , s

vj

k ) is also the minimal number of manipulations
for each vj up to level k. By definition, cij is the number of manipulations for vi

to defeat vj . Since vi can defeat any vj in Di, the one with the fewest previous
manipulations to reach k plus cij leads to the fewest manipulations in total to
make vi win the sub election svi

k+1. This equals the minimum over the set Di.
Therefore the lemma holds for k+1 and, by induction, all n levels of the tree. ��
Theorem 5. A modified CSL algorithm, where the team which minimizes the
value of m(vi, s

vi
n ) is selected to lose to team vi at every node svi

n , calculates
the minimal number of manipulations needed to constructively or destructively
manipulate a cup competition in polynomial time.

Proof. By Lemma 1, the value of m(vw, svw
n ) at the root node is the minimal

number of manipulations which ensures vw is the winner. Hence, we just need to
show that the algorithm remains polynomial. The modified CSL algorithm still
makes O(m2) comparisons. The only difference is that we have to calculate the
minimum which can be done by storing the minimum as each team is checked.
Therefore, the time complexity remains O(m2) and calculating the minimum
is polynomial. Constructive manipulation requires calculating m(vw, svw

n ) whilst
destructive manipulation requires the minimum over all other teams. ��

4.2 Minimal Number of Manipulations for Round Robin
Competitions

We consider here just Copeland scoring. We conjecture that similar methods
could be developed for other scoring schemes.

Definition 1. Given a tournament T = (V, E) where V = {v1, . . . , vn}, a
set of manipulable edges M ⊆ E,and a distinguished node vw, the Mini-
mal Number of Manipulations under Copeland Scoring is the problem of de-
termining the minimal number of edges in M that can be reversed such that
∀vk∈V,vw �=vk

outDegree(vw) ≥ outDegree(vk).

Note that Copeland Scoring is the simple win-loss method of scoring where the
winning team earns 1 point and the losing team earns 0 points. Before we show
how to calculate the minimal number of manipulations, we show that we can
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determine the out degree, i.e. the Copeland Score, of the distinguished node
using a minimal number of manipulations in isolation with a greedy algorithm.
The intuition behind this is that we select manipulations to increase the out
degree of vw.

Lemma 2. The value of outDegree(vw) can be determined in isolation by
greedily using, in sequence, a minimal number of manipulations of edges
(vi, vw) ∈ M where ∀(vj ,vw)∈M,vj �=vi

outDegree(vi) ≥ outDegree(vj) until
∀vk∈V,vw �=vk

outDegree(vw) ≥ outDegree(vk).

Proof. First, we prove that it always uses the least number of manipulations to
increase the out degree of vw. To reduce the out degree of two or more nodes
that have an out degree larger than vw, it takes at least two manipulations
but to increase the out degree of vw by the same amount takes just one. For a
single node, it is preferred to use the manipulation involving vw since the other
node may increase the out degree of another node requiring more manipulations.
Therefore, using manipulations involving vw is most efficient.

Now we show that we never overshoot the stopping criteria and use more
than a minimal number of manipulations. Assume that we use more than the
minimal number of manipulations. This means that we selected an edge that
did not decrease the maximum out degree when there existed an edge that
would have decreased the maximum out degree of all nodes that we did not
select. However, since we always selected the edge where the source node had
the maximal out degree within M , we always decreased the maximum out degree
whenever possible. This is a contradiction and the greedy algorithm only uses a
minimal number of manipulations when reaching the stopping condition. ��
Theorem 6. Determining the minimal number of tournament manipulations
required under Copeland Scoring takes polynomial time.

Proof. We define c to be the out degree of the distinguished node, vw, calculated
using the greedy algorithm. This corresponds to the number of wins earned by
vw. If the stopping condition has not been reached, we must use c to determine
how many more manipulations are necessary. We construct a winner determi-
nation flow graph as described by Kern and Paulusma [7] and Gusfield and
Martel[5](See Fig. 1, for example). We add a weight of 1 to each edge (vi, vj)
where (vi, vj) /∈ V and therefore represents a manipulation. All other edges have
the weight 0. The feasible flow which uses the fewest of the non-zero edges is
the minimal number of tournament manipulations to achieve a constructive ma-
nipulation. Since the value of c can be determined in a linear number of steps,
we only need to do a single min cost flow computation, which is polynomial, to
determine the remainder of the minimum number of manipulations necessary to
make vw the team with the highest Copeland score. ��
Example 1. An example tournament can be seen in Fig. 1a. There are 5 teams
in this tournament: v0 to v4. Suppose teams v0 and v3 form a coalition to ma-
nipulate the tournament so that v0 wins. We want to determine the minimum
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Fig. 1. (a) The tournament graph for five teams. The distinguished node in the example
is v0 which has formed a coalition with v3. The manipulable edges are (v3, v1), (v3, v2),
(v3, v4), (v0, v1) and (v0, v3). Edges (v1, v2) (v2, v4) and (v4, v1) cannot be manipulated
by the coalition. (b) The min cost flow graph used to calculate the minimum number
of manipulations for a given value constructed from the tournament in Fig. 1a. The
distinguished team is v0, c = 2 and all weights not shown are 0.

number of manipulations needed to ensure that v0 is the winner. This requires
switching any of the arcs where team v3 wins. We know that the value of c = 2
since none of v0’s edges are manipulable in v0’s favour. We construct the graph
seen in Fig. 1b to determine for c = 2 if there is a feasible solution. The solution
returned has a minimum cost which is equal to the minimum number of ma-
nipulations needed to get a feasible flow with the value c plus any used in the
greedy algorithm.

5 Reseeding

If we add multiple seeding rounds then computing a manipulation appears diffi-
cult. Recall that ranked reseeding matches the best remaining teams against the
worst remaining teams in each round. The CSL algorithm cannot therefore be
applied and a general solution is not known. However, if the size of the coalition
is a constant c, then we can determine a manipulation in polynomial time.

Theorem 7. For a ranked reseeding cup competition, if the manipulating coali-
tion is of bounded size c, then determining a set of manipulations that makes a
team win takes polynomial time.

Proof. The key observation is that with a constant sized coalition there are
only a polynomial number of ways to manipulate the games by rearranging
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the tournament graph. It suffices to check the winner of each of the polynomial
number of fixed tournament graphs. For each fixed tournament graph, the winner
can be determined in linear time as there are only O(m) matches to check.

We show that there are only a polynomial number of different arrangements
of manipulations. First note that at most c of the m

2 matches in the first round
have more than one team as a possible winner. This means that there is at most
2c possibilities to examine after each round. As there are log(m) rounds, we
consider at most (2c)log m (=mc) possibilities. Hence there are at most O(mc)
arrangements of manipulations for an unfixed cup with ranked reseeding and a
constant sized coalition. It is sufficient to check each arrangement, which can be
done in linear time. This gives a polynomial algorithm for bounded c. ��
With random reseeding the problem can be separated into two issues: deter-
mining whether manipulation is possible to make a team a winner under every
possible seeding and determining if there exists any seeding such that the coali-
tion can manipulate the games to make a given team the winner. It is unknown
whether either of these problems have polynomial algorithms. Vu et al. [12] and
Hazon et al. [6] tackle some probabilistic variants of possible winners without
manipulation of games. However, the complexity of determining possible winners
with a win-loss tournament graph in balanced cup trees remains open [8,6,10].

6 Double Elimination Competitions

In a double elimination competitions, a manipulation of the tournament does
not automatically bounce the manipulator out of the tournament as in the sin-
gle elimination case. However, it does guarantee that the manipulator will be
bounced to the secondary bracket from the primary bracket on the first manip-
ulation and out of the tournament on the second manipulation. As in the case
of ranked reseeding, a general solution is not known but there is a polynomial
algorithm for double elimination tournaments if the coalition is of constant size.

Theorem 8. For double elimination tournaments, if the coalition is of a con-
stant size c, determining whether there is a constructive manipulation takes poly-
nomial time.

Proof. This proof follows similar lines as the proof for ranked reseeding. We will
show that there is a polynomial number of manipulation scenarios which can be
checked in linear time. If there is a coalition of size c then a team can manipulate
the cup only once if they wish to win the tournament and twice if they desire
another team to win. At each step in the tree, a team must decided whether
they wish to manipulate or not. Before and after they have manipulated once,
there remains c teams which can manipulate. Only after they have manipulated
a second time are they removed from the competition. This means there are
at most 2c manipulations at each of the logm levels. This gives us O(2log mc)(=
O(mc)) possibilities that can be checked in linear time, which gives a polynomial
algorithm for determining if there is a constructive manipulation. ��
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7 Conclusions and Open Problems

In sporting tournaments, teams can directly manipulate the tournament graph.
We showed that algorithms used to compute manipulations of votes in elec-
tions can be modified to determine the manipulations needed of the tournament
graph. We proved that such direct manipulation of the fixed cup and round robin
competitions can be computed in polynomial time. In a similar way, we can de-
termine the minimal number of manipulations needed. For ranked reseeding of
cup competitions, we showed that it is easy to calculate the number of manip-
ulations if the size of the manipulating coalition is bounded by a constant. We
also gave a polynomial time algorithm for double elimination tournaments for a
constant sized coalition. A number of open question remain. The manipulation
of various variations of the cup competition have unknown complexity includ-
ing the ranked and random cup competitions. For random cup competitions,
the complexity of manipulation is also unknown if the size of the coalition is
bounded. Similarly, the complexity of manipulating double elimination compe-
titions is still undetermined when the size of the coalition is unbounded.
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Abstract. We study a model in which a group of agents make a se-
quence of collective decisions on whether to remain in the current state
of the system or switch to an alternative state, as proposed by one of
them. Examples for instantiations of this model include the step-wise
refinement of a bill of law by means of amendments to be voted on, as
well as resource allocation problems, where agents successively alter the
current allocation by means of a sequence of deals. We specifically focus
on cases where the majority rule is used to make each of the collective
decisions, as well as variations of the majority rule where different quo-
tas need to be met to get a proposal accepted. In addition, we allow
for cases in which the same proposal may be made more than once. As
this can lead to infinite sequences, we investigate the effects of introduc-
ing a deadline bounding the number of proposals that can be made. We
use both analytical and experimental means to characterise situations in
which we can expect to see a convergence effect, in the sense that the
expected payoff of each agent will become independent from the initial
state of the system, as long as the deadline is chosen large enough.

1 Introduction

We consider the very general problem where a finite set of agents must choose
one alternative among many, and we are interested in decentralised solutions.
The alternatives may represent different policies, world states, or allocations of
resources, etc. One simple idea is to start with an initial current alternative, let a
random agent propose a different alternative, and organize a vote between these
two alternatives. The process iterates using the winner of the election as current
alternative. Unfortunately, with no restriction on the agents’ preferences, this
simple process may iterate forever. In this paper, we investigate the possibility
of using a bound on the number of iterations. In particular, we investigate the
problem of determining whether the choice of the bound can guarantee that no
agent benefits unduly from the choice of the initial alternative.

An example from political science that fits our generic model is the step-wise
refinement of a bill of law by means of amendments to be voted on (although
in this case, repeating the same proposal twice may not be allowed). Another
example concerns multiagent resource allocation problems: some work in mul-
tiagent systems has focussed on negotiation scenarios where agents approach a
solution in small steps rather than computing the best solution in one go [1,2].
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In this case, every possible allocation of resources constitutes an alternative and
proposing a new alternative means proposing a deal regarding the reallocation
of some items. Here, the voting rule used would typically require each agent
affected by the proposal to give their consent. Finally, recent work in computa-
tional social choice has shown that decomposing combinatorial voting problems
into a sequence of smaller elections has a number of advantages [3].

In general, there are many possible choices of a voting rule. In this paper,
we focus on the majority rule, which specifies that a proposal is accepted if at
least half of the concerned agents (those that are not indifferent) vote in favour.
This is clearly a very natural choice, and it is the only rule that is anonymous,
neutral, and monotone (May’s Theorem [4]). We also consider generalisations of
the majority rule, where a quota different from 50% may be needed to accept a
proposal. For example, for some important elections, a higher proportion of votes
in favour of an alternative is needed, e.g., a two-thirds majority in parliament
is needed to change the constitution. As we allow agents to make the same
proposal over and over, there is the possibility for cycles. This phenomenon is
linked to the fact that the preference relation we obtain when several individual
preferences are aggregated by means of the majority rule need not be transitive.
In social choice theory, one approach to address this problem has been to restrict
the range of allowed preferences, e.g., to single-peaked preferences or preferences
meeting Sen’s triple-wise value restriction [5]. When we have no control over
the agents’ preferences, we need to modify the protocol to induce the agents to
choose a good social alternative. A simple solution to the problem of cycles is to
introduce a deadline that limits the number of iterations.

We assume that the agents’ preferences are common knowledge and that
agents are strategic: they will make proposals and vote in elections so as to
maximise their expected payoff. What would be a good choice of deadline under
these circumstances? If it is small, the choice of initial state will play an im-
portant role for the final outcome. If it is large, as we shall see, it is sometimes
the case that the expected payoff of an agent becomes independent of the initial
state, which provides some level of fairness. Our aim in this paper is to get a
clearer understanding of such convergence effects.

The remainder of this paper is as follows. Section 2 further motivates and
defines our model. In particular, we detail how strategic agents can compute
their best moves using backward induction. Section 3 formally defines the notion
of convergence as used here and establishes sufficient conditions on a game for
being convergent. Then, Section 4 takes this analysis further by mapping out the
convergence behaviour for a wider class of games by means of an experimental
study. We conclude with a discussion about related work and present future axes
of research.

2 The Model

We study games consisting of a finite set N of n agents and a finite set X of m
alternatives or states. Each agent i ∈ N has a utility function ui : X → R, which
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is assumed to be common knowledge. Each agent is rational, i.e., it maximizes
its expected utility. The utility functions are represented together as an m× n
matrix U0, with U0(x, i) = ui(x). We do not assume that utility is transferable:
the utility of two agents may not be comparable (e.g., agents can use different
currencies). However, we do assume that agents will use their knowledge of the
utility of other agents for predicting their behaviour.

A game proceeds in successive iterations. At each iteration t, there is a cur-
rent alternative x(t) (a given allocation, a current bill). One agent is randomly
selected, with equal probability, to propose a new alternative x� to be considered
(e.g., a new allocation, an amendment to the current bill). An agent may pro-
pose an alternative that was already proposed in the past; and it may propose
to maintain the status quo by proposing x� = x(t). The agents vote between x�

and x(t). If the proposed alternative wins the election, and we will present the
criterion to win an election next, it replaces the current alternative for the next
iteration. Else, the current alternative remains in place for the next iteration.

Elections are decided using a quota system for some fixed quota q: a proposal
will be declared the winner iff it receives at least q percent of the votes. More
precisely, if n⊕ agents are voting in favour and n	 against a proposal (and some
agents may abstain), then the proposal is accepted if n⊕ > q · (n⊕ + n	). The
standard majority rule is the quota system with q = 50%. When the majority
rule is used, cycles may occur. The same is true for quota systems with q �=
50%. In the presence of a cycle, the sequence of elections could be infinite. In
order to force the eventual choice of an alternative, we propose the use of a
deadline limiting the number of iterations to be played. The following definition
summarises the components that make up a game:

Definition 1 (Game). A game is a quadruple 〈N, X, U0, q〉, where N with
n = |N | is a finite set of agents, X with m = |X | is a finite set of states
(or alternatives), U0 is an m× n matrix defining the utility each agent assigns
to each state, and q ∈ [0, 1] is a quota (typically expressed in percent).

Playing a game requires us to also specify a deadline, i.e., the number of iterations
to be played, and an initial state from X .

2.1 Backward Induction

Agents are assumed to be expected-utility maximisers, i.e., the goal of a proposal
or a vote is to maximise expected utility in the final state. We now discuss how
to perform this strategic vote and strategic choice of proposals.

Let the matrix Wt of size m×m specify the transition between the alterna-
tives at iteration t. An entry Wt(x, y) of Wt is the probability to have alternative
y become the current alternative at the next iteration when alternative x was
current at iteration t. A row of Wt is a probability distribution over the alterna-
tives that can become current at the next step. Hence, the sum of the entries of
a row is equal to 1, i.e., Wt is a stochastic matrix. Furthermore, let the matrix
Ut of size m × n contain the expected utility of all agents for all alternatives,
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i.e., Ut(x, i) is the expected payoff of agent i for alternative x at iteration t. We
have Ut+1 = Wt+1 · Ut, and therefore:

Ut+1 =

(
1∏

τ=t+1

Wτ

)
· U0 = Wt+1 ·Wt ·Wt−1 · . . . ·W1 · U0

Next, we discuss how to compute Wt+1 from Ut. Let us assume that the agents
know what to propose and how to vote during the tth iteration for any alternative
x ∈ X . Because of the common knowledge assumption on the utility functions,
the possible proposals and votes of any agents are also known, hence the matrices
Wt, Wt−1, . . ., W1 are known. What should an agent do during iteration t + 1?

How to vote? The decision depends on the comparison of the expected utility
of the current alternative x(t) with the one of the proposed alternative x�, i.e.,
agent i will vote in favour of the proposal when Ut(x�, i) > Ut(x(t), i) and
against when Ut(x�, i) < Ut(x(t), i). Note that the agent does not vote in case it
is indifferent between the two alternatives.

What to propose? First, the agent needs to compute the outcome of the vote
between the current state x(t) and each possible alternative x′ ∈ X . Let Xw ⊆ X
denote the set of winning alternatives against x(t). For agent i, the set of best
proposals is Pi = argmaxx′∈XwUt(x′, i). If the expected utility of the alternatives
in Pi is greater than Ut(x(t), i) (the expected utility of the current alternative),
then agent i proposes with equi-probability one of the alternatives in Pi. Else,
agent i is content with the current alternative and proposes maintaining the
status quo (there is no decision to make since x� = x(t)). Since each agent
has an equal probability to be selected to make a proposal, we can compute
the probability of any alternative to be proposed. And since any alternative
that is proposed is winning against the current alternative, we can compute the
probability of an alternative to become current at the next iteration.

To summarise, a game 〈N, X, U0, q〉 induces a sequence of m ×m transition
matrices W1, W2, . . ., as described above, as well as a sequence of m×n matrices
U1, U2, . . ., fixing the expected payoffs for each agent at each iteration, with
Ut+1 = Wt+1 · Ut. Here, “iteration 1” is the final iteration/step in a play of the
game, “iteration 2” is the penultimate iteration, and so forth. These matrices
allow us to study the game for all possible choices of initial current alternative.

2.2 Example: A Cycle with Majority Voting

Consider the following problem with 3 agents and 3 states. The utility vectors
are: 〈4, 1, 2〉 for state a, 〈2, 4, 1〉 for state b and 〈1, 3, 4〉 for state c. The corre-
sponding matrix U0 is shown in Table 1. With no deadline, the agents would be
stuck in a cycle, as a majority of agents would prefer to move to a different state
(a → b → c → a → . . .). Using a deadline and backward induction, the agents
can break the cycle. If the agents were voting sincerely instead of strategically
in this example, the final state would be entirely determined by the initial state
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Table 1. Breaking a cycle with a deadline

U0 =

⎡⎣ 4 1 2
2 4 1
1 3 4

⎤⎦ W1 =

⎡⎣ 1/3 0 2/3
2/3 1/3 0
0 2/3 1/3

⎤⎦
U1 = 1

3

⎡⎣ 6 7 10
10 6 5
5 11 6

⎤⎦ W2 =

⎡⎣ 1 0 0
1/3 1/3 1/3
2/3 0 1/3

⎤⎦ U∞ =

⎡⎣ 2.0795 2.6549 2.7560
2.0795 2.6549 2.7560
2.0795 2.6549 2.7560

⎤⎦
U2 = 1

9

⎡⎣ 18 21 30
21 24 21
17 25 26

⎤⎦ W3 =

⎡⎣ 1/3 2/3 0
0 1/3 2/3

2/3 0 1/3

⎤⎦

(there is a unique cycle). First, let us explain the computation of the expected
payoffs; then we will describe the properties of the outcome.

State a would lose an election against state c, and win an election against
state b. If the current alternative is state a one step before the deadline, the
second and third agents should propose state c, the first agent should propose the
status quo. As the agents are chosen to make a proposal with equi-probability,
the probability to stay in a is 1

3 , the probability to move to c is 2
3 , and the

probability to move to b is zero. This provides the first row of the matrix W1
in Table 1. We carry this reasoning to complete W1. The expected utility of the
agents one step before the deadline is U1 = W1U0. We iterate the reasoning to
obtain the matrices W2, U2, etc. We note that, in this example, W1, W2 and W3
are different. We have implemented the iterative algorithm for computing the
matrices Wt and Ut. For large values of t, Ut converges to a particular matrix (see
U∞ in Table 1). That is, for t large enough, the expected utility of each agent
is independent of the initial state (e.g., agent 1’s expected utility approaches
2.0795). Hence, if the deadline is far enough, no agent can take advantage of the
initial choice of alternative. Finally, note that, in the limit, the expected utility
of an agent is not simply the average utility over the 3 alternatives.

3 Convergence

The example given in the previous section shows that there are instances of
games where we will observe some kind of convergence. For the example in
question, we have seen that the expected payoff of any given agent for any given
initial state will converge to a certain value as we increase the deadline (we call
this intra-state convergence). We have also observed that the expected payoff will
become less and less dependent on the initial state as we increase the deadline
(we call this inter-state convergence). In this section, we will define these notions
of convergence formally and identify some classes of games for which convergence
can be guaranteed.
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3.1 Types of Convergence

We define a game as being intra-state convergent if, for any given agent and any
initial state, the difference in expected payoff for small changes in the deadline
will become arbitrarily small as deadlines become larger:

Definition 2 (Intra-state convergence). A game 〈N, X, U0, q〉 is said to
be intra-state convergent if, for any agent i ∈ N and any state x ∈ X,
limt→∞[Ut(x, i)− Ut+1(x, i)] = 0.

Next, we define a game as being inter-state convergent if, for any agent and any
two states, the difference in expected payoff for making either one of these states
the initial state can be made arbitrarily small when we increase the deadline:

Definition 3 (Inter-state convergence). A game 〈N, X, U0, q〉 is said to be
inter-state convergent if, for any agent i ∈ N and any two states x, x′ ∈ X,
limt→∞[Ut(x, i)− Ut(x′, i)] = 0.

Inter-state convergence provides a level of fairness : as long as we choose a suffi-
ciently large deadline, the choice of initial state will not affect the expected payoff
of the individual agents. This does not mean that all agents can be expected to
do equally well, but it does mean that one important parameter that determines
how a game is played (the initial state) does not influence the (expected) out-
come. Intra-state convergence does not directly affect fairness, but offers some
level of robustness of the mechanism: expected payoffs will not depend on the ex-
act deadline chosen (for instance, we would avoid situations whereby an agent’s
expected payoff could depend on whether the chosen deadline is odd or even).

Our example did exhibit both types of convergence. Both are entailed by a
third notion of convergence, expressed in terms of the transition matrices Wt

induced by a game.

Definition 4 (Fundamental convergence). A game 〈N, X, U0, q〉 is said to
be fundamentally convergent if the limit of the product of its transition matrices

W = lim
t→∞

1∏
τ=t

Wτ is a matrix in which all row vectors are identical.

Definition 4 is reminiscent of the Fundamental Limit Theorem for regular Markov
chains, which says that if P is the transition matrix of a regular Markov chain,
then limn→∞ Pn = W for some matrix W with identical row vectors [6]. Recall
that a stochastic matrix P is a matrix defining a regular Markov chain if there
exists a k such that P k has only non-zero elements. In particular, the theorem
applies when P itself only has non-zero elements. Inspection of the standard proof
of the Fundamental Limit Theorem shows that the same is true for the product
of several different matrices, provided that an infinite number of them are zero-
free. While there are similarities to our scenario, we stress that the Fundamental
Limit Theorem does not apply here, because the transition matrices generated
by our games need neither be zero-free nor regular.
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Before linking the three definitions of convergence, we state a simple property
of stochastic matrices. The proof is standard and omitted for lack of space.

Lemma 1. Let A and B be m×m stochastic matrices. If B has all row vectors
identical, then A ·B = B.

Proposition 1. If a game is fundamentally convergent, then it is also inter-
state convergent and intra-state convergent.

Proof. Let W = limt→∞
∏1

τ=t Wτ for the game under consideration. Suppose the
game is fundamentally convergent, i.e., W is a matrix of identical row vectors.
Then the game is also inter-state convergent: if we multiply W with the payoffs
for agent i, then we get the same expected payoff for any initial state.

Next, we show that intra-convergence also follows. By Lemma 1, as
∏1

τ=t Wτ

converges to a matrix with identical rows, Wt+1 ·
∏1

τ=t Wτ converges to that
very same matrix. The former determines Ut(x, i), while the latter determines
Ut+1(x, i). Hence, their difference must converge to 0. ��
Furthermore, it is not hard to verify that inter-state convergence implies intra-
state convergence. Intra-state convergence is weaker than the other two forms of
convergence. There are games that are intra-state convergent but not inter-state
convergent. A simple example would be a game with 2 agents, 2 states, and
q = 50%, where agent 1 prefers state a and agent 2 prefers state b. Then, if the
initial state is a, this will remain the status quo, independently of the deadline
(and analogously for the case where b is the initial state). The transition matrices
for this game are all equal to the identity matrix. Hence, inter-state convergence
is not satisfied (your expected payoff is equal to the utility you assign to the initial
state), while intra-state convergence is (your expected payoff remains constant
when we vary the deadline).

3.2 Sufficient Conditions

We will now identify sufficient conditions for a game to be convergent. There are
some clear-cut cases, when the quota q takes extreme values. First, if q = 0%,
i.e., when a single agent in favour is sufficient for a proposal to be accepted,
then all forms of convergence are satisfied. In such a game, whichever agent is
chosen to make a proposal in the last iteration will propose their favourite state,
and that motion will carry—independently from the current state. Hence, W1
(the transition matrix for the last iteration) will be a matrix with all rows equal.
Therefore, by Lemma 1, also the product W of all transition matrices will be
such a matrix, which means that the game will satisfy the convergence condition
of Definition 4, and by Proposition 1 also all other notions of convergence.

Second, if q = 100% − ε, i.e., when only proposals opposed by no agent are
accepted, then a proposal is accepted iff it represents a Pareto improvement.
Hence, the final state will be Pareto optimal—provided the deadline is chosen
large enough. But if there is more than one Pareto optimal state, then the
expected payoff can be different for an agent if either one of these Pareto optimal
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Table 2. Example with a unique Condorcet winner: the final outcome may not be the
Condorcet winner

U0 =

⎡⎢⎢⎣
4 4 4
6 2 3
2 6 2
3 0 6

⎤⎥⎥⎦ W1 =

⎡⎢⎢⎣
1 0 0 0

2/3 1/3 0 0
0 1/3 1/3 1/3

1/3 1/3 0 1/3

⎤⎥⎥⎦ U∞ =

⎡⎢⎢⎣
4.3676 3.0288 3.9973
4.3676 3.0288 3.9973
4.3676 3.0288 3.9973
4.3676 3.0288 3.9973

⎤⎥⎥⎦

states is selected as the initial state. Therefore, inter-state convergence is not
generally satisfied (and neither is fundamental convergence). Only in very special
cases, such as when all agents are indifferent between all states, would be obtain
inter-state convergence.

In addition, note that the presence of a Condorcet winner is not sufficient to
guarantee convergence to that state. For example, it is possible that no agent
proposes the Condorcet winner. In the example in Table 2 we observe inter-state
convergence and there is a unique Condorcet winner (the state with payoffs
〈4, 4, 4〉), but the expected payoffs in the limit are not the payoffs of the Con-
dorcet winner. This is because from the state with payoff 〈2, 6, 2〉, no agent has
an incentive to propose the Condorcet winner.

We now analyse the case of games with two states in detail.

Proposition 2. Any game with two states is intra-state convergent.

Proof. In games 〈N, X, U0, q〉 with |X | = 2, each transition matrix is of the
following form:

Wt =
(

p 1−p

1−q q

)
Two special cases are p = q = 1 (the identity matrix) and p = q = 0 (the “switch
matrix”). We first claim that no transition matrix can be such a switch matrix: if
all agents are indifferent between both states in iteration t, then Wt is the iden-
tity matrix. Otherwise, w.l.o.g., assume agent 1 prefers state 1 in iteration t. Then
agent 1 will propose the status quo when in state 1, so p ≥ 1

n . This proves our claim.
So each transition matrix will either be the identity matrix or different from

both the identity matrix and the switch matrix. We now distinguish two cases:

(i) There exists a transition matrix Wt that is the identity matrix. Then
Ut+1 = Ut, and Wt+1 and all subsequent transition matrices are also the identity
matrix. Hence, from point t on the expected payoff for any given state will not
change anymore and we have intra-state convergence as required.

(ii) There does not exist a transition matrix that is the identity matrix. We
shall prove inter-state convergence in this case (which entails intra-state con-
vergence). W.l.o.g. we analyse the expected payoff of agent 1. Suppose x is its
expected payoff for state 1 and y for state 2, at some step of the process. The
expected payoffs for the next step are computed as follows:
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p 1−p

1−q q

)
·
(

x

y

)
=

(
y + p · (x− y)
x + q · (y − x)

)
Consider the difference |x− y|. In the next step, this difference becomes |(y + p ·
(x− y))− (x + q · (y− x))| = |p + q− 1| · |x− y|. The factor of change |p + q− 1|
is of course ≤ 1. But we can give a better bound. We know that neither p = q = 0
nor p = q = 1. We also know that p and q must be multiples of 1

n , where n is the
number of agents. (This follows from the rules of the game: each of the n agents has
the same likelihood of being the proposer, and each agent will either propose the
status quo or the other state with certainty—for the special case of two states no
agentwill ever randomise between several top proposals). Hence, |p+q−1| ≤ 1− 1

n .
Now, if x and y are the actual utilities for the two states, t steps before the deadline
the difference in expected payoffs can be at most (1 − 1

n )t · |x − y|. Therefore, as
t goes to infinity, this difference must go to 0. This is the case for both agents,
meaning that inter-state convergence holds as claimed. ��
Proposition 3. Any game with two states and a quota of q < 50% is inter-state
convergent.

Proof. The proof of Proposition 2 shows that, first, no transition matrix can be
the “switch matrix”; and second, if no transition matrix is the identity matrix (or
the switch matrix), then inter-state convergence is satisfied. The only remaining
possibility is when there exists a iteration t such that Wt is the identity matrix.
We distinguish two cases:

(i) First, assume all agents are indifferent between states 1 and 2 in iteration t.
Then we clearly have convergence.

(ii) Otherwise, w.l.o.g., assume agent 1 strictly prefers state 1 in iteration t.
Then the only explanation for agent 1 not proposing state 1 when in state 2 is
that such a proposal would not make the quota. Hence, as q < 50% by assump-
tion, at least 50% (1− q) of the concerned agents (those not indifferent between
state 1 and state 2 in iteration t) must prefer state 2. But then, when in state 1,
each of these agents would propose to move to state 2 and any such proposal
would get accepted, so the probability of moving from state 1 to 2 in iteration t
must be > 0. Hence, Wt cannot be the identity, and we have a contradiction.��
The bound on the quota in Proposition 3 is tight: the example sketched after
Proposition 1 demonstrates that inter-state convergence cannot be guaranteed
anymore for quotas q ≥ 50%. In the next section, we will analyse our games
experimentally, to see to what extent the trends reflected by Propositions 2
and 3 extend to larger games.

4 Experimental Analysis

The aim of the experiments is to investigate what parameters affect convergence.
In all the experiments we performed, we have always observed intra-state conver-
gence. In the following, we will therefore only report on inter-state convergence
(and hence, we write simply “convergence” to denote inter-state convergence).
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Fig. 1. Frequency of convergence for q = 50%

4.1 Varying the Utility Range

The three obvious parameters of the experimental study are the number of
agents, the number of alternatives, and the quota. Another important parameter
concerns the generation of utility functions. Each utility value could be drawn
from a continuous or a discrete distribution (over either the interval [0, 1] or a set
of integers {0, 1, . . . , umax}. Here we focus on uniform distributions (other cases
are also interesting and left for future work). The goal of our the first experiment
is to answer the question: how does the set of possible utility values affect the
rate of convergence?

When a continuous uniform distribution is used to generate the utility values,
the preference order on the set of alternatives is strict with probability one. When
a discrete distribution is used, however, the agent may have a weak preference
order as some alternatives may receive the same values. For a fixed number of
alternatives, the smaller umax, the more likely the agents have a weak order. In
the extreme case of umax = 1, agents have dichotomous preferences (i.e., either
they approve or disapprove the alternative).

We fixed the number of states to 15 and varied the number of agents in
{2 . . .24}. We generated 1000 utility matrices U0 for each number of agents and
checked for convergence for a quota of 50%. The results are provided in Figure 1.

First, we do not always observe convergence. Convergence is more frequently
observed when the number of agents is large. Then, the frequency of convergence
is higher when the number of agents is odd than when it is even. For an even
number (Figure 1a), there is no significant difference between the different gen-
erators, except for very small numbers of agents.1 For an odd number of agents
(Figure 1b), the convergence occurred for all the tested cases with a continuous
distribution. Finally, convergence is less frequent when umax is small.

1 For small numbers of agents and dichotomous utility functions, it is very likely (99%
for 2 agents and 15 states) that at least one alternative y is preferred by all agents,
which guarantees convergence.
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These observations suggest that convergence is more frequent when there are
fewer ties between alternatives. When ties are extremely unlikely, we observe high
frequency of convergence (i.e., when the number of agents is odd and utilities are
drawn from a continuous distribution; or when the number of agents is large, as
exact ties would be required). When ties are likely, however, we observe a lower
frequency of convergence (i.e., when the number of agents is even and small and
the utility values are drawn from a continuous distribution; or when utilities
are drawn from a discrete distribution and umax is small). Experiments with
different numbers of alternatives did not alter our conclusions.

4.2 Varying the Quota

For two-state games, we have seen that inter-state convergence is guaranteed for
quotas < 50% and can fail for greater quotas. Our second experiment is aimed
at checking whether the same trend can be observed for larger games, and at
getting an understanding of the likelihood of convergence, when it cannot be
guaranteed. We have used 15 alternatives and a population of 100 agents and we
have randomly generated 1000 matrices U0. The results are shown in Figure 2.

For q < 50%, we always observe convergence, which leads us to conjecture that
Proposition 3 generalises to games with any number of states. For higher quotas,
we do not always observe convergence (about 80% of the time for q = 50%); and
for quotas q ≥ 60%, we have never observed convergence in our experiments.
Still, even for q = 100%, it is clear that cases satisfying convergence do exist
(e.g., if all agents are indifferent between all states); such cases are just very
unlikely to occur, certainly for our method of data generation.

Maybe the most striking effect we can observe in Figure 2 is the sudden and
sharp decrease in the frequency of convergence at the 50% mark. This clearly
singles out the majority rule as having a special status within the set of all
quota rules, thus suggesting an interesting characterisation of this rule above
and beyond the characterisations given by May’s Theorem [4] and the Condorcet
Jury Theorem.
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5 Conclusion

We have proposed a model for iterated voting, where a group of agents make a
social choice by implementing a sequence of binary decisions between the status
quo and an alternative proposal. Each decision is made using a quota rule.

Our model is related to the study of tournaments [7] as we can think about
our generic approach as a walk in the majority graph. The Markov solution is
related to our work as it considers a random walk in the majority graph, and
an outcome is in the solution set when it has a positive probability of being the
current outcome in the limit. Our model differs by allowing strategic behaviour
(i) in the choice of the proposed alternative and (ii) in the vote (an agent may
vote in favor of a less preferred outcome in the short run if this promises a better
outcome in the long run). Models closer to ours have been studied in political
science, e.g., by Baron [8], although in that model each voter receives a payoff
at every time step, while we only ascribe utility to the final state. In the work
by Penn [9] another difference is that the challengers are drawn from a given
probability density rather than proposed by the agents.

For the case of games with just two states, we have shown that the expected
payoff of each agent converges as the deadline increases, when the initial state is
fixed. For games with two states and a quota of less than 50%, we have further-
more shown that the expected payoff is independent of the initial state, which
offers a level of fairness. Our experimental study shows that this trend generalises
also to larger games. For the majority rule, corresponding to a quota of exactly
50%, we have seen that convergence is frequent, but cannot be guaranteed. We
have also illustrated how the range of possible utility values an agent may assign
to an alternative, and thereby the likelihood of ties, affect convergence.

Future work should be directed towards formulating further conditions under
which convergence can be guaranteed, and prediction of a bound guaranteeing
that no agent benefits from the choice of the initial state.
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Abstract. We investigate the problem of selecting a committee con-
sisting of k members from a list of m candidates. The selection of each
candidate consumes a certain weight (or cost). Hence, the choice of the
k-committee has to satisfy a weight (or budget) constraint: The sum of
the weights of all selected committee members must not exceed a given
value W . While the former part of the problem is a typical question in
Social Choice Theory, the latter stems from Discrete Optimization. The
purpose of our contribution is to link these two research fields: We first
define reasonable ways of ranking sets of objects, i.e. candidates, and
then develop efficient algorithms for the actual computation of optimal
committees. We focus in particular on the running time complexity of
the developed algorithms.

Keywords: knapsack constraint, committee selection.

1 Introduction

Social Choice Theory deals with the aggregation of individual preferences on
sets of objects (candidates, alternatives, etc.) into a group outcome, which could
either be a ranking or a set of chosen objects. Usual results focus on situations in
which no other than logical restrictions are put on the possible group outcomes,
an exception being Barbera et al. [2]. Such restrictions could be of various forms,
obvious examples being weight, cost or size constraints on the set of chosen
alternatives.

A possible example for such a situation could be a sports club and a team
of managers that have to decide on who to recruit for the next season. The
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managers’ preferences might differ based on their different foci such as technical
qualities or advertising value. Moreover, the club might have a restricted budget
to buy new players who all have their market values and the club probably
needs exactly a certain number of players, i.e. the set of possible new players is
restricted to certain subsets.

In this article we want to select a committee of a predefined size from a set of
candidates given certain restrictions. The selection will depend on a social prefer-
ence over the set of candidates derived from one of the voting rules provided in the
social choice literature (see Brams and Fishburn [3]). Based on such a preference
relation we consider the ranking of subsets of candidates. Some of those rankings
of subsets, e.g. based on best and/or worst candidates in the corresponding rank-
ing of candidates, have been thoroughly analysed in Barbera et al. [1]. We will add
two new ranking options recently characterized by Klamler et al. [9].

In this contribution we want to check whether there exist applicable algo-
rithms that compute such optimal committees with respect to the underlying
ranking criterion. Given a social preference on the set of candidates and the
desired conditions for ranking sets of candidates we will provide the correct
algorithm to compute the committee.

This article tries to solve questions raised in Social Choice Theory by solution
methods discussed in Operations Research and thus provides an interesting in-
terdisciplinary link between these areas. Efforts along these lines were also made
in Klamler and Pferschy [8], Darmann et al. [6] and Perny and Spanjaard [11]
who introduce preference relations on different graph structures.

In Section 2 we will introduce the formal framework. Sections 3 and 4 present
and discuss algorithms used to determine the optimal committees. Section 5
concludes the paper.

2 Formal Framework

Let X be a finite set of m alternatives (or candidates). We define a preference
on X by a reflexive, complete and transitive binary relation R ⊆ X ×X , where
(x, y) ∈ R means that x is at least as good as y, also written as xRy.1 The
asymmetric and symmetric parts of R are written as P and I respectively. The
set of all reflexive, complete and transitive binary relations is written as R.

Let X denote the set of all subsets of X . A preference on X is a relation �⊆
X × X . The strict preference relation and the indifference relation are denoted
by � and ∼ respectively.

For any A ∈ X we say that the set of best elements in A according to R is
max(A, R) = {x ∈ A : ∀y ∈ A, xRy}. Conversely, the set of worst elements in A
is min(A, R) = {x ∈ A : ∀y ∈ A, yRx}.2 Whenever not mentioned otherwise we

1 A binary relation R is reflexive if and only if for all x ∈ X, xRx, it is complete if
and only if for all x, y ∈ X, xRy or yRx, and it is transitive if and only if for all
x, y, z ∈ X, xRy and yRz imply xRz.

2 Whenever clear from the context, max(A,R) (min(A, R)) will be written as max(A)
(min(A)).
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will also assume that the alternatives in A = {a1, a2, ..., ak} are ordered, i.e., it
is the case that aiRaj for i < j.

In our model every alternative j ∈ X is assigned a weight (or cost) wj ∈ R+,
where w = (w1, w2, ..., wm). The total weight bound is W > 0. For convenience,
in the remainder of the paper we will denote w(S) =

∑
i∈S wi for any subset S

of alternatives. In addition, throughout this article we will exclusively focus on
situations where we select and compare sets of a particular cardinality. Hence,
let Xk be the set of subsets containing exactly k ≤ m alternatives and XW

k the
set of subsets S containing exactly k ≤ m alternatives such that

∑
i∈S wi ≤ W .

This inequality is known in the Operations Research literature as knapsack
constraint and was widely studied as an optimization problem in its own right
(see Kellerer et al. [7]) and as a side constraint for other problems. In particular,
knapsack problems with a cardinality constraint were considered by Caprara et
al. [4]. However, in the latter each candidate is assigned a certain profit value
and the quality of a committee is given by the sum of profits over all candidates.
This generalization of the standard knapsack problem is NP-hard, while the
preference based valuations of committees in this paper permit polynomial time
algorithms. Moreover, the algorithms from [4] do not apply to our problems.

A k-committee selection function with constraint is a function C : R×Rm
+ →

XW
k that assigns to every preference R ∈ R and weight profile w ∈ Rm

+ the
k-committee C(R, w) ∈ XW

k .
Throughout this article the quality of a committee is based on the quality (i.e.

ranking position) of its candidates with respect to the social preference on the set
of candidates. Hence, let k′ ≤ k denote the k′-best position of a candidate in a com-
mittee with respect to the social preference on X . One possibility of ranking sets
A, B ∈ X is to compare the quality of the candidates in the k′

1-position in A and B,
respectively. Someof those rules are also lexicographicbynature, i.e., in case society
is indifferent between the candidates in k′

1-position, the sets are compared accord-
ing to some other k′

2-position. Further extensions up to the usual lexicographic rule,
by starting with the best candidates and going down to the worst, are feasible.

Although there exist various ways of ranking sets in X that fall in particular
into the class of (k′

1, k
′
2)-rules which compare the candidate in k′

1-position first
and - in case of indifference - move on to comparing candidates in k′

2-position,
certain simple k′-rules have not been extensively studied yet. The special - and
most intuitive - cases here are the k′ = 1 case which compares sets according
to their best alternatives and which will be called Maximize Max Ordering.
Analogously we could have k′ = k, i.e. sets are ranked according to their worst
candidates contained. This will be called Maximize Min Ordering.

Naturally, choosing committees according to set orderings raises questions
about the computational complexity. The computation of a committee based on
the Maximize Max Ordering can be done in linear time. This is an improvement
to the general case of k′

-Max and, surprisingly, this improvement does not carry
over to the Maximize Min Ordering.3

3 Beware that k′-Max for k′ > 1 also contains the interesting ”Median” ordering based
on the median element(s) of the ranking of candidates.
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Table 1. Overview of complexity results

Algorithm / Ordering Computational Complexity
k′

-Max O(m log k)
MaximizeMax O(m)
(k′

1, k
′
2)-Max O(m log k)

(k′
1, . . . k

′
k)-Max O(km log k)

LexiMin O(m · min{k, log m})
LexiMax O(m + k log k)

As previously mentioned, we will also discuss usual lexicographic rules.4 Let
A, B ∈ Xk. The leximin ordering �L

min is defined by letting for all A, B ∈ Xk

A �L
min B ⇔ aiIbi ∀ i or ∃j ∈ {1, ...k} such that aiIbi ∀ i > j and ajPbj .

Analogously, we can define the leximax ordering �L
max by letting for all A, B ∈ Xk

A �L
max B ⇔ aiIbi ∀ i or ∃ j ∈ {1, ...k} such that aiIbi ∀ i < j and ajPbj.

To give an overview, the computational complexities of the algorithms discussed
in this paper are given in Table 1.

3 Generic Algorithms

In this section we address the generic preference relations k′
-Max, (k′

1, k
′
2)-Max

and (k′
1, . . . , k

′
k)-Max and consider general algorithms for committee selection

based on these relations. Efficient algorithms (in terms of asymptotic complexity)
can be formulated when using adequate data structures.

Priority queues allow to assign a key value to its elements. This key defines
a sorting on the elements of the queue. In our case, this key can either be the
weight value of an element or a number being consistent with the preference
relation of the elements in X . Using either of these values, the priority queue
can be minimum or maximum ordered. In a minimum ordered priority queue
the top-most element has a minimal key among all elements left in the priority
queue. We use Fibonacci heaps (see [5, Sec. 20]) for implementing priority queues.
Table 2 surveys the most relevant priority queue operations together with their
amortized complexities.

These four operations will be applied to select committees efficiently for the
general cases of the three orderings k′

-Max, (k′
1, k

′
2)-Max and (k′

1, . . . , k
′
k)-Max.

Priority queues will represent different orderings depending on what suits our
needs best.

Consider the k′
-Max ordering for k′ ≤ k. Let QA, QB be maximum weight

ordered priority queues. Thus, the top-most element has largest weight among all
elements in the queue, i.e., Top(Q) accesses the heaviest element in the queue.
4 Characterizations of lexicographic rules can be found in Pattanaik and Peleg [10].
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Table 2. Priority queue operations - brief description and amortized complexities

Make() creates empty priority queue Q O(1)
Insert(Q,x) allows insertion of element x in Q O(1)
Top(Q) accesses the top-most element of Q O(1)
Extract-Top(Q) deletes the top-most element of Q O(log n)

We introduce two auxiliary arrays A[j] and B[j] of length m with the following
definition: A[j] and B[j] contain the total weight of the subset consisting of the
k′ − 1 and k − k′ items of smallest weight among all items ranked higher and
lower than j, respectively, as illustrated in the following example.

Example:

element 1 2 3 4 5 6 7 8 9
weight 8 6 9 3 6 2 5 7 1

The elements are numbered in decreasing order of their ranking. Let k = 6,
k′ = 4 and j = 5. Then we have A[5] = 8 + 6 + 3 = 17 and B[5] = 2 + 1 = 3.

Algorithm 1 first computes the entries of these arrays by keeping the current
subset of these items in a priority queue. Then, the best ranked k′th largest item
in a feasible k-committee can be determined in a single run over these two arrays
A and B by looking for the best ranked item such that an appropriate number
of smallest weight elements ranked higher and lower fulfill the weight constraint.

We assume that a feasible solution exists (otherwise the while-loop would
not terminate). To reconstruct the subset yielding the optimal solution (i.e. the
feasible committee) we repeat the two for-loops but stop as soon as the index
reaches the k′th element found before.

Proposition 1. Max(L, W, k, k′) is correct.

Proof. The correctness of this algorithm relies on two facts:

(i) The entry A[j] of array A contains the total weight of the k′−1 lowest weight
items which are ranked better then j.

(ii) The entry B[j] contains the total weight of the k − k′ lowest weight items
which are ranked worse than j.

Once we have established this observation, we simply test for the best ranked
element which can be completed to a feasible committee (lines 23 - 26). Let
us focus on A[j] now. The for-loop in lines 1 to 3 determines the weights of
the k′ − 1 top-ranked elements which are also the lowest-weight elements being
ranked better than k′. Thus, with line 4, statement (i) holds for j = k′. Note
that the entries A[1], . . . , A[k′ − 1] are meaningless. In lines 6 - 9 it is tested if a
subsequent element should replace the heaviest among the k′ − 1 lowest-weight
items. In line 10 the loop invariant follows for A[j], j = k′+1, . . . , m−(k−k′+1).
All other entries are not important. Thus, statement (i) is shown. Analogously,
it can be verified that (ii) holds. ��
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Algorithm 1. A new algorithm solving the k′-Max problem
Max(L, W,k, k′)

Input: A list L := {e1, . . . , em} representing the ranking of m elements;
a weight bound W ∈ R, k ∈ N and k′ ∈ N, k′ ≤ k.
Output: The maximal k′-element for which a feasible k-committee exists.
1: for all i ← 1, . . . , k′ − 1 do
2: Insert(QA, ei)
3: end for
4: A[k′] ← w(QA)
5: for all j ← k′, . . . , m − (k − k′ + 1) do
6: if w(ej) < w(Top(QA)) then
7: Extract-Top(QA)
8: Insert(QA, ej))
9: end if

10: A[j + 1] ← w(QA)
11: end for
12: for all i ← m − (k − k′) + 1, . . . , m do
13: Insert(QB , ei)
14: end for
15: B[m − k + k′] ← w(QB)
16: for all j ← m − (k − k′), . . . , k′ + 1 do
17: if wj < w(Top(QB)) then
18: Extract-Top(QB)
19: Insert(QB , ej))
20: end if
21: B[j − 1] ← w(QB)
22: end for
23: j ← k′

24: while A[j] + wj + B[j] > W do
25: j ← j + 1
26: end while
27: return ej

Proposition 2. Max(L, W, k, k′) can be performed in O(m log k) time.

Proof. Note that the sizes of the priority queues QA and QB are bounded by k.
The dominating operation is Extract-Top which is in O(log k). The number
of Extract-Top-operations is in O(m). Thus, we get an overall asymptotic
complexity of O(m log k) time. ��

Let us now consider the ordering (k′
1, k

′
2)-Max as an extension of the k′-Max

ordering. In this case, we first fix the k′
1-best ranked element using the previous

algorithm. Then, we use the same algorithm for finding the k′
2-best ranked ele-

ment. This leads to a O(m log k) algorithm the pseudocode of which is given in
Algorithm 2.

This idea can now be iteratively extended to as many as k alternatives. The
corresponding algorithm is then a O(km log k) algorithm.
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Algorithm 2. An algorithm for (k′
1, k

′
2)-Max Ordering

(k′
1, k

′
2)-Max

Input: A list L := {e1, . . . , em} representing the ranking of m elements; a weight
bound W ∈ R, k ∈ N, k′

1 ∈ N, k′
2 ∈ N, k′

1 ≤ k′
2 ≤ k.

Output: The best possible pair (k′
1, k

′
2) for which a feasible k-committee exists.

1: Find the best possible k′
1 element by algorithm Max(L, W, k, k′

1)
2: Delete the first k′

1 elements from L

3: W ← W −∑k′
1

i=1 w(ei)
4: Find the best possible k′

2 element by calling algorithm Max(L, W, k − k′
1, k

′
2)

5: return (k′
1, k

′
2)

In the following section, we improve the running times originating from this
generic approach for the special cases of k′ = 1, i.e., the Maximize-Max problem
and for the leximax and leximin orders, respectively, which can be written as
(1, 2, . . . , k)-Max and (k, k − 1, . . . , 1)-Min, respectively.

4 Improvements

4.1 Maximize-Max or k′ = 1-Max Order

An optimal k-committee with respect to the maximize-max order can be com-
puted in linear time thus improving upon the O(m log k) bound given in Propo-
sition 2. The main idea is quite simple: Starting from a solution S containing
the k lightest elements we look for the highest ranked element ej which can be
added to S and preserves feasibility. To maintain feasibility, the best choice of
removing an element from S is given by the heaviest element eh.

Proposition 3. Algorithm 3 computes an optimal k-committee with respect to
the maximize-max order in O(m).

Proof. Observe that S always includes the k−1 lightest elements. At termination
of the algorithm, let S := {ei1 , . . . , eik

}. Without loss of generality, we may
assume that eil

Reil+1 for all l = 1, . . . , k−1. Let S̄ := {ej1 , . . . , ejk
} be an optimal

solution for the maximize-max order with ejl
Rejl+1 for all l = 1, . . . , k−1, ej1Rei1

and
∑k

l=1 w(ejl
) ≤ W .

Case 1: ej1 is among the k − 1 lightest elements. Then ej1 ∈ S. Thus, ei1Rej1

and therefore ei1Iej1 .
Case 2: ej1 is not among the k−1 lightest elements. Then, consider Ŝ consisting

of ej1 together with the k − 1 lightest elements. Ŝ is weight feasible since
w(Ŝ) ≤ w(S̄). Without loss of generality, we may assume that ej1 is the best
ranked element in Ŝ. Due to the while-loop of the algorithm, ei1 is the overall
best ranked element which — together with the k − 1 lightest elements —
forms a feasible committee. Thus, ei1Rej1 and therefore ei1Iej1 .

The straightforward details of the running time are omitted. ��
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Algorithm 3. An algorithm for finding an optimal solution to the maximize
max order
MaximizeMax(L,W, k)

Input: A list L := {e1, . . . , em} representing the ranking of m elements; a weight
bound W ∈ R, k ∈ N.
Output: A feasible set S containing k elements of L.
1: Find the kth lightest element of L
2: Denote S the set containing the k lightest elements
3: Denote ebr the best ranked element in S
4: Denote eh the heaviest element in S
5: stop ← false, j ← 1.
6: while stop = false and ej 	= ebr do
7: if w(S) − w(eh) + w(ej) ≤ W then
8: S ← S \ {eh} ∪ {ej}
9: stop ← true

10: end if
11: j ← j + 1
12: end while
13: return S

4.2 Leximax-Order

Obviously, an optimal k-committee with respect to the leximax order can be
computed by executing k iterations of the generic Algorithm 1 in O(km log k)
time. However, we can do much better.

In principle, the underlying idea of algorithm MaximizeMax can be extended
to solve also the leximax ordering by continuing the exchange operation as long
as possible. However, the details of the resulting algorithm require considerable
attention. Throughout the algorithm we will keep a priority queue Q containing
a set of the lightest elements sorted in decreasing order of weights. The solution
set S is constructed iteratively by trying to insert an item ranked better than
the currently best item in Q denoted by ebr. If no such item is found then ebr is
inserted in S and the procedure is continued. Since we cannot explicitly delete
an arbitrary element from Q, we postpone the removal of ebr from Q to the point
when it is accessed as the heaviest element of Q. The necessary update of ebr

can be done easily by linking the elements of Q when they are first generated
and keeping labels to check whether an element was inserted into S.

Proposition 4. LexiMax(L, W, k) is correct.

Proof. omitted. ��
Proposition 5. LexiMax(L, W, k) runs in O(m + k log k).

Proof. As pointed out in the proof of Proposition 3 the items in Q can be found in
O(m) time and inserted into a priority queue in O(k) time. The loop in lines 6-
22 is performed at most O(m) times, while the Extract-Top(Q) command
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Algorithm 4. An algorithm for finding an optimal solution to the leximax order
LexiMax(L,W,k)

Input: A list L := {e1, . . . , em} representing the ranking of m elements; a weight
bound W ∈ R, k ∈ N.
Output: A feasible set S containing k elements of L.
1: S ← ∅
2: Find the kth lightest element of L
3: Insert the k lightest elements of L into Q
4: Denote ebr the best ranked element in Q \ S
5: j ← 1
6: repeat
7: if ej = ebr then
8: S ← S ∪ {ej}
9: if ebr = Top(Q) then

10: Extract-Top(Q)
11: end if
12: Update ebr

13: else if w(S) + w(Q) − w(Top(Q)) + w(ej) ≤ W then
14: S ← S ∪ {ej}
15: Extract-Top(Q)
16: while Top(Q) ∈ S do
17: Extract-Top(Q)
18: end while
19: Update ebr

20: end if
21: j ← j + 1
22: until Q = ∅
23: return S

requiring O(log k) time can be executed at most k many times before Q = ∅.
Note that we never insert elements into Q.

Updating ebr can be done in constant time if the items in Q are linked in
decreasing order of rank when they are identified in line 3. Whenever an element
is deleted from Q this linked structure can be easily updated in constant time
(e.g. by using a double-linked list). This proves the statement. ��

4.3 Leximin-Order

An optimal k-committee with respect to the maximize-min order can be com-
puted in a straightforward way by performing Max(L, W, k, k) in O(m log k)
time. For the leximin-order it remains to adjust the remaining k − 1 elements.
A trivial approach would apply Max(L′, W ′, j, j) iteratively for j = k − 1, k −
2, . . . , 1 with adapted sets of elements L′ and weight bounds W ′. Along these
lines an O(k m log k) algorithm for the leximin-order is derived.

The remaining k − 1 elements can be computed more efficiently. Algorithm
LexiMin(L, W, k) starts with a feasible solution consisting of S = {e�} deter-
mined by Max(L, W, k, k) and the k − 1 elements of smallest weight ranked
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Algorithm 5. An algorithm for finding an optimal solution to the leximin order
LexiMin(L,W,k)

Input: A list L := {e1, . . . , em} representing the ranking of m elements; a weight
bound W ∈ R, k ∈ N.
Output: A feasible set S containing k elements.
1: Run Max(L, W,k, k) to compute a committee with a worst ranked element e�

2: S ← {e�}
3: Insert the k − 1 lightest elements from {e1, . . . , e�−1} into QS

4: Insert the remaining elements {e1, . . . , e�−1} \ QS into QR

5: while QS 	= ∅ and QR 	= ∅ do
6: while rank(Top(QR)) worse than rank(Top(QS)) do
7: Extract-Top(QR)
8: end while
9: if w(S) + w(QS) − w(Top(QS)) + w(Top(QR)) ≤ W then

10: Extract-Top(QS)
11: Insert(QS ,Top(QR))
12: Extract-Top(QR)
13: else
14: S ← S ∪ Top(QS)
15: Extract-Top(QS)
16: end if
17: end while
18: return S

better than e� which are stored in QS . Throughout the algorithm, elements of
the optimal solution are computed iteratively and added to S while QS keeps
items complementing S to a feasible solution. All items ranked better than the
best element currently in S but not contained in QS are candidates for an im-
provement of the current feasible solution and stored in QR.

Both, QS and QR, are organized as Fibonacci heaps. QS is maximum-ordered
with respect to the ranking, i.e., the top element is the worst-ranked one, since
this is the first element which we try to replace in the current feasible solu-
tion. The second heap QR is minimum-ordered with respect to weight, since the
lightest element is most likely to fit into a new feasible solution.

After initializing this structure in lines 3-4 we enter the main loop of the
algorithm. There, we first remove all items in QR which are ranked worse than
the worst element in QS (line 6). Then we try to improve the current feasible
solution (line 9) by removing its worst element (among those which are still
not fixed). The best chance to construct a new feasible solution is given by the
element with smallest weight (among those with better ranking), i.e. Top(QR).
If the improvement step was successful we update QS and QR (lines 10-12),
otherwise we have to include the lowest ranked element of QS permanently in
the solution and thus move it into S (lines 14-15).

Proposition 6. LexiMin(L, W, k) is correct.

Proof. omitted. ��
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Proposition 7. LexiMin(L, W, k) runs in O(m log m).

Proof. Running Max(L, W, k, k) takes O(m log k) time (see Proposition 2) while
the generation of the two heaps requires O(m) time. In every execution of
the main while-loop the number of operations is dominated by the number of
Extract-Top operations. QR contains at most m − k elements at the begin-
ning and no elements are ever added to QR. QS starts with k−1 items and may
receive at most |QR| additional elements from QR during the execution of the
algorithm. Therefore, the total number of Extract-Top operations is bounded
by m− k + (k − 1 + m− k) < 2m which proves the statement. ��

For small values of k we can formulate a more efficient algorithm which is however
not discussed here for lack of space.

Proposition 8. An optimal k-committee for the leximin order can be computed
in O(mk) time.

Proof. See our technical report [9]. ��

Comparing LexiMin(L, W, k) and Proposition 8 it turns out that for k > log m
LexiMin(L, W, k) dominates its competitor. On the other hand, for k ≤ log m
the algorithm quoted in Proposition 8 is superior. Hence, a combination of the
two algorithms yields a O(m ·min{k, log m}) running time bound.

5 Conclusion

In this paper we try to link social choice theory with methods from discrete op-
timization. Based on a social ordering of the candidates and a weight or budget
constraint on that set, we derive and analyze efficient algorithms for the com-
putation of socially optimal committees. Particular attention is devoted to the
running time complexities of the algorithms.

Further work on this subject might include analyzing different set orderings,
additional constraints or the relationship to conceptual approaches that might
provide certain insight, such as ”prudent orders” in group decision problems.
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Abstract.  How do noise and manipulation affect the accuracy of collective de-
cision rules? This paper presents simulation results that measure the accuracy of 
ten well known collective decision rules under noise and manipulation. When 
noise is low these rules can be divided into accurate ("good") and inaccurate 
("bad") groups. The bad rules' accuracy improves, sometimes significantly, 
when noise increases while the good rules' performance steadily worsens with 
noise. Also, when noise increases the accuracy of the good rules deteriorates at 
different rates. Manipulation delays the effects of noise: accuracy improvement 
and deterioration due to noise emerge only at higher noise levels with manipu-
lation than without it. In some cases at high noise levels there is only a negligi-
ble difference between the accuracy of good and bad collective decision rules.  

Keywords: Collective decision rules, noise sensitivity, manipulability of  
collective decisions. 

1   The Problem  

Let us assume that a committee has to rank candidates. Suppose that there exists an 
objective ranking of the candidates but because of human error (later: system noise or 
noise) committee members’ perceptions about the objective ranking are inevitably 
imperfect and different.  

In order to generate a collective ranking first committee members individually rank 
candidates, then the committee aggregates the individual rankings according to a 
method earlier agreed upon. Several collective decision rules are available to the com-
mittee to come up with a collective preference. Suppose that the committee is aware of 
the fact that the method chosen for preference aggregation may affect the accuracy of 
the collective rankings and that candidates may try to manipulate committee members to 
get a better ranking. What is the most accurate and least manipulable method of prefer-
ence aggregation in a noisy setting? This paper compares how ten well known collective 
decision rules perform under noise and in the presence of manipulation. 

1.1   An Example 

The following example illustrates the importance of understanding the effects of noise 
and manipulation on the accuracy of collective decision rules. Consider the task of 
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distributing organs among patients waiting for organ transplant. A fair distribution 
should be based on, among other things, medical urgency. There must exist an objec-
tive ranking of patients considering their medical condition. Sometimes this ranking 
can be reproduced using objective criteria e.g. blood test results. In other cases the 
ranking of patients is a result of committee decisions that include judgment calls. 
When human error cannot be excluded committee rankings will not perfectly repro-
duce the objective ranking of patients, i.e. committee members’ rankings will be 
noisy. In addition, if it is known that the patients’ final ranking is affected by judg-
ment calls, patients may try to influence the committee members' judgment in the 
hope of a better ranking. The decision rule chosen by the committee will be used 
repeatedly. The ranking of patients may determine life or death. What kind of collec-
tive decision rule should be selected by the committee in order to produce a ranking 
of patients that is the most consistent with their medical conditions and the most resis-
tant to manipulation? 

1.2   The Ranking Rules Examined 

The ten collective decision rules I will examine are as follows: anti-plurality, Borda, 
Coombs, Copeland, Jech, Kemeny-Young, median rank, minimax, plurality, and 
single transferable vote1. Although all of these rules can be used to rank alternatives 
some rules are better for choosing a winner2 (plurality, anti-plurality, minmax, single 
transferable vote) while others are better for ranking candidates (Coombs, Jech, Borda 
Copeland, Kemeny-Young, median rank)3.  

1.3   Control versus Misrepresentation of Preferences 

Manipulation of collective decision making often involves attempts to control the 
process. Individuals may try to achieve a favorable outcome by adding or removing or 
partitioning committee members and/or candidates. In other cases manipulation 
means that committee members and/or candidates try to change some committee 
members’ preferences by misrepresenting their true type or their true preferences. In 
the following I will not consider control issues. I will use the term manipulation as a 
synonym for misrepresentation of one's preferences or type and investigate how ma-
nipulation, coupled with noise, affects the accuracy of collective decisions.  

                                                           
1 The basic tenets of collective decision making, including the description and analysis of the 

collective decision rules I investigate can be found in most public choice textbooks, see for 
example Mueller [9]. Levin and Nalebuff [7] also discuss all the rules considered here except 
the median rank rule, which is analyzed in detail by Basset and Persky [2].  

2  See [7] about this partitioning of collective decision rules. 
3  There are three reasons why I examine the accuracy of rankings produced by decision rules 

that are known to be ill-suited for rankings: 1) some rules considered to be inaccurate without 
noise may become relatively accurate when noise is present. 2) it could be interesting to 
measure the accuracy of the most popular collective decision rules under noise; and 3) I in-
vestigate the effects of noise in conjunction with the effects of manipulation. Measuring the 
manipulability of these rules in a noisy environment when they are used for rankings may 
produce some insights about the manipulability of these rules under noise when they are used 
for picking a winner. 
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1.4   Short Literature Review 

Tovey and Trick published several papers in which they treated the manipulation of 
collective decisions as a computational problem and produced hardness results for 
cases with a large number of voters and candidates. For example, in Bartholdi, Tovey, 
and Trick [1], they showed that it is not very difficult to manipulate popular collective 
decision rules, and only a few NP hard rules exist. Conitzer and Sandholm [3] and 
Conitzer, Sandholm, and Lang [4] produced hardness results for collective decision 
rules in cases with limited number of players. Faliszewski, Hemaspaandra, Hemas-
paandra, and Rothe [5] provided hardness results for different versions of Copeland 
elections.   

Other authors capture the manipulability of collective decision methods by the 
proportion of voting profiles for which micro manipulation could be successful. Saari 
[11] measures and compares manipulability of positional voting schemes with a small 
number of candidates. Smith [12] discusses cases with a small number of candidates 
and voters and uses computational methods to measure the manipulability of some 
collective decision rules. 

Kalai [6] analyzes the noise sensitivity of some social welfare functions. He inves-
tigates the chaotic consequences of noise when the number of voters tends to infinity 
and finds that majority rules are the most stable. Procaccia, Rosenstein, and Kaminka 
[10] measure the k-robustness of certain voting rules, which is the worst case prob-
ability that k independent errors in the preferences of voters will change the results of 
the elections. These authors rank some voting rules according to their k-robustness. 

Truchon and Gordon [13] use simulation models to analyze the noise sensitivity of 
a few collective choice rules. They assume that the probability of error in recognizing 
the true rank of alternatives is a known function of the distance between alternatives 
and there exists a loss function that measures social loss due to erroneous rankings. 
They use Monte Carlo simulations to compare the performance of five ranking rules 
and show that the maximum likelihood rule is the most accurate. 

Mitlöhner, Eckert and Klamler [8] discuss the combined effects of noise and ma-
nipulation. They investigate how effective manipulation of rank aggregation is under 
different ranking rules if voters receive noisy information about other voters’ prefer-
ences. By using simulation models they show how the number of manipulable voting 
profiles change with noise and how manipulation attempts may backfire in a noisy 
environment. 

2   Simulation Models to Measure the Accuracy and Manipulability 
of Collective Decision Rules 

I use Monte Carlo simulations to measure the accuracy and the manipulability of the 
earlier mentioned ten collective decision rules in a noisy environment. The following 
models work with weaker assumptions than similar simulation models in the litera-
ture. Also, they are especially well suited for the investigation of cases with not too 
small but limited number of candidates and committee members. The next simulation 
models make it possible to treat uniformly mathematically very different collective 
decision rules, and produce comparable and generalizable results. On the negative 
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side simulation models by default are less robust than mathematical models. It is also 
true that simulation models are not well suited for the investigation of one of the 
above rules, the Kemeny-Young rule, because it is a computationally difficult, NP 
hard rule4. 

3   Description of the Simulations 

3.1   Case N: Noise Only  

I distinguished among the following three scenarios in which a committee has to rank 
candidates: 1) noisy environment without manipulation (N); 2) noisy environment 
with manipulation (NM), and 3) noisy environment with noisy manipulation (NNM).  

In case N, in each simulation, random number of committee members and candi-
dates are generated. Committee members and candidates are placed on a 100 unit line; 
their locations are also random. Committee members can perfectly observe the candi-
dates’ locations. At the beginning of the simulation all candidates are given a random 
initial score (objective strength). Committee members observe the candidates’ objec-
tive strength imperfectly.  

A simple discounting formula, the parametric reward function, converts the objec-
tive strength of a candidate at a given position into the strength observed by a com-
mittee member at another location. The parametric reward function is as follows: 

sdzdsf z ⋅−= )1();,( ,                                                  (1) 

where s is the candidate’s objective strength, d is the normalized distance (distance 
divided by the length of the field) between a member and a candidate, and z is a fixed 
reward parameter (later: RewPar). I assume that all committee members use the same 
reward parameter. I considered the following ten z (reward parameter) values: 0.05, 
0.3, 0.6, 0.9, 1, 1.2, 1.6, 2, 4, 6. How do these values change the type of strength-
discounting? The overall pattern is that as noise increases i.e. the reward parameter 
decreases, the accuracy of the perceived strengths of closer candidates deteriorates. 
When z = 6 the system is almost noise free. There is almost no discounting, commit-
tee members observe clearly the objective strength of even very distant candidates. If 
z = 0.05 noise is extremely strong. In this case there is hardly any clarity regarding the 
objective strengths of individual candidates. Only the closest candidates' strengths are 
observable to committee members, the other candidates' objective strengths are heav-
ily and almost equally discounted. The other eight z parameter values represent eight 
different noise levels more or less equally spaced between the two extremes.  

In the simulations a reward parameter is selected from the above list at random. 
Every committee member processes each candidate's strength score according to the 
parametric reward function with the selected reward parameter and produces a unique, 
individual ranking based on the perceived (processed) scores. Then the committee uses 

                                                           
4  To be able to handle computation problems I used a modified version of the Kemeny-Young 

rule in the simulations. The KYStartWithBorda rule approximates the Kemeny-Young  
ranking. It starts with the Borda ranking of candidates, then in 2000 iterations finds the best 
improvement of the Borda ranking according to the Kemeny-Young criterion. 
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one of the ten ranking rules to generate the aggregate ranking of candidates. Next, the 
Spearman rank correlation coefficient between the actual collective ranking and the 
objective ranking is computed in conjunction with a critical value for the coefficient. 
The results (correlation coefficient and the critical value) are stored with the reward 
parameter, which represents the noise level, and the name of the aggregation rule. This 
procedure is performed for all ten ranking rules with the same parameter settings (same 
number of members, candidates, same locations, and the same reward parameter), and it 
is repeated 5000 times. 

3.2   Case NM: Noisy Environment with Manipulation 

All the conditions and procedures for case N apply except the candidates’ locations 
are not fixed during the simulation: candidates are allowed to move. After generating 
a random number of committee members and candidates all players receive their 
initial random locations. Candidates can perfectly observe the committee members’ 
locations. Players learn the fixed reward parameter committee members will use to 
process strength. In the light of his own initial location, the committee’s location, and 
the reward parameter each candidate determines his optimal location and moves to it5. 
After candidates stopped moving the simulation goes according to case N.  

3.3   Case NNM: Noisy Environment with Noisy Manipulation 

All the conditions and procedures for case NM apply except candidates have imper-
fect information about the reward parameter: they are not certain how committee 
members process strength based on distance. It is assumed that candidates learn the 
expected value of the reward parameter, and this information is accurate, but the ac-
tual reward parameter they use to determine their optimal locations will be different 
for each candidate. It is a random number drawn from a uniform distribution with the 
known expected value and fixed standard deviation. Once these individual reward 
parameter values are determined the simulation goes according to case NM. Also, as 
in the NM case, candidates are given ample time to move to their optimal locations. 

4   The Measurement of the Accuracy of the Ranking Rules 

The simulations produced large data sets. Based on these data sets I computed two  
accuracy measures. One was the mean accuracy of rules at different noise (reward pa-
rameter) levels. It was computed for all three cases by finding the mean of the Spearman 
rank correlations for a rule at all of the different noise levels. The other measure was the 
mean proportion of significant Spearman rank correlation coefficients at different noise 
levels. This was also computed for all the rules at all the different reward parameter 
values.   

                                                           
5  A candidate has an incentive to move away from his location if by this move his perceived 

total strength improves. In the simulations of the NM cases candidates are allowed to make a 
maximum of 90 consecutive, either one-step-to-the-left or one-step-to-the-right moves on a 
100 unit long line, which implies that they practically always end up at their optimal locations 
regardless of their original location. 
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5   Summary of the Simulation Results 

No matter which accuracy measure one uses or which case one considers at mini-
mum noise level (z = 6), just like the literature predicts, accuracy-wise there are two 
types of collective decision rules. The accurate, "good" rules are the Coombs, Jech, 
Borda Copeland, Kemeny-Young, and median rank rules, while the inaccurate, 
"bad" rules are the plurality, anti-plurality, minmax, and single transferable vote 
rules. The anti-plurality rule, however, is an outlier, it is unusually inaccurate in a 
noisy environment. 

Noise affects the accuracy of the above mentioned two types of rules differently. 
As noise increases, i.e. the value of the reward parameter declines, the bad rules' per-
formance improves, in some cases dramatically, until noise becomes very intense (z = 
0.3). When noise becomes extremely high (z = 0.05) the accuracy of bad rules slightly 
declines. On the other hand, the good rules' accuracy constantly deteriorates when 
noise increases. However, in this group accuracy declines with noise at different rates. 
While at low noise levels there is hardly any difference among the accuracy of the 
rules in the good group, at higher noise levels one can distinguish two subgroups: 
group 1, which includes the Jech, median rank, and Borda rules, always outperforms 
group 2 with the Copeland, Coombs, and Kemeny-Young rules.  

Manipulation, to some extent, shields most of the rules from the effects of noise. 
With noisy manipulation or pure manipulation the bad rules improve slower while  
the good rules deteriorate slower as noise increases. Also, with manipulation at high 
noise levels the accuracy of the rules is slightly higher across the board. If one uses 
the mean proportion of significant rank correlations to measure accuracy, at high 
noise levels with manipulation there is only a minimal difference between the accu-
racy of good and bad rules. With manipulation there seems to be a sweet spot, z = 0.3: 
at this noise level all the rules, good and bad, are almost equally accurate.  

6   Simulation Results in More Detail 

Next, six graphs will be presented summarizing the simulation results in more detail. 
The simulations revealed that the anti-plurality rule is an outlier;  in most  situations it 
is much less accurate than the other nine rules. For this reason the graphs present this 
rule's performance separately from other rules. The remaining nine rules are parti-
tioned into three homogeneous groups. The following graphs capture the mean accu-
racy of the rules in the three groups under noise and/or manipulation. Groups 1 and 2 
contain the good, accurate rules: in group 1 there are the Jech, median rank and Borda 
rules, and group 2 includes the Copeland, Coombs and KYStartWithBorda methods. 
The two groups are separated because their response to noise and manipulation fol-
lows somewhat different patterns. Group 3 includes the bad rules, except the outlier 
anti-plurality rule. In group 3 there are the minmax, the plurality and the single trans-
ferable vote methods. In some cases the KYStartWithBorda rule or the minmax rule 
shows atypical patterns. In these cases these rules will be presented individually, 
separately from their groups. 
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6.1   Mean Rank Correlations Compared, Case N 

Fig. 1 shows that as z decreases, i.e. noise increases, mean accuracy in the first two 
groups declines and the mean values of these groups diverge. Group 3 rules react to 
higher noise differently. Mean accuracy in group 3 constantly increases until z = 0.3, 
then declines as noise becomes extreme (z = 0.05). The mean accuracy of minmax is 
always higher than the mean accuracy of the other two rules in this group. At high 
noise levels minmax gets quite close to group 2.  
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Fig. 1. Mean Rank Correlations with Noise 

6.2   Mean Rank Correlations Compared, Case NNM 

The accuracy of anti-plurality is still bad, but not constant anymore: it mildly in-
creases with noise, which is a group 3 pattern. Also, at very low noise anti-plurality's 
accuracy is very similar to the accuracy of rules in group 3. In this case minmax is in 
group 3 from the outset and stays with this group for all reward parameter values. In 
group 3 mean accuracy increases sharply with noise between z = 0.9 - 0.3, then it 
declines. At extremely high noise (z = 0.05) the presence of noisy manipulation 
slightly improves mean accuracy for all rules. In the NNM case the trends regarding 
the good rules are similar to the trends in case N. Accuracy is near perfect until z = 
1.6. Then, as noise increases the mean accuracy in groups 1 and 2 declines but until z 
= 0.9 at a slower rate than in the previous case. At lower reward parameters the de-
cline of the mean values in groups 1 and 2 is faster. Also, the divergence of means in 
groups 1 and 2 also becomes faster. The KYStartWithBorda rule shows a slightly 
different pattern than the other two rules in group 2. In sum, compared with case N, 
noisy manipulation preserves trends but somewhat delays the effects of noise on the 
accuracy of collective decision rules. 
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Fig. 2. Mean Rank Correlation with Noise and Noisy Manipulation 

6.3   Mean Rank Correlations Compared, Case NM 

The delaying effects of manipulation are even more evident in the pure manipulation 
case than under noisy manipulation. As Fig. 3 shows the good rules are almost per-
fectly accurate until z = 0.9, except KYStartWithBorda. Then a sudden, steep decline 
and divergence of accuracy figures follows. Between z = 6 - 1.2 group 3 rules' accu-
racy is indistinguishable from the worst performing anti-plurality rule's performance: 
it is practically constant, close to 0.55. From z = 1.2 these rules' performance  
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Fig. 3. Mean Rank Correlation with Noise and Manipulation 
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improves. Between z = 0.9 - 0.3 it increases very fast, then accuracy significantly 
declines at z = 0.05. At the highest noise level all the rules have the same mean corre-
lation coefficients as in the NNM case.  

6.4   Proportion of Significant Correlation Coefficients Compared, Case N 

Next let us investigate how the mean proportion of significant correlation coefficients 
vary with noise. Fig. 4 reveals how some patterns change when one uses this measure 
to assess the accuracy of the aggregation rules in question.  
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Fig. 4. Proportion of Significant Rank Correlation Coefficients with Noise Only 

The anti-plurality rule's mean proportions constantly increase with noise but re-
main significantly below the mean proportions of the other nine rules. Accuracy in 
groups 1 and 2 decline and diverge slower than in cases where accuracy was meas-
ured by the mean of rank correlation coefficients. Group 1 and 2 rules' performance 
diverge only for noise levels higher than z = 0.9.  Even at extreme noise overall accu-
racy is quite high and accuracy differences between rules in groups 1 and 2 are small. 
Between z = 6 - 2 the  accuracy of group 3 rules improves fast, then it practically 
stagnates until z = 0.6. Interestingly, group 3 catches up with group 2 at z = 0.6. There 
is a minimal difference among the mean proportions in the three groups at this noise 
level. Minmax remains quite accurate even at extremely high noise level and for z < 
0.6 it practically joins to rules in group 2. When noise becomes extreme the accuracy 
of the other two rules in group 3 declines. 

6.5   Proportion of Significant Correlation Coefficients Compared, Case NNM 

As Fig. 5 shows when we add noisy manipulation to the simulations, the first two groups' 
accuracy starts do decline and diverge from z = 0.9. However, even at z = 0.05 the 
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Fig. 5. Proportion of Significant Rank Correlation Coefficients with Noise and Noisy  
Manipulation 

accuracy of rules in the first two groups is higher than in the previous case without 
manipulation. Group 3 (including minmax) starts at approximately zero mean signifi-
cant proportion level. In this group, between z = 4 - 0.6, accuracy improves fast, al-
most in a linear fashion, and at z = 0.3 it gets close to the  accuracy level in group 2. 
Then, at z = 0.05 accuracy sharply declines. It is interesting how the accuracy of the 
anti-plurality rule varies. It starts at 0 but increases steadily with noise. At z = 0.05 it 
almost reaches the accuracy of group 3 rules, and it surpasses its own accuracy with-
out manipulation.  
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Fig. 6. Proportion of Significant Rank Correlation Coefficients with Noise and Manipulation 
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6.6   Proportion of Significant Correlation Coefficients Compared, Case NM 

The performance of group 1 and 2 rules in the pure manipulation case is almost iden-
tical to their performance in the previous noisy manipulation case. Group 3 rules' 
performance, however, changes significantly. Just like anti-plurality, in the NM case 
group 3 rules are completely inaccurate between z = 6 - 1.2. Then until z = 0.6 the 
accuracy in this group (and the accuracy of anti-plurality at a different level) increases 
very fast. Between z = 0.6 - 0.05 accuracy figures in the NM case coincide with the 
appropriate values from the NNM case. 

7   Conclusion 

How do noise and manipulation affect the accuracy of collective ranking rules? The 
paper presented simulation results that measured the performance of ten frequently 
used collective decision rules under noise and manipulation. Among the ten ranking 
rules there was an outlier, the anti-plurality rule, which in most cases performed 
significantly weaker than the other nine rules. Not counting the outlier, at low noise 
the rules can be divided into two groups: good and bad. Noise improves the bad rules' 
accuracy and worsens the good rules' performance. At low noise the rules in the good 
group perform almost equally well. When noise increases the accuracy of the good 
rules deteriorates at different rates. At higher noise levels two different subgroups 
emerge: group 1 with the Jech, median rank and Borda rules, and group 2 with the 
Copeland, Coombs, and (a version of the) Kemeny-Young rule. At high noise group 1 
rules always outperform group 2 rules. Manipulation delays the effects of noise for 
some time: performance improvement (bad rules) and performance deterioration and 
divergence (good rules) emerge only at higher noise levels with manipulation than 
without it. It was also shown that in some cases at higher noise levels the difference 
between the accuracy of good and bad rules is negligible. 
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Abstract. We consider a game of two agents competing to add items
into a solution set. Each agent owns a set of weighted items and seeks
to maximize the sum of their weights in the solution set. In each round
each agent submits one item for inclusion in the solution. We study two
natural rules to decide the winner of each round: Rule 1 picks among the
two submitted items the item with larger weight, Rule 2 the item with
smaller weight. The winning item is put into the solution set, the losing
item is discarded.

For both rules we study the structure and the number of efficient solu-
tions, i.e. Pareto optimal solutions. For Rule 1 they can be characterized
easily, while the corresponding decision problem is NP-complete under
Rule 2. We also show that there exist no Nash equlibria. Furthermore,
we study the best-worst ratio, i.e. the ratio between the efficient solution
with largest and smallest total weight, and show that it is bounded
by two for Rule 1 but can be arbitrarily high for Rule 2. Finally, we
consider preventive or maximin strategies, which maximize the objective
function of one agent in the worst case, and best response strategies for
one agent, if the items submitted by the other agent are known before
either in each round (on-line) or for the whole game (off-line).

Keywords: multi-agent optimization, games.

1 Introduction

We consider a multi-agent problem where agents compete to fill a joint solution
set with their items. We focus on the following situation: There are two agents,
each of them owning one of two disjoint sets of weighted items. The agents
have to select items from their set for putting them in a common solution set.
This process proceeds in a fixed number of rounds. In every round each of the
two agents selects exactly one of its items and submits the item for possible
inclusion in the solution set. A central decision mechanism chooses one of the
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items as “winner” of this round. The winning item is permanently included in the
solution set while the losing item is permanently discarded. Each agent wants to
maximize its total solution value which is given by its own items’ weights in the
solution set. The sets if items are known to both agents while the submission of
items in each round occurs simultaneously. Now the problem is how to compute
solutions which take into account each agent’s solution function, and that can
be used to support the negotiation among the agents. Although the addressed
problem does not come directly from a real world application, it is such a natural
and simple game (and yet not trivial) to make its investigation interesting and
stimulating.

This problem can also be regarded as a single-suit card game in which each
of two players chooses a card from its hand. The highest (or lowest) value card
wins and each card can be used only once. In [5] the authors study a zero-sum
game in which the cards are submitted simultaneously and the players want to
maximize the total value of the won cards. In [3,6] the so called whistette game
is addressed. There is a totally ordered suit of 2n cards, distributed between the
two players. The player who has the lead plays first on each trick. The player
with the higher card wins a trick and obtains the lead. Players want to maximize
the number of won tricks.

The problem here addressed is also related to seeds assignment in team sport
tournaments, e.g. chess leagues, where players of each team are ordered and
each player faces the opponent on the same ordered position of the other teams‘
list. However, the ordering of players may be restricted to obey an established
ranking (e.g. ELO points) to some extend. There the objective is to maximize
the number of wins while our problem aims at the maximization of the total
weight of all winning rounds.

1.1 Formal Problem Setting

In the following, A resp. B indicate the agents’ names each of them owning a
set of n items, where item i has weight ai resp. bi. Sometimes we will identify
items by their weight. All information about the input list of items is public.

The game is performed over c rounds. In each round both of the two agents
simultaneously submit one of their items, say ai and bj , in secret. We consider
the two most natural rules for deciding which of the two submitted items wins
and is added to the solution set:

Rule 1: if ai ≥ bj then A wins;

Rule 2: if ai ≤ bj then A wins.1

Recall that in both cases the losing item is discarded and can not be submitted
a second time.

Throughout this paper we assume the items to be sorted in decreasing order
of weights, i.e. a1 ≥ a2 ≥ . . . ≥ an resp. b1 ≥ b2 ≥ . . . ≥ bn.
1 In case of a tie we assume that A always wins. Two analogous rules where B wins

all ties can be represented by exchanging the roles of A and B.
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This problem can be represented by a graph model. Each agent’s item is asso-
ciated to a node of a weighted complete bipartite graph G = (V A∪V B, EA∪̇EB).
An arc (i, j) belongs to EA or to EB depending on the winner of a comparison
of ai and bj , which of course depends on the applied selection rule.

Rule 1 : arc (i, j) with weight wij = max{ai, bj} belongs to EA if ai ≥ bj , i.e. if
A wins, otherwise it belongs to EB;

Rule 2 : arc (i, j) with weight wij = min{ai, bj} belongs to EA if ai ≤ bj, i.e. if
A wins, otherwise it belongs to EB;

Every pair of items (ai, bj) submitted simultaneously in one round can be rep-
resented by an arc (i, j) between the two corresponding nodes. Hence, after
completing c rounds any solution may be represented as a c-matching M on G.
Recall that a c-matching assigns c nodes in V A to c nodes in V B. The total
weight of items in the solution for agent A is given by wA(M) =

∑
ij∈M∩EA wij

and that of B by wB(M) =
∑

ij∈M∩EB wij . Thus, determining a global optimum
maximizing the sum of the two agents’ weights can be done in polynomial time
by solving a weighted cardinality assignment problem [2]. Indeed, in the next
section, we show that the global optimum under both rules can be found in an
straightforward way, without recurring to matching techniques.

Note that matching problems on graphs with edges partitioned into two sets
are addressed in [4].

2 Structure of Efficient Solutions

In this section we investigate the solution structure in an offline perspective, i.e.
we consider the problem from a centralized and static point of view and look
for Pareto efficient solutions. Then, we show that under both rules, no Nash
equilibria exist, in general.

2.1 Pareto Efficient Solutions

Using the same terminology as in multicriteria optimization a solution M is
called Pareto efficient or simply efficient or nondominated if there exist no
solution M ′ such that wA(M) ≤ wA(M ′), wB(M) ≤ wB(M ′) and wA(M) +
wB(M) < wA(M ′) + wB(M ′).

We start our investigation with Rule 1 and notice that in this case each agent
always submits its c largest items. So, in the remainder of this section, without
loss of generality, under Rule 1 we assume c = n.

Theorem 1. Under Rule 1, there are at most c + 1 efficient solutions. These
can be computed in polynomial time.

Proof. Suppose that a feasible solution exists such that agent A wins k rounds
and therefore B wins the remaining c − k rounds. W.l.o.g. we assume a1 > b1
(otherwise we can exchange the roles of A and B). Since a1 may win in any case,
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if A is rational there is k ≥ 1, otherwise, if A “voluntarily” decides to lose all
rounds by submitting at each round an item smaller than the corresponding B
item, k may be equal to 0.

By a simple pair interchange argument it is easy to see that in this case the
solution where A (B resp.) wins with its heaviest k (c − k resp.) items is also
feasible. Clearly, it is also nondominated. If k ≥ 1, the structure of the resulting
solution is such that item ai is matched to bc−k+i for i = 1, . . . , k, and to bi−k for
i = k + 1, . . . , c. Otherwise, we have an additional efficient solution with wA = 0
and wB =

∑c
i=1 bi.

Computing the solution values for all c + 1 efficient solutions can be done in
linear time by one scan through the list of items after sorting the items. Giving
also the corresponding pairs of items as output would require O(n2) time.

A straightforward consequence of the above result is that, finding the global
optimum, i.e. the solution M∗ for which wA(M∗) + wB(M∗) is maximum, can
be done in a simple way in polynomial time also without solving a matching
problem, since M∗ is a Pareto efficient solution.

Turning to Rule 2, we observe that it is not a trivial task to select the “best”
c items to submit among the n available. Picking only large items may results
in too many losses, a restriction to the smallest items increases the chances to
win many rounds but the gain from these victories may be quite small. Hence,
we first restrict our attention to the case c = n. In this case we can show the
following results.

Theorem 2. Under Rule 2, there can be an exponential number of efficient
solutions for c = n.

Consider the following example for some small ε > 0:

Example 1.
agent A agent B
a1 0 b1 ε
ai 2i−2 bi ai + ε i = 2, . . . , c

For any set S ⊆ {2, . . . , c − 1} consider the solution M where an item ai wins
and, at the same time, bi loses if and only if i ∈ S ∪ {1}. It is always possible to
construct such an M : clearly, a1 always wins; then, if i ∈ S, ai is matched to bi,
else (i �∈ S) ai is matched to some bj , with j < i, j �∈ S. In M , a1 is matched to
b1 or bc and ac is always losing.

Neglecting the ε values, the sum of the weights wA(M) + wB(M) is constant
and equals 2c−1 − 1. Therefore, for any possible choice of S, it is possible to
obtain an efficient solution since the resulting values of wA(M) are all different.
Thus, there are exponentially many efficient solutions.

We now show that, under Rule 2, the problem of deciding whether a certain
combination of weights for agents A and B can be reached is NP-complete by
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reduction from Partition. This implies that finding efficient solutions under
Rule 2 is in general an NP-hard task.

Let the decision problem be defined as follows.

Subset Weight Problem (SWP):
Instance: positive integers ai and bi, i = 1, . . . , n; two positive values
WA and WB.
Question: Is there a solution (matching) M such that wA(M) ≥ WA

and wB(M) ≥ WB?

Theorem 3. Subset Weight Problem is (binary) NP-complete.

Proof. Consider an instance I of Partition with integer valued items
{v1, v2, . . . , vn} and

∑n
i=1 vi = V . Assume v1 < v2 < . . . < vn.

For T > vn and ε < 1/(n + 1), build an instance ISWP of Subset Weight

Problem as follows:

(ISWP )
a0 = T, b0 = ε,
ai = vi, bi = vi + ε, i = 1, . . . , n,
WA = WB = V

2 .

Let I be a YES-instance of Partition. Then it is easy to build a solution M
of ISWP such that wA(M) = V/2 and wB(M) ≥ V/2. Let S ⊆ {1, 2, . . . , n} be
such that

∑
i∈S vi = V/2 and S̄ = {0, 1, . . . , n} \ S. The required solution M is

given as follows: Each item i of A with i ∈ S is matched to the corresponding
item i of B, while each item j of B with j ∈ S̄ is matched to

arg min{ah | h ∈ S̄, ah > bj}.
Clearly, the two agents total weights are: wA(M) =

∑
i∈S ai = V/2 and

wB(M) =
∑

i∈S̄ bi ≥ V/2.
Now, let ISWP be a YES-instance of Subset Weight Problem and M be

a solution of ISWP such that S̄ ⊆ {0, 1, 2, . . . , n} is the set of “winning” items
of agent B. Note that 0 ∈ S̄, since item 0 of B always wins. So,

wB(M) =
∑
i∈S̄

bi =
∑
i∈S̄

ai + ε ≥ V/2

and wA(M) ≥ V/2. Note that, since each winning item i of A is matched to a
losing item of B with larger weight, the total weight LB of the “losing” items of
agent B is such that LB =

∑
i∈S bi ≥ wA(M) ≥ V/2. Since, LB +wB(M) = V +

(n+1)ε, the vi are all integers and ε < 1/(n+1), then
∑

i∈S vi =
∑

i∈S̄ vi = V/2.

Observe that the above proof shows that even if c = n, i.e. the items to be
submitted must not be selected, the problem is NP-hard.

Although finding efficient solutions under Rule 2 is NP-hard, the global op-
timum M∗ can be found in polynomial time using matching techniques [2] as
already mentioned in Section 1.1. However, it is easy to see that for any value
of c ≤ n, we may compute a global optimal solution in a straightforward way by
setting M∗ = {(a1, b1), (a2, b2), . . . , (ac, bc)}.
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Table 1. Payoffs of agents A and B with data of Example 2 under Rule 1 and 2

〈b1, b2〉 〈b2, b1〉
〈a1, a2〉 0,18 10,12
〈a2, a1〉 10,12 0,18

〈b1, b2〉 〈b2, b1〉
〈a1, a2〉 15,0 5,6
〈a2, a1〉 5,6 15,0

2.2 Nash Equilibrium

It is easy to show that, under both rules, no Nash equilibria exist, except for
trivial instances where only one Pareto optimum exists. The following example
presents an instance in which there are no Nash equilibria.

Example 2.
agent A agent B
a1 10 b1 12
a2 5 b2 6

There are c = n = 2 rounds. Table 1 gives the normal-form representations of
the game under the two rules. Assume, under Rule 1, that A submits a1 and
a2 in the first and second round, respectively. Then the best sequence for B
is 〈b1, b2〉. Clearly, when B submits the latter sequence, A changes its own, by
swapping a1 with a2. So, A’s strategy 〈a1, a2〉 is not in a Nash equilibrium. An
analogous reasoning applies for the only other possible sequence for A, 〈a2, a1〉.
So, under Rule 1, no Nash equilibrium exists. The same argument applies for
Rule 2.

3 Best-Worst Ratio

The price of anarchy is usually defined as the worst possible ratio between the
value of the global (social) optimum and the value of a solution derived by
a selfish optimization. In this context, we adopt a slightly different definition,
considering the ratio between the best and worst values of two efficient solutions,
and we denote it as the best-worst ratio (BWR). Formally,

BWR = max
M∈E

{
w∗

wA(M) + wB(M)

}
,

where E is the set of efficient solutions and w∗ is the global optimum value.
It will be shown that this ratio is equal to 2 in case of Rule 1, while it can be

arbitrarily high in case of Rule 2.

Theorem 4. The best-worst ratio under Rule 1 is 2.

Proof. Let X = {a1, a2, . . . , ac} ∪ {b1, b2, . . . , bc} and number the items of X
in non-increasing order of weights, X = {x1, x2, . . . , x2c}. Obviously, the global
optimum value is bounded from above by the sum of the c largest items, i.e.
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w∗ ≤ ∑c
i=1 xi. On the other hand, even the value of the efficient solution M̄

with the worst global value can be bounded from below. In fact, in M̄ , the
set X can be partitioned into the two sets XV and XL of winning and losing
items. Clearly |XV | = |XL| = c. Since, under Rule 1, each winning item is
matched to an item with smaller weight, then w(XV ) ≥ w(XL). Therefore
wA(M̄)+wB(M̄) = w(XV ) ≥ w(X)/2. Since w(X) ≥ w∗, the statement follows.

To show that the bound of 2 can be reached consider the following example for
a large constant T :

Example 3.
agent A agent B
a1 T b1 T − 1
a2 2 b2 1

Let c = 2. Agent A submits items 〈a1, a2〉. There are only two efficient solutions:
If B submits b1 first and b2 second thus losing both rounds, the global solution
value is T + 2. If B exchanges the order of its submissions then A wins the first
round and B the second yielding a global solution value of 2T − 1. Therefore,
for T tending to infinity, the best-worst ratio tends to 2.

Theorem 5. The best-worst ratio under Rule 2 can be arbitrarily high.

Consider the following trivial example:

Example 4.
agent A agent B
a1 T b1 T + 1
a2 2 b2 1

There is only one round. If agent B submits b1 it will lose in any case. Therefore,
any selfish strategy of B will submit b2 gaining in any case wB = 1, while agent
A will lose and have wA = 0. A global optimum would submit a1 and b1 yielding
a total weight of T .

4 Strategies of Agents

In this section we address the problem of devising a strategy, that is an algorithm,
that suggests an agent which item to submit at each round, in order to maximize
the agent’s weight under different information scenarios.

In particular, in the off-line case, where an agent, say B, knows all c submis-
sions of A before deciding on its c submissions, the problem of selecting the best
c items for B is easy under both rules. Take the bipartite graph G defined in
Section 1.1 and restrict V A to the c nodes representing the items submitted by
A. Now compute a maximum weight V A-perfect matching, where the weight of
every arc in EA is set to 0 while arcs in EB keep the weight of the corresponding
winning item in B. Actually, such c-matchings can be computed through simple
greedy algorithms depending on the rule in force.
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The above remark implies that, in the on-line case in which an agent does
not know in advance the sequence of items submitted by the other, no strategy
of B can guarantee a limited competitive ratio [1], since A can always minimize
B’s weight by maximizing its own weight. For instance, consider the problem
given in Example 2, whatever the strategy of B is, under Rule 2 in the worst
case, wB = 0, which makes the competitive ratio unbounded. (Under Rule 1,
the same example applies by exchanging the role of the two agents).

In what follows we consider the scenario under Rule 1 where agent B, gets
to know the item submitted by agent A in every round before making its own
move. We will try to answer the question how B should select its items under
such an advantageous asymmetry of information. In this particular context, the
strategy adopted by agent B is referred to as best response strategy.

Somewhat surprisingly, it will turn out that for Rule 2 an optimal best re-
sponse strategy can be found while for Rule 1 the existence of such a strategy
can be ruled out.

4.1 Best Response Strategies for Rule 1

We now consider the scenario where B only knows the submission of A in the cur-
rent round and has to react immediately before both agents move on to the next
round. If B knows in advance which items A would submit (for instance when
n = c, or A behaves in a rational way and only uses its largest items a1, . . . , ac)
the problem is easy. By solving the matching problem described above, B knows
the optimal answer to every item submitted by A. The ordering of these submis-
sions does not matter, since B simply uses the answer indicated by the optimal
matching to every item of A.

The problem becomes more difficult if we cannot restrict the choices of A but
have to assume that any item i ∈ {1, . . . , n} could be submitted by A. In this
case, there is no optimal strategy for B. Indeed we can show that no strategy of B
can have a competitive ratio (compared to the best off-line strategy) better than
1.618 . . . . On the other hand, we will show that a simple greedy-type algorithm
has a worst-case competitive ratio of 2.

Theorem 6. No on-line strategy of agent B against an arbitrary strategy of
agent A can have a competitive ratio smaller than

√
5+1
2 = 1.618034 . . . under

Rule 1.

Consider the following example:

Example 5.
agent A agent B
a1 2 b1 1 + ε
a2 1 b2 y
a3 ε b3 ε

There are c = 2 rounds and parameter y is chosen such that 2ε < y < 1. We
will consider two (suboptimal) strategies of agent A: In both cases A starts by
submitting a3. In strategy S1 it is followed by a1, in strategy S2 by a2.
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Given the first item a3 there are only two ways for agent B to react:
In Case 1, B submits b2 thus winning this round. Against strategy S1, B loses

the second round and the worst-case total weight for Case 1 is WB
1 = y.

In Case 2, B submits b1 and wins again. But against strategy S2, B loses again
the second round and in the worst-case stops with a total weight WB

2 = 1 + ε.
However, an optimal off-line strategy of B against S1 would be 〈b1, b2〉 gaining

a weight of W ∗
1 = 1 + ε, while against S2 the submission of 〈b2, b1〉 would yield

W ∗
2 = y + 1 + ε.
Altogether we get a lower bound for the worst-case competitive ratio of

max
2ε<y<1

min
i=1,2

{
W ∗

i

WB
i

}
= max

2ε<y<1
min

{
1 + ε

y
,

y + 1 + ε

1 + ε

}
.

Clearly, this maximum is attained if the expressions of the minimum are equal.
An elementary calculation yields y = (1+ε)

√
5−1
2 . Plugging in this value of y in

the above equation yields
√

5+1
2 as a lower bound for the competitive ratio and

proves Theorem 6.
In the above analysis B submits its c = 2 largest items; however it is not hard

to see that the same result is attained when B may decide to submit b3.

The following greedy-type algorithm tries to win against every item submitted
by A with the largest item still available. If this fails and a loss cannot be avoided
in the current round the smallest remaining item is submitted.

Algorithm 1. Algorithm for agent B responding to the submissions of agent A
under Rule 1

Greedy Response Rule 1

1: f ← 1 {index of largest available item}
2: � ← c {index of smallest available item}
3: repeat
4: A submits item a′

5: if bf > a′ then
6: B submits bf and wins
7: f ← f + 1
8: else
9: B submits b� and loses

10: � ← � − 1
11: end if
12: until f < � {all c rounds finished}

Theorem 7. Algorithm Greedy Response Rule 1 has a tight competitive
ratio of 2.

Proof. Let SA be the complete set of items submitted by A. At the end of the
execution of Greedy Response Rule 1 agent B has added its k largest items
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into the solution and reached a total weight of WB (k = f − 1 at the end of the
algorithm).

It is easy to see that an optimal off-line solution against the same set SA will
always consist of the largest k∗ items with k∗ ≥ k. In this optimal strategy the
items in set DB = {k + 1, . . . , k∗} of B all win against some items in SA. This
means that at least the smallest items in SA must be potential losers against
DB. Let j be the index of the c− (k∗− k− 1) largest item in SA. Then we have
bk+1 > aj .

Considering the item bf = b� submitted by B in the last round of the game
there are two cases to distinguish.

Case 1: bf loses. Since bf = bk+1 would win against any of the k∗ − k smallest
items in SA, these must have been submitted by A before. Moreover, at the
rounds where these items were submitted, item bk+1 was still available and would
yield a win for B. By definition of Greedy Response Rule 1 some other item
of B must have won these rounds. Therefore, the total number of wins for B
must be at least k∗ − k, i.e. k ≥ k∗ − k, which proves the statement of the
theorem.
Case 2: bf wins. In all rounds, in which A submitted one of the k∗− k smallest
items in SA, item bf was still available and would have won against these items.
As above, by the definition of Greedy Response Rule 1 some other item of
B must have won these rounds and again k ≥ k∗ − k.

To show that the bound of 2 is tight consider the simple Example 6.

Example 6.
agent A agent B
a1 1 + ε b1 1 + 2ε
a2 1− ε b2 1

There are c = 2 rounds. Agent A submits a2 in the first round. Greedy Re-

sponse Rule 1 reacts with b1 and loses the second round (a1 against b2) gaining
a total weight of 1 + 2ε.

An optimal off-line strategy of B would react with b2 in the first round thus
winning both rounds and gaining 2 + 2ε.

4.2 Best Response Strategies for Rule 2

Even under Rule 2, if B knows in advance which items A would submit (e.g.,
when n = c), it is easy to devise an optimal response algorithm using the same
matching argument holding for Rule 1.

As in Rule 1, the following greedy-type algorithm for Rule 2 tries to win
against every item submitted by A with the largest possible winning item. If no
such item exists, a losing item is determined which can not worsen the remainder
of the solution for B. To avoid a tedious special treatment of ties we will assume
in this subsection that all 2n items have different weights.



84 G. Nicosia, A. Pacifici, and U. Pferschy

Algorithm 2. Algorithm for agent B responding to the submissions of agent A
under Rule 2

Greedy Response Rule 2

1: RA ← {a1, . . . , an} {set of remaining items for A}
2: RB ← {b1, . . . , bn} {set of remaining items for B}
3: repeat
4: A submits item a′, remove a′ from RA

5: bmin ← min{bi | bi ∈ RB}
6: if a′ > bmin then
7: bwin ← max{bi | bi < a′, bi ∈ RB}
8: B submits bwin and wins, remove bwin from RB

9: else
10: Aj ← {ai | ai ≥ bj , ai ∈ RA}, j = 1, . . . , |RB |
11: Bj ← {bi | bi ≥ bj , bi ∈ RB}, j = 1, . . . , |RB |
12: determine the minimum index � ≥ 1 such that |A�| < |B�|
13: B submits b� and loses, remove b� from RB

14: end if
15: until all c rounds finished

Theorem 8. Algorithm Greedy Response Rule 2 yields the optimal off-line
solution under Rule 2.

Proof. We will consider round 1, where agent A submits a′, and show that also
an optimal algorithm Opt can not do better than Greedy Response Rule 2

and that the later does not diminish the range of options for an optimal strategy
in the subsequent rounds. Repeating this argument over all rounds yields the
statement of the theorem.

Case 1: B wins. What are the alternatives for Opt? If Opt submits an item
bj < bwin it earns a smaller weight in round 1. In contrary to Greedy Response

Rule 2 it can use bwin to win in one of the subsequent rounds. However, in this
case Greedy Response Rule 2 could submit bj in this future round and win
as well since bj < bwin. Obviously, the total weight of these two rounds would
be the same for both algorithms.

If Opt chooses to submit an item bk ≥ a′ and loose “voluntarily”, it can again
use bwin to win in a later round. Greedy Response Rule 2 might be forced
to loose in that round, but again the two algorithms end up with the same total
weight for these two rounds.
Case 2: B looses. First, let us note that in the special case b1 > a1 (considering
only items in RA and RB) Greedy Response Rule 2 will submit b� = b1.
Since b1 cannot win in any round, it clearly cannot violate optimality to submit
b1 in a round which B will lose in any case.

Also for b1 < a1 index � is well defined. Note that bj ∈ Bj , ∀ j. For j = 1 the
defining inequality in line 12 is clearly violated since A1 ⊇ {a1} and B1 = {b1}.
Since a′ < bmin and |RA| = |RB|, an index � satisfying |A�| < |B�| will be
determined for bmin at the latest.
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Note that in the ordering of the items in RA ∪RB there must occur an item
b�−1 ∈ RB directly before b�. Otherwise, since there was |A�−1| ≥ |B�−1|, one
(or more) items of RA plugged in between b�−1 and b� would not lead to the
required change in the balance of cardinalities. This means that A�−1 = A�.

Now consider that B�−1 can be matched to win against A�−1. This can be
seen by a simple scan through the items in RA∪RB in decreasing order, starting
with a1 being matched to b1. A failure of such a scan would immediately yield
a new smaller value of �. In fact, the existence of such a matching follows from
Hall’s marriage theorem. Clearly, also every subset of items of A�−1 (= A�) can
be matched to be beaten by the corresponding number of items of B�−1 (e.g. by
taking the smallest items in B�−1).

On the other hand, it follows from the definition of |A�| and |B�| that there
are more items in RB with weight larger or equal b� than in RA. Therefore, it is
impossible for any strategy that all items in B� will win against some items in
RA, the items in A� being the only candidates for losers.

Since it is impossible for agent B to beat all items in A�, but every strict
subset of A� can be beaten also by items in B�−1, the removal of b� does not
change the options of Opt in any subsequent round.

5 Conclusions

This work puts several directions forward for future research. One is the design
of algorithms to efficiently enumerate all Pareto-optimal solutions under Rule 2.
Another is to extend our results to further relevant rules controlling how an
agent’s item is added to the solution set. For instance, the case when losing
items are not discarded but are reusable (meaning that an agent can submit
them in successive rounds), seems particularly significant. Furthermore, it would
be interesting to investigate the problem where both agents ignore the weights
of the items of the other agent.
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Abstract. We propose various models for lobbying in a probabilistic environ-
ment, in which an actor (called “The Lobby”) seeks to influence the voters’ pref-
erences of voting for or against multiple issues when the voters’ preferences are
represented in terms of probabilities. In particular, we provide two evaluation
criteria and three bribery methods to formally describe these models, and we
consider the resulting forms of lobbying with and without issue weighting. We
provide a formal analysis for these problems of lobbying in a stochastic envi-
ronment, and determine their classical and parameterized complexity depend-
ing on the given bribery/evaluation criteria. Specifically, we show that some
of these problems can be solved in polynomial time, some are NP-complete
but fixed-parameter tractable, and some are W[2]-complete. Finally, we provide
(in)approximability results.

1 Introduction

In the American political system, laws are passed by elected officials who are supposed
to represent their constituency. Many factors can affect a representative’s vote on a
particular issue: a representative’s personal beliefs about the issue, campaign contribu-
tions, communications from constituents, communications from potential donors, and
the representative’s own expectations of further contributions and political support.

It is a complicated process to reason about. Earlier work considered the problem of
meting out contributions to representatives in order to pass a set of laws or influence
a set of votes. However, the earlier computational complexity work on this problem
made the assumption that a politician who accepts a contribution will in fact—if the
contribution meets a given threshold—vote according to the wishes of the donor.

It is said that “An honest politician is one who stays bought,” but that does not take
into account the ongoing pressures from personal convictions and opposing lobbyists
and donors. We consider the problem of influencing a set of votes under the assump-
tion that we can influence only the probability that the politician votes as we desire.
The methods for exerting influence on the voters is discussed in the section on bribery
criteria while the notion of sufficient influence for a voter is discussed in the section on
evaluation criteria.
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Lobbying has been studied formally by economists, computer scientists, and special
interest groups since at least 1983 [13] and as an extension to formal game theory since
1944 [15]. Each discipline has considered mostly disjoint aspects of the process while
seeking to accomplish distinct goals with their respective formal models. Economists
have formalized models and studied them as “economic games,” as defined by von
Neumann and Morgenstern [15]. This analysis is focused on learning how these com-
plex systems work and deducing optimal strategies for winning the competitions [13,1,
2]. This work has also focused on how to “rig” a vote and how to optimally dispense
the funds among the various individuals [1]. Economists are interested in finding effec-
tive and efficient bribery schemes [1] as well as determining strategies for instances of
two or more players [1,13,2]. Generally, they reduce the problem of finding an effective
lobbying strategy to one of finding a winning strategy for the specific type of game.
Economists have also formalized this problem for bribery systems in both the United
States [13] and the European Union [6].

In the emerging field of computational social choice, voting and preference aggre-
gation are studied from a computational perspective, with a particular focus on the
complexity of winner determination, manipulation, procedural control, and bribery in
elections (see, e.g., the survey [9] and the references cited therein), and also with respect
to lobbying in the context of direct democracy where voters vote on multiple referenda.
In particular, Christian et al. [5] show that “Optimal Lobbying” (OL) is complete for
the (parameterized) complexity class W[2]. The OL problem is a deterministic and non-
weighted version of the problems that we present in this paper. Sandholm noted that the
“Optimal Weighted Lobbying” (OWL) problem, which allows different voters to have
different prices, can be expressed as and solved via the “binary multi-unit combinatorial
reverse auction winner-determination problem” (see [14]).

We extend the models of lobbying, and provide algorithms and analysis for these
extended models in terms of classical and parameterized complexity. Our problems are
still related to the reverse auction winner-determination problem—in particular, our
extensions of the optimal lobbying problem allow the seller to express desire over
the objects, thus crucially changing the original problem in both the economic and
complexity-theoretic senses. This change is a result of the probabilistic modeling of the
seller’s reaction to the bribery. We also show novel computational and algorithmic ap-
proaches to these new problems. In this way we add breadth and depth to not only the
models but also the understanding of lobbying behavior.

2 Models for Probabilistic Lobbying

2.1 Initial Model

We begin with a simplistic version of the PROBABILISTIC LOBBYING PROBLEM (PLP,
for short), in which voters start with initial probabilities of voting for an issue and are
assigned known costs for increasing their probabilities of voting according to “The
Lobby’s” agenda by each of a finite set of increments.

The question, for this class of problems, is: Given the above information, along with
an agenda and a fixed budget B, can The Lobby target its bribes in order to achieve its
agenda? The complexity of the problem seems to hinge on the evaluation criterion for
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what it means to “win a vote” or “achieve an agenda.” We discuss the possible interpre-
tations of evaluation and bribery later in this section. First, however, we will formalize
the problem by defining data objects needed to represent the problem instances.

Let Qm×n
[0,1] denote the set of m×n matrices over Q[0,1] (the rational numbers in the

interval [0,1]). We say P ∈ Qm×n
[0,1] is a probability matrix (of size m×n), where each

entry pi, j of P gives the probability that voter vi will vote “yes” for referendum (syn-
onymously, for issue) r j. The result of a vote can be either a “yes” (represented by 1) or
a “no” (represented by 0). Thus, we can represent the result of any vote on all issues as
a 0/1 vector X = (x1,x2, . . . ,xn), which is sometimes also denoted as a string in {0,1}n.

We now associate with each pair (vi,r j) of voter/issue, a discrete price function ci, j

for changing vi’s probability of voting “yes” for issue r j . Intuitively, ci, j gives the cost
for The Lobby of raising or lowering (in discrete steps) the ith voter’s probability of
voting “yes” on the jth issue. A formal description is as follows.

Given the entries pi, j = ai, j/bi, j of a probability matrix P ∈Qm×n
[0,1] , choose some k ∈N

such that k + 1 is a common multiple of all bi, j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n, and
partition the probability interval [0,1] into k + 1 steps of size 1/(k+1) each. For each
i ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . ,n}, ci, j : {0,1/(k+1),2/(k+1), . . . , k/(k+1),1} → N is the
(discrete) price function for pi, j, i.e., ci, j(�/(k+1)) is the price for changing the probability
of the ith voter voting “yes” on the jth issue from pi, j to �/(k+1), where 0 ≤ � ≤ k + 1.
Note that the domain of ci, j consists of k + 2 elements of Q[0,1] including 0, pi, j, and 1.
In particular, we require ci, j(pi, j) = 0, i.e., a cost of zero is associated with leaving the
initial probability of voter vi voting on issue r j unchanged. Note that k = 0 means pi, j ∈
{0,1}, i.e., in this case each voter either accepts or rejects each issue with certainty and
The Lobby can only flip these results.1 The image of ci, j consists of k + 2 nonnegative
integers including 0, and we require that, for any two elements a,b in the domain of ci, j,
if pi, j ≤ a ≤ b or pi, j ≥ a ≥ b, then ci, j(a) ≤ ci, j(b). This guarantees monotonicity on
the prices.

We represent the list of price functions associated with a probability matrix P as a
table CP whose m · n rows give the price functions ci, j and whose k + 2 columns give
the costs ci, j(�/(k+1)), where 0≤ �≤ k+1. Note that we choose the same k for each ci, j,
so we have the same number of columns in each row of CP. The entries of CP can be
thought of as “price tags” that The Lobby must pay in order to change the probabilities
of voting.

The Lobby also has an integer-valued budget B and an “agenda,” which we will de-
note as a vector Z ∈ {0,1}n, where n is the number of issues, containing the outcomes
The Lobby would like to see on the corresponding issues. For simplicity, we may as-
sume that The Lobby’s agenda is all “yes” votes, so the target vector is Z = 1n. This
assumption can be made without loss of generality, since if there is a zero in Z at po-
sition j, we can flip this zero to one and also change the corresponding probabilities
p1, j, p2, j, . . . , pm, j in the jth column of P to 1− p1, j,1− p2, j, . . . ,1− pm, j (see the eval-
uation criteria in Section 2.3 for how to determine the result of voting on a referendum).

Example 1. We create a problem instance with k = 9, m = 2 (number of voters), and
n = 3 (number of issues). We will use this as a running example for the rest of this

1 This is the special case of Optimal Lobbying.
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paper. In addition to the above definitions for k, m, and n, we also give the following
matrix for P. (Note that this example is normalized for an agenda of Z = 13, which
is why The Lobby has no incentive for lowering the acceptance probabilities, so those
costs are omitted below.)

Our example consists of a probability matrix P:

r1 r2 r3

v1 0.8 0.3 0.5
v2 0.4 0.7 0.4

and the corresponding cost matrix CP:

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140
c1,2 −− −− −− 0 10 70 100 140 310 520 600
c1,3 −− −− −− −− −− 0 15 25 70 90 150
c2,1 −− −− −− −− 0 30 40 70 120 200 270
c2,2 −− −− −− −− −− −− −− 0 10 40 90
c2,3 −− −− −− −− 0 70 90 100 180 300 450

In Section 2.2, we describe three bribery methods, i.e., three specific ways in which The
Lobby can influence the voters. These will be referred to as Bi, i ∈ {1,2,3}. In addition
to the three bribery methods described in Section 2.2, we also define two ways in which
The Lobby can win a set of votes. These evaluation criteria are defined in Section 2.3
and will be referred to as C j , j ∈ {1,2}. They are important because votes counted
in different ways can result in different outcomes depending on voting and evaluation
systems (cf. Myerson and Weber [11]).

We now introduce the six basic problems that we will study. For i ∈ {1,2,3} and
j ∈ {1,2}, we define:

Name: Bi-C j PROBABILISTIC LOBBYING PROBLEM (Bi-C j -PLP, for short).
Given: A probability matrix P ∈Qm×n

[0,1] with table CP of price functions, a target vector

Z ∈ {0,1}n, and a budget B.
Question: Is there a way for The Lobby to influence P (using bribery method Bi and

evaluation criterion C j , without exceeding budget B) such that the result of the
votes on all issues equals Z?

2.2 Bribery Methods

We begin by first formalizing the bribery methods by which The Lobby can influence
votes on issues. We will define three methods for donating this money.

Microbribery (B1). The first method at the disposal of The Lobby is what we will
call microbribery. We define microbribery to be the editing of individual elements of
the P matrix according to the costs in the CP matrix. Thus The Lobby picks not only
which voter to influence but also which issue to influence for that voter. This bribery
method allows the most flexible version of bribery, and models private donations made
to candidates in support of specific issues.
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Issue Bribery (B2). The second method at the disposal of The Lobby is issue bribery.
We can see from the P matrix that each column represents how the voters think about a
particular issue. In this method of bribery, The Lobby can pick a column of the matrix
and edit it according to some budget. The money will be equally distributed among all
the voters and the voter probabilities will move accordingly. So, for d dollars each voter
receives a fraction of d/m and their probability of voting “yes” changes accordingly. This
can be thought of as special-interest group donations. Special-interest groups such as
PETA focus on issues and dispense their funds across an issue rather than by voter. The
bribery could be funneled through such groups.

Voter Bribery (B3). The third and final method at the disposal of The Lobby is voter
bribery. We can see from the P matrix that each row represents what an individual voter
thinks about all the issues on the docket. In this method of bribery, The Lobby picks a
voter and then pays to edit the entire row at once with the funds being equally distributed
over all the issues. So, for d dollars a fraction of d/n is spent on each issue, which moves
accordingly. The cost of moving the voter is generated using the CP matrix as before.
This method of bribery is analogous to “buying” or pushing a single politician or voter.
The Lobby seeks to donate so much money to an individual voter that he or she has no
choice but to move his or her votes toward The Lobby’s agenda.

2.3 Evaluation Criteria

Defining criteria for how an issue is won is the next important step in formalizing our
models. Here we define two methods that one could use to evaluate the eventual out-
come of a vote. Since we are focusing on problems that are probabilistic in nature, it
is important to note that no evaluation criteria will guarantee a win. The criteria below
yield different outcomes depending on the model and problem instance.

Strict Majority (C1). For each issue, a strict majority of the individual voters have
probability at least some threshold, t, of voting according to the agenda. In our running
example (see Example 1), with t = 50%, the result of the votes would be X = (0,0,0),
because none of the issues has a strict majority of voters with above 50% likelihood of
voting according to the agenda.

Average Majority (C2). For each issue, r j, of a given probability matrix P, we define:
p j = (∑m

i=1 pi, j)/m. We can now evaluate the vote to say that r j is accepted if and only if
p j > t where t is some threshold. This would, in our running example, with t = 50%,
give us a result vector of X = (1,0,0).

2.4 Issue Weighting

Our modification to the model will bring in the concept of issue weighting. It is rea-
sonable to surmise that certain issues will be of more importance to The Lobby than
others. For this reason we will allow The Lobby to specify higher weights to the issues
that they deem more important. These weights will be defined for each issue.

We will specify these weights as a vector W ∈ Zn with size n equal to the total
number of issues in our problem instance. The higher the weight, the more important
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that particular issue is to The Lobby. Along with the weights for each issue we are also
given an objective value O ∈ Z+ which is the minimum weight The Lobby wants to see
passed. Since this is a partial ordering, it is possible for The Lobby to have an ordering
such as: w1 = w2 = · · ·= wn. If this is the case, we see that we are left with an instance
of Bi-C j-PLP.

We now introduce the six probabilistic lobbying problems with issue weighting. For
i ∈ {1,2,3} and j ∈ {1,2}, we define:

Name: Bi-C j -PROBABILISTIC LOBBYING PROBLEM WITH ISSUE WEIGHTING (Bi-
C j -PLP-WIW, for short).

Given: A probability matrix P ∈ Qm×n
[0,1] with table CP of price functions and a lobby

target vector Z ∈ {0,1}n, a lobby weight vector W ∈Zn, an objective value O∈Z+,
and a budget B.

Question: Is there a way for The Lobby to influence P (using bribery method Bi and
evaluation criterion C j, without exceeding budget B) such that the total weight of
all issues for which the result coincides with The Lobby’s target vector Z is at
least O?

3 Complexity-Theoretic Notions

We assume the reader is familiar with standard notions of (classical) complexity theory,
such as P, NP, and NP-completeness. Since we analyze the problems stated in Section 2
not only in terms of their classical complexity, but also with regard to their parameter-
ized complexity, we provide some basic notions here (see, e.g., Downey and Fellows [7]
for more background). As we derive our results in a rather specific fashion, we will em-
ploy the “Turing way” as proposed by Cesati [4].

A parameterized problem P is a subset of Σ∗×N, where Σ is a fixed alphabet and
N is the set of nonnegative integers. Each instance of the parameterized problem P is a
pair (I,k), where the second component k is called the parameter. The language L(P)
is the set of all YES instances of P . The parameterized problem P is fixed-parameter
tractable if there is an algorithm (realizable by a deterministic Turing machine) that
decides whether an input (I,k) is a member of L(P) in time f (k)|I|c, where c is a
fixed constant and f is a function whose argument k is independent of the overall input
length, |I|. The class of all fixed-parameter tractable problems is denoted by FPT.

There is also a theory of parameterized hardness (see, e.g., [7]), most notably the
W[t] hierarchy, which complements fixed-parameter tractability: FPT = W[0]⊆W[1]⊆
W[2]⊆ ·· ·. It is commonly believed that this hierarchy is strict. Only the second level,
W[2], will be of interest to us in this paper (see, e.g., [7] for the definition).

The complexity of a classical problem depends on the chosen parameterization. For
problems that involve a budget B ∈ N (and hence can be viewed as minimization prob-
lems), the most obvious parameterization would be the given budget bound B. In this
sense, we state parameterized results in this paper. (For other applications of fixed-
parameter tractability and parameterized complexity to problems from computational
social choice, see, e.g., [10].)
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Table 1. Complexity results for Bi-C j-PLP

Bribery Evaluation Criterion
Criterion C1 C2

B1 P P
B2 P P
B3 W[2]-complete W[2]-complete

4 Classical Complexity Results

We now provide a formal complexity analysis of the probabilistic lobbying problems
for all combinations of evaluation criteria and bribery methods.

Table 1 summarizes our results for Bi-C j -PLP, i ∈ {1,2,3} and j ∈ {1,2}. Some of
these results are known from previous work by Christian et al. [5], as will be mentioned
below. In this sense, our results generalize the results of [5] by extending the model to
probabilistic settings.

4.1 Microbribery

The following result can be easily seen.

Theorem 1. B1-C1-PLP is in P.

The complexity of microbribery with evaluation criterion C2 is somewhat harder to
determine. We use the following auxiliary problem. Here, a schedule S of q jobs (on a
single machine) is a sequence Ji(1), . . . ,Ji(q) such that Ji(r) = Ji(s) implies r = s. The cost
of schedule S is c(S) = ∑q

k=1 c(Ji(k)). S is said to respect the precedence constraints of
graph G if for every (path)-component Pi = Ji,1, . . . ,Ji,p(i) and for each k with 2 ≤ k ≤
p(i), we have: If Ji,k occurs in the schedule S then Ji,k−1 occurs in S before Ji,k.

Name: PATH SCHEDULE

Given: A set V = {J1, . . . ,Jn} of jobs, a directed graph G = (V,A) consisting of pair-
wise disjoint paths P1, . . . ,Pz, two numbers C,q ∈N, and a cost function c : V →N.

Question: Can we find a schedule Ji(1), . . . ,Ji(q) of q jobs of cost at most C respecting
the precedence constraints of G?

PATH SCHEDULE is in P by dynamic programming. Then we show how to reduce
B1-C2-PLP to PATH SCHEDULE, which implies that B1-C2-PLP is in P as well.

Lemma 1. PATH SCHEDULE is in P.

Theorem 2. B1-C2-PLP is in P.

Proof. Let (P,CP,Z,B) be a given B1-C2-PLP instance, where P ∈ Qm×n
[0,1] , CP is a

table of price functions, Z ∈ {0,1}n is The Lobby’s target vector, and B is its budget.
For j ∈ {1,2, . . . ,n}, let d j be the minimum cost for The Lobby to bring referendum r j

into line with the jth entry of its target vector Z. If ∑n
j=1 d j ≤ B then The Lobby can
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Table 2. Complexity results for Bi-C j-PLP-WIW

Bribery Evaluation Criterion
Criterion C1 C2

B1 NP-compl., FPT NP-compl., FPT
B2 NP-compl., FPT NP-compl., FPT
B3 W[2]-complete W[2]-complete

achieve its goal that the votes on all issues equal Z. We now focus on the first task.
For every r j, create an equivalent PATH SCHEDULING instance. First, compute for r j

the minimum number b j of bribery steps needed to achieve The Lobby’s goal on r j.
That is, choose the smallest b j ∈N such that p j + b j/(k+1)m > t. Now, for every voter vi,
derive a path Pi from the price function ci, j. Let s, 0 ≤ s≤ k + 1, be minimum with the
property ci, j(s) ∈ N>0. Then create a path Pi = ps, . . . , pk+1, where ph represents the
hth entry of ci, j (viewed as a vector). Assign the cost ĉ(ph) = ci, j(h)− ci, j(h−1) to ph.
Observe that ĉ(ph) represents the cost of raising the probability of voting “yes” from
(h−1)/(k+1) to h/(k+1). In order to do so, we must have reached an acceptance probability
of (h−1)/(k+1) first. Now, let the number of jobs to be scheduled be b j. Note that one can
take b j bribery steps at the cost of d j dollars if and only if one can schedule b j jobs
with a cost of d j. Hence, we can decide whether or not (P,CP,Z,B) is in B1-C2-PLP
by using Lemma 1. ❑

4.2 Issue Bribery

A greedy strategy succeeds for proving:

Theorem 3. B2-C1-PLP and B2-C2-PLP are in P.

4.3 Probabilistic Lobbying with Issue Weighting

Table 2 summarizes our results for Bi-C j-PLP-WIW, i ∈ {1,2,3} and j ∈ {1,2}. The
most interesting observation is that introducing issue weights raises the complexity
from P to NP-completeness for all cases of microbribery and issue bribery by using
KNAPSACK in the reduction (though it remains the same for voter bribery). Nonethe-
less, we show later as Theorem 6 that these NP-complete problems are fixed-parameter
tractable.

Theorem 4. For i, j ∈ {1,2}, Bi-C j-PLP-WIW is NP-complete.

5 Parameterized Complexity Results

5.1 Voter Bribery

Christian et al. [5] proved that the following problem is W[2]-complete. We state this
problem here as is common in parameterized complexity:



94 G. Erdélyi et al.

Name: OPTIMAL LOBBYING (OL, for short).
Given: An m×n matrix E and a 0/1 vector Z of length n. Each row of E represents a

voter. Each column represents an issue in the election. The vector Z represents The
Lobby’s target outcome.

Parameter: A positive integer k (representing the number of voters to be influenced).
Question: Is there a choice of k rows of the matrix (i.e., of k voters) that can be changed

such that in each column of the resulting matrix (i.e., for each issue) a majority vote
yields the outcome targeted by The Lobby?

Christian et al. [5] proved this problem to be W[2]-complete by a reduction from k-
DOMINATING SET to OL (showing the lower bound) and from OL to INDEPENDENT-
k-DOMINATING SET (showing the upper bound). To employ the W[2]-hardness result of
Christian et al. [5], we show that OL is a special case of B3-C1-PLP and thus (parame-
terized) polynomial-time reduces to B3-C1-PLP. The “Turing” approach suggested by
Cesati [4] shows membership in W[2]. Analogous arguments apply to B3-C2-PLP.

Theorem 5. For j ∈ {1,2}, B3-C j -PLP (parameterized by the budget) is W[2]-
complete.

5.2 Probabilistic Lobbying with Issue Weighting

Recall from Theorem 4 that Bi-C j-PLP-WIW, where i, j ∈ {1,2}, is NP-hard.
Theorem 6 says that each of these problems is fixed-parameter tractable when parame-
terized by the budget, using KNAPSACK again.

Theorem 6. For i, j ∈ {1,2}, Bi-C j-PLP-WIW (parameterized by the budget) is in
FPT.

Voter bribery with issue weighting remains W[2]-complete for both evaluation criteria;
the membership proof is somewhat more involved than the one in the unweighted case.

Theorem 7. For j ∈ {1,2}, B3-C j-PLP-WIW (parameterized by the budget) is W[2]-
complete.

6 Approximability

As seen in Tables 1 and 2, many problem variants of probabilistic lobbying are NP-
complete. Hence, it is interesting to study them not only from the viewpoint of param-
eterized complexity, but also from the viewpoint of approximability.

The budget constraint on the bribery problems studied so far gives rise to natural
minimization problems: Try to minimize the amount spent on bribing. For clarity, let us
denote these minimization problems by prefixing the problem name with MIN, leading
to, e.g., MIN-OL.

The already mentioned reduction of Christian et al. [5] (that proved that OL is W[2]-
hard) is parameter-preserving (regarding the budget). It further has the property that a
possible solution found in the OL instance can be re-interpreted as a solution to the
DOMININATING SET instance the reduction started with, and the OL solution and the
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DOMININATING SET solution are of the same size. This in particular means that inap-
proximability results for DOMININATING SET transfer to inapproximability results for
OL. Similar observations are true for the interrelation of SET COVER and DOMINAT-
ING SET, as well as for OL and B3-C1-PLP-WIW (or B3-C2-PLP-WIW).

The known inapproximability results [3,12] for SET COVER hence give the following
result (see also Footnote 4 in [14]).

Theorem 8. There is a constant c > 0 such that MIN-OL is not approximable within
factor c · log(n) unless NP⊂ DTIME(nloglog(n)), where n denotes the number of issues.

Since OL can be viewed as a special case of both B3-Ci-PLP and B3-Ci-PLP-WIW
for i ∈ {1,2}, we have the following corollary.

Corollary 1. For i ∈ {1,2}, there is a constant ci > 0 such that both MIN-B3-Ci-PLP
and MIN-B3-Ci-PLP-WIW are not approximable within factor ci · log(n) unless NP⊂
DTIME(nloglog(n)), where n denotes the number of issues.

A cover number c(r j) is associated with each issue r j, indicating by how many levels
voters must raise their acceptance probabilities in order to arrive at average majority
for r j. The cover numbers can be computed beforehand for a given instance. Then, we
can also associate cover numbers to sets of issues (by summation), which finally leads
to the cover number N = ∑n

j=1 c(r j) of the whole instance.
When we interpret an OL instance as a B3-C2-PLP instance, the cover number of

that resulting instance equals the number of issues, assuming that the votes for all issues
need amendment. Thus we have the following corollary:

Corollary 2. There is a constant c > 0 such that MIN-B3-C2-PLP is not approximable
within factor c · log(N) unless NP⊂ DTIME(Nlog log(N)), where N is the cover number
of the given instance. A fortiori, the same statement holds for MIN-B3-C2-PLP-WIW.

Let H denote the harmonic sum function, i.e., H(r) = ∑r
i=1

1/i. It is well known that
H(r) = O(log(r)). More precisely, it is known that

�lnr	 ≤ H(r)≤ �lnr	+ 1.

We show the following theorem by providing and analyzing a greedy approximation
algorithm.

Theorem 9. MIN-B3-C2-PLP can be approximated within a factor of ln(N) + 1,
where N is the cover number of the given instance.

In the strict-majority scenario, cover numbers would have a different meaning—we thus
call them strict cover numbers: For each referendum, the corresponding strict cover
number tells in advance how many voters have to change their opinions (bringing them
individually over the given threshold t) to accept this referendum. The strict cover num-
ber of a problem instance is the sum of the strict cover numbers of all given issues.

Theorem 10. MIN-B3-C1-PLP can be approximated within a factor of ln(N) + 1,
where N is the strict cover number of the given instance.
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Note that this result is in some sense stronger than Theorem 9 (which refers to the
average-majority scenario), since the cover number of an instance could be larger than
the strict cover number.

This approximation result is complemented by a corresponding hardness result.

Corollary 3. There is a constant c > 0 such that MIN-B3-C1-PLP is not approx-
imable within factor c · log(N) unless NP ⊂ DTIME(Nlog log(N)), where N is the strict
cover number of the given instance. A fortiori, the same statement holds for MIN-
B3-C1-PLP-WIW.

Unfortunately, those greedy algorithms do not (immediately) transfer to the case when
issue weights are allowed.

7 Conclusions

We have studied six lobbying scenarios in a probabilistic setting, both with and with-
out issue weights. Among the twelve problems studied, we identified those that can be
solved in polynomial time, those that are NP-complete yet fixed-parameter tractable,
and those that are hard (namely, W[2]-complete) in terms of their parameterized com-
plexity with suitable parameters. It would be interesting to study these problems in
different parameterizations. Finally, we investigated the approximability of hard prob-
abilistic lobbying problems (without issue weights) and obtained both approximation
and inapproximability results. A number of related results can be found in the full
version [8]. An interesting open question is whether one can find logarithmic-factor
approximations for voter bribery with issue weights.
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Abstract. We study the problem of allocating a set of indivisible goods
to a set of agents having additive preferences. We introduce two new im-
portant complexity results concerning efficiency and fairness in resource
allocation problems: we prove that the problem of deciding whether a
given allocation is Pareto-optimal is coNP-complete, and that the prob-
lem of deciding whether there is a Pareto-efficient and envy-free alloca-
tion is Σp

2 -complete.

1 Introduction

The problem of allocating a set of indivisible goods to a set of agents arises in
a wide range of applications including, among others, auctions, divorce settle-
ments, frequency allocation, airport traffic management, fair and efficient ex-
ploitation of Earth Observation Satellites [1]. In many such real-world problems,
one needs to find efficient and fair solutions, where an efficient solution can be
seen informally as ensuring the greatest possible satisfaction to the agents, and
where fairness refers to the need for compromises between the agents’ (often
antagonistic) objectives.

In this paper, we study the resource allocation problem from the point of view
of computational complexity. We restrict our setting to additive preferences. In
other words, the preferences of each agent are represented by a set of weights
w(o), standing for the utility (or satisfaction) she enjoys for each single object
o. The utility of an agent for a subset of objects S is then given by the sum of
the weights of all the objects o in S.

Moreover, we restrict our study to two particular definitions of efficiency
and fairness: Pareto-efficiency (or Pareto-optimality) and envy-freeness. Pareto-
efficient allocations are such that we cannot increase the satisfaction of an agent
without strictly decreasing the satisfaction of another agent. An allocation is
envy-free if and only if each agent likes her share at least as much as the share
of any other agent.

In this paper, we introduce two new complexity results concerning the re-
source allocation problem with additive preferences. Even if the setting seems

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 98–110, 2009.
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restrictive, we advocate that the particular problems we address are important
enough to justify an extensive study for the following reasons. Firstly, one of
the most natural ways of (compactly) modeling cardinal preferences over sets
of objects (or more generally over combinatorial domains) is to suppose that
they are additive. Notice that this goes far beyond resource allocation: matching
problems, weighted path in a graph, valued constraints satisfaction problems,
etc. Secondly, Pareto-efficiency is one the most prominent notion of efficiency
used in collective decision making problems. Thirdly, envy-freeness is a key con-
cept in the literature about resource allocation (see e.g. [2]), as it provides an
elegant way of encoding the notion of fairness and does not require, contrary to
Rawlsian egalitarianism, the interpersonal comparison of utilities.

This paper contributes to fill a gap. On the one hand resource allocation
with additive preferences have been extensively studied in economics1 (see e.g.
[2,3]), but computational issues (and a fortiori complexity) have rarely been
considered. On the other hand, computational issues in resource allocation with
additive preferences have been studied extensively in computer science (see e.g.
[4,5,6]). However, these works mainly concern the optimization of the system’s
performance as a whole. The properties of Pareto-efficiency and fairness are
rarely addressed. Two notable exceptions are the work from Lipton et al. [7]
that studies envy-freeness in fair resource allocation problems mainly from an
algorithmic point of view, and the work from Bouveret and Lang [8] that in-
troduces complexity results for fair resource allocation problems under different
hypotheses, including additive preferences. In the latter paper, one result of
importance misses, though being conjectured: the complexity of the problem of
deciding whether there is a Pareto-efficient and envy-free allocation in a resource
allocation problem with additive preferences. This is one of the two main com-
plexity results introduced in our paper and is studied in section 4. The other
main complexity result is about the related problem of deciding whether a given
allocation is Pareto-efficient when agents have additive preferences. This result
is more easily obtained, and is explained in section 3.

2 Background and Notations

In what follows, we will write vectors using arrowed letters (e.g. −→v ), or brackets
for their explicit representations (e.g. 〈v1, . . . , vn〉). vi will denote the ith com-
ponent of a vector. Moreover, for any finite set X , |X | will denote the cardinal
of X .

In a resource allocation problem, a set of resources must be divided among a
set of agents. Since we will focus on additive utility functions only, it suffices to
use the following definition of a resource allocation instance:

Definition 1 (Resource allocation instance). A resource allocation problem
is a triple P = 〈A, O, w〉, where A is a set of agents, O is a set of indivisible
items, and w : A×O → R is a weight function.
1 In most social choice studies, utilities stand for amounts of money. Thus additivity

is a very natural assumption in this framework.
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We define an allocation as follows:

Definition 2 (Allocation). An allocation for P = 〈A, O, w〉 is a vector −→π =
〈π1, . . . , πn〉 ∈ (2O)n such that for all i, j ∈ A, i �= j ⇒ πi ∩ πj = ∅. If for every
o ∈ O there exists an i such that o ∈ πi then −→π is a complete allocation.

Thus, in the problems that we will focus on, the items are non-sharable.

Definition 3 (Individual utility, utility profile). Let P = 〈A, O, w〉 be a
resource allocation instance. For all i ∈ A and πi ⊆ O, ui(πi) =

∑
o∈πi

w(i, o)
is agent i’s individual utility regarding πi. Given an allocation −→π , the vector
〈u1(π1), . . . , un(πn)〉 is the utility profile associated to −→π .

Two properties that we will focus on, are Pareto-efficiency and envy-freeness.

Definition 4 (Pareto-efficiency). Let −→π ,−→π ′ be two allocations. −→π Pareto-
dominates −→π ′ if and only if (a) for all i, ui(πi) ≥ ui(π′

i), and (b) there exists an
i such that ui(πi) > ui(π′

i).
−→π is (Pareto-)efficient (or Pareto-optimal) if and

only if there is no −→π ′ such that −→π ′ Pareto-dominates −→π .

Definition 5 (Envy & envy-freeness). We say that an agent i ∈ A envies
another agent j ∈ A iff ui(πj) > ui(πi). An allocation −→π is envy-free if and
only if ui(πi) ≥ ui(πj) holds for all i and j �= i.

In this paper, we will refer to some complexity classes located in the polynomial
hierarchy. We assume that the reader is familiar with the complexity class NP
and its complementary class coNP. Σp

2 = NPNP is the class of all languages
recognizable by a nondeterministic Turing machine working in polynomial time
using NP oracles. Its complementary class is denoted by Πp

2 .

3 Complexity of Deciding Pareto-optimal Allocations for
Agents with Additive Utility

In this section we prove that it is coNP-complete to decide whether an allocation
of resources is Pareto-optimal if the agents have additive utility functions. coNP-
completeness has already been proved for a generalized case where agents express
their utilities explicitly for each bundle of items [9]. coNP-completeness is also
known for the case where the agents have k-additive utility functions and k ≥ 2
[10].2 This is not explicitly stated in [10], but it follows directly from their proof
that it is NP-complete to decide whether it is possible to increase the utilitarian
collective utility (i.e. sum of individual utilities) of a given allocation, when
the agents have 2-additive utility functions. In addition to [10], the problem of
maximizing utilitarian collective utility is also explored in [11].

2 Informally, an agent has k-additive utility if she has a coefficient associated for every
set of k items, and her individual utility is the sum of all coefficients associated to
the sets of k items that she gets.
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The problem we deal with is the following.

Problem 1. Pareto-optimality with additive utility functions (po-add)
INSTANCE: A resource allocation instance P = 〈A, O, w〉, an allocation −→π .
QUESTION: Is −→π Pareto-optimal?

Theorem 1. po-add is coNP-complete.

Membership of coNP is easy to establish: a nondeterministic Turing machine
could guess an allocation −→π ′, and check whether −→π ′ Pareto-dominates −→π .

To prove coNP-hardness, we give a Karp reduction (i.e. polynomial time
many-one reduction) from the coNP-complete language 3unsat.

Problem 2. Unsatisfiability of propositional 3CNF formulas (3unsat)
INSTANCE: A set of clauses C denoting a propositional formula in 3CNF.
QUESTION: Is C unsatisfiable?

Let C be a set of propositional clauses of size 3 (we will suppose w.l.o.g. that
the same literal does not appear more than once in each clause), L(C) be the
set of literals in C, and V (C) be the set of variables in C. We will write P(C)
to denote the following resource allocation instance:

Agents: 2|V (C)|+|C|+2 agents:
⋃

v∈V (C){av, av}∪
⋃

c∈C{ac}∪{aun, asat},
Objects: 4|C| + |V (C)| + 1 objects:

⋃
c∈C{oc,l | l ∈ c} ∪ ⋃

v∈V (C){ov} ∪⋃
c∈C{oc} ∪ {osat},

Preferences: w(i, o) = 0 for all i and all o, except:
– w(av, ov) = |{c | v ∈ c ∈ C}|, and w(av, ov) = |{c | ¬v ∈ c ∈

C}| for all v ∈ V (C) ;
– w(av, oc,v) = 1 if v ∈ c, and w(av, oc,¬v) = 1 if ¬v ∈ c for

each v ∈ V (C) and each c ∈ C ;
– w(ac, oc,l) = 1 for each c ∈ C and each l ∈ c ;
– w(ac, oc) = 1 for all c ∈ C ;
– w(aun, ov) = 1 for all v ∈ V (C) ;
– w(asat, oc) = 1 for all c ∈ C ;
– w(aun, osat) = |V (C)|+ 1;
– w(asat, osat) = |C|.

Let I be a partial truth assignment of the variables in C. We will define its
corresponding allocation −→π (I) as follows:

– π(I)av = {ov} if I(v) = true and π(I)av = {oc,v | v ∈ c ∈ C} otherwise, for
each v ∈ V (C);

– π(I)av
= {ov} if I(v) = false and π(I)av

= {oc,¬v | ¬v ∈ c ∈ C} otherwise,
for each v ∈ V (C);

– for each c ∈ C: π(I)ac = {oc} if I �� c, and π(I)ac = {oc,l | l ∈ C ∧ I � l}
otherwise;
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– π(I)aun = {osat} if I is complete, and
⋃

v∈V (C),I(v) �∈{true,false}{ov} other-
wise;

– π(I)asat = {osat} if I is partial, and {oc | I � C} otherwise.

It should be clear that for each assignment I, −→π (I) is well-defined.
Let I∅ be the empty assignment (i.e. the partial truth-assignment that leaves

all variables unassigned). Our reduction transforms a 3unsat instance C into
the po-add-instance 〈P(C), I∅〉.

We will now give an example of this reduction. Consider the 3unsat instance
given by the set of clauses {c1 = {v1, v2,¬v3}, c2 = {¬v1,¬v2,¬v3}}.

If we run the reduction process on this instance, we get the po-add-instance
that is displayed in the table below. The columns of the table represent the
agents and the rows of the table represent the items. The entries in the table are
the weights. An entry is displayed in boldface italic and between brackets if
the item of the corresponding row is allocated to the agent of the corresponding
column. Empty cells in the table should be regarded as containing zero-weights.

ac1 ac2 av1 av1 av2 av2 av3 av3 aun asat

ov1 1 1 [ 1 ]
ov2 1 1 [ 1 ]
ov3 2 [ 1 ]
oc1 [ 1 ] 1
oc2 [ 1 ] 1

oc1,v1 1 [ 1 ]
oc1,v2 1 [ 1 ]

oc1,¬v3 1 [ 1 ]
oc2,¬v1 1 [ 1 ]
oc2,¬v2 1 [ 1 ]
oc2,¬v3 1 [ 1 ]

osat 4 [ 2 ]

Lemma 1. For each model M for C, −→π (M) Pareto-dominates −→π (I∅).

Proof. In −→π (M), agent aun has strictly higher utility: uaun(π(M)aun) = |C|+1,
while uaun(π(I∅)aun) = |C|. By definition of −→π (M), the utility of all other agents
is in −→π (M) at least as high as in −→π (I∅). ��
Lemma 2. If C is unsatisfiable, then −→π (I∅) is Pareto-optimal.

Proof. Suppose for contradiction that there is an allocation −→π ′ that Pareto-
dominates −→π (I∅).

There is at least one agent a such that ua(π′
a) > ua(π(I∅)a). It can be easily

proved that, starting from I∅, strictly increasing the utility of any agent in A \
{aun, asat} implies reallocating at least one item ov from agent aun’s share to
another agent. Then, the only solution for not decreasing aun’s utility is to give
her osat.

So then {oc | c ∈ C} ∈ π′
asat

. Consequently, for all ac with c ∈ C we must
have |{oc,l | l ∈ c ∧ oc,l ∈ π′

ac
}| ≥ 1. Let o ∈ {oc,l | l ∈ c ∧ oc,l ∈ π′

ac
}. Let a′

be the agent for which it holds that o ∈ π(I∅)a′ (so a′ ∈ {av, av}). Let a′ be the
agent in {av, av} that does not equal a′. It must now be that ov ∈ π′

a′ , and as a
consequence we now know that π(I∅)a = π′

a.
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So, for each v ∈ V (C) there are no two objects oc,v and oc′,¬v with v ∈ c,
¬v ∈ c′, and c, c′ ∈ C such that oc,v ∈ πac and oc′,¬v ∈ π′

ac′ . It then follows
immediately from the construction of the reduction that there is a complete
interpretation I such that −→π ′ = −→π (I). Moreover, one can check that I � c for
each c ∈ C. Therefore, I is a model of C, and we have a contradiction. ��
Proof (Theorem 1). Let C be a set of clauses of size 3. By Lemma 1 and 2, we
have that C is unsatisfiable if and only if −→π (I∅) is a Pareto-optimal allocation for
P(C). The reduction from C to 〈P(C),−→π (I∅)〉 can clearly be done in polynomial
time, hence coNP-hardness is proved. ��

4 Complexity of Deciding Existence of Efficient and
Envy-Free Allocations for Agents with Additive Utility

For this section, we are interested in finding allocations that are both Pareto-
efficient and envy-free.

We will now state the problem and prove that this problem is Σp
2 -complete.

Problem 3. Efficient & envy-free allocation existence with additive utility func-
tions (∃-eef-add)
INSTANCE: A resource allocation instance P = 〈A, O, w〉.
QUESTION: Does there exist an allocation that is both Pareto-efficient and

envy-free?

Theorem 2. ∃-eef-add is Σp
2 -complete.

We will prove Σp
2 -completeness by a Karp reduction from the complement of the

Πp
2 -complete language ∀∃3cnf [12].

Problem 4. Doubly quantified 3CNF satisfiability (∀∃3cnf)
INSTANCE: A set V∀ of propositional variables, a set V∃ of propositional vari-

ables, a set C of clauses of three literals over the variables V∀∪V∃.
QUESTION: Does there exist for each assignment to the variables in V∀ an

assignment to the variables in V∃ that satisfies C?

Let F = 〈V∀, V∃, C〉 be an instance of ∀∃3cnf. We will assume w.l.o.g. that every
possible literal occurs at least once in C, and that a literal does not appear more
than once in each clause. Let #occ∀ be the number of literal occurrences in C
of variables in V∀. We will write L∀ and L∃ for the sets of literals of variables
in V∀ and V∃ respectively. We will write P(F ) to denote the following resource
allocation instance (also see the example that follows after Definition 6):

Agents: 4|V∀|+2|V∃|+ |C|+#occ∀+3 agents:
⋃

v∈V∀{a+
v , a+cl

v , av, av}∪⋃
v∈V∃{av, av}

⋃
c∈C{ac} ∪

⋃
c∈C{aen

c,l | l ∈ c ∩ L∀} ∪
{aun, asat, aen}
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Objects: 4|V∀|+ |V∃|+ 5|C|+ L∀ + 3 objects:
⋃

v∈V∀{oen
v , ocmp

v , oh
v , oh

v} ∪⋃
v∈V∃{ov} ∪

⋃
c∈C,l∈c{oc, o

cmp
c oc,l} ∪

⋃
c∈C{oen

c,l | l ∈ c ∩ L∀} ∪
{osat, oen1, oen2}

Preferences: w(i, o) = 0 for all i and all o, except:
– For all v ∈ V∀ and o ∈ {oen

v , oc
v, oh

v , oh
v}: w(a+

v , o) = 1 and
w(a+cl

v , o) = 1;3

– For all v ∈ V∀: w(av, oh
v ) = |{c | v ∈ c}|, w(av , oh

v ) =
|{c | ¬v ∈ c}|, w(av, oc,v) = 1 for all c ∈ C where v ∈ c,
and w(av, oc,¬v) = 1 for all c ∈ C where ¬v ∈ c;

– For all v ∈ V∃: w(av , ov) = |{c | v ∈ c}|, w(av , ov) =
|{c | ¬v ∈ c}|, w(av, oc,v) = 1 for all c ∈ C where v ∈ c,
and w(av, oc,¬v) = 1 for all c ∈ C where ¬v ∈ c;

– For all c ∈ C: w(ac, oc) = M , w(ac, o
cmp
c ) = M − 1, and

w(ac, oc,l) = 1 for all l ∈ c;
– For all (c, l) where c ∈ C, l ∈ c ∩ L∀: w(aen

c,l, oc) = M ,
w(aen

c,l, oc,l) = 1, w(aen
c,l , o

en
c,l) = M ;

– For all c ∈ C: w(asat, oc) = 1, w(asat, osat) = |C|,
w(asat, oen1) = 1

2 ;
– For all c ∈ C: w(aun, ocmp

c ) = 1; For all v ∈ V∀:
w(aun, ocmp

v ) = 1; For all v ∈ V∃: w(aun, ov) = 1;
– w(aun, osat

c ) = |V∃| + |V∀| + |C| + 1; w(aun, oen1) = 2(|V∃| +
|V∀| + |C| + 1); w(aun, oen2) = 3(|V∃| + |V∀| + |C| + 1) − 1;
w(aen, oen2) = M ;

where M is a large number. It suffices to take for M the sum of
all weights that are not defined in terms of M .

For our proof that ∃-eef-add is Σp
2 -complete, we need the notion of a special

type of allocation for P(F ). An example of an X∀-allocation is given in the
example-instance that follows after this proof.

Definition 6 (V∀-assignments and V∀-allocations). For F , we define a V∀-
assignment as any complete assignment to the variables in V∀ only. Given a
V∀-assignment I, we define a corresponding allocation −→π (I) for P(F ) in the
following way:

– π(I)a+
v

= {oen
v } for each v ∈ V∀;

– π(I)a+cl
v

= {oh
v} if I(v) = true and {oh

v} otherwise, for each v ∈ V∀;
– π(I)av = {oc,v | v ∈ c} ∪ {oh

v} if I(v) = false, and {oc,v | v ∈ c} otherwise,
for each v ∈ V∀;

– π(I)av
= {oc,¬v | ¬v ∈ c} ∪ {oh

v} if I(v) = true, and {oc,¬v | ¬v ∈ c}
otherwise, for each v ∈ V∀;

– π(I)av = {oc,l | l ∈ c} for each l ∈ L∃;
– π(I)ac = {oc} for each c ∈ C;
– π(I)aen

c,l
= {oen

c,l} for each c, l where c ∈ C and l ∈ c ∩ L∀;
– π(I)aun = {ocmp

c | c ∈ C} ∪ {ov | v ∈ V∃} ∪ {ocmp
v | v ∈ V∀} ∪ {oen1};

3 So, a+cl
v is a clone of a+

v .
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– π(I)asat = {osat};
– π(I)aen = {oen2};

Given a V∀-assignment I, we define the set of V∀-allocations corresponding to
I as follows: any allocation that can be obtained from π(I) by a sequence of
swaps of the bundles of a+

v and a+cl
v for any v ∈ V∀, followed by a sequence of

reallocations of oc,l to aen
c,l for any l, c with c ∈ C, l ∈ c ∩ L∀, and I �� l.4

Let us give an example of this reduction, together with a V∀-allocation. Let the
∀∃3cnf-instance be F = 〈V∀ = {v1}, V∃ = {v2}, C = {c1 = {v1,¬v1, v2}, c2 =
{v2,¬v2, v1}}〉. Then P(F ) looks as follows.

ac1 ac2 a+
v1

a+cl
v1

av1 av1 av2 av2 aen
c1,v1

aen
c1,¬v1

aen
c2,v1

aun asat aen

oc1 [ M ] M M 1
oc2 [ M ] M 1

ocmp
c1

M-1 [ 1 ]

ocmp
c2

M-1 [ 1 ]

oc1,v1 1 1 [ 1 ]
oc1,¬v1 1 [ 1 ] 1

oc1,v2 1 [ 1 ]
oc2,v2 1 [ 1 ]

oc2,¬v2 1 [ 1 ]
oc2,v1 1 1 [ 1 ]

oh
v1

1 1 [ 2 ]

oh
v1

[ 1 ] 1 1
oen

v1
1 [ 1 ]

ocmp
v1

1 1 [ 1 ]

ov2 2 1 [ 1 ]
oen

c1,v1
[ M ]

oen
c1,¬v1

[ M ]

oen
c2,v1

[ M ]

osat 5 [ 2 ]
oen1 [ 10 ] 1

2
oen2 14 [ M ]

A V∀-allocation corresponding to a V∀-assignment I with I(v1) = false is
displayed in boldface italic and between brackets. This allocation has been
obtained from π(I) by swapping the bundles of a+

v1
and a+cl

v1
, and reallocating

item oc1,v1 to aen
c1,v1

, and item oc2,v1 to aen
c2,v1

.
In the following proofs, we will restrict attention to non-wasting allocations,

that is, allocations π such that for all (o, a) ∈ O×A, o ∈ π(a) ⇒ w(a, o) > 0. It
is obvious that every Pareto-efficient allocation is a non-wasting one.

Lemma 3. Let −→π be an allocation. −→π is envy-free if and only if −→π is a V∀-
allocation.

Proof. (⇐) For any arbitrary V∀-allocation, it is easy (although a bit tedious)
to check for each type of agent that she does not envy any other agent.

(⇒) We show this by reasoning about how resources should be allocated
in order to prevent envy. We start by noticing that oen2 must necessarily be
allocated to aen. As a consequence oen1 must be allocated to aun, after which

4 To remove any confusion, see the example allocation that follows, together with the
explanation.
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osat should go to asat. In order prevent aun from envying aen, we should give
aun all remaining items for which his weight is positive. Now that we know we
cannot allocate ocmp

c to ac (for any c ∈ C), we must give oc to ac. For the same
reason, for all v ∈ V∃ we cannot give ov to av or av, thus these agents should
receive all remaining resources for which they have a positive weight. Next, we
notice that we should give oen

c,l to aen
c,l because aen

c,l is the only agent with positive
weight for this item. Now we see that for all c, l with l ∈ c ∩ L∀ and c ∈ C, we
cannot give oc,l to ac, because aen

c,l would then envy ac. Next, for all v ∈ V∀ we
must allocate oen

v to either a+
v or a+cl

v . Because the weights of both agents are
exactly the same, suppose w.l.o.g. that we allocate oen

v to a+
v . In order to prevent

envy between the two agents, we need to allocate either oh
v or oh

v (but not both)
to a+cl

v (we denote by o this item and o the other one of the pair). Since o cannot
be allocated to a+

v nor to a+cl
v , o must go to av if o = oh

v and av otherwise. There
is only one agent left that we can allocate o to. Lastly, let a ∈ {av, av} be the
agent that does not get o. All items that a has positive weight for should now
be allocated to a, in order to prevent a from envying the agent that gets o.

The restrictions that we just deduced, restrict the set of possibly efficient and
envy-free allocations to the set of V∀-allocations. ��
Lemma 4. No two V∀-allocations dominate each other.

Proof. Let −→π and −→π ′ be two V∀-allocations. If −→π and −→π ′ correspond to the same
V∀-assignment, then −→π does not dominate −→π ′ because swapping the bundles of
o+

v and o+cl
v for any v ∈ V∀ does not increase nor decrease the utility of both

agents. Reallocating oc,l between the agents aen
c,l and av (or av) for any l, c with

l ∈ c∩L∀ and c ∈ C can never result in a dominating allocation either, because
both agents have exactly the same weights for all of these items.

For the case that −→π and −→π ′ correspond to different V∀-assignments, let I
and I ′ be the two V∀-assignments respectively, and let v be a variable such
that I(v) �= I ′(v). We will show that −→π does not Pareto-dominate −→π ′. Assume
w.l.o.g. that I(v) = true and I ′(v) = false. In −→π we have that oh

v is allocated
to av; in −→π ′ this is not the case. Because of the weights that av has, we now
know that uav

(πav
) ≤ uav

(π′
av

). We can divide this up in two cases: in the
case that uav(πav ) < uav(π′

av
), we have immediately that −→π does not Pareto-

dominate −→π ′. In the other case that uav
(πav

) = uav
(π′

av
), any item oc,¬v in the

set {oc,¬v | v ∈ c ∈ C} is allocated to aen
c,¬v under allocation −→π , but not under

allocation −→π ′, so in this case we have uac,¬v (πac,¬v ) < uac,¬v(π′
ac,¬v

), hence −→π
does not Pareto-dominate −→π ′. ��
Lemma 5. Given a V∀-assignment I for F , and a V∀-allocation −→π for P(F )
that corresponds to I; if C is satisfiable on I (i.e. I can be extended such that C
is satisfied), then there is an allocation −→π ′ that Pareto-dominates −→π .

Proof. Let I ′ be a complete assignment that satisfies C such that I ⊆ I ′. The
following allocation −→π ′ Pareto-dominates −→π .
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– For all c ∈ C: π′
c = {oc,l | l ∈ c ∧ I ′ � l} ∪ {ocmp

c }.
– For all v ∈ V∀: Let a = av, a = av, o = oh

v if I(v) = true, and let a = av,
a = av, o = oh

v otherwise. π′
a = {o} and π′

a = πa. Moreover, if o ∈ πa+
v

then
π′

a+
v

= πa+
v
\{o} ∪ {ocmp

v } and π′
a+cl

v
= πa+cl

v
; otherwise π′

a+cl
v

= πa+cl
v
\{o} ∪

{ocmp
v } and π′

a+
v

= πa+
v
.

– For all v ∈ V∃: If I ′(v) = true, then π′
av

= {ov} and π′
av

= πav
; otherwise

π′
av

= {ov} and π′
av

= πav .
– For all c, l such that c ∈ C and l ∈ c ∩ L∀: π′

aen
c,l

= πaen
c,l

.
– π′

aun
= {osat, oen1}; π′

asat
= {oc | c ∈ C}; π′

aen
= {oen2}.

In −→π ′, the utility of aun is strictly higher than in −→π . Moreover, one can easily
check that in −→π ′ the utilities of all other agents are at least as high as in −→π . ��
Lemma 6. Given a V∀-assignment I for F , and a V∀-allocation −→π in P(F ) that
corresponds to I; if C is unsatisfiable on I, then −→π is Pareto-efficient.

Proof. We will first show that in any −→π ′ that Pareto-dominates−→π we necessarily
have {oc | c ∈ C} ⊆ π′

asat
. We do this by exhaustion on the type of agent. Let−→π ′ Pareto-dominate −→π . Let a be an agent such that ua(π′

a) > ua(πa). We show
for each of the following cases of a that necessarily {oc | c ∈ C} ⊆ π′

asat
.

Case 1: a = aun: In this case we clearly have osat ∈ π′
a, and because

w(asat, osat) = |C| we have as a consequence that {oc | c ∈ C} ⊆ π′
asat

.
Case 2: a ∈ {av, av | v ∈ V∃}: Let a = av for an arbitrary v ∈ V∃ (the case that

a = av is analogous). It must be that ov ∈ π′
a, so then, since ov has been

removed from aun’s share, we need to give her osat as a compensation. From
the argument in the previous case we get {oc | c ∈ C} ⊆ π′

asat
.

Case 3: a ∈ {a+
v a+cl

v | v ∈ V∀}: Let a = a+
v for an arbitrary v ∈ V∀ (the case

that a = a+cl
v is analogous). Assume w.l.o.g. that I(v) = true. Because

a+
v and a+cl

v have identical weights, we may also w.l.o.g. assume that π′
a+

v
∩

πa+cl
v

= ∅. If ocmp
v ∈ π′

a, then from the argument in case 1 it follows that
{oc | c ∈ C} ⊆ π′

asat
. If oh

v ∈ π′
a, then it must be that {oc,¬v | ¬v ∈ c ∈

C} ∩ πav
= ∅ and {oc,¬v | ¬v ∈ c ∈ C} ⊆ π′

av
. Thus, for all c ∈ C with

¬v ∈ c, we have oc ∈ π′
aen

c,¬v
. Consequently, we get ocmp

c ∈ π′
ac

; and therefore
by our argument that we gave in Case 1, {oc | c ∈ C} ⊆ π′

asat
.

Case 4: a ∈ {av, av | v ∈ V∀}: Assume w.l.o.g. that I(v) = true. For any arbi-
trary v ∈ V∀, let a = av. From the last part of the argument that we gave
for the previous case, it follows directly that {oc | c ∈ C} ⊆ π′

asat
. Now let

a = av. Necessarily we have oh
v ∈ π′

av
, and from our reasoning in Case 3 it

follows that {oc | c ∈ C} ⊆ π′
asat

.
Case 5: a ∈ {ac | c ∈ C}: Let a = ac for an arbitrary c ∈ C. If ocmp

c ∈ π′
ac

, it
follows from Case 1 that {oc | c ∈ C} ⊆ π′

asat
. If oc,l ∈ π′

ac
then the same

conclusion follows, but this time from the last part of the proof of Case 3.
Case 6: a ∈ aen

c,l | c ∈ C ∧ l ∈ c ∩ L∀}: Let a = aen
c,l for an arbitrary c, l with

c ∈ C and l ∈ c ∩ L∀. We must have that oc ∈ π′
aen

c,l
or oc,l ∈ π′

aen
c,l

(or
both), in both cases it follows from the last part of the proof of Case 3 that
{oc | c ∈ C} ⊆ π′

asat
.
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Case 7: a = asat: Let C′ be any strict subset of C. If {oc | c ∈ C′} ⊆ π′
a, then

∀c ∈ C : ocmp
c ∈ ac, so by the arguments in Case 1, {oc | c ∈ C} ⊆ π′

a. If
oen1 ∈ π′

a, then the same follows, also from the proof in Case 1.
Case 8: a = aen: This case is obviously impossible.

Now we will finish the proof by obtaining the contradiction that an extension I ′

of I can be made to the variables in V∃, such that I ′ satisfies C.
Recall that we assume that −→π ′ Pareto-dominates −→π , and as we have just

shown, {oc | c ∈ C} ⊆ π′
asat

. For all c ∈ C : ocmp
c ∪ Lc ⊆ π′

ac
, where Lc is any

subset of {oc,l | l ∈ c}. Let oc,l ∈ Lc and let v ∈ l. There are two cases: either
v ∈ V∀ or v ∈ V∃.

Suppose v ∈ V∀. Let a = av, a = av if I(v) = true, and let a = av, a = av

otherwise. It is easy to see that � ∃oc,l ∈ Lc : oc,l ∈ πaen
c,l

and � ∃oc,l ∈ Lc : oc,l ∈ πa,
so oc,l ∈ πa. As a consequence, we know that l is satisfied by I. Hence, it must
hold that if oc,l ∈ Lc, then c is satisfied by I.

Suppose v ∈ V∃. Let a = av if l = ¬v and let a = av otherwise. Then it must
be that oc,l ∈ πa and ov ∈ π′

a.
From the construction of the reduction, it follows that there must exist an

assignment to the variables in V∃ that satisfies all clauses not satisfied by I, i.e.,
we obtain the contradiction that C is satisfiable on I. ��

Proof (Theorem 2). Membership is easily established: A nondeterministic NPNP

Turing machine that decides this problem could work as follows. On input
〈A,O, w〉:

1. Guess an allocation −→π .
2. Check whether −→π is envy-free. If not, then REJECT.
3. Check whether −→π is Pareto-optimal by querying the oracle. If it is, then

ACCEPT. Otherwise, REJECT.

The difficult part is proving Σp
2 -hardness.

Given a ∀∃3cnf-instance F = 〈V∀, V∃, C〉, we can clearly construct P(F ) in
polynomial time.

If F is a NO-instance of ∀∃3cnf, then there is a V∀-assignment I that cannot
be extended to an assignment that satisfies C. Let −→π be a V∀-allocation for
P(F ) that corresponds to I. By Lemma 3, −→π is envy-free and by Lemma 6, −→π
is Pareto-efficient. Hence, P(F ) is a YES-instance of ∃-eef-add.

If F is a YES-instance of ∀∃3cnf, then for any V∀-assignment I that we pick,
C is satisfiable on I. Let −→π be any V∀-allocation for P(F ) that corresponds to
I. By Lemma 5, there is an allocation −→π ′ that Pareto-dominates −→π . By Lemma
4, −→π is not a V∀-allocation. Finally, because −→π is not a V∀-allocation, it follows
from Lemma 3 that −→π ′ is not envy free. Because we had taken −→π to be an
arbitrary V∀-allocation for an arbitrary V∀-assignment I, it follows that P(F ) is
a NO-instance of ∃-eef-add.

Therefore we conclude that ∃-eef-add is Σp
2 -hard. ��
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5 Discussion

We have introduced in this paper two new complexity results for the resource
allocation problem with additive preferences, thus filling an important gap in
the previous complexity studies of this problem, mainly in [8]. Our main result
shows that, even with very simple preferences (additive), deciding whether there
is a Pareto-efficient and envy-free allocation is computationally very hard. This
goes slightly beyond the results in [8], as it shows that the high complexity
of the problem is not only related to the presence of preferential dependencies
(complementarity or substitutability) between objects, since the hardness holds
under the assumption of additive independence.

There are several natural ways of overcoming this high complexity. The first
one could be to impose some restrictions on the setting to decrease the complex-
ity. However, as stated in [8], the natural restrictions of the problem imply a huge
loss of generality, and thus are of limited practical interest. Another solution is
to relax envy-freeness or Pareto-efficiency, such as in [7], where envy-freeness
is replaced by a measure of envy, and where allocations are only required to be
complete (that is, all objects must be allocated) instead of being Pareto-efficient.
An idea could be to mix collective utility maximization (e.g. classical utilitarian
or egalitarian) with envy-minimization.5 And lastly, designing efficient approxi-
mation algorithms could be a way of getting around the high complexity of the
problem.
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Abstract. We study the problem of allocating a set of indivisible items to
players having additive utility functions over the items. We consider allo-
cations in which no player envies the bundle of items allocated to the other
players too much. We present a simple proof that deterministic truthful al-
locations do not minimize envy by characterizing the truthful mechanisms
for two players and two items. Also, we present an analysis for uniformly
random allocations which are naturally truthful in expectation. These
results simplify or improve previous results of Lipton et al.

1 Introduction

Resource allocation [9] has been an important problem in several areas such as
Computer Science, Artificial Intelligence, and Economics since their early days.
In the era of the Internet with a vast amount of computational, communication,
and storage resources available worldwide, the problem is still of paramount
importance. Besides efficiency, fairness is another important aspect that resource
allocation must satisfy. Additional constraints such as the selfish behavior of
resource owners and users make the variations of the problem very challenging.

A simple but foundational resource allocation problem is the well-known cake-
cutting problem [6,20]. In cake-cutting, we are given n players with different util-
ities for different parts of a cake. The objective is to allocate pieces of the cake
to the players in such a way that they are satisfied. Traditionally, satisfaction of
players has been measured by two different notions: envy-freeness and propor-
tionality. Envy-freeness means that each player prefers her allocated pieces to
the pieces allocated to any other player. Proportionality means that the utility
of each player for the pieces allocated to her is at least 1/n times her utility for
the whole cake. Due to the continuity of the cake and the utilities of the players,
both objectives are always feasible.

A similar problem concerns the fair allocation of indivisible items; indivisibility
implies that an item cannot be broken into parts and must be allocated to a single
player. Here, we again have a set N of n players and a set M of m indivisible
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items. Each player p has a non-negative utility function up : 2M → IR+
0 . The

objective is to assign to each player p a bundle of items Mp ⊆ M, so that⋃
pMp = M and some criterion concerning fairness is maintained. An important

special case is that of additive utilities. In this case, each player p has a utility
up,i for each item i ∈ M and her utility for a bundle of items is simply the
sum of her utilities on these items. In contrast to the cake-cutting problem,
envy-freeness and proportionality are not always feasible goals in this setting
even in the case of additive utilities. Here, envy minimization is among the most
prominent measures of fairness. Given an allocation A in which players p and
q are assigned bundles Mp and Mq, the envy epq(A) of player p for player q is
epq(A) = up(Mq)−up(Mp). Then, envy of A is defined as e(A) = maxp,q∈N epq.
Clearly, A is envy-free if e(A) = 0.

An implicit assumption in the above definitions is that the players express
their true utilities which are used by the algorithm (i.e., the allocation func-
tion) in order to compute an allocation. In practice, players are usually selfish
in the sense that they aim to increase their benefit, i.e., their total utility on the
bundle of items the algorithm allocates to them. In order to do so, they may
report false valuations of items to the algorithm (i.e., different than their true
utilities). Truthful allocation functions guarantee that the allocation is based on
the true utilities of the players. A deterministic allocation function is truthful if
the benefit obtained by a player when reporting false valuations on the items is
not greater than the benefit she would have obtained by telling the truth. Simi-
larly, a randomized allocation function is truthful in expectation if the expected
benefit of a player is maximized when revealing her true utilities.

Related work. Research concerning fair allocations originated in the 1940s with
a focus on cake-cutting [21]. Since then, the problem of achieving a propor-
tional allocation with the minimum number of operations has received much
attention and is now well-understood [12,13,6,20,24]. The problem of achieving
envy-freeness has been proven to be much more challenging [8,5,22]; in fact, un-
der the most common computational model of cut and evaluation queries [20],
no algorithm with bounded running time is known for more than 3 players.
Very recently, envy-freeness was proved to be a harder property to achieve than
proportionality [19,23]. Better solutions exist for different computational models
(e.g., moving knife algorithms [7]).

Lipton et al. [16] studied envy minimization with indivisible items. Among
other results, they proved that allocations with envy bounded by the marginal
utility always exist and can be computed in polynomial time. In the case of addi-
tive utilities, marginal utility translates to the maximum per item utility over all
players. They also present algorithms that compute allocations that approximate
the minimum envy-ratio; the envy ratio of a player p for a player q is the utility of
player p for the items allocated to player q over p’s utility for the items allocated
to her. Complexity considerations about envy-freeness for indivisible items and
non-additive utilities are presented in [4]. The papers [10,11] study the problem
of achieving envy-free and efficient allocations in distributed settings and when
the allocation of items is accompanied by monetary side payments (in this case,
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envy-freeness is always a feasible goal). Lipton et al. [16] also consider truthful
allocations; they show that any deterministic allocation function that returns an
allocation with minimum possible envy cannot be truthful; their proof uses an
instance with two players and many items. Finally, they present an analysis of
the randomized allocation function that assigns each item to one of the players
uniformly at random and independently of the allocations of the other items.
This allocation function is truthful in expectation. For the case where the sum of
utilities of each player over the items is 1, they prove that, with high probability,
the envy of the resulting allocation is O(

√
αn1/2+ε), where α is the maximum

utility per item over all players and ε is an arbitrarily small positive number. We
remark that the study of truthful allocation functions belongs to the recent line
of research on algorithmic mechanism design [18]. In particular, Mu’alem and
Schapira [17] prove lower bounds on the envy of truthful allocation functions.
However, unlike the model of [16] which we also follow in the current paper,
[17] and most of the studies in algorithmic mechanism design allow monetary
transfers between the players.

For indivisible items, a fairness objective that has been extensively considered
recently is max-min fairness. Here, the objective is to compute an allocation in
which the benefit of the least happy player is maximized. The problem was
studied by Bezáková and Dani [3] and Golovin [14] who obtained approximation
algorithms that provably return a solution that is always a factor of O(n) within
the optimal value. The problem was popularized by Bansal and Sviridenko [2]
as the Santa Claus problem, where Santa Claus aims to distribute presents to
the kids so as to maximize the happiness of the least happy kid. Subsequently,
Asadpour and Saberi [1] presented an O(

√
n log3 n)-approximation algorithm for

this problem.

Our results. In this paper, we consider allocation of indivisible items to play-
ers having additive utility functions over the items. We present an alternative
proof that no deterministic truthful allocation function minimizes envy by char-
acterizing the deterministic truthful allocation functions for two players and two
items. Our proof actually shows that for any truthful allocation function, there
are instances in which the envy is almost maximized. Our proof simplifies the
proof of Lipton et al. [16] that uses a large number of items. Our impossibility
result trivially extends to the case of many players and many items and also to
the more general case of non-additive utility functions. We also present an im-
proved analysis of uniformly random allocations of m items over n players. We
show that the envy is at most O(α

√
m lnn) with high probability, where α is the

maximum utility per item over all players and items. For the case where the sum
of utilities of each player is 1, we prove a bound of O(

√
α ln n). This improves

the previous bound of O(
√

αn1/2+ε) for any ε > 0 [16]. Our proof follows similar
lines to the proof of [16] but we exploit the fact that the allocation of each item
is independent and use the Hoeffding bound instead of the Chebychev inequality
in order to bound the envy.
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Roadmap. Our characterization of the deterministic truthful allocations for two
players and two items is presented in Section 2. The analysis of random alloca-
tions is presented in Section 3.

2 Truthful Allocations for Two Players and Two Items

In this section we present a characterization of deterministic truthful allocations
with two players and two items.

In general, the first player will have utilities u1x for the first item and u1(1−x)
for the second one while the utilities of the second player are u2y and u2(1− y),
respectively. Here, x, y ∈ [0, 1] and u1, u2 are the sums of utilities of the two
players for both items. So, an allocation function gets as input u1, u2, x, and y
and computes an allocation of the items to the players. We denote each of the
four possible allocations as a 2 × 2 matrix with entries 1 and 0. The columns
correspond to the players and the rows to the items. An 1 in an entry of such
a matrix indicates that the item corresponding to the row is allocated to the
player corresponding to the column.

We use the term non-boundary values to denote real numbers in [0, 1] different
than 0, 1/2, and 1. We consider only non-boundary values for x and y since they
suffice for proving our main result on the envy. Our characterization can be easily
extended to boundary values of x and y as well.

We begin with an observation that simplifies the allocation functions that
have to be considered.

Lemma 1. For non-boundary values of x and y, no truthful allocation function
f depends on u1 and u2.

Proof. Assume that this is not the case and that f computes different allocations
on inputs (u1, u2, x, y) and (u′

1, u2, x, y) where x, y have non-boundary values and
u1 �= u′

1.
When x has a non-boundary value, the four different possible allocations(
1 0
1 0

)
,
(

1 0
0 1

)
,
(

0 1
1 0

)
, and

(
0 1
0 1

)
yield different benefit to player 1 when her

utilities on the items are u1x and u1(1− x), namely u1, u1x, u1(1− x), and 0.
Now assume that the function f returns an allocation of higher benefit to

player 1 when she reports u′
1 instead of u1. Then, player 1 has an incentive to

lie. If this is not the case and f returns an allocation of lower benefit when
player 1 reports u′

1, then consider the case when player 1 has true utilities u′
1x

and u′
1(1 − x) on the two items. In this case, player 1 would have an incentive

to lie and report u1x and u1(1 − x) as her valuation. ��
By Lemma 1, we may assume that f depends only on x and y when they have
non-boundary values. Without loss of generality, we also assume that u1 = u2 =
1 in the following.
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Lemma 2. A truthful allocation function f has the following properties:

(a) If f(x∗, y∗) assigns both items to the same player for some non-boundary
values x∗, y∗, then f(x, y) assigns both items to that player for any non-
boundary values x, y.

(b) If f(x∗, y∗) assigns to player 1 the item which she prefers the least for some
non-boundary values x∗, y∗, then f(x, y∗) assigns that item to player 1 for
any non-boundary value x.

(c) If f(x∗, y∗) assigns to player 2 the item which she prefers the least for some
non-boundary values x∗, y∗, then f(x∗, y) assigns that item to player 2 for
any non-boundary value y.

Proof. (a) Assume that the allocation function assigns both items to player 1
for some non-boundary values and at most one of the items for some other
non-boundary values. Then, one of the following must hold:

– There exist non-boundary values x∗, y∗, x′ such that f(x∗, y∗) assigns both
items to player 1 and f(x′, y∗) assigns at most one of the items to player 1.
In this case, if the true utility of player 1 for item 1 is x′, she has an incentive
to lie and report x∗ in order to get both items.

– There exist non-boundary values x∗, y∗, y′ such that f(x∗, y∗) assigns both
items to player 1 and f(x∗, y′) assigns at most one of the items to player
1. In this case, if the true utility of player 2 for item 1 is y∗, she has an
incentive to lie and report y′ in order to get at least one item.

The case in which the allocation function assigns both items to player 2 is sym-
metric.

(b) Consider the case with x∗ < 1/2 (the case x∗ > 1/2 is symmetric) so
that f(x∗, y∗) assigns item 1 to player 1. Assume otherwise that there exists a
non-boundary value x′ such that f(x′, y∗) assigns item 2 to player 1. Then, if
the true utility of player 1 for item 1 is x∗, player 1 has an incentive to lie and
report x′ in order to get item 2 which she prefers the most.

(c) The proof of this case is very similar to (b). ��

The properties of Lemma 2 yield the following.

Lemma 3. The only truthful allocations with respect to non-boundary item val-
uations are those depicted in Figure 1.

Proof. Figure 1 contains the eight possible allocation functions that satisfy the
properties of Lemma 2. Truthfulness follows since for each player, given the
valuation of the other player, these allocation functions either assign her the
most preferred item or the allocation does not depend on her valuations. ��

We are now ready to prove the main statement of this section.

Theorem 1. No truthful allocation minimizes envy.
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Fig. 1. The eight truthful allocation functions for two players
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Fig. 2. The minimum envy allocation function when the sum of utilities of each player
on the two items is 1

Proof. Clearly, for the two first fixed truthful allocation functions of Figure 1,
both items are assigned to one player and hence the other player always has
envy 1. Let ε ∈ (0, 1/4). Consider the two valuation pairs (1 − ε, 1/2 + ε) and

(1/2 + ε, 1 − ε). The allocations
(

1 0
0 1

)
and

(
0 1
1 0

)
yield envy 2ε, respectively.

For any of the six last truthful allocation functions of Figure 1, in one of these
valuations pairs, the allocation yields benefit ε for one player and 1/2 + ε to the
other. Hence, one player has envy 1 − 2ε. By setting ε very close to 0, we have
that the envy is actually maximized. ��

We remark that the four non-fixed allocation functions in Figure 1 produce an
envy-free allocation if one exists. Figure 2 presents the allocations that minimize
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envy when the sum of the utilities of each player on the items is 1. The grey
areas indicate the cases of envy-free allocations. The two pairs of valuations
considered in the proof of Theorem 1 have been selected to be outside but very
close to these areas.

3 Improved Analysis of Random Allocations

In this section we consider the randomized allocation function that allocates each
item to a player selected uniformly at random among the n players and in such a
way that the allocation of an item is independent of the other allocations. Note
that the allocation function does not depend on the valuations of the players.
Hence, it is truthful in expectation since no player has an incentive to report a
false valuation in order to increase her expected benefit. We present an upper
bound on the envy of the resulting allocations using Hoeffding inequality [15].

Theorem 2 (Hoeffding [15]). Let X1, . . . , Xk be independent random vari-
ables with Pr(Xi ∈ [ai, bi]) = 1 for 1 ≤ i ≤ k. Then, for the sum of these
variables S =

∑k
i=1 Xi, we have

Pr(S − IE[S] ≥ t) ≤ exp

(
− 2 t2∑k

i=1(bi − ai)2

)
.

So, the particular version of Hoeffding inequality upperbounds the probability
that a random variable which can be expressed as the sum of independent ran-
dom variables exceeds its expectation by a certain amount. Our statement is the
following; besides the number of players and items, it is also expressed in terms
of the maximum utility per item over all players. We assume that the number n
of players is large and the term high probability denotes a probability of 1−1/n.
We also denote by vp,i the utility of player p for item i.

Theorem 3. Consider an instance with n players and m items and let α =
maxp,i vp,i.

(a) With high probability, the random allocation yields an envy of at most
O(α

√
m lnn).

(b) If the sum of utilities of each player is 1, then with high probability, the
random allocation yields an envy of at most O(

√
α ln n).

Proof. Consider two players p and q. We define the random variable Y pq
i indi-

cating the contribution of item i to the envy of player p for player q. Then, the
envy Spq of player p for player q is Spq =

∑m
i=1 Y pq

i . Observe that

– Y pq
i = vp,i if item i is allocated to q (and this happens with probability 1/n),

– Y pq
i = −vp,i if item i is allocated to p (and this happens with probability

1/n), and
– Y pq

i = 0 if item i is not allocated to p or q (this happens with probability
1− 2/n).
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Clearly, the random variables Y pq
i are independent, Pr(Y pq

i ∈ [−vp,i, vp,i]) = 1
and IE[Spq] = 0. By applying the Hoeffding bound for any t ≥ 0, we have

Pr(Spq ≥ t) ≤ exp

(
− t2

2
∑m

i=1 v2
p,i

)
. (1)

In order to prove (a), we use inequality (1) by setting t = α
√

6m lnn and the
fact that

∑m
i=1 v2

p,i ≤ mα2 to obtain

Pr(Spq ≥ α
√

6m lnn) ≤ 1/n3.

Since there are at most n2 pairs of players p, q, by applying the union bound
we have that the probability that the maximum envy between any two players
exceeds α

√
6m ln n is at most 1/n.

In order to prove (b), we set t =
√

6α ln n and use the fact that
∑m

i=1 v2
p,i ≤ α

when
∑m

i=1 vp,i = 1 and vp,i ≥ 0. By (1), we obtain that

Pr(Spq ≥
√

6α ln n) ≤ 1/n3.

Again, by applying the union bound we have that the probability that the max-
imum envy between any two players exceeds

√
6α ln n is at most 1/n. ��

The first upper bound should be compared to the lower bound of α [16] on the
envy of allocations in which the maximum utility per item among all players is α.
This bound is shown to be tight in [16] but the upper bound is not obtained by
a truthful allocation function. Our second upper bound significantly improves
the upper bound of O(

√
αn1/2+ε) for the case where the sum of utilities of

each player is 1. Whether there exist better allocation functions (i.e., that yield
allocations with smaller envy) that are truthful in expectation is an interesting
open problem.

Acknowledgments. We thank Ariel Procaccia for helpful discussions.
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Abstract. We study the problem of fairness design. Specifically, we fo-
cus on approximation algorithms for indivisible items with supporting
envy-free bundle prices. We present the first polynomial-communication
envy-free profit-maximizing combinatorial auctions for general bidders.
In this context, envy-free prices can be interpreted as anonymous non-
discriminatory prices. Additionally, we study the canonical makespan-
minimizing scheduling problem of unrelated machines, in an envy-free
manner. For the special case of related machines model we show that
tight algorithmic bounds can be achieved.

Keywords: Mechanism Design, Anonymous Prices, Scheduling.

1 Introduction

Fair division of goods has been a central problem in economic theory. In such
scenarios each bidder would like to get a fair share from her point of view. At the
same time, it might be the case that the social designer has a certain global goal
in mind, and thus the designer seeks a fair partition that is as close as possible to
the global goal. Several concepts of fairness were studied over the years. Envy-
free allocations introduced by Foley [8]. An allocation is called envy-free if every
bidder likes his own bundle at least as well as that of anyone else.

A contemporary motivation to study fair allocations stems from the emerg-
ing technology of Computational Grids. Computational grids offer users sim-
ple access to tremendous computer resources for solving large scale computing
problems. A typical grid is composed of shared resources owned by different
organizational entities that may varied over time. The on-line nature and the
different degrees of contributions and consumptions suggest new fundamental
fairness issues (e.g., [1]).

In this paper we study envy-free allocations for indivisible goods with sup-
porting bundle prices. We first study Combinatorial Auctions for general bidders
with the goal of profit maximization. In this scenario, a collection of indivisible
goods needs to be allocated concurrently, and bidders have preferences about
various combinations of items, and not just on single items or single subsets
of goods. In this context, envy-free prices can be interpreted as anonymous
non-discriminatory prices.

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 120–131, 2009.
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The second common scenario studied in this paper is a minimization problem.
Suppose a new project with several tasks is just arrived to a company. The
challenge is to find a fair allocation of the tasks among the employees such that
the last task of the project finishes as soon as possible. A mechanism is envy-free
in this setting, if no employee prefers the set of tasks and the payment assigned
to some other employee.

Overview and results. In Section 2, we briefly state a known characterization
of envy-free mechanisms for multi-dimensional domains in terms of local-efficient
bundle-assignments [11]. Informally, an envy-free allocation must be locally opti-
mum with respect to the social welfare, so that the overall social welfare cannot
be improved by exchanging the allocated bundles among the agents.

In Section 3, we study envy-free profit-maximization Combinatorial Auctions
with general bidders. For a very restricted special case of the unit-demand setting,
Guruswami et al. [10] showed that finding optimal envy-free prices is APX-hard.
We describe an envy-free mechanism that requires polynomial communication and
achieves O(min{n,

√
k log k})-approximation with respect to profit, where k is the

number of items and n is the number of bidders. We then show that any envy-free
profit mechanism with approximation ratio better than 2, requires exponential
communication.

Section 4 studies envy-free scheduling mechanisms. We focus on the schedul-
ing problem extensively studied by Lenstra, Shmoys, and Tardos [16]. This
NP-hard optimization problem was formulated as a mechanism design prob-
lem by Nisan and Ronen in their seminal paper on Algorithmic Mechanism
Design [19]: There are k tasks that are to be scheduled on m non-identical ma-
chines (”unrelated machines”). The total cost of a subset of tasks on machine
i is the additive sum of the costs of the individual tasks on that machine. The
global goal is minimizing the makespan of the chosen schedule. I.e., assigning
the tasks to the machines in a way that minimizes the finishing time of the last
task. Nisan and Ronen considered this global goal in the context of truthful-
ness (assuming agents are selfish and thus should be incentivized to report their
true costs).

We consider minimizing the makespan in the context of envy-free design.
Specifically, using the characterization, we derive general bounds on the ap-
proximability of deterministic envy-free mechanisms that seek to minimize the
makespan on unrelated machines. We exhibit a lower bound of 2 − 1

m and an
upper bound of m+1

2 for the best approximation ratio achievable by any envy-
free mechanism. For m = 2 the result is tight. However, our upper bound is
not known to be computationally efficient for any m ≥ 2. This leaves several
interesting open problems. Similar upper bound and lower bound were achieved
independently in a recent work by Hartline et al. [12]. We also show that any
envy-free mechanism for minimizing the makespan with supporting item prices
cannot achieve approximation ratio better than m.

In Section 5, we consider the NP-hard problem of minimizing the makespan
of related parallel machines [14]. We show that the envy-freeness constraint does
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not impose any further computational burden. Specifically, we show that there
exists a poly-time computable deterministic envy-free mechanism that achieves
the approximation ratio of 1 + ε with respect to the optimal makespan. We
also show that in this case, resale of tasks among agents can be prevented in
quasi-poly-time (without using verifications).

Related Work. Envy-free profit-maximization approximations for combinato-
rial auctions were first studied by Guruswami et al. [10]. They showed O(log n)-
approximation for unit demand bidders, and O(log n + log k)-approximation for
single-minded bidders with unlimited supply, where n is the number of bidders
and k is the number of items. In the unlimited supply setting the number of copies
of each item is as large as the number of bidders. The latter result was extended
to an O(log n + log k)-approximation for general bidders with unlimited-supply,
by Balcan, Blum and Mansour [3].

Recently, Cheung and Swamy [5] obtained O(
√

k log umax)-approximation for
single-minded bidders with limited-supply, where umax is the maximum number
of item supply, by using a LP-based technique. Achieving an approximation ratio
better then

√
k is NP-hard, even if umax = 1 [9]. The paper [17] studies envy-free

allocations without money from a computational point of view. In this setting
envy-free allocations might not exist, and thus they consider approximations for
the minimum envyness. None of these papers studies the deterministic envy-
free profit maximization pricing of combinatorial auctions for general bidders
when supply is limited (see [5] for a recent detailed overview and references
therein).

The fundamental purely algorithmic scheduling problem of minimizing the
makespan of unrelated machines is studied in [16]. This paper presents a non-
trivial 2-approximation poly-time algorithm. They also showed that the problem
cannot be approximated in poly-time within a factor less than 3

2 .
A seminal paper by Nisan and Ronen [19] defines the notion of algorithmic

mechanism design [20]. In this paper each machine is treated as a strategic agent.
The paper proves that not only is it impossible to minimize the makespan in
a truthful manner, but that any approximation ratio better than 2 cannot be
achieved by a truthful deterministic mechanism. They also showed that there is
computationally efficient truthful mechanism that achieves an approximation ra-
tio of m. Their result is tight for m = 2. The lower bound was recently improved
(from 2 to 2.61 [15]).

Hochbaum and Shmoys describe a PTAS for minimizing the makespan of re-
lated parallel machines [14].1 In this NP-hard problem, the type of each machine
can be described by a single number (single-parameter type). This problem was
first studied from algorithmic mechanism design perspective in [2]. Archer and
Tardos designed a 3-approximation mechanism based on a randomized rounding
of the optimal fractional solution [2]. Recently, Dhangwatnotai et al. [7] presented
a truthful randomized 1 + ε-approximation mechanism.

1 A PTAS is an (1 + ε)-approximation algorithm that runs in poly-time, assuming ε
is a fixed constant.
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2 Characterizing Envy-Free Mechanisms

This section characterizes envy-free mechanisms. The characterization is stated
in terms of the local efficiency of the social choice function and applies to every
domain of valuations.

The Setting. We consider a finite set K of k indivisible items and a set N
of n agents.2 We assume that agents value combinations of items. Formally,
each agent i ∈ N has a valuation function vi() that describes his valuation for
each subset S of items, i.e. vi(S) is the maximum finite amount of money i
is willing to pay for S. An allocation a = (a1, ..., an) is a partition of items
among the agents. Formally, ai denotes the subset of items allocated to agent
i, a1 ∪ a2 ∪ · · · ∪ an ⊆ K (observe that not all items need to be allocated),
and ai ∩ aj = ∅, whenever i �= j. The set of all possible allowed allocations is
denoted by A. Every valuation vi ∈ Vi satisfies the following three conditions: No
externalities meaning that the valuation of agent i depends only on his allocated
bundle. Free disposal meaning that the valuation is nondecreasing with the set of
allocated items (for every S and T , S ⊆ T implies vi(S) ≤ vi(T )). Normalization
meaning that the value of the empty bundle is always zero. Vi denotes the domain
of all possible valuations of agent i.

Agents have quasi-linear utilities, and so vi(ai)− y is the overall utility agent
i can obtain from the subset of goods ai and paying the price y.

A social choice function f : V → A maps an n-tuple of valuations v =
(v1, v2, . . . , vn) ∈ V1 × V2 × · · · × Vn = V to an outcome a ∈ A. In this setting, a
social choice function is simply an allocation rule.

A mechanism defines an allocation and a set of prices for every possible valu-
ation of the agents. Formally, a mechanism is a tuple M = (f, p), where f is a
social choice function and the pricing function pi : Vi → R assigns a payment to
each agent i ∈ N . Intuitively, the social choice function f represents the global
goal of the mechanism designer, and the payment p determines the fairness of f .

Definition 1 (Envy-Free Mechanism). Let M = (f, p) be a mechanism. Let
i, j ∈ N and let v = (v1, ..., vn) be an n-tuple of valuations. Denote by a ∈ A the
allocation f outputs for v. The mechanism M is said to be envy-free if for every
agents i, j and valuation v it holds that:

vi(ai)− pi(v) ≥ vi(aj)− pj(v),

where p is non-negative individually-rational payment.
We say that a social choice function f : V → A is envy-free achievable if there

exists a non-negative individually-rational payment p such that the mechanism
M = (f, p) is envy-free.3

2 For the characterization theorem we might relax this requirement and assume that
K is either finite or infinite set of items.

3 We consider direct revelation mechanisms. However, the agents in our setting are
non-strategic, they always report their true valuations. Observe also that we use the
notion of ”achievability” rather than the notion of ”implementability”.
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Example 1. Suppose we have two agents, and one item. Consider the following
allocation rule: the agent with the highest value wins the item. Additionally, the
winner pays the average of both values and the other agent pays zero.

This mechanism is envy-free: Suppose without loss of generality the first agent
won the item. Then v1 ≥ v2. From the fact that v1 − v1+v2

2 ≥ 0 ≥ v2 − v1+v2
2 ,

we immediately get that that agent 1 does not envy agent 2, and vice versa.

Definition 2. For arbitrary allocation a ∈ A and valuation v ∈ V , let

Ψ(v, a) = Σn
i=1 vi(a)

denotes the social-welfare of the allocation a with respect to v.

2.1 Locally-Efficient Bundle Assignments and Allocations

In order to be able to state the characterization theorem we proceed with some
definitions. Let a ∈ A be an arbitrary feasible allocation. We shall consider the
following associated allocations based on a:

Definition 3 (Bundle Allocation based on a and β). Let β : N → N be
an arbitrary function. Let a = (a1, ..., an) ∈ A be an arbitrary feasible allocation.
We say that the allocation aβ is the bundle-allocation based on a and β, if agent
i in aβ is allocated all bundles ak with β(k) = i.

We also consider a special interesting case, in which each agent gets exactly one
bundle of a ∈ A, based on a given permutation:

Definition 4 (Bundle Assignment based on a and π). Let π : N → N
be an arbitrary permutation. Let a = (a1, ..., an) ∈ A be an arbitrary allocation.
We say that the allocation aπ is the bundle-assignment based on a and π, if the
bundle allocated to agent i in aπ is exactly the bundle ak, where π(k) = i.

Definition 5 (Locally-Efficient Bundle Assignment). An allocation a =
(a1, ..., an) is said to be locally-efficient bundle assignment with respect to v =
(v1, ..., vn), if for every permutation π : N → N it holds that:

Ψ(v, a) ≥ Ψ(v, aπ).

Example 2. The allocation rule f∗(v) ∈ argmaxa∈A Ψ(v, a) which maximizes
the social-welfare, and f∅ that always allocates an empty bundle for every agent,
clearly produce locally-efficient bundle assignments.

Consider the following 2 agents and 2 identical items setting with: v1(1) =
v1(2) = 1.5, v2(1) = v2(2) = 2. The allocation a in which agent 2 gets both
items and agent 1 gets the empty bundle is a locally-efficient bundle assign-
ment. Similarly, the allocation a′ in which every agent gets exactly one item is
also a locally-efficient bundle assignment. Additionally, since bundles cannot be
reconfigured, a′ �= aβ for every β. However, there is β′ such that a = a′β′

.
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2.2 Characterizing Envy-Freeness

We now state a characterization of envy-free bundle pricing mechanisms in terms
of locally-efficient bundle assignments. A similar proof technique in different
contexts were used in [23,24,18].

Theorem 1. [11] A deterministic social choice function f : V → A is envy-free
achievable if and only if the allocation f(v) is a locally-efficient bundle assign-
ment w.r.t. v, for every v ∈ V .

In this paper we shall extensively use both the necessary and the sufficient con-
dition of this theorem. Intuitively, instead of considering the interplay between
the the allocation rule and the payment rule, the above characterization allows
us to focus on the allocation rule alone in order to prove or disprove the envy-free
achievability. Additionally, based on the characterization, the envy-free achiev-
ability can be decided in poly-time, more formally:

Cost Minimization Problems. The characterization theorem is stated for the
case each agent wishes to maximize his value. The characterization apply also
for cost minimization problems, for which the agents would like to minimize
their costs. Technically, the inequality is reversed to the other direction in the
definition 5 when considering cost minimization settings. It is easy to see that
the canonical payment in this context has the property that the true cost of each
agent is covered by the mechanism.

3 Profit-Maximizing Combinatorial Auctions

In this section we consider the problem of maximizing the seller’s profit in a
combinatorial auction with general agents. We shall show an envy-free mecha-
nism that requires polynomial communication and achieves O(min{n,

√
k log k})-

approximation with respect to the maximal envy-free profit. This result uses the
characterization theorem and is built on the work of Blumrosen and Nisan [4]
for general bidders and Guruswami et al. [10] for unit demand bidders. We then
show that a envy-free mechanism with approximation ratio better than 2 w.r.t.
the optimal profit requires exponential communication.

Theorem 2. There exists an envy-free profit maximizing mechanism for Com-
binatorial Auctions with general agents that achieves an O(min{n,

√
k log k})-

approximation and requires polynomial communication.

If n <
√

k then we can use the simple algorithm that always allocate the grand
bundle to the agent with the highest value and setting the price to be this
value. This gives an n-approximation to the profit. We now need to describe
the allocation algorithm for the general case. Our first building block is the
BN-algorithm for Combinatorial Auctions with general agents by Blumrosen
and Nisan [4]. The BN-algorithm uses polynomial number of demand queries
(and thus polynomial communication) to achieve 4

√
k-approximation ratio with
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respect to the overall social welfare. The BN-algorithm constructs two allocations
and outputs the one with the highest social welfare. The first allocation is simply
the allocation that gives all the goods to the agent with the highest value. The
second allocation is based on a ”greedy” procedure that in step i allocates a
subset of the remaining unallocated goods S to an unallocated agent j satisfying

Si ∈ argmax S, j is unallocated subset of goods and agent, respectively
vj(S)
|S| .

The next algorithmic step is to convert the output a of the BN-algorithm into
a locally-efficient bundle assignment aπ∗

, where π∗ is the permutation such that
Ψ(v, aπ∗

) ≥ Ψ(v, aπ) for every π. Clearly, this cannot decrease the achieved
social welfare as Ψ(v, aπ∗

) ≥ Ψ(v, a), and can be done in polynomial commu-
nication. By the characterization theorem 1, aπ∗

is envy-free achievable.
We now need to describe the pricing method. If the the chosen allocation a

in the previous step gives all the goods to one agent then this agent will pay
his bid for the grand bundle, and all other agents pay zero. Clearly this is an
envy-free pricing and the achieved profit P in this case is exactly the welfare
achieved by the BN-algorithm. Otherwise, a is based on the greedy method. Our
second building block is the envy-free pricing method designed for unit demand
agents by Guruswami et al. [10], based on a careful poly-time selection of reserved
prices. The achieved envy-free pricing is within factor of 2 lnn for the maximum
profit. In particular, the profit P in this case is within a factor of 2 lnn of the
social welfare Ψ(v, aπ∗

). It is immediate to see that the factor in their proof is
2 ln(min{n, k}), since the number of possible non-trivially allocated agents is at
most min{n, k}. Additionally, it is not hard to see that we can use this pricing
method for our setting as well (since as in the unit demand setting, an agent
in our setting can only envy an entire bundle that is allocated to another agent
defined by aπ∗

, and not any other arbitrary bundle).

Proof. Clearly, the maximum envy-free profit P ∗ is at most the maximum social
welfare W ∗, and thus:

P ∗

4
√

k
≤ W ∗

4
√

k
≤ Ψ(v, a) ≤ Ψ(v, aπ∗

) ≤ 2P ln(min{n, k}).

All together we get the desired bound. ��
The following proposition shows that any envy-free mechanism needs an expo-
nential communication in the worst-case to produce approximation ratio better
than 2 for the profit. This result uses the construct of Nisan and Segal [21] for
efficient allocations.

Proposition 1. Any envy-free profit maximizing mechanism for Combinatorial
Auctions that achieves an approximation ratio better than 2 requires exponential
communication.
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3.1 Item Prices

Item prices is a special case of bundle prices. If item prices are defined, then the
price of a bundle is the total prices of the items in the bundle. Thus an agent
can envy a bundle or any sub-bundle allocated to some other agent. Envy-free
mechanisms with item prices for combinatorial-auction can extract only a small
profit regardless of any computational considerations (equivalently, any auction
with anonymous item-price extracts a small profit in the worst-case).

Proposition 2. Any deterministic envy-free mechanism for profit maximization
with supporting item prices cannot achieve approximation ratio better than k.

4 The Envy-Free Approximability of Unrelated Machines

The Unrelated Machines Model was studied in the seminal paper of Algorith-
mic Mechanism Design [16,19]. For this model we prove that not only it is
impossible to minimize the makespan in an envy-free manner, but that any
approximation ratio better than 2− 1

m cannot be achieved by any envy-free de-
terministic mechanism. We then present an envy-free mechanism that achieves
m+1

2 -approximation. Our mechanism make use on the optimal allocation w.r.t.
makespan, and thus is not computationally efficient. For m = 2 our result is
tight. Similar upper and lower bounds were achieved recently and independently
by Hartline et al. [12].

The Setting. The unrelated machine scheduling setting (R||Cmax) is a special
case of the combinatorial auction setting. There are k tasks that are to be sched-
uled on m machines.4 Every machine i is an agent with a nonnegative valuation
function vi(). Formally, vi({j}) (or simply vi(j)) specifies the cost of task j on
machine i. One can think of the cost of task j on machine i as the time it takes i
to complete j. The total cost of a set of tasks S on machine i is the additive sum
of the costs of the individual tasks on that machine. Formally, vi(S) = Σj∈S vi(j)
for every S. In the unrelated machines setting these costs can be arbitrary (every
(k ·m)-tuple of non-negative costs is feasible), and thus it is a multi-dimensional
scheduling problem.

Let a ∈ A be an arbitrary allocation of tasks to the machines (”schedul-
ing”). The load of machine i is its cost vi(ai) = Σj∈ai vi(j). Let r(a, v) =
max{v1(a1), v2(a2), ..., vm(am)}, be the load of the most loaded machine. To
simplify notation we shall use the notation r(a) instead of r(a, v), when v is
clear from the context.

The global goal is minimizing the makespan. I.e., it is a minmax goal: assign
the tasks to machines so that the last task finishes as soon as possible (each
task is assigned to exactly one machine). Formally, fix an arbitrary v ∈ V . The
allocation â is optimal w.r.t. the makespan if r(â) ≤ r(a) for every a ∈ A.
4 We chose m to be the number of machines to be consistent with the formulation of

Nisan and Ronen. Recall that we used n previously to denote the number of agents,
whereas here the agents are the machines.
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4.1 Lower Bound

Theorem 3. Any envy-free mechanism cannot achieve an approximation ratio
better than 2− 1

m with respect to the makespan.

4.2 Upper Bound

In general the optimal allocation w.r.t. the makespan is not locally efficient,
and in particular is not envy-free achievable. We will thus need to modify this
optimal allocation in a careful way. We need the following:

Definition 6 (The Function β∗). Let a = (a1, ..., am) ∈ A be an arbitrary
allocation. Define the function β∗ : [m]→ [m] as follows.

Let β∗(j) ∈ argmin i=1,...,m vi(aj), j ∈ [m]. That is, β∗(j) is the machine
with the minimal cost for the bundle aj (breaking ties arbitrarily).

Intuitively, aβ∗
is defined by independent ”bundle-auctions”: in each step j =

1..m we allocate the bundle aj of some given allocation a to the lowest cost
machine for this bundle (independently of the history of former steps).

Fact: If the valuation of each machine is additive, then b = aβ∗
is a locally-

efficient bundle assignment. That is, for every permutation π it holds that:

Ψ(v, b) ≤ Ψ(v, bπ).

Definition 7 (The Permutation π∗). Let a = (a1, ..., am) ∈ A be an arbitrary
allocation. Define π∗ to be a permutation such that aπ∗

is locally-efficient bundle
assignment. If there is more than one permutation, then arbitrarily choose one.

Clearly, aπ∗ �= aβ∗
in general. We now describe our algorithm.

Algorithm 1 (Bundle-Local-Search). Input: v = v1, v2, ..., vm.

Let â be the optimal allocation with respect to the makespan of v.

– If the makespan of â π∗
is at most m+1

2 times the makespan of â, then
output â π∗

.
– Otherwise, output â β∗

.

Informally, we permute the bundles dictated by â to achieve the locally lowest
cost social welfare. If the resulted makespan has not increased by much, then we
output this allocation. Otherwise, we re-assign each bundle âi to the machine
with the minimal cost for this bundle.

Theorem 4. Algorithm bundle-local-search guarantees an approximation ratio
of m+1

2 with respect to the makespan. Moreover, algorithm bundle-local-search
is envy-free achievable. All together we get that there exists an envy-free m+1

2 -
approximation mechanism for minimizing the makespan on unrelated machines.

4.3 Item Prices

In this subsection we shall see that for minimizing the makespan, any envy-
free mechanism with item prices cannot achieve approximation ratio better than
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m w.r.t to the makespan (regardless of any computational considerations), and
this tight. Recall that if item prices are defined, the price of a bundle is the
total prices of the items in the bundle. The following proposition is applicable
for both the unrelated machines model and the related parallel machines model
(see the next section for exact definition).

Proposition 3. Any deterministic envy-free mechanism for minimizing the
makespan with supporting item prices cannot achieve approximation ratio better
than m, and this is tight.

5 Near-Optimality of Related Parallel Machines

In this section we study an interesting case in which the envy-freeness constraint
do not impose a further computational burden. Specifically, we consider mini-
mizing the makespan of related parallel machines in an envy-free manner. We
show that there exists a poly-time black-box procedure that takes an allocation
and converts it to an ”envy-free” allocation without any loss in the approxima-
tion ratio, and specifies supporting envy-free bundle prices. We then show that
there exists a poly-time envy-free (1 + ε)-approximation mechanism for every
fixed ε, using the deterministic PTAS by Hochbaum and Shmoys [14]. We shall
start by the formal setting.

The Setting. The related parallel machine scheduling setting (Q||Cmax) is a
special case of the unrelated model (R||Cmax). In this model each task j has a
load lj > 0. Additionally, every machine i represents an agent with type ti. It
takes ti · lj time units to perform task j on machine i. More formally, vi({j}) =
ti · lj . The total cost of a set of tasks on machine i is the additive sum of the costs
of the individual tasks on that machine. In this setting machines are comparable:
if machine i1 is faster than machine i2 on task j, then machine i1 is always faster
than machine i2. For convenience we use the notation l(S) = Σj∈S lj , to denote
the total load of a subset of tasks S. We also assume without loss of generality
that t1 ≥ t2 ≥ · · · ≥ tm.

5.1 The Envy-Free Mechanism

Lemma 1. f is envy-free achievable if and only if it allocates more load to the
fastest machines.

Lemma 2. Let f be a deterministic c-approximation algorithm. We can as-
sume without loss of generality that f always allocates more load to the fastest
machines (this will only improve the makespan).

Definition 8 (Frugal Payment). Suppose f(v) = a, and a allocates higher
load to faster machines. The frugal payment to each machine is defined recur-
sively as follows: p1(v) = l(a1) · t1, and pi(v) = pi−1(v) + (l(ai) − l(ai−1)) · ti,
for i = 2, ..., m.



130 A. Mu’alem

Intuitively, the average payment for a unit of load decreases for faster machines
in the above payment rule.

Theorem 5. Any c-approximation deterministic algorithm w.r.t. makespan for
related parallel machines model can be converted in poly-time to a c-approximation
envy-free mechanism using the frugal payments.

Based on the deterministic PTAS by Hochbaum and Shmoys [14] and theorem
5 we can show the following theorem. The theorem also suggests that the resale
of items (”tasks”) among the agents can be prevented without using verification
(see next subsection for a proof).

Theorem 6. There exists a poly-time computable envy-free (1+ε)-approximation
mechanism for minimizing the makespan on related parallel machines for every
fixed ε. Moreover, resale among the agents can be prevented (in quasi-poly-time).

5.2 Frugal Payments and Preventing Resales

In many cases, a presence of a secondary resale market is not very desirable.
Firstly, the secondary market might have a strong impact on the designer’s
goal (in our case, the makespan objective). Second, the existence of a secondary
market indicates that there is a potential profit that was not fully extracted by
the mechanism.

In what follows we shall first briefly address the issue of frugality. This will
be helpful for preventing resales. Additionally, we show that our deterministic
envy-free mechanism is not truthful (and thus it is different from the randomized
truthful mechanism in [7])5. Specifically we show that the frugal payment method
might encourage an agent to pretend to be slower. Obviously, laziness cannot be
easily detected (unlike the case that a machine pretend to be faster).

Proposition 4. The frugal payment provides the cheapest individually-rational
envy-free payment.

Proposition 5. Any envy-free (1 + ε)-mechanism supported by the frugal pay-
ment is not truthful.
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Abstract. The objective of the paper is to propose procedures to con-
struct global ranking of a set of alternatives in situations in which each
member of a group is able to provide imprecise information on his/her
preferences about the relative importance of the criteria that have to be
taken into account.

We first propose an approach based on the assumption that the final
evaluation depends on the complete group since no possibility exists that
the group might split into coalitions that search for more favourable solu-
tions for the the coalitions members. To this end, the partial information
on criteria weights provided by each individual is transformed into ordi-
nal information on alternatives, and then the aggregation of individual
preferences is addressed within a distance-based framework.

In a second approach, the possibility of coalition formation is consid-
ered, and the goal is to obtain rankings in which the disagreements of all
the coalitions are taken into account. These rankings will exhibit an addi-
tional property of collective stability in the sense that no coalition will has
the incentive toabandon thegroupandbegin a separate evaluationprocess.

This last approach may be of interest in political decisions where dif-
ferent sectors have to be incorporated into a joint evaluation process with
the desire to obtain a consensus across all possible subgroups.

Keywords: Group decision making, decision analysis with multiple
criteria, imprecise information.

1 Introduction

In many group decision problems a set of alternatives must be evaluated on the
basis of different and conflicting criteria which have to be taken into account
in the final decision. In general, each of the group members has a particular
view about the relative importance of the different criteria. The aim of the
collective decision-making process is either to identify the best or most preferred
alternative(s) from a set or to generate a ranking of alternatives in accordance
with these individual preferences about criteria.

Recent research in the field of group decision making incorporates the possibil-
ity of dealing with imprecise preference information and permits the procedures
to be applied in contexts where the group members are unable or unwilling to
provide a precise representation of their preferences over alternatives. See for
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instance [1], where a class of flexible weight indices for ranking alternatives is
proposed, and [2], where a preference aggregation method based on the estima-
tion of utility intervals is presented.

The case of imprecise information has also been addressed for collective deci-
sions in the multicriteria framework. A detailed revision of group decision models
with imprecise information can be found, for instance, in [3]. Recent contribu-
tions are also [4], [5], [6], [7], [8], [9], [10] and [11].

In this paper we propose multicriteria collective decision procedures which
consist of the construction of compromise solutions by using a distance function
on the set of rankings when the group wants to rank a set of alternatives. These
procedures are especially well suited for group settings where each member of
the group individually provides partial information about his/her preferences
with respect to the criteria under consideration, whilst not having information
about the preferences of the other agents.

The final objective is the construction of a global ranking of the alternatives
that combines as accurately as possible the different evaluations of the alterna-
tives with respect to criteria by taking into account the partial information sets
provided by the agents.

The first approach proposed is based on the assumption that the final evalu-
ation depends on the complete group since no possibility exists that the group
might split into coalitions in order to seek more favorable solutions for the coali-
tion members.

In a second approach, this coalition possibility is considered, and the goal is
to obtain rankings in which the disagreements of all the coalitions are taken into
account.

This latter approach might be of interest in political decisions where different
sectors have to be incorporated into a joint evaluation process with the desire
to obtain a consensus across all possible subgroups.

The rest of the paper is organized as follows. In Section 2, we introduce the
collective decision-making model to be addressed. In Section 3, the procedure to
obtain a final ranking of alternatives is presented, and an illustrative example
is provided. In Section 4 the set of group rankings obtained by the procedure
described in Section 3 is refined by taking into account the disagreement of all
the coalitions. Section 5 is devoted to conclusions.

2 The Model

Let us consider a multicriteria group decision problem in which M alternatives,
X = {x1, . . . , xM}, have been evaluated with respect to N criteria. The evalua-
tions of each alternative with respect to each criteria are represented by a matrix
A ∈ RN×M , whose elements are denoted aij with i = 1, . . . , N, j = 1, . . . , M .
These evaluations are assumed to be objective, in the sense that they do not de-
pend on the assessment of the agents, but are measured independently. Hence,
aij represents the cardinal value or the score given to alternative xj with respect
to the i-th criterion.



134 I. Contreras, M.A. Hinojosa, and A.M. Mármol

There are K Decision Makers (DMs), each of whom offers some information
about his/her preferences with respect to the relative importance of the criteria.

We assume that DMs’ preferences can be represented by means of an ad-
ditive function. Thus, the k-th decision makers aggregated value associated to
alternative xh is given by,

V k(xh) =
N∑

i=1

wk
i aih, (1)

where wk denotes a vector of weights that represents the relative importance of
the criteria for agent k.

In contrast to classic approaches which consist of the elicitation of weights,
these parameters need not be be completely determined beforehand. We allow
imprecision by permitting the values of the criteria weights for each agent to
vary in partial information sets, Φk ⊆ RN , k = 1, . . . , K.

A partial information set for an agent consists of those vectors of weights
that the agent will accept as reasonable for the importance of the criteria. By
convention the criteria weights are normalized to add up to one, hence, Φk ⊆
{wk ∈ RN ,

∑N
i=1 wk

i = 1, wk
i ≥ 0, i = 1, . . . , N}, for k = 1, . . . , K. In particular,

we will explore the cases where preference information is given by means of linear
relations between the weighting coefficients. In this case, ΦK are polyhedral sets
described by linear constraints on the criteria weights.

The process of constructing the information set for each DM can be carried
out in a sequential way (see [10]). The DMs can provide information by stating
linear relations on the weights. For instance, they can provide partial or com-
plete ordinal information on the importance of the criteria. Another example of
representation of information by means of linear relations, which is also easily
interpretable by the DM, is when the DM declares a preference of alternative
xh to xj . This implies that xh should not be ranked below xj in any ranking
of alternatives induced by the individual preferences of this particular decision-
maker. Hence, a relation

∑N
i=1 wk

i aih −
∑N

i=1 wk
i aij > 0 must be incorporated

into Φk.

3 Rankings Minimizing Global Disagreement

The main idea of the procedure proposed here is the achievement of a final
consensus or compromise solution between DMs from the individual rankings of
alternatives induced by the partial information sets. Implicit in this problem is
the existence of a measure of global agreement or disagreement between rankings.
Therefore, the approach implies the introduction of a distance function on the set
of rankings in order to determine the ranking that minimizes the total distance
across DMs. A detailed study of models based on distance functions can be seen
in [8].

Let Rh and Rk be two priority vectors that represent two individual rankings,
with rhj denoting the position assigned to alternative xj by DM h. As standard,
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the first category is assigned to the most preferred alternative and when ties
occur, the average of the values corresponding to the tied alternatives is assigned.

The following distance, which is based on the L1-metric, is considered on the
set of priority vectors:

d(Rk, Rs) =
M∑

j=1

|rkj − rsj | (2)

In this setting, a consensus vector, RG, is a priority vector that satisfies

min
∑K

k=1 d(Rk, RG)
s.t. RG ∈ R (3)

where R is the set of vectors that represent ordinal rankings. Notice that neither
the rankings for each DM, not the consensus vector, RG, need to be unique.

It is important to point out that the consideration of partial information sets
to represent DMs’ preferences implies that, from an individual point of view,
agent k would accept an evaluation of alternative xh consisting of V k(xh) =∑N

i=1 wk
i ahi if wk ∈ Φk. Hence, every ranking of alternatives that can be achieved

from the dominance relations induced by any wk ∈ Φk is considered acceptable
by the k-th DM. As a consequence, different rankings of alternatives (at least
one, otherwise, Φk = ∅) can be induced by each DM’s preferences. Therefore,
the procedure has to include not only an objective for the group in order to
determine the ranking that best agrees with the individual preferences, but also
a selection criterion to choose a ranking for each DM which represents the indi-
vidual preferences (those rankings that best agree with the group order).

A dominance relationship between alternatives can be derived from (1). For
a fixed vector of weights, wk ∈ Φk, we can say that alternative xj strictly
dominates alternative xh under the preference structure of the k-th DM, if
V k(xj) − V k(xh) > 0. The consensus ranking is induced here by the ordinal
positions of the alternatives, determined by comparing the aggregated values
V k(xi) for the different values of wk ∈ Φk.

Hence, an intermediate step consisting of the elicitation of an individual rank-
ing for each DM is required. To this end, we consider the following set of con-
straints, where δij and γij are binary variables:

V k(xh)− V k(xj) + δk
hjB ≥ 0, ∀h �= j,

V k(xh)− V k(xj) + γk
hjB ≥ ε, ∀h �= j.

(4)

Here B is a large number and ε is a discriminating factor between alternatives,
such that we say alternative xh strictly dominates xj if V k(xh)− V k(xj) ≥ ε.

The values of variables δk
hj will be equal to one each time that xh does not

strictly dominate xj , i.e., whenever V k(xj) > V k(xh). In contrast, γk
hj will be

one whenever V k(xj) ≥ V k(xh), that is, each time xh is not preferred to xj in
the k-th DM preferences. These variables are included in the expression in order
to reflect the ties between alternatives.
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The ranking position induced by the aggregate values V k(xh) can be obtained
as the sum of the binary variables divided by 2 (this fraction represents the
number of alternatives that dominate xh), plus one. That is,

rkh =
∑
h �=j

δk
hj + γk

hj

2
+ 1, ∀h = 1, . . . , M. (5)

To guarantee that the vectors Rk = (rk1, . . . , rkM ) represent priority vectors, we
incorporate the following set of constraints

δk
hj + δk

jh ≤ 1, ∀h �= j, (6)

δk
hj + γk

jh = 1, ∀h �= j. (7)

Constraints from (6) to (7) are necessary in order to induce the ranking of
alternatives from the values V k(xi). These constraints guarantee that the values
of the binary variables δk

hj and γk
kj are correct, in the sense that only when

xj strictly dominates xh, then δk
hj = 1 holds, and consequently δk

jh = 0. The
values of γk

hj also depend on the value assigned to δk
hj and represent ties between

alternatives. It is worth noting that in each constraint we have to consider not
only the dominance relation of xi over xj but also the relation of xj over xi.

Finally, the following requirement is included

M∑
j=1

rkj =
M(M + 1)

2
, ∀k = 1, . . . , K. (8)

In addition to the above constraints, the condition in (8) assures that vector Rk

is contained in set S, that is to say, represents a priority vector.
In order to obtain the compromise solution, a set of variables corresponding

to the group has to be considered: a weighting vector, aggregate values and a
ranking of alternatives for the group. Hence, a new agent labelled as the subindex
G in the set of DMs1 is included in the model.

To determine the group solution we have to deal with the distance defined in
(2). The minimization of the sum of these nonlinear functions, as stated in (3) can
be reduced to a linear programming model by considering a Goal Programming
formulation. By taking into account the following change of variables proposed
in [9],

αkj = 1
2 [|rkj − rGj | − (rkj − rGj)]

βkj = 1
2 [|rkj − rGj |+ (rkj − rGj)] ; (9)

we will include the following set of constraints in the model to measure the
distance between individual priority vectors and the compromise ranking.
1 Subindexes k, that represent DMs, will now vary from 1 to K plus G, i.e. k =

1 . . . , K, G.
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rkj − rGj + αkj − βkj = 0, ∀k = 1, . . . , K; j = 1, . . . , N. (10)

Therefore, the distance between Rk and RG can be represented equivalently by
the following expression

d(Rk, RG) =
M∑

j=1

(αkj + βkj). (11)

All the specifications defined above yield the following model

min
∑K

k=1
∑M

j=1(αkj + βkj)
s.t. V k(xh) =

∑N
i=1 wk

i aih, ∀h, k
V k(xh)− V k(xj) + δk

hjB ≥ 0, ∀h �= j, ∀ k

V k(xh)− V k(xj) + γk
hjB ≥ ε, ∀h �= j, ∀ k

δk
hj + δk

jh ≤ 1, ∀h �= j, ∀ k

δk
hj + γk

hj + γk
jh ≤ 2, ∀h �= j, ∀ k

δk
hj + γk

hj + γk
jh ≥ 1, ∀h �= j, ∀ k

δk
hj + γk

jh = 1, ∀h �= j, ∀ k

rkh =
∑

h �=j

δk
hj+γk

hj

2 + 1, ∀h, k∑M
h=1 rkh = M(M+1)

2 ∀ k
rkh − rGh + αkh − βkh = 0, ∀h, k �= G
wk ∈ Φk, ∀ k
δk
hj , γ

k
hj ∈ {0, 1}, ∀h, j, k

B, ε ≥ 0.

(12)

By solving (12), the compromise ranking rG is obtained. The solution to the
problem also provides a ranking of alternatives for each DM. This is the ranking
which permits total disagreement to be minimized from among those induced
by the individual preferences. Note that it does not necessarily coincide with
the ranking that minimizes the DM individual disagreement. This ranking is
determined by means of the aggregate values V k(xi), hence the vector of weights
which best agrees with the group solution is selected for each DM.

The aggregated values for the group, V G(xh), are only considered for compu-
tational purposes in order to induce a ranking of alternatives for the group in
the same format in which individual rankings have been constructed. They have
no interpretation from a cardinal point of view since the goal of the procedure
is only the determination of the group’s ranking.

Some desirable properties of our procedure in the context of social choice
processes which are a direct consequence of its construction are: feasibility,
anonymity, neutrality and no dictatorship. That is to say, a compromise so-
lution is always obtainable, all the group members are treated equally, all the
alternatives are treated equally, and no DM exists whose individual preferences
determine the consensus ranking.
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3.1 Illustrative Example

This section illustrates the proposed procedure for group decision-making prob-
lems. We have considered an example in which four decision-makers want to
decide between five alternatives denoted by {x1, . . . , x5}. The alternatives have
been evaluated with respect to four different criteria. Table 1 shows the scores
of the alternatives with respect to each criterion. These evaluations have been
normalized so that the sum with respect to each criterion add up to one.

Table 1. Matrix of utilities

Alternative Crit. 1 Crit. 2 Crit. 3 Crit. 4
x1 0.5776 0.1692 0.0481 0.1612
x2 0.2054 0.2900 0.0340 0.2070
x3 0.1143 0.1692 0.3107 0.2200
x4 0.0717 0.3052 0.4489 0.1765
x5 0.0310 0.0664 0.1583 0.2353

Four agents are to evaluate this information. They have provided partial in-
formation about the relative importance they assign to each criteria. Agent 1
considers that the importance of the criteria is ranked in order of decreasing mag-
nitude. In addition, this agent states that the weight of criterion 5 is not less than
1% of the total value. If Λ+ = {w ∈ R5,

∑5
k=1 wk = 1, wk ≥ 0, k = 1, . . . , 5},

then the partial information set for agent 1, can be formalized as

Φ1 = {w1 ∈ Λ+, w1
1 ≥ w1

2 ≥ w1
3 ≥ w1

4 ≥ 0.01}
The remaining agents preference information about the criteria are represented
in the following information sets and can be interpreted in a similar way to that
above.

Φ2 = {w2 ∈ Λ+, w2
2 ≥ w2

1 + w2
3 , w2

4 ≥ w2
1 + w2

3 , w2
1 ≥ 0.01, w2

3 ≥ 0.01},
Φ3 = {w3 ∈ Λ+, w3

4 ≥ 2w3
3 ≥ 4w3

2 ≥ 8w3
1 ≥ 0.08},

Φ4 = {w4 ∈ Λ+, w4
3 ≥ w4

1 + w4
2 + w4

4 , w4
1 ≥ 0.01, w4

2 ≥ 0.01, w4
3 ≥ 0.01}.

The solution to problem (12) yields a level of disagreement equal to 8 units,
although the collective ranking is not unique. The following table (Table 2)

Table 2. Group rankings

Priority vector (RG) d(R1, RG) d(R2, RG) d(R3, RG) d(R4, RG)
(5, 4, 2, 1, 3) 6 2 0 0
(2, 4, 3, 1, 5) 0 2 6 0
(5, 3, 2, 1, 4) 6 0 2 0

(4.5, 3, 2, 1, 4.5) 5 0 3 0
(5, 3.5, 2, 1, 3.5) 6 1 1 0
(3.5, 3.5, 2, 1, 5) 3 1 4 0



Stable Rankings in Collective Decision Making with Imprecise Information 139

summarizes the group solution that minimizes the total disagreement, repre-
sented by their respective priority vectors, and the individual disagreements
each solution provides.

It is interesting to note that the individual disagreement of each solution can
vary from one collective ranking to another. Note that we only fix the total
disagreement at its minimum level which, in this case, is 8.

4 Stable Rankings across Coalitions

Unfortunately, the procedure described in Section 3 does not always provide a
unique group ranking which minimizes the level of disagreement of the DMs. In
this section we present a procedure to refine the set of group rankings inspired
by cooperative game theory approaches.

The individual disagreement associated to the agents for each collective rank-
ing can be seen as an allocation of the total disagreement. The procedure de-
scribed in Section 3 may provide several collective rankings which minimize the
total disagreement and, in addition, there may be different sets of individual
rankings associated to the same colletive ranking, therefore several allocations
among the DMs of the minimum level of disagreement may exist.

Let x = (x1, x2, . . . , xK) denote any of such allocations, that is to say, for
each k = 1, 2, . . . , K, xk = d(Rk, RG), where RG is one of the group rankings
that minimizes the total disagreement and Rk is one of the associated individual
rankings. Thus, when we choose a collective ranking, RG, and a set of associated
individual rankings, Rk, k = 1, 2, . . . , K, we are assigning a disagreement xS =∑

k∈S xk to each subgroup (or coalition) S ⊆ K = {1, . . . , K}. On the other
hand, the procedure described in Section 3 can be applied, not only to the whole
set of DMs, but also to each coalition S ⊂ K. In this way a minimum level of
disagreement, DS , is obtained for each coalition S ⊆ K, by taking into account
the preferences of the DMs in S. We will say that DS is a reference of the
disagreement for coalition S.

For each coalition S ⊆ K, we consider the difference xS−DS , which is a mea-
sure of the dissatisfaction of coalition S with the collective ranking RG (and the
associated individual rankings) which provides allocation x. The idea is to choose
among all the collective rankings for which the the minimum level of disagree-
ment for the whole set of DMs is achieved, those that lexicographically minimize
the maximum dissatisfaction of the coalitions. If any vector x = (x1, x2, . . . , xK),
xk ≥ 0, k = 1, 2, . . . , K, xK = DK could be chosen as a allocation of the collective
disagreement, then the problem to solve would be Problem 13.

lex−min maxS⊂K xS −DS

s.t. xK = DK
(13)

This problem has, as unique solution, the pre-nucleolus (see [15]) of the cooper-
ative coalitional game defined by the references of the disagreement.

Example in Section 3.1 (continued). The references of the disagreement in
this case are shown in Table 3.
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Table 3. References of the disagreement for the coalitions

Coalition (S) Disagreement (DS) Coalition (S) Disagreement (DS)
K = {1, 2, 3, 4} 8 {2, 3} 2
{1, 2, 3} 8 {2, 4} 0
{1, 2, 4} 2 {3, 4} 0
{1, 3, 4} 6 {1} 0
{2, 3, 4} 2 {2} 0
{1, 2} 0 {3} 0
{1, 3} 6 {4} 0
{1, 4} 0

In the first step to solve Problem 13, we solve the following linear problem:

min μ
s.t. xS −DS ≤ μ ∀S ⊂ K

xK = DK.
(14)

The solution of this problem is μ = 4 and the constraints corresponding to coali-
tions {1, 2} and {3, 4} are active for each allocation x associated to the solution
(it is worth noting that for at least one of the coalitions this property is fulfilled).
The next step consists of solving Problem 15.

min μ
s.t. x1 + x2 = 4

x3 + x4 − 2 = 4
xS −DS ≤ μ ∀S ⊂ K, S �= {1, 2}, {3, 4}
xK = DK.

(15)

This new problem has a unique allocation x∗ = (8
3 , 4

3 , 10
3 , 2

3 ), associated to the op-
timal solution, μ = 10

3 . x∗ is called the pre-nucleolus of the cooperative coalitional
game of references of the disagreements.

Unfortunately, in general, a collective ranking, RG, and a set of associated
individual rankings, Rk, k = 1, 2, . . . , K, for which the corresponding allocation
x = (d(Rk, RG))k∈K coincides with the pre-nucleolus of the game, do not always
exist. Nevertheless, it is always possible to find rankings for which allocation
x = (d(Rk, RG))k∈K approximates x∗ by solving Problem 16.

lex−min maxS⊂K xS −DS

s.t. d(Rk, RG) = xk, ∀ k ∈ K
xK = DK
Rk ∈ R(φk)
RG ∈ R(φG)

(16)

Moreover, in most cases this collective ranking is unique.
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Table 4. Individual weighting vectors

Crit 1 Crit 2 Crit 3 Crit 4
w1 0,330 0,330 0,329 0,010
w2 0,050 0,438 0,231 0,281
w3 0,010 0,020 0,323 0,647
w4 0,108 0,392 0,500 0,000

Table 5. Individual rankings

Rank positions
DM 1 DM 2 DM 3 DM 4 Group

x1 2 4 5 3.5 3.5
x2 4 3 4 3.5 3.5
x3 3 2 2 2 2
x4 1 1 1 1 1
x5 5 5 3 5 5

Disagreement 3 1 4 0

Example in Section 3.1 (continued). The solution of Problem 16 provides a
vector of individual disagreements x = (3, 1, 4, 0), which is as close as possible to
the pre-nucleolus, by taking into account that the constraint in Problem 16 only
considers distances between rankings.

Table 4 and Table 5 summarize the individual results. In Table 4 the weighting
vector selected for each individual partial information set is included. Table 5
summarizes the individual ranking induced from these weighting vectors (note
that this ranking is constructed throughout the aggregated values V k(xi)), and
the individual distances from the group ranking RG.

Therefore, in this case, the group solutions establish that alternative x4 is
ranked at the first position, followed by x3, alternatives x1 and x2 tie in the third
position and the least-valued alternative is x5.⎛⎜⎜⎝

x3
x2

x1, x2
x5

⎞⎟⎟⎠
5 Conclusions

We have proposed a compromise method for collective decision problems which
is especially suited for situations where the members of the group provide impre-
cise information about their preferences with respect to the criteria, and there
is no flow of information between these members. In this context the group
members are not encouraged to misrepresent their true preferences in order to
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manipulate the group decision. Hence, the result derived could be considered a
fair representation of the group evaluation of all the alternatives.

Imprecise information is formalized by means of linear relations between cri-
teria weights. This way of providing preferential information is one of the most
easily interpreted by the DMs, and includes interesting particular cases such as
those in which they only provide ordinal information on the weights.

The basic procedure relies on the transformation of the partial information
about criteria into ordinal information about alternatives, expressed through
rankings. A model is constructed that provides a set of compromise rankings for
the group and an additional step enables the achievement of a unique compromise
ranking which is stable across coalitions.

The approach presented here uses a measure of agreement based upon the
L1-metric and, therefore, emphasizes the sum of individual disagreements with
respect to every alternative. However, the use of other metrics could also be
considered in order to analyze this class of collective decision making problems.
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8. Salo, A., Hämäläinen, R.P.: Preference ratios in multiattribute evaluation (PRIME)
elicitation and decision procedures under incomplete information. IEEE Transac-
tions on Systems, Man and Cybernetics 31, 533–545 (2001)

9. Valadares Tavares, L.: A model to support the search for consensus with conflict-
ing rankings: Multitrident. International Transactions in Operational Research 11,
107–115 (2004)



Stable Rankings in Collective Decision Making with Imprecise Information 143

10. Climaco, J.N., Dias, L.C.: Negotiation Processes with Imprecise Information on
Multicriteria Additive Models. Group Decision and Negotiation 15, 171–184 (2006)
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Abstract. An optimal probabilistic-planning algorithm solves a prob-
lem, usually modeled by a Markov decision process, by finding its optimal
policy. In this paper, we study the k best policies problem. The prob-
lem is to find the k best policies. The k best policies, k > 1, cannot
be found directly using dynamic programming. Näıvely, finding the k-th
best policy can be Turing reduced to the optimal planning problem, but
the number of problems queried in the näıve algorithm is exponential
in k. We show empirically that solving k best policy problem by using
this reduction requires unreasonable amounts of time even when k = 3.
We then provide a new algorithm, based on our theoretical contribution
to prove that the k-th best policy differs from the i-th policy, for some
i < k, on exactly one state. We show that the time complexity of the
algorithm is quadratic in k, but the number of optimal planning prob-
lems it solves is linear in k. We demonstrate empirically that the new
algorithm has good scalability.

1 Introduction

Markov Decision Processes (MDPs) [1] are a powerful and widely-used formu-
lation for modeling probabilistic planning problems [2,3]. For instance, NASA
researchers use MDPs to model the Mars rover decision making problems [4,5].
MDPs are also used to formulate military operations planning [6] and coordi-
nated multi-agent planning [7], etc.

An optimal planner typically takes an MDP model of a problem and out-
puts an optimal plan. This is not always sufficient. In many cases, a planner is
expected to generate more than one solution.

Furthermore, in the modeling phase, not every aspect of nature can be easily
factored in a problem representation. For the case of NASA rover, for example,
there are many safety constraints that need to be satisfied [5]. An optimal plan
might be very close to a risky value—but another may not have many risks and
so it is better to prefer the slightly suboptimal one. Similarly there are many
decision criteria—probability of reaching the goal, expected reward, expected
risk, various preferences, etc. Combining them into a single criterion is hard,
and multi-objective planning is too slow [8,9]. Thus, a good alternative is to

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 144–155, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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look for many suboptimal plans given a single criterion and later pick one that
looks the best according to all criteria.

In this paper, we look at the k best policies problem. Given an MDP model, the
problem is to find the k best policies, ranked by the expected value of the initial
state, tie-broken by the “closeness” to a better policy, followed by lexical order of
the policies. The classical optimal planning problem is a special case of the k best
policy problem where k = 1. The optimal planning problem can be solved by
dynamic programming, as the property of the optimality of sub-problems holds.
The k best policy problem be directly solved by dynamic programming. However,
finding the k-th best policy can be brute-force reduced to exponentially many
instances of the optimal planning problem. Our experiments show that solving
the k best policy problem this way requires unreasonable time even when k = 3.

A very similar problem has been explored by Nielsen, et al. [10,11,12]. Nielsen
and Kristensen observed that the problem of finding optimal history-dependent
policies (maps from the state space crossed with the time step to the action
space) can be modeled as finding “a minimum weight hyperpath” in directed
hypergraphs. A vertex in the hypergraph represents a state of the MDP at a
particular time; the hypergraphs are, therefore, acyclic. They present an elegant
and efficient algorithm for finding the k best time-dependent policies for an
MDP. However, their algorithm cannot handle MDPs with probabilistic cycles,
therefore its usefulness is limited.

Our new solution to the k best policy problem follows from the property: The
k-th best policy differs from a better policy on exactly one state. We propose an
original algorithm for the k best policy problem that leverages this property. We
demonstrate both theoretically and empirically that the new algorithm has low
complexity and good scalability.

2 Background

2.1 Markov Decision Processes

AI researchers often use MDPs to formulate probabilistic planning problems. An
MDP is defined as a four-tuple 〈S,A, T, C〉, where S is a finite set of discrete
states, A is a finite set of all applicable actions, T is the transition matrix
describing the domain dynamics, and C denotes the cost of action transitions.

The agent executes its actions in discrete time steps called stages. At each
stage, the system is at one distinct state s ∈ S. The agent can pick any action
a from a set of applicable actions Ap(s) ⊆ A, incurring a cost of C(s, a). The
action takes the system to a new state s′ stochastically, with probability Ta(s′|s).

The horizon of an MDP is the number of stages for which costs are accumu-
lated. We focus our attention on a special set of MDPs called stochastic shortest
path (SSP) problems. The horizon in such an MDP is indefinite and the costs are
accumulated with no discounting. There are an initial state s0, and a set of sink
goal states G ⊆ S. Reaching any state g ∈ G terminates the execution. The cost of
the execution is the sum of all costs along the path from s0 to g. Any infinite hori-
zon discounted reward MDP can easily be converted to an undiscounted SSP [13].
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To solve the MDP we need to find an optimal policy (π∗ : S → A), a prob-
abilistic execution plan that reaches a goal state with the minimum expected
cost. We evaluate any policy π by a value function.

Vπ(s) = C(s, π(s)) +
∑
s′∈S

Tπ(s)(s′|s)Vπ(s′).

Any optimal policy must satisfy the following system of Bellman equations:

V ∗(s) = 0 if s ∈ G else (1)

V ∗(s) = min
a∈Ap(s)

[C(s, a) +
∑
s′∈S

Ta(s′|s)V ∗(s′)].

The corresponding optimal policy can be extracted from the value function:

π∗(s) = argmina∈Ap(s)[C(s, a) +
∑
s′∈S

Ta(s′|s)V ∗(s′)].

2.2 Dynamic Programming

We define a sub-problem of an MDP with state space S′ ⊆ S to be a self-
contained MDP with state space S′ and associated action transitions. We define
the sub-policy of a policy π given a sub-problem with state space S′ ⊆ S to be
the mapping from all s ∈ S′ to π(s). An optimal policy satisfies the following
necessary and sufficient condition: for any sub-problem, the corresponding sub-
policy is also optimal. Many optimal MDP algorithms are based on dynamic
programming. Its usefulness was first proved by a simple yet powerful algorithm
called value iteration (VI) [1]. Value iteration first initializes the value function
arbitrarily. Then the values are updated iteratively using an operator called Bell-
man backup to create successively better approximations per state per iteration.
Value iteration stops updating when the value function converges (one future
backup can change a state value by at most ε, a pre-defined threshold).

Another algorithm, named policy iteration (PI) [14], starts from an arbitrary
policy and iteratively improves the policy. Each iteration of PI consists of two
sequential steps. The first step, policy evaluation, finds the value function of the
current policy. Values are calculated by solving the system of linear equations
(in the original PI algorithm), or by iteratively updating the value functions in
the VI manner till convergence (modified policy iteration [15]). The second step,
policy improvement, updates the current policy by choosing a greedy action per
state by a one step lookahead, based on the value function calculated in the policy
evaluation step. PI stops when the policy improvement step doesn’t change the
policy.

3 k Best Policy Problem

Classical dynamic programming successfully finds one optimal policy of an MDP
in time polynomial in |S| and |A| [16,17]. In this paper, we find the k best policies
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of an MDP. We first give the formal definition of the k best policy problem. Then
we introduce the main theoretical contribution of the paper by proving a very
strong result about the k-th best policy.

Let M be an MDP, π a policy for M . We define the policy graph of M given
π, denoted by Gπ, to be a graph constructed by: (1) the set of states (vertices)
that are reachable from s0 given π, and (2) their corresponding transitions in π
(edges).

Let s and s′ be states of M . We say that s′ is a policy descendant of s with respect
to π if there is a path from s to s′ in Gπ or if s = s′. We define Policydesc(s, π) to
be the set of all policy descendant states of s under policy π. We assume that, for
every state s ∈ S, there are at least two possible actions for s.

Note that, for a given MDP and a given value function, there may be multiple
policies with that value function. We define a notion of “best among equals”,
namely, the “closest” to better policies followed by a lexicographic ordering, so
that the notion of “best policy” is well defined.

Lemma 1. Using value iteration, we can find an optimal value function for M ,
and the optimal Vπ∗(s0). We can then find the lexicographically least policy, π1,
that has that value for Vπ1(s0) = Vπ∗(s0).

The proof of Lemma 1 is straightforward. Given the value function, for each state,
we choose the lexicographically first action that achieves the desired value. (If
A = {a0, a1, . . . , aj}, the lexicographically first action satisfying a property is
the lowest-numbered ai with that property.) Once we have the best policy, we
then need to define an ordering on policies so that we may define the k-th best.

Definition 1. Given two policies π and π′, we can consider them as vectors of
length |S| over alphabet |A|, and define the Hamming distance Ham(π, π′) to be
the number of states on which π and π′ differ. We also define <lex to be the
lexicographic ordering on such vectors.

Finally, we define an order on policies.

Definition 2. Given an MDP M and a dynamic list of p best policies gener-
ated so far {π1 . . . , πp}, the next best policy is computed based on the following
ordering ≺ on the rest of the policies for M .

π ≺ π′ if Vπ(s0) < Vπ′(s0)
else if minj≤pHam(πj , π) < minj≤pHam(πj , π

′)
else if π <lex π′.

Intuitively, two policies with the same initial state value are first compared by
how “close” each one is to some better policy, followed by lexicographic order if
they are equally close.

Theorem 1. Let M be an MDP, and let {π1, . . . , πk} be the k best policies for
M , in order. Let k ≥ 1. Then there is some m < k such that πk differs from πm

on exactly one state.

The proof sketch to Theorem 1 is provided in the Appendix.
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4 Algorithm

Consider the k-th (k > 1) best policy of an MDP M , called πk. The necessary and
sufficient condition of the optimality on sub-problems does not hold. With the
loss of the optimality on sub-problems, dynamic programming is not immediately
applicable. However, we can reduce it to many optimal planning problems, each
solved by dynamic programming. Before illustrating the reduction, we present
the high-level idea of our first algorithm in Algorithm 1. We call it k best näıve
algorithm (KBN), as it is a brute force algorithm that doesn’t use Theorem 1.
KBN is based on the following observation: The k + 1-st best policy must differ
from each of the k best policies on at least one state. We can enumerate the
possible sets of state/action pairs the new policy must avoid, and find an optimal
policy for each thus-constrained MDP, then take the best of those policies.

Algorithm 1. k best näıve (KBN)
1: Input: M (an MDP), k
2: find best policy π1 by VI
3: Π ← {π1}
4: for i ← 2 to k do
5: πi ← best policy that differs from any policy π ∈ Π by at least one state
6: Π ← Π ∪ {πi}
7: return π1, . . . , πk

For instance, given the best and second best policies, π1 and π2, to find π3, we
say that either it differs from π1 on s0 and from π1 on s0, or from π1 on s0 and
from π1 on s1, or.... In this case, we solve |S|2 many optimal planning problems.
To find the k-th best policy, we solve |S|k many. Each newly-computed policy
will be compared with the best policy computed so far, so that the number of
comparisons is linear in the number of policies computed. Suppose we use VI to
solve those optimal planning problems, KBN has a complexity |S|k×O(V I), an
exponential function of k.

Some of these combinations of constraints may constrain away all actions for
a particular state, so do not yield a next-best policy. However, the next best
policy must be among those computed, and will be the best such.

Using Theorem 1, we have a new algorithm, called k best improved (KBI).
The KBI pseudo-code is shown in Algorithm 2. KBI keeps a set of candidate
policies P , which is initially empty. We first find the optimal policy by value
iteration. To find the i-th best policy, we generate k − i + 1 distinct policies as
candidates. These candidates (1) must not be duplicates of any policy in P , and
(2) each differs from πi−1 on exactly one state. We have the following theorem.

Theorem 2. The i-th best policy must be an element of P.

Proof. As we know from Theorem 1 that the i-th (i ≤ k) best policy is exactly one
state different from one ofπ1, . . . , πi−1, say,πj , where j < i. Therefore, itmust have
been generated when πj+1 was computed. Since it is the i-th best policy, it would
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Algorithm 2. k best improved (KBI)
1: Input: M (an MDP), k
2: find best policy π1 by VI
3: P ← empty set
4: for i ← 2 to k do
5: generate distinct k− i+1 best policies that each differs from πi−1 on exactly one

state and differs from {π1, . . . , πi−1} and insert them into P in order, discarding
duplicates

6: πi ← the best policy in P
7: delete πi from P
8: return π1, . . . , πk

have been amongst the i − j-th best of those policies that are one state different
from πj , so it belongs to the k − j best policies added to P at stage j + 1.

Thus, we find the i-th best policy by picking the best policy in P . There are (|A|−
1)×|S| policies that are exactly one state different from πi. Finding the best k−i
of them has a complexity |A| × |S| ×O(policy evaluation), plus the complexity
of keeping the list P in sorted order (O(k2 log k)). KBI computes these policies
k − 1 times, so its complexity is (k − 1) × |A| × |S| × O(policy evaluation), a
linear function of k. (Note that the sorting term is dominated by |A| × |S| ×
O(policy evaluation).)

5 Experiments

We address the following three questions in our experiments: (1) How does
KBI compare with KBN on different problems and k values? (2) Does KBI scale
well on large k values? (3) How different are the k best policies from the optimal
policy?

We implementedKBN andKBI inC.Weperformedall experimentsona 2.2GHz
Dual-Core Intel(R) Core(TM)2 Processor with 6GB memory. We picked problems
from three domains, namely Racetrack [18], Single-arm pendulum (SAP) and
Double-arm pendulum (DAP) [19]. We used a threshold value of ε = 10−6.

5.1 Comparing KBI and KBN

We compare KBN and KBI on a suite of six problems of various sizes. The
running times of both algorithms when k = 2 are listed in Table 1. We see
that KBI outperforms KBN on all problems. In four problems, the speedup is
an order of magnitude. According to our analysis in the Algorithm section, when
k increases by 1, the running time of KBN increases by a factor of |S|, so for
cases k = 3 and k = 4 we take the expectations of its running time based on
its performance on the same problem when k = 2. Even for small k values, the
running times of KBN are prohibitively high. For example, in SAP 2 problem,
its expected running time is approximately one thousand hours for k = 3 and
tens of millions of hours for k = 4.
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Table 1. Running time (seconds) of KBN and KBI in various problems with different k
values. The running time of KBN on k > 2 are expectations. KBI outperforms KBN on
most problems by an order of magnitude even when k = 2.

Domain States k = 2 k = 3 k = 4
|S| KBN KBI KBN KBI KBN KBI

(expected) (expected)
DAP 1 625 0.90 0.44 102 0.87 105 1.32

Racetrack 1 1,847 0.56 0.07 103 0.14 106 0.21
SAP 1 2,500 12.39 2.58 104 4.93 107 7.29
SAP 2 10,000 461.87 66.15 106 131.30 1010 196.46
DAP 2 10,000 944.14 333.97 106 665.89 1010 1001.23

Racetrack 2 21,371 11.10 2.02 105 4.03 109 6.02
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Fig. 1. Running time (seconds) of KBI when k = 2, . . . , 100 on DAP 1, Racetrack
1, SAP 1, SAP 2, DAP 2, Racetrack 2 problems (left to right, top to bottom). The
running times increase linearly in k for all problems.
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5.2 The Scalability of KBI

In this experiment we investigate whether the KBI algorithm scales to large k
values. We run KBI for k = 100 on the same set of problems, and record the
elapsed times when it finishes generating the i-th best policy (i = 2, . . . , k) of
each problem. Figure 1 clearly shows that, for all problems KBI spends times
linear in k when calculating k-th best policies. This experiment indicates that
KBI has good scalability.

5.3 How k Best Policies Differ from the Optimal

We are also curious to know how the k best policies differ from the optimal policy.
We analyze the list of k best policies calculated in the previous experiment, and
compare the total number of different states, d, between each of these policies
and the optimal policy π1 for each problem. When d is small for a problem, it
means that the k best policies are very similar to the optimal policy. This shows

0

1

2

3

4

5

0 20 40 60 80 100

k

d

0

2

4

6

8

0 20 40 60 80 100

k

d

0
2
4
6
8

10
12
14

0 20 40 60 80 100

k

d

0

1

2

3

4

5

0 20 40 60 80 100

k

d

0

5

10

15

20

0 20 40 60 80 100

k

d

0

5

10

15

20

0 20 40 60 80 100

k

d

Fig. 2. The total number of different states between the k-th best policy and the
optimal policy when k = 2, . . . , 100 on DAP 1, Racetrack 1, SAP 1, SAP 2, DAP 2,
Racetrack 2 problems (left to right, top to bottom). All k best policies are quite close
to their π1’s.
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that zmany good policies can be generated by a few small changes to the optimal
policy. In other words, changes to few states can have very little impact on the
optimality of the rest of the policy. When d is large, the optimal policy is more
tightly coupled. When a sub-optimal action is chosen for a state, in order to get
a good sub-optimal plan, changes to other states are usually also required.

We plot the d values for the k best policies on the same set of problems in
Figure 2. These problems have relatively low d values (< 20 for all k). This shows
that the k best policies are always quite close the the optimal policies. Some prob-
lems have relatively higher d values than others, namely SAP 1, DAP 2, and Race-
track 2, which means they have relatively tightly coupled optimal policies. As these
problems are from diverse domains and of different sizes, it seems that the tightness
of coupling of the optimal policies is probably problem-dependent.

6 Conclusions

This paper makes several contributions. First, we introduce the k best policy prob-
lem, and argue for its importance. Second, we prove a strong and useful theorem
that the k-th best policy differs from some m(< k)-th best policy on exactly one
state. Without that result, the brute-force algorithm for solving the k best pol-
icy problem (KBN) has time complexity exponential in k. Third, we propose a
new algorithm, named k best policy improved (KBI), based on our theorem. We
show that the time complexity of KBI is dominated by a computation linear in
k. Fourth, we demonstrate that KBI outperforms KBN by an order of magnitude
when k = 2 in most cases. The KBN algorithm does not scale to larger k values,
as its running time increases exponentially in k. On the other hand, the running
time of KBI increases only linearly in k. This makes KBI suitable for problems for
which we want a long list of best policies. Fifth, we notice that the k best policies
for different MDPs are quite similar to the optimal policies, though some prob-
lems’ optimal policies are more tightly coupled than others’.

This is just the beginning of work on k best policies. There is much to be done
in improving the algorithms, and in looking at applications-driven variants.

Acknowledgments

Dai was partially supported by Office of Naval Research grant N00014-06-1-
0147. Goldsmith was partially supported by NSF grant ITR–0325063. We thank
Mausam for helpful discussions on the problem.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
2. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-

tions and computational leverage. J. of Artificial Intelligence Research 11, 1–94
(1999)



Finding Best k Policies 153

3. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search
in belief space. In: ICAPS, pp. 52–61 (2000)

4. Bresina, J.L., Dearden, R., Meuleau, N., Ramkrishnan, S., Smith, D.E., Washing-
ton, R.: Planning under continuous time and resource uncertainty: A challenge for
AI. In: UAI, pp. 77–84 (2002)

5. Bresina, J.L., Jónsson, A.K., Morris, P.H., Rajan, K.: Activity planning for the
mars exploration rovers. In: ICAPS, pp. 40–49 (2005)
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Appendix

In order to prove Theorem 1, we consider the effects of changing a policy one
state at a time.

Lemma 2. Let M be an MDP, and π and π′ be two policies for M that differ
only on state s. Suppose that Vπ(s) ≤ Vπ′(s). Then Vπ(s0) ≤ Vπ′(s0). More
strongly, if s ∈ Policydesc(s0, π) (which implies s ∈ Policydesc(s0, π

′)) and
Vπ(s) < Vπ′(s), then Vπ(s0) < Vπ′(s0).
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Proof. We know the values of Vπ(s) and Vπ′(s) are two unknown constants with
Vπ(s) ≤ Vπ′(s). We write the two systems of linear equations with respect to π
and π′ by ignoring variables Vπ(s) and Vπ′(s) on the left hand side, and replacing
them with their values whenever they are on the right hand side. We find the
two systems of equations have the same set of coefficients, but the one given
π has smaller or equal constant values on the right hand sides. If we solve the
equations by factoring out all the variables on the right hand side iteratively, the
same process as replacing a variable by its corresponding state’s influence [20],
we finally get the same value for all states where s is not a policy descendant
given π′, since all states’ influences are the same in π and π′, and a better value
in π for all states where s is a policy descendant given π′, since the influence of s
on them is decreased (due to a smaller value), where the influence of other states
remain unchanged. We call this property monotonicity of influence. This implies
Vπ(s0) ≤ Vπ′(s0). Here, we actually proved a more general result, namely that
∀s′ ∈ S[Vπ(s′) ≤ Vπ′(s′)].

Lemma 3. Let M be an MDP, and π and π′ be two policies for M that differ
only on state s. Suppose that Vπ(s0) < Vπ′(s0). Then Vπ(s) < Vπ′(s). More
strongly, ∀s′ ∈ S, [Vπ(s′) ≤ Vπ′(s′)].

Proof (Sketch). Suppose that Vπ(s) ≥ Vπ′(s).
We divide the states in Policydesc(s0, π

′) into two subsets: (1) policy ancestors
of s given π′, the set of states where s is a policy descendant given π′, and (2)
non-policy ancestors of s given π′, the complement of (1).

We claim that the values of the non-policy ancestors of s given π′ are the
same as those given π. This is because the values of those states do not depend
on s or any policy ancestors of s given π′, so their values are not influenced
by any potential value changes caused by s. For policy ancestors of s given π′,
their values cannot be improved, by the monotonicity of influence. Because their
coefficients remain unchanged while the constants (values of non-policy ancestors
of s given π′ and value of s) are equal or larger. This contradicts the assumption
that Vπ(s0) < Vπ′(s0). Now, we know that Vπ(s) < Vπ′(s). From Lemma 2 we
have that ∀s′ ∈ Policydesc(s0, π

′) [Vπ(s) ≤ Vπ′(s)].

Lemma 4. Let M be an MDP, and π and π′ be two policies for M that differ
only on two states s1 and s2. Suppose that Vπ(s0) ≤ Vπ′(s0). Consider the fol-
lowing two policies π1, π2 obtained from by starting with π by replacing exactly
one distinct action each from π(s), s ∈ {s1, s2}, with the corresponding π′(s).
Without loss of generality, suppose πi(si) = π′(si). Then π1 and π2 cannot both
have larger initial state values than π′ does.

Proof (Sketch). For either si, if si is not a policy descendant of s0 given π or π′,
then Vπ′(s0) = Vπi(s0), and we’re done.

Now suppose Vπ′(s0) < Vπi(s0) for i = 1, 2. From Lemma 3, we have

∀s′ ∈ S[Vπ′(s′) ≤ Vπ1(s′)], and Vπ′(s2) < Vπ1(s2), (2)
∀s′ ∈ S[Vπ′ (s′) ≤ Vπ2(s′)], and Vπ′(s1) < Vπ2(s1). (3)
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There are three cases. Case 1: Neither s1 nor s2 is a policy descendant of the other
given π. From Equation 2 we know Vπ′(s2) < Vπ1(s2) = Vπ(s2), as the values of
all policy descendants of s2 given π1 and π are the same, and π1(s2) = π(s2).
From Equation 3 we know Vπ′(s1) < Vπ2(s1) = Vπ(s1) for the same reason.
Then from the monotonicity of influence together with all derived inequalities,
we know Vπ′(s0) < Vπ(s0). A contradiction.

Case 2: s2 is a policy descendant of s1 given π, but s1 is not a policy descendant
of s2 given π (or vice versa). From Equation 2 we first know Vπ′(s2) < Vπ1(s2) =
Vπ(s2). From Equation 3, and Vπ′(s2) < Vπ(s2), by the monotonicity of influence
we know Vπ′(s1) < Vπ(s1). Then, from the monotonicity of influence together
with all derived inequalities, we know Vπ′(s0) < Vπ(s0). A contradiction.

Case 3: s1 and s2 are both policy descendants of each other given π′. From
both Equations 2 and 3 and the monotonicity of influence we can prove Vπ′(s1) <
Vπ(s1) and Vπ′(s2) < Vπ(s2). Then from the monotonicity of influence together
with all derived inequalities, we know Vπ′(s0) < Vπ(s0). A contradiction.

Lemma 5. Let M be an MDP, and π and π′ be two policies for M that differ
only on m states s1, s2, . . . , sm, m > 1. Suppose that Vπ(s0) = Vπ′(s0). Consider
the 2m distinct policies πT , T ⊆ {s1, s2, . . . , sm} that agree with π on all states
not in T , and agree with π′ on T . Then for at least one such T of size 1,
VπT (s0) ≤ Vπ′(s0).

This Lemma can be proved inductively from Lemma 5.
Note that a fundamental assumption underlying dynamic programming algo-

rithms for MDPs is: If M is a MDP and π a non-optimal policy (in the sense of
having a non-optimal value function), then there is some s ∈ S and a ∈ A such
that vπ(s) > C(s, a) + γ

∑
s′∈S Ta(s′|s) · vπ(s′). Bertsekas and Tsitsiklis showed

that this holds for stochastic shortest path problems, when γ = 1 [21]. Their
proof can be extended.

Lemma 6. If If Vπ(s0) is not optimal, there must be an s+ ∈ Policydesc(s0, π)
and a ∈ A such that vπ(s+) > C(s+, a) +

∑
s′∈S Ta(s′|s+, ) · vπ(s′). If we let

π′(s) = π(s) for s �= s+, and let π′(s+) = a, then Vπ′(s0) < Vπ(s0).

Proof (Theorem 1). Let M be an MDP, and Πi = {π1, . . . , πi} be the list of i
best policies, for i ≤ k. We claim that, for k > 1, there is some j < k and state
s such that πj differs from πk exactly on s.

If Vπk
(s0) = Vπ1(s0), the theorem follows from Lemma 5.

If Vπk
(s0) > Vπ1(s0), the theorem follows from Lemma 6.
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Abstract. Recommender Systems and Multicriteria Decision Analysis remain 
two separate scientific fields in spite of their similarity in supporting the deci-
sion making process and reducing information overload. In this paper we  
present a novel algorithmic framework, which combines features from Recom-
mender Systems literature and Multicriteria Decision Analysis to alleviate the 
sparsity problem and the absence of multidimensional correlation measures. We 
apply the introduced framework for recommending Greek equity funds to a set 
of simulation generated investors. The proposed framework treats MCDA's al-
gorithm UTADIS as a content - based recommendation technique which, in 
conjunction with collaborative filtering results in two Hybrid Recommendation 
approaches. The resulting approaches manage to outperform the separate appli-
cation of the UTADIS and collaborative filtering methods in terms of recom-
mendation accuracy. 

Keywords: Hybrid Recommender, Collaborative Filtering, UTADIS, equity funds. 

1   Introduction 

The development of recommender systems is a phenomenon of the last decade. A vast 
amount of commercial applications have been presented during this period of time 
among which Amazon.com, Netflix, Last.Fm and others, being arguably the most 
familiar commercial examples. The main purpose of these applications is to help the 
active user deal with the increasing information overload by supporting and facilitat-
ing the decision making process. The user is thus absolved from having to consider 
every alternative separately in order to decide which is best for him. Consequently the 
decision making process is accelerated. 

Our model describes an interdisciplinary investment recommendation system in 
which we are exploring the possibility of combining and improving two methods 
(Recommender Systems - Collaborative Filtering and Multicriteria Decision Analysis 
– UTADIS) that even though they confront the same problem (recommending items 
and/ or classify them into predefined classes) they have been applied separately. In 
brief, collaborative filtering recommender systems are based on the philosophy of 
searching correlations among users or items and take advantage of these correlations 
in generating recommendations. On the other hand UTADIS and utility based re-
commenders base their recommendations on a user's utility function which describes 
his behavioral pattern. 
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The academic contribution of this paper extends from the decision science in gen-
eral and its applications of recommenders and MCDA to the financial research sector, 
with portfolio selection and management serving as the major focusing area. 

The augmentation of Collaborative Filtering algorithm with features from an 
MCDA algorithm that is designed to base its recommendations on multiple criteria is 
considered to introduce rationale in Collaborative Filtering recommendations. 

We introduce the shift from the modeling of the imaginary average user – a utopian 
aspiration of doubtful usefulness - towards per user application of the UTADIS 
method. The financial sector and investment recommendation in particular is not 
excluded from the need for personalization. We try to address the literature gap pre-
sent, regarding applications of Recommender Systems in mutual fund portfolio selec-
tion and the lack of a personalized approach concerning investing preferences. 

In the following section we present a brief literature review on user to user memory 
based collaborative filtering systems. We also refer to the limitations presented during 
their application. The philosophy of the Multicriteria Decision Analysis' method 
UTADIS is presented in Section 3, along with some of its applications in the portfolio 
recommendation problem. In section 4 we thoroughly present the proposed algo-
rithmic framework that resulted in the introduction of the hybrid approaches Hybrid 1 
and Hybrid 2. In the fifth section we apply the new approaches to a set of Greek eq-
uity funds and measure their performance. In the final section the conclusions are 
presented along with the extent to which the initial goal is achieved. Future research 
proposals in the field are also included. 

2   Recommender Systems 

Recommender systems, having their roots in approximation theory, data mining, 
forecasting theory, emerged as a separate research filed in the mid 1990's. In most of 
the cases they aim at calculating the possibility of an item, not having been rated from 
the active user, being one of interest to him. In literature there are many alternative 
classifications for the recommender systems and the implemented algorithms [1-3]. 

We briefly present collaborative filtering algorithm which is considered the most 
popular and is also applied in our approach. 

2.1   Collaborative Filtering 

Collaborative filtering approaches are assigned the definition of a user "neighbor-
hood" composed of users with similar tastes. Recommendations are produced based 
on the notion that items liked by the active user's neighborhood will also be liked by 
the active user. Collaborative filtering systems have the potential to provide filtering 
based on complex attributes, such as quality, taste, or aesthetics [4], thus being appli-
cable to a wide field range. Collaborative filtering algorithm takes into consideration 
previous knowledge regarding user tastes, provided by the user explicitly or implic-
itly, in defining behavioral similarities. In order to measure similarity among users 
collaborative filtering algorithms use statistical metrics such as Pearson's linear corre-
lation [5], cosine similarity [4], [6] and distance measures adjusted for measuring 
correlation e.g. Chebyshev distance [7]. 
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Following user correlation measurement a "neighborhood" is defined by selecting 
users with behavior similar to the behavior of the active user. In order to generate 
recommendations the collaborative filtering algorithm calculates the weighted aver-
age or the adjusted weighted average of the neighbors' ratings. 

In the years following the first collaborative filtering systems there have been nu-
merous papers focusing on limitations resulting from their application [8-10]. New 
users need to rate a relatively large amount of items before the algorithm can provide 
them with accurate recommendations and this is due to the fact that correlation meas-
ures based on a small amount of data can often be misleading. This issue is commonly 
referred to as cold - start problem [11]. A similar issue emerges when a new item is 
introduced (first rater problem). 

In addition to the cold start and first rater problems, data sets used in recommender 
systems are sparse. This refers to the general lack of sufficient ratings to generate 
accurate recommendations. In commercial applications it is common phenomenon for 
the available ratings to be less than 1% of the total items (e.g. Amazon) [6]. When 
applying collaborative filtering approaches to such a small amount of data it is  
precarious to generate recommendations when recommendation accuracy is consid-
ered. In extension to this problem we find the lack of available peers for users with 
"uncommon" tastes. Correlation measures are led to false neighborhood considera-
tions, thus generating inaccurate recommendations. This is also referred to as gray 
sheep problem [9]. 

Furthermore collaborative filtering is prone to critique because of its function as 
black box, which prevents the user form understanding the process that generates a 
recommendation and its context. This consequently reduces recommendation explain-
ability and possibly the user's confidence [12]. The augmentation of the recommenda-
tion generation process with a model that contributes ratings that result from each 
item's valuation on a set of criteria is considered introduce rationale. In order to serve 
this functionality and alleviate the previously presented issues in this paper we  
combine Multicriteria Decision Analysis presented in the next section with simple 
collaborative filtering. 

2.2   Hybrid Recommenders 

Hybrid recommenders combine two or more recommendation techniques in order to 
achieve better recommendations. In most of the cases collaborative filtering is the ele-
ment that is combined with another method. The study of hybrid recommender systems 
requires an adequate classification framework. Burke provides us this framework that 
classifies hybrids according the way the participating techniques are combined [1]. 

3   MCDA 

Multicriteria Decision Analysis is a field from Operational Research that has known 
rapid development in the last 40 years. This set of techniques resulted from the reali-
zation that single criterion analysis in decision aiding contradicts real life decision 
making. The aim of Multicriteria decision analysis is to represent the decision maker's 
way of thinking in order to support him in the decision making process by indentify-
ing pareto optimal solutions.  
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There is an extensive literature available of MCDA applications that model and 
solve financial problems. In their literature review Steuer and Na study and classify 
265 papers that deal with financial decisions [13]. Among those there are 77 that 
focus exclusively on portfolio management. The problem solved in these studies is 
similar to the one at hand, meaning the selection of investment alternatives that 
maximize an investor's utility without being limited by the dipole "risk - return". 

None of the applications studied by Steuer and Na utilizes the additional informa-
tion generated by the correlations present among users in the investment community. 
These studies focus merely on the behavioral replication of single user preferences. 

3.1   UTADIS 

UTADIS (UTilites Additives Discriminantes) [14, 15], which is a MCDA preference 
disaggregation approach, is often used in addressing multicriteria problems including 
country risk analysis, financial institutions' credit risk analysis, portfolio selection etc. 
The methodology analyses the set of evaluation criteria present in the decision mak-
ing process, leading to a nonlinear mathematical framework combining these criteria 
in an accurate representation of decision maker's previous behavior. The method is 
similar to other commonly used statistical and econometric classification techniques 
(e.g., discriminant analysis, logit, probit, etc.) as well non parametric techniques (neu-
ral networks, machine learning, fuzzy sets etc).  

The similarities between preference disaggregation and machine learning in par-
ticular are summarized in that they assign labels (classes) to the examples (decision 
alternatives) under consideration, based on a set of attributes that define the set of 
examples. The fundamental difference though, is that machine learning applications 
do not consider ordered classes nor ordered attributes (decision criteria) in contrast to 
UTADIS which is an algorithm dealing with monotone problems. Among the excep-
tions to this rule we find a decision tree algorithm presented by Potharst and Bioch 
that addresses monotone learning problems [16], the technique presented by Frank 
and Witten for replacing nominal attributes constituting the input space with binary 
attributes, thus treating them as ordinal [17] and the approach for ordinal classifica-
tion presented by Frank and Hall, which in combination with the previous technique 
could also address monotone problems [18]. Apart from the above and due to the 
different approach adopted, machine learning seems to lack applications for ordinal 
classification problems (sorting). 

In order to briefly present UTADIS formulation let the training sample, on which the 
utility function is calculated, consist of m alternatives described over a set of g evalua-
tion criteria. The alternatives under consideration are classified into C ordered classes 
(Ck-1 is preferred to Ck) based on the decision maker's stated opinion. The additive utility 
model, which is developed through the UTADIS method has the following form: 

 

 
(1)

where, U(g) is the total utility for an alternative on the set of the evaluation criteria 
g={g1,…,gn} and ui(gi) is the marginal utility of the alternative on the evaluation crite-
rion gi. The global utility provides an overall evaluation of the performance of the alter-
native, whereas the marginal utilities provide the partial evaluations of the alternative's 
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performance on each individual evaluation criterion. Details on the solution of the linear 
programming (LP) problem are given in [15]. 

The majority of applications utilizing MCDA's preference disaggregation tech-
niques attempt to model someone's expertise in the sector the problem originated from 
in order to generate commonly accepted solutions for the entire users community. In 
this paper UTADIS is applied on a per user basis in an effort to separately model a 
user's taste and consequently come up with a set of utility functions able to provide 
personalized recommendations. 

Utility based algorithms including UTADIS present limitations that Burke dis-
cusses thoroughly in his work [1]. In particular Burke argues that utility based sys-
tems require immediate interaction with the user in order to obtain his utility function, 
while in the meantime they present a static character with limited ability to adjust to 
users evolving preferences. UTADIS on the contrary does not require from the user to 
explicitly input his utility function since it is able to obtain it by analyzing his previ-
ous decisions, such as every technique from MCDA's preference disaggregation. As a 
result of the indirect user involvement in calculating a utility function the second 
limitation presented by Burke does not hold for UTADIS either, since it is possible to 
run the UTADIS algorithm and obtain an updated utility function once a critical 
amount of new ratings and/ or items have been imported in the system. 

4   Proposed Approach 

In this paper we follow the guidelines provided by Adomavicius and Kwon on the 
calculation of multicriteria user to user correlation measurement to introduce a two 
stage approach [7]. In the first stage UTADIS generates additive utility functions for 
every user based on the alternative classifications available from the simulation proc-
ess. These utility functions are then combined with the common collaborative filtering 
scheme in two ways in order to enhance correlation's computation. Figure 1 graphi-
cally represents our approach. 

 

Fig. 1. Proposed Methodology 
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4.1   Data Set 

The data set is divided into two subsets. The first subset has been also used in previ-
ous work [19] and it constitutes of 33 equity funds, which are analyzed for a three 
year period 1999-2001. Each equity fund is divided into three alternatives, one for 
every year of the analysis, thus resulting in 99 investment alternatives. The increase in 
the set of the alternatives evidently increases data sparsity but on the other hand al-
lows a more realistic approach of investment habits (active investing). 

The buying prices of the equity funds were used to calculate a set of indexes 
that are considered as participating in the investment decision. Furthermore in 
order to obtain a benchmark we used data to measure market performance, namely 
the Athens Stock Exchange index. The calculated indexes are: equity fund's annual 
return, average return, standard deviation of return, geometric mean of excess 
return over benchmark, value at risk, Sharpe ratio, Modigliani index, information 
ratio, beta, Treynor index, Jensen's alpha coefficient, Treynor and Mazuy's alpha 
coefficient, Treynor and Mazuy's gamma coefficient, Henriksson and Merton's 
alpha coefficient, Henriksson and Merton's gamma coefficient, Treynor and Black 
ratio. The second subset is composed of investment behaviors. The transformation 
of these behaviors into classifications for the alternatives is necessary in order to 
be able to apply both collaborative filtering and UTADIS algorithms. Since it was 
not possible to obtain real investment behavior, due to the lack of such publicly 
available data set and constraints regarding its purchase (increased cost - customer 
confidentiality), we were forced to simulate this behavior following the procedure 
described below. 

Simulation of Investment Behavior. The simulation process is divided in two 
phases. In the first phase each of the 16 indexes that form the decision criteria is se-
lected sequentially. Every equity fund is classified in one of the three predefined 
classes based on its performance on the selected index. The item's per criterion classi-
fication is based on 5 predefined scenarios. In order to form each scenario we need to 
identify 2 threshold points that separate the 3 classification categories. If an alterna-
tive's performance is above the r1 threshold which is the separation point between the 
C1 and C2 categories (C1  C2) then the alternative is classified in the C1 category or it 
is considered to have obtained a rating of 1 and so on. By the end of the first phase we 
have managed to construct a set S numbering 80 (16 criteria x 5 scenarios) alternative 
classifications.  

In the next phase of the simulation we came up with 3 additional classifications 
for every classification si  S that was generated in the first phase, simply by adding 
noise. This increased the simulation fairness and resulted in a set L of 240 alterna-
tive classifications. At this point we should clarify that classifying an alternative in 
one of the three possible categories is considered identical to giving an alternative a 
rating in the three point scale and from now on there will be no semantic distinc-
tion. Furthermore the ratings assigned to every alternative are considered the ex-
pression of an individual's investing preferences. For the following steps of  
the analysis and the application of the collaborative filtering and UTADIS algo-
rithms we consider that these alternative classifications represent 240 different user 
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investment behaviors for the 99 available investment alternatives, thus resulting in a 
total of 23760 available ratings. 

In order to assign meaningful interpretation to the three classification classes we 
should underline that they consist of buying and selling activities of particular indi-
viduals in the market. Rating an alternative in C1 denotes buying suggestion for the 
specific equity fund. Items classified in C2 require further investigation, while the C3 

class denotes suggestion for selling or avoid buying the relevant equity fund. 

4.2   Hybrid 1 

For the Hybrid 1 approach each user's additive utility function takes part in the 
generation of a rating for the complete set of alternatives. The calculated rating is 
then integrated in the user - item matrix. This process leads to the introduction of 
"artificial" users that behave exactly as the corresponding utility function suggests. 
In a similar manner Sarwar et al. used feature augmentation to improve email filter-
ing [20]. They introduced filtering bots that acted as artificial users by evaluating 
emails based on a set of criteria and then contributed these ratings into the system 
for the collaborative filtering algorithm to utilize. Our approach further improves 
the approach proposed by Sarwar et al. since the behavioral pattern of every intro-
duced "artificial" user in our approach is determined by a utility-based model that is 
developed through the UTADIS algorithm and is based on (simulated) observed 
investment behavior. Due to the utilization of UTADIS it is possible to develop non 
linear utility functions that, in conjunction with the previous feature, can equip the 
recommender system with more credible recommendations. The number of columns 
in the user - item matrix is increased by L, where L��is the number of additive utility 
functions generated from UTADIS thus doubling in width. The graphical represen-
tation of the modified user – item matrix is given in Figure 2. Ratings available 
before the integration are shown in the light pattern, while the dark pattern indicates 
data generated by the additive utility functions. Following Burke's classification of 
hybrid recommender techniques our approach can be classified as feature augmen-
tation hybrid, since the ratings resulting from UTADIS perform as input to simple 
memory based collaborative filtering. 

Every "artificial" user is considered to have rated the entire item set based on the 
intrinsic utility function of the real user corresponding to him. This means that, for 
example, user UTADIS1 rates items based on user U1 utility function as it has been 
calculated during the MCDA part of the introduced framework. The incorporated 
columns significantly alleviate the sparsity problem (including cold-start and first 
rater problems), since there exist no missing data, allowing a more thorough computa-
tion of user to user similarity. Correlation among users is also more cohere, especially 
in sparse data set applications, due to the introduction of multicriteria ratings that 
reduce inconsistency by being subject to a mathematical model that takes into consid-
eration an item's performance on predefined evaluation criteria. 

Future studies could change the leverage for the ratings contributed by "artificial" 
users following a certain criterion such as the fitting index of the user's calculated 
utility function and the utility function implied by the real data. 
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4.3   Hybrid 2 

The second modification of the common collaborative filtering approach is applied by 
incorporating every item’s marginal utilities - which were generated based on each 
item’s performance on the evaluation criteria - in the user - item matrix. The proposed 
technique is classified according to the classification scheme for hybrid recommender 
by Burke, as a “feature combination”. This is because apart from importing the actual 
ratings provided by every user to the collaborative filtering algorithm, we also incor-
porate the deeper knowledge generated through the application of the UTADIS algo-
rithm regarding user investment preferences. The Hybrid 2 technique can be also 
classified as “meta – level” hybrid, since during the conjunction of the participating 
techniques the whole model generated by UTADIS is imported in the collaborative 
filtering algorithm through every alternative's marginal utilities. The graphical repre-
sentation of the modified user - item matrix is also given in Figure 2. 

 

Fig. 2. Hybrid 1 and Hybrid 2 user – item matrices 

In the same way as in the case of graphical representation of the Hybrid 1 tech-
nique the previously available information (ratings ri,l) are shown in light pattern, 
while the rest of the matrix originates from the application of UTADIS (u1(gi,jψ)). The 
display of the ratings generated during simulation and the marginal utilities in a single 
matrix is only to improve comprehension. Taking under consideration that marginal 
utilities are on different scale than real ratings we are forced to regard them as two 
separate user – item matrixes in order to calculate correlation among users. The corre-
lations that result from these two matrices are equally leveraged in order to obtain the 
final correlation measure. 

The recommendation process though utilizes only the real ratings excluding the 
imported data. This is contrast to the Hybrid 1 approach where the imported ratings 
participated in the recommendation process. 

5   Application Results 

Complying with the previously described framework we initially solved the UTADIS 
algorithm, including post - optimality analysis, for every available user and every 
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formed partition (40,800 runs), in order to import the generated information in the 
user - item matrix. Based on the expanded matrices we estimated the Pearson correla-
tion coefficients for the Hybrid 1 and Hybrid 2 approaches. We selected the 10 most 
similar users to the active user in order to generate ratings by utilizing the adjusted 
weighted average formula. The performance on both the training and test samples was 
recorded for every partition of the available data. In order to measure performance we 
used 3 metrics; Mean Absolute Error (MAE), precision (P) and recall (Re). Thorough 
presentation of these metrics can be found in previous papers dealing with recom-
mendation accuracy measurement [21]. Following the precision measurement we 
conducted the Wilcoxon signed rank test to determine if the differences observed are 
statistically significant. We chose the Wilcoxon signed rank test because the exam-
ined sets as a whole were not validated as following normal distribution when the 
Lilliefors normality test was ran. 

In the presented results we decided to exclude the precision and recall metrics 
since precision was highly correlated to MAE, in fact there was no change in the best 
performer for any partition examined, and there was no evidence of statistical signifi-
cance for the obtained results. Recall on the other hand should be given a special 
notice due to the fact that "good" items generated by the simulation are only a small 
part of the data set which in turn results in a small number of relevant alternatives per 
user. There are 2.12 relevant alternatives on average per user in the test sample, which 
is the reason that prevents us from obtaining an accurate recall measurement. 

The MAE results for every method and every partition are presented in Table 1 
along with the additional information from the statistical significance testing. We 
marked with ● every result that was significantly different (worse) at the 5% level 
than the result obtained from the best performer of every partition. Table 2 elaborates 
on the error measurement results and presents the comparisons among the examined 
methods. Every cell number refers to the number of times that its corresponding col-
umn method outperforms (significantly) the method in the associated row. 

Table 1. Mean Absolute Error/ partition (test sample), ● indicates statistically significant dif-
ference over the performance of the best performing method (marked in bold) 

 20% 40% 60% 80% 90% 
Hybrid 1 0.2229  0.2221  0.2320  0.2777  0.2777  
Hybrid 2 0.2216  0.2327 ● 0.2564 ● 0.2978 ● 0.2893 ● 
CF 0.2239  0.2337 ● 0.2567 ● 0.2928 ● 0.2699  
UTADIS 0.2522 ● 0.2539 ● 0.2661 ● 0.2977 ● 0.3058 ● 

Table 2. Pair-wise comparison of mean absolute error performance, number indicates how 
often method in column (significantly) outperforms method in row 

 Hybrid 1 Hybrid 2 CF UTADIS 
Hybrid 1 – 1 (0) 1 (0) 0 
Hybrid 2 4 (4) – 1 (1) 1 (1) 
CF 3 (3) 3 (1) – 0 
UTADIS 5 (5) 4 (2) 5 (3) – 
Total 12 (12) 8 (3) 7 (4) 1(1) 



 New Hybrid Recommender Approaches: An Application to Equity Funds Selection 165 

It is evident that the Hybrid 1 approach is the winner among the examined methods 
in our paper, since it managed to (significantly) improve recommendation accuracy in 
comparison to the majority of the partitions. UTADIS seems to be the worst per-
former but the augmentation of collaborative filtering algorithm with some of its 
features and the resulting multicriteria correlation measurement still managed to give 
encouraging results. 

Based on the overall results from Table 2 we can safely state that the incorporation 
of MCDA features in collaborative filtering improves performance in terms of (statis-
tically significant) MAE. For relatively sparse data single criterion memory based 
collaborative filtering surpassed the introduced Hybrid 2 approach even when consid-
ering the statistical significance of the result. For more cohere datasets though, Hybrid 
2 demonstrates higher recommendation accuracy. 

6   Conclusions 

The major obstacle that we faced in realizing this work was the absence of a database 
containing real life data on investment behavior (user rankings, evaluation criteria). 
We were forced to simulate investor's behavior and reuse a dataset from a previous 
work in the field of mutual fund recommendation [19]. We used 16 evaluation criteria 
to apply UTADIS, a preference disaggregation model that generates a utility function 
that is both able to reproduce classifications that an active user has provided and rec-
ommend alternatives of interest based on the user's generated utility function. We 
integrated UTADIS in collaborative filtering algorithm thus introducing new hybrid 
approaches that benefit from the utilization of features from both academic fields and 
manage to outperform their separate application in the majority of metrics examined. 

We showed that optimal performance depends on the level of sparsity and through 
this the need for extensive analysis and thorough presentation of an algorithm's results 
over different partitions of the initial data is mandatory. The analysis showed that  
the Hybrid 1 approach performed better than the rest of the examined methods in the 
majority of data sparsity levels, while Hybrid 2 managed to outperform collaborative 
filtering only when less sparse data sets were considered. Still the integration of mar-
ginal utilities in the similarity measurement which was introduced through Hybrid 2 
approach did not perform as expected and the same applies to UTADIS, which was 
used in our approach for augmenting collaborative filtering. 

Future work could focus on applying goal programming and non linear program-
ming techniques allowing the thorough analysis of the parameters of each approach. 
This would benefit potential e-commerce applications because it provides the ability 
to select the approach and underlying parameters that could guarantee prediction 
accuracy for every sparsity level. 

The search for a framework to combine the proposed techniques with MCDA, col-
laborative filtering or even other recommendation techniques could lead into new 
hybrids further improving recommendation accuracy. Such a hybrid would emerge 
from the solution of a linear problem that leverages the participating techniques based 
on their previously achieved recommendation accuracy. The introduced framework is 
suitable for application in fields that traditionally attract recommendation algorithms 
attention and present less computational and conceptual complexity than portfolio 
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selection. Furthermore the demonstrated improvement in the overall performance of 
the UTADIS algorithm suggests that the new approaches are applicable to numerous 
research fields previously dominated by operational research among which country 
risk analysis, financial institutions' credit risk analysis, assessment of corporate per-
formance and viability, stock evaluation, business failure prediction and others. 
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Abstract. In this article, we discuss decision making involving multiple objec-
tives (MCDA) and especially the lack of more prescriptively useful elicitation 
methods for weights within MCDA. We highlight the discrepancy between how 
elicitation is handled in current decision analysis applications and the abilities 
of real decision-makers to provide what is required from them. Based on theory 
and highlighted problems with current methods, we propose a novel approach 
for weight elicitation which relaxes the need for numeric preciseness from deci-
sion-makers and reduces some of the practical issues related to such processes. 
The method is tested in a comparative study, as well as employed in a real-life 
case study.  

Keywords: Multi-criteria decision making, Elicitation process, Imprecise  
criteria weights. 

1   Introduction 

Research on quantitative decision making has proceeded from the study of decision 
theory founded on single criterion decision making towards decision support for more 
realistic decision making situations with multiple, often conflicting, criteria, and more 
than one decision-maker. In particular, Multi-Criteria Decision Making (MCDA) 
stands out as a promising category within decision support methods. MCDA can pro-
vide the decision-makers with a better understanding of the trade-offs involved in a 
decision, e.g., between economic, social and environmental objectives (criteria). The 
number of MCDA applications has increased during the last decade, but behavioural 
issues have not received much attention within this field of research, yet the identifi-
cation of such problems and the call for research on behavioural issues have been 
recognized for a long time [1].  

Traditional decision analysis methods are heavily influenced by normative theories 
and expected utility models for the guidance of rational choice. A widely discussed 
practical difficulty involved in the use of such models for decision making is the dif-
ficulty of assessing precise probabilities and utilities (cf., e.g., [2]). In decisions in-
volving multiple objectives, there is also the need to make value tradeoffs to indicate 
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the relative desirability of achievement levels on one objective in comparison to oth-
ers. The relative importance of the different criteria is a central concept in MCDA and 
many methods for deriving these weights from preference statements exist. Like 
probability and utility elicitation, the elicitation of weights is a cognitively demanding 
task (cf., e.g., [3]) and the elicited values can be heavily dependent on the method of 
assessment (cf., e.g., [4]). Inconsistencies in assessed weights can occur both within a 
method for eliciting weights as well as between different weighting methods. How-
ever, it seems difficult to reach definite conclusions from comparative studies be-
tween different methods for weight elicitation (cf., e.g., [5, 6]), which may be due to 
the inherent complexity of evaluating the quality of results.  

1.1   Problem Background 

Although elicitation has been an area of concern for quite some time (cf., e.g., [7, 8, 9, 
10, 11]), there are still no generally accepted methods for elicitation and the process 
of eliciting adequate quantitative information from people is still one of the major 
challenges facing research within the field. The current demand for numeric precision 
within elicitation is unrealistic for several reasons. People have problems judging 
exact values (cf., e.g., [10]), and their preferences and beliefs are not naturally repre-
sented in this fashion. Several studies have pointed at the difficulties in expressing 
such values with numeric preciseness (cf., e.g., [12]), which poses problems when the 
required values are point estimates. Barron and Barrett [13] state that the elicitation of 
exact weights demands an exactness which may not exist in the mind of the decision-
maker, and von Winterfeldt and Edwards [14] argue that “the precision of numbers is 
illusory”. As pointed out in [15], there is a need to adapt the elicitation process to the 
behaviours of real users in a prescriptive manner. Also, the heuristics and biases pro-
gramme initiated by Tversky and Kahneman [7] illustrates many of the systematic 
deviations from traditional theoretical expectations inherent in our thinking, judgment 
and memory, which cause problems for elicitation processes. Moreover, the framing 
of the problem (its formulation) often has great impact on people’s preferences [8]. 
Preferences can vary depending on subtle differences in presentation (of mathemati-
cally equivalent choices), like the order of the probabilities presented or on the sizes 
of the probabilities involved (cf., e.g., [16]). Consequently, an important area to focus 
on within applied MCDA is the development and/or improvement of prescriptive 
techniques and methods for elicitation, better suited for real-life usage by decision-
makers/experts. 

The aim of this paper is, thus, to find a more realistic weight elicitation method, 
adapted for real-life problems and deployable for usage by a wider spectrum of peo-
ple. Such a method must be relatively simple to use, transparent and possible to in-
corporate without too much facilitation into a natural decision analytical process.  

1.2   Methods for Eliciting Weights in MCDA 

In the literature, there have been a number of methods suggested for assessing criteria 
weights using exact values. These range from relatively simple ones, like the com-
monly used direct rating (DR) and point allocation (PA) methods (for a comparison of 
the two methods, cf., e.g., [17]), to somewhat more advanced procedures, such as the 
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often used SMART [18] or SWING [14] methods. There are several weighting meth-
ods that appear to be minor variants of one another, but the small differences have 
shown to have important effects for inference and decision making [19]. Trade-off 
methods (where the subject is asked to state what trade-offs he or she is willing to do 
for certain changes in values) have also been proposed for weight elicitation, but, e.g., 
[20] concludes that trade-off methods have a tendency to give greater weight to the 
most important attribute in comparison to methods like DR and SWING. 

As many reports of the difficulties with eliciting precise weights from decision-
makers exist, some other approaches, less reliant on great precision from the decision-
makers have been suggested. In such methods, ordinal and imprecise preference  
information is used to determine criteria weights and/or values of alternatives. For 
instance, the decision-maker could be asked to state importance weights on a semantic 
scale (e.g. very much more important, much more important, moderately more impor-
tant etc.) like the AHP method [21]. However, the correctness of the conversion from 
the semantic scale to the numeric scale used by Saaty [21] as a measure for preference 
strength has been questioned by, e.g., [3], and the AHP method requires pair wise com-
parisons of all criteria (which can be very time consuming). Also, the use of verbal 
terms, in general, has been criticised, since words can have very different (numerical) 
meanings to different people (cf., e.g., [11]).  

Another, more indirect approach is to let decision-makers simply rank the different 
criteria (i.e. supply the ordinal values), and thereafter use surrogate weights that are 
consistent with the supplied rankings (i.e. convert ordinal weights to cardinal weights). 
Advantages with this approach are that it is effort-saving [22], allows decision-makers 
to be more vague, it is less cognitively demanding and that groups are more likely to 
agree on ranks than on more precise weights [23]. Several proposals on how to convert 
the rankings into numerical weights exist, e.g., rank sum (RS) weights and rank recipro-
cal (RR) weights [24], and centroid (ROC) weights [25]. Barron and Barrett [13] found 
the latter superior to the other two on the basis of simulation experiments.  

In some decision analysis applications, preferential uncertainties and incomplete in-
formation is handled by using intervals (cf., e.g., [26, 27]), where a range of possible 
values is represented by an interval. This approach is also claimed to put less demands 
on the decision-maker, and is suitable for group decision making as individual differ-
ences in preferences and judgments can be represented by value intervals (cf., e.g., 
[28]). In Mustajoki et al. [29], the authors propose an Interval SMART/SWING 
method, in which they generalize the SMART and SWING methods (for point esti-
mates) into a method that allows interval judgements to represent imprecision. Another 
system, which also allows the use of intervals (to represent incomplete information 
about consequences as well as preferences), is a generic multi-attribute analysis 
(GMAA) system [28].  

1.3   Problems with Existing Weight Elicitation Methods in Applied MCDA 

The promising solutions offered today to aid decision making processes are seldom 
used in organizations (cf., e.g., [30, 10]) and there is an obvious need to reduce the 
current discrepancy regarding how elicitation is handled in current decision analysis 
applications and the ability of real decision-makers to provide what is required from 
them in order to increase the utilization of decision analytical methods in applied 
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decision making. An often demanding task for users of decision analysis tools is to 
supply the input, and simpler methods for elicitation, which are preferred by users, are 
very important for the practical applicability of decision analysis (cf., e.g., [19, 22, 31, 
32]). There is a great deal of uncertainty involved in elicitation, and when reviewing 
the literature in search of existing methods for weight elicitation that are satisfactory 
for real-life decision making problems, most of them fall short as they demand unreal-
istic numeric precision, are cognitively demanding and/or are difficult to employ 
without too much facilitation.  

In an additive model, the weights reflect the importance of one dimension relative 
to the others. Most commonly, the degree of importance of an attribute depends on its 
spread (the range of the scale of the attribute), and this is why elicitation methods, like 
SMART [18], which do not consider the spread specifically have been criticized. Yet, 
with methods where ranges are explicitly considered during the elicitation of weights, 
several empirical studies imply that people still do not adjust weight judgments prop-
erly when there are changes in the ranges of the attributes (cf., e.g., [33]). However, if 
all criteria ranges are equal, e.g., [0, 10], and each step on each scale is considered 
equivalent, simpler and more practically useful methods can be used for weight elici-
tation. The weights are instead intuitive (importance) weights, reflecting the subjects’ 
general attitude towards the attributes and an implicit range of outcomes.  

A more realistic approach, which alleviates some of the problems related to the 
elicitation of exact values, is ranking. It allows decision-makers to be less precise and 
is less cognitively demanding on the decision-makers, but the current approaches of 
converting ordinal weights to cardinal weights may not produce surrogate weights 
that are adequate representations of the decision-makers’ preferences. Although 
promising, it would be desirable to complement the supplied ranking somehow with 
preference relation information.  

In conclusion, there seems to be a need for elicitation methods that do not require 
formal decision analysis education, are not too cognitively demanding by forcing people 
to express unrealistic preciseness or to state more than they can, do not require too much 
time, and are relatively easy to understand and use without losing trustworthiness. 

2   A Prescriptive Method for Weight Elicitation 

In order to address some of the major hindrances above for real-life usage of existing 
weight elicitation methods as described in the previous section, and to solve problems 
associated with the required exactness in subjective values, we propose an elicitation 
method which can be seen as a further development of ranking using surrogate 
weights. The method is subsequently tested in a comparative study (see Section 2.2) 
as well as employed in a real-life case (see Section 2.3).  

2.1   Weight Elicitation Using Distance Functions  

The proposed method consists of two stages. In the user interaction stage, information 
on the decision-maker’s ranking of the criteria in the criteria set is elicited. The idea is 
that instead of using a conversion method (e.g., ROC weights) to receive surrogate 
(cardinal) weights, the decision-maker expresses the magnitude of the differences 
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between the ranked criteria. After the user interaction, the information is interpreted 
in the second stage. In the following, we denote the set of criteria G = {G1, ..., GN} 
where each criterion Gi ∈ G is, during the elicitation, associated with a scale position 
(value) xi and a criterion weight variable wi. The first stage consists of three steps that 
can be iterated until convergence. 

In the first step, only ordinal information is collected. The decision-maker (or other 
stakeholder) states the priority order of the criteria by ranking them from most impor-
tant to least important. Without loss of generality, we assume that G1 is more impor-
tant than G2 which is more important than G3 and so forth. If one or more criteria are 
considered equally important, they will be ranked at the same level. 

In the second step, the decision-maker is asked to assess the difference in impor-
tance between the most and the least important criteria. The idea behind the step is 
that it is easier to assess extremal than intermediate criteria, i.e. that the decision-
maker is more likely to have opinions on the most and least important criteria than 
those in between. This was confirmed in the comparative study. Denote the highest 
visible user score xH and the lowest xL. xH is set to 100 at the outset. The decision-
maker is thus asked to express strength in his/her differences between the most and 
least important criteria by setting xL. 

In the third step, after the ranking of the criteria, they are distributed equally along 
a slider. The slider initially indicates that there is no information on the magnitude of 
the differences between their relative importances. This is displayed as the criteria 
being equal, i.e. that the magnitude of the difference between criterion G1 and crite-
rion G2 is equal to the magnitude of the difference between G2 and G3, and so on. We 
call these initial differences default distances. Thereafter, the decision-maker will be 
able to adjust the distances between the criteria in order to express his or her cardinal 
importance information between them, e.g., he or she may feel that two criteria are 
closer together or more apart importance-wise, which is indicated by decreasing or 
increasing the distance between the criteria (see Fig. 1).  

In this fashion, we receive preference strength information regarding the differ-
ences between the criteria that more adequately represents the weights. This approach, 
when using a graphical user interface such as the one in Fig. 1, allows the user to 
interactively adjust the distances between the criteria until the user is satisfied and 
thinks that the distances represent an adequate representation of his/her preferences 
with respect to priority. The user may also be less precise in their statements since no 
exact numbers are required. We further circumvent the problem of having the user 
understand the meaning of such values at an early stage. Instead of distributing 
weights, distances between weights are distributed. During prescriptive decision 
analysis, perceptions change and evolve, and the representation of these perceptions 
should be dynamic (cf., e.g., [34]). Beliefs and preferences are not static, and the 
decision-maker’s view on what is important (and the relations) for the decision may 
change during the progress of the decision process. At a later stage, when the under-
standing of the problem has increased, the decision-maker may be asked to redo the 
procedure. This completes the user interaction stage of the elicitation process.  
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Fig. 1. A priority order with seven criteria, with adjustments made regarding the magnitude of 
the differences between the criteria 

The interpretation stage is performed in different ways depending on the expres-
sive power of the decision analytic method used. Underlying all interpretations is the 
scaling of the user statements from the slider. Assuming normalised criteria weights 
that sum to one, i.e. Σwi = 1 and 0 ≤ wi ≤ 1 for all i ≤ N, the user information (xi ≤ xH 
for all i ≤ N) from the first stage is mapped onto a normalised scale such that Σxi → 1; 
xH → xH /Σxi; xL → xL /Σxi; and 0 → 0. The middle two are the endpoints of the visi-
ble part of the user slider, see Fig. 1. If the expressive power of the analysis method 
only permits fixed numbers, the normalised slider weights are the output of the elici-
tation process. This is not the ideal situation and it is advised to use a decision analy-
sis method capable of handling imprecision in the weight information. Such impreci-
sion can be of two kinds, either in the form of intervals or additionally also allowing 
comparisons between weights. If imprecision is handled by allowing intervals, each 
user statement xi on the slider is interpreted as an interval such that wi ∈ [xi /Σxi – ai, 
xi /Σxi + bi], where 0 < ai ≤ 1 and 0 < bi, ≤ 1 are proportional imprecision constants. 
These constants could, e.g., be interpreted as reflecting the degree of confidence in the 
weights (w1, …, wi, …, wN) which are results of the user’s statements, i.e. all xi. While 
this is an improvement over having fixed numbers, it does still not fully capture the 
idea of not requiring more information than is actually available during the elicitation.  

The preferred usage of the decision-maker information is through a representation 
using both intervals and comparative statements in order to represent the information 
actually given by the decision-maker. In step one of the user interaction stage, an 
ordinal ranking is obtained. Using comparative statements, this is represented as 

An increase in distance from default between 
criteria 3 and 4 in priority order, indicating that 
the magnitude of the difference between these 
criteria is larger 

A decrease in distance
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wi ≥ wj for i < j. In the last step of the user interaction stage, the decision-maker then 
slides the different criteria until he/she is satisfied with their relative positions. The 
end result is then viewed relative to the initial equidistant positions. For each pair Gi 
and Gj of criteria, the user could have modified the distance between them in three 
ways relative to the initial distances: By A) increasing the distance between them, by 
B) decreasing it, or by C) having kept the same distance. 

In case A), the interpretation is that the two criteria weights differ at least with a 
certain value, yielding the additional inequality constraint  

wi ≥ wj + projdij [DL(d12, …, d(N-1)N)] (1) 

where dij is the distance |xi – xj| between criteria Gi and Gj on the slider as indicated by 
the decision-maker (indicating the magnitude of the difference between them), and 
DL: [0, xH- xL] N → [0,1]N is a multi-variate difference function which maps a vector of 
distances to a vector of lower bounds of differences between each wi and wj. Let d be 
the vector of default differences prior user manipulation, and let d* be the vector of 
differences as indicated (manipulated) by the decision maker, then let ddiff = d*- d. 
Then positive components of ddiff should be positive components of DL(d12, …, d(N-

1)N) with the ratios between these components preferably preserved (maintaining the 
preference strength information as indicated by the decision maker). It should further 
be required that DL should yield consistent constraints, i.e. the conditions Σwi = 1 and 
0 ≤ wi ≤ 1 for all i ≤ N must be possible to satisfy simultaneously together with the 
additional constraints. These are the basic requirements on DL yielding a reasonable 
quantitative interpretation of the user’s statements, however this quantitative interpre-
tation is by means of sets of feasible weight distributions and not on a single one. 
Verifying consistency can either be done by consistency checks performed in an em-
ployed decision tool (see, e.g., [35] which is the case at present), or embedded as a 
property of the function DL. It should be noted however, that DL is context dependent 
and the process of defining it may vary between cases. 

In case B), the interpretation is that the two criteria weights differ at most with a 
certain value, yielding the additional inequality constraint 

wi ≤ wj + projdij [DU(d12, …, d(N-1)N)]  (2) 

Here, DU: [0, xH- xL] N → [0,1]N is a difference function similar to DL which maps a 
vector of distances to a vector of upper bounds of differences between wi and wj. In 
case C), the interpretation is that there is no more information available between the 
two criteria weights. Thus, wi ≥ wj is kept as the only constraint.  

2.2   Comparative Study 

In order to test the appropriateness of the proposed weight elicitation method (which 
in theory could reduce many of the problems discussed in section 1.3, it was com-
pared with two simplified multi-attribute rating approaches often used in practical 
analysis, SMART and Direct Rating, in a comparative study.  

In this study, the five participants all used computers in their daily work, were in the 
age range of 28-62, had driver’s licences, and had bought at least one car in their past. 
The participants were interviewed individually for an hour each on two occasions (one 
week apart). They were asked to picture themselves about to make a decision on buying 
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a new car and that they after extensive research had identified a number of possible car 
types within the price range they could manage. Furthermore, they were given the seven 
criteria that they could want to consider for the evaluation of the possible alternatives. 
Their weights regarding these criteria were elicited using all three methods (in a varied 
order) on both occasions. After using each method, as well as in the end of each occa-
sion, they were interviewed about their preferences regarding method, perceived pros 
and cons with each method, their beliefs in results, as well as their perceived effort. The 
number of subjects in the comparative study was kept down in order to facilitate an 
iterative improvement of the method prior to the case study (Section 2.3). Still, the study 
gave some valuable results, especially about the subjects’ confidence in their own pref-
erence statements, and about how to improve the graphical interface to the proposed 
elicitation method. 

From the study, we confirmed that the participants were most sure of their prefer-
ences concerning the most important criteria and the least important criterion, and 
were less sure of their preferences regarding the criteria in the middle (or slightly 
downwards) of the ranking order. Their preferences regarding the middle criteria 
often differed between the two occasions. Several of the participants preferred 
SMART (out of the 3 methods they tried). However, the “free” scale upwards gave 
very different results (from the same participants) between the two occasions, e.g., the 
most important criterion got 50 points in the first test and 100 points in the re-test, or 
20 in the first test and 90 in the re-test. Furthermore, the participants all valued the 
possibility to interactively adjust their statements during the “thought process” in the 
application. Finally, the proposed elicitation method was also the method that gener-
ated the most consistent results between the two occasions. 

The comparative study confirms that reflections about the problem and explicit 
considerations about one’s beliefs on more than one occasion is perceived to contrib-
ute to better quality of results and increased insight, which is an important goal. The 
participants asked for some modifications of the graphical interface in order to im-
prove understanding of the proposed elicitation method. In spite of some criticism of 
the first version of the proposed method, it generated the most consistent results be-
tween the two occasions, i.e. the internal consistency was the highest of the three 
methods. Regarding convergent validity, the SMART and DR methods differed 
(many empirical studies report the same findings), and as importance preferences are 
subjective values it is difficult to determine which method actually generates the most 
accurate results. The free scale upwards of the SMART method also seems like an 
element that can influence the convergent validity of the method a great deal as peo-
ple in the comparative study seemed highly affected by the “available information” 
(see, the availability heuristic, [7]). In order to test the proposed elicitation method 
further, it was employed in a real-life decision making situation where an MCDA 
application was used to guide the decision process. 

2.3   Employment of the Weight Elicitation Method in a Real-Life Case 

A lot of the advances within decision analysis have been theoretical developments, 
which are implemented in practical applications without much empirical testing. If 
empirical studies on new or existing decision support techniques have been done, they 
are seldom applied to real-life cases. Brown and Vari [36] suggest that we need to use 
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real-life cases as test beds in order to retrieve more prescriptive (practically useful) 
methods. There is, thus, a need to examine new decision support techniques in real-
life decision making situations, and hence, the proposed elicitation method (which 
theoretically could reduce many of the major hindrances to real-life usage) was also 
employed in a real-life case and tested with real decision-makers.  

A debated decision that the governing politicians in Örebro (a municipality in 
Sweden) faced was how to improve the water quality of Svartån, a river running 
through the city of Örebro. The problems with Svartån had been debated for long, and 
the decision was multi-facetted in nature. For several years, there had been unac-
ceptably high amounts of intestinal bacteria in the water, and the different spots for 
bathing along Svartån had been deemed unsuitable according to EU regulations. The 
primary goal of the decision-makers was to make it possible to swim in the Svartå 
river by the year 2010, but also to obtain a more sustainable (long-term) solution with 
an increased quality of the water in general. The decision-makers were seven politi-
cians with different political standpoints, so the decision was a multi-criteria, multi-
stakeholder problem. Thus, it was a real-life decision making problem suitable for the 
employment of the weight elicitation method described in section 2.1.  

In the Svartå case, we tested this paper’s approach to eliciting weights as part of the 
MCDA model used to aid the decision making process (after initial testing in the small 
comparative study). Decomposed scaling, where the weights and the partial value 
functions are assessed separately, was used. The seven main criteria were identified 
collectively by the politicians, and thereafter the weights were elicited individually 
from the politicians on two occasions. The first occasion was early on in the process, 
right after the identification of the top-level criteria, in order to initiate and motivate the 
decision-makers’ reflections about their own beliefs. The second occasion was later on 
in the process, when the decision-makers had understood the problem, the different 
options, and their own beliefs better. The identification of the sub-criteria and the value 
assessments were initially performed by civil servants. The decision-makers thereafter 
continuously confirmed and/or adjusted these assessments as the work proceeded in 
workshop settings (lead by facilitators), where the participants were politicians and 
civil servant representatives. 

2.4   Results 

In the real-life case, all politicians found the elicitation method clear and easy to use. 
To give a priority order for the seven main criteria was considered fairly easy by all 
politicians, since they had thought about the problem quite extensively and had a 
rather fair idea of what they considered important. However, several of the partici-
pants commented on the fact that the order of some of the middle criteria was less 
definite (in their minds) than the most important criteria. They also completed their 
task within a time frame acceptable to them, and quite easily adjusted the distances 
between criteria to indicate the magnitudes of the differences between the criteria. 
Some of the decision-makers found the step to express the scale by giving the least 
important criterion a value in comparison to the most important criterion (xH, which 
was set to 100 points) to be the most difficult. Yet, they all completed this step within 
minutes of thought.  
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In the analysis of the Svartå problem, the individual decision maker information 
could be studied using a representation of both intervals and comparative statements, 
but in the final group evaluation the simpler interpretation was used. The use of the 
simpler technique for interpreting the decision-makers’ preferences was motivated by 
the aim of promoting understanding of the process. Intervals were instead used to rep-
resent the group’s preferences, and the robustness of the decision-makers’ preferences 
was studied by allowing for different widths of weight intervals (encompassing the 
weights derived from the elicitation data). In this case, a simple method was chosen for 
aggregating their different individual weight statements representing conflicting priori-
ties (several methods have been proposed in the literature for such aggregations, cf., 
e.g., [37]). For each criterion, the individual weight distributions were collected by 
forming an interval (which embraced all decision-makers’ weights). This aggregation 
technique was used in the evaluation - in addition to evaluating the decision using the 
individual weights for each politician - resulting in two out of the seven alternatives 
being clearly superior. The information obtained from the proposed elicitation method 
could thus be interpreted in both the simpler and more advanced way depending on the 
needs and wants of the decision-makers.  

2.5   Discussion 

Numbers are incorrectly associated with precision to people [14], which is somewhat 
paradoxical when they are used to describe uncertain measures, like preferences in 
this case. In both the comparative and the real-life case studies, people’s preferences 
between some of the criteria were shown to be somewhat dynamic and we have found 
that the proposed weight elicitation method is a more realistic (and thus more pre-
scriptively useful) way of eliciting decision-makers’ preferences. The possibility to 
simply rank and thereafter interactively adjust the preferences regarding their differ-
ences seems to be less cognitively demanding and supports the creative, dynamic and 
cyclic modelling approach suggested by prescriptive analysts (cf., e.g., [34]). This 
interactive part stimulated thoughts on importance relations among the criteria and the 
users often spoke out loud during this step, explaining their thoughts of mind (often 
re-positioning criteria in the priority order as well). Moreover, the use of intervals to 
represent these preferences could be a way to cover the dynamicity of preference 
entities, although the elicitation data could also be represented by fixed numbers if the 
expressive power of the decision analytic method cannot handle intervals.  

Participants in both studies felt that providing a priority order, as well as expressing 
the relation between the criteria, made them formulate their importance preferences in 
more detail than before the final elicitation step.  

In conclusion, the goal was to find a more prescriptively useful weight elicitation 
method, which would reduce some of the problems with existing methods. The promis-
ing results of the comparative study promoted the use of the proposed method for 
weight elicitation in a real-life case, where it proved to be easily understood, did not 
require too much time, did not require the users to express more than they could, and 
was not perceived as too demanding, consequently limiting the cognitive load on the 
users. Thus, the proposed method seems to be a more prescriptively useful method than 
most methods offered today. There is reason to believe that the prescriptive approach is 
a direction we should move in, in order to increase the utilization of decision analysis 
applications in real-life decision making.  
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Abstract. In this article we develop an indirect approach for assessing
criteria significance weights from the robustness of the significance that
a decision maker acknowledges for his pairwise outranking statements in
a Multiple Criteria Decision Aiding process. The main result consists in
showing that with the help of a mixed integer linear programming model
this kind of a priori knowledge is sufficient for estimating adequate nu-
merical significance weights.

Keywords: inverse Multiple Criteria Decision Analysis, significance
weights ellicitation, uncertainty, robustness.

1 Introduction

We consider a decision situation in which a finite set of decision alternatives is
evaluated on a finite family of performance criteria. A decision maker is willing
to pairwisely compare these alternatives according to the outranking paradigm.
One considers indeed that an alternative a outranks an alternative b when a
significant majority of criteria validates the fact that a is performing at least as
good as b and there is no criterion where b seriously outperforms a [1]. To assess
when such a significant majority of criteria validates an outranking situation
requires a more or less precise numerical knowledge of the significance of each
criterion in the multiple criteria preference aggregation. Two different approaches
exist to specify theses values:

– either via direct preference information, where the criteria significance is first
assessed and then the aggregated outranking situations are computed,

– or, via indirect preference information, where some a priori partial knowledge
of the resulting aggregated outranking is used in order to infer plausible
estimators of the criteria significance.

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 180–191, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Inverse Analysis from a Condorcet Robustness Denotation 181

In this article we exclusively concentrate on the indirect preference information
approach. Similar approaches, mostly in the domain of Multiple Attribute Value
Theory, already appeared in the literature where they are generally called dis-
aggregation/aggregation or ordinal regression methods [2,3,4,5,6,7,8]. In analogy
with corresponding techniques in inferential statistics, we prefer to group all
indirect preference information modeling techniques under the generic term in-
verse Multiple Criteria Decision Analysis. The innovative a priori knowledge on
which we focus our inverse analysis here is the robustness of the significant ma-
jorities that the decision maker acknowledges for his pairwise comparisons with
respect to all potential significance weights, a fact we call the Condorcet ro-
bustness of the outranking situation in the sequel of this article. The main result
of our article is to show that this kind of a priori knowledge alone is sufficient
for estimating numerical significance weights.

The article is organised as follows: in the next section, we define the
Condorcet robustness denotation of valued outranking relations and then, in
Section 3 we briefly detail the way of computing it. Afterwards, in Section 4 we
present a mathematical model for estimating the significance weights followed
by some brief remarks on practical application issues.

2 Defining the Condorcet Robustness Denotation of
Valued Outranking Relations

Let A = {x, y, z, . . .} be a finite set of n > 1 potential decision alternatives and
F = {g1, . . . , gm} a coherent finite family of m > 1 criteria.

The alternatives are evaluated on each criterion on real performance scales to
which an indifference qi and a preference pi discrimination threshold (for all gi in
F ) is associated [1]. The performance of alternative x on criterion gi is denoted xi.

In order to characterise a local at least as good as situation [9,10] between
any two alternatives x and y of A, with each criterion gi is associated a double
threshold order Si whose numerical representation is given by:

Si(x, y) =

⎧⎨⎩
1 if xi + qi � yi ,
0 if xi + pi � yi ,

0.5 otherwise.

Furthermore, we associate with each criterion gi ∈ F a rational significance
weight wi which represents the contribution of gi to the overall warrant or not
of the at least as good as preference situation between all pairs of alternatives.
Let W = {wi : gi ∈ F} be the set of relative significance weights associated with
F such that 0 < wi < 1 (∀gi ∈ F ) and

∑
gi∈F

wi = 1 and let W be the set of such

significance weights sets.
The overall valued outranking relation, denoted S̃W , aggregating the partial

at least as good as situations, is given by :

S̃W (x, y) =
∑

wi∈W

wi · Si(x, y), ∀(x, y) ∈ A×A.
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S̃W (x, y) is thus evaluated in the rational interval [0, 1] with the following se-
mantics [9]:

– S̃W (x, y) = 1 indicates that all criteria warrant unanimously the “at least as
good as” preference situation between x and y;

– S̃W (x, y) > 0.5 indicates that a majority of criteria warrant the “at least as
good as” preference situation between x and y;

– S̃W (x, y) = 0.5 indicates a balanced situation where the criteria warranting
the “at least as good as” preference situation between x and y are exactly
as significant as those who do not warrant this situation;

– S̃W (x, y) < 0.5 indicates that a majority of criteria do not warrant the “at
least as good as” preference situation between x and y;

– S̃W (x, y) = 0 indicates that all criteria warrant unanimously the negation of
the “at least as good as” preference situation between x and y.

Let �W be the preorder1 on F associated with the natural � relation on the
set of significance weights W . ∼W induces r ordered equivalence classes ΠW

1 �W

. . . �W ΠW
r (1 ≤ r ≤ m). The criteria of an equivalence class have the same

significance weight in W and for i < j, those of ΠW

i have a higher significance
weight than those of ΠW

j . Let W�W
⊂ W denote the set of all significance

weights sets that are preorder-compatible with �W .
Let W ∈ W . The Condorcet robustness denotation2 [12] of S̃W , denoted

�S̃W �, is defined, for all (x, y) ∈ A×A, as follows:

�S̃W �(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 if S̃V (x, y) = 1 ∀V ∈ W ;
2 if

[
S̃V (x, y) > 0.5 ∀V ∈ W�W

] ∧ [ ∃V ′ ∈ W : S̃V ′
(x, y) < 1

]
;

1 if
[
S̃W (x, y) > 0.5

] ∧ [ ∃V ′ ∈ W�W
: S̃V ′

(x, y) � 0.5
]
;

0 if S̃W (x, y) = 0.5 ;
−1 if

[
S̃W (x, y) < 0.5

] ∧ [ ∃V ′ ∈ W�W
: S̃V ′

(x, y) � 0.5
]
;

−2 if
[
S̃V (x, y) < 0.5 ∀V ∈ W�W

] ∧ [ ∃V ′ ∈ W : S̃V ′
(x, y) > 0

]
;

−3 if S̃V (x, y) = 0 ∀V ∈ W ;

with the following semantics:

– �S̃W �(x, y) = ±3 if all criteria unanimously warrant (resp. do not warrant)
the outranking situation between x and y;

– �S̃W �(x, y) = ±2 if a significant majority of criteria warrants (resp. does not
warrant) the outranking situation between x and y for all �W -compatible
weights sets;

– �S̃W �(x, y) = ±1 if a significant majority of criteria warrants (respectively
does not warrant) this outranking situation for W but not for all �W -
compatible weights sets;

1 As classically done, �W denotes the asymmetric part of �W , whereas ∼ denotes its
symmetric part.

2 The simple majority validated outranking relation SW (x, y) such that S̃W (x, y) > 0.5
is generally called the Condorcet relation (see Barbut [11]), in honours of the
Marquis de Condorcet (1743–1794) who first promoted social choice procedures
based on pairwise simple majority votings.
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– �S̃W �(x, y) = 0 if the total significance of the warranting criteria is exactly
balanced by the total significance of the not warranting criteria for W .

The careful reader may have noticed that, in the presence of veto thresholds
as defined in [10], if a veto situation occurs in the comparison of a couple of
alternatives, the associated Condorcet robustness denotation is −3, as the
overall outranking relation S̃W equals 0, disregarding the criteria significance
weights.

3 Computing the Condorcet Robustness Denotation

In this section, we briefly explain how to obtain the Condorcet robustness
denotation. Further details can be found in [12].

Let us consider the following numerical example to illustrate our purpose
throughout this paper.

Example. Consider a set A = {a, b, c, d, e} of five decision alternatives and a
consistent family F of three cardinal criteria {g1, g2, g4}measuring performances
on rational scales from 0.0 to 100.0 and two ordinal criteria {g3, g5} measuring
performances on a discrete ordinal scale from 0 to 10. Criterion g2 is a cost–type
criterion on which performances have to be minimised, whereas the four other
are benefit–type criteria, i.e. the higher the performance is the better a decision
alternative is considered.

Table 1 presents the randomly generated performances of the alternatives on
each criterion. Notice the significance weights set W shown in the third column
which induces the significance ordering {g1} �W {g4} �W {g3} �W {g5} �W

{g2}.
Let us start by presenting the notation which allows us to detail the con-

struction of the Condorcet robustness denotation associated with a valued
outranking relation S̃W and a significance weights set W .

Let cW

k (x, y) be the sum of “at least as good as” characteristics Si(x, y) for all
criteria gi ∈ ΠW

k , and cW

k (x, y) the sum of the negation (1.0− Si(x, y)) of these
characteristics. Furthermore, let CW

k (x, y) =
∑k

i=1 cW

i (x, y) be the cumulative
sum of “at least as good as” characteristics for all criteria having significance at

Table 1. Performance table

crit.
(F )

pref.
dir.

weights
(W )

decision alternatives (A) thresholds
a b c d e indiff. pref.

g1 max 5/15 70.9 61.8 90.2 31.2 33.1 5.0 8.0
g2 min 1/15 20.9 17.1 76.3 69.2 35.5 3.0 6.0
g3 max 3/15 1 4 6 8 6 0 1
g4 max 4/15 17.3 46.3 24.5 40.6 68.2 6.0 7.0
g5 max 2/15 2 1 8 2 6 0 1
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least equal to the one associated to ΠW

k , and let CW

k (x, y) =
∑k

i=1 cW

i (x, y) be
the cumulative sum of the negation of these characteristics, for all k in {1, . . . , r}.

In the absence of ±3 denotations, the following proposition gives us a test for
the presence of a ±2 denotation:

Proposition 1 (Bisdorff [12])

�S̃W �(x, y) = 2 ⇐⇒
{
∀k ∈ 1, ..., r : CW

k (x, y) � CW

k (x, y) ;
∃k ∈ 1, ..., r : CW

k (x, y) > CW

k (x, y).

The negative −2 denotation corresponds to similar conditions with reversed
inequalities.

The ±2 denotation test of Proposition 1 corresponds in fact to the verification
of stochastic dominance-like conditions (see [12]).

A ±1 Condorcet robustness denotation, corresponding to the observation
of a weighted majority (resp. minority) in the absence of the ±2 case, is simply
verified as follows:

�S̃W �(x, y) = ±1 ⇐⇒ (
(S̃W (x, y) ≷ 0.5) ∧ �S̃W �(x, y) �= ±2

)
.

Example. Back to the example, we can now compute the Condorcet robustness
denotation associated with the outranking relation. Let us detail these calcula-
tions for the following two couples, (b, c) and(a, d). Recall that the significance or-
dering is given by a five-class preorder {g1} �W {g4} �W {g3} �W {g5} �W {g2}.

We can easily verify via Table 2 that �S̃W �(b, c) = −2. Besides we can see that
�S̃W �(a, d) �= ±2. Since S̃W (a, d) = 0.53 > 0.5, we finally have �S̃W �(a, d) = 1.
Table 3 presents the outranking relation S̃W and its corresponding Condorcet

robustness denotation �S̃W � for all pairs of alternatives of A×A.

The issue we address in this paper is now the following. Consider that we have
given a performance table as shown in Table 1, but without any explicit signifi-
cance weights information, as well as a Condorcet robustness denotation �S̃W �
similar to the one shown in the right part of Table 3, with W unknown. Is it pos-
sible to infer from these information alone the apparent significance weights of
the criteria? In other words, may we compute on the basis of the given informa-
tion a preorder � on the criteria and a numerical instance W ∗ of a �-compatible

Table 2. Cumulative sums for couples (b, c) and (a, d)

cW
i (b, c) cW

i (b, c) CW
i (b, c) CW

i (b, c) cW
i (a, d) cW

i (a, d) CW
i (a, d) CW

i (a, d)

ΠW
1 0 1 0 1 1 0 1 0

ΠW
2 1 0 1 1 0 1 1 1

ΠW
3 0 1 1 2 0 1 1 2

ΠW
4 0 1 1 3 1 0 2 2

ΠW
5 1 0 2 3 1 0 3 2
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Table 3. Global outranking with Condorcet robustness denotation

S̃W �S̃W �
A a b c d e a b c d e

a - .50 .07 .53 .40 - 0 -2 1 -1
b .53 - .33 .67 .40 1 - -2 2 -1
c .93 .67 - .47 .67 2 2 - -1 2
d .60 .60 .53 - .53 1 1 1 - 1
e .60 .60 .53 .80 - 1 1 1 2 -

weights set which satisfies the given Condorcet robustness denotation �S̃W �,
i.e. W ∗ and � are such that �S̃W∗

� = �S̃W �?

4 Inferring the Criteria Significance Weights

To solve this estimation problem we are going to formulate a mixed integer linear
programming model.

We start with characterising a constraint model for every possible Con-

dorcet robustness denotation except the ±3 ones. Indeed, we may ignore unan-
imous positive and negative (±3) robustness denotations as they concern in fact
the trivial pairwise comparison of alternatives that are either Pareto dominat-
ing or Pareto dominated. Their aggregated outranking situation is thus always
unanimously warranted (resp. not warranted), independently of any particular
criteria significance weights. These denotations therefore do not contain any
specific information for inferring the particular significance of an individual cri-
terion.

We denote A2
±2 (resp. A2

±1 or A2
0) the set of pairs (x, y) of alternatives such

that �S̃W �(x, y) = ±2 (resp. ±1 or 0).
As the criterion significance weights are supposed to be rational, we may

without loss of generality restrict our estimation problem to integer weight sets.
Thus every criterion may get an integer significance weight wi ∈ [1, M ], where M
denotes the maximal admissible value. Limiting our purpose to genuine decision
aid situations, we may choose this bound in practical applications to be equal
to the number m of criteria.

We denote Pm×M a Boolean (0, 1)-matrix, with general term [pi,u], that char-
acterises row-wise the number of weight units allocated to criterion gi. Formally,
the row i represents the decomposition of the weight associated to gi into M
bits in a unary base (little-endian) and thus

∑M
u=1 pi,u = wi.

The fact that every criterion gi of F must have a strictly positive significance
may thus be expressed with the help of the following constraint:∑

gi∈F

pi,1 = m.
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At least one weight unit is allocated to every criterion, i.e. pi,1 = 1 for all gi ∈ F .
As an example, if gi has an integer weight of 3 and if we decide that M = 5,
then the ith row of Pm×5 is given by (1, 1, 1, 0, 0).

The required cumulative semantics of Pm×M is therefore achieved with the
following set of constraints:

pi,u � pi,u+1 (∀i = 1, ..., m, ∀u = 1, ..., M − 1).

4.1 Constraints for �S̃W �(x, y) = ±2 Conditions

Let us now translate Proposition 1 to a computable set of constraints.

Corollary 1
When considering integer weights, Proposition 1 may be reformulated as:

�S̃W �(x, y) = 2 ⇐⇒
{
∀u ∈ 1, ..., maxwi : C′W

u (x, y) � C′W
u (x, y) ;

∃u ∈ 1, ..., maxwi : C′W
u (x, y) > C′W

u (x, y) ;

where C′W
u (x, y) (resp. C′W

u (x, y)) is the sum of all Si(x, y) (resp. 1−Si(x, y)) such
that the significance weight wi ≤ u. The negative −2 denotation corresponds
again to similar conditions with reversed inequalities.

Proof. We easily verify that all constraints from Proposition 1 are present in the
corollary (for the set U = {u/∃wi ∈ W, wi = u} of indexes). For all other values
of u the constraints are redundant. �

This leads to the property that pi,u = 1 ⇐⇒ wi ≥ u and we directly obtain:

C′W
u (x, y) =

∑
gi∈F

(
pi,u · Si(x, y)

)
.

In order to model now the �S̃W �(x, y) = ±2 conditions, we introduce for all pairs
(x, y) ∈ A2

+2 the following set of constraints:∑
gi∈F

(
pi,u ·

[
Si(x, y)− Si(x, y)

])
� bu(x, y) (∀u = 1, ..., M),

where Si is the negation (1− Si) of the criterion’s double threshold order char-
acteristic function, and where the bu(x, y) are Boolean (0, 1) variables for each
pair of alternatives and each equi-significance level u in {1, . . . , M}. Note that
the negative −2 denotation again corresponds to a similar inequation with a
reversed inequality and negative bu(x, y). These binary variables allow us to im-
pose at least one case of strict inequality for each (x, y) ∈ A2

±2 as required in
Corollary 1 via the following constraints:

m∑
u=1

bu(x, y) � 1,
( ∀(x, y) ∈ A2

±2
)
.
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4.2 Constraints for �S̃W �(x, y) = ±1 Conditions

In order to introduce the �S̃W �(x, y) = ±1 conditions, we may formulate for all
pairs (x, y) ∈ A2

±1 the following set of constraints:

∑
gi∈F

( M∑
u=1

pi,u

) · ±(Si(x, y)− Si(x, y) ) � 1 ∀(x, y) ∈ A2
±1, (1)

where the factor (
∑M

u=1 pi,u) represents the integer value of the estimated weight
wi of criterion gi.

Recall that a Condorcet robustness denotation of ±2 represents an out-
ranking situation which is validated (or non-validated) for all possible weights
sets compatible with the given significance preorder. Such a situation therefore
represents a robust validation by the decision maker, and should as such be con-
sidered highly trustful. Consequently, if the decision maker imposes a ±1 or 0
Condorcet robustness, this can be considered as more anecdotical. In practical
situations, it might happen that the Condorcet robustness given by the deci-
sion maker might not be compatible with the underlying problem. To avoid not
finding any solution, we relax Constraints (1) by adding positive slack variables
which have to be minimised in order to satisfy best possibly the constraints:

∑
gi∈F

( M∑
u=1

pi,u

) · ±(Si(x, y)− Si(x, y)
) ± s±1(x, y) � 1 ∀(x, y) ∈ A2

±1.

4.3 Constraints for �S̃W �(x, y) = 0 Conditions

Similarly as in the previous section, for all pairs (x, y) ∈ A2
0, we formulate the

corresponding set of soft equality constraints:

∑
gi∈F

( M∑
u=1

pi,u

) · (Si(x, y)− Si(x, y) ) + s0
+(x, y) − s0

−(x, y) = 0.

4.4 Objective Function

Finally, our overall objective is to determine a significance weights set W ∗ which:

– satisfies all the �S̃W∗
�(x, y) = ±2 constraints,

– respects the �S̃W∗
�(x, y) = ±1 and �S̃W∗

�(x, y) = 0 constraints as well as
possible, and

– gives the smallest possible weights wi (gi ∈ F ) (which, in practice, tends to
use the least possible number of equi-significance classes).

Therefore, we introduce the following objective function which is to be
minimised:
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K1
( ∑

gi∈F

M∑
u=1

pi,u

)
(2)

− K2

( M∑
u=1

( ∑
(x,y)∈A2

±2

bu(x, y)
) )

(3)

+ K3
( ∑

(x,y)∈A2
±1

s±1(x, y)
)

+ K4
( ∑

(x,y)∈A2
0

(s0
+(x, y) + s0

−(x, y))
)

(4)

where K1...K4 are parametric constants used for the correct hierarchical ordering
of the four sub-goals. Note that (3) is not necessary for solving our problem, but
it guarantees the strictest possible enforcing of the �S̃W �(x, y) = ±2 constraints
with strict inequalities.

In summary, we obtain the following linear mixed integer program which
covers all positive, negative and zero Condorcet robustness denotations:

MILP

Variables:

pi,u ∈ {0, 1} ∀gi ∈ F, ∀u = 1, .., M

bu(x, y) ∈ {0, 1} ∀(x, y) ∈ A2
±2,∀u = 1, .., M

s±1(x, y) � 0 ∀(x, y) ∈ A2
±1

s0
+(x, y) � 0 , s0

−(x, y) � 0 ∀(x, y) ∈ A2
0

Parameters:

Ki > 0 ∀i = 1...4

Objective function:

min K1

( ∑
gi∈F

M∑
u=1

pi,j

)− K2

( M∑
u=1

∑
(x,y)∈A2

±2

bu(x, y)
)

+K3

(∑
(x,y)∈A2

±1
s±1(x, y)

)
+ K4

(∑
(x,y)∈A2

0
(s0

+(x, y) + s0
−(x, y))

)
Constraints:
s.t.

∑
gi∈F

pi,1 = m

pi,u � pi,u+1 ∀gi ∈ F, ∀u = 1, .., M − 1∑
gi∈F

(
pi,u · [Si(x, y) − Si(x, y)

])
� bu(x, y) ∀(x, y) ∈ A2

±2, ∀u = 1, .., M

M∑
u=1

bu(x, y) � 1 ∀(x, y) ∈ A2
±2

∑
gi∈F

((∑M
u=1 pi,u

) · ± (Si(x, y) − Si(x, y)
)

∀(x, y) ∈ A2
±1, ∀u = 1, .., M

± s1
±(x, y) � 1∑

gi∈F

( ∑M
u=1 pi,u

) · ( Si(x, y) − Si(x, y) ) ∀(x, y) ∈ A2
0, ∀u = 1, .., M

+ s0
+(x, y) − s0

−(x, y) = 0
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Table 5. Optimal MILP solution for our example with estimated significance weights

F
p∗

i,u W ∗ W
1 2 3 4 5

g1 1 1 1 1 1 5/13 5/15
g2 1 0 0 0 0 1/13 1/15
g3 1 1 1 0 0 3/13 3/15
g4 1 1 1 0 0 3/13 4/15
g5 1 0 0 0 0 1/13 2/15

Let P ∗ = [p∗i,u] be an optimal solution of the MILP model. We may calculate the
estimated significance weights as the row sum of [p∗i,u], i.e. w∗

i =
∑M

u=1 p∗i,u for all
criteria gi ∈ F and thus recover the corresponding significance preorder �W∗ .

Example. Let us reconsider our example. Solving MILP with Cplex 11.0 gives the
optimal P ∗ matrix shown in Table 53. The resulting estimated normalised weights
are: w∗

1 = 0.385, w∗
2 = 0.077, w∗

3 = 0.231, w∗
4 = 0.231 and w∗

5 = 0.077, whereas the
real weights that we initially generated are : w1 = 0.333, w2 = 0.067, w3 = 0.200,
w4 = 0.267 and w5 = 0.133.

All constraints related to the 6 pairs (x, y) ∈ A2
±2 are positively verified, as well

as those concerning the 13 pairs (x, y) ∈ A2
±1 and the pair (a, b) ∈ A2

0. Therefore
we get with Ki = 1 ∀i = 1...4 the optimal value of -22 for the objective function
(13 − 7 · 5 + 0 + 0).

The original linear significance order: {g1} �W {g4} �W {g3} �W {g5} �W {g2} is
reconstructed as a three-level significance preorder: {g1} �W∗ {g3, g4} �W∗ {g2, g5}.
Recomputing the corresponding overall outranking relation we obtain the estimated
S̃W∗

relation (see Table 6), which admits an identical Condorcet robustness denota-
tion as the original S̃W relation.

The example that we detailed through this article illustrates the fact that the
reconstruction from the Condorcet robustness denotation alone of the signifi-
cance weights set following the original valued outranking relation is in general

Table 6. Global outranking relation with inferred significance weights

A
estimated S̃W∗

original S̃W

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

x1 - .50 .08 .54 .46 - .50 .07 .53 .40
x2 .54 - .31 .69 .46 .53 - .33 .67 .40
x3 .92 .69 - .46 .69 .93 .67 - .40 .67
x4 .54 .54 .54 - .62 .53 .53 .53 - .53
x5 .54 .54 .54 .77 - .53 .53 .53 .80 -

3 Cplex 11.0 solves this tiny mixed integer linear program with 26 MIP simplex iter-
ations, 0 branch-and-bound nodes and 4 Gomory cuts.
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not unique and not completely faithful. Several admissible significance preorders
and numerical weights sets might indeed support the same robustness denotation
and some tuning of the MILP objective function may be necessary depending
on the decision aid goal we intend to follow in order to get a useful result.

4.5 Practical Application Issues

If we apply the MILP model with Cplex 11.0, associated with an AMPL front end
modeler on more or less real-sized random multiple criteria decision problems
(20 alternatives evaluated on 13 criteria) we observe quite reasonable solving
times on an 6 threaded standard application server. Depending on the maximal
value M allowed for an individual criterion significance weight we indeed obtain
average computation times of 2.5 seconds for M = 7 up to 2 minutes for M = 13.

As already mentioned, for a given value of M , the MILP might have some
non zero slacks. In such a case, as our purpose is here to find a solution without
any slacks, we need to increase the value of M to reduce the slacks. In practice,
we simply reiterate the resolution, with M slightly incremented. Notice that 1
more unit for M produces m new binary variables (from p1,M+1 to pm,M+1),
increasing significantly the computation time as we have noticed before.

Furthermore, a great number of problems may be solved using values M much
lower than the number of criteria such that the number of columns of matrix P is
generally overestimated. Consequently, to limit the expected computation time,
we recommend to set the initial maximal admissible value M to the requested
depth of the estimated significance preorder and to increase it only if necessary.

5 Conclusion

In this paper we have presented an innovative method to determine significance
weights of criteria in Multiple Criteria Decision Aid, while guaranteeing a high
degree of robustness and therefore a high reliability of the outranking relation.

In the future we plan to examine the questioning of a decision maker in order
to obtain valuable information for the determination of the significance weights
from robustness affirmations. This involves the analysis of the decision maker’s
responses as well as the study of the interactive use of the algorithm presented in
this paper. In particular we intend to restrict the decision maker’s intervention on
a few pairs of alternatives and infer the outranking relation for those remaining.
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Abstract. Several schemes have been proposed for compactly representing mul-
tiattribute utility functions, yet none seems to achieve the level of success achieved
by Bayesian and Markov models for probability distributions. In an attempt to
bridge the gap, we propose a new representation for utility functions which fol-
lows its probabilistic analog to a greater extent. Starting from a simple definition
of marginal utility by utilizing reference values, we define a notion of conditional
utility which satisfies additive analogues of the chain rule and Bayes rule. We far-
ther develop the analogy to probabilities by describing a directed graphical repre-
sentation that relies on our concept of conditional independence. One advantage
of this model is that it leads to a natural structured elicitation process, very similar
to that of Bayesian networks.

1 Introduction

Specifying a multi-variate utility function is known to be a difficult task, and often
considered a bottleneck in implementation of intelligent systems. It requires quantifying
one’s preferences – a non-trivial cognitive task which involves contemplating a large
number of questions about the relative desirability of uncertain outcomes, or gambles.
Furthermore, the very personal and subjective nature of utility information makes it
harder to reuse and learn, unlike probabilistic knowledge, which can often be learned
from data and reused for various instances of a system. Yet, the preference and utility
elicitation tasks must be carried out when analyzing decision problems. A number of
attempts have been made to aid this elicitation process by structuring it so that either
the type of questions that must be answered is simpler and/or the number of questions
is smaller. Often, this process is aided by some graphical structure that captures some
properties of the utility function.

The level of success of current formalisms is not clear, partly because assessing the
benefit of various utility elicitation processes is difficult. Even given that current mod-
els provide significant theoretical simplifications, the cognitive burden imposed by the
elicitation process may still be prohibitive for practical applications. Given the well
recognized practical benefits yielded by probabilistic graphical models, it is likely that
much more can be done for utilities, too. In this work we attempted to follow the foot-
steps of probability theory more closely than before, by defining a notion of conditional
utility that is closer in form to its probabilistic analog. We then show how this concept

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 192–202, 2009.
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leads naturally to milestones such as the chain rule and Bayes rule analogies, and fi-
nally to a graphical representation based on a directed acyclic graph. While our new
method of representing and eliciting utilities bears certain similarities to existing meth-
ods, as detailed below, it offers an elicitation process – both for qualitative structure and
numeric values – that is clear, simple, and intuitive. Furthermore, it provides immedi-
ate computational benefits, and several promising direction for future research that are
based on the close resemblance to probabilistic models. We believe that this method can
become an essential part of the toolkit of decision analysts and an important component
in real-world decision support systems.

In the remainder of this paper we define a new notion of conditional utility and utilize
it to define utility difference networks. We explain their elicitation process and compare
them to existing formalism for representing structured utility functions. Finally, we dis-
cuss a few open questions.

2 Background and Related Work

Let Θ denote the space of possible outcomes, with  a preference relation (weak total
order) over Θ. Let Γ = {a1, . . . , an} denote a set of attributes describing Θ. Each
attribute a ∈ Γ has a domain D(a), so that Θ ⊆ ∏n

i=1D(ai). We use prime signs
and superscripts to denote specific assignment for an attribute, and a concatenation of
assignment symbols (as in a′

ia
′′
j ) means that each of the attributes gets a respective

value. We use γ and γi to denote subsets of Γ , and the same notation as before to
denote assignments to all the attributes in the set. For example, if γ1 = {ai, aj}, then
γ0
1 = a0

i a
0
j . Finally, we use D(γ) to denote the set of all possible assignments to γ, that

is the projection of Θ over
∏

ai∈γ D(ai).

Definition 1. Let γ1, γ2 ⊂ Γ . γ1 and γ2 are conditionally additive independent (CAI)
given their complement Γ \ (γ1∪γ2), if preferences over lotteries on Γ depend only on
their marginal conditional probability distributions over γ1 and γ2.

Graphical models have been employed for the representation of decomposed utility, as
early as by [9, 13]. However, the first representation that relies on conditional inde-
pendence, and thus follow the footsteps of probabilistic models, can be attributed to
Bacchus and Grove [1]. These authors show that conditional additive independence has
a perfect map, meaning that given a set of attributes and a preference order, there ex-
ists a graph whose node separation expresses the exact set of independence conditions.
Further, they show that the utility function decomposes to a sum over lower dimen-
sional functions, each defined over a maximal clique of the graph. This decomposition
is a special type of generalized additive independence (GAI), a global independence
condition introduced originally by Fishburn [7].

Definition 2. Let γ1, . . . , γg ⊆ Γ such that
⋃g

i=1 γi = Γ . γ1, . . . , γg are called gen-
eralized additive independent (GAI) if preferences over lotteries on Γ depend only on
their marginal distributions over γ1, . . . , γg.

An (expected) utility function u(·) can be decomposed additively according to its (pos-
sibly overlapping) GAI sub-configurations.
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Theorem 1 ([7]). Let γ1, . . . , γg be GAI. Then there exist functions f1, . . . , fg such that

u(a1, . . . , am) =
g∑

r=1

fr(γr). (1)

Bacchus and Grove revived this notion and named it GAI. This opened the way to an
increasing body of research on representation and reasoning with GAI. Boutilier et al.
[2] introduce UCP networks, which is a directed form of CAI-maps. The directional-
ity though is obtained from identifying preferential independence conditions over sets
of attributes, that is exogenously to the GAI decomposition. Gonzales and Perny [8]
introduce GAI nets, which is a graphical representation for GAI, where nodes repre-
sent subsets of attributes, and nodes are connected if their respective subsets intersect.
Braziunas and Boutilier [3] provide a method of elicitation that takes advantage of the
locality property of GAI.

CAI and GAI require comparisons of probability distributions and preferences over
lotteries. In applications in which uncertainty is not a crucial element (e.g., electronic
commerce applications), it is not required and usually not desired to involve probabil-
ities in user interaction. Engel and Wellman [5] extend the work of [4] and introduce
conditional difference independence (CDI). Intuitively, attributes x and y are CDI of
each other if any difference in value over assignments to x does not depend on the cur-
rent assignment of y, for any possible assignment to the rest of the variables. CDI is
very similar to CAI, and therefore has a perfect map as well.

Definition 3. 1 Let γ1, γ2 ⊂ Γ . γ1 and γ2 are conditionally difference independent
given γ3 = Γ \ (γ1 ∪ γ2), denoted as CDI(X, Y ), if

∀ assignments γ̂3, γ
′
1, γ

′′
1 , γ′

1, γ
′′
2

u(γ′
1γ

′
2γ̂3)− u(γ′′

1 γ′
2γ̂3) = u(γ′

1γ
′′
2 γ̂3)− u(γ′′

1 γ′′
2 γ̂3)

Our new concept of independence and graphical model most closely resemble CDI.
However, in comparison to CDI, it introduces several benefits: (i) it is directional, al-
lowing for a more intuitive elicitation process and (ii) the independence condition is
weaker, meaning it can be applied in some cases wherein which CDI does not hold.

Another direction of research relied on other types of utility independence. CUI net-
works [6] is a graphical model that relies on the concept of conditional utility indepen-
dence [10], which intuitively requires the (cardinal) preference order over a subset of
the attributes to be independent of another subset of attributes. Earlier works by Shoham
[12] and La Mura and Shoham [11] are also seeking utility representation that is similar
to a probability distribution. Shoham [12] proposes a redefinition of utility function as a
set function, over additive factors in the domain that together contribute to the decision
maker’s well being. La Mura and Shoham [11] propose only a redefinition of the util-
ity independence concept, which is a multiplicative version of difference independence
(that is, refers to utility ratios rather than differences). In non-probabilistic settings, and

1 Difference independence and CDI are defined given a preference order over preference differ-
ences, and its numeric representation is a measurable value function. For brevity of presenta-
tion we describe it in terms of utilities.
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especially in situations in which decision outcomes can be measured against monetary
differences (as in purchasing), we believe that utility differences are more natural to
elicit than ratios.

A common drawback of most previous models is that most focus is given to the
process of data elicitation, whereas the process of structure elicitation, in which the in-
dependence structure is identified, is usually left to domain experts. This is particularly
true for GAI based representations, as UCP and GAI networks, because there is no ex-
plicit and intuitive process for identifying and/or verifying GAI conditions. Our novel
model, in contrast, has the benefit of an intuitive and incremental structure elicitation
process.

3 Reference and Conditional Utility

There are inherent differences between probability distributions and utility functions,
which make any analogy between the two problematic. Arguably, the most primal dif-
ference is the fact that probability distribution is a set function, defined over events that
encapsulate a set of atomic outcomes. In contrast, there is no meaning for the utility of
a set of atomic outcomes. For probability distributions, there is a natural definition for
a function over a subspace of the world on which the problem is defined. Technically, if
the world is represented by a set of attributes Γ , one can define a probability distribution
over some γ ⊂ Γ by summing over the atomic outcomes that hold for any assignment
to γ, thus marginalize out the irrelevant parameters (namely, Γ \ γ).

Whereas there is no meaning for marginalizing parameters of a utility function, a
similar effect can be achieved by fixing those parameters on some reference value. For
probabilities, we ask the question what is the probability of outcomes in γ when we
don’t know the value of Γ \ γ. While we do not have an exact analogy for utilities,
with reference values we get ask: what is the utility of outcomes in γ when the value of
Γ \γ is fixed on the reference. The idea of using a reference value has been exploited in
previous works [7, 3, 6], however it was never taken quite as far in driving the analogy
to probabilities.

Let a0
1 . . . a0

n ∈ Θ denote a predetermined complete assignment, which we call the
reference assignment. The reference assignment allows us to define a utility function
over a subspace of the joint domain. Let γ = Γ \ γ.

Definition 4. The reference utility function is defined as follows

ur(γ) = u(γγ0)

The next step is to define the notion of conditioning, within a subspace of the domain.

Definition 5. The conditional utility function is defined as follows

ur(γ1|γ2) = ur(γ1γ2)− ur(γ0
1γ2)

where γ = Γ \ {γ1 ∪ γ2}.
This definition has a direct rooting in the definition of conditional probabilities. The
definition of the latter is

p(γ1|γ2) =
p(γ1γ2)

γ2
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As common in probabilistic reasoning, we take a log of the definition in order to replace
multiplication with additivity. This results exactly in Definition 5.

Given that, it is not surprising that the utility function exhibits an additive decom-
position which is similar to the multiplicative decomposition of a probability function.
We first have to normalize the utility function (henceforth) such that u(Γ 0) = 0.

Theorem 2 (The chain rule).

u(Γ ) =
n∑

i=1

ur(ai|{aj}i−1
j=1)

Proof. By definitions of conditional utility and reference utility,

ur(ai|{aj}i−1
j=1) = ur(a1 . . .ai−1ai)− ur(a1 . . .ai−1a

0
i ) =

u(a1 . . . ai−1aia
0
i+1 . . .a0

n)− u(a1 . . . ai−1a
0
i a

0
i+1 . . .a0

n)

Summing over i = 1, . . . , n on both sides yields the desired result, because: (1) the
negative term for i = 1 is u(a0

1 . . . a0
n) = 0, (2) the negative term for i cancels out with

the positive term for i − 1 (both are u(a1 . . . ai−1a
0
i a

0
i+1 . . . a0

n)), and (3) the positive
term for i = n is u(Γ ). ��
Finally, it is easy to see that this definition obeys an additive adaptation of Bayes rule.
Again, taking log over the probabilistic equation we obtain the following

Theorem 3 (Bayes Rule Analog).

ur(γ1|γ2) = ur(γ2|γ1) + ur(γ1)− ur(γ2)

3.1 Conditional Independence

The chain rule by itself does not provide significant computational value, because the
last term (i = n) includes the left-hand side of the equation u(Γ ). The idea, similar to
the one employed to achieve compact probability functions, is that the conditional utility
function ur(ai|a1, . . . , ai−1) may not depend on all of the attributes a1, . . . , ai−1, but
only on some subset of them, in which case the terms considered by the chain rule have
lower dimensionality. This is formalized as follows.

Definition 6. γ1 is said to be conditionally independent of γ2 given γ3 (CDIr(γ1, γ2|γ3))
if for any γ′

3 ∈ D(γ3),
ur(γ1|γ2γ

′
3) = ur(γ1|γ′

3)

When γ3 = Γ \ γ1 ∪ γ2, then CDIr(γ1, γ2|γ3) is equivalent to γ1 and γ2 being CDI.
Therefore, CDIr is a generalization of CDI . The novelty of this definition is that it
refers to a subset of the attributes. Whereas in previous independence concepts the
conditional set must always be “the rest of the attributes”, here we specifically select a
conditional set, and can ignore the attributes which are not relevant to γ1.
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Table 1. Utility for each assignment to attributes x, y, and z

x0yz x0y0z x0yz0 x0y0z0

9 6 6 3
xyz xy0z xyz0 xy0z0

12 7 8 5

As an example, consider the values in Table 1, which provides the value for the eight
different instantiations of three boolean attributes, x, y, and z. The difference between
the two values in each column corresponds to the difference in x given difference in-
stantiations of yz.

We see that CDI(x, y) does not hold because u(xyz) − u(x0yz) �= u(xy0z) −
u(x0y0z) (according to the two left columns). In our terms it means that CDIr(x, y|z)
does not hold. However, CDIr(x, y|) does hold, because the difference is equal for the
reference value z0 (see the two right columns): u(xyz0) − u(x0yz0) = u(xy0z0) −
u(x0y0z0) (or, equivalently, ur(x|y) = ur(x|)).

4 Utility Difference Networks

Loyal to the Bayes-net analogy, we seek a directed graphical structure, with a node
for each attribute, and the following property: each attribute is conditionally directional
independent, given its parents, of all its other non-descendants. Let Pa(a) denote the
parents of a node a in a graph, and let Dn(a) denote its descendants. Furthermore, let
Co(a) = Γ \ {a} ∪ Pa(a) ∪Dn(a).

Definition 7. A utility difference network is a DAG G = (V, E), with V corresponding
to a set of attributes Γ , and for any a ∈ Γ , CDIr(a, Pa(a)|Co(a)).

The utility computation from the directed graph is again very similar to how probabil-
ities are computed from a Bayes-net. The following theorem is a direct result of the
chain rule and Definition 7.

Theorem 4. The utility function can be computed from the utility difference network as
follows

u(Γ ) =
n∑

i=1

ur(ai|Pa(ai))

Previous graphical models usually assume that the model is given, obtained by some
domain expert. In particular, how to identify a GAI decomposition remains an unsolved
question (except for the case that the GAI structure is a result of a collection of CAI or
CDI conditions). Note also that while each pairwise CDI condition requires in theory
the verification of order of exp(n) equalities for utility differences (because a verifica-
tion is required for each instantiation of the rest of the attributes), with our new notion
of conditional independence we only need to consider the independent attributes and
the conditioning set. However, we note that when creating a full network this is not a
significant advantage, because the number of queries for the last variable in the ordering
will reach the same order of magnitude as in CDI.
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4.1 Elicitation

The process of obtaining a utility difference network structure is similar in spirit to
that used for Bayesian networks. It is summarized by the following procedure. As is the
case in Bayesian network, the result depends on the variable ordering that is used by the
procedure, and the choice of variable ordering is usually based on heuristic assessments.
Intuitively, we would like to place the most important variables first, because these are
the variables that are likely to have many connections to other variables. By keeping
them on top we avoid having to represent all of these dependencies as parents of the
same variable. Furthermore, it makes intuitive sense to have the important variables
first, so the dependence between other variables are conditioned on them.

For each variable in its turn, we find a set of parents: those attributes that are required
in order to render the current variable independent of the rest. We use the notation
Γ i = {a1, . . . , ai}, and (x, y) refers to a directed arc from x ∈ V to y ∈ V .

algorithm ProcGetStructure(Γ )
input: Γ , ordered as {a1, . . . , an}
output: a utility difference network over Γ

for i=1 to n:
find minimal Γ̂ i ⊆ Γ i−1 such that CDIr(ai, Γ

i−1 \ Γ̂ i|Γ̂ i)
For each x ∈ Γ̂ i, Add (x, ai) to E

return G = (Γ , E)

The data in the nodes of a utility difference network is in form of conditional utility
function, that is obtained by querying a user for preference differences. For example,
the node a with parents γ requires the function ur(a|γ), which is obtained by queries
for the differences ur(aγ) − ur(a0γ).

4.2 Example

In order to demonstrate the difference between CDI and CDIr, we consider the hard-
drive example used by Engel and Wellman [5], and we show their CDI-map of the prob-
lem in Figure 1a. The example describes various decision criteria that a procurement
department of a company evaluates when purchasing some quantity of new hard-drives.
Below, each attribute is listed with a designated attribute name (the first letter), and its
(sometimes arbitrary) domain.

RPM (R) 3600, 4200, 5400 RPM
Transfer rate (T ) 3.4, 4.3, 5.7 MBS
Volume (V ) 60, 80, 120, 160 GB
Supplier ranking (S) 1, 2, 3, 4, 5
Quality rating (Q) (of the HD brand) 1, 2, 3, 4, 5
Delivery time (D) 10, 15, 20, 25, 30, 35 days
Warranty (W ) 1, 2, 3 years
Insurance (I) (for the case the deal is signed but not implemented) α, β, γ
Payment timeline (P ) 10, 30, 90 days
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Fig. 1. Networks for the example: (a) CDI-map (b) utility difference network

Intuitively, the most salient criterion is volume, and the other important ones are RPM,
warranty, and quality; hence the ordering prefix V, R, W, Q seems sensible. The rest of
the ordering is less crucial, and we use I, D, P, T . First, V is placed as a root. When R
is considered next, we find that it depends on V because for high volume hard-drives
the marginal utility of improving RPM is higher. We find that W depends on V , be-
cause larger hard-drives tend to fail more. Now when considering Q, we might find
that there is similar dependence between Q and V . However, if the reference value of
W is the maximum value (3 years), we might find that given the reference value of W
(and the rest of the variables), Q and V are independent because the longer warranty
alleviates (substitutes) quality concerns. Further down in the network we might see a
similar effect: a convenient value for insurance alleviates the dependency of delivery
terms on the payment terms. In addition, we find the CDI conditions as described by
Engel and Wellman [5]. For example, given any fixed value of V the marginal value of
improving the quality rating does not depend on the RPM. Also, S is CDI and there-
fore CDIr of all the rest. We obtain the DAG depicted in Figure 1b. The utility dif-
ference network does not achieve lower dimension than the corresponding CDI-map,
however it provides directionality that can be exploited for a more natural elicitation
process.

5 Discussion

CDI is a stronger condition than CDIr, and as such the locality property it achieves is
stronger. To see this, consider the elicitation of data for an attribute x. In a CDI-map,
the marginal utility over x is independent of the value of any node outside its local
neighborhood. Therefore, the marginal utility of x can be elicited using local queries
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that involve differences over x and given a fixed value of the neighbors, without even
knowing the value of the rest of the variables. In utility difference network the marginal
utility of x may in some cases depend on the value of a non-neighbor y. For example, if
y is an ancestor of x, the marginal value of x is independent of y given any value of x’s
parents, but only given that the rest of the variables are fixed on the reference value. It
is possible that there is some instantiation of the rest of the variables, under which the
independence is lost. Therefore, elicitation must specify explicitly that the the rest of
the variables are fixed on the reference value.

In fact, this can be seen as an advantage of utility difference network. In CDI-map,
such x and y will necessarily have an edge connecting them, whereas in a utility differ-
ence network such edge can be omitted. In that sense, utility difference network refines
CDI. Furthermore, if x is fully CDI of y, this can be exploited in utility difference net-
works as well; as long as a local query makes sense to the user there is no need to
indicate explicitly that the rest of the variables are fixed on the reference value.

A promising direction coming out of this representation is in introducing a form of
Bayesian Learning for utilities. Consider a digital camera manufacturer that wishes to
obtain information about customers’ preferences. The company may be able to observe
some limited set of choices made by customers. Perhaps we can also assume that single
dimensional utilities (e.g., how much worths an improvement in a single attribute, all
else being equal) is easy to estimate, or elicit. The company can now use the evidence
(customer’s choices) and Theorem 3, in order to obtain data regarding future choices
of the customer. For example, the customer may have chosen to pay an extra $60 for
a camera with 10× zoom and 6mgp, over one with 7× zoom and 6mgp. Now (given
the single dimensional data, in the form of reference utilities over each attribute) the
company can compute the amount that the customer is willing to pay to get 6mgp over
4mgp, given that the zoom is 10×.

Practical problem with this direction are yet to be resolved: this assumes that the out-
comes above differ only in these two attributes, and in addition the rest of the attributes
are fixed on the reference value (or, alternatively, difference independence holds be-
tween the two attributes we considered and any other attribute). Furthermore, we should
theoretically be able to infer information about a customer only according to choices
made by that customer. It is possible though that in some cases heuristic information
can be inferred across different customers.

6 Conclusions

We propose a new representation scheme for utility functions. Starting from a definition
of utility for a subspace of the domain, with respect to reference value of the rest of the
attributes, we proceed with a definition of conditional utility as the marginal utility of an
attribute, conditioned on some other attributes, and relative to the reference value. We
show that conditional utility accommodates the logarithmic adaptations of the chain
rule and Bayes rule, and develop the analogy to probabilities further by describing a
directed graphical representation that relies on a concept of conditional independence.

In comparison with previous directed models [2, 6], we believe that our representa-
tion is simpler and easier to construct. Utility Difference Networks can be considered
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an adaptation of CDI-maps into a DAG, and though does not provide reduction of di-
mensionality, we believe that it has the potential to benefit the field in a similar way
to how Bayesian Networks facilitated probabilistic reasoning in comparison to Markov
Networks.

There are several direction to explore following this work. One is the form of Bayesian
Learning proposed in Section 5. Furthermore, the fact that conditional utilities satisfy
the chain rule and Bayes rule, implies that it may be possible to perform utility inference
using algorithms similar to those that are used for belief propagation. Partial information
obtained from observing the agent behavior, possibly coupled with observations about
single dimensional preferences of similar users, can be used to infer other preferences.
Value conditioning stemming from partial user choices or product constraints can be
reasoned with, much like evidence in belief propagation, yielding estimates of the utility
of various choices for other attributes.
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Abstract. We introduce the principle of robust ordinal regression
to group decision. We consider the main multiple criteria decision
methods to which robust ordinal regression has been applied, i.e.,
UTAGMS and GRIP methods, dealing with choice and ranking problems,
UTADISGMS , dealing with sorting (ordinal classification) problems,
and ELECTREGMS, being an outranking method applying robust
ordinal regression to well known ELECTRE methods. In this way, we
obtain corresponding methods for group decision: UTAGMS-GROUP,
UTADISGMS-GROUP and ELECTREGMS-GROUP.

Keywords: Robust ordinal regression, Multiple criteria choice, sorting
and ranking, Additive value functions, Outranking methods, Multiple
criteria group decision.

1 Introduction

In Multiple Criteria Decision Analysis (MCDA - for a recent state-of-the-art
see [6]), an alternative a, belonging to a finite set of alternatives A = {a, b, . . . ,
j, . . . , m} (|A| = m), is evaluated on n criteria gi: A→ R belonging to a consis-
tent family G = {g1, g2, . . . , gi, . . . , gn} (|G| = n). From here on, to designate an
i-th criterion, we will use interchangeably gi or i (i = 1, . . . , n). For the sake of
simplicity, but without loss of generality, we suppose that evaluations on each
criterion are increasing with respect to preference, i.e., the more the better,
defining a marginal weak preference relation as follows:

a is at least as good as b with respect to criterion i ⇔ gi(a) ≥ gi(b).

There are two main approaches to construction of decision models in MCDA:
Multi-Attribute Utility Theory (MAUT) [16], [5], and the outranking approach
[22], [23], [8].

The purpose of MAUT is to represent preferences of a Decision Maker (DM)
on a set of alternatives A by an overall value (utility) function

U(g1(a), . . . , gn(a)):Rn → R

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 203–214, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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such that:

a is at least as good as b ⇔ U(g1(a), . . . , gn(a)) ≥ U(g1(b), . . . , gn(b)).

The goal of the outranking approach is to represent preferences of a DM on a
set of alternatives A by a pairwise comparison function

S(g1(a), g1(b), . . . , gn(a), gn(b)):R2n → R

such that:

a is at least as good as b ⇔ S(g1(a), g1(b), . . . , gn(a), gn(b)) ≥ 0

Each decision model requires specification of some parameters. For example,
using multiple attribute utility theory, the parameters are related to the for-
mulation of marginal value functions ui(gi(a)), i = 1, . . . , n, while using the
outranking approach, the parameters can be weights, indifference, preference,
and veto thresholds for each criterion gi, i = 1, . . . , n.

Recently, MCDA methods based on indirect preference information and on
the disaggregation paradigm [15] are considered more interesting, because they
require less cognitive effort from the DM in order to express preference infor-
mation. The DM provides some holistic preferences on a set of reference alter-
natives AR, and from this information the parameters of a decision model are
induced using a methodology called ordinal regression. The resulting decision
model consistent with the provided preference information is used to evaluate
the alternatives from set A (aggregation stage.) Typically, ordinal regression has
been applied to MAUT models, so in these cases we speak of additive ordinal
regression. For example, additive ordinal regression has been applied in the well-
known method called UTA (see [14]). The ordinal regression methodology has
been applied, moreover, to some nonadditive decision models. In this case, we
speak of nonadditive ordinal regression and its typical representatives are the
UTA like-methods substituting the additive value function by the Choquet inte-
gral (see [4], [17], [1]), and the DRSA methodology using a set of decision rules
as the decision model (see [9]).

Usually, among the many sets of parameters of a decision model representing
the preference information given by the DM, only one specific set is considered.
We say that the set of parameters or the decision model is compatible with the
preference information given by the DM if it is consistent with the preference
information given by the DM. For example, from among the many compatible
value functions only one function is selected to rank the alternatives from set A.
Since the choice of one among many compatible sets of parameters is arbitrary to
some extent, recently robust ordinal regression has been proposed with the aim
of taking into account all compatible sets of parameters. The first robust ordinal
regression method is the recently proposed generalization of the UTA method,
called UTAGMS [11]. In UTAGMS, instead of only one compatible additive value
function composed of piecewise-linear marginal functions, all compatible additive
value functions composed of general monotonic marginal functions are taken into
account.
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As to the preference information, the UTAGMS method requires from a DM
to make some pairwise comparisons on a set of reference alternatives AR ⊆ A.
The set of all compatible decision models defines two relations in set A: the
necessary weak preference relation, which holds for any two alternatives a, b ∈ A
if and only if all compatible value functions give to a a value greater than the
value given to b, and the possible weak preference relation, which holds for this
pair if and only if at least one compatible value function gives to a a value greater
than the value given to b.

Recently, an extension of UTAGMS has been proposed and called the GRIP
method [7]. The GRIP method builds a set of all compatible additive value
functions, taking into account not only a preorder on a set of alternatives, but
also the intensities of preference among some reference alternatives. This kind
of preference information is required in other well-known MCDA methods, such
as MACBETH [3] and AHP [24], [25]. Both UTAGMS and GRIP apply the
robust ordinal regression to the multiple attribute additive model and, therefore,
we can say that these methods apply the additive robust ordinal regression. In the
literature, the nonadditive robust ordinal regression has been proposed, applying
the approach of robust ordinal regression to a value function having the form of
Choquet integral in order to represent positive and negative interactions between
criteria [2]. The robust ordinal regression approach can be applied also to the
outranking approach [10].

In this paper, we wish to consider the robust ordinal regression in a group de-
cision context. Therefore, we consider a set of decision makers D = {d1, . . . , dp}
with each own preferences, and we use robust ordinal regression to investigate
spaces of consensus between them. The article is organized as follows. Section
2 is devoted to presentation of the general scheme of robust ordinal regression
for choice and ranking problems within MAUT, as well as basic principles of
UTAGMS and GRIP methods. In section 3, robust ordinal regression for group
choice and ranking problems is introduced within MAUT, and the UTAGMS-
GROUP method is presented. Section 4 presents a general scheme of robust
ordinal regression for sorting problems within MAUT, as well as basic princi-
ples of UTADISGMS. In section 5, robust ordinal regression for group sorting
problems is introduced within MAUT, and the UTADISGMS-GROUP method
is presented. Section 6 presents a general scheme of robust ordinal regression
within the outranking approach, as well as basic principles of ELECTREGMS.
In section 7, robust ordinal regression for group decision problems is introduced
within the outranking approach, and the ELECTREGMS-GROUP method is
presented. The last section contains conclusions.

2 The Robust Ordinal Regression Approach for Choice
and Ranking Problems within MAUT

MAUT provides a theoretical foundation for preference modeling using a real-
valued utility function, called value function, aggregating evaluations of alter-
natives on multiple criteria. The value function is intended to be a preference
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model of a particular DM. It is also a decision model, since it gives scores to
alternatives which permit to order them from the best to the worst, or to choose
the best alternative with the highest score. Its most popular form is additive:

U(a) =
n∑

i=1

ui(gi(a)), (1)

where ui(gi(a)), i = 1, . . . , n, are real-valued marginal value functions.
Ordinal regression has been known for at least fifty years in the field of mul-

tidimensional analysis. It has been applied within MAUT, first to assess weights
of an additive linear value function [27], [21], and then to assess parameters of
an additive piece-wise linear value function [14]. The latter method, called UTA,
initiated a stream of further developments, in both theory and applications [26].

Recently, two new methods, UTAGMS [11] and GRIP (Generalized Regression
with Intensities of Preference) [7], have generalized the ordinal regression ap-
proach of the UTA method in several aspects, the most important of which is
that they are taking into account all additive value functions (1) compatible with
the preference information, while UTA is using only one such function.

2.1 The Preference Information Provided by the Decision Maker

The DM is expected to provide the following preference information:

– a partial preorder ! on AR ⊆ A whose meaning is: for x, y ∈ AR

x ! y ⇔ x is at least as good as y,

– a partial preorder !∗ on AR ×AR, whose meaning is: for x, y, w, z ∈ AR,

(x, y) !∗ (w, z)⇔ x is preferred to y at least as much as w is preferred to z,

– a partial preorder !∗
i on AR × AR, whose meaning is: for x, y, w, z ∈ AR,

(x, y) !∗
i (w, z) ⇔ x is preferred to y at least as much as w is preferred to z

on criterion gi, i = 1, . . . , n.

2.2 Possible and Necessary Rankings

A compatible value function is able to restore the preference information ex-
pressed by the DM on AR and AR × AR. Each compatible value function in-
duces, moreover, a complete preorder on the whole set A. In particular, for any
two solutions x, y ∈ A, a compatible value function orders x and y in one of
the following ways: x � y, y � x, x ∼ y. With respect to x, y ∈ A, it is thus
reasonable to ask the following two questions:

– Are x and y ordered in the same way by all compatible value functions?
– Is there at least one compatible value function ordering x at least as good

as y (or y at least as good as x)?
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In the answer to these questions, UTAGMS and GRIP produce two rankings on
the set of alternatives A, such that for any pair of alternatives a, b ∈ A:

– in the necessary ranking (partial preorder), a is ranked at least as good as
b if and only if, U(a) ≥ U(b) for all value functions compatible with the
preference information,

– in the possible ranking (strongly complete and negatively transitive relation),
a is ranked at least as good as b if and only if, U(a) ≥ U(b) for at least one
value function compatible with the preference information.

The necessary ranking can be considered as robust with respect to the preference
information. Such robustness of the necessary ranking refers to the fact that
any pair of alternatives compares in the same way whatever the additive value
function compatible with the preference information. Indeed, when no preference
information is given, the necessary ranking boils down to the dominance relation,
and the possible ranking is a complete relation.

As GRIP is taking into account additional preference information in form of
comparisons of intensities of preference between some pairs of reference alter-
natives, the set of all compatible value functions restoring the whole preference
information is also used to produce four types of relations on A × A, such that
for any four alternatives a, b, c, d ∈ A:

– the necessary relation (a, b) !∗N

(c, d) (partial preorder) holds (a is preferred
to b necessarily at least as much as c is preferred to d), if and only if U(a)−
U(b) ≥ U(c)− U(d) for all compatible value functions,

– the possible relation (a, b) !∗P

(c, d) (strongly complete and negatively tran-
sitive relation) holds (a is preferred to b possibly at least as much as c is
preferred to d), if and only if U(a) − U(b) ≥ U(c) − U(d) for at least one
compatible value functions,

– the necessary relation (a, b) !∗N
i (c, d) (partial preorder) holds (on criterion

i, a is preferred to b necessarily at least as much as c is preferred to d), if
and only if ui(a) − ui(b) ≥ ui(c) − ui(d) for all compatible value functions
(i = 1, . . . , n),

– the possible relation (a, b) !∗P
i (c, d) (strongly complete and negatively tran-

sitive relation) holds (on criterion i, a is preferred to b possibly at least as
much as c is preferred to d), if and only if ui(a) − ui(b) ≥ ui(c) − ui(d) for
at least one compatible value functions (i = 1, . . . , n).

3 Robust Ordinal Regression for Group Decision about
Choice and Ranking: The UTAGMS-GROUP Method

The UTAGMS-GROUP method applies the robust ordinal regression approach
to the case of group decision, in which several DMs cooperate to make a col-
lective decision. DMs share the same “description” of the decision problem (the
same set of alternatives, evaluation criteria and performance matrix). Each DM
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provides his/her own preference information, composed of pairwise comparisons
of some reference alternatives. The collective preference model accounts for the
preference expressed by each DM. Although in the considered framework it is
also possible to handle preference information about intensity of preference, we
will skip this preference information for the lack of space.

Let us denote the set of DMs by D= {d1, . . . , dp}. For each DM dh ∈ D′ ⊆ D,
we consider all compatible value functions. Four situations are interesting for a
pair (a, b) ∈ A:

– a !N,N
D′ b: a !N b for all dh ∈ D′,

– a !N,P
D′ b: a !N b for at least one dh ∈ D′,

– a !P,N
D′ b: a !P b for all dh ∈ D′,

– a !P,P
D′ b: a !P b for at least one dh ∈ D′.

4 Robust Ordinal Regression for Sorting Problems:
The UTADISGMS Method

Robust ordinal regression has also been proposed for sorting problems in the
new UTADISGMS method [12], considering an additive value function (1) as
a preference model. Let us remember that sorting procedures consider a set of
k predefined preference ordered classes C1, C2, . . . , Ck , where Ch+1 " Ch ("
a complete order on the set of classes), h = 1, . . . , k − 1. The aim of a sorting
procedure is to assign each alternative to one class or to a set of contiguous
classes. The robust ordinal regression takes into account a value driven sorting
procedure, that is, it uses a value function U to decide the assignments in such
a way that if U(a) > U(b) then a is assigned to a class not worse than b.

We suppose the DM provides preference information in form of possibly im-
precise assignment examples on a reference set of alternatives AR ⊆ A, i.e. for
aR ∈ AR the DM defines a desired assignment aR → [CLDM (aR), CRDM (aR)],
where [CLDM (aR), CRDM (aR)] is an interval of contiguous classes CLDM (aR),
CLDM (aR)+1, . . . , CRDM (aR). An assignment example is said to be precise if
LDM (aR) = RDM (aR), and imprecise, otherwise.

Given a value function U , a set of assignment examples is said to be consistent
with U iff

∀aR, bR ∈ AR, U(aR) ≥ U(bR) ⇒ RDM (aR) ≥ LDM (bR). (2)

Given a set AR of assignment examples and a corresponding set UAR of compat-
ible value functions, for each a ∈ A we define the possible assignment CP (a) as
the set of indices of classes Ch for which there exist at least one value function
U ∈ UAR assigning a to Ch, and the necessary assignment CN (a) as set of indices
of classes Ch for which all value functions U ∈ UAR assign a to Ch.
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5 Robust Ordinal Regression for Group Decision about
Sorting: The UTADISGMS-GROUP Method

Given a set of DMs D= {d1, . . . , dp}, for each DM dr ∈ D′ ⊆ D we consider
the set of all compatible value functions Udr

AR . Given a set AR of assignment
examples, for each a ∈ A and for each DMs dr ∈ D′ we define his/her possible
and necessary assignments as

Cdr

P (a) = {h ∈ H such that ∃U ∈ Udr

AR assigning a to Ch} (3)

Cdr

N (a) = {h ∈ H such that ∀U ∈ Udr

AR , U is assigning a to Ch} (4)

Moreover, for each subset of DMs D′ ⊆ D, we define the following assignments:

CD′
P,P (a) =

⋃
dr∈D′ C

dr

P (a) (5)

CD′
N,P (a) =

⋃
dr∈D′ C

dr

N (a) (6)

CD′
P,N (a) =

⋂
dr∈D′ C

dr

P (a) (7)

CD′
N,N (a) =

⋂
dr∈D′ Cdr

N (a). (8)

Possible and necessary assignments Cdr

P (a) and Cdr

N (a) are calculated for each
decision maker dr ∈ D using UTADISGMS, and then the four assignments
CD′

P,P (a), CD′
N,P (a), CD′

P,N (a) and CD′
P,P (a) can be calculated for all subsets of

decision makers D′ ⊆ D.

6 Robust Ordinal Regression for Outranking Methods

Outranking relation is a non-compensatory preference model used in the
ELECTRE family of multiple criteria decision aiding methods [22]. Its con-
struction involves two concepts known as concordance and discordance. Out-
ranking relation, usually denoted by S, is a binary relation on a set A of actions.
For an ordered pair of actions (a, b) ∈ A, aSb means “a is at least as good as
b”. The assertion aSb is considered to be true if the coalition of criteria being in
favor of this statement is strong enough comparing to the rest of criteria, and
if among the criteria opposing to this statement, there is no one for which a is
significantly worse than b. The first condition is called concordance test, and the
second, non-discordance test.

Let us denote by kj the weight assigned to criterion gj, j = 1, . . . , n; it rep-
resents a relative importance of criterion gj within family G of n criteria. The
indifference, preference and veto thresholds on criterion gj are denoted by qj ,
pj and vj , respectively. For consistency, vj > pj > qj ≥ 0, j = 1, . . . , n. In all
formulae that follow, we suppose, without loss of generality, that all these thresh-
olds are constant, that preferences are increasing with evaluations on particular
criteria, and that criteria are identified by their indices.

The concordance test involves calculation of concordance index C(a, b). It
represents the strength of the coalition of criteria being in favor of aSb. This
coalition is composed of two subsets of criteria:
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– subset of criteria being clearly in favor of aSb, i.e., such that gj(a) ≥ gj(b)−
qj ,

– subset of criteria that do not oppose to aSb, while being in an ambiguous
position with respect to this assertion; these are those criteria for which a
weak preference relation bQa holds; i.e., such that gj(b) − pj ≤ gj(a) <
gj(b)− qj .

Consequently, the concordance index is defined as

C(a, b) =

∑n
j=1 φj(a, b)× kj∑n

j=1 kj
, (9)

where, for j = 1, . . . , n,

φj(a, b) =

⎧⎨⎩
1, if gj(a) ≥ gj(b)− qj ,
gj(a)−[gj(b)−pj ]

pj−qj
, if gj(b)− pj ≤ gj(a) < gj(b)− qj ,

0, if gj(a) < gj(b)− pj .
(10)

φj(a, b) is a marginal concordance index, indicating to what extend criterion gj

contributes to the concordance index C(a, b). As defined by (10), φj(a, b) is a
piecewise-linear function, non-decreasing with respect to gj(a)− gj(b).

Remark that C(a, b) ∈ [0, 1], where C(a, b) = 0 if gj(a) ≤ gj(b) − pj , j =
1, . . . , n (b is strictly preferred to a on all criteria), and C(a, b) = 1 if gj(a) ≥
gj(b)− qj , j = 1, . . . , n (a outranks b on all criteria).

The result of the concordance test for a pair (a, b) ∈ A is positive if C(a, b) ≥ λ,
where λ ∈ [0.5, 1] is a cutting level, which has to be fixed by the DM.

Once the result of the concordance test has been positive, one can pass to
the non-discordance test. Its result is positive for the pair (a, b) ∈ A unless “a
is significantly worse than b” on at least one criterion, i.e., if gj(b)gj(a) < vj for
j = 1, . . . , n.

It follows from above that the outranking relation for a pair (a, b) ∈ A is true,
and denoted by aSb if both the concordance test and the non-discordance test
are positive. On the other hand, the outranking relation for a pair (a, b) ∈ A is
false, and denoted by aScb, either if the concordance test or the non-discordance
test is negative. Knowing S or Sc for all ordered pairs (a, b) ∈ A, one can proceed
to exploitation of the outranking relation in set A, which is specific for the choice,
or sorting or ranking problem, as described in [8].

Experience indicates that elicitation of preference information necessary for
construction of the outranking relation is not an easy task for a DM. In partic-
ular, the inter-criteria preference information concerning the weights of criteria
and the veto thresholds are difficult to be expressed directly.

For this reason, some aggregation-disaggregation procedures have been pro-
posed in the past to assist the elicitation of the weights of criteria and all the
thresholds required to construct the outranking relation [19], [20], [18]. A robust
ordinal regression approach to outranking methods has been presented in [10].
Below, we briefly sketch this proposal.
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We assume that the preference information provided by the DM is a set of
pairwise comparisons of some reference actions. The set of reference actions is
denoted by AR, and it is usually, although not necessarily, a subset of set A.
The comparison of a pair of actions (a, b) ∈ AR states the truth or falsity of the
outranking relation, denoted by aSb or aScb, respectively. It is worth stressing
that the DM does not need to provide all pairwise comparisons of reference
actions, so this comparison can be confined to a small subset of pairs.

We also assume that the intra-criterion preference information concerning
indifference and preference thresholds pj > qj ≥ 0, j = 1, . . . , n, is given. The
last assumption is not unrealistic because these thresholds are relatively easy to
provide by an analyst who is usually aware what is the precision of criteria, and
how much difference is non-significant or relevant.

In order to simplify calculations of the ordinal regression, we assume that the
weights of criteria sum up to one, i.e.

∑n
j=1 kj = 1. Thus, (9) becomes

C(a, b) =
n∑

j=1

φj(a, b)× kj =
n∑

j=1

ψj(a, b), (11)

where the marginal concordance index ψj(a, b) = φj(a, b) × kj is a monotone
non-decreasing function with respect to gj(a)− gj(b), such that ψj(a, b) ≥ 0 for
gj(a)− gj(b) ≥ −qj , j = 1, . . . , n, and

∑n
j=1 ψj(a, b) = 1 in case gj(a)− gj(b) =

βj − αj for all j = 1, . . . , n, αj and βj being the worst and the best evaluation
on criterion gj, respectively.

The ordinal regression constraints defining the set of concordance indices
C(a, b), cutting levels λ and veto thresholds vj , j = 1, . . . , n, compatible with
the pairwise comparisons provided by the DM have the following form:
C(a, b) =

∑n
j=1 ψj(a, b) ≥ λ and gj(b)− gj(a) ≤ vj − ε, j = 1, . . . , n,

if aSb, for (a, b) ∈ AR,
C(a, b) =

∑n
j=1 ψj(a, b) ≤ λ + ε + M0(a, b) and gj(b)− gj(a) ≤ vj − δMj(a, b),

Mj(a, b) ∈ {0, 1}, ∑n
j=0 Mj(a, b) ≤ n, j = 1, . . . , n,

if aScb, for (a, b) ∈ AR,
1 ≥ λ ≥ 0.5, vj ≥ pj , j = 1, . . . , n,
ψj(a, b) ≥ 0 if gj(a)− gj(b) ≥ −qj , for all (a, b) ∈ AR, j = 1, . . . , n,∑n

j=1 ψj(a, b) = 1 if gj(a)− gj(b) = βj − αj for all (a, b) ∈ AR, j = 1, . . . , n,

ψj(a, b) ≥ ψj(c, d) if gj(a)− gj(b) ≥ gj(c)− gj(d),
for all a, b, c, d ∈ AR, j = 1, . . . , n,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E(AR)

where ε is a small positive value and δ is a big positive value. Remark that
E(AR) are constraints of a 0-1 mixed linear program.

Given a pair of actions (x, y) ∈ A, the following values are useful to build
necessary and possible outranking relations:

d(x, y) = Min

⎧⎨⎩
n∑

j=1

ψj(x, y)− λ

⎫⎬⎭ , D(x, y) = Max

⎧⎨⎩
n∑

j=1

ψj(x, y)− λ

⎫⎬⎭ .

subject to constraints E(AR), where ψj(a, b) ≥ ψj(c, d) if gj(a) − gj(b) ≥
gj(c)−gj(d), for all a, b, c, d ∈ AR∪{x, y}, j = 1, . . . , n, and gj(y)−gj(x) ≥ vj ,
j = 1, . . . , n.
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Given a pair of actions (x, y) ∈ A, x necessarily outranks y, which is denoted
by xSNy, if and only if d(x, y) ≥ 0. d(x, y) ≥ 0 means that for all compatible
outranking models x outranks y. Analogously, given a pair of actions (x, y) ∈ A,
x possibly outranks y, which is denoted by xSP y, if and only if D(x, y) ≥ 0.
D(x, y) ≥ 0 means that for at least one compatible outranking model x outranks
y. The necessary and the possible outranking relations are to be exploited as
usual outranking relations in the context of choice, sorting and ranking problems.

7 Robust Ordinal Regression for Outranking Methods in
Group Decision Problems

The above approach can be adapted to the case of group decision. In this case,
several DMs cooperate in a decision problem to make a collective decision. DMs
share the same “description” of the decision problem (the same set of actions,
evaluation criteria and performance matrix). Each DM provides his/her own
preference information, composed of pairwise comparisons of some reference ac-
tions. The collective preference model accounts for the preference expressed by
each DM.

Let us denote the set of DMs by D={d1, . . . , dp}. For each DM dr ∈ D′ ⊆ D,
we consider all compatible outranking models. Four situations are interesting for
a pair (x, y) ∈ A:

– x SN,N(D′) y: xSNy for all dr ∈ D′,
– x SN,P (D′) y: xSNy for at least one dr ∈ D′,
– x SP,N (D′) y: xSP y for all dr ∈ D′,
– x SP,P (D′) y: xSP y for at least one dr ∈ D′.

8 Conclusions

In this article we presented basic principles of robust ordinal regression for group
decision. After recalling the robust ordinal regression methods within MAUT
for choice and ranking problems (UTAGMS and GRIP ), for sorting problems
((UTADISGMS), as well as ordinal regression methods within the outranking
approach (ELECTREGMS), we extended all these methods to group decision
introducing UTAGMS-Group, UTADISGMS-GROUP and ELECTREGMS -
GROUP.
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Abstract. We consider constructive approaches to decision making
which allow incomplete preference orders over multiple criteria. Whereas
additional preferences may be acquired during the decision making pro-
cess, the set of criteria is usually kept fixed. In this paper, we study the
addition of new criteria and examine how this may refine or even reverse
the existing preferences. We identify essential changes in the preference
order and show that these changes provide a compact representation of
preference relations in an open world.

1 Introduction

We consider constructive approaches to decision making which allow incomplete
preference orders over multiple criteria. Whereas additional preferences may be
acquired during the decision making process, the set of criteria is usually kept
fixed. We believe that this assumption is not realistic and that the discovery of
new dimensions or the merging of different viewpoints may lead to the discov-
ery of new preferences that could not be formulated within the more restricted
viewpoints.

In this paper, we propose a more realistic preference acquisition model. The
key notion is that of enlarging given viewpoints. The notion of a viewpoint is used
by [2] to describe an independent way of analyzing, evaluating, and comparing
alternative actions. In collaborative decision making, different agents want to
make a common decision by comparing the outcomes of the actions. As different
agents may prefer different outcomes, each agent has a particular viewpoint and
these viewpoints have different preference relations. In multi-criteria decision
making, multiple outcomes of the actions may be compared independently of
each other. Each of these outcomes constitutes a criterion for evaluating and
comparing the actions. For example, we may compare the available hotels for
a night stop by criteria such as their price and their distance to the airport.
Each of these criteria can constitute an independent viewpoint. In this case, any
trade-off between the two criteria price and distance is as good as the other
those trade-offs. However, multiple criteria can also be combined into a single
viewpoint. If the decision maker has preferences between different price- and
distance-combinations, then we encounter a viewpoint which maps the different
actions to a combinatorial outcome space defined by price and distance.

In the same way as preferences may be acquired or discovered incrementally,
it may also happen that new criteria are discovered during such an incremen-
tal decision making process. We thus enlarge an existing viewpoint to a new
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viewpoint by adding a new dimension to the original outcome space. For ex-
ample, our decision maker may suddenly discover that the hotels around the
airport differ much in quality. As a consequence, the two-dimensional outcome
space over price and distance is replaced by a three-dimensional outcome space
defined by price, distance, and quality. We can then lift the preferences on the
original outcome space to the new outcome space in a ceteris-paribus manner.
However, the enlarged viewpoint may refine and even reverse these preferences
lifted from the original viewpoint. These changes between expected and actual
preference orders provide crucial information for preference representation and
reasoning.

The paper is organized as follows: section 2 and 3 recall background in decision
making in terms of the concept of a viewpoint. Section 4 introduces the new
concept of enlarging a viewpoint. Sections 5 and 6 study compact representations
in terms of transitive reductions.

2 Viewpoints with Incomplete Preferences

We consider classic decision-making problems where a single decision has to be
chosen from a set of actions A. A viewpoint constitutes an independent way to
analyze the actions and to evaluate and compare the outcomes of the actions
[2]. We restrict our discussion to viewpoints where actions have a deterministic
outcome. A viewpoint captures weak preferences between outcomes, i.e. certain
outcomes are at least as preferred as other outcomes. We follow a constructive
approach to decision making where the preference relation between outcomes
is incomplete initially and can successively be refined, for example by eliciting
information from the decision maker. However, we suppose that the preference
relation between outcomes is reflexive and transitive, i.e. an incomplete pre-order
�. This permits to model indifference, strict preferences, and incomparability
between outcomes:

Definition 1. A viewpoint v for a set of actions A is characterized by an out-
come space Ωv, a criterion zv : A → Ωv which maps actions to their outcomes,
and a pre-order �v over Ωv which defines weak preferences between outcomes.

Two different viewpoints for the same set of actions may differ in their prefer-
ences, their criteria, and their outcome spaces. The first difference is encountered
in collaborative decision making where multiple agents want to make a common
decision, but compare the same outcomes of the actions differently. A good ex-
ample is the choice of a restaurant by a group of people who have different
preferences about the kind of food that is served. Hence, each agent has a sepa-
rate viewpoint and these viewpoints map the actions to the same outcomes, but
differ in their preference relations. The second difference is obtained if two view-
points map the actions to different outcomes from the same outcome space. This
occurs in robust decision making involving multiple scenarios. For example, op-
timistic scenarios may assume small delays for given flights, whereas pessimistic
scenarios may assume large delays for the same flights. Each scenario constitutes
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a viewpoint and the viewpoints map the actions to the outcomes differently, but
use the same preferences for comparing them. The third difference is encountered
in multi-criteria decision making and multi-objective optimization [4] where each
viewpoint defines a distinct outcome space or dimension. For example, there may
be a viewpoint considering the costs of a trip, another viewpoint for the comfort,
and a third viewpoint for the interest of the trip.

We now discuss how to make rational decisions from a viewpoint with in-
complete preferences. We recall that a pre-order �v over Ωv can be split into
a strict preference relation �v and an indifference relation ∼v. An outcome ω1
is strictly preferred to an outcome ω2 iff ω1 is weakly preferred to ω2, but not
vice versa. The outcomes ω1 and ω2 are indifferent iff ω1 is weakly preferred to
ω2 and ω2 is weakly preferred to ω1. The strict relation �v is a strict partial
order and the indifference relation is an equivalence relation. Furthermore, two
outcomes ω1 and ω2 are called comparable iff either ω1 is weakly preferred to ω2
or ω2 is weakly preferred to ω1. A pre-order �v is called complete iff all pairs of
outcomes are comparable.

In a constructive approach to decision making, preference relations are ini-
tially incomplete and are successively refined. This can be achieved by eliciting
preferences actively from a user, by learning user preferences passively, or by
constructing these preferences according to higher-level reflections. We thus en-
counter a sequence of viewpoints having the same criteria, but more and more
refined preference relations with the purpose of reaching complete relations in
the end of this construction process. We impose some constraints on the way
a viewpoint w may extend the preference relation of a viewpoint v. Firstly, we
suppose that preferences are added, but not removed, meaning that the pre-
order �w is a superset of the pre-order �v. If we allow the addition of arbitrary
preferences, we may end in viewpoints that are indifferent among all outcomes.
Whereas the addition of new preferences preserves previous indifference relations
between outcomes, it need not preserve a strict preference between an outcome
ω1 and ω2 since a weak preference between ω2 and ω1 may be added. In or-
der to preserve strict preferences, we forbid the addition of preferences among
comparable outcomes:

Definition 2. A viewpoint w is an extension of a viewpoint v iff these view-
points are defined for the same actions A, agree in their outcome spaces and
criteria, i.e. Ωv = Ωw and zv = zw, and the preference relations �w and �v

agree on all outcomes that are comparable with respect to �v.

If the preference relation of a viewpoint v is incomplete, we can define an ex-
tension with fewer incomparable outcomes by choosing a pair of incomparable
outcomes ω1 and ω2 and by making them comparable. We can either establish a
strict preference or an indifference. We thus obtain three ways of extending �v.
We either add the pair (ω1, ω2) or the pair (ω2, ω1), or both pairs to �v, and
determine the transitive closure of the result, which will be the pre-order �w of
a new viewpoint w which has the same outcome space and criterion as v. It can
be shown that this new viewpoint w is an extension of v.
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An incomplete viewpoint can thus be made complete by a sequence of steps
where each step transforms at least one pair of incomparable outcomes into a
pair of comparable outcomes. It can therefore be shown that complete extensions
of a viewpoint always exist. Moreover, incomplete viewpoints have more than
one complete extension.

Viewpoints with complete pre-orders satisfy the postulates of rational deci-
sion making. Complete viewpoints have an outcome that is at least as preferred
as all outcomes. A rational decision of a complete viewpoint is an action that
produces this optimal outcome. An incomplete viewpoint has multiple complete
extensions. We say that a rational decision of an incomplete viewpoint is an
action that leads to an optimal outcome in some complete extension of the view-
point. It can be shown that an outcome is optimal in some complete extension
of a viewpoint iff it is non-dominated in the viewpoint, i.e. there is no strictly
preferred outcome in the viewpoint:

Proposition 1. Let v be a viewpoint. An outcome ω∗ ∈ Ωv is optimal in some
complete extension w of v, i.e. ω∗ �w ω for all ω ∈ Ωv, iff there is no outcome
ω ∈ Ωv s.t. ω �v ω∗.

Thanks to this, it is not necessary to construct the complete extensions of a
viewpoint to find its rational decisions. It is sufficient to find the non-dominated
outcomes of the incomplete viewpoints and to determine the decisions that lead
to these outcomes.

3 Combinatorial Viewpoints

So far we have considered examples for multiple viewpoints that have same crite-
ria or that have distinct criteria. In this section, we explore a further possibility,
namely that the criteria of two viewpoints partially overlap. This possibility
may arise for combinatorial outcome spaces which are the Cartesian product of
several ’dimensions’ Ωv,1, . . . , Ωv,n. Two viewpoints partially overlap if their out-
come spaces share some dimension. We introduce the notion of a combinatorial
viewpoint that exhibits this structure:

Definition 3. A combinatorial viewpoint v for a set of actions A is character-
ized by nv outcome spaces Ωv,1, . . . , Ωv,nv , nv criteria zv,i : A → Ωv,i that map
the actions to these outcome spaces, and a weak preorder �v over the Cartesian
product Ωv,1 × . . .×Ωv,nv of the outcome spaces.

A combinatorial viewpoint v corresponds to a standard viewpoint that has the
combinatorial outcome space Ωv := Ωv,1 × . . . × Ωv,nv and the criterion zv :
A → Ωv that maps an action a to the vector z(a) := (zv,1(a), . . . , zv,nv(a)).
Moreover, a standard viewpoint corresponds to a combinatorial viewpoint of
single dimension.

There are many examples for combinatorial viewpoints in the real-world. In
cooperative decision making, multiple agents may be regrouped in different in-
terest groups. Each interest group constitutes a viewpoint. Each agent who is
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a member of the group defines a dimension of this combinatorial viewpoint.
As the same agent can belong to multiple interest groups, these groups may
have dimensions in common. Combinatorial viewpoints are also encountered in
multi-criteria decision making as multiple criteria can be combined together.

This discussion shows that combinatorial viewpoints can be combined into
larger viewpoints. In certain cases, they can also be decomposed into smaller
viewpoints. Sometimes, it may be necessary to permute the dimensions and
criteria of a viewpoint. We therefore define a three operations on viewpoints,
namely decomposition, aggregation, and permutation.

If a combinatorial viewpoint v has a group of criteria that are preferentially
independent from the other criteria, we can extract this group of criteria and
define a smaller viewpoint for it. Let I be a set of indices from 1, . . . , nv. If this set
consists of the indices i1, . . . , ik and these indices are listed in increasing order, we
denote the subspace for these indices by ΩI := Ωv,i1×. . .×Ωv,ik

. A vector α from
ΩI may replace the elements of a vector β from Ω at indices I. We denote this by
rI(α, β). The i-th element of the resulting vector is equal to αj if i is equal to ij
and it is equal to βi if i is not in I. The criteria zv,i1 , . . . , zv,ik

are preferentially
independent from the remaining criteria iff all α, β in ΩI and all γ, δ in Ω satisfy
rI(α, β) �v rI(β, γ) if and only if rI(α, δ) �v ri(β, δ). We can therefore safely
define a viewpoint w that has the outcome spaces Ωv,i1 , . . . , Ωv,ik

, the criteria
zv,i1 , . . . , zv,ik

and the preference order �w such that α �w β iff rI(α, γ) �v

rI(β, γ) for all γ ∈ Ω.
Two combinatorial viewpoints v and w can be aggregated into a viewpoint u

with nv + nw dimensions by using the Pareto-dominance. The resulting Pareto-
aggregation is new viewpoint that has all the outcome spaces Ωv,1, . . . , Ωv,nv ,
Ωw,1, . . . , Ωw,nw and the criteria zv,1, . . . , zv,nv , zw,1, . . . , zw,nw . Its pre-order �u

is the weak Pareto-dominance order for the pre-orders �v and �w. Given an out-
come ω := (ω1, . . . , ωnu) in Ωu, we denote the sub-vector (ωi, . . . , ωj) in Ωu from
index i to j by ω[i,j]. An outcome ω∗ from Ωu is weakly preferred to an outcome
ω from Ωu, i.e. ω∗ �u ω iff ω∗

[1,nv] �v ω[1,nv] and ω∗
[nv+1,nu] �v ω[nv+1,nu]. Note

that the criteria of viewpoint v are preferentially independent from the criteria
of viewpoint w in the Pareto-aggregagtion and vice versa. Moreover, the weak
Pareto-dominance order is the smallest relation that has this property.

Sometimes it is necessary to permute the criteria of the viewpoint. Let π
be a permutation of the indices 1, . . . , nv. Applying this permutation to the
viewpoint v results into a new viewpoint π(v). It has the outcome spaces
Ωv,π1 , . . . , Ωv,πnv

, the criteria zv,π1 , . . . , zv,πnv
and a weak preorder �π(v) such

that (ω∗
π1

, . . . , ω∗
πnv

) �π(v) (ωπ1 , . . . , ωπnv
) iff (ω∗

1 , . . . , ω∗
nv

) �v (ω1, . . . , ωnv).

4 Enlargement of Viewpoints

The field of multi-criteria decision aiding makes the assumption that all crite-
ria are identified before the preference elicitation starts. The identification of
these criteria or objectives is a substantial part of the decision analysis process
as explained in the second chapter of Raiffa‘s and Keeney’s seminal work [6].



220 U. Junker

The criteria define the world in which preferences will be elicited, learned, or
constructed. The usual assumption is that this world is closed, meaning that
neither new values, nor new dimensions can be added to the outcome space.
Nevertheless, the discovery of new dimensions happens quite often if the deci-
sion maker deals with a new domain. In this case, the decision making process
is unstructured and ill-framed and the decision maker learns step by step which
criteria are important. If new criteria are discovered, we say that the current
viewpoint is enlarged. We enlarge a viewpoint by adding new dimensions and
criteria to it:

Definition 4. A combinatorial viewpoint w for the set of actions A is an en-
largement of a combinatorial viewpoint v for the set of actions A iff nw ≥ nv

and Ωv,i = Ωw,i and zv,i = zw,i for all i = 1, . . . , nv.

The addition of new dimensions raises new questions concerning the preference
elicitation. What should happen to the existing preferences that are defined over
the existing dimensions when a new dimension is discovered? We may assume
that the original criteria are preferentially independent from the new criteria.
This assumption defines a default preference relation �v→w for an enlargement,
namely α �v→w β iff α[1,nv] �v β[1,nv ] and α[nv+1,nw] = β[nv+1,nw]. This relation
is a pre-order.

However, the user may give additional preference information that either re-
fines or overrides this default preference relation. Indeed, we can suppose that
the discovery of a new dimension triggers a profound preference revision process
which revisits the preferences of the original viewpoint. The decision maker can
then state whether this preference holds for all, for some, or no value of the
new dimension. In the first case, the decision maker sticks to the default order.
In the second case, she should list the values of the third dimension for which
the preference still holds. In the third case, she should completely reverse the
preference. Moreover, the decision maker may not only modify the existing pref-
erences, but also add new ones. Hence, an enlargement adds preferences to the
default preference relation and removes others from it.

The added preferences are obtained as set difference of the enlargement pref-
erences and the default preference relation, i.e. A := {(α, β) ∈ Ω2

w | α �w

β and β ��v→w α}. The removed preferences are obtained as set difference
of the the default preference relation and the enlargement preferences, i.e.
R := {(α, β) ∈ Ω2

w | α �v→w β and β ��w α}. By definition, these two sets
are disjoint and the pre-order �w is obtained from the pre-order �v→w by re-
moving R and by adding A. Hence, the sets of added and removed preferences
capture the important changes in the preference relation due to the revision
process that is initiated by the discovery of a new dimension.

We can also define enlargements by combining two viewpoints v and w. The
combination has the outcome spaces and criteria of the viewpoints v and w, but
may have an arbitrary preference relation. The weak Pareto dominance relation
based on �v and �w provides a default preference relation for the combination if
no other preference information for the combination is given. The sets of added and
removed preferences can be defined for this default preference relation as before.
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5 Compact Representations by Transitive Reductions

In the remainder of the paper, we investigate compact representations for prefer-
ence relations of viewpoints, starting with that of standard viewpoints. Compact
representations can be obtained by exploiting the structure of a concept. Pre-
orders can be split into a strict partial order and an equivalence relation. Equiv-
alence relations can be represented in form of a set of equivalence classes. For
each equivalence class, a representative is chosen and the classes are represented
by mapping the elements of the considered outcome space to this representative.
Strict partial orders can be represented by a directed acyclic graph such that
the transitive closure of this graph is equal to the pre-order. The essential notion
here is that of a transitive reduction of a graph.

A transitive reduction of a binary relation R over Ω is a minimal subset of
R that has the same transitive closure as R [1]. As the transitive reduction is
minimal it does not contain a pair (α, γ) if it already contains the pairs (α, β) and
(β, γ). With other words, the transitive reduction is anti-transitive. Formally, a
relation R over Ω is anti-transitive iff for all α, β, γ ∈ Ω the following property
holds:

(α, β) ∈ R and (β, γ) ∈ R implies (α, γ) /∈ R (1)

A transitive reduction establishes anti-transitivity, but unfortunately a
transitive reduction need not be unique. For example, the relation
{(a, b), (a, c), (b, a), (b, c), (c, a), c, b)} has two transitive reductions, namely
{(a, b), (b, c), (c, a)} and {(a, c), (c, b), (b, a)}. Moreover the definition of a transi-
tive reduction is not symmetrical to that of a transitive closure. The transitive
closure R+ of a binary relation R is defined as the smallest superset of this re-
lation that is transitive. In analogy, we define the strong transitive reduction R−

of a binary relation R as a greatest subset of this relation that is anti-transitive.
This set is obtained by removing all transitive links from R:

R− = R− {(α, β) ∈ R | there is β ∈ Ω s.t. (α, β) ∈ R and (β, γ) ∈ R} (2)

As a consequence of this correspondence, the strong transitive reduction always
exists and is unique. The strong transitive reduction of an anti-transitive relation
is equal to this relation. Furthermore the strong transitive reduction is monotonic
in the following sense: Let R1 and R2 be two binary relations over Ω. If R1 ⊆
R2 then R−

1 ⊆ R−
2 . The strong transitive reduction of a strict partial order is

sufficient to represent the strict partial order:

Proposition 2. Let � be a strict partial order over Ω and �− be its strong
transitive reduction. The transitive closure of �− is equal to �.

Moreover, the strong transitive reduction of a strict partial order is equal to
the transitive reduction of the strict partial order. If a binary relation is anti-
transitive and acyclic, then the strong transitive reduction of its transitive closure
is equal to this binary relation.

The strong transitive reduction of a pre-order only represents the strict part
of this pre-order and removes indifference:
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Proposition 3. Let � be a pre-order over Ω and �− be its strong transitive
reduction. The transitive closure of �− is equal to the strict part � of �.

Usually, the available preference information will not be given in form of a pre-
order, but in form of some binary relation R over Ω. The pre-order is then
obtained as the reflexive transitive closure R∗ of this binary relation. According
to the properties above, the strong transitive reduction R− extracts the strict
preferences from R. Indeed, the transitive closure of R− is the strict part of R∗.

The strong transitive reduction can be computed by standard graph algo-
rithms. In a first step, the strongly connected components of R can be computed
by Tarjan‘s algorithms. Each strongly connected component is an equivalence
class in the indifference relation of R∗. After this, the graph without strongly
connected components is constructed. This graph is a directed acyclic graph
and represents the strict preferences. An algorithm for computing the transitive
reduction can then be used. As the graph is acyclic its transitive closure is a
strict partial order, meaning that the resulting transitive reduction is equal to
the strong transitive reduction.

We can thus determine a compact representation for viewpoint preferences
by using standard graph algorithms. The notion of a strong transitive reduction
gives a clear characterization of this representation.

6 Compact Representations for Enlargements

We now seek compact representations for enlargements. An enlargementw of a
combinatorial viewpoint v adds a new dimension. The default preference order
for the enlargement is the pre-order �v→w which simply assumes that the previ-
ous criteria are preferentially independent of the new criteria and that this is all
what is known. However, the decision maker adds preferences to this default or-
der and removes other preferences from it in order to establish the new pre-order
of w. Can we find compact representations of these change sets?

We are now interested to transform the strong transitive reduction �−
v→w of

the default pre-order �v→w into the strong transitive reduction �−
w . We neglect

here the question of the change of indifference classes as this is a relatively simple
task. Existing classes may be split into disjoint subsets and some of these subsets
may be merged into new classes. In the remainder of the section we focus on the
question of how to represent changes in the strict preferences.

Instead of using the original change sets, we now consider the changes in the
strong transitive reductions of the pre-order of the enlargement and the default
preference order. The removed preferences are Δv−w := {(α, β) ∈ Ω2

w | α �−
v→w

β and β ��−
w α} and the added preferences are Δw−v := {(α, β) ∈ Ω2

w | α �−
w

β and β ��−
v→w α}.

Both sets are anti-transitive and acyclic since they are subsets of a strong
transitive reduction. Moreover, the added preferences Δw−v do not belong to
the strong reduction of the default preference order �−

v→w and the removed
preferences Δv−w belong to it. It is possible that the set of added preferences
Δw−v contains a pair (α, β) although α �v→w β holds. In this case, the set of
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removed preferences Δv−w must contain a preference from each chain γ1, . . . , γk

s.t. α = γ1, γi �−
v→w γi+1 for i = 1, . . . , k − 1, and γk = β in order to respect

the anti-transitivity of �−
w . Furthermore it is possible that the set of added

preferences Δw−v contains a pair (α, β) although β �v→w α holds. In this case,
the set of removed preferences Δv−w must contain a preference from each chain
γ1, . . . , γk s.t. β = γ1, γi �−

v→w γi+1 for i = 1, . . . , k − 1, and γk = α in order to
respect the acyclicity of �−

w .
Vice versa, if two binary relations Δ1 and Δ2 respect those properties, then

adding Δ1 to the default preference order and removing Δ2 from it results in an
anti-transitive and acyclic relation R. The transitive closure of this relation is a
strict partial order and the strong transitive reduction of this strict partial order
is equal to R. This leads to the following representation theorem which describes
how to modify the preference relation of an existing viewpoint. We here suppose
that the viewpoint v is an enlargement that has the default preference relation:

Proposition 4. Let v be a combinatorial viewpoint, �−
v the strong transitive

reduction of its strict preferences, and Δ1 and Δ2 be two binary relations over
Ωv such that the following properties hold:

1. Δ1 and Δ2 are anti-transitive and acyclic.
2. Δ1 is a subset of �−

v and Δ2 is disjoint to �−
v .

3. If α � β for an (α, β) ∈ Δ2 then for each chain γ1, . . . , γk satisfying α = γ1,
γi �−

v γi+1 for i = 1, . . . , k−1 and γk = β there exists a j s.t. (γj , γi+1) ∈ Δ1.
4. If α � β for an (β, α) ∈ Δ2 then for each chain γ1, . . . , γk satisfying α = γ1,

γi �−
v γi+1 for i = 1, . . . , k−1 and γk = β there exists a j s.t. (γj , γi+1) ∈ Δ1.

Then {(α, β) ∈ Ω2
v | α �−

v β}−Δ1∪Δ2 is an anti-transitive and acyclic relation.

This proposition imposes conditions on the preferences that a decision maker
may add to and remove from a default preference relation when discovering a
new dimension. It ensures that the current viewpoint can be enlarged to a new
viewpoint while keeping the representation of preferences compact and while
minimizing the changes.

7 Conclusion

This paper considered constructive decision making processes which not only
support incremental preference elicitation, but also the discovery of new criteria
during this process. If this happens, a new dimension is added to the outcome
space. By default, the existing preferences are interpreted as ceteris-paribus pref-
erences on this new space meaning that they hold independent of the value of
the new dimension. This interpretation results into a default preference relation
on the new outcome space. As a new dimension has been discovered, the existing
preferences may be revisited within a preference revision process. As a conse-
quence, the decision maker may remove or modify existing preferences and add
new ones. We have elaborated conditions on these change sets that ensure the
validity of the resulting preference relation and a compact representation.
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In the final version of the paper, we will extend this treatment of enlargements
of viewpoints which are due to the combination of multiple viewpoints which
have been independent so far. This may be useful in group decision making when
two groups merge together for the purpose of lobbying. The merger may revise
some of the existing group preferences. Inversely, this more general notion of
enlargement also permits a compact representation of combinatorial viewpoints.
If the criteria of such a viewpoint can be partitioned into mutually independent
factors, then is it possible to decompose the viewpoint completely into smaller
parts. If preferential independence is not guaranteed in general, then it may
still be reasonable to perform the decomposition and to compare its Pareto-
aggregation with the original viewpoint. If the change sets are small, then the
decomposition and the change sets may provide a more compact representation
of the original viewpoint.

This work has been started as an attempt to provide a clear meaning to the
preference reversal approach in [5], which seeks to elaborate optimization method
under change sets. Different forms of preference revision are also studied in [3].
Furthermore, operations for the enlargement and compaction of outcome spaces
are introduced in [7] for the purpose of defining similarity measures for preference
orders. Further work is needed to establish the precise relationship between those
approaches.

References

1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

2. Bouyssou, D., Marchant, T., Pirlot, M., Tsoukiàs, A., Vincke, P.: Evaluation and
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Abstract. Argumentation has been acknowledged as a powerful mecha-
nism for automated decision making. In this context several recent works
have studied the problem of accommodating preference information in
argumentation. The majority of these studies rely on Dung’s abstract
argumentation framework and its underlying acceptability semantics.

In this paper we show that Dung’s acceptability semantics, when ap-
plied to a preference-based argumentation framework for decision making
purposes,may lead to counter intuitive results, as it does not take appropri-
ately into account the preference information. To remedy this we propose a
new acceptability semantics, called super-stable extension semantics, and
present some of its properties. Moreover, we show that argumentation can
be understood as a multiple criteria decision problem, making in this way
results from decision theory applicable to argumentation.

1 Introduction

In many decision making situations we are confronted with a set of alternatives
or options each of which has its own advantages that can be expressed as dif-
ferent arguments supporting that alternative. For instance, in a car purchase
scenario, one argument that supports small cars is that they have low running
cost, while another argument that favors big cars is that they have better safety
features. The final decision is usually based upon the preferences one has over
the arguments, or more generally how arguments relate to each other.

It is therefore not surprising that during the last years, argumentation has
been acknowledged as a powerful mechanism for automating the decision mak-
ing process of autonomous agents. Several recent works (see e.g. [1,2,3,4,5]) have
emphasized the role of agents’ preferences in the evaluation of their arguments
within a particular class of argumentation frameworks called preference-based
argumentation frameworks. The majority of these frameworks are using the ac-
ceptability semantics of the Dung’s abstract argumentation framework [6].

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 225–236, 2009.
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In [7], it was shown that preference-based argumentation under the stable
extension semantics is essentially a method for making decisions that are sup-
ported by ”good” or ”strong” arguments. Roughly speaking, a set of arguments
E is a stable extension if every argument of E is strictly preferred to any other
argument that is not included in E.

In this work we show that the stable extensions semantics of Dung’s frame-
work when applied to decision making may lead to counterintuitive results and
therefore fail to deliver the correct conclusions.

More precisely, we show that stable extensions consider as equally good two
sets of arguments (and therefore the options they support), although for every
argument of the second set, the first set contains a more preferred argument.
One may understand that in this case the agent could randomly select an option
that is supported either by an argument from the first or the second set and
this could be a wrong decision if these arguments support incorrect conclusions.
This problem relates to a similar problem identified independently by Horty in
[8] in the context of the use of argumentation for defeasible reasoning. For this
reason we propose a new semantics called super-stable extension which allows to
fix this problem.

Finally, in this paper we show the correspondence between argumentation and
multi-criteria decision making. Then we emphasize that an aggregation method
like regime [9] can be an alternative approach for defining a ranking on the set of
arguments supporting the options and consequently on the options themselves.

2 Basics of Argumentation

Argumentation is a reasoning model based on the following main steps: i) con-
structing arguments and counter-arguments, ii) defining the strengths of those
arguments, and iii) defining the justified conclusions. Argumentation systems are
built around an underlying logical language and an associated notion of logical
consequence, defining the notion of argument. The argument construction is a
monotonic process: new knowledge cannot rule out an argument but only gives
rise to new arguments which may interact with the first argument. Arguments
may be conflicting for different reasons.

Definition 1 (Argumentation system [6]). An argumentation system is a
pair T = (A, R). A is a set of arguments and R ⊆ A × A is an attack relation.
We say that an argument a attacks an argument b iff (a, b) ∈ R.

Among all the arguments, it is important to know which arguments to keep
for inferring conclusions. In [6], different acceptability semantics were proposed.
The basic idea behind these semantics is the following: for a rational agent, an
argument ai is acceptable if he can defend ai against all attacks. All the argu-
ments acceptable for a rational agent will be gathered in a so-called extension.
An extension must satisfy a consistency requirement and must defend all its
elements.
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Definition 2 (Conflict-free, Defence [6]). Let B ⊆ A, and ai ∈ A.

– B is conflict-free iff � ai, aj ∈ B s.t. (ai, aj) ∈ R.
– B defends ai iff ∀ aj ∈ A, if (aj , ai) ∈ R, then ∃ ak ∈ B s.t. (ak, aj) ∈ R.

The main semantics introduced by Dung are summarized in the following defi-
nition.

Definition 3 (Acceptability semantics [6]). Let B be a conflict-free set of
arguments.

– B is admissible iff it defends any argument in B.
– B is a preferred extension iff it is a maximal (w.r.t ⊆) admissible extension.
– B is a stable extension iff it is a preferred extension that attacks any argu-

ment in A\B.

Example 1. Let T = (A, R) be an argumentation theory where A = {α1, α2, α3,
α4} is the set of the arguments and R = {(a1, a2), (a2, a1), (a1, a4), (a2, a3)} is
the set of attacks. This argumentation theory has two stable extensions E1 =
{α1, α3} and E2 = {α2, α4}.

3 Preference-Based Argumentation Framework:
Properties and Limitations

In [10] the basic argumentation framework of Dung was extended into preference-
based argumentation theory (PBAT). The framework was further developed and
studied in [7]. The basic idea of a PBAT is to consider two binary relations
between arguments:

1. A conflict relation, denoted by C, that is based on the logical links between
arguments.

2. A preference relation, denoted by , that captures the idea that some argu-
ments are stronger than others. Indeed, for two arguments a, b ∈ A, a  b
means that a is at least as good as b. The relation  is assumed to be a
partial pre-order (that is reflexive and transitive). The relation � denotes
the corresponding strict relation. That is, a � b iff a  b and b � a.

The two relations are combined into a unique attack relation, denoted by R, and
the Dung’s semantics are applied on the resulting framework. In what follows,
we focus on a particular class of PBATs, presented in [7], where the conflict
relation C is irreflexive and symmetric.

Definition 4 (Preference-based Argumentation Theory (PBAT)). ([3])
Given an irreflexive and symmetric conflict relation C and a preference relation
 on a set of arguments A, a preference-based argumentation theory (PBAT)
on A is an argumentation system T = (A,R), where (a, b) ∈ R iff (a, b) ∈ C and
b �� a.
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It follows directly from the definition that if (a, b) ∈ C and a  b and b � a, then
(a, b) ∈ R. Moreover, if (a, b) ∈ C and a, b are either indifferent or incompatible
in , then (a, b) ∈ R and (b, a) ∈ R. Also note that if (a, b) ∈ C, then either
(a, b) ∈ R or (b, a) ∈ R. Finally, if (a, b) ∈ R and (b, a) /∈ R, then a � b.

The following example illustrates some features of PBATs.

Example 2. Let A = {a, b, c, d} be a set of arguments, and C the conflict re-
lation on A defined as C = {(a, b), (b, a), (b, c), (c, b), (c, d), (d, c)}. Moreover, let
the preference relation  contain transitive closure of the set of pairs a  b,
b  c, c  d, and d  c. The corresponding PBAT is T = (A,R), where
R = {(a, b), (b, c), (c, d), (d, c)}. Theory T has two stable extensions, E1 = {a, c}
and E2 = {a, d}.
In [3] the impact of the preference relation on an argumentation system was
studied. After defining a relation � on the powerset 2A of the arguments of a
PBAT T = (A,R), it was shown that the stable extensions of T correspond to
the most preferred elements of 2A wrt this relation.

Definition 5. ([3]) Let T = (A,R) be a PBAT built on an underlying pre-order
. If A1, A2 ∈ 2A, with A1 �= A2, then A1 � A2 iff one of following holds:

– A1 ⊃ A2
– for all a, b such that a ∈ A1 \A2 and b ∈ A2 \A1, it holds that a � b

The exact correspondence between the relation � and stable extensions is as
follows.

Theorem 1. ([3]) Let T = (A,R) be a PBAT built on an underlying pre-order
 and a conflict relation C. E is a stable extension of T iff there are no arguments
a, b ∈ E s.t. (a, b) ∈ C, and for all A ∈ 2A such that A � E, there are a1, a2 ∈ A
such that (a1, a2) ∈ C.
The example below illustrates the link between � and stable extensions.

Example 3. Let T = (A,R) be a PBAT with A = {a, b, c} and R composed
from the conflict relation C = {(a, b), (b, a)(a, c), (c, a)} and preference relation
that contains the pairs a � b and a � c, and marks all other pairs of arguments
as indifferent. The relation � on 2A induced by  contains the pairs {a}�{b, c},
{a}�{b}, {a}�{c}. Since the sets {a, b, c}, {a, b}, {a, c} are ruled out by C, the
set E = {a} is the stable extension of T .

One feature of the � relation is that it may not be transitive. Consider for
instance the theory of the previous example, and observe that {a, b}�{b, c}�{c}.
However, it is not the case that {a, b}� {c}.

The second important observation, which is the main focus of this work, re-
lates to the conclusions sanctioned by preference-based argumentation under the
stable model semantics. The following example, borrowed from [8], shows clearly
that these results can be counterintuitive even in simple cases.
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a2a3 a1a3

a1a4 a2a4

a3a4

a1a2

Fig. 1. The preference relation induced on sets of arguments

Example 4. The story of the example is about conclusions that can been drawn
regarding the financial situation of a person based on arguments built on infor-
mation about her occupation and residence. Let’s suppose that lawyers are, in
general, considered to be wealthy, but a certain subclass, the pubic defenders, are
considered not to be. Consider now an area in Paris -say, Passy - containing
a large number of expensive private homes along with a much smaller number
of middle-income rental properties. Thus the residents of Passy can be generally
considered to be wealthy although the renters, are considered to not to be. Assume
that Ann is a public defender (PDa), and therefore a lawyers (La), who rents
in Passy (Ra), and is therefore a resident of Passy (Pa).

If we assume that Wa represents the proposition that Ann is wealthy, the
arguments that can be generated in an underlying propositional language from the
above story are a1 = {PDa, PDa −→ La, La −→ Wa}, a2 = {PDa, PDa −→
¬Wa} a3 = {Ra, Ra −→ Pa, Pa −→Wa}, a4 = {Ra, Ra −→ ¬Wa}.

From the above arguments we generate the PBAT T=(A,R), where A =
{a1, a2, a3, a4}. The attack relation R is composed from the conflict relation
C = {(a1, a2), (a2, a1), (a1, a4), (a4, a1), (a3, a2), (a2, a3), (a3, a4), (a4, a3)}, and
the preference relation  that is defined as a2 � a1 and a4 � a3, whereas all
other pairs of arguments are incomparable.

Theory T has two extensions, namely E1 = {a1, a3} and E2 = {a2, a4}. The
first extension supports the conclusion that Ann is wealthy, whereas the the sec-
ond that she is not. Intuitively however one would conclude that Ann is not
wealthy. In other words we could argue that the second extension is more pre-
ferred than the first, as for every argument of the first it contains a more preferred
argument.

The relation � on the subset of A with two elements is depicted in figure 1.
Note again that � is not transitive. Indeed, it holds that {a2, a4}� {a2, a3} and
{a2, a3} � {a1, a3}, but {a2, a4} � �{a1, a3}. Although, a2 � a1 and a4 � a3,
the stable model semantics does not render {a2, a4} better than {a1, a3}, because
a2 �� a3 and a4 �� a1.

The main purpose of this work is to provide a preliminary study of the problem
of the conclusions sanctioned by the state-of-the-art argumentation, and identify
possible solutions by borrowing ideas from decision theory.
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4 Preference-Based Argumentation Revisited

As we noted in section 3, the stable model semantics can lead to counter-intuitive
results. To remedy the situation we present a new semantics for preference-
based argumentation called super-stable extensions semantics. The main idea
is to only accept conclusions drawn under the stable model semantics from a
PBAT T that correspond to the conclusions that are sanctioned by some other
PBAT T ′ which is obtained from T by removing incomparability. Therefore,
the new semantics may differ from the standard stable model semantics only
on theories with incomparability. As we will discuss in the next section theories
without incomparability always sanction the correct conclusion under the stable
extension semantics.

Before we proceed to the definition of the new semantics, we recall some useful
concepts. A relation  on a set S is total if for all a, b ∈ S with a �= b, a  b
or b  a. A strict total order on a set S is an asymmetric (hence irreflexive),
transitive and total relation on S. The notion of an extension of a relation is
used in decision theory and economics eg. ([11], [12]).

Definition 6. A binary relation E on S is an extension of a pre-order  on
S if E is a pre-order on S such that E⊇ and for all a, b ∈ S if a � b then
a �E b. An extension of a pre-order  that is complete (ie., for all a, b ∈ S,
a  b or b  a) is called ordering extension of .

Hansson [11] has shown that every pre-order has an ordering extension. More-
over, Donaldson and Weymark [12] proved that a pre-order is the intersection of
its ordering extensions.

Definition 7. A strict total order �s on a set S is a strict ordering of a total
pre-order  if for all a, b ∈ S if a � b then a �s b.
A strict total order is a strict ordering of a pre-order if it is a strict ordering of
one of its ordering extensions.

The following definition extends the notions of ordering extension and strict
ordering to the case of PBATs.

Definition 8. Let T = (A,R) be a PBAT on an underlying pre-order  and
a conflict relation C. The PBAT To = (A,Ro), on an underlying relation o

and the conflict relation C, is a ordering completion of T if o is an ordering
extension of . The PBAT Ts = (A,Rs), on an underlying relation �s and the
conflict relation C, is a strict projection of T if �s is a strict ordering of .

The following result that relates the stable extensions of a PBAT and the stable
extensions of its ordering completions and strict projections is easily provable.

Proposition 1. Let T be a PBAT, To one of its ordering completions, and Ts

one of its strict projections. If Eo is a stable extension of To, then it is also a
stable extension of T . Moreover, if Es is a stable extension of Ts, then it is also
a stable extension of T .
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However, it is not the case that a stable extension of T is a stable extension of
some To built on a pre-order �o that is an ordering extension of . Consider for
instance again the theory of example 4, and its stable extension E1 = {a1, a3}.
To see that there is no PBAT To which is an ordering completion of T and has
E1 as a stable extension, observe that for E1 to be a stable extension it must be
the case that a1  a4 and a3  a2. However, together with a2 � a1 these would
mean that a3  a4, which is impossible given that a4 � a3.

We now proceed with the definition of the new semantics for preference-based
argumentation. As noted earlier, the basic idea is to only accept a set of argu-
ments as an extension of a PBAT T if this set is a stable extension of an ordering
completion of T . More formally the concept is defined as follows.

Definition 9. Let T = (A,R) be a PBAT built on an underlying pre-order 
and conflict relation C. A stable extension E of T is a super-stable extension of
T if it is the stable extension of an ordering extension of T .

By the results of [11] we know that every pre-order has an ordering extension.
Therefore, every PBAT has an ordering completion which is itself a PBAT. From
[7], we know that every PBAT has a stable extension. By combining these two
results we obtain the following property for super-stable extensions.

Proposition 2. Every PBAT has a super-stable extension.

5 Theories without Incomparability

If a PBAT T contains no incomparability, T is an ordering completion of itself.
Therefore, any stable extension of T is by definition a super-stable extension
of T . In this section we prove that for this class of theories a correspondence
holds between their stable extensions and the stable extensions of their strict
projections.

For a PBAT without incomparability, T = (A,R), we define the level of
argument a ∈ A, denoted by l(a), recursively as follows

– l(a) = 1 for all a such that there is no b ∈ A s.t. b � a
– l(a) = k for all a such that for all a′ ∈ A s.t. a′ � a it holds that l(a′) < k,

and ∃a′′ ∈ A s.t. a′ � a and l(a′) = k − 1

The following lemma relates the level of arguments with relation � and will be
used in the proof of the main result of this section (proposition 3 below).

Lemma 1. Let T = (A,R) be a PBAT without incomparability on an underlying
pre-order . For every a, b ∈ A, l(a) < l(b) iff a � b.

Proof. The property that for every a, b ∈ A if a � b then l(a) < l(b), follows
directly from the definition of the level of an argument. We prove now that if
l(a) < l(b) then a � b. Assume a, b ∈ A with l(a) < l(b). Clearly it can not be
the case b � a, because then l(b) < l(a). Assume that a  b and b  a, and
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l(b) = m (hence, l(a) < m). Then, there must be c ∈ A s.t l(c) = m − 1 and
c � b. Therefore, it must be the case that c � a, and hence l(a) ≥ m. But this
contradicts l(a) < m. Therefore it holds that a � b. ��
A direct consequence of the previous lemma is that l(a) ≤ l(b) iff a  b. Also
note that since a super-stable extension of a PBAT T = (A,R) is also a stable
extension of T , it holds that for all a �∈ E there exist b ∈ E such that (b, a) ∈ R.
From the above we conclude that for all a �∈ E there exist b ∈ E such that
(a, b) ∈ C and l(b) ≤ l(a). Note the above property does not hold in general for
theories that contain incomparability.

Proposition 3. Let T be a PBAT without incomparability. Every stable exten-
sion of T is a stable extension of some strict projection of T .

Proof. We prove the claim by defining a strict projection of T , Ts = (A,Rs), for
which E is a stable extension. Let �E+

s be a strict projection on the arguments
of E. Similarly, let �E−

s be a strict projection on the arguments of A\E. Finally,
let �E+,−

s be the binary relation on (E × (A\E)) ∪ ((A \E)×E) such that for
any pair of arguments a ∈ E and b �∈ E

– if l(a) > l(b) then b �E+,−
s a

– if l(a) ≤ l(b) then a �E+,−
s b

where l(a) is the level of argument a in theory T . Define �s=�E+

s ∪ �E−
s

∪ �E+,−
s .

We first show that �s is strict total order. It is easy to verify that �s is
asymmetric and total by construction. We show that �s is transitive. Let a, b, c ∈
A, such that a �s b and b �s c. We need to show that a �s c. We proceed by
case analysis. For the case where a, b, c ∈ E or a, b, c ∈ A\E, transitivity follows
by construction.

Assume now that a ∈ E and b, c �∈ E. Then, by construction, l(a) ≤ l(b).
Moreover, since b �s c, by lemma 1, it must be the case l(b) < l(c). Hence,
l(a) < l(c), which, again by lemma 1, means that a �s c. The case where a ∈ E,
b �∈ E, c ∈ E is similar.

Now suppose that a, b ∈ E, and c �∈ E. Since a �s b, by lemma 1, we obtain
that l(a) < l(b). Moreover, by construction, it must hold that l(b) ≤ l(c). Hence,
l(a) < l(c), and therefore a �s c.
The remaining cases where a �∈ E can be proved analogously.

Finally, we prove that E is a stable extension of Ts = (A,Rs). First note that
E is conflict free. Now assume that a �∈ E and define D(a) = {b|b ∈ E and
(b, a) ∈ R}. Since E is a stable extension, it must be D(a) �= ∅. Let b ∈ D(a),
and assume that (b, a) �∈ Rs. By construction, it must hold that l(a) < l(b),
which by lemma 1 implies a � b. This however contradicts b ∈ D(a). Therefore,
(b, a) ∈ Rs, which means that E is a stable extension of Ts. ��
By combining the definition of a super-stable extension with proposition 3 we
obtain the following strong property regarding the super-stable extensions of
theories without incomparability.
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Proposition 4. Every super-stable extension of a PBAT T that contains no
incomparability is a stable extension of some strict projection of T .

6 A Multi-criteria View of PBAT

In the previous sections we investigated how standard argumentation semantics
can be extended to accommodate preference information on the arguments. In
this section we change our perspective and explore a more direct link between
argumentation and decision theory. More specifically, we interpret arguments as
criteria and regard preferences as information on the relative importance of these
criteria. Under this perspective argumentation can be understood as Multiple
Criteria Decision Problem (MCDP). We start our analysis with a definition of
the problem that leaves out some of its aspects that are not directly relevant to
our purposes.

Definition 10. A Multiple Criteria Decision Problem (MCDP) is a triple P =
(A, K,) where

– A = {a1, . . . , an} is the set of attributes.
A set of values is associated with each attribute, denoted by v(a1), . . . , v(an)

– K = {�a1 , . . . ,�an} is the set of criteria. A criterion �ai is a pre-order
associated with the values of an attribute ai

–  is pre-order on the criteria

An alternative l wrt to a MCDP P = (A, K,) is any l ∈ v(a1) × . . . × v(an).
We denote the set of alternatives by LP .

In certain situations, a solution to a MCDP is a ranking relation � on the set
of alternatives L, ie. � ⊂ L × L. Usually a solution to a MCDP has to satisfy
certain properties [13].

The following definition shows that argumentation can be transformed in a
meaningful way into a MCDP.

Definition 11. Given a PBAT T = (A,R), where A = {a1, . . . , an}, we define
its corresponding MCDP MT = (AT , KT ,T ) as follows:

– AT = A, with v(ai) = {a+
i , a−

i }, for each ai ∈ AT .
– KT = {�1, . . . ,�n}, where �i, for 1 ≤ i ≤ n, is defined as the preference

a+
i �i a−

i .
– T =

The following is an example of a translation of a specific PBAT into a MCDP.

Example 5. Consider the PBAT T = (A,R), where A = {a1, a2, a3}, and the
underlying preference relation  defined as: a1 � a2, a1 � a3, a2  a3, a3  a2.
The corresponding MCDP is defined as MT = (AT , KT ,T ), where:

– AT = {a1, a2, a3}, with v(a1) = {a+
1 , a−

1 }, v(a2) = {a+
2 , a−

2 }, v(a3) =
{a+

3 , a−
3 }.
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– KT = {�1,�2,�3}, with a+
1 �1 a−

1 , a+
2 �2 a−

2 , a+
3 �3 a−

3 .
– T =

Several methods have been proposed in the literature, the applicability of which
in many cases depends on the features of the MCDP at hand. Among the meth-
ods for tackling MCDPs that appear in the literature and are applicable to the
case we consider, it seems that the Regime method [9] is the closest to the spirit
of the stable extensions semantics. Here we discuss a simplified version of the
method as it appears in [14].

The Regime method works as follows. For any two alternatives Ai, Aj , let K+

be the set of criteria according to which Ai is better than Aj , and K− be the set
of criteria according to which Aj is better than Ai. Regime ranks Ai better than
Aj , denoted by Ai �t

R Aj , if K+ �= ∅ and there is an injective map from K− to
K+ by which each criterion in K− is mapped to a more important criterion in
K+. The set of optimal alternatives is then {Ao : ∀i¬(Ai �t

R Ao)}.
We can easily define a preference order on the sets of arguments of a PBAT

that captures the Regime method. To do this we associate to any set of arguments
A, an alternative At = {a+|a ∈ A} ∪ {a−|a �∈ A}.

Definition 12. Let T = (A,R) be a PBAT and MT = (AT , KT ,T ) its corre-
sponding MCDP. For any A1, A2 ⊆ 2A, it holds that A1 �R A2 if At

1 �t
R At

2.

We can now define the notion of a regime extension of a PBAT by characterizing
it in a way similar to the stable extensions.

Definition 13. A set of arguments E is a regime extension of a PBAT T =
(A,R) if there are no arguments a, b ∈ E s.t. (a, b) ∈ C, and for all E′ ∈ 2A

such that E′ �R E, there are a1, a2 ∈ E′ such that (a1, a2) ∈ C.

We now apply the previous definition to the story of 4, and observe that it yields
the correct result.

Example 6. Consider again the theory T of example 4. The corresponding
MCDP MT = (AT , KT ,T ) can be defined as outlined above. Consider the
two sets of arguments E1 = {a1, a3} and E2 = {a2, a4} of T which corre-
spond to the alternatives Et

1 = {a+
1 , a−

2 , a+
3 , a−

4 } and Et
2 = {a−

1 , a+
2 , a−

3 , a+
4 }.

For the comparison Et
2 �t

R Et
1 we have that K+ = {a2, a4}, K− = {a1, a3}, and

the mapping a1 → a2, a3 → a4. For the comparison Et
1 �t

R Et
2 we have that

K+ = {a1, a3} K− = {a2, a4}, but there is no suitable mapping. Therefore we
conclude E2 �R E1. Moreover, E2 is a regime extension of T .

7 Conclusion and Future Work

In this paper we pointed out that Dung’s stable extensions semantics when
applied in preference-based argumentation frameworks for decision making pur-
poses lead to counter-intuitive conclusions. A similar problem was also identified
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by Horty in [8]. This mainly holds for argumentation theories where the pref-
erence relation used for defining the relative strength of individual arguments
contains incomparability. To resolve this problem we proposed a new acceptabil-
ity semantics called super-stable extensions which allows to capture the conclu-
sions corresponding to the good decisions and to avoid the counter intuitive ones
which could correspond to bad decisions. Moreover, we showed that preference-
based argumentation can be understood as a multiple-criteria decision problem
allowing to that way the exploration of the application of theoretical results of
the decision theory in argumentation. Therefore, this work can been seen as an
attempt to bring new ideas from decision theory to argumentation.

Our future work concerns the definition of a binary relation �SS on the sets
of arguments of a PBAT that will be proved exactly the preference relation that
is induced by the super-stable extensions semantics and to prove the correspon-
dence between both. This will be the equivalent result of the one we proved in
[7] between the preference � and the stable extensions.

Acknowledgments. We thank Alexis Tsoukias for many fruitful discussions on
several aspects of this work. We also thank Michael Maher for his helpful
comments.
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Abstract. In the paper, algorithms are provided to check the consis-
tency of pairwise comparison matrices and to build consistent matrices
over abelian linearly ordered groups. A measure of consistency is also
given; this measure improves a consistent index provided in a previous
paper.

Keywords: Pairwise comparison matrices, consistency index, abelian
linearly ordered group.

1 Introduction

Let X = {x1, x2, ..., xn} be a set of alternatives or criteria. An useful tool to
determine a weighted ranking on X is a pairwise comparison matrix (PCM)

A =

⎛⎜⎜⎝
a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

⎞⎟⎟⎠ (1)

which entry aij expresses how much the alternative xi is preferred to alternative
xj . A condition of reciprocity is assumed for the matrix A = (aij) in such way
that the preference of xi over xj expressed by aij can be exactly read by means
of the element aji.

Under a suitable condition of consistency for A = (aij), X is totally ordered
and the values aij can be expressed by means of the components wi and wj of a
suitable vector w, that is called consistent vector for the matrix A = (aij); then
w provides the weights for the elements of X .

The shape of the reciprocity and consistency conditions depends on the dif-
ferent meaning given to the number aij , as the following well known cases show.

Multiplicative case: aij ∈]0, +∞[ is a preference ratio and the conditions of
multiplicative reciprocity and consistency are given respectively by

aji =
1

aij
∀ i, j = 1, . . . , n,

aik = aijajk ∀ i, j, k = 1, . . . , n.

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 237–248, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A consistent vector is a positive vector w = (w1, w2, ..., wn) verifying the
condition wi

wj
= aij and so perfectly representing the preferences over X .

Additive case: aij ∈] − ∞, +∞[ is a preference difference and additive reci-
procity and consistency are expressed as follows

aji = −aij ∀ i, j = 1, . . . , n,

aik = aij + ajk ∀ i, j, k = 1, . . . , n.

A consistent vector is a vector w = (w1, w2, ..., wn) verifying the condition
wi − wj = aij .

Fuzzy case: aij ∈ [0, 1] measures the distance from the indifference that is
expressed by 0.5; the conditions of fuzzy reciprocity and fuzzy additive con-
sistency are

aji = 1− aij ∀ i, j = 1, . . . , n,

aik = aij + ajk − 0.5 ∀ i, j, k = 1, . . . , n.

A consistent vector is a vector w = (w1, w2, ..., wn) verifying the condition
wi − wj = aij − 0.5.

The multiplicative PCMs play a basic role in the Analytic Hierarchy Process, a
procedure developed by T.L. Saaty at the end of the 70s [11], [12], [13].

In [2], [3], [5], [4], and [8], properties of multiplicative PCMs are analyzed in
order to determine a qualitative ranking on the set of the alternatives and to find
vectors representing this ranking. Additive and fuzzy matrices are investigated
for instance by [1] and [10].

In the case of a multiplicative matrix, Saaty suggests that the comparisons
expressed in verbal terms have to be translated into preference ratios aij taking
value in S∗ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 1

2 , 1
3 , 1

4 , 1
5 , 1

6 , 1
7 , 1

8 , 1
9}. The assumption of the

Saaty scale restricts the Decision Maker’s possibility to be consistent: indeed, if
the Decision Maker (DM) expresses the following preference ratios aij = 5 and
ajk = 3, then he will not be consistent because aijajk = 15 > 9. Analogously
for the fuzzy case, the assumption that aij ∈ [0, 1], restricts the possibility to
respect the fuzzy consistency: indeed, if the DM claims aij = 0.9 and ajk = 0.8,
then he will not be consistent because aij + ajk − 0.5 = 1.7− 0.5 > 1.

In order to unify the several approaches to PCMs and remove the above
drawbacks, in [6] the authors introduce PCMs whose entries belong to an abelian
linearly ordered group (alo-group) G = (G,�,≤). In this way the reciprocity
and consistency conditions are expressed in terms of the group operation �
and the drawbacks related to the consistency condition are removed; in fact the
consistency condition is expressed by aik = aij � ajk, thus, for each choice of
aij ∈ G and ajk ∈ G, the result aij � ajk is an element of G. As a non trivial
alo-group G = (G,�,≤) has neither the greatest element nor the least element
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(see [6]), the Saaty set S* and the interval [0, 1], embodied with the usual order
≤ on R, can be not structured as alo-groups.

In reference [6], the assumption of divisibility for G (see Section 2) allows us to
introduce the notion of mean m�(a1, ..., an) of n elements and associate a mean
vector wm� to a PCM. In order to give a measure of consistency for a PCM over
an alo-group G, in [6] a notion of distance dG , linked to G, is introduced. Then,
the consistency index IG(A) is defined as mean of the distances dG(aik, aij�ajk),
with i < j < k.

In this paper, we analyze the property of consistency for a PCM in order to:

1. provide an algorithm to check whenever or not a matrix is consistent;
2. provide an algorithm to build a consistent matrix by means of n − 1 com-

parisons;
3. provide a new consistency index linked to the index IG(A) introduced in [6]

but easier to compute.

2 Preliminaries on Alo-groups

Let us recall some notions and results related to an alo-group (see [6] for details).
These results will be useful in the sequel to build a consistent PCM over an alo-
group and to define in this context a new consistency index.

Let G be a non empty set provided with a total weak order ≤ and a binary
operation � : G×G → G. G = (G,�,≤) is called alo-group, if and only if (G,�)
is an abelian group and the the following implication holds:

a ≤ b⇒ a� c ≤ b � c.

The above implication is equivalent to

a < b⇒ a� c < b� c,

where < is the strict simple order associated to ≤.
If G = (G,�,≤) is an alo-group, then G is naturally equipped with the order

topology induced by ≤ and G×G is equipped with the related product topology,
and G is a continuous alo-group if and only if � is continuous.

Let G = (G,�,≤) be an alo-group, then we assume that: e denotes the identity
of G, x(−1) the symmetric of x ∈ G with respect to �, ÷ the inverse operation
of � defined by “a÷ b = a� b(−1)”. It results (a÷ b)(−1) = b÷ a.
Moreover we define the norm of a ∈ G by setting:

||a|| = a ∨ a(−1). (2)

Proposition 1. [6] Let G = (G,�,≤) be an alo-group. Then, the operation

dG : (a, b) ∈ G2 → ||a÷ b|| ∈ G (3)

verifies the conditions:
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1. dG(a, b) ≥ e;
2. dG(a, b) = e ⇔ a = b;
3. dG(a, b) = dG(b, a);
4. dG(a, b) ≤ dG(a, c)� dG(b, c).

Definition 1. The operation dG in (3) is a G-metric or G-distance.

For a positive integer n, the (n)-power x(n) of x ∈ G is defined as follows

x(1) = x

x(n) =
n−1⊙
i=1

xi � xn =
n⊙

i=1

xi, xi = x i = 1, ..., n, n ≥ 2

If b(n) = a, then we say that b is the (n)-root of a and write b = a(1/n).
G is divisible if and only if for each positive integer n and each a ∈ G there

exists the (n)-root of a.

Definition 2. Let G = (G,�,≤) be a divisible alo-group. Then, the �- mean
m�(a1, a2, ..., an) of the elements a1, a2, ..., an of G is defined by

m�(a1, a2, ..., an) =

{
a1 n = 1,

(
⊙n

i=1 ai)(1/n) n ≥ 2.

Definition 3. An isomorphism between two alo-groups G = (G,�,≤) and G′ =
(G′, ◦,≤) is a bijection h : G→ G′ that is both a lattice isomorphism and a group
isomorphism, that is:

x < y ⇔ h(x) < h(y)
h(x� y) = h(x) ◦ h(y).

Proposition 2. [6] Let h : G → G′ be an isomorphism between the alo-groups
G = (G,�,≤) and G′ = (G′, ◦,≤). Then,

dG′(a′, b′) = h(dG(h−1(a′), h−1(b′))).

Moreover, G is divisible if and only if G′ is divisible and, under the assumption
of divisibility:

m◦(y1, y2, ..., yn) = h
(
m�(h−1(y1), h−1(y2), ..., h−1(yn))

)
.

2.1 Real Alo-groups

An alo-group G = (G,�,≤) is a real alo-group if and only if G is a subset of the
real line R and ≤ is the total order on G inherited from the usual order on R.

Let + and · be the usual addition and multiplication on R and ⊗ :]0, 1[2→]0, 1[
the operation defined by

x⊗ y =
xy

xy + (1− x)(1 − y)
,

then, examples of real divisible and continuous alo-groups are the following:
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Multiplicative alo-group
]0,+∞[ = (]0, +∞[, ·,≤); then e = 1, x(−1) = 1/x, x(n) = xn and x÷y = x

y .

So d]0,+∞[(a, b)=a
b ∨ b

a and m·(a1, ..., an) is the geometric mean:
(∏n

i=1 ai

) 1
n .

Additive alo-group
R = (R, +,≤); then e = 0, x(−1) = −x, x(n) = nx, x÷ y = x− y.
So dR(a, b) = |a− b| = (a− b) ∨ (b− a) and m+(a1, ..., an) is the arithmetic
mean:

∑
i ai

n .

Fuzzy alo-group
]0,1[ = (]0, 1[,⊗,≤); then e = 0.5, x(−1) = 1− x, x÷ y = x(1−y)

x(1−y)+(1−x)y .

So d]0,1[(a, b) = a(1−b)
a(1−b)+(1−a)b ∨ b(1−a)

b(1−a)+(1−b)a .

Remark 1. Our choice of the operation structuring the ordered interval ]0, 1[
as an alo-group wants to obey the requests: 0,5 is the identity element and 1− x
is the symmetric of x. In this way the condition of reciprocity for a PCM over a
fuzzy alo-group is given again by aji = 1− aij, as defined in Section 1. In order
to obtain an operation verifying the above requests, we apply the following result
of [6]:

Theorem 1. Let G be a proper open interval of R and ≤ the total order on G
inherited from the usual order on R, then the following assertions are equivalent:

1. G = (G,�,≤) is a continuous alo-group;
2. there exists a continuous and strictly increasing function ψ :]0, +∞[→ G

verifying the equality

x� y = ψ(ψ−1(x) · ψ−1(y)).

Setting G =]0, 1[ and

ψ : t ∈]0, +∞[→ t

t + 1
∈]0, 1[, (4)

that is a continuous and strictly increasing function between ]0, +∞[ and ]0, 1[,
we get

x⊗ y = ψ(ψ−1(x) · ψ−1(y)).

Remark 2. The operation ⊗ is the restriction to ]0, 1[2 of the uninorm (see
[9]):

U(x, y) =
{

0, (x, y) ∈ {(0, 1), (1, 0)};
xy

xy+(1−x)(1−y) , otherwise.

The multiplicative, the additive and the fuzzy alo-groups are isomorphic; in fact
the bijection

h : x ∈]0, +∞[→ log x ∈ R
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is an isomorphism between ]0,+∞[ and R and ψ in (4) is an isomorphism
between ]0,+∞[ and ]0,1[. So, by Proposition 2, the mean m⊗(a1, ..., an) related
to the fuzzy alo-group can be computed, by means of the function in (4), as
follows:

m⊗(a1, ..., an) = ψ
(( n∏

i=1

ψ−1(ai)
) 1

n
)
.

3 Consistent PCMs over a Divisible Alo-group

In this section, G = (G,�,≤) is a divisible alo-group and A = (aij) in (1) is a
PCM over G, that is aij ∈ G, ∀i, j ∈ {1, . . . , n}.
We assume that A is reciprocal with respect to �, that is :

aji = a
(−1)
ij ∀ i, j = 1, . . . , n (5)

so aii = e for each i = 1, 2, ..., n and aij � aji = e for i, j ∈ {1, 2, ..., n}.

Definition 4. [6], A = (aij) is a consistent matrix with respect to �, if and
only if:

aik = aij � ajk ∀i, j, k. (6)

Moreover, w = (w1, . . . , wn), with wi ∈ G, is a consistent vector for A = (aij)
if and only if wi ÷ wj = aij ∀ i, j=1,2,...,n.

Let a1, a2, . . . , an be the rows of A; then the mean vector associated to A is the
vector

wm�(A) = (m�(a1), m�(a1), · · · , m�(an)). (7)

If the matrix A is consistent then wm�(A) is a consistent vector. Indeed in [6],
we prove the following

Proposition 3. The following assertions related to A = (aij) are equivalent:

i) A is a consistent PCM;
ii) each column ak is a consistent vector;
iii) the mean vector wm� is a consistent vector.

Proposition 4. [6] A = (aij) is a consistent matrix with respect to �, if and
only if:

aik = aij � ajk ∀ i, j, k : i < j < k. (8)

Proposition 5. [6] A = (aij) is a consistent matrix with respect to �, if and
only if:

dG(aik, aij � ajk) = e ∀ i, j, k : i < j < k
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3.1 Checking the Consistency

We provide new characterizations of a consistent PCM that allows us to give an
efficient algorithm to check the consistency of a PCM.

Proposition 6. The following assertions are equivalent:

1. A is a consistent PCM with respect to �;
2. aik = ai i+1 � ai+1 k ∀i, k : i < k;
3. aik = ai i+1 � ai+1 i+2 � . . .� ak−1 k ∀i, k : i < k.

Proof. 1.⇒ 2. It is straightforward because of Proposition 4.
2.⇒ 3. By 2.:

aik = ai i+1 � ai+1 k

ai+1 k = ai+1 i+2 � ai+2 k

...

ak−2 k = ak−2 k−1 � ak−1 k

Thus, by associativity of �, 3. is achieved.
3.⇒ 1. By Proposition 4, it is enough to prove that 3.⇒ (8).

Let i < j < k. By 3., we have that:

aik = ai i+1 � . . . aj−1 j � aj j+1 . . .� ak−1 k;

so, by associativity of � and applying again 3., we have that:

aik = (ai i+1�ai+1 i+2�. . .�aj−1 j)�(aj j+1�aj+1 j+2�. . .�ak−1 k) = aij�ajk.

Thus, the following corollary follows:

Corollary 1. A = (aij) is a consistent matrix with respect to �, if and only if:

dG(aik, ai i+1 � ai+1 k) = e ∀ i, k : i < k

Finally, in order to check whenever or not a matrix is consistent, we provide
Algorithm 1, for which computational complexity order is equal to O(n2). In
Algorithm 1, we assume that:

– i is the index of the rows of A, it is initialized to i = 1;
– k is the index of the columns of A, it is initialized to k = i + 2;
– n is the order of A;
– ConsistentMatrix is a boolean variable and the algorithm returns

ConsistentMatrix = true if and only if the matrix is consistent. It is initial-
ized to true, but ConsistentMatrix = false is immediately returned when
an inconsistent triple (aik, ai i+1, ai+1 k) occurs.
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Algorithm 1. Checking consistency
i = 1;
ConsistentMatrix=true;
while i ≤ n − 2 and ConsistentMatrix do

k = i + 2;
while k ≤ n and ConsistentMatrix do

if aik 	= ai i+1 � ai+1 k then
ConsistentMatrix=false;

end if
k = k + 1;

end while
i = i + 1;

end while
return ConsistentMatrix;

3.2 Building a Consistent Matrix

Given X = {x1, x2, . . . , xn} the set of alternatives, item 2. of Proposition 6 allow
us to build a consistent PCM starting from a fixed alternative xi and the n− 1
comparisons between xi and xj , for j �= i. These comparisons are expressed by
one of the following sequences:

1. ai1, . . . ai i−1, ai i+1, . . . ain,
2. a1i, . . . ai−1 i, ai+1 i, . . . ani.

By item 2. of Proposition 6, we can also to build a consistent PCM starting from
one of the following sequences:

3. a12, a23, . . . an−1 n,
4. a21, a32, . . . an n−1.

For the fuzzy case, reference [7] builds a consistent matrix by means of sequence
3. Here, we provide Algorithm 2 to build a consistent PCM starting from the
sequence a12, a13, . . . , a1n; we use the equalities ai+1 j = ai+1 i � ai j , ∀i, j such
that i < j − 1, obtained from item 2 of Proposition 6.

Example 1. Let {x1, x2, x3, x4, x5} be a set of alternatives. We suppose that the
DM prefers x1 to each other alternative and expresses the following preference
ratios (multiplicative case): a12 = 2, a13 = 4, a14 = 5 and a15 = 6. By means of
Algorithm 2, we obtain:

a21 =
1
2
, a31 =

1
4
, a41 =

1
5
, a51 =

1
6
,

a11 = a22 = a33 = a44 = a55 = 1,

a23 = a21a13 = 2, a32 =
1
2
,

a24 = a21a14 =
5
2
, a42 =

2
5
,
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Algorithm 2. Building a consistent matrix
for j = 2, . . . , n do

aj1 = a
(−1)
1j

end for
for i = 1, . . . , n do

aii = e
end for
for i = 1, . . . n − 2 do

for j = i + 2 . . . n do
ai+1 j = ai+1 i � ai j

aj i+1 = a
(−1)
i+1 j

end for
end for

a25 = a21a15 = 3, a52 =
1
3
,

a34 = a32a24 =
5
4
, a43 =

4
5
,

a35 = a32a25 =
3
2
, a53 =

2
3
,

a45 = a43a35 =
6
5
, a54 =

5
6
,

and therefore:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 4 5 6

1
2 1 2 5

2 3

1
4

1
2 1 5

4
3
2

1
5

2
5

4
5 1 6

5

1
6

1
3

2
3

5
6 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Example 2. Let {x1, x2, x3, x4, x5} be a set of alternatives. We suppose that the
DM prefers x1 to each other alternative and expresses the following preferences
(fuzzy case): a12 = 0.6, a13 = 0.7, a14 = 0.8 and a15 = 0.9. By means of
Algorithm 2, we obtain:

a21 = 0.4, a31 = 0.3, a41 = 0.2, a51 = 0.1,

a11 = a22 = a33 = a44 = a55 = 0.5,

a23 =
a21a13

a21a13 + (1− a21)(1− a13)
= 0.609,

a32 = 0.391,
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a24 =
a21a14

a21a14 + (1− a21)(1− a14)
= 0.727,

a42 = 0.273,

a25 =
a21a15

a21a15 + (1− a21)(1− a15)
= 0.857,

a52 = 0.143,

a34 =
a32a24

a32a24 + (1− a32)(1− a24)
= 0.632,

a43 = 0.368,

a35 =
a32a25

a32a25 + (1− a32)(1− a25)
= 0.794,

a53 = 0.206,

a45 =
a43a35

a43a35 + (1− a43)(1− a35)
= 0.692,

a54 = 0.308,

and therefore:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.6 0.7 0.8 0.9

0.4 0.5 0.609 0.727 0.857

0.3 0.391 0.5 0.632 0.794

0.2 0.273 0.368 0.5 0.692

0.1 0.143 0.206 0.308 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4 A New Consistency Index

Let T be the set {(aij , ajk, aik), i < j < k} and nT = |T |. By Proposition
5 A = (aij) is inconsistent if and only if dG(aik, aij � ajk) > e for some triple
(aij , ajk, aik) ∈ T . Thus, in [6] the authors have provided the following definition
of consistency index and the related results:

Definition 5. The consistency index of A is given by:

IG(A) =

{
dG(a13, a12 � a23) n = 3,(⊙

T dG(aik, aij � ajk)
)( 1

nT
)

n > 3.

with

nT =
n(n− 2)(n− 1)

6
.

Proposition 7. IG(A) ≥ e and A is consistent if and only if IG(A) = e.
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Proposition 8. Let G′ = (G′, ◦,≤) be a divisible alo-group isomorphic to G
and A′ = (h(aij)) the transformed of A = (aij) by means of the isomorphism
h : G→ G′. Then IG(A) = h−1(IG′ (A′)).

At the light of Corollary 1, it is reasonable to define a new consistency in-
dex, considering only the distances dG(aik, ai i+1 � ai+1 k), with i < k − 1;
of course if i = k − 1 then dG(aik, ai i+1 � ai+1 k) = e. Let T ∗ be the set
{(ai i+1, ai+1 k, aik), i < k − 1} and nT∗ = |T ∗|, then we consider the follow-
ing index:

I∗G(A) =

{
dG(a13, a12 � a23) n = 3,(⊙

T∗ dG(aik, ai i+1 � ai+1 k)
)( 1

nT∗ )
n > 3.

with
nT∗ =

(n− 2)(n− 1)
2

.

By Corollary 1, we have:

Proposition 9. I∗G(A) ≥ e and A is consistent if and only if I∗G(A) = e.

As for n > 3 it results nT∗ < nT , the index I∗G(A) is more easy to compute than
the consistency index IG(A), thus, we provide the following definition:

Definition 6. A consistency index of A is given by I∗G(A).

Moreover, proposition analogous to Proposition 8 follows:

Proposition 10. Let G′ = (G′, ◦,≤) be a divisible alo-group isomorphic to G
and A′ = (h(aij)) the transformed of A = (aij) by means of the isomorphism
h : G→ G′. Then I∗G(A) = h−1(I∗G′ (A′)).

Example 3. Let us consider

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5 0.3 0.4 0.4

0.7 0.5 0.1 0.2

0.6 0.9 0.5 0.8

0.6 0.8 0.2 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
that is a PCM over the fuzzy alo-group ]0,1[. By applying the function ψ−1,
with ψ in (4), to the entries of A, we get the matrix

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3
7

2
3

2
3

7
3 1 1

9
1
4

3
2 9 1 4

3
2 4 1

4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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A′ is a PCM over the multiplicative alo-group ]0,+∞[ and its consistency index
is

I∗]0,+∞[(A
′) = 3

√
I∗]0,+∞[(A

′
123) · I∗]0,+∞[(A

′
124) · I∗]0,+∞[(A

′
234)

= 3

√
14 · 56

9
· 16

9
= 5.37

Applying Proposition 10, we can compute the consistency index of A by means
of the isomorphism ψ in (4):

I∗]0,1[(A) = ψ(I∗]0,+∞[(A
′)) =

5.37
6.37

= 0.84.
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Abstract. Aggregating preferences for finding a consensus between several
agents is an important issue in many fields, like economics, decision theory and
artificial intelligence. In this paper we focus on the problem of aggregating in-
terval orders which are special preference structures allowing the introduction of
tresholds for the indifference relation. We propose to solve this problem by first
translating it into a propositional optimization problem, namely the Binate Cov-
ering Problem, then to solve the latter using a MAX-SAT solver. We discuss some
properties of the proposed encoding and provide some hints about its practicabil-
ity using preliminary experimental results.

Keywords: Interval orders, preference modelling and aggregation, propositional
reasoning, Boolean optimization.

1 Introduction

Aggregating preferences for finding a consensus between several agents is an important
issue in many fields, like economics, decision theory, and artificial intelligence. Given
the preferences of a set of agents (or voters) over a set of alternatives (or candidates),
where preferences are generally formulated as binary relations such as strict preference,
indifference, etc., preference aggregation aims at determining a collective preference
relation representing as much as possible the individual preferences.

However many works have shown through paradoxes and impossibility theorems that
preference aggregation is not an easy task, the famous ones are Condorcet’s paradox [3],
Arrow’s theorem [2] .

A common approach is to consider a preference relation as a complete preorder (i.e.,
a reflexive and transitive relation). In the above results each voter is supposed to present
a complete preoder over the set of alternatives. However, such a model for preferences
does not prove adequate to all situations, and other models (generalizing the complete
preorder one) have been pointed out. In particular, different structures have been intro-
duced for defining thresholds as in the famous example given by Luce [10] about a cup
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of coffee. Indeed, in contrast to the strict preference relation, the indifference relation
induced by such structures is not necessarily transitive. Semiorders may form the sim-
plest class of such structures and they appear as a special case of interval orders. The
axiomatic analysis of what we call now interval orders has been given by Wiener [16],
then the term “semiorders” has been introduced by Luce [10] and many results about
their representations are available in the literature (for more details see [5,13]). Roughly
speaking, within an interval order, alternative x1 is strictly preferred to alternative x2
if and only if the evaluation of x1 is greater than the evaluation of x2 plus a threshold.
It is easy to see that preorders are special cases of interval orders where the value of
threshold is fixed to zero.

In this paper we consider the interval order aggregation problem; to solve it, we
propose a method based on the Kemeny distance which makes use of a translation
into the Binate Covering Problem [4]. More precisely, we consider the case where the
preferences of voters are interval orders and we try to find a final interval order which
will be ”as close as possible” to the set of voter’s preferences. Let us note that having
an interval order as a result of an aggregation is not a drawback for pointing out an
undominated alternative since it is known that when the asymmetric part of a binary
relation is transitive, which is the case of interval orders, there is always at least one
such undominated alternative [14]. Moreover it is natural to ask an interval order as a
result when preferences of voters are interval orders. Finally, as we will show it, even
when the input preferences are preorders, focusing on interval orders as outputs is a
way to get an aggregation which is closer to the given preferences than when preorders
are targeted (just because the set of all interval orders over the! alternatives is a superset
of the set of all preorders over the alternatives).

2 Aggregation as Optimisation

In this paper, we consider a finite set of alternatives A on which preference relations
are applied (|A| = n), we represent with a, b, c, ... specific elements of A and x1, x2, ...
or x, y, z, . . . variables ranging over the set A. We have a finite set of voters V =
{v1, . . . , vm} (|V | = m). Voters express their preferences by the help of two binary
relations represented in an explicit way as n2-matrices: the notation aPib (resp. aIib)
means that the voter vi prefers strictly alternative a to b (resp. is indifferent between
a and b). #p(a, b) (resp. #i(a, b)) is the number of voters vi for whom aPib (resp.
aIib) holds. We call a profile, the set of voter’s preference relations and denote it by
X = {〈P1, I1〉, 〈P2, I2〉, . . . , 〈Pm, Im〉}; its size is in O(m.n2).

The result of the agregation is also expressed by two relations that we denote by P
and I (P−1 represents the inverse of P : ∀x, y ∈ A, xP−1y iff yPx). aPb (resp. aIb)
means that alternative a is preferred to alternative b (resp. a and b are indifferent) in the
resulting order. We denote it as f(〈P1, I1〉, 〈P2, I2〉, . . . , 〈Pm, Im〉) = 〈P, I〉.

The pair 〈P, I〉 is called a preference structure if and only if P is asymmetric, I
is reflexive and symmetric, P ∪ I is complete and P ∩ I is empty. Such a pair is an
interval order if and only if it is a preference structure and satisfies a property called
Ferrers relation.1

1 ∀x, y, z, t ∈ A, xPy ∧ yIz ∧ zP t ⇒ xPt.
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Definition 1. Let P and I be binary relations on A × A, 〈P, I〉 is an interval order if
and only if

i) P ∪ I ∪ P−1 = A×A (completeness) ,
ii) P ∩ I = (exclusivity),

iii) P is asymmetric, I is symmetric and reflexive,
iv) P.I.P ⊂ P (Ferrers relation).

The numerical representation of interval orders is as in the following:

Proposition 1. [5] Let P and I be binary relations on A × A, 〈P, I〉 is an interval
order if and only if there exist a mapping g from A to IR and a mapping q from IR to
IR+ such that for any x, y ∈ A, we have:

xPy ⇔ g(x) > g(y) + q(g(y)).
xIy ⇔ g(x) ≤ g(y) + q(g(y)).

Interval orders are quasi-orders (i.e., orders with a transitive asymmetric part). Gibbard
([6]) has showed that Arrow’s theorem can be generalized to the case of quasi-orders,
hence we have this impossibility result for interval orders. Pirlot and Vincke ([13]) have
focused also on this theorem with a special attention to interval orders. Before present-
ing this theorem we first need the following definitions in order to state it formally:

weak unanimity. an aggregation procedure satisfies the weak unanimity condition if
and only if, for all voters vi ∈ V and for all a, b ∈ A, aPib =⇒ aPb;

non-dictatorship. an aggregation procedure satisfies the non-dictatorship condition if
and only if, for no voter vi ∈ V such that for all possible preferences of other voters
and for all alternatives a and b aPib =⇒ aPb;

independence of irrelevant alternatives. an aggregation procedure satisfies the inde-
pendence of irrelevant alternatives condition if and only if ∀(〈P1, I1〉, . . . , 〈Pm,
Im〉), (〈P ′

1, I
′
1〉, . . . , 〈P ′

m, I ′m〉), ∀a, b ∈ A,
(〈P1, I1〉, . . . , 〈Pm, Im〉)/{a, b} = (〈P ′

1, I
′
1〉, . . . , 〈P ′

m, I ′m〉)/{a, b} =⇒
(〈P, I〉), /{a, b} = (〈P ′, I ′〉)/{a, b}

where 〈P, I〉 is the result on (〈P1, I1〉, . . . , 〈Pm, Im〉) , and 〈P, I〉/{a, b} is the
restriction of 〈P, I〉 to {a, b}, etc.

Theorem 1 (Generalized Arrow’s Theorem). [13] If |A| ≥ 4, if X is the set of all
n-tuples of interval orders on A and if Y is the set of all interval orders on A, then
there is no (X-Y )-aggregation procedure2 satisfying simultaneously weak unanimity,
non-dictatorship and independence conditions.

Note that if all the considered relations are complete preorders, Theorem 1 is exactly
Arrow’s theorem with |A| ≥ 3. We need four alternatives for interval orders because of
the definition of Ferrers relation.

There exist a number of papers addressing the aggregation issue for binary relations
as an optimization problem. Typically, a 0/1 linear program is targeted. Contrastingly,
in our approach, we associate to each profile of binary relations an instance of BCP, the

2 X represents here the set of voter’s preferences and Y the resulting order.
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so-called Binate Covering Problem [4], where the set of constraints is not any set of 0/1
linear inequations but a SAT instance. This problem has been studied for decades by the
circuit community where it is important for logic synthesis (minimizing the number of
components needed to perform a given operation).

From a theoretical standpoint, like 0/1 linear programming, BCP is an NP-hard op-
timization problem (and the associated decision problem is in NP) (see e.g. [12]). In
practice, each clause can be translated into an equivalent 0/1 linear inequation, but the
converse does not hold. The specific format of the constraints considered in BCP (com-
pared to 0/1 linear programs) enables us to take advantage of the power of existing
MAX-SAT solvers in order to solve its instances in a more efficient way from the practi-
cal side.

To our knowledge there is a limited number of studies related to the aggregation of
interval orders. Pirlot and Vincke [13] have shown that the schemes that work well for
complete preorders such as lexicographic procedure or Borda’s sum of ranks do not lean
themselves easily to the generalization with interval orders. They proposed two types of
aggregation procedures: one consisting in aggregating numerical representations into a
”global evaluation” function, and the other inspired from pairwise comparison methods.

In this paper we propose a hybrid approach consisting in finding an interval order be-
ing optimal in the sense of minimal Kemeny distance [8] to the input profile. Intuitively,
ranking the alternatives according to Kemeny’s rule can be seen as the best compromise
since on average it gives the ”closest” social preference to the individual preferences.
Our idea can be summarized as in the following:

1. Determine all pairwise comparisons for which all the voters have the same opinion
and build a partial order that preserves those comparisons.

2. Search within the set of feasible interval orders in order to find a closest one to the
input profile.

The first step can be easily achieved the following way:

∀vi ∈ V, ∀x, y ∈ A, xPiy, =⇒ xPy,
∀vi ∈ V, ∀x, y ∈ A, xIiy, =⇒ xIy.

The resulting 〈P, I〉 is a partial order.

From partial order to interval orders. Naturally this step provides in the majority of
cases many interval orders. The worst case that we may expect is when the partial order
provided in the first step is empty. In this case we have to find all the interval orders con-
taining n objects (n being the cardinality of A). This case gives an idea on the number
of interval orders that we may have. Stanley [15] has precised the number of interval
orders with n elements; for this he has made use of relations between interval orders
and hyperplanes arrangement. The coefficient of the following polynomial provides the
number of interval orders:

z =
∑

k≥0 ck
xk

k!

z = 1 + x + 3x2

2! + 19x3

3! + 195x4

4! + 2831x5

5! + 53703x6

6! + 1264467x7

7! + . . .
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z is the unique power series satisfying z′
z = y2, z(0) = 1 where 1 = y(2 − exy).

The value ck of the serie z is the number of interval orders on k alternatives. This
number grows exponentially on the number of alternatives: for instance, with just 7
alternatives we have more than one million interval orders. However, we will see in the
following that we do not need to represent those interval orders explicitly. We denote
by 〈P (1), I(1)〉,〈P (2), I(2)〉, . . . these interval orders.

Discriminating interval orders. In our approach, the distance of an interval order 〈P (i),
I(i)〉 to the input profile X , D(〈P (i), I(i)〉, X), will be calculated as the sum of its
distance to each voter’s order 〈Pj , Ij〉.
Let us denote this distance by d(〈P (i), I(i)〉, 〈Pj , Ij〉):

D(〈P (i), I(i)〉, X) =
∑

〈Pj ,Ij〉∈X

d(〈P (i), I(i)〉, 〈Pj , Ij〉)

The distance d is computed using the difference between pairwise comparisons in the
following way:

d(〈P (i), I(i)〉, 〈Pj , Ij〉) =
∑

(x,y)∈A2

δ〈P (i),I(i)〉,〈Pj,Ij〉(x, y)

δ(〈P (i),I(i)〉,〈Pj ,Ij〉)(x, y) =

⎧⎨⎩
p2p if (xP (i)y and yPjx) or (yP (i)x and xPjy)
0 if (xP (i)y and xPjy) or (xI(i)y and xIjy)
p2i otherwise

Here p2p and p2i are nonnegative constant numbers. The rationale for this definition
of d is to put a penalty when there is a discrepancy of preference relation between the
comparison given by a voter and the one of the interval order. Naturally, a discrepancy of
a strict preference (for instance xPy) to the inverse of this preference (yPx) is at least as
problematic as a discrepancy of a strict preference (for instance xPy) to an indifference
(xIy) for this reason we suggest that p2p ≥ p2i. Even more one can impose the strict
inequality (p2p > p2i) which will guarantee to have as a result aIb when the profile
with three voters is aP1b, aI2b and bP3a. Note that the distance used by Hudry ([7])
imposes p2p = p2i = 1 and provides as a result three interval orders (aPb, bPa and
aIb) for this example.

We propose to represent the set of interval orders to be implicitly considered in the
second step using propositional constraints (clauses). Then, computing the interval or-
ders closest to the profile is encoded as minimizing an objective function. Accordingly,
we reduce our interval order optimization problem to the BCP one.

3 Translation into the Binate Covering Problem

We first need propositional variables vxPy and vxIy to represent all pairs of the form

xPy (∀x �= y ∈ A) and xIy (∀x, y ∈ A, x ≤ y). As a consequence, n2−n+ n×(n−1)
2 +

n = 3×n2−n
2 variables must be considered. For instance, for 4 alternatives, we need 22

propositional variables. For 16 alternatives, we need 376 propositional variables.
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3.1 Implicit Representation of Interval Orders

Structural constraints. The following constraints express that the result of the aggre-
gation must be an interval order. They do not depend on the voters.

– P ∪ I is complete: ∀x < y ∈ A vxPy ∨ vxIy ∨ vyPx,
– P is asymmetric: ∀x < y ∈ A, ¬(vxPy ∧ vyPx) ≡ ¬vxPy ∨ ¬vyPx,
– P and I are exclusive: ∀x �= y ∈ A, ¬(vxPy ∧ vxIy) ≡ ¬vxPy ∨ ¬vxIy ,
– I is symmetric by construction because a single propositional variable vxIy repre-

sents both xIy and yIx.
– I is reflexive: ∀x ∈ A, vxIx is forced to be true,
– P ∪ I is Ferrers: ∀x, y, z, t ∈ A, x �= y, z �= t, x �= t, y �= t, x �= z (vxPy ∧ vyIz ∧

vzPt)⇒ vxPt,

Note that we need to generate 2n(n − 1) + n + n(n − 1)(n − 2)2 = n(n3 − 5n2 +
10n− 5) structural constraints plus the unit clauses needed to preserve unanimity (see
below). For 4 alternatives, it means at least 76 constraints. For 16 alternatives, it means
at least 47536 constraints. The O(n4) space required by the above encoding is clearly
dominated by the cost of ensuring Ferrers condition.

Unanimity constraints. Those additional constraints encode unanimity for both P and
I . They are generated according to the votes. Since they force the truth value of some
variables, they simplify in practice the computation of the best interval order.

– Unanimity for P : ∀x �= y ∈ A, if #p(x, y) = |V | then xPy is forced to be true,
– Unanimity for I: ∀x �= y ∈ A, if #i(x, y) = |V | then xIy is forced to be true.

3.2 Distance between Interval Orders and the Profile

The coefficient associated to each variable is computed according the individual penalty
δ defined earlier and the number of voters that disagree with the interval order.

– ∀x, y ∈ A, satisfying I(x, y) entails that voters that strictly prefer x to y or y to x
disagree with that fact, with a simple individual penalty of p2i. As a consequence,
the coefficient of the variables is exactly p2i(#p(x, y) + #p(y, x)),

– ∀x, y ∈ A, satisfying P (x, y) entails that voters that are indifferent between x
and y disagree with that fact with a simple penalty of p2i, while the voters that
strictly prefer y to x disagree with that fact with an individual penalty of p2p. So
the coefficient of those variables is exactly p2i#i(x, y) + p2p ∗#p(y, x).

The objective function of the binate covering problem associated with X is denoted by
scoreX(〈P, I〉) and is∑
x≤y∈A

p2i(#p(x, y) + #p(y, x))vxIy +
∑

x �=y∈A

(p2i#i(x, y) + p2p ∗#p(y, x))vxPy .

Thus the space needed to represent the objective function is in O(n2.log2(m)). In-
terestingly, the space needed by the encoding (constraints and objective function) is
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only logarithmic in the number of voters. This renders the approach feasible for a large
number of voters. On the other hand, the space needed by the encoding is in O(n4);
considering that MAX-SAT solvers are currently able to solve some instances with mil-
lions of variables, it might be possible to solve aggregation problems up to roughly 40
alternatives (which leads to 2 millions of clauses using the above encoding).

The result of the aggregation step is any interval order which minimizes the value
of the objective function. An important issue is to determine whether it makes sense to
use of sophisticated SAT engine (or 0/1 linear program solver) to solve those specific
BCP instances stemming from a translation from instances of the aggregation problem.
[7] gave a positive answer to this query, by identifying the complexity of the following
decision problem: SCORE:

Input: A finite profile X of binary relations 〈P, I〉 on A and a nonnegative integer k.
Question: Does there exist an interval order 〈P, I〉 on A such that scoreX(〈P, I〉) ≤ k?

In a nutshell Hudry showed that SCORE is NP-complete as soon as the number of voters
m is ”sufficiently” large compared to the number n of alternatives, even in the restricted
case when X consists of linear orders only, provided that p2p = p2i = 1. This justifies
to take advantage of algorithms running in exponential time (as MAX-SAT solvers) in
the worst case, since polynomial time ones are hardly expected.

Hudry’s NP-hardness result extends easily to our framework when the parameters
p2p and p2i are such that p2p = p2i since linear orders are interval orders; on the other
hand, the membership to NP of the SCORE probllem is obvious in our setting: in order
to determine that an instance of this decision problem is positive, it is enough to guess
a binary relation 〈P, I〉 on A (its size isO(n2)), then to check that it is an interval order
(this can be easily achieved in polynomial time in the size of the relation), and finally
to compute in polynomial time scoreX(〈P, I〉) in order to compare it with k.

Our MAX-SAT algorithm for the BCP problem is a branch-and-bound algorithm. Dur-
ing the search, each time a (partial) assignment is found that satisfies all the constraints,
the corresponding score is computed (each unassigned variable is set to 0) and a con-
straint which eliminates all the assignments leading to a greater bound is added, so that
whenever a partial assignment leads to a score which is worse than this bound, a back-
track occurs. Its worst-case time complexity is simply exponential in the number of
variables under consideration (hence linear in the size of X) and its space complexity
is linear in the size of the constraints (hence quadratic in the size of X).

3.3 Examples

As a matter of illustration, let us consider the following examples. For these examples
we suppose that p2i = 1 and p2p = 2.

Example 1. Consider first a case with 5 voters and 4 alternatives with the preferences
of voters shown in Table 1.

These preferences of voters can be compactly represented in a matrix where ∀xi, xj ,
P (xi, xj) = α means that there are α voters who prefer alternative xi to alternative
xj . Table 2 represents the matrix related to the previous example. Accordingly, this
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Table 1. Pairwise comparisons on 4 alternatives given by 5 voters

V1 a b c d

a I P P P

b P−1 I I P

c P−1 I I P

d P−1 P−1 P−1 I

V2 a b c d

a I P I P

b P−1 I P−1 P

c I P I P

d P−1 P−1 P−1 I

V3, V4, V5 a b c d

a I P P P

b P−1 I I P

c P−1 I I P

d P−1 P−1 P−1 I

matrix contains all the information needed for running our aggregation procedure. Our
method find as a result the following interval order: aPb, cPa, dPa, cPb, dPb, cPd
(its distance to the profile is 12).

Table 2. The number of voters agreeing for a strict preference

P a b c d

a 0 5 1 2
b 0 0 0 2
c 3 4 0 5
d 3 3 0 0

Example 2. Here is a second example; Table 3 shows the pairwise comparisons given
by three voters on three alternatives (a, b, c).

Table 3. The profile of Example 2

V1 a b c

a I P I

b P−1 I P−1

c I P I

V2 a b c

a I P P

b P−1 I I

c P−1 I I

V3 a b c

a I I I

b I I I

c I I I

The result of our aggregation procedure provides a unique interval order as close as
possible to the input profile. It is not a preorder (a is preferred to b and all the other
comparisons are indifference), despite the fact that each preference relation in the input
profile is a preorder.

3.4 More Than One Solution Is Often the Case

Clearly enough, there is no guarantee in general that a unique interval order 〈P, I〉 ex-
ists, leading to a minimal value s∗ for the objective function scoreX(〈P, I〉). This prob-
lem is inherent to the fact that voters may have different preferences, and it may happen
in very simple scenarios, for instance when A consists of two alternatives a and b and
X consists of two interval orders 〈P1, I1〉 and 〈P2, I2〉 on A so that aP1b and aI2b: in
such a case, both 〈P1, I1〉 and 〈P2, I2〉 lead to the minimal value s∗ = p2i, but not to the
same sets of undominated alternatives. Nevertheless, this plurality is problematic since
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decisions made using only one of such optimal interval orders are not necessarily ro-
bust, in the sense that the choice of another optimal interval order could question them.
Typically decisions are made by comparing alternatives or determining undominated
ones. While robustness is a complex notion, a sufficient condition for a comparison to
be robust is when it holds for every optimal interval order, and similarly an alternative is
robustly undominated when it is undominated for all optimal interval orders. Formally,
the following decision problems have to be considered: NEC-COMP(R):

Input: A finite profile X of binary relations 〈P, I〉 on A and two alternatives a, b from
A.
Question: Is it the case that every interval order 〈P, I〉 on A satisfying scoreX(〈P, I〉)
= s∗ is such that aRb? (where R = P or R = I)?

NEC-UNDOM:
Input: A finite profile X of binary relations 〈P, I〉 on A and an alternative a
from A.
Question: Is it the case that for every interval order 〈P, I〉 on A such that scoreX(〈P, I〉)
= s∗, we have a(P ∪ I)b for every b ∈ A?

Those decision problems are ”mildly” hard, since they belong to the complexity class
Θp

2 , consisting of all decision problems which can be solved in deterministic polyno-
mial time using logarithmically many calls to an NP oracle. In order to prove the mem-
bership of NEC-COMP(R) and NEC-UNDOM to Θp

2 , we consider the complementary
problems and show them in Θp

2 as well (this class is closed under complementation).
We have already seen that SCORE is in NP. Now, the value of s∗ can be computed by
binary searching it within the bounds 0 and m.n2.max(p2p, p2i) which is a (rough)
upper bound of s∗, and has a value linear in the size of X since max(p2p, p2i) is a
constant. Hence, s∗ can be computed in deterministic polynomial time using logarith-
mically many calls to an NP oracle (used to solve the SCORE instances encountered
during the search, associated to the successive values of k) . Once this is done, it re-
mains to guess a binary relation 〈P, I〉 on A using a last call to the NP oracle, check
that it is an interval order such that scoreX(〈P, I〉) = s∗, and finally check that aR̄b
(resp. that there exists a b ∈ A such that bPa). We conjecture that NEC-COMP(R) and
NEC-UNDOM are Θp

2-complete. Noticeably, when s∗ is part of the input, the complexity
of NEC-COMP(R) and NEC-UNDOM falls down to coNP. From the practical side, when
several instances of NEC-COMP(R) or NEC-UNDOM sharing the same profile X are to
be solved, it can prove useful to compute s∗ once for all during a pre-processing phase,
then to exploit it in order to solve those instances in a more efficient way.

4 Some Theoretical Results

We analyze here some expected properties for aggregation procedures such as respect
of unanimity, independance, majority, etc., and our objective is to determine whether or
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not our approach satisfies some of them. We begin by the properties at work in Arrow’s
theorem:

Universality. An aggregation procedure is universal if it accepts all configurations for
the input profile. Since the input of our procedure can be any finite set of interval
orders, we can conclude that our procedure is universal.

Transitivity. Arrow’s theorem imposes the transitivity of the preference and the indif-
ference relation. Our procedure provides an interval order which has a transitive
preference relation P but the indifference relation I is not necessarily transitive.
However as we mentioned in the introduction, in order to find an undominated al-
ternative, transitivity of P is enough.

Weak-unanimity. Our procedure satisfies the weak unanimity condition since unanim-
ity is imposed by our formulation as a hard constraint to be respected.

Non-dictatorship. Our procedure obviously satisfies the non-dictatorship condition.
Independence. Our procedure does not satisfy the condition of independence of ir-

relevant alternatives: let us show it on a new example. The set of alternatives is
A = {a, b, c, d} and we have two different profiles X and X ′ which have the same
votes on the subset A′ = {c, d} of A:

Example 3. Table 3 shows the compact matrix of each profile.

Table 4. The compact matrix of profile X and X ′ 4

X a b c d

a 0 0 0 1
b 0 0 6 2
c 4 0 0 6
d 8 6 4 0

X ′ a b c d

a 0 3 0 0
b 3 0 0 3
c 8 1 0 6
d 2 2 4 0

Our procedure concludes that for the profile X there are two optimum solutions, in
the first one c is indifferent to d and in the second one d is preferred to c. However,
even if the profile X ′ has the same votes for the comparison between c and d, our
procedure concludes for X ′ that c is preferred to d.

We consider now some other properties that an aggregation procedure should preferably
satisfy.

Anonymity. The result of the aggregation depends only on the preferences of voters
(and for instance, not on the age, sex or seniority of candidates). Let P be the set
of permutations of A, π one element of P . We denote by π(R), the binary relation
such as π(a)π(R)π(b) ⇐⇒ aRb. An aggregation procedure is anonymous if and
only if ∀π ∈ P ,f(R1, R2, . . . , Rm) = π(f(π(R1), π(R2), . . . , π(Rm))).
It is easy to see that our procedure is anonymous.

Loyalty. If there is just one voter the procedure must provide as a result the same
preference as her: m = 1 =⇒ f(R1) = {a ∈ A : aR1b, ∀b ∈ A}. Again, it is easy
to check that our procedure satisfies the loyalty condition
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Majority condition. If there is a majority of voters who prefers a to b then the result of
the aggregation procedure must agree with this comparison: f satisfies the majority
condition if and only if ∀(R1, R2, . . . , Rm) ∈ X, ∀a, b ∈ A

#p(a, b) > #p(b, a) =⇒ aPb,

#p(a, b) = #p(b, a) =⇒ aIb.

Our aggregation procedure does not satisfy the majority condition as the following ex-
ample shows it.

Example 4. Table 5 gives the number of votes for pairwise comparisons between four
alternatives given by 11 voters

Table 5. The number of voters agreeing for a strict preference

P a b c d

a 0 6 5 1
b 2 0 8 3
c 6 2 0 1
d 4 3 3 0

Even if the majority of voters prefer c to a, the result of our procedure concludes that
a is preferred to c (the output is the interval order such that aPb, aPc, aId, aIa, bPc,
bId, bIb, cId, cIc, dId and its distance to the profile is 39).

5 Conclusion

In this paper, we have presented an optimization-based approach to interval orders ag-
gregation. In this approach, to every profile of interval orders, one associates an instance
of a propositional optimization problem (namely the Binate Covering Problem); solv-
ing the latter gives in a straightforward way an interval order (the ”closest” to the input
profile in some sense), which is considered as the aggregation looked for. Among other
things, we have computed an upper bound of the size of the BCP instance associated
to every profile (showing that it is only logarithmic in the number of voters), identified
some properties satisfied (or not) by the aggregation approach. An interesting feature of
such an optimization-based approach to aggregation is that it can be easily tuned to fit
with other preference structures (e.g. preorders, semiorders, etc.). Indeed, it is enough
to point out the corresponding hard constraints. Investigating in more depth such exten-
sions is a perspective for further research.

The Binate Covering Problem can be seen as a very specific case of an Integer Lin-
ear Program in which case efficient ILP frameworks exist (e.g. CPLEX). However, it
looks that tools dedicated to Boolean reasoning are better suited to solve such prob-
lems: Weighted Partial MAX SAT [1] and Pseudo Boolean Optimization [11] engines
are currently receiving a lot of attention since international evaluations are organized
regularly and many systems are freely available for the research community.



260 D. Le Berre, P. Marquis, and M. Öztürk

We designed a proof of concept tool based on the SAT4J library[9], a library of
Boolean search engines dedicated to solving SAT, MAX SAT and Pseudo Boolean
problems. That tool can be downloaded from http://sat4j.ow2.org/.

In order to have an idea of the applicability of our approach on a real scenario, we
used the publicly available results of the SAT RACE 20063. It is a competitive event
between 16 SAT solvers on a set of 100 benchmarks. Here each benchmark is a voter
and each solver is an alternative. A given benchmark b prefers the SAT solver x to the
SAT solver y iff x solved b faster than y. A given benchmark b is indifferent between
the SAT solvers x and y iff none of x and y solved b or both of them solved b but
with a roughly the same CPU time (the difference is less than 1 second). By definition,
each vote is an interval order. Computing the aggregation of such votes means solving
a binate covering problem with 376 variables and 47536 clauses. Our aggregator takes
less than one second to generate the BCP from the compact matrix. SAT4J takes one
second to find a solution, but fails to prove it is optimal even after running for several
hours.

We plan to test several MAXSAT and Pseudo Boolean engines on aggregation of real
interval orders instances (including LP based ones).
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1. Argelich, J., Li, C.-M., Manyà, F., Planes, J.: The first and second max-sat evaluations. Jour-
nal on Satisfiability, Boolean Modeling and Computation (JSAT) 4, 251–278 (2008)

2. Arrow, K.J.: Social choice and individual values, 2nd edn. J. Wiley, New York (1951/1963)
3. de Condorcet, M.: Essai sur l’application de l’analyse à la probabilité des décisions rendues
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Abstract. In this paper we propose a model for the graphical representa-
tion of valued preference matrices. These are obtained from multicriteria
outranking methods such as for instance ELECTRE or PROMETHEE.
As a consequence, they are often known to be non-symmetric, making
two-dimensional representations seldom possible. An optimization model
is defined and a particle swarm optimization algorithm is used to solve it.
Validation is based on artificial tests. Finally, an illustrative example is
given.

1 Introduction

It is common knowledge that problems involving several conflicting criteria are
ill-defined [1,2]. The ranking of alternatives is not an obvious task since a given
action is seldom better than others on all the criteria. As a consequence, finding
a solution that is simultaneously optimal for every considered point of view is
utopian in practice.

Therefore, many authors insist on the fact that multicriteria methods do not
allow to solve a problem but only support an individual or a group of individuals
during the decision process. The main challenge is thus to provide adequate tools
dedicated to this decision aid activity. Among them, graphical representations
are especially appreciated by end users.

In this paper, we propose a particular graphical representation of valued pref-
erence matrices. These can be obtained for instance by applying the outranking
method PROMETHEE [3,4] but are not restricted to it. In section 2, we describe
the underlying model. Section 3 presents the algorithm that was used. Artificial
tests are performed in section 4 and an illustrative example is presented in
section 5.

2 The Model

Let A = {a1, a2, ..., an} be a set of n alternatives that are evaluated on a set
of q criteria denoted by F = {f1, f2, ..., fq}. Without loss of generality, we may
assume that these criteria have to be maximized. Let Π be a valued preference
matrix built on the basis of all the pair-wise comparisons of elements belonging
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to A. More precisely, Π(ai, aj) = 1 will denote that ai is strictly preferred to aj

while Π(ai, aj) = 0 will denote that ai is not strictly preferred to aj . We assume
that elements from the matrix Π are such that:{

Π(ai, aj) ≥ 0
Π(ai, aj) + Π(aj , ai) ≤ 1.

(1)

One way to compute such a matrix is to use the PROMETHEE method [3,4]. At
first, the differences between any pair of alternatives are computed for a given
criterion fk:

dk(ai, aj) = fk(ai)− fk(aj). (2)

Then, this difference is transformed into a preference degree denoted Πk(ai, aj)
degree using a non-decreasing function Pk : # → [0, 1]:

Πk(ai, aj) = Pk[dk(ai, aj)]. (3)

Finally, a global preference degree is computed by aggregating these uni-criteria
degrees:

Π(ai, aj) =
q∑

k=1

wkΠk(ai, aj). (4)

Where wk represents the weight associated to criterion fk. Without loss of gen-

erality, we assume that wk > 0 and
q∑

k=1
wk = 1.

Graphical tools are key elements to analyze problems involving multiple di-
mensions. They offer a convenient way to structure them and to lower their
complexity. Traditional statistical approaches such as boxplots, piecharts, scat-
ter plots, principal component analysis (PCA), ... are commonly used by prac-
titioners during the decision process. However none of the methods really take
into account the multicriteria nature of the problem. In other words, they do
not incorporate the fact that the criteria have to be optimized and have to be
interpreted with regard to the decision maker’s preferences. To our knowledge,
only a few approaches have been proposed to visualize multicriteria problems.
For instance, in the PROMETHEE methodology, the GAIA method [5] is based
on a PCA applied on the matrix of unicriterion net flow scores. It allows to
bring information about conflicting and redundant criteria or alternatives and
indicates regions where the best compromise solution is lying. We do think that
this research area still needs to be explored.

As already stressed, the aim of this contribution is to propose a graphical
representation of the matrix. When matrices are symmetric, the isotonic repre-
sentation method can be used [6]. The underlying idea of this approach is to find
the coordinates of the n points in a space of dimension l such that the distances
between the pairs of elements are equal to the values of the matrix.

Due to the multicriteria context, π matrices are seldom symmetric. Moreover,
the distance notion does not take into account the fact that criteria have to be
optimized. Therefore, a new approach has to be developed.
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First we start with the representation of two elements. The concept of circular
representation is the following: the elements ai and aj will be placed on a circle
the radius of which is equal to [Π(ai, aj) + Π(aj , ai)]/(2π). This will lead to a
perimeter of [Π(ai, aj) + Π(aj , ai)]. A clock-wise interpretation of the circle is
the following: the arc from ai to aj is equal to Π(ai, aj) and the arc from aj and
ai is equal to Π(aj , ai). As a consequence, two elements such that Π(ai, aj) $
Π(aj , ai) $ 0 are superposed. The graphical interpretation is thus consistent
with the fact that they are indifferent. Figure 1 illustrates different preference
settings.

Π =
(

0 0.5
0.5 0

)
:

1

2

0.5 0.5

Π =
(

0 0.9
0.1 0

)
:

1

2

0.1 0.9

Fig. 1. Circular representation of two different preference settings

It is obvious to notice that such a representation is always possible when only
two alternatives are considered. When more actions are taken into account, a
two dimensional representation does not perfectly correspond to the Π matrix.
Let p(ai, aj) be the length of the arc going from ai to aj for a given circular
representation. Our aim is to find the circular representation that will be as
close as possible to the Π matrix. More formally, we want to find the circular
representation such that:

min

n∑
i=1

n∑
j=1

[Π(ai, aj)− p(ai, aj)]2. (5)

An empirical approach based on particle swarm optimization is used to solve
this problem.

3 The Algorithm

Different approaches can be considered to solve the model presented in the pre-
vious section. As a first attempt, we have chosen to apply a Particle Swarm
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Optimization (PSO) [7,8] algorithm which is generally well performing for con-
tinuous optimization problems. Of course other heuristics could be considered
but this goes beyond the scope of this contribution. Our main focus remains to
present an original view of a preference matrix.

To solve our problem using the PSO approach we will have to define the
variables of our search space. There will be two sets of variables:

– Positioning variables (xi, yi): These variables define the position of an action
i (where i = 1, 2, ..., n). There will be 2n variables in this set. As two actions
will ever be separated by a maximum distance of 1/2π, we can reduce the
search space for these variables. To make the implementation easier, we will
allow each variable to be in [−1

2π , 1
2π ] even though we could reduce the space

to a disc of diameter 1/2π.
– Variables defining the circles kij : A single variable per pair of actions will be

enough to define the preference circle once the coordinates of action i and
j are chosen (where i = 1, 2, ..., n − 1 and j = i + 1, ..., n). The number of
variables of this set will be Cn

2 .

Figure 2 shows how the variable kij defines a circle for two actions i and j whose
coordinates are known. We consider the chord between the two actions and the
normal line that cuts it in the middle. On this line, kij will give us the position
of the circle’s center. Since this circle can only have a perimeter of 1 at most, as
described in Section 2, kij will only have values in [0, 1

2π ] if Π(ai, aj) ≥ Π(aj , ai)
and in [−1

2π , 0] if Π(ai, aj) < Π(aj , ai).
Figure 3 gives an example of representation obtained using the previously

described algorithm. The example involved 6 actions with randomly generated
preferences. The color of the arcs indicates the difference between their length
and the preference that they are meant to represent. Table 1 gives a legend of
the colors and the range of error symbolized by them.

Studying the evolution of the mean error gave us an understanding of how ef-
fective particle swarm optimization can be for this kind of problems. We can see

kij

i

j

Fig. 2. Variable kij defining the circle for two actions
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Fig. 3. Complete circular representation of a problem

Table 1. Error ranges on the representation

Color Range of error
Red 0.1 < error
Blue 0.01 < error < 0.1
Green 0.001 < error < 0.01
Yellow error < 0.0001

in Figure 4 that no matter where the algorithm starts, the error drops tremen-
dously during the first iterations before stabilizing itself after about 20000 evalu-
ations of the objective function. This behavior can be explained by three possible
situations [9,10]:

– Convergence: all the particles have converged towards the same position and
are stuck in the same local or global minimum.

– Divergence: the particles fail in finding a good solution. They keep moving
yet the error of the best solution found does not change.

– Stagnation: the particles have assembled in two or more separated positions
that act as attractive poles for the particles near them. The movements of
the particles are influenced by the different local minima but the particles
cannot escape from the current situation.

By observing the kinetic energy of the particle we can see if these are still in move-
ment when the error stabilizes or if they are still looking for a better solution far
from the best one discovered.We can also display the volume of the swarm of parti-
cles to see if these are dispersed or if they are concentrated around a single solution.
Figure 5 shows the evolution of these two measures while the algorithm is solved.
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Fig. 4. Evolution of the mean error with each evaluation of the objective function
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Fig. 5. Evolution of the kinetic energy and the volume of the swarm

It indicates that both the kinetic energy and the volume of the swarm reach zero,
meaning that the algorithm has converged towards a single best solution.

4 Some Empirical Tests

Using empirical tests on artificial matrices we tried to optimize the parameters
chosen for our algorithm. The parameters that we chose to modify for the tests
were the following:

– The number of particles N : initially set at 20, we suspected the number had
to be increased to broaden our coverage of the search space.
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– The size of the neighborhood K: initially of 3 particles. A higher number
would speed the propagation of good solutions to the other particles [11].

– A parameter γ that defines the movement equations of the particles.

We tried to find the values that allowed us to improve the algorithm in terms
of speed and accuracy when searching for representations of attainable matrices
(i.e. matrices that can have a perfect representation).

To evaluate the different parameter settings, several indicators were
considered:

– The mean error on all arcs of the representation μerror.
– The standard deviation of the mean error σerror: giving the robustness of

the performance for a high number of executions.
– The success rate of the algorithm τ : indicating the proportion of executions

that yielded an acceptable representation.
– The speed of convergence μconv: in number of iterations before a stable

representation is found.
– The standard deviation of the speed of convergence σconv.

After some tests where we appreciated the effects of modifying the param-
eters, we obtained a configuration that improved the results significantly.
Table 2 summarizes the results obtained with an initial and the last config-
urations. We found out that increasing the number of particles improved the
results until a number of 300 to 600. As for the other parameters, using a ring
neighbourhood with 3 particles and a γ of 2.15 seemed to produce the best
output.

Table 2. Quality of results with two configurations

Parameters N = 20 N = 300
K = 3 K = 3

γ = 2.01 γ = 2.15
Indicators μerror = 0.1058 μerror = 0.000858

σerror = 0.0109 σerror = 0.0015
τ = 0% τ = 59%

μconv = 192, 460 μconv = 68, 877
σconv = 55, 182 σconv = 8, 951

5 An Illustrative Example

The example we will use to illustrate our model is taken from the multicriteria
literature: a power plant localization problem described by Brans et al. [3]. In
that example, 6 alternatives are evaluated using the PROMETHEE and GAIA
methods. The preference matrix we obtain for it is the following:
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Π =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0.296 0.25 0.268 0.1 0.185

0.463 0 0.689 0.334 0.296 0.5
0.235 0.18 0 0.334 0.055 0.43
0.398 0.506 0.305 0 0.224 0.212
0.444 0.515 0.486 0.379 0 0.448
0.286 0.399 0.25 0.431 0.133 0

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

When carefully studying this matrix, we can see that it cannot be exactly rep-
resented by a 2-dimensional arrangement. This can be easily demonstrated by
showing that the triangle inequality is not verified for most sets of 3 actions from
our problem:

|l(a, b)− l(a, c)| ≤ l(a, c) ≤ l(a, b) + l(b, c) (7)

where l(a, b) represents the length of the chord between actions a and b.
Using our swarm particle optimization algorithm we can obtain a complete

circular representation as in Figure 3 or limit ourselves to the arcs that give us
the most interesting information. The following matrix contains the net flow (or
global score) of the 6 actions in our problem:

φ =

⎛⎜⎜⎜⎜⎜⎜⎝
−0.1454
0.0772
−0.1492
−0.0202
0.2928
−0.0552

⎞⎟⎟⎟⎟⎟⎟⎠ . (8)

By comparing the net flows, we can see that the best alternative is action 5.
Figure 6 shows a circular representation of the preferences for action 5 as well as
the error on each arc. The color of the arcs indicates the error in length of the
arc as already explained in Table 1. As the only colors present are yellow and
blue, we are sure that this representation is reliable.

On the circular representation in Figure 6 we also have a representation of the
net flow as small colored disks that are blue when the net flow is positive and red
otherwise. The size of the disks indicates the absolute value of the net flow. This
additional information allows us to quickly detect which action is the next best
one in the ranking as well as compare its behavior with regard to the best one.
However action 5’s higher net flow makes it by far the most interesting option.
This assumption is further reinforced by the length of the blue arcs leaving action
5 in comparison to the red ones.

When considering action 1 on Figure 7, we can remark that even though the
action is globally considered as one of the worst, it is highly preferred to action 3
and is reasonably preferred to actions 2 and 4. Another interesting information is
the big size of the circle between actions 1 and 2, indicating that the two actions
are clearly differenciated (i.e. the sum of their respective preferences is close to
1) whereas actions 1 and 3 are more similar (i.e. the sum of their preferences has
a lower value).



Circular Representations of a Valued Preference Matrix 269

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Fig. 6. Circular representation of the preferences for action 5
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Fig. 7. Circular representation of the preferences for action 1

Considering only one action at a time we are actually looking at a repre-
sentation of the row and column of that action in the matrix Π . The elements
considered are highlighted in the matrix of Figure 7 for action 1. This graphi-
cal representation allows us to quickly identify remarkable properties that would
have taken us much more time to discover when simply looking at the correspond-
ing numbers. As the cognitive effort of the decision maker has been reduced when
analyzing a given preference matrix, they can afford to analyze more situations
making it likely to take better decisions.
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6 Conclusion

In this paper we described a new model to graphically represent valued prefer-
ence matrices using circles. However this model cannot be used in all cases to
accurately represent problems with more than two actions. Therefore we make
use of particle swarm optimization to find a representation as close as possible
to a given matrix. The developed algorithm is tested on several cases and its
parameters are optimized to find better solutions. We also considered different
variants of particle swarm optimization such as attractive-repulsive optimization
[12] but the best results were obtained using the classical approach. Finally, an
example was used to illustrate potential uses for the model such as the analysis
of individual actions of a decision problem or the understanding of the relations
between two of them.

Further work involves additional testing of the algorithm on different problems
and the use of other optimization means to find more accurate representations.
In particular, we could compute the theoretical minimum error of a given matrix
and try to reach it using the algorithm. Or further analyze the search space to
improve the way the algorithm explores it.
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Abstract. In this paper, we consider problems where the data is uncertain 
and/or imprecise and given by basic belief assignments (BBA’s). In order to 
compare the different pairs of the BBA’s, a new concept called the first belief 
dominance is proposed. This is naturally inspired by the concept of first sto-
chastic dominance that allows comparing probability distributions. Finally, an 
application in multicriteria decision aid context is presented to illustrate the 
proposed technique. 

Keywords: Evidence theory, First belief dominance.  

1   Introduction 

Evidence theory has been initially developed by Arthur Dempster in 1967 [5], formal-
ized by Glenn Shafer in 1976 [16], and axiomatically justified by Philippe Smets in 
his transferable belief model [17]. This theory has been proposed as a generalisation 
of the Bayesian theory. It provides a convenient framework for modelling uncertainty 
and imprecision in situations where the available information is imperfect.  

Basically, the imperfection in data within evidence theory is modelled using an 
evidential function called basic belief assignment (BBA). In practice, one is some-
times confronted with the necessity of comparing several BBA’s. For instance, we 
can imagine a multicriteria decision problem where the evaluations of alternatives are 
given by BBA’s. In order to apply a multicriteria procedure, the decision-maker has to 
compare these BBA’s. However according to our knowledge, there are no procedures 
developed within evidence theory allowing the comparison of the BBA’s. 

In the probability theory, the comparison between two probability distributions is 
performed using a technique called the stochastic dominance. This approach has been 
introduced in statistics [13] [14] and has been addressed fundamentally in [3] [7] [8]. 
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It has been applied in several domains especially in the fields of finance, economics 
and multicriteria decision aid. 

Initially, the stochastic dominance concept has been used in comparing probability 
distributions for example in [15]. Then, the use of stochastic dominance has been 
extended to compare imprecise probability distributions for instance in [12]. Recently, 
this concept has been employed to compare mixed functions, i.e., probability distribu-
tions, fuzzy membership functions, possibility measures and belief masses [4]. How-
ever, the use of this concept necessitates the transformation of these functions to oth-
ers of which the proprieties are similar to those of probability functions. For instance, 
the pignistic transformation developed essentially to make decisions in evidence the-
ory [18] is used to transform a BBA into a pignistic probability function. 

In this paper, we propose a new concept in evidence theory called the first belief 
dominance allowing the comparison of the BBA’s. This approach generalizes the first 
stochastic dominance concept which is the simplest case of the stochastic dominance 
approach. Let us note that similar extensions of stochastic ordering to belief functions, 
called credal orderings, have been developed by Thierry Denoeux and have been 
published recently in [6]. Some of these orderings have been introduced, without 
development, in [1] [2] in the context of novelty detection.    

This paper is organized as follows: in section 2 we introduce some concepts of evi-
dence theory. The notion of first belief dominance is presented in section 3.  Finally, 
the proposed approach is illustrated by an application in multicriteria decision aid 
context in section 4. 

2   Evidence Theory: Some Concepts 

The aim of this section is to clarify the notation and terminology of evidence theory 
that will be used in the rest of the paper. We will only present the main functions that 
enable modelling the knowledge.  

Let Θ  be a finite set of mutually exclusive and exhaustive hypotheses called the 

frame of discernment and let Θ2  be the set of all subsets of .Θ  A BBA [16] is a func-

tion m  from Θ2  to ]1 ,0[  verifying 0)Ø( =m  and .1)(
2

=∑
Θ∈A

Am  

The quantity )(Am  represents the belief that is committed exactly to A  which, in 

the case of a disjunction of hypotheses, hasn’t been assigned to a subset of A  because 
of insufficient information. When ,0)( ≠Am  A is called focal element. The set of 

focal elements is called the focal set.  
Two functions derived from the BBA, are the belief (or the credibility) function Bel  

and the plausibility function Pl  [16]. These functions are defined respectively by:   

∑
⊆

=
AB

BmABel )()(  (1) 

∑
≠∩

=
Ø

)()(
BA

BmAPl  (2) 
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The quantity )(ABel  is interpreted as the total belief associated to A  whereas )(APl  

is viewed as the amount of belief that could potentially be placed in .A  These two 

functions can be connected by the equation )(1)( ABelAPl −=  where A  denotes the 

complement of .A   
Obviously, if all the belief masses of a given BBA are associated to singletons, the 

induced belief function is nothing else than a probability function. In evidence theory, 
this special function is called a Bayesian belief function. 

In his transferable belief model, Smets has proposed a technique called the pignis-
tic transformation for translating the belief functions models to probability models in 
order to make decisions [18]. This transformation consists in distributing equally each 
belief mass )(Am  among the elements of .A  This leads to the pignistic probability 

function BetP  defined as follows: 

AH
A

Am
HBetP i

AHA

i

i

∈∀= ∑
∈∈ Θ

  ,
||

)(
)(

/2

 (3) 

where || A  is the cardinal of the subset .A  

3   First Belief Dominance 

3.1   Notation  

Let im  and jm  denote the BBA’s of a discrete variable taking the values hx  (with 

) ..., ,2 ,1 rh =  and let iBel  and jBel  be their respective belief functions. Throughout 

this paper, we shall adopt the convention of labelling the values of the variable in 
accordance with their magnitudes, i.e., .... 21 rxxx ppp  The set of these values is 

denoted by .X  
For all { }, ..., 1, ,0 rk ∈  let: 

⎩
⎨
⎧ =

=
otherwise } ..., ,{

0 if              Ø

1 k

k xx

k
A  (4)

and let )(XS  denotes the set { }. ..., , , 21 rAAA  Similarly, for all { }rl  ..., 1, ,0∈  such as 

,krl −=  let: 

{ }⎩
⎨
⎧ =

=
+− otherwise  ..., ,

0 if                  Ø

1 rlr
l xx

l
B  (5)

and let )(XS denotes the set { }. ..., , , 21 rBBB   

k  and l  represent respectively the number of elements of the sets kA  and .lB  

Obviously, ,)()( rXSXS ⏐=⏐=⏐⏐  lkrk BBA == −  for all { }rk  ..., 1, ,0∈  and 

klrl AAB == −  for all { }. ..., 1, ,0 rl ∈   



 The First Belief Dominance: A New Approach in Evidence Theory 275 

 

3.2   Definitions 

Before introducing the first belief dominance concept, let us define the ascending and 
descending belief functions. 
 

Definition 1. The ascending belief function denoted iBel  and induced by im  is a 

function ]1 ,0[)(: →XSBeli  defined such as ∑
⊆

=
kAC

iki CmABel )()(  for all ).(XSAk ∈  

 

Definition 2. The descending belief function denoted iBel  and induced by im  is a 

function ]1 ,0[)(: →XSBeli  defined such as ∑
⊆

=
lBC

ili CmBBel )()(  for all ).(XSBl ∈  

 
The ascending belief function represents the beliefs of the nested sets A1, A2, …, Ar, 
i.e., the sets }. ..., ,{..., }, ,{ },{ 1211 rxxxxx  Similarly, the descending belief function 

represents the beliefs of the nested sets B1, B2, …, Br, i.e., the sets 
}. ..., ,{..., }, ,{ },{ 11 rrrr xxxxx −  

The third definition is that of the first belief dominance. This condition holds be-
tween two BBA’s im  and jm  whenever the two following conditions are verified 

simultaneously: 

• The ascending belief function iBel  lies, entirely or partly, below the ascend-

ing belief function ,jBel  

• The descending belief function iBel  lies, entirely or partly, above the de-

scending belief function .jBel  
 

Definition 3. im  is said to dominate jm  according the first belief dominance if and 

only if the following two conditions are verified simultaneously: 

• )()( kjki ABelABel ≤  for all ),(XSAk ∈  

• )()( ljli BBelBBel ≥  for all ).(XSBl ∈  
 

In the case where the two conditions are not verified simultaneously, then im  does 

not dominate jm  according the first belief dominance concept. As a conclusion, the 

use of this approach leads to the following situations:  

• FBD  corresponds to the situation where im  dominates jm  (we denote 

), FBD ji mm  

• FBD  corresponds to the situation where im  does not dominate jm  (we de-

note ). FBD ji mm  
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3.3   The Preference Situations between the BBA’s  

The first belief dominance concept allows concluding if mi (mj, resp.) dominates mj 
(mi, resp.) or not. So, four preference situations can be established between mi and mj: 

• If ji mm  FBD  and , FBD ij mm  then im  is indifferent to ;jm   

• If ji mm  FBD  and , FBD ij mm  then im  is strictly preferred to ;jm   

• If ji mm  FBD  and , FBD ij mm  then jm  is strictly preferred to ;im   

• If ji mm  FBD  and , FBD ij mm  then im  and jm  are incomparable.  

These preference situations have been also defined when the stochastic dominance rules 
are used to compare probability distributions [4]. The incomparability situation repre-
sents the fact that we cannot pronounce on a clear comparison between two BBA’s.  
 
Example 1. Let us consider the following three BBA’s of a discrete variable taking 
the values : and , , 321 xxx   
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At first, the ascending belief functions related to the BBA’s are computed 
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Similarly, the descending belief functions related to the BBA’s are determined 
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Then, the first belief dominance concept is applied. The observed belief dominances 
are illustrated on table 1.  

Table 1. The observed belief dominances 

 m1 m 2 m 3 

m 1 - FBD FBD  
m 2 FBD  - FBD  
m 3 FBD  FBD - 



 The First Belief Dominance: A New Approach in Evidence Theory 277 

 

Based on the observed belief dominances, the preference situations between the 
BBA’s are established: 

• 21  FBD mm  and , FBD 12 mm  then 1m  is strictly preferred to ;2m  

• 31  FBD mm  and , FBD 13 mm  then 1m  and 3m  are incomparable; 

• 32  FBD mm  and , FBD 23 mm then 3m  is strictly preferred to .2m  
 

Finally, given two BBA’s mi and mj and their related pignistic probability functions 
BetPi and BetPj, it is possible to have mi dominates (does not dominate, resp.) mj ac-
cording the first belief dominance approach whereas BetPi does not dominate (domi-
nates, resp.) BetPj according the first stochastic one. Therefore, the dominance (the 
non dominance, resp.) according the first belief dominance concept does not imply 
necessarily the dominance (the non dominance, resp.) according the stochastic order-
ing applied on the pignistic probability functions.     
 

Example 2. Let us consider again the data of example 1. The application of the first 
stochastic dominance (FSD) approach on the pignistic probability functions leads to 
the following stochastic dominances.  

Table 2. The observed stochastic dominances 

 BetP1 BetP2 BetP3 
BetP1 - FSD  FSD  
BetP2 FSD  - FSD  
BetP3 FSD FSD - 

 
Based on the results of tables 1 and 2, we remark that the first belief and stochastic 

dominance approaches lead to similar results except in the following cases: 

• 21  FBD mm  whereas ; FSD 21 BetPBetP  

• 13  FBD mm  whereas . FSD 13 BetPBetP  

3.4   First Stochastic Dominance: A Particular Case of First Belief Dominance 

Of course, it seems natural that the first belief dominance definition coincides with 
the first stochastic dominance definition in the context of Bayesian belief functions.  

The first stochastic dominance is defined as follows. Let ip  and jp  be two prob-

ability functions and iP  and jP  be their respective cumulative distributions. Accord-

ing to [7], ip  is said to dominate jp  according the first stochastic dominance if and 

only if )()( hjhi xPxP ≤  for all .Xxh ∈  

 
Proposition 1. If iBel  and jBel  are two Bayesian belief functions over the frame ,X  

then the two conditions of definition 3 are equivalent. 
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Proof. If iBel  is a Bayesian belief function over the frame ,X  then 

1)()( =+ kiki ABelABel  for all . ..., 1, ,0 rk =  Or, we have lkrk BBA == −  for all 

, ..., 1, ,0 rk =  thus .1)()( =+ liki BBelABel  The first condition of definition 3 can be 

written as )(1)(1 kjki ABelABel −≥−  for all , ..., 2, ,1 rk =  then )()( ljli BBelBBel ≥  

for all .1 ..., 1, ,0 −= rl  As a result, the two conditions of definition 3 are equivalent 
when iBel  and jBel  are Bayesian belief functions.  

 
Proposition 2. If iBel  and jBel  are two Bayesian belief functions over the frame ,X  

then the first stochastic dominance is a particular case of the first belief dominance. 
 
Proof. According to proposition 1, since the two conditions of definition 3 are equiva-
lent, then im  dominates jm  according the first belief dominance if and only if 

)()( kjki ABelABel ≤  for all ).(XSAk ∈  iBel  is a Bayesian belief function, then all 

the focal sets of im  are singletons. As a result, )()()(
1

ki

k

h
hiki xPxmABel ==∑

=

 for all 

).(XSAk ∈  Therefore, im  dominates jm  according our approach if and only if 

)()( hjhi xPxP ≤  for all .Xxh ∈  So, the first stochastic dominance is a particular case 

of the first belief dominance.  

4   Application in Multicriteria Decision Aid Context 

In order to illustrate the first belief dominance concept, let us consider the following 
multicriteria decision problem.  

A company wants to recruit a new collaborator for the marketing department. Five 
candidates are considered. A decision for selecting a candidate ci (with )5 ..., ,2 ,1=i  
has to be made based on four qualitative criteria to maximize: the learning capacities, 
the past experience, the decision-making capacities and the communication skills. The 
criteria weights are respectively equal to 0.3, 0.3, 0.3 and 0.1.  

The candidates are evaluated by the director of human resources department. 
For each criterion, five assessment grades are considered: x1 “very bad”, x2  
“bad”, x3 “average”, x4 “good” and x5 “excellent”. The set of these grades is de-
noted by .X  

The candidates’ performances on each criterion are given by BBA’s and are 
presented in table 3. For instance, the evaluation of candidate c1 on criterion g1 is 
established as follows: the director of human resources department hesitates  
between the third and the fourth assessment grades. He is sure that the candidate 
has either average or good learning capacities without being able to refine his 
judgment. 
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Table 3. The candidates’ performances 

 g1 g2 g2 g3 
c1 m1(x3) = 0.94 

m1(x3,x4) = 0.06 
 
 

m1(x4) = 1 
 

m1(x1) = 0.04 
m1(x3) = 0.6 
m1(x1,x2,x3) = 0.36 
 

m1(x2) = 1 
 

c2 m2(x1) = 0.6 
m2(x1,x2) = 0.4 

m2(x3) = 1 
 

m2(x4) = 0.6 
m2(x4,x5) = 0.4 

m2(x3) = 1 
 

c3 m3(x2) = 1 
 

m3(x3) = 0.28 
m3(x4) = 0.44 
m3(x3,x4) = 0.28 

m3(x2) = 0.33 
m3(x3) = 0.67 
 

m3(x3) = 0.84 
m3(x3,x4) = 0.16 
 

c4 m4(x1) = 0.67 
m4(X) = 0.33 
 

m4(x4) = 0.67 
m4(x3,x4) = 0.33 
 

m4(x1,x2) = 0.44 
m4(x2,x3) = 0.19 
m4(x3) = 0.37 

m4(x3) = 0.9 
m4(x4) = 0.1 
 

c5 m5(x2) = 1 m5(x4) = 1 
 

m5(x3) = 0.6 
m5(x3,x4) = 0.4 

 

m5(x2) = 0.9 
m5(x3) = 0.05 
m5(x2,x3) = 0.05 

 
The first belief dominance approach is applied to compare the BBA’s character-

izing the candidates’ evaluations on each criterion. The results are illustrated in 
tables 4 to 7. 

Table 4. The observed belief dominances between candidates on criterion g1 

 c1 c2 c3 c4 c5 
c1 - FBD FBD FBD  FBD 

c2 FBD  - FBD  FBD  FBD  
c3 FBD  FBD - FBD  FBD 

c4 FBD  FBD  FBD  - FBD  
c5 FBD  FBD FBD FBD  - 

Table 5. The observed belief dominances between candidates on criterion g2 

 c1 c2 c3 c4 c5 
c1 - FBD FBD FBD FBD 
c2 FBD  - FBD  FBD  FBD  
c3 FBD  FBD - FBD  FBD  
c4 FBD  FBD FBD - FBD  
c5 FBD FBD FBD FBD - 
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Table 6. The observed belief dominances between candidates on criterion g3 

 c1 c2 c3 c4 c5 
c1 - FBD  FBD  FBD  FBD  
c2 FBD - FBD FBD FBD 
c3 FBD  FBD  - FBD FBD  
c4 FBD  FBD  FBD  - FBD  
c5 FBD  FBD  FBD FBD - 

Table 7. The observed belief dominances between candidates on criterion g4 

 c1 c2 c3 c4 c5 
c1 - FBD  FBD  FBD  FBD  
c2 FBD - FBD  FBD  FBD 

c3 FBD FBD - FBD  FBD 

c4 FBD FBD FBD  - FBD 

c5 FBD FBD  FBD  FBD  - 

 
Then, the preference situations between the candidates’ evaluations on each crite-

rion are determined using the rules presented in section 3.3. Figure 2 gives the prefer-
ence graphs of criteria 1 to 4. The candidates are represented by nodes and the prefer-
ence situations are represented by the graph conventions given in figure 1.  

 
  

 
 
 
     
 
 
 
 
 
 

 
Fig. 1. Graphic representation of the preference situations 

Finally, the preference graphs on each criterion are aggregated in order to obtain a 
global preference graph from which the best candidate is chosen. The aggregation is 
performed using the algorithm AL3 proposed by Jabeur and Martel [11]. This algo-
rithm has been applied in the context of group decision making [9] [10]. It has also 
been used to aggregate the single-criterion preference relations between alternatives 
provided by the application of the stochastic dominance rules for comparing mixed 
evaluations (i.e. evaluations expressed by probability distributions, fuzzy membership 
functions, possibility measures and belief masses) [4]. 

ci cj ci is preferred to cj 

ci and cj are indifferent 

ci and cj are incomparable 

ci is preferred by cj ci cj 

ci cj 

ci cj 
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c1 c2

c4

c5

c1

c3

c4

c5

c3

c1 c2

c3

c4

c5

c1 c2

c4

c5

c3

The preference graph of criterion g1 The preference graph of criterion g2

The preference graph of criterion g3 The preference graph of criterion g4

c2

 

Fig. 2. The preference graphs of criteria 

The algorithm AL3 allows determining, for each pair of candidates, the nearest 
global preference relation to the single-criterion ones. For this purpose, a divergence 
degree that measures the deviation between the global preference relation and each 
single-criterion one is calculated. This degree takes into account the criteria weights. 
The global preference relation is the one that minimizes the divergence degrees. More 
details concerning this algorithm can be found in [11]. Figure 3 gives the global pref-
erence graph. 

As one may remark, since candidates c2 and c3 are preferred by candidates c1 and 
c5, they can not be chosen. c1 and c5 are indifferent. Moreover, c4 is preferred by c5. 
Then c1 and c5 are the set of best candidates. 
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c1

c4

c5

c2

c3

 

Fig. 3. The global preference graph 

5   Conclusion 

In this paper, we have introduced a new approach in evidence theory that allows to 
compare the BBA’s called the first belief dominance. We have shown that it is a natu-
ral extension of the first stochastic dominance concept which is the simplest case of 
the stochastic dominance approach. In addition, we have illustrated the proposed 
concept by an application in multicriteria decision aid field. Of course there are still 
many directions for future research. Among others, we can mention the extension of 
the first belief dominance concept to second and third degrees. 
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Paraconsistent Fuzzy Logic Framework
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Abstract. A natural interpretation of GUHA style data mining logic in
paraconsistent fuzzy logic framework is introduced. Significance of this
interpretation is discussed.

Keywords: Data mining, fuzzy logic, paraconsistent logic.

1 Introduction

Classical Boolean logic is the logic of mathematics. In pure mathematical world
things are binary: either a number is a prime number or is not, either a theorem
is proved or not, tertium non datur is valid. Outside mathematics in the real
world, in data analysis and decision making, however, applying Boolean logic
causes anomalies: the law of the excluded middle is problematic, the use of
classical quantifiers ∀ (for all) and ∃ (there exists) is clumsy and truth and
falsehood need not to be each others complements. To overcome these problems
several non–classical logics were born. In various many–valued logics such as
mathematical fuzzy logic [16] the law of the excluded middle does not hold in
general, in GUHA data mining logic [3] there are several non–classical quantifiers
e.g. ’in most cases’, ’above average’ etc, and in paraconsistent logic [2], besides
true or false, a statement can be unknown or contradictory, too. In this paper we
explore the mutual relation of these non–classical logics. We show, in particular,
how GUHA logic is related to paraconsistent fuzzy logic.

2 The GUHA Method in Data Mining

GUHA - General Unary Hypotheses Automaton - introduced in [3] and still
developing, is a method of automatic generation of hypotheses based on empirical
data, thus a method of data mining. GUHA is a kind of automated exploratory
data analysis: it generates systematically hypotheses supported by the data.

The GUHA method is based on well–defined first order monadic logic con-
taining generalized quantifiers on finite models. A GUHA procedure generates
statements on association between complex Boolean attributes. These attributes
are constructed from the predicates corresponding to the columns of the data
matrix.

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 284–293, 2009.
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GUHA is primary suitable for exploratory analysis of large data. The pro-
cessed data forms a rectangle matrix, where rows correspond to objects belong-
ing to the sample and each column corresponds to one investigated variable.
A typical data matrix processed by GUHA has hundreds or thousands of rows
and tens of columns. Exploratory analysis means that there is no single specific
hypothesis that should be tested by our data; rather, the aim is to get orien-
tation in the domain of investigation, analyze the behavior of chosen variables,
interactions among them etc. Such inquiry is not blind but directed by some gen-
eral direction of research. GUHA is not suitable for testing a single hypothesis:
routine packages are good for this.

GUHA systematically creates all hypotheses interesting from the point of
view of a given general problem and on the base of given data. This is the
main principle: all interesting hypotheses. Clearly, this contains a dilemma: ”all”
means most possible, ”only interesting” means ”not too many”. To cope with
this dilemma, one may use different GUHA procedures and, having selected one,
by fixing in various ways its numerous parameters.

GUHA procedures not only hypotheses relating one variable with another
one, but expressing relations among single variables, pairs, triples, quadruples of
variables etc. GUHA offers hypotheses. Exploratory character implies that the
hypotheses produced by the computer (numerous in number: typically tens or
hundreds of hypotheses) are just supported by the data, not verified. You are
assumed to use this offer as inspiration, and possibly select some few hypotheses
for further testing.

For a complete description of the GUHA method for data mining, see [3], [4].
A software implementation of GUHA called LispMiner is available freely from
http://lispminer.vse.cz/

Since mathematical fuzzy logic (cf. [16]) and the GUHA method are both
extension of classical Boolean logic and are related to vagueness and partial
truth, it is not a surprising news that there are several approaches to connect
mathematical fuzzy logic to the GUHA method. Here we mention Holeňa who
has introduced a fuzzy version of the GUHA method in [6,7]. Novák et al. show
in [8] that, by evaluating real–valued data by linguistic expressions and then
using the GUHA method, one obtains data mining outcomes that are easily
understandable as they are close to human way of thinking. – Such a target we,
too, set when writing this paper. We aim to show that GUHA method has a
natural interpretation in paraconsistent mathematical fuzzy logic which is our
[17] recent extension of Belnap’s paraconsistent logic [2].

3 Paraconsistent Fuzzy Logic

Quoting from Stanford Encyclopedia of Philosophy [13]: The contemporary logi-
cal orthodoxy has it that, from contradictory premises, anything can be inferred.
To be more precise, let |= be a relation of logical consequence, defined either se-
mantically or proof–theoretically. Call |= explosive if it validates {α,¬α} |= β
for every α and β (ex contradictione quodlibet). The contemporary orthodoxy,
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i.e., classical logic, is explosive, but also some non-classical logics such as intu-
itionist logic and most other standard logics are explosive. The major motivation
behind paraconsistent logic is to challenge this orthodoxy. A logical consequence
relation, |=, is said to be paraconsistent if it is not explosive. Thus, if |= is
paraconsistent, then even if we are in certain circumstances where the available
information is inconsistent, the inference relation does not explode into trivial-
ity. Thus, paraconsistent logic accommodates inconsistency in a sensible manner
that treats inconsistent information as informative.

Four possible values associated with a statement (logic formula) Φ in Belnap’s
first order paraconsistent logic [2] are true, false, contradictory and unknown:
if there is evidence for Φ and no evidence against Φ, then Φ obtains the value
true and if there is no evidence for Φ and evidence against Φ, then Φ obtains
the value false. A value contradictory corresponds to a situation where there
is simultaneously evidence for Φ and against Φ and, finally, Φ is labeled by value
unknown if there is no evidence for Φ nor evidence against Φ. More formally,
the values are associated with ordered couples 〈1, 0〉, 〈0, 1〉, 〈1, 1〉 and 〈0, 0〉,
respectively.

In [15] Tsoukias introduced an extension of Belnap’s logic (named DDT)
most importantly because the corresponding algebra of Belnap’s original logic
is not a Boolean algebra, while the extension is. Indeed, in that paper it was
introduced and defined the missing connectives in order to obtain a Boolean
algebra. Moreover, it was explained why we get such a structure. Among others
it was shown that negation, which was reintroduced in [15] in order to recover
some well known tautologies in reasoning, is not a complementation.

In [12] and [10], a continuous valued extension of DDT logic was studied. The
authors imposed reasonable conditions this continuous valued extension should
obey and, after a careful analysis, they came to the conclusion that the graded
values are to be computed via

t(Φ) = min{α, 1− β}, (1)
k(Φ) = max{α + β − 1, 0}, (2)
u(Φ) = max{1− α− β, 0}, (3)

f(Φ) = min{1− α, β}. (4)

where an ordered couple 〈α, β〉, called evidence couple, is given. The intuitive
meaning of α and β is the degree of evidence of a statement Φ and against Φ,
respectively. Moreover, the set of 2× 2 evidence matrices of a form[

f(Φ) k(Φ)
u(Φ) t(Φ)

]
is denoted byM. The values f(Φ), k(Φ), u(Φ) and t(Φ) are values on the real unit
interval [0, 1] such that f(Φ) + k(Φ) + u(Φ) + t(Φ) = 1. Their intuitive meaning
is falsehood, inconsistency, unknown and truth, respectively, of the statement Φ.
One of the most important features of paraconsistent logic is that truth and
falsehood are not each others complements.
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In [12] it is shown how such a fuzzy version of Belnap’s logic can be applied
in preference modeling. However, several open problems related to this fuzzy
extension of paraconsistent logic were posed in [10], most notably a need of a
complete truth calculus and a more thorough investigation of the set M and its
algebraic structure.

We continued Tsoukias’ et al. work in [17]. To our understanding, the alge-
braic structure of M should not be a Boolean algebra. This opinion is based on
our basic observation that the algebraic operations in (1) – (4) are expressible by
the Lukasiewicz t–norm and the corresponding residuum, i.e. in the Lukasiewicz
structure, which is an example of an injective MV–algebra and is not, in gen-
eral, a Boolean algebra. It is known [16] that Lukasiewicz–Pavelka style fuzzy
sentential logic is a complete logic in a sense that if the truth value set L forms
an injective MV–algebra, then the set of a–tautologies and the set of a–provable
formulae coincide for all a ∈ L. We therefore considered the problem that, given
a truth value set which is an injective MV–algebra, is it possible to transfer an
injective MV–structure to the set M, too. The answer turned out to be affirma-
tive, consequently, the corresponding paraconsistent sentential logic is essentially
Pavelka style fuzzy logic. This means that having any set of injective MV-algebra
valued evidence couples 〈α, β〉, the structure of the evidence matrices[

α∗ ∧ β α� β
α∗ � β∗ α ∧ β∗

]
(5)

forms an injective MV–algebra, too. Here the operations �,∧ and ∗ are the alge-
braic operations product, meet and complement, respectively, of the original in-
jective MV–algebra. If, in particular, the original MV–algebra is the Lukasiewicz
structure on the real unit interval, then a�b = max{0, a+b−1}, a∧b = min{a, b},
a∗ = 1 − a for all a, b ∈ [0, 1]. Moreover, in MV–algebras there is an additional
operation ⊕, in the Lukasiewicz structure it is defined by a⊕ b = min{1, a + b},
a, b ∈ [0, 1].

Our result that continuous valued paraconsistent logic can be seen as a special
case of Lukasiewicz–Pavelka style fuzzy logic has a consequence that a rich logi-
cal semantics and syntax is available. For example, all Lukasiewicz tautologies as
well as Intuitionistic tautologies can be expressed in the framework of this logic.
This follows by the fact that we have two sorts of logical connectives conjunction,
disjunction, implication and negation interpreted either by the monoidal opera-
tions

⊙
,
⊕

,−→,∗ or by the lattice operations ∧,∨,⇒,�, respectively (however,
neither � nor ∗ is a lattice complementation). Besides, there are many other
logical connectives available.

4 GUHA in Paraconsistent Logic Framework

Assume we have a data file composed of k columns and m rows, for example the
following fancied allergy matrix:
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Child Tomato Apple Orange Cheese Milk
Anna 1 1 0 1 1
Aina 1 1 1 0 0

Naima 1 1 1 1 1
Rauha 0 1 1 0 1
Kai 0 1 0 1 1
Kille 1 1 0 0 1

Lempi 0 1 1 1 1
Ville 1 0 0 0 0
Ulle 1 1 0 1 1
Dulle 1 0 1 0 0
Dof 1 0 1 0 1

Kinge 0 1 1 0 1
Laade 0 1 0 1 1
Koff 1 1 0 1 1
Olavi 0 1 1 1 1

The meaning of ’0’s and ’1’s is obvious: Anna for example is allergic to tomato,
apple, cheese and milk and is not allergic to orange. Now consider two Boolean
attributes φ and ψ (in the above allergic matrix φ could mean ’child is allergic
to tomato and apple’ and ψ could mean ’child is allergic to milk’). A four–
fold contingency table 〈a, b, c, d〉 related to these attributes is composed from
numbers of objects in the data satisfying four different binary combinations of
these attributes:

ψ ¬ψ
φ a b
¬φ c d

where
• a is the number of objects satisfying both φ and ψ,
• b is the number of objects satisfying φ but not ψ,
• c is the number of objects not satisfying φ but satisfying ψ,
• d is the number of objects not satisfying φ nor ψ,
• m = a + b + c + d.

Various relations between φ and ψ can be measured in the data by different
four–fold table quantifiers, denoted by φ ∼ ψ, ∼ (a, b, c, d), ∼ (a, b, c) or ∼ (a, b)
depending on context, which here are understood as functions with values in
the real unit interval [0, 1]. Among the most well-known are the following two
quantifiers:

1. Basic implicational quantifier. A statement connecting two attributes φ and
ψ by basic implicational quantifier is defined to be true in a given data if

a ≥ n and
a

a + b
≥ p,
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where n ∈ N and p ∈ [0, 1] are parameters given by user. Notice that basic
implicational quantifier is corresponding to association rules obtained by apriori
algorithm intoduced by Agrawal et al. in 1993 [1]. A fuzzy logic interpretation
of this quantifier is the following

Given a data, the determining subset A is formed of cases that satisfy φ; there
must be enough of them. The data supports a relation ’φ implies ψ’ if there are
few cases in A not satisfying ψ.

We recognize that a proposition Cases in A not satisfying ψ has a truth value
b

a+b which should be low, therefore, its complement – in terms of Lukasiewicz
logic – should be large enough, i.e.

(
b

a + b

)∗
= 1− b

a + b
=

a + b− b

a + b
=

a

a + b
≥ p.

2. Basic double implicational quantifier. A statement connecting two attributes
φ and ψ by basic double implicational quantifier is defined to be true in a given
data if

a ≥ n and
a

a + b + c
≥ p,

where n ∈ N and p ∈ [0, 1] are parameters given by user.
A fuzzy logic interpretation of this quantifier is now the following

Given a data, the determining subset A is formed of cases that satisfy φ or ψ;
there must be enough cases satisfying both of them. The data supports a relation
’φ implies ψ and ψ implies φ’ if there are few cases in A not satisfying ψ or few
cases in A not satisfying φ.

It is easy to see that a proposition Cases in A not satisfying ψ has a truth value
b

a+b+c and a proposition Cases in A not satisfying φ has a truth value c
a+b+c ,

therefore a proposition Cases in A not satisfying ψ or not satisfying φ is related
to a Lukasiewicz logic truth value b

a+b+c ⊕ c
a+b+c which should be low enough,

therefore, its complement should be high enough, i.e.(
b

a + b + c
⊕ c

a + b + c

)∗
=
(

b

a + b + c

)∗
�
(

c

a + b + c

)∗

=
(

1− b

a + b + c

)
�
(

1− c

a + b + c

)
= max

{(
1− b

a + b + c

)
+
(

1− c

a + b + c

)
− 1, 0

}
=

a + b + c− b− c

a + b + c

=
a

a + b + c
≥ p.
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These two examples introduced in [18] show that GUHA data mining logic is
related to Lukasiewicz–Pavelka logic. However, there are several other quantifiers
in LispMiner software implementation that have rather a statistic than logic
character.

Our novel observation is that a value α = a
m can be seen as the degree that

φ and ψ occur simultaneously, a value β = b+c
m can be seen as the degree that φ

and ψ do not occur simultaneously and a value d
m the degree that φ and ψ do

not occur at all – a kind of indifferent situation. Recalling m = a+ b+ c+ d and
using the Lukasiewicz operations (equations (1) – (4)) it is easy to see that

α∗ ∧ β = min{1− a
m , b+c

m } = b+c
m = β,

α� β = max{0, a
m + b+c

m − 1} = 0,
α∗ � β∗ = max{0, 1− a

m + 1− b+c
m − 1} = d

m ,
α ∧ β∗ = min{ a

m , 1− b+c
m } = a

m = α.

Therefore 〈α, β〉 = 〈 a
m , b+c

m 〉 can be seen as an evidence couple for a statement
Φ: ’φ and ψ occur simultaneously’. The correspondent evidence matrix is then[

f(Φ) k(Φ)
u(Φ) t(Φ)

]
=
[

β 0
d
m α

]
.

In practical data mining tasks run by LispMiner it often happens that ’indif-
ferent cases rule over interesting cases’, that is to say, value d in a four–fold
contingency table is much bigger that values a, b, c. However, even in such cases
it is useful to look for statements Φ such that the truth value of Φ is, say at
least k times bigger than the falsehood of Φ, i.e. α ≥ kβ, which is equivalent to
a ≥ k(b + c). On the other hand such a statement Φ is stamped by label true
if

a
a+b+c ≥ p iff a ≥ p(a + b + c) iff a(1− p) ≥ p(b + c) iff a ≥ p

1−p (b + c).

This means that k = p
1−p , p �= 1, or equivalently p = k

k+1 . We have proved

Theorem 1. Given a data, all statements Φ such that the truth value of Φ is at
least k times bigger than the falsehood of Φ in the sense of paraconsistent logic,
can be found by the basic double implicational quantifier and setting p = k

k+1 .

Examples. Consider the above data about children’s allergies.
(a) Let φ stand for ’child is allergic to tomato and apple’ and ψ stand for ’child
is allergic to milk’. Compute the corresponding contingency table, the evidence
couple and the evidence matrix for a statement Φ: ’φ and ψ occur simultane-
ously’.

Solution. First write the corresponding table where the connective ’&’ is inter-
preted as a Boolean conjunction.
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Child Tomato & Apple Milk
Anna 1 1
Aina 1 0

Naima 1 1
Rauha 0 1
Kai 0 1
Kille 1 1

Lempi 0 1
Ville 0 0
Ulle 1 1
Dulle 0 0
Dof 0 1

Kinge 0 1
Laade 0 1
Koff 1 1
Olavi 0 1

This leads to

ψ ¬ψ
φ 5 1
¬φ 7 2

Thus, the evidence couple is 〈 5
15 , 7+1

15 〉 and the correspondent evidence matrix is

[
f(Φ) k(Φ)
u(Φ) t(Φ)

]
=
[ 8

15 0
2
15

5
15

]
Since f(Φ), the degree of falsehood of Φ, is larger that t(Φ), the degree of truth of
Φ, we conclude that the given data does not support the statement that childen
who are allergic to tomato and apple are simultaneously allergic to milk, too.

(b) Let φ stand for ’child is allergic to cheese’ and ψ stand for ’child is allergic
to milk’. Compute the corresponding contingency table, the evidence couple and
the evidence matrix for the statement Φ: ’φ and ψ occur simultaneously’.

Solution. From the original data matrix we get the following contingency table

Milk ¬Milk
Cheese 8 0
¬Cheese 4 3

Thus, the evidence couple is 〈 8
15 , 4+0

15 〉, and the correspondent evidence matrix
is [

f(Φ) k(Φ)
u(Φ) t(Φ)

]
=
[ 4

15 0
3
15

8
15

]
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We conclude that, based on the given data, the paraconsistent truth value of the
statement Φ: ’cheese allergy and milk allergy occur simultaneously’ is two times
bigger than the paraconsistent falsehood of Φ and, thus, the data supports Φ.

5 Conclusion and Future Work

Various non–classical logics are useful in data analysis and algorithmic decision
making. We have deepened the connection between fuzzy logic, paraconsistent
logic and GUHA data mining logic. Basic implicational quantifier and basic
double implicational quantifier, for example, have a natural interpretation in
Lukasiewicz–Pavelka fuzzy logic. In this study we have shown that paraconsistent
logic, too, has an interpretation and connection to GUHA data mining logic;
indeed, first we proved that paraconsistent degrees of truth and falsehood, which
are not mutually each other complements, of simultaneous occurrence of two
GUHA attributes can be calculated by basic double implicational quantifier,
and then we gave an example showing how to use this connection to express
more sophisticated relationships between properties that could be possible by
classical logic or even standard fuzzy logic. Lukasiewicz–Pavelka fuzzy logic as
well as paraconsistent logic and GUHA logic are sound and theoretically well
established, widely studied and acknowledged non–classical logics. Therefore all
connections between these approaches clear the road for future investigation into
better understanding of data analysis, knowledge extraction and decision theory.
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Abstract. In this paper we explicitly model risk aversion in multiagent interac-
tions. We propose an insurance mechanism that be can used by risk-averse agents
to mitigate against risky outcomes and to improve their expected utility. Given
a game, we show how to derive Pareto-optimal insurance policies, and deter-
mine whether or not the proposed insurance policy will change the underlying
dynamics of the game (i.e., the equilibrium). Experimental results indicate that
our approach is both feasible and effective at reducing risk for agents.

1 Introduction

In almost every decision people make, risk is a factor. When negotiating a business
contract, there is the risk of either side being unable to fulfill its obligations. When
bidding for multiple items in an auction, there is the risk of winning too many or too
few items. Even when using the Internet, there is the risk of congestion depending on
the routing policy used. In most of these cases people are risk averse. The importance
of the influence of risk aversion on peoples’ decisions is reflected in the size of the
insurance industry, a multi-trillion dollar business, [4] and the amount of research in
economics relating to risk [17].

There is considerable research in multiagent systems on helping people make better
decisions in settings such as those mentioned above. However, this research generally
assumes that people are risk neutral [5,15,16]. Given the prevalence of risk aversion in
the real world, we believe it is important to study how to manage the effects of risk and
risk aversion in multiagent systems.

In this paper, we study non-cooperative multiagent systems. Our main contribution is
an insurance mechanism that can be used in games to reduce agents’ risk and increase
their utility. We present a characterization of our mechanism that allows us to easily
determine if the mechanism can be applied to any given game. Experimental results
show that our mechanism is usable in many different situations and is scalable. The
experimental results also examine how much risk aversion matters in different settings.
We conclude with a discussion of related work and some promising areas for future
work.

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 294–305, 2009.
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2 The Model and Background

In this section we introduce our model of risk aversion for multiagent systems, as well
as define the key game-theoretic concepts used in this paper. For a more thorough in-
troduction to game theory, we refer the reader to [8].

2.1 A Model of Risk Aversion

In this section we propose a model of risk aversion for a multiagent setting. The ap-
proach we take in modeling risk is motivated by models used in experimental eco-
nomics [6]. If an agent is risk averse, then it dislikes uncertainty. For example, if given
a choice between a lottery and a guaranteed payoff, a risk-averse agent will often prefer
the guaranteed payoff, even when the expected payoff from the lottery is higher. In this
paper, we model risk aversion by the concavity of an agent’s utility function. Specifi-
cally, given an income I , if an agent’s utility is of the form

U = Ir, (1)

where 0 < r < 1 is the risk-attitude factor, then the agent is risk averse. This utility
function is depicted in Figure 1. For this paper we will assume that income is always
greater than or equal to zero; we make this assumption since studies show that humans
(and thus the agents designed to represent humans in different interactions) treat loss of
income differently from equivalent gain of income [18].

Typically, a model of risk aversion requires a distinction between income and util-
ity [11], therefore we generalize the notion of a game to reflect this distinction.

Definition 1. Let N be a set of agents, |N | = n. An income-based game is defined as
GI = 〈N, A, I1, . . . , In, u1, . . . , un〉 where

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

r = 0.8

r = 0.5

r = 0.3

Income

U
ti
lit

y

Fig. 1. A graphical depiction of income versus utility. The dashed line represents the utility of a
risk-neutral agent while the solid lines represent the utilities of a risk averse agent for different
values of r.
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– Ai is the set of possible actions for agent i, and A = A1 × . . .×An,
– Ii : A → R specifies the income to agent i given joint action a ∈ A, and
– ui : R → R is the utility function of agent i.

We refer to the normal form (or matrix) representation of the income function as the
income matrix and to the normal form representation of the utility function as the utility
matrix.

Agents interact by following strategies, that is, by selecting actions to play according
to some distribution. We are particularly interested in correlated strategies.

Definition 2. A correlated strategy σA = {σA(a)|a ∈ A} is any probability dis-
tribution over A. The conditional correlated strategy σA−i(a−i|ai) is the probabil-
ity of the joint action (a−i, ai) according to σA given the action ai where a−i =
(a1, . . . , ai−1, ai+1, . . . , an).

In an income-based game, agents try to maximize utility, not income. That is, agents
are trying to maximize their expected utility, given by∑

a

σA(a)ui(Ii(a)). (2)

In this paper, we are interested in analyzing situations involving equilibrium play. Specif-
ically, we are interested in studying situations where agents are playing a correlated
equilibrium.

Definition 3. A correlated strategy σ∗
A is a correlated equilibrium if for every agent i

and every ai ∈ Ai, ∑
a−i∈A−i

σ∗
A−i

(a−i|ai)ui(Ii(ai, a−i)) (3)

≥
∑

a−i∈A−i

σ∗
A−i

(a−i|ai)ui(Ii(a′
i, a−i)),

for all a′
i ∈ Ai.

We choose correlated equilibria as our solution concept for several reasons. First, it is
a generalization of Nash equilibria, and so the techniques we propose in this paper can
also be applied when a Nash equilibrium is chosen as the solution concept. Second,
correlated equilibria can be “less risky” than Nash equilibria in that the correlation can
help the agents in reducing the risk of mis-coordinating. Thus, if we can show that
our approach is effective when risk is already being mitigated to some extent, then
we believe that we can extrapolate our results and argue that our approach is broadly
applicable and widely effective.

To illustrate the effects of risk, we consider an example of agents determing routing
policies.

Example. Consider two agents (Row and Column) on the Internet, each deciding on a
routing policy to use. There is a public route available with a bandwidth of 200 kb/sec
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L R
T 75,75 75,200
B 200,75 100,100

L R
T 8.7,8.7 8.7,14.1
B 14.1, 8.7 10,10

Fig. 2. Income (left) and utility (right) matrices for a routing problem

that is shared evenly if both agents decide to use it. Each agent also has a private route
available with a bandwidth of 75 kb/sec. Suppose that both agents’ utilities are given
by Equation 1 with r = 0.5. Figure 2 shows the income (measured in bandwidth) and
utility matrices of the game. Note that the unit of income is in kb/sec while utility has
no units.

If agents are playing the correlated strategy (σA((B, L)), σA((T, R))) = (0.5, 0.5),
the expected income for both agents is 137.5 kb/sec and the expected utility is 11.4.
However, if the agents are guaranteed a bandwidth of 137.5 kb/sec, their utilities would
increase to 11.7.

2.2 Characterization of the Set of Correlated Equilibria

Since correlated equilibria play a central role in our paper, we wish to derive a formal
characterization of the set of correlated equilibria in an income-based game. (For simplic-
ity, the rest of the paper will consider games with only two agents each with two actions.
Our results can be generalized to an arbitrary number of agents and actions.) Given the
income and utility matrices for a general income-based game shown in Figure 3, suppose
Agent 1 is trying to determine whether or not to follow a given correlated strategy σA

(assuming Agent 2 does as well).
The expected utility for Agent 1 from playing T when following σA is

arσA2(L|T ) + crσA2(R|T ), (4)

and the expected utility for Agent 1 for instead playing B is

erσA2(L|T ) + grσA2(R|T ). (5)

Therefore, for Agent 1 to be willing to follow σA, we require that

arσA2(L|T ) + crσA2(R|T ) ≥ erσA2(L|T ) + grσA2(R|T )

or
(ar − er)σA(TL) + (cr − gr)σA(TR) ≥ 0. (6)

L R
T a,b c,d
B e,f g,h

L R
T ar ,br cr ,dr

B er,fr gr,hr

Fig. 3. Income matrix (left) and utility matrix (right) for a general game
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Similar constraints can be created for every possible agent-action combination. The set
of all such constraints completely defines the set of correlated equilibria for a game.

3 An Insurance Policy for Risk-Averse Agents

In this section we present an insurance policy mechanism for risk-averse multiagent
systems. By buying insurance for certain outcomes, risk-averse agents are able to reduce
their risk and increase their expected utility. We study the use of such a mechanism in a
setting where agents are playing a correlated equilibrium.

The basic idea is for agents to be both buyers and sellers of insurance. For example,
Agent i can buy coverage for the joint action a by selling coverage for another joint
action, a′. If the outcome of the game is a, agent i receives income from another agent.
If the outcome of the game is a′, agent i gives some of its income to another agent.
The unit cost of buying insurance (and the unit revenue from selling insurance) is set
by a price vector p = {p(a)|a ∈ A}. The price vector is set by some third party; it
is reasonable to assume that the correlating device of the correlated equilibrium also
sets p.

3.1 Creating the Insurance Policy

Given a correlated equilibrium σ∗
A and a price vector p, each agent must determine

how much insurance to buy and sell for each joint action a, i.e., its demand di(a). If
di(a) > 0 then agent i wishes to buy insurance coverage for the joint action a and if
di(a) < 0, agent i wishes to sell insurance coverage for the joint action a. Since agents
are utility maximizers, the demand for each joint action can be computed by solving the
constraint maximization problem:

max
di

∑
a∈A

σ∗
A(a)ui(Ii(a) + di(a)), (7)

s.t.
∑
a∈A

p(a) · (Ii(a) + di(a)) =
∑
a∈A

p(a) · (Ii(a)), (8)

where p(a) is the unit price for buying or selling insurance for the joint action a. The
RHS of Equation 8 is agent i’s budget given p, or the maximum amount of insurance
it can possibly buy. Thus, agent i is simply trying to determine which insurance to
buy (d(a) > 0) or to sell (d(a) < 0)), to maximize its expected utility while being
constrained by its budget. For simplicity, let

xi(a) = Ii(a) + di(a). (9)

Let

Ri(a) =
∂σA(a)ui(xi(a))

∂xi(a)
· 1
p(a)

, (10)

be the ratio of marginal utility compared to cost for buying insurance coverage for the
joint action a. Agent i’s utility is maximized when

Ri(a) = Ri(a′), (11)
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for all a, a′ ∈ A. If Equation 11 is not satisfied, for example if Ri(a) > Ri(a′), then
agent i would increase its utility by buying more coverage for the joint action a and
buying less (or selling more) coverage for the joint action a′. For our utility function,
this gives

xi(a) = r−1

√
σ(a′)
σ(a)

p(a)
p(a′)

xi(a′). (12)

Equation 12 can be substituted into agent i’s budget constraint (Equation 8) to determine
its overall demand.

Example. Continuing the example from Section 2, suppose the insurance price vector

{p((B, L)) = 1, p((T, R)) = 2} (13)

is announced and we wish to determine Row’s optimal insurance coverage. In this case,
Row’s budget will be 350 kb/sec. Assuming r = 0.5, Equation 12 simplifies to

xRow((B, L)) =
√

2xRow((T, R)). (14)

Substituting this into Equation 8, we get
√

2xRow((T, R)) + 2xRow((T, R)) = 350, (15)

xRow((T, R)) = 102.5. (16)

Similarly, we find xRow((B, L)) = 150.0. Therefore, agent Row wishes to purchase
insurance coverage of 27.5 kb/sec for the outcome (T, R) by selling 50 kb/sec of insur-
ance coverage for the outcome (B, L).

Since, given p, each agent can determine its demand, the next challenge is to find
an appropriate p. The insurance price vector should be set with several goals in mind.
First, the resulting insurance policy should be budget balanced, i.e., no external source
of funding is required and the insurance policy does not make a profit. Second, the
insurance policy should also be Pareto optimal, i.e., no agent’s expected utility can be
increased without decreasing another’s.

The insurance policy can be guaranteed to be budget balanced by choosing a p that
results in supply equaling demand, i.e., for all a ∈ A∑

i

di(a) = 0. (17)

To find which price vectors result in supply equaling demand, note that with our insur-
ance mechanism, agents can only trade coverage and not create it. Therefore, our insur-
ance mechanism is an example of an exchange market [8]. Arrow and Debreu proved
that for every exchange economy, there exists a price vector which results in supply
equaling demand. With respect to our insurance mechanism, Arrow and Debreu’s theo-
rem is as follows:

Theorem 1. [2] For a given game G and correlated equilibrium σ∗
A, there exists some

price vector p∗ such that ∑
i

di(a) = 0, (18)
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for every a ∈ A, assuming that ui is continuous, strictly concave and strongly mono-
tone.1 Such an d is known as a competitive equilibrium.

It is straightforward to check that the utility function in Equation 1 satisfies all the
required conditions in Theorem 1. Theorem 1 also requires that agents are price-takers
– that is, each agent is unable to influence the price of the insurance policy. If an agent’s
demand (or supply) of insurance for a joint action is only a small fraction of the overall
supply (or demand) then we can reasonably assume that the agent is a price-taker. Thus,
our approach will work for games where there are many agents. However, if there are
only a few agents, then they may be able to influence prices, and an alternative approach
might be necessary. We propose that the price-setter also guarantees that the market
will clear: that is, the third party promises to meet any extra demand and buy any extra
supply.

Now that we have determined that p∗ exists, we would like to know if it results in a
Pareto optimal allocation. To do so, we rely on the following result [8].

Theorem 2 (First Fund. Thm. of Welfare Economics). Any competitive equilibrium
will always result in a Pareto optimal allocation.

While for most exchange markets there are multiple p∗, with our utility function p∗ is
unique [8]. Since p∗ is unique, this implies that p∗ is also social-welfare maximizing.

At the same time, there is the complication that since the insurance policy will change
agents’ incomes and utilities, σ∗

A, the correlated equilibrium in the original game, may
not remain an equilibrium once the insurance policy is in place. That is, since agents’
utilities will have changed, σ∗

Ai
may no longer be a best response to σ∗

A−i
and agents

may wish to play other strategies. In this case, the insurance policy will no longer work
since agents may now demand more coverage for certain joint actions or be willing to
supply less coverage for other joint actions. Therefore, we are interested in finding a
correlated equilibrium that will still be one after the insurance policy is in place. We
call such an equilibrium an insurable equilibrium. Furthermore, for a given game G we
would also like to provide a test to determine if any insurable equilibria exist.

To determine whether σ∗
A is an insurable equilibrium, we start by characterizing the

set of all Pareto optimal allocations. The set of Pareto optimal allocations of income
can be determined by solving the following constraint maximization problem:

max
xi

ui(xi) (19)

s.t. u−i(I − xi) = ū (20)

for some fixed utility ū. This maximization problem can be solved using the Lagrangian
method to find the constraint

xi(a)
xi(a′)

=
I(a)
I(a′)

. (21)

1 A utility function is strongly monotone if u(y) > u(x) if y ≥ x and y 	= x.
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Table 1. The set of Pareto optimal allocation games where 0 ≤ l ≤ 1

L R
T (a + b)l, (a + b)(1 − l) (c + d)l,(c + d)(1 − l)
B (e + f)l, (e + f)(1 − l) (g + h)l,(g + h)(1 − l)

For brevity, we omit the derivation.2 Therefore, the set of Pareto optimal allocations is
given by

x1 = {Ia1 · l, Ia2 · l, . . .} , (22)

x2 = {Ia1 · (1− l), Ia2 · (1− l), . . .} (23)

for 0 ≤ l ≤ 1. The resulting set of Pareto optimal allocation games is shown in
Table 1.

Using the same reasoning that we used to find the correlated equilibrium constraint
in Equation 6, we can find the analogous constraint for the Pareto optimal allocation
game:

{[(a + b)l]r − [(e + f)l]r}σ(TL)
+ {[(c + d)l]r − [(g + h)l]r} σ(TR) ≥ 0. (24)

Note that lr cancels out in Equation 24 leaving the simplified constraint

[(a + b)r − (e + f)r]σA(TL)
+ [(c + d)r − (g + h)r] σA(TR) ≥ 0. (25)

Since Equation 25 does not depend on l, this constraint must hold for every Pareto
optimal allocation, including the one created by p∗. Therefore, to determine if σ∗

A is
an insurable equilibrium, we simply check whether it satisfies the general set of con-
straints for correlated equilibria in a Pareto optimal allocation game. By incorporating
a convex programming method similar to that of Papadimitriou and Roughgarden [10],
our approach can easily determine whether any insurable equilibria exist for a given
income-based game.

4 Experimental Evaluation

In this section we describe the experimental evaluation of our insurance mechanism. In
particular, we study the extent of its applicability and the amount that it improves the
utility of the participating agents.

2 Note that if the agents did not all have the same value for r, this characterization would not be
possible.



302 G. Hines and K. Larson

4.1 Experimental Setup

We conducted our experiments using games with 2 agents with 2 actions per agent, 3
agents with 3 actions per agent, and 4 agents with 4 actions per agent. For each game,
the income values were drawn randomly from one of two distributions: the first was the
uniform distribution over [0, 10], and the second distribution was a bi-modal Gaussian
with N1(10, 3) and N2(100, 3). This second distribution was used to generate high-risk
games. For all experiments we set the risk-attitude factor r = 0.6. Experimental evi-
dence suggests that this value often captures humans’ risk-attitudes [6], without being
too extreme in either direction. We repeated each experiment 100 times, and all results
reported are averaged over these repetitions. A linear program was used to determine if
an equilibrium was insurable. We then used the tâtonnement process to find the resulting
insurance prices [8].

In each of our experiments, there were three things we studied. First, we were in-
terested in determining what percentage of games actually had insurable equilibria.
This measurement allows us to determine the applicability of our approach. Second, for
insurable equilibria, we were interested in understanding how effective our insurance
mechanism was at reducing risk. For an agent to completely remove risk from a game,
it must receive the same income for every possible outcome, so for a given game, we
define uOrig

i to be the expected utility to agent i in the original (non-insured) game,
uIns

i to be the expected utility in the insured game, and uRF
i to be the expected utility

if the game was made to be risk-free. We define the insurance effectiveness for agent i
(IEi) as

IEi =
uIns

i − uOrig
i

uRF
i − uOrig

i

× 100%. (26)

Finally, we were interested in understanding the underlying cost of risk aversion in
terms of utility loss for an agent i. We define the cost of risk aversion of agent i
(CORAi) as

CORAi =
uRF

i − uOrig
i

uRF
i

× 100%. (27)

4.2 Results

Table 2 presents our findings on how often insurable equilibria exist. We present our
findings from games generated from both distributions. In general, we found that for
games with more than two agents, insurable equilibria were very common, and over

Table 2. The percentage of insurable equilibria in randomly-generated games of different sizes,
generated by two different distributions

Distribution
Game Size Uniform Bi-modal Gaussian

2 agents, |Ai| = 2 5% 5%
3 agents, |Ai| = 3 95% 94%
4 agents, |Ai| = 4 91% 100%
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Table 3. Average insurance effectiveness (IE) and costs of risk aversion (CORA) in games
generated using the bi-modal Gaussian distribution. For IE, values closer to 100% show that
the insurance mechanism is improving the expected utility for an agent (if IE = 100% then the
optimal utility is achieved). For CORA, a value of 4.5%, for example, indicates that risk aversion
leads to a 4.5% decrease in utility, compared to a risk-neutral approach.

Game Size IE CORA

2 agents, |Ai| = 2 25% 4.5 %
3 agents, |Ai| = 3 72% 8.2 %
4 agents, |Ai| = 4 76.8% 12 %

90% of all games generated had insurable equilibria. For the randomly generated two-
agent, two-action games, we found that insurable equilibria were quite rare, occurring
in only 5% of games. While at first glance this was disappointing, upon further in-
vestigation of the two-agent, two-action games, we noticed that most of these games
had a single pure-strategy Nash equilibrium. For such games there is no risk in mis-
coordinating, and thus no need for an insurance policy.

Table 3 presents our findings for the IE and CORA measurements for different sizes
of games, drawn from the bimodal distribution. The results presented are averaged over
all games where there was an insurable equilibrium, and over all agents in those games.
We make two important observations. First, as the game increases in size, the impact
that risk has (as measured by CORA) also increases. Second, as CORA increases, so
does the effectiveness of our insurance mechanism (as measured by IE). When games
were generated using the uniform distribution (results not presented), we observed that
there was less overall risk. In particular, the CORA measurement was never greater
than 3% on average, and thus, overall, the insurance effectiveness was also quite low.
Given these results, we conclude that when risk is an important factor in a game, our
insurance mechanism is highly effective. When there is little risk, however, it provides
only minimal advantage.

5 Related Work

The standard insurance model assumes an initial level of wealth with some probability
of an accident, i.e., some loss of wealth, represented by a probability density func-
tion [1,12]. Someone interested in buying insurance decides on the type of coverage
they want: the maximum coverage, the deductible, the level of coinsurance, etc. The
insurer then decides on the premium to charge for that particular insurance policy. Re-
search in insurance has examined questions such as determining the optimal policy to
buy and the optimal premium to charge [1,12]. Other work has dealt with the effects of
asymmetric information, moral hazards, and adverse selection [14].

Game theory has been used to a limited degree in the study of insurance; for example,
in analyzing the actions of insurance companies in competitive markets [14]. However,
this work ignores any strategic interaction between insurance buyers by assuming the
insurance companies can supply any and all requested insurance policies with non-
negative returns. Arrow and Raviv have both used decision theory in determining the
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optimal actions of both buyer and seller [1,12]. Since their work focuses on the actions
of an isolated buyer and seller, this is more an application of decision theory than game
theory.

The insurance research closest to our work is the study of reciprocal reinsurance:
the exchange of risk between insurance companies [3]. Borch considered the problem
as an n-person coalitional game and was able to solve it for n = 2. This work made
several assumptions that our work does not, such as assuming that the probabilities of
the different outcomes are independent and companies have additional outside money
to use. The goal is for the two companies, A and B, to reach a deal where A pays B to
cover a specific amount of A’s risk (or vice-versa). Borch presented this as a bargaining
problem, where companies had to find an amount to be paid and the risk to be covered,
and suggested the Nash bargaining solution as the desired outcome.

There has been limited work on risk in multiagent systems. Exceptions include work
by Lam et al., which proposed an insurance scheme for agents trying to obtain re-
sources [7]. In their work insurance premiums were paid to specific insurance agents
who, in return, guaranteed that necessary resources were always available. The effects
of risk aversion have been studied more often in auction design. Page, for example,
studied the problem of optimal auction design with both risk-averse buyers and a risk-
averse seller [9] while the effects of risk aversion in sequential auctions was studied by
Robu and La Poutré [13].

6 Conclusion

In this paper we commenced a formal study of risk and risk-aversion in multiagent
systems. We presented a mechanism that allows agents to buy and sell insurance in
order to protect themselves against undesirable outcomes. We described how to derive
Pareto-optimal insurance policies, and provided a characterization of insurable equi-
libria for two-player games. Experimental results indicated that when risk is prevalent
in the agents’ interactions, our insurance mechanism effectively mitigates the risk and
improves the expected utility of all agents.

There are many interesting open challenges related to our insurance mechanism.
First, we would like to study our mechanism in a 2-stage game model. This might al-
low for a more generalized equilibrium model, and also be useful in a repeated game
model. The repeated game model could be used to study a non-equilibrium setting;
a non-equilibrium model might involve relaxing the balanced-budget requirement and
using a targeted optimality approach, where we would optimize the insurance mecha-
nism for specific types of agents and games. Studying repeated games may also allow
the use of credit and savings to reduce risk, and it would be interesting to compare the
advantages of an insurance mechanism against a credit-and-savings mechanism. Sec-
ondly, we are interested in trying to apply our insurance mechanism to other models
of multiagent systems such as cooperative games and collaborative multiagent systems.
Thirdly, we would like to investigate whether other models of risk aversion are more
useful. We are specifically interested in how cumulative prospect theory and loss aver-
sion could be used in multiagent systems [18]. It would also be interesting to compare
the advantages and disadvantages of the core and competitive equilibrium as different
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solution concepts. Finally, we would like to implement our insurance mechanism in real
life settings. In such settings, agents may be unaware of their own degree of risk aver-
sion or may choose to lie about it. As a result, there would be a need to use preference
elicitation and mechanism design.
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Abstract. Interest in counterterrorism modelling has increased recently.
A common theme in the approaches adopted is the need to develop meth-
ods to analyse decisions when there are intelligent opponents ready to in-
crease our risks.Most of the approaches have a clear game theoretic flavour,
although there have been some decision analytic based approaches. We
have recently introduceda framework for adversarial risk analysis, aimedat
dealing with problems with intelligent opponents and uncertain outcomes.
In thispaper,we shall explorehowsuch frameworkmaycopewith twoof the
standard counterterrorism model formulations: sequential defend-attack
and simultaneous defend-attack moves.

1 Introduction

Recent high-profile terrorist attacks have demanded significant investments in
protective responses. This has stirred a great deal of interest in modelling issues
to deal with counterterrorism decisions. Good accounts and introductions to
this field may be seen in Parnell et al. (2008) and Bier and Azaiez (2008).
Besides some reliability analysis studies based on tools such as fault trees, much
of this literature has a distinct game theoretic flavour. Two examples include
Zhuang and Bier (2007), who compute best responses and Nash equilibria as a
basis for allocating resources against terrorism when the defender and attacker
have different multiattribute utility functions, in situations of both simultaneous
and sequential play; and Brown et al. (2006), who present max-min, min-max
and min-max-min optimization models for defender-attacker, attacker-defender
and defender-attacker-defender problems. Following Raiffa (2002), we remain
skeptical about the relevance of such concepts in counterterrorism modelling,
based on common knowledge assumptions that entail that parts have too much
information about their counterparts, in a field in which secrecy tends to be an
advantage.

The other mainstream literature in the field has a decision analytic flavour.
Among others, we mention Von Winterfeldt and O’Sullivan (2006), who use de-
cision trees to evaluate Man-Portable Air Defense Systems countermeasures; and
Pinker (2007), who applies influence diagrams to assess the deployment of vari-
ous short-term countermeasures. Their recurrent (critical and criticised) problem
is the need to assess the probabilities of the actions of the others, which is a key
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issue of the Bayesian approach to games, see Kadane and Larkey (1982) or Raiffa
(2002). Banks and Anderson (2006) provide a simple numerical comparison to
both approaches to game theory within a smallpox threat problem. This tension
between game theoretic and decision analytic approaches to decision making
problems with adversaries is not exclusive of counterterrorism models but ap-
pears in other business and industrial areas, see e.g. van Bingsbergen and Marx
(2007) or Rothkopf (2007).

In Rios Insua et al. (2009), we have introduced Adversarial Risk Analysis
(ARA) a framework to cope with risk analysis situations in which we have one
or more opponents ready to increase our risks. We applied it in simple auc-
tion contexts. ARA has a Bayesian game theoretic flavour. We use principled
procedures which employ the game theoretical structure and other information
available to assess probabilities on the opponents’s actions. In this paper, we
explore the application of such framework to simplified versions of two standard
models used in counterterrorism contexts, see Zhuang and Bier (2007): sequen-
tial defend-attack and simultaneous defend-attack models. We aim at supporting
the Defender in choosing her best defense against the attacker. We use coupled
decision trees to illustrate our discussion. Our emphasis is on how we may coher-
ently assess the probabilities of various attacks by the attacker. We first study
the sequential model. We then consider the simultaneous one. We end up with
some discussion on possible extensions and actual applications of our stream-
lined models. We shall assume all throughout the paper that both the defender
and the attacker only have two actions available.

2 Defend-Attack Sequential Model

We start by considering a simple sequential Defend-Attack situation, in which the
Defender starts by choosing a defense from a discrete set D = {d1, d2} and, then,
the Attacker, having observed the defense, chooses an attack within the discrete
set A = {a1, a2}. The problem has a clear sequential game theoretic structure, as
in Stackelberg games, see Aliprantis et al (2000). The only uncertainty deemed
relevant is a binary outcome S ∈ {0, 1} representing the success or failure of the
Attack. For both players, the consequences depend on the success of this attack.

Fig. 1 shows a coupled decision tree representing this situation. The utility
functions over the consequences for the Defender and the Attacker are, respec-
tively, uD(a, d, S) and uA(a, d, S), depending on both actions and the eventual
success S of the attack, which is probabilistically dependent on the actions of
both the Attacker and the Defender: S | d, a. The sequence of nodes reflects that
the Defender’s choice is observed by the Attacker.

The standard game theoretic approach computes Nash equilibria under strong
common knowledge assumptions: in this case, the Defender would know the
beliefs and preferences of the Attacker, modeled, respectively, in (pA, uA), which
is not realistic. Note that the attacker does not need to know the Defender’s
probabilities and utilities (pD, uD) as he observes the Defender’s decision. We
now weaken such common knowledge assumptions in this sequential decision
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Fig. 1. The Defend-Attack sequential decision game

Fig. 2. The decision problem as seen by the Defender

game. Suppose, thus, that the Defender does not know (pA, uA). The Defender’s
decision tree denotes uncertainty about the Attacker’s attack by replacing A
with A . Note that, in order to solve this game, the Defender has already
assessed pD(S|d, a) and uD(a, d, S), but she also needs pD(A = a|d), which is
her assessment of the probability that the Attacker will choose attack a after
observing that the Defender has chosen defense d. This assessment requires the
Defender to analyze the problem from the Attacker’s perspective, as follows.

For that, the Defender must place herself in the Attacker’s shoes, and con-
sider his decision problem. Fig. 3 represents the Attacker’s problem, as seen by
the Defender. We assume that the Defender will analyze the Attacker’s prob-
lem considering that he is an expected utility maximizer. Thus, she will use all
the information and judgment that she can about the Attacker’s utilities and
probabilities. Therefore, to find pD(A|d), she should first estimate the Attacker’s
utility function and his probabilities about success S, conditional on (d, a), and,
consequently, compute the required probability. However, instead of using point
estimates for pA and uA to find the Attacker’s optimal decision a∗(d), the De-
fender’s uncertainty about the Attacker’s decision should derive from her uncer-
tainty about the Attacker’s (pA, uA), which we describe through a distribution
F . This will induce a distribution on the Attacker’s expected utility ψA(a, d).
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Fig. 3. The Defender’s analysis of the Attacker’s problem

Thus, assuming the Attacker is rational, the Defender’s predictive distribution
on the Attacker’s attack choice given her defense choice d is

pD(A = a|d) = IPF [a = argmaxx∈AΨA(d, x)], ∀a ∈ A,

where

ΨA(d, a) = PA(S = 0 | d, a) UA(a, d, S = 0) + PA(S = 1 | d, a) UA(a, d, S = 1)

for (PA, UA) ∼ F .
She may use Monte Carlo simulation to approximate pD(A|d) by drawing n

samples
{(

pi
A, ui

A

)}n

i=1 from F , which produce {ψi
A}n

i=1 ∼ ΨA, and approximat-
ing pD(A = a|d) by

p̂D(A = a|d) =
#{a = argmaxx∈A ψi

A(d, x)}
n

.

Once the Defender has completed these assessments, she can solve her problem.
Her expected utilities at node S in Figure 2 for each (d, a) ∈ D ×A are:

ψD(d, a) = pD(S = 0|d, a) uD(a, d, S = 0) + pD(S = 1|d, a) uD(a, d, S = 1).

Working up the tree in Fig. 2, her estimated expected utilities at node A for
each d ∈ D are:

ψ̂D(d) = ψD(d, a1) p̂D(a1|d) + ψD(d, a2) p̂D(a2|d).

Finally, her approximate optimal decision is d∗ = argmaxd∈D ψ̂D(d).
We summarize the previous discussion with the following procedure to find

a recommendation for the Defender in the Defend-Attack sequential decision
model.

1. Assess (pD, uD) from the Defender
2. Assess F = (PA, UA), describing the Defender’s uncertainty about (pA, uA)
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3. For each d, simulate to approximate pD(A|d) as follows:
(a) Generate (pi

A, ui
A) ∼ F , i = 1, . . . , n

(b) Solve a∗
i (d) = argmaxa∈A ψi

A(d, a)
(c) Approximate p̂D(A = a|d) = #{a = a∗

i (d)}/n
4. Solve the Defender’s problem

d∗ = argmaxd∈D ψD(d, a1) p̂D(a1|d) + ψD(d, a2) p̂D(a2|d)

3 Defender-Attacker Simultaneous Action Model

We now present a simultaneous-move case in which the Defender and the At-
tacker must make their defense and attack decisions, without knowing the action
chosen by each other. Again, each of them has just two options to choose from:
D = {d1, d2} for the Defender andA = {a1, a2} for the Attacker. The only uncer-
tainty is S: the success or failure of the Attack. This problem can be represented
as a joint decision tree as in Fig. 4.

The standard game-theoretic approach computes Nash equilibria under the
common knowledge assumption that both the Defender’s and Attacker’s prefer-
ences and beliefs are available. This is unrealistic in the counterterrorism context.
When these are unknown, another standard game theoretic approach computes
Bayes-Nash equilibria under the common knowledge assumption about priors
over types of defenders and attackers, as in Harsanyi (1967). But again, such
assumption is unrealistic in the counterterrorism setting. We now weaken this
common prior knowledge assumption and solve the Defender-Attacker simulta-
neous action game for the Defender. In this model, the assessment of probabilities
on the adversary’s actions tend to be more elaborated than in the Defend-Attack
sequential game from Section 2, as we shall see.

The Defender has to choose a defence action d ∈ D, whose consequences
depend on the success of the attack chosen simultaneously by the Attacker, as
reflected in Fig. 5. By standard decision theory, see French and Rios Insua (2000),

Fig. 4. The two players simultaneous decision game
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Fig. 5. The Defender’s decision analysis

the defender should maximize her expected utility. Therefore, the decision prob-
lem she should solve is

d∗ = argmaxd∈D
∑
a∈A

⎡⎣ ∑
s∈{0,1}

uD(a, d, s) pD(S = s | d, a)

⎤⎦πD(A = a),

where the Defender’s utility function uD(a, d, s) and her personal probabilistic
assessment pD over S conditional on (d, a) are known to her. As the Defender
does not know the Attacker’s decision at node A, she expresses her uncertainty
through a probability distribution πD(A = a), over all a ∈ A.

The main difficulty for the Defender is assessing the probability distribution
πD(A), which represents her uncertainty about what attack will the Attacker
choose. To do so, she can think of the Attacker as an expected utility maximizer
who tries to solve a decision problem as the one shown in Fig. 6, by finding the
attack a ∈ A that provides him maximum expected utility:

Fig. 6. The Attacker’s decision analysis as seen by the Defender
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a∗ = argmaxa∈A
∑
d∈D

⎡⎣ ∑
s∈{0,1}

uA(a, d, s) pA(S = s | d, a)

⎤⎦πA(D = d).

However, the Defender cannot solve the Attacker’s decision problem, and, thus,
find his maximum expected utility attack a∗, since in general she will not know
the Attacker’s true probabilities and utility function (uA, pA, πA). But, she may
model all information available to her about (uA, pA, πA) through a probability
distribution (UA, PA, ΠA) ∼ F . Thus, the Defender’s assessment of πD(A) is
reduced to the computation of the following probability distribution

A | D ∼ argmaxa∈A
∑
d∈D

⎡⎣ ∑
s∈{0,1}

UA(a, d, s) PA(S = s | d, a)

⎤⎦ΠA(D = d). (1)

Note that ΠA represents the Defender’s assessment of the probabilistic model πA

used by the Attacker to predict what defense the Defender will choose, whereas
D represents the Attacker’s beliefs about what choice the Defender will make.
We are, thus, identifying two sources of uncertainty:

1. one stemming from the Attacker’s uncertainty about the Defender’s choice
(D), and

2. one coming from the Defender’s uncertainty about how the Attacker assesses
D through ΠA.

Again, the Defender may presume that the Attacker thinks she is an expected
utility maximizer trying to solve a decision problem analogous to that in Fig. 5.
Therefore, in order for the Defender to solve Eq. (1), she will elicit (UA, PA, ΠA) ∼
F from her viewpoint, and assess D through the analysis of her decision problem
as thought by the Attacker, reducing the assessment of D to the computation of
the following distribution

D | A1 ∼ argmaxd∈D

⎡⎣∑
a∈A

∑
s∈{0,1}

UD(a, d, s) PD(S = s | d, a)

⎤⎦ΠD(A1 = a),

where the Defender needs to elicit (UD, PD, ΠD) ∼ G representing her assess-
ment on the Attacker’s estimation of her utility function uD(a, d, s) and her
probability pD over S | d, a, when she analyzes how the Attacker thinks about
her decision problem, as well as the Defender’s confidence in her assessment
model leading to A1, which represents the Attacker’s decision when he is mod-
eled by the Defender within her second level of recursive modeling. This may
require again further recursive thinking from the Defender, which will lead to
the following recursive computations, starting with i = 0.
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Repeat

Ai | Di ∼ argmaxa∈A
∑
d∈D

⎡⎣ ∑
s∈{0,1}

U i
A(a, d, s) P i

A(S = s | d, a)

⎤⎦ΠAi(Di = d)

where (U i
A, P i

A, ΠAi) ∼ F i

Di | Ai+1 ∼ argmaxd∈D
∑
a∈A

⎡⎣ ∑
s∈{0,1}

U i
D(a, d, s) P i

D(S = s | d, a)

⎤⎦ΠDi(Ai+1 = a)

where (U i
D, P i

D, ΠDi) ∼ Gi

i = i + 1

To simplify the discussion, we have assumed that the decision models recursively
used to assess Ai and Di, from i = 0 and so forth, are a reflection of each other
and have the same structure as those in Figs. 6 and 5, respectively. Moreover,
the choice sets for the Defender and the Attacker are the same in all models
in the recursive hierarchy of analysis: D and A, respectively. This hierarchy of
nested models would stop at the level in which the Defender lacks the kind of
information necessary to assess the distribution F i (or Gi). At this point, the
Defender will holistically assign an unconditional probability distribution over
Ai (or Di), without going deeper in the hierarchy. Of course, if she feels that
she still has no information available to do so, she can assign a noninformative
or reference probability distribution, see French and Rios Insua (2000).

4 Discussion

We have provided here an account of how Bayesian decision analysis can sup-
port a Defender against an intelligent adversary (the Attacker), in contrast with
the standard game-theoretic approach, in two stylised problems. In our frame-
work, the Defender assesses the probabilities of the adversarial actions before
computing her maximum expected utility defense strategy. We assume that the
Attacker is an expected utility maximizer and the Defender’s uncertainty about
the Attacker’ decision stems from her uncertainty about his decision analysis,
specifically about his probabilities and utilities. The Bayesian approach weakens
the unrealistic common knowledge assumptions necessary in the game-theoretic
approach.

Of course, real problems in counterterrorism are extremely complex. For exam-
ple, they involve hundreds of possible decisions, and there are large uncertainties
associated with the goals and resources of the terrorists. For this reason, we have
focused on illustrating with two simple examples a general methodology based on
decision analysis principles to support decision making against an intelligent At-
tacker, making parallel comparisons with the standard solutions proposed by the
game-theoretic approach. More complex dynamic interactions, say as in defend-
attack-defend models or general coupled defend and attack influence diagrams,
require more complex analysis but the methodology would stay essentially the
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same. Extensions of the methodology to the case in which there are more than
one Attacker, or an uncertain number of Attackers, and more than one defender
also need to be explored. This last one might require negotiations about risk
sharing, as in Rios and Rios Insua (2010).
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Abstract. Most work in game theory is conducted under the assumption that the
players are expected utility maximizers. Expected utility is a very tractable deci-
sion model, but is prone to well-known paradoxes and empirical violations (Allais
1953, Ellsberg 1961), which may induce systematic biases in game-theoretic pre-
dictions. La Mura (2009) introduced a projective generalization of expected util-
ity (PEU) which avoids the dominant paradoxes, while remaining quite tractable.
We show that every finite game with PEU players has an equilibrium, and discuss
several examples of PEU games.

Keywords: game theory, expected utility, paradoxes, Allais, Ellsberg, projective.

1 Introduction

The expected utility hypothesis is the de facto foundation of game theory. The von
Neumann - Morgenstern axiomatization of expected utility, and later on the subjective
formulations by Savage (1954) and Anscombe and Aumann (1963) were immediately
greeted as simple and intuitively compelling. Yet, in the course of time, a number of
empirical violations and paradoxes (Allais 1953, Ellsberg 1961) came to cast doubt on
the validity of the hypothesis as a foundation for the theory of rational decisions in
conditions of risk and subjective uncertainty. In economics and in the social sciences,
the shortcomings of the expected utility hypothesis are generally well-known, but of-
ten tacitly accepted in view of the great tractability and usefulness of the correspond-
ing mathematical framework. In fact, the hypothesis postulates that preferences can be
represented by way of a utility functional which is linear in probabilities, and linearity
makes expected utility representations particularly tractable in models and applications.
In particular, in a game-theoretic context, linearity of expected utility ensures that the
best response correspondence is also linear, and hence that any finite game has a Nash
equilibrium.

In economics and the social sciences, the importance of accounting for violations
of the expected utility hypothesis has long been recognized (Tversky 1975), but so far
none of its numerous alternatives (e.g., Machina 1982, Schmeidler 1989, to quote only
two particularly influential papers in a rich and constantly evolving literature) has fully
succeeded in replacing expected utility as a standard foundation for decisions under
uncertainty, partly due to the great mathematical tractability of expected utility relative
to many of its proposed generalizations.
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La Mura (2009) introduced projective expected utility (PEU), a decision-theoretic
framework which accommodates the dominant paradoxes while retaining significant
simplicity and tractability. This is obtained by weakening the expected utility hypothesis
to its projective counterpart, in analogy with the quantum-mechanical generalization of
classical probability theory. We first review the EU and PEU frameworks, and show
that the latter is sufficiently general to avoid both Allais’ and Ellsberg’s paradoxes. We
then extend the notion of Nash equilibrium to games with PEU preferences, and prove
that any finite game with PEU players has an equilibrium. Finally, we discuss several
examples of games with PEU preferences and identify observable deviations from the
theory of games with EU preferences.

2 Von Neumann - Morgenstern Expected Utility

Let Ω be a finite set of outcomes, and Δ be the set of probability functions defined on Ω,
taken to represent risky prospects (or lotteries). Next, let � be a complete and transitive
binary relation defined on Δ×Δ, representing a decision-maker’s preference ordering
over lotteries. Indifference of p, q ∈ Δ is defined as [p � q and q � p] and denoted as
p ∼ q, while strict preference of p over q is defined as [p � q and not q � p], and denoted
by p � q. The preference ordering is assumed to satisfy the following two conditions.

Axiom 1. (Archimedean) For all p, q, r ∈ Δ with p � q � r, there exist α, β ∈ (0, 1)
such that αp + (1− α)r � q � βp + (1− β)r.

Axiom 2. (Independence) For all p, q, r ∈ Δ, p � q if, and only if, αp + (1 − α)r �
αq + (1− α)r for all α ∈ [0, 1].

A functional u : Δ → R is said to represent � if, for all p, q ∈ Δ, p � q if and only if
u(p) ≥ u(q).

Theorem 1. (von Neumann and Morgenstern) Axioms 1 and 2 are jointly equivalent to
the existence of a functional u : Δ→ R which represents � such that, for all p ∈ Δ,

u(p) =
∑
ω∈Ω

u(ω)p(ω).

The von Neumann - Morgenstern setting is appropriate whenever the nature of the un-
certainty is purely objective: all lotteries are associated with objective random devices,
such as dice or roulette wheels, with well-defined and known frequencies for all out-
comes, and the decision-maker only evaluates a lottery based on the frequencies of its
outcomes.

3 Allais’ Paradox

The following paradox is due to Allais (1953). First, please choose between

A: A chance of winning 4000 dollars with probability 0.2
B: A chance of winning 3000 dollars with probability 0.25.
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Now suppose that, instead of A and B, your two alternatives are

C: A chance of winning 4000 dollars with probability 0.8
D: A chance of winning 3000 dollars with certainty.

If you chose A over B, and D over C, then you are in the modal class of respondents.
The paradox lies in the observation that A and C are special cases of a two-stage lottery
E which in the first stage either returns zero dollars with probably (1 − α) or, with
probability α, leads to a second stage where one gets 4000 dollars with probability 0.8
and zero otherwise. In particular, if α is set to 1 then E reduces to C, and if α is set
to 0.25 it reduces to A. Similarly, B and D are special cases of a two-stage lottery F
which again with probability (1 − α) returns zero, and with probability α continues to
a second stage where one wins 3000 dollars with probability 1. Again, if α = 1 then F
reduces to D, and if α = 0.25 it reduces to B. Then it is easy to see that the [A � B,
D � C] pattern violates Axiom 2 (Independence), as E can be regarded as a lottery
αp + (1 − α)r, and F as a lottery αq + (1 − α)r, where p and q represent lottery C
and D, respectively, and r represents the lottery in which one gets zero dollars with
certainty. When comparing E and F , why should it matter what is the value of α? Yet,
experimentally one finds that it does.

4 Ellsberg’s Paradox

Another disturbing violation of the expected utility hypothesis was pointed out by Ells-
berg (1961). Suppose that an urn contains 300 balls of three possible colors: red, green,
and blue. You know that the urn contains exactly 100 red balls, but are given no infor-
mation on the proportion of green and blue.

You win if you guess which color will be drawn. Do you prefer to bet on red (R) or
on green (G)? Many respondents choose R, on grounds that the probability of drawing
a red ball is known to be 1/3, while the only information on the probability of drawing
a green ball is that it is between 0 and 2/3. Now suppose that you win if you guess
which color will not be drawn. Do you prefer to bet that red will not be drawn (R) or
that green will not be drawn (G)? Again many respondents prefer to bet on R, as the
probability is known (2/3) while the probability of G is only known to be between 1
and 1/3.

The pattern [R � G, R � G] is incompatible with von Neumann - Morgenstern
expected utility, which only deals with known probabilities, and is also incompatible
with the Savage (1954) formulation of expected utility with subjective probability as it
violates its Sure Thing axiom. Observe that, in Ellsberg’s setting, the decision-maker
ignores the actual composition of the urn, and hence operates in a state of subjective
uncertainty about the true probabilistic state of affairs. In particular, the decision-maker
is exposed to a combination of subjective uncertainty (on the actual composition of
the urn) and objective risk (the probability of drawing a specific color from an urn
of given composition). The paradox suggests that, in order to account for the choice
pattern discussed above, subjective uncertainty and risk should be handled as distinct
notions.
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5 Projective Expected Utility

Let X be the positive orthant of the unit sphere in Rn, where n is the cardinality of
the set of relevant outcomes Ω. Then von Neumann - Morgenstern lotteries, regarded
as elements of the unit simplex, are in one-to-one correspondence with elements of X,
which can therefore be interpreted as risky prospects, for which the frequencies of the
relevant outcomes are fully known. Observe that, while the projections of elements of
the unit simplex (and hence, L1 unit vectors) on the basis vectors can be naturally asso-
ciated with probabilities, if we choose to model von Neumann - Morgenstern lotteries
as elements of the unit sphere (and hence, as unit vectors in L2) then probabilities are
naturally associated with squared projections. The advantage of such move is that L2 is
the only Lp space which is also a Hilbert space, and Hilbert spaces have a very tractable
projective structure which is exploited by the representation. In particular, it is unique
to L2 that the set of unit vectors is invariant with respect to projections.

Next, let 〈.|.〉 denote the usual inner product in Rn. We denote the transpose of a
vector or a matrix with a prime, e.g., x′ denotes the transpose of x. An orthonormal
basis is a set of unit vectors {b1, ..., bn} such that

〈
bi|bj

〉
= 0 whenever i �= j. In

our context, orthogonality captures the idea that two events or outcomes are mutually
exclusive (for one event to have probability one, the other must have probability zero).
The natural basis corresponds to the set of degenerate lotteries returning each objective
lottery outcome with certainty, and is conveniently identified with the set of objective
lottery outcomes

{
ω1, ω2, ..., ωn

}
. Yet, in any realistic experimental setting, it is very

unlikely that those objective outcomes will happen to coincide with the set of subjective
consequences which are relevant from the perspective of the decision-maker. Moreover,
even if the latter could be fully elicited, it would be generally problematic to relate a von
Neumann - Morgenstern lottery, which only specifies the probabilities of the objective
outcomes, with the probabilities induced on the subjective consequences, that is, the
relevant dimensions of risk from the point of view of the decision-maker. The perspec-
tive of the observer or modeler is inexorably bound to objectively measurable entities,
such as frequencies and prizes; by contrast, the decision-maker thinks and acts based
on subjective preferences and subjective consequences, which in a revealed-preference
context should be presumed to exist while at the same time assumed, as a methodolog-
ical principle, to be unaccessible to direct measurement.

In this section we shall relax the assumption, implicit in the von Neumann - Morgen-
stern setting, that the objective outcomes and subjective consequences coincide, and re-
place it with the weaker requirement that there exists a set of mutually exclusive, jointly
exhaustive subjective consequences with respect to which the decision-maker evaluates
each uncertain prospect. As we shall see such weaker condition, together with the usual
assumptions of completeness and transitivity of preferences, and the Archimedean and
Independence conditions from the von Neumann-Morgenstern treatment, jointly char-
acterize representability in terms of a projective generalization of the expected utility
functional.

Let B := {b1, ..., bn} represent a set of n mutually exclusive, jointly exhaustive
subjective consequences, identified with an orthonormal basis in Rn. For any lottery
x ∈ X , its associated risk profile px with respect to B is defined by
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px(bi) =
〈
x|bi

〉2
, i = 1, . . . , n

The risk profile of a lottery x returns the probabilities induced on the subjective conse-
quences by playing lottery x. Observe that the risk profile with respect to the natural ba-
sis simply returns the probabilities of the lottery outcomes. Hence, in the present setting
a lottery is identified both in terms of objective outcomes and subjective consequences.
Since the position of the subjective basis relative to the natural basis can be arbitrary, a
lottery can exhibit any combination of risk profiles on outcomes and consequences.

Axiom 3. There exists an orthonormal basis Z := {z1, ..., zn} such that any two lot-
teries x, y ∈ X are indifferent whenever their risk profiles with respect to Z coincide.

Axiom 3 requires that there exists a set of n mutually exclusive, jointly exhaustive
subjective consequences such that any two lotteries are only evaluated based on their
risk profiles, i.e., on the probabilities they induce on those subjective consequences. In
the von Neumann - Morgenstern treatment, Axiom 3 is tacitly assumed to hold with
respect to the natural basis in Rn. This implicit assumption amounts to the requirement
that lotteries are only evaluated based on the probabilities they induce on the objective
lottery outcomes.

While the probabilities with respect to the natural basis represent the relevant di-
mensions of risk as perceived by the modeler or an external observer (that is, the risk
associated with the occurrence of the objective outcomes), the preferred basis postu-
lated in Axiom 3 is allowed to vary across different decision-makers, capturing the idea
that the subjectively relevant dimensions of risk (that is, those pertaining to the actual
subjective consequences) may be perceived differently by different subjects. One case
in which the relevant dimensions of risk may differ across subjects is in the presence
of portfolio effects. Such effects are difficult to exclude or control for in experimental
settings, as the subject’s portfolio is typically unaccessible to direct measurement.

Axiom 3 presumes that subjective consequences and objective outcomes have the
same cardinality; we relax this assumption later on, in the subjective formulation.

Once an orthonormal basis Z is given, each lottery x can be associated with a function
px : Z → [0, 1], such that px(zi) =

〈
x|zi

〉2
for all zi ∈ Z. Let B be the set of all such

risk profiles px, for x ∈ X, and let � be the complete and transitive preference ordering
induced on B ×B by preferences on the underlying lotteries.

Note that a convex combination αpx + (1− α)py , where px and py are risk profiles,
is still a well-defined risk profile. We interpret this type of mixing as objective, while
subjective mixing will be later on captured by subjective probability over the underly-
ing (Anscombe-Aumann) states. We postulate the following two axioms, which mirror
those in the von Neumann - Morgenstern treatment.

Axiom 4. (Archimedean) For all x, y, t ∈ X with p(x) � p(y) � p(t), there exist
α, β ∈ (0, 1) such that αp(x) + (1− α)p(t) � p(y) � βp(x) + (1− β)p(t).

Axiom 5. (Independence) For all x, y, t ∈ X , px � py if, and only if, αpx+(1−α)pt �
apy + (1− α)pt for all α ∈ [0, 1].
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Some observations are in order at this point. First, note that the two axioms above im-
pose conditions solely on risk profiles, and not on the underlying lotteries. This seems
appropriate, as the decision-maker is not ultimately concerned with the risk associated
to the objective outcomes, but only with the risk induced on the relevant subjective con-
sequences. It is also worth noting that, while risk profiles are now defined with respect
to subjective consequences, rather than objective outcomes as in the von Neumann -
Morgenstern treatment, in our setting they are still interpreted as objective probability
functions.

Theorem 2. (La Mura 2009) Axioms 3-5 are jointly equivalent to the existence of a
symmetric matrix U such that u(x) := x′Ux for all x ∈ X represents �.

6 Subjective Formulation

The following formulation extends the representation to situations of subjective uncer-
tainty. First, we introduce the following setup and notation.
S is a finite set of states of Nature.
〈.|.〉 denotes the usual inner product in Euclidean space.
Ω is the natural basis in Rn, identified with a finite set {ω1, . . . ., ωn} of lottery

outcomes (prizes).
Z is an orthonormal basis in Rm, with m ≥ n, identified with a finite set of subjective

consequences {z1, . . . ., zm}. V is an arbitrary (m × n) matrix chosen so that, for all
ωi in Ω, V ωi is a unit vector in Rm. Observe that V is always well defined as long as
m ≥ n. When m = n, we conventionally set V ≡ I , where I is the n × n identity
matrix.

Lotteries correspond to L2 unit vectors x ∈ Rn
+; X is the set of all lotteries.

Since Ω is the natural basis, 〈ωi|x〉2 = x2
i ; this quantity is interpreted as p(ωi|x).

The quantity
〈
zj|V x

〉2
is interpreted as p(zj|x), the conditional probability of subjec-

tive consequence zj given lottery x. In particular,
〈
zj |V ωi

〉2
is interpreted as p(zj|ωi),

the conditional probability of subjective consequence zj given the degenerate lottery
which returns objective outcome ωi for sure.

Once the subjective consequences zj are specified, for any lottery x one can readily
compute p(ωi|x) = x2

i and p(zj|x) =
〈
zj|V x

〉2
. Moreover, given the latter probabilis-

tic constraints, one can readily identify a lottery x and an orthonormal basis Z which
jointly satisfy them. Hence, in the above construction lotteries are identified with re-
spect to two different frames of reference: objective lottery outcomes, and subjective
consequences.

Observe that p(zj|x) generally differs from the probability of zj given x computed
according to the law of total probability, which is given by

∑
i p(ωi|x)p(zj |ωi) =∑

i x2
i

〈
zj|V ωi

〉2
. To get a sense of why and how the law of total probability may fail,

let us consider a decision-maker who really hates to lose whenever the probability of
winning is high (more so than when the probability of winning is low), and loves to win
when the probability of losing is high (even more so than when the latter probability
is low). Clearly, in such case the probabilities of objective outcomes such as winning
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and losing are directly involved in the description of subjectively relevant consequences
such as “I won (or lost) against all odds”. Such dependency introduces an element of
interference between lotteries and consequences that cannot be easily accounted for in
the classical decision-theoretic setting, which presumes state independence.

An act is identified with a function f : S → X . H is the set of all acts.
Δ(X) is the (nonempty, closed and convex) set of all probability functions on Z

induced by lotteries in X .
M is the set of all vectors (ps)s∈S , with ps ∈ Δ(X).
For each f ∈ H a corresponding risk profile pf ∈ M is defined, for all s ∈ S and

all zj ∈ Z, by pf
s (zj) :=

〈
zj|V fs〉2 .

As customary, we assume that the decision-maker’s preferences are characterized by
a rational (i.e., complete and transitive) preference ordering � on acts. Next, we proceed
with the following assumptions, which mirror those in Anscombe and Aumann (1963).

Axiom 6. (Projective) There exists a finite orthonormal basis Z := {z1, ..., zm}, with
m ≥ n, such that any two acts f, g ∈ H are indifferent if pf = pg.

In Anscombe and Aumann’s setting, the above axiom is implicitly assumed to hold
with Z ≡ Ω. Because of Axiom 6, preferences on acts can be equivalently expressed as
preferences on risk profiles. For all pf , pg ∈ M , we stipulate that pf � pg if and only
if f � g.

Axiom 7. (Archimedean) If pf , pg, ph ∈ M are such that pf � pg � ph, then there
exist a, b ∈ (0, 1) such that apf + (1− a)ph � pg � bpf + (1− b)ph.

Axiom 8. (Independence) For all pf , pg, ph ∈ M , and for all a ∈ (0, 1], pf � pg if
and only if apf + (1− a)ph � apg + (1− a)ph.

Axiom 9. (Non-degeneracy) There exist pf , pg ∈M such that pf � pg .

Axiom 10. (State independence) Let s, t ∈ S be non-null states, and let p, q ∈ Δ(X).
Then, for any pf ∈M ,

(pf
1 , ..., pf

s−1, p, pf
s+1, ..., p

f
n) � (pf

1 , ..., pf
s−1, q, p

f
s+1, ..., p

f
n)

if, and only if,

(pf
1 , ..., pf

t−1, p, pf
t+1, ..., p

f
n) � (pf

1 , ..., pf
t−1, q, p

f
t+1, ..., p

f
n).

Theorem 3. (Anscombe and Aumann) The preference relation � fulfills Axioms 6−10
if and only if there is a unique probability measure π on S and a non-constant function
u : Z → R (unique up to positive affine rescaling) such that, for any f, g ∈ H, f � g
if, and only if,∑

s∈S π(s)
∑

zi∈Z pf
s (zi)u(zi) ≥∑s∈S π(s)

∑
zi∈Z pg

s(zi)u(zi).

La Mura (2009) provides a projective generalization of Theorem 3.

Theorem 4. (La Mura) The preference relation � fulfills Axioms 6 − 10 if and only if
there is a unique probability measure π on S and a symmetric (n × n) matrix U with
distinct eigenvalues such that, for any f, g ∈ H, f � g if, and only if,∑

s∈S π(s)f ′
sUfs ≥

∑
s∈S π(s)g′sUgs.
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7 Properties of the Representation

Our representation generalizes the Anscombe-Aumann expected utility framework in
two directions. First, subjective uncertainty and risk are treated as distinct notions.
Specifically, let us say that an act is pure or certain if it returns the same objective
lottery in all states, and mixed or uncertain otherwise. While pure acts are naturally
associated with risky decisions, in which the relevant frequencies are all known, mixed
acts correspond to uncertain decisions, in which the decision-maker only has a subjec-
tive assessment of the true frequencies involved. Second, as we shall see, within this
class of preferences both Allais’ and Ellsberg’s paradoxes are accommodated.

In the context of Theorem 2, for any two distinct outcomes ωi and ωj let ei,j be the
objective lottery returning each of the two outcomes with equal frequency. Observe that

Uij = u(ei,j)− (
1
2
u(ωi) +

1
2
u(ωj)).

It follows that the off-diagonal entry Uij in the payoff matrix can be interpreted as the
discount, or premium, attached to a symmetric, objective lottery over the two outcomes
with respect its expected utility base-line, and hence as a measure of preference for risk
versus uncertainty along the specific dimension involving outcomes ωi and ωj. Let us
say that a decision-maker is averse to uncertainty if she always weakly prefers ei,j to
an equal subjective chance of ωi or ωj . Then a decision-maker is averse to uncertainty
if and only if U is a Metzler matrix, i.e., has non-negative off-diagonal elements.

Compared to existing generalizations of expected utility which avoid the Allais or
Ellsberg paradoxes, such as the ones in Machina (1982), Schmeidler (1989), or Chew,
Epstein and Segal (1991), among others, projective expected utility enjoys several ad-
vantages. Specifically, the representation is linear in the probabilities of states and con-
sequences, hence remaining quite tractable, but can be nonlinear in the probabilities of
the objective outcomes, hence allowing for portfolio effects. The axioms used to obtain
the representation closely mirror those introduced by Anscombe and Aumann (1963),
which are widely regarded as appealing. Finally, as shown in sections 8 and 9, a com-
patible specification of the payoff matrix avoids both Allais’ and Ellsberg’s paradox.

8 Example: Objective Uncertainty

Figure 1 below presents several examples of indifference maps for pure lotteries over
three outcomes which can be obtained within our class of preferences for different
choices of U .

The first pattern (parallel straight lines) characterizes von Neumann - Morgenstern
expected utility. Within our class of representations, it corresponds to the special case
of a diagonal payoff matrix U. All other patterns are impossible within von Neumann -
Morgenstern expected utility. Observe that, even though the payoff matrix is an object
of relatively limited algebraic complexity, the indifference curves can take a variety of
different shapes: in particular, they do not need to be convex, or concave. Yet, since the
indifference maps are generated by a limited number of parameters (the entries in the
payoff matrix), the type and variety of preference patterns predicted by the model is
also limited, and this in turn offers a basis for the empirical testability of the theory.
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Fig. 1. Examples of indifference maps on the probability triangle

The representation is sufficiently general to accommodate Allais’ paradox from sec-
tion 3. In the context of the example in section 3, let {ω1, ω2, ω3} be the outcomes
in which 4000, 3000, and 0 dollars are won, respectively. To accommodate Allais’
paradox, assume that the non-diagonal elements of the payoff matrix increase with the
difference between the corresponding diagonal payoffs. In the example below, the non-
diagonal elements are taken to be proportional to the fourth power of the difference.

U =
ω1

ω2

ω3

ω1

1.1
0.00001
0.14641

ω2

0.00001
1

0.1

ω3

0.14641
0.1
0

The above formulation of the payoff matrix implies that, whenever the stakes involved are
similar, the corresponding prospects are evaluated approximately at their (von Neumann-
Morgenstern) expected utility values. By contrast, whenever the stakes are significantly
different, the divergence from expected utility is also significant. Let the four lotter-
ies A, B, C, D be defined, respectively, as the following unit vectors in R3

+: a :=
(
√

0.2, 0,
√

0.8)′; b := (0,
√

0.25,
√

0.75)′; c := (
√

0.8, 0,
√

0.2)′; d := (0, 1, 0)′. Then
lottery A is preferred to B, while D is preferred to C, as

u(a) = a′Ua = 0.33713,
u(b) = b′Ub = 0.3366,
u(c) = c′Uc = 0.99713,
u(d) = d′Ud = 1.

9 Example: Subjective Uncertainty

In the Ellsberg puzzle, suppose that either all the non-red balls are green (i.e., 100 red,
200 green, 0 blue), or they are all blue (100 red, 0 green, 200 blue), with equal subjective
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probability. Further, suppose that there are just two objective outcomes, Win and Lose.
Then the following specification of the payoff matrix accommodates the paradox.

U = Win
Lose

Win
1
α

Lose
α
0

As we shall see, if α = 0 we are in the expected utility case, where the decision-maker
is indifferent between risk and uncertainty; when α > 0, risk is preferred to uncer-
tainty; and when α < 0, the decision-maker prefers uncertainty to risk. In fact, let
{Urn1, Urn2} be the set of possible states of nature, with uniform subjective proba-
bility, and let r := (

√
1/3,

√
2/3)′, r := (

√
2/3,

√
1/3)′ be the lotteries associated

to pure acts R and R, respectively. Furthermore, let w := (1, 0)′, l := (0, 1)′ be the
lotteries corresponding to a sure win (W ) and a sure loss (L), respectively. The mixed
acts G and G have projective expected utilities given by

u(G) = p(Urn1)u(R)+p(Urn2)u(L),
u(Ḡ) = p(Urn1)u(R)+p(Urn2)u(W ).
One also has that u(W ) = w′Uw = 1, u(L) = l′Ul = 0, u(R) = r′Ur =

1/3 + α
√

8/3, u(R) = r′Ur = 2/3 + α
√

8/3, and therefore

u(G) = 1/3 + α
√

2/3
u(G) = 2/3 + α

√
2/3.

It follows that, whenever α > 0, R is preferred to G and R to Ḡ, so the paradox is
accommodated. When α < 0, the opposite pattern emerges: G is preferred to R and
Ḡ to R. Finally, when α = 0 the decision-maker is indifferent between R and G, and
between R and Ḡ.

10 Games with PEU Preferences

Within the class of preferences characterized by Theorem 4, is it still true that every
finite game has a Nash equilibrium? If the payoff matrix U is diagonal we are in the
classical case, so we know that any finite game has an equilibrium, which moreover
only involves objective risk (in our terms, this type of equilibrium should be referred to
as “pure”, as it involves no subjective uncertainty). For the general case, consider that
u(f) is still continuous and linear with respect to the subjective beliefs π, while possibly
nonlinear (but still polynomial) with respect to risk. As we shall see, any finite game
has an equilibrium even within this larger class of preferences, although the equilibrium
may not be pure (in our sense): in general, an equilibrium will rest on a combination of
objective randomization and subjective uncertainty about the players’ decisions.

A finite, strategic-form game with PEU preferences is a n-tuple G :=
(I, (Ai)i∈I , (U i)i∈I), where I is a finite set composed of k players, Ai represents the
set of feasible actions for player i, and U i is player i’s payoff matrix on outcomes. An
outcome is a complete assignment of actions (a1, ..., ak), identified with the natural
basis in Rd, where d :=

∏
i |Ai|. An act of player i is a function f i from states Si to

lotteries on Ai. Let Hi be the set of feasible acts for player i. We assume that Hi is a
compact set which is also convex with respect to both objective and subjective mixing,
in the following sense.
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Assumption (Convexity). For all f i, gi ∈ Hi, and for all a ∈ [0, 1], there exist hi, li ∈
Hi such that

(i) phi

s = apfi

s + (1− a)pgi

s for all s (objective mixture)
(ii) u(li) = au(f i) + (1− a)u(gi) (subjective mixture).

A profile of acts is a unitary vector f := (f1, ..., fk), and the utility of a profile f for
player i is ui(f) = Eπ [f ′U if ]. An equilibrium is a profile f∗ such that ui(f∗

i , f∗
−i) ≥

ui(fi, f
∗
−i) for all f i.

Theorem 5. Any finite game with PEU preferences has an equilibrium.

Proof. First, let bi(f−i) := {f i : [ui(f i, f−i) ≥ ui(gi, f−i)](∀gi ∈ Hi)}. Next, let
H := ×iHi, and let b : H → H be the best response correspondence, defined by b(f) =
×ib

i(f i). Observe that b is a correspondence from a nonempty, convex, and compact
setH to itself. In addition, b is a nonempty- and convex-valued, upper hemi-continuous
correspondence. It follows that the conditions of Kakutani’s fixed point theorem are
satisfied, and hence the best response correspondence b has a fixed point: a profile of
acts f∗ such that f∗ ∈ b(f∗). The acts at this fixed point constitute an equilibrium since
by construction f∗i ∈ bi(f∗−i) for all i. �

11 Games with PEU Preferences: Examples

Consider the following game:

Pl.1, P l.2
a1

b1

a2

1.1, 0
0, 1.1

b2

1, 1.1
1.1, 1

If the agents maximize vN-M expected utility, the unique mixed strategy equilibrium
takes the following form: (p, q) = (1/12, 1/12) ≈ (0.08333, 0.08333), where p and q
are the probabilities of playing a1 and a2, respectively. We shall call this equilibrium
EU equilibrium.

If the players have the preferences we introduced to explain Allais paradox, what are
the consequences on the equilibrium strategies of the players? In particular, does the
equilibrium differ in the case of Allais agents? Consider the following game:

Pl.1, P l.2
a1

b1

a2

ω1, ω3

ω3, ω1

b2

ω2, ω1

ω1, ω2

where the payoff matrix of both players is given by U in the Allais example. Observe
that the payoff matrix U describes a decision-maker who is strictly uncertainty averse,
and hence if all players have payoffs matrices given by U any equilibrium only involves
pure acts. In this case, the unique equilibrium is given by (p, q) = (0.17632, 0.17632).

Compared to the case of EU preferences, in the game with PEU preferences a1 and
a2 are played more often. Starting from the EU equilibrium, observe that strategy a2

becomes more attractive for P2. To re-establish equilibrium a1 must be played more
often, but then to keep P1 indifferent between her two strategies a2 must also be played
more often.
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Next, consider the following very simple version of the Centipede game: P1 either
quits (outcome; ω2, ω3) or passes, in which case P2 either quits (outcome; ω3, ω1), or
passes (outcome; ω1, ω2). The payoff matrices of the two players are still given by U .

Let p denote the probability that P1 passes, and let q be the probability that P2 passes
given that P1 passed. Then the PEU for P1 and P2 are given, respectively, by

((1 − p)(1− q), p, (1− p)q)U((1 − p)(1− q), p, (1 − p)q)′

((1 − p)q, (1− p)(1− q), p)U((1 − p)q, (1− p)(1 − q), p)′.
In a subgame-perfect equilibrium, player 2 chooses q so that it maximizes

(
√

q,
√

(1− q), 0)U(
√

q,
√

(1− q), 0)′,
and hence will choose q ≈ 1, in which case P1 will choose p to maximize

(0,
√

p,
√

(1− p))U(0,
√

p,
√

(1− p))′,
and hence in equilibrium p ≈ 0.99029. It follows that the unique subgame-perfect equi-
librium in this game involves a small probability of continuation. Clearly, in a longer
version of the centipede those continuation probabilities would be amplified.

References

Allais, M.: Le Comportement de l’Homme Rationnel devant le Risque: Critique des postulats et
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Abstract. The additive multi-attribute utility model is widely used in multicrite-
ria decision-making. However, it is often not easy to elicit precise values for the 
scaling weights representing the relative importance of criteria. In a group deci-
sion-making context a very widespread approach is to derive incomplete infor-
mation, such as weight intervals or ordinal information rather than precise 
weights from a negotiation process. Different approaches have been proposed to 
deal with such situations. We advance two approaches based on dominance 
measures accounting for imprecise weights and compare them with other exist-
ing approaches using Monte Carlo simulation. 

Keywords: Additive Multi-Attribute Utility Model, Imprecise Weights, Do-
minance Measure, Monte Carlo Simulation.  

1   Introduction 

In Multi-Attribute Utility Theory (MAUT) the functional form of the multi-attribute 
utility function differs subject to a variety of independence conditions, see [1]. The 
additive model is considered to be a valid approach in most practical situations for the 
reasons described in [2] and [3]. The functional form of this model is 

u(Al) = ∑i wi ui(xi
l), 

where xi
l is the performance of the attribute Xi for the alternative Al, ui(xi

l) is the utility 
associated with the above performance for ui(·), the corresponding component utility 
function representing the decision maker's (DM) preferences over the possible 
attribute performances, and wi are the weights representing the relative importance of 
each attribute. Note that ∑i wi =1. 

However, complex decision-making problems are usually plagued with uncertain-
ty. Additionally, it is often not easy to elicit precise values for the scaling weights. 
They are often described within prescribed bounds or as just satisfying certain ordinal 
relations. Different authors refer to this situation as decision-making with imprecise 
information, with incomplete information or with partial information. 

Several reasons are given in the literature to justify why a decision maker may 
wish to provide incomplete information ([4], [5]). Regarding weights, the DM may 
find it difficult to compare criteria or may not want to reveal his or her preferences in 
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public. Moreover, the decision could be taken in a group decision-making situation, 
where incomplete information, such as weight intervals, is usually derived from a 
negotiation process ([6], [7]). 

A lot of work on MAUT has dealt with incomplete information. Sage and White 
([8]) proposed the model of imprecisely specified multi-attribute utility theory, where 
preference information about both weights and utilities is not assumed to be precise. 
Malakooti ([9]) suggested a new efficient algorithm for ranking alternatives when 
there exists incomplete information about the preferences and the value of the alterna-
tives. This involves solving a single mathematical programming problem many times. 
Ahn ([10]) extends Malakooti's work. 

Eum et al. ([11]) provided linear programming characterizations of dominance and 
potential optimality for decision alternatives when information about performances 
and/or weights is incomplete, extended the approach to hierarchical structures ([12]), 
and developed the concepts of potential weak potential optimality and strong potential 
optimality ([13]). More recently, Mateos et al. [14] considered the more general case 
where imprecision, described by means of fixed bounds, appears in alternative per-
formances, as well as in weights and utilities. 

Sarabando and Dias ([5]) give a brief overview of approaches proposed by differ-
ent authors within the MAUT and MAVT (Multi-Attribute Value Theory) framework 
to deal with incomplete information. 

A new approach is to use information about each alternative's intensity of domin-
ance, known as dominance measuring methods. Ahn and Park ([15]) compute both 
dominating and dominated measures from a dominance matrix and then derive a net 
dominance. This is used as a measure of the strength of preference in the sense that a 
greater net value is better. They proposed and compared two alternative approaches 
with surrogate weighting methods and decision rules by means of a simulation study.  

In this paper we propose to extend two dominance measuring methods proposed in 
[16]. The first one is based on dominating and dominated measures computed from 
the dominance matrix. They are combined into a net dominance value, but they are all 
computed differently than Ahn and Park’s measures ([15]) to resolve deficiencies and 
improve in Ahn and Park’s methods. In the second method, alternatives are ranked on 
the basis of a dominance probability measure. These dominance probability measures 
are based on the fact that the differences between utilities corresponding to alterna-
tives Ak and Aj are always within the interval whose lower end-point is the element 
located at the kth row and jth column of the dominance matrix and whose upper end-
point is located at the jth row and kth column of the dominance matrix with the sign 
changed. Moreover, alternative Ak dominates Aj  for the positive values in the above 
interval, whereas it is dominated by Aj for the negative values. Both methods consi-
dered ordinal relations regarding attribute weights, i.e. DMs ranked attributes in des-
cending order of importance. 

In the proposed extensions we consider weight intervals rather than ordinal rela-
tions among attribute weights. Then, a simulation study is performed to compare the 
proposed methods with the measures reported in Ahn and Park ([15]) and with clas-
sical decision rules.  

The paper is organized as follows. Section 2 introduces classical decision rules and 
Ahn and Park’s methods, all of them compared with the proposed methodology in 
Section 4. Section 3 extends two dominance measuring methods for imprecise 
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weights and compares them with other existing methods based on dominance meas-
ures. Section 4 evaluates and compares the methods in a simulation study and 
presents the study results. Finally, we outline our conclusions in section 5.  

2   Ranking Methods 

In this paper we consider a group decision-making problem with n attributes (Xi, 
i=1,…,n) and m alternatives (Aj, j=1,…,m), in which the DM preferences are 
represented by an additive multi-attribute utility function, with incomplete informa-
tion about the weights. Specifically, the group of DMs provides a weight interval for 
each attribute. We denote it by 

w  W = {w = (w1,…,wn) | wi  [wi
L,wi

U], i=1,…,n},        

where wi
L and wi

U are the lower and the upper end-points of the weight interval for the 
attribute Xi, i=1,…,n. 

On possible way of dealing with weight intervals described in the literature at-
tempts to eliminate inferior alternatives based on the concept of dominance. Given 
two alternatives Ak and Aj, alternative Ak dominates Aj if Dkj ≥ 0, Dkj being the opti-
mum value of the optimization problem ([17]): 

              Dkj = min{u(Ak) - u(Al)} = ∑i wi ui(xi
k) - ∑i wi ui(xi

l) | w  W}.          (1)        

This can also be denoted by Dkj = min{wuk - wuj) | w  W}, where uk = (u1(x1
k),…, 

un(xn
k)) and  uj = (u1(x1

j),…, un(xn
j)). This concept of dominance is called pairwise 

dominance and leads to the so-called dominance matrix: 
 

- D12  …   D1m-1   D1m 
                                                       D21    -    …   D2m-1     D2m 

    D=    D31  D32  …   D3m-1   D3m                                                   (2) 

               … 
Dm1  Dm2  …   Dmm-1    -              

                                                           
Another possibility is to use what is known as absolute dominance ([18]). Absolute 
dominance considers the following linear optimization problems:  
 

Uk = max{wuk | w  W}    and    Lk = min{wuk | w  W}. 
  
Alternative Ak absolutely dominates Aj if Lk  > Uj, i.e. the lower bound of Ak exceeds 
the upper bound of Aj. Note that if Ak absolutely dominates Aj, then Ak dominates Aj, 
but the reverse does not hold. 

Note that this dominance approach often results in almost no priorization of alter-
natives or too many non-dominated alternatives ([19]). However, pairwise and abso-
lute dominance values can be used to further prioritize competitive alternatives, and 
hence recommend the best alternative and fully rank alternatives. 

The following is an example of how these dominance values have been employed 
to modify three classical decision rules to operate in an imprecise decision-making 
context ([17], [18]): 
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• maximax rule or optimist rule (OPT): evaluating each alternative for its max-
imum guaranteed value, i.e. max{Uj, j=1,…,m}. 

• maximin rule or pessimist rule (PES): evaluating each alternative for its min-
imum guaranteed value, i.e. max{Lj, j=1,…,m}. 

• minimax regret rule (REG): evaluating each alternative for the maximum 
loss of value with respect to a better alternative, i.e. min{MRk, k=1,…,m}, 
where MRk represents the maximum regret incurred when choosing alterna-
tive j, i.e.  MRk = max{max{u(Aj) - u(Ak) | w  W} ∀j ≠ k}. 

 
Although none of these rules ensures that the best ranked alternative is the same as it 
would be if precise values were elicited for weights, simulations show that the se-
lected alternative is generally one of the best ([20]). 

A new approach is to use information about each alternative’s intensity of domin-

ance, known as dominance measuring methods. Ahn and Park [15] propose two ap-

proaches based on the dominance matrix D. In the first, denoted by AP1, alternatives 

are ranked according to a dominating measure αk = ∑ , . The higher this do-

minating measure is the more preferred the alternative will be, because the sum of the 

intensity of one alternative dominating the others will be also greater. In the second 

approach, denoted AP2, alternatives are ranked on the basis of the difference between 

the dominating measure αk and a dominated measure βk = ∑ , , i.e. on the 

basis of αk - βk. A simulation study showed AP1 to be better than AP2. Whereas AP1 

consists of just adding the paired dominance values in the kth row of D, AP2 consid-

ers paired dominance values in both the kth row and the kth column of D. The reason 

why AP1 is better than AP2 is that AP2 uses duplicated information (row and column 

values). On the other hand, AP1 only takes into account the dominating measure, 

leading to a trade-off between positives and negatives. In the next section, we intro-

duce two new methods aimed at overcoming these problems. 

3   Dominance Measuring Extensions 

The drawbacks associated with AP1 and AP2 are that AP1only considers dominating 
measures (trade-off of positive and negative values), and AP2 duplicates dominated 
measures. In this section, two new methods aimed at overcoming these problems are 
proposed. The first dominance measuring method (DME1) is based on the same idea 
as Ahn and Park suggested ([15]). First, we compute both dominating and dominated 
measures from the paired dominance values Dkj and then we derive a net dominance. 
This is used as a measure of the strength of preference in the sense that a greater net 
value is better. However, we compute the positives and negative dominating measures 
(step 2) and positive and negative dominated measures (step 4). They are used to 
compute first a proportion representing the strength of one alternative dominating the 
others (step 3) and second a proportion representing the intensity one alternative be-
ing dominated by the others (step 5). Finally, we subtract both proportions (step 6) to 
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compute the intensity of the dominating over the dominated proportions. The ranking 
of alternatives will be based on this intensity value (step 7). 

DME1 can be implemented in the following seven steps: 
 

1. Obtain the paired dominance values Dkj as in (1) and the dominance matrix D 
as in (2). 
 

2. Compute the dominating measures αk, αk
+ and αk

- for each alternative Ak: 
αk=∑ , , αk

+=∑ , ,  and αk
-=∑ , , , ∀k. 

 
In other words, αk is computed by adding the paired dominance values in the 
kth row of D, whereas αk

+ and αk
- are computed in the same way considering 

positive and negative values, respectively, in the corresponding row only. 
Note that αk = αk

+ + αk
-. 

 

3. Compute the proportion   =  . 

  
Note that we can assume that 0 < αk

+- αk
- ≤ ∞, avoiding division by 0, as 

demonstrated at the end of the algorithm. Note also that 0 ≤ Pk
α ≤ 1. 

 
4. Compute the dominated measures βk, βk

+ and βk
- for each alternative Ak:  

 βk = ∑ , , βk
+ = ∑ , ,  and  βk

- =∑ , ,  , ∀k. 

 
βk is computed by adding the paired dominance values in the kth column of 
D, whereas βk

+ and βk
- are computed in the same way considering the positive 

and negative values in the respective column only. Note that βk =βk
+ + βk

-. 
 

5. Compute the proportion   =  . 

 
Note that, as in the case of Pk

α, we can assume that 0 < βk
+- βk

- ≤ ∞, and 0 ≤ 
Pk

β ≤ 1. 
 

6. Calculate the net dominance value Pk for each alternative Ak: 
 

Pk = Pk
α - Pk

β,  k=1,…,m. 
 

Note that -1≤Pk≤1, where -1=Pk (⇔ Pk
α= 0 and Pk

β=1) when all alternatives 
dominate the alternative Ak, and Pk = 1(⇔Pk

α = 1 and Pk
β = 0) when all alter-

natives are dominated by alternative Ak. 
 

7. Rank alternatives according to the Pk values, where the best (rank 1) is the al-
ternative for which Pk is a maximum and the worst (rank m) is the alternative 
for which Pk  is the minimum. 
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Let us demonstrate that αk
+- αk

- >0, as stated in the third step of the above algorithm, 
because  αk

+- αk
-=0 ⇔  αk

+=0 and αk
-= 0 ⇔ Dkj = 0, ∀j≠k  ⇔  ∑i wi ui(xi

k) - ∑i wi ui(xi
j) 

≥ 0, ∀j≠k  ⇔  ∑i wi ui(xi
j) - ∑i wi ui(xi

k) ≤  0, ∀j≠k ⇔ Djk ≤ 0, ∀j≠k. 

Therefore, we have two possibilities: 

a. Dkj = 0 and Djk < 0 ⇒ alternative Ak dominates Aj. 
b. Dkj = 0 and Djk = 0 ⇔ w(uk - uj)=0, ∀w  W ⇔ uk = uj . 

This demonstrates that Dkj = 0 and Djk = 0, ⇔ ui(xi
k) = ui(xi

j), ∀i, i.e. if utility 
functions ui(·) are strictly monotone ∀i, then Ak and Aj are the same alterna-
tive, else (ui(·) are not strictly monotone) both alternatives Ak and Aj are in-
different. In both cases, we can discard alternative Aj and keep Ak. 

In conclusion, if we assume that there are no two alternatives Ak and Aj with ui(xi
k) = 

ui(xi
j), ∀i (in this case, alternative Aj would be discarded because they are indifferent) 

and αk
+- αk

-=0, then alternative Ak dominates Aj, ∀j, i.e. alternative Ak is preferred. 
The difference between the utilities corresponding to Ak and Aj , w(uk - uj) with w  

W, is always within [Dkj, -Djk] as demonstrated below. 
 

Dkj = min{wuk - wuj | w  W}= min{w(uk - uj) | w  W} ≤ {w(uk - uj) | w  W}, and 
{w(uk - uj) | w  W}≤ max{w(uk - uj) | w  W} = - min{-w(uk - uj) | w  W} = - 
min{w(uj - uk) | w  W}  = - Djk. 
 
It has been already demonstrated that w(uk - uj)  [Dkj, -Djk], ∀w  W. Thus, 

• If -Djk≤ 0 ⇔ Dkj < 0 and Djk ≥ 0 ⇔ alternative Aj dominates Ak ⇒ the 
probability of alternative Ak dominating Aj is 0. 

• If Dkj  ≥ 0 ⇔ Dkj  ≥ 0 and Djk < 0 ⇔alternative Ak dominates Aj ⇒ the 
probability of alternative Ak dominating Aj is 1. 

• If Dkj  < 0 and Djk < 0 then interval [Dkj, -Djk] will consist of a positive 
subinterval with positive values in which alternative Ak dominates Aj and a 
negative subinterval in which  alternative Aj dominates Ak. Thus, the prob-
ability of Ak dominating Aj is the proportion of the positive subinterval 
over the whole [Dkj, -Djk].  

On the basis of this idea, we now propose a second method, denoted DME2. In 
DME2, paired dominance values Dkj are first transformed into dominance probabili-
ties DPkj (step 2) depending on the dominance among alternatives Ak and Aj. Then a 
dominance probability measure (DPMk) is derived for each alternative Ak (step 3) as 
the sum of the dominance probabilities of alternative Ak regarding the others alterna-
tives. This is used as a measure of the strength of preference in the sense that a greater 
dominance probability measure is better. 

DME2 can be implemented as the following four steps: 
 

1. Compute dominance matrix D (2) from the paired dominance values Dkj (1). 
2. If Dkj ≥ 0, then alternative Ak dominates alternative Aj, i.e. the probability of 

Ak dominating Aj is 1, DPkj=1. 
Else (Dkj < 0): 
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• If Djk ≥ 0, then alternative Aj dominates alternative Ak, therefore, the 
probability of Ak dominating Aj is 0, i.e. DPkj=0. 

• Else note that alternative Aj is preferred to alternative Ak for those 
values in w that satisfy Dkj ≤ w(uk - uj) ≤ 0, and Ak is preferred to Aj 
for those values in w that satisfy 0 ≤ w(uk - uj) ≤ -Djk ⇒ the proba-
bility of Ak dominating  Aj  is  =  . 

3. Compute a dominance probability measure (DPM) for each alternative Ak 

DPMk = ∑ , . 

Rank alternatives according to the DPM values, where the best (rank 1) is the 
alternative with greatest DPM and the worst is the alternative with the least 
DPM.  

4   Computational Study  

Having described the proposed dominance measuring extensions (DME1 and DME2), 
let us compare these methods with Ahn and Park's approach ([15]) and with decision 
rules modified to operate in an imprecise decision context.  

We propose to carry out a simulation study of the above methods to analyze their 
performance. For a decision-making problem with m alternatives and n attributes, the 
process would be as follows: 

 

1. Randomly generate component utilities for each alternative in each attribute 
from a uniform distribution in (0,1), leading to an m×n matrix. Normalize the 
columns in this matrix to make the smallest value 0 and the largest 1, and 
remove dominated alternatives. 

2. Generate attribute weights representing their relative importance. Note that 
these weights are the TRUE weights and the derived ranking of alternatives 
will be denoted as the TRUE ranking. To generate the TRUE weights, we 
first select n-1 independent random numbers from a uniform distribution on 
(0,1), and then rank these numbers. Suppose the ranked numbers are 1≥rn-1 
≥,…,≥r2 ≥r1 >0. The differences between adjacently ranked numbers are then 
used as the desired weights: wn

T=1- rn-1, wn-1
T= rn-1- rn-2, …, w1

T= r1. The re-
sulting weights will sum 1 and be uniformly distributed in the weight space. 

3. To derive the corresponding weight intervals, add and subtract the same 
quantity to precise values, leading to the lower and upper end-points of the 
weight intervals. We used the quantities, q, of 0.025/2, 0.05/2, 0.075/2 and 
0.1/2 that represent 2.5%, 5%, 7.5% and 10% imprecision, respectively. In 
other words, [wi

L, wi
U]= [wi

T-q, wi
T+q]. If wi

T-q<0 then wi
T-q=0 and if 

wi
T+q>1 then wi

T+q=1 is considered. Throughout the simulation process 
weights will be randomly generated from these weight intervals, [wi

T-q, 
wi

T+q]. 
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4. Compute the ranking of alternatives for each method according to their pro-
cedures and compare with the TRUE ranking, computed in step 2. We use 
two measures of efficacy, hit ratio and rank-order correlation ([15], [21]). 
The hit ratio is the proportion of all cases in which the method selects the 
same best alternative as in the TRUE ranking. Rank-order correlation 
represents how similar the overall structures ranking alternatives are in the 
TRUE ranking and in the ranking derived from the method. It is calculated 
using Kendall's τ ([22]): τ = 1 – 2 × (number of pairwise preference viola-
tions) / (total number of pair preferences). 

 
Following ([15], [16]), four different levels of alternatives (m = 3,5,7,10) and five 
different levels of attributes (n = 3,5,7,10,15) were considered in order to validate the 
results output. Also, 10 replications of 10,000 trials were performed for each of the 20 
design elements (alternatives × attributes). 

Table 1 exhibits the average hit ratio for each of the 20 design elements when the 
interval length is 0.025, i.e. the average values of 10 replications of 10,000 trials, 
whereas the last row in this table is the mean of each column. The highest average hit 
values in each design element are highlighted in bold. 

Looking at the modified decision rules in Table 1, the REG method appears to be 
better than the PES method. PES outperforms the OPT method. For the dominance 
measuring methods, the mean value for the DME1 method is the greatest (0.886), its 
hit ratio being the highest for 12 out of the 20 design elements. The DME1 method is  
 

Table 1.  Average hit ratios 

Alternatives -
Attributes 

Modified decision rules Dominance measuring 
OPT PES REG AP1 AP2 DME1 DME2 

3 3 0.972 0.97 0.975 0.974 0.975 0.975 0.975 
 5 0.942 0.955 0.952 0.954 0.952 0.954 0.952 
 7 0.916 0.921 0.923 0.923 0.923 0.926 0.923 
 10 0.854 0.855 0.859 0.86 0.86 0.874 0.859 
 15 0.842 0.844 0.846 0.846 0.846 0.854 0.846 
5 3 0.961 0.964 0.968 0.967 0.968 0.967 0.968 
 5 0.933 0.935 0.94 0.938 0.94 0.939 0.939 
 7 0.926 0.932 0.934 0.933 0.933 0.934 0.934 
 10 0.844 0.85 0.856 0.856 0.857 0.857 0.856 
 15 0.769 0.772 0.776 0.776 0.776 0.776 0.776 
7 3 0.945 0.945 0.953 0.95 0.953 0.953 0.953 
 5 0.938 0.944 0.944 0.943 0.945 0.944 0.944 
 7 0.901 0.901 0.908 0.909 0.909 0.908 0.908 
 10 0.821 0.829 0.836 0.837 0.837 0.837 0.836 
 15 0.717 0.72 0.727 0.727 0.727 0.727 0.727 
10 3 0.934 0.935 0.947 0.944 0.947 0.947 0.947 
 5 0.908 0.908 0.915 0.913 0.917 0.916 0.916 
 7 0.912 0.921 0.922 0.923 0.923 0.922 0.923 
 10 0.8 0.809 0.817 0.813 0.818 0.816 0.818 
 15 0.691 0696 0.702 0.702 0.702 0.702 0.702 
Mean  0.876 0.88 0.885 0.884 0.885 0.886 0.885 
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followed by AP2 and DME2, which are better than AP1. On the whole, DME1 is 
superior to the others in terms of the hit ratio. Thus, the proposed DME1 method per-
forms better than the dominance measuring methods in [15]. 

The average hit ratio decreases the more attributes there are for all the methods under 
consideration and any given number of alternatives. This decrease is more pronounced 
than if the number of alternatives is increased for the same number of attributes. 

Again, if we consider rank-order correlation, see Table 2, the extensions proposed 
in this paper (DME1 and DME2), perform better than the approaches suggested by 
Ahn and Park and the modified decision rules. The highest rank-order correlation 
values in each design element are highlighted in bold. 

Again, the rank-order correlation decreases the more attributes there are for any 
given number of alternatives. However, the number of alternatives does not affect the 
correlation. 

Table 2. Rank-order correlation (Kendall's τ) 

Alternatives -
Attributes 

Modified decision rules Dominance measuring 
OPT PES REG AP1 AP2 DME1 DME2 

3 3 0.963 0.96 0.961 0.964 0.966 0.967 0.966 
 5 0.938 0.949 0.946 0.949 0.947 0.949 0.947 
 7 0.894 0.896 0.894 0.899 0.9 0.904 0.9 
 10 0.808 0.809 0.81 0.816 0.816 0.836 0.816 
 15 0.771 0.771 0.772 0.775 0.775 0.787 0.775 
5 3 0.96 0.959 0.956 0.963 0.965 0.965 0.965 
 5 0.941 0.94 0.936 0.943 0.945 0.945 0.945 
 7 0.91 0.912 0.91 0.915 0.916 0.916 0.916 
 10 0.86 0.859 0.861 0.866 0.868 0.868 0.867 
 15 0.786 0.786 0.788 0.792 0.792 0.792 0.792 
7 3 0.961 0.961 0.961 0.964 0.966 0.966 0.966 
 5 0.938 0.939 0.936 0.942 0.943 0.943 0.943 
 7 0.908 0.907 0.905 0.912 0.914 0.913 0.914 
 10 0.847 0.845 0.843 0.854 0.856 0.856 0.856 
 15 0.775 0.776 0.779 0.782 0.782 0.782 0.782 
10 3 0.957 0.959 0.958 0.962 0.963 0.963 0.963 
 5 0.93 0.93 0.928 0.934 0.936 0.936 0.936 
 7 0.915 0.916 0.914 0.919 0.921 0.921 0.921 
 10 0.864 0.864 0.863 0.871 0.874 0.873 0.873 
 15 0.79 0.79 0.792 0.795 0.796 0.796 0.796 
  0.885 0.886 0.885 0.89 0.892 0.894 0.892 

 
The simulation was also carried out for the other percentages of imprecision (5%, 

7.5% and 10%), as pointed out before, and the results were similar, i.e. the proposed 
extensions (DME1 and DME2) performed better than the other approaches. 

Figure 1 and Figure 2 show the superiority of the DME1 for the different percen-
tages of imprecision under consideration. Moreover, the greater the imprecision the 
better DME1 performed compared with the other methods under consideration. The 
worst performances are for modified decision rules, specifically for the maximax or 
optimist rule (OPT). 
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These results match up with outcomes reported in [16], where the same computa-
tional study was carried out, considering in that case the ordinal relations among 
attribute weights. 

 

Fig. 1. Hit ratio means for the different percentages of imprecision 

 

Fig. 2. Rank-order correlation for the different percentages of imprecision 

5   Conclusions  

In real complex decision-making problems it is not easy to elicit precise values for the 
weights representing the relative importance of criteria, which are often described 
within prescribed bounds or as just satisfying certain ordinal relations. 

Two possible approaches for dealing with weight intervals are to rank alternatives 
based on the concept of dominance (dominance measuring methods) and so-called 
decision rules. 
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In this paper we have proposed the extension of two dominance measuring me-
thods, DME1 and DME2. The first one is based on dominating and dominated meas-
ures, which are combined into a net dominance value as a measure of the strength of 
preference. The second ranks alternatives on the basis of a dominance probability 
measure. Both extensions consider weight intervals rather than ordinal relations 
among attribute weights.  

A simulation study was performed to compare the proposed extensions with the 
method suggested by Ahn and Park and with modified decision rules. The results 
show that DME1 outperforms the other methods in terms of the identification of the 
best alternative and the overall ranking of alternatives. Different situations of impreci-
sion were analyzed (2.5%, 5%, 7.5% and 10% imprecision), leading to the same con-
clusion. Furthermore, the greater the imprecision, the better DME1 will perform com-
pared with the other methods. 
 
Acknowledgments. The paper was supported by Madrid Regional Government 
project S-0505/TIC/0230 and the Spanish Ministry of Education and Science project 
TIN 2008-06796-C04-02. 

References 

1. Keeney, R.L., Raiffa, H.: Decision with Multiple Objectives: Preferences and Value-
Tradeoffs. Wiley, New York (1976) 

2. Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cambridge 
(1982) 

3. Stewart, T.J.: Robustness of Additive Value Function Method in MCDM. Journal of Mul-
ti-Criteria Decision Analysis 5, 301–309 (1996) 

4. Weber, M.: Decision Making with Incomplete Information. European Journal of Opera-
tional Research 28, 44–57 (1987) 

5. Sarabando, P., Dias, L.C.: Simple Procedures of Choice in Multicriteria Problems without 
Precise Information about the Alternatives Values’, C & OR (revision), INESC-Coimbra, 
Technical report, pp. 1–24 (2009) 

6. Jiménez, A., Mateos, A., Ríos-Insua, S.: Monte Carlo Simulation Techniques in a Decision 
Support System for Group Decision-Making. Group Decision and Negotiation 14(2), 109–
130 (2005) 

7. Mateos, A., Jiménez, A., Ríos-Insua, S.: Monte Carlo Simulation Techniques for Group 
Decision-Making with Incomplete Information. European Journal of Operations Re-
search 174(3), 1842–1864 (2006) 

8. Sage, A., White, C.C.: Ariadne: a Knowledge-Based Interactive System for Planning and 
Decision Support. IEEE Transactions on Systems, Management and Cybernetics, Part A: 
Systems and Humans 14, 35–47 (1984) 

9. Malakooti, B.: Ranking and Screening Multiple Criteria Alternatives with Partial Informa-
tion and Use of Ordinal and Cardinal Strength of Preferences. IEEE Transactions on Sys-
tems, Management and Cybernetics: Part A 30(3), 787–801 (2000) 

10. Ahn, B.S.: Extending Malakooti’s Model for Ranking Multicriteria Alternatives with Pre-
ference Strength and Partial Information. IEEE Transactions on Systems, Management and 
Cybernetics, Part A: Systems and Humans 33(3), 281–287 (2003) 



 Ranking Methods Based on Dominance Measures Accounting for Imprecision 339 

11. Eum, Y., Park, K.S., Kim, H.: Establishing Dominance and Potential Optimality in Multi-
criteria Analysis with Imprecise Weights and Values. Computers and Operations Re-
search 28(5), 397–409 (2001) 

12. Lee, K., Park, K.S., Kim, H.: Dominance, Potential Optimality, Imprecise Information, and 
Hierarchical Structure in Multi-criteria Analysis’. Computers and Operations Research 29, 
1267–1281 (2002) 

13. Park, K.: Mathematical Programming Models for Characterizing Dominance and Potential 
Optimality when Multicriteria Alternative Values and Weights are Simultaneously Incom-
plete. IEEE Transactions on Systems, Management and Cybernetics, Part A: Systems and 
Humans 34, 601–614 (2004) 

14. Mateos, A., Ríos-Insua, S., Jiménez, A.: Dominance, Potential Optimality and Alternative 
Ranking in Imprecise Decision Making. Journal of Operational Research Society 58(3), 
326–336 (2007) 

15. Ahn, B.S., Park, K.S.: Comparing Methods for Multiattribute Decision Making with Or-
dinal Weights’. Computers and Operations Research 35, 1660–1670 (2008) 

16. Mateos, A., Jiménez, A., Blanco, J.F.: A MCDM Ranking Method Based on a Dominance 
Measure: Computational Study. Group Decision and Negotiation (2009) (in revision) 

17. Puerto, J., Marmol, A.M., Monroy, L., Fernández, F.R.: Decision Criteria with Partial In-
formation. International Transactions in Operational Research 7, 51–65 (2000) 

18. Salo, A., Hämäläinen, R.P.: Preference Ratio in Multiattribute Evaluation (PRIME) - Elici-
tation and Decision Procedures under Incomplete Information. IEEE Transactions on Sys-
tems, Management and Cybernetics: Part A 31(6), 533–545 (2001) 

19. Kirkwood, C.W., Corner, J.L.: The Effectiveness of Partial Information about Attribute 
Weights for Ranking Alternatives in Multiattribute Decision Making. Organization Beha-
vior and Human Decision Processes 54, 456–476 (1993) 

20. Sarabando, P., Dias, L.C.: Multi-attribute Choice with Ordinal Information: a Comparison 
of Different Decision Rules. IEEE Transactions on Systems, Management and Cybernet-
ics, Part A (to appear, 2009) 

21. Barron, F., Barrett, B.: Decision Quality Using Ranked Attribute Weights’. Management 
Science 42(11), 1515–1523 (1996) 

22. Winkler, R.L., Hays, W.L.: Statistics: Probability, Inference and Decision. Holt, Rinehart 
& Winston, New York (1985) 



Optimizing the Hurwicz Criterion
in Decision Trees with Imprecise Probabilities

Gildas Jeantet and Olivier Spanjaard

LIP6 - UPMC
104 avenue du Président Kennedy 75016 Paris, France

{gildas.jeantet,olivier.spanjaard}@lip6.fr

Abstract. This paper is devoted to sequential decision problems with
imprecise probabilities. We study the problem of determining an opti-
mal strategy according to the Hurwicz criterion in decision trees. More
precisely, we investigate this problem from the computational viewpoint.
When the decision tree is separable (to be defined in the paper), we pro-
vide an operational approach to compute an optimal strategy, based on
a bicriteria dynamic programming procedure. The results of numerical
tests are presented. When the decision tree is non-separable, we prove
the NP-hardness of the problem.

Keywords: Sequential decision making, Imprecise probabilities,
Hurwicz’s criterion, Computational complexity, Exact algorithms.

1 Introduction

Decision under uncertainty is one of the main field of research in decision theory,
due to its numerous applications (e.g. medical diagnosis, robot control, strategic
decision, games...). Decision under uncertainty means that the consequences of
a decision depends on uncertain events. In decision under risk, it is customary
to assume that a precise probability is known for each event appearing in the
decision problem. A decision can thus be characterized by a lottery over possible
consequences. A popular criterion to compare lotteries (and therefore decisions)
is the expected utility (EU) model proposed by von Neumann and Morgenstern
[11]. In this model, a utility function u (specific to each decision maker) assigns a
numerical value to every outcome. The evaluation of a lottery is then performed
via the computation of its utility expectation (the greater the better). How-
ever, when several experts have divergent viewpoints or when empirical data are
missing, it is not obvious to elicit sharp numerical probabilities for each event
[1,2,12]. A natural way to take into account this difficulty is to use intervals of
probabilities rather than scalar probabilities. This is known as decision making
under imprecise probabilities.

Comparing decisions amounts then to comparing imprecise lotteries, i.e. lot-
teries where several possible probability distributions are taken into account.
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A pessimistic agent will make the decision that maximizes the worst possible
expected utility. This is known as the Γ -maximin decision criterion. Conversely,
an optimistic agent will make the decision that maximizes the best possible ex-
pected utility. This is known as the Γ -maximax decision criterion. Including
these two extremes, Jaffray and Jeleva recently proposed to use the Hurwicz
criterion, that enables to model intermediate attitudes by performing a linear
combination of both previous criteria [4]. Note that Hurwicz introduced this cri-
terion in the context of decision under complete ignorance (i.e., when absolutely
no information is known about the probabilities), but the authors preserved its
denomination of “Hurwicz’s criterion” since it extends naturally to the case of
imprecise probabilities.

To our knowledge, the algorithmic issues related to the use of Hurwicz’s crite-
rion in a sequential decision problem with imprecise probabilities have not been
studied until now. It is indeed frequent to encounter sequential decision prob-
lems where one does not make a simple decision but one follows a strategy (i.e. a
sequence of decisions conditioned by events) resulting in a non deterministic out-
come. Several representation formalisms can be used for sequential decision prob-
lems, such as decision trees (e.g., [9]), influence diagrams (e.g., [10]) or Markov
decision processes (e.g., [8]). A decision tree is an explicit representation of a se-
quential decision problem, while influence diagrams or Markov decision processes
are compact representations and make it possible to deal with decision problems
of greater size. It is important to note that, in all these formalisms, the set of po-
tential strategies is combinatorial (i.e., its size increases exponentially with the
size of the instance). The computation of an optimal strategy for a given repre-
sentation and a given decision criterion is then an algorithmic issue in itself. It is
well-know that an optimal strategy for EU in a decision tree endowed with scalar
probabilities can be determined in linear time by backward induction. This is no
more the case when dealing with imprecise probabilities and Hurwicz’s criterion.
In the particular case of Γ -maximin and Γ -maximax criteria, Kikuti et al. [2]
have presented algorithms that employ dynamic feasibility, that is, one declares
infeasible any strategy that includes a suboptimal substrategy (a substrategy is
a strategy in a subtree). In the present paper, on the contrary, we consider that
all strategies are feasible (i.e., even the ones that include a suboptimal substrat-
egy), and we study the computational complexity of determining an optimal
strategy according to Hurwicz’s criterion in a decision tree endowed with impre-
cise probabilities. Furthermore, we propose algorithmic procedures to tackle the
problem.

The remainder of the paper is organized as follows. We first give some pre-
liminaries on imprecise probabilities and decision criteria used in such a setting
(Section 2). Then, we present the difficulties raised by the use of imprecise prob-
abilities in sequential decision problems, and we distinguish a separable case and
a non-separable case (Section 3). The next two sections are devoted to the de-
scription of our results in these two cases (Section 4 and 5). Finally, we conclude
by giving some avenues for future research (Section 6).
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2 Single Stage Decision Making with Imprecise
Probabilities

Several mathematical models of imprecise probabilities have been proposed in
the literature [12,13]. A common point between these models is that they of-
ten define a probability interval [P−(E), P+(E)] for each event E. Following
Jaffray and Jeleva [4], we assume that there exists a real probability P0 such
that P0(E) ∈ [P−(E), P+(E)] for all events E. To compare imprecise lotteries
(i.e., lotteries with imprecise probabilities), one must therefore consider a set
P of possible probability distributions. This is close to the approach adopted
to compare feasible solutions in discrete optimization with interval data [5],
with the difference that the set of possible probability distributions is not the
cartesian product of the probability intervals of the events. A probability dis-
tribution should indeed satisfy the Kolmogorov axioms (P (E) ≥ 0, P (Ω) = 1,
P (E1 ∪ E2 ∪ . . .) = P (E1) + P (E2) + . . . for pairwise disjoint events Ei).

Let us present popular decision criteria in such a setting. For instance, con-
sider two lotteries f, g involving three pairwise disjoint events E1, E2, E3. If
E1 (resp. E2, E3) occurs, f yields -50 (resp. 0,100). If E1 (resp. E2, E3) oc-
curs, g yields 130(resp. -30,-50). In the EU model with sharp probabilities, a
lottery is evaluated by its expected utility, namely E(f) = P (E1)u(−50) +
P (E2)u(0) + P (E3)u(100) for f . Assume now that probabilities are imprecise,
e.g. P0(E1) ∈ [0.2, 0.4], P0(E2) ∈ [0.4, 0.6] and P0(E3) ∈ [0.2, 0.3]. The set P of
possible probability distributions is therefore defined by P = {P : P (Ei) ∈
[P−(Ei), P+(Ei)] ∀i, and

∑
i P (Ei) = 1}. If the decision maker wants to

hedge against the worst possible expected utility, a lottery f is evaluated by
E(f) = min{E(f, P ) : P ∈ P} where E(f, P ) denotes the expected utility of
lottery f according to probability P . This is the so-called Γ -maximin decision
criterion. The value of the Γ -maximin criterion can be computed by using the
following simple result:

Proposition 1. Consider a lottery f yielding utility ui if event Ei occurs (i =
1, . . . , n), with u1 ≤ . . . ≤ un and P (Ei) ∈ [P−(Ei), P+(Ei)]. The probability
distribution Pf in P recursively defined by{

Pf (E1) = min{1−∑n
j=2 P−(Ej), P+(Ej)}

Pf (Ei) = min{1−∑i−1
j=1 Pf (Ej)−

∑n
j=i+1 P−(Ej), P+(Ei)} ∀i

yields expected utility E(f).

Proof. Consider a probability distribution P �= Pf . Let us show that E(f, Pf ) ≤
E(f, P ). We denote by i0 the index such that P (Ei) = Pf (Ei) for i < i0
and P (Ei0 ) < Pf (Ei0) (P (Ei0 ) > Pf (Ei0) is impossible). One should have∑n

i=i0
P (Ei) = 1−∑i0−1

i=1 Pf (Ei). Consequently, P (Ei0 ) < Pf (Ei0 ) implies that
P (Ei) > P−(Ei) for some i > i0. Let us set i1 = min{i : i > i0 and P (Ei) >
P−(Ei)} and ε = min{Pf (Ei0 ) − P (Ei0 ), P (Ei1 ) − P−(Ei1)} > 0. We denote
by P1 the probability distribution defined by P1(Ei0 ) = P (Ei0) + ε, P1(Ei1 ) =
P (Ei1)− ε and P1(Ei) = P (Ei) for i �= i0, i1. We have E(f, P1) ≤ E(f, P ) since
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E(f, P1) − E(f, P ) = ε(ui0 − ui1) ≤ 0. If P1 �= Pf , by the same reasoning one
can construct a probability distribution P2 such that E(f, P2) ≤ E(f, P1). In
this way, one generates a sequence P1, . . . , Pk of probability distributions such
that E(f, Pi+1) ≤ E(f, Pi) and Pk = Pf . Therefore E(f, Pf ) ≤ E(f, P ). �

For instance, let us come back to lotteries f, g previously mentioned. We have
Pf (E1) = min{1− 0.4− 0.2, 0.4} = 0.4, Pf (E2) = min{1− 0.4− 0.2, 0.6} = 0.4
and Pf (E3) = min{1 − 0.4 − 0.4, 0.3} = 0.2. Consequently, for u(x) = x, we
have E(f) = 0.4× (−50)+ 0.2× 100 = 0. Similarly, one computes Pg(E1) = 0.2,
Pg(E2) = 0.5, Pg(E3) = 0.3 and E(g) = −4. Therefore lottery f is preferred to
g for the Γ -maximin criterion.

Conversely, if the decision maker wants to maximize the best possible expected
utility, a lottery f is evaluated by Ē(f) = max{E(f, P ) : P ∈ P}. This is the
so-called Γ -maximax decision criterion. The probability distribution P̄f yielding
Ē(f) is defined by:{

P̄f (E1) = max{1−∑n
j=2 P+(Ej), P−(Ej)}

P̄f (Ei) = max{1−∑i−1
j=1 P̄f (Ej)−

∑n
j=i+1 P+(Ej), P−(Ei)} ∀i

Coming back again to lotteries f, g previously mentioned, we have P̄f (E1) = 0.2,
P̄f (E2) = 0.5, P̄f (E3) = 0.3, Ē(f) = 20 on the one hand, and P̄g(E1) = 0.4,
P̄g(E2) = 0.4, P̄g(E3) = 0.2, Ē(g) = 30 on the other hand. Therefore lottery g
is preferred to f for the Γ -maximax criterion. This shows that the preferences
are of course very dependent on the degree of pessimism of the decision maker.

For this reason, Jaffray and Jeleva [4] propose to extend the Hurwicz criterion
for decision under complete ignorance to the case of imprecise probabilities.
According to the Hurwicz criterion, a lottery f is evaluated by αE(f) + (1 −
α)Ē(f). In other words, the decision maker will look at the worse and best
possible expected utilities and, according to its degree of pessimism, will put
more or less weight on the former or the later. It reduces to Γ -maximin for
α = 1, and to Γ -maximax for α = 0. When comparing lotteries f, g previously
mentioned according to the Hurwicz criterion, we have f preferred to g for
α > 5/7, and g preferred to f for α < 5/7. Note that the Hurwicz criterion is
compatible with dominance, i.e. if a lottery has a greater expected utility than
another one for all possible probability distributions, then its evaluation will be
better [4]. This property is indeed desirable to guarantee a rational behavior.

3 Multistage Decision Making with Imprecise
Probabilities

In multistage decision making, one studies problems where one has to take a
sequence of decisions conditionally to events. The formalism of decision trees
provides a simple and explicit representation of a sequential decision problem
under risk. It is a tree with three kinds of nodes: decision nodes (represented
by squares), chance nodes (represented by circles) and utility nodes (leaves of
the tree). A decision node (resp. chance node) can be seen as a decision variable
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(resp. random variable), the domain of which corresponds to the labels of the
branches starting from that node. When probabilities are imprecise, the sharp
probability that a given random variable takes a given value is unknown: one only
knows an interval of probabilities in which it is included. The values indicated
at the leaves correspond to the utilities of the consequences. For the sake of
illustration, we now give an example of a well-kown multistage decision problem,
and its representation with a decision tree. Note that one omits the orientation
of the edges when representing decision trees.

Example 1 (oil wildcatter’s problem [9]). An oil wildcatter has to decide
whether to drill or not at a given site. For that purpose, he first has to decide
whether to sound or not the geological structure of the site (decision D1), which
costs 10000$ and gives a better estimation of the quantity of oil to be found. The
result of the sounding can be seen as a random variable T that can take three
possible values: no if there is no hope of oil, open if some oil is expected, or
closed if much oil is expected. Next, he decides whether to drill or not (decision
D2), which costs 70000$. Finally, if he decides to drill, the result of the drilling
can be seen as a random variable S that can take three possible values: the hole
is dry (the outcome is 0$), wet (120000$) or soaking (270000$). This problem
can be represented by the decision tree on the left side of Figure 1. Note that
decision D2 is duplicated in several nodes (nodes D1

2, D2
2, D3

2 and D4
2) since it

can be taken in several different contexts (a sounding has been performed or not,
the result of the sounding is encouraging or not...).

When sharp probabilities are known, each branch starting from a chance node
representing random variable X is endowed with probability P (X = x|past(X)),
where past(X) denotes all the value assignments to random and decision vari-
ables on the path from the root to X . Furthermore, in this paper, we assume
that P (X = x|past(X)) only depends on the random variables in past(X). For
instance, in the decision tree for the oil wildcatter problem, P (S = soak|D1 =
sounding, T = no) = P (S = soak|T = no). When probabilities are imprecise,
we assume that a conditional probability table is indicated for each chance node
in the decision tree. In each cell of the table, an interval of probabilities is given.
For the oil wildcatter problem, the conditional probability tables are presented
besides the decision tree in Figure 1. So as to have complete conditional prob-
ability tables, we make an assumption of symmetry: the structures of subtrees
of a same chance node are identical. Note that this assumption does not imply
symmetric decision trees (as those obtained by unfolding an influence diagram
[3]). For instance, the decision tree in Figure 1 is not symmetric but the condi-
tion holds: the three subtrees of node T have the same structure (the subtrees
of nodes S are all leaves).

A strategy consists in setting a value to every decision variable condition-
ally to its past. The decision tree in Figure 1 includes 10 feasible strategies,
among which for instance strategy s = (D1 = sounding, D2

2 = not drill, D3
2 =

drill, D4
2 = drill) (note that node D1

2 cannot be reached when D1 = sounding).
In our setting, a strategy can be associated to a compound lottery over the util-
ities, where the probabilities of the involved events are imprecise. For instance,
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D1

D
1
2

no sounding

0
not drill

Sdrill

200Ksoak

50K
wet

-70Kdry

T

sounding D
2
2

no

-10K
not drill

Sdrill

190Ksoak

40K
wet

-80Kdry

D
3
2

open -10K
not drill

Sdrill

190Ksoak

40K
wet

-80Kdry

D
4
2

closed

-10K
not drill

Sdrill

190Ksoak

40K
wet

-80Kdry

P (S|T ) dry wet soak

no [0.500,0.666] [0.222,0.272] [0.125,0.181]

open [0.222,0.333] [0.363,0.444] [0.250,0.363]

closed [0.111,0.166] [0.333,0.363] [0.454,0.625]

T no open closed

P (T ) [0.181,0.222] [0.333,0.363] [0.444,0.454]

S dry wet soak

P(S) [0.214,0.344] [0.309,0.386] [0.307,0.456]

Fig. 1. Decision tree for the oil wildcatter problem

strategy s corresponds to the compound lottery yielding −10K if T = no, 190K
(resp. 40K,−80K) if T = open or T = closed and then S = soak (resp. wet, dry).
Comparing strategies amounts therefore to compare compound lotteries. Given
a decision tree T , the evaluation of a strategy (more precisely, of the corre-
sponding compound lottery) according to the Hurwicz criterion depends on the
set PT of possible probability distributions on decision tree T (i.e., the set of
assignments of sharp probabilities to the tables coming with T ). This evaluation
is a combinatorial problem in itself due to the combinatorial nature of PT . We
distinguish two cases:

Non-separable decision trees. We say that a decision tree T is non-separable
when PT is a subset of the cartesian product of possible probability distributions
at each chance node. In other words, the fact that the probabilities sum up to
1 at each chance node is not sufficient to ensure the global consistency of the
probability distribution on the decision tree. This is the case for the decision
tree of Figure 1. Consider for instance the following partial probability distri-
bution on the tree: P (S = dry|T = no) = 0.55, P (S = dry|T = open) = 0.33,
P (S = dry|T = closed) = 0.12, P (T = no) = 0.20, P (T = open) = 0.35,
P (T = closed) = 0.45, P (S = dry) = 0.22. This partial probability distribution
can be completed so that the probabilities sum up to 1 at each chance node,
but is globally inconsistent since the total probability theorem does not hold:
P (S = dry|T = no)P (T = no) + P (S = dry|T = open)P (T = open) + P (S =
dry|T = closed)P (T = closed) = 0.2795 �= 0.22 = P (S = dry).

Separable decision trees. We say that a decision tree T is separable when
PT is equal to the cartesian product of possible probability distributions at each
chance node. In other words, the only requirement to ensure that a probability
distribution is globally consistent is that the probabilities sum up to 1 at each
chance node. This is for instance the case for the decision tree of Figure 2 as
soon as random variables A, B, C, D, E are mutually independent.
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Solving a decision tree means finding an optimal strategy according to a given
decision criterion (here, Hurwicz and its particular cases). Note that the number
of potential strategies grows exponentially with the size of the decision tree,
i.e. the number of decision nodes (this number has indeed the same order of
magnitude as the number of nodes in T ). Indeed, one easily shows that there
are Θ(2

√
n) strategies in a complete binary decision tree T , where n denotes

the number of decision nodes. This prohibitive number of potential strategies
makes it impossible to resort to an exhaustive enumeration of the strategies
when the size of the decision tree increases. For this reason, it is necessary to
develop an optimization algorithm to determine the optimal strategy. It is well-
known that the rolling back method makes it possible to compute in linear time
an optimal strategy w.r.t. EU. Indeed, such a strategy satisfies the optimality
principle: any substrategy of an optimal strategy is itself optimal. Starting from
the leaves, one computes recursively for each node the expected utility of an
optimal substrategy: the optimal expected utility for a chance node equals the
expectation of the optimal utilities of its successors; the optimal expected utility
for a decision node equals the maximum expected utility of its successors. This
is however more difficult to optimize the Hurwicz criterion in decision trees with
imprecise probabilities. In Section 5, we will show that this is actually an NP-
hard problem in non-separable decision trees. Before that, in the next section,
we will study the case of separable decision trees.

4 Optimizing the Hurwicz Criterion in Separable
Decision Trees

When trying to optimize the Hurwicz criterion in a decision tree, it is impor-
tant to note that the optimality principle does not hold. For instance, consider
Figure 2 and assume complete ignorance about probabilities (i.e., all intervals
of probabilities are [0, 1]). Let us set α = 0.5 and perform backward induction
on the decision tree with u(x) = x. In D2, the decision maker prefers decision
up to down (the Hurwicz criterion is equal to 15 for D2 = up, compared to 12.5
for D2 = down) and in D3 he also prefers decision up to down (a sure utility
of 10, compared to 9.5). In D1, the decision maker has then the choice between
a first lottery offering a minimum utility of 0 and a maximum utility of 20 if
he decides up, and a second lottery offering a minimum of 5 and a maximum
of 10 if he decides down. The best decision according to the Hurwicz criterion

D1

Aup
D2

Bup � 20
� 10

Cdown
� 25
� 0� 0

Ddown
D3

� 10up

Edown
� 15
� 4� 5

Fig. 2. A separable decision tree
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Table 1. Strategies and their evaluations

D1 D2 D3 α = 0 α = 0.5 α = 1
up up − 20 10 0
up down − 25 12.5 0

down − up 10 7.5 5
down − down 15 9.5 4

is up (10 compared to 7.5). The strategy returned by dynamic programming is
therefore (D1 = up, D2 = up) with a value of 10. Table 1 indicates the value of
every strategy with respect to α. For α = 0.5, strategy (D1 = up, D2 = down)
is optimal with a value of 12.5. In this case, one thus observes that the strategy
returned by dynamic programming is suboptimal. For this reason, a decision
maker using the Hurwicz criterion should adopt a resolute choice behavior [7],
i.e. he initially chooses a strategy and never deviates from it later. We focus here
on determining an optimal strategy from the root.

Before showing how to compute an optimal strategy according to the Hurwicz
criterion in a separable decision tree, we first show how to compute an optimal
strategy according to Γ -maximin and Γ -maximax. It is well-known that the
validity of the rolling back method on decision trees relies on the fulfillment of
the independence axiom [6]. The independence axiom [11] states that the mixture
of two lotteries f and g with a third one h should not reverse preferences (induced
by the decision criterion used): if f is strictly preferred to g, then λf + (1− λ)h
(i.e., the compound lottery that yields lottery f (resp. h) with probability λ
(resp. 1− λ)) should be strictly preferred to λg + (1− λ)h. The following result
states that the independence axiom holds for Γ -maximin and Γ -maximax under
a separability condition:

Proposition 2. Let f, g, h denote lotteries with sets Pf ,Pg,Ph of possible prob-
ability distributions. If the set Pλf+(1−λ)h (resp. Pλg+(1−λ)h) of possible proba-
bility distributions on the compound lottery λf +(1−λ)h is the cartesian product
of Pf (resp. Pg) and Ph (separability condition), then the following properties
hold:

E(f) ≥ E(g) ⇒ E(λf + (1− λ)h) ≥ E(λg + (1− λ)h)
Ē(f) ≥ Ē(g) ⇒ Ē(λf + (1− λ)h) ≥ Ē(λg + (1 − λ)h)

Proof. We show that E(λf +(1−λ)h) = λE(f)+(1−λ)E(h) under the assump-
tions of the proposition. We have indeed E(λf + (1 − λ)h) = min{E(λf + (1 −
λ)h, P ) : P ∈ Pλg+(1−λ)h}. By linearity of expectation, it equals min{λE(f, P )+
(1 − λ)E(h, P ) : P ∈ Pλg+(1−λ)h}. By separability assumption, it equals min{λ
E(f, Pf ) + (1 − λ)E(h, Ph) : Pf ∈ Pf , Ph ∈ Ph} = λmin{E(f, Pf ) : Pf ∈
Pf}+ (1− λ)min{E(h, Ph) : Ph ∈ Ph}. By definition of E(·), it equals λE(f) +
(1 − λ)E(h). This implies the validity of the first property. The proof is similar
for the second property. �

In a separable decision tree, the separability condition of Proposition 2 holds at
every chance node. For this reason, the rolling back method returns an optimal
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strategy when used with Γ -maximin or Γ -maximax in a separable decision tree.
The computational complexity of this procedure is linear in the number of decision
nodes.

Let us now explain our approach for computing an optimal strategy according
to the Hurwicz criterion. We recall that the rolling back method does not work
when operating directly with the Hurwicz criterion for α �= 0, 1. However, one
can use the following simple property: if a substrategy is dominated by another
one at the same node for both the Γ -maximin and Γ -maximax criteria (i.e., its
value is smaller or equal for both criteria, and strictly smaller for at least one),
then it cannot yield an optimal strategy for the Hurwicz criterion. The idea is
to compute the set of non-dominated strategies (more precisely, one strategy
for each non-dominated vector) by a bicriteria rolling back procedure from the
leaves. At the root, one computes then the value of every non-dominated strategy
according to the Hurwicz criterion, and one returns the best one. We describe
here, for each node X of a decision tree (for simplicity, we assume here that the
decision tree is binary), how the set ND(X) of non-dominated vectors (the first
(resp. second) component represents the minimum (resp. maximum) expected
utility of a feasible strategy) are inferred from the non-dominated vectors of its
successors X1 and X2:

– At a leaf X labelled by utility u, one sets ND(X) = {(u, u)}.
– At a chance node X , let us denote by P (X1) ∈ [P−(X1), P+(X1)] the prob-

ability variable assigned to edge (X, X1). Then ND(X) is the set of non-
dominated vectors computed by the formula:

( min
P (X1)

{P (X1)E1 + (1− P (X1))E2}, max
P (X1)

{P (X1)E1 + (1− P (X1))E2})
for all (E1, E1) ∈ ND(X1), (E2, E2) ∈ ND(X2).

– At a decision node X , ND(X) is the set of non-dominated vectors in set
ND(X1) ∪ND(X2).

We now give an example to illustrate the operation of the procedure.

Example 2. Let us come back to the decision tree of Figure 2 and assume again
complete ignorance about probabilities, α = 0.5 and u(x) = x (for simplicity in
the calculation). The trace of the algorithm is the following:
- at leaf 20 (resp. 10, etc.) ND(20) = {(20, 20)} (resp. {(10, 10)}, etc.);
- ND(B) = {(10, 20)} since combining (10, 10) and (20, 20) yields (10, 20);
- ND(C) = {(0, 25)} since combining (0, 0) and (25, 25) yields (0, 25);
- ND(D2) = {(10, 20), (0, 25)} since both vectors are non-dominated;
- ND(A) = {(0, 25)} since combining (10, 20) (resp. (0, 25)) and (0, 0) yields
(0, 20) (resp. (0, 25)), and (0, 25) dominates (0, 20);
By proceeding similarly, one obtains ND(D) = {(4, 15), (5, 10)}. At the root, one
obtains finally ND(D1) = {(0, 25), (4, 15), (5, 10)}. By evaluating every vector
according to the Hurwicz criterion, one finds that (0, 25) is an optimal vector
(corresponding to optimal strategy (D1 = up, D2 = down)).

The algorithm has been implemented in C++, and we have carried out numerical
tests on a PC with a Pentium IV CPU 2.13Ghz processor and 3.5GB of RAM.
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Table 2. Numerical results

Algorithms Imprecision Ignorance
Depth (nodes) Avg Max Avg Max

13 (16, 383) card. 144 600 24 39
time 0 0 0 0

15 (65, 535) card. 940 3, 290 47 68
time 2.35 44 0.02 1

17 (262, 143) card. 7, 182 40, 930 90 115
time 1, 189.97 3, 595 0.14 1

19 (1, 048, 575) card. − − 174 216
time − − 0.58 1

21 (4, 194, 303) card. − − 348 570
time − − 2.09 3

23 (16, 777, 215) card. − − 714 1, 164
time − − 8.31 9

25 (67, 108, 863) card. − − − −
time − − − −

Our tests were performed on complete binary decision trees of even depth. The
depth of these decision trees varies from 4 to 14 (5 to 5461 decision nodes), with
an alternation of decision nodes and chance nodes. Utilities are real numbers ran-
domly drawn within interval [1, 500]. The imprecise probabilities were generated
by randomly drawning a sharp probability distribution for each chance node,
and then randomly generating an interval of probabilities around each proba-
bility. The numerical results are summarized in Table 2. Column “Imprecision”
(resp. “Ignorance”) details results obtained in the case of imprecise probabilities
(resp. complete ignorance). Note that some tuning of the bicriteria rolling back
method is possible in the case of complete ignorance, that considerably speeds
up the procedure. Furthermore, the number of non-dominated vectors at each
node is upper bounded by n in this case (where n denotes the number of decision
nodes), and therefore the whole procedure performs in O(n2). For each depth,
500 instances were randomly generated and one indicates the average (Avg) and
maximum (Max) computation times (in sec.), as well as the cardinality of the set
of non-dominated vectors at the root. Symbol “−” appears when the memory
size was not sufficient to execute the algorithm. One can observe that the smaller
memory space requirements make it possible to solve larger instances (up to 16
millions of nodes) in the case of complete ignorance.

5 Optimizing the Hurwicz Criterion in Non-separable
Decision Trees

We now prove that the determination of an optimal strategy according to the
Hurwicz criterion in a non-separable decision tree is an NP-hard problem, where
the size of an instance is the number of involved decision nodes. Actually, we
show a stronger result:
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Fig. 3. An example of reduction

Proposition 3. The determination of an optimal strategy according to the Γ -
maximax criterion in a non-separable decision tree is an NP-hard problem.

Proof. The proof relies on a polynomial reduction from problem 3-SAT, which
can be stated as follows:

INSTANCE: a set X of boolean variables, a collection C of clauses on X such
that |c| = 3 for every clause c ∈ C.
QUESTION: does there exist an assignment of truth values to the boolean vari-
ables of X that satisfies simultaneously all the clauses of C ?

Let X = {x1, . . . , xn} and C = {c1, . . . , cm}. The polynomial generation of a
decision tree from an instance of 3-SAT is performed as follows. One defines a
decision node for each clause of C. Given ci a clause in C, the corresponding
decision node in the decision tree, also denoted by ci, has three children (chance
nodes), one for each literal in the clause. These chance nodes are denoted by
the name of the corresponding literal. Every chance node xi (resp. x̄i) has two
children: a leaf of utility 1 with probability pi ∈ [0, 1] (resp. 1− pi), and a leaf of
utility 0 with probability 1−pi ∈ [0, 1] (resp. pi). Finally, one adds a chance node
A as root, predecessor of all decision nodes ci, with probability 1/m on every
branch. The obtained decision tree includes m decision nodes, 3m + 1 chance
nodes and 6m leaves. Furthermore, n probability variables are involved. This
guarantees the polynomiality of the reduction. For the sake of illustration, on
Figure 3, we represent the decision tree obtained for the following instance of
3-SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

Note that, in this kind of decision trees, the Γ -maximax value of any strategy
is upper bounded by 1. Furthermore, given an assignment of truth values that
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makes satisfiable the 3-SAT expression, one can construct a strategy whose Γ -
maximax value is 1. There exists indeed at least a literal whose truth value is
“true” for every clause ci. Let us denote by ki the index of such a literal in ci.
At every node ci, one makes decision leading to literal whose index is ki. By
setting pki = 1 (resp. 0) if it is a positive (resp. negative) literal, the expected
utility of the corresponding strategy is 1. Conversely, given a strategy whose
Γ -maximax value is 1, one can construct an assignment of truth values that
makes satisfiable the 3-SAT expression. Indeed, at every decision node ci the
chosen decision necessarily leads to a chance node returning a utility of 1 with
a probability set to 1. Let us denote by ki the index of the chance node chosen
at ci. One obtains a partial assignment by setting xki to “true” (resp. “false”)
if pki = 1 (resp. 0). Any completion of this partial assignment makes satisfiable
the 3-SAT expression. This concludes the proof. �

6 Conclusion

In this paper, we have proposed an operational procedure to determine an opti-
mal strategy according to the Hurwicz criterion in a separable decision tree. Fur-
thermore, we have proved that the problem becomes NP-hard in non-separable
decision trees. For future research, it would be interesting to propose an algo-
rithm for optimizing the Hurwicz criterion in a non-separable decision tree. In
this purpose, a branch and bound is worth investigating. An upper bound eas-
ily computable would consist for instance in computing an upper bound of the
value of a Γ -maximin strategy by determining the maximum expected utility
for a feasible sharp probability distribution (i.e., consistent with the intervals
of probabilities), and an upper bound of a Γ -maximax strategy by relaxing the
non-separability constraints (and therefore using the procedure for Γ -maximax
detailled in Section 4). Combining both upper bounds with α and 1 − α would
provide an upper bound for the Hurwicz criterion.
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Abstract. We axiomatically characterise a class of algorithms for making
sequential decisions in situations of complete ignorance. These algorithms
assume that a decision maker (DM) (human or or a software agent) has
exogenously defined utilities for prizes and she uses the empirical distribu-
tion of prizes to calculate the “expected utility” of each action maximising
this expected utility at each stage of the decision making process. We show
that this class of algorithms is defined by three simple axioms that high-
light the independence of the given actions, the bounded rationality of the
agent, and the principle of insufficient reason at margin.

Keywords: sequential decision making, ex-post rationality, fictitious
play, multiset.

1 Introduction

Consider a Decision Maker (DM) who has to repeatedly choose from a finite
set of actions. Each action results in a random reward, also drawn from a fi-
nite set. The environment is complex in the sense that the DM is either unable
to offer a complete description of the states of the world or is unable to con-
struct a meaningful prior probability distribution. Naturally, the well established
Bayesian methods of say [12] or [1] would then be inapplicable.

Our approach is to postulate that the DM has a preference relation defined
directly over the set of actions which is updated over time in response to the
sequences of observed rewards. Thus, ifA denotes the set of all actions and H the
set of all histories, the DM is completely described by the family D := (ht)ht∈H ,
where ht⊆ A×A is a well defined preference relation on the actions following
a history ht at date t. A history consists of the sequences of rewards, drawn from
a finite set R, that are obtained over time to each of the actions. Later we will
impose axioms on D of procedural rationality type.

There is a considerable literature in economics and psychology on a variety of
“stimulus-response” models of individual choice behavior. In these models, the
DM does not attempt to learn the environment, instead she looks at the past
experiences and takes her decisions on the basis of her observations. Most of this
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literature prescribes some boundedly rational rule(s) for updating and the focus
is on analysis of implied adaptive dynamics. These imputed rules of updating
vary widely. They range from modifications of fictitious play and reinforcement
learning to imitation of peers etc. See for example [2], [13], [7] and the references
therein.

Our approach outlined above is different. We do not consider any particular
updating rules but impose axioms on the updating procedure. These axioms
impose some structural restrictions and postulate certain independence and we
derive an ex-post utility representation for such a DM. This approach may be
found in [4] where they axiomatically characterised replicator dynamics which
makes [4] the closest relative of this paper. We note that the Case Based Decision
Theory of Gilboa and Schmeidler [8], [9] is not applicable due to the assumption
of infinitude of cases and the Archimedean axiom that they impose.

Chapter 2 introduces the model, Chapter 3 defines the ex-post utility rep-
resentation, Chapter 4 introduces the axioms, Chapter 5 formulates the main
theorem and outlines its proof, and finally Section 6 fills all the gaps and com-
pletes the proof of the main theorem.

2 The Model

A Decision Maker must choose from a finite set of m actions A = {a1, . . . , am},
at each moment t = 0, 1, 2, . . .. Every action results in a reward, drawn from
a finite set R = {1, . . . , n}. The rewards are governed by a stochastic process
unknown to the DM. Following her choice at date t, the vector of realised rewards,
rt = (r(t)

1 , . . . , r
(t)
m ), where r

(t)
i is the reward to action ai at moment t, is revealed

to the DM. Thus the DM observes the rewards for all actions and not only for
the one she has chosen. A history at date t is a sequence of vectors of rewards
ht = (r0, . . . , rt−1).

The sequential decisions of the DM are guided by the following principle.
Following any history ht, the DM works out a preference relation1 ht on the
set of actions A. At date t she chooses one of the maximal actions with respect
to ht , observes the set of outcomes rt and calculates a new preference relation
ht+1 where ht+1 = (ht, rt). At the outset the DM is indifferent between all the
actions so she chooses a random one.

Let Ht denote the set of all histories at date t and H =
⋃

t≥1 Ht. Thus, the
family of preference relations D := (h)h∈H completely describes the DM. Our
objective is to discuss the behavior of this learning agent through the imposition
of certain axioms that encapsulate the DM’s procedural rationality. For a DM
satisfying these axioms we will derive an ex-post utility representation theorem
that is based on the empirical distribution of rewards in any history.

Before proceeding any further with the analysis, it is important to point out
two salient features of the above formulation of the DM.

1 Throughout, by a preference relation on any set, we mean a binary relation that is
a complete, transitive and reflexive ordering of the elements.
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First, as in [4], a history describes the rewards to all the actions in each
period, including those that the DM did not choose. This implicitly assumes
that decisions are taken in a social context where other people are taking other
actions and the rewards for each action are publicly announced. Examples of such
situations are numerous and include investing in a share market and betting on
horses. Relaxing this assumption of learning in a social context is a topic of
future research.

Second, note that the description requires a preference on actions to be spec-
ified after every conceivable history. This is much in the spirit of the theoretical
developments in virtually all decision theory. The presumption underlying such
an abstraction is that any subset of these acts may be presented to the DM and
that a necessary aspect of a theory is that it is applicable with sufficient gener-
ality. Given the temporal nature of the problem at hand this assumption may
be quite natural. For, all conceivable histories may appear by assuming that the
underlying random process generates every r ∈ Rm with a positive probability.

We make a non-triviality assumption on D for the rest of this paper. We
assume that the DM is not indifferent between all actions following all histories.

3 Multisets and Ex-post Utility Maximisation

Here we will introduce the rule (a class of algorithms) that we will eventually
axiomatise. For this rule, the number of times different rewards accrue to given
action during a history is important. To progress further, we will need to in-
troduce the idea of a multiset. A multiset over an underlying set may contain
several copies of any given element of the latter. The number of copies of an
element is called its multiplicity. Our interest is in multisets over R. Therefore,
multiset μ is identified with a vector μ = (μ(1), . . . , μ(n)) ∈ Zn

+, where μ(i) is

the multiplicity of the ith prize and the cardinality of this multiset is
n∑

i=1
μ(i).

Let Pt[n] denote the subset of all such multisets of cardinality t whereupon

P [n] =
∞⋃

t=1

Pt[n] (1)

denotes the set of all non-empty multisets over R. Mostly, we will write Pt

instead of Pt[n] when the number of prizes is clear. The union of μ, ν ∈ P is
defined as the multiset μ ∪ ν for which (μ ∪ ν)(i) = μ(i) + ν(i) for any i ∈ R.
Observe that whenever μ ∈ Pt and ν ∈ Ps, then μ ∪ ν ∈ Pt+s.

Given any history h ∈ Ht, let μi(a, h) denote the number of times the reward
i has occured in the history of rewards h(a) corresponding to action a and
μ(a, h) = (μ1(a, h), . . . , μn(a, h)).

For any two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) of Rn, we let x · y
denote their dot product, i.e. x · y =

∑n
i=1 xiyi.

Here comes the rule. A DM applying this rule must have exogenously defined
utilities of the prizes. Let u = (u1, . . . ,un) be the vector of her utilities, where
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ui is the utility of the ith prize. At any moment t the DM calculates the total
utility of the prices for each given action in the past and chooses the action which
performed best in the past and for which the total utility of prizes is at least as
high as for any other action. In other words she chooses any action belonging to
argmaxi(μ(ai, h) · u).

The problem of the DM is that she does not know the probabilities. In the
absence of any knowledge about the environment the most reasonable thing to
do is to assume that the process of generating rewards is stationary and to
replace the probabilities of the rewards with their empirical frequencies. Due
to the assumed stationarity of the process she expects that these frequencies
approximate probabilities well (at least in the limit), so in a way the DM acts as
an expected utility maximiser relative to the empirical distribution of rewards.
This rule is very much in the spirit of the so-called fictitious play2.

There is a good reason to allow the DM to use different vectors of utilities
at different moments. This will allow the DM, at each moment, to refine her
utilities from the previous period to reflect her preferences on larger multisets
and longer histories. An obvious consistency condition must however be imposed:
we require that the vector of utilities the DM uses at time t must be also suitable
to evaluate actions in all previous moments.

Definition 1 (Ex-Post Utility Representation). A sequence (ut)t≥1 of vec-
tors of Rn

+ is said to be an ex-post utility representation of D = (h)h∈H if, for
all t ≥ 1,

a h b ⇔ μ(a, h) · ut ≥ μ(b, h) · ut ∀ a, b ∈ A, ∀h ∈ Hs, (2)

for all s ≤ t. The representation is said to be global if ut ≡ u for some u ∈ Rn
+.

In what follows, we shall say that the DM is ex-post rational if she admits an
ex-post utility representation.

We emphasise that the object that is of ultimate interest is the ranking of the
actions following a history. The utility representation of a DM involves assigning
non-negative weights to the rewards. However this assignment is not unique.
A sequence (u′

t)t≥1 obtained by applying some positive affine transformations
u′

t = αtut + βt (with αt > 0) to a given utility representation (ut)t≥1 is also a
utility representation.

Therefore, we should adopt a certain normalisation. By Δ ⊆ Rm we denote
the m − 1 dimensional unit simplex consisting of all non-negative vectors x =
(x1, . . . , xn) such that x1 + . . . + xn = 1. Due to the non-triviality assumption,
for any ut, not all utilities are equal. Hence we may assume that at any ut =
(u1, . . . , un) in a representation, min{ui} = 0. We may further normalise the
coordinates to sum to one so that every ut may be assumed to lie in one of the
following subsets of the unit simplex:

Δi = {u = (u1, . . . , un) ∈ Δ | ui = 0}, (3)

which is one of the facets3 of Δ.
2 Ficitious play was introduced by [3]. See [5] for variations of fictitious play.
3 Facet of a polytope is a face of the maximal dimension.
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4 Axioms

Next, we turn to the axioms that are necessary and sufficient for D to admit an
ex-post utility representation. The first axiom says that in comparing a pair of
actions, the information regarding the other actions is irrelevant. Intuitively, this
amounts to asserting that the agent believes that she is facing an environment
in which consequences of actions are statistically uncorrelated.

Axiom 1. Consider ht, h′
t and actions a, b ∈ A such that ht (a) = h′

t (a) and
ht (b) = h′

t (b). Then a ht b if and only if a h′
t
b.

Although the agent has the entire history at her disposal, we postulate that for
any action, the algorithm only tracks the number of times different rewards were
realised. This means that the agent believes that she is facing an environment
generated by a stationary stochastic process.

Axiom 2. Consider a history ht at which for two actions a and b the multisets
of prizes are the same, i.e. μ(a, ht) = μ(b, ht). Then a ∼ht b.

The next axiom describes how the DM learns to revise her preferences in response
to new information.

Axiom 3. For any history ht and any r ∈ R, if ht+1 = (ht, rt) where rt =
(r, . . . , r), then ht+1=ht.

Due to Axiom 1, it implies that if at some history ht the DM (weakly) prefers an
action a to b and in the current period both these actions yield the same reward,
according to the next axiom, the DM continues to prefer a to b. We view Axiom 3
as loosely capturing the “principle of insufficient reason at the margin”.

5 The Main Theorem

In this section we will formulate and give an outline of the proof of the main
theorem. Recall that ri(C) denotes the relative interior of a convex set C.

Theorem 1 (Representation Theorem). Suppose m ≥ 3. The following are
equivalent:

1. D = (h)h∈H satisfies Axioms 1– 3.
2. D has an ex-post utility representation. There exists a unique sequence of

non-empty convex polytopes (Ut)t≥0 such that Ut ⊆ Δi for some i and
(a) Ut+1 ⊆ Ut for all t ≥ 1.
(b)

⋂∞
t=1 Ut consists of a single vector.

(c) A sequence (ut)t≥1 of vectors of R+
n is a utility representation of D if

and only if ut is a positive affine transformation of some u′
t ∈ ri(Ut).

In particular, any sequence (ut)t≥1 such that ut ∈ ri(Ut) is a utility
representation of D.

(d) If
⋂∞

t=1 Ut is in the interior of every Ut, then the representation is global.
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Remark 1. We note that despite an expected-utility-like calculation that is im-
plicitly involved in Theorem 1, it is important to note that there is no connection
with the expected utility hypothesis. Our DM is only ex-post rational.

Proof. It is easy to show that any DM with an ex-post utility representation
satisfies the axioms. Let us show the non-trivial part of the theorem, which is,
1⇒ 2. We begin by defining, for each t ≥ 1, a binary relation ∗

t on Pt = Pt[n]
as follows: for any μ, ν ∈ Pt,

μ ∗
t ν ⇐⇒ there exists a, b ∈ A and a history ht ∈ Ht

such that μ = μ(a, ht) and ν = μ(b, ht) and (4)
a ht b

Analogously we define also a strict version �∗
t of ∗

t . The latter needs to be
proved to be antisymmetric. For, for a certain pair of multisets μ, ν ∈ Pt, different
choices of histories and actions can result in both μ ∗

t ν and ν �∗
t μ at once.

However, we claim that:

Claim 1. For any a, b, c, d ∈ A and any two histories ht, h
′
t ∈ Ht such that

μ(a, ht) = μ(c, h′
t) and μ(b, ht) = μ(d, h′

t),

a ht b ⇐⇒ c ht′ d.

The above claim ensures that �∗
t is antisymmetric since �h is antisymmetric.

It is now also clear that the sequence ∗= (∗
t )t≥1 inherits the non-triviality

assumption in the sense that for some t the relation ∗
t is not a complete indif-

ference. Next we claim that

Claim 2. ∗
t is a preference ordering on Pt.

Both of the above claims only rely on Axiom 1 and Axiom 2. The proofs of
Claim 1 and Claim 2 are straightforward but nevertheless relegated to the Ap-
pendix. By a repeated application of Axiom 3, we see at once that

Claim 3. The sequence ∗= (∗
t )t≥1 satisfies the following property: for any

μ, ν ∈ Pt and any ξ ∈ Ps,

μ ∗
t ν ⇐⇒ μ ∪ ξ ∗

t+s ν ∪ ξ (5)

for all t, s ∈ Z+.

The remainder of the proof will follow from Theorem 2 proved in the next section
and further considerations.

The requirement in Theorem 1 that there are at least three actions for the agent
to choose from cannot be dropped. To see this we have the following counter-
example with m = 2.



Axioms for a Class of Algorithms of Sequential Decision Making 359

Example 1. Pick any utility vector u = (u1, . . . , un) for the rewards and define
D as follows:

Following a history ht ∈ Ht,

1. If μ(ai, ht) · u > μ(aj , ht) · u, the DM strictly prefers ai to aj , where i �= j
and i, j = 1, 2.

2. If μ(a1, ht) · u = μ(a2, ht) · u, then
(a) If the corresponding multisets of rewards are the same, i.e. μ(a1, ht) =

μ(a2, ht), then the actions are indifferent.
(b) Otherwise a1 is strictly preferred.

It may be readily verified that D described above satisfies Axioms 1-3 but does
not admit an ex-post utility representation.

6 Orders on Multisets and Their Utility Representation

This section completes the proof of the main theorem.
As we know from Section 2, multisets of cardinality t are important for a

DM as they are closely related to histories at date t. The DM has to be able to
compare them for all t. At the same time in the context of this paper it does not
make much sense to compare multisets of cardinalities of different sizes (it would
if we had missing observations). Due to this, our main object in this subsection
is a family of orders (t)t≥1, where t is an order on Pt. In this case we denote
by  the partial (but reflexive and transitive) binary relation on P whereby for
any μ, ν ∈ P , where μ  ν if both μ and ν are of the same cardinality, say t,
and μ t ν and μ  ν is undefined otherwise.

To complete the proof of the main theorem we must study orders on P with
the property (5). Due to their importance we will give them a special name.

Definition 2 (Consistency). An order = (t)t≥1 on P is said to be consis-
tent if it satisfies the condition (5) from Claim 3, that is, for any μ, ν ∈ Pt and
any ξ ∈ Ps,

μ t ν ⇐⇒ μ ∪ ξ t+s ν ∪ ξ. (6)

We note that, due to the twosidedness of the arrow in (6), we have also

μ �t ν ⇐⇒ μ ∪ ξ �t+s ν ∪ ξ. (7)

One consistent linear order that immediately comes to our mind is the lexico-
graphic order which is an extension of a linear order on R. But, of course, this
is not the only consistent order. Now we will define a large class of consistent
orders on P to which the lexicographic order belongs.

Definition 3 (Local Representability). An order := (t)t≥1 on P is lo-
cally representable if, for every t ≥ 1, there exist ut ∈ Rn such that

μ s ν ⇐⇒ μ · ut ≥ ν · ut ∀μ, ν ∈ Ps, ∀s ≤ t. (8)



360 M. Agastya and A. Slinko

A sequence (ut)t≥1 is said to locally represent  if (8) holds. The order  is
said to be globally representable if there exist u ∈ Rn such that (8) is satisfied
for ut = u for all t.

The lexicographic order is locally representable but not globally.

Theorem 2. An order = (t)t≥1 on P is consistent if and only if it is locally
representable.

Proof. If the order is locally representable it is straightforward to verify that it
is consistent. Suppose the sequence of vectors (ut)t≥1 represents = (t)t≥1.
Let μ, ν ∈ Ps with μ s ν and η ∈ Pt. Then μ · us+t ≥ ν · us+t since us+t can
be used to compare multisets of cardinality t as t < t + s. But now

(μ + η) · us+t − (ν + η) · us+t = μ · us+t − ν · us+t ≥ 0

which means μ + η s+t ν + η.
To see the converse, let = (t)t≥1 be consistent. An immediate implication

of consistency is that for any μ1, ν1 ∈ Pt and μ2, ν2 ∈ Ps,

μ1 t ν1 and μ2 s ν2 =⇒ μ1 ∪ μ2 t+s ν1 ∪ ν2, (9)

where we have μ1 ∪ μ2 �t+s ν1 ∪ ν2 if and only if either μ1 �t ν1 or μ2 �s ν2.
Indeed by consistency, we have

μ1 ∪ μ2 t+s ν1 ∪ μ2 t+s ν1 ∪ ν2.

Now suppose, by way of contradiction, that local representability fails at some
t which means that ut is the first vector that cannot be found. Note that there
are N =

(
n+t−1

t

)
multisets of cardinality t in total. Let us enumerate all the

multisets in Pt so that

μ1 t μ2 t · · · t μN−1 t μN . (10)

Some of these relations may be equivalencies, the others will be strict inequalities.
Let I = {i | μi ∼t μi+1} and J = {j | μj �t μj+1}. If t is complete indifference,
i.e. all inequalities in (10) are equalities, then it is representable and can be
obtained by assigning 1 to all of the utilities. Hence at least one ranking in (10)
is strict or J �= ∅.

The non-representability of t is equivalent to the assertion that the system of
linear equalities (μi−μi+1)·x = 0, i ∈ I, and linear inequalities (μj−μj+1)·x > 0,
j ∈ J , has no semi-positive solution.

A standard linear-algebraic argument tells us that inconsistency of the system
above is equivalent to the existence of a nontrivial linear combination

N−1∑
i=1

ci(μi − μi+1) = 0 (11)
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with non-negative coefficients cj for j ∈ J of which at least one is non-zero
(see, for example, Theorem 2.9 of [6], page 48). Coefficients ci, for i ∈ I, can
be replaced by their negatives since the equation (μi − μi+1) · x = 0 can be
replaced with (μi+1 − μi) · x = 0. Thus we may assume that all coefficients of
(11) are non-negative with at least one positive coefficient cj for j ∈ J . Since
the coefficients of vectors μi − μi+1 are integers, we may choose c1, . . . , cn to be
non-negative rational numbers and ultimately non-negative integers.

The equation (11) can be rewritten as

N−1∑
i=1

ciμi =
N−1∑
i=1

ciμi+1, (12)

which can be rewritten as the equality of two unions of multisets:

N−1⋃
i=1

μi ∪ . . . ∪ μi︸ ︷︷ ︸
ci

=
N−1⋃
i=1

μi+1 ∪ . . . ∪ μi+1︸ ︷︷ ︸
ci

(13)

which contradicts to cj > 0, μj � μj+1 and (9). This contradiction proves the
theorem.

The above equivalence lies at the heart of proof Theorem 1. Indeed, it already
implies, via Claims 1-3 given in the previous section, that Axioms 1-3 imply the
existence of an ex-post representation for D. What remains to be shown is the
characterization of all such representations.

Consistent orders on Pt can be represented geometrically [14]. Every point
u = (u1, . . . , un) ∈ Rn defines an order u on Pt, which obtains when we
allocate utilities u1, . . . , un to prizes i = 1, 2, . . . , n, that is

μ u ν ⇐⇒
n∑

i=1

μ(i)ui ≥
n∑

i=1

ν(i)ui. (14)

Any order on Pt that can be expressed as u for some u ∈ Rn is said to
be representable. We will now argue that the representable linear orders on Pt

are in one-to-one correspondence with the regions of the following hyperplane
arrangment.

For any pair of multisets μ, ν ∈ Pt[n], we define the hyperplane

L(μ, ν) =

{
x ∈ Rn |

n∑
i=1

μ(i)xi −
n∑

i=1

ν(i)xi = 0

}

and consider the hyperplane arrangement

A(t, n) =
{
L(μ, ν) | μ, ν ∈ Pt[n]

}
. (15)

The set of representable linear orders on Pt[n] is in one-to-one correspondence
with the regions of A = A(t, n). In fact, then the linear orders u and v on
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Pt will coincide if and only if u and v are in the same region of the hyperplane
arrangement A. This immediately follows from the fact that the order μ �x ν
changes to μ ≺x ν (or the other way around) when x crosses the hyperplane
L(μ, ν). The closure of every such region is a convex polytope.

Example 2. The 12 regions on the figure below represent all 12 representable
orders on P2[3].

x2

x1

x3

with the shaded region corresponding to the lexicographic order 12 � 12 � 13 �
22 � 23 � 32.

Let us note that in (14) we can divide all utilities by u1 + . . . + un and the
inequality will still hold. Hence we could from the very beginning consider that
all vectors of utilities are in the hyperplane J given by x1 + . . . + xn = 1 and
even in the simplex Δ given by xi ≥ 0 for i = 1, 2, . . . , n.

Thus, every representable linear order on Pt is associated with one of the
regions of the induced hyperplane arrangement AJ = {L ∩ J | L ∈ A}.

Let us note that due to our non-triviality assumption the vector
( 1

n , . . . , 1
n

)
does not correspond to any order. Consider a utility vector u ∈ Δ different
from

( 1
n , . . . , 1

n

)
lying in one of the regions of AJ whose closure is V . We then

can normalise u applying a positive affine linear transformation which makes its
lowest utility zero. Indeed, suppose that without loss of generality u1 ≥ u2 ≥
. . . ≥ un �= 1

n . Then we can solve for α and β the system of linear equations
α + nβ = 1 and αun + β = 0 and since the determinant of this system is
1 − nun �= 0 its solution is unique. Then the vector of utilities u′ = αu + β · 1
will lie on the facet Δn of Δ and we will have u′=u. Hence the polytope V
has one face on the boundary of Δ. We denote it U . So if the order  on Pt is
linear the dimension of U will be n− 2.

In general, when the order on Pt is not linear, the utility vector u that repre-
sents this order must be a solution to the finite system of equations and strict
inequalities:
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(μ− ν) · u = 0 whenever μ ∼u ν,
(μ− ν) · u > 0 whenever μ �u ν,

∀μ, ν ∈ Pt. (16)

Then u will lie in one (or several) of the hyperplanes of A(k, n). In that hyper-
plane an arrangement of hyperplanes of smaller dimension will be induced by
A(k, n) and u will belong to a relative interior of a polytope U of dimension
smaller than n− 2.

Let now = (t)t≥1 be a consistent order on P . By Theorem 2 it is locally
representable. We have just seen that in such case, for any t, there is a convex
polytope Ut such that any vector ut ∈ ri(Ut) represents t. Due to consistency
any vector us ∈ ri(Us), for s > t will also represent t so Ut ⊇ Us. Thus we
see that our polytopes are nested. Note that only points in the relative interior
of Ut are suitable points of utilities to rationalise t. We have almost proved
our main theorem. The only thing which is left to note is that the intersection⋂∞

t=1 Ut has exactly one element. This is immediately implied by the following

Proposition 1. Let u �= v be two distinct vectors of normalised non-negative
utilities. Then there exist a positive integer t and two multisets μ, ν ∈ Pt such
that (μ− ν) · u > 0 but (μ− ν) · v < 0.

Proof. Since u and v are normalised we have, in particular, un = vn = 0. Since
u �= v, there will be a point x = (x1, . . . , xn) ∈ Rn such that x · u > 0 but
x · v < 0. As rational points are everywhere dense in Rn we may assume that
x has rational coordinates. Then multiplying by their common denominator
we may assume all coefficients are integers. After that we may change the last
coordinate xn of x to x′

n so that to achieve x1 + x2 + . . . + x′
n = 0. Now since

un = vn = 0, we will still have x′ · u > 0 and x′ · v < 0 for x′ = (x1, x2, . . . , x
′
n).

Now x′ is uniquely represented as x′ = μ − ν for two multisets μ and ν. Since
the sum of coefficients of x′ was zero, the cardinality of μ will be equal to the
cardinality of ν. Let this common cardinality be t. Then μ, ν ∈ Pt and they are
separated by a hyperplane from A(t, n). The proposition is proved.
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Appendix

Proof of Claim 1. Take the hypothesis as given. If the actions a, b, c, d ∈ A
are distinct, consider a history gt ∈ Ht such that gt(a) = ht(a), gt(b) = ht(b),
gt(c) = h′

t(a) and gt(d) = h′
t(b). Applying Axiom 2, a ∼gt c and b ∼gt d and

therefore, a gt b ⇔ c gt d. Apply Axiom 1 to complete the claim.
Suppose now that a, b, c, d are not all distinct. We will prove that if μ(a, h) =

μ(c, h′) and μ(b, h) = μ(b, h′), then

a ht b ⇐⇒ c h′
t
b,

which is the main case. Let us consider five histories presented in the following
table:

h h1 h2 h3 h′

a h(a) h(a) h′(b) h′(b) h′(a)
b h(b) h(b) h(b) h′(b) h′(b)
c h(c) h′(c) h′(c) h′(c) h′(c)

In what follows we repeatedly use Axiom 1 and Axiom 2 and transitivity of hi ,
i = 1, 2, 3. Comparing the first two histories, we deduce that c ∼h1 a h1 b and
c h1 b. Now comparing h1 and h2 we have c h2 b ∼h2 a and c h2 a. Next,
we compare h2 and h3 and it follows that c h3 a ∼h2 b, whence c h3 b. Now
comparing the last two histories we obtain c h′ b, as required.

Proof of Claim 2. Given the fact that actions must be ranked for all conceivable
histories, ∗

t is a complete ordering of Pt. From its construction, ∗
t is also is

reflexive. Again, through appealing to Axiom 1 and Axiom 2 repeatedly, it may
be verified that it is also transitive. Indeed, choose μ, ν, ξ ∈ Pt such that μ ∗

t ν
and ν ∗

t ξ. Pick three distinct actions a, b, c ∈ A and consider a history ht ∈ Ht

such that μ(a, ht) = μ, μ(b, ht) = ν and μ(c, ht) = ξ. By definition, a ht b and
b ht c while transitivity of ht shows that a ht c. Hence μ ∗

t ξ.
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Abstract. Multi-stage decision optimization under uncertainty depends
on a careful numerical approximation of the underlying stochastic pro-
cess, which describes the future uncertain values on which the decision
will depend on. The quality of the scenario model severely affects the
quality of the solution of the optimization model. Various approaches
towards an optimal generation of discrete-state approximations (repre-
sented as scenario trees) have been suggested in the literature. Direct
scenario tree sampling based on historical data or econometric mod-
els, as well as scenario path simulation and optimal tree approximation
methods are discussed from an algorithmic perspective. A multi-stage
financial asset management decision optimization model is presented to
outline strategies to analyze the impact of various algorithmic scenario
generation methodologies.
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1 Introduction

In this paper, we consider algorithmic issues of the computation of multi-stage
scenario-based stochastic decision processes for decision optimization models un-
der uncertainty. We consider that given a specific discrete-time stochastic process
on the decision horizon t = 1, . . . , T , a decision maker observes the realization
of this random process ξt at each decision stage t, and takes a decision xt based
on all observed values up to t (ξ1, . . . , ξt). Let there now be a sequence of de-
cisions x1, . . . , xT . At the terminal stage T we observe a sequence of decisions
x = (x1, . . . , xT ) with realizations ξ = (ξ1, . . . , ξT ), which lead to cost f(x, ξ)
(or likewise profit). The stochastic optimization task is to find the sequence of
decisions x(ξ), which minimizes some probability functional (most commonly
the expectation, a risk measure, or a combination of these two) of the respective
cost function f(x(ξ), ξ) - see e.g. [1] for a classification of risk measures in this
context.

We consider the multi-stage case in such a way that there is at least one in-
termediary stage between root and terminal stage, i.e. T > 2. See [2] for a recent
overview of the area of stochastic programming, and especially [3] for stochas-
tic programming languages, environments, and applications. Unfortunately, the
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topic of scenario generation is not sufficiently treated in most text books on
stochastic programming. Formally speaking, we consider multi-stage stochastic
programming problems as defined in Eq. 1.

minimize x : F
(
f(x(ξ), ξ)

)
subject to (x(ξ), ξ) ∈ X

x ∈ N
(1)

The multi-variate, multi-stage stochastic process ξ describes the future uncer-
tainty, i.e. the subjective part of the stochastic program, and the constraint set X
defines feasible combinations of x and ξ. This constraint set is used to model the
underlying real-world decision problem. Furthermore, a set of non-anticipativity
constraints N , consisting of functions ξ )→ x which make sure that xt is only
based on realizations up to stage t (ξ1, . . . , ξt), is necessary. To solve multi-stage
programs with numerical optimization solvers, the underlying stochastic process
has to be discretized into a scenario tree, and this scenario tree approximation
will inherently fulfill these non-anticipativity constraints.

Two issues negatively affect the application of multi-stage stochastic pro-
grams for real-world decision problems: First, modeling the underlying decision
problem is a non-trivial task. Multi-stage optimization models and stochastic
scenario models require stable scenario tree handling procedures, which are con-
sidered to be too cumbersome to be applied to real-world applications, and the
communication of tree-based models to non-experts is complicated. Secondly,
modeling the underlying uncertainty is complex and messy. As discussed above,
a good discrete-time, discrete-space scenario tree approximation of the under-
lying stochastic process has to be generated in order to numerically compute a
solution, and the quality of the scenario model severely affects the quality of the
solution (garbage in → garbage out).

In this paper, we focus on the second problem. While different tree genera-
tion methods have been proposed, there are hardly any comparisons of different
methodologies, see e.g. [4], [5], or [6] for an overview of various methodologies
proposed so far. Numerical comparisons as shown by [7] and [8] are often focused
on a small set of methods and on specific numerical questions. In this paper, a
summary of various approaches towards an optimal generation of decision pro-
cesses is shown to serve as an overview and an outline for various ways to extend
and improve the currently applied approaches.

This paper is organized as follows: In Section 2, a straight-forward multi-stage
financial asset management problem is presented, before any scenario genera-
tion methodologies are discussed in order to introduce the application area of
stochastic programming to non-experts. This example will be used for numerical
studies. Section 3 outlines important issues regarding scenario tree generation,
while Section 4 summarizes five different approaches towards tree generation,
both direct tree creation techniques as well as optimal tree approximations of
pre-sampled scenario paths. Section 5 presents selected numerical results, while
Section 6 concludes the paper.
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2 Multi-stage Financial Asset Management

To analyze the impact of different scenario generation methodologies we con-
sider a multi-stage asset management decision optimization model. This model
is an extension of the classical risk-return optimization approach which was in-
troduced by Markowitz in the early 1950s [9]. In [10] this approach has been
generalized to single-stage stochastic portfolio optimization using a wide range
of risk measures (e.g. all coherent risk measures as shown by [11] among others)
to overcome the problem of using the Variance as the only risk measure, and
to use scenarios instead of using a pre-estimated correlation matrix, which can
be problematic if the number of assets under consideration is large. Further-
more, a detailed multi-stage stochastic formulation of the classical Markowitz
Mean-Variance optimization has been reported by [12].

Combining the latter two approaches, our decision taker faces a discrete-time
decision horizon t = 1, . . . , T , and a set of investment assets A with uncertain
future returns Va, i.e. a stochastic process represented as a multi-variate, multi-
stage scenario tree. There is some investment budget B available at each stage
up to T − 1. This amount is deterministically determined in advance. The ob-
jective function consists of the aforementioned risk-return bi-criteria functional,
whereby the aim is to maximize the expected terminal wealth and to maximize1

the Conditional Value-at-Risk2 (CVaR at confidence level α) of the wealth at the
terminal stage T . Both criteria are weighted using a risk-aversion parameter κ,
which can be adapted to the needs of the investor and to the current market sit-
uation. CVaR can be reformulated as a linear programming model conveniently
as shown by [13], which simplifies the numerical solution procedure. The main
decision is concerned with the amount of budget ba to be invested into each
asset a, as the portfolio is rebalanced at the stages T = 2, . . . , T − 1. There is no
rebalancing at terminal stage T . One important constraint is that the amount
of purchases p in each stage cannot exceed the sum of the amount of sales s plus
the additional budget available at the respective stage.

Given the above problem specification, we may formulate our multi-stage
stochastic programming model as shown in Eq. 2. The objective function as
well as the constraints are shown in stage-based formulation, i.e. the numbers in
square brackets represent the stage at which the respective constraint is active.

maximize E(
∑

a ba, T ) + κCVaRα(
∑

a ba, T )
subject to

∑
a ba = B [1]

ba ≤ Vab
(−1)
a + pa − sa ∀A [2, . . . , T − 1]∑

a pa ≤
∑

a sa + B [2, . . . , T − 1]
ba ≤ Vab

(−1)
a ∀A [T ]

ba, pa, sa ≥ 0 ∀A [1, . . . , T ]

(2)

1 Maximizing CVaR is equivalent to minimizing the anticipated financial risk of the
stochastic future wealth.

2 CVaR is also called Expected Shortfall or Tail Value-at-Risk.
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The multi-stage recourse can be observed in the second and the fourth constraint,
as (the scenario tree) Va represents the future asset return of asset a in the
respective stage and is multiplied by the invested budget b

(−1)
a of the previous

stage, which is notated using the (−1) superscript.
The parameters which have to be specified by the decision taker are the asset

returns Va, which are stochastic and need to be approximated, as well as the
budget B, which is deterministic in this model. The stochastic decision variables,
which will be calculated by a numerical optimization solver are the amounts of
current investment budget ba, purchases pa, as well as sales sa of each asset a
out of the given investment universe A at each stage t.

3 Multi-stage Scenario Tree Generation

The quality of the scenario tree severely affects the quality of the solution of the
multi-stage stochastic decision model, such that any approximation should be
done in consideration of optimality criteria, i.e. before a stochastic optimization
model is solved, a scenario optimization problem has to be solved independently
of the optimization model. It should be noted, that there are also scenario gen-
eration approaches where the generation is not decoupled from the optimization
procedure, see e.g. [14]. A major drawback is that these methods are often limited
to a certain restricted set of models, and cannot be generalized easily.

In the context of separated scenario optimization, optimality can be defined
as the minimization of the distance between the original (continuous or highly
discrete) stochastic process and the approximated scenario tree. Choosing an
appropriate distance may be based on subjective taste, e.g. Moment Matching
as proposed by [15], selected due to theoretical stability considerations (see [16]
and [17]), which leads to probability metric minimization problems as shown
by [18] and [19], or it may be predetermined by chosen approximation method,
e.g. by using different sampling schemes like QMC in [20] or RQMC in [21], see
also [22]. It is important to remark that once the appropriate distance has been
selected, an appropriate heuristic to approximate the chosen distance has to be
applied, which affects the result significantly.

Single-stage scenario generation, i.e. an optimal approximation of a multi-
variate probability distribution without any tree structure can be done via var-
ious sampling as well as clustering techniques. The real algorithmic challenge
of multi-stage scenario generation is caring about the tree structure while still
minimizing the distance. Only in rare cases, this problem can be solved without
heuristics.

Different methods for two main strategies to design multi-stage scenario tree
generation heuristics will be presented - direct scenario tree sampling, and opti-
mal tree approximation of pre-simulated scenario paths.

Direct scenario tree sampling. Based on historical data or some econometric
model, a sampling procedure or a node-wise approximation method is applied
to build the scenario tree iteratively from the root node to the terminal stage.
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Fig. 1. GARCH(1,1) estimation of financial stock returns, sampling 200 paths

Scenario path simulation and optimal tree approximation. It may be more con-
venient to use pre-sampled scenario paths and build an optimal approximation
out of this data. The time-dependency of the underlying process is preserved,
see Fig. 1, and even more importantly any simulation model can be used, which
is convenient for real-world applications - either plain econometric time-series
models ((V)AR(I)MA, (G)ARCH, . . . ), specialized models (e.g. Wilkie model
for actuarial use), or custom (company-specific) scenario generators may be used
as input scenario path generator. The optimization task is to find the optimal
tree node and arc links.

One issue, which is often disregarded due to the fact that most research papers
on multi-stage scenario tree generation focus on one specific methodology is that
different scenario tree methods are restricted to one of the following scenario
tree structures, which leads to problems for numerical comparisons: Either the
the scenario structure is represented nodes-by-node with a vector denoting the
successors of each node in the respective stage, e.g. N(5, 3, 2) results in a scenario
tree with 30 scenarios and 1+5+15+30 = 51 nodes, or it is represented nodes-at-
stage-wise with a vector containing the total number of nodes in each stage, e.g.
S(10, 20, 30) results in a scenario tree with 30 scenarios and 1+10+20+30 = 61
nodes. The first type is common for techniques, which build the tree from the
root to the terminal stage node per node, while the second is inherently used for
scenario generation methods, which try to find the optimal per-node branching
structure in addition to approximating tree values.

Another issue regarding multi-stage scenario tree generation is the absence
of a common tree format, i.e. no common standard for representing discretized
stochastic processes is available, mainly because of the lack of commercial inter-
est. To accommodate all different tree structures, and the implicit formulation of
non-anticipativity constraints, a node-based vector/matrix data format of sce-
nario trees is proposed in this paper, which is shown in Table 1. Every scenario
generation method presented below produces exactly this representation.
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Table 1. Vector/matrix data format for multi-stage scenario trees

V (n, d) d-dimensional value of node n
A(n) ancestor node of node n
T (n) stage of node n
P (n) probability to reach node n from its ancestor

4 Multi-stage Scenario Tree Generation Methods

4.1 Direct Scenario Tree Sampling

Iterative node-by-node data resampling. If we aim at building a scenario
tree with a node-based tree structure N(n1, . . . , nT ) given some (multi-variate)
times-series, the most straightforward approach is to start at the root node,
which represents the current (i.e. deterministic) value, and then to proceed as
follows: for each stage t = 1, . . . , T , and for each node in stage t sample nt

random values from the time series using time-series data as well as data from
already sampled ancestor nodes.

Example. If a time-series va,t consists of three years of daily asset return data,
and we want to sample a scenario tree reflecting possible developments for the
next three years in three stages, we may sample n1 nodes for the first stage. For
each of this n1 nodes, we sample n2 values using a shorter time series, e.g. only
the last two years and include each previously sampled value from the first stage
into the initial data set for each second stage node. For the third stage we use
only one year of data and both ancestor nodes from stage 1 and 2.

While the advantage of this approach is that it is simple, and historical depen-
dence of even highly multi-variate structures can be kept cheaply, it bears the
disadvantage that if small trees are needed, two runs might generate completely
different trees, and it may be used for a huge amount of stages, if the time-series
are not long enough.

Iterative node-by-node data approximation. To improve the quality of
the solution of the previous method, random sampling of nt node values can be
replaced with an optimal single-stage approximation, e.g. Principal Component
Analysis (see e.g. [23]), K-Means clustering (see e.g. [24]), or moment matching.
The result is affected by the chosen approximation method - both a distance and
a heuristic needs to be specified.

Distribution fitting and direct node sampling. Sometimes the decision
taker wants to use some specific stochastic process for the future development
of uncertain values, and is aware of how to estimate the parameters of the re-
spective process. Given a node-based tree structure N(n1, . . . , nT ), the tree can
be generated from the root node iteratively.
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Example. A univariate process ξ might be normally distributed and follows an
additive recursion, i.e.

ξ0 = μ0, ξ1 ∼ N(μ0, σ
2
0), ξt = bξt−1 + εt, εt ∼ N(μ, σ2), (3)

where
μ = μ0(1− b), σ = σ0(1− b2),

and ξt and εt are independent. ξ is a stationary Gaussian Markov process. This
process is used for numerical results shown below.

In general, this approach is simple and extremely flexible, as any stochastic
process which can be estimated and simulated can be used. One disadvantage is
the loss of time any dependency, which leads to bad convergence behavior.

4.2 Optimal Tree Approximations of Scenario Paths

Scenario merging - forward and backward. Given a stage-based tree struc-
ture S(s1, . . . , sT ) and one specific distance function, a straightforward approach
to build an optimal tree given a set of pre-sampled scenarios is to start by cal-
culating the distance of each scenario path to each other with the chosen dis-
tance. Then proceed in a forward-sweep t = 1, . . . , T or in a backward-sweep
t = T, . . . , 1, and as long as there are more nodes than st within the current
stage t merge the nodes of the two scenarios, which are closest to each other.

The advantage is that this process is rather straightforward, quite efficient
and flexible as the distance calculation is done only once at the beginning, but
forward and backward sweeps may lead to different results. Consider the simple
simple example shown in Figure 2. We like to approximate 4 sampled scenarios
to build a S(2, 3, 4) tree. In this case there are already differences between using
forward and backward-based algorithms, notably not in the terminal stage, but
within intermediary stages, which are crucial in any multi-stage setting.

Forward-based scenario clustering. Another method which can be com-
puted efficiently, and can be used for scenario trees with a large amount of stages
(e.g. more than 100), is to resemble the node-per-node iterative approximation,
but to use the future paths of approximated nodes for subsequent stages.

Fig. 2. Scenario merging example - forward sweep (left), and backward sweep (right)
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Fig. 3. Forward-based scenario clustering: given pre-sampled paths (top, left), approx-
imate the first stage (top, right), and then use all future paths for each node (bottom,
left) to continue the approximations iteratively node-by-node (bottom, right)

The implementation is quite tricky, and in the case of a high number of stages
non-branching scenarios might occur. The process is schematically shown in
Figure 3.

5 Numerical Results and Comparison

To obtain numerical results using the multi-stage stochastic financial asset man-
agement problem shown in Section 2, we use two different financial assets. A
fixed-income instrument with a deterministic fixed return r at each stage, and
a stochastic stock, which will be used for comparing scenario generation tech-
niques. Historical data of the IBM stock has been used, using daily data from
January 3rd, 2007 to February 29th, 2008, which is summarized in Figure 4.

The following additional parameters have been used for solving the asset man-
agement model: the initial budget is B = 10000 in the first stage, and 0 for all
following stages (t=2,. . . ,T), i.e. budget is only available at the root stage, which
does not have economic implications. The risk quantile CVaR α = 0.9, and the
risk aversion parameter κ = 1. The fixed-income return is r = 1.03 p.a. The
return will be replicated for each node of the stock tree (adjusted given the
respective stage of the node).



Algorithmic Aspects of Scenario-Based Multi-stage Decision 373

Fig. 4. IBM: historical closing prices (left) and daily returns (right)

Fig. 5. Distribution fitting and direct node sampling. N(k, k) ∀k = 2, . . . , 50.

Fig. 6. Distribution fitting and direct node sampling. N(k, k, k) ∀k = 2, . . . , 20.

The node-based optimization model has been implemented using AMPL (im-
plicit formulation of non-anticipativity constraints). All scenario generation meth-
ods have been implemented in MatLab 7.6. The optimization models have been
solved using Mosek 5 on a MacBook Pro, Mac OS X 10.5.1, Intel, with Intel Core
2 Duo (2.4 GHz), i.e. 1 CPU with 2 Cores, and 2 GB 667 GHz DDR2 SDRAM.

Different aspects have to be analyzed: the run-time of the optimization prob-
lem given the specific tree, the convergence of the objective function, and more
subtle, the convergence of the optimal decision, i.e. in our specific example the
decision on how much budget should be invested into either the stock or the
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Fig. 7. Distribution fitting and direct node sampling. N(k, 3, 3) ∀k = 2, . . . , 40.

Fig. 8. Distribution fitting and direct node sampling. N(k, 3, 3, 3) ∀k = 2, . . . , 30.

fixed-income product. The visualization of the convergence cannot be done sat-
isfyingly in most cases due to the high dimensionality, such that we will focus
on the first two aspects using the stochastic process from Eq. (3) above. The
financial asset management problem is solved and both the convergence of the
objective function (left) as well as the solution time of the optimization solver
(right) is shown. The tree structure severely affects the required solution time
and the stability of the underlying optimization problem solution. A trade-off
has to be taken, which has to be analyzed for each chosen combination of an
optimization problem and a scenario generation technique.

The results are shown for two stages in Fig. 5, for three stages using different
node structures in Fig. 6 and Fig. 7, and for four stages in Fig. 8.

6 Conclusion

In this paper, we presented a unified comparison of different decision process
optimization techniques for optimization under uncertainty models. Different
generation techniques are described, some of which have not been explicitly
described in the literature yet. This description and comparison should create
an awareness of choosing some method, and may be used as a guideline for
creating and improving new methodologies towards scenario generation, which
is the crucial part for solving multi-stage decision problems.
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Abstract. This paper is devoted to preference-based recommendation
or configuration in the context of multiagent (or multicriteria) decision
making. More precisely, we study the use of decomposable utility func-
tions in the search for Choquet-optimal solutions on combinatorial do-
mains. We consider problems where the alternatives (feasible solutions)
are represented as elements of a product set of finite domains and eval-
uated according to different points of view (agents or criteria) leading
to different objectives. Assuming that objectives take the form of GAI-
utility functions over attributes, we investigate the use of GAI networks
to determine efficiently an element maximizing an overall utility function
defined by a Choquet integral.

Keywords: GAI-nets, Choquet Integral, Multiobjective Combinatorial
Optimization, Multiagent Decision-Making, Preference-based
Configuration.

1 Introduction

The multiplication of preference-based configuration problems has stressed the
need for compact preference representation languages and for preference-based
optimization algorithms. In this area, graphical models are omnipresent. One
can distinguish non-numerical models like CP-nets [1,2] and their extension to
the multiagent case mCP-nets [3] on the one hand, and numerical models based
on decomposable utility functions like UCP-nets [4] and GAI-nets [5,6,7] on the
other hand. In this paper, we investigate the potential of GAI-networks to rep-
resent and solve decision making problems where the performance of a solution
is evaluated according to different points of view. This type of problem occurs
when several criteria, possibly conflicting, must be considered in the decision
analysis, or when several agents are involved in the decision process. In both
cases, any feasible solution is represented by a vector of utilities. Assuming that
each of these utilities is defined by a GAI-decomposable model, we study the use
of GAI-nets to determine efficiently a solution having a utility vector maximizing
an overall utility function defined by a Choquet integral.

The paper is organized as follows: in Section 2 we explain how GAI-networks
are used to represent preferences in multiobjective problems. Then, after recalling
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basic notions linked to capacities and Choquet integrals (Section 3), we introduce
a vector-passing algorithm for Choquet-optimization (Section 4). Under the as-
sumption of convex capacity, we propose a refinement of the previous algorithm
and a second algorithm based on a ranking procedure (Section 5). Both algorithms
have been implemented and tested on randomly drawn instances. The solutions
times obtained are given for the sake of comparison (Section 6).

2 GAI Models for Individual and Collective Preferences

In configuration problems, alternatives (feasible solutions) are characterized by n
variables (or attributes) x1, . . . , xn taking their values in finite domains X1, . . . ,
Xn respectively. They can thus be seen as elements of the product set of these
domains X = X1 × · · · ×Xn. Throughout this paper, by abuse of notation, for
any set Y ⊆ {1, ..., n}, XY refers to

∏
i∈Y Xi and xY to the projection of x ∈ X

on XY. We also consider preference relations over X representable by utility
functions, i.e., by functions u : X )→ R such that, for all x, y ∈ X , u(x) ≥ u(y) if
and only if x is preferred to y or x and y are judged equivalent. Such functions
u are used within solvers to determine the best elements in X [8].

One major difficulty in using utilities lies in their elicitation: each agent has
her own preferences and, hence, her own utility u that needs be constructed
prior to being used for optimization tasks. However, on combinatorial domains
such as X , elicitation may be impossible as it may involve asking unreasonably
large amounts of questions to the agent. Fortunately, it is often the case that
subsets of attributes are considered independent by the agent. For instance, the
brand of a car may be irrelevant to preferences over its colors, hence inducing an
independence between color and brand. In such cases, these independences can be
exploited to drastically reduce the elicitation burden. In the literature, different
types of independence have been studied such as preferential independence or
utility independence [9,8,10], that induce different decompositions of utility u as
a function of subutilities, say ui’s, defined over small sets of attributes.

The most widely used decomposition is the additive one: u(x) =
∑n

i=1 ui(xi)
for any x = (x1, . . . , xn) ∈ X . Note that this model only requires eliciting and
storing ui(xi) for any xi ∈ Xi, i = 1, . . . , n. However, such a decomposition is not
always appropriate as it inevitably rules out any interaction between attributes,
which is far from being realistic. Some generalizations of additive utilities have
thus been investigated. In particular, GAI (generalized additive independence)
decompositions introduced by [11] are especially attractive as they allow quite
general interactions between attributes while preserving some decomposability.
Actually, GAI decomposition is a generalization of the additive decomposition
in which subutilities ui’s are allowed to be defined over overlapping factors.

Definition 1. Let C1, . . . ,Ck be subsets of N = {1, . . . , n} such that N =⋃k
i=1 Ci. A utility function u(·) over X is GAI-decomposable w.r.t. the XCi ’s if

and only if there exist functions ui : XCi )→ R such that:

u(x1, . . . , xn) =
∑k

i=1 ui(xCi), for all x = (x1, . . . , xn) ∈ X .
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For instance, u(a, b, c, d, e, f) = u1(a, b) + u2(c, d) + u3(a, c, e) + u4(e, f) defined
on A×B × C ×D ×E × F is a GAI-decomposable utility, with XC1 = A×B,
XC2 = C ×D, XC3 = A × C × E and XC4 = E × F . GAI decompositions can
be represented by graphical structures called GAI networks [5]:

Definition 2. Let u(x)=
∑k

i=1 ui(xCi ) be a GAI utility. A GAI net representing
u is an undirected graph G = (C, E) satisfying the following properties:

Prop 1: C={XC1 , . . . , XCk
}. Vertices XCi ’s are called cliques. To each vertex

XCi is associated the corresponding factor ui from the utility function u;
Prop. 2: (XCi , XCj ) ∈ E ⇒ Ci ∩Cj �= ∅. Edges (XCi , XCj )’s are labeled by

XSij , where Sij = Ci ∩Cj. XSij is called a separator;
Prop. 3: for all XCi , XCj such that Ci ∩ Cj = Sij �= ∅, there exists a path

between XCi and XCj in G such that for every clique XCh
in this path

Sij ⊆ Ch (running intersection property).

Cliques are drawn as ellipses and separators as rectangles. For any GAI decom-
position, by Definition 2, cliques should be the sets of variables of the subu-
tilities. The edges in the network represent the intersections between subsets of
attributes. Fig. 1 shows the GAI net’s structure for the example given just below
Definition 1. In this paper, we shall only be interested in GAI trees as it is not
restrictive [5]. For the elicitation of GAI networks, refer to [5,12,6].

Consider now a finite set of objectives, criteria or agents, M = {1, ..., m} and
assume that any solution x ∈ X is characterized by a utility vector (u1(x), . . . ,
um(x)) ∈ Rm where ui : X → R is the ith utility. It measures the relative utility
of alternatives with respect to the ith point of view (criterion or agent) considered
in the problem. Hence, the comparison of alternatives, say x and y, now reduces
to that of their utility vectors (u1(x), . . . , um(x)) and (u1(y), . . . , um(y)).

Each ui is actually a single utility and, as such, can be GAI decomposable.
Assume that all ui’s have the same GAI structure, that is, the ui’s are decom-
posable as sums of functions ui

j’s whose domains are the same for all i’s (but
their values differ from one j to another). Then, a GAI net compactly encoding
vectors (u1, . . . , um) can easily be constructed: its graphical structure is that of
the GAI net of any ui (since they are all identical), and each clique XCj contains
utility vectors (u1

j , . . . , u
m
j ). Fig. 1 shows how vectors of utilities ui’s decompos-

able as ui
1(a, b)+ui

2(c, d)+ui
3(a, c, e)+ui

4(e, f) can be represented by a GAI net.
In this figure, tables contain values of utility vectors (u1

j , . . . , u
m
j ), for fixed j’s.

AB

CD

EFEACE
C

A

u1 a1 a2

b1 (1, 6, 3) (5, 1, 1)
b2 (8, 2, 1) (3, 4, 4)
b3 (7, 1, 1) (6, 1, 2)
b4 (1, 4, 2) (2, 1, 3)

u3 c1e1 c1e2 c2e1 c2e2

a1 (3, 3, 1) (2, 4, 7) (1, 2, 2) (6, 2, 4)
a2 (5, 2, 3) (1, 4, 6) (4, 4, 3) (2, 5, 6)

u4 e1 e2

f1 (2, 0, 3) (3, 3, 2)
f2 (3, 3, 4) (3, 1, 2)
f3 (4, 2, 5) (2, 4, 3)

u2 c1 c2

d1 (2, 8, 1) (4, 7, 4)
d2 (3, 2, 2) (4, 8, 5)
d3 (4, 2, 2) (5, 3, 3)

Fig. 1. Example of a GAI network with three criteria
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BCDABC BC BD BDG

CD

CDEF

c) GAI network for (u1, u2)

a) u1’s GAI network

b) u2’s GAI network

AB B BG G DG D CDF E

DG D DEF E CE C AC B

Fig. 2. The GAI trees representing u1 and u2 and that for (u1, u2)

Of course, in practice, ui’s are seldom decomposable w.r.t. the same GAI
structure. For instance, if X is a set of cars, then, in a family, the utility
over X of the father may be decomposable as u1(car) = u1

1(price,brand) +
u1

2(power,speed,consumption) + u1
3(speed,security) whereas that of the mother

may be u2(car) = u2
1(price,consumption) + u2

2(color,brand), and the utility of
their son u3(car) = u3

1(brand) + u3
2(color) + u3

3(power,speed). In such a case,
we need to find a GAI net with “bigger” cliques that can contain all the ui

j ’s
functions while encompassing as much as possible the decompositions of the ui’s.
For instance, utilities u1 and u2 decomposable w.r.t. the GAI nets on the left
of Fig. 2 can both be represented (less compactly) by that of Fig. 2.c. Hence
vectors (u1, u2) are GAI decomposable according to Fig. 2.c. This graph can be
constructed by triangulation of the union of the ui’s Markov graphs [13,5].

3 Preference Aggregation with the Choquet Integral

In a multiagent/multicriteria problem, comparing elements of X amounts to
comparing their respective utility profiles. The basic preference model to com-
pare solutions is Pareto dominance defined, for any pair x, y ∈ X by: x �P y ⇔
ui(x) ≥ ui(y) for all i ∈ {1, . . . , m} and uj(x) > uj(y) for some j. This naturally
leads to a primary optimality concept known as Pareto-optimality. Pareto opti-
mal elements in a set X ⊆ X are those that are Pareto-dominated by no other
element in X , i.e., they have a utility profile that cannot be improved on one
component without downgrading another one. As shown in [14] Pareto-optimal
elements in X can be computed using vector-valued GAI-networks (see Fig. 1).
However, Pareto-dominance is only a partial weak order that leaves many pairs
of solutions uncompared. Hence, the Pareto set can be huge due to the combi-
natorial nature of the problem, and its exact determination requires, for some
instances, prohibitive computation times. Fortunately, decision theory provides
various preference models refining Pareto dominance and modeling various atti-
tudes in preference aggregation. Among them, the Choquet integral [15] is one
of the most expressive decision criteria. It is an aggregation function that gener-
alizes weighted averages when weights are not only attached to each component
(criteria or agent) but also possibly to any subset of components. These weights
are possibly non additive and are represented by a capacity on M = {1, . . . , m}.



Choquet Optimization Using GAI Networks 381

Definition 3. A capacity on M is a set function v : 2M → [0, 1] such that:
v(∅) = 0; v(M) = 1; ∀A, B ∈ 2M such that A ⊆ B, v(A) ≤ v(B).

For any subset A ⊆ M , v(A) represents the importance of coalition A. Let us
first recall some definitions about capacities.

Definition 4. A capacity v is said to be convex (or supermodular) when v(A ∪
B) + v(A∩B) ≥ v(A) + v(B) for all A, B ⊆ M , and it is said to be concave (or
submodular) when v(A ∪B) + v(A ∩B) ≤ v(A) + v(B) for all A, B ⊆ M .

Definition 5. To any capacity v, we can associate a dual capacity v̄ defined by
v̄(A) = 1− v(M \A) for all A ⊆ M .

It is well known that v̄ is concave if and only if v is convex and vice-versa. Remark
that when v is convex, we have v(A) + v(M \A) ≤ 1, hence v(A) ≤ v̄(A). As we
shall see later, a useful concept in this case is the core of v defined by:

core(v) = {λ ∈ L : v(A) ≤ λ(A) ≤ v̄(A)} ,
where L is the set of probability distributions on M and λ(A) =

∑
i∈A λi rep-

resents the probability of A. The core is known to be non-empty as soon as v
is convex [16]. This result will be used in Section 5. The Choquet integral of a
utility vector u(x) = (u1(x), . . . , um(x)) w.r.t. a capacity v is defined by:

Cv(u(x)) =
m∑

i=1

[
v(X(i))− v(X(i+1))

]
u(i)(x) =

m∑
i=1

[
u(i)(x)− u(i−1)(x)

]
v(X(i))(1)

where (.) is a permutation on {1, . . . , m} such that 0 = u(0)(x) ≤ u(1)(x) ≤ . . . ≤
u(m)(x), X(i) = {j ∈ M , uj(x) ≥ u(i)(x)} = {(i),(i+1), . . ., (m)} for i ≤ m and
X(m+1) = ∅. Note that X(i+1) ⊂ X(i), hence v(X(i)) ≥ v(X(i+1)) for all i. The
Choquet integral generalizes averages with the following interpretation based on
Eq. (1): for a given utility vector (u1(x), . . . , um(x)), the outcome is at least
u(1)(x) with weight v(X(1)) = 1, then it increases from u(1)(x) to u(2)(x) with
weight v(X(2)), then from u(2)(x) to u(3)(x) with weight v(X(3)), and so on...
The overall integral thus results from aggregation of marginal utility increments
[u(i)(x) − u(i−1)(x)] weighted by v(X(i)). Note that Choquet Integral includes
weighted averages as particular cases. Indeed, when v is additively decomposable,
v(A) =

∑
i∈A vi for all A ⊆M , where vi = v({i}). Hence v(X(i))− v(X(i+1)) =

v(i) for all i and Cv(u(x)) =
∑m

i=1 v(i)u
(i)(x) =

∑m
i=1 viu

i(x). When used with
a non-additive capacity, it offers enhanced descriptive possibilities.

Example 1. Consider a case with 3 criteria or agents (M = {1, 2, 3}) and 3
solutions x, y, z with utility vectors u(x) = (15, 5, 10), u(y) = (10, 10, 10) and
u(z) = (5, 15, 10) respectively, and the convex capacity v defined in Table 1
(we also give its dual v̄ and an additive capacity p ∈ core(v)). Cv(u(x)) =
5 × 1 + (10 − 5) × 0.5 + (15 − 10) × 0.2 = 8.5, Cv(u(y)) = 10 × 1 = 10 and
Cv(u(z)) = 5× 1 + (10− 5)× 0.5 + (15− 10)× 0.1 = 8. Hence according to the
model, we get: y � x � z. If we use the dual capacity v̄, which is concave, we get
Cv̄(u(x)) = 5× 1 + (10− 5)× 0.9+ (15− 10)× 0.5 = 12, Cv̄(u(y)) = 10× 1 = 10
and Cv̄(u(z)) = 5 × 1 + (10 − 5) × 0.8 + (15 − 10) × 0.5 = 11.5. Hence with v̄
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we get: x � z � y. Note that none of the two orders obtained are representable
with a weighted sum because x � y would imply y � z, y � x would imply z � y
and conversely. When v is convex we can see that solution y with a flat utility
profile is better ranked. On the contrary, with a concave capacity, it seems that
solutions x and z with contrasted profiles are preferred to y. As we shall see in
Section 5, this is a general feature of Choquet integral: we have to use a convex
capacity to exhibit preference for well-balanced solutions and conversely.

In the next section, we investigate the determination of the optimal tuple in X
w.r.t. the Choquet integral. Note that, when choosing v(A) = 1 for all non-empty
A ⊆ M , then Cv(u(x)) = u(m)(x) = maxi∈M ui(x). Hence the determination of
a Choquet-optimal solution reduces to a min-max optimization problem which
is known to be NP-hard even when every function ui is an additive utility [17].

4 A Vector-Passing Algorithm for Choquet Optimization

All GAI message-passing algorithms rely on the same principle: a clique called
root is chosen to concentrate during a collect phase all the information relevant
to compute some quantity to be optimized. This phase is processed recursively:
root asks its neighbor cliques to send it messages containing the aforementioned
relevant information; in turn, these neighbors ask their other neighbors to send
relevant information, and so on. Once a clique has received all the information
it requested, it computes and sends the message it was asked for. Once root
has received all the information it requested, a distribute phase is applied that
propagates recursively optimal attributes instantiations from root toward the
outside of the GAI net. The result of this phase is an optimal instantiation tuple
of all the attributes of the GAI network w.r.t. the quantity to be optimized.

As an illustration in the scalar case, consider a utility decomposable according
to the graph of Fig. 1: u(a, b, c, d, e, f) = u1(a, b)+u2(c, d)+u3(a, c, e)+u4(e, f),
where each ui’s codomain is R. Assume we wish to find a tuple maximizing
u. Let clique EF act as root. Collect consists in EF asking ACE to send a
message, which in turn asks both AB and CD to send messages. Clique AB
sends message φ1(A) = {maxb u1(a, b) : a ∈ A} and clique CD sends φ2(C) =
{maxd u2(c, d) : c ∈ C}, that is, messages φ1(A) and φ2(C) contain the optimal
values of u1 and u2 for each value of separators A and C respectively. Then
clique ACE sends message φ3(E) = {maxa,c[u3(a, c, e)+φ1(a)+φ2(c)] : e ∈ E}.
Finally, root EF computes maxe,f [u4(e, f) + φ3(e)], which is the optimal value
for u. Actually, as described more formally in [7], we just computed:
max
e,f

[u4(e, f) + max
a,c

((max
b

u1(a, b)) + (max
c

u2(c, d)) + u3(a, c, e))] = max
a,b,c,d,e,f

u .

The distribute phase just traces back the Argmax’s to find the optimal tuple.
In a multiagent/multicriteria setting, where the overall criterion to optimize

is a Choquet integral, there is an additional source of complexity: the Choquet
integral is not a GAI decomposable function even when ui’s are GAI decom-
posable. As a consequence, optimality of the solutions cannot be guaranteed by
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Table 1. A capacity v for three criteria (named 1,2,3)

A ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(A) 0 0.2 0.1 0.1 0.4 0.5 0.5 1
p(A) 0 0.5 0.4 0.1 0.9 0.6 0.5 1
v(A) 0 0.5 0.5 0.6 0.9 0.9 0.8 1

passing messages containing only one locally optimal scalar per value of sep-
arator (such as φ1(a) above). Messages have to carry multiple utility vectors.
Indeed, assume we wish finding an optimal tuple w.r.t. a Choquet integral with
capacity v defined by Table 1 and utility u over A × B × C decomposable as
u1(a, b) + u2(b, c). For a given value b of B, assume that the message sent by
clique AB to BC could be u1(a, b) = (3, 2, 2) or u1(a′, b) = (2, 2, 4). Both utility
vectors yield the same Choquet integral: Cv(3, 2, 2) = Cv(2, 2, 4) = 2.2, hence it
is tempting to send only one vector to BC since both vectors seem a priori equiv-
alent. However, if the vector received by BC is added to u2(b, c) = (1, 2, 3), then
Cv(u1(a, b)+u2(b, c)) = 4.1 > Cv(u1(a′, b)+u2(b, c)) = 3.7, and if it is added to
u2(b, c′) = (3, 2, 1), then Cv(u1(a, b)+u2(b, c′)) = 3.9 < Cv(u1(a′, b)+u2(b, c′)) =
4.4. As a consequence, locally in clique AB, it is not possible to determine which
of u1(a, b) and u1(a′, b) should be sent to clique BC to determine the optimal
solution and we thus need to send both utility vectors on the separator.

Fortunately, not all utility vectors need be sent on separators: for any fixed
value of a separator, only Pareto-nondominated vectors need be. As Choquet
integral increases with each component, if x �P y, then Cv(x) ≥ Cv(y) for any
capacity v. Now, once the value of a separator is fixed in a GAI net, it breaks
its underlying utility into an additive utility. For instance, in Fig. 1, fixing the
value of E to e′ decomposes u(a, b, c, d, e′, f) into w1(a, b, c, d) + w2(f) where
w1(a, b, c, d) = u1(a, b) + u2(c, d) + u3(a, c, e′) and w2(f) = u3(e′, f). Hence,
if w1(a, b, c, d) �P w1(a′, b′, c′, d′), then adding to both vectors w2(f) results in
u(a, b, c, d, e′, f) and u(a′, b′, c′, d′, e′, f) respectively, the former Pareto dominat-
ing the latter. Hence, Cv(u(a, b, c, d, e′, f)) ≥ Cv(u(a′, b′, c′, d′, e′, f)), and tuple
(a′, b′, c′, d′, e′, f) need not be considered as the optimal tuple. Applying this re-
sult on utility u of Fig. 1, if EF is chosen as root, only nondominated utilities of
messageMA of Fig. 3 need be sent from clique AB to ACE. Similarly, only non
dominated vectors of MC need be sent from CD. ACE now needs only send
vectors of ME to clique EF . Thus, considering messages containing only non-
dominated utility vectors, we need not examine all the 288 instantiation tuples of
X , but we just examine the 8 vectors in u1 and propagate 4 of them in MA; we
just propagate 4 vectors out of 6 in MC ; clique ACE combines these messages
with u3, thus creating 32 new vectors, of which only 11 are transmitted to clique
EF . Finally, EF combines ME with u4, thus creating 33 vectors, and selects
that which optimizes cv, thus highlighting the efficient optimization process.

An additional (global) pruning can be used in conjunction with the above lo-
cal pruning to speed-up the search: assume that, during our search, we exhibited
a complete instantiation x having utility vector u(x). For a new instantiation y
to be optimal, u(y) must not be Pareto dominated by u(x). As in the preceding
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AB

CD

E EFACE

MC = c1: (2, 8, 2)(4, 2, 2)
c2: (4, 8, 5)(5, 3, 3)

MA = a1: (1, 6, 3)(8, 2, 1)
a2: (3, 4, 4)(6, 1, 2)

A

C

ME =
e1 : (6, 17, 5)(11, 16, 12)(14, 13, 10)(15, 8, 8)
e2 : (5, 18, 11)(11, 16, 12)(18, 12, 10)(19, 7, 8)

(9, 17, 15)(12, 14, 13)(13, 9, 11)

Fig. 3. Sending nondominated messages toward root EF

paragraph, assume that the value of separator E is fixed to e′, hence decomposing
u into w1+w2 as described above and assume that we know for sure that, for any
f ∈ F , u3(e′, f) 	P h for a given vector h. Then, if u(x) �P w1(a, b, c, d)+h, no
instantiation f is such that w1(a, b, c, d)+w2(f) �P u(x) and, thus, w1(a, b, c, d)
needs not be sent on separator E. In this paper, we considered the following
heuristic h: given a set of vectors Z = {(z1

i , . . . , zm
i ), i ∈ {1, . . . , r}}, h is defined

as h = ∇Z = (z1, . . . , zm) where zj = max{zj
1, . . . , z

j
r} for all j ∈ {1, . . . , m}. For

clique AB of Fig. 1, h(a) = ∇{u3(a, c, e)+u2(c, d)+u4(e, f)} for all a ∈ A. How-
ever, to speed up h’s computation, we approximate it by h′(a) = ∇{u3(a′, c, e)+
∇{u2(c′, d) : c′ = c} + ∇{u4(e′, f) : e′ = e} : a′ = a} as follows: first compute
HD

E = ∇{u4(e, f)} for all e ∈ E, then HC
C = ∇{u3(c, d)} for all c ∈ C. Fi-

nally, compute u3 +HC
C +HD

E and apply operator ∇ on it, resulting in HD
A (see

Fig. 4). The same applies to clique CD: h′(c) = ∇{u3(a, c′, e) + ∇{u1(a′, b) :
a′ = a}+∇{u4(e′, f) : e′ = e} : c′ = c}. Here again, there just needs to compute
HC

A = ∇{u1(a′, b) : a′ = a}, then u3 +HC
A +HD

E and apply operator ∇.
To avoid redundant computations, we can use the following message-passing

scheme: let EF act as root. Collect: EF asks ACE to send a message, which in
turn asks AB and CD to send messages. AC sends message HC

A = {∇{u1(a′, b) :
a′ = a} : a ∈ A}. Similarly, clique CD sends message HC

C = {∇{u3(c′, d) : c′ =
c} : c ∈ C}. Finally, ACE sends on separator E message ∇{u3 + HC

A + HC
C}

for each value e ∈ E (see Fig. 4.a). Distribute phase: EF sends on E message
HD

E = {∇{u4(e′, f) : e′ = e} : e ∈ E}. Clique ACE now computes ∇{u3 +HC
A +

HD
E} and sends it to CD, and ∇{u3 +HC

C +HD
E} and send it to AB. In other

words, before sending a message to a neighbor, a clique combines the messages
it received from all its other neighbors and, then, applies operator ∇. At the end
of the distribute phase, each message HD corresponds to heuristic h′ (Fig. 4.b).

HD
E = e1: (4, 3, 5)

e2: (3, 4, 3)HC
E = e1: (15, 17, 12)

e2: (19, 18, 15)
HC

A = a1: (8, 6, 3)
a2: (6, 4, 4)

HC
C = c1: (4, 8, 2)

c2: (5, 8, 5)
a) collect b) distributionHD

C = c1: (15, 14, 13)
c2: (17, 13, 13)

HD
A = a1: (14, 16, 12)

a2: (13, 17, 14)

AB A

CD C CD C

AB A
ACE E EF ACE E EF

Fig. 4. Propagation of heuristics information
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MC =
c1d3: (4, 2, 2)
c2d2: (4, 8, 5)

ME = a2c2e1: (11, 16, 12)
a1c2e2: (18, 12, 10)

MA = a1b2: (8, 2, 1)
a2b2: (3, 4, 4)

EF
AB

CD
ACE E

C

A

w2 c1 c2

d1 (17, 22, 14) (21, 20, 17)
d2 (18, 16, 15) (21, 21, 18)
d3 (19, 16, 15) (22, 16, 16) w3 c1e1 c1e2 c2e1 c2e2

a1 (19, 10, 9) (17, 12, 17) (17, 15, 13) (21, 16, 13)
a2 (16, 11, 14) (11, 14, 15) (15, 19, 17) (12, 21, 18)

u′
4 e1 e2

f1 (13, 16, 15) (21, 15, 12)
f2 (14, 19, 16) (21, 13, 12)
f3 (15, 18, 17) (20, 16, 13)

w1 a1 a2

b1 (15, 22, 15) (18, 18, 15)
b2 (22, 18, 13) (16, 21, 18)
b3 (21, 17, 13) (19, 18, 16)
b4 (15, 20, 14) (15, 18, 17)

Fig. 5. The vector message-passing algorithm

We can now propose an algorithm in the spirit of MOA∗ [18] pruning dom-
inated utility vectors, thus reducing the number of vectors sent on separators.
First, using h′ and a collect, we propagate toward root (here EF ) on each sepa-
rator the most promising utility vectors, i.e., those that, given h′, have the highest
Choquet integrals: clique AB thus sends toward ACE message MA containing,
for each a ∈ A, the vector u1(a, b) maximizing Cv(w1(a, b)), where w1(a, b) =
u1(a, b)+HD

A (a). Fig. 5 shows the values of vectors w1’s. In addition, vectors u1’s
that are not inserted into MA and that are not Pareto dominated by other u1’s
are stored into a set of “open vectors” denoted by L (see Table 2). Set L thus cor-
responds to a priori less promising vectors that may yet be optimal and, as such,
that will need to be sent later on on separators to guarantee the correctness of the
algorithm. Similarly, clique CD sends messageMC containing the u2’s maximiz-
ing, for each c ∈ C, Cv(w2(c, d)) where w2(c, d) = u2(c, d) +HD

C (c). In addition,
non dominated u2’s not belonging toMC are added to L. Clique ACE now com-
putes vectors u′

3 = u3 +MA +MC , which correspond to utility of instantiations
of attributes A, B, C, D, E. Clique ACE sends in ME those u′

3’s that maximize,
for each value of separator E, Cv(w3), where w3(a, c, e) = u′

3(a, c, e) + HD
E (e),

i.e., the most promising (so far) utility vectors. The other u′
3 vectors are stored

into L. Now EF can compute vectors u′
4(e, f) = u4(e, f) +ME(e), which cor-

respond to utilities of complete tuples, and select that which maximizes Cv. Let
us call u∗ this utility vector. By Fig. 5, u∗ = (15, 18, 17) and Cv(u∗) = 16.1.

To ensure correctness, we need to send messages of L toward root and check
whether they yield better Cv’s. But before, we can prune from L all vectors
ui’s such that Cv(wi) ≤ Cv(u∗), since wi = ui + h′ is an upper bound on the
utility of complete tuples compatible with ui. The set L of Table 2 thus reduces
to the utility vectors of instantiations a2b3 and c2d3. Note the efficiency of this

Table 2. The set of open vectors L

tuple ui, u
′
i Cv(wi) tuple ui, u

′
i Cv(wi) tuple ui, u

′
i Cv(wi)

a1b1 (1, 6, 3) 15.7 a2b3 (6, 1, 2) 17.2 c1d1 (2, 8, 1) 16.0
c2d3 (5, 3, 3) 17.2 a1c1e1 (15, 7, 4) 11.3 a1c2e1 (13, 12, 8) 14.4

a2c1e1 (12, 8, 9) 12.9 a1c1e2 (14, 8, 10) 13.3 a2c2e2 (9, 17, 15) 15.3
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pruning rule. We now add the most promising vector of L to its appropriate
separator (here, we can add u1(a2, b3) toMA) and remove it from L, then clique
ACE updates its u′

3 table by computing all the new combinations u′
3(a2, c, e) =

u3(a2, c, e)+u1(a2, b3)+MC(c). These new combinations are added L, provided
that their Cv(w3) > Cv(u∗) and that they are not Pareto dominated by other
u′

3’s (for fixed values of separator E). The same process is applied until L is
empty. When a vector from L is added to the separator adjacent to root, the
latter updates the value of u∗ and prunes L. When L is empty, all possible
optimal combinations have been tested and u∗ is an optimal utility vector.

This process is formalized in function Choquet below. In this function, we do
not use ui’s but rather labels, i.e., triples 〈v, XCi , xD〉, where v is a utility vector,
XCi denotes the clique that created the label and xD is the partial instantiation
yielding v. For a given clique XCi , Labels (ui) is table ui in which all vectors
are substituted by their label. For a given set of labels M, M[xE] denotes the
subset of labels 〈v, XCi , yD〉 ∈ M such that xD∩E = yD∩E, and M ⊕ N =
{〈v +w, XE, xC∪D〉 : 〈v, XCi , xC〉 ∈ M and 〈w, XCj , xD〉 ∈ N}. Finally, for any
XCi , we denote XCp(i) the clique adjacent to XCi on the path between root and
XCi , and we denote Adj(XCi) the set of cliques adjacent to XCi except XCp(i) .

Function Choquet ()
01 set of open labels L ← ∅; let root be any clique
02 for all cliques XCi from the leaves to the root do
03 U ← Labels (ui) ⊕XCk

∈Adj(XCi
)
Mk

04 Mi ← { U ’s most promising label for each value of separator XSip(i)}
05 L ← L ∪ {ParetoNonDom(U [xSip(i) ]\Mi[xSip(i) ]) for all xSip(i) ∈ XSip(i)}
06 send message Mi on separator XSip(i)

07 done
08 Cbest

v ← maxL∈Mroot Cv(L)
09 while L 	= ∅ do
10 let L = 〈v, XCi , xD〉 be the most promising label in L; remove L from L
11 Mi ← Mi ∪ {L}; U ′

p(i) ← {L} ⊕ Labels (up(i)) ⊕XCk
∈Adj(XCp(i)

)\{XCi
} Mk

12 if p(i) = root then
13 Cbest

v ← max{Cbest
v , maxL∈U′

p(i)
Cv(L)}

14 remove from L labels L’s such that Cv(L ⊕HD
XCi

) ≤ Cbest
v

15 else
16 F←{L ∈ L whose clique is XCp(i)}; L ← (L\F) ∪ ParetoNonDom(F ∪ U ′

p(i))
17 done
18 return Cbest

v

5 The Case of Convex Capacities

Convex capacities are of special interest for Choquet integrals due to their inter-
pretation in terms of preference aggregation: they convey an idea of compromise
or fairness named hereafter preference for well balanced solutions, meaning in-
tuitively that smoothing or averaging a cost vector improves the alternative. A
useful formalization of this idea has been introduced in [19] through an axiom
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named “preference for diversification” due to its interpretation in the context of
portfolio management. This axiom can be reformulated in our framework as:

Definition 6 (Preference for well-balanced solutions). Preference forwell-
balanced solutions holds for a relation � on X if, for any n utility vectors u1, . . . ,
un ∈ R, and for all real numbers α1, . . . , αn ≥ 0 such that

∑n
i=1 αi = 1:

[u1 ∼ u2 ∼ . . . ∼ un] =⇒∑n
i=1 αiui � uk, k = 1, . . . , n .

When using a Choquet Integral, the above axiom is equivalent to choosing a
convex capacity v as shown in [19]. Coming back to Example 1, we can imagine
a fourth solution w with utility vectors u(w) = (12.5, 5, 10) such that Cv(u(w)) =
5× 1 + (10− 5)× 0.5 + (12.5− 10)× 0.2 = 8. Now, remarking that Cv(u(z)) =
Cv(u(w)) = 8, preference for well-balanced solutions induced by the convexity of
v implies that vector 0.5u(z)+0.5u(w) = (9.75, 10, 10) would be preferred to u(z)
and u(w). Observing that u(y) Pareto-dominates u(w), we deduce that u(y) is
also preferred to u(z) and u(w) by monotonicity of the Choquet integral. Hence
resorting to a convex capacity might be natural in many decision situations
where a compromise is sought among conflicting points of view. Let us show
now how the convexity of v can be exploited on the algorithmic side.

Let Cv(u(x)) be the value of the Choquet integral for any x, and let ū : X )→ R
be a convex combination of marginal utilities defined by: ū(x) =

∑m
i=1 piu

i(x)
where p is a probability distribution in core(v). Such a distribution can be de-
termined using a greedy algorithm [20] (such a p is given in Table 1). Then
the following property holds: ū(x) ≥ Cv(u(x)) for all x ∈ X [21,22]. Hence
ū(x) is an upper bound for the Choquet integral. This can be exploited in the
algorithm of Section 4 in conjunction with the pruning rule of heuristic h′: af-
ter scalarizing the tables of utility vectors of Fig. 1 by ūi(x) =

∑m
j=1 pju

j
i (x),

applying the same process that enabled us to compute HD with these new ta-
bles yields a scalar heuristic Hp stored on each separator. Hp can be used to
prune any utility vector u′

j to be sent by clique XCj on a separator whenever
ūj +Hp

j ≤ Cv(u∗).
Utility ū can also be used directly for computing a Choquet-optimal element.

As a linear combination of GAI utilities, ū is also a GAI function. Hence, we
can rank efficiently elements of X by decreasing value of ū(x) [17]. Now, assume
that x1, ..., xk, the k-best elements on X w.r.t. ū, have been computed. Let x̂k =
argmaxi=1,...,kCv(u(xi)). If Cv(u(x̂k)) ≥ ū(xk), then x̂k is the optimal choice for
Cv. Indeed, as we rank elements w.r.t. ū, for any k′ > k, ū(xk′

) ≤ ū(xk), and
since ū(x) ≥ Cv(u(x)) for all x ∈ X , Cv(u(xk′

)) ≤ ū(xk′
) ≤ ū(xk) ≤ Cv(u(x̂k)).

Consequently, the optimal choice for Cv can be obtained by ranking elements
xi w.r.t. ū until the maximum value of the Cv(u(xj))’s for all the xj ’s found
so far, exceeds ū(xi). This is another way of generating Cv optimal elements
in X but, contrary to algorithm presented in Section 4, this algorithm is only
feasible for a capacity with a non-empty core. This is obviously the case when v
is convex.
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Table 3. Response times for Choquet optimization

m = 2 m = 5
n VPA∗ VPA∗
5 0.004 0.015
10 0.06 34.27
15 13.62 467.35

m = 2, v convex
n VPA∗ VPA∗+S Rank
5 0.004 0.003 0.007
10 0.06 0.05 0.47
15 11.30 6.55 >1200

m = 5, v convex
n VPA∗ VPA∗+S Rank
5 0.012 0.008 0.009
10 33.34 0.28 9.62
15 451.84 443.76 >1200

Table 3.a Table 3.b Table 3.c

6 Experimentations

In order to evaluate in practice the performance of our algorithms, we compared
the vector-passing algorithm of Section 4 (hereafter denoted VPA∗), VPA∗ with
heuristic HP (denoted VPA∗+S) and the ranking algorithm mentioned above
(Rank). In each experimentation, Xi’s domains were all of size 5. GAI networks
were randomly generated with an average of 3.5 attributes per clique. Utility
tables were filled with numbers drawn randomly between 0 and 100. All exper-
iments were performed on a 2.13GHz PC with 3GB of RAM. The tables below
report average response times in seconds over 2000 experiments. For Table 3.a,
we generated random capacities (not necessarily convex). VPA∗ reveals efficient
for instances where the ranking approach does not apply (non-convex cases). Ta-
bles 3.b and 3.c are given for the sake of comparison of the two variants of VPA∗

with Rank in the convex case. Rank is known to be very efficient when criteria
are positively correlated. We deliberately generated instances with conflicting
(negatively correlated) criteria to check whether VPA∗ was able to outperform
Rank in this case. The answer is clearly positive considering Tables 3.b and 3.c.
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Abstract. The stable marriage problem has many practical applications in two-
sided markets like those that assign doctors to hospitals, students to schools, or
buyers to vendors. Most algorithms to find stable marriages assume that the par-
ticipants explicitly expresses a preference ordering. This can be problematic when
the number of options is large or has a combinatorial structure. We consider there-
fore using CP-nets, a compact preference formalism in stable marriage problems.
We study the impact of this formalism on the computational complexity of sta-
ble marriage procedures, as well as on the properties of the solutions computed
by these procedures. We show that it is possible to model preferences compactly
without significantly increasing the complexity of stable marriage procedures and
whilst maintaining the desirable properties of the matching returned.

1 Introduction

The stable marriage problem is a well-known problem with many practical applications.
It is usually defined as the problem of matching men to women so that no man and
woman, who are not married to each other, both prefer each other to their current partner
[6]. Problems of this kind arise in many real-life situations, such as assigning residents
to hospitals, students to schools, as well as in two-sided market trading. A specific
application is a web-based stable marriage system for matching sailors to ships in the
US Navy.

Surprisingly, a stable matching always exists whatever preferences are held by the
men and women. The Gale-Shapley algorithm finds a stable matching in polynomial
time [4]. The matching computed is male-optimal since the men have the best possi-
ble partners. Since this might be considered unfair to the women, many other stable
marriage algorithms have been developed. For example, Gusfield gives a polynomial
algorithm to compute the stable matching where the regret of the most unsatisfied per-
son is minimal [5]. We will focus on these two algorithms since they contain the main
features of many other stable marriage algorithms.

Both algorithms assume that agents express their preferences (over the members of
the other gender) explicitly as a totally ordered list of members of the other gender. In
some applications, the number of men and women can be large. It may therefore be un-
reasonable to assume that each man and woman provides a strict ordering of the other
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gender. In addition, eliciting their preferences may be a costly and time-consuming pro-
cess. The sets of men and women may have a combinatorial structure. It could therefore
be costly to give preference over all options.

For instance, consider a large set of hospitals offering residencies. Doctors might
not want to rank explicitly all the hospitals, but might wish to express preferences over
features. For example, they might say ”I prefer a position close to my home town”, or
”If the hospital is far away from my home town, then I want a better salary”. Based on
this information, we can rank the hospitals.

Our challenge is to adapt algorithms to find stable marriages to work with such pref-
erence statements. We will investigate whether this changes the computational com-
plexity of stable marriage algorithms like Gale-Shapley’s and Gusfield’s as well as
properties of the matchings computed.

To model preferences compactly, we will use (acyclic) CP-nets [1]. These let agents
state their preferences simply and naturally by means of qualitative conditional state-
ments. We will show how to use the preferences orderings induced by CP-nets within
GS and Gusfield’s algorithms with little additional computational cost. This claim is
supported by both theoretical and experimental studies.

2 Background

2.1 CP-nets

CP-nets [1] are a graphical model for compactly representing conditional and qualitative
preference relations. CP-nets are sets of ceteris paribus (cp) preference statements. For
instance, the statement “I prefer red wine to white wine if meat is served” asserts that,
given two meals that differ only in the kind of wine served and both containing meat,
the meal with red wine is preferable to one with white wine.

A CP-net has a set of features (also called variables) F = {x1, . . . , xn} with finite
domains D(x1), . . . ,D(xn). For each feature xi, we are given a set of parent features
Pa(xi) that can affect the preferences over the values of xi. This defines a dependency
graph in which each node xi has Pa(xi) as its immediate predecessors. Given this
structural information, the agent explicitly specifies her preference over the values of
xi for each complete assignment on Pa(xi). This is by means of a total order over
D(xi). An acyclic CP-net is one in which the dependency graph is acyclic.

Consider a CP-net whose features are A, B, C, and D, with binary domains con-
taining f and f if F is the name of the feature, and with the following preference
statements: a � a, b � b, (a ∧ b) ∨ (a ∧ b) : c � c, (a ∧ b) ∨ (a ∧ b) : c � c, c : d � d,
c : d � d. Here, a � a represents the unconditional preference for A = a over A = a,
while c : d � d states that D = d is preferred to D = d given that C = c.

The semantics of CP-nets depends on the notion of a worsening flip. This is a change
in the value of a feature to a less preferred value according to the preference statement
for that feature. For example, in the CP-net above, passing from abcd to abcd is a
worsening flip since c is better than c given a and b.

A solution (also called outcome) of a CP-net is an assignment to all its variables of
values from their domains. One solution α is better than another solution β (written
α � β) iff there is a chain of worsening flips from α to β. This definition induces in
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general a preorder over the solutions. If the CP-net is acyclic, the solution ordering is a
partial order with only one top element.

In general, finding the optimal solution of a CP-net is NP-hard. However, in acyclic
CP-nets, the unique optimal solution can be found in linear time. We simply sweep
through the dependency graph assigning each variable to the its most preferred value.
For instance, in the CP-net above, we would choose A = a and B = b, then C = c,
and then D = d.

Determining if one solution is better than another (called a dominance query) is NP-
hard even for acyclic CP-nets. Whilst tractable special cases exist, there are also acyclic
CP-nets in which there are exponentially long chains of worsening flips between two
solutions.

2.2 Stable Marriage Problems

The stable marriage problem (SMP) is the problem of finding a matching between
the elements of two sets. Usually, the members of the two sets are called men and
women. More precisely, given n men and n women, where each person strictly orders
all members of the opposite sex, we wish to marry the men to the women such that there
is not a man and woman who would both rather be married to each other than to their
current partners. If there is no such couple, the matching is called stable. We will write
pref(x) for the preference ordering of man or woman x.

The Gale-Shapley algorithm (GS) [4] is a well-known algorithm to solve the SMP
problem:

Algorithm 1. GS
Set all men and women as free
while there is a free man m do

w ← the first woman in pref(m) to which he has not yet proposed
if w is free then

match m with w

if m >pref(w) z, where z is w’s current partner then
match m with w and set z free

else
w rejects m and m remains free

This algorithm consists of a number of rounds in which each un-engaged man pro-
poses to the most preferred woman to whom he has not yet proposed. Each woman
receiving a proposal becomes “engaged”, provisionally accepting the proposal from
her most preferred man. In subsequent rounds, an already engaged woman can “trade
up”, becoming engaged to a more preferred man and rejecting a previous proposal, or
if she prefers him, she can stick with her current partner. The algorithm takes O(n2)
steps and construct a matching that is male-optimal, since every man is paired with his
highest ranked feasible partner, and female-pessimal, since each woman is paired with
her lowest ranked feasible partner.

Consider n = 3. Let W = {w1, w2, w3} and M = {m1, m2, m3} be respectively
the set of women and men. The following sequence of strict total orders defines an SMP:



Compact Preference Representation in Stable Marriage Problems 393

– m1 : w1 > w2 > w3 (i.e., man m1 prefers woman w1 to w2 to w3); m2 : w2 >
w1 > w3; m3 : w3 > w2 > w1

– w1 : m1 > m2 > m3; w2 : m3 > m1 > m2; w3 : m2 > m1 > m3

For this SMP, the Gale-Shapley algorithm returns the male-optimal marriage {(m1, w1),
(m2, w2), (m3, w3)}. On the other hand, the female-optimal marriage is {(w1, m1),
(w2, m3), (w3, m2)}.

Male-optimality might be considered unfair to the women. Other proposal-based
algorithms to compute stable matchings have been proposed that might be considered
fairer. For example, Gusfield gives an algorithm to compute the minimum-regret stable
matching [5]. This is the best stable matching as measured by the person who has the
largest regret in it. The regret of a man in a matching is the number of women that are
more preferred than its current partner. The regret of a woman is defined analogously.
Gusfield’s algorithm passes from one matching to another. In each step, the person with
the maximum regret is identified, and their current marriage is broken to pass to another
matching with a smaller maximum regret.

3 Operations Opt, Next, and Compare in the SMP Algorithms

In algorithms such as GS and Gusfield’s, men make proposals, starting from their most
preferred woman and going down in their ordering, whilst women receive proposals and
compare these against the men to whom they are currently engaged. Moreover, in both
algorithms, proposals are made in increasing order of regret. This is especially exploited
by Gusfield’s algorithm, where the notion of regret is also used to decide how to modify
the current matching in order to obtain one with a smaller regret. Three operations are
thus needed by both algorithms:

– Opt(pref(m)): Given a man m, we compute his optimal woman. This is needed
the first time a man makes a proposal.

– Next(pref(m), w): Given a man m and a woman w, we compute the next best
woman for m. This is needed when a man makes a new proposal.

– Compare(pref(w), m1, m2): Given a woman w and two men m1 and m2, we
decide if m2 is preferred to m1 for w. This is needed when a woman compares two
proposals to decide whether to remain with the current man (m1) or to leave him
for a new man who is proposing (m2).

Operations Opt and Next return a woman, while Compare returns a Boolean value.
If preferences are given explicitly as strict total orders, as in the traditional SMP

setting, these operations all take constant time. However, if preferences are represented
with a compact representation language such as CP-nets, then this is not the case. Thus,
to understand the impact of using a compact preference formalisms within algorithms
like GS, we consider the computational complexity of these operations on CP-nets.

4 Opt, Next, and Compare on CP-nets

We consider a stable marriage problem with n men and women, where each man and
each woman specifies their preferences over the other sex via a CP-net. We call this a
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Compact SMP (CSMP). pref(m) is now the solution ordering induced by a CP-net,
which can be a partial ordering.

For simplicity, we will consider CP-nets with two values in each domain. However,
the results can be easily generalized to non-binary domains. Each man and woman is
described by a set of Boolean features, and n is the size of the Cartesian product of
such domains. Thus the number of features f of each CP-net is log(n). Conversely,
if we are given a set of f features, we assume that each assignment to such features
corresponds to a man (resp. a woman). We could, however, relax this assumption by
using a constrained CP-net to rule out infeasible combinations.

Let us consider the three operations used within the SMP algorithms. In general,
finding the optimal solution of a CP-net is a computationally difficult problem, as is
dominance testing (the problem of comparing two solutions in the CP-net ordering) [1].
We are not aware of any study of the complexity of finding the next best solution. How-
ever, as two of the three operations are computationally intractable in general, and as we
wish to find settings where such operations take just polynomial time, we turn our at-
tention to acyclic CP-nets. These are more restrictive but may be sufficiently expressive
in many contexts [1].

As mentioned before, in acyclic CP-nets there is always one optimal solution, and
it can be found in linear time in the number of features f by a simple forward sweep
algorithm. Operation Opt thus takes O(f) time.

While the solution ordering of an acyclic CP-net may be partial, operations Next
and Compare need a total order, since Next returns one new proposal to be made, and
Compare chooses between two proposals. Therefore, we will consider linearizations
of the CP-net solution ordering.

This does not contradict a user’s preference statements, since a linearization only
orders pairs of elements that were incomparable. Notice also that, even if we could
work with partial orders, dominance testing (and thus Compare(pref(w), m1, m2))
is intractable in general for an acyclic CP-net. Here, on the other hand, we aim to find
linearizations where all three operations are tractable.

We will focus on those linearizations where the regret is larger as we descend the
order. As noted before, our stable marriage algorithms make proposals in this order.

5 A Linearization of the CP-net Solution Ordering

Linearizations of the solution ordering of acyclic CP-nets have been considered in [2,3].
A consequence of these results is that, given a feature order which is compatible with
their topological order in the dependency graph, any lexicographical ordering over the
solutions is a linearization of the original partial ordering. Computing Next in such a
linearization is polynomial since it simply requires the next tuple of feature values in the
lexicographic ordering. Also the Compare operation is polynomial since it reduces to
a comparison of tuples over the lexicographical relation. Unfortunately, such lineariza-
tions do not in general satisfy the regret condition. We therefore consider a different
linearization, where the Next and Compare operations are polynomial, and where solu-
tions closer to the top of the partial order (that is, with a smaller regret) come first.
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Fig. 1. A CP-net and its induced solution ordering

We recall that the regret of a man is the distance between his partner in the current
marriage and his most preferred woman. This notion has been originally defined over
total orders [6]. However, it can be generalized to be used on partial orders. More pre-
cisely, the regret of a man m when married to a woman w is the longest path, in the
preference ordering of m, between w and the top element of his ordering.

For example, let us consider the CP-net, as well as its induced solution ordering,
shown in Figure 1 (where x̄ is written as −x for all values x). This CP-net has three
features A, B, and C, where B depends on A. The regret of ābc is 3 since there are at
most 2 solutions between the top and this one.

While pref(m) is the preference ordering induced by the CP-net of m, we will call
lex-pref(m) our linearization of pref(m).

This linearization is based on a lexicographical order over feature levels. Given an
acyclic CP-net, we divide its features into levels, each containing all the features that
have the same longest path length to a feature without outgoing edges in the dependency
graph. For example, in the CP-net of Figure 1, we have two levels: level 2, containing
only A and corresponding to a longest path of length 1, and level 1, containing B and
C, corresponding to a longest path of length 0.

Given a solution, we then associate to it a vector v of length equal to the number of
levels, say k, whose elements v1, . . . , vk, corresponding to levels k to 1, are Boolean
vectors of length equal to the number of features in each level. Features are ordered
within each level in some fixed order.

For the previous example, we have a vector with two elements (since we have two
feature levels), where the first one has one Boolean value (corresponding to the value
for A), and the second one is a two-element Boolean vector (corresponding to the values
for B and C). The Boolean values in the vectors are set according to the values of the
features: given the values of the parents, if the value of the considered variable is the
most preferred, we put 0, otherwise 1.

Consider again the CP-net in Figure 1. The solution ab̄c̄ gives the vector [0, 11], since
a is the most preferred value in the CP-table of feature A, while, given A = a, both b̄
and c̄ are the least preferred values in the CP-tables of features B and C.

Given any two such vectors, say v = [v1, . . . , vk] and v′ = [v′1, . . . , v′k], we now
define how to order them. Let us denote by sum(x) the sum of all elements in vector
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x. Then v <lex−pref v′ (that is, v precedes v′ in the ordering and is more preferred) iff
[sum(v1), . . . , sum(vk)] is lexicographically smaller than [sum(v′1), . . . , sum(v′k)], or
[sum(v1), . . . , sum(vk)] = [sum(v′1), . . . , sum(v′k)] and [v1, . . . , vk] is lexicographi-
cally smaller than [v′1, . . . , v

′
k].

For example, vector [00, 01] is preferred to vector [00, 10], since the vectors of the
sums are equal ([0, 1]) and [00, 01] is lexicographically smaller than [00, 10]. Also,
[00, 01] is preferred to [00, 11], and [10, 00] is preferred to [01, 01].

In Figure 1, the linearization of the ordering is shown via the numbers above each
solution. As the following theorem shows, this is a linearization of the solution ordering
induced by the CP-net.

Theorem 1. Given a CP-net and two solutions s and s′, with associated vectors v and
v′, if s � s′, then v <lex−pref v′.

Proof. The vectors of the sums represents the number of violations in each level of the
CP-net. If s′ has a larger number of violations in higher levels of the CP-net with respect
to s (thus s′ is less preferred than s), the vector of the sums of v′ will be larger than the
one of v. Notice also that solutions which are incomparable in the CP-net ordering are
strictly ordered in our linearization. �

6 Complexity of Opt, Next, and Compare, and Regret Condition

Since we have linearized a partial order with one top element, Opt(pref(m))=Opt(lex-
pref(m)). Therefore, finding Opt(lex-pref(m)) is polynomial since we can use the sweep
forward algorithm to find Opt(pref(m)) in acyclic CP-nets.

We will now consider the complexity of the operations Next and Compare on this
linearization.

For operation Compare(lex-pref(w),m1,m2), we can directly use the definition of
<lex−pref given above: Compare(lex-pref(w),m1,m2) = true iff v(m2) <lex−pref

v(m2), where v(mi) is the vector associated to mi in the CP-net pref(w).

Theorem 2. Given a CSMP of size n, a woman w and two men m1 and m2, Compare(
lex-pref (w), m1, m2) can be computed in O(f), where f is the number of features of
the CP-net of w.

Proof. The vectors associated to each of the two men can be computed in linear time
in the number of features of the CP-net: for each feature, we check the position of
the feature value in a row of the appropriate CP-table. Given the two vectors, we need
to compute the vectors of their sums, which is linear in the number of features, and to
compare them (and possibly also the original vectors) lexicographically. This takes time
linear in the number of features. �

For operation Next(lex-pref(m), w), given a vector, we need to find the next vector in
the <lex−pref ordering. This can be done by following a procedure similar to incre-
menting a Boolean counter.

Given a vector v = [v1, . . . , vk], we build a new vector v′ as follows. For j from k
to 1, we compute the first j such that sum(vj) = sum(next-lex(vj)), where next-lex is
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just the next element in a standard lexicographical order. If such a j exists, then v′ =
[v1, . . . ,next-lex(vj), v′j+1, . . . , v

′
k], where v′h with h > j is the minimum vector with

sum equal to sum(vh). Otherwise, we compute next-lex([sum(v1), . . . , sum(vk)]),
and set v′ as the smallest vector with these sums.

For example, consider solution ab̄c̄ for the CP-net in Figure 1. The corresponding
vector is [0, 11]. There is no way to increase lexicographically either 11 or 0 while
maintaining the same sums, so we must consider the sum vector [0, 2], increment it to
[1, 0], and then build vector [1, 00], which corresponds to solution āb̄c. If instead we
consider solution abc̄, whose vector is [0, 01], we can modify 01 into 10 while main-
taining the same sums, so we get vector [0, 10], corresponding to solution ab̄c.

Algorithm 2. Next

Input: acyclic CP-net N of man m, vector v = [v1, . . . , vk],
Output: vector v′, successor of v in <lex−pref(m)

v′ ← v
i ← k
while i > 1 and v′

i = LEX NEXT (v′
i) do

i ← i − 1
if i ≥ 1 then

v′[i] ← LEX NEXT (v′
i)

RESET ALL SUCC(v′, i)
return v′

else
P ← SUM NEXT ([sum(v′

1), ..., sum(v′
k)])

if P = nil then
return “No more solutions”

return SUM MIN(P )

In Algorithm 2, procedure LEX NEXT takes as input a vector v′i and returns the
lexicographical successor of v′i that has the same sum, if it exists, and v′i itself otherwise.
Procedure RESET ALL SUCC, given a vector v′ and an index i, resets the sub-vector
with components v′j , with index j ≥ i, to the minimal lexicographic Boolean vector
with sum equal to sum(v′j), j ≥ i. Procedure SUM NEXT computes the lexicographic
successor of a vector of sums taking into account the maximum cost sum of each level.
If no such successor exists, it returns nil. Finally, procedure SUM MIN computes the
lexicographical minimal vector having the sum vector given in input.

Theorem 3. Given a CSMP of size n, a woman w and a man m with a CP-net with f
features, Algorithm 2 computes Next( lex-pref (m), w) in O(f) time.

Proof. Computing the next vector in a lexicographical order, computing the sum of the
vector, and computing the minimum vector with the same sum are all tasks that can be
done in time linear in the size of the vector. Thus the above algorithms can run in time
linear in the size of the vector associated to woman w, which is the number of features
of the CP-net of man m. �
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We have shown that all the three operations (Opt, Next, and Compare) can be computed
in polynomial time on our linearization of the CP-net ordering. We now show that this
linearization also has the property that later elements have a larger regret.

Theorem 4. Given a CP-net of a man m, and two women w1 and w2, if s′ <lex−pref s,
then the regret of m when married with w1 is smaller than or equal to his regret when
married to w2.

7 Properties of the Generated Stable Marriage: Stability,
Male-Optimality, and Minimum Regret

7.1 Stability

If we run the GS algorithm on the linearization just defined, by definition we obtain
a matching which is stable w.r.t. this linearization. However, one may wonder if the
generated matching is stable w.r.t. the partial order of the CP-net.

As is standard in SMPs with ties [6], also in our case, where the orders induced by
the CP-nets may be partial, we define a matching to be stable when there is no man and
woman who strictly prefer each other to their partner in the matching.

Since our linearization orders more pairs than the partial order of the CP-net, it is
easy to see that any matching which is stable for the linearization is also stable for the
partial order. In fact, if there is a blocking pair (that is, a man and a woman who would
prefer to be together rather than with their current partners) in the partial order, such a
pair will be blocking also according to the linearization. Therefore stability is assured,
both w.r.t. the linearization and w.r.t. the original CP-net solution ordering.

7.2 Male-Optimality

The matching found by the GS algorithm on the linearization will of course be male-
optimal w.r.t. the linearization. However, it may be not male-optimal w.r.t. the original
partial order.

In the presence of partial orders, the definition of male-optimality is the same as for
total orders: a stable marriage is male-optimal if, for each man m and partner w, there
is no stable marriage in which m is married to another woman w′ which he strictly
prefers to w. Notice that, while a male-optimal matching always exists when we work
with totally ordered preferences, this is not true when we have partial orders.

Even if a male-optimal matching exists, running the GS algorithm on our lineariza-
tion can return a matching which is not male-optimal. Consider the following SMP with
2 men and 2 women, where �� means incomparability: m1 : w1 �� w2; m2 : w1 ≺ w2;
w1 : m1 �� m2; w2 : m1 �� m2. Given the linearization where we order incomparable
element in incresing index order, the stable matching obtained by GS on this lineariza-
tion is ((m1, w1), (m2, w2)). However, the only male-optimal matching in the original
problem is ((m1, w2), (m2, w1)).

Notice that, when preferences are totally ordered, the output of the GS algorithm is
not affected by the order in which men propose to women. With partial orders, this order
may affect the result, since women leave the current partner only if the new proposal is
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strictly better. For example, in ther SMP above, if man m2 proposes first (to w1), then
the resulting marriage is the male-optimal one (((m1, w2), (m2, w1))).

There is a way to ”do our best” w.r.t. male-optimality, by following the policy that
the next men making a proposal is one of those, if any, with a single next best woman.
If no such man exists, then we can choose any man. If we do this, then it is possible
to show that the generated marriage is never worse w.r.t. male-optimality than the one
obtained by any other policy.

To (partially) implement this policy, we can exploit the fact that only incomparable
women can have the same vectors of sums (see Theorem 1). Therefore, we can identify
a man with a single next best woman by executing twice the Next operation and by
comparing the vectors of the sums of the two women obtained. If they are the same,
then the two women are incomparable (thus the man does not have a single next best
woman). On the other hand, if they are different, the two women may be ordered or
incomparable in the partial order. Thus we should choose a man with two different
vectors of the sums. Notice that this is an approximation of the desired policy, since
some incomparable women may have different vectors of the sums. Notice also that the
implementation of the proposal policy does not add to the worst-case cost of the GS
algorithm, since the result of the second Next operation can be saved for future use.

7.3 Minimum Regret

Computing a stable matching which minimizes the regret of the person who is worst-off
may be perceived to be fairer than computing the male-optimal matching. As mentioned
in Section 2, such a stable matching is found by Gusfield’s algorithm. As with GS, our
linearization allows us to use Gusfield’s algorithm with compact preference formalisms.

Theorem 5. Running Gusfield’s algorithm on a CSMP where each CP-net has f fea-
tures, with Opt to find the first proposal, Next to find the next proposal, Compare to
compare two proposals, and r to compute the regret of a matching, we obtain a stable
matching with minimum regret in O(n2f) time.

Proof. Our linearization respects the ordering induced by the regret and allows to com-
pute the regret efficiently. Notice that this is important in Gusfield’s algorithm, since
regret is not only used to establish a proposal order but also to identify the person who
is worst-off in the current matching.

Given that Gusfield’s algorithm runs in O(n2) time, and considering the complexity
of Opt, Next, and Compare and that of computing r, it is easy to see that our version
of the algorithm runs in O(n2f) time. �

8 Experimental Analysis

Given the linearization described above, we can either pre-compute it and then run GS
as usual over a strict linear order, or we can just compute the part of the linearization
that GS needs during the execution of the algorithm. In the first scenario, we need to
compute the Next operation n2 times (n times for each man and woman), and then
GS can run in the usual O(n2) time. In terms of space, however, we need to store all
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the n linearizations, which takes O(n2) space. In the second scenario, there is no pre-
computation burden, but each step of GS requires additional time to perform a Next
(and possibly a Compare) operation. Given the theoretical complexity results above,
GS will run in O(n2log(n)) time. The space needed is just to store the CP-nets, and not
the linearization, which is now O(nlog(n)).

We ran some experiments to see which of these two scenarios is more effective.
Given a number of features f , we randomly generate acyclic CP-nets with f Boolean
features where each feature has at most two parents. For each feature, we then generate
a CP-table by making sure that the dependency graph is respected. To generate a whole
CSMP with n = 2f men and women, we generate 2n CP-nets with f features each.
The experiments have been performed on an Intel Core Duo 3GHz processor with 4GB
RAM, and show the average over 100 instances.
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Fig. 2. Execution time for three versions of GS

Figure 2 gives the log-scale time needed to run three different versions of the GS
algorithm: the one with the Next and Compare operation executed on demand (GS1),
the one with the pre-computation of the linearization for the men, and the Compare
operation executed on demand (GS+pre-m), and the one with the pre-computation of
all the linearizations (GS+pre-mw). It is easy to see that it is inefficient to pre-compute
the linearizations, even for just the men.

This is perhaps not too surprising, since computing the linearizations needs to run
the Next operation exactly n2 (or 2n2) times, while the GS algorithm needs O(n2) time
in the worst case but may in practice require only a much smaller number of proposals.
This is confirmed by Figure 3, where we plot the number of proposals made by the GS1
algorithm as a function of the number of features in the CP-nets. The GS algorithm
usually makes only a small number of proposals. For example, for 10 features, we have
n = 210 = 1024, thus n2 = 1, 048, 576, but the GS algorithm makes less than 16,000
proposals on average.

Notice that algorithm GS1 takes very little time even for CP-nets with 10 features
(less than 1 second). This scenario is realistic, since it models problems with about a
thousand members of each sex. In this setting, it might be impractical to ask each agent
to rank all members of the other sex, whilst it is more practical to specify a CP-net over
just 10 features.
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9 Conclusions and Future Work

We have considered using a qualitative compact preference representation, namely CP-
nets, in the context of stable marriage problems. We have shown that the benefits
brought by compactness do not impact greatly on the complexity of computing stable
matchings nor on the properties of the returned matching.

The significance of our study on the complexity of the Next operation on CP-nets
goes beyond its use in SMPs. In fact, such an operation is also needed when computing
the top k solutions, such as in web search, or when an additional solution is looked for.

In the future, we plan to investigate the use of other compact approaches to prefer-
ences such as soft constraints, as well as to consider other versions of the stable mar-
riage problem (such as with ties). We also plan to see whether tractable cases exists for
operations like Next on classes of soft constraints or constrained CP-nets.
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Abstract. Stochastic inventory control in multi-echelon systems poses hard
problems in optimisation under uncertainty. Stochastic programming can solve
small instances optimally, and approximately solve large instances via scenario
reduction techniques, but it cannot handle arbitrary nonlinear constraints or other
non-standard features. Simulation optimisation is an alternative approach that has
recently been applied to such problems, using policies that require only a few
decision variables to be determined. However, to find optimal or near-optimal so-
lutions we must consider exponentially large scenario trees with a corresponding
number of decision variables. We propose a neuroevolutionary approach: using
an artificial neural network to approximate the scenario tree, and training the net-
work by a simulation-based evolutionary algorithm. We show experimentally that
this method can quickly find good plans.

1 Introduction

In the area of optimisation under uncertainty, one of the most mature fields is inventory
control. This field has achieved excellent theoretical and practical results using tech-
niques such as dynamic programming, but some problems are too large or complex to
be solved by classical methods. Particularly hard are those involving multi-echelon sys-
tems, in which multiple stocking points form a supply chain. In such cases we may resort
to simulation-based methods. Simulation alone can only evaluate a plan, but when com-
bined with an optimisation algorithm it can be used to find near-optimal solutions (or
plans). This approach is called simulation optimisation (SO) and has a growing litera-
ture in many fields including production scheduling, network design, financial planning,
hospital administration, manufacturing design, waste management and distribution. It is
a practical approach to optimisation under uncertainty that can handle problems contain-
ing features that make them difficult to model and solve by other methods: for example
non-linear constraints and objective function, and demands that are correlated or have
unusual probability distributions.
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SO approaches to inventory control are typically based on policies known to be opti-
mal in certain situations, involving a small number of reorder points and reorder quanti-
ties. For example in (s, S) policies whenever a stock level falls below s it is replenished
up to S, while in (R, S) policies the stock level is checked at times specified by R, and
if it falls below S then it is replenished up to S. SO can apply standard optimisation
techniques such as genetic algorithms to these policies by assigning genes to reorder
points and replenishment levels. In more complex situations involving constraints, mul-
tiple stocking points, etc, these policies may be suboptimal in terms of expected cost,
though they can have other desirable properties such as improved planning stability.
But a cost-optimal plan for a multi-stage problem with recourse must specify an order
quantity in every possible scenario, so the plan must be represented via a scenario tree.
The number of scenarios might be very large, or infinite in the case of continuous prob-
ability distributions, making the use of SO problematic. Scenario reduction techniques
may be applied to approximate the scenario tree, but it might not always be possible to
find a small representative set of scenarios.

An alternative form of approximation is to use an artificial neural network (ANN)
to represent the policy. For example, the inputs to the ANN could be the current stock
levels and time, and the outputs could be the recommended actions (whether or not to
replenish and by how much). We must then train the ANN so that its recommendations
correspond to a good plan. No training data is available for such a problem so the usual
ANN backpropagation training algorithm cannot be applied. Instead we may use an evo-
lutionary algorithm to train the network to minimise costs. This neuroevolutionary ap-
proach has been applied to control problems [8,9,21] and to playing strategies for games
such as Backgammon [16] and Go [14], but it has not been extensively applied to in-
ventory control. In this paper we apply neuroevolution to stochastic inventory control in
multi-echelon systems. Section 2 presents our method, Section 3 evaluates the method
experimentally, Section 4 surveys related work, and Section 5 concludes the paper.

2 A Neuroevolutionary Approach

To approximate the scenario tree, we construct a function whose input is a vector con-
taining the time period and current inventory levels, and whose output is a vector of
order quantities (which might be zero). We design the function automatically by simu-
lation optimisation.

2.1 Scenario Tree Compression by Neural Network

An obvious choice for this function is an artificial neural network (ANN), which can
approximate any function with arbitrary accuracy given a sufficient number of units.
ANNs also come with a ready-made algorithm for optimisation: the well-known back-
propagation algorithm. However, there is a problem with this approach: we do not have
training data available (this also precludes the use of Support Vector Machines). To
obtain training data we would have to solve a set of instances, and there is no known
method for solving the harder instances to optimality. Instead we must use an ANN to
solve a problem in reinforcement learning, in which we must choose its weights in order
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Fig. 1. The feedforward ANN used

to maximise reward (in this case to minimise expected cost). Backpropagation cannot be
used for this task, but we can instead use an evolutionary algorithm (EA) whose genes
are the weights and whose fitness function is minus the cost. This neuroevolutionary
approach has been applied to control problems and game learning.

In our experiments we began with a standard three-layer feedforward ANN, which
is a universal function approximator: it can approximate any function to arbitrary ac-
curacy given a sufficient number of hidden units. We tried different numbers of hid-
den units, including multiple hidden layers, with different transfer functions in all the
units (including sigmoids, limiter functions and polynomial expressions), and with two
alternative representations of time period t: as an integer t = 1 . . . P and using the
well-known unary encoding which is often used to represent symbolic ANN inputs and
gave better results here. In the unary encoding we associate a binary variable with each
period, and period t is represented by a vector (01, . . . , 0t−1, 1, 0t+1, . . . , 0P ). Surpris-
ingly, we obtained best results using an extremely simple network, with no hidden layer
and the identity transfer function f(x) = x. No bias term is needed because the unary
encoding already provides a time-dependent bias.

The ANN corresponding to three stocking points is shown in Figure 1, where Si
denotes the ith stock level, Oi the ith order level, and Tj the jth binary variable in
the unary time encoding. All units use the identity transfer function. Each arrowed
line connecting two units in the diagram has an associated weight, so the ANN has
K(P + K) weights, where K is the number of stocking points. This ANN represents a
simple set of affine relationships

Oj =
∑

i

Siwij + wtj

where wij is the ANN weight between stock level Si and order level Oj , and wtj is the
ANN weight between time t and order level Oj . (An affine transformation is a linear
transformation followed by a translation.) One would not expect this to yield an efficient
or even a sensible policy, but our policy is not yet complete as we have not handled the
problem constraints.
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2.2 Constraint Handling

The ANN forms only part of the policy. We also need a way of handling the constraints
of the problem, which forbid (i) negative orders (corresponding to selling unused stock
back to the supplier), and (ii) negative stock levels. We will train the ANN by an EA
and there are several ways of handling constraints in EAs. We use a decoder which
transforms the (possibly infeasible) ANN solution into one that violates no constraints.
Decoders are a way of finding feasible solutions from chromosomes that represent in-
feasible states. They are problem-specific and ours works as follows. Suppose at period
t we have stock levels Si and the ANN suggests ordering quantities Oi. We modify
each quantity Oi by

Oi ← max(Oi, 0)

to avoid violating constraints of type (i). Then for any stocking point i that supplies a
set of stocking points Xi we modify its order level Oi by

Oi ← max

⎛⎝Oi,

⎛⎝∑
j∈Xi

Oj

⎞⎠− Si

⎞⎠
This ensures that each supplier orders sufficient stock to fulfil its deliveries, and avoids
violating constraints of type (ii). The policy is now the composition of the ANN and the
decoder, which transforms the affine function of the ANN into a continuous piecewise
affine function.

Note that we must modify the order levels of the stocking points earlier in the supply
chain first. This is always possible if the supply chain is in the form of a directed acyclic
graph. If lateral transshipments are allowed (orders between stocking points at the same
level) or if there are constraints on order sizes or storage capacities then the decoder
must be modified; we leave this issue for future work.

2.3 The Evolutionary Algorithm

To train the ANN we use an EA. There are many such algorithms in the literature, and
we now describe our choice and the design decisions behind it. Firstly, we decided not
to use genetic recombination. When training an ANN by EA one can encounter the
well-known competing conventions problem (see [20] for example). This is caused by
two forms of symmetry: an ANN’s hidden units can be permuted without changing
its output, and a hidden unit’s weights can all be multiplied by −1 without changing its
output. Thus if there are h hidden units then there are 2hh! equivalent ANNs. Crossover
is unlikely to give good results unless the parent chromosomes are aiming for symmet-
rically similar representations, though it is possible to design crossover operators that
handle the symmetries [23]. This problem does not apply to our simple ANN because it
has no hidden units, but in experiments crossover did not improve results so we do not
use it.

We decided to use a (μ + 1)-Evolution Strategy (ES) because it is almost exactly a
steady-state genetic algorithm without crossover, and an efficient method for handling
noise in the fitness function is known for a steady-state genetic algorithm (see below).
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However, we adapted it to a cellular ES, in which each chromosome is notionally placed
in an artificial space and nearby chromosomes form its neighbourhood. Cellular algo-
rithms can reduce premature convergence, which we found to be a problem with our
initial standard ES. In our ES the population size is μ, at each iteration a new chromo-
some c′ is created by mutating a randomly selected chromosome c, and if c′ is fitter than
the least-fit chromosome c∗ in the neighbourhood of c then it replaces c∗, otherwise c′

is discarded. We used a ring topology and define the neighbourhood of a chromosome
to be its two adjacent chromosomes.

A common form of mutation adds normally distributed noise to each gene, but we use
a method that gave better results in experiments. For each chromosome we generate two
uniformly distributed random numbers, p in the range (0, 1) and q in the range (0, 0.5).
Then for each allele in the chromosome, with probability p we change it, otherwise
with probability 1 − p we leave it unchanged. If we do change it then with probability
q we set it to 0, otherwise with probability 1− q we add a random number with Cauchy
distribution to it. Cauchy mutation has been shown to speed up EAs [24]. It can be
computed as s tan(u) where u is a uniformly distributed random variable in the range
(−π, π) and s is a scale factor. For each chromosome we compute a random scale
factor, itself with Cauchy distribution and fixed scale factor 100. Finally, if no allele
was modified (which is possible for small p) then we modify one randomly selected
allele as described. This rather complex mutation operator is designed to generate a
variety of random moves, with different numbers of modified alleles and different scale
factors. All chromosomes initially contain alleles generated randomly using the same
Cauchy distribution. We do not use the well-known technique of self-adapting step
sizes, because in a (μ + 1)-ES offspring with reduced mutation variances are always
preferred [2].

2.4 Handling Uncertainty

When demand is probabilistic the fitness function of the EA is noisy. In such cases we
must average costs over a number of simulations. In some previous SO approaches to
inventory control, this problem was tackled by averaging costs over a small number of
simulations because the simulations were computationally expensive: for example [13]
use 3 samples. The standard deviation of the sample mean of a random variable with
standard deviation σ is σ/

√
n where n is the number of samples, so a large number of

samples may be needed for very noisy fitness functions. Here we use smaller problems
than those in [13] so we can afford to use a much larger number of simulations and
obtain reliable cost estimates. To do this for every chromosome would be expensive but
there are more efficient methods, and we use the greedy averaged sampling resampling
scheme of [17]. This requires two parameters to be tuned by the user: U and S. On
generating a new chromosome c it takes S samples to estimate its fitness before placing
it into the population. It then selects another chromosome c′ (which may be c) for
resampling: another S samples are taken for c′ and used to refine its fitness estimate.
c′ is the chromosome with highest fitness among those with fewer than U samples, so
the function of U is to prevent any chromosome from being sampled more times than
necessary. If all chromosomes in the population have been sampled U times then no
resampling is performed. The algorithm is summarised in Figure 2.
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train(µ,S, U)
create ANN population of size µ
evaluate population using S samples
while not(termination condition)

select a parent
breed an offspring O by mutation
evaluate O using S samples
if O fitter than locally least-fit chromosome L

replace L by O
select globally fittest chromosome F with #samples< U
if F exists

re-evaluate F using S more samples
return best chromosome found with #samples≥ U

Fig. 2. Cellular evolution strategy with resampling

The aim of this resampling method is to obtain chromosomes with good fitness
averaged over many samples, while expending a smaller number of samples on less-
promising chromosomes. In our experiments we set U = 10000 so that cost estimates
are obtained over 10000 samples, but by setting S = 1 we only expend approximately
200 samples per chromosome on average (this number was found by experiment). As
the population size is 50, and 50×200 = 10000, this implies that a typical chromosome
uses little more than one sample before being rejected as unfit. Using small S also has
an effect beyond reducing the average number of samples per chromosome: it encour-
ages exploration by preserving less-fit chromosomes for longer. We found this to be a
very beneficial effect.

Some points are glossed over in Figure 2 for the sake of readability. Firstly, if S is
not a divisor of U then fewer than S samples are needed in the final resampling of any
chromosome to bring its total to U . Secondly, the termination condition is unspecified,
and we simply use a timeout. Thirdly, if no chromosome has U samples on termination
then we must choose another chromosome to return. To avoid this, S should be assigned
a sufficiently large value so that in experiments there is always a chromosome with U
samples on termination. This value must be chosen by experimentation.

2.5 Discussion of the Method

We refer to our method as NEMUE1 (Neuro-Evolution for MUlti-Echelon systems).
NEMUE is the result of many experiments with alternative versions. We experimented
with an array of ANNs, one for each time period. This model has 12P weights and
clearly subsumes the model above: any plan that can be represented by that model can
also be represented by this one. The results should therefore be at least as good, but
in experiments they were significantly worse. We believe that the ANN array is simply
harder to train than a single ANN.

1 The “lady of the lake” in Arthurian legend.
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We also tried a non-unary encoding of time, in which order levels are linear functions
of stock levels and polynomial functions of time. Fixing the polynomial degree makes
the size of the ANN independent of the number of time periods. Using a cubic function
of time gave reasonable results but was inferior to the unary encoding.

We used a decoder to handle the problem constraints, but there are other ways of
handling constraints in EAs. The simplest is to use a penalty function which adds a
large artificial cost for each violated constraint. In our problem this forces the ANN to
learn to order sufficient stock in order to avoid stockout. We tried a penalty function but
it gave inferior results to the decoder.

3 Experiments

Ultimately we are interested in solving large, realistic inventory problems with multiple
stocking points, stochastic lead times, correlated demands and other features that make
classical approaches impractical. Unfortunately there are no known methods for solving
such problems to optimality, so there is no way of evaluating our method. Instead we
consider more modest problems to test the ability of NEMUE to find good plans.

Our benchmark problems have two multi-echelon topologies: arborescent and serial.
In the arborescent case we have three stocking points A, B and C, with C supplying A
and B, while in the serial case C supplies B which supplies A. In both cases we have
linear holding costs, linear penalty costs, fixed ordering costs, and stationary proba-
bilistic demands. The closing inventory levels for period t are IA

t = IA
t−1 + QA

t − dA
t ,

IB
t = IB

t−1 +QB
t − dB

t and IC
t = IC

t−1 +QC
t −QA

t −QB
t where Qt is the order placed

in period t and dt is the demand in period t. If It < 0 then the incurred cost is −It.π,
otherwise it is It.h, where π is the penalty cost and h the holding cost. Suppliers are
not allowed to run out of stock. We prepared 28 instances of both the arborescent and
serial types, with various costs and 2–9 time periods, giving a total of 56 instances with
a range of characteristics as follows. The holding costs for A, B and C are 4, 5 and 1
respectively for arborescent instances 1–14; 3, 2 and 1 for arborescent instances 15–28;
and 3, 2 and 1 for all serial instances. For the arborescent instances the penalty costs for
A and B are 12 and 25 respectively for instances 1–14; and 3 and 6 for instances 15–28.
For all the serial instances the penalty cost for instance A is 12. The ordering costs for
A, B and C are 150, 130 and 170 respectively for arborescent instances 1–14; 80, 75
and 100 for arborescent instances 15–28; and 75, 80 and 100 for all serial instances.
For space reasons we do not specify the demands in detail, but we used 10 patterns for
arborescent instances and 4 patterns for serial instances. In each period we specify a
deterministic demand which is then multiplied by either 2

3 with probability 0.25, 1 with
probability 0.5, or 4

3 with probability 0.25. Thus the number of possible scenarios is
3P , giving 59,049 scenarios for the largest problems (P = 10).

We solved these problems in two ways: using Stochastic Programming (SP) [3] and
NEMUE. SP is a field of Operations Research designed to solve optimisation problems
under uncertainty via scenario reduction techniques: a representative subset of all pos-
sible scenarios is selected and used to generate a deterministic equivalent optimisation
problem, which is then typically solved using integer linear programming. We use the
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SP results to evaluate the quality of plans found by NEMUE. The optimal replenishment
plans are obtained using the following Stochastic Integer Programming model:

min E[C] =
∑N

t=1
∑

p∈P

(
apδpt + hpI

+
pt + πpI

−
pt

)
s.t. t = 1, . . . , N and p ∈ P
Ipt = Ip,t−1 + Qpt −QPp,t − dpt

Ipt = I+
p,t − I−p,t

Qpt ≤Mδpt

δpt ∈ {0, 1} Qpt ≥ 0

where
C : total holding and ordering/set-up cost of the system over N periods;
a : fixed ordering/set-up cost;
h : proportional inventory holding cost per period;
P : the set of all stocking points;
Pp : the set of stocking points supplied directly by the stocking point p;
dpt : random demand at stocking point p, in period t;
δpt : a binary variable that takes the value of 1 if a replenishment occurs

: at stocking point p in period t and 0 otherwise;
Ipt : the inventory level at the end of period t at stocking point p;

Qpt : the order quantity at the beginning of period t at stocking point p;

and I+ and I− denote positive and negative closing inventory levels. Except for the
lowest echelon stocking points, I− is zero. M is some large positive number. In this
stochastic model a here-and-now policy is adapted: all decision variables are set before
observing the realisation of the random variables. The certainty equivalent model is
obtained using the compiler described in [22] and solved with CPLEX 11.2.

Results comparing SP and NEMUE are shown in Table 1. All SP runs were termi-
nated after one hour and all NEMUE results after 30 minutes on a 2.8 GHz Pentium (R)
4 with 512 RAM, each figure being the best of six five-minute runs. The NEMUE pa-
rameters used were S = 1, U = 10000 and μ = 50. SP runs that were aborted because
of memory problems are denoted by “—”. (In the few cases that SP found and proved
optimality, this sometimes took much less than one hour.) The columns marked “%opt”
denote the optimality gap: a reported cost c and gap g means that SP proved that the
optimal solution cannot have cost lower than c′ = c(100− g)/100 (this does not imply
the existence of a solution with cost c′). In several cases NEMUE finds superior plans
to those found by SP, showing that on larger instances SP fails to find optimal plans. In
a few cases NEMUE appears to find plans that are slightly better than optimal: this is
of course impossible, and is a consequence of the empirical nature of the data. In such
cases we assume that NEMUE found an optimal plan.

SP was unable to find provably optimal plans for all but the smallest instances. We
believe that for the medium-sized instances SP finds optimal plans but does not prove
optimality before timeout. For the largest instances SP ran out of memory, though we
use the state-of-the-art CPLEX solver and a powerful machine (an Intel Core 2 Duo CPU
E7200 with 2.53 GHz and 3GB of RAM). On the largest instances for which SP did not
run out of memory, it was unable to prove optimality even within several days. Thus our
benchmark problems straddle the borderline of solvability by classical methods.
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Table 1. Experimental results

arborescent serial
SP NEMUE SP NEMUE

# periods cost %opt cost %opt # periods cost %opt cost %opt
1 4 2507 0 2573 2.6 1 4 995 0 993 0
2 5 3124 1.4 3180 3.1 2 5 1269 0.7 1298 2.9
3 6 3657 2.7 3775 5.7 3 6 1493 1.8 1491 1.7
4 7 4214 5.6 4250 6.4 4 7 1794 7.4 1797 7.6
5 8 4654 8.2 4722 9.5 5 8 2087 12.0 1987 7.6
6 9 5472 16.9 5164 11.9 6 9 2741 25.7 2295 11.3
7 10 — ? 5590 ? 7 10 — ? 2603 ?
8 4 2100 0 2169 3.2 8 4 1311 0.2 1306 0.0
9 5 2626 0.6 2722 4.1 9 5 1598 2.2 1594 2.0

10 6 3311 1.8 3409 4.6 10 6 1833 4.3 1832 4.2
11 7 4065 2.5 4153 4.6 11 7 2024 6.7 2024 6.7
12 8 4454 3.4 4542 5.3 12 8 2160 9.3 2142 8.5
13 9 5158 10.3 5115 9.5 13 9 2678 25.1 2264 11.4
14 10 — ? 5432 ? 14 10 — ? 2407 ?
15 4 1342 0.2 1340 0.1 15 4 1104 0 1104 0
16 5 1657 1.8 1671 2.6 16 5 1417 2.1 1423 2.5
17 6 1930 2.2 1938 2.6 17 6 1759 4.1 1763 4.3
18 7 2180 4.5 2192 5.0 18 7 2057 5.4 2055 5.3
19 8 2428 6.1 2393 4.7 19 8 2266 6.6 2258 6.3
20 9 2853 13.9 2617 6.1 20 9 2706 17.7 2479 10.2
21 10 — ? 2864 ? 21 10 — ? 2627 ?
22 4 1086 0 1096 0.9 22 4 828 0 828 0
23 5 1334 0.2 1330 0.0 23 5 931 0 934 0.3
24 6 1680 0.6 1677 0.4 24 6 1259 1.3 1265 1.8
25 7 2055 0.7 2051 0.5 25 7 1633 2.4 1639 2.8
26 8 2219 1.1 2220 1.1 26 8 1757 2.7 1766 3.2
27 9 2479 2.0 2531 4.0 27 9 1983 3.9 2000 4.7
28 10 — ? 2665 ? 28 10 — ? 2150 ?

Despite the simplicity of its policy and the large number of scenarios (at least on the
larger instances) the NEMUE results are remarkably good. On 13 of the 28 arbores-
cent instances and 19 of the 28 serial instances, NEMUE found plans that were at least
as good as those found by SP. On the three serial instances for which SP found prov-
ably optimal plans, NEMUE found equally good plans. On most of the larger instances
NEMUE found better plans than SP. These results show that: (i) a relatively simple,
continuous, piecewise affine function can closely approximate a large policy tree for
multi-echelon systems; (ii) such a function can be effectively represented by an affine
function followed by a decoder function; (iii) the affine function can be learned in a
reasonable time by evolutionary search; (iv) that our approach is more scalable than SP.

It is tempting to speculate that with improved heuristics and longer runtimes we
might find optimal strategies for all instances. But there is no guarantee that all sce-
nario trees can be well-approximated in this way, and in more extensive experiments
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on arborescent instance 1 (for example) we have been unable to find an optimal plan.
Nevertheless, the results are very promising.

4 Related Work

Though simulation was originally used only to evaluate solutions found by other means,
the field of SO has recently become more popular — see the survey of [5]. SO may be
recursive or non-recursive. In the non-recursive approach an approximate cost function
is learned during a simulation phase, then this function is minimised using an optimisa-
tion algorithm during a second phase. NEMUE is an example of recursive SO in which
simulation and optimisation alternate and inform each other.

A tutorial and survey of the application of SO to inventory control is given in a recent
paper [12]. Relatively little work has been done on applying SO to multi-echelon sys-
tems, and we have been unable to find any other work on inventory control via neuroevo-
lution, though several papers use EAs for inventory control (for example [1,13,15,18]).
Another difference of NEMUE is that it aims to approximate optimal policy trees,
whereas most SO methods aim to find parameters for special policies such as (s, S).
A different way of using ANNs for inventory control is to solve a set of training in-
stances by some other method, then train an ANN to learn how to find good solutions
from new instances (for example [6]). But we then need another algorithm to solve the
problems, which is the aim of NEMUE. A related approach to neuroevolution is genetic
programming, in which an EA is used to evolve an algorithm for solving the problem,
instead of an ANN. This approach has also been applied to inventory control [11].

Another interesting approach to sequential decision problems such as those in inven-
tory control is the field variously referred to as neuro-dynamic programming, temporal
difference learning and approximate dynamic programming. This blend of dynamic
programming and simulation has been applied to many problems including inventory
control: see for example [4,7,10,19]. A drawback is that special techniques are needed
to cope with the well-known “curse of dimensionality”: the vast number of states that
result from a simple discretisation of the continuum of states in these problems. In con-
trast, neuroevolution can directly handle a continuum of states.

5 Conclusion

We have proposed what seems to be the first neuroevolutionary method for approxi-
mating optimal plans in multi-echelon stochastic inventory control problems. Large or
infinite scenario trees are approximated by a neural network, which is trained by an
evolutionary algorithm with resampling, while problem constraints are handled by a
decoder. Because the method is simulation-based and uses general-purpose techniques
such as evolutionary algorithms and neural networks, it does not rely on special proper-
ties of the problem and can be applied to inventory problems with non-standard features.
We showed experimentally that the method can find near-optimal solutions. In future
work we will extend the method to handle problem features such as capacity constraints.
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Abstract. For the classical minimum spanning tree problem we intro-
duce disjunctive constraints for pairs of edges which can not be both
included in the spanning tree at the same time. These constraints are
represented by a conflict graph whose vertices correspond to the edges of
the original graph. Edges in the conflict graph connect conflicting edges
of the original graph. It is shown that the problem becomes strongly
NP-hard even if the connected components of the conflict graph consist
only of paths of length two. On the other hand, for conflict graphs con-
sisting of disjoint edges (i.e. paths of length one) the problem remains
polynomially solvable.

Keywords: minimum spanning tree, conflict graph.

1 Introduction

The minimum spanning tree problem (MST) is a classical problem in combina-
torial optimization. It has been extensively studied within its original framework
as well as in connection with fields as social choice theory, in particular with as-
pects of fair division. The issue of fairly assigning the costs of a minimum spanning
tree to individuals (represented by nodes) has first been raised by Bird [2], recent
works often consider characterizations of fair division rules (e.g., Bogomolnaia and
Moulin [4], Dutta and Kar [6] and Kar [11]). Another approach to fairness in con-
nection with spanning trees, based on preference relations on the edges instead of
monetary costs, has been considered in Darmann, Klamler and Pferschy [5].

This paper however deals with a different aspect of the link to social choice
theory: the minimum spanning tree problem with conflict graph (MSTCG) ad-
dresses the question of finding a minimum spanning tree in a weighted, undi-
rected graph, given there are incompatibilities for certain pairs of edges. The
incompatibilities mean that from each such conflicting pair of edges at most one
edge can occur in the spanning tree.

A practical example could be the installation of an oil pipeline system con-
necting various countries. Each country needs to be connected to the pipeline
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system, but there are many ways to hook them up. Such a situation can be rep-
resented by means of a weighted undirected graph: the nodes are the countries,
the edges are the possible links between the countries and the edge weights are
the costs of the respective link between the countries. The cheapest way to install
the system corresponds to a minimum spanning tree in the graph. However, for
technical or political reasons many different firms can be required to install the
system, and we assume that each link can be constructed by exactly one firm.
Now certain conflicts may arise. A reason might be, that some firms are not
willing to cooperate with each other, and thus certain links (edges) cannot both
be contained in a solution. The MSTCG asks for the cheapest way to install the
pipeline system subject to these conflicts.

It is natural to represent such symmetric conflict relations by means of an
undirected conflict graph, where every vertex of the conflict graph corresponds
uniquely to an edge in the original graph and an edge in the conflict graph
implies that the two adjacent vertices, i.e. edges in the original graph, cannot
occur together in an MST solution.

For a formal definition of the minimum spanning tree problem with conflict
graph, let G = (V, E) be an undirected connected graph with n vertices and m
edges, where each edge e has associated a weight w(e) (w is a weight function
w : E → R). Furthermore, an undirected graph Ḡ = (E, Ē) represents a conflict
graph where each of the m vertices corresponds uniquely to an edge e ∈ E of G.
An edge ē = (i, j) ∈ Ē implies that the two vertices incident to ē – that is, the
two edges i, j ∈ E – cannot occur together in a spanning tree of G. In contrast
to G, Ḡ is not necessarily connected and may contain isolated vertices (i.e. edges
of G which can be combined with every other edge in the minimum spanning
tree solution). MSTCG asks for a minimum spanning tree T in G, given that
adjacent vertices in Ḡ are not both together included in T .

For a set of vertices F ⊆ V in G let E(F ) be the set of edges in G that have
both of its endpoints in F . Then MSTCG can be stated by the following integer
linear programming (ILP) formulation:

(MSTCG) min
∑
e∈E

w(e) ∗ xe (1)

s.t.
∑
e∈E

xe = n− 1 (2)

∑
e∈E(F )

xe ≤ |F | − 1 ∀ ∅ �= F ⊆ V (3)

xe + xf ≤ 1 ∀ (e, f) ∈ Ē (4)
xe ∈ {0, 1} ∀ e ∈ E (5)

Obviously, (1)–(3) and (5) is a classical ILP-model for MST (e.g. see [1]):

– the constraint (2) ensures that n− 1 edges are chosen,
– the constraint (3) implies that the chosen edges do not form a cycle and
– the constraint (5) states that xe is a binary variable, indicating whether or

not edge e is being contained in the spanning tree.
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The remaining constraint (4) adds the conflict relations represented by the con-
flict graph. It is worth noting that, in contrast to the classical minimum spanning
tree problem, due to this conflict constraint there might be no feasible solution
for MSTCG even if the graph G is connected.

In this paper we will characterize the complexity of MSTCG and identify the
graph classes for the conflict graph Ḡ where the problem changes from polyno-
mially solvable to strongly NP-hard.1 These are graphs whose connected com-
ponents are edges resp. paths of length two (we define the length of a path as
the number of edges in the path). For obvious illustrative reasons we introduce
the following terminology.

Definition 1. A 2-ladder is an undirected graph whose components are paths of
length one, i.e. edges connecting pairs of vertices.

Definition 2. A 3-ladder is an undirected graph whose components are paths of
length two.

It will be shown in Section 2 that MSTCG is already strongly NP-hard if the
underlying conflict graph is a 3-ladder. In particular we show that, given that the
conflict graph is a 3-ladder, MSTCG is NP-hard even when the edge weights are
restricted to {0, 1}. On the other hand, it can be shown by a matroid intersection
argument in Section 3 that the problem remains polynomially solvable for a 2-
ladder as a conflict graph.

In contrast to the latter result, it should be noted that the shortest path
problem with pairwise disjoint forbidden pairs of edges (i.e. with a 2-ladder
conflict graph) is known to be strongly NP-hard [8]. Results of the same flavour
were recently derived for the classical 0-1 knapsack problem with conflict graphs.
While this problem is strongly NP-hard for arbitrary conflict graphs, it was
shown in [12] that pseudopolynomial algorithms (and hence also fully polynomial
approximation schemes) exist if the given conflict graph is a tree, a graph of
bounded treewidth or a chordal graph. Bin packing problems with special classes
of conflict graphs were considered from an approximation point of view by [10]
and [9]. Complexity results for different classes of conflict graphs for a scheduling
problem under makespan minimization are given in [3]. Further references on
combinatorial optimization problems with conflict graphs can be found in [12].

2 A Strongly NP-hardness Result for MSTCG

In this section we show that MSTCG is already strongly NP-hard if the conflict
graph Ḡ is a 3-ladder. E.g. for e1, e2, e3 ∈ E let a component of Ḡ be made
up of the path (e1, e2, e3). Then, in terms of the underlying graph G, a feasible
spanning tree for MSTCG that contains e2 must include neither edge e1 nor
edge e3. However, a feasible tree that contains e1 must not contain e2, but it
may contain e3.
1 A problem is said to be strongly NP-hard if it is NP-hard even when its numerical

parameters are bounded by a polynomial in the length of the input, i.e. the number
of input values.
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2.1 The Idea of the Reduction

We reduce an NP-complete subproblem of 3-SAT on the decision problem cor-
responding to MSTCG with a 3-ladder as conflict graph.

Let I be an arbitrary instance of 3-SAT with k clauses C1, . . . , Ck and n
variables x1, . . . , xn, such that each literal xi occurs in �i clauses and its negation
x̄i occurs in �̄i clauses. We restrict ourselves to instances with �i + �̄i ≤ 5. The
decision problem whether or not there exists a satisfying truth assignment for I
is NP-complete [8]. Considering this decision problem, we construct an instance
I ′ of MSTCG by defining a graph G3−SAT and a conflict graph Ḡ3−SAT as
described in Subsection 2.2.

It should be emphasized that in the graph G3−SAT some nodes represent the
clauses in I, whereas some edges represent the literals occuring in I.

However, the reduction of the above subproblem of 3-SAT to MSTCG is then
performed in two steps (it is presented in full detail in Subsection 2.3). Given
that I is a “YES”-instance of I, we construct an optimal solution T with weight
k of the instance I ′ of MSTCG from a satisfying truth assignment for I. This is
basically done by first choosing those edges to be in T that represent literals set
“TRUE” under the truth assignment. The rest of the tree is being constructed
in a quite straightforward way by regarding the conflict graph Ḡ3−SAT .

On the other hand, we show that an optimal solution T with weight k implies
the existence of a satisfying truth assignment for I. Here the main idea is to
show that for each clause of I at least one edge that represents one of the literals
that make up the clause is contained in the tree. Thus, as a consequence of the
conflict graph, the truth assignment that sets “TRUE” exactly those literals that
are contained in the tree T constitutes a satisfying truth assignment for I.

2.2 The Graphs G3−SAT and Ḡ3−SAT

Construction of G3−SAT . Unless otherwise stated, each edge of G3−SAT has
zero weight. The graph G3−SAT is being built as follows (see Figure 1): For each
variable xi, 1 ≤ i ≤ n, we introduce

– the edges xi = (ai, bi) and x̄i = (āi, b̄i) corresponding to the literals with the
same label,

– a vertex i that is connected to bi and b̄i via the edges yi and ȳi respectively and
– one path of length �i starting in vertex i and ending in ai. Let the edges

of this path starting at i be called wi0, wi1, wi2, . . . . Each vertex of this
path is connected to vertex bi by the edges zi1, zi2, . . . , where zij is adja-
cent to wi(j−1), j ≥ 1. An analogous path is defined for i and āi with the
corresponding connections to b̄i.

For each clause Cj , 1 ≤ j ≤ k,
– a vertex labelled Cj is introduced,
– for each xi contained in clause Cj we insert a path of length 4 consisting of

edges (eij , fij , gij , hij) starting in vertex ai and ending in vertex Cj . Further-
more, a shortcut is constructed by joining vertex ai to the vertex incident
to fij and gij via an edge Δij .
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Analogously, the path (ēij , f̄ij , ḡij , h̄ij) connects āi with Cj if literal x̄i is
contained in Cj with an analogous shortcut Δ̄ij .

Finally, edges connecting the parts of G3−SAT described above are introduced.
For 1 ≤ i ≤ n− 1 we introduce an edge connecting vertex i with vertex i + 1.

A weight of 1 is associated with all edges gij and ḡij . Note that these are the
only edges of non-zero weight in G3−SAT .

Construction of Ḡ3−SAT . The conflict graph Ḡ3−SAT on the edges of G3−SAT

is defined in the following way. Denote the clauses containing literal xi resp. x̄i

by Cxi0 , . . . , Cxi(�i−1) resp. Cx̄i0 , . . . , Cx̄i(l̄i−1)
, where the order in which theses

clauses are chosen is arbitrary but fixed. Then we introduce in Ḡ3−SAT the edge
(wi0, fixi0) and the paths (zi1, wi1, fixi1), . . . , (zi	i−1, wi	i−1, fixi�i−1). Again we
construct equivalent components of Ḡ3−SAT for the clauses Cx̄i0 , . . . , Cx̄i(�̄i−1)

containing literal x̄i.
Furthermore we add the edges (xi, x̄i), the edges (Δixi0 , gixi0), . . . , (Δixi(�i−1) ,

gixi(�i−1)) and the edges (Δ̄ix̄i0 , ḡix̄i0), . . . , (Δ̄ix̄i(�̄i−1)
, ḡix̄i(�̄i−1)

). This procedure
is performed for all variables.

Remark 1. Note that Ḡ3−SAT is not a 3-ladder. To be more precise, Ḡ3−SAT

consists of a subgraph being a 3-ladder, a subgraph which is made up of compo-
nents consisting of a single edge, and of isolated vertices. However, by introducing
“dummy edges” Ḡ3−SAT can easily be transformed into a 3-ladder.

2.3 MSTCG with a 3-Ladder Conflict Graph Is Strongly NP-hard

Theorem 1. Let G = (V, E) be an undirected graph and let the conflict graph
Ḡ = (E, Ē) be a 3-ladder. Then MSTCG is strongly NP-hard.

Proof
Let I be an instance of 3-SAT where each variable occurs in at most 5 clauses.
Let the instance I ′ of MSTCG be defined by the graph G3−SAT and the conflict
graph Ḡ3−SAT constructed as described in Section 2.2. Let τ be the set of feasible
solutions of I ′.

Let T ∈ τ . It is easy to see that T must have a weight of at least k: The set
Gj := {gqj |1 ≤ q ≤ n} ∪ {ḡqj|1 ≤ q ≤ n} is a cut set, i.e. it separates the vertex
Cj from the rest of the graph. Therefore, every spanning tree must contain at
least one edge from Gj . Since each of the mentioned edges has a weight of 1 we
have w(T ) ≥ k.

We proof the theorem by showing that the following equivalence holds:

∃ a satisfying truth assignment for I ⇐⇒ ∃ T ∈ τ : w(T ) ≤ k

“=⇒”: Given a satisfying truth assignment tI for instance I we construct a
feasible solution T of I ′ with w(T ) = k in a quite straightforward way. Let
T := ∅ and let X := {xi1 , . . . , xir} and X̄ = {x̄k1 , . . . , x̄ks} be the sets of literals
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set “TRUE” under tI (recall that setting literal x̄kj “TRUE” means to set variable
xkj “FALSE”, 1 ≤ j ≤ s).

T := T ∪X ∪ X̄

T := T ∪ {yi} ∪ {ȳi} ∀ i ∈ {1, . . . , n}
T := T ∪ {(i, i + 1)} ∀ i ∈ {1, . . . , n− 1}

Label all clauses Cj “unmarked”. Let C(xi) (resp. C(x̄i)) be the set of all clauses
containing xi (resp. x̄i). We complete T by performing the following algorithmic
statements:

for i ∈ {i1, . . . , ir}:
T := T ∪ {w̄i0}
for j ∈ {1, . . . , �i}:

T := T ∪ {zij}
for j′ ∈ {1, . . . , �̄i}:

T := T ∪ {w̄ij′}
for Cj ∈ C(xi):

T := T ∪ {eij , fij , hij}
if Cj is “unmarked”: (a)

T := T ∪ {gij}
Label Cj “marked”.

for Cj ∈ C(x̄i):
T := T ∪ {Δ̄ij , ēij , h̄ij}

for k ∈ {k1, . . . , ks}:
T := T ∪ {wk0}
for j ∈ {1, . . . , �̄k}:

T := T ∪ {z̄kj}
for j′ ∈ {1, . . . , �k}:

T := T ∪ {wkj′}
for Cj ∈ C(x̄k):

T := T ∪ {ēkj , f̄kj , h̄kj}
if Cj is “unmarked”: (a)

T := T ∪ {ḡkj}
Label Cj “marked”.

for Cj ∈ C(xk):
T := T ∪ {Δkj , ekj , hkj}

It is easy to check that T is a feasible solution of I ′. Since tI is a satisfying truth
assignment for I, each clause Cj contains a literal set “TRUE”. As mentioned
before, in order to reach a vertex Cj at least one edge with weight 1 has to be
added to T . By (a) in the construction of T for each vertex Cj exactly one such
edge is contained in T . Thus we get w(T ) = k.

“⇐=”: Let T ∈ τ with w(T ) = k. Since each vertex Cj has to be reached, at
least one edge Gj = {gqj |1 ≤ q ≤ n}∪{ḡqj|1 ≤ q ≤ n} has to be contained in T ,
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1 ≤ j ≤ k. However, since each edge of Gj has weight 1, exactly one edge of Gj

is contained in T , 1 ≤ j ≤ k. Recall that each vertex Cj corresponds to a clause
with the same label. Let for vertex (clause) Cj the edge gij be the unique edge
in T that is an element of Gj . We will now show that this implies xi ∈ T and
x̄i /∈ T :

Let γ be the vertex incident to both gij and fij . As T is a tree there has
to be a unique simple path p in T between vertex γ and vertex 1. Due to the
fact that gij is the only edge in T that is contained in the set Gj the path p
cannot pass through vertex Cj . Analogously, p cannot pass through any of the
vertices Cr �= Cj , 1 ≤ r ≤ k. Furthermore, the edge Δij cannot be contained in
p because the edge (Δij , gij) is a component of the conflict graph Ḡ3−SAT . Thus
fij , eij ∈ p (and hence fij , eij ∈ T ) has to hold.

Now assume xi /∈ T . Then in order to reach vertex 1 the path p must contain
wi(	i−1). Note that wi(	i−1) ∈ T implies zi(	i−1) /∈ T because of Ḡ3−SAT . Anal-
ogously, we have wik ∈ T and zik /∈ T for 1 ≤ k ≤ �i − 2 and wi0 ∈ T as well.
Thus we have wik ∈ T for all 0 ≤ k ≤ �i−1 which contradicts fij ∈ T due to the
construction of Ḡ3−SAT . Hence xi ∈ T , and again by Ḡ3−SAT we get x̄i /∈ T .

Summarizing the facts we have that for each vertex Cj exactly one edge xi,
resp. x̄i, is contained in T that is connected to Cj by the path (eij , fij , gij , hij),
resp. (ēij , f̄ij , ḡij , h̄ij). That is, for each clause at least one of the literals the
clause is made up of is contained in the tree. Thus, the truth assignment that
sets a variable xi “TRUE” if xi ∈ T and xi “FALSE” if x̄i ∈ T constitutes a
satisfying truth assignment for I. 


Since MSTCG is stronglyNP-hard given the conflict graph is a 3-ladder, MSTCG
is also strongly NP-hard in case the conflict graph is a path. Finally both results
obviously imply that MSTCG is strongly NP-hard for general conflict graphs.

Corollary 1. Given the conflict graph is a path, MSTCG is strongly NP-hard.

Corollary 2. MSTCG is strongly NP-hard.

3 MSTCG with Disjoint Conflicting Pairs of Edges Is
in P

In this section we focus on the MSTCG where the conflict graph is a 2-ladder,
i.e. the conflict graph represents pairwise disjoint forbidden pairs of edges of
E. We will first give a representation of the set τ of feasible solutions of this
problem by using matroid intersection. With the help of that representation,
Edmonds’ famous matroid-intersection theorem (Edmonds [7], cf. [13]) yields
that an optimal solution of MSTCG with disjoint conflicting pairs of edges can
be computed in polynomial time.

Let us consider the ILP-formulation of our problem. Condition (3) of this
formulation induces the well-known graphic-matroid. To be more precise, the
graphic matroid M1 = (E, I1) is being formed by all subsets of E which do not
form a cycle [13]. More formally, I1 is the set of all subsets of E such that (3) is
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satisfied. Obviously a base of M1 consists of n− 1 edges (a base corresponds to
a spanning tree) and thus (2) is satisfied by all bases of M1. However, the fact
that the conflict graph Ḡ is being made up of disjoint conflicting pairs of edges
of G induces a matroid as well. As we will show below, defining I2 as the set
of all subsets of E that do not contain a conflicting pair of edges (represented
by Ḡ) yields a matroid M2 = (E, I2). This matroid will be called conflict-free
matroid. More formally, the conflict-free matroid M2 = (E, I2) is defined by

I2 := {E′ ⊆ E|�(e, f) ∈ Ē : {e, f} ⊆ E′).

Lemma 1. M2 = (E, I2) is a matroid.

Proof
Obviously, ∅ ∈ I2 is satisfied.

Let J be an element of I2 and I any subset of J . Then I cannot include a
conflicting pair as J does not and hence I ∈ I2 holds. Thus J ∈ I2 implies I ∈ I2
for all I ⊆ J .
Let I, J ∈ I2 and |I| < |J |, then we have to show that (I ∪ {z}) ∈ I2 for some
z ∈ J \ I:

– Case 1: I ⊂ J . This case is trivial.
– Case 2: I ∩ J = ∅. Assume that no such edge z exists: Then for every edge

e ∈ J the set (I ∪ {e}) is not in I2. This implies that there exists an edge
ec ∈ I such that (e, ec) is a conflicting pair in (I ∪ {e}). But since Ḡ is a
2-ladder for each edge e′ ∈ E there is at most one edge that is in conflict
with e′. Hence, every edge ec ∈ I can belong to only one conflicting pair
(e, ec) with e ∈ J . Thereby, we get a contradiction to |I| < |J |.

– Case 3: I ∩ J �= ∅. Let I ′ := I \ (I ∩ J) and J ′ := J \ (I ∩ J). Then we have
I ′, J ′ ∈ I2, |I ′| < |J ′| and I ′ ∩ J ′ = ∅. From Case 2 we get that there is a
z ∈ J ′ such that (I ′ ∪ {z}) ∈ I2. It follows from z ∈ J that z can not be in
conflict with any edge in I ∩ J and hence (I ∪ {z}) ∈ I2. 


Clearly, any feasible solution of MSTCG with disjoint conflicting pairs of edges
corresponds to a common base of the graphic matroid and the conflict-free ma-
troid. Thus, an optimal solution of MSTCG is a common base of M1 and M2
with minimum weight. As a consequence, Edmonds’ weighted matroid intersec-
tion algorithm gives the answer on the question of the computational complexity
of MSTCG with disjoint conflicting pairs of edges.

Theorem 2. (Edmonds [7], cf. [13])
Let S be a set and let c : S → R. Given two matroids M1 = (S, I1) and M2 =
(S, I2), a common base of M1 and M2 with minimum weight can be found in
strongly polynomial time.

Since any optimal solution of MSTCG corresponds to a minimum-weight com-
mon base of the graphic matroid and the conflict-free matroid the above theorem
yields the following result.

Theorem 3. MSTCG with disjoint conflicting pairs of edges can be solved in
strongly polynomial time.
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Abstract. Extraction of rules from databases for classification and decision 
tasks is an issue of growing importance as automated processes based on data 
are being required in these fields. An inductive methodology for data-based 
rules building and automated learning is presented in this paper. A fuzzy 
framework is used for knowledge representation and, through the introduction 
and the use of dual properties in the valuation space of response variables, rea-
sons for and against the rules are evaluated from data. This make possible to 
use continuous DDT logic, which provides a more general and informative 
framework, in order to assess the validity of rules and build an appropriate 
knowledge base.  

Keywords: rules induction, DDT logic, fuzzy inference systems, dual predicates. 

1   Introduction 

Fuzzy rules and algorithms are widely used in several real-life applications of compu-
tational intelligence, as targeted e-commerce marketing and advertising [14], natural 
disaster and emergency management (see for instance [7] and [13]) or control [8]. In 
many of these applications, decision and classification rules are obtained by means of 
experts and the subsequent knowledge engineering.  

Nevertheless, in many cases, the necessary information to build these rules is con-
tained in databases rather than in experts' heads. Moreover, as the underlying realities 
of these applications are evolving, it is also necessary to undergo a continuous learn-
ing process in order to adapt to these changing situations. Last but not least, in many 
fields this learning process is needed to be automated. 

For all these reasons, procedures are needed to extract and build a set of fuzzy rules 
from raw data contained in databases. In this paper, we propose a general methodology 
to do so, based upon an inductive approach in which rules are conceived as succes-
sively experienced relations among variables. However, the notion of dual property or 
dual class will be introduced in order to be able to evaluate these successive relations 
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as reasons for or reasons against a certain rule. This will allow us to introduce DDT 
logic [8] in order to obtain more granularity for assessing the rules Another methodol-
ogy for building interpretable fuzzy rules from data is the one described in [3]. 

This paper is organized as follows: first, we describe the model of knowledge rep-
resentation, which takes a database as input and produces, by means of a set of classes 
(crisp or fuzzy), a matrix representing the data in a categorical way. Next, we describe 
how to introduce continuous DDT logic in order to evaluate and build a knowledge 
base. This will be achieved through the introduction of the notion of dual property. 

2   Knowledge Representation and Notation 

In order to build up rules from data and carry out a useful inference process, it is nec-
essary to previously define the general framework and mathematical models that are 
used to represent the information and knowledge we are going to work with. In other 
words, a mathematical model of knowledge representation is needed to give the data 
an appropriate shape or structure, in agreement with those required for the input of the 
rules building process.  

Basic raw data is intended to be a database, which could be viewed as a real-valued 
matrix ( )ki mxn

D d= , having m instances and n variables
1,.., nX X . Range ( )iR X ⊂  of 

each variable 
iX  is then partitioned into a set iC  of ( )i ic X c=  classes or categories 

1,..., ii icA A , which can be fuzzy or crisp. In this paper, these classes are intended to be 

linearly ordered, i.e. '  iff 'ij ijA A j j< < , but a different structure could be given as ex-

plained in [9]. 
We will use the words property and predicate as synonyms of class or category. 

Given a set iC of classes used to evaluate a variable 
iX , the valuation space of this 

variable is defined as [0,1] iC . One valuation state is assigned to every element in the 

variable's range through a membership function : ( ) [0,1] i

i

C
X iR Xμ → . This one assigns 

a vector 
1

( ( ),..., ( ))
i ici

A Ax xμ μ  to every element ( )ix R X∈ , 
ijAμ being the membership 

function of the class A
ij

. 

We will use lower case letters to denote the values of variables in the database, 
this is, for 1,..,k

i kix d k m= =  and 1,..,i n= . In the crisp case, it is supposed that the 

value kix  lies in exactly one class 'j , i.e.,
'
( ) 1

ij

k
A ixμ =  and ( ) 0 if  '

ij

k
A ix j jμ = ≠ . In 

the fuzzy case, ( ) [0,1]
ij

k
A ixμ ∈  and the classes not necessarily form a fuzzy partition 

in the sense of Ruspini [11], i.e., 
1

( )
i

ij

c
k

A i
j

xμ
=
∑  need not to sum exactly 1  (see [1]). In 

fact, missing values of any variable are modelized assigning the value 0 to every of 
its classes. 

In this way, first level of knowledge representation is constituted by a ma-

trix ( )kj mxl
H h= , 

1

n

i
i

l c
=

=∑ being the total number of categories or classes and such 
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that ( ) ( )
ij ij

k
kj A i A kih x dμ μ= = , for all  1,..,k m= , 1,..,i n= , 1,...,i ij c=  and  

1,..,j l= . Reference to the i-th variable is removed in the kjh 's as it is intended that 

categories are sorted by the variables to which they correspond.  
Rules need some variables to play the role of premises or independent variables, 

the remaining ones being called consequences or dependent variables. Thus, from the 
set of n variables 1,.., nX X , a subset of p premises variables is extracted, which left 

us with another subset of q n p= − consequence variables. Since in this approach the  

conclusion for each consequence variable is independent of the conclusion for the 
rest of them, for the sake of simplicity in the exposition we will suppose without loss 
of generality that 1q = , i.e., that there exist only one consequence or dependent vari-

able. In the subsequent, this one will be denoted by Y, being { }1,.., pX X  the set of 

premises or independent variables. Formally, for a rule we shall understand an ex-
pression of the type  

1 1:    is  and ... and  is    is ,p p jR if X A X A then Y B  (1) 

where iA  is a class of variable iX , 1.. ,i p= and jB  is one of the classes defined for 

dependent variable Y, i.e., { }1,.., ( ) .j c Y∈  As usual, the expression between if and 

then is referred to as the premise of the rule. The expression after the word then is 
referred to as the conclusion of the rule. 

3   Rules Induction 

Matrix H constitutes the first level of knowledge. However, in order to have some 
inference capability, a second level knowledge, or meta-knowledge, is needed. This 
second level knowledge, to which we will refer as rules, has to be extracted from the 
first one, and therefore this is the reason for we say that these rules are data-based. 

Conceptually, the methodology for rule extraction and evaluation described in this 
paper is based upon the idea that a rule is built up through the successive repetition 
and experience of similar situations. It is usually accepted that whenever a relation is 
experienced or successively repeated, its rule condition is strengthened.  

The approach presented in this paper follows these ideas. Each instance of the da-
tabase in which the same classes of different variables appear together is considered 
as a case for the existence of a relationship between these categories. In this sense, 
what in a first approach is going to be measured and translated into the rules is the 
trend of a dependent variable as some combinations of premises variables appear.  

However, some instances of data can be interpreted as not only favouring a certain 
rule R, but also as unfavourable to another rule R'. For example, let's suppose we have a 
dataset containing the heights of a significant number of professional basketball players 
and that a set of fuzzy classes or properties have been defined over the range of variable 
height. Now, consider the rule R: professional basketball players are very tall. If we 
scan the database in order to measure how much data supports R and find an instance 
with height 150 cm., then it is possible to interpret this case not only as a reason for the 
rule R': professional basketball players are short but also as a reason against R, this is, 



 An Inductive Methodology for Data-Based Rules Building 427 

that instance constitutes an exception to R. Moreover, an instance with height 175 cm. 
is less unfavourable to R than the former with height 150 cm., thus a data point being an 
exception to a certain rule R is a matter of degrees.   

Therefore, given a rule of the type shown in (1), a t-norm T and an instance 

kd D∈ such that 
11 1... ( ) ( ( ),.., ( )) 0

p

k k
p k A A pA A d T x xμ μ∧ ∧ = > , the idea is to look at 

the relation between the value kY of the dependent variable and category jB  for be-

ing able to measure to what extent this instance is either an exception to or a case for 
the rule under consideration. Our basic assumption is that a rule having only cases for 
has to be more true than another rule having also exceptions or cases against.  It is in 
order to formalize these ideas that we introduce the notion of dual properties in the 
valuation space of dependent variable Y. 

3.1   Dual Properties 

It has been shown in the previous example how an instance satisfying the height-
related property being short constitute an exception to a rule which has the class being 
very tall as conclusion. This way, such an instance could be seen as a reason against 
that rule coming from data.  

The basic feature of the properties being short and being tall that allows to con-
sider instances verifying the first as clear exceptions to a rule concluding the last is 
that these properties are antonymous. As they are opposite concepts or antonyms, that 
rule is somehow empirically contradicted by such instances. 

Of course, this is only a linguistic feature. Classes or properties could be defined 
with these labels but having not such an opposite semantics. In practice, what really 
matters is not the name or label of these categories, but its opposite meaning, which 
has to be reflected in the formal definition of these classes. However, once properties 
have been given a specific semantics through membership functions, it is possible to 
conclude that they are acting as antonymous or dual properties.  

For example, let's suppose S is a set of 3c ≥  fuzzy classes ,  1.. ,iA i c=  defined over 

the range of a bounded continuous variable X, and assume S is linearly ordered as said 
in previous section. Moreover, assume also that these properties have a triangular shape 
and form a partition in the sense of Ruspini [12]. Therefore, classes situated at opposite 
extremes of the order have disjoint supports, i.e., if 

1
( ) 0A xμ > then ( ) 0,

cA xμ =  for all x in 

the range of X, and vice versa. This way, semantics associated to both properties could 

be interpreted as if 1 c and A A were antonymous or dual predicates. This example also 
shows how to introduce degrees when considering exceptions to rules. 

Words dual and antonym are used here in a similar way. The role of opposite con-
cepts or antonyms as the base for basic valuation structures will be extremely relevant 
in future developments (see [10], [12] and also [9]).In the forthcoming, the dual of a 
given predicate P will be denoted by ,P∂  this is, symbol ∂ has to be read as "dual of". 

Last example also suggests that distance or maybe separation are important fea-
tures to be taken into account when searching for dual properties. Though some rather 
general ways of obtaining dual classes could be devised (as specular images or dis-
joint support complementation), in our opinion their precise definition has to depend 
on the context of applications. Therefore, we do not expose here a specific method to 
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obtain the dual of any given class. Instead of that, two reasonable properties these 
dual classes should satisfy are given: 

 P1: ( )  for every property A A A∂ ∂ =  (2)

P2: supp( ) supp( )=  for every property A A Aμ μ∂∩ ∅  (3)

P1 states that duality operator is involutive, as also happen with the linguistic anto-
nym operator. Second property states that a class and its dual has to be separated in 
terms of supports of their membership functions. Notice that P2 implies 

( ( ), ( )) 0A AT x xμ μ∂ =  for all x and every t-norm T and, in fact, both propositions are 

equivalent in the case T is the classical minimum t-norm, and also when T is the prod-
uct t-norm. Remarkably, it is not the case when T is the Lukasiewicz t-norm.  

It should also be noticed that the notion of duality is different from that of com-
plementation. For example, being short is not the complementary predicate of being 
tall, i.e., the former is not the same as not being tall. In fact, given a non-crisp, fuzzy 
predicate A, P2 assures that negation and dual operators can not coincide and that the 
following proposition holds: 

A A( ) ( ) supp( )x n x xμ μ∂ < ∀ ∈  (4)

where ( ) 1n x x= − is the usual negation operator. 
Moreover, being short is a positively defined property, which is not the case for the 

complementary predicate not being tall. Note that, very often, learning processes start 
with some direct estimations given on a family of initial classes, each one being asso-
ciated to a concept, which should be therefore intuitively known. Those classes 
should be positively defined in order to allow direct valuation. Direct estimation re-
quires direct intuition, and direct intuition usually refers to concepts positively de-
fined. Classifying between tall and short is correct, but classifying between tall and 
non-tall implies an estimation on being not tall. Most people will find serious difficul-
ties in assigning direct estimation to such an elaborated class. Most people will simply 
assign a degree of membership to tall and then deduce the degree of membership to 
non-tall. Most people will not assign a direct estimation for non-tall. We do not  
properly classify between these two classes tall and non-tall: we simply find this 
classification because it can be built just from the information about the degree of 
membership of being tall. 

For these reasons, we can conclude that introduction of dual predicates in the 
valuation space of dependent variable leads us into a bipolar approach, in the sense 
that, given a data instance 1( ,..., , )pd x x y=  and a predicate A, it is necessary to evaluate 

the membership degrees of y to both the class A and its dual class A∂ . 
Therefore, knowledge representation described in Section 2 has to be completed by 

adding to matrix H the values ( )
jkj B kh yμ∂

∂= for all 1...k m= and classes ,  1... ( )jB j c Y= . 

3.2   Computing Reasons for and against a Rule from Data 

Given a combination of premises classes 1 ... pA A A= ∧ ∧ and a predicate B in the 

valuation space of Y, we will denote the rule if A then B by A B→ . It is well known 
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that A B→ holds iff A B¬ ∨ holds, where the symbol ¬  stands for the logical nega-
tion "not" and ∨ for the logical conjunction operator "or". This leads to the classical 
(crisp) truth values of  A B→ , showed in Table 1. 

Table 1. Binary truth values of A B→  

A B→  A A¬  
B 1 1 
B¬  0 1 

 
Methodology presented here only takes into account the cases in which the premise 

A is true, i.e., cases described in the first column of Table 1. This is because if A¬  
holds, then there exists another combination 1' ' ... 'pA A A= ∧ ∧ of premises classes such 

that A' is true, and then we should focus on the rule 'A B→  rather than in the former 
one. This left in principle A B∧  and A B∧ ¬  as the only possibilities that can hold 
once it is known that A occurs. 

Thus, a data instance 1( ,..., , )pd x x y=  such that A B∧ holds for d is interpreted as a 

reasons for the rule A B→ . Recall that in a fuzzy framework as the stated in Section 
2, A B∧  can hold to a certain degree, i.e., the truth of A B∧  is evaluated through a t-
norm T and is equal to 

1 1( ( ),.., ( ), ( ))
pA A p BT x x yμ μ μ .  

On the other hand, in order to measure reasons against A B→ , we should in prin-
ciple focus on instances for which A B∧ ¬  holds. However, as said in last section, it is 
not always easy or even convenient to work with classes defined through negation. 
Moreover, reasons against a rule should come from instances clearly constituting 
exceptions to such a rule, which could not be the case for some instances having 

1 1( ( ( ),.., ( ), ( ))) 0
pA A p Bn T x x yμ μ μ > . Furthermore, in a fuzzy framework it is possible 

A B∧  and A B∧ ¬  to be simultaneously true (to a degree), which would be equivalent 
to say that a data instance is a reason for and a reason against a rule at the same time. 
This case is not allowed in the methodology presented here. 

So then, we propose to measure reasons against a rule A B→ by evaluating  
the truth of A B∧ ∂ , which in turn is equal to 

1 1( ( ),.., ( ), ( ))
pA A p BT x x yμ μ μ∂ , and therefore 

is a positively evaluated quantity, i.e., not obtained through negation. Considering that  
a rule A B→ is true (resp. false) for an instance d such that A B∧  ( A B∧ ∂ ) holds to a 
certain degree, this approach then differentiate between those cases in which the rule 
is true for d, those in which the rule is false and those in which the rule is either not 
true or not false for that instance d. Non-true case correspond to the complementary 
of being true, this is, the case in which A B∧ ¬  holds, and non-false case correspond  
to the situation in which A B∧ ¬∂ holds. As these non-true and non-false predicates are 
obtained respectively from true and false predicates through the use of the negation, 
only these last cases have to be evaluated.  

In order to evaluate how much data support a rule or does not support it, proportion 
of instances belonging to the true case and to the false case is calculated. As it is already 
said, the former is interpreted as reasons for the rule A B→ , and will be denoted by 
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A B+→ . Proportion of instances for which A B∧ ∂  holds is assimilated to reasons 
against A B→  and will be denoted by A B−→ . Such proportions are computed through 
the following formulae: 

1

1

1
1

1
1

( ( ),.., ( ), ( ))

( ( ),.., ( ))

p

p

m
k k k

A A p B
k

m
k k

A A p
k

T x x y
A B

T x x

μ μ μ

μ μ

+ =

=

→ =
∑

∑
 (5) 

1

1

1
1

1
1

( ( ),.., ( ), ( ))

( ( ),.., ( ))

p

p

m
k k k

A A p B
k

m
k k

A A p
k

T x x y
A B

T x x

μ μ μ

μ μ

∂
− =

=

→ =
∑

∑
 (6) 

where 1 ... pA A A= ∧ ∧ and 1( ,..., , )k k k
k pd x x y= is the k-th instance of the database. 

These values give a description of the proportion of instances supporting truth or 
falsehood of the rule A B→ . Notice that missing values of premises variables does 
not affect to their computation, though those of the dependent variable does.  

3.3   A Four–Valued Evaluation Framework Based on Continuous DDT Logic 

Given a knowledge base R of q rules 1,..., qR R , it is possible to associate to every 

iR R∈ the ordered pair ( , )i ir r+ − , where ,  i ir r+ −  are computed from data as described 

above. As  for 2p ≥  1 1 1( ,..., ) ( ,..., , )p p pT a a T a a a +≥  holds, it follows that 0 , 1i ir r+ −≤ ≤ , 

and also it is obvious that 1i ir r+ −+ ≤ . Therefore, the set 

{ }( , , ) /  1..R i i i iN R r r R R i q+ −= ∈ ∀ = constitutes a model of evaluation of rules that can be 

seen as an Attanasov's intuitionistic fuzzy set (see [2]) over R.  
Nevertheless, though intuitionistic fuzzy sets allow for an indeterminacy measure, 

which some authors (see [9]) point has to be seen as a measure of the ignorance at-
tributed to the fact an object x satisfies a certain predicate P, they does not allow to 
modelize contradictory situations in which there are reasons for asserting ( )P x as also 
as reasons against such an assertion. These contradictory situations are better treated 
on the frame of continuous DDT logic (see for instance [11]). 

Since a possible situation that can appear when evaluating a rule from data is that 
there exist some data instances supporting and some others contradicting such a rule, 
it seems convenient to use continuous DDT logic for the purposes described in this 
paper.  

For example, suppose we have a rule iR  and from data we obtain 1 2i ir r ε+ −= = − , 

ε being small in comparison with 1 2 . This means there are as many reasons for as 

against iR , and also that almost all instances satisfying the premise of the rule are 

classified either as a reason for or as a reason against. This clearly indicates a contra-
dictory situation. However, from an intuitionistic-fuzzy-sets point of view, we would 
obtain that indeterminacy associated to this situation is equal to 2 0ε > , this is, that 
ignorance and contradiction should coexist. As this situation is nearly an absurd, we 
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conclude that another logical model is needed. As said above, continuous DDT logic 
will be our choice. 

In order to introduce continuous DDT logic, a linear transformation of the set 
{ }( , ) / 0, 0, 1S x y x y x y= ≥ ≥ + ≤  into the set { }' ( , ) / 0 , 1S x y x y= ≤ ≤ is carried out. This 

transformation is given by the function 

( , 2 ) if 
( , )

(2 , ) if 

x y y x y
F x y

x x y x y

+ ≥⎧
= ⎨ + <⎩

 (7) 

By applying F to the second and third components of the ordered 3-tuple in RN , the 

set { }( , , ) /  1..R i i i iM R R R R R i r+ −= ∈ ∀ =  is obtained, i.e., ( , ) ( , )i i i iR R F r r+ − + −=  for all 

1...i q= . Now, the only constraint over ,i iR R+ −  is 0 , 1i iR R+ −≤ ≤ .  

In this situation, DDT logic allows to evaluate the four possible epistemic states 
that can arise when faced with the evaluation of a rule iR R∈  from data: truth t, false-

hood f, contradiction k and unknown or ignorance u. Following [8], these four values 
can be obtained through the following formulas:  

( ) = min{ ,1 }i i it R R R+ −−  (8) 

( ) = max{ + 1,0}i i ik R R R+ − −  (9) 

( ) = max{1 ,0}i i iu R R R+ −− −  (10) 

( ) = min{1 , }i i if R R R+ −−  (11) 

Notice that, as explained in [9], two different t-norms have to be used in order to 
make possible to recover ,i iR R+ −  from these four values. Other conditions have also to 

be imposed, as for example ( ) ( ) ( )  ( ) 1i i i it R f R k R u R+ + + =  or the already specified 

assumption of contradictory and unknown cases being exclusive. 

4   Conclusions 

Once these four values have been computed for every rule in the knowledge base R, it 
is possible to make further considerations about their validity (see for instance [4]). 
Though the way these considerations could be done lies outside the scope of this 
paper, some conclusions can be shed.  

For example, given a rule iR R∈ , if ( ) ( )i it R f R< then rule iR should be discarded  

from R as it is more false than true. A truth threshold tδ could be imposed so that only 

rules satisfying ( )i tt R δ> are considered valid. Another possibility is to consider that a 

rule is valid only if data present a small number of exceptions. Thresholds 
 and k uδ δ could also be defined in such a way that when ( )i kk R δ>  it could be con-

cluded that more premise or independent variables are needed in order to differentiate 
between those cases in which the dependent variable lies in the conclusion class and 
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those in which dependent variable lies in its dual. If ( )i uu R δ> , then it could be appro-

priated to reconsider whether rule iR  is a necessary one, or whether more data is 

needed. Also, firing strength of a valid rule iR  could be computed in terms of 

( ) ( )i it R f R− . 

In any case, this methodology allows for more granularity in order to evaluate rules 
than those based on a true-false approach only. Particularly, conflicting and hesitating 
situations could be detected and differentiated between, as those in which a rule is not 
valid due to lack of information (ignorance) and those in which a rule have data sup-
porting it and contradicting it at the same time (contradiction). Moreover, it has been 
showed with last examples how the framework of DDT logic allows a vast amount of 
possibilities in order to evaluate and validate an existing knowledge base from data.   

Furthermore, if the number of premise variables is not too large, it should be possi-
ble to use this methodology in order to build a knowledge base from data by evaluat-
ing all possible rules. This approach works well in decision support systems like the 
one described in [13], which is intended to work with a reduced number of variables.  

Future research will concern the introduction of graphs in the valuation space of 
dependent variables in order to modelize relations between classes and to allow con-
sidering more complex structures than linear orders (see [9]). Some of the index de-
veloped in [1] to measure the efficiency of a classification will be tested upon this 
approach. Moreover, further efforts will be put in the study of the relations between 
this methodology, rough set semantics (following [15] and [5]), logical analysis of 
data (see [6]) and possibility theory (following [11]). 
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Abstract. This paper is concerned with a general framework for de-
signing a fuzzy rule-based classifier. Structure and parameters of the
classifier are evolved through a two-stage genetic search. The classifier
structure is constrained by a tree created using the evolving SOM tree
algorithm. Salient input variables are specific for each fuzzy rule and are
found during the genetic search process. It is shown through computer
simulations of four real world problems that a large number of rules and
input variables can be eliminated from the model without deteriorating
the classification accuracy.

Keywords: Classifier, Fuzzy rule, Genetic algorithm, Knowledge extrac-
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1 Introduction

Neural networks and support vector machines are probably the most popular
data classification techniques. However, classifiers based on these techniques are
not transparent enough and are often considered as “black boxes”. The trans-
parency is very important in some application areas, such as medical decision
support or quality control. By contrast, fuzzy rule-based systems and fuzzy de-
cision trees are known for their transparency and ability of accounting for un-
certainty. ANFIS [1], fuzzy ARTMAP [2] are examples of the most prominent
fuzzy logic-based systems. It is well known that designing of fuzzy rule-based sys-
tems in high dimensional spaces is rather problematic. However, there are many
problems characterized by a small or moderate number of variables. Moreover,
quite often high dimensional data vary in a much lower number of dimensions if
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compared to the dimensionality of an input space. System structure identifica-
tion and parameter optimization are two main issues to consider when designing
a fuzzy rule-based system [1]. Fuzzy partitioning, variable selection, and fuzzy
reasoning are the tasks to be solved for identifying the system structure.

Various approaches have been used for dealing with the two main fuzzy
rule-based system design issues. The initial system structure, often termed as
fuzzy partitioning, is usually identified through K-Means [3], Fuzzy C-Means [4],
Learning Vector Quantization (LVQ) [5] or SOM-based clustering [6,7] as well
as incremental clustering [8,9] or by constructing a decision tree [10,11].

Variable selection based on: the output sensitivity to the input change [12,13],
the output sensitivity combined with the correlation between variables [6],
Fisher’s interclass separability measure [14], variable correlation with the out-
put [15] are the most popular variable selection techniques applied. However,
quite often, variable selection is not considered at all [7].

It seems that the simple gradient decent [6,12], error correction [16], and
genetic search [7,10] are the most popular parameter optimization techniques
utilized in various studies. The combined optimization of both structure and
parameters has also been considered by applying genetic algorithms (GA) [17],
unsupervised and reinforcement learning [18], or simple heuristics [15]. In [17]
the genetic search process focusses on “hard” data points by assigning a higher
weight to such points. Such an approach has also been adopted for learning
weights zq

j of fuzzy rules [19]. In [20], genetic search-based multi-objective op-
timization was applied to design a fuzzy rule-based system. The task was to
maximize f1(S), minimize f2(S), and minimize f3(S), where S is a set of fuzzy
rules, f1(S) stands for correctly classified training samples, f2(S) is the number
of fuzzy rules in S, and f3(S) is the total number of antecedent conditions in S.
Thus, f3(S) can be considered as the total rule length. The optimization starts
with all possible rules in the search space defined by the training patterns.

Generalization ability is an important issue to consider when designing a
fuzzy rule-based classifier. The most popular technique applied to improve the
generalization ability is rule pruning based on similarity of fuzzy sets [14,6].
Other approaches utilized are: GA [21], simulated annealing [22], similarity of
fuzzy sets combined with GA [7], through forgetting by decaying the grade of
certainty of fuzzy rules [16], pruning of rarely used rules [15].

1.1 Fuzzy Rule-Based and Nearest Neighbour Techniques

The fuzzy rule based classification techniques are closely related to nearest neigh-
bour (NN)-based classification approaches. NN-based classification has a sound
basis, since there is a considerable body of evidence from the literature that clas-
sification and recognition of patterns by humans is best explained as a form of
interpolation between similar patterns [23]. NN methods are frequently criticized
as requiring much greater use of memory than, for example, neural network algo-
rithms. However, NN learning algorithms can reduce their memory usage by only
retaining the full density of exemplars near to classification boundaries and thin-
ning them in other regions [24,25]. The location of fuzzy sets, reference patterns
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in the NN approach, can be further optimized by applying the LVQ techniques.
LVQ has been widely used to learn reference patterns for classification based on
the NN approach. Each class Cj is described by several reference patterns ml

j

(fuzzy sets in the rule-based approach), which are properly placed within each
class region. An unknown x is then determined to belong to the class k, if:

k = argmin
j

[min
l

d(x,ml
j), l = 1, ..., Nj, j = 1, ..., Q] (1)

where Q is the number of classes, Nj is the number of reference patterns repre-
senting the class j and d(x,ml

j) is the distance between x and ml
j .

One more drawback of classical NN and fuzzy rule-based methods is the often
exhibited poor generalization performance as compared to neural networks, for
example. In NN methods, the degradation in performance often accompanies the
addition of new unimportant features. However, there are many problems where
different features are important in different regions of the input space. Fig. 1
provides an example illustrating such a situation.

-2 0 2

-2

0

2

A

B

C D

q

k

Fig. 1. Four decision classes in the two-dimensional space

The four data clusters illustrated in Fig. 1 represent four decision classes. It
is obvious that the feature q is unimportant for discriminating the classes A
and B, likewise the feature k is unimportant for discriminating the classes C
and D. Thus, a subset of features used should be reference pattern or fuzzy rule
dependent. However, in most of the known fuzzy rule-based classification algo-
rithms, the feature selection problem is considered independently of the input
space region or not considered at all. The objective of this work is to develop a
fuzzy modeling framework capable of automatically generating a rule base for
classification of numeric data, finding the optimal number of rules and input
variables for each rule, and finding the optimal parameter values of fuzzy rules.

2 The Fuzzy Model

We use the Mamdani model [26], which is the most popular fuzzy model ap-
plied in various studies for fuzzy reasoning [7,12,6]. Concerning classification,
the model is a collection of fuzzy rules Rj of the following form:
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Rj : IF x1 is Aj1 AND ... AND xn is Ajn THEN class Cq with zq
j (2)

where Aji(i = 1, ..., n) are fuzzy sets defined over the input variables xi, Cq is a
class label and zq

j is a rule weight. Each fuzzy set is represented by a membership
function. A triangular or a Gaussian function of the form

μji = exp
(
− (xi − cji)2

σ2
ji

)
(3)

where cji and σji are the center and the width of the Gaussian function, re-
spectively, are common choices. We use Gaussian membership functions in this
study. There are various ways to determine the rule weights zq

j . In this work, the
weight zq

j is given by:

zq
j =

∑
xp∈Cq

μAj (xp)−
∑

xp /∈Cq
μAj (xp)∑N

p=1 μAj (xp)
(4)

where N is the number of training patterns and the matching degree of the input
pattern xp with the antecedent part Aj = (Aj1, ..., Ajn) is calculated using a
T -norm

μAj (xp) = T (μAj1(xp1), ..., μAjn(xpn)) (5)

We use the min T -norm operator in this work. Weights zq
j of this type were

studied in [20].
A winning rule is used to make a decision. Thus, given a rule base S consisting

of L rules, an input pattern xp is assigned to the class q if

q = arg max
k
{T [μAj(xp), zk

j ], j = 1, ..., L} (6)

where T is the product T -norm operator, in this work.
Having defined the membership functions, we formulate the fuzzy modeling

problem in the following way. Given N pairs of input-output patterns (x, y),
create a minimal number of fuzzy rules r with the optimal number of features
ni for each rule and find the optimal values of parameters (c, σ, z) of the fuzzy
model F (c, σ, z, r, ni, i = 1, ..., r).

3 The Approach

The procedure to construct the fuzzy rule-based classifier consists of the following
steps.

1. Divide the data set into learning and test subsets.
2. Cluster the learning set data by applying the evolving SOM tree.
3. Based on the evolved tree, generate a population of sub-trees. Each sub-tree

defines the initial structure of one fuzzy rule-based classifier. The generation
is accomplished by randomly cutting branches of the tree grown in Step 2.
The cutting occurs approximately between 25 and 75% of the tree depth.
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4. Represent each node in the sub-tree population by a set of fuzzy sets with
the Gaussian membership functions.

5. Encode the structure of each sub-tree of the population into a separate
chromosome.

6. Take one sub-tree (classifier of a given structure) from the sub-tree popula-
tion and encode features (used/not used) and parameters of the membership
functions of the classifier into a chromosome. When encoding, enable feature
selection independently for each fuzzy rule.

7. Generate a population of chromosomes encoding individual classifiers of the
given structure. The individual classifiers differ in features and values of the
parameters.

8. Apply the modified LVQ-3 algorithm to the individuals of the population
and test the fitness of the individuals.

9. Apply genetic operations (to features and parameters) and generate a new
population.

10. Repeat Steps 8–9 until convergence.
11. Take the best individual of the given structure.
12. Repeat Steps 6–11 for the whole population of sub-trees.
13. Apply genetic operations (to structure of sub-trees) and generate a new

population of sub-trees.
14. Repeat Steps 6–13 for a given number of generations.

Next, we briefly describe the main topics of the technique.

3.1 The Evolving SOM Tree

Like SOM, the evolving SOM tree [27] exhibits the self-organization property.
The evolving tree structure enables the SOM tree to efficiently handle large scale
problems. Moreover, there is no need of choosing the map size beforehand. Like
in ordinary SOM, each node of the SOM tree has a weight vector wi. When
training the tree, for each training vector x, the best matching unit (BMU) is
found by a greedy tree search. BMU is always a leaf node. Weight vectors of the
BMU and its neighbours are then updated using the SOM adaptation rule:

wi(t + 1) = wi(t)− hci(t)[x(t) −wi(t)] (7)

where hci(t) is the neighbourhood function. We used the Gaussian neighbour-
hood function

hci(t) = β(t) exp
(‖rc − ri‖2

2s2(t)

)
(8)

where s(t) is the width of the Gaussian function, rc and ri denote location of
nodes c and i, and β(t) is the learning rate. The meaning of s(t) and β(t) is the
same as in SOM [28], while the meaning of the norm ‖rc− ri‖ is quite different.
The basic idea of calculating the distance is to count how many ”hops” are
needed to get from the BMU to the considered node along the shortest path [27].
The distance ‖rc − ri‖ is then given by the number of hops minus one.
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3.2 The Modified LVQ-3 Algorithm

Assume that di and dj are the Euclidean distances from the pattern x to the
reference patterns mi and mj, respectively. Then x is defined to fall into a
window of the relative width λ, if

min

(
di

dj
,
dj

di

)
>

1− λ

1 + λ
(9)

For all x falling into the window adapt:

mi(t + 1) = mi(t)− α(t)[x(t) −mi(t)] (10)

mj(t + 1) = mj(t) + α(t)[x(t) −mj(t)] (11)

where α(t) decreases with time and 0 < α(t) < 1, mi and mj are two closest
reference patterns to x, whereby x belongs to the same class as mj , but not as
mi. If x, mi and mj belong to the same class:

mk(t + 1) = mk(t) + γα(t)[x(t) −mk(t)] (12)

for k ∈ {i, j}. If x belongs to a different class than mi and mj:

mk(t + 1) = mk(t)− γα(t)[x(t) −mk(t)] (13)

for k ∈ {i, j}, where γ is a parameter.
The algorithm performs fine tuning of the centers of membership functions.

The last adaptation step is not used in the original version of the Lvq-3 algo-
rithm. We have found that the use of the step quite noticeably improved the
accuracy of the algorithm.

3.3 Encoding

There are two loops of genetic evolution: the outer loop concerning structure
evolution and the inner loop concerning features and parameters of member-
ship functions. The structure is determined by a sub-tree and is encoded as
a connected graph. The chromosome encoding features and parameters of the
membership functions can be split into sections and sub-sections. The number of
sections is equal to the number of leaf nodes in the actual sub-tree (the number
of fuzzy rules in the classifier). The actual sub-tree is a sub-tree governing the
inner loop of genetic evolution. There are 2n + 1 sub-sections in each section,
where n is the dimensionality of the input space. One subsection (n bits) encodes
features (used/not used–0/1) and the other 2n sub-sections encode the centers
c and the widths σ of the n membership functions μ.
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3.4 Genetic Operations

Crossover and mutation are the genetic operations applied in both loops of ge-
netic evolution: the loop concerning structure evolution and the loop concerning
features and parameters of membership functions. The crossover and mutation
operations are executed with the probability of crossover pc and mutation proba-
bility pm, respectively. When performing crossover for structure evolution, parts
of two sub-trees are exchanged. Mutation in structure evolution amounts to
taking one step up or down (the direction is selected randomly) along a ran-
domly selected branch of the tree. Regarding a chromosome encoding features
and parameters of membership functions, crossover and mutation are performed
separately in each sub-section of the chromosome. The crossover points are ran-
domly selected in the “feature mask” sub-section and the parameter sub-sections
and the corresponding parts of two chromosomes chosen for the crossover op-
eration are exchanged at the selected points. The mutation is accomplished by
reversing the value of a bit in the “feature mask” and by adding a random value
from a given, symmetric around zero, interval to parameters in the parameters
subsections selected for mutation.

3.5 Fitness Function

The fitness value of the ith chromosome fi is given by

fi = χi + η

∑ri

j=1 nj

r0 × n
(14)

where χi is the classification accuracy obtained from the classifier encoded in the
ith chromosome, η is a parameter, n is the total number of available features, nj

is the number of features used by the jth rule, r0 is the number of rules in the
initial tree, and ri stands for the number of rules used by the ith classifier. The
selection probability of the ith chromosome pi for genetic operations is given by

pi =
fi∑M

j=1 fj

(15)

where M is the population size. The roulette selection principle was applied.

4 Experimental Investigations

4.1 Data Used

Four data sets have been used in the tests.

US congressional voting records problem. The United States Congressional
voting records data set consists of the voting records of 435 congressman on 16
major issues in the 98th Congress. The votes are categorized into one of the three
types of votes: (1) (Yea), (2) (Nay), and (3) (Unknown). The task is to predict
the correct political party affiliation of each congressman. The 98th Congress
consisted of 267 Democrats and 168 Republicans.
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The breast cancer diagnosis problem. The University of Wisconsin Breast
Cancer Data Set consists of 699 patterns. Amongst them there are 458 benign
samples and 241 malignant ones. Each of these patterns consists of nine mea-
surements taken from fine needle aspirates from a patient’s breast.

The diabetes diagnosis problem. The Pima Indians diabetes data set con-
tains 768 samples taken from patients who may show signs of diabetes. Each
sample is described by eight features. There are 500 samples from patients who
do not have diabetes and 268 samples from patients who are known to have
diabetes. These three data sets are available at: http://archive.ics.uci.edu/ml/.

Pavement tiles surface inspection problem. A pavement tile surface is to
be assigned into a quality or defective class. Features for the classification are
extracted from a camera image. Five features characterizing the image texture
and the grey level distribution [29] have been used to design a classifier. Fig. 2
presents four examples of pavement tile surfaces used in the study. In total, 200
quality and 200 defective surfaces were available.

Fig. 2. Examples of pavement tile surfaces: a quality surface on the left and three
defective surfaces

4.2 Experimental Setup

We randomly assign the available data points into the learning DL and test DT

data sets. The data are normalized to have zero mean and unit variance. We
run an experiment 30 times with different random splits of the database into the
sets DL and DT . The results obtained are averaged over the 30 runs.

4.3 Optimization Parameters

The optimal size of the Lvq-3 window depends on the number of training sam-
ples. If a large number of samples is available, a narrow window would guarantee
the most accurate location of the decision boundary. For good statistical accu-
racy, however, the number of samples falling into the widow must be sufficient [5].
The optimal value of γ depends on the size of the window, being smaller for nar-
rower windows [5]. After some experiments the following values of the Lvq-3
parameters have been used: λ = 0.05, α = 0.02, and γ = 0.4.
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There are two loops of genetic evolution: the outer loop concerning struc-
ture evolution and the inner loop concerning features and parameters of the
membership functions. The genetic search lasted for 100 generations (for both
loops) with the following parameters: the population size was set to 50 and the
number of offsprings produced for creating the next population was equal to
50. The number of generations was determined experimentally by monitoring
changes of the fitness function value. The number chosen was such that no fit-
ness function value increase was observed in the last 10 generations. The values
of crossover and mutation probabilities were found experimentally. The following
values worked well in the tests: pc = 0.95 and pm = 0.01. The appropriate value
of the parameter η was found to be η = 0.05.

4.4 Results

In the first set of experiments, the feature selection has not been applied and
the classification accuracy obtained from the fuzzy rule-based classifier was com-
pared with the accuracy achieved by other techniques. The multi layer percep-
tron (MLP), k-NN, and LVQ-3 classifiers have been used for the comparison.
The appropriate number of hidden nodes in the MLP and the k value of the k-
NN classifier were found experimentally. The leaf nodes created by the evolving
SOM tree were used as initial reference patterns for the LVQ-3 classifier. Table 1
presents the average test data set classification accuracy (%) obtained from the
different classifiers using all available features. As can be seen from Table 1, the
proposed fuzzy rule-based classifier provided the highest classification accuracy
for all the problems studied.

Table 1. The average test data set classification accuracy (%) obtained from different
classifiers using all available features

Data Set\Classifier k-NN MLP LVQ-3 Proposed

Voting 91.24 93.78 77.41 94.68
Breast cancer 88.73 97.18 75.87 98.54
Diabetes 71.19 71.49 64.22 71.92
Surface inspection 77.30 81.63 78.13 84.13

In the next set of experiments, feature selection was activated and features,
specific for each rule were found through the genetic search. Table 2 presents
the average test data set classification accuracy obtained from the approach
proposed using selected features. The classification accuracy obtained using all
the available features is also presented for the sake of comparison. The obtained
improvement in classification accuracy should be obvious from Table 2. Assuming
that the classification errors are log-normally distributed and applying the t-test
it was found that the difference between the classification accuracy obtained
using the selected and all features is significant with 95% confidence, except for
the Breast cancer data.
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Table 2. The average test data set classification accuracy obtained from the approach
proposed using all and selected features

Data Set\Features All features Selected features

Voting 94.68 98.68
Breast cancer 98.54 99.02
Diabetes 71.92 75.92
Surface inspection 84.13 99.63

Table 3 presents information on the number of rules and features used to
classify the data. In the parentheses given are the number of initial rules and
the number of available features. Ranges in the “Features” column indicate the
minimum and the maximum number of features used by different rules. As can
be seen from Table 3, the number of features used by different rules varies sig-
nificantly. Observe that even if the number features used by two different rules
is the same, the features used are often different. Thus, features used are rule
specific, indeed.

Table 3. The number of rules and features used to classify data from the different
data sets

Data Set # Rules # Features

Voting 15 (25) 05–09 (16)
Breast cancer 10 (14) 12–20 (30)
Diabetes 10 (16) 02–08 ( 8)
Surface inspection 09 (13) 03–04 ( 5)

Next, the influence of crossover and mutation probabilities, pc and pm, on clas-
sification accuracy was studied. The same pc and pm values were used for both
structure and parameter evolution. To speed up the convergence, the studies were
performed without employing feature selection. A very similar performance was
observed for pm values raging from 0 to 0.05. A value of pm = 0.01 was selected.
When studying the influence of pc, the pm was set to pm = 0. Table 4 presents the
average test set classification accuracy obtained for different pc values.

Table 4. The average test set classification accuracy obtained for different pc values

Data Set pc = 0.25 pc = 0.50 pc = 0.75 pc = 1.0

Voting 92.89 93.01 93.21 94.68
Breast cancer 94.12 93.32 94.78 95.02
Diabetes 67.21 68.45 69.53 71.92
Surface inspection 82.01 82.10 83.02 84.13
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5 Conclusions

Proposed is a general framework for designing a fuzzy rule-based classification
system. The two-stage GA developed partitions the search space and enables
evolving both structure and parameters of the classifier. Salient input variables,
specific for each fuzzy rule, are also found during the search process.

Computer simulations of four real world problems have shown that the per-
formance obtained from the classifier is comparable or even higher than the best
performance obtained by other authors when using “black box” models. The
proposed variable selection tool allowed to significantly increase the classifica-
tion accuracy if compared to the case of using all the available input variables. It
was shown through computer simulations that a large number of rules and input
variables can be eliminated from the model without deteriorating the classifica-
tion accuracy. Moreover, the classification accuracy of the test set data increased
due to the reduction.
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Abstract. We present an anytime multiagent learning approach to satisfy any
given optimality criterion in repeated game self-play. Our approach is opposed
to classical learning approaches for repeated games: namely, learning of equilib-
rium, Pareto-efficient learning, and their variants. The comparison is given from
a practical (or engineering) standpoint, i.e., from a point of view of a multiagent
system designer whose goal is to maximize the system’s overall performance ac-
cording to a given optimality criterion. Extensive experiments in a wide variety
of repeated games demonstrate the efficacy of our approach.

1 Introduction

Until now, the main body of the state-of-the-art multiagent learning (MAL) research [1]
has been focused on finding a learning rule possessing specific properties. For example,
when adopted by all agents of a multiagent system (MAS), such rule could bring to each
agent an accumulated reward, “optimal” in a certain sense. I.e., a learning rule were
considered to be good if the rewards accumulated by the agents (also called “players”)
were close to some values satisfying a certain criterion of optimality1. Two most widely
used optimality criteria in the context of learning in repeated games are: closeness of
the value accumulated by each player to the value of (a) a Nash equilibrium and (b) a
Pareto-efficient joint strategy (which need not be an equilibrium).

The scenario where all agents use the same algorithm is called “self-play”. Most of
the existing multiagent learning rules assume self-play [2,1,3,4]. An important reason
for that is because “self-play” multiagent systems (SPMAS) are of a great practical
interest. Indeed, given an algorithm capable of achieving a utility satisfying a given
optimality criterion in self-play, an engineer can create a number of identical agents (in
the case of software agents, one can just make as many copies of one agent as required)
put these agents into a given environment and let them converge.

However, in an arbitrary repeated game, the values corresponding to different opti-
mality criteria can vary substantially from one criterion to another. So, when the game

1 As a matter of fact, the terms “optimal” and “optimality” are not always appropriate in MAS.
Indeed, there are often multiple entities (agents) having different interests in a MAS. In the
classical game theoretical literature such terms as “Pareto efficiency” or “equilibrium” are
used in place of “optimality”. Nevertheless, we will use these terms to unify and simplify the
presentation.

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 446–457, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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being played is unknown, it is usually hard to chose the best learning rule. Another
problem, when using algorithms satisfying such optimality criteria as (a) or (b) listed
above, is that, from a practical point of view, neither of those criteria can be satisfactory
for all SPMAS. Let us clarify this claim.

Let suppose we are an engineer that receives from a client a problem that needs to be
solved by a number of identical agents. (We will call this problem “the environment”
and this environment is supposed to be unknown in terms of players’ rewards for dif-
ferent actions.) The agents (if embodied) are provided by the client, but we are free to
decide about the algorithms used by the agents to solve the problem. The client expects
the good solution to satisfy a certain quantitative criterion based on the values accumu-
lated by the agents. For example, this criterion can require that the solution maximize
a given algebraic function of player’s accumulated rewards. In this case, which of the
existing MAL algorithms and their corresponding optimality criteria will we choose?

One solution would be to run each algorithm on the given problem, observe the
results, and pick the best. However, such an approach can be time and ressource expen-
sive, and does not guarantee optimality. Another approach is to use a learning algorithm
capable of solving problems in SPMAS in a way to directly satisfy functional criteria.

These functional criteria are opposed to such criteria as (a) and (b), which we call
“relational”, meaning that they are defined by taking into account relations between the
values accumulated by each individual agent. In this case, the absolute values them-
selves are secondary. For example, a joint-strategy of multiple players is said to be a
Nash equilibrium (criterion a) if the expected reward of each player is maximized given
that the other players have their strategies fixed. In a similar manner, a joint-strategy is
said to be Pareto-efficient (criterion b) if by changing this strategy so as to increase the
expected value of any subset of players, there will necessarily be a player out of this
subset whose value decreases. The same reasoning is applicable to a number of other
relational optimality criteria (for example, correlated equilibrium [5]).

In this paper, we propose an approach to multiagent learning in repeated game self-
play when the goal is to satisfy a given functional optimality criterion. We show that in
such a setting our learning algorithm, called Anytime Self-play Learner, is (i) a better
choice than a whole family of equilibrium and Pareto-efficient strategy learning algo-
rithms, and (ii) anytime, i.e., the quality of solution increases gradually with the number
of repeated game plays; thus the learning process terminated at an arbitrary moment still
results in a reasonably good agents’ behavior.

2 Formal Notions

For simplicity of exposition, our presentation will be given for two-player repeated
game case. Extensions to an n-player setting (for an arbitrary n > 2) as well as to the
multistate problems are also possible but omitted due to space limits.

2.1 Matrix Games and Their Solutions

A finite repeated two-player general-sum matrix game Γ (henceforth, a repeated game)
consists of a set P of two players, p and q, with (p, q) ∈ {(1, 2), (2, 1)}. Player p has a
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finite number Mp ∈ N+ of actions it can choose from. The game is played iteratively.
At iteration i = 1, 2, . . ., each player p chooses an action ap

i ≤ Mp and the vector
ai = (ap

i , a
q
i ) ∈ A gives a joint action. A is called the joint action space of players. For

each player p there is a Mp-by-M q matrix Rp defining the real-valued reward of that
player after playing a joint action ai.

To choose an action from Mp at any iteration, each player uses its strategy. A strat-
egy can be viewed as a function mapping the player p’s current internal states into
actions. A player’s strategy can be stationary or non-stationary. Let πp

i denote the rule,
following to which player p chooses its action at iteration i. Then, p’s strategy πp is
called stationary if πp

i = πp
0 , ∀i. This means that p’s strategy does not depend on cur-

rent iteration, or, in other words, that it cannot change with time. Otherwise the strategy
is called non-stationary.

A strategy profile π = (πp, πq) is a joint strategy of players. To compare strategies
and strategy profiles between them one can assign a metric to a strategy. We are us-
ing the expected limit of the means (ELM) metric. ELM assigns a unique value to an
expected sequence of rewards that is obtained by a player following a given strategy
profile π in an infinite sequence of iterations:

up(π) = Eπ

[
lim

T→∞

1
T

T∑
i=1

Rp(πi)

]
(1)

In the above equation, up(π) is the ELM value of strategy π. Rp(πi) denotes the ex-
pected immediate reward obtained by player p at iteration i if both players follow the
strategy π at that iteration.

Nash equilibrium is a strategy profile π̂ = (π̂p, π̂q) such that the following condition
holds:

up(πp, π̂q) ≤ up(π) and uq(π̂p, πq) ≤ uq(π), ∀πq �= π̂q, πp �= π̂p (2)

Let M(Γ ) denote the set of all strategy profiles of game Γ . A Pareto-efficient solution
of Γ is a strategy profile π̄ ∈M(Γ ) such that the following condition holds:

up(π′) < up(π̄) or uq(π′) < uq(π̄), ∀π′ �= π̄ (3)

2.2 Optimality Criteria

The equations (2–3) define two relational optimality criteria discussed in the previous
section. And as we claimed above, there are tasks where a use of relational criteria is
not justified from a practical standpoint. In such environments, we would prefer agents
to learn (and to use thereafter) strategies maximizing some mathematical function of
their utility. This, functional, optimality criterion, depending on the task, can be based
on such functions as max, sum, product or any other desirable function of players’
individual utilities. If the utility is defined using the ELM metric then the functional
optimality criterion u(π) for a strategy profile π can be defined as u(π) = Opp(u

p(π)),
where up(π) is the utility of player p defined using equation (1). In the latter equation,
Op denotes a certain mathematical operator. For a given problem, it needs to be replaced
by max,

∑
, × or any required function.
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2.3 Self-play

We explicitly focus on the self-play setting; and this is a controlled self-play, not an
accidental coincidence of learning algorithms of agents. The latter property differs our
approach from the main body of modern multiagent learning research proposing algo-
rithms whose behavior is justified for (or examined in) self-play. Recall that by defi-
nition, self-play is a MAS setting in which all agents are identical. Until now, it has
been typically assumed that agents’ algorithms, or, in other words, rules of strategy up-
date when learning, are identical. Other properties that can also be identical, such as
(i) initial knowledge of agents, (ii) their utility metrics and (iii) optimality criteria, have
escaped the attention of researchers. In this paper, we aim to fill this gap.

More precisely, in our controlled self-play scenario, which we call CSPMAS, we
assume that both players, (1) use the same learning algorithm, (2) have internal vari-
ables initialized with the values known to both players, (3) use the same utility metric
and (4) optimize the same functional criterion. We claim that in any controlled self-
play scenario, Assumptions 2–4 are as well natural as Assumption 1, which is made in
many previous multiagent learning papers [2,1,3,5,4]. In particular, this means that in
any SPMAS,

Assumption (1) can intentionally be satisfied ⇐⇒ Assumptions (2–4) can
intentionally be satisfied.

Also, we assume that players can observe each other’s actions and their own rewards
after a joint action is executed. This is as well a common assumption for many of MAL
algorithms [2,3,4,6]. To stay as much general as possible, in our approach we assume
that the reward observed by an agent p, ∀(p, q) ∈ {(1, 2), (2, 1)}, at iteration i after
playing a joint action ai, is not necessarily deterministic. We only suppose that ∀a ∈ A,
the reward Rp

i (a) observed after playing a joint action a is an instantiation of a random
variable with certain mean and variance that do not change with time.

2.4 Information and Communication

Two important questions characterizing any MAS are (i) whether the agents know their
own reward function and the reward function of the other agent, and (ii) whether com-
munication between agents is available during learning. In this paper, we assume that
the answer to both questions is No. Indeed, an affirmative answer to the first question
makes the learning unnecessary, since the agents can compute an optimal joint strategy
using the reward matrices. Accordingly, if the agents can communicate, the simplest
scenario is to explore the reward structure of the game by executing joint actions one
by one. Then, using communication, agents are able to share the acquired data. This,
again, will make a further learning unnecessary.

3 Extended Strategies

To present our new algorithm, we first need to discuss one important implication of us-
ing the product criterion: emerging of strategies extended in time, or simply “extended
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strategies”. These non-stationary strategies are known to be able to maximize the prod-
uct of players’ individual utilities to a greater extent than any stationary strategy [7]. As
we will demonstrate later, our Anytime Self-play Learner algorithm is able to learn and
execute extended strategies.

When two players p and q play a joint action a = (ap, aq) their rewards can be
visualized as a point x = (xp, xq) = (Rp(ap, aq), Rq(ap, aq)) in a two-dimensional
space.2 Let the set X contain all such points: X = {(Rp(ap, aq), Rq(ap, aq)) : ap ≤
Mp, aq ≤ M q)}. Players can achieve any point in X as their ELM values by playing
the corresponding joint action at every iteration. The convex hull of the set X contains
all points that can be obtained as a linear combination of a subset of points of X .
It is easily observable that the points laying on the boundary of the convex hull are
always constructed as a linear combination of only two points of X . In terms of players’
strategies, a point z on the boundary (recall that a point in X is a vector of players’
ELM values) can be achieved by the players by playing a joint action, corresponding
to a certain point x, a w-fraction of all iterations, and by playing another joint action,
corresponding to a point y, the (1−w)-fraction of all iterations (where w, 0 ≤ w ≤ 1,
defines the coefficient of linear combination).

Definition 1. Given l ∈ N+, 0 ≤ w ≤ 1, a ∈ A and b ∈ A, an Extended Joint Action
(EJA) is a joint strategy in which players play a during the first k = -l · w. iterations
and b during the following l − k iterations.

Definition 2. An Extended Joint Strategy (EJS) is an EJA repeated infinitely often.

We call l the length of an EJA and k its switch point. Notice that for each z obtained as
a combination of two points x and y from X , ∃ an EJS with certain a, b, l and w.

When the product criterion is used, the boundary of the convex hull is of a particular
interest because the point z maximizing this criterion is always found on the bound-
ary [8]. For two given points of X , x = (xp, xq) and y = (yp, yq), forming an edge
of the boundary, the value of w maximizing the product criterion on this edge can be
computed as follows [7],

w =
−yq(xp − yp)− yp(xq − yq)

2(xq − yq)(xp − yp)
(4)

If w < 0 or w > 1, the maximum is achieved at respectively x or y. To find w∗

maximizing the product criterion, it is only required go over all pairs of points of X ,
compute w using Equation (4) and then pick a pair x∗ and y∗ of points for which w is
maximized.

As one can note, an EJS will achieve the optimal ELM value defined by w∗, x∗ and
y∗ only when l → ∞. Let us show that as l → ∞ the error induced by using a finite
value of l rapidly decreases.

Proposition 1. Let R denote the ELM value of an optimal point z on the boundary of
X defined by the values w∗, x∗ and y∗ found as described above. Let l be the length

2 In this subsection, we use a simplified notation introduced by Littman [7]. According to it,
x = (xp, xq) and y = (yp, yq) denote the vectors of players’ rewards for two different joint
actions viewed as points in a two-dimensional space.
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of an EJA defined for two joint actions a and b from A corresponding to the points x∗

and y∗ from X . Let R̃ denote the ELM of this EJA. Let ε = R̃ − R define the error of
using l < ∞ in this EJA. Then ε → 0 as l →∞.

Proof. We have l2R = (lwxp +(l− lw)yp)(lwxq +(l− lw)yq) and l2R̃ = (-lw.xp +
(l − -lw.)yp)(-lw.xq + (l − -lw.)yq). We know that for any natural x, -x. < x + 1.
Thus, we can write that l2R̃ < ((lw+1)xp +(l−(lw+1))yp)((lw+1)xq +(l−(lw+
1))yq). The difference between l2R̃ and l2R is then bounded as follows: l2R̃ − l2R <
l(xp−yp)(xq−yq)(2w−1)+2xpxq−xpyq−ypxq . Since l > 1, the error ε = R̃−R

is bounded as follows: ε < (xp−yp)(xq−yq)(2w−1)
l + 2xpxq−xpyq−ypxq

l2 .
Therefore, as l tends to ∞, ε tends to 0 with a rate inversely proportional to l.

When l and w∗ are known to the players (i.e., defined by the designer of the MAS
before to start learning) they are able to construct the EJS maximizing, to the extent of
the error induced by using a finite value of l, the product criterion.

4 Anytime Self-play Learner

In this section, we present our new algorithm called Anytime Self-play Learner (ASPL).
Its main steps are given in Algorithm 1.

Algorithm 1. Main steps of Anytime Self-play Learner
1. While exploring

(a) Play an exploration action,
(b) Observe the reward R,
(c) Replay the same action proportionally to R,
(d) Update counters of the other player’s play.

2. While exploiting
(a) Optimize according to the criterion and counters,
(b) Play optimally.

4.1 Internal Variables

Our algorithm has one internal variable that needs to be initialized to all agents with
the same value before the learning is started. This variable, called Rmax, reflects the
maximum utility that an agent can obtain in the game. In many practical tasks, this
value can be set by the designer depending on how the utility is defined. E.g., for floor
cleaning robots this value can be set based on the maximum possible surface one robot
can clean given the initial volume of detergent in its tank. It is assumed that Rmax ≥
Rp(ap, aq) for any player p and for all ap ≤ Mp and aq ≤ M q. I.e., Rmax does not
underestimate any of the rewards of players.

During learning, an ASPL agent p also maintains several other variables. The vari-
ables Kp(ap, aq), ∀ap ≤ Mp, aq ≤ M q, reflect the number of times a particular joint
action (ap, aq) has been played. The variables Lp(ap, aq), ∀ap ≤ Mp, aq ≤ M q, re-
flect the number of times that the action aq has been played by q at the iteration i + 1
following an iteration i at which players were playing (ap, aq).



452 A. Burkov and B. Chaib-draa

4.2 Exploring

To exhibit a good joint behavior, players obviously need to explore the game they play.
More specifically, an agent not only needs to learn its own rewards for joint actions,
which, as we noticed, can be an instantiation of an unknown random variable. Also,
in order to optimize the functional criterion, it needs to have “an idea” of the reward
function of the other agent.

For this purpose, the algorithm proceeds as follows. Both ASPL players are explicitly
synchronized (this is an advantage of self-play). At each odd iteration i, an ASPL player
p randomly uniformly plays an action ap

i , and observes its own reward Rp
i and the action

aq
i played by the other player. Then it updates its estimate R̃p(ai) of the reward Rp(ai)

for the joint action ai = (ap
i , a

q
i ) as follows:

R̃p(ai) = R̃p(ai) +
1

kai + 1

(
Rp

i − R̃p(ai)
)

(5)

where kai represents the number of times the joint action ai has been played so far.
Finally, player p increments its counter Kp(ai).

At the next iteration, i + 1, player p replays the action ap
i with probability δ =

Rp
i /Rmax. Otherwise, with probability (1− δ) player p plays a random action different

from ap
i and picked uniformly from the remaining actions. Player p then observes the

action played by player q, updates again its reward estimate for the played joint action
using Equation (5), and, finally, updates its counter Lp(·) accordingly.

4.3 Exploiting

As soon as when exploring both players follow the same procedure, therefore, at any
moment of time, player p can assume for any joint action (ap, aq) ∈ A that Lp(ap,aq)

Kp(ap,aq)
is an unbiased estimator of the unknown reward function of player q. More precisely, it
can believe that,

Rq(ap, aq)
Rmax

≈ Lp(ap, aq)
Kp(ap, aq)

Indeed, since the value Rmax is the same and is known to both players, and as the
players replayed their action ap

i , played on the previous iteration i, according to the
proportion Rp(ap

i , a
q
i )/Rmax, the values of counters Lp(ap, aq) and Kp(ap, aq) can

give to player p a good estimate of the real value of Rq(ap, aq). More precisely, player
p can compute an estimate of the other player rewards as follows,

R̃q(ap, aq) =
Lp(ap, aq)Rmax

Kp(ap, aq)
(6)

By so doing, it becomes possible to compute the strategy maximizing any given func-
tional criterion and to execute this strategy thereafter. For example, if the functional
criterion is sum, the optimal strategy can be computed by the players as,

πp
i = argmax

ap:(ap,aq)∈A

(
R̃q(ap, aq) + R̃p(ap, aq)

)
∀i (7)
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Similarly, if the functional criterion is max, the optimal strategy can be computed as,

πp
i = argmax

ap:(ap,aq)∈A

(
max(R̃q(ap, aq), R̃p(ap, aq))

)
∀i (8)

Finally, if the functional criterion is product, the optimal strategy can be computed as
shown in Algorithm 2.

Algorithm 2. Procedure to find the optimal strategy for the product criterion

1. For all pairs of points x, y from the set X, such that, x = (R̃p(ap, aq), R̃q(ap, aq)) and
y = (R̃p(bp, bq), R̃q(bp, bq)) (where ap, bp ≤ Mp and aq, bq ≤ Mq) compute w using
Equation (4) and construct the corresponding EJS using Definitions 1–2.

2. Pick the EJS having the highest ELM value (according to the product functional optimality
criterion).

5 Explore, Exploit and Coordinate

As one could remark, ASPL can be viewed as an anytime algorithm. This means that
every two iterations the agents improve their estimates of the reward functions. If the
learning (exploring) is stopped after a certain iteration, the players are able to choose
the best strategy as yet and to play on it. However, in a general case two important
issues need to be resolved in order to assure a good joint performance. These can be
formulated as two questions: (1) when to stop exploring and start exploiting (known
as the exploration-exploitation dilemma [9]) and (2) how to choose a coordinated joint
strategy (i.e., the coordination problem [2]).

While the exploration-exploitation dilemma is a well-known problem in machine
learning, several words need to be said about the coordination problem in MAS. Let
suppose we have a game as follows,

R1,2 =

(
1, 2 0, 0
0, 0 2, 1

)

After a certain number of exploration iterations, players have certain estimates of their
reward functions. Two points, (1, 2) and (2, 1), in X have the same ELM value. How-
ever, as the number of exploration iterations is always finite, the players have an error in
estimates of their own and each other’s rewards. Therefore, the strategies computed by
the players independently can belong to different joint strategies. For example, player 1
can decide that the optimal strategy is to play the row 1, expecting to see the outcome
(1, 2), but player 2 will play the column 2 foreseeing the outcome (2, 1). As the result,
they will collect the suboptimal outcome (0, 0).

In practice, the designer of CSPMAS can sufficiently know the environment in order
to be able to apply the “explore-then-exploit” principle [10]. More precisely, this means
to separate the learning process into two phases (exploration and exploitation) and to fix
the length of the exploration phase before the learning starts. For example, the room to
clean by two robots can be the same, but the positions of chairs and tables can change. In
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this case, the designer can know that the agents need to continuously explore during the
first T time steps, and then they can synchronously switch to exploit. The coordination
problem can also be easily solved then. For instance, one agent can be assigned to play
the role of leader, i.e., to choose the best joint strategy. The second agent, in turn, will
act as follower, i.e., it will observe the strategy followed by the leader at the previous
iteration and adapt to it. Such roles can be assigned at random since the ELM value of
a joint strategy does not depend on a particular choice of leader and follower.

5.1 Mixed Exploring and Exploiting

On the other hand, if the designer is not able to fix in advance the length of the explo-
ration phase, he can prefer to mix exploration and exploitation in a certain way, and let
agents “decide” online. One technique to do this involves using a GLIE (for “greedy in
the limit with infinite exploration”) learning strategy. An example of such a strategy is
Boltzmann exploration strategy:

πp
i (ap) =

eβiQi(ap)∑
bp≤Mp eβiQi(ap)

where πp
i (ap) denotes the probability with which player p chooses to play the action ap

at each odd iteration i, βi is an exploration factor slowly increasing with time (Singh
et al. [11] show how it can be defined in order to assure convergence in the limit). Qi

can be viewed as a certain current preference of agent p over its actions. In our exper-
iments, to solve the coordination problem, we compute Qi(ap) at each odd iteration
using a heuristic called Combined Optimistic Boltzmann (COB) proposed by Claus
and Boutilier [2]. It consists of assigning higher values to the “promising” strategies
weighed by the likelihood to be simultaneously chosen by the other player. As the ex-
ploration decreases (with the increasing factor β) this heuristics permits the agents to
effectively coordinate on the same joint strategy and to play on it most of the time. No-
tice that there exist more efficient methods (in terms of exploration time and cost) to
mix exploration and exploitation, such as a Bayesian approach [12].

6 Experimental Results

It is only fair to compare a new algorithm with the existing ones if it uses the same or
relaxed assumptions and is searching for the same kind of solution. In our case, there is
no other algorithm capable of learning strategies optimizing functional criteria in MAS
(two exceptions and their limitations are discussed in Section 7). On the other hand,
there exist a number of MAL algorithms, as those cited above, which, while using
different assumptions, converge to the same kinds of relational solutions like Pareto-
efficient or Nash equilibrium. So, in our case we will indirectly compare our algorithm
with all these algorithms by comparing the ELM value of the solution found by ASPL
with the corresponding values (according to the same criterion) of different relational
solutions. The goal of this comparison is to demonstrate that when the goal of the de-
signer is to satisfy a given functional optimality criterion, ASPL is the best choice.
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We empirically tested ASPL on two different testbeds. The first series of testbeds,
called “Random Games M” (or, RGs M, for short), contains randomly generated two-
player repeated games with the number of player actions, M = Mp = M q, equal
respectively to 2, 3, 5 and 10. In each game from Random Games M, the rewards of
players are integer values uniformly distributed between 0 and 100, and new values are
generated each time a game is started.

The second testbed, called “Conflict Games” (CGs), contains 57 games listed by
Brams [13]. These are two-player two-action repeated games whose rewards are in-
teger values between 1 and 4. These games were called “conflict” because contain no
outcome that simultaneously maximizes the ELM value of both players. Conflict Games
are especially suitable to make a comparison of solutions computed by ASPL for dif-
ferent functional criteria with other possible solutions usually found by other MAL
algorithms in self-play (e.g., Nash equilibrium and Pareto-efficient solution).

We conducted our experiments in the following way. From each testbed, a game
was randomly picked and played during 100, 000 iterations. This process (called an ex-
periment) was repeated 100 times and then the obtained data were averaged. Table 1
presents the ELM values of the strategies to which ASPL players converge in differ-
ent games. The alternative values are respectively (APE column) the average utility
(in terms of the corresponding ELM value) of all pure stationary Pareto-efficient so-
lutions and (ANE column) the average utility of all stationary Nash equilibria found
by the Lemke-Howson algorithm. We did not compare the ASPL’s solution with non-
stationary Pareto-efficient solutions because there are no algorithms whose convergence
to such kind of solution was proved in a non-special case (one exception is discussed in
Section 7). As one can see, in both testbeds the solution found by ASPL outperforms
all other solutions of those games. The advantage of ASPL is especially pronounced if
the functional optimality criterion is product. In this case, ASPL often converges to an
extended strategy, which is typically more effective in optimizing this criterion.

Table 1. Utility of ASPL for different function optimality criteria compared to the utilities of
other solutions

max

ASPL APE ANE
CGs 4.00 3.62 3.44
RGs 2 88.71 82.11 80.02
RGs 3 94.68 88.85 84.19
RGs 5 98.18 94.29 87.83
RGs 10 99.46 96.60 92.68

sum

ASPL APE ANE
CGs 6.41 6.29 6.02
RGs 2 140.73 126.88 128.10
RGs 3 161.14 151.02 150.34
RGs 5 174.05 162.14 157.98
RGs 10 187.15 182.09 175.93

product

ASPL APE ANE
CGs 10.36 8.29 9.09
CGs 2 5179.85 4512.07 4537.66
CGs 3 6555.84 4190.74 4672.07
CGs 5 7715.53 5432.45 5652.87
CGs 10 8745.05 6466.64 6305.67

The curves of Figures 1 (a and b) reflect the evolution of the ELM value during learn-
ing in games from Random Games M. For each learning iteration, the curves present the
current ELM value3 according to the sum and product functional criteria (the curves
for max look similar and were omitted due to the space limits). We can observe that
for each functional optimality criterion, the ELM value of ASPL becomes close to the
optimal one after a reasonably small number of learning iterations.

3 These values were averaged over 100 experiments.
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Fig. 1. The evolution of ELM value of the learned policy in Random Games M according to
different functional criteria: (a) sum and (b) product. The X axis represents learning iterations
(×103); the Y axis represents ELM value.

Both “explore-then-exploit” and “mixed exploring-exploiting” strategies of explo-
ration/coordination performed well in our experiments. The only concern about the
latter strategy is that GLIE principle guarantees the convergence to an optimal behavior
only in the limit. Further, since COB is a heuristic, in a relatively small number of runs
agents could coordinate on a suboptimal strategy. However, we observed that even in
such rare cases, agents still chose a joint strategy “close” to an optimal one and never
the worst one.

7 Related Work

Here, we would emphasize two related works. In the first one, by Greenwald [5], the
desired solution of the learning problem is correlated equilibrium. When several equi-
libria are possible, the author proposes to choose a unique one by using an “objec-
tive function”, an analog of our functional criterion. However, this implies that agents
have two opposite goals: (1) to be selfish (inclination to equilibrium solution implies
the agents to be selfish) and (2) to want to sacrifice, by selecting, using the objec-
tive function, an equilibrium, which is probably sub-optimal to itself. Generally, if the
agents are supposed to want to sacrifice, there is no need in seeking after an equilibrium
solution.

In the second work, Crandall and Goodrich [6] propose an approach to the learning
of multi-step strategies, analogous to our extended strategies. When the length l of
an extended joint action is fixed to 1 (the only value used in their experiments), this
yields in a relatively small number of learning iterations. However, by increasing l (to
allow more complex extended joint actions and thereby obtain other values inside the
convex hull) the number of joint strategies to explore becomes exponentially large, but
only a (very) small number of them is really interesting. In our approach, we find the
best extended joint strategies directly, i.e., without enumeration of all pairs of action
sequences of length l. Besides, the approach of Crandall and Goodrich does not permit
satisfying a given functional criterion.
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8 Conclusions

In this paper, we presented a novel approach to learning in self-play. We argued that
when the learning problem is a controlled self-play, a good learning algorithm should
get additional benefit from this. E.g., the agents can have internal variables initialized
with the same values, use the same utility metric and optimize the same function. We
then presented the notion of functional optimality criterion, as opposed to relational
optimality criteria such as Nash equilibrium. We pointed out that the solution of a prob-
lem found by an algorithm seeking to satisfy a relational criterion can be suboptimal
if a functional optimality criterion needs to be satisfied. We demonstrated that in such
problems, our algorithm is a better choice than the classical algorithms for self-play.
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Mármol, Amparo M. 132
Marquis, Pierre 249
Mateos, Alfonso 328
Matsatsinis, Nikolaos F. 156
Mattei, Nicholas 86
Meyer, Patrick 180
Montero, Javier 424
Moraitis, Pavlos 225
Mousseau, Vincent 203
Mu’alem, Ahuva 120

Nicosia, Gaia 74
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