
Automated Encapsulation of UML Activities for

Incremental Development and Verification

Frank Alexander Kraemer and Peter Herrmann

Norwegian University of Science and Technology (NTNU),
Department of Telematics, N-7491 Trondheim, Norway

{kraemer,herrmann}@item.ntnu.no

Abstract. With their revision in the UML 2.x standard, activities have
been extended with streaming parameters. This facilitates a reuse-orien-
ted specification style, in which dedicated functions can be contributed
by self-contained activities as building blocks: Using streaming param-
eters, activities can be composed together in a quite powerful manner,
since streaming parameters may also pass information while activities
are executing. However, to compose them correctly, we must know in
which sequence an activity may emit or accept these streaming parame-
ters. Therefore, we propose special UML state machines that specify the
externally visible behavior of activities. Further, we develop an algorithm
to construct these state machines automatically for an activity based on
model checking. Using these behavioral contracts, activities can then be
composed without looking at their internal details. Moreover, the con-
tracts can be used during system verification to reduce the complexity
of the analysis.

Keywords: SystemComposition, UML Activities, UML State Machines,
UML Streaming Parameters, Model Reuse, Verification.

1 Introduction

UML activities can be used on several levels of decomposition for the specifica-
tion of systems. On a high level, activities may cover coarse business processes
and provide the big picture of a system’s behavior. Activities are also equipped
with the necessary concepts to express fine-grained logic on a more detailed level,
close to an implementation in a programming language. These different levels of
abstraction are not in conflict with each other, and can all be part of a consistent
specification: By using call behavior actions, an activity may refer to subordi-
nate activities, so that a complete system specification may be decomposed on
numerous levels, from the high level focusing on the overall behavior, towards
such a degree of detail that code can be generated from them.

When referred to via call behavior actions, activities may pass data and con-
trol flow between each other using input and output parameter nodes. With
version 2.0 of the UML standard [1], activity parameter nodes were extended
with the concept of streaming parameters. While non-streaming parameters may

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 571–585, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

572 F.A. Kraemer and P. Herrmann

only accept tokens at the start or emit tokens at the termination of an activity,
streaming parameters may pass tokens throughout the execution of an activity,
in any order and frequency. This enables more elaborate dependencies between
activities, so that related functionality can still be encapsulated within one ac-
tivity, but a detailed synchronization between those activities is enabled by using
streaming parameter nodes. This is a form of interleaving composition, and from
the experience gained from our case studies introduced later we have seen that
enabling this composition fosters the reuse of activities in the form of building
blocks.

To effectively exploit the potential of interleaving compositions enabled by
streaming parameter nodes, however, we need a description of the external be-
havior of an activity relevant for an enclosing context. This is a kind of interface,
hiding the internal details of an activity. For this purpose, we complement ac-
tivities with so-called External State Machines (ESMs) which are a variant of
UML state machines. An ESM describes the order in which tokens can pass the
various parameter nodes of an activity. This order has to be obeyed to guarantee
a correct interplay between an activity and its environment. The concise notion
of the external behavior of activities by ESM offers a number of advantages for
the incremental development and verification of system specifications:

– Developers reusing an activity do not have to consider its internal details,
but may rely on the description given by its ESM.

– The formal interface description described by an ESM can be used to verify
that the activity is correctly embedded in a surrounding specification.

– ESMs support the incremental development of systems. In a bottom-up style,
activities can be encapsulated by ESMs, facilitating their composition to
more comprehensive models since details are hidden. In a top-down style,
ESMs can be used to first sketch the external behavior of an activity, which
can be subsequently implemented separately from a global model, just by
considering its ESM.

– ESMs can be used to guard changes in models. The internals of an activity
can be modified without affecting models referring to it if it still complies
with its ESM, which can be verified automatically by tools.

– ESMs enable incremental verification. During a formal analysis of a system
specification based on model checking, activities can be analyzed separately.
This reduces the state space needed during the analysis significantly. More-
over, once an activity is verified, this verification does not have to be repeated
when the activity is reused. The surrounding context only has to comply with
its ESM.

As one realization of a model-driven development process using UML activities
and ESMs, we have proposed the engineering method SPACE [2,3], depicted in
Fig. 1. Systems are specified as hierarchies of activities encapsulated by ESMs.
Those activities useful in several applications are stored together with their ESMs
as self-contained building blocks in libraries for different domains. Currently, we
have libraries for embedded sensor systems [4], trust management [5], and web
service-based telecom services [6].

Encapsulating UML Activities 573

Libraries of
Building Blocks

System Specification
UML Activities + ESMs

System Design Model
UML Components

Executable
Code

Transformation
Reuse and

Generation

Veri
fic

ati
on

ESMUML Activity

«esm»+

Reusable Building Block

Composition
Model Code

Inc
rem

en
tal

Fig. 1. Model-driven development method based on UML activities and ESMs

The method aims at a high degree of automation. With the tools described
in [7,8], activities and their compositions can be checked automatically for nu-
merous properties that should hold for any applications. This analysis is per-
formed incrementally, i.e., on each activity separately and utilizes the reduction
of state space as provided by the ESMs. To automatically implement the sys-
tems specified by activities, we developed and implemented a transformation
algorithm that synthesizes UML state machines and composite structures [9,10].
From these state machines, we generate code for different execution platforms,
for example for Java in different editions [11,12].

In this article we focus on the encapsulation of activities by ESMs, how this
process can be automated, and present the impact on the development and
verification from our case studies. In the following two sections, UML activities
and ESMs are introduced. Thereafter, we discuss in Sect. 4 how ESMs can be
utilized to perform incremental development. The contribution of the ESMs to
reduce the complexity of model checking is pointed out in Sect. 5 while Sect. 6
introduces a tool to generate ESMs automatically from activities. We close with
a discussion of related work and concluding remarks.

2 Activities and Streaming Parameter Nodes

Figure 2 shows an activity which sends SMS messages to mobile phone users.
The surrounding system passes SMS messages to be sent out via streaming
parameter node send. The actual sending happens via a web service call to
a Parlay X server [13] within action s, which refers to a subordinate activity,
taken from [6]. Since this invocation takes some time, SMS messages arriving
in the meantime via send are stored in a buffer variable. In addition, the logic
in Fig. 2 takes care of authentication and optional re-sending in case of errors.
This activity is part of our library for telecom services provided by the PATS
laboratory operated by Telenor [14], further described in [6].

574 F.A. Kraemer and P. Herrmann

[retry]

create request

sending = true

add to buffer

[sending]

[else]

sending = false

[else]

[buffer.size()=0]
[else]

stopped = true

[sending or
buffer.size()>0]

[else]

[stopped]

Buffered SMS Sending
send:
SMSMessage

stop

start

ok

stoppedfailed

ok failedok: Auth failed

report error

[else]

buffer: List // holding SMS messages
sending: boolean
stopped: boolean
credentials: Auth

: Request

remove sms
from buffer

s: Send SMSa: Authenticate

store
credentials

Fig. 2. Activity for Buffered SMS Sending

The activity is started via pin start, which invokes call behavior action a:
Authenticate to retrieve authentication credentials from the Parlay-X server. If
this inquiry fails via pin failed on a, activity Buffered SMS Sending terminates
via failed. If the authentication is successful, the credentials are stored, and a
token is emitted via ok to signal the surrounding system that SMS messages for
sending are accepted from now on. These SMS messages arrive via parameter
node send, and are added to the buffer. If the activity is currently in the process of
sending another SMS, indicated via variable sending, the token flow ends. If it is
not sending, the flow continues by setting flag sending and preparing a sending
request, which combines the first SMS in the buffer with the authentication
credentials. This request is used to start action s. If the sending of the SMS
fails, a repetition is possible, depending on guard retry, which we do not detail
further. If the sending of the SMS was successful or should not be repeated, the
SMS is removed from the buffer. In case there are further messages in the list,
sending continues with the next message.

To terminate the activity, the surrounding system sends a token via node
stopped. If the activity is currently sending an SMS message, or the buffer is not
yet emptied, only flag stopped is set, and the termination is deferred until the
buffer is emptied. In the other case, the activity is stopped immediately and a
token is emitted via stopped.

Encapsulating UML Activities 575

SMS Inquiry Service

start

stoppedfailed

stop

create setup

failedstopped

create answer

report

t:TERMINATE

report

send: SMSMessage

stop

s2: Buffered SMS Sending s1: SMS Reception

sms: SMSMessage

start: ReceiveSMSSetupok

Fig. 3. Example system composing two building blocks s1 and s2

The activity in Fig. 2 uses different types of parameter nodes. The input
parameter () activates an activity and the output parameters () emit to-
kens once the activity has terminated. Since the output nodes failed and stopped
are alternatives, they are assigned to different parameter sets, indicated by the
additional box. The other parameters ok, send and stop, are streaming parame-
ters, here shown as filled boxes (). They can emit or accept tokens during the
execution of an activity, i.e., while it is active.

Streaming parameter nodes enable an interleaving composition in which sev-
eral call behavior actions may be active, modeling separate functionalities of a
system, and may synchronize with each other every now and then. In the sys-
tems of our case studies introduced in Sect. 4.1, such interleaving compositions
using streaming parameters occur very often. About 65% of all building blocks
in our libraries use them.

The activity in Fig. 3 illustrates such an interleaving composition of two sub-
ordinate activities, referred to by call behavior actions s1 and s2. The system
realizes a simple SMS-based inquiry service, in which mobile phone users may
request information such as a weather forecast by sending a certain keyword
to a special number. To the right, call behavior action s1 refers to an activity
SMS Reception taken from our library. This activity can receive incoming SMS
messages that are sent by mobile phone users to a certain number. Call behavior
action s2 refers to the activity for sending out SMS messages described above.
With the activity nodes and edges surrounding them, these two building blocks
are composed to obtain the complete system specification. When the system
starts, a token is emitted by the initial node () and action s2 starts the block
for buffered SMS sending by contacting the corresponding web service. In case
the startup fails, a token is emitted via failed of s2 and the system is terminated.
In case of success, a token is emitted via pin ok, which starts sub-activity s1.
In addition, it places a token into accept signal action t: TERMINATE, which
receives a token when the system should be terminated. Once users send in SMS
messages, they are received by s1 and a corresponding data object is emitted via

576 F.A. Kraemer and P. Herrmann

pin sms. This SMS is then processed by operation create answer. For the key-
word weather, for example, the current weather forecast is retrieved and wrapped
into a new SMS message which is then sent out to the user. When the system is
terminated, a token is emitted from t, stopping first s1 and then s2.

3 External State Machines – ESMs

An engineer not involved in the design of activities Buffered SMS Sending and
SMS Reception does not know in which exact order parameters have to be passed
to or expected from the activity. To construct a sound system, however, this
knowledge is necessary. To hide the internal details such as the one from Fig. 2,
we use the ESMs. These are UML state machines, stereotyped with �esm�, that
refer with their transitions to the activity parameter nodes of the activity they
describe. Parameter nodes are referred to as either triggers or effects, separated
by a “/”, depending on where a flow originates. The stereotypes and constraints
are further detailed in our profile for service engineering [2].

Figure 4 shows the ESM for the buffered SMS sending activity of Fig. 2. It
specifies that after the start of the activity via start, the activity is in a starting
phase, which can result in the termination via failed. Since start is invoked
from the outside, the label declares start as trigger, while /failed points out
that the termination is caused by the internals of the activity, perceived by
the surrounding context as a spontaneous transition. If, however, the start is
successful, ok emits a token, and the activity is in its active phase. Within this
phase, the activity accepts SMS messages via send. To stop the activity, we may
in this phase send a token through stop. If the block’s internal buffer is empty and
no SMS messages are left to send out, the stopping happens immediately, and
a corresponding token is emitted via the output node stopped. This is specified
by the transition labeled stop/stopped. If there are still SMS messages to send
out, the eventual termination of the activity is delayed until all messages are
processed, and output node stopped emits a token after phase stopping. Figure 5
shows the ESM of the SMS Reception activity.

Obviously, for a system to be sound, all activities must actually implement
the behavior described by their ESMs, i.e., all ESMs must be true abstractions
of their respective activities. For this reason, we defined the formal semantics of

start/
starting

/ok

send/

«esm» Buffered SMS Sending

/failed

active
stop/

stopping
/stoppedstop/stopped

Fig. 4. ESM for Buffered SMS Sending

start/

/sms

«esm» SMS Reception

/failed
active

stop/

stopping
/stopped

Fig. 5. ESM for SMS Reception

Encapsulating UML Activities 577

activities using the Temporal Logic of Actions (TLA, [15]), as introduced in [16].
Each activity corresponds to a temporal logic specification Ai, describing all its
possible behaviors by a set of actions. An ESM is expressed by a specification
Ei. Since an implementation relation in TLA corresponds to logical implication,
for any building block i, Ai ⇒ Ei must hold. This formula means that each
action of an activity maps to a compatible action of the ESM, or the ESM is not
involved in the action.

To ensure this sound relation between an activity and its ESM, our tools
support two strategies, named encapsulation and refinement :

– Encapsulation of existing Activities by an ESM. Following this de-
velopment strategy, an existing activity Ax solving a certain problem x is
encapsulated by an ESM Ex, so that Ax ⇒ Ex holds. In Sect. 6, we describe
a tool to generate the ESM from a given activity.

– Refinement of a given ESM by an Activity. In this development strat-
egy, a building block to contribute some function y is first described by its
externally visible behavior Ey. Since Ay is more detailed than Ey , it can
in general not be automatically derived from Ey and is a manual engineer-
ing step. However, the necessary refinement relation that must hold can be
ensured by an automated verification based on model-checking. We have
implemented this by our tools presented in [8,17,18].

We should note that users of our tools are not required to work with temporal
formulas. Feedback about the consistency of a specification is given on the level
of activities, as explained later. TLA is therefore merely used as a reasoning
instrument to ensure that the method and tools are sound.

4 Incremental Development with ESMs

The encapsulation of activities in ESMs facilitates an incremental development
style, in which systems can be specified activity by activity, with the ESMs as
contracts separating the individual activities from each other. In particular, two
styles are enabled by the previously introduced strategies of encapsulation and
refinement:

– The strategy of encapsulation supports a bottom-up development style, de-
picted in Fig. 6, in which an ESM is generated for an activity Ax, which can
be composed in an enclosing activity Sx together with other activities.

– Vice versa, the strategy of refinement, in which an ESM Ey is used to ini-
tially specify the abstracted behavior of an activity Ay, supports a top-down
development style, illustrated in Fig. 7. Here a higher level specification Sy

is developed first, and the subordinate activity Ay is in a first step only de-
scribed by its ESM Ey. Later on, Ey can be implemented even by a developer
unaware of Sy since its expected behavior is described by Ey.

Systems usually have several decomposition levels, with each level corresponding
to an activity referred to by call behavior actions. Throughout the development

578 F.A. Kraemer and P. Herrmann

«esm»

Ax

Ex
S

x
encapsulation

(automatic) x

Fig. 6. Encapsulating an activity

«esm»

refinement
(design + verification)

S
Ey

Ay

y

y

Fig. 7. Refining an ESM

of a system, both styles may be combined: An activity developed bottom-up may
at some level be composed with one that is to be developed top-down, and an
initial top-down design of an application may be refined until a level is reached
where existing activities can be used and encapsulated. If an activity is useful in
a number of applications, it can be stored in a library and reused later in other
systems.

4.1 Case Studies

To evaluate the impact of the presented specification technique with streaming
parameters and ESMs, we conducted a number of case studies, covering several
domains:

Web Services. For the orchestration of web services, we demonstrated in [6]
how WSDL descriptions can be imported automatically as activities. Each
web service operation can be invoked by corresponding streaming parameter
nodes. The ESMs ensure that these operations are invoked in a sensible order
only.

Embedded Systems. In [4] we composed a sensor network from reusable build-
ing blocks. A complete leader election protocol is contributed by one single
activity, encapsulated by an ESM. The system was automatically imple-
mented on Sun SPOTs for embedded Java [19].

Mobile Services. In [17] we developed a mobile, location-aware application,
in which users solve tasks depending on their current location. This system
is used within the FABULA project for mobile learning platforms [20]; the
developed activities are also usable in other application areas.

Home Automation. Within the project ISIS (Infrastructure for Integrated
Services), we develop solutions for the domain of home automation together
with our project partner Telenor. In [7], we demonstrate the composition of
a remote fire alarm, in which most parts are reused from libraries.

Trust Management. [5] presents a number of activities encapsulated by ESMs
for the domain of trust management.

4.2 Libraries of Reusable Building Blocks

The ESMs act as behavioral interfaces [21] that can be used to separate the
work of different developers. When a new activity is introduced providing some

Encapsulating UML Activities 579

functionality, only its ESM needs to be known in order to use it correctly in an
enclosing activity. This facilitates the provision of domain-specific libraries by
experts. With the library for trust management [5], for instance, also non-experts
in trust management can provide trust-based functions in systems. Due to the
ESMs, the correct invocation of these activities is ensured, which guarantees
that the trust-based functions are applied correctly.

To determine the degree of reuse enabled by the activities encapsulated by
ESMs, we use the reuse proportion R described in [22]. This metric represents the
proportion of reused code lines to overall code lines. For the application to UML
models, we count the number n of nodes and edges in an activity instead. For
a system specification consisting of many activities, each n is then either added
to nreused or nspecific, depending on if it is reused from a library or developed
specifically for the application. The resulting reuse proportions R in percent for
each system from our case studies is shown in Table 1. The numbers indicate
that, in average, 71% of a system specification are contributed by reusable blocks
from libraries.

Table 1. Reuse proportions R in percent

nreused nspecific R

Trusted Auction System [5] 228 76 75%
Telecom Web Service System [6] 334 89 79%
Treasure Hunt System [17] 131 73 64%
Mobile Alarm System [7] 145 70 68%
Embedded Sensor System [4] 144 75 71%

To use the words of Wills and D’Souza in [23], the reuse enabled by ESMs is
a “good one,” since it goes beyond simple copy-paste of specification fragments.
This is also characterized as compositional black-box or verbatim reuse [24]. In
Sect. 5 we will point out that the reuse holds also for verification purposes, i.e.,
an activity once verified does not have to be verified again when is is reused.
This implies that a reuse proportion of 71% implies real gains in productivity.

The ESMs also serve as an effective guard for changes: Any activity may be
modified arbitrarily without affecting the soundness of the system as long as it
complies with its original ESM. From a practical point of view, this means we
can update and improve the internal realization of a building block in a library
without affecting applications using it. Illegal changes harming the ESM are
detected by our automatic analysis tools.

5 Incremental Verification with ESMs

Due to the formal definition of the activity semantics based on temporal logic
in [16], we can use the technique of model checking for the analysis of specifi-
cations. The examples in [8,17] demonstrate how this process can be performed

580 F.A. Kraemer and P. Herrmann

automatically on UML activities in order to check numerous properties that
should hold for any application, like the freedom of deadlocks or bounded com-
munication queues. Problems identified are presented in the form of animations
and annotations within the diagrams, as demonstrated in [7], so that engineers
do not require a formal background to assure the quality of their models.

A well-known challenge of model checking is the problem of state explo-
sion [25], i.e., that realistic systems often have so many reachable states that
a complete analysis cannot be handled within acceptable time. By using ESMs,
however, we can verify systems incrementally, since each activity is analyzed
separately. When an activity is model checked, all its subordinate activities re-
ferred to by call behavior actions are represented by their respective ESMs. This
reduces the number of states to be checked significantly, since the ESMs have
usually much less states as they are more abstract than the activities they en-
capsulate. To achieve that, our model checker verifies two properties for each
activity:

(i) The activity has always to comply with its own ESM, i.e., Ax ⇒ Ex as
mentioned in Sect. 3 holds.

(ii) An activity must always fulfill the ESMs of its subordinate activities.

Formally, a system S using activity Ax is described by S � Ax ∧ N , with N as
the behavior of the surrounding context of Ax (see [16]). To prove a property
I during the analysis, PA � S ⇒ �I must hold.1 Using the ESMs instead,
the model checker verifies the less complex proof PE � Ex ∧ N ⇒ �I. Since
PE ∧ (Ax ⇒ Ex) ⇒ PA holds trivially and (i) holds, the replacement of the
activities by their ESMs is formally correct. (See also [2].)

The degree of reduction of the size of the state space is discussed below.
Further, when an activity is reused, the analysis effort spent will be reused as
well. We assume that the designer of a building block only adds an activity to
a library after it passed the analysis and does not contain any errors. Thus,
other engineers may simply apply the building block without the need to check
the correctness of it’s internal behavior again. They only have to prove that the
environment of the block complies with its ESM.

It is also beneficial for the human developers that the analysis is focused on
one activity at a time: Once an erroneous situation is identified by the model
checker, the underlying problem is typically easier to understand and solve when
only a single activity has to be understood. This makes it also possible to study
intricate synchronization problems isolation, as demonstrated in [8].

5.1 Scalability and Reduction of State Space

To make a point in case, we consider a simple example from the domain of
Grid technology. These systems stand out for their high number of processes
running in parallel. Here, each combination of the local process states forms a
1 In temporal logic, � is the “always” operator stating that a property holds in all

states of a system description.

Encapsulating UML Activities 581

unique system state to be checked separately. Formally, if a system consists of
p independent processes and each process may reach s different process states,
the overall system contains up to sp many different system states. If, however,
we model each process by a separate activity, this will comprise only s differ-
ent states. The ESMs of the activities typically contain only two or three states
modeling whether the process is either idle, active, or terminated. Thus the over-
all system model encompassing p call behavior actions for each of the processes
affords only two or three states since all processes can be started and terminated
at once. Thus, if the sub-activities differ for each process, we have to check alto-
gether only p · s + 3 different states. In the case that all processes are identical
and we can model them by the same activity, the effort is even reduced to s + 3
reachable states since this activity has to be verified only once. So, we can reduce
exponential complexity with respect to the number of processes and polynomial
complexity with regard to the number of process states to linear complexity.

Also for systems with less parallel behavior than the one sketched above, the
reduction of states to be proven is still significant. For instance, the trusted auc-
tion system presented in [5] has in total 957 distinct reachable states when the
global specification is explored, although it only models two communicating par-
ties and has only three decomposition levels. When we use the ESMs, however,
and analyze each activity of the system separately, the state spaces to explore
have only a size of 38, 63, 5, 6, 54, and 50 states. Thus, even for such a relatively
small system, we could reduce the maximum number of states to be checked in
one single run from 957 to 63. The fact that four of these six blocks, including
the largest one, were taken from our libraries and were already verified, reduced
the effective effort even more.

6 Automatic Generation of ESMs from Activities

When designing an activity, the designer needs to make some assumptions about
the environment. To describe these, the activity to encapsulate is placed within
a minimal environment. In our editor, such an environment is part of a building
block, since it is helpful to illustrate a building blocks usage. Figure 8 shows
an environment for the buffered SMS sending: repeated SMS sending by the
surrounding system is represented by a periodic timer, and the termination is
triggered by a timer. Once the activity is instantiated in its context, the con-
struction of the ESM is completely automated and consists of the following steps:

1. Following the semantics defined in [16], the discrete action steps of the ac-
tivity within its minimal environment are generated using the tool described
in [26]. The state space exploration starts then with the initial marking, in
which all initial nodes hold one token. From this initial state, all reachable
states are computed by executing all enabled activity steps. As a result, we
obtain the state space graph Gx, with the reachable states as nodes and
the executed activity steps as edges. The state space during this analysis is
limited, since all call behavior actions within the activity to encapsulate are
abstracted by their respective ESMs.

582 F.A. Kraemer and P. Herrmann

stoppedfailed

Periodic
Timer

start

stoptick

s2: Buffered
SMS Sending

ok

send

stop

Activity + Minimal Environment
start

1. State Space Exploration

2. Minimization

Gx

G'x

G'''x
«esm»

G''x

5. Translation to UML

3. Removal of τ-Steps

2. Labeling

Fig. 8. Illustration of the steps for the automatic encapsulation

2. For each step in the state space, we analyze which parameter nodes of the
activity to encapsulate are passed, and assign a corresponding label to the
step. If no parameter node has been passed, the step is labelled with τ .

3. The τ -steps do not contribute to the visible behavior expressed by an ESM
and therefore removed. For that, every pair of states that is connected by a
τ -step is merged, and the τ -step is deleted.

4. After the removal of τ -steps, the resulting graph is minimized using the
algorithm for state machine minimization described by Holzmann in [27].

5. From the resulting minimized graph, the UML representation in form of
the ESM is constructed. The initial graph state is represented by an initial
pseudo state. Each remaining graph state is represented by a UML state,
resp. final state if the graph state has no outgoing steps.2 For each graph
step, an ESM transition referring to the corresponding activity parameter
nodes is added.

We implemented the algorithm as an Eclipse plug-in, integratedwith our modeling
tool Arctis [7,28], using the UML repository of the Eclipse Modeling Project [29].
So far, we have used it on over 200 of our activities to encapsulate them by ESMs.

The implication relation between the ESM and the activity is ensured by
construction, due to the layout of the algorithm. Formally, this can be verified
by a refinement proof Ax ⇒ Ex in temporal logic. The necessary refinement
mapping (see [30]) can be obtained from the algorithm, by observing which
states are merged during τ -step removal and minimization. For the Buffered SMS
Sending example, we verified this refinement using the model checker TLC [31].

7 Related Work

There exists a number of language constructs to describe the visible behavior of
components at distinct interaction points. ROOM [32], for instance, used pro-
tocols to define the ordering of signals transmitted by actors. The UML 2.x
2 The algorithm assigns generic names to the states, which can be renamed in an

optional, manual step.

Encapsulating UML Activities 583

standard proposes protocol state machines to define the allowed invocation se-
quences for operations on an object. Mencel [33] extends these descriptions by
port state machines, to handle also nested calls and dependencies between re-
quired and provided interfaces. For the derivation of visible component behavior,
Floch describes in [34] an algorithm that projects the observable behavior (i.e.,
the transmission of signals) of SDL processes towards specific gates. This work
has been adapted in [35] for UML state machines. Our work, in contrast, handles
the encapsulation of behavior on the level of activities; components and state
machines are generated in an automated process, as described in [10]. The in-
terfaces derived in [34] describe the transmission of signals between components.
ESMs describe interfaces of activities that are composed within components,
and do not imply signal transmissions. Rather, two activity flows connected via
ESMs can be implemented by the same state machine transition.

Formally, the encapsulation of activities resembles the work of Kellomäkki and
Mikkonen [36], who use the DisCo language [37] to capture specifications that
are reusable solutions to problems. To reuse solutions in an application, they
show that it suffices to integrate a more abstract template, and that properties
proven for the solution are maintained when the template is applied. While this
work is also based on temporal logic and uses refinement relations, it does not
provide a mapping to UML as our work does.

8 Concluding Remarks

The streaming parameters of UML 2.x activities are a useful concept to enable
the composition of systems from building blocks expressed by activities. From
all building blocks involved in the case studies presented in Sect. 4.1, about two
third make use of streaming parameters, so that activities may be composed in
an interleaving manner. This enables that related functions may be offered as
coherent, self-contained building blocks in the form of activities, but still can
synchronize control and data flows with other parts of the system throughout
their execution. To abstract from inner details and focus on the visible behavior
at the streaming pins of an activity, we proposed the concept of ESMs, and
described and implemented an algorithm to construct it. We have shown how
this facilitates the provision of libraries, and how the compositional verification
of systems is made possible by using ESMs as an abstraction mechanism. In
addition, since, once consistent, a building block is encapsulated, an incremental
development style is possible, in which systems can be designed, verified and
composed block by block.

References

1. Object Management Group. Unified Modeling Language: Superstructure, ver-
sion 2.0, formal/2005-07-05 (2005)

2. Kraemer, F.A.: Engineering Reactive Systems: A Compositional and Model-Driven
Method Based on Collaborative Building Blocks. PhD thesis, Norwegian University
of Science and Technology (2008)

584 F.A. Kraemer and P. Herrmann

3. Kraemer, F.A., Herrmann, P.: Service Specification by Composition of Collabo-
rations — An Example. In: Proceedings of the 2006 WI-IAT Workshops (2006
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology), pp. 129–133. IEEE Computer Society, Los Alamitos (2006)

4. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Model-Driven Construction of Embed-
ded Applications based on Reusable Building Blocks – An Example. In: Bilgic,
A., Gotzhein, R., Reed, R. (eds.) SDL 2009. LNCS, vol. 5719, pp. 1–19. Springer,
Heidelberg (2009)

5. Herrmann, P., Kraemer, F.A.: Design of Trusted Systems with Reusable Collabora-
tion Models. In: Etalle, S., Marsh, S. (eds.) Trust Management. IFIP International
Federation for Information Processing, vol. 238, pp. 317–332. Springer, Heidelberg
(2007)

6. Kraemer, F.A., Samset, H., Bræk, R.: An Automated Method for Web Service Or-
chestration based on Reusable Building Blocks. In: Proceedings of the 7th Interna-
tional IEEE Conference on Web Services (ICWS), pp. 262–270. IEEE Computer
Society, Los Alamitos (2009)

7. Kraemer, F.A., Bræk, R., Herrmann, P.: Compositional Service Engineering with
Arctis. Telektronikk, vol. 1.2009 (2009)

8. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Engineering Support for UML Activ-
ities by Automated Model-Checking — An Example. In: Proceedings of the 4th
International Workshop on Rapid Integration of Software Engineering Techniques,
RISE (2007)

9. Kraemer, F.A., Bræk, R., Herrmann, P.: Synthesizing Components with Sessions
from Collaboration-Oriented Service Specifications. In: Gaudin, E., Najm, E.,
Reed, R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 166–185. Springer, Heidelberg
(2007)

10. Kraemer, F.A., Herrmann, P.: Transforming Collaborative Service Specifications
into Efficiently Executable State Machines. In: Ehring, K., Giese, H. (eds.) Pro-
ceedings of the 6th International Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2007). Electronic Communications of the EASST,
vol. 7. EASST (2007)

11. Kraemer, F.A.: Rapid Service Development for Service Frame. Master’s thesis,
University of Stuttgart (2003)

12. Merha, B.T.: Code Generation for Executable State Machines on Embedded Java
Devices. Project Thesis, Norwegian University of Science and Technology, Trond-
heim, Norway (2008)

13. Parlay Group. Parlay X Web Services Specification, Version 2.1 - Short Messaging,
http://www.parlay.org/en/specifications/pxws.asp

14. PATS Lab Website, http://www.pats.no

15. Lamport, L.: Specifying Systems. Addison-Wesley, Reading (2002)

16. Kraemer, F.A., Herrmann, P.: Formalizing Collaboration-Oriented Service Specifi-
cations using Temporal Logic. In: Networking and Electronic Commerce Research
Conference 2007 (NAEC 2007), pp. 194–220. ATSMA Inc. (2007)

17. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Tool Support for the Rapid Composi-
tion, Analysis and Implementation of Reactive Services. Journal of Systems and
Software (to appear, 2009)

18. Sl̊atten, V.: Automatic Detection and Correction of Flaws in Service Specifications.
Master’s thesis, Norwegian University of Science and Technology (2008)

19. http://www.sunspotworld.com

http://www.parlay.org/en/specifications/pxws.asp
http://www.pats.no
http://www.sunspotworld.com

Encapsulating UML Activities 585

20. Kathayat, S.B., Bræk, B.: Platform Support for Situated Collaborative Learning.
In: Proceedings of the 2009 International Conference on Mobile, Hybrid, and On-
line Learning, Cancun, Mexico, pp. 53–60. IEEE Press, Los Alamitos (2009)

21. Beugnard, A., Jézéquel, J.-M., Noël, P., Watkins, D.: Making Components Contract
Aware. IEEE Computer 32(7), 38–45 (1999)

22. Gaffney, J.E., Durek, T.A.: Software Reuse – Key to Enhanced Productivity: Some
Quantitative Models. Information and Software Technology 31(5), 258–267 (1989)

23. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: the
Catalysis Approach. Addison-Wesley, Reading (1999)

24. Frakes, W., Terry, C.: Software Reuse: Metrics and Models. ACM Computing Sur-
veys 28(2), 415–435 (1996)

25. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

26. Sl̊atten, V.: Model Checking Collaborative Service Specifications in TLA with TLC.
Project Thesis, Norwegian University of Science and Technology, Trondheim, Nor-
way (2007)

27. Holzmann, G.: Design and Validation of Computer Protocols. Prentice Hall Soft-
ware Series. Prentice-Hall, Englewood Cliffs (1991)

28. Arctis Website, http://arctis.item.ntnu.no
29. Eclipse Modeling Project, http://www.eclipse.org/modeling
30. Abadi, M., Lamport, L.: The Existence of Refinement Mappings. Theoretical Com-

puter Science 82(2), 253–284 (1991)
31. Yu, Y., Manolios, P., Lamport, L.: Model Checking TLA+ Specifications. In: Pierre,

L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Heidel-
berg (1999)

32. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc., New York (1994)

33. Mencl, V.: Specifying Component Behavior with Port State Machines. Electronic
Notes in Theoretical Computer Science 101, 129–153 (2004)

34. Floch, J.: Towards Plug-and-Play Services: Design and Validation using Roles. PhD
thesis, Norwegian University of Science and Technology (2003)

35. SIMS Project Website, http://www.ist-sims.org
36. Kellomäki, P., Mikkonen, T.: Design Templates for Collective Behavior. In: Bertino,

E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 277–295. Springer, Heidelberg (2000)
37. Järvinen, H.-M., Kurki-Suonio, R., Sakkinen, M., Systä, K.: Object-Oriented Spec-

ification of Reactive Systems. In: Proceedings of the 12th International Conference
on Software Engineering, pp. 63–71. IEEE Computer Society Press, Los Alamitos
(1990)

http://arctis.item.ntnu.no
http://www.eclipse.org/modeling
http://www.ist-sims.org

	Automated Encapsulation of UML Activities for Incremental Development and Verification
	Introduction
	Activities and Streaming Parameter Nodes
	External State Machines – ESMs
	Incremental Development with ESMs
	Case Studies
	Libraries of Reusable Building Blocks

	Incremental Verification with ESMs
	Scalability and Reduction of State Space

	Automatic Generation of ESMs from Activities
	Related Work
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

