
A Goal-Based Modeling Approach to Develop

Requirements of an Adaptive System with
Environmental Uncertainty�

Betty H.C. Cheng1, Pete Sawyer2, Nelly Bencomo2, and Jon Whittle2

1 Department of Computer Science and Engineering, Michigan State University,
East Lansing, Michigan 48824, USA

2 Computing Department, InfoLab21, Lancaster University,
LA1 4WA, United Kingdom

chengb@cse.msu.edu, {sawyer,nelly,whittle}@comp.lancs.ac.uk

Abstract. Dynamically adaptive systems (DASs) are intended to mon-
itor the execution environment and then dynamically adapt their behav-
ior in response to changing environmental conditions. The uncertainty
of the execution environment is a major motivation for dynamic adap-
tation; it is impossible to know at development time all of the possible
combinations of environmental conditions that will be encountered. To
date, the work performed in requirements engineering for a DAS includes
requirements monitoring and reasoning about the correctness of adap-
tations, where the DAS requirements are assumed to exist. This paper
introduces a goal-based modeling approach to develop the requirements
for a DAS, while explicitly factoring uncertainty into the process and
resulting requirements. We introduce a variation of threat modeling to
identify sources of uncertainty and demonstrate how the RELAX specifi-
cation language can be used to specify more flexible requirements within
a goal model to handle the uncertainty.

Keywords: Requirements engineering, goal models, uncertainty, dynam-
ically adaptive systems.

1 Introduction

Dynamically adaptive systems (DASs) are systems designed to continuously
monitor their environment and then adapt their behavior in response to chang-
ing environmental conditions. DASs tend to be cyberphysical systems, where the
physical environment is tightly intertwined with the computing-based system.
Example domains where DASs are necessary include power grid management
systems, telecommunication systems, and ubiquitous systems. For these systems,
� This work has been supported in part by NSF grants CCF-0541131, CNS-0551622,

CCF-0750787, CNS-0751155, IIP-0700329, and CCF-0820220, Army Research Office
grant W911NF-08-1-0495, Ford Motor Company, and a grant from Michigan State
University’s Quality Fund.

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 468–483, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Goal-Based Modeling Approach to Develop Requirements of an AS 469

the software may need to be reconfigured at run time (e.g., software uploaded
or removed) in order to handle new environmental conditions.

Specifying the requirements for DASs is a challenging task because of the in-
herent uncertainty associated with an unknown environment. This paper presents
an approach in which goals [1] are used to systematically model the requirements
of a DAS. In particular, we use a variation of threat modeling (see, e.g., [2]) to un-
cover places in the model where the requirements need to be updated to support
adaptation. In this case, threats correspond to changes in the environment that
may require the software to dynamically adapt at run time in order to maintain
high-level goals. This process results in a goal-based requirements model that ex-
plicitly captures where adaptations are needed, documents the level of flexibility
supported during adaptation, and takes into account enviromental uncertainty.

This paper builds directly on our previous work. Previously, we observed that
a DAS is conceptually a collection of target systems, each of which handles a
different combination of environmental conditions [3]. As such, we can model
the requirements of individual target systems and the adaptive logic that transi-
tions between the configurations as separate concerns. The LOREM process [4]
describes how to use this strategy to develop goal models to represent the indi-
vidual target systems and the adaptive logic. However, LOREM does not support
requirements engineers in identifying the requirements for these target systems.
Recently, we introduced the RELAX language, a textual language for dealing
with uncertainty in DAS requirements that allows requirements to be temporar-
ily relaxed if necessary to support adaptation [5]. This flexibility is required,
for example, if non-critical requirements must be partially neglected in order to
satisfy short-term critical requirements. RELAX, however, was not integrated
with modeling approaches used in the requirements engineering community.

This paper, therefore, makes three main contributions. Firstly, it gives a pro-
cess for identifying requirements for target DAS systems that can then be mod-
eled using a process such as LOREM. Secondly, it integrates our previous work
on RELAX with goal modeling. Finally, the paper presents a novel application
of threat modeling to systematically explore environmental uncertainty factors
that may impact the requirements of a DAS.

We illustrate our approach by applying it to Ambient Assisted Living (AAL),
an adaptive system providing assistance to elderly or handicapped persons in
their homes. The remainder of the paper is organized as follows. Section 2 in-
troduces AAL as our running example and presents our approach, including
the stepwise process for creating the goal and uncertainty models. Section 3
describes the details of applying the approach to the AAL system. Section 4
discusses related work. Finally, in Section 5, we present conclusions and discuss
future work.

2 Modeling Approach

A key characteristic of a DAS is that there may be numerous approaches to realiz-
ing its high-level objectives, where a specific set of run-time environmental condi-
tions will dictate which particular realization is appropriate at a particular point

470 B.H.C. Cheng et al.

in time. In order to support this type of variation, this paper uses goal modeling
to describe requirements of a DAS, since goal-based modeling offers a means to
identify and visualize different alternatives for satisfying the overall objectives of
a system [1,6]. The alternatives may be due to different tradeoffs between non-
functional goals (e.g., performance, reliability, etc.); and, in the case of DASs, dif-
ferent goal paths may be due to uncertainty factors in the environment. As such,
goal-based modeling offers a means to explicitly capture the rationale for how and
why goals and requirements are decomposed (as represented by alternate paths
of goal refinements). Furthermore, requirements identified through goal modeling
can be used as the basis for model-driven engineering (MDE) [1,7,3]. The ratio-
nale for a particular path of goal refinement can be captured in a goal model and
may be used as constraints and/or guidance during the MDE process [3].

2.1 Running Application

To validate our approach, we conducted a case study provided by Fraunhofer
IESE in the form of an existing concept document describing a smart home for
assisted living. The concept document was written previously and independently
of this research. We present an excerpt of the document here to serve as a running
example for introducing our approach.1

Mary is a widow. She is 65 years old, overweight and has high blood pres-
sure and cholesterol levels. Mary gets a new intelligent fridge. It comes with 4
temperature and 2 humidity sensors and is able to read, store, and communicate
RFID information on food packages. The fridge communicates with the ambient
assisted living (AAL) system in the house and integrates itself. In particular, it
detects the presence of spoiled food and discovers and receives a diet plan to be
monitored based on what food items Mary is consuming.

An important part of Mary’s diet is to ensure minimum liquid intake. The
intelligent fridge partially contributes to it. To improve the accuracy, special
sensor-enabled cups are used: some have sensors that beep when fluid intake is
necessary and have a level to monitor the fluid consumed; others additionally
have a gyro detecting spillage. They seamlessly coordinate in order to estimate
the amount of liquid taken: the latter informs the former about spillages so that
it can update the water level. However, Mary sometimes uses the cup to water
flowers. Sensors in the faucets and in the toilet also provide a means to monitor
this measurement.

Advanced smart homes, such as Mary’s AAL, rely on adaptivity to work
properly. For example, the sensor-enabled cups may fail or Mary may forget to
drink, but since maintaining Mary’s hydration levels is a life-critical feature, the
AAL should be able to respond by achieving this requirement in some other way.

2.2 Overview of Approach

Our approach follows the principles of the model-based approach described
by Zhang and Cheng [3] which considers a DAS to comprise numerous target
1 See www.iese.fraunhofer.de/fhg/iese/projects/med projects/aal-lab/index.jsp

A Goal-Based Modeling Approach to Develop Requirements of an AS 471

systems, each of which supports behavior for a different set of environmental
conditions (posed by the environmental uncertainty). At run time, the DAS
transitions from one target system to another, depending on the environmental
conditions. While the earlier work emphasized design-phase models, this paper
focuses on the identification of the goals and requirements for each of the target
systems.

Scope of Uncertainty. Before we start the goal derivation process, we identify
the top-level goal for the system; this goal should state the overall objective for
a system, while not being prescriptive for how to realize the objective. And we
also create a conceptual domain model (as a UML class diagram) that identifies
the key physical elements of the system and their relationships (e.g., sensors,
user interfaces); see Figure 1. It also includes actors that may be human (e.g.
Person) or software-controlled (e.g. iCup, an intelligent cup with sensors). These
elements identify the environmental conditions and the uncertainty that must
be handled by the system. In essence, the domain model serves to scope the
uncertainty for the system; that is, elements in the domain model are either the
sources of uncertainty or they are used to monitor environment conditions that
pose uncertainty. (In general, it is not practical nor useful to model every element
in the environment, particularly, if they play little or no role in the functionality
of the system.)

Target System Modeling. From the top-level goal, we develop a goal lattice
using a process of goal refinement, where the first level of subgoals are termed
high-level goals, representing the key services to be provided by the system. This
refinement process is informed by the conceptual domain model and any problem
descriptions, use-cases or other sources of information elicited about the problem
to be tackled by the system under development (herein referred to as system). We
use KAOS, a goal-oriented requirements engineering language [1]; one influencing
factor for using KAOS is its support for threat modeling. In KAOS, goals describe
required properties of a system that are satisfied by different agents such as
software components or humans in the system’s environment. Goal refinement
in KAOS stops when responsibility for a goal’s satisfaction can be assigned to
a single agent. KAOS defines such a goal as a requirement if satisfied by a
software agent or an expectation if satisfied by a human agent. Requirements
and expectations form leaves of the goal lattice. It should be noted that the
KAOS definition of requirement is specific to KAOS but, for consistency sake,
we shall use the KAOS convention in the remainder of this paper.

Figure 2 gives a goal model for the AAL system, where the top-level goal is
to keep Mary healthy (i.e., Maintain[Health]). The right leaning parallelograms
represent goals, while the left leaning parallelograms represent KAOS obstacles
that act to confound goal satisfaction. Considering the goals first, requirements
and expectations are denoted as goals with embolded outlining. The hollow cir-
cles represent goal refinement junctures, where multiple edges represent AND
goals (all subgoals must be satisfied in order to satisfy a parent goal). Goals can
also be OR-ed, denoted by multiple arrows directly attached to a parent goal;

472 B.H.C. Cheng et al.

Fig. 1. Conceptual domain model

an example appears in Figure 5. Goals can be elaborated to provide a number of
attributes including a definition. The dashed box attached to the Maintain[Health]

goal shows its definition formulated as a conventional SHALL statement.2 Fi-
nally, agents are represented by hexagons. The network of goal-related elements
form a goal lattice.

Identifying Uncertainty. We use a combination of bottom-up and top-down
strategies to identify uncertainty. We start by assessing the goal lattice in a
bottom-up fashion, looking for sources of uncertainty (i.e., elements in the do-
main model) that might affect the satisfaction of the goals. When looking for
mitigation strategies for dealing with the uncertainty, new (high-level) goals may
be introduced that may, in turn, uncover other sources of uncertainty (thus cor-
responding to top-down uncertainty discovery).

2 SHALL statements are commonly used to specify requirements, indicating a contrac-
tual relationship between the customer and the developer as to what functionality
should be included in the system.

A Goal-Based Modeling Approach to Develop Requirements of an AS 473

Fig. 2. Initial refinement of goals to keep Mary hydrated

Previously, threat modeling has been used to identify threats that might ex-
ploit (security) vulnerabilities of system assets [8,9]. In this current work, we
introduce a variation of threat modeling to identify uncertainty. More specifi-
cally, in the case of DASs, the “threats”are the various environmental conditions
(or the impact of environmental conditions) that pose uncertainty at develop-
ment time and thus may warrant dynamic adaptation at run time to ensure
acceptable behavior. The obstacles in Figure 2 represent uncertainty factors im-
pacting the goals which, like the goals, form a lattice, termed uncertainty lattice,
in which obstacles can be AND-ed and OR-ed to combine their effects and prop-
agate uncertainty upwards towards the top-level goal. The lower uncertainty
nodes represent the sources of uncertainty. The barred arrows indicate the goals
that they affect. The upper uncertainty nodes and the barred, broken arrows
that lead from them represent the impact of the uncertainty.

Mitigating Uncertainty. The impact of the uncertainty is assessed to deter-
mine what type of mitigation, if any, is needed. Three possible tactics can be
used to mitigate the offending uncertainty factors, with each requiring different
levels of effort to realize. For a goal affected by uncertainty, the least costly miti-
gation tactic is to define new behavior in the form of a further subgoal to handle
the condition; this step equates to adding incremental functionality to a target
system. If the subgoal refinement is not sufficient to mitigate the uncertainty,
but partial satisfaction of the goal is tolerable, then we attempt to add flexibility
to the goal to account for the uncertainty. For this tactic, we use the RELAX

474 B.H.C. Cheng et al.

specification language [5] to add flexibility to the goal specification by speci-
fying requirements declaratively, rather than by enumeration. Briefly, RELAX
can be used to specify several dimensions of uncertainty, including duration and
frequency of system states; possible states of a system; and configurations for a
system. A RELAXed requirement also specifies the elements of the domain that
must be monitored to gauge the extent to which the requirement is being sat-
isfied and their impacts (both positive and negative) on other requirements [5].
While the RELAX specifications are in the form of structured natural language
with Boolean expressions, the semantics for RELAX have been defined in terms
of temporal fuzzy logic [5]. Due to space constraints, we can only briefly overview
the RELAX language here; details may be found in [5].

To illustrate the use of RELAX to mitigate uncertainty, consider the following
goal that may not be satisfiable all the time.

“The System SHALL ensure that cold fresh water is constantly available.”

If we fail to take into account the uncertainty surrounding water supply and
design the system as if interruptions in water supply will never occur, then the
system may be too brittle and fail when an interruption does occur. However,
if the recipient of the system’s services can tolerate short disruptions in supply,
then we might RELAX the goal using a temporal RELAX operator (in upper
case) as follows:

“The System SHALL ensure that cold fresh water is AS CLOSE AS POSSIBLE

to constantly available.”

The RELAXed goals can be realized by implementations that have built-in flexi-
bility (e.g., through parameter definitions or alternate branches of functionality).
Note that goals for which partial satisfaction is not tolerable are considered to
be invariants – must always be satisfied even during adaptation.

If the adverse impact of the uncertainty cannot be mitigated by formulating
new subgoals or by RELAX-ation, then we have to consider the given goal as
failed. As such, we need to create a new high-level goal that captures the objective
of correcting the failure. This uncertainty-mitigation tactic is the most costly
since the new high-level goal and its subsequent refinement correspond to the
goal lattice for a new target system. Examples of each uncertainty-mitigation
tactic are described in Section 3.

Not shown in the text or the figures above are two key non-functional require-
ments that guided the goal refinement process: the solutions offered by the AAL
should, as far as practicable, be non-invasive and of low cost. Since the focus of
this paper is on detecting and modeling uncertainty in the context of DASs, we
only consider the non-functional requirements implicitly in this discussion. In
the LOREM work [4], we described how to use goal modeling of non-functional
requirements (e.g., performance, battery usage) as the sole basis for dynamic
adaptation, where the different combinations of environmental conditions were
explicitly enumerated. In contrast, this paper describes a technique for identi-
fying the environmental conditions warranting dynamic adaptation (e.g., sensor
failure, violation of safety conditions).

A Goal-Based Modeling Approach to Develop Requirements of an AS 475

2.3 Process Overview

The analysis steps described above can be applied systematically using the fol-
lowing stepwise process: Figure 3 gives the data flow diagram for the process.
Processes, data flows, and data stores are represented by ovals, arrows, and par-
allel lines, respectively.

Fig. 3. Process for Goal-Based Modeling of Adaptive Systems

Step 0: Identify Top-level goal and Environment: Identify the top-level
goal for system. Create a conceptual domain model that identifies the ob-
servable environmental elements relevant to the system; these elements are
potential sources of uncertainty for the system.

Step 1: Derive the goal models: Perform goal refinement until we derive
leaf requirements/expectations and their respective agents.

Step 2: Identify Uncertainty Factors: Starting from the leaf requirements/
expectations identify the uncertainty factors that might prevent their satisfac-
tion. These uncertainty factors represent environmental conditions that poten-
tially affect the behavior of the system. The uncertainty and/or the impact
of the uncertainty factors may propagate up the goal lattice if not adequately
mitigated.

Step 3: Mitigate Uncertainty Factors:
Below are the mitigation tactics, presented in order of increasing cost (i.e. effort
to realize).

i. No refinement: If the uncertainty factors do not prevent satisfaction of the
goals, then do not modify the respective goal.

ii. Add low-level subgoals: If the uncertainty can be mitigated by introduc-
ing new low-level goals, then refine with new subgoals.

iii. RELAX goals: If the uncertainty prevents high-level goals from being
completely satisfied but we can accept their partial satisfaction, then RELAX
the highest level goal impacted by the corresponding uncertainty.

iv. Add high-level goal: If the effect of uncertainty on a high-level goal is
unacceptably severe (i.e., environmental conditions have changed significantly
beyond previous expectations), then identify a new (high-level) goal to mitigate
the uncertainty. This new goal represents a new target system and the closer
to the top-level goal it is, the greater the implied cost of implementation. Steps
1 - 3 must be applied to the new portion of the goal lattice for refinement.

476 B.H.C. Cheng et al.

3 Application of Goal Modeling for the AAL System

This section describes the results of applying our modeling approach to the AAL
system. Due to space constraints, we can only present excerpted goal models of
each of the types of uncertainty mitigation.

Step 0: Identify Top-level goal and Environment. Recall that Figure 1
gives the conceptual domain model for the AAL, which serves to scope the envi-
ronment and uncertainty factors for the AAL. Step 0 of our analysis identified the
top-level goal of the AAL house as keeping Mary healthy (i.e., Maintain[Health]),
as shown in Figure 2. The ‘Maintain’ predicate of the label denotes the goal as
a behavioral goal specifying a property that should always hold. The inverse of
a ‘Maintain’ goal is an ‘Avoid’ goal. Hence the top-level goal could be denoted
by the goal Avoid[BadHealth]. A third class of behavioral goals is denoted by an
‘Achieve’ predicate, indicating a property that should eventually hold.

Step 1: Derive the goal models. Figure 2 shows Step 1 of our process to
refine the top-level goal as a lattice of subgoals. We elide all but one branch of
the lattice to illustrate the refinement of the goals concerned with ensuring that
liquid intake is sufficient. The branch has been refined to a single expectation
that Mary drinks and a single requirement that the iFridge supplies cold drinking
water. These are AND-ed to indicate that both need to be satisfied in order to
satisfy the goal of maintaining adequate liquid intake.

Step 2: Identify Uncertainty Factors. Following identification of the goals,
Step 2 analyses the extent to which they are satisfiable by developing the un-
certainty model using KAOS obstacles. The key uncertainty factor in Figure 2
is represented by the obstacle Forgets to drink. It is uncertain whether Mary will
drink enough liquid; she could forget to drink and the effect of this would mean
that she gets too little liquid, becomes dehydrated, and ultimately, unhealthy.

Step 3(ii): Mitigate Uncertainty Factors. Completion of the uncertainty
model triggers Step 3 whose purpose is to evaluate the uncertainty factors and
decide whether to try to mitigate them. Assuming that the uncertainty is suffi-
ciently serious that some mitigation is needed, we start by attempting to apply
3(ii), adding a new subgoal to mitigate the obstacle. Uncertainty about whether
Mary will drink enough, which is represented by the Forgets to drink obstacle in
Figure 4, has been mitigated by adding a new goal Achieve[ReminderToDrinkIssued],
highlighted by the block arrow 3(ii). This new goal is AND-ed with the expecta-
tion that Mary drinks and the requirement that the iFridge supplies cold drinking
water. In other words, we can reduce the likelihood of Mary forgetting to drink
by giving her a reminder by exploiting the iCups’ capability to beep; this new goal
mitigates the obstacle Forgets to drink, denoted by a solid bold arrow from goal
to obstacle. An implication of the new goal, however, is that we need to estimate
how much Mary drinks over time and issue reminders if her liquid intake falls
below some ideal level. Hence, identification of the Achieve[ReminderToDrinkIssued]

goal triggers a repeat of Step 1 to refine it down to the level of requirements,
followed by Step 2 to build an uncertainty model for these new requirements.

A Goal-Based Modeling Approach to Develop Requirements of an AS 477

This mitigation tactic is illustrated in Figure 4; the goal lattice is extended with
the goal Achieve[RemindertoDrinkIssued] and its refinements, and the correspond-
ing uncertainty lattice is extended with the nodes Doesn’t act on prompt and
Calculated liquid intake shortfall inaccurate, along with their respective refinements.
The extended goal lattice also includes a domain assumption, denoted by the
trapezoid labelled Most drinking vessels are iCups, which we use here to record an
assumption upon which the correctness of our analysis depends; that Mary will
drink most of her water from iCups.

Step 3(iii): Mitigate Uncertainty by RELAXation. Performance of Step
3 on the new goals and uncertainty factors is interesting because it reveals that
the uncertainty can be mitigated but not be entirely eliminated. In this case, the
mitigation tactic is to add flexibility that accounts for the uncertainty directly
into the goal specification, assuming that the goal is not an invariant. Hence,

Fig. 4. Uncertainty mitigation: new subgoal (3(ii)) and RELAX subgoal (3(iii))

478 B.H.C. Cheng et al.

for example, the amount of liquid being taken from an iCup can be sensed,
but it cannot be guaranteed that the liquid taken is being consumed by Mary.
Mary might be using it to water her potted plants or simply spilling it. As
a consequence, the Maintain[AdequateLiquidIntake] goal from Figure 2 cannot be
guaranteed to be satisfiable under all circumstances. This uncertainty poses a
problem; there does not appear to be a technological solution that can guarantee
to accurately measure Mary’s liquid intake, or one that will guarantee that Mary
will act on reminders that she should drink. On the other hand, a temporary
shortfall in the ideal liquid consumption may:

– Be normal - the temperature may be low, causing Mary to lose less liquid
through perspiration;

– Be recouped later - it may lead to a mild headache (which may in turn
prompt Mary to drink) rather than immediate organ failure;

Step 3 reveals that there is uncertainty about the environment (Mary’s be-
havior), yet, rather than calling into question the viability of the AAL, the
uncertainty can be tolerated. Figure 4 shows the result of applying RELAX to
Maintain[AdequateLiquidIntake], which has been reformulated as the goal (indicated
by the block arrow 3(iii))

The System SHALL ensure AS CLOSE AS POSSIBLE TO a minimum of

liquid intake. The system SHALL ensure minimum liquid intake EVENTU-

ALLY.

The arc leading from the goal and pointing to the Inadequate liquid intake obstacle
indicates partial mitigation of the uncertainty over Mary’s liquid intake. The goal
is a composite comprising two clauses. The first mandates that although Mary’s
liquid intake cannot be measured with complete accuracy, the system should
be designed to exploit the capabilities of the resources identified in the domain
model to provide a best effort at liquid intake estimation. The second clause
mandates that although under-consumption of liquid may occur, whenever this
happens, the AAL must ensure that Mary’s liquid intake recovers to acceptable
levels at some point in the future. How to achieve eventual intake of the minimal
level of liquid, and how soon is left to the AAL system’s designers to determine.

Step 3(iv): Mitigate Uncertainty by adding a High-Level Goal. As
implied above, Mary’s liquid intake may fall below minimal levels (i.e., environ-
mental condition sensed by the various domain elements, such as iCups, sensors
in faucets, toilets, etc.) so specification and RELAX-ation of goals aimed at get-
ting Mary to drink cannot guarantee that she will not become dehydrated at
some point. Mary might still forget to drink enough, or she could become de-
hydrated as a side-effect of acquiring an infection or drinking diuretics (such as
coffee). If we are to prevent Mary from becoming unhealthy due to dehydration,
we need to mitigate the uncertainty represented by the Become dehydrated ob-
stacle in Figure 4. Mitigation of this uncertainty requires recourse to the most
costly of our tactics, which is represented as Step 3(iv) of our process. Step 3(iv)
triggers the search for a new high-level goal, a peer goal to our RELAXed goal
to maintain Mary’s liquid intake, concerned with rehydrating Mary.

A Goal-Based Modeling Approach to Develop Requirements of an AS 479

Fig. 5. Uncertainty mitigation with new high-level goal for new target system

This mitigation approach is shown as the goal Achieve[ReHydration], indicated
by the block arrow 3(iv) in Figure 5. Rehydrating Mary represents a radical
change in the system behavior; that is, we have identified a new target system.
Instead of merely getting her to drink enough, we now need to cope with the
emergency situation of getting her rehydrated before organ damage occurs. So
urgent is this condition, that the new goal is OR-ed with the other high-level
goals. In other words, the AAL suspends its goal of maintaining a healthy diet
along with all the other goals that need to be satisfied if Mary is to lead a
normal life, and diverts resources into getting her rehydrated. This high-level goal
represents a new target system, specified by refining the Achieve[ReHydration] goal
and, of course, applying uncertainty modeling to ensure this new goal’s refined
sub-lattice is robust too. The arc leading from the new goal Achieve[ReHydration]

to the obstacle Become dehydrated indicates the mitigation of the associated
uncertainty.

Discussion. In summary, this example illustrated three different mitigation
strategies for handling uncertainty in the environment. At the end of this pro-
cess for addressing the Maintain[IsHydrated] goal, we included functionality in the

480 B.H.C. Cheng et al.

requirements for the original target system to support a reminder to drink fea-
ture in the iCups to account for the uncertainty with Mary’s behavior. In order to
make the target system more flexible with respect to the uncertainty associated
with the water supply provided by the iFridge and take into account the lack
of accuracy in the sensors measuring the liquid intake, we RELAXed the goal
Maintain[AdequateLiquidIntake] to introduce flexibility in the quantity of liquid con-
sumed and the time frame in which it can be consumed. Finally, to handle the
uncertainty associated with severely adverse conditions with Mary (either her
unwillingness to respond to the reminders or illness) and/or adverse conditions
with the water supply, we introduced a new high-level goal Achieve[Rehydration]

to account for the situation where Mary has become dehydrated and the system
must provide new behavior (via a new target system) to correct the situation.
Dynamic adaptation is required to realize the third mitigation tactic since it
requires a different target system to handle Mary’s dysfunctional state, with the
objective of bringing her and the system back to the point where the goal Main-

tain[IsHydrated] is satisfiable again. The other two mitigation strategies may be
implemented statically with different branches of alternative behavior or realized
by run-time adaptation, depending on the available run-time technology.

4 Related Work

The increasing demand for self-adaptation has led to a surge of interest in soft-
ware engineering for self-adaptive systems – see [10] for a recently compiled
summary. Most of this work has been in the design of software architectures
that enable flexible adaptations [11]. In general, such architectures share com-
mon characteristics that enable them to monitor and respond to environmental
changes. Much less work has been carried out on how to explicitly incorporate
the inherent uncertainty associated with adaptive systems into existing model-
ing languages. UML profiles exist that provide stereotypes for marking model
elements that are in some way uncertain – e.g., an uncertainty profile [12] for
capturing uncertainty in process modeling and fuzzy UML [13] for representing
imperfect information in databases. Uchitel et al. [14] have also dealt with un-
certainty using partial labelled transition systems (PLTS) to model aspects of
the system behaviour that are unknown and remain undefined.

Limited work has also been performed in modeling and monitoring require-
ments for adaptive systems. Goal-based modeling notations, such as i* [15] and
KAOS [1], have been applied to the specification of requirements of self-adaptive
systems. Specifically, goal-based models are well suited to exploring alternative
requirements and it is natural to use goal models to represent alternative behav-
iors that are possible when the environment changes [4,16,17,6]. Furthermore,
goal models can effectively be used to specify the requirements for transition
between adaptive behaviours [4,18]. With these approaches, however, the mod-
eler must explicitly enumerate all possible alternative behaviours. In contrast,
RELAX [5] supports a declarative approach for specifying requirements for a
DAS, thus accounting for more flexibility in the system behavior.

A Goal-Based Modeling Approach to Develop Requirements of an AS 481

Run-time monitoring of requirements dynamically assesses the conformance
of run-time behaviour to the specified requirements [19]. This capability is a cru-
cial enabler for self-adaptive systems as non-conformance to requirements may
trigger an adaptation. Requirements monitoring approaches often rely on ad-hoc
run-time representations of the requirements [20]. A more promising approach
is to monitor goal models at run time as described in [21], where failed goals are
diagnosed and fixed at run time using AI theories of diagnosis. More generally, in
the context of self-adaptive systems, it may only be possible to partially satisfy
run-time goals – that is, goal satisfaction is not a “yes” or “no”decision. Adapta-
tion decisions, therefore, may have to be made probabilistically. Letier and van
Lamsweerde [22] have proposed a technique to quantify degrees of satisfaction
in goal models but the work has not yet been applied to adaptive systems.

5 Conclusions and Future Work

Goals are objectives or statements of intent that the system should accomplish.
For the case of adaptive systems, different environmental uncertainty factors may
put at risk the accomplishment of such goals. In this paper, we have presented
a goal-based modeling approach to specify the requirements of a DAS, where
environmental uncertainty associated with the goal specifications are explicitly
integrated. The approach offers a systematic use of a range of tactics for adap-
tation to deal with uncertainty on a rising scale of costs. The tactics include
adding low-level goals (the least costly approach), RELAXing requirements to
express bounded uncertainty to accomplish a partial but still suitable satisfac-
tion of the goals, and the identification of a new (high-level) goal to mitigate the
uncertainty that leads to the identification of a new target system.

The general objective of goal modeling is to refine goals so that the set of
subgoals that satisfy their parent goal is necessary and sufficient. One key lesson
from reasoning with uncertainty is that, where uncertainty exists, the most we
can hope for is that the subgoals are necessary. They will never be sufficient.
Uncertainty must be handled, therefore, by assigning responsibility to a human
agent or by introducing some intelligent or adaptive behavior into the software.

Several avenues for future research are possible. Estimation of the risk posed
by uncertainty is implicit in the application of our process; i.e., our work requires
risk to be inferred from the goal and uncertainty models. Further work is required
towards systematic techniques to quantify the risk as a complement to threat
modelling, understanding what we can RELAX (i.e. what is variant vs. what is
invariant), and the extent to which we can RELAX requirements. We speculate
that risk could be made explicit by quantifying it in the manner of attack trees
[2]. The systematic approach for identifying target systems makes it possible
to extend existing MDE-based approaches to DAS development (e.g., [3,23]) to
start at a higher-level of abstraction. That is, with the results from this work, we
can start with a conceptual domain model of a DAS and systematically progress
from goals and requirements to their designs and implementation.

482 B.H.C. Cheng et al.

References

1. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. John Wiley & Sons, Chichester (2009)

2. Schneier, B.: Attack Trees - Modeling security threats. Dr. Dobb’s Journal (1999)
3. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-

ware. In: ICSE 2006: Proc. of the 28th Int. Conf. on Software engineering, pp.
371–380 (2006)

4. Goldsby, H., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.H.C.: Goal-based
modeling of dynamically adaptive system requirements. In: 15th IEEE Int. Conf.
on the Engineering of Computer Based Systems, ECBS (2008)

5. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: Relax: Incorpo-
rating uncertainty into the specification of self-adaptive systems. In: Proc. of IEEE
Int. Requirements Engineering Conf., RE 2009 (to appear, 2009)

6. Yijun, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.: From Goals
to High-Variability Software Design. In: An, A., Matwin, S., Raś, Z.W., Śl ↪ezak,
D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 1–16.
Springer, Heidelberg (2008)

7. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1), 31–37 (1999)

8. Mead, N.: Identifying Security Requirements using the SQUARE Method. In: In-
tegrating Security and Software Engineering: Advances and Future Visions, pp.
44–69. Idea Group, USA (2006)

9. den Braber, F., Dimitrakos, T., Gran, B.A., Lund, M.S., Stölen, K., Aagedal, J.O.:
The coras methodology: model-based risk assessment using uml and up. In: UML
and the unified process, pp. 332–357. IGI Publishing, Hershey (2003)

10. Cheng, B.H.C., et al.: 08031 – software engineering for self-adaptive systems: A
research road map. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. Number 08031
in Dagstuhl Seminar Proceedings (2008)

11. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In:
Briand, L.C., Wolf, A.L. (eds.) FOSE, pp. 259–268 (2007)

12. Jing, X., Pinel, P., Pi, L., Aranega, V., Baron, C.: Modeling uncertain and imprecise
information in process modeling with UML. In: COMAD, Computer Society of
India, pp. 237–240 (2008)

13. Ma, Z.M., Yan, L.: Fuzzy XML data modeling with the UML and relational data
models. Data Knowl. Eng. 63(3), 972–996 (2007)

14. Uchitel, S., Kramer, J., Magee, J.: Behaviour model elaboration using partial la-
belled transition systems. In: ESEC/FSE-11, pp. 19–27 (2003)

15. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements
engineering. In: Proc. of 3rd IEEE Int. Symp. on Requirements Engineering, RE
1997 (1997)

16. Lapouchnian, A., Liaskos, S., Mylopoulos, J., Yu, Y.: Towards requirements-driven
autonomic systems design. In: Workshop on the Design and Evolution of Autonomic
Application Software, DEAS 2005 (2005)

17. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. In: Proc. of CASCON 2006 (2006)

18. Morandini, M., Penserini, L., Perini, A.: Modelling self-adaptivity: A goal-oriented
approach. In: SASO 2008: Proc. of 2008 Second IEEE Int. Conf. on Self-Adaptive
and Self-Organizing Systems, pp. 469–470 (2008)

A Goal-Based Modeling Approach to Develop Requirements of an AS 483

19. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In:
2nd IEEE Int. Symp. on Requirements Engineering, RE 1995 (1995)

20. Dingwall-Smith, A., Finkelstein, A.: Checking complex compositions of web services
against policy constraints. In: MSVVEIS, pp. 94–103. INSTICC Press (2007)

21. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: An automated approach to
monitoring and diagnosing requirements. In: ASE, pp. 293–302. ACM, New York
(2007)

22. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satisfaction for re-
quirements and design engineering. In: Proc. of 12th ACM SIGSOFT Int. Symp.
on Foundations of Software Engineering, pp. 53–62 (2004)

23. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M., Solberg, A., Dehlen, V., Blair,
G.: An aspect-oriented and model-driven approach for managing dynamic variabil-
ity. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 782–796. Springer, Heidelberg (2008)

	A Goal-Based Modeling Approach to Develop Requirements of an Adaptive System with Environmental Uncertainty
	Introduction
	Modeling Approach
	Running Application
	Overview of Approach
	Process Overview

	Application of Goal Modeling for the AAL System
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

