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Preface

The pioneering organizers of the first � UML � workshop in Mulhouse, France
in the summer of 1998 could hardly have anticipated that, in little over a decade,
their initiative would blossom into today’s highly successful MODELS conference
series, the premier annual gathering of researchers and practitioners focusing on
a very important new technical discipline: model-based software and system
engineering. This expansion is, of course, a direct consequence of the growing
significance and success of model-based methods in practice. The conferences
have contributed greatly to the heightened interest in the field, attracting much
young talent and leading to the gradual emergence of its corresponding scientific
and engineering foundations. The proceedings from the MODELS conferences
are one of the primary references for anyone interested in a more substantive
study of the domain.

The 12th conference took place in Denver in the USA, October 4–9, 2009
along with numerous satellite workshops and tutorials, as well as several other
related scientific gatherings. The conference was exceptionally fortunate to have
three eminent, invited keynote speakers from industry: Stephen Mellor, Larry
Constantine, and Grady Booch.

A distinguishing feature of this year’s conference was the inclusion, for the
first time, of a dedicated “Empirical Results” papers category. The objective
was to provide a specific forum for publishing significant results, from both
industry and research, of the innovative application of model-based methods
in practice, so that the broader community could be better informed of the
capabilities and successes of this relatively young discipline. Consequently, a
significant proportion of accepted papers belong to this category, indicating an
accumulation of pent up high-quality scientific and technical work, which lacked
a proper venue in the past and also demonstrating the increasing importance of
model-based approaches in practice.

The program committee received 248 submissions from 33 countries. A num-
ber of papers were co-authored by researchers from different institutions in dif-
ferent countries, indicating a very healthy trend towards scientific collaboration
unhampered by institutional and geographic borders. Of these the committee
selected 45 full papers and 13 short papers, giving an acceptance rate of 18%
and 5%, respectively.

As is customary, the program committee selected a small number of ex-
ceptional full-paper submissions that received the “Most Distinguished ACM
SIGSOFT Paper Award”. In addition, the best MODELS 2009 submission was
chosen for the “Springer Best Paper Award”. Last but certainly not least, from
the papers published in the proceedings of the � UML � (MODELS) confer-
ence, the steering committee selected the one that, in their opinion, had had the
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greatest impact for the “Ten-Year Most Influential Paper Award” also provided
by Springer.

We would like to thank everyone who submitted papers as well as proposals
for workshops and tutorials. We would also like to express our gratitude to the
large number of volunteers who contributed to the success of the conference. As
in the past, special kudos are due to Richard van de Stadt, for his unfailing and
always timely support of the highly versatile CyberChairPRO system. Last but
not least, we would like to thank our sponsors, ACM, Aerospace, IEEE Computer
Society, and Springer for their support of the MODELS 2009 conference.

October 2009 Andy Schürr
Bran Selic
Rob Pettit

Sudipto Ghosh
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Claudiu Farcas
Emilia Farcas
Daniel Mendez Fernandez
Bernd Finkbeiner
Beat Fluri



XII Organization

Frederic Fondement
Andrew Forward
Gregor Gabrysiak
Nadia Gamez
Xiaocheng Ge
Christian Gerth
Giacomo Ghezzi
Roxana Giandini
Mike Giddings
Emanuel Giger
Mario Gleirscher
László Gönczy
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Models. Models. Models. So What?

Stephen J. Mellor
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StephenMellor@StephenMellor.com

Abstract. In 1985, in an interview for some then-popular magazine, I
was asked when models and model-driven development would become
commonplace. ”In three years time,” I replied confidently. In 1987, I was
asked the same question, and my answer remained the same. And 1989.
And ’91. Were you to ask me the same question today, I would answer
it in the same way. Perhaps I should have gone surfing instead.

While my answer has the virtue of consistency, how could I–how could
we?–have been so wrong? Of course, we didn’t have the technology back
then. And we didn’t have the computer power that could allow us to
ignore certain inefficiencies introduced by abstraction. But have things
really changed that much in nearly a quarter of a century? Our tools
and computers are certainly better, but it is clear that we have failed to
convert the great unwashed to the benefits and wonders of models and
model-driven engineering.

This keynote will take a personal view of why we have (let’s be posi-
tive, shall we?) yet to succeed. It will explore several technical, business
and marketing issues that have impeded our progress. And because a
keynote is intended to be positive, leaving delegates upbeat and ener-
gized, we shall also examine some encouraging indicators that could lead
to model-driven engineering soon becoming commonplace. In, oh, let’s
say, three years?

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 2–16, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Modeling Modeling 

Pierre-Alain Muller1, Frédéric Fondement1, and Benoît Baudry2 

1 Université de Haute-Alsace, Mulhouse, France 
{pierre-alain.muller,frederic.fondement}@uha.fr 

2 IRISA / INRIA Rennes, Rennes, France 
benoit.baudry@irisa.fr 

Abstract. Model-driven engineering and model-based approaches have perme-
ated all branches of software engineering; to the point that it seems that we are 
using models, as Molière’s Monsieur Jourdain was using prose, without know-
ing it. At the heart of modeling, there is a relation that we establish to represent 
something by something else. In this paper we review various definitions of 
models and relations between them. Then, we define a canonical set of relations 
that can be used to express various kinds of representation relations and we 
propose a graphical concrete syntax to represent these relations. Hence, this pa-
per is a contribution towards a theory of modeling. 

1   Introduction 

Many articles have already been written about modeling, offering definitions at vari-
ous levels of abstraction, introducing conceptual frameworks or pragmatic tools, de-
scribing languages or environments, discussing practices and processes. It is amazing 
to observe in many calls for papers how modeling is now permeating all fields of 
software engineering. It looks like a lot of people are using models, as Monsieur 
Jourdain [22] was using prose, without knowing it.  

While much has already been written on this topic, there is however neither precise 
description about what we do when we model, nor rigorous description of the rela-
tions among modeling artifacts. Therefore we propose to focus on the very heart of 
modeling, straight on the relation that we establish to represent something by some-
thing else, when we say that we model. Interestingly, the nature of these (some)things 
does not have to be defined for thinking about the relations between them. We will 
show how we can focus on the nature of relations, or on the patterns of relations that 
we may discover between these things. 

This paper is a contribution towards a theory of modeling. Whilst focused on mod-
eling in software development and model-management, the presented material may 
apply to models in general, and in other disciplines. We define a canonical set of 
relations that can be used to ease and structure reasoning about modeling. This ca-
nonical set contains 5 representation relations that may be refined with nature (ana-
lytical/synthetical) and causality (correctness/validity). 
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The paper proceeds as follows: after this introduction, section 2 (related works) 
summarizes what several authors have said about models, section 3 defines a set of 
primitive representation relations based on the analysis of these various points of 
views, section 4 illustrates the use of the notation via several examples excerpted 
from the software engineering field, and finally section 5 draws some final conclu-
sions and outlines future works. 

This paper is the result of numerous informal discussions we have had with so 
many people that it is almost impossible to enumerate them all here. We would like to 
especially thank a few of them: including Jean-Marie Favre, Thomas Kuehne, Colin 
Atkinson, Marc Pantel, and Christophe Gaston. We would also like to acknowledge 
the invaluable comments of anonymous reviewers of an earlier version of this paper. 

Table 1. Summary of model definitions 

Bézivin “A model is a simplification of a system built with an intended goal 
in mind. The model should be able to answer questions in place of 
the actual system.” [2] 

Brown “Models provide abstractions of a physical system that allow  
engineers to reason about that system by ignoring extraneous details 
while focusing on the relevant ones.” [3] 

Jackson “Here the word ‘Model’ means a part of the Machine’s local 
storage or database that it keeps in a more or less synchronised 
correspondence with a part of the Problem Domain. The Model 
can then act as a surrogate for the Problem Domain, providing 
information to the Machine that can not be conveniently obtained 
from the Problem Domain itself when it is needed. ” [4] 

 
Kuehne “A model is an abstraction of a (real or language based) system 

allowing predictions or inferences to be made.” [5]  
 

Ludewig “Models help in developing artefacts by providing information 
about the consequences of building those artefacts before they 
are actually made.” [1] 

OMG “A model of a system is a description or specification of that system 
and its environment for some certain purpose.” [6] 

Seidewitz “A model is a set of statements about some system under study 
(SUS).” [7] 

Selic “Engineering models aim to reduce risk by helping us better  
understand both a complex problem and its potential solutions 
before undertaking the expense and effort of a full implementation.” 
[8] 

Steinmüller A model is information: on something (content, meaning), created 
by someone (sender), for somebody (receiver), for some purpose 
(usage context). [9] 
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2   Related Works 

Much has already been written on modeling. In this section we will examine related 
works, and start to classify what authors have said about models. The following table 
contains a summary of model definitions, even if Jochen Ludewig states in [1] that 
“nobody can just define what a model is, and expect that other people will accept this 
definition; endless discussions have proven that there is no consistent common under-
standing of models”. 

Features of Models 
According to Stachowiak [10] a model needs to posses the following three features: 

• Mapping feature. A model is based on an original. 
• Reduction feature. A model only reflects a (relevant) selection of an origi-

nal’s properties 
• Pragmatic feature. A model needs to be usable in place of an original with 

respect to some purpose. 

According to Bran Selic [8] an engineering model must posses the following five 
characteristics: 

• Abstraction. A model is always a reduced rendering of the system that it 
represents. 

• Understandability. A model must remain in a form that directly appeals to 
our intuition. 

• Accuracy. A model must provide a true-to-life representation of the modeled 
system’s features of interest. 

• Predictiveness. A model must correctly predict the interesting but nonobvious 
properties of the modeled system. 

• Inexpensiveness. A model must be significantly cheaper to construct and ana-
lyse than the modeled system. 

Different Kinds of Models 
Ed Seidewitz classifies models in two categories: descriptions and specifications. “A 
model may be used to describe a SUS (System Under Study). In this case, the model is 
considered correct if all statements made in the model are true for the SUS. Alterna-
tively, a model may be used as a specification for a SUS, or for a class of SUS. In this 
case, a specific SUS is considered valid relative to this specification if no statement in 
the model is false for the SUS.” [7]. 

Jean-Marie Favre, reminds us that systems have the truth, not models: “Making the 
distinction between specification models and descriptive models is useful to express 
who, of the model or the system, has the truth” [11]. Jochen Ludewig further states  
that in order to make our models more useful we have to compare them with reality: 
“The reality is always right and the model is always wrong” [1]. This is also ac-
knowledged by Michael Jackson: “The model is not the reality” [4]. Wolfgang Hesse,  
 



 Modeling Modeling 5 

stresses the fact that in software engineering models often play a double role: they 
may be either prescriptive or descriptive, depending on whether it is there earlier or 
later than its original [12]. He coins this the Janus View. This is close to the opinion 
of Bran Selic, in [8] where he states that the models may be developed as a precursor 
to implementing the physical system, or they may be derived from an existing system 
or a system in development as an aid to understanding its behavior. 

Kuehne, going back to Peirce’s (1839-1914) seminal work about semiotic, also dis-
tinguishes between token and type models  [5]. He gives the following definitions: 

 

• Token models. “Elements of a token model capture singular (as opposed to 
universal) aspects of the original’s elements, i.e., they model individual prop-
erties of the elements in the system.” 

• Type models. “Most models used in model driven engineering are type mod-
els. In contrast to token models, type models capture the universal aspects of a 
system’s elements by means of classification.” 

 
Another classification of models is provided by Mellor and his colleagues in [13] 
taking yet another perspective on models. The distinction is made between three kinds 
of models, depending on their level of precision. A model can be considered as a 
Sketch, as a Blueprint, or as an Executable. Fowler suggests in [14] a similar distinc-
tion based on three levels of models, namely Conceptual Models, Specification Mod-
els and Implementation Models. 

Definition of Relations between Models 
In [15] Bézivin identifies two fundamental relations coined RepresentationOf and 
ConformantTo. Jean-Marie Favre shows in [16] that the ConformantTo relation is 
actually a short-cut for a pattern of RepresentationOf and ElementOf relations. In 
Jean-Marie Favre’s view (called mega-model), further expressed in [17], all MDE 
artifacts can be described with 4 (+1 derived) basic relations (RepresentationOf, Ele-
mentOf, DecomposedIn, IsTransformedIn, and the derived ConformsTo). 

Ed Seidewitz also identifies two relations [7], named interpretation (the relation-
ship of the model to the thing being modeled) and theory of the modeling language 
(the relationship of a given model to other models derivable from it). 

3   Towards a Model of Modeling 

In this section we will define a model of modeling along with a notation to represent 
relations between modeling artifacts. By a model of modeling (hence the title of this 
paper: modeling modeling) we designate a representation of what we manipulate 
when we use modeling techniques. Our target domain is software development; there-
fore, all our examples will be drawn from the software engineering field. 

We will use a very simple language to build this representation, based on “things” 
and “arrows” between them, such as the “objects” and “morphisms” found in Category 
Theory [18]. Things can be anything (this includes what other authors have called 
models and systems), and nothing has to be known about the internal structure of these  
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things (which therefore do not have to be collections of “elements”). Conversely, ar-
rows do not need to be functions between sets (thus arrows cannot be applied to “ele-
ments” but only composed with other arrows). 

We do not want to come up with a brand new interpretation of what a model is. In 
our mind, the model of modeling that we are defining should reflect (or encompass) 
the various points of views which have already been expressed by the authors cited in 
the related works. To this end, we will first analyze these points of view, and next use 
our simple notation to synthesize them all into one single representation. 

Let’s start by modeling the fact that we have things which represent others things. 
As stated by Bran Selic [8], we first have to find a tradeoff between abstraction and 
understandability; therefore we will depart from the single System class view of Jean-
Marie Favre [11], and distinguish between a source thing (that many authors call the 
model) and a target thing (called original by Stachowiak [10]), although we under-
stand that being a source thing or a target thing is relative to a given arrow, and does 
not imply anything about a given thing. This is represented in Figure 1, where the 
source is named X, the target Y, and the RepresentationOf relation μ. 

 

Fig. 1. X is a representation of Y 

We are using on purpose a very simple graphic concrete syntax for representing 
modeling relations. Our notation is based on arrows, and is intended to be easy to 
draw by hand (on blackboard and napkins). 

Intention 
Neither things nor representations of things are built in isolation. As said by Stein-
müller, both exist for a given purpose, exhibit properties, are built for some given 
stakeholders [9].  

We can think about this as the intention of a thing. Intentional modeling [19] an-
swers questions such as who and why, not what. The intention of a thing thus repre-
sents the reason why someone would be using that thing, in which context, and what 
are the expectations vs. that thing. It should be seen as a mixture of requirements, 
behavior, properties, and constraints, either satisfied or maintained by the thing.  

As already said earlier, the “category theory kind” of thinking that we take in this 
paper does not require a description of the internals of the modeling artifacts (nor 
their intentions). Hence, it is enough to say that artifacts have an intention. The inten-
tional flavor of models has also been used by Kuehne [23] in his description of meta-
modeling and by Gasevic et al. in their extension of Favre's megamodel [24]. The 
consequences of intentional thinking applied to modeling can be understood and  
represented using Venn diagrams [20]. The following table summarizes how the  
μ-relation may be specialized: 
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Table 2. Variations of the μ-relation, and graphical notation 

 Intention Description Notation 
a) 

 

X and Y have totally 
different intentions. This 
usually denotes a shift in 
viewpoints. 

 

 

b) 

 

X and Y share some 
intention. X and Y can be 
partially represented by each 
other. The representation is 
both partial and extended. 

 

 

c) 

 

X is a partial representation 
of Y. Everything which 
holds for X makes sense in 
the context of Y. Y can be 
partially represented by X. 

 

 

d) 

 

X and Y share the same 
intention. They can repre-
sent each other. This usually 
denotes a shift in linguistic 
conformance. 

 

 

e) 

 

X covers the intention of Y; 
X can represent Y, but X has 
additional properties. It is an 
extended representation. 

 

 

 
All authors agree to say that the power of models stems from the fact they can be 

used in place of what they model, at least for some given purposes. This is what Sta-
chowiak [10] calls the pragmatic feature of models. In practice it is convenient to 
work with a subset of the intention, and to consider that the μ-relation is a complete 
representation of that given subset: hence the μ/I notation below, which means that X 
is a representation of Y (for a given subset of the intention). The I sign can then be 
used elsewhere in a diagram, to show that a given pattern holds for that subset of  
the intention. If intention is constant throughout the diagram, it can be omitted as a 
notation shortcut.  

Table 3. Notation shortcut. X is a complete representation of Y, for a given subset of the 
intention (in a given context). 

X

X

Y

Y
X1 Y

X2

I(Y)

 

I(X) I(Y) 

I(X) I(Y) 

I(X) I(Y) 

I(X) I(Y) 

I(X) I(Y) 
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Analytical vs. Synthetical Nature of Representations 
As seen earlier, several authors make a distinction between analytical models and 
synthetical models (respectively descriptive and specification models in the sense of 
Seidewitz [7] and Favre [11]). 

An analytical representation relation states that the source expresses something 
about the target. We define the analytical representation (represented μα) as: 

 
where Tα is a relation such as X can be derived (or abstracted) from Y. In model-
driven parlance Tα could denote a model-transformation. Interestingly, intentions of 
source and target do not necessarily have to overlap (notice that for convenience we 
use here a simple arrow as a placeholder for the different kinds of relations that we 
have defined in table 2). In terms of truth (as coined by Favre), truth is held by the 
target in case of μα representation. 

A synthetical representation relation explains that the target is generated from the 
source. We define the synthetical representation (represented μγ) as: 

 
where Tγ is a relation such as Y can be derived (or generated) from X. In model-
driven parlance Tγ could again denote a model-transformation. In terms of truth, truth 
is held by the source in case of μγ representation. If we talk in terms of intentions, this 
means that the intention of Y can be generated (synthesized) from the intention of X, 
or at least be driven by the intention of X, as Y is actually the result of Tγ applied to 
X. Quantifying the respective contributions of X and Tγ to the synthesis of Y is out of 
the scope of this paper. 

However, if one wants to represent that the transformation significantly contributes to 
the target's intention, it is possible to use an explicit representation such as in Figure 2. 
Y is partially generated from X (for the S part of the intention). The complement (the S' 
part) is provided by Tγ. This could typically be used to represent that X is a PIM (Plat-
form Independent Model), and Y a PSM (Platform Specific Model), with the specifics 
of the platform being introduced in Y by the Tγ transformation. 

 

 

Fig. 2. Explicit representation of the contribution of the transformation used to generate Y from X 

Causality 
Causality addresses the synchronization concern raised by Michael Jackson [4]; it 
expresses both when the μ-relation is established, and how (if ever) it is maintained 

X Y

S 

Tγ | Y = Tγ (X) 

S’ 
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over time. Causality is either continuous (the relation is always enforced) or discrete 
(the relation is enforced at some given points in time). Causality is also tightly cou-
pled with the truth of Favre [11];  actually, causality is a concern about whether a 
representation is still meaningful when the truth has changed. Going back to the defi-
nition of correctness and validity given by Ed Seidewitz [7], causality states: 

• for an analytical representation, when X is correct wrt. Y.  
• for a synthetical representation, when Y is valid wrt. X.  

 
For computer based systems, causality is typically discrete, and making the models 
meaningful requires adherence to results of information theory such as Nyquist-
Shannon sampling theorem [21]. Causality can be used to re-visit the definition given 
by Wolfgang Hesse, who makes an amalgam between analytical/synthetical represen-
tation, and earlier/later existence, when he proposes to distinguish between descrip-
tive and prescriptive “depending on whether it is (the model) there earlier or later 
than its original” [12]. A way to lift this ambiguity is to separate clearly between 
nature (analytical/synthetical) and causality (correctness/validity) of the representa-
tion relation. In Figure 3 the model is a causal analytical representation of the system. 
If the system changes, the causal μα relation implies that the model is updated. In turn, 
as the model is also a causal μγ representation of the program, the program is updated 
to remain an analytical representation of the system.  

 

 

 
Causal representation 

Fig. 3. Causality implies maintaining the representations over time 

Transitivity 
Transitivity addresses the composition properties of μ-relations of the same nature. 
Transitivity is realized when the intention of a composed μ-μ-relation contains the 
intention of a μ-relation. If transitivity holds, then it is possible to use the model of a 
model of a thing, in place of the model of that thing.  

In some cases, there is only one possible result for the composition of relations. For 
example, on the third line of Table 4, if X is an extended representation of Y and if Y 
has the same intention as Z, then X is an extended representation of Z. In some cases 
there are 2 or 3 possible results when composing relations. For example, Figure 4 
illustrates the two situations that can occur when X is an extended and partial repre-
sentation of Y and Y is an extended and partial representation of Z. In case a, the 
intention that X shares with Y does not overlap at all with the intention that Y shares 
with Z, this means that X and Z have two completely different intentions.  In case b, 
the intention that X shares with Y overlaps with the intention that Y shares with Z, 
this means that X is an extended and partial representation of Z. 
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X Y Z
X

Y Z

a b  

Fig. 4. Intention overlapping when composing partial extended relations 

Table 4. Composition law for representations 

 

 
 
 

 

4   Examples 

4.1   This Is Not a Pipe 

Let's examine the already classic example inspired from Magritte's painting. The pic-
ture is a μα representation of the pipe. The picture and the pipe share some intention. In 
addition, the real pipe could be used to smoke, while the picture could be used to show 
the pipe remotely. This is represented by an extended partial μα representation. 

In the following example, the distribution of colors plays the role of an analytical 
model, providing information about the picture from which it is generated. It does not 
share intention either with the picture or with the pipe (this is modeled by the dashed 
arrow); however it may be used to have an idea of the color of the real world pipe 
(transitively following the μα relations). 
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Fig. 5. Example of μα relations 

4.2   Jackson'sProblem Domain and Machine 

In table 2, the c) case represents the fact that the target (in our case generated) thing 
contains the intention of the source thing. This is especially interesting in case the 
source was itself in a μα relation with a third thing. Figure 6 shows such situation. M 
stands for model, S for system, and R for representation (with the idea that R is a 
computerized representation, in other words a program which implements S). 
 

 

Fig. 6. Generated machine implementing a μα representation 

This is the typical case for modeling, such as described for instance by Michael 
Jackson. S is the problem domain. R is what Jackson calls the machine. The μα rela-
tion from R to S is what Jackson calls the “‘model’ which is part of the local storage 
or database that it keeps in a more or less synchronized correspondence with a part 
of the problem domain” [4]. This view is also in line with Bran Selic, who states: “the 
model eventually becomes the system that it was modeling” [8]. 

The partial μγ and the extended μα relations express the fact that R is “richer” than 
M (and thus S) in terms of intention, because R contains additional information re-
quired for execution. The intention of the model can also be seen as the intersection of 
the intensions of the machine and the problem domain. The grayed part represents the 
additional intension required to "implement" the intention of the problem domain. 
This is what we name platform dependence in Figure 7. 

 

 
Fig. 7. The machine implements the subset of intention of the problem domain, represented by 
the model 

R = The Machine 

S = The Problem Domain 
Model 

Real world object 

Distribution of 
colors 

.jpg 

Platfom Dependence 

I ( Problem Domain) 

I ( Model) I ( Machine) 
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4.3   PIM, PSM and PDM 

A PSM (Platform Specific Model) is a refinement of a PIM (Platform Independent 
Model), which contains additional platform information as given by a PDM (Platform 
Description Model). The Venn diagram in Figure 8 shows how all successive levels 
of refinement extend the intention of the System, with platform dependent informa-
tion required for implementation. 

We also see here how the previous example (the triad System-Model-Representation) 
may be used as a meta-modeling pattern, by replacing M (the model) by PIM and R (the 
representation) by PSM (PDM was left unexpressed in the pattern).  

 

 

Fig. 8. Refinement of PIM into PSM, with platform specific information 

4.4   Host-Target Development 

In host-target development, the same program (here the model) is compiled both for a 
host machine (typically a workstation) and a target machine (typically some embed-
ded computer). This allows early problem detection, even before the final hardware 
machine is available. Therefore, the host implementation can be considered as a par-
tial analytical model of the target implementation (it may also be extended by host 
specific concerns). 

 

 

Fig. 9. The host implementation provides information about the target implementation 

Model 

Target
Implementation           Host 

Implementation 

PSM2 PSM1 PIM System 

PDM1 PDM2 

I(PIM) I(PSM1) 
I(PSM2) 
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4.5   Round-Trip Engineering 

Code skeletons are generated from UML class diagrams (represented by the μγ). Then, 
developers extend the skeletons by hand. If developers change the structure of the final 
program (and therefore also the structure of the skeletons which get updated at the same 
time as they live in the same file), then the class diagram has to be changed accordingly. 
We model this with a causal μα relation between class diagrams and Java skeletons. The 
causal nature of the relation implies that the model is always up-to-date. 

 

 
Fig. 10. Using causality to model round-trip engineering 

4.6   Model-Based Testing 

Model-based testing is performed by generating test cases that can be used to test the 
program. As represented in Figure 11, the model and the program are developed on 
one side while the test cases are developed separately. Then, testing consists in check-
ing the consistency between these two views on the system. When an inconsistency is 
detected, an error has been found. 

The test model is a partial representation of the system, with an additional intention 
of testing (looking for errors) that is not present in the system. The test model is also a 
partial representation of the model that shares intentions with the model (the concepts 
manipulated by these representations are the same), but again the test model has this 
additional test intention. Symmetrically, the model is a representation of the system. 
The model is then used to generate parts of the program. 

When the test model is rich enough, test cases can be automatically synthesized 
from this model, according to a test adequacy criterion. Thus there exists a μγ relation  
 

 

Fig. 11. Model-based testing 
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between these things. This particular relation also implies that the μα relation between 
the test model and the system is propagated to the test cases that are thus also repre-
sentations of the system. 

The last interesting relationship that appears on the figure is that test cases are rep-
resentations of the program since they can provide information to analyze the pres-
ence of errors in the program. However, these two things do not share any intention 
since test cases aim at detecting errors in the program while the program aims at pro-
viding functionalities to some user. 

4.7   Eclipse EMF  

This example is drawn from the tutorial T38 "Introduction to the Eclipse Modeling 
Framework" delivered at OOPSLA'06. The tutorial includes generating a working 
graphical editor to create and manipulate instances of a UML model. The editor is 
made of three generated Java projects (respectively Model, Edit, and Editor). 

The process starts with an XML file that contains a schema which represents a pur-
chase order system. The various modeling artifacts are represented in Figure 12. 

Purchase 
Order System

.xsd .ecore 

Model.java 

Edit.java 

Editor.java 

.genmodel 

 

Fig. 12. Purchase order Eclipse EMF tutorial 

The XML schema (.xsd file) is a μα representation of the system (wrt. a given in-
tention I). The schema is used to generate an EMF model (.ecore file). The model and 
the schema share the same intention I, as shown by μα/I relations. The model is then 
used to generate a generation model (.genmodel) which is also in a μα relation with 
the system. The .genmodel contains additional information (wrt. the model) to drive 
the code generation process; therefore it is the target of a partial μγ relation. Three 
Java projects are generated from the generation model: model, edit, and editor. 
Edit.java is a Java projection of the model, thus it is a μα/I representation of the sys-
tem as well. Edit.java contains general editing mechanisms (not dependent on the 
graphical user interface) and uses the java projection of the model (represented with 
another μα relation). Finally, Editor.java provides end-user editing facilities to visual-
ize models, using a tree-based explorator. 

5   Conclusion 

In this paper we have analysed various definitions of models, as found in the related 
works, and we have proposed a modeling language which can be used as a foundation 
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to represent the various representation relations between models, metamodels and 
languages. 

Our language focuses on representation relations between modeling artifacts, with-
out actually trying to understand the nature of these artifacts. Ignoring the details of 
their internal structure appears to be very effective because it magnifies the fact that 
modeling is a matter of relations and roles, and not intrinsic to the artifacts. 

We have identified 5 variations of the representation relation (based on their inten-
tion), two natures (analytical and synthetical), and taken causal dependencies and 
transitivity into account. We have illustrated our approach with several simple exam-
ples, drawn from the software engineering domain. 

From a practical point of view, we hope that this step toward a better understand-
ing of representation relations will serve as a basis for rigorous metamodeling tools, 
in the same way as relational algebra triggered the development of efficient databases.   
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Abstract. Multi-level modeling using so-called clabjects has been proposed as 
an alternative to UML for modeling domains that feature more than one classi-
fication level. In real-world applications, however, this modeling formalism has 
not yet become popular, because it is a challenge to efficiently represent large 
models, and providing fast access to all information spread across the meta-
levels at the same time. In this paper we present the model representation con-
cept that relies on a permanent condensed view of the model, the corresponding 
traversal algorithms, and their implementations that proved adequate for model-
driven engineering of industrial automation systems consisting of hundreds of 
thousands of model elements. 

Keywords: Clabject, Multi-Level Modeling, Efficient Representation. 

1   Introduction 

For the development of software intensive systems, model-driven engineering (MDE) 
is a promising approach for handling their inherent complexity. For real-world appli-
cations, MDE requires adequate means for describing the system’s essential proper-
ties. In particular for domains that feature more than one classification-level, also 
known as meta-level, prominent modeling languages such as UML [1] fall short and 
workarounds are required [2]. Multi-level modeling, as an alternative to UML, is able 
to handle multiple domain meta-levels within a uniform framework [3]. Advantages 
of such a modeling approach have been shown by several contributions [2, 4, 5]. 

In real-world applications, however, multi-level modeling has been barely applied. 
Major hurdles for adopting a multi-level formalism are the lack of (1) available mod-
eling environments that allow rapid prototyping, (2) real-world applications that cor-
roborate the benefits of multi-level modeling, and (3) efficient implementations that 
are capable of handling large models. This paper focuses on (3) and briefly touches 
(2). Examples of (1) are described e.g. by Gutheil et al. [4]. 

We have applied multi-level modeling for automation systems in the domain of 
combustion engine development. There we use MDE to generate configuration pa-
rameters for the automation system. As it turned out in practice, the classification 
hierarchy supported by multi-level modeling is crucial for building and maintaining 
concise models. For the model transformations and for end-user views, however, it is 
often necessary to have a “condensed” view such that for a certain model element all 
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structural properties are easily accessible, rather than having to traverse the whole 
meta-level hierarchy to collect that information. What makes matters even more com-
plicated is that this condensed view in practice is not only used for read access, but is 
also modified. This implies that a method is needed for transparently mapping modi-
fication operations on the condensed view to the classification hierarchy. 

This paper shows how to efficiently store and traverse a multi-level model, which 
is also capable of handling modification operations. Together with an efficient repre-
sentation, we are able to provide a permanent condensed view of the model, which 
turned out to be the preferred access method for end-users. Since our models typically 
are large, that is, in the order of hundreds of thousands of model elements, we validate 
our performance goals by using sufficiently large test models. 

In the following we present the basics of multi-level models in our domain and key 
requirements for their representation and retrieval. We then describe our representa-
tion method and a traversal algorithm. Finally, we evaluate our implementation. 

2   Multi-Level Modeling with Clabjects 

Automation systems in our domain are inherently complex for various reasons. They 
are usually built individually and comprise a large number of ready made parts, which 
are often customized. They also integrate sophisticated measurement devices that are 
software intensive systems by themselves. In this section we briefly describe the 
multi-level modeling approach that was employed to cope with that complexity [5]. 

Multi-level modeling is an alternative approach to conventional modeling that is 
able to overcome the limited support for modeling domain metalevels. The basic idea 
of multi-level modeling is to explicitly represent the different abstraction levels of 
model elements. Assume, for example, that we have to model concrete combustion 
engines, but also families of combustion engines from different vendors that specify 
the properties of the individual engines, in UML. Conceptually, engine is an instantia-
tion of its family. Since instantiation is not directly supported at the M1 layer [1], 
workarounds such as the type-object pattern are required [2]. 

Different flavors of multi-level modeling have been proposed as solutions. Atkin-
son and Kühne, for example, propose a uniform notion of classes and objects, known 
as a clabject [2], that allows for an arbitrary number of classification levels; its advan-
tages are well documented [3, 2, 4]. In principle, a clabject is a modeling entity that 
has a so-called type facet as well as an instance facet. It thus can be an instance of a 
clabject from a higher level, and at the same time it can be the type for another clab-
ject instance at a lower level. Figure 1 shows the clabject model of our combustion 
engine example. The notation used here is similar to that of the original clabject con-
cept, that is, a combination of UML notations for classes and objects [2, 6]. Each 
model element has a compartment for the name, and a combined compartment for the 
type facet and the instance facet. The arrows between the levels represent the “in-
stance of” relationship. At the domain metatype level, the types Engine, Diesel En-
gine and Otto Engine are modeled like a conventional class hierarchy. Their fields, 
which are the equivalent of attributes in multi-level modeling [2], such as Inertia and 
Preheat_Time, are part of the corresponding clabject’s type facet.  
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Fig. 1. Clabject-based engine model 

Specified at the domain type level, the clabject DType is an instance of Diesel En-
gine. It provides values for the fields Max_Speed and Preheat_Time, which are part of 
DType’s instance facet, and introduced a new field ECU_Version, which is part of 
DType’s type facet. The domain instance D1 in turn instantiates DType and provides 
values for Inertia and ECU_Version. Note that D1’s type facet is empty. By defini-
tion, the clabjects at the top-level only have a type facet, whereas the clabjects at the 
bottom level only have an instance facet. 

3   Model Representation and Traversal Requirements 

Analyzing the intended uses of our models, we can identify a number of requirements 
and assumptions regarding the usage of the models and expected performance and 
space requirements. This guides the design and implementation of the actual internal 
representation as well as the traversal algorithms. 
 
(I) Large models. Due to the inherent complexity of the domain, we expect the mod-
els to be large, that is, consisting of more than 100,000 elements. This implies that we 
have to be able to represent models of considerable size in a memory-efficient way. 
 
(II) Structural similarity. Automation systems in our domain typically are usually 
built individually of ready made parts, which are often customized. A substantial 
amount of these ready made parts, however, have similar structural information and 
share the same field values. For example, most temperature sensors are of the same 
type and thus the internal structure of their models is equivalent, except for some 
customization such as an additional plug. As an example, consider figure 2. 

 

 

Fig. 2. Multiple usage of sensor type: (a) unmodified, (b) with modification 
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Here the sensor type TSensor is instantiated multiple times. In case (a) the sensor 
type TSensor is used within the context of both, engine E1 as clabject T1, and engine 
E2 as clabject T2. In case (b) the sensor type TSensor is instantiated twice, but with a 
modification: in T2’ the element PlugC is added. The rest of the information modeled 
in TSensor, i.e. the containment of PlugA and PlugB, is the same for both instances. 
 
(III) Model traversal. The prospective users of models are either the end users, 
building or exploring the model in a graphical user interface, or the model transforma-
tion system, analyzing the model and applying transformations. In both cases, the 
main method for accessing model elements is through traversal, starting at the root of 
the containment hierarchy, and visiting connected and contained model elements. In 
contrast to random access, one does not access contained model elements directly. So 
in our example in figure 2 (b) PlugC is not accessed directly, but only by navigating 
from E2’ to T2’ and then to PlugC. 

We can distinguish two different ways of traversing a model: First, we can follow 
the connectors, which are the equivalent of associations in multi-level modeling [2]; 
for our example this corresponds to navigating from E2’ via T2’ to PlugC. Second, 
we can follow the instantiation and the generalization relationships; for the same 
example, this corresponds to navigating from E2’ to Engine or from T2’ to TSensor. 
Both traversals reveal essential information. Since for some uses, such as the model 
transformation, the complete model has to be traversed, it is crucial that the traversal 
of large models can be done in a reasonable amount of time. 

 
(IV) Condensed traversal. The model transformation, for example, focuses on the 
structure of a particular model element. It does not matter whether the structure is 
modeled at a certain model element itself, or whether is received via inheritance or 
instantiation. In other words, this requires a traversal by following the connectors, but 
also by incorporating the connectors that are instantiated or inherited. For users  
performing this kind of “mixed” traversal, i.e. following connectors and also the in-
stantiation and inheritance relationships, it is necessary to transparently “flatten” the 
classification hierarchy during traversal to provide a condensed view on the model.  

As an example, consider the model shown in figure 2 (a). When the model trans-
formation performs a condensed traversal, the information that both engines E1 and 
E2 use the same definition of TSensor is not relevant. What is relevant is the fact that 
both engines have a sensor with two plugs. So for the model transformation, all struc-
tural information modeled in TSensor appears as if it was modeled directly in E1 and 
E2. In the end, the result of the traversal looks like each engine defines its own sensor, 
as shown in figure 3 (a) and (b).  

 

 

Fig. 3. Transparent traversal result: (a) starting at E1, (b) starting at E2, and (c) starting at E2’ 

When we traverse the model starting at E1 we get the associated clabject T1, and in 
turn the clabjects associated with T1, i.e. PlugA and PlugB. Starting the traversal at 
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E2 yields an analogous result. Note that although in the model PlugA only appears 
within the definition of TSensor, in the overall traversal result the same plug appears 
twice: within E1, and within E2. In both occurences, however, PlugA represents dif-
ferent real-world elements and thus actually has different identities, stemming from 
the semantics of the composition aggregation. The information about the classifica-
tion, however, is not lost but available on request for each model element. For the 
elements T1 and T2, for example, it is possible to retrieve their types, i.e.  TSensor. 
For both appearances of PlugA the retrieved type is the PlugA contained in TSensor. 

For the case when the instantiation of TSensor is accompanied by a modification, 
as presented in figure 2 (b), we get the traversal result as shown in figure 3 (a) and (c). 
Again, starting the traversal at E1 yields the same result as described above. Starting 
the traversal at E2’, however, yields a different result: First we get the associated 
clabject T2’, and in turn the associated clabjects PlugA, PlugB, and PlugC.  Note that 
PlugC appears in the traversal result in the same way as PlugA and PlugB do. 

The algorithms necessary for condensed traversals could, of course, be imple-
mented by the model transformation itself. It turns out, however, that this kind of 
traversal is also required by our user interface, so the modeling environment supports 
condensed traversal as the default. 
  
(V) Modifiable traversal result. When a user traverses the model, the traversal result 
has to be modifiable, independent of the kind of traversal performed. While this is 
straightforward for the traversals following either connectors, or instantiation and 
inheritance, it is more difficult for the condensed traversal method. Assume, for ex-
ample, that a user traverses the model shown in figure 2 (a), which leads to the con-
densed traversal result show in figure 3 (a) and (b). Further assume that the user adds 
a plug named PlugC to T2. Performing this operation on the traversal result implies 
that the modeling environment has to store the difference between the original ele-
ment, which is TSensor, and its modified usage, which is T2. The expected effect on 
the traversal result is that the plug is retrieved additionally to the plugs already de-
fined in the original sensor, which is exactly what we have already seen in figure 3 
(c). Technically this requires determining the involved classification level and adding 
the modified elements there, such that we get the model as shown in figure 2 (b). 

4   Implementation 

The goals for moderate memory consumption (I) and good traversal performance (III) 
are contradicting, as keeping hundreds of thousands of individual elements in memory 
does not scale. So we have to trade memory for traversal speed. It turns out that the 
structural similarity in real-models (II) is a property that can be used to save memory, 
since we have to store structural information only once and reference that information 
when similar structures are modeled. For traversing the model in order to get the con-
densed view (IV), however, the saved memory implies some performance penalty 
since we have to reconstruct the structure of a clabject from the instantiation and 
inheritance relationships. Since the elements retrieved by the traversal have to be 
modifiable (V), we must add certain information such that the link between the classi-
fication hierarchy and the condensed view does not get lost, as shown in the sequel. 
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4.1   Language Representation 

The modeling environment has to provide the language models are built of. As such it 
must be capable of representing arbitrary models, model elements, their fields, and 
relationships between them. Furthermore, multiple classification levels have to be 
supported, so means for expressing instantiation and generalization have to be pro-
vided. The basic entities of our modeling language are Clabject, Connector, Field, and 
Data Type; they are shown in figure 4. 
 

 

Fig. 4. Representation of language elements  

The elements Clabject, Field and Connector are typical for clabject-based modeling 
languages [7]. What is unique by our solution is that the representation uses one single 
refines-relationship to represent both, instantiation as well as inheritance, for clabjects 
and connectors. We denote an element that is the source of a refinement relationship, 
i.e. a type or a generalization, as refined clabject, and the target of a refinement rela-
tionship, i.e. an instance or a specialization, as refining clabject. By using this single 
relationship we do not claim that the semantics of instantiation and inheritance are 
similar [8]. For the sole purpose of representing large models in memory and travers-
ing them, however, a uniform treatment is beneficial, as we will see. 

4.2   Permanent Condensed View 

It is important to note that the language as described above is the interface of the 
modeling environment, i.e. model elements are represented as clabjects, connectors, 
and fields. Due to the traversal requirements as outlined earlier, we know that con-
densed traversal is the primary access method. Thus in our implementation condensed 
traversal is not just another way of exploring the model, but it is built in as foundation 
of the modeling environment. Its realization, however, requires some optimized data 
structures to be able to provide the condensed view within reasonable bounds of run-
time and memory consumption. This, however, can be hidden from the users of the 
modeling environment.  

4.3   Traversal of Refinements without Modifications 

The simplest case of refinement (remember, this is either instantiation or inheritance) 
is refining an element without adding any additional information, neither additional 
structural information, nor any values for fields. An example of non-modifying re-
finement is shown in figure 2 (a). 

Let C be the set of all clabjects and x0∈C be a refining clabject that refines x1∈C, 
which in turn refines x2∈C, etc., such that we get the sequence of refined elements (x1, 
x2, …, xn), where xn∈C is an element that is not refined from any other element. Since 
neither inheritance nor instantiation allows circularity, n denotes the depth of the 
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refinement path and is a finite integer with n ≥ 0. Further let R be the mapping of a 
clabject to the sequence of refined elements, e.g. R(x0)= (x1, x2, …, xn).  

The basic scheme for the traversal is to visit the clabject at the root of the contain-
ment hierarchy, all its contained clabjects, and subsequently all clabjects in the re-
finement path. For compositions of refined clabjects we have to take special care 
since the contained elements can appear several times in the traversal result. An ex-
ample is the double occurrence of PlugA in figure 3 (a) and (b). The identity of these 
elements is not only defined by their refined element, but also by the “context” in 
which they appear. Since the refinement depth can be greater than one, the context is 
given by the sequence of refining elements. In figure 3 (a) the context for PlugA is 
given by the sequence (T1); in figure 3 (b) the context is given by the sequence (T2).  

Since such clabjects actually do not exist, but appear only in the traversal result, we 
call them “virtual” clabjects. Virtual clabjects are temporarily represented by light-
weight placeholder objects that are created on the fly during traversal. The garbage 
collector can dispose of them after the traversal has finished. We get the following 
algorithm for determining the condensed traversal: 
 

traverseClabject(x, ctx) performs a condensed traversal for the clabject x with con-
text ctx, which is a list of clabjects, by visiting the clabject itself and then subse-
quently all clabjects along the refinement hierarchy. For a non-refining clabject the 
context ctx is the empty list. The add…–calls denote that a node in the traversal is 
reached and that it should be added to the traversal result. The symbol  denotes 
recursion.  
 
1. Visit the clabject; note that for virtual clabjects the context defines its identity: 

a) addClabject(x, ctx). 
2. Visit fields, including that of refined clabjects: 

a) field a ∈ getFields(x): 
b)    addField (a).  

3. Visit contained clabjects, including that of refined clabjects: 
a)   ∀ (connector r, context c) ∈ getCompositions(x, ctx): 
b)       addConnector(r). 
c)        traverseClabject(r.target, c). 

 
getFields(x) collects all fields of clabject x by following the refinement path. The 
result is a list of fields. The symbol || denotes concatenation of lists. 

1.  Iterate over the refinement path, including x, to find fields of refined clabjects. 
a) ∀ clabject q ∈ x || R(x) : 
b)  set result  result || q. Fields. 

 
getCompositions(x, ctx) collects all compositions of clabject x with context ctx along 
the refinement path. Returns a list of pairs of the composition and the context.  

1.  Iterate over the refinement path, including x, to find compositions. 
a)    ∀ clabject q ∈ x || R(x) : 
b)      ∀ connector r, r.source = q ∧ r.kind = Composition 

Add the composition to the result; remember that the context of a refined clabject is 
the sequence of the refining clabjects in the current refinement path: 
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 c)          set result  result || (r, cxt || R(x).firstUntil(q)). 
(The list returned by firstUntil(q) does not include q, and is empty if q∉R(x).) 

4.4   Modification and Materialization 

The second case of refinement occurs when a refining element adds further informa-
tion. The example of figure 2 (b) shows that the refining element T2’ adds a plug to 
the structure of the refined clabject TSensor. Representing this case is straightforward 
since all the information about the modification is located at the refining element. 
More complicated is the situation where the information about the modification is not 
located in the refining element. Consider the example of figure 5.  

 

 

Fig. 5. Engine with two sensors: (a) model and (b) condensed view 

The left hand side (a) shows the model of an engine E1 that contains two instances 
of TSensor, namely T1 and T2. The right hand side (b) shows the condensed view 
containing the virtual clabjects for both sensors. Now assume that we want to connect 
PlugA of T1 with PlugB of T2. Since neither of these two plugs exists as a clabject, 
i.e. both are virtual clabjects in the condensed view, we have to transparently create 
some sort of proxy elements that can be endpoints of connectors. We call this process 
“materialization”, and figure 6 shows how it works. 

 

 

Fig. 6. Materialization: (a) model and (b) condensed view 

In order to be able to connect the two plugs, we first have to create the materialized 
representation of the corresponding virtual clabjects, as shown on the left hand side 
(a): PlugA of T1 is materialized as PlugA’, and PlugB of T2 is materialized as 
PlugB’. Now PlugA’ and PlugB’ are instances of the corresponding plugs of TSensor. 
Thus during materialization we create refinements. These refinements, however, until 
now do not contain any information except their identity, so they do not use much 
memory. After materialization, we can create a connector between PlugA’ and 
PlugB’. In the condensed view, as shown on the right hand side (b), we then also get 
the condensed view of both materialized clabjects. 
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A materialized clabject, similar to a virtual clabject, only needs to keep track of the 
refined clabject and the context, which is a list of references to other clabjects, to be 
uniquely identifiable. In addition, it only stores the difference information to the re-
fined clabject, so a materialized clabject also is a lightweight element. 

4.5   Traversal of Refinements with Modifications 

Traversing a model with simple modifications, i.e. additional contained elements 
directly at a refining clabject, is similar to traversing a model without modifications, 
but we also have to follow the additional compositions. It is easy to see that traverse-
Clabject  can already handle this case.  

For refinements with materialized clabjects, as shown in figure 6, a materialized 
clabject is reached indirectly by traversing its refined clabject since we follow only 
compositions. Consider the traversal order E1, T1, TSensor, and PlugA. Our algo-
rithm fails here since we expect to have PlugA’ in the traversal result, and not PlugA. 
To resolve that situation, we have to follow the refinement relationship in the reverse 
direction, since then we can transparently skip PlugA in the traversal and instead visit 
PlugA’. To prevent an exhaustive search for determining the inverse of the refinement 
relationship, we use a dictionary rmap that maps the refined elements to the refining 
elements. This map includes the elements that are depicted by the “Modification”-
relationship in the figure. In our implementation each clabject stores its own rmap, so 
we get the following traversal algorithm: 

 
traverseMaterializedClabject(x, ctx) performs a condensed traversal for the clabject 
x with context ctx; can handle clabjects as well as materialized clabjects. 

1.  Visit the clabject; note that for virtual clabjects the context defines its identity: 
a)    addClabject(x, ctx). 

2.  Visit fields, including that of refined clabjects: 
a)   ∀ field a ∈ getFields(x): 
b)     addField (a).  

3.  Visit contained clabjects, including that of refined clabjects: 
a)    ∀ (connector r, clabject y, context c) ∈ getMaterializedCompositions(x, ctx): 
b)       addConnector(r). 
c)        traverseMaterializedClabject(y, c). 

 
getMaterializedCompositions(x, ctx) collects all compositions of clabject x with 
context ctx. Returns a list of triples with: composition, target clabject, and context. 

1.  Iterate over the refinement path, including x, to find compositions: 

a)    ∀ clabject q ∈ x || R(x): 
b)         rmaps  rmaps || q.rmap.     (q.rmap retrieves the rmap of clabject q) 
c)         ∀ connector r, r.source = q ∧ r.kind = Composition: 

When there is a materialized clabject for the target, take that instead of the target: 

d)       if ∃ m, m ∈ rmaps: m.contains(r.target) then 
e)          set result  result || (r, m.get(r.target), cxt || R(x).firstUntil(q)). 
f)        else 
g)        set result  result || (r, r.target,  cxt || R(x).firstUntil(q)). 
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Traversing Non-Composition Connectors. Until now we have only considered 
compositions for traversal. For implementing the function getConnectors(x, ctx) that 
retrieves all connectors for a given clabject, we have to distinguish several cases. 
Consider figure 7. 

 

 

Fig. 7. Connectors and materialization: (a) model and (b) condensed view 

Following the connector g in analogous to following compositions such a and b. For 
following direct connectors between materialized clabjects, such as f, we also have all 
information that we need. For following indirect connectors, i.e. connectors that stem 
from refined elements, between materialized clabjects such as e in the context of T1, 
additional information is required. Assume that during traversal we are at PlugA’. 
Following the refinement leads to PlugA, in turn to e, and further to PlugB. Now, how-
ever, we cannot resolve to PlugB’. Having the rmap of T1 enables us to resolve that 
materialization, and in the general case we have to use the whole context for resolu-
tion. Thus the context becomes an essential part of every materialized clabject. A simi-
lar case is following an indirect connector from a virtual clabject to a materialized 
clabject, such as e in the context to T2. Here we also need to resolve the materialized 
clabject by inspecting the context. Since virtual clabjects cannot have direct connectors 
(they must be materialized first), we have no further cases to consider. 
 
Connector Refinement. Besides refining clabjects, also connectors can be refined. 
Handling these refinements requires resolving the refined connectors when we visit a 
connector during a traversal step. Analogously to refining clabjects, this only requires 
that we store the reverse refinement information at the corresponding clabject’s rmap. 
 
Field Refinement. Refining clabjects is not done as an end in itself, but typically is 
used to either provide field values in case of an instantiation, or to add new fields in 
case of a specialization. Thus the refinement relationship between two clabjects also 
relates their fields. Consider, for example, figure 7. Let TSensor declare the field 
Range. The instantiation of TSensor as T1 demands that we provide a range, e.g. from 
0 to 100. Thus we can say that the field Range of T1 refines the field Range of TSen-
sor. Extending getFields of our traversal algorithm is similar to extending getCompo-
sitions to getMaterializedCompositions. 
 
Refinement Path. The presentation of the algorithms above used the function R, map-
ping a clabject to the sequence of refined elements. In our actual implementation we do 
not maintain a global map, but rather at each clabject and materialized clabject we store 
a reference to the refined clabject only. While this is beneficial for the performance, it is 
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also necessary for the self-contained storage of the model parts, e.g. for building librar-
ies of model elements. This, however, is out of scope for this paper.  

4.6   Modifying the Condensed View 

Since the condensed view is permanently available in our environment, we have to 
ensure that for any element that is visited via traversal, modification is possible. 
Modification for clabjects and materialized clabjects is straightforward, since these 
are exactly the places where we store the modification information. For modification 
of virtual clabjects, we first have to materialize them. Since for each virtual clabject 
the context is known, we already have all information that is needed to create the 
materialized clabject. So with our representation we have ensured that modifying the 
condensed view is possible, and moreover, that only local information is required. 

5   Performance Evaluation 

In order to demonstrate the feasibility of the internal representation and the traversal 
algorithm presented in the previous section, we performed measurements on test 
data.1 We decided to use perfect n-ary trees in our tests. Informally, a perfect n-ary 
tree is a tree where all leaf nodes are at the same depth and each inner node, i.e. non-
leaf node, has exactly n children. This decision to use such trees is based on the fact 
that we wanted to have (a) test structures of varying size, with (b) varying refinement 
depth. Furthermore, (c) the implementation of the condensed view does not depend on 
associations between model elements. In addition, we (d) want to use the same kind 
of test data for evaluating future extensions of the language. In our particular case, we 
used m trees, where each was a perfect quaternary tree of depth d. This test data con-
struction simulates the existence of m top-level nodes in the model. The choice for 
quaternary trees is backed by the informal analysis of several models created with an 
earlier prototypical version of the modeling environment. Our tests use m = 3 and d 
ranging from five to nine, resulting in 4,095 to 1,048,575 clabjects.  

Tests are performed for two principal cases: (a) trees without clabject refinement, 
and (b) trees where clabjects are refined to reuse structural information. In case (a), all 
clabjects are individually created. Thus in the traversal we do not encounter any vir-
tual clabjects. In case (b), the structure of the lowest one or two levels is reused. If 
one level is reused, a clabject containing n leaves is created upfront. This is then re-
used for all clabjects at level d – 1. These clabjects thus contain n virtual clabjects 
each. In a subsequent test, we materialize them prior to traversal. Figure 8 shows the 
structure for both cases. 

The example on the left hand side represents case (a): a binary tree consisting of 
individually created elements. The example on the right hand side represents case (b): 
clabject A is created upfront, and is refined multiple times in the tree, resulting in 
virtual cjabjects as e.g. contained in A’. These virtual clabjects can be materialized, 
e.g. simply by renaming them to “x” and “y”. 
                                                           
1 All measurements were performed on a Dell Precision M65 Mobile Workstation, equipped 

with an Intel® CoreTM2 CPU operating at 2GHz and with 2 GB of main memory, and run-
ning Windows XP Professional. The runtime environment was Microsoft .NET 3.0. Tests 
were executed as individual processes to prevent side effects of e.g. the garbage collector. 
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Fig. 8. Test data used for the measurements 

If two levels are reused, a similar element is created upfront, but containing n clab-
jects which in turn refine from a clabject containing n leaves. While in principle it is 
possible to create even deeper reuse-hierarchies, we restricted the reuse depth in our 
test cases since we think this is a realistic measure for real world models. 

5.1   Traversal Performance 

As outlined in section 3, the model transformation code is one of the use cases for our 
models. In order to verify the feasibility of our modeling approach with respect to the 
performance requirements, we performed traversal tests of the whole model. Tra-
versal is done recursively on the condensed view, depth first, without performing any 
additional code besides book-keeping, such as counting the number of visited clab-
jects. The time is measured using .Net’s built in System.Stopwatch class. Case (a), i.e. 
a model without reuse, is taken as baseline. Traversal times for case (b), i.e. the mod-
els with element reuse, are expected to be slightly slower, since according to the im-
plementation described in section 4, the traversal has to create virtual leaf elements on 
the fly for each reused element. Traversal also has to keep track of the context infor-
mation. Table 1 shows the corresponding measurement results. 

Table 1. Model traversal performance 

Iteration Time [s] 
Refining Clabjects at 

1 Level 2 Levels 
Tree 

Depth 

Number 
of 

Clabjects 

No 
Clabject 
Refine-

ment 
Virtual Materialized Virtual Materialized 

5 4,095 0.02 0.02 0.02 0.03 0.02 
6 16,393 0.05 0.06 0.06 0.08 0.07 
7 65,535 0.14 0.24 0.24 0.31 0.29 
8 262,143 0.53 0.92 0.93 1.19 1.12 
9 1,048,575 2.15 3.53 3.65 4.74 4.54 

 
Somewhat unexpected, traversing the tree with virtual clabjects is roughly equally 

fast as traversing the tree with materialized clabjects. We interpret the result in that it 
shows that the dynamic creation of virtual clabject on the fly is fast, while maintain-
ing the context for virtual and materialized clabjects is an overhead. The time used for 
visiting one individual clabject does not increase with growing model size. More 
important, the numbers also show that our reuse approach is reasonable fast, both for 
interactive use at modeling time, where only small parts are traversed, and for use by 
the model transformation. 
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5.2   Memory Consumption 

Besides traversal performance, memory consumption of the models is one of our main 
requirements. Another series of tests was thus performed, measuring the impact of 
creating models on the total memory used by the process. Memory consumption is 
measured by using .Net’s built in System.GarbageCollector class before and after 
creating the model. The measured numbers thus represent the net size of the models. 
Case (a) again is the baseline. Models of case (b) are expected to consume significantly 
less memory than in case (a), since according to the implementation described in sec-
tion 4, virtual clabjects require no memory except for the context information, and 
even materialized clabjects need to represent only incremental information. Table 2 
shows the corresponding measurement results.  

Models for case (a), i.e. without reuse, require significant amounts of memory. In 
our example, up to 868.28 MB are necessary even for a model containing only simple 
clabjects with basic fields such as a name. In contrast, models for case (b), which 
reuse clabjects, require significantly less memory. For elements with one reuse-level, 
all leaves of the tree are virtual clabjects and do not require memory except for the 
context information. As expected, e.g. the tree of depth 9 with virtual clabjects as 
leaves, requires about the same amount of memory as the similar tree of depth 8, 
consisting of individually created clabject only. Analogously, the tree of depth 9 with 
two levels of reuse requires about the same amount of memory as the similar tree of 
depth 7 without reuse. 

Table 2. Model memory consumption 

Memory Consumption [MB] 
Refining Clabjects at 

1 Level 2 Levels Tree 
Depth 

Number 
of 

Clabjects 

No 
Clabject 

Refinement Virtual Materialized Virtual Materialized 
5 4,095 3.37 0.85 1.90 0.22 1.67 
6 16,393 13.23 3.42 7.31 0.85 6.36 
7 65,535 53.54 13.42 29.52 3.42 25.78 
8 262,143 215.01 54.30 119.26 13.43 103.23 
9 1,048,575 868.28 218.02 478.94 54.30 415.23 

 
The measurement was also performed where all virtual clabjects were materialized 

and thus exist as objects in memory. The memory consumption is still significantly 
lower than for the models containing individually created clabjects. In real world 
models, however, we expect only a fraction of the virtual clabjects to be materialized, 
so this additional memory consumption is expected to be negligible. While memory 
consumption for models without reuse is problematic, we can see that our reuse ap-
proach keeps the memory consumption within practicable bounds. 

6   Related Work 

Handling of large models is a common requirement for the application of modeling 
environments in practice. The definition of “large”, however, actually depends on the 
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kind of models and on the subject domain. A natural border case is a model that 
barely fits into main memory. For the Eclipse Modeling Framework [9], for example, 
this problem also arises and is solved by dynamically loading and unloading model 
parts, transparently performed by the persistency layer [10]. EMF or MOF-based 
modeling approaches [11], however, do not support multi-level modeling with clab-
jects. In our implementation, we could exploit the property of structural similarity, 
which allows incorporating the space-efficient representation right at the implementa-
tion of modeling elements, so we can represent sufficiently large models without 
reaching memory limits.  

The idea of unifying classes and objects has a long tradition in object-oriented pro-
gramming languages, namely in prototype-based languages such as SELF [12]. A 
SELF-object consists of named slots that can carry values, which in turn are references 
to other objects. SELF uses an “inherits from”-relationship that unifies instantiation 
and specialization. Chambers et al. report on a similar assumption as we do: “Few 
SELF objects have totally unique format and behavior”, since most objects are slightly 
modified clones [12]. They use so-called “maps” for representing common slots, such 
that individually created objects only have to store difference information. The basic 
idea is quite similar to ours, the implementation of a programming language, how-
ever, certainly differs from that of a modeling environment. 

An early report by Batory and Kim on the quite complex domain of VLSI CAD 
applications also explores the structural similarity of model elements [13]. They de-
scribe an implementation based on a relational database that employs copying of data 
to achieve good retrieval performance. Their system, however, only supports one 
single classification level. 

Gutheil et al. describe an effort to build a multi-level modeling tool that is also 
based on the clabject-idea [4]. They give some fundamental principles for coping with 
connectors in such an environment, e.g. for their graphical representation. It is how-
ever not reported how industry-sized models are handled. 

7   Conclusion 

This paper describes how core features of a clabject-based modeling environment can 
be implemented in practice. We describe the traversal algorithm for a condensed model 
view and how to reduce memory consumption of a condensed view. Based on the 
theoretical part, we evaluated our approach with test models of varying size. The re-
sults show that our concepts and their implementations are efficient both with respect 
to traversal time and memory consumption. The resulting clabject-based modeling 
environment meets the requirements for a real-world application, and thus demon-
strates that multi-level modeling can indeed be used for large industrial applications. 
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Abstract. Large and complex meta-models such as those of Uml and
its profiles are growing due to modelling and inter-operability needs of
numerous stakeholders. The complexity of such meta-models has led to
coining of the term meta-muddle. Individual users often exercise only a
small view of a meta-muddle for tasks ranging from model creation to
construction of model transformations. What is the effective meta-model
that represents this view? We present a flexible meta-model pruning al-
gorithm and tool to extract effective meta-models from a meta-muddle.
We use the notion of model typing for meta-models to verify that the al-
gorithm generates a super-type of the large meta-model representing the
meta-muddle. This implies that all programs written using the effective
meta-model will work for the meta-muddle hence preserving backward
compatibility. All instances of the effective meta-model are also instances
of the meta-muddle. We illustrate how pruning the original Uml meta-
model produces different effective meta-models.

Keywords: Meta-model pruning, GPML, DSML, UML, Kermeta, effec-
tive modelling domain, test input domain.

1 Introduction

Development of complex software systems using modelling languages to spec-
ify models at high-levels of abstraction is the philosophy underlying Model-
Driven Engineering (MDE). There are two schools of thought that advocate
the development of such modelling languages : general-purpose modelling and
domain-specific modelling. General-purpose modelling is leveraged by modelling
languages such as the Unified Modelling Language (Uml)[1] with a large number
of classes and properties to model various aspects of a software system using the
same language. The Uml superstructure consists of subsets of visual modelling
languages such as Uml use case diagrams, activity diagrams, state machines, and
class diagrams to specify models of software systems. Uml is also extensible using
the profiles mechanism [2] to provide modelling elements from specific domains
such as services, aerospace systems, software radio, and data distribution [3]. One
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of the primary advantages of the Uml standard and its profiles is inter-operability
between related domains in software development. On the other hand, domain-
specific modelling promotes the construction of pure domain-specific modelling
languages (DSMLs) [4]. One of the main disadvantages of a DSML is finding
the ideal scope for its long term use. Identifying the scope involves abstracting
DSML concepts in very early stages of its development. This leaves little room
for adding concepts later in the lifetime of DSML. Despite the existence of sev-
eral DSMLs general-purpose modelling languages (GPMLs) such as Uml and its
profiles are widely used to model complex software systems.

A major disadvantage of GPMLs such as the Uml is its ever growing complex-
ity and size. The widely accepted modelling language Uml 2.0 has a specification
document of about 1000 pages. The Uml 2.0 meta-model used to specify the lan-
guage contains 246 classes and 583 properties. The large number of classes and
properties with several complex dependencies between them has led to the coin-
ing of the censorious term meta-muddle [5] to characterize huge GPMLs such as
the Uml. This criticism of Uml can be attributed to the fact that it is an over-
specification of the real modelling domain for a given application. For instance,
if we intend to generate code from Uml state machines there is no need to ex-
pose modelling elements for activity diagrams, or use case diagrams to the code
generator. In practice, each application of the Uml utilizes a subset of classes
and properties in the Uml. What is the effective meta-model that contains these
required classes and properties and all its mandatory dependencies? This is the
question that intrigues us and for which we provide a solution.

In this paper, we present a meta-model pruning algorithm that takes as input
a large meta-model and a set of required classes and properties, to generate a
target effective meta-model. The effective meta-model contains the required set
of classes and properties. The term pruning refers to removal of unnecessary
classes and properties. From a graph-theoretic point of view, given a large input
graph (large input meta-model) the algorithm removes or prunes unnecessary
nodes (classes and properties) to produce a smaller graph (effective meta-model).
The algorithm determines if a class or property is unnecessary based on a set
of rules and options. One such rule is removal of properties with lower bound
multiplicity 0 and who’s type is not a required type. We demonstrate using
the notion of model typing that the generated effective meta-model, a subset of
the large meta-model from a set-theoretic point of view, is a super-type, from a
type-theoretic point of view, of the large input meta-model. This means that all
programs written using the effective meta-model can also be executed for models
of the original large meta-model. The pruning process preserves the meta-class
names and meta-property names from the large input meta-model in the effective
meta-model. This also implies that all instances (models) of the effective meta-
model are also instances of the initial large input meta-model. All models of
the effective meta-model are exchangeable across tools that use the large input
meta-model as a standard. The extracted effective meta-model is very much like
a transient DSML with necessary concepts for a problem domain at a given
time. For example, we present an application of our algorithm to generate an
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effective meta-model to specify test models for a model transformation. The
model transformation is developed by the French Spatial Agency (CNES) to
transform Uml models to code for embedded systems.

The paper is organized as follows. In Section 2 we present the motivation for
our work. We present related work in Section 3 that attempt to solve problems
discussed in motivation. In Section 4 we present the meta-model pruning algo-
rithm. We introduce model typing in Section 5 to show that the effective meta-
model is indeed a super-type of the large meta-model. In Section 6 we present
the application of meta-model pruning to obtain an effective meta-model for de-
velop test models for a model transformation. We conclude and present future
work in Section 7.

2 Motivation

The motivation for us to develop a meta-model pruning algorithm comes from
observations made by us and others in various phases of the MDE process. We
categorize our observations in the form of scenarios:

Scenario 1: Input Domain of Model Transformations. A large meta-model
such as that of Uml is the de facto input meta-model for a large number of model
transformations or model processing programs/tools. However, many of these
model transformations manipulate only a subset of the concepts defined in the
input meta-model. There is a sparse usage of concepts in the input meta-model.
For instance, code generators from Uml state machines [6] normally use only the
Uml class diagram and Uml state machine modelling elements. Therefore, often
the large meta-model is not the real input meta-model of a model transformation.
We illustrate this scenario in Figure 1 (a) where meta-model MMlarge specifies
a large set of models but a model transformation MT is developed to process
only a subset of this large set.

Scenario 2: Chain of Model Transformations. A consequence of not defin-
ing the real input domain of a model transformation is the non-compatibility/mis-
match of outputs and inputs between transformations in chain. Consider a
sequence of model transformations as shown in Figure 1 (b). The output meta-
model MMa

o of model transformation MTa is also the input meta-model MM b
i

for the next model transformation MTb. However, we do not know if all models
generated by MTa can be processed by the model transformation MTb as the
concepts manipulated by the model transformations may be different. In [7], we
identify this issue as one of the barriers to validate model transformations. Not
identifying and dealing with this mismatch between the real input meta-model
and real output meta-model can lead to serious software faults.

Scenario 3: Testing Model Transformations. Creating a model that con-
forms to a large meta-model does not always require all the concepts in the
meta-model. For instance, if you want to create a model to test a model trans-
formation of the large meta-model you may need to use only a small number
of concepts. The entire large meta-model does not serve the purpose of creat-
ing test models for a certain sub-domain of the input meta-model. The large



Meta-model Pruning 35

Fig. 1. Effective Meta-model Scenarios in Model Transformation Development

meta-model could pose a problem for a test model developer as she/he can be
confused by the large number of concepts in the meta-model. In the context
of automated testing, if you want to generate test models (such as using the
tool Cartier [8] [9]) then you would want to transform the smallest possible in-
put meta-model to a formal language for constraint satisfaction. Transforming
the entire meta-model to a formal language will lead to a enormous constraint
satisfaction problem. These large constraint satisfaction problems are often in-
tractable. Solving smaller constraint satisfaction problems obtained from a small
set of concepts and subsequently with fewer variables is relatively feasible.

Scenario 4: Software Process Modelling. Software process models contain
several workflows. However, each workflow in a software process uses different
sub-domains of a single shared meta-model such as the the Uml. These workflows
are often realized by different people and at different times. There are several
software process methodologies that use the Uml as the shared modelling lan-
guage. The most popular of them is the Rational Unified Process (RUP) [10].

Fig. 2. (a) Workflows in RUP and its usage of Uml (b) Workflow of ACCORD and its
use of Uml
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Figure 2(a) shows the different workflows of RUP and the use of different subsets
of Uml for each workflow. Dedicated software processes such as ACCORD [11]
use Uml extended with domain-specific constructs to develop real-time systems.
In Figure 2(b), we show the use of subsets Uml in the ACCORD process. People
involved in a certain workflow of a software process are exposed to concepts in
the entire shared meta-model such as the Uml instead of a subset of Uml that
represents their real work area. The access to unnecessary modelling elements
to an engineer of a workflow could lead to errors in the software process.

The above scenarios are only some of the many possible scenarios where a large
meta-model defines the modelling domain while only a sub-domain is in use.

3 Related Work

There has always been a need to define the effective modelling domain for a given
objective in MDE. This is true especially in the case of using large GPMLs such
as Uml. In this section we present related work that deal with the problem
of obtaining and using the effective modelling domain. We also pinpoint our
contributions in this work.

Consider a fundamental task in MDE: Creating a model in a model editor
such as in the Eclipse [12] environment. A popular editor for Uml models is
TOPCASED [13]. The tool can be used to create Uml models such as class
diagrams, state machines, activity diagrams, and use-case diagrams. If a mod-
eller chooses to create class diagrams the tool presents the user with modelling
elements for class diagrams such as classes and associations but not Uml state
machine modelling elements such as states and transitions. Therefore, the tool
inherently prevents the modeller from using an unnecessary part of the Uml
meta-model. The hard-coded user interface in TOPCASED in fact presents the
modeller with an effective modelling domain.

Model transformations on GPMLs such as Uml are built for specific tasks and
can process only a sub-domain of its huge input domain. To filter the input to a
model transformation pre-conditions [14] are specified in a constraint language
such as Object Constraint Language (OCL) [15] [16]. Graph transformation based
model transformation languages specify pre-conditions to apply a graph rewrit-
ing rule on a left-hand side model pattern [17]. Both pre-condition contracts and
patterns are specified on the entire input meta-model while they refer to only a
sub-domain.

In the paper [5] Solberg et al. present the issue of navigating the meta-muddle
notably the Uml meta-model. They propose the development of Query/Extrac-
tion tools that allow developers to query the metamodel and to extract specified
views from the metamodel. These tools should be capable of extracting simple
derived relationships between concepts and more complex views that consist of
derived relationships among many concepts. They mention the need to extract
such views for different applications such as to define the domain of a model
transformation and extracting a smaller metamodel from the concepts used in a
model. Meta-modelling tools such as those developed by Xactium [18] and Adap-
tive Software [19] possess some of these abilities. The authors of [5] propose the
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use of aspects to extract such views. However, the authors do not elaborate on
the objectives behind generating such views.

In this paper, we present the following contributions emerging from our ob-
servations in MDE and survey of previous work:

– Contribution 1: We present a meta-model pruning algorithm to extract
an effective meta-model from a large meta-model.

– Contribution 2: We present an application of model typing to verify that
an effective meta-model is indeed a super-type of the large input meta-model.
All programs written using the effective meta-model are valid also for the
original large meta-model. Our approach preserves meta-concept names in
the effective meta-model from the large meta-model and hence all instances
of the effective meta-model are instances of the large input meta-model.

4 Meta-model Pruning Algorithm

This section presents the meta-model pruning algorithm to transform a input
meta-model to a pruned target meta-model. We acknowledge the fact there can
be an entire family of pruning algorithms that can be used to prune a large
meta-model to give various effective meta-models. In this paper, we present a
conservative meta-model pruning algorithm to generate effective meta-models.
Our initial motivation to develop the algorithm was to help scale a formal method
for test model generation [8] in the case of large input meta-models. Therefore,
given a set of required classes and properties the rationale for designing the al-
gorithm was to remove a maximum number of classes and properties facilitating
us to scale a formal method to solve constraints from a relatively small input
meta-model. The set of required classes and properties are inputs that can come
from either static analysis of a transformation, an example model, an objective
function, or can be manually specified. Given these initial inputs we automat-
ically identify mandatory dependent classes and properties in the meta-model
and remove the rest. For instance, we remove all properties which have a multi-
plicity 0..* and with a type not in the set of required class types. However, we
also add some flexibility to the pruning algorithm. We provide options such as
those that preserve properties (and their class type) in a required class even if
they have a multiplicity 0..*. In our opinion, no matter how you choose to design
a pruning algorithm the final output effective meta-model should be a supertype
of the large input meta-model. The pruning algorithm must also preserve iden-
tical meta-concept names such that all instances of the effective meta-model are
instances of the large input meta-model. These final requirements ensure back-
ward compatibility of the effective meta-model with respect to the large input
meta-model.

4.1 Algorithm Overview

In Figure 3, we present an overview of the meta-model pruning algorithm. The
inputs to the algorithm are: (1) A source meta-model MMs = MMlarge which is
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also a large meta-model such as the meta-model for Uml with about 246 Classes
and 583 properties (in Ecore format) (2) A set of required classes Creq (3) A set
of required properties Preq, and (4) A boolean array consisting of parameters to
make the algorithm flexible for different pruning options.

The set of required classes Creq and properties Preq can be obtained from
various sources as shown in Figure 3: (a) A static analysis of a model transfor-
mation can reveal which classes and properties are used by a transformation (b)
The sets can be directly specified by the user (c) A test objective such as a set
of partitions of the meta-model [20] is a specified on different properties which
can be source for the set Preq. (d) A model itself uses objects of different classes.
These classes and their properties can be the sources for Creq and Preq.

The output of the algorithm is a pruned effective meta-model MMt =
MMeffective that contains all classes in Creq, all properties in Preq and their
associated dependencies. Some of the dependencies are mandatory such as all
super classes of a class and some are optional such as properties with multi-
plicity 0..* and whose class type is not in Creq. A set of parameters allow us
to control the inclusion of these optional properties or classes in order to give
various effective meta-models for different applications. The output meta-model
MMeffective is a subset and a super-type of MMs.

Fig. 3. The Meta-model Pruning Algorithm Overview

4.2 General Definitions

We present some general definitions we use for describing the meta-model prun-
ing algorithm:

Definition 1. A primitive type b is an element in the set of primitives: b ∈
{String, Integer, Boolean}.

Definition 2. An enumeration type e is a 2-tuple e := (name, L), where name
is a String identifier, L is a finite set of enumerated literals.

Definition 3. A class type c is a 4-tuple c := (name, Pc, Super, isAbstract),
where name is a String identifier, Pc is a finite set of properties of class c, class
c inherits properties of classes in the finite of classes Super and isAbstract is a
Boolean that determines if c is abstract.
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Definition 4. A meta-model MM is a 2-tuple MM := (T, P, Inv), where T is
a finite set of class, primitive, and enumeration types, P is a set of properties,
Inv is a finite set of invariants.

Type Operations: The operations on types used in this paper are: (a)
t.isInstanceOf(X) that returns true if t is of type X or inherits from X . (b)
t.allSuperClasses(), if t.isInstanceOf(Class), returns the set of all its super
classes t.Super including the super classes of its super classes and so on (multi-
level).

Definition 5. A property p is a 7-tuple p := (name, oC, type, lower,
upper, opposite, isComposite), where name is a String identifier, oC is a ref-
erence to the owning class type, type is a reference to the property type, lower
is a positive integer for the lower bound of the multiplicity, upper is the a posi-
tive integer for the upper bound of the multiplicity, opposite is a reference to an
opposite property if any, and isComposite determines if the objects referenced
by p are composite (No other properties can contain these objects).

Property Operations: The operations on properties in this paper is
p.isConstrained() which returns true if constrained by any invariant i such
that p ∈ i.PI . This is checked for all invariants i ∈ MM.Inv.

Definition 6. An invariant I is a 3-tuple c := (TI , PI , Expression), where TI

is the set of types used in the invariant I and PI is the set of properties used
in I. An Expression is a function of TI and PI that has a boolean value. The
Expression is often specified in a constraint language such as OCL [15].

Note: Throughout the section, we use the relational dot-operator to identify an
element of a tuple. For example, we want to refer to the set of all types in a
meta-model we use the expression MM.T ,or MM.P to refer to the set of all
properties. Also, we do not consider user-defined meta-model operations or its
argument signatures in our approach.

4.3 The Algorithm

The meta-model pruning algorithm (shown in Algorithm 1 has four inputs: (a) A
source meta-model MMs (b) Initial set of required types Treq (c) Initial set of re-
quired properties Preq (d) The top-level container class type Ctop. (e) Parameter
which is a Boolean array. Each element in the array corresponds to an option
to add classes or properties to the required set of classes and properties. In this
paper, we consider three such options giving us a Parameter vector of size 3.

The output of the algorithm is the pruned target meta-model MMt. We briefly
go through the working of the algorithm. The target meta-model MMt is ini-
tialized with the source meta-model MMs. The algorithm is divided into three
main phases: (1) Computing set of all required types Treq in the meta-model,
(2) Set of all required properties Preq in the meta-model (3) Removing all types
and properties not that are not in Treq and Preq.
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The first phase of the algorithm involves the computation of the entire set of
required types Treq. The initial set Treq is passed as a parameter to the algorithm.
We add the top-level container class Ctop of MMs to the set of required types Treq

as shown in Step 2. In Step 3, we add the types of all required properties Preq to
the set of required types Treq. In Step 4, we add types of all mandatory properties
to Treq. Types of all properties with lower bound greater than zero are added to
the set of required types Treq (Step 4.1). Similarly, if a property is constrained by
an invariant in MM.Inv then its type is included in Treq as shown in Step 4.2. If
a property has an opposite type then we include the type of the opposite prop-
erty, the owning class of the opposite property, and the type of the property to
Treq in Step 4.3. The algorithm provides three options to add types of properties
with lower multiplicity zero and are of type Class, PrimitiveType, and Enumer-
ation respectively. The inclusion of these types is depicted in Steps 4.4, 4.5, and
4.6. The truth values elements of the Parameter array determine if these options
are used. These options are only examples of making the algorithm flexible. The
Parameter array and the options can be extended with general and user-specific
requirements for generating effective meta-models. After obtaining Treq we add
all its super classes across all levels to the set Treq as shown in Step 5.

The second phase of the algorithm consists of computing the set of all required
properties Preq. Inclusion of mandatory properties are depicted from Step 6.1
through Step 6.5. In Step 6.1, we add all properties whose type are in Treq

to Preq. In Step 6.2 we add all properties whose owning class are in Treq to
Preq. In Step 6.3, we add properties with lower multiplicity greater than zero to
Preq. If a property is constrained by a constraint in MM.Inv we add it to Preq as
depicted in Step 6.4. We add the opposite property of a required property to Preq.
Finally, based on the options specified in the Parameter array, the algorithm
adds properties to Preq with lower multiplicity zero and other characteristics.

In the third phase of the algorithm we remove types and properties from
MMt. In Step 7, we remove all properties that are not in Preq (Step 7.1) and
all properties who’s types are not in Treq (Step 7.2). In Step 8, we remove all
types not in Treq. The result is an effective meta-model in MMt. In Section 5,
we present model typing for meta-models to show that MMt is a super-type
of MMs. As a result, any program written with MMt can be executed using
models of MMs.

4.4 Implementation

The meta-model pruning algorithm has been implemented in Kermeta [21]. Ker-
meta is a language for specifying metamodels, models, and model transforma-
tions that are compliant to the Meta Object Facility(MOF) standard [22]. The
tool supports input meta-models in the Eclipse Modelling Framework’s (EMF)
[12] Ecore meta-modelling standard. The tool with usage instructions is available
for download [23].
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Algorithm1 metamodelPruning(MMs , Treq, Preq, Ctop, Parameter)
1. Initialize target meta-model MMt

MMt ← MMs

2. Add top-level class into the set of required types
Treq ← Treq ∪ Ctop

3. Add types of required properties to set of required types
Preq.each{p|Treq ← Treq ∪ p.type}
4. Add types of obligatory properties
MMt.P.each{p|
4.1 (p.lower > 0) =⇒ {Treq ← Treq ∪ p.type}
4.2 (p.isConstrained(MMt.Inv)) =⇒ {Treq ← Treq ∪ p.type}
4.3 (p.opposite! = φ) =⇒ {Treq ← Treq ∪ p.type,Treq ← Treq ∪
p.opposite.type,Treq ← Treq ∪ p.opposite.oC}
Option 1: Property of type Class with lower bound 0
if Parameter[0] == True then

4.4 (p.lower == 0 and p.type.isInstanceOf(Class)) =⇒ {Treq ← Treq ∪ p.type}
end if
Option 2: Property of type PrimitiveType with lower bound 0
if Parameter[1] == True then

4.5 (p.lower == 0 and p.type.isInstanceOf(PrimitiveType)) =⇒ {Treq ←
Treq ∪ p.type}

end if
Option 3: Property of type Enumeration with lower bound 0
if Parameter[2] == True then

4.6 (p.lower == 0andp.type.isInstanceOf(Enumeration)) =⇒ {Treq ← Treq ∪
p.type}}

end if
5. Add all multi-level super classes of all classes in Treq

MMt.T.each{t | t.isInstanceOf(Class) =⇒ t.allSuperClasses.each {s|Treq ←
Treq ∪ s}}
6. Add all required properties to Preq

MMt.P.each{p|
6.1 (p.type ∈ Treq) =⇒ {Preq ← Preq ∪ p}
6.2 (p.oC ∈ Treq) =⇒ {Preq ← Preq ∪ p}
6.3 (p.lower > 0) =⇒ Preq ← Preq ∪ p}
6.4 (p.isConstrained(MMt.Inv)) =⇒ {Preq ← Preq ∪ p}
6.5 (p.opposite! = φ) =⇒ {Preq ← Preq ∪ p, Preq ← Preq ∪ p.opposite}
Option 1: Property of type Class with lower bound 0
if Parameter[0] == True then

6.6 (p.lower == 0 and p.type.isInstanceOf(Class)) =⇒ {Preq ← Preq ∪ p}
end if
Option 2: Property of type PrimitiveType with lower bound 0
if Parameter[1] == True then

6.7 (p.lower == 0 and p.type.isInstanceOf(PrimitiveType)) =⇒ {Preq ←
Preq ∪ p}

end if
Option 3: Property of type Enumeration with lower bound 0
if Parameter[2] == True then

6.8 (p.lower == 0andp.type.isInstanceOf(Enumeration)) =⇒ {Preq ← Preq∪
p}}

end if
7. Remove Properties
MMt.P.each{p|
7.1 p /∈ Preq =⇒ (t.P ← t.P − p)
7.2 p.type /∈ Treq =⇒ (t.P ← t.P − p)}
}
8. Remove Types
MMt.T.each{t|t /∈ Treq =⇒ MMt.T ← MMt.T − t}

.
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5 Model Typing

In the section we describe the notion of model typing. We use model typing to
verify that meta-model pruning algorithm indeed generates a super-type of the
input meta-model. Model typing corresponds to a simple extension to object-
oriented typing in a model-oriented context [24]. A model typing is a strategy
for typing models as collections of interconnected objects while preserving type
conformance, used as a criterion of substitutability.

The notion of model type conformance (or substitutability) has been adapted
and extended to model types based on Bruce’s notion of type groups and type
group matching [25]. The matching relation, denoted <#, between two meta-
models defines a function of the set of classes they contain according to the
following definition:

Metamodel M’ matches another metamodel M (denoted M’ <# M ) iff
for each class C in M, there is one and only one corresponding class
C’ in M’ such that every property p and operation op in M.C matches
in M’.C’ respectively with a property p’ and an operation op’ with
parameters of the same type as in M.C.

This definition is adapted from [24] and improved here by relaxing the constraint
related of the name-dependent conformance on properties and operations.

Let’s illustrate model typing with two metamodels M and M’ given in
Figures 4 and 5. These two metamodels have properties and references that
have different names. The metamodel M’ has additional elements compared to
the metamodel M.

C1 <# COne because for each property COne.p of type D (namely,
COne.name and COne.aCTwo), there is a matching property C1.q of
type D’ (namely, C1.id and C1.aC2 ), such that D’ <# D.

Thus, C1 <# COne requires D’ <# D :

– COne.name and C1.id are both of type String.
– COne.aCTwo is of type CTwo and C1.aC2 is of type C2, so C1 <#

COne requires C2 <# CTwo. And, C2 <# CTwo is true because
CTwo.element and C2.elem are both of type String.

Thus, matching between classes may depend on the matching of their related
dependent classes. As a consequence, the dependencies involved when evaluating
model type matching are heavily cyclical [26]. The interested reader can find the
details of matching rules used for model types in [26].

In Section 6, we illustrate the use of model typing integrated in the model
transformation language Kermeta. We show that transformations written using
the effective meta-model are also valid for models of the original large meta-
model.
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Fig. 4. Metamodel M Fig. 5. Metamodel M’

6 Application

We apply the meta-model pruning algorithm to generate an effective meta-model
to specify test models for model transformations. The model transformation in
our case study is from the French National Space Agency (CNES) to generate
embedded systems code from a set of input models. The project is sponsored by
the DOMINO project of ANR. We do not discuss the transformation in detail in
this paper. We, however, highlight that the transformation uses a subset of Uml
Activity diagram models. Our algorithm extracts an effective meta-model with
the ultimate objective of testing the transformation. Testing can be done either
by manually specifying test models or automatically generating them based on
the technique in [8]. We do not elaborate on the testing phase in this paper.

package cnesTransfoMain ;
require ”http ://www. e c l i p s e . org /uml2 /2 . 1 . 2/UML”
class Main {

operation main ( ) : Void i s do

var rep : EMFRepository in i t EMFRepository . new
var r e s : kermeta : : p e r s i s t e n ce : : EMFResource
r e s ?= rep . getResource ( ”model . uml” )
var inputModel : uml : : Model // Input UML Model
model ?= re s . one
var t r an s f o : cnesPackage : : Transfo<uml : :UmlMM>

in i t cnesPackage : : Transfo<uml : :UmlMM>.new
t ran s f o . generateCode ( inputModel )

end }
−−−−−−−−−−−−−−−−−−−−−−−−−
package cnesPackage ;
require UMLCNES;
class Transfo<MT : UMLCNES> { // Code gene rato r . . .

operation generateCode ( source : MT: : Model ) : Void i s do

. . . end }

Listing 1. Kermeta Transformation to Demonstrate use of Effective Meta-model

The result of executing the algorithm with no options (no parameter specified)
is the bare-minimum effective meta-model shown in Figure 6. A bare minimum
effective meta-model , in our case, is sufficient to specify input models for the
transformation. The meta-model is generated using an initial set of required
classes Creq . All elements of Creq are provided as input the the pruning algorithm
in the set Treq such that Creq ∈ Treq. The classes in Creq are shown within red
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boxes in Figure 6. The top-level class Ctop = Model is specified in a green-dashed
box. In the pruned meta-model we observe that all disjoint subgraphs of the Uml
meta-model are removed such as Uml State Machines, Uml Class Diagrams, and
Uml Use Case Diagrams preserving only a subset of Uml Activity diagram.

We call the resulting MMeffective of Uml, UmlCnes. We can verify that
UmlCnes is a super-type of Uml using the notion of model types described in
Section 5. The type checking rules for model types has been integrated into the
typing system of the modelling and model transformation language Kermeta [21].
We can write a transformation using UmlCnes as the input domain as shown
in listing 1. The package cnesTransfoMain calls the generateCode operation (in
package cnesPackage) with an Uml input model. However, the transformation
is defined for the UmlCnes meta-model. The transformation will still execute
since UmlCnes is a super-type of Uml. Test models can also be developed as
instances of UmlCnes and transformed to Uml without loss of information.

The pruning algorithm is flexible. We briefly illustrate this by pruning Uml
for the different options presented in the paper. In Table 1 we summarize the
number of classes and properties for the different options of the meta-model
pruning algorithm. The algorithm can be used to generate different effective
meta-models with various applications. For example, another option that is not
dealt with in this paper could be inclusion of all possible containers of a property
to the set of required types. Options can be used to relax or tighten the pruning
for applications where model transformations may evolve and use more concepts
that initially perceived.

Fig. 6. The Effective Uml Activity Diagram Meta-model for the CNES Case Study
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Table 1. Meta-model Pruning Results for Options

Original Uml No Option Option 1 Option 2 Option 3

Number of Classes 246 31 31 31 31
Number of Properties 583 15 26 30 30

7 Conclusion

Deriving effective modelling domains is an ubiquitous need in MDE. There are sev-
eral existing ways such as invariants, pre-conditions and hard-coded knowledge in
model editors such as TOPCASED to obtain some form of an effective modelling
domain. Most of these approaches patch up the modelling domain with constraints
or code to obtain a constrained or effective modelling domain. In this paper, we
present an algorithm to extract an effective meta-model from a large meta-model
via pruning the large meta-model. Very much like extracting the meta-model of a
transient DSML. The input to the algorithm includes the large meta-model and a
set of required classes and properties. The algorithm finds all mandatory depen-
dencies between these required concepts. It then prunes the large meta-model such
that only the required concepts and its mandatory dependencies are preserved.
The flexible algorithm also allows inclusions of non-mandatory properties. The
effective meta-model typically has fewer classes and properties compared to the
input meta-model and is a super-type of the input meta-model. Therefore, any
program written for the effective meta-model will also accept models of the large
meta-model. In the future, we would like to integrate the meta-model pruning
algorithm to dynamically generate an effective meta-model in MDE tool chains
such as editors and transformations. There is also scope for adding more options
to control the generation of an effective meta-model for various objectives.
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http://www.adaptive.com/
https://www.irisa.fr/triskell/softwares-fr/protos/metamodelpruner/


 

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 47–61, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

A UML/MARTE Model Analysis Method for Detection of 
Data Races in Concurrent Systems 

Marwa Shousha1, Lionel C. Briand2, and Yvan Labiche1 

1 Carleton University, Software Quality Engineering Lab, 1125 Colonel By Drive Ottawa,  
ON K1S 5B6, Canada 

{mshousha,labiche}@sce.carleton.ca 
2 Simula Research Laboratory & University of Oslo, P.O. Box 134, Lysaker, Norway 

briand@simula.no 

Abstract. The earlier concurrency problems are identified, the less costly they 
are to fix. As larger, more complex concurrent systems are developed, early  
detection of problems is made increasingly difficult. We have developed a gen-
eral approach meant to be used in the context of Model Driven Development. 
Our approach is based on the analysis of design models expressed in the Uni-
fied Modeling Language (UML) and uses specifically designed genetic  
algorithms to detect concurrency problems. Our main motivation is to devise 
practical solutions that are applicable in the context of UML design of concur-
rent systems without requiring additional modeling. All relevant concurrency 
information is extracted from UML models that comply with the UML Model-
ing and Analysis of Real-Time and Embedded Systems (MARTE) profile. Our 
approach was shown to work for both deadlocks and starvation. The current pa-
per addresses data race detection, further illustrating how our approach can be 
tailored to other concurrency issues. Results on a case study inspired from the 
Therac-25 radiation machine show that our approach is effective in the detec-
tion of data races.  

Keywords: MDD, data races, model analysis, concurrent systems, UML, 
MARTE, genetic algorithms. 

1   Introduction 

Concurrency problems should be identified early in the design process when they are 
less costly to fix. This is made increasingly difficult as larger and more complex con-
current systems are being developed. With the recent trend towards Model Driven 
Development (MDD) [15], the choice of using Unified Modeling Language (UML) 
models and their extensions as a source of concurrency information at the design level 
is natural and practical. However, the analysis of concurrency properties should not 
require additional modeling or a high learning curve on the part of the designers, or 
should at least minimize it. When the UML notation is not enough to completely 
model a system, the notation is extended via profiles. The Modeling and Analysis of 
Real-Time and Embedded Systems (MARTE) profile [19] addresses domain specific 
aspects of real-time, concurrent system modeling. Our aim is to develop a general 
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automated approach that can be tailored to several types of concurrency errors (such 
as deadlocks, starvation, data races and data flow problems), and that can be easily 
integrated into a Model Driven Architecture (MDA) approach, the UML-based MDD 
standard by the OMG [15]. Our approach relies on a genetic algorithm (GA) that is 
tailored to different types of concurrency errors.  

In previous works, we have tailored a GA for the detection of deadlocks [23] and 
starvation [13]. This paper is a continuation of these works, where we adapt the ap-
proach to the detection of data races. It differs from its predecessors in three areas: 1. 
A different UML profile is used. Instead of the SPT profile in [23], which was the 
standard at the time, we use the MARTE profile; 2. We have different GA compo-
nents. a.) A different chromosome representation (our previous structure of genes [23, 
13] contained lock information, which is not needed in the current paper). Since the 
chromosomes are different, the genetic operators of mutation and crossover are also 
different (though the principles remain the same, the realizations are different). b.) We 
use a different fitness function. We used fitness functions specifically designed to 
detect deadlocks and starvation, respectively [23, 13]. Here, we provide a fitness 
function geared towards data races; 3. We improve performance comparison. In both 
previous works, we measured performance against random search only. Here, we also 
compare our approach with a hill climbing search. Performance of each type of error 
naturally entails different case studies, each geared towards the respective problem 
being examined.  

We next provide an overview about data races, highlighting the information needed 
as input to our approach. Sections  3 and  4 provide details of our tailored GA, and tool 
support. Section  5 describes a case study inspired from the Therac-25 radiation ma-
chine, along with results comparing random, hill climbing and GA searches. Related 
work is presented in Section  6 and we conclude in Section  7. 

2   Background 

Here we describe data races and aspects of relevance in the MARTE profile. 

2.1   Data Races 

Concurrency introduces the need for communication between executing threads [7]. 
Threads may communicate via a shared memory location during various access times 
for a defined execution time. These access and execution times may be specified as 
ranges, probability distributions, or definite values, although ranges are probably 
more common due to uncertainty at design time.  

The term race condition has been generally used to describe situations where un-
synchronized concurrent accesses result in unpredictable program states and behavior 
[1]. Data races, a specific type of race conditions, are quite common in concurrent 
systems [1]. These types of faults are due to unsynchronized access to a same memory 
location. Threads may access a shared location as either reader threads or writer 
threads. Problems then arise due to the order of execution of events [1]. While many 
times unsynchronized access to shared resources is due to errors on the part of the 
designer, it may also be on purpose to satisfy performance constraints. If undetected, 
data races can be disastrous in life-critical systems; such was the case with Therac-25 
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[4]. In general, three conditions must be met before a data race occurs: 1. Two or 
more threads access the same memory location concurrently, 2. At least one thread 
accesses the memory location for writing, 3. Thread access to the memory location is 
unsynchronized. When these three conditions are met, a writer and reader thread may 
execute concurrently within the shared memory, resulting in inconsistent data. 

To proceed with our approach, we must first map the data race concepts, in particu-
lar those appearing in italics in this section, to UML and MARTE concepts, as they 
form the inputs of the GA.  

2.2   MARTE Profile to Data Race Mapping 

In UML, active objects have their own thread of control, and can be regarded as con-
current threads [12]. Only extensions of the UML standard, such as the MARTE  
profile [19], provide mechanisms to model detailed information pertaining to concur-
rency. The MARTE profile is a replacement of the SPT profile [24]. MARTE is 
geared towards both the real-time and embedded system domains. The profile is 
roughly divided into three major sub-divisions: 1. MARTE foundation (containing the 
basis for real-time and embedded system modeling. It defines time concepts and use 
of concurrent resources), 2. MARTE design model (specializes the foundation, allow-
ing modeling of various features of real-time and embedded systems) 3. MARTE 
analysis model (allows the annotation of models for system analysis purposes). Much 
like SPT, the MARTE profile is modular in structure, allowing users to choose the 
appropriate subsets needed for their applications. We next describe the aspects of the 
profile that are relevant to our work. 

In the MARTE design model, The Software Resource Modeling (SRM) sub-profile 
presents mechanisms for designing multitasking applications. SRM is subdivided into 
four packages: SW_ResourceCore (which contains all the basic resource concepts), 
SW_Concurrency (which contains concurrent execution concepts), SW_Interaction 
(which deals with communication and synchronization resources) and SW_Brokering 
(which deals with resource management). In the SW_Concurrency package, concur-
rently executing entities competing for resources are depicted with the <<SwConcur-
rentResource>> stereotype. As aforementioned, concurrency is also depicted in  
standard UML, but <<SwConcurrentResource>> enhances concurrent execution mod-
eling due to its associated attributes, such as priorityElements, which is used to de-
termine the priority of the associated thread. In the SW_Interaction package, shared 
resources are identified as <<SharedDataComResource>>. 

The Generic Quantitative Analysis Modeling (GQAM) sub-profile - part of the 
MARTE analysis model - defines stereotype <<saStep>> (that extends stereotype 
<<gaStep>>) which is used when decisions about the allocation of system resources is 
made. Its tags include priority (the priority of the action on the host processor), 
interOccTime (interval between multiple initiations of the action), and execTime (the 
execution time of the action). Execution times can be specified as maximum and 
minimum time ranges. In the Timed Constraints subprofile, part of the MARTE foun-
dation model, timed constraints can be specified on the occurrence of an event, on the 
duration of an execution, or on the temporal distance between two events. These are 
stereotyped with <<TimedConstraint>>. 
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The High-Level Application Modeling (HLAM) sub-profile from the MARTE de-
sign model introduces <<RtService>>, a specialized service with specific real-time 
constraints. It contains several attributes. A particular attribute, concPolicy, can be 
used to determine the type of concurrency policy used for the real-time service. De-
fined types include reader and writer. 

This overview of MARTE illustrates that the input to our approach (the concepts 
presented in italics in Section  2.1) can be retrieved from a UML/MARTE design 
model. The mappings between those concepts and the profile are summarized in  
Table 1. It is then clear that the information used by our approach can be automati-
cally retrieved from UML/MARTE models, in particular from sequence diagrams 
where those stereotypes and tags are used. 

 
Table 1. Concept to MARTE Mapping 

 

Concept MARTE Stereotype/Tag MARTE sub-profile 
Thread <<SwConcurrentResource>> SRM::SW_Concurrency 
Unprotected resource <<SharedDataComResource>> SRM::SW_Interaction 
Reader <<RtService>>/concPolicy = reader HLAM 
Writer <<RtService>>/concPolicy = writer HLAM 
Thread exec. time in res. <<gaStep>>/execTime GQAM:: 

GQAM_Workload 
Thread access time of 
res. 

<<gaStep>>/interOccTime| 
<<gaStep>>/execTime 

GQAM:: 
GQAM_Workload 

Time constraints <<TimedConstraint>> TimedConstraints 

2.3   Genetic Algorithms 

GAs are a means of solving optimization problems. They are based on concepts 
adopted from genetic and evolutionary theories [10]. A GA first randomly creates an 
initial population of solutions, called chromosomes, then selects a number of these 
solutions and performs various genetic operators (mutation and crossover) to create 
new solutions. The measure of goodness of each solution, called fitness, is compared 
with other solutions, with only the fittest solutions retained. The process of selection, 
crossover and mutation, fitness comparison and replacement continues until the stop-
ping criterion, such as a maximum number of generations [10], is reached.  

3   Tailored Genetic Algorithm 

To use a GA to detect the presence of data races, we must first tailor it by defining the 
chromosome representation, mutation and crossover operators as well as the fitness 
function, which we discuss next. 

3.1   Chromosome Representation 

A chromosome is composed of genes and models a solution to the optimization prob-
lem. The values to be optimized during data race detection are the access times of 
threads to a resource, such that the number of threads accessing a resource simultane-
ously is maximized. These access times are the values that will be altered by the GA to 
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try to reach a data race situation. The access times must reflect schedulable scenarios. 
In other words, we need to ensure that all execution sequences represented by chromo-
somes are schedulable. This entails meeting system specifications of periods, minimum 
arrival times, and so on (see Sections  3.2 3.3 below). Thus, we need to encode threads 
(<<SwConcurrentResource>>), resources (<<SharedDataComResource>>), read and 
write operations (<<RtService>>/ concPolicy = read, <<RtService>>/concPolicy 
= write) and access times (<<gaStep>> / interOccTime or <<gaStep>> / exec-
Time), which are available in the input model (Table 1).  

Since, by definition, a data race involves multiple accesses to the same shared 
memory location, we consider only one resource at a time. Hence, the gene does not 
need to contain encoding of the resource, and can be depicted as a 2-tuple (T, a), 
where T is a thread and a is T’s access time of the resource. A tuple represents the 
execution of a thread when accessing the resource. Tuples are defined for a user 
specified time interval during which the designer wants to study the system’s behav-
ior. A heuristic for determining an appropriate time interval is given in Section  3.4. A 
special value of -1 is used to depict access times that lie outside this interval: (T, -1) 
represents a thread access that does not occur. 

Because a chromosome models a solution to the optimization problem, it needs to 
be large enough to model all schedulable scenarios during the time interval. Hence, 
the chromosome size (its number of genes) is equal to the total number of times all 
threads attempt to access the resource in the given time interval. A thread can appear 
more than once in the chromosome if it accesses the resource multiple times. 

Three constraints must be met for the formation of valid chromosomes and to sim-
plify the crossover operation discussed below. 1.) All genes within the chromosome 
are ordered according to increasing thread identifiers, then increasing access times. 2.) 
Thread access times of the resource must fall within the specified time interval or are 
set to -1. 3.) Consecutive genes for the same thread must have access time differences 
equal to at least the minimum and at most the maximum access time range of the 
associated thread, if start and end times are defined as ranges.  

Consider, for example, the set of three threads accessing a resource named MEOS: 
T1 (access range [1 325] time units, repeats every 399 time units), T2 (access range 
[325 398], repeats 400) and T3 (access range [327 392], repeats 400). In a time inter-
val of [0 350] time units, the chromosome length would be three since each of the 
threads can access the resource at most once during this time interval. The following 
is then a valid chromosome: (T1, 324) (T2, 340) (T3, -1) where T1 accesses the re-
source at time unit 324, T2’s access is at time 340 and T3 does not access the resource 
before time 350. 

 

  
(a) (b) 

Fig. 1. (a) Crossover example. (b) Mutation example. 
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3.2   Crossover Operator 

Crossover is the means by which desirable traits are passed from parent chromosomes 
to their offspring [10]. We use a one-point, sexual crossover operator: two parents are 
randomly split at the same location into two parts which are alternated to produce two 
children. For example in  

Figure 1a, the two parents on the left produce the offspring on the right. If, after 
crossover, any two consecutive genes of the same thread no longer meet their access 
time requirements (constraint 3 is violated), the second gene’s access time is ran-
domly changed such that constraint 3 is met. This is repeated until all occurrences of 
this situation satisfy constraint 3. 

3.3   Mutation Operator 

Mutation introduces new genetic information, hence further exploring the search 
space, while aiding the GA in avoiding getting caught in local optima [10]. Mutation 
proceeds as follows: each gene in the chromosome is mutated based on a mutation 
probability and the resulting chromosome is evaluated for its new fitness. Our muta-
tion operator mutates a gene by altering its access time. The rationale is to move ac-
cess times along the specified time interval, with the aim of finding the optimal times 
at which these access times will be more likely to result in data races. When a gene is 
chosen for mutation, a new timing value is randomly chosen from the range of possi-
ble access range values. If the value chosen lies outside the time interval, the timing 
information is set to -1 to satisfy constraint 2. Similar to the crossover operator, if, 
after mutation, two consecutive genes no longer meet their access time requirements, 
the affected genes are altered such that the requirements are met. For the example of 
Figure 1b with access times [1 325], [325 398] and [327 392] in a time interval of [0 
350], assume Parent 1’s second gene is chosen for mutation. A new value (say, 327) 
is chosen from its access time range [325 398], as shown in Figure 1b. 

3.4   Fitness Function 

The fitness function determines the merit of a chromosome. Recall that data races 
occur when at least two threads share a resource and at least one is a writer thread. 
For the fitness function to be effective, the time interval over which it is defined must 
be adequate: it should be long enough for data races to occur, but not too long as it 
may hinder the performance of the search algorithm. This varies from system to sys-
tem and depends on the amount of time resources available. We propose a heuristic 
for determining the time interval based on the longest thread execution time in the 
resource (lt) and the maximum resource access time of all threads (lr). Our heuristic is 
to guarantee, using these two variables, that all threads can completely access the 
resource at least twice. Therefore, the time interval equals: [0 (lt+lr)*2]. This is a 
minimum interval, as having threads access the resource just once may not be enough 
to uncover a data race. Designers can opt for a larger interval. 
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We define the following fitness function: 
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StartTime and endTime are the starting and ending times of the time interval. Wi is the 
time unit i during which a writer thread accesses the shared resource. N(Wi) is the 
time unit i of the nearest executing thread to Wi within the resource. Wi and N(Wi) are 
in the range [startTime endTime]. #Wi is the total number of writer threads that access 
the resource during the time unit i. N, Wi and #Wi are obtained after scheduling.  

The fitness function of equation (1) is a minimizing function; hence, it gives lower 
values to fitter individuals. Essentially, the fitness function minimizes the difference 
of resource access times between writer threads and any other thread (reader or 
writer). The smaller the difference, the closer the overlapping execution of a writer 
thread with another thread. A fitness value of zero indicates the presence of a data 
race, whereby the writer thread is executing within the resource at the same time unit 
as another thread, hence a data race. This is one of the properties of the function that 
guides the search towards situations where data races are possible and increasingly 
likely. The fitness function also ensures that scenarios where data races are possible 
(two threads executing and at least one is a writer) are always rewarded over situa-
tions where no data races are possible (when zero or one thread is executing, regard-
less of its type).  

Let us consider the scheduling of the mutated chromosome in Figure 1b, where T1 
is a writer thread and all other threads are readers. The time interval is assumed to be 
[0 350]. Using equation (1) for Figure 2, we examine the time units for resource R1: 

At time units 321, 322, and 323: #Wi = 0, 
min = 350  

At time unit 324: #Wi = 1, Wi = 324, 
N(Wi)= 327, absolute difference = 3, min = 3  

At time unit 325, 326, and 327: #Wi =  0, 
min = 350  

then, f(c) = 3. 

4   Tool and GA Parameters 

We have built a prototype tool, Concurrency Fault Detector (CFD), for detection of 
data races using our approach. CFD is an automated system that identifies concur-
rency errors in any concurrent application modeled with the UML/MARTE notation. 
Currently, it can help identify deadlock, starvation [23, 13] and data race errors. CFD 
involves a sequence of steps. Users first input three categories of information: (1) 
UML/MARTE sequence diagrams for the analyzed system, (2) the execution time 
interval during which the system is to be analyzed, and (3) the type of concurrency 
error targeted: data race, deadlock or starvation. In the latter case, the target thread 
and target lock are also inputted. CFD then extracts the required information from the 
inputted UML/MARTE model (mainly from its sequence diagrams) and feeds it to the 
appropriate GA.  

 

Fig. 2. Fitness function example 
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CFD is decomposed into two modular portions: a scheduler and a genetic algo-
rithm. This modularity ensures that modifications can seamlessly be adapted to meet a 
wider set of requirements. Modifications to the scheduling strategy would only re-
quire altering the scheduler. Hence, the scheduler does not affect the applicability of 
our approach as it is merely a black box that aides in the calculation of the fitness 
function. It emulates single processor execution as it tracks all thread executions. 

In the GA for data races, if a data race is detected, CFD outputs the sequence re-
sulting in the data race as well as the time unit at which the data race occurs and a 
textual depiction of the threads executing within the resource at that time. If no such 
sequence is found, CFD terminates after 1000 generations, outputting the execution 
sequence with the lowest fitness value (since it is a minimization function). This does 
not guarantee that no data races exist. However, one can still feel more confident that 
such a case is unlikely (i.e., rare in the search space). 

Since collecting input data is easy to automate from a UML case tool, and all the 
other phases are automated, CFD is meant to be used interactively: the user is ex-
pected to fix the design of the system when CFD terminates with a detected deadlock, 
data race, or starvation. This is the main reason why we developed a strategy that only 
reports one concurrency fault scenario at a time, i.e., per run of CFD, allowing de-
signers to fix the system’s design before running the modified design again on CFD.  

Though various parameters of the GA must be specified, we can fortunately rely on 
a substantial literature reporting empirical results and making recommendations. Pa-
rameters include the type of GA used, population size, mutation and crossover rates 
and selection operator. We use a steady state GA, with a replacement percentage of 
100%. The population size we apply is 200. This is higher than the size suggested in 
[10], but works more effectively for larger search spaces. The selection operator is 
rank selector, whereby chromosomes with higher fitness are more likely to be chosen 
than ones with lower fitness [18]. Mutation and crossover rates are lγ75.1  (where γ 
denotes the population size and l is the length of the chromosome) and 0.8, respec-
tively. Both are based on the findings in [16] and [10], respectively. 

All parameter values are based on findings reported in the literature, except popula-
tion size, which was fine tuned after some experimentation. These parameter values 
have worked exceedingly well in all our case studies when considering both the detec-
tion rate and execution time to find a concurrency error. The same parameter values 
can be used for different systems designs, though further empirical investigation is 
required to ensure the generality of these parameter values. In the worst case, if one 
wants to be on the safe side and ensure fully optimal results, the parameters can be 
fine tuned once for each new system design: when the system design being checked is 
first analyzed. For further design modifications of the same system, the parameters 
need not be fine tuned. 

We have used CFD on the case study presented next to assess our approach. 

5   Case Study: Therac-25 (Therac)  

The case study we use was inspired from the Therac-25 machine. The infamous 
Therac-25 was a computer controlled radiation therapy machine that was responsible 
for overdosing six patients. Investigations into the causes behind the overdoses  
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Fig. 3. Therac sequence diagram 

revealed faults due to race conditions, whereby the high power electronic beam was 
activated (instead of the low power one), without the beam spreader plate rotated into  
place [4]. The original design of the Therac-25 system—or simply Therac—has been 
altered here, whereby access times of threads to resources have been increased to 
provide a larger search space, thus reflecting more realistic situations. 

5.1   Therac Extended with MARTE 

Figure 3 shows the UML/MARTE sequence diagram of the shared resources in 
Therac. The treatment monitor task, Treat, controls the phases of radiation treatment. 
It uses a control variable to determine which phase of the treatment is to be executed 
next. In the first phase, a check is performed to see whether the required radiation 
levels have been inputted. This check is performed by reading a variable named data 
entry complete flag (DECF), which is set by the keyboard handler task, where the 
operator of Therac enters radiation level information. DECF is set whenever the cursor 
is moved to the command line. Information about the radiation level specified by the 
operator is encoded into a two byte variable named MEOS (Mode/Energy offset). The 
higher byte of MEOS is used by Treat to set various parameters. The lower byte is 
used by Hand, which rotates the turntable according to the inputted energy and mode. 

In the figure, two resources, MEOS and DECF, are shared as indicated by 
<<SharedDataComResource>>. The former is read and set by the three available 
threads designated with the <<SwConcurrentResource>> stereotype. The latter re-
source is only read and set by the Treat and KeyboardHandler threads. Treat peri-
odically reads DECF between [324 397] and repeats at 400 ms. KeyboardHandler is a 
writer thread on the same resource. The same thread also sets MEOS. However, the 
write access to MEOS occurs before the write access to DECF; there is at least a one 
ms interval. The Hand thread periodically reads MEOS between [327 392] ms interval 
and repeats every 400 milliseconds.  
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5.2   Analysis of Search Space 

To detect a data race, we need to search the set of possible (i.e. ones that adhere to the 
input requirements) events received by shared resources (hence referred to as se-
quences) for at least one that yields a data race. This set of possible sequences is 
called the search space. The search space differs for the two resources. For MEOS, it 
is based on the access time intervals of the Treat, Hand and KeyboardHandler threads 
as well as the timing interval. For a timing interval of 798 time units (based on our 
heuristic, Section  3.4), the search space is approximately 9.8 * 1012. Of these, 4.1 * 
108 yield a data race. For DECF, the search space is 1.7 * 109, with 360,750 resulting 
in a data race. 

To further enhance our case study, we altered the access times of threads in both 
resources to create two more different search spaces where detecting data races is 
significantly more difficult. For the altered MEOS resource, or simply MEOS2, with a 
timing interval of 2500 time units, the search space1 is approximately 4.7 * 109, with 
4510 yielding a data race. For the altered DECF, or simply DECF2, with a timing 
interval of 800, the search space is 1.0 * 107, with 99 resulting in a data race. We can 
then better assess how the performance of search techniques is affected by the diffi-
culty of the search. 

A search space is further characterized by its complexity. Points in the search space 
that result in data races are called global optima, whereas local optima are ones where 
all surrounding points have worse fitness, but the point itself is not an instance of a 
data race. The more local optima in the search space, the more complex it is. In both 
MEOS resources, the search space is complex, with many local optima. For DECF 
and DECF2, the search space has a few local optima, thus simplifying the search. 

5.3   Case Study Design 

We begin by describing the different techniques used, then relating how the case 
study was set up. 

Description 
We use three different techniques to detect data races: random generation, hill climb-
ing and our GA approach. Both random and hill climbing are simpler techniques that 
are often suggested as benchmarks to justify the need for a GA search [25].  

In random generation, a point in the search space (representing a sequence of re-
source accesses by various threads) is randomly chosen and checked for a data race. 
Running a random search involves running a pre-determined, usually large number of 
points in the search space. 

For hill climbing, one random point is generated, then neighboring points are exam-
ined, with the one better than the current point replacing it. This continues until a point 
is reached that has no better neighbor. For Therac, a neighbor is one that differs by just 
one access value from the current point. For example, consider three threads, T1, T2 and 
T3, accessing a shared resource during the access time intervals [1 2], [3 5] and [6 7], 

                                                           
1 Here, the search spaces are smaller than that of MEOS and DECF because thread access times 

are longer. 
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respectively. If the current point is (T1, 2) (T2, 3) (T3, 6), one valid neighbor would be: 
(T1, 1) (T2, 3) (T3, 6) which differs in only one access value from the current point.   

Fairness of Comparisons 
Because each of the three techniques proceeds differently, we generated the same 
number of sequences for other techniques as the GA to ensure a fair comparison. As 
GAs are a heuristic optimization technique, variance occurs in the results they pro-
duce. To account for this variability, we ran our case study 50 times on an Intel Core 
2 2.0 GHz processor. Random generation and hill climbing were also run 50 times, 
with each run generating the same number of sequences as the number created and 
evaluated by a GA run. In the original design, with a timing interval of 802, a GA run 
generates on average 5184 sequences for MEOS and 4640 for DECF. In the altered 
design, the GA generates 6786 sequences on average for MEOS2 in a timing interval 
of 2500, and it generates 11681 sequences on average for DECF2 in a timing interval 
of 800. In all cases, for random, hill climbing and the GA, when a data race is de-
tected, execution stops and a new run of the 50 is executed. 

5.4   Results 

Results of the detection rate of data races are presented in Table 2. All three tech-
niques are capable of detecting data races in both MEOS and DECF, but with very 
different probabilities. Hill climbing does not fare very well in the former case. It 
appears to be oftentimes caught in local optima: 96% of the time, it is unable to detect 
a data race. This empirically suggests that the search space for MEOS is complex. We 
observe that our GA does better: 34% detection rate for MEOS. This confirms that 
where the search space is large and complex, GAs are known to yield much better 
results than the two other techniques [17]. Complexity is not an issue in random 
search because information about the landscape of the search space is not used during 
the search. However, random search performs poorly in MEOS due to the small per-
centage of sequences leading to a data race: only 0.004% of the search space yields a 
data race.  

Table 2. Comparison of Performance 

  MEOS DECF MEOS2 DECF2 
Search Space Size 9.8 * 1012 1.7 * 109 4.7 * 109 1.0 * 107  
% of Data Race Sequences 0.004 0.02 9.5 * 10-5 9.5 * 10-4 
#Detections/#Runs 3/50 10/50 0/50 2/50 
Total Runtime (min:sec:ms) 01:07::281 00:44:324 04:29:819 01:52:818 

Random 

Detection rate 6% 20% 0% 4% 
#Detections/#Runs 17/50 49/50 4/50 43/50 
Total Runtime (min:sec:ms) 01:34:255 01:01:80 05:40:749 02:46:760 

GA 

Detection rate 34% 98% 8% 86% 
# Detections /#Runs 2/50 50/50 1/50 50/50 
Total Runtime (min:sec:ms) 00:53:980 0:12:862 04:38:062 00:14:087 

Hill Climbing

Detection rate 4% 100% 2% 100% 
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On the other hand, in the case of the simpler DECF search space, hill climbing 
does exceedingly well, detecting data races in all runs. Here too, random search per-
forms relatively well, owing to the higher percentage of sequences leading to a data 
race (0.02%). A GA is therefore of no benefit in this case, although it too performs 
well.  

For MEOS2 and DECF2, the search spaces are of similar complexity as MEOS and 
DECF, respectively, but with smaller sizes and lower percentage of sequences leading 
to a data race. For MEOS2, the search space is large and complex, with 9.5 * 10-5% of 
sequences leading to a data race. Both random and hill climbing perform very poorly. 
The GA, while performing worse than for MEOS, still manages to detect data races 
four times as much as hill climbing. In DECF2, random performs worse because of 
the lower percentage of data race sequences (9.5 * 10-4%). The GA too performs 
worse than for DECF. Hill climbing remains unaffected by the size of the search 
space and changes in data race probabilities, probably due to the simplicity of the 
search space (few local optima). 

In all MEOS cases, the GA far outperforms both random and hill climbing tech-
niques. This confirms that it fares much better in large, complex search spaces, and is 
therefore a better option in many practical cases where such characteristics are likely 
to be present. As expected, the execution time of the GA is longer than the other tech-
niques, yet in complex search spaces (MEOS) the difference with hill climbing is of 
the order of 20-30%. For both cases of DECF, where the search space is smaller and 
less complex, the GA detection rate is somewhat comparable to hill climbing, which 
is designed for such search spaces.  

In large, complex search spaces, where few sequences yield data races, the GA 
yields significantly higher detection probabilities than other techniques. Because these 
probabilities for a run can still remain low, the GA must be run as many times as 
possible, given time constraints, to obtain the highest possible overall probability of 
detecting data races. Using the most complex case (MEOS2) as an example, with an 
8% probability of data race detection, 50 GA runs results in a probability of less than 
2% (0.9250) not to detect a data race in at least one run, with a bit more than five  
minutes of execution time. Such execution times can of course be brought down sig-
nificantly with faster hardware and parallel computing. Even when in practice the 
complexity of the search space is not known and it is not clear what percentage of this 
space results in a data race, using the GA will in the worst case yield comparable 
detection rates to hill climbing.  

6   Related Work 

In the context of detecting data races in concurrent systems, a number of works exist. 
Some [8, 9, 11, 14], do so using the code of the system under test. Kahlon et al. [14] 
begin by statically detecting the presence of shared variables in the code, before pro-
ceeding to output warnings about the presence of data races. Chugh et al. [20] also use 
a form of static analysis. In their work, they use program code to develop a data flow 
analysis for the system under test. They combine this with an independent race detec-
tion engine to return a version of the analysis that is suitable for concurrent threads. 
Both approaches necessitate putting off the detection of data races until the system 
under test is implemented. This has the disadvantage that any data races that are found 
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due to design faults are very costly to fix. Furthermore, data races due to dynamically 
allocated shared resources might go undetected. Other works, such as Savage et al., 
tackle this point. They also use system code in their Eraser tool, but do so dynami-
cally (at run time). In so doing, they ensure that dynamically allocated shared  
variables involved in data races are also detected [21]. There are limitations to their 
technique, however, the most important of which is that they are limited to examining 
paths that are triggered by their test cases. If the test cases chosen are not sufficient to 
visit a particular path where data races occur, the data race will remain undetected. 

Model checking has been used to detect data races in concurrent systems, such as 
in the Java Path Finder [22]. The aim here is the same as our aim: to detect problems 
arising from system models. However, what differs is the context: our approach is 
meant to be used in the context of MDD, specifically MDA. As such, we rely on 
UML extended with profiles, rather than temporal logic specifications. 

Of particular interest is the work by Lei, Wang and Li [2]. Here, the authors use a 
model-based approach for the detection of data races. Data races are identified by 
checking the state transitions of shared resources at runtime. The corresponding test 
scenarios leading to the race are then identified using UML activity diagrams ex-
tended with data operation tags. This extension is necessary as UML activity dia-
grams provide no means to model data sharing. Hence, the authors extend them with 
stereotypes to depict data sharing. The extended UML diagrams can then serve as an 
oracle for verifying execution traces. They also serve to ensure that both code and 
design are consistent. Lei, Wang and Li present results for two case studies. In the 
online store system, they discover five instances of data races. In the elevator system, 
they discover none. The authors note that they use random testing for comparison, but 
do not report results for it. They also do not provide execution times for their ap-
proach [2]. 

With the current trend towards MDD [15], models are regarded as the essence of 
system development. While their development may be time consuming, they can be 
used to partially automate other activities. The approach we propose is meant to be 
used in the context of the OMG’s MDA, hence our reliance on the UML standard and 
MARTE profile, thereby reusing existing design models instead of developing spe-
cific models (as in the work by Lei et al.) or waiting until the system is implemented 
to execute its code. As all information required by our approach can be incorporated 
in the UML model of a system, this eliminates the need for additional modeling ac-
tivities (e.g., using temporal logic). Use of the standard MARTE extension also elimi-
nates the need for haphazard additions (e.g., extensions for modeling data sharing by 
Lei et al.). Furthermore, standard profiles tend to be implemented within commercial 
tools, once the profile has been approved (Rational Rhapsody 7.5 already includes the 
MARTE profile). While the sequence diagrams required by CFD may not be as de-
tailed as required when the system is initially designed, adding information to these 
pre-existing diagrams for testing purposes is probably easier than working with a 
different model, such as in the case of Java Path Finder. In essence, our approach can 
be thought of as a guided random search to be used in the context of MDA. 

In the context of MDD, a number of works utilize MARTE’s predecessor: the SPT 
profile. Such works mostly focus on performance analysis rather than the analysis of 
model properties [3]. Other works use the MARTE profile, but with other aims than 
uncovering concurrency faults [6, 5]. In [6], the profile is used to create an approach 
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for real-time embedded system modeling along with transformations to execute those 
models. In [5], the authors aim at probing the capabilities of MARTE by applying it to 
a case study. 

7   Conclusions  

Concurrency abounds in many software systems, where threads typically access many 
shared resources. If not handled properly, such accesses can lead to errors, and serious 
system failures. The earlier any such problem is detected during the design process, 
the better. In this paper, we describe an approach, based on a tailored GA search, for 
detecting data races. The approach is based on the analysis of design representations 
in UML completed with the MARTE profile. Since our goal is to provide an auto-
mated approach that can be applied in the context of model-driven, UML-based de-
velopment, the choice of UML/MARTE was natural as it is the de facto standard for 
the object-oriented modeling of concurrent, real-time applications. This is also practi-
cal as it reduces the need for complex tooling and training, while reusing models 
already required for UML-based development. Our findings suggest that the GA has 
much higher chances than simpler alternatives (e.g., hill climbing) to detect data races 
when the search space is large and complex and few sequences lead to a data race, a 
situation we expect to be increasingly common in the design of industrial concurrent 
systems. Results also show that in our most complex case the probability of not de-
tecting a data race is less than 2%, using a bit more than five minutes of execution 
time. Our current work focuses on providing a general framework that can be easily 
adapted to different types of concurrency problems. 
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Abstract. Software performance is one of important software Quality
of Service attributes. For this reason, several approaches integrate perfor-
mance prediction in Model Driven Engineering(MDE). However, MDE
still lacks a systematic approach for performance measurement and met-
rics assessment. This paper presents MoDePeMART, an approach for
Model Driven Performance Measurement and Assessment with Rela-
tional Traces. The approach suggests declarative specification of per-
formance metrics in a domain specific language and usage of relational
databases for storage and metric computation. The approach is eval-
uated with the implementation of a UML Profile for UML Class and
State diagrams and transformations from profile to a commercial rela-
tional database management system.

Keywords: Software Performance Measurement and Assessment, Model
Driven Engineering, Transformational and Reactive Systems.

1 Introduction

Increasing dependency on software systems, and consequences of their failures,
raises the question of software system trustworthiness [1]. In order to use soft-
ware systems as dependable systems, means for quantification, verification, and
contractual trust of those systems are being invented.

Means of quantification, verification, and contractual trust have to be done for
both, functional and non-functional requirements. Functional requirements define
functionality which is the objective of the system. Non-functional requirements
are constraints on system’s functionality offered by the system like security, pri-
vacy, reliability, timeliness etc [2]. They are characteristics of functionality design
and implementation, and often are called quality requirements [1].

Some of the non-functional properties of a service, of particular interest to
users, are often specified with the Quality of Service (QoS). Performance, is one
of the QoS attributes. In this paper, performance is defined as degree to which
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objectives for timeliness are met [3]. It describes timing behavior of a software
system and it is measured with metrics like throughput and response time.

Significance of meeting non-functional requirements in trustworthy software
systems development, requires addressing them in the early design phases, in
parallel to functional requirements. For this reason, research in meting perfor-
mance requirements in Model Driven Engineering (MDE) was mostly dedicated
to performance predictions with analytical modeling and simulation, e.g. [4].
Performance measurement and empirical assessment of predicted values are left
to be done with profiling tools, or various techniques of manual insertions of code
for data collection and metrics computation. There is still not a model driven
approach for performance measurement and assessment.

This paper shows an approach for Model Driven Performance Measurement
and Assessment with Relational Traces) called MoDePeMART. The essence
of the approach is: (1) declarative specification of measurement points and met-
rics in a domain specific language, (2) automatic generation of code for data col-
lection, storage, and metrics computation, and (3) usage of Relational Database
Management Systems (RDBMS) for performance data storage and computation.

The paper is structured as follows. Section 2 explains the need for a model
driven approach for performance measurement and assessment. Measurement
and assessment with MoDePeMART is depicted in Section 3. The metamodel
which enables declarative specification of measurements and metrics compu-
tation is described in Section 4. The evaluation of the approach through the
implementation as a UML Profile for UML Class and State diagrams and trans-
formations to MySQL RDBMS is shown in Section 5. Section 6 contains the
comparative analysis of the approach with other approaches for performance
measurement and assessment. The limitations (assumptions) of the approach
are specified in Section 7. Section 8 gives an outlook of the approach and the
directions for the future work.

2 Motivation

MDE is a software engineering paradigm which suggests using models as the
primary artifacts of software development. It relies on two basic principles [5]:
abstraction and automation.

Abstraction suggests usage of Domain Specific Modeling Languages (DSMLs).
DSMLs are specialized modeling languages for solving classes of domain prob-
lems. Users of DSMLs are experts of that domain. Accordingly, DSMLs contain
concepts used by domain experts. With DSMLs domain experts specify solutions
to domain problems without being distracted by implementation details.

Automation handles implementation. It suggests transformations of DSML
models to implementations. This principle can be seen as one more level of
compilation.

In such a development process performance analyst faces several problems
when trying to measure and assess performance. First, the modeling language
used for software functionality development might not support constructs needed
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Fig. 1. Performance Measurement and Assessment in MDE with MoDePeMART

for the performance measurement and assessment, such as routines for obtaining
time. Second, even if it does, a performance analyst is not an expert in that mod-
eling language, and it might be difficult for him to use it. Finally, data collection
and assessment at the platform level can be error-pronouns. In order to do it a
performance analyst would have to know how the domain specific constructs are
transformed to the platform. To remove these problems we suggest declarative
specification of metrics of interest in DSML and automatic instrumentation and
code generation, facilitated with the MoDePeMART approach and depicted
in the next section.

3 MoDePeMART: Model Driven Performance
Measurement and Assessment with Relational Traces

MoDePeMART integrates performance measurement and assessment in MDE,
in such a way that it is transparent to the developer. The example on UML is
described in Figure 1.

After the design model is finalized (1), the instrumentation (2) takes place.
Here, measurement points are specified in the model. Furthermore, also are spec-
ified metrics of interest. Finally, the context of the service is specified. More on
context is explained in Subsection 3.1. Measurement points, metrics, and context
are specified in the DSML defined in Section 4.
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Fig. 2. Transformational (a) and reactive (b) behavior in getVideoItem method in-
vocation

From the design and performance measurement and assessment model trans-
formation (3) generates software code with integrated code for performance data
collection, and code for performance data storage and metrics computation. The
generated code for performance data storage and metrics computation is SQL
DDL code for tables needed for data storage, and SQL DML code for initial
table entries required for metrics computation. The transformation is followed
by compilation of the platform code.

After the deployment (5) of the generated code, RDBMS for storing and
metrics computation is initialized (6). Next, execution of test cases takes place
during which data about software execution are collected(7). Finally, to compute
performance metrics SQL DML queries are executed (8).

MoDePeMART approach is language independent approach. However, it
assumes some characteristics of modeling languages and systems. These charac-
teristics and performance assessment in such systems are discussed in the next
section.

3.1 Transformational and Reactive Software Systems and
Performance Assessment

MoDePeMART assumes that a modeling language for software development
facilitates modeling of two subsystems: transformational and reactive. Transfor-
mational [6] systems are systems which take some input value and transform
them to some output value through the set of steps specified by some algo-
rithm. For the same input value, they will always go through the same steps. An
example of transformational software system is in Figure 2 a).

The getVideoItem method is a method for obtaining video items in a small
electronic items management application. Two kinds of items are obtained from
the database with this method: a movie and a music video item. When user
requests a movie, the value of the variable type is “movie” and the user gets
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two files: a movie trailer and the movie. The getItem invocation 2 obtains the
trailer and the invocation 3 obtains the movie. When user requests a music
video item, the value of type is not “movie” and only the getItem invocation
3 executes. This invocation obtains a music video file from the database.

Transformational programs are composed of [7]: simple commands (e.g. as-
signing a value to a variable), composite commands (e.g. a command block),
guarded command (e.g. a UML option block or if statement), guarded com-
mand set (e.g. UML alternatives or the C switch statement), and loops. These
commands are composed with two relations [7]: invocation (one uses another
one) and sequential composition (one executes before another one).

Reactive software systems are systems which receive stimuli from environment
and either change internal state, or produce some action in environment. The
behavior depends on both stimulus and current system state. The reactive sub-
system of the ItemFacade manages the data compression in database and the
getItem method communication. When the state is On, the data is compressed
in the DBMS and decompressed at the ItemFacade side. When Off, there is
no compression.

The context of the service execution has to be taken into account when assess-
ing performance. Inappropriate context specification can lead to inappropriate
performance assessment. In systems with interwoven transformational and re-
active part, both, transformational and reactive context have to be taken into
account. Transformational context is the sequence of method (non)executions
before and after the required service. For example, let us assume that it is of
interest the response time of the getItem method when obtaining a movie file.
If only the execution of the getItem would be considered without any specifi-
cation of previous executions, the computed response time would also include
executions of the getItem outside of the getVideoItem method. One more
attempt without the specification of context is to consider the time between the
invocation of the 3. getItem method from the getVideoItem method and the
arrival of it’s return value. However, in this case the final response time includes
obtaining movies and music videos. The solution is in specification that the re-
sponse time is computed for getItem method invoked from the getVideoItem
and that the optional block did not execute before the getItem execution.

Reactive context is the state of the system. The state can have a diverse impact
on response time. For example, if the communication in the previous example
is compressed, obtaining a movie response time can be reduced. However, the
response time of obtaining a trailer can be increased. Due to the small size of
the trailer the compression, transfer of compressed data, and decompression can
take more time than transfer of non-compressed data.

4 The Metamodel for Performance Measurement and
Assessment

In previous section it is explained that the MoDePeMART suggest declara-
tive specification of performance measurements and metrics computation with a
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Fig. 3. The part of the metamodel for transformational context specification

DSML. For this reason, the DSML defining metamodel facilitates the declarative
specification of: execution context, and metric computation.

The declarative specification of transformational execution context is enabled
with the part of the metamodel in Figure 3.

The measurement points of a model are specified with instances of the In-
strumentedElement metaclass. Instrumented elements can be either simple
commands or statement block.

Transformational context can be specified with instances of Scenario, Root,
ScenarioEvent, Alternatives, Contain, Precede, Negation and SubSce-
nario metaclasses. A transformational context is encapsulated in the Scenario
metaclass, and consists of it’s ScenarioEvents, and interrelations between them.
A scenario event is an instrumented element and its reactive context. One in-
strumented element in the same reactive context can find itself several times
in a scenario and each time it is a different ScenarioEvent instance. For ex-
ample, getItem invocations in Figure 2 are specified with two ScenarioEvent
instances.

Interrelations form a tree composed of ScenarioEvent, Alternatives, Con-
tain, Precede, Negation and SubScenario metaclasses. A transformational
context starts with root invocation. A root can be either an instance of Scenar-
ioEvent for the scenario containing only one event, or an instance of Contain
for more complex scenarios. Metaclasses Contain and Precede enable spec-
ification of invocation and sequential composition, respectively. The metaclass
Alternatives supports specification of guarded command sets. Simple com-
mands are being specified with ScenarioEvent. Composite command specified
with the usage of SubScenario and all other metaclasses mentioned in this
paragraph. Guarded commands specification is made possible with the Nega-
tion and Precede, as explained on the example in Subsection 3.1. Finally, loop
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Fig. 4. The part of the metamodel for reactive context specification

can be considered as a statement block and it can be specified either as an
instrumented element or a composite command.

The metamodel part shown in Figure 4 enables the reactive context specifi-
cation.

Reactive context is specified with a boolean algebra of active states during
the scenario event execution. Furthermore, the interrelation of active states and
the scenario event is also taken into account. The boolean algebra is specified
with StateCondition, Binary, AND, OR, NOT metaclasses, and Condi-
tionElement metaclass. The possible interrelations are specified in the enumer-
ation ConditionRelation enumeration. Based on the assumptions/limitations
of the approach, explained in Section 7, and on the ontology of the interval in-
terrelations identified in [8], four possible interrelations are identified: contains,
during, overlaps, and overlapped. Contains is the interrelation between a
state and a scenario event where a state starts before and ends after the execu-
tion of the scenario event. Overlaps is the interrelation in which a state starts
before the start of the scenario event execution, but ends before the end of the
scenario event execution. During and overlapped are inverse to contains and
overlaps, respectively.

The MeasuredEvent metaclass is used after the context specification for the
definition of an event of interest. It contains a context in the eventScenario
attribute, and the event of interest in measuredScenarioEvent attribute. Fi-
nally, in some cases there is a need for treating several events as one. For example,
if a performance analyst would like to measure throughput of a component, he
would have to group all methods of that component, and then specify compu-
tation of throughput. The Group metaclass facilitates grouping of events for
which metrics are computed.

The specification of events of interest is followed by specification of desired
metrics and time intervals for which they are computed. The metrics metamodel
part facilitating metrics specification is presented in Figure 5.
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Fig. 5. The part of the metamodel for performance metrics specification

Metrics for performance assessment defined in this metamodel correspond
to performance definition in Section 1, and UML SPT [9] and MARTE [10]
standard metrics. Duration and OccurrenceRate metaclasses correspond to
response time and throughput, respectively. OccurrencePercentage is used
for verification of execution probabilities of different alternatives in branching.

Duration of a program construct is being characterized with some statis-
tical functions. Those statistical functions are generalized with the Analysis
metaclass. Statistical functions are divided into two groups. One group are dis-
tribution functions, cumulative and density, defined with instances of Dis-
tribution and IntervalSet metaclasses. Distribution functions are computed
as histograms and IntervalSet instance defines withs of bars in histograms.
The second group of functions are statistical functions which summarize a set of
durations in one value. Such metrics’ computation is being defined with Statisti-
calAnalysis metaclass instances. Examples of these metrics are mean, median,
standard deviation, skewness and so on, and they are defined in the Statistics
enumeration. This set can be extended. The only requirement is that each func-
tion in this enumeration has the corresponding function in the target RDBMS.

Values of all metrics vary over the time. For example, during the peek periods
of day response time is higher than in the rest of the day. For this reason, the
assessment has to address issues of varying performance metrics values. This is
facilitated with the metamodel part in Figure 6.

SimpleAssessment metaclass enables separation of performance assessment
time intervals into sub intervals. For example, let the assessment be for a time
interval of one day and the metric of interest mean duration. With a Simple-
Assessment instance and an instance of TimeIntervalSet it can be specified
that mean duration is computed for each hour of the day. The TimeIntervalSet
instance defines subintervals for which the metric is computed, here each hour
of a day.
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Fig. 6. The metamodel part for specification of time varying metrics observations

CompositeAssessment metaclass enables further statistical analysis of the
simple assessment values. For example, with CompositeAssessment it can
be specified a computation of density distribution of previously mentioned one
hour mean durations. Furthermore, for example the standard deviation of one
hour mean durations for six hours time intervals can be computed. The time
subintervals for composite assessment are also specified with TimeIntervalSet
instances.

5 Evaluation

The approach is evaluated with an implementation of a UML Profile, and trans-
formations from the profile to Java with RMI and MySQL RDBMS. The UML
profile is entitled PeMA: The UML Profile for Performance Measurement and
Assessment, and it is, at the present moment, suited only for UML Class and
State diagrams. The implementaion in MagicDraw 15.1 Community Edition can
be seen in Figure 7.

For these two diagram types the only measurement elements which can be
instrumented are operations in Class diagrams and states in State diagrams.
The rest of the metamodel is implemented as a model library.

UML Class and State diagrams are transformed into client-server Java RMI
applications. For denotation of UML classes modeling client functionality is de-
fined a stereotype �Client�. A corresponding Java class is generated for each
class with the �Client� stereotype. Furthermore, generated are proxies of server
classes whose methods are directly invoked by clients.

Server classes are classes without the �Client� stereotype. For each server
class are generated a corresponding Java functionality implementation class and
it’s instances pool class. Pool classes facilitate concurrent execution defined in
Section 7. When a client connects to the server immediately are allocated from
pools instances of Java functionality classes to serve to the client. Dispatching
between clients and corresponding instances is performed by generated RMI
server object class. State charts at the client and server side are implemented
with State pattern [11]. These transformations are out of this paper’s scope.
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Fig. 7. The implementation UML Profile for Performance Measurement and
Assessment in MagicDraw 15.1 CE. Figure shows the context specification part.

Used RDBMS for performance data storage and metrics computation is MySQL
5.2. JDBC MySQL Connector/J driver version 5.1.5 was used as a database driver
for performance data storage. Transformations from measurement and assessment
part to SQL code for initialization and metrics computation are out of scope of this
paper.

Experiments on measuring the duration of the performance data storage
procedure were conducted to depict the impact of the measurements to the
overall performance. The application was running on the Intel Pentium 4 3.00
GHZ hyperthreaded processor (two virtual cores), 1GB of physical memory, and
GNU/Linux 2.6.17.13. The observed value in the experiment was the duration
of the performance measurement and data storage routine. Furthermore, it is
analyzed with different number of concurrent service requests. For each number
of concurrent requests, the experiment was repeated 10 times. Each repetition
contained the complete restart of the server, in order to approximate the impact
of the distribution of server software over working memory pages.

The experiment was conducted to show the central tendency of the duration
of the routine. This should serve as orientation to the performance analyst of
how long might the routine last. For this reason was computed the median of the
duration routine. Then, in order to approximate the value of the data collection
and storage routine median, it is computed the mean for all 10 repetitions. The
results can be seen in Table 1.

The results show that the performance data collection and storage routine
increases with the number of concurrent service requests. In order to obtain
the right values of the response times the resulting values from Table 1 for the
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Table 1. The mean of the median of measurement and storage routine for various
number of concurrent invocations

Concurrent requests 1 10 20 30 60 100
mean(median) 192ms 204 ms 229ms 260ms 289ms 327ms

appropriate number of concurrent invocations should be multiplied by the num-
ber of the measurement points at one service and subtracted from the complete
measured service response time.

6 Related Work

The measurement and assessment of performance is an important topic in soft-
ware engineering. This section compares MoDePeMART with approaches for
performance measurement and assessment at the platforms level, shows their
shortcomings, and explains improvements which MoDePeMART adds. Sub-
section 6.1 explains the concerns in performance measurement and assessment
and Subection 6.2 shows the comparative analysis of addressing the concerns.

6.1 Comparative Analysis Criteria

One of the major concerns is facilitating statistical analysis of response time.
Different kinds of system require different statistical analysis. Furthermore, the
parallel analysis of response time and throughput is also needed for validation
of meeting SLAs with different number of users. Moreover, workload character-
istics observations are important for validation of correspondence of prediction
assumptions with test cases. Workload is described with the number, request
rate, and arrival pattern.

Characteristics of paths are also of significant interest in measurement and
assessment. Path characteristics, such as probability of execution and number of
iterations are used in performance predictions.

Not all business tasks are of the same importance in systems, and the most
important have to be met in any conditions. Ability of their isolation is of great
importance. Furthermore, identification of execution context for critical business
tasks is as important as identification of critical tasks themselves.

Performance analysis of software systems has to be done for representative
time periods. For example, mean response time of whole day usage must not be
the same as during the peek usage period.

Instrumentation transparency is also of great importance in measurement. Ad-
ditional code for measurement can make the code for business logic more complex
and hard to understand. Furthermore, reduction of measurement points is also
one of the major concerns. It reduces measurement induced system overhead
and saves space and time in metrics computation.

Finally, for avoiding assessment failures, keeping consistency between the data
structures of collected data and for analysis is also of significant importance.
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Table 2. Comparative analysis of related work ( (+) facilitated, (-) not facilitated, (o)
partially facilitated)

-+--+-o-------The Open Group [15]

++(o)+(o)++++-++-++MoDePeMART

-++---o-----++Diaconescu et al. [18]

+++-o-o-------Debusman and Geihs [17]

+-+-o-o-------Marenholz et al. [16]

+++-o-oo-++-++Hollingsworth et al. [14]

+++-o-oo-+---+Liao and Cohen [13]

+++-o-o------+Klar et al. [12]
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6.2 The Comparative Analysis

The results of the comparative analysis can be seen in Table 2.
Klar et al. [12] introduced the idea of relating design models and instru-

mentation. Their approach enabled statistical analysis of durations. The in-
strumentation is done at the model level, and instrumentation and metrics
computation automatically generated. However, there is no possibility of through-
put and workload characteristics assessment. Furthermore, there is no negation
of an occurrence. For this reason transformational context specification and iso-
lation of business critical task is only partially supported. Reactive context and
specification of metrics computation for various intervals is also not supported.

Liao and Cohen [13] and Hollingsworth et al. [14] introduced languages for
performance assessment and monitoring. The major shortcomings of these lan-
guages are: lack of the reactive context analysis and inability to specify metrics
computation for time intervals. Furthermore, due to the lack of the sequence not
execution construct the business task isolation, and transformational context
specification are only partially supported. Finally, Liao and Cohen [13] do not
enable throughput assessment.

Application Response Measurement (ARM) standard is an attempt of stan-
dardization of data types in performance analysis. This standard addresses the
questions of transformation context specification and the consistency of data in
measurements and metrics computation. Aspect orientation, on the other hand,
e.g. Marenholz et al. [16] solves only the problems of transparent instrumenta-
tion. Debusman and Geihs [17] combine AOP and ARM.

Diaconescu et al. [18] add a transparent software layer between components
and middleware. Instrumentation is done at component interface, which is not
sufficient for context and critical business instrumentation.

MoDePeMART approach manages all of the previous mentioned concern
except for number of loop iterations analysis. Workload arrival pattern recogni-
tion is still not supported.
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7 Limitations

MoDePeMART can be used in software systems with the next assumptions.

Measurement and assessment is possible only in systems with concur-
rency without intercommunication. In the execution model it is assumed
that there are no concurrent executions which interfere. Moreover, the or invoker
of a scenario is not aware of concurrent execution. Such approach is implemented
in, for example, JEE Session Beans.

Synchronous communication. At the present time MoDePeMART sup-
ports only performance measurement and assessment for the systems commu-
nicating synchronously. Synchronous communication is the one where the caller
of an operation is blocked and waits until the callee returns a result. After the
caller gets the result it continues the execution [19].

There is no support for specification of measurement and metrics
computation of loopbacks. A loopback is when in a scenario execution control
flow reenters the method whose body already executes. The simplest loopback
is recursion.

Granularity of timing mechanism is large enough so that execution of
each instrumented element occurs in different chronon. Chronon is the
smallest unit of time supported by the discrete time model. The granularity is
defined with the smallest time units supported by the timing mechanism, such
as milliseconds or nanoseconds. The assumption of this approach is that each
instrumented element execution with the same sequence identifier executes in
different chronon.

Job flow is assumed in the composite occurrence rate assessment.
The system should be fast enough to handle the service requests, and thus the
competition rate equals the arrival rate.

Finally, the approach can be used only for verifying response time
and throughput of services. Verifying the equivalence between assumptions
on workload, data, and loop iteration numbers in predictions and measurements
and in execution is not facilitated.

8 Outlook and Future Work

This paper presents the MoDePeMART an approach for model driven perfor-
mance measurement and assessment. This approach introduces an idea of raising
the abstraction level of measurement and assessment in two ways. First, measure-
ment and assessment is specified in the terms of modeling and not in the terms of
implementation constructs. Second, it suggests a DSML for metrics specification
and computation. Moreover, it suggests usage of relational database management
systems for performance metrics storage and computation. The metamodel for
the performance measurement and assessment DSML and a validation as a UML
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Profile are presented in this paper. With the comparative analysis it is shown
that the major benefits of this approach are specification of performance metrics
interval computation and the isolation of critical business tasks. However, there
are several possible improvements of the metamodel.

The metamodel could be extended in several ways. It could be extended to
support performance measurement and assessment of asynchronous communica-
tion. Furthermore, the metamodel could be extended to support measurement
and assessment of resources utilization. Moreover, the characterization of data
used as parameters in services could also be added to the metamodel. Addi-
tionally, computation of iteration loop numbers could also be added. This is
often needed when assessing the service characteristics. Finally, workload pat-
terns are of great importance for service performance assessment. Extension of
the metamodel for workload patterns assessment would be of great usefulness to
performance analyst.

Current PeMA profile used only State and Class diagrams and both of them
are not suited for specification of measurement context. It could be explored us-
age of activity and sequence diagrams for specification of execution scenario of in-
terest. These diagrams are usually used for control flow description/prescription.
This qualifies them as a good basis for transformational context specification.
However, still remains the problem of finding the appropriate elements for state
context, metrics, and the assessment part of the metamodel. Furthermore, ap-
plication of the profile to other diagrams could be explored. In extending the
profile for application to other diagrams the major challenge is the development
of the stereotypes denotating instrumented elements. For example, in the UML
metamodel body of activity diagram ConditionalNode is specified as an at-
tribute. For this reason, it can not be directly annotated as an instrumented
element.

The MoDePeMART currently facilitates only assessment of services perfor-
mance. However, it offers a several promising extension directions. With
previously mentioned metamodel extension, it could be made very useful in
performance debugging or even continuous monitoring. Such language could be
support for specification of automatic system adaptation based on the captured
runtime performance characteristics.
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Abstract. Quality assurance for security-critical systems is particularly chal-
lenging: many systems are developed, deployed, and used that do not satisfy 
their security requirements. A number of software engineering approaches have 
been developed over the last few years to address this challenge, both in the 
context of model-level and code-level security assurance. However, there is lit-
tle experience so far in using these approaches in an industrial context, the chal-
lenges and benefits involved and the relative advantages and disadvantages of 
different approaches. This paper reports on experiences from a practical appli-
cation of two of these security assurance approaches. As a representative of 
model-based security analysis, we considered the UMLsec approach and we in-
vestigated the JML annotation language as a representative of a code-level as-
surance approach. We applied both approaches to the development and security 
analysis of a biometric authentication system and performed a comparative 
evaluation based on our experiences.  

Keywords: Security analysis, JML, UMLsec, biometric authentication. 

1   Introduction 

Designing and verifying security-critical software is very difficult because of the 
complexity of these mechanisms and of industrial systems, the interaction with adver-
saries and the ways in which systems use security mechanisms. The traditional indus-
trial approach is to describe security requirements textually, design security features 
as an add-on to the system design, then patch flaws found or exposed after deploy-
ment - called ‘penetrate and patch’. However this approach is lengthy, imprecise and 
difficult to check, which risks leaving security vulnerabilities that might result in ma-
jor loss or damage before discovery. Removing vulnerabilities found in operational 
systems can be complex, time consuming and error-prone. 

Researchers have developed formal methods for specifying a system in such a way 
that properties of the specification can be mathematically verified for correctness.  
However formal methods have not been widely adopted because the complexity of 
                                                           
* Empirical results category paper. 
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both the languages and the systems modeled mean that staff need considerable skill, 
training and time to produce specifications and proofs, which incurs high costs.   

To increase industry acceptance of formal methods, an approach is needed that in-
tegrates security requirements specification and verification with a method and  
language that can be used by general software designers. The UMLsec approach [1] 
addresses this by expressing security requirements within a system specification using 
the Unified Modeling Language (UML) and then using analysis tools to verify these 
requirements for correctness.   

UMLsec is an approach based on a formal foundation but it aims to be easier for 
general software designers to use than traditional formal methods because the UML-
sec language is simpler and integrated with UML. This aims to reduce the very high 
training and usage costs that have marginalised the use of formal methods. This ap-
proach also aims to be less expensive than the traditional ‘penetrate and patch’ ap-
proach as it could be applied at an early stage in system development when the cost of 
change would be low. The practical application reported in this paper therefore evalu-
ated how easy it was to specify security requirements using UMLsec and how diffi-
cult it then was to implement a system from this UMLsec specification.   

Even though the security requirements specification might have been verified, se-
curity flaws may be introduced during the design and implementation of the system or 
in subsequent changes. We therefore investigated using the Java Modeling Language 
(JML) to relate the implemented system back to its UMLsec security specification 
and verify that it is correct in relation to this specification. 

We investigated these approaches by implementing a biometric authentication sys-
tem adapted from a proposal by Viti and Bistarelli [2]). Biometrics are an attractive 
security mechanism for authentication because they are an inherent feature of a per-
son and so cannot be lost or easily changed.  We used this practical application to eva-
luate the model-level UMLsec security assurance approach and the code level JML 
assurance approach. We here compare their advantages and disadvantages, describe 
specific practical experiences with the two approaches and their combination in par-
ticular, discuss lessons learned and suggest possible improvements. 

Although there is traditionally a lack of practical validation of software engineer-
ing research, it is increasingly being realised that this is an important component of 
such research, leading to increasing activity in this area. The work presented here is 
different from earlier reports of industrial applications of model-based security in that 
it focuses on security analysis on the code rather than the model level. 

In the next section, we summarise the UMLsec and JML approaches. We then give 
an overview of the biometric authentication system in Section 3. Our security assur-
ance using a combination of UMLsec and JML is described in Section 4. We cover 
lessons learned from the UMLsec and JML approaches in Section 5 and we end with 
a summary and suggestions for further work. 

2   Software Security Assurance 

In this section, we first discuss the practical challenges involved in providing assurance 
for security critical software and we then summarise the two approaches in our applica-
tion: UMLsec for the model-level assurance and JML for the code-level assurance. 
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2.1   Challenges for Security Assurance 

In practice, security is compromised most often not by breaking dedicated mecha-
nisms such as encryption or security protocols, but by exploiting weaknesses in the 
way they are being used. Thus it is not enough to ensure the correct functioning of se-
curity mechanisms used. They cannot be ‘blindly’ inserted into a security-critical sys-
tem, but the overall system development must take security aspects into account in a 
coherent way. While functional requirements are generally analyzed carefully in sys-
tems development, security considerations often arise after the fact. Adding security 
as an afterthought, however, often leads to problems and security engineers get little 
feedback about the secure functioning of their products in practice, since security vio-
lations are often kept secret for fear of harming a company's reputation. 

In practice, the traditional strategy for security assurance has been ‘penetrate and 
patch’.  It has been accepted that deployed systems contain vulnerabilities: whenever 
a penetration of the system is noticed and the exploited weakness can be identified, 
the vulnerability is removed. For many systems, this approach is not ideal: each pene-
tration may already have caused significant damage before the vulnerability can be 
removed. For systems that offer strong incentives for attack, such as financial applica-
tions, the prospect of being able to exploit a weakness even only once may be enough 
motivation to search for such a weakness. System administrators are often hesitant to 
apply patches because of disruption to the service. Having to create and distribute 
patches costs money and leads to loss of customer confidence. It would thus be pref-
erable to consider security aspects more seriously in earlier phases of the system life-
cycle, before a system is deployed, or even implemented, because late correction of 
requirements errors can be significantly more expensive than early correction. 

2.2   Model-Based Security Using UMLsec 

UMLsec is an extension of UML for secure systems development. Recurring security 
requirements, such as secrecy, integrity, and authenticity are offered as specification 
elements by the UMLsec extension. These properties and its associated semantics are 
used to evaluate UML diagrams of various kinds and indicate possible security vul-
nerabilities. One can thus verify that the desired security requirements, if fulfilled,  
enforce a given security objective. One can also ensure that the requirements are ac-
tually met by the given UML specification of the system (design solution). UMLsec 
encapsulates knowledge on prudent security engineering and thereby makes it avail-
able to developers who may not be experts in security. The extension is given in the 
form of a UML profile using the standard UML extension mechanisms. Stereotypes 
are used together with tags to formulate security requirements and assumptions on the 
system environment. Constraints give criteria that determine whether the require-
ments are met by the system design (design solution), by referring to a precise seman-
tics mentioned below. 

The tags defined in UMLsec represent a set of desired properties. For instance, 
“freshness” of a value means that an attacker cannot guess what its value was. More-
over, to represent a profile of rules that formalize the security requirements, the  
following are some of the stereotypes that are used: «critical», «high», «integrity», 
«internet», «encrypted», «LAN», «secrecy», and «secure links». The definition of the 
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stereotypes allows for model checking and tool support. As an example consider «se-
cure links». This stereotype is used to ensure that security requirements on the com-
munication are met by the physical layer: when attached to a UML subsystem, the 
constraint enforces that for each dependency d with a stereotype s representing a cer-
tain security requirement, the physical architecture of the system should support that 
security requirement at the given communication link.  

A detailed explanation of the tags and stereotypes defined in UMLsec can be found 
in [1]. The extension has been developed based on experiences on the model-based 
development of security-critical systems in industrial projects involving German gov-
ernment agencies and major banks, insurance companies, smart card and car manufac-
turers, and other companies. There have been several applications of UMLsec in  
industrial development projects [3,4,5]. UMLsec supports automatic verification of 
security properties using the UMLsec tool-support [1] as well as IT security risk  
assessment [6]. 

2.3   The Java Modeling Language 

The JML is a behavioural interface specification language which describes method 
pre- and post-conditions.  It is based on the design-by-contract approach [7] that de-
scribes a requirement for a client to guarantee that agreed pre-conditions hold before 
calling a method defined by a class; in return, the class guarantees that agreed post-
conditions will hold after the call. For example, a client calling a square root function 
would guarantee that the argument was a positive number and the class would guaran-
tee that the result was approximately equal to the square root of the argument.  

[8], [9] describe the basic features of the language and these papers are comple-
mented by the reference manual [10].  JML is written as annotation comments begin-
ning with //@ within Java code. A requires clause specifies the method's  
pre-condition and ensures clause specifies normal and exception post-conditions. For 
example, the annotation //@ requires x>= 0.0 specifies the pre-condition of 
the square root function. The client code calling this function must then ensure that 
this function is only called with a positive number argument.  As the contracts ex-
pressed in JML are compiled into executable code, any run-time violation of them can 
be immediately detected, such as a negative argument in this function call. 

3   The Biometric Authentication System 

3.1   Context 

The implemented biometric authentication system consists of a controlling PC with a 
combined scanner/smart card reader. The PC is connected to a server application that 
authenticates the user. The user firstly inserts a smart card containing a fingerprint 
biometric template into the USB port of the smart card reader. He then enters a PIN at 
the controlling host PC to activate the card, and places a finger on the scanner. The 
host then compares the scan to the fingerprint template; if they match, the host en-
crypts a nonce sent from the server with the user’s private key stored on the smart 
card and returns it to the server. The server authenticates the user by decrypting the 
received nonce with the user’s public key and confirming that it matches the nonce 
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originally sent. This then completes user authentication by three factors: possession of 
a smart card; a PIN; and a biometric. 

3.2   Specification Modeling Using UMLsec 

The host-smart card and host–scanner protocols incorporate protocol fragments de-
scribed in [11], [12]. The host establishes a shared symmetric key with the smart card 
and scanner which is then used to encrypt messages over the un-trusted connection 
between them. The system uses misuse counters to limit the numbers of PIN entries, 
biometric scans and server connection attempts. 

The server connection uses the HTTPS protocol (HTTP over a Secure Sockets 
Layer (SSL)) to authenticate the server using its digital certificate and request client 
authentication using the user’s digital certificate stored on the smart card. 

We specified requirements using UML deployment, class and sequence diagrams.  
The deployment diagram describes the physical hardware and connections in the sys-
tem. The class diagram describes the four main classes modeling the smart card, host 
PC, scanner and server in terms of their attributes and operations, plus secrecy, integ-
rity, freshness and authenticity security requirements described using UMLsec. The 
sequence diagrams describe the interaction with the system user and the protocol of 
messages between the host and the smart card, scanner and the server. These proto-
cols use cryptographic data and functions, and again we use UMLsec to express secu-
rity requirements. 

The system’s software architecture is a software-only implementation of the host, 
scanner and smart card classes where the host is invoked by a user through a browser.  
Each message in the protocols between these classes is constructed, passed as an ar-
gument in a method call to the receiving object and then processed. The object’s reply 
is handled as a method return value to retain the host’s overall control of the dialogue. 

The system uses the Java Cryptography Architecture (JCA) to encrypt and decrypt 
message data, the Java security package to implement nonces, message authentication 
codes and digital signatures, and the Java Secure Sockets Extension (JSSE) to provide 
the HTTPS server connection. 

4   Security Assurance 

4.1   JML Contracts 

We implemented the software components of the system using about 1,300 lines of 
Java 6 code. We then used JML to try to verify parts of the system’s code against its 
UMLsec specification.  We had described system operations using the Object Con-
straint language (OCL) that is part of the UML notation, but we did not use it to for-
mally describe all system constraints because we found OCL difficult to use for this 
task due to its complexity. This did not cause any development problems in our par-
ticular application because the designer and developer were the same person, but in a 
larger-scale project, where these roles are usually separate, more formal constraint 
documentation would be needed to communicate information. Also, an earlier deci-
sion to use JML at the design modeling stage would have helped structure the code  
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during the implementation phase to increase the effectiveness of using JML. In par-
ticular, an early decision on the implementation language would allow a specific spe-
cification language like JML to be used rather than the generic OCL. 

As an example of a method-level JML contract that we added, we now consider a 
method that compares the Message Authentication Code (MAC) calculated from a  
received message with the MAC in the message.  The method handles different mes-
sage types with different lengths.  It was difficult to write a JML contract since nei-
ther the message type nor the return code were expressed as arguments as the method 
was an addition during implementation to consolidate a number of blocks of similar 
code.  We eventually verified the check in JML by comparing each byte of the two 
MACs using a JML \forall expression: 

//@ ensures (\forall int x; 0 <= x &&  
//@  x <  mac.getMacLength(); 
//@  calcMac[x].compareTo(receivedMac[x])==0); 

This example demonstrates that JML can be difficult to apply unless the method 
has been designed with JML verification in mind. A similar comment would apply 
when using another notation instead of JML (such as OCL). This is also in line with 
the intuitive idea that security contracts can be easier to specify if we can take advan-
tage of the algebraic properties of the data involved. 

We also used the finite state machine model proposed in [13] to verify that mes-
sages are sent in the correct sequence by the host. For this, static integers are declared 
defining the messages sent before the start and end of each method, thus: 

//@ public static final ghost int  
//@ INITIAL = 1, 
//@ RESET = 2, 
//@ ASKZ = 3, 
//@ public ghost int state = INITIAL; 

The JML ghost field state is assigned one of these values at the end of each 
method, for example: //@ set state = ASKZ. 

The JML contract for the method can then test the relevant pre- and post-condition 
using this variable. For example, for a method which must begin after an ASKZ has 
been set and must end by sending an ACK, we defined the following: 

/*@ public normal_behavior 
 @ requires state == ASKZ; 
 @ assignable \everything; 
 @  ensures state == ACK; 
 @*/ 

However, since each method handles several messages, we could not use JML to 
fully verify the correct message sequence, since JML can only check the state before 
the start and after termination of each method.  Had these methods been written at a 
lower level of granularity to each handle only one message exchange then this would 
have been possible. We refactored several methods to confirm this. This example de-
monstrates that the software to be verified using JML should be designed in a style 
consistent with the use of JML to gain most value from its use.  
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The JML \fresh expression asserts that objects are freshly allocated and were 
not allocated in the pre-state.  This contributes to the freshness security requirements 
implemented by nonces in the system in a useful way.  For example: 

 //@ ensures \fresh (zSc); 

verifies that the object zSc that stores a random number is freshly generated. Note 
that this check does not aim to guarantee that the pseudo-random algorithm used to 
generate the random number is itself secure. It does however make sure that an exist-
ing random number object is not reused accidentally or maliciously, which does pre-
vent a certain class of fresh value security flaws. 

We investigated using JML to verify that a message has been encrypted. There is 
no JML expression to support this directly and the cipher Java class does not have a 
method to return the encrypted or decrypted state to which it has been set. We could 
have rewritten the encryption code as a separate method and added an attribute that is 
set to the current cipher state; a JML or Java assert statement could then test this 
attribute value when each message is sent. However this would not directly test the 
encryption of the message. We therefore chose to test that the cipher text was differ-
ent to the plain text by using a JML assert statement of the form: 

//@ assert (\forall int x; 0 <= x &&  
//@ x < plainText.length(); 
//@  plainText[x] != cipherText[x]); 

after each message send. Again, this check does not aim to enforce, for example, that 
the used encryption algorithm is secure, but does make sure that the application of the 
encryption algorithm is not simply left out accidentally or maliciously. 

Note that this example shows that it is important to distinguish the kind of property 
we would like to specify from what we can specify in a verifiable manner: The in-
tended property refers to how hard it is for someone who does not have access to the 
encryption key to retrieve the original message. This is a property that cannot be ex-
pressed directly as a pre/post/invariant condition. 

We also intended to specify in JML that methods called from outside the smart 
card methods could not read or assign to the field containing the PIN. This turned out 
to be relatively cumbersome because there is no JML keyword with the direct mean-
ing ‘not accessible’. Instead, one needs to add a JML to every method to specify all 
the fields that are accessible by each method. 

4.2   JML Specification Patterns for Security 

Warnier [14] proposes JML specification patterns for confidentiality and integrity. As 
part of our application, we investigated their usefulness for identifying security flaws. 
Warnier defines confidentiality as non-interference between variables of different se-
curity levels: the values of all non-confidential (low security) fields in the post state 
should be independent of the values of all confidential (high-security) fields in the 
pre-state. He defines a similar JML specification pattern for integrity where the values 
of high security variables in the post-state are required to be independent of low secu-
rity variable values. 
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Although using specification patterns is a good idea in principle, in our experience, 
they were difficult to apply because many of the system’s methods were rather large 
and therefore too complex to investigate using these patterns; they would have been 
more useful when applied to smaller methods. Also, there was a difficulty in applying 
the confidentiality pattern in cryptography which is common to information-flow type 
definitions of confidentiality: given a high-security plain-text, its encryption would be 
considered low-security (because it can only be decrypted by trusted parties, so the 
cipher text can be communicated publically). Thus, the encryption function itself 
would be considered to violate confidentiality according to this definition, although 
that is clearly not the case in reality. 

4.3   Security Specifications in JML 

Agarwal et al. [13] have written JML specifications for some security-relevant Java 
classes, although only a few are cryptography classes. These specifications aim to 
provide a more precise understanding of the behaviour of the classes than javadoc 
comments. This might reduce security flaws caused by using these classes incorrectly, 
for example with invalid pre-conditions or handling post-conditions incorrectly, and it 
might identify such errors during run-time assertion checking.   

To investigate this potential, we compared the JML specifications of four methods 
of the Signature Java class used to support digital signature processing in the sys-
tem to the javadoc comments for these methods. Overall, the JML specifications were 
somewhat more precise than javadoc but they required significantly more time to un-
derstand. Also, only three cryptography classes currently have JML specifications.   
The ability to automatically check JML contracts at run-time checking is of limited 
use for these specifications since nearly all pre-conditions are also handled by Java 
exception handling. The post-conditions could be relied on as the Java methods are 
rather unlikely to contain errors, being part of a standard library implementations that 
has been extensively tested and used already. We therefore found JML specifications 
for Java classes to be mainly a useful supplement to javadoc comments, which are not 
always completely precise and unambiguous. 

4.4   Manual UMLsec / Code Validation Check 

We manually checked the consistency of each UMLsec security requirement with its 
implementation in the prototype to examine whether and how it could be verified us-
ing JML. This was done in two stages: UMLsec to protocol; and protocol to code 
where each protocol component should map to code in the prototype. This protocol-
to-code mapping check would have been easier had the protocol been implemented 
using one method to process each message in each class. Such a consistent structure 
would be essential for cost-effective manual checking by someone not already famil-
iar with the code. If the contract for each method is then written in JML, it can be au-
tomatically checked statically and at runtime to complement a manual check. 

This mapping check revealed several issues, which were examined as to how easily 
they could be detected using JML. Firstly, a MAC check had been omitted. This could 
be detected by coding a suitable JML contract on the Java code level. Secondly, the  
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system deliberately did not implement secure storage of the smart card PIN or biomet-
ric template to protect their confidentiality or integrity because of insufficient devel-
opment time. This could not be easily detected by a JML contract since the methods 
are either missing or return correct values. 

The MAC and encryption cipher both use the same key, which is weak since if the 
key is broken then the whole system is insecure: different keys should be used for dif-
ferent types of cryptographic operations. This is a design weakness in the sequence  
diagram specification, which specifies usage of the same key. The code implementation 
actually correctly uses different keys here, so this would not have been revealed by a 
code-level check. This weakness is an example of a model-level security design check 
which could be very usefully added to the UMLsec verification tool framework. 

There was initially an omission on the UMLsec specification level compared to the 
textual specification [2] regarding the generation of a new session key: Viti’s protocol 
generates a session key from a combination of two nonces and a key stored in the 
smart card, but the UMLsec specification initially omitted the smart card key. This 
model-level inconsistency was revealed when coding, with the help of both the textual 
and the UMLsec specification. This example demonstrates the usefulness of perform-
ing assurance on both the model and the code level since the added redundancy fur-
ther increases the trustworthiness of the resulting system. 

An initial version of the implementation did not enforce the implied integrity re-
quirements for the smart card ID in the smart card and host classes as there was no 
MAC check. This was a deliberate omission based on the erroneous assumption of the 
implementer that it would not lead to a security weakness. This is an example of a 
change by a developer with the intention of improving the protocol that actually in-
troduces a security flaw. That this variation is insecure would have been revealed by 
the UMLsec model-level security analysis tools for verifying crypto-protocols. The 
inconsistency of the implementation with the UMLsec model can be revealed by JML 
contracts based on the UMLsec model if the change alters the interface or behaviour 
of methods (as it does in this example).  

These issues reflect common issues occurring in industrial development: security 
specialists leave inconsistencies and flaws in specifications, and developers some-
times do not fully implement requirements because they forget, they make mistakes or 
they deliberately omit them to meet development deadlines. The success of our man-
ual check in detecting these flaws is in line with earlier findings on the effectiveness 
of code reviews [15]. It argues for a rigorous manual code review against the specifi-
cation as well as JML contracts, although this is time consuming. Further automated 
support to facilitate this check would therefore be very beneficial indeed. 

4.5   JML Tools 

JML aims to be supported by a range of open-source tools for statically checking as-
sertions, checking assertions at runtime, unit testing support, and generating specifica-
tions and documentation [16]. The jmlc compiler and runtime assertion checker tests 
for violations of the JML assertions when the Java code is run. There are several static 
checkers, such as ESC/Java, that parse and type check JML, and statically check the 
consistency of the Java code against the JML specification.     
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We used the ESC/Java 2 plug-in for the Eclipse workbench to statically check our 
JML and highlight syntax errors in the source code. The tool was easy to install and 
use, but had limited documentation. It identified some JML errors but not all warnings 
could be eliminated because of the missing explanatory documentation. Because of 
problems with installing the JMLEclipse runtime assertion checker plug-in, we could 
not investigate its usefulness towards verifying the system. We did however install the 
latest version of the common JML tools project [17], which are not yet integrated with 
Eclipse, and used the jmlc compiler to parse and type check the source code. This 
identified ten additional errors in the JML annotation previously missed by ESC/Java 
2, although none revealed new security flaws. We then repeated the check using 
ESC/Java 2 after installing the latest JML tools (including the latest version of the 
jmlc compiler) and it additionally reported errors in core Java classes within each pro-
totype class. The likely causes of these errors are new language features of Java 6 in 
which the biometric authentication system is coded, since ESC/Java 2 only supports 
earlier Java versions. 

5   Lessons Learned 

5.1   Evaluation of UMLsec 

We found UMLsec and the associated cryptographic notation adequate for describing 
the system’s security requirements since only three requirements could not easily be 
described: connection timeout value, protocol termination and types of communica-
tions links. Although the UMLsec notation is aimed to be extensible by the user in a 
given application, it would be very useful to have a process which would feed these 
ad-hoc extensions back into the standard UMLsec notation. Also, the meanings of 
some UMLsec stereotypes were not immediately easy to understand. 

The UMLsec approach defines a threat model describing different kinds of adver-
saries. We had initially assumed a default adversary with no access to the trusted wire 
link between the smart card reader/scanner and host. However, vendors commonly 
implement a cryptographic protocol over this link, implying it is un-trusted. We there-
fore changed our assumption to an insider adversary that was able to delete, read or 
insert messages on this link, which required a substantial change to design and im-
plement a cryptographic protocol within the biometric authentication system to pre-
serve the security requirements. This emphasises the value of UMLsec's threat model 
in forcing attention on the nature of the security threat. 

The associated cryptographic notation is succinct and unambiguous but not easy to 
understand without substantial study. It therefore requires a complementary summary 
textual description for the non-specialist reader, although we recognise the risk of the 
text becoming inconsistent with the diagrams if any changes are not applied consis-
tently to both. 

One could use general-purpose graphics software for the UML diagrams but this 
insufficiently supports the growing complexity of these diagrams and their consis-
tency, and would not allow one to use the security analysis tool framework available 
for UMLsec. It is therefore important to create the UMLsec models in a general-
purpose UML editor that allows the UML diagrams be imported as XMI files into the 
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UMLsec tool framework. It would also be very useful if these UML editors could be 
extended with the ability to highlight or filter out layers of information, although this 
is beyond the scope of the UMLsec tool framework since it assumes the use of a gen-
eral-purpose UML editor. 

The value of UMLsec diagrams is diminished if they are not maintained beyond 
the specification stage. Errors and omissions may be introduced into systems during 
changes after initial design, since the focus is often then on the detail of each change 
rather than on the effect on other aspects of the system, such as security. In industrial 
applications, changes are often not applied back to system specification documenta-
tion because of time, manpower or budgetary pressure. A project must commit to up-
dating the system specification and UMLsec notation for every subsequent change if 
it is to fully benefit from its investment in applying the UMLsec approach in initial 
design. It would also be very useful to have automated tool-support that automatically 
reflects back changes on the implementation level to the model level. Some steps in 
this direction are documented in [6]. 

The analysis used version 1.5 of UML because most of the source material used 
this version. However UML is continually being enhanced.  [1] assesses the effect of 
UML 2.0 on UMLsec as minor because the new version is sufficiently conservative to 
the previous diagram types and the new model elements are not needed in security 
engineering. For UML to have a long-lasting and deep impact in practice, the Object 
Management Group will need to ensure that future versions of UML continue to be 
conservative extensions of the previous ones, if organisations are to have confidence 
that an investment in adopting UML will provide long-term benefits. 

UMLsec allows one to specify and automatically analyse security requirements and 
security design models but it does not prescribe how to create the design so that it will 
then be shown to satisfy the security requirements using the UMLsec analysis tools.. 
Thus, this input from a security designer is still needed. UMLsec also does not de-
scribe the level of security to be specified at the implementation level. For example 
the designer is not given explicit guidance on the cryptographic algorithms or key 
strengths necessary. This would again be a very useful addition to the current UML-
sec notation and tools. 

The UMLsec specification was a sound basis for design and code implementation, 
particularly the sequence diagrams as they were at a level of abstraction from which 
they could be directly coded. 

5.2   Evaluation of the JML Approach 

The value of using JML to verify the prototype code was limited because it was ap-
plied after, rather than during code development. Most of the methods were too large, 
which made it difficult to check many conditions using JML. JML was of limited  
value for small helper methods because they were not designed with clear pre- and 
post-conditions that JML could easily check. JML would therefore be more valuable 
if applied earlier starting in the design phase. 

There was insufficient time to fully evaluate JML tool support. The jmlc compiler 
identified many syntax and type JML errors but ESC/Java 2 was less useful, probably 
because it has not been maintained for newer versions of Java. Industry will be reluc-
tant to adopt JML without some assurance of tool maintenance since it would constrain 
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their ability to use new language versions. The new common JML tools are open 
source which would allow significant users in industry to update the tools to newer 
version of Java themselves, but most industrial users will not have the resources to do 
this themselves and will expect a commercial support package. 

Although JML does not directly support message or storage confidentiality or in-
tegrity verification, we were able to code contracts to indirectly check these security 
requirements. However JML patterns for confidentiality and integrity were difficult to 
apply because many system methods were too large and complex; these patterns 
would have been more useful with smaller methods. Some guidance on the use of 
JML patterns during design is therefore needed. 

JML’s current support for verifying that messages are sent in the correct sequence 
using a finite state machine is somewhat cumbersome and error prone, so we would 
endorse proposals for a JML call sequence clause to specify the method protocol more 
succinctly. 

JML specifications for a few Java cryptography classes provide to some extent a 
more precise description of class behaviour than the javadoc documentation but they 
take time to understand. They complement the javadoc documentation but are not a 
substitute for it being made more precise. 

Using JML, we identified six instances of requirement implementation and integ-
rity check omissions, and Java code errors. However a subsequent manual check of 
the prototype’s code against the UML specification successfully identified a further 
13 security flaws, inconsistencies and weaknesses, some of which were discussed in 
Section 4.4. Writing JML contracts thus effectively enforces parts of the security 
check by focusing attention on the code and specification, but it does not reveal all the 
flaws and specification inconsistencies present It would require considerable time and 
a good knowledge of the specification, application code and security to thoroughly 
manually check code, which might not be feasible in an industrial situation with time 
and cost pressures. However a check could be made by following design and coding 
style guidelines, and by using a checklist, which would help ensure that important ar-
eas were covered and act as documentation of the quality review.   

JML will not detect security flaws contained in products, design features not im-
plemented in code, associated business and operational processes, and infrastructure. 

JML verifies code against a derivation of the UML specification rather than the 
specification itself: security flaws might also be missed if this derivation was not 
complete. 

JML contracts impose a code structure if they are written during design. If these 
contracts are written by software or protocol designers then the developers’ role is re-
duced to implementing and testing each defined method. Developers might regard this 
as diminishing their role and so resist its introduction. To avoid this, they could be 
asked to write the JML contracts from specifications produced by the protocol de-
signer, although an independent reviewer should confirm the consistency of the JML 
with the specification during a code walkthough (and it would also be very useful to 
have automated tools that would check this).  

JML is not dependent on UMLsec or UML; JML contracts could be written from 
any specification that described requirements in a clear and unambiguous way. An or-
ganisation could therefore introduce JML and UMLsec separately to avoid overload-
ing the organisation with change. 
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The use of JML would increase development timescales and costs: JML requires 
time to learn and apply since the literature is still academically-focused, and it is not 
sufficiently comprehensive to reduce normal system testing. An organisation adopting 
JML would therefore need to develop a software specification style guide for JML, 
and to train designers and developers. However it would contribute to reducing secu-
rity flaws in the system, which would reduce costs because of fewer subsequent fixes,  
and it would reduce the risk of loss and reputational damage from the exploitation of 
security flaws. JML would be easiest to justify in areas where this cost reduction and 
these risks were highest; biometric authentication protocols would be one such area 
because of the impracticality of resolving errors in applications on issued smart cards. 

5.3   Reflections on This Experience 

In this subsection, we summarise our views on this application experience.  

How much effort was involved?  About 56 person days (pd), comprising: 11 pd cre-
ating the design model of the protocol; 15 pd on the technical design of the software 
architecture; 11 pd for coding and testing the prototype; and 19 pd for verification of 
the prototype using JML and the manual check. 

Were there ways in which the application of UMLsec and JML did not go as ex-
pected? The UMLsec approach was effective in specifying security requirements suc-
cinctly and precisely, and the threat model was particularly useful in clarifying the ex-
tent of an adversary’s access to the system. Only three requirements could not be 
easily described and the meaning of one UMLsec stereotype was unclear to the given 
user so it was not used. It was difficult to check many conditions using JML because 
most of the application’s methods were too large.   

Did the approaches have to be changed or adapted to work properly and, if so, in 
what way?  The UMLsec analysis tools had been used to verify the correctness of the 
specification in earlier work [3], which therefore did not have to be repeated in the 
current application. After using JML to verify the code, we carried out an additional 
manual check for security flaws to examine the effectiveness of the approach. Apart 
from that, the approaches were not changed. 

Did the method reveal interesting or unexpected results?  The process of manually 
applying UMLsec identified two security weaknesses, even though we did not use the 
automated UMLsec analysis tools (which had been applied in earlier work [11]). JML 
helped to verify system code by focusing attention on the consistency of the code with 
its UMLsec specification, which revealed a number of unexpected security flaws and 
weaknesses.   

Did it not pick up issues that you expected it would?  JML did not identify some 
security flaws, design weaknesses and inconsistencies in the UMLsec specification 
because the implementation was not suitably structured. However some of these 
would probably not have been easily revealed by JML even if it had been fully ap-
plied.   

How did its use differ from previous uses? To our knowledge, this was the first 
combined application of UMLsec and JML to a biometric authentication system. 
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Can you say anything specific about the security of the application now that you 
have done the modeling? We investigated in some detail the correctness of the ap-
plication against its security specification but we cannot completely prove this cor-
rectness since JML verifies code against a derivation of the UML specification rather 
than the specification itself. Future research might develop a tool to generate draft 
JML specifications from UMLsec sequence diagrams to both improve JML coding ef-
ficiency and reduce the risk of omissions.   

How can you be sure that you have applied the method correctly or even opti-
mally?  The value of JML was limited in so far as it was applied after code develop-
ment to an implementation that was not entirely structured in a suitable way. It would 
have been more useful to have used it to specify methods already during the design 
phase. 

6   Summary 

This paper describes the application of the UMLsec and JML assurance approaches to a 
biometric authentication system, with the focus on the use of JML to verify the code 
against its UMLsec specification. UMLsec was effective in specifying security require-
ments, in particular in modeling threat levels. The implementation was straightforward 
as the UMLsec protocol was unambiguous and on the same level of abstraction as the 
code. JML helped to verify the code by focusing attention on its consistency with the 
specification, revealing a number of security flaws. However, its value was limited in so 
far as it was used after code development on an implementation with an unsuitable 
structure.   

A tool to generate draft JML conditions from UMLsec would improve the value of 
JML in this context. Other research might map UMLsec to features of implementation 
language frameworks, develop UMLsec and JML security patterns, evaluate other 
JML tools in a security requirements context and integrate these techniques within a 
coherent security systems development method. 
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Abstract. Model transformations operate on models conforming to pre-
cisely defined metamodels. Consequently, it often seems relatively easy
to chain them: the output of a transformation may be given as input to
a second one if metamodels match. However, this simple rule has some
obvious limitations. For instance, a transformation may only use a sub-
set of a metamodel. Therefore, chaining transformations appropriately
requires more information.

We present here an approach that automatically discovers more de-
tailed information about actual chaining constraints by statically analyz-
ing transformations. The objective is to provide developers who decide
to chain transformations with more data on which to base their choices.
This approach has been successfully applied to the case of a library of
endogenous transformations. They all have the same source and target
metamodel but have some hidden chaining constraints. In such a case,
the simple metamodel matching rule given above does not provide any
useful information.

1 Introduction

One of the main objectives of Model-Driven Engineering (MDE) is to automatize
software engineering tasks such as: the production of code from abstract models
in forward engineering scenarios, the production of abstract models from code
in reverse engineering scenarios, or a combination of the two previous cases in
modernization scenarios. To achieve this automation, MDE relies on precisely
defined models that can be processed by a computer. Each model conforms to a
metamodel that defines concepts as well as relations between them. For instance,
a Java metamodel has the concept of Java class, with the corresponding single-
valued superclass relation (i.e., a class can only extend one other class). Similarly,
the UML metamodel defines the concept of a UML class, with a multi-valued
generalization relation (i.e., a class may extend several other classes). Many
software engineering tasks such as those mentioned above can be performed by
model transformations.

In order to reduce the effort of writing these transformations, complex tasks
are generally not performed by complex transformations but rather by chains
of simpler transformations. A model transformation chain is formed by feeding
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the output of a first transformation as input to second one. Complex chains can
consist of a large number of transformations. For instance, in order to analyze a
Java model with a Petri net tool, a first transformation may operate from Java
to UML, and a second one from UML to Petri net.

Model transformations are reusable. In our previous example, if a different
target formalism is to be used, the Java to UML transformation may be reused,
while the second one is replaced. Some model transformation libraries such as [1]
are already available to leverage this possibility. Typically, each entry specifies
the name of the transformation as well as its source and target metamodels.
Some documentation may also be available. A model-driven engineer confronted
to a model transformation problem may first lookup for existing transformations.
If no pre-existing transformation exactly performs the required task, some pieces
may be used to form a chain into which only simpler new transformations need
to be inserted. Source and target metamodel information may be used to chain
transformations. A transformation from B to C may for instance be attached at
the output of a transformation from A to B.

However, chaining transformations properly is generally a more complex task
in practice. Knowing the source and target metamodels of a transformation
is not enough. For instance, a transformation may only target a subset of its
declared target metamodel. Feeding its output to a second transformation that
takes a different subset of the same metamodel as input will typically not yield
correct results. Computing a class dependency graph from a Java model by
reusing a transformation that takes UML Class diagrams as input may not be
possible with the Java to UML transformation targeting Petri nets used in the
previous example. While this new transformation requires the class structure
to be retrieved from the Java model, the initial transformation may have been
limited to the generation of the Activity diagrams required for the generation of
Petri nets.

The case of endogenous transformations is even more problematic. Because
these transformations have the same source and target metamodel, they can in
theory be inserted in a chain anywhere this metamodel appears. A collection of
such transformations operating on the same metamodel could also be chained
in any order. In practice, this may not lead to correct results (e.g., because
a transformation may remove an element from the model that is required for
another transformation to perform correctly).

Chaining transformations actually requires more precise knowledge about the
individual transformations. For instance, if transformation t1 relies on some in-
formation that is dropped by transformation t2 then t1 cannot be applied after
t2. This knowledge may be available in a documentation of some sort, but this is
not always the case. One may also look at the insides of a transformation (i.e.,
its implementation), but this requires knowledge of the transformation language
(there are several languages, and not everybody is an expert in all of them).

The situation would be simplified if each transformation clearly identified the
subset of a metamodel it considers. But this is not always enough. For instance,
some endogenous transformations have a fixed point execution semantics (i.e.,
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they need to be executed again and again until the resulting model is not changed
any more). In such a case, the metamodel subset generated by each iteration may
be different (especially the last iteration when compared to the previous ones
for transformations that remove elements one at a time).

The purpose of the work presented here is to automatically discover informa-
tion about what model transformations actually do. The resulting data may be
used to help the engineer decide how to chain transformations, and may com-
plement what is in the documentation of the transformation if there is one. A
Higher-Order Transformation [19] that takes as input the transformations to an-
alyze produces a model containing the analysis results. This model may then be
rendered to various surfaces using other transformations.

We have applied this approach to the case of a set of endogenous transfor-
mations that are used for the translation between constraint programming lan-
guages. All transformations take the same pivot metamodel as source and target
metamodel and are written in ATL [12,11,9] (AtlanMod Transformation Lan-
guage). However, different subsets of this metamodel are actually consumed and
produced by each transformation. By statically analyzing these transformations
we have been able to discover what they do, and infer chaining constraints from
this knowledge.

The reminder of the paper is organized as follows. Section 2 presents a sce-
nario involving a number of endogenous transformations operating on a single
metamodel. Our transformation analysis approach is described in Section 3, and
its application is presented in Section 4. The results are discussed in Section 5.
Finally, Section 6 concludes.

2 Motivating Example

2.1 Interoperability of Constraint Programming Languages

In Constraint Programming (CP), one of the main goals is to define problems
based on variables, domains and constraints such that a CP solver can compute
their solutions [16]. In CP, various kinds of languages are used to state problems.
For instance, the language of the ECLiPSe solver [2] is based on logic and Prolog,
whereas OPL [8] (Optimization Programming Language) is a solver-independent
language based on high-level modeling constructs. Some solvers have only pro-
gramming APIs like ILOG Solver [14] or Gecode [17]. More recently, the defini-
tion of high-level modeling languages is becoming a hot topic in CP [15]. Then,
new modeling languages have been developed such as Zinc and MiniZinc [13],
Essence [7] and s-COMMA [18]. In these three cases, the high-level modeling
language is translated into existing CP solver languages by using a flat interme-
diary language to ease the translation process and to increase the reusability of
most transformations and reformulation tasks. This process is mainly achieved
by hand-written translators using parsers and lexers.

In a recent work [4], model engineering was used to carry out this process
from s-COMMA models to some solver languages. Then, this approach has been
extended to get more freedom in the choice of the user modeling language [5]
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Fig. 1. A generic transformation process to translate CP models

Fig. 2. Generic pivot metamodel for CP (excerpt)

(see Figure 1). A flexible pivot CP metamodel was introduced, on which several
transformations are performed to achieve generic and reusable reformulation or
optimization steps. The transformation chain from a language A to a language B
is composed of three main steps: from A to pivot, pivot refactoring and pivot to
B. Steps on pivot models may remove some structural features not authorized by
the target solver language. Thus, objects, if or loop statements may be removed
and replaced by an equivalent available structure, i.e. objects are flattened, if are
expressed as boolean expressions and loops are unrolled. All these refactoring
steps are not mandatory when considering a CP modeling language and a CP
solver language, since loop or if statements may be available in most CP solvers.
Since no existing model engineering tool exists to automate the chaining of these
model transformations according to a source and a target metamodel, the user
must build chains by hand without any verification process.
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The main part of the generic CP pivot metamodel introduced in [5] is shown on
Figure 2. Indeed, CP models are composed of a set of constraints, variables and
domains. They are classified in an inheritance hierarchy, with abstract concepts
such as Statement that corresponds to all kinds of constraint declarations. High-
level model constructs are defined according to existing modeling languages,
such as the class and record concepts. Most of pivot models will only contained
elements conforming only to a subset of the whole pivot metamodel.

2.2 Problem

In this paper, we want to tackle the issues relating to the efficient management
of a set of endogenous transformations. Since the source and target metamod-
els are similar, no additional information can be extracted from the header of
an ATL transformation. Considering only this knowledge, we may think that
endogenous transformations can be chained without any problem, but this is
not true. The solution proposed by [21] is therefore not sufficient to address
this problem because it only considers the signature (or header) of transforma-
tions. As shown in the motivating example, endogenous transformations achieve
model reformulation or optimization steps. They have to be efficiently and cor-
rectly chained to avoid useless steps — some steps may create elements that are
removed by another step — and to reach the requirements of the target solver
language. Our goal is to discover the role of endogenous model transformations
in a parameterizable chain.

Endogenous transformations can be typed using their source and target ele-
ment types, i.e. a sub-set of the metamodel of these models. Thus, considering
the set of source elements of an endogenous transformation, we can assess the set
of source models supported by it without any loss. The set of target elements also
allows us to type generated models. Then, we may be able to verify endogenous
transformation chains. Moreover, using a search/optimization algorithm we may
be able to find the "best" chain and thus automating the chaining of endogenous
transformations according to an input metamodel and to an output metamodel
corresponding to a high-level exogenous transformation.

3 Transformation Analysis

3.1 Identifying Domains and Codomains

In order to correctly chain model transformations it is necessary to have a cer-
tain understanding of what they do. Although it is not enough, source and target
metamodels information is essential. The model MB produced by a given trans-
formation t1 conforms to its target metamodel MMB. It may only be fed as
input to another transformation t2 with the same metamodel MMB as source
metamodel.

This constraint may be expressed in functional terms as shown in [21]: trans-
formations are considered as functions, and metamodels type their parame-
ters in the case of simple transformations (Higher). For instance, if the source
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metamodel of t1 is MMA, and the target metamodel of t2 is MMC then:
t1 : MMA → MMB and t2 : MMB → MMC . In this notation the name of
a metamodel is used to identify the set of models that conform to it. Thus,
transformation t1 is considered as a function of domain the set of models con-
forming to MMA, and of codomain the set of models conforming to MMB. In
this example, if t2 is total then it may be applied to the output of t1 because
the codomain of t1 is also the domain of t2.

In practice, model transformations are often partial functions: they do not
map every element of their declared domain to an element of their codomain.
For instance, t2 may only work for a subset MM ′

B ⊂ MMB. If t1 is surjective
(i.e., it can produce values over its whole codomain) then t2 cannot be applied to
all output models that t1 can produce. This shows that problems can arise when
the domain of transformations (i.e., their source metamodels) is underspecified
(i.e., too broad). If codomains (or target metamodels) are also underspecified,
then there may not be any actual problem. For instance, if t1 only produces
results over MM ′′

B ⊆ MM ′
B then t2 may be chained to t1. Therefore, precisely

identifying the actual domain and codomain of a transformation (i.e., definition
domain and its image) would be an improvement over the current practice.

However, doing so is often complex because it requires deep analysis of trans-
formations (e.g., not only source elements of transformation rules but also every
navigation over source elements). Moreover, the semantics of a specific meta-
model or transformation may make the problem harder. For instance, some
endogenous transformations have a fixed point semantics and are called until
a given type of element has been eliminated. Each intermediate step produces
elements of this type except the last one. An example of such a transformation
would eliminate for loops from a constraint program one nesting level at a time.

The objective of this paper is to provide a solution applicable with the current
state of the art: actual domains and codomains cannot currently be 1) precisely
computed, and 2) automatically checked. Therefore, if an approximation (be-
cause of 1)) is computed it must be represented in a simple form that the user
may understand quickly (because of 2): the user has to interpret it). An example
of such a simplification is the list of concepts (i.e., model element types com-
ing from the metamodels) that are taken as input or produced as output of a
transformation. This is the first analysis that has been applied to the motivating
example presented in Section 2 with relatively poor results if considered alone.

3.2 Abstracting Rules

Other kinds of information may be used to better understand what a trans-
formation does. ATL transformations are composed of rules that match source
elements according to their type and some conditions (these form the source pat-
tern of the rule), and that produce target elements of specific types (these form
the target pattern of the rule). A transformation analyzer may produce an ab-
stract representation of a set of transformation rules. This simplified description
may take several forms.
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One may think of representing the mapping between source and target meta-
model concepts defined by the rules. Model weaving may be used for this purpose
as shown in [6,11]. However, such a representation would be relatively verbose:
there are as many mappings as rules, and the number of rules is typically close
to the number of source or target concepts.

An additional simplification may be devised in the case of endogenous trans-
formations in which elements are either copied (same target and source type)
or mutated (different target and source types). These actions may be applied
on every element of a given type, or only under certain conditions. Moreover,
ATL lazy rules that are only applied if explicitly referenced (i.e., this is a kind
of lazy evaluation) may also be used. Table 1 summarizes this classification of
endogenous transformation rules. The first dimension (in columns) is the kind of
action (copy or mutation) that is performed by the rule. The second dimension
(in rows) corresponds to the cases in which the action is taken: always, under
specific conditions, or lazily. Corresponding examples of rules taken from the
motivating example are given below. No example of always or lazy mutation
is given because there is no such case in the transformations of the motivating
example.

Table 1. Classification of endogenous rules

Copy Mutation
Always

Conditionally
Lazily

Listing 1 gives a rule that always copies data types. The target type (line 5)
of such a rule is the same as its source type (line 3). It is concept DataType of
the CPPivot metamodel in this listing. Moreover, it also copies all properties
(e.g., source element name is copied to target element name at line 6). However,
property-level information is not always so simple to identify. In many cases
some properties are copied while others are recomputed. In order to keep the
information presented to the user simple, property-level information is ignored
in the current implementation of the transformation analyzer.

Listing 1. Always copy rule example
1 rule DataType {
2 from
3 s : CPPivot ! DataType
4 to
5 t : CPPivot ! DataType (
6 name <− s . name
7 )
8 }

A conditional copy happens when a copy rule has a filter or guard (i.e., a boolean
expression that conditions the execution of the rule). The rule of Listing 2 is similar
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to the rule presented above in Listing 1 but has a guard specified at line 4. This
rule performs a conditional copy.

Listing 2. Conditionally copy rule example
1 rule SetDomain {
2 from
3 s : CPPivot ! SetDomain (
4 not s . parent . oclIsTypeOf ( CPPivot ! IndexVariable )
5 )
6 to
7 t : CPPivot ! SetDomain (
8 values <− s . values
9 )
10 }

Listing 3 contains a lazy copy rule similar to the two previous rules of Listings 1
and 2 but starting with keyword lazy at line 1. Additionally, the rule presented
here extends another rule via rule inheritance. This information is currently
ignored during the abstraction process.

Listing 3. Lazily copy rule example

1 lazy rule lazyBoolVal extends lazyExpression {
2 from
3 b : CPPivot ! BoolVal
4 to
5 t : CPPivot ! BoolVal (
6 value <− b . value
7 )
8 }

An example of conditional mutation is given in Listing 4. This rule is a mu-
tation because the target type IntVal (line 7) is different from the source type
VariableExpr (line 3). It is conditional because there is a filter at line 4.

Listing 4. Conditional mutation rule example

1 rule VariableExpr2IntVal {
2 from
3 s : CPPivot ! VariableExpr (
4 s . declaration . oclIsTypeOf ( CPPivot ! EnumLiteral )
5 )
6 to
7 t : CPPivot ! IntVal (
8 value <− s . declaration . getEnumPos
9 )
10 }

3.3 Implementing Transformation Analysis

Transformation analysis is a case of Higher-Order Transformation [19] (HOT):
it is a transformation that takes as input another transformation to be analyzed,
and produces as output a model containing the analysis result. This HOT uses
OCL expressions over the ATL metamodel, which is the metamodel of the lan-
guage in which the transformations to analyze are written. These expressions
recognize the patterns presented in Section 3.2. Then, an analysis model is cre-
ated that relates concepts of the pivot metamodel to recognized patterns.
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Fig. 3. Transformation analysis and results rendering

The main objective is to deliver a result that a user may understand and
interpret. Consequently, special care was given to the rendering of the results.
Figure 3 shows how the whole process is implemented. It starts from a collection
of n ATL transformations T1 to Tn conforming to the ATL metamodel. Trans-
formation t1 is applied to these transformations in order to obtain model T1−n

conforming to the TA (for Transformation Analysis) metamodel. This model
contains the raw results of the analysis.

Then, transformation t2 is applied in order to obtain model T ′
1−n that con-

forms to a generic Table metamodel. This model may then be rendered to
concrete display surfaces like HTML using transformation t3, or LATEXusing
transformation t4. The HTML rendering leverages the metamodels and transfor-
mation presented in [20], and available from Eclipse.org. The LATEXrendering was
specifically developed for the work presented in this paper. The tables given as
example in Section 4 below have been generated automatically using the process
depicted here. All metamodels conform to the KM3 [10] (Kernel MetaMeta-
Model) metametamodel.

Although other techniques could have been used for the implementation, the
whole transformation analysis and rendering process is defined in terms of mod-
els, metamodels, and transformations. This is an example of the unification
power of models [3].

4 Experiments

4.1 Application to the Motivating Example

In the motivating example presented in Section 2 (see Figure 2), we consider five
endogenous transformations achieving the following reformulation tasks:

– Class and objects removal. This complex endogenous transformation is
decomposed in two steps. The first step removes classes and does not copy
their features. Variables with a class type are mutated in an untyped record
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definition that is a duplication of the class features. Other variables — with
a primitive type like integer, real or boolean — are simply copied like other
elements not being contained in a class declaration. The second step flattens
record elements to get only variables with a primitive type.

– Enumeration removal. Some CP solvers do not accept symbolic domains.
Thus, variables with a type being an enumeration are replaced by integer
variables with a domain ranging from 1 to the possible number of symbolic
values.

– Useless If removal. Boolean expressions used as tests in conditional if
statements can be constant. In this case, it can be simplified, by removing
conditional if elements and keeping only the relevant collection of statements.

– For loops removal. This reformulation task is implemented as a fixed
point transformation followed by the useless if removal transformation. In
the fixed point, each step removes only the deepest loops, i.e. loops that do
not contain other loops. To ease the loops removing task, this composite
element is replaced by another composite one being a conditional statement
with an always true boolean test (i.e., a block).

We have applied on this example the HOT presented in the previous section.
The results are detailed in the two following tables, which were automatically
generated.

First, Table 2 presents the names of ignored in and out concrete concepts
for each analysed transformation. These concepts are defined as concrete in the
pivot metamodel, but they do not appear in any OCL expression of transforma-
tions. We can see, there is only one in ignored concept considering the record
removal step. Indeed, this transformation was written with the assumption of
being launched after the class instantiation transformation. Looking at the gen-
erated models, several concepts are missing, such as Class and Record for the
record removal transformation.

Second, Table 3 gives more details on what endogenous transformations re-
ally do. Each line corresponds to an endogenous transformation analysis. Each
column details the characteritics — always, conditionally and lazily — of none,
one, several, or all other concepts. These characteristics are detailed for copy
and mutation rules.

4.2 Interpreting the Results

Typing source and target models. The results given by Table 2 can be used
to finely type authorized source and target models of the transformation. The
set of authorized element types can be obtained by computing the difference be-
tween the set of all metamodel concepts and those presented in Table 2. It must
be noted that looking only at the concepts in source patterns is not enough,
since OCL navigation expressions can be used to explore and grab the elements
contained in one being removed. Moreover, this information is only an approxi-
mation of the actual domain and codomain of the transformations, as described
in Section 3.
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Inferring partial transformation meaning. Considering Table 3, we can
try to interprete the discovered knowledge to infer the transformation meaning.
In the case of the class instantiation transformation, we can see that the only
concept never copied and never mutated is the class concept. Since it is not in
Table 2, it appears within OCL expressions, but it never appears within source
patterns. It seems logical, since the aim of this transformation is to remove class
statements by expanding their features. Then, variable elements are conditionally
copied and conditionally mutated. Indeed, variable types are checked to know
if they must be copied (i.e., their type is a primitive type) or if they must be
mutated into record elements. Several concepts are always copied and never
mutated. They correspond to type definitions or the root model concept, i.e.
all concepts that can not be contained in a class. Finally all other concepts are
conditionally copied and never mutated. It is checked they do not appear in a
class before copying them.

Table 2. Experimental results: ignored elements

Transformation Ignored in metaelements Ignored out metaelements
classInstantiation Class

enumRemoval EnumLiteral, Enumeration
forallRemoval
recordRemoval Class Class, Record

uselessIfRemoval

Considering this knowledge, we can deduce that this transformation elimi-
nates class elements, even if they are used within OCL navigation expressions.
Variables are copied or mutated, whereas other elements are copied (some of
them under a condition). So, this transformation mainly act on two types of ele-
ments: class and variable. We may use the set of element types occurring in the
target patterns to know the sub-metamodel to which generated models conform.

Looking at the useless if removal transformation, we can easily infer its mean-
ing. Indeed, only the if statements are conditionnally copied, while all other
elements are always copied. Then, only some if statements are processed and
might be removed.

Discovering fixed point transformations. A transformation having a fixed
point semantics may have its codomain equal to its domain. It may focus only
on a few concepts to conditionally mutate and to conditionally copy. All other
concepts may be only copied. This pattern may allow us to detect whether an
endogenous transformation could be applied in a fixed point scheme. In Tables 2
and 3 we see that the forall removal transformation matches this pattern. Look-
ing only at Table 3, we may think that the enumeration removal transforma-
tion is also a fixed point transformation processing variables. However, Table 2
shows that its main goal is to remove enumerations, because its domain and its
codomain are not equal (i.e., it removes all enumerations in one step).
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5 Discussions

5.1 Application to Exogenous Transformations

The approach presented in this paper could be extended to support exogenous
transformations. Thus, looking at the source patterns and all OCL expressions,
we can define the refined type of source models of a transformation (i.e., a more
precise definition of its domain). To get the refined type of target models (i.e.,
a more precise definition of the codomain), we just have to collect the set of
concepts occurring in target patterns.

Moreover, we can consider most endogenous transformations as exogenous
transformations between two sub-metamodels of the same metamodel. Then,
the chaining of endogenous transformations can be transformed into a problem
of chaining exogenous transformations. Inferring the meaning of an endogenous
transformation may not be necessary (in most cases), since its main task may be
to remove or add elements of a given type. However, more complex endogenous
transformations may be more difficult to finely chained, since their meaning is
necessary to understand how to use them. The knowledge collected in Table 3
is an attempt at achieving this goal with high-level characteristics on concepts.
However, this knowledge does not focus on how matchings are performed in
rules. Using a more detailed analysis, we could generate weaving models relating
to model transformations and then analyze them. However, these models would
be more verbose than Table 3. We could also try to analyse OCL expressions
and mappings in transformation rules. Although, the cost and the difficulty of
our approach is almost negligible when compared to these deeper analysis.

5.2 Debugging Transformations

The knowledge discovered through our analysis transformation can be used in
debugging model transformations (exogenous or endogenous). Indeed, when a
metamodel contains many concepts, a software engineer may forget to define
all the corresponding rules. Thus the results from Table 2 can be directly used,
but also the column of Table 3 that corresponds to elements never copied and
never mutated. Other columns may also be useful to check that concepts are
well classified and no copy or mutation rule are missing.

The data in Table 3 can also be used to discover mistakes in naming meta-
model concepts in some rules or helpers. Indeed, some concepts of a metamodel
may rarely have instances in models, and rules dealing with them may not be
called. Thus, no error occurs even if the transformation contains some careless
mistakes. In the case of our motivating example, we discovered several ill-written
rules and helpers dealing with specific CP concepts that do not occur in our CP
models.

6 Conclusion

In this paper, we addressed the problem of chaining model transformations. This
problem is illustrated on a pivot metamodel for Constraint Programming (CP)
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that is used for translations between CP languages. Several issues are tackled
in order to safely chain transformations. Thus, a higher-order transformation is
proposed to statically analyze model transformations. It focuses on source and
target concepts, thus defining refined metamodels to which models conform (i.e.,
more precise definitions of domains and codomains of model transformations).
It also extracts some knowledge on how source concepts are processed and as-
signs characteristics to each concept: always copied, conditionally copied, lazily
copied, never copied, always mutated, etc. Considering these characteristics, we
are able to find element types that are mainly processed. This process is not
accurate enough to exactly infer the meaning of model transformations (it is an
abstraction), but it allows us to assert some constraints on how to chain several
endogenous transformations. The contributions of this paper are of a different
nature and complementary to the results presented in [21]. That paper focuses
on a type system for transformation chains, and considers that declared types
are good enough, whereas in this paper we have investigated the problem of
imprecise transformation typing.

A possible extension of the work presented in this paper would be to go beyond
the discovery of hidden chaining constraints and to fully automatize transfor-
mation chaining. This automation process could be performed using Artificial
Intelligence techniques. An optimization problem can be defined to transform
models from a source metamodel to another. The problem naturally comes to
find a path in a graph corresponding to a model of the transformations and
their types. Some heuristics can be defined to choose the best paths, which may
contain as few redundant and as few useless steps as possible.
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Abstract. Constraint satisfaction programming (CSP) has been successfully used
in model-driven development (MDD) for solving a wide range of (combinatorial)
problems. In CSP, declarative constraints capture restrictions over variables with
finite domains where both the number of variables and their domains are required
to be a priori finite. However, the existing formulation of constraint satisfaction
problems can be too restrictive to support dynamically evolving domains and con-
straints necessitated in many MDD applications as the graph nature of the under-
lying models needs to be encoded with variables of finite domain. In the paper,
we reformulate the constraint satisfaction problem directly on the model-level by
using graph patterns as constraints and graph transformation rules as labeling op-
erations. This allows expressing problems composed of dynamic model manipu-
lation and complex graph structural constraints in an intuitive way. Furthermore,
we present a prototype constraint solver for the domain of graph models built upon
the VIATRA2 model transformation framework, and provide an initial evaluation
of its performance.

Keywords: Constraint satisfaction programming, graph transformation.

1 Introduction

In artificial intelligence, the constraint satisfaction problem (CSP) is to find a solution to
a set of constraints that impose conditions which has to be satisfied by a set of variables.
Each variable typically takes its value from a finite domain. A solution is one (or all)
assignment of variables which satisfy each constraint.

Constraint satisfaction techniques have been successfully applied for various prob-
lems of model-driven engineering for applying design patterns [1], to support domain-
specific modeling [2] or in the context of model transformations [3]. As a commonality,
all these approaches translate high-level models to an existing (off-the-shelf) constraint
solver (like e.g. [4, 5]) to provide embedded design intelligence for modeling.

However, advanced constraint solvers typically apply certain restrictions for the CSP
problem. For instance, the domains of variables are frequently required to be (a priori)
finite, moreover, many approaches disallow the dynamical addition or retraction of con-
straints. Furthermore, mapping graph-like models obtained in model-driven engineering
to variables with finite domain can be a non-trivial task, especially, when considering
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A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 107–121, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the evolution of models. While recent research initiatives in CSP have started to better
address dynamic constraints [6], no efficient solvers are available for structural con-
straints over graph-like models.

In this paper, we investigate how advanced model transformation technology can
contribute to solving dynamic constraint satisfaction problems with global constraints
over the domain of model graphs. We extend the definition of constraint satisfaction
problems by using graph patterns to define structural (first-order logic) constraints,
and graph transformation rules [7] as labeling operations. Informally, all graph pattern
constraints need to be satisfied by the underlying model when searching for a specific
goal. However, instead of simple variable substitution, the labeling phase applies graph
transformation rules to carry out model manipulations on the underlying graph domain.

As an analogy, our approach allows to (i) dynamically add/remove constraints from
the problem domain, (ii) modify the domain of the variables during search and (iii)
define structural constraints in a more natural way.

Furthermore, we developed a prototype constraint solver on top of the VIATRA2 [8]
model transformation framework by using incremental constraint evaluation and var-
ious search strategies and heuristics. An initial evaluation of the solver is carried out
using an allocation problem taken from critical systems.

The rest of the paper is structured as follows. In Sec. 2 we briefly introduce the
concept of metamodeling, graph transformation and constraint satisfaction problems.
Sec. 3 proposes our graph pattern and transformation based constraint solver. Related
work is assessed in Sec. 5, and finally, Sec. 6 concludes the paper.

2 Background

In order to introduce our approach this section briefly outlines the basics of graph trans-
formation and gives a motivating example from the avionics domain.

2.1 Running Example: Allocation of an IMA System

Fig. 1. Metamodel of an IMA architecture

As a motivating example, let us assume an
integrated modular avionics (IMA) system
composed of Jobs (also referred as appli-
cations), Partitions, Modules and Cabinets.
Jobs are the atomic software blocks of the
system defined by their memory require-
ment. Based on their criticality level jobs
are separated into two sets: critical and
simple (non-critical). For critical jobs dou-
ble or triple modular redundancy is applied
while for simple ones only one instance is
allowed. Partitions are complex software
components composed of jobs with a pre-
defined free memory space. Jobs can be al-
located to the partition as long as they fit into its memory space. Modules are SW
components capable of hosting partitions. Finally, Cabinets are storages for maximum
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(a) Starting model
(b) Allocated model

Fig. 2. Example IMA system

(in our example) up to two modules used to physically distribute elements of the sys-
tem. Additionally a certain number of safety related requirements will also have to be
satisfied: (i) a partition can only host jobs of one criticality level and (ii) instances of
a certain critical job can not be allocated to the same partition and module. The task is
to allocate an IMA system defined by its jobs and partitions over a predefined cabinet
structure and to minimize the number of modules used.

A sample system composed of a critical job with two instances and two partitions
with a single cabinet is shown in Fig. 2(a) with a possible allocation depicted in Fig. 2(b)
defined over the metamodel captured in the VPM formalism [9] in Fig. 1. Newly created
elements are highlighted in grey. Throughout the paper we will use this example to
demonstrate the technicalities of our constraint satisfaction technique over models.

2.2 Graph Patterns and Graph Transformation

Graph patterns (GP) are frequently considered as the atomic units of model transfor-
mations [8]. They represent conditions that have to be fulfilled by a part of the instance
model. The VIATRA2 notation in particular, describes them as a disjunction of pattern
bodies GP = ∨PBi, where a pattern is fulfilled if at least one of its pattern body is
fulfilled. Pattern bodies PB = (SC,AC,NACj) consist of (i) structural conditions SC
prescribing the existence of nodes and edges of a given type, (ii) attribute conditions
(AC) allowing term evaluation over the attributes of the matched elements (marked by
the check keyword) and (iii) arbitrary number of negative application conditions. A neg-
ative application condition NAC = ¬GP, defined by a negative subpattern, prescribes
contextual conditions for the original pattern which are forbidden in order to find a
successful match. Negative conditions can be embedded into each other in an arbitrary
depth (e.g. negations of negations), where the expressiveness of such patterns converges
to first order logic [10].

A match m for a graph pattern GP in a instance model M denoted by m : GP −→ M
means that (i) m : PBi �→ M,(∃PBi ∈ GP) there exists an injective, type conformant
total morphism m from one of its pattern bodies PBi = (SCi,ACi,NACi, j) to the instance
model; (ii) m′ : NACi, j �→ M,(� ∃NACi, j) if no matches exist for any embedded NACs of
that pattern body PBi and (iii) all attribute conditions ACi are fulfilled by m.
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Graph transformation. [7] provides a high-level rule and pattern-based manipulation
language for graph models. Graph transformation GT = (LHS,RHS,AMA) rules can
be specified by using a left-hand side – LHS (or precondition) pattern determining the
applicability of the rule, a right-hand side – RHS (postcondition) pattern which declar-
atively specifies the result model after rule application, and additional attribute manip-
ulation AMA actions .

The application of a GT rule to a host model G alters the model by replacing the
pattern defined by LHS with the pattern defined by RHS. This is performed by (i) finding
a matching m : LHS −→ G of the LHS pattern in model graph G; (ii) removing a part
of the model graph M that can be mapped to LHS but not to RHS; (iii) adding new
elements to the which exist in RHS but not in LHS and finally (iv) performing the
attribute manipulation operations described in AMA. A graph transformation step is
denoted formally as G

r,m
=⇒ H, where H is the resulting model; r and m denote the

applied rule and the matching, respectively.

Example. Sample graph patterns and transformation rules are depicted in Fig. 3. The
jobInstancewithoutPartition pattern matches an input parameter JobInstance JIns which
is not already allocated to a Partition P by the j1 jobs relation (elements of the NAC are
encapsulated by the NEG rectangle).

The allocateJobInstance GT rule allocates the JobInstance JI to the Partition P1 (by
the jobs j1 relation) if it is not already allocated to the P2 Partition and decreases the MP
free memory attribute of the P1 partition by the memory requirement of Job J captured
in MJ. We use a combined representation that jointly defines the left hand side (LHS) of
the graph transformation rule, and the model manipulation operations to be carried out
where newly created elements and attribute manipulation operations are tagged with an
add and set keywords, respectively.

3 Constraint Satisfaction Programming

In this section, we provide a detailed description of our constraint satisfaction frame-
work and its conceptual foundations and demonstrate how to apply it on the IMA system
allocation problem introduced in Sec. 2.1.

3.1 Constraint Problem Specification

Constraint Satisfaction Problem for Variables of Finite Domain. A CSP(FD) is a
problem composed of a finite set of variables, each of which is associated with a finite
domain, and a set of constraints that restricts the values the variables can simultane-
ously take. In a more precise way a constraint satisfaction problem is a triple: (Z,D,C)
where Z is a finite set of variables x1,x2, ...,xn; D is a function which maps every vari-
able in Z to a set of objects of arbitrary type; and C is a finite (possibly empty) set
of constraints on an arbitrary subset of variables in Z. The task is to assign a value to
each variable satisfying all the constraints. Solutions to CSPs are usually found by (i)
constraint propagation a reasoning technique to explicitly forbid values or domains for
variables by predicting future subsequent constraint violations and (ii) variable labeling
searching through the possible assignments of values to variables already restricted by
the (propagated) constraints.
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Planner Algorithms. Planner algorithms [11] are hierarchical problem solving proce-
dures subdividing the original problem into smaller parts. A planner (I,E,O) → P, is a
structure where I is a logic formula of the initial state, E is the logic formula of the goal
state, while O is the set of permitted operations. The output P is a sequence of opera-
tions (called plan) providing a trajectory from the initial to the goal state. An operation
o = (C,A) is a pair where C stands for a precondition defined in first order logic and A
for actions. Preconditions must hold before performing its specific operation.

3.2 CSP(M): Constraint Satisfaction Problem over Models

We now define constraint satisfaction problems over models (CSP(M)) by combining
CSP for finite domains and planner algorithms (see in Sec. 3.1). In principle, our ap-
proach generalizes planner algorithms with the definition of global constraints that
can additionally restrict certain trajectories of the search space and extends traditional
CSP(FD) by introducing labeling rules to define and solve constraint problems over
models even with dynamic model manipulation such as element creation and deletion.

A CSP(M) consist of an initial model; a goal that have to be satisfied by the solution
model to be searched; global constraints that need to be satisfied by all models traversed
during the search and finally a set of labeling rules capturing the permitted operations.
Formally a CSP(M) (M0,C,G,L) : Ms is a structure where: M0 is the initial model; C
is a set of global constraints; G is a set of subgoals which together in conjunction form
the goal and L is a set of labeling rules. The output Ms is the solution model satisfying:

– (i) M0 � Ms; there exists a trajectory Mo
l1→ M1

l2→ ..
ln→ Mn where i = 1..n : li ∈ L.

Meaning that Ms is reachable from M0 through a sequence of applied labeling rules.
– (ii) ∀Gi ∈ G : Ms |= Gi; Ms satisfies all subgoals Gi
– (iii) ∀Ci ∈ C : Ms |= Ci; Ms also satisfies all global constraints Ci
– (iv) ∀Mi,∀Cj ∈ C : M0 � Mi ∧ Mi � Ms ∧ Mi |= Cj; along the trajectory from the

initial to the solution model all visited model Mi satisfies each global constraint.

As models in MDD are usually described as graphs we instantiate our formalism on
graph transformation using the VIATRA2 [8] language. This way models are captured
by typed graphs over a given metamodel while subgoals and global constraints are
defined using graph patterns and finally labeling rules are described as graph transfor-
mation rules. However, this formalism can also be incorporated into other modeling
approaches such as MOF models, OCL constraints and QVT rules.

Goal and Global constraints. Both subgoals and global constraints are defined by
graph patterns. The goal G is the conjunction of subgoals where a subgoal (graph pat-
tern) is a disjunction of alternate pattern bodies.

A subgoal or global constraint C described by the graph pattern GP is either a pos-
itive or negative constraint. A negative constraint is satisfied by a model (M |= C) if it
does not have a match in M, formally m : GP −→ M, (� ∃m). While a positive constraint
is satisfied if its representing graph pattern has a match in M; m : GP −→ M, (∃m). A
further restriction on positive constraints can be formulated by stating that they are sat-
isfied iff their representing graph pattern has a predefined positive number (Cardinality)
of matches, formally |{m : GP −→ M}| = Cardinality. In our running example all pat-
terns are considered as negative constraints.
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Fig. 3. Goals, Labeling rules and Global constraints of the running example
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Labeling rules. Labeling rules are described as graph transformation rules. A labeling
rule l is enabled when the precondition LHSl of its representing graph transformation
rule is applicable to the underlying model M, formally m : LHSl −→M,(∃m). However,
additional properties are used to refine the execution order and semantics of an enabled
rule application:

– Priority (integer: 0..100): Defines a precedence relation on labeling rules. It orga-
nizes the labeling rules into sets based on their priorities. In each state the solver
selects its next step from the set with the highest priority. In our running example
we use the same priority for all labeling literals.

– Execution mode ( forall — choose ): Defines whether a rule is simultaneous applied
at all possible matches (forall) (as a single transition) or only once on a randomly
selected single matching (choose). In the running example all labeling rules are
using choose type execution mode.

Example. Our running example formalized as a CSP(M) problem is depicted in Fig. 3.
The jobInstancewithoutPartition, partitionwithoutModule and modulewithoutCabinet sub-
goals formulating the goal describe that in a solution model each JobInstance, Partition
and Module is allocated to a corresponding Partition, Module and Cabinet, respectively.
For example, the jobInstancewithoutPartition subgoal captures its requirement using a
double negation (NAC and negative constraint) stating that there are no unallocated job
instance JI in the solution model. Similar double negation is used in case of the other
two subgoals.

Global constraints formulate the safety and memory requirements. The partition-
MemoryHigherThan0 pattern captures the simple memory constraint that all partitions
must have higher than zero free memory. The safety requirement stating that a partition
can only host jobs of one criticality level is captured by the partitionCriticalityLevel-
Similar pattern. As it is a negative constraint it describes the (positive) case where the
P1 partition holds two job instances J1 and J2 of a simple and a critical job Job1 and
Job2, respectively. The criticalInstanceonSamePartition and criticalInstanceonSameM-
odule patterns restrict in a similar way that no job instances J1 and J2 of a critical job
Job can be allocated to the same partition P1 or module M1.

Finally, labeling rules describe the allocation operations. The allocatePartition graph
transformation rule defines how a partition P can be allocated to a module M1. As
a common technique in graph transformation based approaches, a negative application
condition stating that the partition is not already allocated is used to indicate that the rule
should only be used for unallocated partitions. On top of that the allocateModule rule
uses an additional NAC to forbid allocation of module M to cabinet C1 when two other
modules M1 and M2 are already presented on C1, while the allocateJobInstance defines
an additional attribute operation to decrease the free memory value MP of partition P1
by the required memory MJ of the allocated job J. The createModule rule simply creates
a module M without any precondition.

Although not demonstrating in our ongoing example, our constraint framework is
able to dynamically add and remove subgoals and labeling rules during the traversal of
the state space in response to changes made in the original formulation of the problem.
This allows to address problems which can change over time and solutions are relying
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on already made decisions such as reconfiguration of system components. In this case
the requirement of the provided QoS (e.g., at least three service nodes must be running)
by the system can vary over time and reconfiguration needs to be applied on the actual
system state.

3.3 Solving CSP over Models

To traverse the search space of a constraint program introduced in Sec. 3.2, we define
the solver as a virtual machine that maintains a 4-tuple (CG,CS,AM,LS) as a state.
CG is called the current goal; CS is the constraint store; AM is the actual model; and
finally LS is the labeling store. The (i) current goal stores the subgoals that still need to
be satisfied; the (ii) constraint store holds all constraints the solver has satisfied so far
while the (iii) actual model represents the underlying actual model and finally the (iv)
labeling store contains all enabled labeling rules. An element in the labeling store is a
pair (l,m), where l is a labeling rule and m is a valid match of its precondition LHSl in
AM; formally m : LHSl −→ AM.

Initially, the CG, CS and LS are initialized with the goal, global constraints and the
enabled labeling rules of the CSP(M) problem, respectively, while AM is set to the ini-
tial model. The solver proceeds by selecting an enabled labeling rule (l,m) and applies
it to AM resulting in AM′. After each labeling rule application (and after initialization)
CS is checked for consistency. In principle, whenever (i) a global constraint in CS is
violated the solver backtracks, (ii) a subgoal in CG is satisfied by M it is moved to CS
and (iii) vica-versa moved from CS to CG if it becomes unsatisfied and finally (iv) a
successful termination is reached when CG becomes empty.

Formally, a transition in the search space is a pair of 4-tuples of (CG,CS,AM,LS)→
(CG′,CS′,AM′,LS′), which describes a step between the two states. A transition is pos-

sible iff ∃(l,m) ∈ LS where AM
l,m
=⇒ AM′ i.e., a labeling rule can be applied on the

actual model for a certain match. A goal G can be proved if there exists a trajectory
of individual steps (CG,CS,M0,LS) � ( /0,CS′,Ms,LS) for a satisfiable constraint store
CS. In other words, a solution model is found if there exists a sequence of labeling rule
applications, that lead to an empty CG and satisfiable CS.

Example. Let us consider that our running example is in the initial state S0 depicted in
Fig. 4. The actual model is the initial model M0 (detailed in Fig. 2(a)); the current goal
CG contains the jobInstancewithoutPartition and the partitionwithoutModule subgoals;
the constraint store CS holds all global constraints and the modulewithoutCabinet sub-
goal while the labeling store LS holds the following pairs: (allocateJobInstance, CJI1),
(allocateJobInstance, CJI2) and (createModule, /0). The solver has three enabled label-
ing rules (transitions) t1, t2, t3 resulting in states S1, S2, S3. For example, S1 is traversed
by applying the allocateJobInstance labeling rule on the critical job instance CJI1. In
S1 the actual model changed with an additional j1 jobs relation (highlighted in grey)
between partition P1 and job instance CJI1; the current goal and constraint store did
not change and contains the same elements as in S0 while the labeling store changed to:
(allocateJobInstance, CJI2) and (createModule, /0). For easier readability, actual models
of the states are depicted in Fig. 4 in a simplified way without type information e.g., the
element CJI1: JobInstance is denoted as CJI1.
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Fig. 4. Example State Space

3.4 Search Strategies

Most algorithms for solving CSPs systematically traverse the possible search space.
Such algorithms are guaranteed (in case of finite search space) to find a solution, if one
exists, or to prove that the problem is irresolvable.

The most common algorithm for performing systematic search is backtracking based
on depth-first search. Backtracking incrementally builds candidates to the solutions, and
abandons each partial candidate (”backtracks”) as soon as it determines that it cannot
possibly be completed to a valid solution. In our case it means that in the actual state
a global constraint is violated or its labeling store is empty, thus backtracks the last
applied step and continue with a different one. One of the main drawbacks of the sim-
ple backtracking algorithm is thrashing; i.e. repeated failure due to the same reason.
Thrashing occurs because the backtracking algorithm does not identify the root cause
of a conflict, i.e., the unsatisfiable global constraint or subgoal leading to a dead-end.
Therefore, search in different parts of the search space keeps failing for the same reason.

In order to overcome trashing we implemented two additional search strategies:

Random Backjumping is a backtracking strategy based on the assumption that a
traversal might be in a dead-end if no solution was found within a certain amount of
time (deadline). When the solver exceeds this deadline, it jumps back to a state at least
as high as the half of the actual depth of the search space tree. This way the solver can
restart the traversal from an earlier state and continue on different random transitions.
However, to keep the completeness of the traversal we implemented a simple policy
introduced in [12] that is to increase the height of the backjump each time it is used.
This approach is obviously not effective to prove unsatisfiability because all the runs
except the last are wasted but has a good average performance in certain real scenarios.
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Guided traversal by Petri net abstraction is a state space traversal strategy which
conducts search towards the most promising candidate paths calculated according to a
Petri net abstraction of graph transformation systems introduced in [13]. A marking of
the derived (cardinality) Petri net abstracts from the actual structure of the correspond-
ing model, and stores only the number of elements of each type (in the metamodel).
This way, we solve an integer linear programming problem of the derived Petri net to
obtain an optimal transition occurrence vector (storing only how many times a labeling
rule needs to be applied) leading to a designated target state (formulated as a target
submarking). Then the search strategy first explores those branches (i.e. labeling rule
applications) which are consistent with this hint. If no solution is found on the level of
CSP(M), then the next optimal transition occurrence vector candidate is derived, and
the exploration of the CSP(M) problem continues.

Note that due to the abstraction, the transition occurrence vector might not represent
a feasible trajectory in the search space of the CSP(M) problem. However, it provides a
good lower bound on the minimal number of labeling rule applications required to reach
a solution model if its corresponding solution submarking can be precisely estimated or
calculated. The first transition occurrence vector calculated for our running example is
(2,1,1,1) meaning that to achieve a solution submarking derived from a solution model
where all job instances and partitions are allocated, the allocateJobInstance rule has to
be applied twice while the other three only once.

3.5 Optimization

To further reduce the size of the traversed state space we introduce two additional opti-
mization techniques that complement our search strategies described in Sec. 3.4.

Look-ahead pattern. Additional restrictions on the applicability of labeling rules can
be formulated by incorporating a subset of global constraints called look-ahead con-
straints into the precondition (LHS) of rules. These constraints are validated in the
precondition of labeling rules to prevent unnecessary steps which would violate these
constraints. Currently, this is a manual hint by the designer, but in the future, we plan
to automate this task by applying critical pair analysis [14] or transformations of graph
constraints to preconditions [15].

Fig. 5. Modified allocateJobInstance rule
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In our running example the allocateJobInstance rule can be further restricted regard-
ing the memory consumption of the JIns job instance making the partitionsMemory-
HigherThan global (look-ahead) constraint obsolete. Its modified version with the extra
check condition on the required and available memory is depicted in Fig. 5.

Exception priority. In order to explicitly restrict the number of application of labeling
rules along a trajectory we introduced a priority class called exception. Exception rules
have the lowest priority and will only be selected when no other labeling rules are en-
abled. In any trajectory if the number of applications of an exception rule exceeds its
predefined value the solver backtracks and continues along another transition. Excep-
tion rules are used as hints by the solver to avoid state space explosion especially, when
the Petri net based abstraction cannot predict the number of labeling rule applications
for element creation rules without preconditions such as the createModule rule in the
running example.

3.6 Implementation

We implemented an experimental solver for CSP(M) including all the techniques above
on top the VIATRA2 model transformation framework, which offers efficient rule- and
pattern-based manipulation of graph models by the means of graph transformation. In
order to implement the solver using graph based state representation we had to address
the problems of constraint evaluation, typed graph comparison and backtracking.

For effective evaluation of constraint satisfiability we rely upon the incremental pat-
tern matcher component [16] of the framework. In case of incremental pattern match-
ing, the matches of a pattern are stored to be readily available in constant time, and
they are incrementally updated when the model changes. As matches of patterns are
cached, this reduces the evaluation of constraints and preconditions of labeling rules to
a simple check. This way, the solver has an incrementally maintained up-to-date view of
its constraint store and enabled labeling rules. Furthermore, incrementality provides an
efficient constraint propagation technique to immediately detect constraints violations
after a labeling rule is fired.

As for backtracking between states, we implemented a simple transaction mecha-
nism that saves the atomic model manipulation operations applied on the model in an
undo stack. This stack not only allows us to backtrack the manipulations but also ease
the computation of difference between neighbour states. This feature is also useful in
problems that require solutions that are ”nearest” to a given initial model (e.g. for re-
configuration rules).

For comparison of graphs we adapted the DSMDIFF [17] algorithm, which relies on
(i) signatures (for nodes and edges) composed of type and name information and (ii)
containment relation between nodes of the graph. It is also important to mention that to
keep the memory consumption low, we serialized already visited states as strings and
applied the algorithm directly on them.

The introduced solver is already in use in the context of the DIANA [18] European
project as its underlying allocation engine for a system-level integration scenario.
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4 Evaluation

To evaluate the performance of our CSP(M) solver, we carried out experiments1 based
on our running IMA allocation example. We assume that we have to allocate different
software workloads (functionalities) on a system of three modules (which corresponds
to the avionics architecture used in the DIANA project).

Each row in Table 1 defines a software workload allocation test case. The Simple
Job, Critical Job, and Partition rows define the actual number of software components
to be allocated where critical jobs are separated based on their redundancy scheme into
double (DMR) and triple (TMR) modular redundancy. All Job Instances represents the
total number of job instances to be allocated. For our initial measurement (denoted by
ATTR) we assume that each job requires the same amount of memory (30 units) and
each partition offers the same free memory (300 units).

Table 1. Runtime performance of the IMA allocation problem

Due to the random strategy of our solver we considered an allocation completed
if a solution was found within 200 seconds. In each case we executed the solver ten
times and present the number of Completed Allocations. Runtime performance and tra-
versed State Space size of the completed allocations are also presented by their mini-
mum (min), maximum (max) and average (avg) values for each test case.

During the analysis and profiling of our implementation we have discovered that
the performance bottleneck in our system is mainly related to the model management
component of the underlying VIATRA2 transformation framework (which is obviously
not optimized for constraint solving purposes). In almost all cases we have observed
that core attribute manipulation functions (e.g., setValue) are the most time consuming.
This is due to the low-level notification mechanism that keeps the incremental pattern
matcher up-to-date after changes in the model space, which is more effective for graph
manipulations rather than attribute changes.

Therefore we also evaluated our approach without attribute manipulation (i.e., mem-
ory requirements) on the running example denoted by NON ATTR.. In order to solve a
conceptually similar problem we defined an additional global constraint stating that a
partition can not affiliate more than ten job instances. Results show that (i) in both cases
solutions were found traversing only a small number of states compared to the size of
the problem, (ii) the NON ATTR. implementation scales almost up to twice the size in

1 For our experiments, we used a average PC with Core Duo@1.8 GHz and 2GB RAM running
Windows XP and Java SDK 1.6.
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the number of job instances to allocate and (iii) due to the heuristic character of the state
space traversal the runtime performances can vary up to two order of magnitudes.

Our measurement shows that our constraint solver based upon incremental pattern
matching is able to solve non-trivial problems of model oriented constraints. On the
other hand further investigations have to be directed to combine them with constraints
over regular attributes.

5 Related Work

Applications of CSP in MDD. While constraint satisfaction techniques have been suc-
cessfully applied in the context of MDD. [19] proposes an approach for partial model
completion based on constraint logic programming. [2] support efficient domain spe-
cific modeling by transforming constraints to a Prolog representation. In [1], poor de-
sign patterns are detected by using off-the-shelf CSP techniques and tools. [20] defines
an interactive guided derivation algorithm to assist model designers by providing hints
about valid editing operations that maintain global correctness of models.

In the context of model transformations, [21] proposes constraint solving as a graph
pattern matching strategy. [3] proposes Constraint Relation Transformation an exten-
sion of QVT Relations with numerical constraints by integrating local numerical con-
straint solving (over attributes of model elements).

Recent approaches like [22, 23, 24] aim at automatically creating instance models,
which conform to a given metamodel and a set of constraints. This model generation
problem is solved by existing back-end tools like Alloy, or by a dedicated theorem
prover for Horn-like clauses as in [24]. This problem can also be interpreted as a special
(restricted) CSP problem without numeric constraints on attributes.

In all these papers, constraint satisfaction techniques are used to assist model-driven
development. The main innovation of our work is just the opposite: it investigates how
model transformation techniques can contribute to solve complex constraint satisfaction
problems over complex structural constraints and dynamic labeling rules.

State Space Exploration for GT. There are several state space exploration approaches
[25, 26] to analyze graph transformation systems. Common in these solutions that they
store system states as graphs and directly apply transformation rules to explore the state
space similar to our approach. Their main difference is that they use an exhaustive state
space exploration to verify certain conditions in the graph transformation system, while
our approach rely on guided traversals.

CSP-specific. Research in the field of constraint satisfaction programming has been
conducted towards flexible and dynamic constraints [27, 6]. Our approach shows sim-
ilarities with both approaches as (i) it also allows to add (or remove) additional con-
straints during the solution process as defined in the dynamic extension, and (ii) can
give support for cost based optimization defined over the constraint (flexible) even in
the case of complex structural constraints.

6 Conclusion and Future Work

In the current paper, we have presented a novel approach defining constraint problems
directly over models (denoted shortly as CSP(M)) using graph transformation rules and



120 Á. Horváth and D. Varró

graph patterns. As a distinctive feature from a CSP point of view, we extended tradi-
tional labeling by using model manipulation as provided by graph transformation to
dynamically create and delete model elements. Furthermore, not demonstrated in the
current paper but our framework also allows to dynamically add/remove subgoals and
labeling rules to alter the constraint problem to address problems defined in dynamic
constraint satisfaction programming [27].

We have also built (and initially evaluated) a prototype solver implementation on top
of the VIATRA2 model transformation framework using incremental pattern matching
that provides an efficient constraint propagation technique to immediately detect con-
straint violation. Moreover, the solver integrates various strategy (e.g. random back-
jumping, directed search) to guide the state space traversal.

As the main innovation, we argued that model transformation technology can effi-
ciently contribute to formulate and solve constraint satisfaction problems with complex
structural constraints and dynamic labeling rules.

In the future, we plan to investigate (i) how can traditional constraint programming
concepts can be combined with our approach to effectively handle constraints over at-
tributes, (ii) further state space optimization by automatic detection of look-ahead pat-
tern based on critical pair analysis and finally (iii) other structural constraint based
frameworks such as Alloy for a detailed comparison.
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Abstract. Conceptual schemas (CS) are core elements of information
systems knowledge. A challenging issue in the management processes is
to allow decision makers, such as business people, to directly define and
refine their schemas using a pseudo-natural language. The recently pub-
lished Semantics for Business Vocabulary and Rules (SBVR) is a good
candidate for an intermediate layer: it offers an abstract syntax able to
express a CS, as well as a concrete syntax based on structured English.
In this article, we propose an original method for extracting a SBVR ter-
minal model out of a controlled English text and then transform it into
a UML class diagram. We describe a model-driven engineering approach
in which constraint-programming based search is combined with model
transformation. The use of an advanced resolution technique (configura-
tion) as an operation on models allows for non-deterministic parsing and
language flexibility. In addition to the theoretical results, preliminary
experiments on a running example are provided.

Keywords: Controlled languages, parsing, SBVR, model-driven engi-
neering, constraints, configuration, model search.

1 Introduction

Conceptual schemas (CS) are widely used in industry as formal representations
of information systems knowledge. A CS is often the central element on which
relies a set of operations. The UML/OCL combination is the de-facto standard
for specifying a CS. However, designing, maintaining and refining a CS currently
requires important technical skills. Stakeholders thus rely on experts to model
their requirements. A recent trend in software engineering (requirements engi-
neering) is to discover ways to facilitate this communication, by allowing decision
makers to express their needs in a comprehensive language which can then be
transformed into a formal representation.

In the business context, the Object Management Group (OMG) has recently
published the SBVR (Semantics for Business Vocabulary and Rules) recommen-
dation. SBVR provides a metamodel for business concepts and statements which
can be used to define a CS. The specification also proposes a structured English
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form for a model that is easily understood by business people. However parsing
the proposed structured English into a SBVR model is a difficult problem. In
particular, the different interpretations that can be made for one sentence dis-
qualifies the existing model driven engineering (MDE) tools (such as ATL[1] or
QVT[2]) that are based on deterministic algorithms. If one wishes to keep this
freedom in the language then the problem requires to search for a solution using
advanced AI technics.

This article describes an automatic translation of SBVR structured English
into a SBVR concrete model and a UML model of the described CS. The orig-
inality of our approach is that it combines constraint programming techniques
with model transformation tools in a MDE framework. It is composed of three
main operations. The first task is a syntactical and grammatical analysis of the
text, which is directly related to the well-known and challenging field of (con-
trolled) language parsers: we describe a SBVR parser based on an advanced
constraint programming technique known as configuration. The second task is
the transformation of the resulting model into a SBVR model. The third task
is the transformation of the SBVR model into a UML model of the CS. The
integration of constraint programming in MDE as an advanced transformation
tool is an important and innovating contribution of this work.

Plan of article. Section 2 briefly introduces each technology used in our ap-
proach. We also present an overview of the whole process and a running exam-
ple. Section 3 introduces the controlled language parser. Section 4 shows how
the resulting model is transformed into a SBVR model. Section 5 proposes a
transformation from SBVR to UML. Validation, implementation and experi-
ments are presented in Section 6. Finally, we discuss related work in Section 7
and conclude.

2 Context of the Work

2.1 Brief Introduction to SBVR

SBVR is an OMG standard [3] intended to be the basis of the description of
business activities in natural languages. SBVR attempts to build the bridge
between Business Users and software artifacts, enabling non-IT specialists to
parameterize and evolve the business logic embedded into applications. SBVR
standardizes a set of concepts enabling the definitions of business specific Con-
trolled Languages (declarative languages, whose grammar and lexicon have been
limited in order to eliminate part of the ambiguity. See [4] as a historical pa-
per, or more recently [5]). Business Rules Systems such as for example ILOG
JRules[6] or Drools[7] are popular controlled languages used to explicitely model
the business logic in a growing number of applications.

We will not describe SBVR exhaustively in this article. However a look at
the Figures 1 and 2 might provide a feeling about the sophistication of the
meta-model and about the approach that separates logical formulations from
meanings.
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Fig. 1. Extract of the SBVR metamodel: meanings

Fig. 2. Extract of the SBVR metamodel: logical formulations

2.2 Brief Introduction to Configuration

Configuring is the task of composing a complex system out of generic compo-
nents [8]. Components, also called objects or model elements, are defined by
their types, attributes, and known mutual relations. The acceptable systems are
further constrained by the request: a set of problem-specific and/or user-specific
requirements, represented by a fragment of the desired system (i.e. intercon-
nected objects). From a knowledge representation perspective, configuration can
be viewed as the problem of finding a graph (i.e. a set of connected objects)
obeying the restrictions of an object model under constraints. From a model
driven approach, it can be viewed as the problem of finding a finite model that
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conforms to a metamodel. More precisely, we consider the process as a model
transformation where the source model is the request and the target model is the
solution. The configuration model acts as the target metamodel. A relaxed ver-
sion of this metamodel acts as the source metamodel. This relaxed metamodel is
obtained by the removal of all constraints: minimum cardinalities are set to zero,
attributes are optionals and OCL constraints are removed. The request, which
is a set of target model elements with incomplete knowledge (for instance linked
elements and attribute values are usually undefined), is therefore conformant to
the source metamodel. In this context, the configurator searches for a target
model, completing the source and creating all necessary model elements so that
the result (if any) is conformant to the target metamodel.

Various formalisms or technical approaches have been proposed to handle con-
figuration problems: extensions of the Constraint Satisfaction Problem paradigm
[9,10,11], knowledge-based approaches [12], logic programming [13], and object-
oriented approaches [14,15]. Configuration has traditionnaly been used with suc-
cess in a number of industry applications such as manufacturing or software
engineering. More recently, the expressive power of configuration formalisms has
proven its usefulness for artificial intelligence tasks such as language parsing [16].
A deeper introduction to configuration can be found in [8].

In the sequel we propose to use Ilog JConfigurator [15] as a controlled language
parser for SBVR. In this model-oriented approach, a configuration model (in
our context, the target metamodel) is well-defined as a set of classes, relations
and constraints. The UML/OCL language combination may be used to this
purpose [17].

2.3 Brief Introduction to MDE and Model Transformation

Model Driven Engineering is a research area that considers the main software
artifacts as graphs. This comes from an industrial need to have a regular and
homogeneous organization where different facets of a software system may be
easily separated or combined.

In MDE, models are considered as the unifying concept. The MDE community
has been using the concepts of terminal model, metamodel, and metametamodel
for quite some time. A terminal model is a representation of a system. It cap-
tures some characteristics of the system and provides knowledge about it. MDE
tools act on terminal models expressed in precise modeling languages. The ab-
stract syntax of a modeling language, when expressed as a model, is called a
metamodel. A language definition is given by an abstract syntax (a metamodel),
one or more concrete syntaxes, and a definition of its semantics. The relation
between a model expressed in a language and the metamodel of this language is
called conformsTo. This should not be confused with the representationOf rela-
tion holding between a terminal model and the system it represents. Metamodels
are in turn expressed in a modeling language called metamodeling language. Its
conceptual foundation is itself captured in a model called metametamodel. Ter-
minal models, metamodels, and metametamodel form a three-level architecture
with levels respectively named M1, M2, and M3. A formal definition of these
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concepts may be found in [18]. The principles of MDE may be implemented
in several standards. For example, OMG proposes a standard metametamodel
called Meta Object Facility (MOF).

The main way to automate MDE is by providing transformation facilities.
The production of model Mb from model Ma by a transformation Mt is called
a model transformation. In this work we use ATL (AtlanMod Transformation
Language), a QVT-like model transformation language [1] allowing a declarative
expression of a transformation by a set of rules.

2.4 Process Overview

Figure 3 sketches the overall process in a model-driven engineering framework.
The input is a text in the form of structured English as has been proposed in
the SBVR specification [3]. The text is injected into a model thanks to a simple
metamodel for sentences and words annotating the position of words in the text.
A second simple transformation uses a lexicon to label each word with a set of
possible syntactical categories. We have then defined a metamodel, called Syntax,
where we adapted configuration grammars[16] to SBVR and the model-driven
engineering context. The text (as labeled words) is fed into a constraint-based
configurator using the relaxed version of Syntax. The result of the configuration
process, acting as a syntax and grammar analysis, is a finite model that conforms
to the Syntax metamodel. This model is then transformed with a usual model
transformation tool (here, ATL) to a model conforming to the SBVR metamodel
through a set of rules using the grammatical dependencies found during config-
uration. This SBVR terminal model may then be processed again with ATL to
obtain a corresponding UML model.

Fig. 3. Process overview
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2.5 Running Example

An example will be used throughout the paper to illustrate the approach. The
considered text is composed of three sentences defining a simple CS:

(1) Each company sells at least one product.
(2) Each product is sold by exactly one company.
(3) A software is a product.

This relatively simple example still embeds many important concepts. From
the language parsing viewpoint it uses nouns, active and passive verbs, as well
as different quantifiers. From the modelling viewpoint it shows the notions of
classes, inheritance and relations with cardinalities. In the following Sections,
we will show how each main task is applied on those sentences.

3 Parsing a Controlled Language for SBVR

Parsing natural languages is one of the major challenges of AI. Considering the
difficulty of the task, many efforts have been focused on the more accessible field
of controlled languages (CL) [19]. Among the existing approaches, [16] shows
how property grammars [20] can be captured into a configuration model in order
to parse a subset of French with a constraint-based configurator. The resulting
parser does not inherit the deterministic behaviour of most CL parsers and is
designed to be adapted to different grammars. We have modified and extended
this method to the form of structured English proposed in the SBVR specifica-
tion [3]. In our MDE approach, the proposed configuration model is defined as
a metamodel called Syntax.

3.1 Syntax Metamodel

A fragment of this metamodel (most classes and relations) is presented in
Figure 4. Syntax captures three main informations from the input text: syn-
tactical categories, grammatical dependencies and SBVR semantics.

Syntactical Categorization. In order to obtain a syntactic tree from a sen-
tence, we have adapted the property grammar model from [16] to English. The
main class of the model is Cat, which denotes a syntactical category. A category
is terminal when it is directly associated to a single word. Such categories in-
clude NCat (noun), VCat (verb) or DCat (determiner). Those categories may be
further specialized: a verb is either transitive (TVCat) or intransitive (ITVCat).
The possible categories of a given word are obtained with the lexicon in the pre-
vious transformation. A category is non-terminal when it is composed of other
categories. SentenceCat (sentence), NPCat (noun phrase), VPCat (verb phrase)
are the main non-terminal categories. A set of constraints further defines the
acceptable categorizations. Such constraints involve for instance the categories
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Fig. 4. Extract of the Syntax metamodel: syntax and grammar

constituents, or relative positions in the sentence. Here are some example con-
straints specified in OCL:
– Each verb phrase for which the heading verb is transitive is composed of at

least one noun phrase. This constraint applies to the relation isComposedOf
of a category:
context VPCat
inv : head . oclIsTypeOf (TVCat)

implies isComposedOf−>
e x i s t s ( e l t . oclIsTypeOf (NPCat ) )

– A verb phrase is always preceeded by a noun phrase. The constraint applies
to the attributes “begin” and “end” of categories, which are obtained from
their associated word(s):
context SentenceCat
inv : isComposedOf−>e x i s t s (

e l t . oclIsTypeOf (NPCat )
and e l t . end < vp . begin )

Grammatical Dependencies. We have extended the syntactic model so that
grammatical dependencies appear as explicit relations between categories. Simi-
lary to the syntactical part, a set of constraints defines the acceptable construc-
tions. Here are some example constraints specified in OCL:
– The subject of an active verb occurs before the verb phrase:

context VPCat
inv : ( head . vo i c e = ’ a c t i v e ’ )

implies head . sub j e c t . end < begin
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– The head of a verb’s subject shares the same plural :
context VCat
inv : p l u r a l = sub j e c t . head . p l u r a l

SBVR Semantics. We have extended the metamodel with the main concepts
of the SBVR metamodel. SBVR semantics are assigned to syntactical categories
through the “expresses” relation. Again, a set of constraints governs the possible
assignments. Here are some examples:

– A transitive verb expresses a fact type.:
context TVCat
inv : not exp r e s s e s . oc l I sUnde f in ed ( )

and exp r e s s e s . oc l I sKindOf ( FactType )

– The head of a subject of a verb expresses either an object type or an individual
concept :
context VCat
inv : s ub j e c t . head . exp r e s s e s .

oc l I sKindOf ( ObjectType )
or sub j e c t . head . exp r e s s e s .
oc l I sKindOf ( Ind iv idualConcept )

About SBVR concepts singularity. A critical issue in assigning SBVR semantics
to categories is the one of concepts singularity. More precisely, the same SBVR
concept may be expressed in different sentences (or even in the same sentence).
Consider for instance the first two sentences of our running example: the concepts
“Company”, “Product” and “To sell” are expressed multiple times. We obviously
wish to avoid creating duplicate SBVR elements in the resulting model. A set
of constraints forces the uniqueness of SBVR elements based on an equivalency
statement. In the case of elements of class ObjectType, the disambiguation is
done on the word’s base designation. It can be formalized in OCL as follows:

inv : NCat . a l l I n s t an c e s ()−>
f o rA l l (n1 , n2 : NCat |
( n1 . word . baseDes ignat ion =
n2 . word . baseDes ignat ion )

= (n1 . exp r e s s e s = n2 . exp r e s s e s ) )

Note that since the base designation is used, different forms of the same word are
still recognized (i.e. “products” and “product” are matched). The same principle
is applied to other SBVR elements such as fact types.

3.2 Parsing Process and Result

As explained previously, the input of the configuration process is a model of a
relaxed version of the target metamodel. In our context, the input text is trans-
formed into a set of interconnected configuration objects of type Text, Sentence,
Words and Designations. For each word, the preceeding transformation, using
the lexicon, has provided its properties (plural, voice, etc.), base designation
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Fig. 5. Running example: fragment of a Syntax terminal model

(the base designation of the word “has” is “to have”), and candidate syntactical
categories (the word “one” may be a noun, a numeral or an adjective).

The result of the configuration process is one (or more) terminal model(s)
satisfying the configuration model constraints, when such a model exists. For
instance, Figure 5 shows (a fragment of) the syntactical and grammatical part
of a generated model for the sentence “Each company sells at least one product”.
It should be noted that this parsing process is not deterministic: due to language
ambiguities, multiple solutions may be valid for the same request. For instance,
consider the sentence “MyCode is a software”. Without other sentences or lexicon
information, it is not be possible to decide whether the NounConcept “MyCode”
is an ObjectType (a specialization of Software) or an IndividualConcept (an in-
stance of Software). Rather than arbitrary deciding on one model, search allows
to generate all valid solutions which can be later compared, or even to optimize
the target model based on some preferences. In this regard, our approach offers
a high flexibility.

4 Transforming the Resulting Model into a SBVR Model

The model obtained during the parsing process exhibits the SBVR semantics
expressed by (groups of) words. Using this information together with grammat-
ical dependencies between elements, we are able to construct a complete SBVR
model corresponding to the input text. This is achieved with model transforma-
tion using the ATL language [1]. Presenting each rule of the transformation in
details is outside the scope of this article. However we propose an overview of
its main principles.1

1 Source code and documentation of all presented transformations have been sub-
mitted as a contribution to the Eclipse ATL project and are available on
http://www.eclipse.org/m2m/atl/
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4.1 Mapping Overview

A first straightforward mapping is obvious: each SBVRElement of the Syntax
metamodel has its counterpart in the SBVR metamodel and therefore implies
the creation of the target model element. However the relations between SBVR
model elements are not exhibited in the source model and may require additional
(intermediate) SBVR elements. A set of rules therefore allows to derive them
from the grammatical relations of the source model.

As an example, consider the following rule that generates a (binary) Associa-
tiveFactType and its roles from a transitive verb, its subject and direct object.
It may be informally expressed as follows: “For an AssociativeFactType B ex-
pressed by a verb V in the source model, create an AssociativeFactType B’ in the
target model, with two roles R1 and R2, where R1’s nounConcept is the target
NounConcept of V’s subject, and R2’s nounConcept is the target NounConcept
of V’s direct object”. The rule creates intermediate elements (the roles) and
uses them to relate SBVR elements. Note that some of these elements (target
NounConcepts of the subject and direct object) are created by a different rule.

Moreover, the transformation allows to create attribute values from a source
information having a different datatype. Indeed, consider the word “one” in
the first sentence of our running example. In the source model, the word is
associated to the category “NumeralCat”, expressing a non-negative integer in
SBVR semantics. The rule that creates the target model element is able to assign
a value to the attribute “value” of type “Integer”, using the OCL construct
“toInteger()” on the word’s designation.

4.2 Transformation Process and Result

Once the transformation is complete, we obtain a model that conforms to SBVR,
leaving aside the syntactical and grammatical information of the text. Figure 6
shows a fragment of the generated SBVR model for our running example, which
corresponds to the sentence “Each company sells at least one product”.

5 Transforming the Resulting Model into a UML Model

Once a valid SBVR model has been generated, it is possible to transform it into
a corresponding UML (class diagram) model of the CS using ATL. Again, we
do not detail each rule but present an overview of the mapping.

5.1 Mapping Overview

Some examples of the mapped concepts are presented in Table 1 where the dotted
notation is used to navigate classes attributes and relations. The correspondance
between concepts is quite natural: an ObjectType becomes a Class, an Associa-
tiveFactType becomes an Association, a CategorizationFactType denotes inheri-
tance (Generalization in UML), an IsPropertyOfFactType refers to an attribute,
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Fig. 6. Running example: fragment of the SBVR terminal model

Table 1. Excerpt of the mapping from SBVR concepts to UML concepts

SBVR concept UML Concept
ObjectType Class

ObjectType.Designation.Text.value Class.name
DataType DataType

IndividualConcept InstanceSpecification
AssociativeFactType Association

AssociativeFactType.Designation.Text.value Association.name
AssociativeFactType.FactTypeRole Property (Association.memberEnd)

AssociativeFactType.FactTypeRole.nounConcept Property.classifier
CategorizationFactType Generalization

CategorizationFactType.FactTypeRole#1 Generalization.general
AtLeastNQuantification.minimumCardinality.value Property.lowerValue
AtMostNQuantification.maximumCardinality.value Property.upperValue

an IndividualConcept becomes an InstanceSpecification, etc. Linked concepts
and values are also quite explicit. However, most of the rules do not realize a
straight one-to-one mapping but imply additional conditions, target elements
from other rules, etc. For instance, consider the mapping for the SBVR concept
AtLeastNQuantification. The Property for which lowerValue is assigned is the
one obtained by transforming the AssociativeFactType that is target of the rela-
tion AtLeastNQuantification.scopesOver.isBasedOn. Ordered relations also play
an important role: the first role of a categorization denotes the general class,
whereas the second one refers to the specific class.
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5.2 Transformation Process and Result

Once the transformation is complete, we obtain a UML specification of the CS.
Figure 7 shows a UML terminal model obtained for our running example.

Fig. 7. Running example: fragment of the UML model

6 Implementation and Experiments

6.1 Implementation

The proposed approach has been integrated into an Eclipse-based model-driven
engineering framework. To those aims, each presented metamodel has been writ-
ten using the KM3 metamodelling language [18], which offers an automatic con-
version to the EMF’s ECore format [21]. These ECore metamodels are source
and target metamodels of the proposed ATL transformations. The configura-
tion tool JConfigurator has its own modelling language and currently offers only
XML inputs and outputs. Therefore the Syntax metamodel is also defined di-
rectly within the tool as the configuration model. At runtime, the configuration
request model is projected to XML in order to be parsed, and the XML rep-
resentation of the solution is then injected into a model. This model (in XMI
format) is passed over to the remaining ATL transformations.

6.2 Experiments

Experiments on the running example were conducted on a Core2Duo 3Ghz with
3GB of RAM. Table 2 shows the results. We first parsed each sentence separatly
and then multiple sentences at once.

Parsing is efficient for separated sentences but the time required for the search
task quickly increases with the whole text. This is due to the size of the source
model which directly impacts the search space of the configurator whereas the
ATL transformations are able to handle bigger models. Splitting the tasks is pos-
itive for performance and could be investigated further so as to reduce the con-
figuration model to the minimum required for syntactical analysis. We currently
focused on a straightforward integration of the configurator with a configuration
model covering the whole Syntax metamodel. Future steps are, on the one hand,
to extract the combinatorial core of the metamodel, and on the other hand, to
allow a further specified request through different relaxation levels of the source
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Table 2. Experiments on the running example (times in seconds)

sentence(s) Text to Syntax Syntax to SBVR SBVR to UML

Time Vars Constraints Time Time

(1) 0.26 527 1025 0.018 0.018
(2) 0.20 526 1022 0.018 0.016
(3) 0.19 475 885 0.015 0.018

(1)+(2) 0.38 973 2819 0.035 0.020
(1)+(2)+(3) 1.41 1328 5312 0.082 0.025

metamodel. It should however be emphasized that these are early experimental
results. No optimizations have been applied to the configuration engine such as
heuristics or symmetry breaking techniques, which are known to drastically re-
duce the computation times. Another alternative envisionned is to perform an
incremental parsing of the text, sentence by sentence, using the ATL multiple
source capabilities to unify the resulting SBVR models. The successful parsing
of our non-trivial example however proves the feasability of the approach.

7 Related Work

In [22], a procedure for performing the reverse transformation is described: from
a UML/OCL description of a CS, the authors show how it can be transformed
into a SBVR terminal model using ATL, and then paraphrased with structured
English text. Combining the two approaches is thus promising. Indeed, designing
a CS often requires several discussions between stakeholders for refinements, and
maintaining a CS leads to frequent evolutions. The combination would allow to
switch from one representation to another automatically.

There has been previous research on using constraint programming technics
in MDE, mostly about animation of relational specifications or model verifi-
cation. [23] transforms UML/OCL specifications into a constraint satisfaction
problem in order to check satisfiability. [24] proposes a similar method, although
the underlying solver (Alloy [25]) is based on SAT. Both approaches inherit the
limitations of the target formalism in which specifications must be translated.
The configuration paradigm is expressive enough as self and thus avoids the
translation phase. Moreover, to the best of our knowledge, this is the first time
that a constraint-based search is embedded in MDE as a transformation tool.
With respect to the domain of natural or controlled language parsers, our ap-
proach differs from most existing methods (such as ACE[4]). Indeed these parsers
do not accept ambiguous grammars (i.e. not context-free), whereas we are able to
parameterize the level of accepted ambiguities, thus allowing to define a trade-off
between language coverage and computation efficiency.

8 Conclusion and Future Work

We have described a method which allows to parse a CS specification expressed
in structured English into a UML class diagram. To those aims, we proposed
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SBVR as an intermediate layer. The originality of our approach is the use of an
advanced constraint-programming search technique (configuration) as a model
transformation tool integrated in a MDE environment. Early experiments are
provided as a proof-of-concept. Moreover, the proposed parser is flexible with
respect to language coverage and disambiguation. There are many perspectives
to this work. First, the metamodels can be extended to capture an increased
portion of SBVR. The expressed meanings will then probably require to gener-
ate OCL constraints in addition to UML. Other target formalisms can also be
considered such as OWL or Rule Systems. The experiments clearly show that
there is a need for performance improvement in the search-based transformation.
The leading direction is to reduce the search space by isolating the metamodel’s
combinatorial core, thus further decomposing the problem. Finally, the described
configuration-based tool could benefit to other complex transformations that re-
quire searching for a target model instead of applying deterministic rules to the
source model.
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Abstract. UML diagrams have become the de-facto standard for the vi-
sual modeling of software systems. The creation and discussion of these
diagrams is a critical factor impacting the quality of the artifacts un-
der development. Traditionally, facilitating the collaboration of globally
distributed team members with heterogeneous system environments has
been a costly and time-consuming endeavor. This paper aims to advance
the state-of-the-art of model-based development by providing a collabo-
ration environment, which supports the synchronous distributed creation
and manipulation of UML diagrams and also lowers the technical entry
barriers for participating in the modeling process. We present a prototyp-
ical implementation of a collaborative editor for synchronous lightweight
modeling (SLIM). Applying innovative techniques, which only rely on
functionality natively supported by modern web browsers, technical is-
sues impeding clients to be integrated into the collaborative environment
are avoided and ad hoc collaboration is facilitated.

Keywords: Collaborative Modeling, Web 2.0, Real-Time Editor.

1 Introduction

Collaborative software development is a research paradigm, which has emerged
in the broader concept of Computer Supported Collaborative Work (CSCW) and
describes the involvement of multiple participants in the software development
process across organizational, geographical, or socio-cultural boundaries. As a
consequence of the increased dynamics in the economic environment and evolv-
ing organizational structures (e.g., virtual and network organizations), there is
a strong need to support effective team collaboration. The increasing number of
outsourcing and offshoring projects requires organizations to coordinate the work
of geographically distributed team members. The success of software develop-
ment projects does not only depend on organizational aspects like management
support and the choice of an adequate software development process. Also tech-
nical aspects, like the development tools employed to support these processes
are of vital importance. It is in this context that Jacobson, Booch, and Rum-
baugh explain the reciprocal relationship between processes and tools [1]. They
argue that, on the one hand, processes determine the functionality of tools but
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that innovative tools, on the other hand, are needed to allow for the develop-
ment of new processes. The modeling and design phases fall into this process
category. Due to their complexity, they generally have not been considered be-
ing suitable for support by lightweight collaboration tools. The development of
software design diagrams is inherently a collaborative activity. It comprises con-
tributions from multiple developers and establishes a common understanding of
project goals. The involvement of domain experts and other stakeholders in the
early development stages is an important prerequisite for improving the quality
of software deliverables and artifacts. In the next section, we discuss selected
requirements that a lightweight environment for collaborative modeling should
meet. In section 3, we briefly discuss related work in the field of collaborative
software engineering with regard to these requirements. The main part of the
paper then describes the design and implementation of the SLIM environment
with special emphasis on platform independence, simultaneously tackling the
challenge of synchronizing client states. The paper concludes with an outlook on
future developments and their potential impact on existing software development
processes.

2 Design Aspects of a Lightweight Modeling Environment

The integration of distributed team members is subject to several challenges,
which can serve as a basis for deriving requirements and design principles for
a lightweight modeling environment. Globally distributed software developers
usually are equipped with different client systems constituting a heterogeneous
system landscape. Traditional approaches to interconnecting distributed devel-
oper teams require the installation, configuration, and maintenance of the same
software on all client systems, which is time-consuming and costly. Ideally, collab-
oration partners should be able to participate in the modeling process regardless
of the hardware and software equipment they use. Hence, ad hoc availability
and straightforward accessibility can be identified as important non-functional
requirements for collaboration software. Comprehensive web-based development
platforms like SourceForge1 or CodeBeamer2 serve to support collaborative work
at all stages of the software development process. They form the central infras-
tructure for coordinating, documenting, scheduling, and monitoring project tasks
and activities. Therefore, they provide project management support as well as
development tools that span the entire lifecycle, making integration into existing
web-based development platforms an important aspect to be considered. White-
head examines existing collaboration tools in the context of software engineering
and derives possible future directions. He points out the need for tight integration
of new and existing web-based and desktop-based environments, respectively
[2]. Interoperability with established modeling environments increases the ac-
ceptance of innovative tools, since developers can continue using their preferred
applications. In many cases, multiple modeling tools have to be used because
1 http://sourceforge.net
2 http://www.intland.com

http://sourceforge.net
http://www.intland.com
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not all modeling needs are met by a single tool. In summary, flexible access,
ad hoc availability, integration into existing web-based development platforms,
and interoperability with existing desktop-based tools have been identified as
the central non-functional requirements crucial for the aptitude of a collabora-
tive UML modeling tool. The first stage of our research mainly focuses on the
technical feasibility of a lightweight approach that runs in unmodified browser
environments. Therefore, the functional requirements the prototype is based on
are very similar to those of a desktop modeling environment. Currently, the main
intention is to support the development of a common understanding of a system’s
design in agile, distributed environments. For the time being, the environment
will be limited to supporting UML class diagrams. Challenges arising from sup-
port for multiple diagram types are neglected for now and will be subject to
further research.

3 Related Work

Distributed collaborative modeling has its roots in diverse industries, such as
automotive [3] or building and construction [4], where it has already been estab-
lished. In the software engineering domain, various commercial applications as
well as research prototypes exist, which aim to support the collaborative devel-
opment and discussion of diagrams. For example, Poseidon for UML Enterprise
Edition [5] is a complex desktop application. It enables multiple collaborators to
concurrently work on a shared diagram. Changes are reflected in real-time and
the view on the shared diagram is synchronized between all clients. To enable
the collaboration functionality, Java RMI is used [6]. With regard to the design
aspect of flexible access this is a significant disadvantage. In order for RMI to
function across organizational boundaries, certain ports have to be open. Differ-
ent hardware and software environments on client systems as well as corporate
firewalls form a barrier for the collaboration functionality of many desktop-based
applications. Mehra et al. address this issue and state that none of the current
collaborative systems are interoperable across heterogeneous and autonomous
systems [7]. They point out that the reliance on proprietary protocols and tech-
nologies restricts systems to a particular platform and hence limits the ability to
collaborate with others. To solve this problem, they show how collaborative soft-
ware design can be supported with a web service-based architecture. Since web
services use standard HTTP(S) ports for communication, firewall-related prob-
lems caused by proprietary technologies are not an issue. One major drawback
of Mehra’s desktop-based approach is the need to install a web server on each
client system. This contradicts the requirement of ad hoc availability, as client
systems have to be modified before collaboration can commence. Solutions that
retain the advantage of being interoperable across heterogeneous systems and
increase accessibility and availability at the same time use a browser-based (plug-
ins allowed) or a browser-native approach (no plug-ins allowed). Relying only on
functionality natively supported by modern web browsers reduces the system re-
quirements towards clients intending to engage in collaborative activities. Based
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on the HTTP protocol, a cost-effective location and platform independent solu-
tion can be provided. Whereas browser-native tools minimize deployment effort
(i.e., installation, configuration, and maintenance costs) they are often limited
with regard to their functionality. The research prototype eEEL [8] can serve
as a typical example. It provides a browser-based interface, which can be easily
accessed. However, the tool only allows the automated visualization of diagrams
from a textual representation but does not support collaborative editing of these
diagrams. Campbell adds that there is a great variety of graphical group editors,
none of which enables the creation of formal diagrams with a defined syntax [9].
This view is affirmed by Qi et al. They argue that many tools can be used as
collaborative whiteboards or communication aids but not for the development
of UML diagrams in a software engineering context [10]. As an alternative to
specific solutions, generic network meeting tools such as WebEx3 or Adobe Con-
nect4 could be applied to enable collaboration support for existing desktop based
applications. Employing such generic meeting tools has to be evaluated critically
with regard to the design aspect of ad hoc availability in highly dynamic loosely
coupled environments (downloads or plug-ins are required). Furthermore, generic
tools do not allow for simultaneous work on the same diagram. Typically only
one user can have input control at a time, hence team productivity is limited.

4 Technologies Impact Tools

Jacobson, Booch, and Rumbaugh state that “Tools impact Process” [1]. Keeping
this in mind, the conclusion “Technologies impact Tools” seems reasonable. This
becomes evident particularly in the domain of software engineering. Browser-
based applications have long been characterized by a lack of user interface in-
teractivity. Thus, graphics or editing intensive UML tools were not considered
suitable for the web and were implemented as desktop applications [2]. In order
to create innovative tools, which influence existing processes, new technologies
or a novel combination of existing technologies are needed. Markus et al. argue
that, as technologies advance, new kinds of systems and methods are created
[11]. In this context, the possibilities of the web [12] and especially the pos-
sibilities of the Web 2.0 [13] are often referred to as “enabling technology.” A
recent McKinsey study [14] underpins this argument with empirical evidence:
“[...] companies are not only using more [Web 2.0] technologies but also leverag-
ing them to change management practices and organizational structures.” It is
with this idea in mind that the technologies used for realizing the prototypical
implementation of the SLIM environment are outlined in the following sections.

5 The SLIM Environment

In this section, we elaborate on the design aspects outlined above. Starting with a
short discussion of the most adequate system architecture, the section embraces
3 http://www.webex.com
4 http://www.adobe.com/products/acrobatconnectpro/

http://www.webex.com
http://www.adobe.com/products/acrobatconnectpro/
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the realization of the interactive diagram editor and the collaboration functional-
ity. The goal was to design an architecture, which provides a solid foundation to
appropriately support high interactivity during synchronous collaboration ses-
sions. One design decision that had to be made was whether change operations
on the shared diagram are to be executed locally or on a central server. Fig. 1
visualizes these alternatives. In a thin client architecture, client functionality is
limited to input and output operations. After each modification, clients have to
update their local view with the server. The advantage of this approach is that
changes are performed at a central location, making consistency control easier.
Although change requests can be sent using AJAX requests without interrupting
user activity, this approach negatively affects the system’s responsiveness, due to
the delay between sending change requests (1.) and receiving the updated view
(3.). An alternative strategy is the use of decentralized updates or a replication
approach in a rich client architecture. Here, the business logic completely resides
on the client side. When a collaborative session starts, every client is initialized
with a copy of the shared artifact representing the current session state. All
change operations can then be executed locally, minimizing network traffic and
guaranteeing a quicker response to user events. Since the server is only needed as
a mediator forwarding messages between clients, the modeling tool can also be
used for single-user sessions in offline mode. Lukosch and Schümmer recommend
the use of a replication approach5 when the degree of interactivity is high and the
collaboration partners frequently invoke change operations on the shared artifact

5 They distinguish between decentralized updates and decentralized objects.
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[15]. The SLIM environment is built upon this approach to achieve low latency
and high responsiveness. Having discussed the general aspects pertaining to the
rich client architecture design, we now present the components that constitute
the system. Given the decentralized replication approach in which the server’s
primary role is that of a mediator, we elaborate on the client-side application
logic in particular. Fig. 2 illustrates the components of the system architec-
ture. To provide a better overview, the components of the diagram editor and
those supporting collaboration are marked with a dashed line. In the following,
the technical challenges for realizing the diagram editor and the collaboration
support on the browser-native architecture are discussed. On the basis of the
proposed solutions we present selected implementation details.

5.1 Diagram Editor

While the user interface can be implemented using HTML and CSS, the visualiza-
tion of the graphical notation of UML elements requires the functionality of a 2D
graphics library. Drawing interactive graphics on web pages has been difficult to
achieve for a long time. Previous solutions have involved browser plug-ins or Java
applets. As it was our goal to facilitate ad hoc collaboration by minimizing the
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entry requirements necessary to engage in collaboration, none of these solutions
were suitable. Keeping this in mind, there were three possible ways of displaying
the model elements in the browser-native environment: the emulation of vector
graphics via HTML Div-Elements6, the HTML 5 Canvas element7, or SVG (Scal-
able Vector Graphics) and VML (Vector Markup Language)8, respectively. The
low performance paired with high memory consumption compared to other ap-
proaches [16] disqualify the emulation approach. The availability of the Canvas el-
ement in modern browsers goes along with support for SVG, which qualified usage
of the Canvas element as a feasible solution. Being based on the XML format and
with regard to existing use cases in the area of modeling, SVG, however, seemed
to be the most appropriate choice. Especially in the field of UML modeling, SVG
is a frequently used lightweight file format for creating resolution-independent
graphics, which can be displayed natively by a wide range of browsers. Hritcu, Du-
mutriu, and Girdea show how to transform XMI data to SVG through XSL Trans-
formations [18]. Microsoft’s Internet Explorer does not support SVG but uses the
proprietary VML. Since Internet Explorer is currently the most commonly used
browser [19], relying on SVG would enforce the installation of a specific browser on
the client systems. To address this issue and to abstract from browser specifics, we
chose the graphics library of the Dojo Toolkit [20], which provides a uniform pro-
gramming interface on top of SVG and VML. Hence, for realizing a cross-browser
visualization of UML model elements, a combination of SVG and VML was used.
For the implementation of an interactive diagram editor, a cross-browser proce-
dure to handle events for graphical elements is needed. This is a basic prerequi-
site for responding to mouse gestures like selection, moving, and scaling of UML
model elements. Although SVG and VML generally provide interfaces for event
handling, browser support is limited. Fig. 3 illustrates the approach chosen for
solving this problem. To be able to respond to events, the bounding box for each
graphical element is determined. The coordinates of this bounding box are used
to add a transparent Div-Element as an extra layer on top of the graphical ele-
ment. Due to the event propagation mechanism in the Document Object Model,
the Div-Element can register event handling routines for all underlying elements,
particularly for the vector graphics. As Div-Elements are a part of the HTML
standard supported by every web browser, a cross-browser way of responding to
mouse gestures has been created. By adding child nodes into the document tree
of the overlaying Div-Element, additional reusable event decorators for selecting,
moving (2.1), resizing (2.2), and for creating connectors to other graphical ele-
ments (2.3) can be generated.

6 Libraries based on this approach are the High Performance JavaScript Vector Graph-
ics Library by Walter Zorn [16] and Draw2D by Andreas Herz [17].

7 The Canvas element was introduced by Apple in 2004 and was included in the working
draft of the HTML 5 standard by the W3C in 2008. Mozilla, Opera, and Safari support
the Canvas element while the Internet Explorer does not.

8 SVG and VML are declarative languages that allow modeling of 2D vector graphics
using XML syntax. SVG is based on a recommendation of the W3C and is supported
natively by many commonly used browsers (e.g., Mozilla, Opera, Safari).
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Fig. 3. Event handling

User Interface. As mentioned above, there is a trend towards moving de-
velopment tools to the web. Integrated platforms like SourceForge provide user
interfaces and tools that can be accessed via a web browser. Consequently, the in-
terface of a collaborative modeling tool should also be accessible from a browser.
The user interface should meet all functional requirements necessary to allow
for the creation as well as the manipulation of diagrams. An essential difference
between single and multiuser applications is the need to inform the participants
about all events, which occur as a result of the multi-user collaboration activity.
This information is needed for each participant to coordinate their own activi-
ties. The exchange of status and context information is referred to as “workspace
awareness.” With regard to the SLIM environment, this implies that each user
should be able to notice that others access shared artifacts and to perceive the
modifications they carry out. Implicit and explicit communication as well as a
list of all meeting attendees is essential. For this reason, a notification service
enabling implicit information exchange between the attendees has been imple-
mented. This service informs all team members of operations conducted and
makes it easier for all participants to perceive the changes made. All diagram
elements currently selected for manipulation are visually highlighted. Some au-
thors advocate the replication of mouse pointers of all users onto the screens
of other participants. With an increasing number of participants, this will be-
come confusing, easily. This view is shared by Stefik et al. [21], whose argument
seems appropriate: “The WYSIWIS display of cursors from multiple users is
unacceptably distracting.” To supplement implicit communication, a chat has
been implemented as an additional means of exchanging information between
participants.

Interoperability and Metadata Exchange. We already mentioned inter-
operability as a crucial design goal. The emphasis is on the exchange of UML
metadata with other modeling tools. The XMI standard [22] specifies the data
to be exchanged and how it should be encoded using XML. For the implemen-
tation of the prototype, the decision had to be made whether the functionality
for serializing and deserializing UML diagrams should be implemented on the
client or on the server side. On the server side, XMI frameworks such as the XMI
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handler of the Eclipse Modeling Framework (EMF) can be used. An advantage
of this approach lies in the encapsulation of the serialization process. On the
other hand, the use of a predefined framework implies an overhead compared to
a direct serialization on the client side. First, the local representation of the UML
diagram would have to be converted into the Ecore format, sent to the server,
and then converted to XMI. A more direct approach—serializing UML models
on the client side—seemed more appropriate. The format can then be used for
the state transfer between collaborating clients. This represents an advantage of
the implementation on the client side.

5.2 Collaboration Support

Due to its complexity, distributed modeling is generally executed as an inte-
grative process implying intense coordination and communication within the
development team. A typical challenge in collaborative multi-user applications
is the synchronization of local states on all clients and the preservation of the
shared objects’ consistency. Therefore, the exchange of messages between clients
is necessary. Previous suggestions have involved Flash XML Sockets or Java
RMI. Realizing collaboration functionality on the basis of the stateless HTTP
protocol, optimized for client requests, is not trivial. To be applicable in the con-
text of synchronous collaborative modeling, the HTTP protocol must allow for
the server to send notifications to the clients. In order to implement the strategy
designed for synchronization of local states, it is necessary to propagate locally
executed user actions to other clients. The HTTP protocol, which is used as the
transport layer for communication, is built upon the request/response paradigm.
All communication has to be initiated by the client. Although interactivity has
increased in Web 2.0 applications, there is no simple way of sending events from
the server to the clients. Because of this limitation, the HTTP protocol was
not used for implementing synchronous collaboration. In his paper concerning
the challenges of web-based collaboration, Dix states: “HTTP is certainly not
suited to real-time conversations!” [23]. There is a variety of approaches that
aim to overcome this limitation and enable the server to send notifications to
the clients. Scalability and the latency between events on the server and the
reception of a notification on the client are important criteria for assessing the
efficiency of those approaches. One approach that is common due to its ease of
implementation is polling. The client continuously sends requests to the server.
Upon receiving the response from the server, the connection is closed and a new
request is issued by the client. However, polling has serious drawbacks. In the
worst case, a server-side event occurs immediately after sending a response. In
this case, latency equals the sum of the length of the polling interval plus the time
that passes until the HTTP response of the last polling request has reached the
client. Recently, the term “Comet” has been coined, subsuming all techniques
that allow the server to initiate client notification and send event notifications
over HTTP to clients with negligible latency. These notifications can be sent
in response to occurring events without explicit polling. There are two major
ways of implementing server-side client notifications with low latency: streaming
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and long-polling. Both techniques can be used as transport type in a Comet
architecture. Streaming uses a so-called forever response. In contrast to polling,
the connection is not closed after sending a message from the server. This way,
several messages can be send in a data stream over a single connection HTTP
connection (multi-part/chunked response). With this approach, latency is mini-
mal because different polling clients can be notified immediately after the event
has occurred. The lag is solely comprised of the time needed for the HTTP re-
sponse to reach the client. One significant disadvantage of streaming is that it is
not possible to determine whether a given client is still receiving messages. Since
the HTTP response is sent in parts there is a risk that messages received are
delayed, because they might be buffered by proxy servers. This might result in a
state, where the server is still sending messages although the client has already
disconnected. A compromise between polling and streaming is long-polling. This
approach utilizes a so-called persistent or long-lived HTTP connection. Connec-
tions to the server are kept open until either a server-side event or a timeout
occurs. In both cases, the client has to send a new HTTP request to the server
after receiving the response. Using this strategy, long-polling preserves the low
latency of the HTTP streaming approach and at the same time avoids many
disadvantages of both streaming and traditional polling, respectively. The fre-
quency of sending empty responses is reduced because the server does not send
responses immediately after receiving a request. By forcing the client to send a
new request after receiving a message, it can be ensured that all clients are still
active. Fig. 4 illustrates the Comet architecture as it has been used for imple-
menting SLIM. The figure abstracts from technical details such as the transport
layer used for sending messages on the basis of the HTTP protocol as described
above. Event notifications are managed by three basic components, the Comet
Client, the Comet Event Bus, and the server-side event processor. After initializ-
ing the connection, messages can be delivered from client to server (1.1–1.2–1.3)
or vice versa (2.1–2.2–2.3). The Comet architecture serves as a solid foundation
for the implementation of SLIM. Due to the thread-per-request model used by
traditional web servers [25], the Comet approach is not scalable and thus cannot
be used for collaborative sessions with many participants. As a solution, modern
web servers implement asynchronous request processing. They allow to suspend
processing of an HTTP request without blocking resources. The thread can then
be used to process another request. Thus, a request can be suspended and re-
sumed when an asynchronous event or a timeout occur. For the prototypical
implementation of the SLIM environment, the Jetty Comet Daemon was used.

Synchronization of Local States. Typical challenges in collaborative multi-
user applications involve synchronizing local states on all clients and preserving
consistency of shared objects. In order to minimize network traffic, only incremen-
tal changes in form of the corresponding user operations are replicated between
clients via the mediating server. The client executing a change operation on the
shared diagram has to notify the server of the actions carried out. The server sub-
sequently propagates the message to all participating clients. In the final step all
clients replicate the change operations on their local copy of the shared diagram.
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Fig. 4. Comet event processing [24]

This replication strategy requires having the local state pushed to each new client
joining a running session. The local state comprises not only the current state of
the shared artifact but also additional collaboration-related information such as
elements being locked by users. This information has to be serialized and sent to
the joining client. Based on the replication of user operations, all local states can
be assumed to be synchronous; therefore, it does not matter which client is chosen
to provide the state. With collaborative modeling, the current state of the shared
artifact is represented by the UML model and can be serialized via XMI. The se-
quence diagram in Fig. 5 illustrates the conceptual design. Depicted is the case
where client A joins an existing session of client B and client C. Client A creates a
buffer (1.), in order to cache arriving messages for the duration of the state request.
This is to ensure that no user operation is lost between request (2.) and receipt (3.)
of the current state. To provide a better insight, this case is depicted in a second
diagram. Upon receiving a state request (2.), the server randomly chooses a par-
ticipating client (3.1) and forwards the request (3.2). Now the randomly selected
client B (3.3) serializes its local state and sends it back to the server (3.4). The
server eventually forwards the serialized state to the joining client (4.1). The client
then updates its local state by deserializing the received data and then processing
the buffer of cached user operations (4.2). Using server-initiated event notification
as described above is one of the technical challenges; it has been implemented us-
ing browser-native functionality only. Passing messages through the server as a
mediator is necessary, since client-to-client communication is not possible via the
HTTP protocol. Direct communication between “client systems” could be realized
by installing web servers on each client system [7], however, this approach would
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Fig. 6. Buffering change operations during state transfer

contradict the objective of providing a lightweight, easy to deploy, and flexible ar-
chitecture. Complementary to the previous sequence diagram, Fig. 6 illustrates
the use of the buffer, which caches the change operations received during request
and receipt of the session state (2.1–2.2). Having received the updated state (1.2),
client A can reconstruct, which change operations contained in the buffer are not
yet reflected within the local state and can update the state accordingly (1.4).

Concurrency Control. One fundamental challenge of coordinating access to
shared artifacts in real-time editors is ensuring that each user action yields the de-
sired result on all clients. If editing is unconstrained, interference between clients
is inevitable. Mechanisms aiming to avoid or resolve such conflicts are discussed
in papers concerning Concurrency Control. Because of the novelty of the web
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Fig. 7. JSON data set used for locking

technologies used, design patterns rather than predefined frameworks have been
applied. For implementing concurrency control in the SLIM environment, the lock-
ing pattern was chosen. Locking is a design pattern, which restricts access to those
parts of the diagram currently being edited. Before a participant can access a
shared element it is checked whether the element has been locked by another user.
The granularity level chosen determines the efficiency of this approach. If it is too
coarse the number of activities that can be conducted in parallel is reduced. Fine-
granular locking increases the number of parallel activities possible but increases
the need for lock requests that have to be sent over the network. To reduce network
load but still allow for a high degree of parallel work, locking at the element level
seemed appropriate. Once elements are selected by a user they are locked for ex-
clusive access. In case exclusive access to a larger part of the diagram is required,
elements can be explicitly locked, so they remain locked even when they are dese-
lected. When a collaborative session starts, every client is initialized with the local
state which also comprises a list of currently locked elements. The synchronization
of this list is done similarly to the synchronization of user operations described
above. For publishing information concerning locked elements a JSON data struc-
ture is created, as depicted in Fig. 7. A lock comprises information pertaining to
the name of the user setting the lock (1), the unique identifier of the element to be
locked (2), and the operation to be locked (3). An additional flag indicates whether
the lock is set implicitly or explicitly. The prototype uses a wildcard “*” for lock-
ing all methods affecting the state of a model element. However, the prototype
can be extended to support finer granularity of locking single methods. For exam-
ple, one user may request the single write permission to the attributes of a class
element—the wildcard then has to be replaced by the appropriate method name
(e.g., setAttributes). Using this approach, the number of operations that can
be executed concurrently is increased by allowing users to access different proper-
ties of a model element without interfering with each other. Before a user is able
to select an element it is checked if it is already locked by another user. If it is,
selection is denied and a corresponding message is displayed in the status area.
Otherwise, selection is completed successfully and access is locked for other users.

6 Conclusion

In this paper, we have shown the feasibility of a lightweight browser-native tool
that supports the modeling process in distributed software engineering processes.
Solutions to problems that previously prevented the implementation of graphi-
cal interactive editors on the sole basis of a web browser have been described.
In particular, it has been shown that it is possible to provide a fully functional
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modeling tool with minimal requirements towards the client systems to be in-
tegrated. The high degree of flexibility and interoperability distinguishes SLIM
from existing tools and collaborative environments. By leveraging the benefits
of web technologies, tools can be created, which considerably reduce the bar-
riers of engaging in collaborative work. Using such tools allows for quick and
dynamic coupling between all stakeholders. In particular, the dependence of the
distributed team members on the availability and capability of their IT depart-
ment is reduced. Future research will target several important aspects: a deeper
insight into organizational and UML-related challenges in collaborative usage
scenarios will have to be gained. So far, the focus has been on the technical fea-
sibility of a lightweight browser-native approach and support for different UML
diagram types is limited to UML class diagrams. Additionally, SLIM will be in-
tegrated with a traceability and versioning system. Further information on the
SLIM environment, including screenshots, can be found on the SLIM website9.
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Abstract. In model-driven development approaches, process models are used at
different levels of abstraction and are described by different languages. Similar
to other software artifacts, process models are developed in team environments
and underlie constant change. This requires reusable techniques for the detection
of changes between different process models and the computation of dependen-
cies and conflicts between changes. In this paper, we propose a framework for
the construction of process model change management solutions that provides
generic techniques for the detection of differences and the computation of de-
pendencies and conflicts between changes. The framework contains an abstract
representation for process models that serves as a common denominator for dif-
ferent process models. In addition, we show how the framework is instantiated
exemplarily for BPMN.

Keywords: Process model change management, process model differences.

1 Introduction

In recent years, the role of process models in the development of enterprise software
systems has increased continuously. Today, process models are used at different levels
in the development process. For instance, in Service-Oriented Architectures (SOA) [1],
high-level business process models become input for the development of IT systems,
and in running IT systems executable process models describe choreographies of Web
Services [2]. A key driver behind this development is the necessity for a closer align-
ment of business and IT requirements [3], to reduce the reaction times in software de-
velopment to frequent changes in competitive markets.

Typically in these scenarios, process models are developed, refined, and transformed
in a team environment by several stakeholders that are often from different business
units, resulting in different versions. These process model versions reflect the different
views of the stakeholders involved. To obtain integrated process models comprising the
changes applied to different versions, the versions need to be consolidated by means of
process model change management.

Change management for process models consists of the following major activities:
detection of differences, computation of dependencies and conflicts between differences,
and resolution of differences. In general, change management is a language-dependent
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c© Springer-Verlag Berlin Heidelberg 2009
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problem, i.e., a solution for a particular modeling language cannot be reused easily for
another language, because of different syntax and semantics of the languages.

Existing approaches to model change management are either limited to a particular
process modeling language [4] or focus mainly on structural models [5,6,7,8], such as
class diagrams. In contrast to structural models, process models have a certain execution
order, specified in the form of control-flow, data-flow, or even both. Moreover, process
models have to fulfill further criteria, such as reachability or soundness (with respect
to deadlocks, lack of synchronization) that are irrelevant for structural models. These
criteria have to be considered when it comes to the consolidation of process models.

In our recent work [9], we have proposed an approach to difference detection and
resolution between process models in the absence of a change log that makes use of
a hierarchical decomposition of process models into fragments and compound change
operations. In [10], we have addressed the computation of dependencies and conflicts
between change operations.

In this paper, we generalize our recent results in terms of a framework for change
management of process models. We introduce the concept of an intermediate represen-
tation for process models. This intermediate representation is an abstraction of specific
process models that focuses on common semantical core concepts for the modeling of
workflow in process models. Based on the intermediate representation, we compute dif-
ferences between process models as well as dependencies and conflicts between them
generically. Thereby, we make major components for process model change manage-
ment reusable.

The remainder of this paper is organized as follows: Section 2 introduces a typical
model-driven development scenario, in which we point out the particular problems for
process model change management. As a solution, we propose an intermediate rep-
resentation for process models embedded in a framework in Section 3. In Section 4,
we show how the framework is instantiated exemplarily for BPMN. In Section 5, we
present prototypic instantiations of the framework for the consolidation of BPMN pro-
cess models and BPEL processes in IBM R© WebSphere R© products as proof of concept.
Finally, we conclude with a discussion of related work and an outlook on future work.

2 Motivation

Software development approaches, such as service-oriented approaches, increasingly
focus on a closer alignment of the business and IT side [3]. Figure 1 illustrates such an
approach that consists of several phases.

In the Model phase, a business case is modeled in terms of a process model that
represents the business needs and requirements for an IT solution. Then, in the Develop
phase, the process model is stepwise refined and transformed into an executable IT
solution, which is integrated and deployed in an existing environment (Deploy phase).
In the Monitor phase, the IT solution is monitored and evaluated, to check whether all
requirements have been met. Finally, in the Analyze & Adapt phase, the IT solution
is adapted and modified until a desired behavior is reached and all requirements are
fulfilled.
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Typically, in such development approaches, differ-
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Similar to other software arti-
facts process models are developed
in distributed environments, i.e.,
different process models are created
independently by different people.
Figure 2 illustrates such a scenario,
which may occur in the Model and
the Analyze & Adapt phase. There,
a source process model V0 is inde-
pendently refined into two versions,
V1 and V2. At a certain point in
time, the necessity arises to consol-
idate the different versions to obtain
a unique input (V3) for the next phase (e.g., the Develop phase). For that purpose, the
differences between V1 and V0 as well as between V2 and V0 are computed1. In addition,
dependencies and conflicts between differences need to be detected.

In such scenarios, where process models potentially exist in different representations
(e.g., high-level or executable) and are developed in a distributed environment resulting
in different versions, process model change management is required. Similar to concur-
rent versioning systems for textual documents, change management for process models
provides means for the detection of differences between process models, the computa-
tion of dependencies and conflicts, and the resolution of differences.

The common purpose of all business process models is to describe all activities that
are necessary to achieve a certain business case and to define an order in which the tasks
have to be applied. With regards to change management, this means that it is necessary
to identify inserted or removed tasks and changes to the execution order.

However, a generic approach to change management is difficult to realize because
of the huge variety of different process modeling languages. First of all, different lan-
guages have different syntax and semantics. For instance: Some languages [11,12] use
edges to define the execution order of tasks, whereas others define the execution order

1 If V1 and V2 do not have a common ancestor, differences are detected between V1 and V2.
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by nesting basic control elements [14], such as sequence, concurrency, and alterna-
tive. The former languages are also called graph-oriented and the latter ones block-
oriented [15]. Even within one language, different ways to model one and the same
concept exist, e.g., a control-flow split can be modeled either implicitly using pins and
pin sets or explicitly using control nodes, such as decision or fork.

c)

a)

+ +

b)

X X

d)

+

Fig. 3. Different ways to model parallel and alternative
behavior

Figure 3 illustrates different ways
to model control flow splits and
joins. Here, the process models in
Figure 3 (a) and (b) use explicit con-
trol flow splits and joins to specify
parallel (a) and alternative (b) be-
havior. The process models given in
the lower part of Figure 3 also spec-
ify parallel (c) and alternative (d)
behavior. However, there the behavior is modeled by implicit control flow splits and
joins or by a mixture of implicit and explicit elements. The ability to deal with syntac-
tically different process models that are semantically equivalent (Figure 3 (a), (c) and
(b), (d)) is crucial for change management solutions.

In general, the consolidation of process models in different languages requires indi-
vidual implementations for change management. This means that change management
techniques implemented for a concrete modeling language cannot be easily reused for
another process modeling language. In the next section, we address this problem and
propose a generic approach to process model change management.

3 A Framework for Process Model Change Management

In this section, we propose a generic approach to process model change management
using a framework that contains generic components for the detection of differences
and the computation of dependencies between the differences.

3.1 Generic Approach to Process Model Change Management

Figure 4 sketches our approach using the framework. The process model versions in-
troduced in Figure 2 are abstracted to an intermediate representation (IR). Based on
the IR, differences, dependencies, and conflicts are computed2, which are captured in a
difference model. Finally, IR differences are translated into differences for the concrete
modeling language of the original process models and can then be applied to resolve
differences.

An obvious advantage of this approach is that the framework can be instantiated
for models in different process modeling languages and that only one implementation

2 Computation of differences between process models requires a matching, in order to find cor-
responding elements. Model matching is an area of research in its own right with quite a lot
of interest [6,5,16] and is not in the scope of this paper. For the remainder of this paper, we
assume that a matching is given, e.g., by relating elements that have the same unique ID.
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Fig. 4. Generic Approach to Process Model Change Management

for detection of differences, dependencies, and conflicts is required, as these computa-
tions are based on the IR. In addition, the approach can be easily extended by further
languages. For instance, to support change management between models in another
modeling language, say L, an abstraction of models in L into models in the IR needs to
be defined and a translation of IR differences to L differences needs to be specified.

In the following, we introduce the main components of the framework in more detail.

3.2 Intermediate Representation (IR)

Element

FragmentNodeEdge 1*

source

targetincoming

outgoing

*

Action

AND-Split

XOR-Split

AND-Join

XOR-Join

Sequential
Fragment

Parallel 
Fragment

Alternative
Fragment

Complex
Fragment

Event

IR-Initial

Intermediate
Representation

*

Undefined-
Split

Undefined-
Join

IR-Final

Fig. 5. Meta Model for the Intermediate Representa-
tion

The IR is an abstraction and normal-
ization of individual process models
based on generic workflow graphs
(WFG) [17,18,19] describing the ac-
tual workflow of process models in
terms of a directed graph with nodes
connected by edges. The graphs
are further decomposed into frag-
ments [19]. Thereby, the IR serves
as a common denominator of pro-
cess models at different levels of ab-
straction or in different languages,
and enables a generic approach to
process model change management.
Figure 5 shows a reference meta
model for the IR.

The IR covers the semantics of syntactical elements that model the execution
order of activities in a process model, such as AND/XOR/Undefined − Splits and
AND/XOR/Undefined − Joins. These elementary, syntactical elements are supported by
nearly all process modeling languages and enable the modeling of sequential, parallel,
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alternative, and complex behavior such as loops. In block-structured languages, such as
BPEL, elementary splits and joins are not modeled directly, but are instead supported
by composed model elements (blocks), e.g., a BPEL Switch structure models alternative
behavior. However, such composed model elements can be reduced to pairs of elemen-
tary splits and joins.

Figure 6 (a) shows a process model in the intermediate representation decomposed
into fragments. IR − Initial and IR − Final constitute unique start and end nodes of an
IR, which are required for a decomposition into fragments. The fragments fZ , fX , and
fW are sequential fragments, and fY is an alternative fragment. The fragments form a
hierarchy that is represented by the process structure tree [19] in Fig. 6 (b).

Event

A B

C

D E

Action

XOR-Split

XOR-Join IR-Final

fZ fY fX

fW

a) fZ

fY

fX fW

C D E

Event EventB

XOR-Split XOR-Join

A

b)

IR-Initial IR-Initial IR-Final

Fig. 6. Process Model in the Intermediate Representation (IR) and its Process Structure Tree
(PST)

We define the semantics of the IR similar to the semantics of Petri nets [20] in terms
of token flow. The nodes of the IR represent the transitions of a Petri net, and the edges
are the places of the Petri net. A state of the IR can then be described as the number of
tokens carried by the edges of an IR. In Figure 7, we informally describe the behavior
of important elements of the IR following mainly the semantics defined in [21].

SemanticsSyntax

The behavior of Undefined-Splits or Joins is not further specified. These 
elements are used to represent gateways in a concrete language, whose behavior 
is unknown or does not match to AND/XOR logic of the gateways presented 
above. An Undefined-Split or Join is always enclosed by a Complex Fragment.

An XOR-Split can fire whenever a token is on its incoming edge. When a split
fires, one token is taken from its incoming edge and exactly one of its outgoing 
edges is selected to which the token is added. The selection of the outgoing edge 
is nondeterministic.

An XOR-Join can fire if at least one of its incoming edges carries a token. When 
a join fires, an incoming edge that carries at least one token is selected 
nondeterministically. One token is taken from this incoming edge and added to 
the outgoing edge of the XOR-Join.

Actions, Events, and AND-Splits can fire if a token is on their incoming edge. 
AND-Joins require at least one token on each incoming edge, before they can 
fire. When an Action, an Event, or an AND-Split/Join fires, the number of tokens 
on each incoming edge is decreased by one and one token is added on each 
outgoing edge.

An IR-Initial can fire if none of the edges carries a token (i.e. initial state of the 
IR). When it executes, a single token is added to its outgoing edge. An IR-Final 
can fire if its incoming edge carries at least one token. Firing of an IR-Final
removes all token from all edges in an IR.

IR-Initial IR-Final

AND-Split & Join

Action

? ?

Undefined-Split & Join

XOR-Split & Join

Event

Fig. 7. Syntax and Semantics of the Intermediate Representation
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3.3 Difference Model

In this section, we introduce the difference model of our framework. Differences be-
tween two process models are represented in terms of CompoundChangeOperations
that are composed of several element-based changes and automate the reconnection of
control flow in the process model. An advantage of describing differences in terms of
operations is that the operations can be directly applied to resolve the differences they
describe. In addition, CompoundChangeOperations turned out to be more intuitive to
human users and also ensure that a model is transformed from one consistent state into
a new consistent state. More detailed information can be found in [9].

Figure 8 (a) visualizes the meta model for differences between process models. In
Figure 8 (b) a concrete difference model is shown that captures the differences be-
tween the process models V0, V1, and V2 from Figure 4 in terms of CompoundChange-
Operations as well as dependencies and conflicts between the operations.

IR Difference Model (V0,V1,V2)
InsertNode(V1, Action “B”, Action “A”, Event)
InsertFragment(V2, Action “A”, Event)

InsertNode(V2, Action “X”, AND-SplitOutput1, AND-JoinInput1)
InsertNode(V2, Action “Y”, Action “X”, AND-JoinInput1)
InsertNode(V2, Action “Z”, AND-SplitOutput2, AND-JoinInput2)requires,

enables

conflicting

Compound
ChangeOperation

Compound
FragmentOperation

InsertFragment

DeleteFragment

MoveFragment

Compound
NodeOperation

InsertNode

DeleteNode

MoveNode

ConvertFragment

requires,
enables,
conflicting*

+node:Node

+fragment:Fragment

a)

b)

Fig. 8. (a) Meta Model of the IR Difference Model together with (b) an Instantiation Capturing
the Differences between the Process Models V0, V1, and V2 from Figure 4

Dependent Operations: Dependencies determine the order in which operations can be
applied and ensure that process models stay in a connected and well-formed state. For
instance, the insertion of a model element into a branch of a fragment, requires that the
fragment (and its branches) were inserted before. Using the difference model, a depen-
dency between two operations opi and opj can be defined using the associations enables
and requires. In Figure 8 (b) the lower left arrows represent the requires association (the
opposite direction represents the enables association).

Conflicting Operations: Two operations are in conflict if the application of one op-
erations renders the other operation inapplicable. In the difference model, conflicting
operations are represented by the association conflicting. For instance, the insertion of
Action B in V1 and the insertion of the fragment in V2 in Figure 8 (b) are conflicting
because their position parameter overlap. In [10] we have addressed the computation of
dependencies and conflicts between change operations.

Having introduced our framework for process model change management, we show
how it can be used in the next section.
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4 Using the Framework

In this section, we show how the framework is instantiated exemplarily for change
management of BPMN process models. We will first give an overview of the steps
required for the instantiation. Then, we show how BPMN process models are abstracted
into the IR and how change operations based on the IR can be translated to concrete
change operations for BPMN.

4.1 Overview

To instantiate the framework, we propose the following six steps, as illustrated in
Figure 9. Here, a typical merge scenario is presented, in which two BPMN process mod-
els shall be consolidated. The first and the last step are language-specific, whereas steps
two to five are based on the IR and are independent of the modeling language. Before
we discuss the language-specific steps in detail in Sections 4.2 and 4.3, we will briefly
give an overview. More detailed informations about steps two to five can be found in [9].

BPMN Model

Joint
Process Structure Tree

IR Difference Model

IR Difference Model with 
Dependencies and Conflicts

BPMN Difference Model
with Dependencies

and Conflicts

BPMN Difference Model
with Dependencies

and Conflicts

(1a) BPMN to Workflow
Graph Transformation

(1b) BPMN to Workflow
Graph Transformation

(4) Difference
Detection

(5) Dependency
and Conflict
Computation

(6) Translation
into BPMN-specific

Differences

(6) Translation
into BPMN-specific

Differences

Workflow Graph

Process
Structure Tree

BPMN Model

Workflow Graph

Process
Structure Tree

PST
Computation

(2) Decomposition
into Fragments

Correspondence
Computation

(3) Correspondence
Computation

Framework
Intermediate Representation (IR)

Fig. 9. BPMN Process Model Change Management using the Framework described in this Paper

In the first step, the BPMN process models need to be abstracted into the IR, resulting
in a workflow graph for each BPMN process model. For this step a mapping between
elements of a concrete modeling language (here BPMN) and the elements of the IR is
required. How this mapping can be established for BPMN is discussed in Section 4.2.
Using the mapping, a BPMN model can be abstracted to an IR model, and each IR
model element stores a link to its corresponding concrete BPMN model element3. This
link is later used to translate IR-based changes into BPMN changes.

3 If an IR element does not have a directly corresponding BPMN element, the IR element corre-
sponds to the corresponding element of either its predecessor or its successor. For instance, an
IR AND − Split representing an implicit control flow split in BPMN (Task with multiple out-
going edges) has no directly corresponding BPMN element. Then, the corresponding concrete
element of the IR AND − Split is the BPMN Task that implies the control flow split.
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In the second step, the workflow graphs are decomposed into fragments as intro-
duced in [19], resulting in a process structure tree (PST). In general, fragments enclose
subgraphs of a workflow graph that have a single entry and a single exit node. Frag-
ments are used to render the correlation between entry and exit nodes explicit and to
derive CompoundChangeOperations for fragments. For instance, the relation between
a newly inserted AND − Split and an AND − Join forming a parallel fragment can be
obtained easily by a decomposition, because these two nodes are the entry and exit of a
new fragment.

Before differences between the two workflow graphs can be detected, a matching of
the graphs is required [6,5,16] to detect corresponding elements. In the following we
assume that correspondences between corresponding elements are given. Using these
correspondences between elements and the two PSTs obtained in the second step, we
can compute a Joint-PST [9] by overlapping corresponding elements and fragments.

Based on this Joint-PST, we compute in the fourth step differences between the mod-
els. Generally, each node (fragment) without a counterpart in the other process model
results in an InsertNode or DeleteNode operation (InsertFragment or DeleteFragment
operation). In addition, moved nodes and fragments are computed. These differences
are captured in terms of CompoundChangeOperations in the difference model. In the
fifth step, dependencies and conflicts between CompoundChangeOperations are com-
puted as described in [10].

Finally, in the sixth step, the CompoundChangeOperations based on the IR are trans-
lated into operations that are relevant for the process models in the concrete modeling
language. Thereby, IR change operations are translated into BPMN change operations.
This step is discussed in Section 4.3.

4.2 Abstraction of BPMN into the Intermediate Representation

For the abstraction of a concrete modeling language into the IR, we have to define a
mapping between elements of the concrete language and elements of the IR. In the
following, we first discuss requirements for this mapping, and then illustrate how a core
subset of BPMN elements is mapped onto elements of the IR.

1. Requirement (Completeness): Each model in a concrete modeling language is
mapped to a model in the intermediate representation.

2. Requirement (Syntactic Redundancy Elimination): Different syntactical ways to ex-
press semantically equivalent concepts (according to Fig. 7) are mapped to the same
syntactical element(s) in the intermediate representation.

The first requirement can be fulfilled in an inductive way by mapping each element of a
concrete language to the IR. In trivial cases this can be done one-by-one, e.g., a BPMN
Task is mapped to an IR Action. In other cases, single elements cannot be mapped in
isolation, because a group of model elements corresponds to an IR element or a group
of IR elements corresponds to a concrete element. Then, those groups of elements need
to be mapped together. In addition, for the second requirement, we have to take care
that concrete model elements that are semantically equivalent are mapped to the same
IR element.
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For the abstraction of BPMN models into IR models, we consider a core sub-
set of BPMN elements that covers fundamental activities, such as Task, Subprocess,
and Loop, events, such as Start and End, as well as gateways, such as AND, IOR,
XOR, and Complex logic. The elements are connected by BPMN Sequence Flow or
Message Flow. Figure 10 illustrates how BPMN atomic activities, events, and connec-
tions are mapped onto the corresponding IR elements. BPMN Tasks are mapped to IR
actions. BPMN Start and End events are abstracted to the IR event element, and BPMN
Sequence Flow and Message Flow are abstracted to IR edges.

IR Element BPMN Element IR ElementBPMN ElementIR ElementBPMN Element

TaskStart End

Sequence Flow

Message FlowEvent Action
Edge

Fig. 10. Mapping of BPMN Task, Start, End, Connections to IR Elements

The mapping of BPMN gateways is shown in Figure 11. BPMN inclusive gateways
and complex gateways are abstracted to Undefined − Split/Join elements of the IR. The
mapping of BPMN exclusive and parallel gateways is straightforward. Two or more
incoming (outgoing) edges of a BPMN element that is not a gateway, represent an
implicit Parallel − Fork (Exclusive − Merge). These implicit gateways are syntactically
different from explicit exclusive and parallel gateways (see Figure 3), but semantically
equivalent. According to Requirement 2., we map semantically equivalent implicit and
explicit gateways to the same IR elements, as illustrated in the bottom row of Figure 11.

IR ElementBPMN ElementIR ElementBPMN Element

+

Parallel-Fork

+

Parallel-Join

Implicit-Parallel-Fork

X X

Exclusive-Decision Exclusive-Merge
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Inclusive-Decision Inclusive-Merge

XOR-Split XOR-Join

Action w. AND-Split

?
?

Undefined-Split
Undefined-Join

AND-Split AND-Join

Implicit-
Exclusive-Merge XOR-Join w. Action

Fig. 11. Mapping between BPMN Gateways and IR Splits and Joins
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Fig. 12. Mapping of BPMN Sub-processes and Loops to IR Elements

Finally, BPMN compound activities, such as sub-processes and loops, are mapped
as illustrated in Figure 12. The compound activities are flattened during the abstraction,
i.e., they are integrated in-line in the IR. However, their hierarchical information is
preserved by enclosing the compound activities with fragments in the IR. BPMN sub-
processes are represented by sequential fragments in the IR. The incoming and outgoing
edge of a sub-process is directly connected to the start and end events, represented by IR
events. BPMN loops are abstracted into a combination of IR XOR−Join and XOR−Split
that is enclosed by a alternative fragment as shown in Figure 12. The XOR − Split takes
the decision whether the loop is repeated or the loop is exited.

The mapping defined fulfills the requirements for an abstraction of a concrete lan-
guage in the IR, because each element of the core subset of BPMN is mapped to
the IR (Completeness). In addition, the second requirement (Syntactic Redundancy
Elimination) is fulfilled, because different syntactical ways that model the same se-
mantical concept (e.g. implicit/explicit BPMN Parallel Fork) are abstracted to the
same IR element (IR AND − Split). Using the mapping, models in the core subset of
BPMN can be abstracted to IR models. Then, differences between IR models are com-
puted, using given correspondences between original elements, and stored in terms of
CompoundChangeOperations in the difference model. In the following, we discuss how
these changes based on the IR can be translated into BPMN change operations.

4.3 Translation of Generic Change Operations into Concrete BPMN Change
Operations

The abstraction of a concrete language to the IR is a trade-off between changes that can
be detected on the level of the IR and changes that need further interpretation on the
level of the concrete modeling language. For instance, we map the BPMN event types
Start and End both to the generic IR element Event. That means, on the level of the
IR, we are able to detect modifications (insert, delete, move) to the IR element Event.
However, we have to identify on the level of the BPMN modeling language whether a
BPMN Start event or End event is affected by the modification.

Accordingly, for the translation of generic operations into BPMN change opera-
tions, underlying elements of generic operations need to be evaluated. Underlying el-
ements are given by the node attributes of operations (fragment attributes in the case
of CompoundFragmentOperations) and provide a link to their corresponding concrete
model element that was established during the abstraction from BPMN to IR.

In the case of a CompoundNodeOperation opn, the type of a concrete BPMN change
operation is determined based on the type of the corresponding BPMN model element
of opn. For instance, a generic InsertNode operation inserting a BPMN Task activity is
translated into a concrete InsertTask operation, as shown in Figure 13.
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IR: InsertNode(V2, Action “X”, AND-SplitOutput1, AND-JoinInput1)

BPMN: InsertTask(V2, “X”, Parallel-ForkOutput1, Parallel-JoinInput1)

Fig. 13. Translation of an IR Change Operation into a BPMN Change Operation

In the case of a CompoundFragmentOperation opf , the type of the underlying frag-
ment determines the type of the concrete BPMN change operation, e.g., a generic Insert-
Fragment operation opIF with an AND−Split as entry, AND−Join as exit and no further
gateways as children is translated into a BPMN InsertParallelFragment operation. Note
that a concrete change operation for fragments must take care that also all comprised
operations of a CompoundFragmentOperation are applied. That means, in the case of
the InsertFragment operation opIF, the insertions of the fragments entry node and exit
node also need to be executed by the BPMN InsertParallelFragment operation.

Finally, position parameters of generic insert and move operations that specify prede-
cessor and successor of newly inserted or moved elements are translated by substituting
generic Node elements with their corresponding concrete BPMN element.

Fig. 14. BPMN Change Management Prototype in the IBM WebSphere Business Modeler
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5 Tool Support

As proof of concept we have implemented the framework for process model change
management. Figure 14 shows a prototype obtained by instantiating our framework for
the IBM WebSphere Business Modeler in action. Two BPMN process models are shown
together with a difference view. The difference view is divided into three columns. The
left- and right-hand columns show the two BPMN process models in a tree structure
that abstracts from control flow. The middle column of the difference view displays
CompoundChangeOperations according to the structure of the two process models that
need to be applied to transform one version of the BPMN process model in an other.

After defining the BPEL-to-IR mapping and a translation of generic, IR-based op-
erations into BPEL operations the change management framework can be used in the
IBM WebSphere Integration Developer for the consolidation of BPEL process models.

6 Related Work

In the area of difference detection of models, several approaches exist that can roughly
be divided into generic approaches that can deal with different models and approaches
that are limited to models in a specific language. A generic approach for matching and
difference detection of UML models is presented by Kelter et al. in [5]. In their ap-
proach, UML class diagrams are abstracted to a generic data model comparable to our
intermediate representation, which is then used for matching and difference detection.
The EMF-Compare Framework [6] can be used for matching and difference detection
of EMF-based models. Alanen et al. [7] present algorithms to calculate the difference
and union of models based on Meta Object Facility (MOF) [22] assuming model ele-
ments with unique IDs. These approaches focus on structural diagrams, such as class
diagrams, rather than on graph-like process models and do not make use of a model
structure tree. In addition, they result in elementary changes that are inconvenient for
process model change management [10].

Kappel et al. [16] propose an approach that provides means to exchange models
between different tools. The approach has a strong focus on ontology engineering: First,
meta models of concrete languages are lifted and mapped to an ontology, which is then
used to derive a bridging between different meta models. In contrast to this approach,
our work is in particular adapted to diff and merge of process models.

Pottinger et al. introduce a generic framework to merge different kinds of models in
[8]. Their merging approach returns the ”duplicate-free” union of two input models and
a given mapping, i.e., differences are applied directly in the union. In [4] Nejati et al.
present an approach that addresses model management of hierarchical Statecharts.

Within the workflow community, Rinderle et al. [23] have studied disjoint and over-
lapping process model changes in the context of the problem of migrating process in-
stances. In contrast to our work, differences are given in a change log and dependencies
between changes are not considered.

In [24], Giese et al. use triple graph grammars to synchronize models in a bidirec-
tional way. In contrast to our session-oriented difference detection and resolution, in
their work changes that are made to one model are applied immediately to the other
model.
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In consistency management of models, Egyed [25] has studied the detection of
choices for fixing inconsistencies in UML models, which could be applied to conflict
resolution of process models.

7 Conclusion and Future Work

In model-driven development approaches, process models are used at different levels
of abstraction and in different languages. Similar to other software artifacts, process
models are developed in team environments and underlie constant change. This requires
reusable techniques for the detection of changes between different process models and
the computation of dependencies between changes.

In this paper, we have presented a generic approach to process model change man-
agement based on a framework consisting of an intermediate representation and a dif-
ference model. We have then introduced a methodology of how the framework is used
and have shown how BPMN can be abstracted to the IR and how generic change opera-
tion are translated into BPMN change operations. As proof of concept, the instantiation
of the framework for BPMN and BPEL shows the general applicability of our approach.

There are several directions for future work. We would like to validate our approach
also for other behavioral models, such as statecharts, which are used in the development
of mechatronic systems. This includes a mapping of statecharts to the IR as well the
definition of a translation of generic changes into statechart-specific changes. Future
work will also include support for change management across language boundaries. In
those scenarios, a (partial) mapping between the meta models of different modeling
languages is required for the matching of process models and for the translation of
changes.
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Abstract. All the support tools that developers are used to must be in place, if 
the use of model-centric development in companies has to take off. Industry 
deals with big models and many people working on the same model. Collabora-
tion in a team inevitably leads to parallel work creating different versions that 
eventually will have to be merged together. However, our experience is that at 
present the support for model merge is far from optimal. In this paper, we put 
forward a number of requirements for practical merge tools, based on our 
analysis of literature, merge tool evaluations, interviews with developers, and a 
number of use cases for concurrent development of models. We found future 
work to do for both tool vendors and academic research. Fortunately we also 
uncovered a few tips and tricks that companies using model-centric develop-
ment can implement on the short term while waiting for better times.  

Keywords: Model merge, diff, version control, parallel work, team co-
ordination, industrial experience. 

1   Introduction 

In industry, the use of models in development is gaining momentum. However, from 
our experience there are still a number of obstacles that have to be overcome before 
the use of model-driven development can really take off. Models can be used in many 
different ways ranging from simple visualization of code to a pure model-centric 
approach where the model is the sole focus of attention and executable code is gener-
ated directly from the model and never looked at or manipulated. For the past couple 
of years Ericsson AB has started to use the model-centric approach on more and more 
of its projects and has had some successful experience, but has also suffered from 
being an early adopter of a “technology” that for some aspects is still not fully mature. 

Industrial use of model-driven development means not just creating big and com-
plex models, but more importantly also the involvement of many people working on 
the same model. A key factor in the adoption of model-centric development is the 
presence of mature tools that can support the developers when they carry out their 
                                                           
* Empirical results category paper. 
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tasks. The most basic set of tools necessary consists of a model editor and a model 
compiler. This will allow the single developer to create and manipulate a model and 
to compile it into running code. However, this will not scale to an industrial project 
where many people are involved. Effective collaboration in a team requires that peo-
ple can share information and the existence of groupware that can help groups com-
municate, collaborate and coordinate their activities [11]. 

On a more traditional development project where textual programming languages 
like C, Python or Java are used, version control tools and functionality often work as the 
groupware that helps a team manage its coordination. They will address problems like 
“shared data”, “simultaneous update” and “double maintenance” [4] that are intrinsic 
parts of team collaboration and cannot be avoided, but instead have to be managed to 
allow the team to work efficiently and without making mistakes. The version control 
tool supplies a workspace to manage the “shared data” problem and concurrency detec-
tion to help manage the “simultaneous update” problem. Merge functionality – that may 
or may not be part of the version control tool – helps manage the “double maintenance” 
problem by allowing for easy conflict detection and resolution. Finally, diff functional-
ity allows the developer to get information about how two versions in the repository – or 
a version in the repository and the version in the workspace – differ. 

Our experience at Ericsson AB was that the version control support worked pretty 
well, though not optimal, when working on model-centric projects. However, the 
merge/diff tool support was far from optimal. From an informal tool evaluation we did 
in early 2007, it emerged that even for extremely simple examples, the merge results 
could often be counterintuitive or downright wrong – in some cases the merge result 
produced would not even load in the model editor. In a different study covering more 
tools the authors even went so far as to conclude that the “state of model merge tools is 
abysmal” [5]. It was decided to investigate more carefully the maturity of model merge 
with three objectives. First, to find solutions that could be implemented immediately 
by developers and projects. Second, to discover results from research that could be 
integrated in the tools provided by vendors. Third, to distinguish and define problems 
that need to be researched to provide more mature support for model merge. 

In a previous paper, we reported on our results from an initial literature survey of 
academic research on model merge and an initial analysis of similarities and differ-
ences between text merge and model merge [6]. In a later paper, we proposed and 
discussed the consequences of a number of use cases for text and model merge, based 
on problems and suggestions that emerged from interviews with developers at more 
sites within Ericsson AB [7]. In this paper, we first present the context for the experi-
ence reported and clarify the terminology we have chosen to use. Then we give a 
more thorough analysis of relevant use cases from [7] with the aim to distil a number 
of requirements for a practical model merge tool. These requirements are then 
grouped into related themes that are discussed in more detail, and finally we draw our 
conclusions. This paper is based on a recent more thorough evaluation of model 
merge tools [18] and further interviews with developers. 

2   Background 

In this chapter, we will first describe the context in which we have obtained the ex-
perience we report, then we give a brief review of previous work done in this field 
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followed by a clarification of the terminology that we use in this paper and finally the 
delimitations that will hold for the subsequent analysis and discussion. 
 
Context. Ericsson AB has developed several large systems with millions of lines of 
code using UML in a model-centric way. This means that executable code is gener-
ated directly from the models and only models are considered for work, whereas gen-
erated code is never looked at or manipulated. We are able to obtain good reliability 
of systems and execution speed and code volume is acceptable. Furthermore, we have 
seen positive effects on code comprehension and on system complexity. As such the 
use of model technology has proved a success for industrial use and Ericsson AB 
would like to continue. 

However, there are still a number of unresolved problems on the collaborative 
level because of the immaturity of tool support. We often work in big projects with up 
to 100 people working on the same model. On some projects people are even distrib-
uted on more than one site, making collaboration even more difficult without proper 
tool support. Without this support people resort to doing manual merges using three 
screens for the two alternatives and the result; instead of having tool-supported 3-way 
merge. Or they use a text merge tool on the textual representation of the model; which 
works in some cases, but requires knowledge of the representation format. 

These “solutions” make it possible for the project teams to survive the use of 
model-centric development, but we would like to see better direct support from tools 
and processes. 

 
Previous work. For textual documents there has long been mature merge tool support 
and early on the software configuration management (SCM) research community 
started to look at widening merge support. Early attempts were on structured docu-
ments in the context of structure-oriented environments [22] and syntax-directed 
editors [3]. However, since neither structure-oriented environments nor syntax-
directed editors caught on that line of research died out. Interest has more recently 
resurfaced with the widespread use of structured texts and documents and thus the 
need to be able to provide support for collaboration for such structures. One line of 
research focuses on hypertext systems [17] whereas another line looks at models in 
general and UML models in particular [19]. 

People from outside the SCM community have also shown interest in looking at 
how to support the collaborative work on models. Early research focused on the de-
tection and visualization of differences [23], [13] of diagrams to allow people to un-
derstand and analyze the evolution of changes to diagrams. More recently this has 
been extended to include merging of diagrams [14], [24] to support also the recon-
ciliation of parallel work. This interest from the model community has grown into two 
lines of interesting workshops – one that looks more specifically at the technical ver-
sioning aspects of models [9], [10] and one that treats more general aspects of model 
evolution [15], [16]. 

 
Terminology. Reading through the literature from the model community we encoun-
tered some problems with terminology that made it difficult to know precisely what 
was being talked about and caused us some initial confusion. To avoid similar confu-
sion in the readers of this paper, we find it proper to clarify the terminology we use 
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here. There is a line of research on model merge that has a much more theoretical and 
mathematical approach [1], [2], [21], [20] and [8] than the more technical approaches 
mentioned above. Most of that work – though not all – focus on merge of different 
types of models and not of different versions of the same model. They “borrow” much 
from the mathematical world and work on defining and using the algebraic properties 
of operators on models. So we end up with many operators that sometimes have dif-
ferent meanings for the same operator. Here we define our meaning of four of these 
operators: 

diff vs. compare: diff computes the differences between two versions of the same type 
of model (eg. class diagram); compare computes the differences between two models 
of different types (eg. class diagram and sequence diagram) 

merge vs. union: merge integrates two (parallel) versions of the same type of model 
(eg. class diagram) and usually (in this paper) is a 3-way merge with a common an-
cestor; union integrates two models of different type (eg. class diagram and sequence 
diagram) and usually is 2-way without a common ancestor 

 
Premise. What we present in this paper does not pretend to be general. It is based on 
the experience from one company – though from several independent branches – and 
the analysis and discussions are targeted at the specific needs of that company. How-
ever, since we believe that model-centric development and its problems do not vary 
much from company to company, we are confident that most of our findings – even 
with the delimitations below – will be generally applicable and of interest also to a 
wider audience. 

In this paper, we treat diff and merge only as we are interested in working on dif-
ferent versions of the same type model. We detail only (mostly) merge as we consider 
diff to be a part of and a pre-requisite for a merge and therefore it shares similar prob-
lems. We have version control of models so historic versions are available and 3-way 
merge always possible. We talk about UML – and not models in general – and we can 
(and do) have UUIDs. All people on a team will use the same tools and processes and 
we value tools that integrate with other tools over integrated frameworks because that 
allows for more flexibility in setting up a working environment. Finally, we have a 
bias for feature-oriented development, which means that more feature teams will have 
to modify the same (parts of a) model at the same time. 

3   From Use Cases to Requirements 

In this chapter, we analyse a number of the use cases that were presented in [7]. We 
use them to distil more detailed requirements for practical model merge support. We 
briefly describe and motivate each use case. This is followed by an analysis of the use 
case, where we relate the model case with the traditional support in the text case. 
Finally we state and briefly discuss the use case’s consequential requirements. 

At this point we do not discriminate between requirements that are targeted at the 
version control tool, the model merge tool, the model language or the model work 
process. A more detailed discussion of the interrelations and dependencies between 
and the consequences of the requirements will be given in chapter 4 below. The use 
cases are intended to give the context in which model merge will have to live and as 
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such hints at how it should work and what the requirements are if there is to be the 
same support for model merge as for text merge. 

Some of the use cases from [7] are not used here for several reasons. Use case 
3.1.b: Work in isolation, because it was meant to highlight collaboration in general 
and is not relevant to a specific analysis of merge support. It is part of what is  
supplied by the version control tool through the concept of a workspace – the conse-
quence of which is that we may need to merge the parallel work done in more work-
spaces. Use case 3.1.c: Integrate work, is covered by and detailed in use cases 3.2.c-e 
that will be treated below. Use case 3.1.f: Create awareness, is outside the scope of 
this paper – it is usually part of the support supplied by the version control tool and is 
not specific to merge support. Use cases 3.2.a: Architecture model development and 
3.2.b: Design model development are also left out here, because their primary purpose 
was to show the need for a compare operation and the varying number of people 
working in parallel – in this paper, we focus on the design setup. 

3.1   Put Model under Version Control 

Description and motivation: The version control system is the primary source of 
groupware support for a team. Furthermore, we would be interested in recording the 
history of evolution of our model. 

Analysis: Traditionally when we put a project under version control, we have to select 
the configuration items (CI), which are the artefacts that we want to version. Usually 
version control systems handle files as CIs, so we need to supply the system with a set 
of files that make up the model. One extreme would be to have the whole model in 
one single file, another extreme to have each single model element in a file of its own. 

Requirements: We will need the modelling language to have a mechanism for split-
ting up a model so it can be placed in several files, and we will need the version con-
trol system to support flexible units of versioning: 

• flexible unit of versioning (UV). The UV is used by the version control 
system for concurrency detection. The finer the UV, the better the version 
control system can decide if parallel changes touch the same or different 
parts of the model. However, the finer the UV, the more fractioned the 
model will appear to the developers and the more work they will have in 
managing the version control. It is important for the developers to have 
flexibility for the UV, so they can tailor it to their specific needs. 

• modularization mechanisms. The model language must have a mechanism 
for physically splitting up a model in smaller parts. If that is not the case, 
everyone will be working on the same artefact and all parallel changes 
will create a concurrency conflict triggering a merge situation for the  
artefact. 

3.2   Investigate History 

Description and motivation: When we have the historical evolution of a model pre-
served in the version control system, we would like to investigate that history to dis-
cover what changed between two specific versions. More generally, we would like to 
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know what is the difference between any two versions of an artefact whether they are 
in the repository or in the workspace. 

Analysis: We use the version control system to keep track of the versions we create of 
an artefact and that are committed to the repository. This will give us an overall pic-
ture of the evolution of an artefact. In case we want to know the details, we need an 
operation that given two versions from the repository can tell us exactly how they 
differ. Such an operation can also be used to tell the difference between a particular 
version in the repository and the version we have in our workspace. In all cases we 
will have a 3-way diff as there will always be a common ancestor – also to the work-
space version as it has been checked out from the repository. For such a diff to be of 
practical use, it should present the differences in a way that makes sense to the user. 

Requirements: We will need a diff operation, attention to presentational issues, a work 
process that focus on logical tasks, and flexibility in the unit of comparison: 

• diff operation. Because we work in a context where we have the same 
type of model, we do not need a compare operation that can tell the differ-
ences between different types of models. The diff operation should be  
detached from the version control system to allow us more flexibility in 
selecting tools. Since we are not working on text files, the diff operation 
should be tailored to the type of model that is addressed. 

• presentational issues. In order not to create information overflow, only 
important differences should be shown. For our context we do not  
consider layout changes to be significant. However, a good filtering 
mechanism will allow the user to define what he wants to see at any given 
moment. 

• work process that commits logical tasks. Once the tool has shown the dif-
ferences between two versions, we have to make sense of the details. To 
try to recreate the logical intention behind a number of detailed changes. 
This task is greatly helped if the work process prescribes that only com-
plete tasks are committed and if each commit has a short log text associ-
ated with it. 

• flexible unit of comparison (UC). Just as for the presentational issues, we 
need flexibility in the unit of what is compared. In the textual case we do 
not want to be told that a file has changed; we want to know what line was 
changed and sometimes even what changed on that line. Likewise in the 
model case. Flexibility in the UC will allow us to tailor the diff operation 
to give us information at the level of detail that we are interested in at the 
moment. 

3.3   Model Update without Merge 

Description and motivation: When parallel development has happened we want to 
synchronize the work at some point. In the case where work has not been done on the 
same artefacts, we do not need to carry out a merge but can simply take the sum of 
changes to be the result. 
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Analysis: The normal way of working of a version control system is that when we 
want to commit our changes, it first carries out a concurrency check. If something 
new has arrived in the repository since we last updated our workspace there is a 
physical conflict on some of the artefact, and we will need to update our workspace 
version to avoid getting the “simultaneous update” problem [4]. However, if the arte-
facts that we changed have not changed in the repository, we can do a commit and 
add a new version. However, this is not always enough to ensure that we will have 
consistent configurations in the repository as there may be logical conflicts that are 
not detected by this mechanism. 

Requirements: We will need a transaction mechanism that takes into account logical 
consistency: 

• strict long transactions. The long transaction model [12] works as de-
scribed in the analysis above and thus opens up for inconsistencies. How-
ever, the strict version of long transactions does the concurrency check at 
the logical level where we perform the commit. If anything has changed in 
the repository since we last updated our workspace we are not current 
anymore and must update – even if changes in the repository only regards 
artefacts that we have not changed in our workspace. Strict long transac-
tions do not detect inconsistencies, but force us to update and create a new 
“configuration” in our workspace instead of directly in the repository. 
This means that we have the possibility to check for inconsistencies in the 
updated configuration before we finally commit it to the repository. For 
strict long transactions to be practical, we should be able to commit – and 
thus carry out concurrency checks – at other levels than the top level. 
Otherwise we will always be forced to do an update even when changes in 
the repository regard completely unrelated parts of the system. 

• flexible unit of versioning (UV). This will allow the developer to decide 
the granularity of concurrency detection. In the textual case the UV is al-
ways the file, but the developer decides what to put into the file. If that is 
not the case for models, then we would need the UV to have more flexi-
bility. 

3.4   Model Update with Automated Merge 

Description and motivation: When work has been carried out in parallel on the same 
artefact(s), there will have to be performed a merge of the changes as part of the 
model update. In the simple case, the merge tool will be able to automatically resolve 
the changes and produce a successful merge result. 

Analysis: The issues of concurrency detection were dealt with in the previous use case 
3.3, so in this use case there is actually a physical conflict at the level of unit of ver-
sioning for at least one artefact. To be able to automatically resolve the conflicting 
changes we need to go more into details. We look at the internal structure of the unit 
of versioning to see if there are conflicting changes at the level of the unit of compari-
son. If not, we will have the same situation as for use case 3.3, but at the level of a 
single artefact and not of a whole configuration – this includes both the capability of 
producing a merge result, and the possibility of this result being logically inconsistent. 
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Requirements: We need to be aware of the semantics of the merge operator and we 
need flexible unit of comparison to allow better conflict resolution: 

• flexible unit of comparison (UC). The granularity of the UC decides the 
level at which we can do conflict resolution. The finer the granularity, the 
better and more precise we can distinguish differences and decide on how 
to automatically resolve the merge. If the level of granularity is a class, 
then changes to different methods by different people will create an ir-
resolvable merge conflict. Likewise, if “action code” is the unit of com-
parison then any modification to the “action code” will flag the whole 
“action code” as changed. It would be more helpful if “action code” had a 
UC at the level of a line of text, as we could then distinguish exactly what 
lines were changed and have better possibilities for resolving parallel 
changes to the “action code”. However, if the level of granularity becomes 
too fine, then we can suffer performance penalties – and “incorrect” se-
mantic behaviour at the level of the unit of versioning as discussed below. 

• semantics of merge operator. Now that we – or rather the automated 
merge – actually change the internals of our model, it is important that it 
is clear in which way these changes are done. In the traditional text merge 
tools the semantics of the merge operator is very simple. If a line of text is 
changed in one of the alternatives, then it is also changed in the result. For 
model merge tools the situation will be much more complex. In many 
cases there will be more than one possibility and only explicit semantics 
of the model merge operator will make it clear for the user what happens. 
Furthermore, the text merge tool only guarantees to produce a “correct re-
sult” according to its own semantics – which is “lines of text” – even 
though the real semantics of the contents of the merged artefact is often 
quite different. From this perspective, it is perfectly reasonable for the 
merge tool to produce a result in the case where the declaration and use of 
an identifier has been removed in one alternative and a new use of that 
identifier added to the other alternative. It is obvious that what is correct 
semantics for the text merge tool will not be correct semantics for the Java 
compiler. It is not clear whether it will be possible – or practical – to 
avoid such a mismatch in semantics for model merge. 

3.5   Model Update with Merge Conflict 

Description and motivation: When work has been carried out in parallel on the same 
artefact, there will have to be performed a merge of the changes as part of the model 
update. In the complex case, the merge tool will not be able to automatically resolve 
the changes and will announce a merge conflict. 

Analysis: From the analysis of use case 3.4 above, it is clear that we have the same 
needs for clear and explicitly defined semantics in this case. Likewise, the granularity 
of the unit of comparison is equally important for the possibility or impossibility to 
automatically resolve merge conflicts. The only difference to the above use case 3.4 is 
that in case both alternatives have changed the same unit of comparison, it will not be 
possible for the merge tool to choose which alternative to use – a merge conflict will 
have happened and the user will have to manually resolve it. 
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Requirements: We will need clear semantics, flexible unit of comparison, and defini-
tion of how to present conflicts: 

• flexible unit of comparison (UC). Identical to use case 3.4 above, so we 
refer to that discussion. 

• semantics of merge operator. When we deal with the simple semantics of 
the text merge operator, it is clear that parallel changes to the same UC 
(line of text) will have to create a conflict. However, for model merge the 
case might not be that simple. However, in the model case there is much 
more information available than just “some text has changed” and the 
UCs might not always be of the same type. So it might in some cases be 
possible to define a reasonable merge result – or a preference to one alter-
native over the other – even when both alternatives have been changed. 

• presentational issues. We need to deal with the presentation of merge 
conflicts at two levels. First, the presentation of the conflict has to be in 
such a way that it is clear to the user what the conflict consists of. As 
stated above, the richer semantics of the model merge operator should 
make it possible to provide that information. Second, the representation of 
the conflict has to be in such a way that the merged result can be loaded 
and modified in a model editor. This means that the underlying represen-
tation of the model will have to be able to handle and represent conflict 
markers. In text merge such conflict markers are not a problem for the 
editor, as they are text too – and standardization of the conflict markers 
have even made it possible to present conflicts in graphical editors. 

3.6   Verify and Validate Merge Result 

Description and motivation: Once we have produced an automated merge result, we 
would like to verify and validate its correctness. 

Analysis: It will have become evident from the discussions in use cases 3.3, 3.4 and 
3.5 above, that it will be virtually impossible to guarantee always 100% correct merge 
results. In text merge, that is a well-known fact and it is common practice to always 
check the result by doing a “build-and-smoke” test after an announced successful 
merge. Because that test is relatively fast and easy to do for the textual domain, users 
tend to have a preference for a high recall at the cost of a lower precision in the merge 
results. When discussing verification and validation of merge results, it is important to 
notice that also in the case of use case 3.3 above, there is actually performed a merge. 
The merge is not done at the level of the unit of comparison as in use cases 3.4 and 
3.5, but at the level of unit of versioning. 

Requirements: We should be able to verify the syntax and semantics and to validate 
the model logic: 

• verification of “syntax and semantics”. In text merge this is a simple 
compilation of the program. If our model merge operator is not able to 
guarantee that the result always respects the syntax and semantics of the 
model language, we need to do a similar compilation for models too. 
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• validation of “program logic”. For text merge it is common practice to 
have a small suite of test cases that will catch the most blatant mistakes. It 
is much faster than complete testing and experience has shown that in 
most cases it is sufficient for finding merges that mistakably are an-
nounced as successful merges. A similar process should be adapted for 
model merge. 

4   Discussion 

In this chapter, we will discuss in more detail the requirements that we have identified 
in the preceding chapter. For ease, we have grouped the requirements into three re-
lated themes – semantics of model merge, division of responsibility and presenta-
tional issues – that are discussed for possible consequences of the requirements and 
for what should be taken into consideration when implementing them. 

4.1   Semantics of Model Merge 

This is in our opinion the most important and also controversial aspect of model 
merge. The semantics of text merge are really simple, if a line of text has changed it 
has changed. If the same line of text has changed in both alternatives, there is a con-
flict. There have been attempts at more fine-grained unit of comparison by looking at 
the syntax and semantics of the contents. However, lines are still what rules for text 
merge in practice. 

For models the situation is not that simple. It is indeed possible to exploit the un-
derlying textual representation of the model and use a textual merge tool. However, 
even minor changes to the layout of a model can have big consequences for the order 
in which things are stored, which will cause insurmountable problems for a textual 
merge tool. So we see no way around using the implicit structures dictated by the 
model language for a model merge tool. Furthermore, such an approach will also 
benefit from the possibility of defining a “richer” semantics, since we will have sev-
eral different “types” of units of versioning and not just one (lines of text) as in tex-
tual merge. There have been early attempts to define such “rich” semantics for merge 
of structures [3] and [22], that revealed several cases where the desired merge result 
was open for discussion. The work of [8] is a first step towards model merge seman-
tics, though they are more focused on the algebraic properties and compare and union 
operators. 

That defining model merge semantics is not that easy can be seen from figure 1. 
One developer restricts the multiplicity of the class’ relation to “0..2”, while the other 
developer in parallel restricts it to “1..10”. Now what should be the merged result of 
this: “1..2” (the most restrictive), “0..10” (the least restrictive) – or something third? 
In our opinion, the developer should never be left guessing, so in case the merge is 
automatically resolved, the result should never be a surprise – otherwise a merge 
conflict should be flagged. A recent tool evaluation [18] revealed other “unpleasant” 
surprises. One setup was that in both alternatives a new class with the same name as 
the existing class was added and the two alternatives were merged. One tool decided 
that the names were the same and therefore merged the two classes into one. The 
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other tool decided that the two classes were different and kept both classes in the 
merge result. One can argue for the correctness of both approaches. In the first case, 
the merge tool made its decision based on the “similarity” of the two classes whereas 
the second tool made its decision based on the different UUIDs of the two classes 
(ignoring that they had the same name). This shows that in some cases model merge 
semantics are very open for interpretation. Therefore it is very important that the tool 
vendors make these semantics very explicit – and that the users continue to meticu-
lously read the manuals until common standard semantics are agreed upon. 

 
Fig. 1. Simple model merge dilemma 

4.2   Division of Responsibility 

The merge tool in itself is only a part of the groupware support for collaboration. In 
the great picture of support for the parallel work of a team we need more than just the 
physical merge of two artefacts – and we need to decide which tool should take care 
of which tasks. For parallel work there are two tasks: the concurrency detection and 
the conflict detection and resolution. 

Concurrency detection is the discovery that parallel work has happened. That can 
be carried out in many different ways, but usually it is the responsibility of the version 
control tool to do that. It keeps track of the addition of new versions to the repository 
and should know the status of the files in the user’s workspace. Based on that infor-
mation it is easy to decide whether parallel work has been performed or not. There are 
different strategies for when to consider parallel work to have happened. The most 
“relaxed” is to look at each single file and decide on a file-to-file basis. That is, how-
ever, a very unsafe strategy as changes to different files in the same commit are usu-
ally related. Most common is therefore the long transaction strategy [12] where a 
concurrency conflict is announced – and the commit aborted – if not all single 
changes can be committed. Concurrency detection is tightly connected to the unit of 
versioning. The more fine-grained it is, the easier it is to decide if parallel work has 
happened on the same artefact. 

Conflict detection, on the other hand, is the discovery of an unsuccessful merge of 
work that has been carried out in parallel on the same artefact (unit of versioning). 
And conflict resolution is when the outcome of the merge is successful. Conflict de-
tection and resolution is usually the responsibility of the merge tool. As input is gets 
the two alternatives and their common ancestor from which it tries to create a merge. 
Conflict detection and resolution is tightly connected to the unit of comparison. The 
more fine-grained it is, the easier it is to distinguish if the same “thing” has changed 
in both alternatives, in which case there is a real conflict that might be difficult for the 
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merge tool to automatically resolve. However, the richer set of units of versioning in 
model merge might provide more information that could allow automated merges 
even in these cases of apparent conflict, as discussed above.  

Both unit of versioning and unit of comparison are very dependent on the nature of 
what is being versioned and merged. In the traditional textual case, unit of versioning 
is a file and unit of comparison is a line of text.  For models we will have to use the 
file as unit of versioning if we use traditional version control tools, but depending on 
the modularization mechanisms of the model language, we can have more or less 
flexibility in what we are allowed to put into a single file. For the unit of comparison, 
we are bound by the decision of the merge tool, which in turn will be highly influ-
enced by the syntax and semantics of the model language. A supportive model merge 
tool should have as fine-grained unit of comparison and as rich and well-defined se-
mantics as possible. 

4.3   Presentational Issues 

Presentational issues are important also for text merge, but takes on even more impor-
tance for model merge. We have to present merges (and diffs) and in particular con-
flicts to the user in a way that he can understand the nature of the conflict (or change) 
and such that irrelevant details are left out. We also need to consider how the presence 
of merge conflicts should be represented in the model itself. 

Even in the simple case of text merge, we often have presentational issues. Merge 
tools are not very good at handling these and users have to aware of that and behave 
in a way to avoid getting conflicts that are grounded in “irrelevant” layout. A typical 
example is the indentation of programs that is a frequent cause of “stupid” merge 
conflicts until people agree on a common setup of their editor. For model merge we 
would like the tool to be able to ignore layout changes, as they are not our primary 
focus and can obscure more important changes. This does not mean that a model 
merge tool should always ignore layout changes, as they may indeed be important too. 
Just that because it is virtually impossible to avoid layout changes when working with 
models (as opposed to text), the merge tool has be more supportive and allow us the 
flexibility to ignore – or consider – layout changes in the merge. 

The standard behaviour of text merge tools is to work in batch mode. The tool tries 
to produce merge results for all files that have to be merged and leaves conflict mark-
ers in the files where it does not manage to resolve the merge conflicts. This works 
well for text, as we are able to open, read and understand the resulting files in our text 
editor. However, that is not the case for model merge. If we would leave conflict 
markers in the resulting merged model, we would not able to load it into our model 
editor – and we would be pretty stuck. Therefore, current model merge tools work in 
interactive mode and ask the user to manually resolve all the conflicts one by one 
before the result is created. For some cases that may be a good way of working, but if 
we would like to leave some flexibility to the user, we should allow for the batch 
mode as well. This can be done if we include conflict representation into the meta-
model, such that models with conflict markers become valid models for the editor. 
We should also be aware that, since model editors are based on the syntax of the 
modelling language, they cannot cope with syntactically incorrect merge results in 
general, so extreme care has to be taken in constructing the merge result. 
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5   Conclusion 

The experience at Ericsson AB from using models – and in particular UML– for 
model-centric development has been predominantly positive. The technology is ma-
ture and we get less complexity and good performance when using models. However, 
the support from engineering tools is not yet mature. In particular support for collabo-
ration like merge and diff tools. 

Based on a recent tool evaluation [18], we can conclude that model merge tools 
have improved since our initial evaluation and that of [5]. In this paper, we have iden-
tified and discussed a number of requirements for making them even better. At the 
present state it looks like there is too much diversity in principles and mindset for 
different model merge tools. Such diversity does not exist for text merge tools – and 
the fact that the principles are most often implicit makes the problem even bigger. 
However, we see that as a natural thing at this early, immature state and hope that 
“state of the practice” will now start to converge. 

From our analysis and discussion of merge and diff problems a number of re-
quirements emerged that can be dealt with on the long, medium and short term by 
various actors: 

• long term: research issues and challenges 
o semantics of model merge 
o meta-model conflict representation 
o modularization mechanisms 

• medium term: research to tool transfer possibilities 
o semantics of model merge 
o presentational issues 

• short term: MDD process best practices 
o use a strict long transaction model 
o merge often to avoid irresolvable conflicts 
o verify and validate each merge result 
o educate users in the model merge tool semantics since it is so much 

more complex and not as “uniform” as for text merge 
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Abstract. The contribution of formal modeling approaches in software
development has always been a subject of debates. The proponents of
model-driven development argue that big upfront designs although re-
quire substantial investment will payoff later in the implementation phase
in terms of increased productivity and quality. On the other hand, soft-
ware engineers who are not very keen on modeling perceive the activity
as simply a waste of time and money without any real contribution to
the final software product. Considering present advancement of model-
based software development in software industry, we are challenged to
investigate the real contribution of modeling in software development.
Therefore, in this paper we report on an empirical investigation on the
impact of UML modeling on the quality of software system. In particu-
lar, we focus on defect density as a measure of software quality. Based on
a significant industrial case study, we have found that the use of UML
modeling potentially reduces defect density in software system.

Keywords: UML, Complexity, Coupling, Defect Density, Case Study.

1 Introduction

One of the most valued aspects of software models is that they provide means to
design solutions to the problem domain that needs to be addressed by software
systems. By modeling a system in a systematic manner we are assured that the
system has gone through a technical analysis process that ensures the system is
going to be developed in the right manner. Modeling also ensures that design
decisions captured in the software models are well documented, thus minimizing
loss of information and misinterpretation in communicating the decisions taken
during development.

Another benefit of having software models is that it facilitates communica-
tion amongst team members. Obviously, this is true only if the developers have a
common knowledge and sufficient experience with the modeling language. How-
ever, the role of modeling to facilitate communication might be most prominent
in the contexts where the development team is not located in a single location
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(distributed software development)—not to mention if the team is composed of
people from different cultural background.

Despite the widely assumed benefits, the real benefits of modeling in industrial
projects are not always clear. For example, it is not clear whether the use of
modeling in real projects increases the quality of the final software product. If so,
in what circumstances does modeling help? In order to address these questions
more research needs to be done to evaluate the real benefits of modeling in
industrial settings.

Taking the above concerns into consideration, in this paper we evaluate the
impact of using UML modeling in a real software project. More specifically, we
investigate the effect of UML modeling on the defect density (defects per source
lines of code) of software modules (i.e., Java classes). The result of this study
shows that the use of UML modeling is influential to reduce the introduction of
defects during software development.

The rest of the paper is organized as follows. In section two we discuss some
related works. In section 3, the design of this study will be discussed. Section 4
discusses the case study and the results of the analyses. In section 5, we further
discuss the results and limitations of this study. Finally, in section 6 we outline
some conclusions and future works.

2 Related Works

To the best of our knowledge, there has not been any research that investigates
the use of UML modeling and its relation to the quality of the final implemen-
tation. Plenty of works, however, have been focused on investigating the impact
of using certain styles, rigor, and UML diagram types on model comprehension
and software maintenance.

Many studies that investigate the impact of modeling styles on model com-
prehension have been looking at the use of stereotypes. The work of Staron et
al. for instance, suggests that UML stereotypes with graphical representation
improve model comprehensibility [1]. Ricca et al. also found that stereotypes
have a positive impact on diagram comprehension [2]. However, this finding was
particularly true for inexperienced subjects—the impact was not statistically
significant for experienced subjects. Genero et al. studied the influence of using
stereotypes in UML sequence diagrams on comprehension [3]. While this study
revealed no significant impact, it suggested that the use of stereotypes in se-
quence diagrams was favored to facilitate comprehension. Another study was
conducted by Cruz-Lemus et al. to evaluate the effect of composite states on
the understandability of state-chart diagrams [4]. The authors stated that the
use of composite states, which allows the grouping of related states, improves
understandability efficiency when reading state-chart diagrams. Nevertheless,
subjects’ experience with state-chart diagrams was considered as a prerequisite
to gain the improved understandability.

A previous study that looked into the formality of UML models and its relation
with model quality and comprehensibility is from Briand et al. [5]. In their
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experimental study, Briand et al. investigated the impact of using OCL (object
constraint language) in UML models on defect detection, comprehension, and
impact analysis of changes. Although the overall benefits of using OCL on the
aforementioned activities are significant, they have found that the benefits for
the individual activities are modest.

Other studies investigated the effect of using different UML diagram types
(e.g., sequence and collaboration diagrams) on model comprehension. The work
of Otero and Dolado for instance, looked into three UML diagrams types, namely
sequence, collaboration, and state diagrams, and evaluated the semantic compre-
hension of the diagrams when used for different application domains [6]. A similar
study comes from the work of Glezer et al. They evaluated the comprehensibility
of sequence and collaboration diagrams, and finally concluded that collaboration
diagrams are easier to comprehend than sequence diagrams in real-time systems
[7]. Another study conducted by Torchiano [8] investigated the effect of object
diagrams on system comprehensibility. In two of the four systems used in the
experiment, the use of object diagrams to complement class diagrams was found
to have significant effects on the comprehensibility of the systems.

A previous work that is closely related to this study is reported in [9]. In
the paper the authors evaluate the impact of UML documentation on software
maintenance. The results show that for complex tasks and after certain learning
process, the availability of UML documentation may result in significant im-
provements in terms of functional correctness of changes and the design quality
of the changes.

Different from the aforementioned previous works, in this paper we analyze
whether the use of modeling, represented using UML, has any effect on the
quality of the final implementation—measured in defect density. This paper is
inline with our previous work that investigates the relation between level of
detail (LoD) in UML models and the quality of the final implementation [10].
Nevertheless, in this paper we emphasize more on the impact of using (or not
using) UML modeling on the quality of the final system.

3 Design of Study

3.1 Objective

This study aims to evaluate the impact of using UML modeling to model soft-
ware modules (i.e., represented as Java classes) on the quality of the associated
implementation. Therefore, the objective of this study according to the GQM
template [11] can be described as follows:

Analyze the use of UML modeling
for the purpose of investigating its impact
with respect to defect density of Java classes
from the perspective of the researcher
in the context of an industrial Java system
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3.2 Measured Variables and Hypothesis Formulation

The independent variable (predictor) in this study is the use of UML modeling.
The use of modeling was defined as the presence or availability of UML dia-
gram(s) that describe a given implementation class. Hence, the unit of analysis
in this study is software modules, which was represented as Java classes (note
that we use the term module and class interchangeably). The use of UML mod-
eling is measured in a nominal scale with two categories: Modeled Classes(MC)
and Not Modeled Classes (NMC). Two UML diagram types were considered,
namely class diagram and sequence diagram. As such, the modeled classes can
be of the following categories: modeled in class diagrams only and modeled in
class- and sequence diagrams (as instances/objects of classes).

The dependent variable in this study is the quality of the final implementation,
which was measured in defect density. Defect density of an implementation class
was determined by the number of defects found in that class (defect-count)
divided by the class size (in kilo SLoC). Defect-count, on the other hand, was
measured from the number of times a class was modified to solve distinct defects.
Hence, if a class was modified five times to solve the same defect, it would have
been considered as having only one defect-count.

In addition to the independent and dependent variables, we selected two sig-
nificant factors that might confound the main factor of this study, namely code
complexity—measured using the McCabe’s cyclomatic complexity metric (MCC)
[12] and coupling between objects (CBO) [13]. MCC and CBO are well-known
for their significant relations to class fault-proneness [14] [15]. Considering their
strong influence on the defect density, in this study we considered MCC and CBO
metrics as co-factors and control their effects on defect density. Having controlled
these significant factors, we expect to see the true effect of using UML modeling
on the defect density of software modules.

As discussed previously, the focus of this paper is to investigate whether there
is a significant difference in defect density between software modules that are
modeled using UML and modules that are not modeled. This question is based on
the following observations. First, modeled components are generally well thought
of and better designed. Second, modeled components are generally well described
and well documented. Finally, all else being equal, modeled components should
be easier to implement than the not modeled ones. Having these assumptions in
mind, it is interesting to investigate whether such benefits materialize in terms
of improved implementation correctness. To answer this research question, in
this study we attempt to test the following hypothesis:

Null hypothesis (Hnull)
There is no significant difference in defect density between implementation classes
that are modeled using UML and those that are not modeled.

Alternative hypothesis (Halt)
The use of UML significantly reduces defect density of implementation classes.
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Note that we formulated the alternative hypothesis as a one-sided hypoth-
esis because we have a specific assumption about the direction of cause-effect
relationship between the use of UML modeling and defect density.

3.3 Data Collection and Preprocessing

Software project that we selected for the case study should meet two main condi-
tions. First, the projects must use UML modeling to certain extent. Further, the
UML models should be used for guiding the implementation and were modeled
in machine-readable forms (e.g., utilizing UML CASE tools). We also required
the UML CASE tools to have an XMI export facility, which will allow us to
export the models to the measurement tool. Second, the project must utilize
a bug tracking system with which it is possible to trace back source files that
were modified to solve defects. Having selected the projects to be studied, we
performed data collection to obtain data of UML models, source code, defect
registration, and change sets (source files modified to solve defects). The col-
lected UML data and source code were the latest version of project data that
could be found in the CVS (concurrent versions system) repository.

To obtain data about UML classes and other metrics, the UML models first
had to be exported from the UML CASE tools into an XMI format. Using a tool
called SDMetrics [16], the XMI file was read and model information, such as
classes and other structural diagrams, could then be easily extracted. However,
due to a limitation from the UML CASE tool, sequence diagram information
could not be exported to XMI. Therefore, we had to manually inspect every
sequence diagram to register instances/objects of classes that were modeled in
sequence diagrams.

The processing of source code was mainly aimed at calculating code metrics
from the implementation classes. In this study we were mainly interested in the
size, coupling, and complexity metrics. These code metrics were calculated using
an open source tool called CCCC (C and C++ Code Counter), which in fact is
also able to calculate metrics from Java files.

Processing defect data mainly involves two steps. The first step was to obtain
registered defects from the ClearQuest repository and store them in the analysis
database. The second step was to obtain change sets, which was performed
automatically using a Perl script that recovers change sets associated with every
defect. Because change sets were registered in a ClearQuest textual format and
they contain other information, text parsing was performed to mine data of the
modified files (note that only Java files were taken into account). Further, defect-
count of each Java file was determined based on the frequency it was corrected to
solve distinct defects. Java files that were modified to solve defects are hereafter
referred to as faulty classes.

We employ a relational database to store the above data. This database can be
accessed via a web interface to enable remote collaboration for data collection
and analysis. Once the data of defects, UML classes, implementation classes,
and faulty classes were stored in the analysis database, we could query various
information, which include: 1) implementation classes that were modeled, and
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the diagrams in which they were modeled; 2) implementation classes that were
not modeled; 3) code metrics of the implementation classes; 4) defect density of
the implementation classes—if they were found to be faulty.

3.4 Analysis Methods

As the main objective of this study was to investigate the difference of defect
density amongst faulty classes that were grouped based on the use of UML mod-
eling, in the analysis we used statistical techniques to compare mean difference
between groups. To this aim, we intended using ANCOVA (Analysis of Covari-
ance) test [17] because it would allow us to control the effects of covariates on
the outcome variable. However, as we later found out that our data set violated
the assumptions of normality, we finally decided to use Mann-Whitney test [18]
as the main statistical test. Nevertheless, ANCOVA test would still be used for
the sake of result validation.

Because we could not use ANCOVA as the main statistical test, we needed
to perform a pairwise sampling to account for the effect of the covariates. In
section 4.3 we discuss the pairwise sampling in further detail.

In this study we have a specific assumption about direction of the hypothesis—
that is, we hypothesize that the use of UML modeling will reduce the defect
density of classes in the implementation. Consequently, testing of the mean dif-
ference between groups will be performed as one-tailed test. Further, in the
analyses and hypothesis testing we considered significance level at 0.05 level
(p ≤ 0.05) to indicate a true significance.

Please also note that the case study used in this paper is the same project used
in our previous study [10]. In this respect, we need to outline the main differences
in the analysis approach. First, unlike the earlier study in which we analyzed
only faulty classes, in this study we analyze both faulty and non-faulty classes.
Second, in this paper we use all defects registered during testing. This approach
is different from our previous study in which we systematically selected defects
based on certain criteria. Finally, in the previous study we analyzed only classes
that were modeled using UML, while in this study we also take into account
classes that were not modeled. Obviously, these differences exist because current
paper aims to answer a different research question. Nevertheless, we consider it
important to distinguish differences in the analysis of the case study.

4 Case Study

4.1 Project Context

The system under study was an integrated healthcare system for psychiatrists in
the Netherlands, hereafter referred to as IPS (not a real name). It was built as a
web service using Java technology. In the IPS project, the RUP (Rational Unified
Process) methodology was used, and this project involved off shoring to India.
The modeling of the system was done in the Netherlands, while approximately
60 percent of the implementation and testing activities were done in India. For
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creating the UML models, the project used Rational XDE, and for the version
control system and bug tracking system, the project used Rational ClearCase
and Rational ClearQuest respectively.

In the IPS project, the UML model was used as an implementation guide.
Thus, the models were created before writing the implementation code. The
UML model was created by the designers and was later implemented by the
developers in India and the Netherlands. When this study was conducted, the
IPS project was already finished. The system was used by the client for some-
time, but was later abandoned because of business economical reasons. Project
summary is provided in Table 1.

Table 1. Project Summary

Projects # of staffs Duration Off-shored Status Model Size SLoC

104 use cases
IPS 25 people 2.3 years India finished 266 design classes 152,017

34 class diagrams
341 seq. diagrams

In addition to the UML models, textual specifications were also used to
guide the implementation of the system. These specifications are textual and
are mainly in the form of detailed use case descriptions. From our observation,
most functional requirements generally have corresponding detailed use case de-
scriptions. Additionally, a software architecture document that provides a high
level description of the system is available. Hence, regardless of whether cer-
tain parts were modeled or not modeled using UML, there exists some textual
specifications that describe how the system should be implemented.

4.2 Descriptive Statistics

The core part of the IPS system (excluding framework classes) consisted of 812
Java classes. Table 2 shows the descriptive statistics of defect density, coupling,
complexity, and size of all classes across groups. One notable trend that we can
see in Table 2 is that MC classes generally have higher complexity, coupling, and
size than NMC classes. However, we can also see in the table (the mean value)
that there is only a slight difference of defect density between the two class
groups. Statistical tests confirm that except for defect density, the differences in

Table 2. Descriptive statistics of all Java classes

Measures
Not Modeled (NMC) Modeled (MC)
N Median Mean St. Dev N Median Mean St. Dev

Defect Density 638 0.000 0.016 0.032 174 0.000 0.012 0.029
Coupling 638 6.000 7.123 6.303 174 11.000 13.459 11.359
Complexity 638 1.000 11.747 72.034 174 10.500 26.770 45.932
Size (KSLoC) 638 0.039 0.103 0.290 174 0.179 0.312 0.689
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complexity, coupling, and size between MC and NMC classes were statistically
significant.

It is interesting to note that MC classes that are generally higher in terms of
complexity, size, and coupling are in fact having a quite similar defect density
as NMC classes. This is particularly true if we consider previous studies that
report positive correlations between complexity, coupling, size and module fault-
proneness (see for example in [19], [14], [15]). The results in Table 2 raise a
question whether modeled classes, which are notoriously more complex, have
lower defect density because they were modeled using UML, or because defects in
larger and complex classes are more difficult (hidden) to find [20]. This discussion
essentially shows that several factors might influence defect density, and thus it
is important to identify them and control their effects in order to evaluate the
true effect of UML modeling on defect density.

4.3 Controlling for the Confounding Factors

In this study we considered class coupling and complexity as the main con-
founding factor because both metrics have been considered influential to class
fault-proneness. Ideally, we would use ANCOVA test to analyze the main effect
of a treatment when several confounding factors are accounted for. With this
analysis we could control the variance of the confounding factors, hence provid-
ing us with a pure effect of the main treatment if there is one. However, because
the defect density data set violated the assumption of normal data distribution
and transforming the data did not fix the normality problem, we could not rely
on ANCOVA for the main statistical test.

An alternative way to do the analysis is to perform a pairwise sampling in which
we selected classes of comparable complexity and coupling, and subsequently used
a parametric test, i.e., Mann-Whitney, as the primary test to compare the defect
density between groups. However, selecting classes that are comparable in terms of
complexity and coupling would have left us with too few data points for a meaning-
ful statistical test. Therefore, we decided to perform the pairwise sampling based
on coupling, and the effect of complexity would subsequently be assessed using
ANCOVA test.

To obtain classes of comparable coupling, we performed a pairwise sampling
by systematically selecting classes from both NMC and MC classes that have
coupling values from 8 up to 10. This range of coupling values was selected
mainly because 1) the range is reasonably small; and 2) within this coupling
range we obtained the best proportion of NMC and MC groups (note that we
aimed to obtain balanced groups when possible). This pairwise sampling has
reduced the amount of classes from 812 to 113 Java classes, of which 68 and 45
belong to NMC and MC groups respectively. These 113 classes had a standard
deviation value of 0.8, which means coupling values of these classes are very close
to the mean value (+/- 0.8). This result suggests that we have controlled the
variance of class coupling to a minimum level.
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Table 3. Descriptive statistics of the randomly sampled Java classes

Measures
Not Modeled (NMC) Modeled (MC)
N Median Mean St. Dev N Median Mean St. Dev

Defect Density 59 0.002 0.011 0.019 37 0.000 0.003 0.010
Coupling 59 9.000 9.000 0.809 37 10.000 9.270 0.902
Complexity 59 23.000 41.440 47.656 37 30.000 35.297 36.153
Size (KSLoC) 59 0.180 0.267 0.233 37 0.230 0.251 0.184

4.4 Testing the Hypothesis

The main question we wanted to answer was whether the use of UML help
reduces defect density of software modules in the implementation. In section 4.3
we have discussed how we performed a pairwise sampling based on class coupling
to control its effect on defect density. Therefore, in this section we discuss the
main hypothesis testing based on the sampled data set.

To mitigate bias during the pairwise sampling, we further performed a random
sampling on the sampled data set, in which we randomly selected 80 percent of
the 113 Java classes for the analysis. Having done the random sampling we
obtained 96 classes, of which 59 and 37 were NMC and MC classes respectively.
Table 3 shows the descriptive statistics of these classes. If we look at the mean
values in the table, we can see that after coupling was accounted for, NMC
classes remained having a higher defect density than MC classes.

Figure 1 shows two box-plots that compare defect density between groups.
The box-plots show a similar result presented in Table 3—that is, defect density
of NMC group is higher than that of MC group. We subsequently performed a
statistical test to assess whether the difference in defect density between NMC
and MC groups was statistically significant.

Table 4 and 5 provide the results of Mann-Whitney test. We used this para-
metric test because the data set (i.e., defect density variable) violated the as-
sumption of normal data distribution and data transformation could not solve
the problem. For the sake of completeness we also provide the results for cou-
pling, complexity, and size measures.

Table 4. Mann-Whitney test - Ranks

Variables Groups N Mean Rank Sum of Ranks

Defect Density
NMC 59 53.95 3183.00
MC 37 39.81 1473.00

Coupling
NMC 59 45.11 2661.50
MC 37 53.91 1994.50

Complexity
NMC 59 48.49 2861.00
MC 37 48.51 1795.00

KSLoC
NMC 59 47.65 2811.50
MC 37 49.85 1844.50
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Fig. 1. Box-plots of defect density in NMC and MC classes

Table 5. Mann-Whitney test - Main results

Defect Density Coupling Complexity KSLoC

Mann-Whitney U 770.000 891.500 1091.000 1041.500
Wilcoxon W 1473.000 2661.500 2861.000 2811.500
Z -2.704 -1.607 -.004 -.376
Asymp. Significance .003* .108 .997 .707
(*) indicates significance at 0.01 level (1-tailed)

In Table 4, we can see that the mean rank of defect density for NMC classes
are higher than that of MC classes. As Mann-Whitney test relies on ranking
scores from lowest to highest, the group with the lowest mean rank (i.e., MC) is
the one that contains the largest amount of lower defect density. Likewise, the
group with the highest mean rank (i.e., NMC) is the group that contains the
largest amount of higher defect density. Hence, the results show that classes that
were not modeled tend to have higher defect density than the modeled classes.

Table 5 provides the actual Mann-Whitney tests. The most important part
of the table is the significance value of the tests. We can see from the table
that the difference in defect density was significant at 0.01 level (p = 0.003; 1-
tailed). Note that none of the other measures were significantly different between
NMC and MC groups. Having obtained these results, we can conclude that, on
average, classes that were modeled using UML have significantly lower defect
density than those that were not modeled. Therefore, we could reject the null
hypothesis (Hnull), and confirm the alternative hypothesis (Halt): the use of UML
modeling significantly reduces defect density of classes in the implementation.
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Table 6. Results of ANCOVA

Source Sum of Squares df Mean Square F Significance

UML Modeling 1.869E-03 1 1.869E-03 6.825 .010

Coupling 7.562E-08 1 7.562E-08 .000 .987
Complexity 1.430E-03 1 1.430E-03 5.224 .025

Error 2.519E-02 92 2.738E-04

In addition to the Mann-Whitney test, we performed ANCOVA test to verify if
the results are consistent. Performing ANCOVA test regardless of the violation of
normality assumption was justified because ANCOVA is quite robust to violation
of normality assumption [17]. In the ANCOVA test, we included class coupling
and complexity as covariates. Class size was not included because it shares the
same size factor as defect density. The results of the ANCOVA test is provided
in Table 6.

The most important point to note from Table 6 is that the effect of using UML
modeling remains significant (p ≤ 0.05) even though coupling and complexity
have been included as covariates in the analysis. This result basically means that
the means of defect density between the groups, i.e., NMC and MC, were sig-
nificantly different after controlling the effect of class coupling and complexity.
Further, we see that complexity was a significant covariate, which is not surpris-
ing since we did not control its variance in the data set. Another thing to note is
the value of sum of squares, which represents the amount of variation in defect
density that is accounted for by the independent variable and the covariates. We
can see in table that the independent variable (i.e., the use of UML modeling)
has the highest sum of squares value; hence, it explains the variability of defect
density better than the covariates.

It should be clear from the above discussion that the results of the ANCOVA
test were consistent with the results of the Mann-Whitney test—that is, the use
of UML modeling significantly explains the variability of class defect density.
Although the ANCOVA test was performed on a data set that violates the
assumption of normal data distribution, we should consider the results of the
ANCOVA test as a complement to the results of the main statistical test. Overall,
this result further strengthens the evidence about the effect of UML modeling
on the defect density of software modules.

5 Discussion

In the previous section, we analyzed defect density in Java classes with regard
to the use of UML modeling. From the case study, we obtained results that
show modeled classes, on average, have a lower defect density that those that
were not modeled. Statistical test confirms that the difference in defect density
was statistically significant. We also need to underline the fact that we have
accounted for class coupling and complexity as confounding factors, which are
renown for their strong relations to class fault-proneness. Having controlled their
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effects, we were assured that the result of the analysis reveals a true effect of
using UML modeling on defect density.

To understand why classes that were not modeled have significantly higher
defect density, we first need to consider the nature of these classes. Experience
has shown that designers generally choose classes that are important and com-
plex to be modeled. Hence, it is quite natural to assume that classes that were
not modeled generally are trivial classes or pertain to straightforward concepts.
Nevertheless, this assumption is not always true. In the context of this study for
example, by simply looking at the complexity metric, we could easily observe
that some classes that were not modeled actually have a very high complexity
and coupling. In fact, the one class with the highest complexity is a class that
was not modeled. Hence, it is very likely that some classes that were not modeled
are in fact classes that are not trivial and should have been modeled. Because
these significant classes might involved in complex operations in the system, the
absence of specifications that describe their behaviors might have led to incorrect
implementation.

The implication of the results of this study on research in the area of model-
driven software development is two-fold. First, the result of this study should
encourage more research on how to improve the quality of models, for example by
investigating methods and techniques for a practical quality assurance of software
models. More specifically, we need to investigate which attributes of software
models are most influential to the quality of software systems (note that the
attributes should also embrace model’s behavioral aspects because they might
correlate better with defects in software). Additionally, the methods with which
the model attributes are maintained and evaluated should also be investigated.
Ideally, the methods should take into account their practicality and applicability
in industry. The second implication is related to the trade-off of using modeling
in software development. For instance, it should be investigated to what extent
the quality improvement achieved by introducing modeling was not sacrificing
other aspects such as productivity.

We also underline the implications of this study for software development in
practice. First, the result of this study should encourage both project managers
and software engineers to evaluate how UML is used in their projects. While we
are aware of the fact that not all system parts needs be modeled, the decisions
to model or not model system parts should be based on informed decisions.
For example, components’ complexity and criticality have been considered by
developers as good candidates for more extensive modeling [21]. Second, based
on the results of this study we also emphasize the needs for good quality models,
which comprise syntactical and semantical aspects of models. To achieve this
quality goal, practical model quality assurance activities such as design reviews
and the use of modeling convention should be considered to be incorporated
in the software development process (see the discussion in [22]). These quality
assurance activities should help accentuate the impact of modeling on the final
software quality.
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It should be noted, however, that this study has been primarily concerned with
whether classes being modeled or not modeled. We did not take into account
how the modeled classes were actually modeled, for instance in terms of level of
detail, completeness, and well-formedness. We really think that by taking into
account quality aspects of UML models, we can learn much more about the
relation between UML modeling and the quality of software.

5.1 Threats to Validity

In this section, we discuss validity threats of this study. These threats to validity
will be presented in their order of importance [11]: internal validity, external
validity, construct validity, and conclusion validity.

The main threat to the internal validity of this study concerns our ability to
control influences from other factors beyond what have been accounted for in
this study. Therefore, more advanced research design is required to address other
confounding factors, such as requirement quality, team composition, and team
experience.

External validity threats concerns limitations to generalize the results of a
study to a broader industrial practice. We could not make a strong claim that
the results of this study would be generalizable to other projects because every
project is unique. Most importantly, the way UML models are used in a project
will be very influential to how they might affect the quality of the final implemen-
tation. Nevertheless, we believe that the results of this study is generalizable to
projects in which the UML models are used to guide the implementation (hence,
posses a sufficient level of quality) and the developers, on the other hand, strictly
conform to the models.

With respect to the threats of construct validity, we underline the effect of
programming style on the defect density measure. For example, two supposedly
similar classes (in terms of role and responsibility) might be written in different
ways. Developers who have the style of verbose programming tend to produce
more lines of code than those who are more effective in writing code. Thus, with
the average defect-count being fairly equal, classes written by verbose developers
will have lower defect density than those written by efficient developers. Nev-
ertheless, careful analysis of class sizes between the modeled and not modeled
classes shows no indication that verbose programming has distorted the defect
density measure.

Threats to conclusion validity relate to the ability to draw a correct conclusion
from a study. In this study we have addressed factors that might have threaten
the conclusion validity of this study through a careful design of the approach
and a rigorous procedure in the data analyses.

6 Conclusions and Future Works

In this paper we empirically investigate the impact of UML modeling on the
quality of software. The main question this paper aims to answer is whether the
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use of UML can help improve the quality of the final software product. Using
empirical data from an industrial Java system, we carefully evaluate the impact
of using UML on the defect density of Java classes. After controlling for the
effects of class coupling and complexity, we have found that the use of UML
modeling remains a significant predictor that explains the variability of defect
density in the implementation. More specifically, Java classes that were modeled
using UML are found to have significantly lower defect density than those that
were not modeled. This result indicates the potential benefits of UML modeling
for improving the quality of software.

We realize that this study is still in the early step towards fully understand-
ing the benefits of modeling in software development. Therefore, more research
is needed to further investigate the benefits of modeling. To this aim, we are
planning to replicate the same study using different industrial projects. Further,
we also underline the importance of identifying and assessing other factors that
might have significant influence on defect density, such as developers’ experience.
Assessing confounding factors will not only help us observe the pure effects of
modeling, but also it might give us more insights about the circumstances under
which modeling is effective to achieve better quality of software. Furthermore,
we should consider conducting this type of study in experimental settings, which
will allow us to control the effects of confounding factors better.
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Abstract. Contemporary model driven development tools only partially support 
the abstractions occurring in complex embedded systems development. The pa-
per presents an interpretive case study in which the concerns held by 7 engi-
neers in a large product developing organization were compared to the concerns 
supported by the modeling tool in use. The paper’s main finding is an empiri-
cally grounded catalogue of concerns, categorized with respect to visibility in 
models and other artefacts in use. In the studied case, 26% of the concerns were 
visible in the models, whereas 38% were visible elsewhere and 36% not visible 
at all. The catalogue has been presented to several stakeholders in the unit stud-
ied, with positive feedback: particularly appreciated were the notion of concern 
visibility as indicator of degree of implementation of model driven develop-
ment, and that concerns have traceable connections to experiences of the unit’s 
engineers.  

Keywords: Model driven development (MDD), aspect oriented modeling 
(AOM), software architecture, viewpoints, concerns, base stations, telecommu-
nication systems, embedded systems. 

1   Introduction 

A key objective in model driven development (MDD) is to support work at a high 
level of abstraction⎯one that is close to the problem domain and distant from the 
realization domain. In some areas, this objective has been met, e.g., in embedded 
systems development, statecharts based tools (such as Rhapsody, Rational Rose Real-
time, and Bridgepoint) has led to significant abstraction in requirements-, architec-
ture-, implementation-, and testing-work. 

However, the success is partial. Contemporary MDD tools primarily raise the level 
of abstraction in definitions of reactive behaviour and process hierarchies. Other kinds 
of behaviour (e.g., algorithmic behaviour, data handling, platform interaction, sched-
uling control) and structure (e.g., deployments, data structures, and configurations) 
and non-functional aspects of the software (e.g., performance, persistence, resilience, 
security) are not significantly abstracted by these tools.  
                                                           
* Empirical results category paper. 
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In large organizations this partial support for abstraction is a problem. When un-
supported abstractions are handled by traditional means, i.e., text documents with 
informal diagrams and manual coding, two parallel modes of development oc-
cur⎯one for the model, one for the remainder. This has far-reaching consequences to 
software processes, tooling strategies, quality management, project management, and 
in the end the cost-effectiveness of MDD. Incidentally, experiences with large scale 
MDD within Ericsson’s business unit Networks, are that MDD does not  significantly 
reduce the overall software development costs compared to well executed document 
based, code centric development [1]. 

The overall purpose of the research presented in this paper is to identify abstrac-
tions used in the development of complex embedded systems that lack effective sup-
port in contemporary MDD tools.  By abstractions we mean diagrams, mental views, 
and other knowledge representations used to understand a system from some view-
point. By complex embedded systems we mean  large, special purpose, real-time, 
multiple processor, computer systems  part of larger, technical systems; by MDD 
tools, we mean statecharts- and UML-based tools, for formal  modelling and code 
generation; by contemporary, we mean that tools are being applied in industry for 
large scale development; by lack of effective support, we mean that formal modeling 
of the abstraction is neither supported by the tool itself, nor by a plug-in, or that the 
support is not good enough, too difficult, or simply too costly to use in practice. (By 
formal modeling, we mean modeling in a language with syntax and semantics.)  

Our overall approach is a three step, iterative process, based on IEEE 1471 [2]: 
identification of stakeholders (present and potential users of the modelling tools), 
identification of stakeholder concerns (interests which pertain to the embedded sys-
tems development), and assessment of concern visibility (whether or not the concerns 
are visible in models).  By comparing the concerns held by the stakeholders, with 
those realizable by their modeling tools, we identify abstractions lacking effective 
support.   

Our strategy of inquiry is case study research [3]. By investigating the use of ab-
stractions in their real-life contexts, and by analytical reasoning, we construct evi-
dence that certain abstractions lack effective support in contemporary MDD tools.  
Our case is a division within Ericsson responsible for a base station product line; it is 
a mature user of MDD (>10 years of application), it uses models in all stages of soft-
ware development (analysis, design, implementation, testing), and has experiences 
from all tools listed above and many of their predecessors and successors.  

The question investigated in this paper is as follows: which of the division’s con-
cerns are visible in its models? Our findings, based on interpretation of interviews 
with 7 engineers, and document analysis, are that out of 149 identified concerns, 39 of 
the concerns (26%) are visible in the models, whereas 57 concerns (38%) are visible 
elsewhere and 53 concerns (36%) not visible at all.  

The paper is organized as follows: we describe our research design, and summarize 
our data collection and analysis (Section 2); we describe the concerns and their visi-
bility in catalogue form (Section 3); we discuss causes of the observed partial concern 
visibility (Section 4); the paper ends with discussions of threats to validity (Section 
5), related work (Section 6), our conclusions (Section 7), and future work (Section 8). 
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2   Research Design 

Selection of the case was based on Ericsson’s strategies (which involve increasing  
the efficiency of software development by better utilization of MDD), the studied 
divisions maturity of MDD (which is one of the highest within Ericsson), and the 
researchers access to the studied division’s site (which is available through a site-
dedicated software research program). 

Our investigation had five phases: an interview phase, a model sampling phase, an 
analysis phase, an assessment phase, and a validation phase. The interview phase 
involved informant selection, individual,  semi-structured interviews, and transcrip-
tion, with the purpose of building an analyzable knowledge base reflecting the experi-
ences, needs and abstractions perceived by the informants. The model sampling phase 
involved taking representative screenshots from the formal model, and collection of 
informal documents. The analysis phase involved open coding and inductive catego-
rization of written sources along the lines of grounded theory [4], with the purpose of 
identifying non-standard, and project specific abstractions and concerns. The assess-
ment phase involved searching for the found abstractions and concerns within the 
model samples, with the purpose of assessing the visibility of each concern. The vali-
dation phase involved interviews and workshops, in which the concerns were dis-
cussed. Phases were partly interleaved, but on the large whole sequential. 

2.1   Our Case  

The context of our case is Ericsson’s business unit Networks, which develops a range 
of base stations and other telecommunication infrastructure components for an inter-
national market. Our case is a division within this unit responsible for one base station 
product line. The division has a matrix organization in which, roughly, verticals are 
responsible for knowledge related to a specific product line, and horizontals responsi-
ble for delivering and maintaining specific products.  

In the studied division, software models are used for requirements and design 
work, along the lines of RUP (with project specific diagrams types), and for imple-
mentation work, using several MDD tools.  Models are also used for design, imple-
mentation and description of hardware, some of which is developed by the division 
itself (in the form of special purpose boards), other of which is developed by a sepa-
rate division (in the form of general purpose cabinets with accompanying software 
libraries).  

Formal requirement-, design-, and implementation models are integrated in a sys-
tem model, which also integrates artefacts on other forms such as informal diagrams, 
text documents, spreadsheets, and text-based formal specifications. The hardware 
models are not integrated in the system model; rather, the system model includes 
descriptive models of hardware aspects relevant for software design. The system 
model is developed in-house, with due attention to the division’s many processes 
(e.g., design-, development-, testing-, maintenance-, and project management proc-
esses) and communications with other divisions involved in the product development.  
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In summary, the division’s models are situated in an intricate web of maintenance, 
reuse, and evolution of requirements, design, and implementation artefacts, partly 
based on UML, partly on other formats, realised by several MDD tools, and with 
loose connections to underlying, shared, evolving hardware.  

Despite the challenges of operating in such a context, modelling works well: prod-
uct releases are timely; response times for defect reports and change requests are 
decreasing; time-to-market for new features has decreased. Although MDD has not 
reduced the development costs to the degree hoped for, there is faith in the approach 
and a presumption that the evolution of MDD tools, better adaptation of tools to ad-
dress stakeholder concerns, and increased automation, will eventually give MDD a 
significant economical advantage over code centric development.  

2.2   Informants and Interviews  

Due to restrictions in access to sites and informants, we settled for a small sample of 
representative informants. Informants included producers and consumers of the mod-
eling infrastructure in six roles (chief architect, system designer, software designer, 
system tester, software tester, project manager) from three sites. Ten informants were 
selected; all had more than 5 years of experience of base station development, some 
more than 25.  

Interviews were semi-structured, lasted 1h each (2h in one case), and revolved 
around questions related to how well the diagrams of the present system model sup-
ported daily tasks, the completeness of diagrams with respect to perceived needs, and 
possible evolutions of the system model to accommodate for higher degrees of simu-
lation, transformation, and consistency checking.  Five of these interviews were tran-
scribed and analyzed; the remainder influenced our interpretation of the transcribed 
interviews, and confirmed phenomena found, but were not analyzed per se.  

In addition, notes from 1h project meeting with four architects, transcripts from a 
6h workshop with a senior software designer and a senior software architect (both 
authors of this paper), and a document defining and explaining all system model con-
cepts were added as data sources.  

In the end, the interview phase resulted in the following: 16h of recordings, 7h of 
which were transcribed; 43 000 words of transcripts; 30 accompanying drawings and 
screenshots taking during the interviews; 1 complementary written source.  

2.3   Model Sampling 

To build a knowledge base of presently supported views, we traversed the system 
model, node by node, taking screenshots of representative diagrams in use; we col-
lected all informal documents reachable from the system model, and extracted distinct 
diagram kinds from these. (We refrained from sampling the many implementation 
models as, according to several senior architects and designers, the views in these 
subsume those in the system model.) 

The model samples amount to 217 screenshots from the formal models, and 1440 
pages of informal documents describing base station architecture and design.  
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2.4   Analysis of Interviews 

Data sources were coded in search for phenomena related to modeling. Codes were 
partitioned into the following categories: the perspectives of the developed system, the 
system model’s rationale, and characteristics; the fitness for purpose of the system 
model. Codes were further partitioned into subcategories. Identical or similar codes 
within each subcategory were merged.  

All codes were revisited in search for concerns. Those directly expressing concerns 
(in the sense of IEEE 1471) were labelled as such. For codes indirectly expressing 
concerns, the underlying data sources were re-visited: if these supported the concern, 
then it was introduced as an explicit such. 

Identified concerns were partitioned into subcategories.  When applicable, naming 
of these followed Kruchten [5]; in other cases, evocative names were introduced.  
Conceptually overlapping concerns within each subcategory were either merged or 
articulated.  Some concerns exhibited family-member relationships, which lead to a 
distinction between generic and concrete concerns.  

The interview analysis phase resulted in 10 generic, and 139 concrete concerns, or-
ganized into a 49 node category tree. (See Section 3.1.). 

2.5   Assessment of Concern Visibility 

Each concern found was classified as to whether it was visible in the formal system 
model, visible in the informal documentation, visible in code, or not visible anywhere. 
To support reasoning about effective support, concerns visible in informal documen-
tations were further classified as being visible in informal text, in an informal dia-
gram, or in a table.   

Browsing of model samples and text searches (with the support of automated in-
dexing) were used to assess the visibilities.  Classification was conservative: a con-
cern was classified as visible only if it was clearly recognizable in the artefact in case, 
i.e., the formal system model, etc. The outcome of the concern visibility assessment is 
presented in Section 3.3.  

2.6   Validation 

Validation was done in three steps: we verified that the concerns were reasonably 
comprehensible for Ericsson staff by discussing them in two workshops involving the 
authors and two Ericsson managers; we interviewed an independent Ericsson col-
league, asking for general feedback on our analysis; we organized a workshop open to 
all informants, in which validation was one activity. 

In the validation activity, informants were asked to comment on our interpreta-
tions. The codes and their underlying quotations were distributed; informants worked 
in pairs to review the codes of 1-2 categories during 1.5h; informants met during 
another hour to discuss their remarks.  

In the end, 10 informants participated in the validation workshop, contributing 
some 20 critical remarks on our analysis results.  (See Section 3.4.). 
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3   Concerns Catalogue 

Our concerns catalogue consists of a taxonomy, a population of the taxonomy with 
empirically grounded concerns, and an assessment of the visibility of concerns in the 
system model studied.  

3.1   Taxonomy  

Our taxonomy is given in Table 1: the six top level categories (logical-, concurrency-, 
development-, physical-, organizational-, and viewpoint specific concerns) are based on 
Kruchten’s taxonomy for architectural views. (To avoid ambiguity, following Rozanski 
and Woods [6], we use the term “concurrency” rather than Kruchten’s term “process”.)  
Subcategories are partly aligned with those of Kruchten’s taxonomy. Some categories 
(static logical structure, interfaces and protocols, and aspect specific concerns) are richly 
populated, yet cohesive, which motivates a three-level categorization.  

Table 1. Concern categories and subcategories 

Development concerns 
 Modules 
 Namespace 
 Configuration 
 Automation 
   Linkage 

Physical concerns 
 Static physical structure 
 Configuration  
 H/W relationships 
   H/W S/W relationships 
 Deployment 

Logical concerns 
Static logical structure 

 Overview 
 Precision 
 Decompositions 
 Design quality 
Control flow 
Services 
Data 
Interfaces and protocols 
 System boundary 
 Interface abstraction 
 Protocol abstraction 
 Protocol realization 
       Protocol viewpoints 
       Interaction patterns 

Organizational concerns 
 Project  
   Product 
  Quality 

Concurrency concerns 
 Signal paths 
 Availability 
 Performance 
 Capacity  
 Scheduling and Distribution 
  

Viewpoint specific concerns 
   Aspect specific 

  Logging & Tracing 
   Understanding 
  Monitoring 
  Error detection & Correction 
  Verifiability 
  Evolution 

 Mode and phase specific  
   System domain specific  
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The number of concerns in each top-level category is given in Fig. 1: 

 
Fig. 1. The number of concerns in each top-level category 

3.2   The Concerns  

We have strived to make concern names brief and self explanatory by short evocative 
sentences expressed with established software engineering terminology. Although this 
approach leads to ambiguity, we have found this to be tolerable in practical work: 
when ambiguity is encountered, a visit to the data sources usually suffices to resolve 
 

Table 2. Logical concerns 

Logical Concerns 
Overview 
- overviews (g) 
- capability anatomy 
- functional areas 
- architectural whole 
- service anatomy  
- navigating the model from a side  perspective 
- which tiers we should have 

Data 
- persistence (g) 
- data identities 
- data parameters 
- data persistence 
- what data is static 
- dynamic view of data 
- class and capsule instantiation 
- locality (of reference) 

Precision 
- clean and precise visualization  of  require-

ments and behaviour 

System boundary 
- actors and use cases 
- usage scenarios 
- external triggers 

Interface abstraction 
- signal grouping and bundling 
- allocation independent client-server interaction 

Protocol abstraction 
- structural protocols 
- peer to peer signalling 
- protocol stack layering (à la OSI) 
- protocol abstraction (three signals at one level 
becoming one signal at a higher level) 

Decompositions 
- layering decomposition(g) 
- tiers(g) 
- application decomposition 
- functional part decomposition 
- capability realization anatomy 
- program execution handling decomposition 
- layer-to-layer decomposition 
- system/subsystem decomposition  
- capsule / sub-capsule decomposition 
- capability decomposition 
- platform oriented decomposition 
- interface decomposition 
- product structure decomposition 

Protocol realization 
- layer-to-layer signalling 
- actual parameters (=data) sent in signals 
- formal parameters in signals 
- white-box  (1st level) interaction 
- interaction between "Things" (functional parts) 
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Table 2. (continued) 

 Design quality 
- coupling and cohesion among  

service realizations and capability realizations 

Control flow 
- basic and alternate flows 
- logical control flow (in sequence diagrams) 
- call graph 
- activities and control flow  
 (cf. activity diagrams) 

Protocol viewpoints 
- allocation protocols 
- functional protocols 
- service realization (in terms of functional parts) 
- software interfaces 
- interaction flows between boards 
- use case realization (in terms of classes and ob-
jects) Services 

- system services 
- capabilities 
- logical resources 
- relevant capabilities only 

Interaction patterns 
- communication principles 
 

Concurrency Concerns 
Capacity 
- memory capacity 
- memory utilization 
- (processor) load 
- bandwidth 

Signal paths 
- communication paths (declared) 
- SAP/SPP communication paths 
- interaction "holes" (using abstract ports) 
- capsule interface inheritance 
- communication over abstract ports 

Availability 
- downtime 
Performance 
- performance 
- response 
- queuing theoretic qualities (processor load,   
intensities, response times) 

Scheduling and Distribution 
- capsules onto threads 
- distribution 
- process priorities 
- scheduling 

Development Concerns 
Modules 
- load-module relationships 

Automation 
- what parts are automatically checked 
- what parts are transformed Namespace 

- document names  
 (carrying essential concepts) 
- naming conventions 
- hardware identities 
Configuration 
- DB configuration 
- MPU configuration 
- Cable configuration 
- AU configuration 

Linkage 
- traceability (g)  (of what originates from what) 
- how manipulation of MO affects FRO:s  

  and things below. 
- how project internal artefacts relate to system 

model 
- where, in white box, a certain requirement is 

realized 
- traceability in sequence diagrams (through tags) 
- what functional parts originate in 
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Table 2. (continued) 

Physical Concerns 
Static physical structure 
- boards 
- virtual boards 
- board interfaces 
- how a board works 
Configuration 
- hardware variants 
H/W relationships 
- relationships between boards (g) 
- physical dependencies between boards 
- board connections (wiring) 

H/W S/W relationships 
- relationship between hardware-interfaces  and 
software interfaces (g) 

Deployment  
- deployment(g) 
- data deployment (relationship between data   
  and their storage) 
- process deployment (relationships between  
  Processes, Threads, and CPU:s) 
- signal flow onto card deployment 
- function onto code deployment 
- function onto platform deployment 
- code onto part deployment 
- link deployment (internal on physical) 
- functional deployment (logical- onto physic 
  cal components) 

Organizational Concerns 
Product 
- product structure (hardware+ load modules, 
PRIM) 

Project  
- responsibility 
- deliverables 
- planning 
- division of work 
- baselines 

Quality 
- approval status 
- test coverage 
- design rule exemption 

Viewpoint Specific Concerns 
Logging & Tracing 
- log(g) 
- trace(g) 
- hardware fault logging 
- error logging 
- system level logging  

Understanding  
- descriptive texts (in models) 

Mode and phase specific 
- start-up 
- connection establishment 
- upgrade 
- software update 
- fault management (recovery) 
- hardware restart 
- (board) loading 

Monitoring 
- observability 

Error Detection and Correction 
- fault handling 

Verifiability 
- verifiability 

Evolution 
- differences w.r.t. earlier versions (in CR:s) 

 

System domain specific 
- power 
- climate 
- baseband use 
- traffic 
- redundancy 
- resource handling 
- understanding domain 
- resource object management domain 
- transaction handling 
- hardware 
- synchronization 
- test-system infrastructure 
- system understanding 

it. To give an impression of the coverage of the concerns found, we include the names 
of all concerns identified: Table 2 lists the 149 concerns, and their categorization. In 
the table, families of concrete concerns are annotated with a g (as in generic), e.g., 
tiers(g) which entails the protocol stack layers among others.  
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3.3   Concern Visibility 

The visibility of our identified concerns is shown in Fig. 2: 

Concerns
visible in 
formal models 
(39)

Concerns
visible in 
informal
documents 
(53)

Concerns 
not visible 
anywhere 
(53)

Concerns visible  in code (4)

Concerns
visible in 
informal 
text  (26)

Concerns 
visible in 
informal 
diagrams (17)

Concerns 
visible in 
tables (10)

 

Fig. 2. Visibility of concerns 

As this diagram clearly shows, 64% of the identified concerns are documented, ei-
ther formally or informally. About 40% of the documented concerns are present in 
formal models (in a dialect of UML), whereas the remainder are present in informal 
documents and code.  

The degrees to which concerns are visible in formal models, in each category of 
concern, are given by Fig. 3:  

Logical

Concurrency

Development

Physical

Organizational

Viewpoint Specific

Not Visible in Models

Visible in Models

 

Fig. 3. Visibility of concerns in formal models for each concern category 
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Notice (in Fig. 3) that the concerns not visible in the formal models are dominant, 
in each concern category. The biggest differences are found among the viewpoint 
specific concerns where only 1 out of 23 (4%) of the concerns are modelled, and in 
the development concerns where none out of 10 concerns (0%) are modelled. The 
smallest difference is found among the logical concerns where 21 out of 46 (46%) of 
the concerns are modelled.  

3.4   Feedback from the Unit 

During the investigation, in Spirit of de Vens model for collaborative research [7],  
our results have been incrementally communicated to stakeholders within the unit for 
feedback. The concerns catalogue and the underlying quotations have been sent to all 
informants. Summaries of findings and statistics have been presented in two presenta-
tions open to the whole local Ericsson site. Several internal presentations directed 
towards project- and steering groups have been held.   

Appreciative feedback included the following:  the study has articulated the com-
mon feeling among engineers that the system model only partially supports their in-
formation needs; the assessment of concern visibility is a useful metric for higher 
managers and technology boards⎯in particular, that as much as 64% of the concerns 
in such a complex system as a base station are visible in the system model, is some-
thing that the division should be proud of; in the validation workshop, most concerns 
were recognized as valid and important.  

Critique involved the following: that the notion of a concern is not precise and dif-
ficult to comprehend; that some of the concerns (20) were vague  or ambiguous or 
overlapping or difficult to comprehend or placed in the wrong category; that the ana-
lyst’s reasoning, that links concerns to the underlying quotations, were sometimes 
difficult to follow;  that our concern catalogue was only based on the experiences of 7 
out of approximately 300 users, and thereby incomplete; that project leaders and line 
managers were not found among our informants. In particular, the organizational 
concerns were regarded as overly generic, and likely to expand to larger sets of con-
crete concerns, with project- and line-managers as informants.  

4   Discussions 

To make any inferences about lack of effective support in contemporary MDD tools 
for our identified concerns, the following questions must be addressed. Is the partial 
concern visibility due to lack of knowledge of the capabilities of the tool in use? Is it 
due lack of diagramming knowledge? Is formal modeling an ideal for the division? Is 
it regarded as cost effective?  

In the following sections, we address these questions by interpretation of our inter-
views. In these, all descriptive statements are rooted in the interviews, whereas the 
inferences are of our construct. 

4.1   Partiality Is Not Caused by Lack of Tooling Knowledge  

In the division studied, there is sufficient knowledge for a saturated utilization of the 
MDD tool used for system modeling. The tool has been used for implementation 
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modeling for more than ten years. Over the last six years, a dedicated team of archi-
tects have extended the tool to also support system modeling: supported by consult-
ants, the team has enriched the tool’s basic capabilities with plug-ins for traceability, 
reviewing, versioning, requirement model integration, consistency checking, and 
other features; it has defined and implemented more than 30 project specific architec-
tural views; it has defined meta-models for many of these.  

Further, the team has developed a design methodology based on the tool’s capabili-
ties, and extended these to obtain “a whole solution” for the division’s needs.  

The team also has good connections to the modeling research community, as the 
following quotation shows  

“We had a lot of ideas about resolving these circular dependencies by 
adding extensions to the Href-Vref constructions, and asked a member of 
the UML2 committee, who forwarded the question to another member, 
who pointed us to a few academic papers that looked into this.” 

Given that the division has long experience from extending the tool to support 
system modeling, and good connections within the modeling research community, 
we can conclude that the partial concern visibility is not due to lack of tooling 
knowledge.  

4.2   Partiality Is Not Caused by Lack of Diagramming Knowledge 

As Fig. 2 shows, 17 concerns are represented in informal diagrams. A follow-up 
analysis of these diagrams revealed a rich and (reasonably) consistent use of modeling 
notations rooted in hardware modeling notations, operating system theory, queuing 
theory, and telecommunication standards.  

We found many of the informal diagrams to be overlays of diagrams at different 
levels of abstractions, or from different domains, e.g., one diagram shows how logical 
channels are realized by underlying physical and virtual boards and brokers between 
these.  

Given the richness of modeling notations present in the informal documentation, 
we can conclude that the partiality in concern visibility is not caused by lack of ideas 
of what diagrams would be useful. 

4.3   Partiality Is Not Caused by Distrust in Formal Modeling  

That formal modeling is an ideal of the division is clear from internal documents 
advocating MDD and its model based cousins, e.g., “Information at your fingertips” 
and “One source of information” are recurring slogans. Improvement initiatives in 
this direction, at several levels within the division, also witness to the ideal.  

Given this ideal, we can conclude that partiality is not caused by distrust in formal 
modeling. 

4.4   Partiality Is Partly Caused by Poor Cost Effectiveness of Modeling 

In practice, what is visible and not visible in the system model depends on design trade-
offs, with respect to costs and benefits of the supporting view: the development and 
maintenances costs of the tool support for the view, the development and maintenances 
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costs for the view itself, the view’s contribution to reduced development costs, im-
proved time to market, and improved product quality. As stated by one informant:  

“One just has to face that, during the journey, there has been numerous things 
that we intended to do, but that we dropped, because they were too compli-
cated, or did not add anything. [...] The purpose of the system model has 
never been to support very abstract and fluffy modeling. Its purpose is to get 
the next product out on the market as quickly as possible. [...] We never in-
tended the design model to be a help for beginners getting into the system.” 

These, and several other statements in the same spirit show that, even though formal 
modeling is an ideal, it is also two-edge sword⎯easily doing more harm than good to 
a project. Thus cost effectiveness of formal modeling compared to informal diagram-
ming (and compared to no modeling) is a clear cause of partiality in the studied case.  

4.5   Partiality Is Partly Caused by the Relative Strengths of Formal and 
Informal Modeling  

Follow-up discussions on the partiality with informants and other users of the system 
revealed that the formal modeling and informal diagramming had complementary 
merits:  formal models excel at describing accurate and precise information, whereas 
informal diagrams excel at giving overviews and initial understanding.   

A comparison of the formal models with the informal diagrams, revealed the rea-
sons: informal diagrams were characterized by rich sets of objects and relations, 
elaborate renderings of these, multiple-view diagrams, and overlays; the formal mod-
els, at the other hand were (with the exceptions of sequence diagrams and statecharts)  
class-association  oriented,  and made no use of suggestive notations and combined 
views.   

The difference in expressiveness between informal- and formal diagrams, partly 
explains why as much as (30%) of the concerns visible in diagrams were found in 
informal diagrams only.  

5   Threats to Validity 

Our research design is sensitive to following sources of errors, many of which are 
intrinsic to interpretive, case study research: (e1) sampling is restricted to 7 users, and 
does not include project- and line-managers, so the concerns catalogue is hardly com-
plete; (e2) comparison of concerns with the model is based on a sampling of the 
model, thus we may have missed concerns embedded in other diagrams; (e3) the con-
cerns are influenced by the informants daily work, and deeper concerns may have 
been overlooked; (e4) the concern identification is influenced the analysts concep-
tions; (e5) sampling and interpretation may be consciously or unconsciously biased to 
researcher concerns; (e6) validation may not reveal and correct all misinterpretations 
and misclassifications made by the analysts.  

The following precautions have been taken to reduce the effect of these sources: 
for  e1 we have chosen informants with long experience in modelling of base stations 
in several roles;  for e2,  we have sampled by a depth-first walkthrough of all formal 
diagrams, and all informal documents referenced from the model; for e3, we have 
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used open questioning from many perspectives to reveal areas of concerns beyond 
daily use; for e4-5, we have engaged stakeholders in the theory building process, used 
a qualitative data analysis tool that supports traceability of concerns to underlying 
data sources, presented results to the unit for feedback, and taken feedback into ac-
count; to handle e6 , we have used three complementary kinds of validation: engage-
ment in theory building, individual interview, and a workshop.  

6   Related Work 

Practice based catalogues of abstractions are recurrent in software architecture re-
search, e.g., Zachman’s Information Systems Architecture Framework [8], Clements  
et al.’s Viewtype and Styles catalogue [9], Rozanski and Wood’s viewpoint and per-
spectives catalogue [6]. Although these, and other catalogues we are aware of, iden-
tify many abstractions relevant to large scale embedded systems development, they do 
not relate the abstractions to their effective support by contemporary MDD tools.  

7   Summary and Conclusions 

We have investigated the use of a contemporary MDD tool in one division of Erics-
son⎯a large, mature user of MDD. The question investigated is which of the division’s 
concerns are visible in their models. We have identified 149 concerns, and found 39 of 
these to be visible in their formal models; we found that functional concerns have a 
reasonable degree of support (about 50%), whereas viewpoint specific, concurrency-, 
organizational-, physical-, and development concerns have weak support.  

To explain the observed partiality, we have investigated five phenomena with ob-
vious causal relationship to concern visibility: lack of tooling knowledge, lack of dia-
gramming knowledge, distrust in formal modeling, cost effectiveness of modeling, and 
relative merits of representations.  Our investigation shows that, among these factors, 
in the studied case, poor cost effectiveness of modeling for certain concerns and 
weaknesses of formal modeling notations compared to informal ones, are the strong-
est causes of partiality in this case.  

All in all, we have some evidence that the MDD tool used by the division and other 
tools of its generation (which have similar capabilities), are only a half-way hut in 
model driven development of base stations: they allow some abstractions to be ex-
pressed, but give little support for others. Devoted extension and utilization of the 
tools improve the situation, but in practice, tools are more or less confined to built-in 
diagram types which only partially support the concerns in need for support. To fully 
realize the vision of MDD, domain specific modeling notations must be easier to 
define and maintain; better rendering capabilities, and better support for combined 
views are also needed.  

Newer generation of MDD and MDA tools address some of these issues, but it is 
yet to be seen to which degree they support concerns in base station development.  

8   Future Work 

Continuations of this research would be to investigate the benefits of effective support 
for the identified non-visible and informally modelled concerns, to further investigate 
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the relative strengths of formal and informal modeling, and to explore mixed formal-
ity diagramming, in which formal and informal elements are combined to support 
work at higher levels of abstractions, while maintaining consistency to lower level 
formal models, without the overhead that domain specific formal modeling brings.   
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Abstract. Automatic model-based test generation is influenced by many
factors such as the test generation algorithm, the structure of the used
test model, and the applied coverage criteria. In this paper, we report on
an industrial cooperation for model-based testing: We used a UML state
machine to generate test suites, the original system under test was not pro-
vided, and we conducted mutation analysis on artificial implementations.
The focus of this report is on tuning the influencing factors of the test gen-
eration and showing their impact on the generated test suites. This report
raises further questions, e.g. about the role of test model transformations
for coverage criteria satisfaction.

Keywords: Model-Based Testing, State Machines, Coverage Criteria,
Mutation Analysis, Industrial Cooperation.

1 Introduction

Testing is very important to validate system behavior. Functional model-based
testing is focussed on comparing behavioral test models to the system under
test (SUT): For this, test cases are generated from test models and executed
with the SUT at source code level. A test case consists of a sequence of input
stimuli and expected outputs. The input stimuli are fed into the SUT. The test
case detects a fault if actual and expected output of the SUT differ. Test quality
can be measured e.g. with coverage criteria. This paper is focussed on using a
state machine of the Unified Modeling Language 2.1 (UML) [1] for automatic
test suite generation. The used test generation approach is focussed on satisfying
coverage criteria that are applied to the state machine.

In this paper, we report on a cooperation with a German rail engineering
company. Test suites in the company are usually created manually. The objec-
tive of this cooperation was to investigate the use of model-based testing before
adopting it as a new testing technique. Our task was to automatically generate
unit tests based on a given UML state machine. For reasons of nondisclosure
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the SUT was not provided. Instead, we manually created artificial implemen-
tations of the test model to conduct mutation analysis on them as a means to
measure the fault detection ability of the generated test suite. This mutation
analysis showed that the application of existing coverage criteria on the given
state machine often did not result in a satisfying fault detection ability of the
test suite. As a consequence, we tuned several influencing factors of the model-
based test generation process to improve the results of mutation analysis: We
transformed the test model, adapted test goals [2] of the applied coverage cri-
teria, and combined coverage criteria. We also used the cooperation as a test
for our prototype implementation ParTeG (Partition Test Generator) [3] under
realistic conditions.

The paper is structured as follows. Section 2 covers the related work. Section 3
contains the preliminaries of this paper. In Section 4, we report on the coopera-
tion and all the steps to improve the fault detection ability of the generated test
suites. Section 5 contains conclusion, discussion, and future work.

2 Related Work

Model-based testing is often used as a black-box testing technique and is, there-
fore, of high interest for companies that want to source out testing activities
and protect their business secrets at the same time. There are many books that
provide surveys of conventional testing [4,5,6] and model-based testing [7,8].
Modeling languages like the UML [1] have been used to create test models.
For instance, Abdurazik and Offutt [9] automatically generate test cases from
state machines. Sokenou [10] combines state machines with sequence diagrams
to improve the path selection in state machines. More corresponding work can
be found in [11,12,13]. The focus of this paper is on UML state machines. In
contrast to the cited work, we also consider state machine transformations.

Coverage criteria are heuristic means of test suite quality measurement and
they can be applied e.g. to source code or test models [8, page 109]. Different
kinds of coverage criteria have been investigated (e.g. focussed on data flow,
control flow, or boundary value analysis). For instance, Lämmel and Harm [14]
define a generic framework to characterize test cases. Briand et al. [15] con-
sider coverage criteria for data flow. Kosmatov et al. [16] define boundary-based
coverage criteria. In [17], we consider the combination of different kinds of cov-
erage criteria, like control flow-based coverage criteria [18] and boundary-based
coverage criteria [16]. Many test generation approaches are focussed on satisfy-
ing coverage criteria. This also holds for the tool that is used for the presented
cooperation (ParTeG): A coverage criterion is transformed into a set of test
model-specific test goals [2]. For each test goal, a test case is generated.

State machine transformations influence the fault detection ability of the gen-
erated test suite. For instance, Friske and Schlingloff instrument conditions of the
state machine’s transitions in order to satisfy All-Transition-Pairs [12]. Ranville
[19] proposes a way to satisfy modified condition / decision coverage (MC/DC) [18]
by traversing all transitions on a changed test model. Rajan et al. [20] examine the
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impact of the model’s and the program’s structure on the satisfaction of MC/DC.
Transformations can even be used to make coverage criteria interchangeable [21].
This report is also focussed on test model transformations for test generation.
In contrast, however, we do not focus on satisfying coverage criteria by apply-
ing model transformations but focus on increasing the test suite’s fault detection
ability independent of a certain coverage criterion.

In the presented report, we used mutation analysis to measure the fault detec-
tion ability of the generated test suites. Many mutation operators have already
been declared for software [22,23] and for specifications [24]. As the result of
several case studies [25,26,27], mutation analysis is a good predictor for the test
suite’s fault detection ability of real faults.

3 Preliminaries

In this section, we present the preliminaries of the cooperation report: We intro-
duce the applied coverage criteria, the artificial SUTs, the notions of efficiency
and redundancy for the SUT and test models, and mutation analysis.

3.1 The Applied Coverage Criteria

In the industrial cooperation, we applied the coverage criteria 1) transition cov-
erage (TC), 2) masking MC/DC, and 3) multiple condition coverage (MCC).

1) Transition coverage (TC) requires to traverse all transitions of a state ma-
chine. It is considered the minimal coverage criterion to satisfy [8, page 120].

2) Modified condition / decision coverage (MC/DC) [18] is a condition-based
coverage criterion that is focussed on the isolated impact of each atomic expres-
sion on the whole condition value. For this, the value of the condition must be
shown to change if the atomic expression is changed and all other expression
values are fixed [8, page 114]. There are several forms of MC/DC [28]. Masking
MC/DC [29] allows to change other expressions than the investigated one if the
additional changes do not influence the result of the condition value.

3) Multiple condition coverage (MCC) [8, page 114] is the strongest condi-
tion-based coverage criterion: Applied to the same test model, the satisfaction of
MCC implies the satisfaction of MC/DC. MCC is satisfied iff for each condition
all value assignments of the corresponding truth table are applied.

3.2 Efficiency and Redundancy for Artificial SUTs and Test Models

Our aim was to convince our client of the advantages of model-based testing.
Thus, we wanted to maximize the generated test suite’s fault detection ability
for the company’s SUT. Since this SUT was not provided, we created and used
artificial SUTs, instead: (1) a small SUT with almost no redundancy - we call
it the efficient SUT - and (2) a cumbersome SUT with a lot of copied source
code and redundant function definitions - we call it the redundant SUT. The two
SUTs are two extreme implementations regarding source code efficiency. Figure 1
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if(eventIs(’ev1’)) {

if(inState(’B’) ||

inState(’C’) ||

inState(’D’)) {

if(a < b) {

setState(’E’);

}}}

(a) Efficient condition definition.

if(eventIs(’ev1’)) {

if(inState(’B’) && a < b) {

setState(’E’); }

if(inState(’C’) && a < b) {

setState(’E’); }

if(inState(’D’) && a < b) {

setState(’E’); }}

(b) Redundant condition definition.

Fig. 1. Examples for efficient and redundant SUT source code

contains a small example. Both SUTs are manually implemented in Java and
show the same behavior as the test model. Since the redundant SUT contains
more similar code snippets than the efficient SUT and each snippet can contain
a fault, there are more possible places for faults in the redundant SUT and, thus,
they are also assumed to be harder to detect than faults in the efficient SUT.
We were aware that the company’s SUT can be totally different to our artificial
SUTs and we do not state that our approach is the best one. However, in the
described situation we had no access to the company’s SUT and considered the
use of artificial SUTs a good solution. Using these artificial SUTs gives us at
least an indication for the possible extreme performances of the generated test
suites.

Likewise, we also call test models efficient or redundant : for instance, a hierar-
chical state machine is often more efficient than a flattened one because it needs
less model elements to describe the same behavior (see Figure 2). The provided
test model of the cooperation contains almost no redundancy. The used tool
ParTeG [3] partly supports the insertion of redundancy such as flattening state
machines, which allowed us to automatically generate redundant test models
from efficient ones. During the cooperation, we considered two scenarios most
interesting: (1) The test suite is generated from the efficient test model and ex-
ecuted on the efficient SUT. (2) The test suite is generated from the redundant
test model and executed on the redundant SUT. Additionally, we also applied
the test suite derived from the efficient test model on the redundant SUT and
the test suite derived from the redundant test model on the efficient SUT in
Section 4.7.

B

C
D

B

C
D Eev1

A

ev1

ev1
A

Eev1
[a<b]

[a<b]

[a<b]
[a<b]

Fig. 2. Hierarchical and flat state machine
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3.3 Mutation Analysis

In mutation analysis, fault-injecting mutation operators are applied to a correct
SUT, which results in a set of mutated/faulty SUTs (so-called mutants). The
number of detected (killed) mutants divided by the number of detectable mutants
is called the mutation score of the test suite.

The correlation between the test suite’s mutation score and its fault detec-
tion ability of real faults in real projects has been evaluated with case studies,
e.g. in [25,26,27]. The results are that faults created by proper mutation op-
erators are much closer to real faults than manually created faults, which are
inserted by malicious testers. Thus, for a proper set of mutation operators, the
mutation score is assumed to correlate with the test suite’s fault detection ability.

For creating mutants, we applied the set of sufficient mutation operators iden-
tified by Offutt et al. [22]. We also applied the missing condition operator [24],
which is considered to represent a frequently occurring fault, and the target state
operator, which changes the SUT’s equivalent of a transition’s target vertex.

Since the focus of mutation operators is on syntactic changes, the concrete
SUT is of high importance. Different SUTs can have the same behavior but
different structures. Thus, in general, good mutation scores on artificial SUTs
are no guarantee for good mutation scores on the company’s SUT.

4 Report on the Industrial Cooperation

This section contains our report on the industrial cooperation with a German
rail engineering company. A UML state machine was provided to automatically
generate unit tests from. This state machine depicts the abstract communication
behavior of modules within a train control system and comprised about 35 states
and 70 transitions. The state machine is deterministic. It contains two parallel
regions and composite states with a hierarchy depth of 4. Transitions are all
triggered by call events. All generated tests are functional tests without time
information. The test oracle was contained in the state machine (e.g. as state
invariants) and the corresponding oracle code was also generated automatically.

For reasons of nondisclosure, the company’s SUT was not provided. Instead,
we got just the UML state machine to generate test suites from. We used our
tool ParTeG [3] for automatic test generation. The tool is focussed on satisfying
coverage criteria by searching transition paths from the initial node to model ele-
ments to cover [13]. After generating a test suite, we measured its fault detection
ability with mutation analysis and manually identified all undetectable mutants.
Furthermore, we investigated the reasons for detectable but undetected mutants,
came up with solutions to detect them, and repeated the test suite generation.
We applied the coverage criteria TC, masking MC/DC, and MCC to the test
model. In the following, we describe all adaptations of the test generation process
and present their impact on the generated test suites’ fault detection abilities.
Figure 3 shows an anonymised part of the provided state machine that contains
only model elements for the aspects that were adapted during the cooperation.
All following figures depict parts of Figure 3.
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Fig. 3. Anonymised part of the provided state machine

4.1 Starting Point

This section contains a description of the cooperation’s starting point. Table 1
shows the results of mutation analysis for the efficient and the redundant SUT
with test suites generated from the efficient respectively redundant test model
(TM). All following tables contain numbers in brackets about the absolute im-
pact of the described adaptation on the test suite size as the number of test
cases and on the mutation score as the percentage of killed mutants.

Table 1. Results of initial mutation analysis

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

TC 33 185/255 117 610/872
masking MC/DC 46 212/255 197 790/872

MCC 54 217/255 257 810/872

4.2 Transition Trigger Distribution

Some transitions of the provided UML state machine are triggered by multiple
events (e.g. from state A to state B). None of the applied coverage criteria is
focussed on events but the SUT can contain separate source code snippets for
each transition trigger. Thus, the satisfaction of any of the used coverage criteria
does not necessarily result in the detection of a fault in each corresponding
implementation branch. In theory, testing all (even the non-triggering) events for
all transitions can be covered with sneak path analysis. This analysis, however,
is very costly and we know of no supporting test tool [30].

We considered two solutions: the implementation of a better test generator
and the transformation of the test model. For users of a model-based testing
tool, the improvement of the test generator is next to impossible. Even if the
tool vendor is willing to conduct the necessary implementations, this change
would probably be costly. Transforming the test model, however, seemed to be
easy: The transformation consists of creating several copies of the corresponding



Influencing Factors in Model-Based Testing 217

A
ev1, ev2, ev3

B A
ev3
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Fig. 4. Splitting transitions according to triggering events

transitions, each of which is triggered by exactly one of the original transition’s
events. Figure 4 shows the original and the transformed test model.

We implemented this solution in ParTeG and repeated the test suite genera-
tion. The results of the subsequent mutation analysis are presented in Table 2.
The numbers in brackets describe the change caused by this test model trans-
formation. The presented adaptation has a positive impact for the redundant
TM/SUT and as good as no impact on the efficient TM/SUT. Since the SUT’s
redundancy is unknown, however, we consider this transformation valuable.

Table 2. Mutation analysis after limiting triggers per transition to 1

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

TC 36 (+3) 185/255 (+0) 134 (+17) 627/872 (+17)
masking MC/DC 49 (+3) 212/255 (+0) 214 (+17) 807/872 (+17)

MCC 57 (+3) 217/255 (+0) 274 (+17) 827/872 (+17)

4.3 Dynamic Test Goal Adaptation

This section describes problems resulting from incomplete guard conditions and
how we solved them by adapting the test goals derived from the selected coverage
criterion and the test model.

Definition 1 (Influencing Expression Set). Each guard condition of a tran-
sition is composed of a set of atomic expressions. For each state s of a state
machine, we call the union of all atomic expressions of s’s outgoing transitions’
guards s’s influencing expression set.

Figure 5(a) shows a part of Figure 3. The state B of the state machine has three
outgoing transitions. Its influencing expression set is {X ,Y ,Z}. The guards are
mutually exclusive. Nevertheless, no guard references all elements of B ’s influ-
encing expression set. We call such guard conditions incomplete. The following
issue arises: One test goal for the satisfaction of MCC for [X and Y] is the sat-
isfaction of the condition [X and (not Y)] when ev6 is triggered in state B. For
this condition, there are several possible resulting target states (D and E ) – de-
pending on the value of Z. As a consequence, the test oracle for the generated
test case cannot deduce if a certain transition is traversed just from the satis-
faction of [X and (not Y)] . Thus, we have almost no means to check the correct
behavior of the SUT for such scenarios.

A possible solution seems to be the extension of the existing guard conditions
with the missing elements of B ’s influencing expression set (see Figure 5(b)).
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Fig. 5. Add missing elements of B ’s influencing expression set

Table 3. Mutation analysis with additional dynamic test goal adaptation

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

TC 34 (-2) 189/255 (+4) 131 (-3) 634/872 (+7)
masking MC/DC 50 (+1) 226/255 (+14) 215 (+1) 820/872 (+13)

MCC 57 (+0) 229/255 (+12) 274 (+0) 842/872 (+15)

Although this test model transformation solves the described problem, it cre-
ates a new one: The effect of condition-based coverage criteria depends on the
structure of conditions [20]. Test model transformations change the structure
of conditions and, thus, also influence the effect of the applied coverage criteria
(possibly to a disadvantage).

We consider the dynamic adaptation of test goals the best solution. That
means that ParTeG checks for each test goal if there are several target states. In
this case, the conditions to satisfy the test goal are extended so that they satisfy
the original test goal and missing elements of the influencing expression set are
added. In our example, one test goal requires the satisfaction of [X and (not Y)] ,
which has two possible target states. The adapted test goal requires the satisfac-
tion of [X and (not Y) and Z] or [X and (not Y) and (not Z)] . For each of these
conditions, there is only one resulting target state. As a consequence, the ora-
cle of each test case can predict the expected target state for each event trigger
and the corresponding test case is able to detect more mutants. We implemented
this dynamic test goal adaptation in ParTeG and generated the test suites again.
Table 3 shows the results of the subsequent mutation analysis.

4.4 Choice Pseudostate Splitting

The state machine in Figure 3 contains transitions tno that are not triggered
explicitly. A problem occurs if a vertex has several incoming transitions and
several outgoing transitions of type tno with guard conditions. The satisfaction
of a condition-based coverage criterion such as MC/DC or MCC is focussed
on value assignments for guard conditions. It is not influenced by traversed
transition paths. As a consequence, the value assignments can be distributed
over several paths containing transitions tno . Figure 6(a) shows a corresponding
part of the state machine. The outgoing transitions of the choice pseudostate
are not explicitly triggered by events. Each condition-based coverage criterion is
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Fig. 6. Split the choice pseudostate according to its incoming transitions

already satisfied, e.g. if the guard [X] is satisfied on a path including the state F
and if [else] is satisfied on a path including the state G . Consequently, [X] may
not be satisfied for paths including state G and [else] may not be satisfied for
paths including state F. All corresponding mutants will remain unkilled.

The application of transition sequence-based coverage criteria [8, page 118]
is no solution because they neglect guard values. We know of no coverage cri-
terion that is focussed on transition sequences and on the value assignment of
guards’ atomic conditions at the same time. Our solution comprises a test model
transformation – each choice pseudostate is split up according to its incoming
transitions: Each new choice pseudostate has only one incoming transition but
all outgoing transitions of the original choice pseudostate (see Figure 6(b)). As
a consequence of this transformation, the satisfaction of condition-based cover-
age criteria implies that each guard condition on outgoing transitions of choice
pseudostates has to be covered for each source state (F and G in the example).
We implemented this test model transformation and rerun the test generation.
Table 4 shows the results of the subsequent mutation analysis.

Table 4. Results of mutation analysis with splitted choice pseudostates

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

TC 47 (+13) 209/255 (+20) 144 (+13) 660/872 (+26)
masking MC/DC 61 (+11) 239/255 (+13) 226 (+11) 840/872 (+20)

MCC 68 (+11) 241/255 (+12) 285 (+11) 860/872 (+18)

4.5 Composite States Transformation

Several choice pseudostates of the test model are contained in composite states
and directly connected to the composite state’s initial state (see Figure 7(a)).
Since there is only one incoming transition for such choice pseudostates, all
compound transitions from outside the composite state are united in the initial
state and the previous test model transformation had no effect. For this case,
we had to split incoming compound transitions [1, page 568] instead of splitting
incoming transitions: We transform the initial state into an entry point of the
composite state and connect it to all incoming transitions of the composite state
(see Figure 7(b)). After that, the entry point is duplicated so that there is only
one incoming transition for each entry point (see Figure 7(c)) and each entry
point is connected to exactly one outer state (H and I ). Furthermore, the choice
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Fig. 7. Transform composite states

Table 5. Mutation analysis with additionally transformed composite states

Coverage Criterion Efficient TM/SUT Redundant TM/SUT
Test Suite Size Mutation Score Test Suite Size Mutation Score

TC 51 (+4) 213/255 (+4) 148 (+4) 661/872 (+1)
masking MC/DC 65 (+4) 242/255 (+3) 229 (+3) 843/872 (+3)

MCC 72 (+4) 244/255 (+3) 288 (+3) 863/872 (+3)

pseudostate has now several incoming transitions and the transformation of Sec-
tion 4.4 results in several choice pseudostates (see Figure 7(d)). As a consequence
of this adaptation, the guard conditions of choice pseudostates are also tested
across boundaries of composite states for each start state of compound transi-
tions. We implemented this model transformation in ParTeG and regenerated
the test suite. Table 5 shows the results of the subsequent mutation analysis.

4.6 Coverage Criteria Combination

Mutation analysis showed that the generated test suites did not kill all detectable
mutants. A closer look at the remaining mutants revealed that they are caused by
small changes of boundary values in conditions with (in-)equations and variables
of linear ordered types. For instance, if the correct SUT contained a condition
[x > 5 ], then the unkilled mutants could contain [x > 4 ] or [x ≥ 5 ], instead. To
detect such mutants, boundary value analysis had to be included in the test suite
generation. Our tool ParTeG was created to deal with boundary value analysis.
Boundary coverage criteria like Multi-Dimensional (MD) [16] are combined with
control flow-based coverage criteria: For each abstract test case generated to
satisfy one of the three introduced coverage criteria, the concrete input values
are selected according to the boundary coverage criterion MD (cp. [17]). These
combined coverage criteria are denoted with a preceding MD. We regenerated the
test suites for all three considered coverage criteria combinations. The subsequent
mutation analysis showed that the test suites that satisfy MDMCC (combination
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Table 6. Mutation analysis with additionally combined coverage criteria

Combined Efficient TM/SUT Redundant TM/SUT
Coverage Criterion Test Suite Size Mutation Score Test Suite Size Mutation Score

MDTC 102 (+51) 222/255 (+9) 296 (+148) 672/872 (+11)
masking MDMC/DC 128 (+63) 251/255 (+9) 456 (+227) 852/872 (+9)

MDMCC 140 (+68) 255/255 (+11) 572 (+284) 872/872 (+9)

of MD and MCC) on the efficient respectively redundant test model killed all
mutants of the corresponding SUT (see Table 6).

4.7 Impact of the SUT

In the previous sections, we presented the results of running test suites derived
from the efficient state machine on the efficient SUT and of running test suites
derived from the redundant state machine on the redundant SUT. The results
for both scenarios are comparable. In both cases, however, we assumed that the
SUT and the test model have a similar degree of redundancy. Since the imple-
mentation details of the company’s SUT are unknown, we also investigated the
impact of the SUT redundancy on the fault detection ability of the test suite.
For reasons of conciseness, we present the mutation analysis results just once for
all the adaptations presented from Section 4.2 to 4.6.

Table 7 shows the results of the mutation analysis for the combination of
efficient test model and redundant SUT as well as the results for the combination
of redundant test model and efficient SUT: If the test model is efficient but
the SUT is redundant, then the fault detection ability of the generated test
suite is very low. None of the used coverage criteria killed at least one third of
all detectable mutants! The results of the mutation analysis for the test suites
derived from the redundant state machine applied to the efficient SUT are also
not optimal: The test suite generated from the efficient state machine using
MDMCC already killed all detectable mutants and no improvement of the fault
detection ability is possible. Instead, the test suite size increased: the number of
test cases is more than quadrupled for MDMCC.

Table 7. Combinations of efficient and redundant test models and SUT

Combined Efficient TM/Redundant SUT Redundant TM/Efficient SUT
Coverage Criterion Test Suite Size Mutation Score Test Suite Size Mutation Score

MDTC 102 240/872 296 226/255
masking MDMC/DC 128 285/872 456 251/255

MDMCC 140 289/872 572 255/255

During the presented test generation process, the company’s SUT was un-
known to us. After delivering the test suites, however, we got feed-back about
the number of failed test cases (see Table 8) and a short analysis of the reasons.
Following that analysis, the test suite generated from the efficient test model
detected one fault that caused four test cases to fail and the test suite generated
from the redundant test model detected two faults that caused thirty-two test
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Table 8. Failed tests and detected faults on the company’s SUT

Combined Efficient Test Model Redundant Test Model
Coverage Criterion Failed Tests Detected Faults Failed Tests Detected Faults

MDMCC 4/140 1 32/572 2

cases to fail. In random testing, this result might not surprise. Big test suites
are likely to detect more faults than small test suites. Here, however, the test
suites are generated from the same behavioral information using the same cov-
erage criteria. Thus, the test model redundancy has an important impact: The
test suite for the redundant test model does contain more test cases that detect
a fault but also detects a higher absolute number of faults. This substantiates
the importance of the described adaptations in realistic scenarios as well as the
importance of considering different levels of test model redundancy.

5 Conclusion, Discussion and Future Work

Conclusion. In this paper, we reported on an industrial cooperation with a
German rail engineering company. We described the initial situation and all the
occurred relevant challenges of model-based black-box testing. We presented a
solution for each occurred challenge. The application of all solutions resulted in
the detection of all detectable mutants. We measured the fault detection ability
of the generated test suites with mutation analysis on artificial SUTs and also
got feed-back about the execution of the final test suites on the company’s SUT.
The goal of the presented cooperation was to investigate model-based testing
before adopting it as a new testing technique. We were able to convince our
client of the benefits of model-based testing: The quality of the generated test
suites was comparable to manually created test suites and model-based testing
requires considerably lower maintenance effort than manual test creation.

The contribution of this paper is the presented procedure for model-based
testing in an industrial scenario with a hidden SUT. The main benefit of this
procedure is the increased fault detection ability for automatically generated test
suites. Novel elements of this report are the application of artificial SUTs, the
purposeful transformation of test models, the adaptation of test goals, and the
combination of coverage criteria in an industrial application.

Discussion. Most of the presented results can also be reached by improving the
used test generator. In most cases, however, the tester has no influence on the
used (commercial) test generator and the presented test model transformations
are the only way to increase the generated test suite’s fault detection ability.

Beyond, the result of this report is not a recommendation to create redundant
test models as a new kind of “modeling paradigm”. Such models would be hard
to maintain. Instead, we recommend to create and maintain efficient test models,
to transform copies of them automatically, and to use these transformed copies
for automatic model-based test generation. Test models have to be adapted if the
SUT is changed. Since test models are in general easier to understand than source
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code and test suites are generated automatically, we consider the corresponding
effort lower than the effort for adapting manually created test suites.

We were skeptical about applying artificial SUTs for mutation analysis. There
is no guarantee that a good mutation score on artificial SUTs implies a good
mutation score for the company’s SUT. Reasons can be that some information
is missing in the test model. In our case, however, this technique was quite
successful. As shown in Section 4.7, the artificial SUTs were necessary to improve
the fault detection ability of test suites generated from redundant test models.
Furthermore, the presented influencing factors were only investigated for artifical
SUTs and it is questionable if their application also leads to the detection of
all mutants in the company’s SUT. However, the presented report shows that
the adaptations do have a positive impact on the fault detection ability of the
generated test suites.

We presented the incremental effect of the adaptations, i.e. the results of
each adaptation already included the results of all previous adaptations. This
is especially obvious for the adaptations in Sections 4.4 and 4.5, for which the
second one is only intended to improve the effect of the first one. An isolated
investigation of all adaptations would be interesting. This report just presents
our experiences during the cooperation.

Furthermore, the combination of coverage criteria resulted in doubling the
test suite size. Several case studies (e.g., in [26]) estimate an exponential growth
of the test suite size with respect to the mutation score. These case studies also
point out the importance of satisfying the last 10-20% of the (mutant) coverage.

Future Work. We consider the presented test model transformations very im-
portant. There are approaches to use them to increase the test suite’s fault
detection ability [12,20] and we reported on a few more. To our knowledge, how-
ever, there is no broad comparison of coverage criteria satisfaction and test model
transformation. We assume that many coverage criteria can be satisfied by satis-
fying a possibly weaker coverage criterion on a transformed test model [21]. This
would be a great support for commercial model-based test generators that are
only able to satisfy a limited set of coverage criteria. As presented in Section 4.4,
it is also possible to combine condition-based and transition-based coverage cri-
teria beyond the sole union of the corresponding test suites. In the future, we
plan to investigate the impact of test model transformations on coverage criteria
satisfaction. We also plan to investigate the combination of different coverage
criteria.

Furthermore, we used a technique to dynamically adapt test goals in Sec-
tion 4.3. As presented in [2], the adaptation of test goals is an interesting research
topic. It would be interesting to also categorize possible test goal adaptations
and identify their impact on the test generation process.
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man Research Foundation, research training group METRIK).
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Abstract. Model-based development of highly complex software systems leads
to large models. Storing them in repositories offers the possibility to work with
these models in a distributed environment. However, they are not modularized and
thus, do not especially support distributed development. An alternative is to con-
sider composite models such that several teams can work largely independently.
In this paper, we consider a general approach to composite models and their trans-
formation based on graph transformation concepts. To illustrate this approach, we
present a concrete setting for composite models based on the Eclipse Modeling
Framework (EMF). EMF models can be distributed over several sites. While re-
mote references can express import relations, export and import interfaces are not
explicitly defined. In our approach, we sketch composite models with explicit and
implicit interfaces using concepts of distributed graph transformation and outline
different kinds of composite model transformations.

Keywords: Distributed modeling, graph transformation, Eclipse.

1 Introduction

Model-based software development has an increasing importance in software engineer-
ing. Models are ideal means for abstraction and support developers in mastering the
increasing complexity of software systems. Highly complex software systems are usu-
ally developed by several teams working in a distributed setting. The question arises
how model-based development can be performed by several distributed teams. An ob-
vious idea is to set up a central repository for models which can be used by all teams.
This solution is straight forward to implement. However, this solution is not always ad-
equate: Considering for example open source development, software components are
developed by independent teams. Thus, a central model repository would not suit well
to this separation of concerns.

An alternative is a set of component models which are interconnected, i.e. composite
models. To allow for independent component model development as much as possible,
each component model should have explicit import and export interfaces. The import
interfaces specify all required model parts, while the export interfaces describe model
elements provided to the environment, i.e. to models of other teams.

Model-based and especially model-driven development heavily rely on model trans-
formations. After having defined composite models, we also need transformation con-
cepts for composite models. In this paper, we consider a general setting for composite
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model transformations and do not focus on transformation languages. On this basis,
we discuss different kinds of composite transformations and formulate a consistency
property for a restricted form of composite model transformations. All main concepts
presented are formally defined to lay a basis for a precise approach to composite model
transformation. This approach is based on the theory of algebraic graph transforma-
tion [1].

New concepts are motivated at two different development scenarios for component-
oriented software systems: model-based development of business components and
model-driven development of graphical editors. The second scenario is based on mod-
eling concepts of the Eclipse Modeling Framework (EMF) [2]. EMF has evolved to one
of the standard technologies for defining modeling languages. It provides a modeling
and code generation framework for Eclipse applications based on structured data mod-
els. The modeling approach is similar to that of MOF, actually EMF supports Essential
MOF (EMOF) as part of the OMG MOF 2.0 specification.

There are several approaches to manipulate EMF models by model transformations,
e.g. ATL [3], Tefkat [4], EMF Tiger [5]. Since the focus of this paper is on general
structuring concepts for models and model transformations, we do not consider trans-
formation approaches in detail, but just as partial mappings between models.

This paper is structured as follows: Section 2 presents two example scenarios for
composite model development. The second one is used to illustrate all main concepts of
composite models and model transformations presented in Sections 3 and 4. Thereafter,
we discuss related work and conclude our work.

2 Example Scenarios for the Development of Composite Software
Models

In this section, we present two example scenarios for composite model development by
distributed teams which differ considerably. The first scenario describes model-based
development of a component-oriented business application, while the second scenario
presents model-driven development of graphical editors.

2.1 Developing Composite Models for Component-Oriented Business
Applications

Highly complex software systems are usually designed as component-oriented systems.
Main functionality is structured in several components with clear interfaces. Reflecting
this high-level design decision in composite models, the model-based development of
business components by separate teams is supported. As long as all interfaces are sta-
ble, each team can work on its model, independently of other teams. However, it is
quite natural that interfaces change over time. In that case, the distributed development
can run into conflicts. For example, considering a software solution for ordering and
delivering products, we might have components such as ordering, marketing and cus-
tomer management, billing, and delivery. Each component has local data and data to be
shared using interfaces. Moreover, each component offers a number of services such as
adding, deleting, updating and searching customers offered by the customer manage-
ment. While customer data manipulation is designed to be local to the customer man-
agement, searching is considered to be exported to other components. Furthermore, all
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detail information about customers are not considered for export, but just their names
and some information on their classification (e.g. business or private customer). If for
example, the export of customer data is to be extended by address information, the
distributed development teams have to communicate with each other to clarify this
situation. In contrast, private data is changed internally in the customer management
component model.

2.2 Composite Models for Graphical Editor Development

Assume a domain modeler who cares about mapping the application domain to a data
model as well as to services. Additionally, there are editor designers who develop
domain-specific editors showing the domain model in one or more different views. The
editor development shall be model-driven using the Graphical Modeling Framework
(GMF) [6]. Similarly, the domain model might be a source for model-driven devel-
opment used to generate a data base and data access objects. To support decoupling
of domain model and editor development to some extent, we use a composite model
which contains the domain model and the editor model as two components which are
interconnected by interfaces. This means that the domain model may be extended and
new model elements may be exported or editors may be changed as long as their import
interfaces are not extended. We use this scenario to further illustrate our concepts for
composite models and model transformations.

3 Composite Models Based on Distributed Graph Concepts

Modular concepts for software models are of increasing interest to the modeling com-
munity. The state-of-the-art concept to structure EMF models are physical distribution
in separate files. They can be interconnected by remote references, i.e. references to
remote model elements. This means that composite EMF models are supported and re-
alized by uniform resource identifiers which allow to identify remote model elements.
The lookup of remote model elements is realized by proxy model elements which re-
solve remote references. This mechanism realizes composite models with implicit inter-
faces. Remote references implicitly define an import interface. Additionally, all model
elements are automatically exported, i.e. export interfaces are also defined implicitly.
At the moment, there are no concepts for EMF models to declare import and export
interfaces explicitly.

In this section, we want to consider composite models with different kinds of inter-
connections. One approach are component models with explicit import and export in-
terfaces. To connect component models, import interfaces have to be served by export
interfaces. This approach supports the explicit statement of all requirements in import
interfaces and furthermore, allows to distinguish between public model elements, visi-
ble in exports, and private model elements. The explicit declaration of interfaces allows
to define component models independently of each other and to connect them later, if
their corresponding interfaces fit together.

The abstract syntax of software models can be considered as object structures which
are formally defined by typed graphs with attributes and containment conditions. (See
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[7].) Since we concentrate on the component aspect of models here, we do not consider
attributes and containments throughout this paper. However, these aspects are orthogo-
nal and can be added in a straight forward way.

In the following, we formally define distributed graphs in a general setting. Based
on this definition, different kinds of composite models are discussed thereafter. Graphs
consist of nodes and edges, i.e. edges are elements with their own identifiers. They
relate nodes by source and target functions.

Definition 1 (Graph). A graph G = (GN , GE , sG, tG) consists of a set GN of nodes,
a set GE of edges, as well as source and target functions sG, tG : GE → GN .

Definition 2 (Partial Graph Morphism). Given two graphs G, H , a pair of partial
functions (fN , fE) with fN : GN → HN and fE : GE → HE forms a partial graph
morphism f : G → H , short graph morphism, if it has the following properties:

– ∀e ∈ dom(fE) : fN ◦ sG(e) = sH ◦ fE(e), with sG(e) ∈ dom(fN )
– ∀e ∈ dom(fE) : fN ◦ tG(e) = tH ◦ fE(e), with tG(e) ∈ dom(fN )

If fN and fE are both total, f is called total graph morphism.

All graphs and graph morphisms form a category, called PGRAPH . This means that
partial morphisms can be composed and for each graph there is an identity morphism.
Similarly, all graphs and total graph morphisms as defined above form a category, called
GRAPH . (For more information concerning these categories, see [8,1].) We use this
fact to define the composition concepts presented throughout this paper.

Next, we recall type graphs to distinguish type and instance levels in our formal set-
ting. Since we concentrate on composition concepts and want to keep the formalization
as simple as possible within this paper, we do not consider subtypes here.

Definition 3 (Typed Graph). Given a graph TG, called type graph, and a graph G.
Graph G is typed over TG, if there is a total graph morphism type : G → TG.

Please note that the abstract syntax of software models can be formalized by typed
graphs. (See e.g. [7] for a formalization of EMF models.) Composite models are not
especially considered in that approach, but could be encoded in graphs. However, for
an explicit consideration of composition concepts for models, it is better to separate
the composition structure from object structures. In the following, we define distributed
graphs which use graph concepts on two different abstraction levels: the network level
and the object level. The network level describes the composition structure, while the
object level specifies the object structures in each part as well as their interrelations.

Definition 4 (Distributed Graph). Given a graph G, called network graph, a dis-
tributed graph over G is defined by functor Ĝ : G → PGRAPH 1.

1 Graph G can induce a small category which contains all identical arrows on nodes and for each

pair of arrows i
a−→ j and j

b−→ k in G an arrow i
c−→ k. Functors are mappings between

categories. See [9] for more details.
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The network graph of a distributed graph defines its distribution structure. Each network
node i is related to a graph Ĝ(i), called local graph, which describes a local object
structure, while each network edge e : i → j is refined by a partial graph morphism
Ĝ(e) : Ĝ(i) → Ĝ(j), called local graph morphism. These morphisms can formalize
relations between object structures.

In general, network graphs can specify arbitrary networks of models. In the follow-
ing, we discuss two particular kinds of composite models.

Component models with shared interfaces are described by bipartite network graphs.
Network nodes are either body nodes or interface nodes. Network edges always go
from interface to body nodes. This kind of structure describes components which share
objects in common interfaces. Thus, network edges are inclusions.

Networks of component models can be described by different kinds of composite mod-
els. We distinguish components with implicit interface definitions from those with ex-
plicit ones. See examples for distributed graphs with implicit and explicit interfaces in
Fig. 1. Interface inclusion are indicated by arrow label ⊆. Partial morphisms are de-
picted by arrows with a circle in the middle.

Fig. 1. Distributed graphs specifying components with implicit (left) and explicit (right) interfaces

A component with implicit interfaces can be described by just one local graph. The
import of object nodes from other components is specified by a partial graph morphism.
Such import relations can also be made explicit by explicitly showing the domains2 of
partial import morphisms. For example, the current version of EMF models can be
considered to be of this kind. Remote references import model elements of other EMF
models. (See the following examples for more details.)

A component model with explicit interfaces consists of a body model, a set of export
interfaces, and a set of import interfaces all being parts of the body. Thus, all graph
morphisms between export or import graphs on the one hand and body graphs on the
other hand are intended to be inclusions, i.e. special total graph morphisms. Connecting
two or more components, each import graph has to be connected to an export graph.
This connection is defined by a partial graph morphism. If this graph morphism is really
partial, i.e. not total, it describes an import which is not fully served by the export
connected. Thus for component models with explicit interfaces, a network structure
with total morphisms only is considered to describe a consistent composite model.

Considering network structures of component models with explicit interfaces, we
can characterize the three different kinds of component parts described above by the
following network properties:

– Body nodes are network nodes GBod ⊆ GN which are not source of any network
edge in GE .

2 The domain of definition wrt. a partial graph morphism is meant here.
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– Export nodes are network nodes GExp ⊆ GN where each export node is source of
exactly one network edge with its target being a body part. I.e. for all i ∈ GExp

there is an edge e ∈ GE with sG(e) = i and tG(e) ∈ GBod. Moreover, Ĝ(e) is a
total graph morphism, namely an inclusion.

– Import nodes are network nodes GImp ⊆ GN where each import node is source of
two or more network edges: The target of one network edge is a body part, i.e. for all
i ∈ GImp there is a network edge eB ∈ GE with sG(eB) = i and tG(eB) ∈ GBod.
Ĝ(eB) is a total graph morphism. All other network edges ek ∈ GE with k ∈ K3

have the import node as source, i.e. sG(ek) = i, and an export node as target, i.e.
tG(ek) ∈ GExp. Each Ĝ(ek) may be non-total.

The definition of distributed graphs is very general. It allows relations between graphs to
be really partial. While partiality of relations in simple composite models with implicit
interfaces is the normal case, real partiality can express some kind of inconsistency
within component structures where each import interface is connected to exactly one
export interface. In that case, network edges from import to export nodes being refined
by non-total graph morphisms express that corresponding imports are not completely
served.

Example 1. Fig. 2 shows the network structure of an example composite model on the
left-hand side and the corresponding distributed graph on the right-hand side as defined
in Def. 4. The network structure contains three components each consisting of a body
part as well as export and/or import interfaces each. While body parts are represented
by solid boxes, interfaces are depicted by dotted boxes.

Fig. 2. Example network structure (left) and according distributed graph (right)

Definition 5 (Partial Distributed Graph Morphism). A partial distributed graph mor-
phism, short distributed graph morphism, between two distributed graphs Ĝ and Ĥ with
network graphs G and H , is a pair f̂ = (f, m) where

– f : G → H is a graph morphism and
– m is a family of graph morphisms {f̂(n)|n ∈ GN} such that

• for all nodes i in GN : f̂(i) : Ĝ(i) → Ĥ(i) is a partial graph morphism and

3 K is a set of indices.
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• for all edges e : i → j in GE : f̂(j) ◦ Ĝ(e)(x) = Ĥ(f̂(e)) ◦ f̂(i)(x) for all
x ∈ dom(f̂(j)◦Ĝ(e))∩dom(Ĥ(f̂(e))◦f̂(i)(x)) (see the illustration in Fig. 3).

If f and f̂(i) for all i ∈ GN are total graph morphisms, f̂ is also called total.

i

e

��

Ĝ(i)
f̂(i)

o ��

Ĝ(e)

��

Ĥ(f(i))

Ĥ(f(e))

��
j Ĝ(j)

f̂(j)
o �� Ĥ(f(j))

Fig. 3. Illustration of partial distributed graph morphism

Definition 6 (Typed Distributed Graph). Given a distributed graph T̂G, called dis-
tributed type graph, and a distributed graph Ĝ. Graph Ĝ is typed over ˆTG if there is a
total distributed graph morphism ˆtype : Ĝ → ˆTG.

Example 2. In the following, we illustrate typed composite models by the editor devel-
opment scenario introduced in Section 2.2. The domain model is based on EMF and the
editor model uses GMF which in turn is an EMF model itself. We illustrate component
models with explicit interfaces.

Fig. 4 shows a network structure for a typed composite model. At the top row, com-
ponent model Ecore with an export interface and component model gmfmap with an
import interface are shown. Ecore is the meta-model of EMF and used for domain
modeling. Meta-model gmfmap is one of several meta-models of GMF each targeting
different editor aspects. For clarity we stick to gmfmap only. While Ecore and gmfmap
meta-models form body models on the type level, website and pageeditor are instances
of them. In the following examples we show both, type models and instances, as trees.
However, the underlying abstract syntax is graph-like. Note that the interface definition
on the type level limits the definition of exports and imports in the instance level.

Fig. 5 shows the refinement of the type level, i.e. refinement of network nodes and
edges. On the left-hand side, meta-model Ecore is shown by concentrating on its classes

Fig. 4. Example network structure on type and instance levels (cf. detailed presentation of com-
posite models Fig. 5 and Fig. 7)
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and inheritance structure. On the right-hand side, classes and inheritance structure of
meta-model gmfmap are shown. Arrows from right to left visualize references to remote
classes where target elements are part of the import interface of gmfmap. Fig. 6 shows
a more detailed view on remote references. In this case, class MappingEntry refers to
class EClass residing in a different model i.e. EClass is part of the import interface of
component model gmfmap and has to occur in the export interface of component model
Ecore as well. Since we consider any Ecore meta-model element as exported per se in
this example, the import of gmfmap can be completely mapped to the export of Ecore4.

Fig. 5. Condensed view on meta-models Ecore and gmfmap with arrows showing remote refer-
ences to imported classes

Fig. 6. Detailed view on import relation of meta-model gmfmap

Now we consider composite model instances of both meta-models as depicted in
Fig. 7. This example shows a domain model for web sites and an editor model for
a simple page editor, again in a tree-based view. The names of instance component
models also indicate their typing, e.g. pageeditor.gmfmap is typed by gmfmap.ecore.
As for meta-models, arrow targets indicate the import interface.

On the left-hand side, each entry below package websiteModel is an instance of
EClass containing instances of EAttribute for its attributes and instances of EReference

4 Please note that a small arrow behind a classes expresses an inheritance relationship. If a parent
is exported, its children are exported consequently.
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Fig. 7. A composite model instance with arrows visualizing remote references, instance model
website in two concrete syntaxes on the left and lower right

for links (cf. meta-model Ecore shown in Fig. 5). To support comprehension, domain
model website is also shown on the bottom right in form of a class diagram. Please note
that both views, tree view and class diagram, show two kinds of concrete syntaxes. A
web site may have several web pages each equipped with textual content. Pages may
also have primary and secondary navigation links to other pages. All domain model
elements except attribute Page.id are exported which is indicated by its red frame. In our
model-driven environment, this attribute is relevant for internal generation processes
only and therefore shall not be in the export set of the domain model.

On the upper right of Fig. 7, a part of the editor model is shown. The editor model
specifies a basic content editor where the user can create and edit the content of web
pages in a visual manner. In detail, the editor allows to insert content nodes provid-
ing an editable text field. To be able to nest contents analogously to HTML, composite
content nodes are provided. New contents may be positioned within such a node. For
that purpose two Top Node Reference entries (and their sub-entries) are listed in the
gmfmap model, each one introducing a node type container in the editor. Accordingly,
each entry is related to an (exported) element of the domain model. For example, the
uppermost Top Node Reference represents the container for textual nodes. Therefore, it
relates to reference Page.contents, the container for textual content in the domain model.
Subentry Node Mapping is related to class TextContent and represents textual content
nodes. Moreover, attribute TextContent.text is the target of a Feature Label Mapping.
This entry represents the label of a textual content node containing concrete text. Anal-
ogously, a Top Node Reference and a Node Mapping are defined in correspondence
with domain element CompositeContent. In addition Child References and Compart-
ment Mapping are responsible for enabling nested nodes. Since all reference targets in
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component model pageeditor are in the export interface of component model website,
this composite model is consistent.

4 Basic Concepts of Composite Model Transformations

Now we go one step further and consider transformations on composite models. Inde-
pendent of any concrete model transformation approach, we can consider composite
transformations as partial mappings of composite models. They can describe the ma-
jor effects of model transformations which can be the creation, deletion or update of
model elements and their references. Formally, such model mappings can be defined
by partial graph morphisms. Creation of model elements and their references leads to
non-surjective morphisms, while deletion of model parts leads to non-total morphisms.

In this paper, we consider basic transformation concepts only. Nevertheless, these
concepts allow us to distinguish already four important classes of composite trans-
formations: internal transformations, component transformations, synchronized trans-
formations, and reconfigurations. Moreover, we can distinguish consistent component
transformations from inconsistent ones.

Definition 7 (Distributed Graph Transformation). Given a distributed type graph
ˆTG and two distributed graphs Ĝ and Ĥ typed over ˆTG by t̂G and t̂H , a distributed

(graph) transformation is a partial distributed graph morphism t̂r : Ĝ → Ĥ such that
t̂H ◦ t̂r = t̂G. It implicitly defines a network transformation tr : G → H of network
graph G to H .

We can distinguish different kinds of distributed graph transformations which are pre-
sented in the following. Examples for each kind of transformation are given thereafter.

Internal model transformations are defined by transformations of single local graphs.
The network transformation tr is an identical one, i.e. the network structure does not
change. Interfaces, either implicitly or explicitly given, are not changed.

Example 3. On the left-hand side, Fig. 8 shows a gmfmap editor model before trans-
formation; the right-hand side shows it afterwards. In this scenario, the editor model
is enriched with additional properties which require class TextContent and its attribute
TextContent.text leading to a default attribute value “Enter new text here...” for text
nodes in the editor. As the required domain model elements are already contained in the
import set (cf. Fig. 7), this transformation has no impact on any interface.

Fig. 8. Adding new editor properties to component model pageeditor
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Component model transformations are concerned with manipulations of single com-
ponents in composite structures. Again network structures are not changed, i.e.
network transformation tr is identical. Moreover, there may be transformations
t̂r(iB) : Ĝ(iB) → Ĥ(iB) for network nodes iB ∈ GBod as well as transformations
of adjacent interfaces. In general, component transformations can yield inconsistent
composite models. However, we can consider a restricted form of component transfor-
mations yielding consistent models only. Body and interfaces may be transformed such
that synchronizations with other components are not necessary. This means that export
interfaces may be extended and import interfaces may be restricted only. Formally, we
can require

– for all iE ∈ GExp with e ∈ GE and s(e) = iE and t(e) = iB: t̂r(e) to be total and
Ĝ(iE) ⊆ dom(t̂r(iB)) and

– for all iI ∈ GImp with e ∈ GE and s(e) = iI and t(e) = iB: t̂r(e) to be surjective
and dom(t̂r(iI)) ⊆ dom(t̂r(iB)).

Later on, we argue that this kind of restricted component transformations yields consis-
tent results only.

Example 4. Figure 9 shows a component transformation of the domain model. Class
ImageContent is created inheriting from class PageContent. Elements of this kind shall
be editable, too. Therefore, it has to be included into the export interface of model
component website. Since the export interface is extended only, the resulting composite
model is a consistent one.

Fig. 9. Creation of a new class in domain model website

Synchronized model transformations are defined by several local transformations which
run in parallel. Again, the network transformation tr is identical. Synchronized model
transformations are useful to describe transformations of composite models where sev-
eral component models interact. They are needed to change common interfaces in a syn-
chronized way. Internal and component transformations can be seen as special classes
of synchronized transformations.

Example 5. Fig. 10 shows the result of an example synchronized transformation. Con-
sidering the composite model depicted in Fig. 7, the creation of a new domain model
element ImageContent as shown in the previous example has to lead to an adaptation
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of the related page editor. Again, the import mapping is illustrated by arrows from right
to left. Note that arrows shown in Fig. 7 remain unaffected and therefore are left out
in favor of readability. Three new entries are inserted into the editor model. A new Top
Node Reference and its subentry directly relate to the domain model element Image-
Content and its containment within Page. The new Child Reference entry deals with the
fact that image contents may also be contained within a composite content. Therefore,
it refers to the containment reference of CompositeContent in the domain model. Please
note that both extensions, the domain model extension and the editor model extension,
may also take place consecutively, first extending the domain model and then adapting
the GMF model.

Fig. 10. Result of a synchronized transformation which extends domain model website as well
as its page editor

Model reconfigurations. In contrast to the previous kinds of composite model transfor-
mations, model reconfigurations may change the network structure. Model reconfigura-
tions can require certain modifications of adjacent models to adapt them to the changed
network structure. Thus, there can be any synchronized model transformations on pre-
served network nodes. It is obvious that synchronized model transformations form a
subset of reconfigurations.

Formally, model reconfigurations are defined by distributed graph transformations
where network transformation tr may be non-identical morphisms here. A new net-
work node may be inserted with an initial local graph, a new network edge with an
initial graph morphism. Vice versa, a network node may be deleted together with its
local graph. Moreover, (adjacent) network edges are deleted with their refining graph
morphisms.

Example 6 (Reconfigurations). Considering again the composite model in Fig. 7, a re-
configuration may be performed as shown in Fig. 11 with the resulting new network
structure in the right. The original model components are kept unchanged in our case.
A new component model is created specifying a new editor specialized for the navi-
gation system of a website. It provides a new body part with an import interface us-
ing the export of the domain model component. The new navigation editor model as
shown in the resulting composite model (cf. Fig. 12) shows a Top Node Reference ele-
ment referring to class Page, analogously to the page editor model (cf. explanations in
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Fig. 11. Network structure transformation within example reconfiguration (cf. Example 6)

Fig. 12. Result of an example reconfiguration creating a new editor for domain model website (cf.
Example 6)

Example 2). Its Feature Label Mapping refers to Page.title to show the title of a page.
Furthermore, an entry Link Mapping with a Feature Label Mapping can be found rep-
resenting a navigation link from one page to another. Corresponding domain elements
are class Navigation and its attributes.

Component transformations are intended to run for each component independently.
Thus, we conjecture that performing a restricted component transformation on a con-
sistent distributed graph yields a consistent graph again. Since export graphs may be
extended only and their corresponding body graphs have to cover export extensions,
the morphisms between body and export as well as export and remote import interface
graphs remain consistent. Import interfaces may be restricted only, since import inter-
face transformations have to be surjective. The restricted interfaces have to be covered
by the corresponding body graph transformations. Thus, the morphisms between body
and import as well as import and remote export interface graphs remain consistent. Syn-
chronized transformations and reconfigurations are not consistent in general, but also
have to be restricted accordingly.
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5 Related Work

There are software solutions for software modeling in distributed settings such as EMF
CDO [10] and Poseidon for UML [11]. CDO provides one central or multiple model
repositories to store EMF models. These repositories are managed by central servers.
This solution is adequate as long as all developers shall have access to all models.
However, there might be situations where a restricted access to models is required.
For example, in open source developments, several teams develop their components
independently of each other. ([12] provides an overview on repository technologies in
general.)

In [13], an approach to distributed graphs and graph transformations is presented
which allows the distribution of graph parts, but does not support explicit interfaces.
In this sense, the distribution concepts of this approach and of EMF models are quite
similar. Distributed graph transformations may concern various local graphs, but are not
allowed to change remote graph parts. This distributed graph transformation model is
used for code generation based on PROGRES. In [14], Mezei et.al. present distributed
model transformations based on graph transformation concepts. Model transformations
are not distributed logically, but in the sense that they are performed in a distributed
way in order to increase efficiency. Hence, transformations are distributed automati-
cally. Again, interfaces are handled implicitly. View-oriented modeling has already been
specified by distributed graph transformation in [15]. However, the setting in this paper
is more general. Last but not least, there are several approaches to modular graph trans-
formation, e.g. distributed graph transformation units [16] where transformation units
are encapsulated in transformation modules. In contrast to our approach, transformation
modules encapsulate functionality only and no structures.

6 Conclusion

This paper presents a general approach to composite model transformations based on
distributed graph transformation concepts. Several kinds of composite structures are
discussed and mostly illustrated at distributed editor development with EMF and GMF.
A composite model transformation is considered as partial mapping of a composite
model and consists of a set of component transformations. Since we do not follow a
specific transformation approach, component transformations are allowed to be per-
formed by various approaches. Composite model transformation concentrates on some
kind of “synchronization points”, i.e. time points when all component transformations
have finished. Starting at some composite model, several component transformations
may take place in parallel. At certain time points, we can observe the composite model
as a whole and can check its consistency. Composite models are consistent if all com-
ponents are interrelated well.

Next we plan to define composite models with specific network structures as well
as composite model transformations performing specific activities. A very interesting
network structure is the component structure with explicit interfaces. Moreover, we like
to substantiate scenarios for distributed development. Especially, we are interested in
precisely defining transformations of composite EMF models consisting of components
with explicit interface definitions.
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Abstract. Triple graph grammars (TGGs) are a formal and intuitive
concept for the specification of model transformations. Their main ad-
vantage is an automatic derivation of operational rules for bidirectional
model transformations, which simplifies specification and enhances us-
ability as well as consistency.

In this paper we continue previous work on the formal definition of
model transformations based on triple graph rules with negative appli-
cation conditions (NACs). The new notion of partial source consistency
enables us to construct consistent model transformations on-the-fly in-
stead of analyzing consistency of completed model transformations.

We show the crucial properties termination, correctness and complete-
ness (including NAC-consistency) for the model transformations result-
ing from our construction. Moreover, we define parallel independence
for model transformation steps which allows us to perform partial-order
reduction in order to improve efficiency. The results are applicable to
several relevant model transformations and in particular to our example
transformation from class diagrams to database models.

Keywords: Model transformation, triple graph grammars, correctness.

1 Introduction

Model transformations based on triple graph grammars (TGGs) have been in-
troduced by Schürr in [1]. TGGs are grammars that generate languages of graph
triples, consisting of a source graph GS and a target graph GT , together with
a correspondence graph GC “between” them. From a TGG, operational rules
can be derived which define various model integration tasks, such as consis-
tency checking, consistency recovery and bidirectional model transformation.
Since 1994, several extensions of the original TGG definitions have been pub-
lished [2,3,4], and various kinds of applications have been presented [5,6,7].

For source-to-target model transformation, so-called forward transformation,
we derive rules which take the source graph as input and produce a corresponding
target graph. Major properties expected to be fulfilled for model transformations
are termination, correctness and completeness.

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 241–255, 2009.
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In a previous series of papers we focused on the formal definition of TGGs
and the analysis of model transformation properties: in [8], we showed how to
analyze bi-directional model transformations based on TGGs with respect to
information preservation, which is based on a decomposition and composition
result for triple graph grammar sequences. Moreover, completeness and correct-
ness of model transformations have been studied on this basis in [9]. In [10],
the formal results were extended to TGGs with negative application conditions
(NACs), a key concept for many model transformations (see [2]). In contrast to
the presented algorithm in [2] we use the concept of source consistency, where
the the transformation is controlled by a parsing of the source model, and we
introduced NAC consistency as an extension. In this way we could extend several
important results to the case of TGGs with NACs. Model transformations based
on triple rules with NACs were also analyzed in [11] for a restricted class of
triple rules with distinct kernel elements. For this restricted class of triple graph
grammars local confluence and termination can be analyzed and thus, model
transformations can be checked for functional behavior.

As shown in [12] and [10] the notion of source consistency ensures correct-
ness and completeness of model transformations based on triple graph grammars
with and without NACs. However, source consistency does not directly guide the
construction of the model transformation, because it has to be checked for the
complete forward sequence. This means that possible forward sequences have to
be constructed until one is found to be source consistent. Additionally, termina-
tion of this search is not guaranteed in general.

It is the main contribution of this paper to introduce a construction tech-
nique for correct and complete model transformation sequences on-the-fly, i.e.
correctness and completeness properties of a model transformation need not
to be analyzed after completion, but are ensured by construction. In our con-
struction, we check source consistency while creating the forward sequences and
define suitable conditions for termination. Thus, re-computations of model trans-
formations may be avoided. Moreover, we present a characterization of parallel
independence of forward transformation steps and use this notion for an opti-
mization of efficiency based on partial order reduction [13]. Summing up, the
paper provides the basis for efficient implementations of model transformation
tools that ensure termination, correctness and completeness.

The paper is structured as follows: Sec. 2 reviews the definition of triple
graph grammars with NACs from [10]. In Sec. 3 we introduce an on-the-fly
construction of source consistent forward transformation sequences, generalizing
the notion of source consistency to partial source consistency. The on-the-fly
construction is analyzed in Sec. 4 regarding correctness and completeness of the
model transformations, and termination of the construction. Moreover, parallel
independence of forward transformation steps is defined and used to find switch
equivalent model transformation sequences by performing an optimization based
on partial order reduction. Sec. 5 discusses related work, and Sec. 6 concludes
the paper. Our technical report [14] contains full definitions for Sec. 2 and full
proofs for the presented results in Secs. 3 and 4.
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2 Review of Triple Graph Grammars with NACs

Triple graph grammars [1] are a well known approach for bidirectional model
transformations. Models are defined as pairs of source and target graphs, which
are connected via a correspondence graph together with its embeddings into
these graphs. In [3], Königs and Schürr formalize the basic concepts of triple
graph grammars in a set-theoretical way, which is generalized and extended by
Ehrig et al. in [8] to typed, attributed graphs. In this section, we briefly review
triple graph grammars with negative application conditions (NACs) [2,10].

A triple graph G =(GS ←sG−− GC −tG−→ GT ) consists of three graphs GS , GC ,
and GT , called source, correspondence, and target graphs, together with two
graph morphisms sG : GC → GS and tG : GC → GT . A triple graph morphism
m = (mS , mC , mT ) : G → H consists of three graph morphisms mS : GS → HS ,
mC : GC → HC and mT : GT → HT such that mS ◦ sG = sH ◦ mC and
mT ◦ tG = tH ◦ mC . A typed triple graph G is typed over a triple graph TG by
a triple graph morphism typeG : G → TG .

colsattrsparent
:CT

:AC

next

Class
name: String

Attr
name: String
type: String

Column
name: String
type: String

next

Table
name: String

Fig. 1. Triple Type Graph for CD2RDBM

Example 1. Fig. 1 shows the type graph TG of the triple graph grammar GG for
our example model transformation from class diagrams to database models. The
source component of TG defines the structure of class diagrams while in its tar-
get component the structure of relational database models is specified. Classes
correspond to tables and attributes to columns. Throughout the example, orig-
inating from [2] and [8], elements are arranged left, center, and right according
to the component types source, correspondence and target. Morphisms starting
at a correspondence part are given by dashed arrows. Note that the case study
is equipped with attribution, which is based on the concept of E-graphs [15].

Triple rules synchronously build
up source and target graphs
as well as their correspondence
graphs, i.e. they are non-deleting.
A triple rule tr is an injective

(LS

trS ��

L LC
sL��

trC
��

tL �� LT )
trT ��

(RSR

tr ��
RC

sR

��
tR

�� RT )

L

m
��

� � tr �� R

n
��

(PO)

G
� �

t
�� H

triple graph morphism tr = (trS , trC , trT ) : L → R and w.l.o.g. we assume tr
to be an inclusion. Given a triple rule tr : L → R, an injective m : L → G, a
triple graph transformation step (TGT-step) G =

tr,m,n
====⇒ H from G to a triple

graph H is given by a pushout of triple graphs with comatch n : R → H and
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transformation inclusion t : G ↪→ H . A sequence of triple graph transformation
steps is called triple (graph) transformation sequence, short: TGT-sequence.
Furthermore, a triple graph grammar TGG = (S,TG ,TR) consists of a triple
start graph S, triple type graph TG and a set TR of triple rules.
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Source rule: Attr2ColumnS(n:String, t:String)
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name=n
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Fig. 2. Rules for the Model Tranformation Class2Table

Example 2 (Triple Rules). The top line of Fig. 2 shows two triple rules in short
notation. Left and right hand side of a rule are depicted in one triple graph.
Elements, which are created by the rule, are labeled with green ”++” and marked
by green line coloring. Rule ”Class2Table” synchronously creates a class in a class
diagram with its corresponding table in the relational database. Accordingly,
subclasses are connected to the tables of its super classes. The further rules
contain NACs which we introduce next.

The extension of the results of this paper to the case with attributes is straight
forward, because all results can be shown in the framework of weak adhesive HLR
categories [15]. According to [10] we present negative application conditions for
triple rules. In most case studies of model transformations source-target NACs
are sufficient and we regard them as the standard case.

Definition 1 (Negative Application Conditions). Given a triple rule tr =
(L → R), a general negative application condition (NAC) (N, n) consists of a
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triple graph N and an injective triple graph morphism n : L → N . A NAC with
n = (nS , idLC , idLT ) is called source NAC and a NAC with n = (idLS , idLC , nT )
is called target NAC. This means that source-target NACs, i.e. either source or
target NACs, prohibit the existence of certain structures either in the source or
in the target part only.

A match m : L → G is NAC consistent if there is no injective q : N → G
such that q ◦ n = m. A triple transformation G

∗⇒ H is NAC consistent if all
matches are NAC consistent.

(LS

trS ��
∅��

��

�� ∅)
��

(RS ∅�� �� ∅)
source rule trS

(∅
��

∅��

��

�� LT )
trT ��

(∅ ∅�� �� RT )
target rule trT

(RS

id ��
LC

trS◦sL��

trC ��

tL �� LT )
trT��

(RS RC
sR�� tR �� RT )
forward rule trF

Operational rules for model transformations are automatically derived from the
set of triple rules TR. From each rule tr of TR we derive a forward rule trF

for forward transformation sequences and a source rule trS for the construction
resp. parsing of a model of the source language. Analogously, we derive a target
rule trT for models of the target language and backward rules trB, which are
not presented explicitly. Furthermore, trS contains all source NACs of tr and
trF as well as trT contain all target NACs of tr. TRS , TRT and TRF denote
the sets of all source, target resp. forward rules derived from TR.

A set of triple rules TR with NACs and start graph ∅ generates a visual
language VL of integrated models, i.e. models with elements in the source, target
and correspondence component. Source language V LS and target language VLT

are derived by projection to the triple components, i.e. V LS = projS(V L) and
V LT = projT (V L). The set V LS0 of models that can be generated resp. parsed
by the set of all source rules TRS is possibly larger than VLS and we have
VLS ⊆ VLS0 = {GS | ∅ =⇒∗ (GS ← ∅ → ∅) via TRS}. Analogously, we have
V LT ⊆ V LT0 = {GT | ∅ =⇒∗ (GT ← ∅ → ∅) via TRT }.

Example 3 (Triple Rules with NACs). Examples for triple rules with NACs and
derived rules are given in Fig. 2. NACs are indicated by red frames with la-
bels “NAC” and they control the construction of attribute lists in the source
part and corresponding column lists in the target part. The first attribute of
a class is either created by the rule “Attr2Column” or by “Attr2NextColumn”
while rule “NextAttr2NextColumn” extends an existing list of attributes. Lists
of columns are initialized by rule “Attr2Column” only, because there is no in-
heritance structure in data base tables, and they are extended by the other two
rules. The source rule trS and forward rule trF of tr =“Attr2Column” are shown
in the right part of Fig. 2, where trS contains the source NAC (NAC1) and trF

the target NAC (NAC2) of tr . Forward transformations using the derived rules
according to Section 3 process the attribute lists in the natural order, i.e. starting
with the root element of a list.

As introduced in [8,10] we are now able to define model transformations based
on source consistent forward transformations G0 =⇒∗ Gn via (tr1,F , . . . , trn,F ),
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short G0 =
tr∗

F==⇒ Gn. Source consistency of G0 =
tr∗

F==⇒ Gn means that there is a

source sequence ∅ =
tr∗

S==⇒ G0 such that the sequence ∅ =
tr∗

S==⇒ G0 =
tr∗

F==⇒ Gn is
match consistent, i.e. the S-component of each match mi,F of tr i,F (i = 1..n) is
uniquely determined by the comatch ni,S of tr i,S , where tr i,S and tr i,F are source
and forward rules of the same triple rules tr i. Altogether the forward sequence
G0 =

tr∗
F==⇒ Gn is controlled by the corresponding source sequence ∅ =

tr∗
S==⇒ G0,

which is unique in the case of match consistency.

Definition 2 (Model Transformation based on Forward Rules). A model

transformation sequence (GS , G0 =
tr∗

F==⇒ Gn, GT ) consists of a source graph GS, a
target graph GT , and a NAC- as well as source consistent forward TGT-sequence
G0 =

tr∗
F==⇒ Gn with GS = proj S(G0) and GT = proj T (Gn).

A model transformation MT : VLS0 � VLT0 is defined by all model transfor-
mation sequences (GS , G0 =

tr∗
F==⇒ Gn, GT ) with GS ∈ VLS0 and GT ∈ VLT0.

Finally, let us note that we have shown in [8,10] that each TGT-sequence
G0 =tr

∗
=⇒ Gn with NACs can be decomposed into a match consistent TGT-

sequence ∅ =
tr∗

S==⇒ G0 =
tr∗

F==⇒ Gn with NACs and vice versa, which is the basis for
correctness and completeness of model transformations in Sec. 4.

3 On-the-Fly Construction of Model Transformations

In order to construct a model transformation sequence (GS , G0 =
tr∗

F==⇒ Gn, GT )
according to Def. 2 from a given GS there have been two alternatives up to now
[8,10]: Either we construct a parsing sequence ∅ =

tr∗
S==⇒ G0 first and then try to

extend it to a match consistent sequence ∅ =
tr∗

S==⇒ G0 =
tr∗

F==⇒ Gn, or we construct

directly a forward sequence G0 =
tr∗

F==⇒ Gn and check afterwards, whether it is
source consistent. This means that many candidates of forward transformation
sequences may have to be constructed before a source consistent one is found.

We present an on-the-fly check of source consistency using the new notion of
partial source consistency. The construction proceeds stepwise and constructs
partial source consistent forward sequences. For each step the possible matches
of model transformation rules are filtered, such that sequences that will not lead
to a source consistent one are rejected as soon as possible. Simultaneously, the
corresponding source sequences of the forward sequences are constructed on-
the-fly leading to complete source sequences for the complete forward sequences.
Intuitively, this can be seen as an on-the-fly parsing of the source model.

Partial source consistency of a forward sequence, which is necessary for a
complete model transformation, requires a corresponding source sequence such
that both sequences are partially match consistent. This means that the matches
of the forward sequence are controlled by an automatic parsing of the source
model, given by inverting the source sequence. We incrementally extend partially
source consistent sequences and can derive complete source consistent sequences
ensuring that all elements of the source model are translated exactly once.
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Definition 3 (Partial Match and Source Consistency). Let TR be a set
of triple rules with source and target NACs and let TRF be the derived set of
forward rules with target NACs. A NAC-consistent sequence

∅ = G00 =
tr∗

S==⇒ Gn0 ↪−gn−→ G0 =
tr∗

F==⇒ Gn

defined by pushout diagrams (1) and (3) for i = 1 . . . n with GC
0 = ∅, GT

0 = ∅
and inclusion gn : Gn0 ↪→ G0 is called partially match consistent, if diagram
(2) commutes for all i, which means that the source component of the forward
match mi,F is determined by the comatch ni,S of the corresponding step of the
source sequence with gi = gn ◦ tn,S . . . ti−1,S.

Li,S
� � tri,S ��

mi,S ��

Ri,S

ni,S��(1)

� � �� Li,F

(2) mi,F ��

� � tri,F �� Ri,F

ni,F��(3)

Gi−1,0
� �

ti,S

�� Gi,0
� �

gi

�� G0
� � �� Gi−1

� �

ti,F

�� Gi

A NAC-consistent forward sequence G0 =
tr∗

F==⇒ Gn is partially source consis-

tent, if there is a source sequence ∅ = G00 =
tr∗

S==⇒ Gn0 with inclusion Gn0 ↪−gn−→ G0

such that G00 =
tr∗

S==⇒ Gn0 ↪−gn−→ G0 =
tr∗

F==⇒ Gn is partially match consistent.

Remark 1
1. If gn = idG0 , partial match consistency coincides with match consistency.
2. For n = 0 the partially match consistent sequence is given by g0 : G00 ↪→ G0.

Example 4 (Partial Match and Source Consistency). Let us consider a sequence
starting with triple graph G0 (depicted in the center of Fig. 3) which represents
a class diagram consisting of one class with two linked attributes. G0 will be
mapped to a corresponding table with two linked columns. Note that for this
example, we assume the triple rules shown in Fig. 2, but first without NACs.

Fig. 3. Step 1 of the partially match-consistent sequence

In the first step (i = 1), shown in Fig. 3, we apply rule tr1,S = Class2TableS

to the empty start graph G00 yielding the source graph G10 which contains
one class. Obviously, G10 is included in G0. Hence, diagram (2) commutes for
step 1. The corresponding forward rule tr1,F = Class2TableF is applied to G0
and maps the class node to a table node, resulting in G1. For step i = 2 (not
depicted), we apply the source rule tr2,S = Attr2ColumnS to graph G10 which
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adds an attribute and links it to the class. The result graph is G20. Again, G20 is
included in G0, which is included in G1. The corresponding forward rule tr2,F =
Attr2ColumnF is applied to G1, resulting in G2, where the upper attribute of
the class now is mapped to a column of the table.

In the third step (i = 3), shown in Fig. 4, we apply the same source rule once
more, i.e. tr3,S = Attr2ColumnS , and add a second attribute to G20, resulting
in source graph G30. This graph is included in G0, which in turn is included
in G2. Diagram (2) commutes for step 3. The application of the corresponding
forward rule tr3,F = Attr2ColumnF at the co-match of tr3,S yields G3, where
now also the second attribute is mapped to a column of the table.

Fig. 4. Step 3 of the partially match-consistent sequence

Since for each considered step, diagram (2) of Def. 3 commutes, we conclude

that sequence ∅ = G00
tr1,S=⇒ G10

tr2,S=⇒ G20
tr3,S=⇒ G30 ↪−gn−→ G0

tr1,F=⇒ G1
tr2,F=⇒

G2
tr3,F=⇒ G3 is partially match consistent. Hence, the forward sequence G0

tr1,F=⇒
G1

tr2,F=⇒ G2
tr3,F=⇒ G3 is partially source consistent. Note that the forward se-

quence, although being partially source consistent, cannot be extended to a
complete source consistent sequence. The reason is that after the third step,
we do not find a new partially source consistent match for some tr4,F . We will
analyze in Ex. 6 what went wrong and how NACs in triple rules can help to
improve the construction of valid source consistent sequences.

In order to provide an improved construction of source consistent forward se-
quences we characterize valid matches by introducing the following notion of
forward consistent matches. The formal condition of a forward consistent match
is given by a pullback diagram where both matches satisfy the corresponding
NACs. Intuitively, it specifies that the effective elements of the forward rule are
matched for the first time in the forward sequence (see Interpretation 1 below).

Definition 4 (Forward Consistent Match). Given a partially match con-

sistent sequence ∅ = G00 =
tr∗

S==⇒ Gn−1,0 ↪−gn−→ G0 =
tr∗

F==⇒ Gn−1 then a match mn,F :
Ln,F → Gn−1 for trn,F : Ln,F → Rn,F is called
forward consistent if there is a source match
mn,S such that diagram (1) is a pullback and
the matches mn,F and mn,S satisfy the corre-
sponding target and source NACs, respectively.

Ln,S
� � ��

mn,S

��

Rn,S
� � �� Ln,F

(1) mn,F

��
Gn−1,0

� �

gn−1

�� G0
� � �� Gn−1
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Interpretation 1. The pullback property of (1) means that the intersection of
the match mn,F (Ln,F ) and the source graph Gn−1,0 constructed so far is equal
to mn,F (Ln,S), the match restricted to Ln,S, i.e. we have

(2) : mn,F (Ln,F ) ∩ Gn−1,0 = mn,F (Ln,F ).

This condition can be checked easily and mn,S : Ln,S → Gn−1,0 is uniquely
defined by restriction of mn,F : Ln,F → Gn−1. Furthermore, as a direct conse-
quence of (2) we have

(3) : mn,F (Ln,F \ Ln,S) ∩ Gn−1,0 = ∅.

On the one hand, the source elements of Ln,F \ Ln,S - called effective elements -
are the elements to be transformed by the next step of the forward transformation
sequence. On the other hand, Gn−1,0 contains all elements that were matched
by the preceding forward steps, because matches of the forward sequence coin-
cide on the source part with comatches of the source sequence. Hence, condition
(3) means that the effective elements were not matched before, i.e. they do not
belong to Gn−1,0.

Example 5 (Forward Consistent Match). In the partial match consistent se-
quence from Ex. 4, all forward rule matches are forward consistent. Consider
for example the situation in step 3, shown in Fig. 5, where all mappings have
been indicated explicitly by equal numbers. We can see that L3,F ∩ G20 = L3,S ,
which implies that Diagram (1) from Def. 4 is a pullback. Analogously, the
matches from forward rules in steps 1 and 2 are also forward consistent.

Fig. 5. Forward consistent match from step 3

In the following improved construction of model transformations, we check the
matches to be forward consistent. This allows us to filter the available matches
to those which can lead to correct model transformations while those matches
that cannot lead to correct model transformations are rejected.

Theorem 1 (On-the-Fly Construction of Model Transformations).
Given a triple graph G0 with GC

0 = GT
0 = ∅, execute the following steps:

1. Start with G00 = ∅ and g0 : G00 ↪→ G0.
2. For n > 0 and an already computed partially source consistent sequence

s = 〈G0 =
tr∗

F==⇒ Gn−1 〉 with ∅ = G00 =
tr∗

S==⇒ Gn−1,0 and embedding gn−1 :



250 H. Ehrig et al.

Gn−1,0 ↪→ G0 find a (not yet considered) forward consistent match for some

trn,F leading to a partially source consistent sequence G0 =
tr∗

F==⇒ Gn−1 =
trn,F===⇒

Gn with G00 =
tr∗

S==⇒ Gn−1,0 =
trn,S===⇒ Gn0 and embedding gn : Gn0 ↪→ G0. If

there is no such match, s cannot be extended to a source consistent sequence.
Repeat until gn = idG0 or no new forward consistent matches can be found.

3. If the procedure terminates with gn = idG0 , then G0 =
tr∗

F==⇒ Gn is source

consistent leading to a model transformation sequence (GS , G0 =
tr∗

F==⇒ Gn, GT )
with GS and GT being the source and target models of G0 and Gn.

The on-the-fly construction does not restrict the choice of a suitable n, trn,F ,
and match in Step 2. Hence, different search algorithms are possible, e.g.

– Depth First: If we increase n after every iteration, and only decrease n by 1
if no more new forward consistent matches can be found, a depth-first search
is performed.

– Breadth First: If we increase n only after all forward consistent matches for
n are considered, the construction performs a breadth-first search.

Depending on the type of the model transformation, other search strategies may
be reasonable. In Sec. 4, we show how to make the construction more efficient
by analyzing independent transformations.

t5:cols

s9:parent

c2:
AC

s8:next

s1:Class
name=

s5:Attr
name= _
type=Integer

t2:Column
name= -
type=String

t7:next

s4:Class
name=

s3:Attr
name=
type=String

s2:Attr
name= -
type=String

s7:attrs

s6:attrs
s10:attrs

c3:
AC

c5:
AC

c1:
CT

t1:Table
name=

t3:Column
name=
type=String

t4:Column
name= _
type=Integer

c4:
CT

t6:cols
t8:cols

t9:next

Fig. 6. G5 of Forward Sequence

Example 6 (On-the-Fly Construction). Let us assume we have found already
the partial match consistent sequence from Ex. 4 by depth-first search. All
forward rule matches found so far are forward consistent. But after the third
rule application step (i = 3), we do not find a new partial source consistent
match for some tr4,F . We cannot extend the sequence to a source consis-
tent one, because there is no triple rule for inserting a next link between
two existing attributes. The mistake we made was to use the wrong rule
Attr2ColumnS for the insertion of the second attribute. If we had used rule
NextAttr2NextColumnS instead, we would have constructed a sequence which
could be extended to a source consistent sequence. If a sequence cannot be
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extended to a source-consistent one, we have two choices: either, we have to
try to apply a different rule in a previous step, or we restrict the applicability
of our triple rules, e.g. by adding negative application conditions. Here, we
can use the NACs in Fig. 2, which ensure that only one attribute-adding
rule is applicable in each step. An example for a source-consistent sequence,
constructed by partially source consistent sequences according to Thm. 1, is
the model transformation (GS = G0,S , G0 =

tr∗
F==⇒ G5, GT = G5,T ), where G5

(shown in Fig. 6) is generated by the forward sequence G0 =Class2Table=======⇒ G1

=Attr2Col=====⇒ G2 =Subclass2Table=========⇒ G3 =NextAttr2NextCol============⇒ G4 =Attr2NextCol=========⇒ G5, and

G0 is generated by the corresponding source sequence ∅ =
tr∗

S==⇒ G0. All elements
in Fig. 6 are labeled with numbers. The following table specifies the matches
and the created objects for each transformation step. Note that we cannot
accidentally apply the rule Class2TableF at subclasses, because in this case
the transformation will not become source consistent - the edge of the type
“parent” will be missing.

Source Sequence Elements Forward Sequence Elements
Step Matched Created Matched Created

1 s1 s1 c1,t1
2 s1 s2,s7 s1,s2,s7,c1,t1 c2,t2,t5
3 s1 s4,s9 s1,c1,t1,s4,s9 c4
4 s1,s2,s7 s3,s8 s1-s3,s6-s8,c1,t1,t2,t5 c3,t3,t6,t7
5 s4 s5,s10 s4,s5,s10,c4,t1,t3,t6 c5,t4,t8,t9

4 Analysis and Improvement of the Construction

In this section, we analyze the on-the-fly construction in Thm. 1 regarding cor-
rectness, completeness, and termination of the model transformations and show
how to improve efficiency by parallel independence, which allows partial order
reduction.

The on-the-fly construction is correct, which means that if it terminates both
the source and target models of the resulting model transformations are valid
models of the source and target languages, respectively. Moreover, it is also
complete, which means that for any source model the procedure can find a
model transformation sequence leading to a corresponding target model.

Theorem 2 (Correctness and Completeness)

– Correctness: If the on-the-fly construction terminates with gn = idG0 , then

the resulting model transformation (GS , G0 =
tr∗

F==⇒ Gn, GT ) is correct, i.e.
GS ∈ V LS and GT ∈ V LT .

– Completeness: For each GS ∈ V LS there exists GT ∈ V LT with a model
transformation (GS , G0 =

tr∗
F==⇒ Gn, GT ), which can be obtained by the on-the-

fly construction.
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Remark 2. Dually, for each GT ∈ V LT there exists GS ∈ V LS where the cor-
responding model transformation can be obtained dually by partially target
consistent sequences.

In general, the termination of the on-the-fly construction cannot be guaranteed.
But for the case that all source rules create new elements also the termination
of the on-the-fly construction is ensured.

Theorem 3 (Termination). The on-the-fly construction of a triple graph G0
with GC

0 = GT
0 = ∅ terminates if all source rules tri,S are creating, i.e. Ri,S \

Li,S �= ∅.

Example 7 (Termination). The on-the-fly construction of triple graph G5 in
Ex. 6 terminates because all of the used source rules in the source sequence
are creating, which can be seen in the left column of the table.

In the following, we describe how to improve efficiency by analyzing parallel
independence of extensions. Two partially match consistent sequences which
differ only in the last rule application are parallel independent if the last rule
applications are parallel independent both for the source and forward sequence,
and, in addition, if the embeddings into the given graph G0 are compatible.

Definition 5 (Parallel Independence of Partially Match Consistent
Extensions). Two partially match consistent sequences

∅ = G00 =
tr∗

S==⇒ Gn0 =
tr1,S===⇒ Gn+1,0 ↪−gn+1−−−→ G0 =

tr∗
F==⇒ Gn =

tr1,F===⇒ Gn+1 and

∅ = G00 =
tr∗

S==⇒ Gn0 =
tr2,S===⇒ G′

n+1,0 ↪−g′
n+1−−−→ G0 =

tr∗
F==⇒ Gn =

tr2,F===⇒ G′
n+1

are parallel independent if Gn0 =
tr1,S===⇒ Gn+1,0 and Gn0 =

tr2,S===⇒ G′
n+1,0 as well

as Gn =
tr1,F===⇒ Gn+1 and Gn =

tr2,F===⇒ G′
n+1 are parallel independent leading to the

diagram (1S) and (1F ), and diagram (2) is a pullback.

Gn0
tr1,S ��

tr2,S

��

Gn+1,0

(1S) tr2,S

��
G′

n+1,0 tr1,S

�� Gn+2,0

Gn

tr1,F ��

tr2,F

��

Gn+1

(1F ) tr2,F

��
G′

n+1 tr1,F

�� Gn+2

Gn0
� � t1,S ��

� �
t2,S

��

Gn+1,0

(2)

� �

gn+1

��
G′

n+1,0
� �

g′
n+1

�� G0

In the case of parallel independence of the extensions, both extensions can be
extended both in the source and forward sequences leading to two longer partially
match consistent sequences which are switch-equivalent.

Theorem 4 (Partial Match Consistency with Parallel Independence).

If ∅ = G00 =
tr∗

S==⇒ Gn0 =
tr1,S===⇒ Gn+1,0 ↪−gn+1−−−→ G0 =

tr∗
F==⇒ Gn =

tr1,F===⇒ Gn+1 and

∅ = G00 =
tr∗

S==⇒ Gn0 =
tr2,S===⇒ G′

n+1,0 ↪−g′
n+1−−−→ G0 =

tr∗
F==⇒ Gn =

tr2,F===⇒ G′
n+1 are parallel

independent then the following upper and lower sequences are partially match
consistent and called switch equivalent.
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Gn+1,0
tr2,S

�����
�

���
�

Gn+1
tr2,F

�����
�

���
�

∅ = G00
tr∗

S �� Gn0

tr1,S 		����
����

tr2,S
�����

�
���

�
Gn+2,0

� � �� G0
tr∗

F �� Gn

tr1,F 

����
����

tr2,F
��

���
�

���
�

Gn+2

G′
n+1,0

tr1,S

������
����

G′
n+1

tr1,F

		����
����

Example 8 (Parallel Independence). Consider the sequence of rule applications
in Ex. 6. Here, we may switch step 2 and step 3 without changing the result
G5 since the sequences ∅ = G00 =Class2TableS========⇒ G10 =Attribute2ColumnS============⇒ G2,0 ↪−g2−→
G0 =Class2TableF========⇒ G1 =Attribute2ColumnF=============⇒ G2 and ∅ = G00 =Class2TableS========⇒ G′

10

=Subclass2TableS==========⇒ G′
2,0 ↪−g′

2−→ G0 =Class2TableF========⇒ G1 =Subclass2TableF==========⇒ G′
2 are parallel

independent.

We can analyze parallel independence on-the-fly for the forward steps which are
applicable to the current intermediate triple graph. Based on the induced par-
tial order of dependencies between the forward steps we can apply several tech-
niques of partial order reduction in order to improve efficiency. This means that
we can neglect remaining switch-equivalent sequences, if one of them has been
constructed. This improves efficiency of corresponding depth-first and breadth-
first algorithms. For an overview of various approaches concerning partial order
reduction see [13], where also benchmarks show that these techniques can dra-
matically reduce complexity.

5 Related Work and Evaluation of Our Approach

Since 1994, several extensions of the original TGG definitions have been pub-
lished [2,3,4], and various kinds of applications have been presented [5,6,7]. For
an extensive overview see [2]. A new extension of TGGs towards declarative,
pattern-based model transformation is presented in [16], where triple rules are
derived from triple graph constraints.

Furthermore, Kindler and Wagner [7] discuss that several applications of
model transformations based on TGGs require an efficient strategy for finding
a correct transformation sequence because of the non-deterministic character of
the matching of forward rules. A new strategy for controlling the construction
of a model transformation was given in [2], where elements of the source model
are distinguished for each step of the model transformation whether they were
translated so far. In this paper we have formalized this separation by specifying
which elements were matched so far and we call the new matched elements in
an intermediate model transformation step effective elements (see Def. 4).

As stated in Sec. 1 this paper extends concepts and results of our previous
papers [8,11,9,10]. In the following we explain how our approach complies with
the design principles of the “Grand Research Challenge of the Triple Graph
Grammar Community”, which was formulated by Schürr et al. in [2]:

1. Correctness: Model transformations shall be correct in the way that when-
ever the algorithm translates a source model GS into a target model GT then
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there has to be a triple graph G = (GS ← GC → GT ) ∈ VL. This property
is shown in Thm. 2 for an algorithm based on our construction in Thm. 1.

2. Completeness and Termination: Completeness means that the algorithm
translates each model GS ∈ VLS . This property subsumes Termination.
Both properties are ensured for our construction by Thm. 2 and Thm. 3 if
triple rules are creating on the source part.

3. Efficiency: Model transformations shall have polynomial space and time
complexity with exponent k the maximal number of elements of a rule. Our
construction does not guarantee this requirement in general. But note that
the algorithm in [2] only meets this condition because it avoids backtracking
by aborting a translation when the chosen sequence of model transforma-
tion steps does not lead to a target model, even if there may be a possible
sequence. Therefore, completeness is not achieved in [2]. By Thm. 4 we are
able to perform partial order reduction, which has shown to provide massive
power for the reduction of complexity (see e.g. [13]).

4. Expressiveness: Features that are urgently needed for solving practical prob-
lems like NACs and attribute conditions shall be captured. Both, NACs and
attributes are handled by our approach. It remains open, whether our restric-
tion to source-target NACs rules out some interesting practical applications.

6 Conclusion and Future Work
In this paper we have given a new formal construction of model transforma-
tions based on triple graph grammars including crucial properties like NAC-
consistency, correctness, completeness and a sufficient condition for termination.
In contrast to previous formal constructions in [1,8,10] the new construction
avoids a parsing of the source graph beforehand or afterwards, but allows to
construct simultaneously NAC-consistent forward and source transformation se-
quences leading to an on-the-fly construction of model transformations. Moreover,
we have shown correctness and completeness of this on-the-fly construction and
termination for triple rules with non-identical source part. Currently, these con-
structions are being implemented by us based on Mathematica libraries [17].

Finally, we studied parallel independence of model transformation steps, which
allows us to perform partial-order reduction in order to improve efficiency of the
construction. We have not analyzed local confluence in this paper, which - to-
gether with termination - leads to functional behaviour of the model transforma-
tion. We are confident that our concept of parallel independence can be extended
to study critical pairs and local confluence for model transformation sequences
based on existing approaches for graph transformation systems [15] including tool
support by AGG [18]. Furthermore, additional correctness criteria shall be de-
veloped for the case that source and target languages VLS and VLT are defined
independently of the triple graph language VL generated by the TGG .
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Abstract. QVT is the OMG standard language for specifying model-
to-model transformations in MDA. Even though it plays a crucial role
in model driven development, there are scarce tools supporting the ex-
ecution of its sublanguage QVT-Relations, and none for its analysis or
verification. In order to alleviate this situation, this paper provides a for-
mal semantics for QVT-Relations through its compilation into Coloured
Petri nets, enabling the execution and validation of QVT specifications.
The theory of Petri nets provides useful techniques to analyse trans-
formations (e.g. reachability, model-checking, boundedness and invari-
ants) and to determine their confluence and termination given a starting
model. We also report on using CPNTools for the execution, debugging,
and analysis of transformations, and on a tool chain to transform QVT-
Relations specifications into the input format of CPNTools.

1 Introduction

Model-to-model transformation consists in translating a model from a source
to a target language. This process is at the core of Model-Driven Engineering
(MDE), where models are used to generate code, test, document and verify
the applications to be built. Among the existing model-to-model transformation
languages, QVT [15] stands out for being the transformation standard proposed
by the OMG in the framework of the Model-Driven Architecture (MDA). QVT
has a hybrid declarative/imperative nature. The declarative part provides a user-
friendly, high-level language called Relations (QVT-R) whose semantics is given
by its compilation into a lower-level language called Core (QVT-C). In its turn,
the imperative part provides a language called Operational mappings (QVT-O).

Despite the popularity of the QVT standard, few tools support the execution
of QVT-R [12,13], and even less its verification or validation. This fact hinders
its use in industry, where the complexity of models and transformations makes
essential the development of tools and techniques for transformation analysis,
which can be only built on the basis of a formal semantics for the transfor-
mation language. At present, QVT-R is given a semantics in terms of QVT-C,
whose semantics is in its turn semi-formally defined. Thus, the MDE community
would benefit from a clean, formal semantics for QVT-R enabling the analysis
of transformations and serving as a reference for tool builders.
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In this sense, Coloured Petri nets (CP-nets or CPNs in short) [8,9] is a for-
malism for modelling, simulation and analysis of systems in which concurrency,
communication and synchronization are salient features. They extend normal
Petri nets with data types, allowing tokens to carry data. CPNs have developed
a rich body of theoretical results that permit analysing dynamic properties of
the systems, like boundedness (number of tokens a net may have), invariants,
transition persistence (i.e. conflicts) or reachability [8]. Many of these properties
rely on the occurrence graph, a representation of the state space that can be
model checked and used to determine termination and confluence of a trans-
formation relative to a starting model. The CP-nets community has developed
a number of tools – CPNTools [9] being the best known one – with a level of
maturity that makes them usable for industrial projects.

In the present work, we profit from the theory and tools developed for this
formalism by providing a formal semantics for QVT-R in terms of CPNs. This
opens the door to interesting analysis possibilities, and builds a bridge between
the MDE and the Petri nets communities. On the practical side, we leverage
CPNTools for the execution and analysis of QVT transformations, overcoming
the lack of support for QVT-R. The explicit and visual nature of CPN models
allows debugging and validating the transformation execution graphically, while
their executable semantics may serve as a reference implementation for tool
builders. A prototype tool chain, based on the QVT-R parser of MediniQVT [12]
and the code generation facilities of JET, provides automatic translation of QVT-
R specifications, meta-models and models into the input format of CPNTools,
allowing the execution, debugging, verification and validation of transformations.

Paper organization. Sections 2 and 3 introduce QVT-R and CPNs. Section 4
shows the compilation from QVT-R into CPNs. Section 5 presents our supporting
architecture. Section 6 illustrates the use of CPNs for verification and validation
of transformations. Section 7 compares with related research and Section 8 ends
with the conclusions and lines for future work.

2 QVT-Relations

QVT-R is the highest-level of abstraction language of the QVT OMG stan-
dard [15]. It has a declarative nature and a dual graphical and textual syntax.
In this language, a model-to-model transformation is made of relations with two
or more domains (usually two). Domains are described by patterns similar to
object diagrams. When a domain is marked as enforced, the models to which
it is applied may be modified in order to satisfy the relation; whereas if it is
checkonly, they are just inspected to check for disagreements.

Relations may contain when and where clauses. The former express conditions
under which the relation needs to hold. They usually refer to other relations,
to which they pass a number of parameters that appear as variables in the
current relation. Where clauses may call other relations, similar to function calls
in traditional programming. In addition, relations may be top or non-top level.
The execution of a transformation requires that all its top-level relations hold,
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whereas the non-top level ones only need to hold when invoked from the where
section of other relations.

QVT-R uses the check-before-enforce (CBE) semantics [15]. Thus, before cre-
ating new objects, it is checked whether existing ones satisfying the constraints
of the relation can be reused. Transformations may declare keys as unique iden-
tifiers for objects. These are used by the CBE semantics to decide whether to
create a new object. The semantics of QVT-R is given by its compilation into
QVT-C, relying on the synthesis of tracing mechanisms.

For illustrative purposes, we provide a simple transformation from a tiny
subset of UML class diagrams into relational database schemas. The example is
a simplification of the one given in the QVT standard [15]. The meta-models for
the source and target languages are shown in Fig. 1.

Fig. 1. The source and target meta-models

The QVT-R transformation is shown next. It defines three relations, two
of them being top-level, and an auxiliary function. All relations enforce the
RDBMS domain. The first one checks that for each persistent package in a UML
model, there is a schema with same name (given by the pn String variable).
The second one states that for each persistent class there must be a table with
same name. The when section specifies that this relation has to hold only if
relation PackageToSchema holds for the package and schema to which the class
and table belong. The where clause asks the AttributeToColumn relation to hold
for the class, table and an empty prefix. Finally, the last relation requires that
for each attribute of a class there is a column with a name made of the received
prefix plus the class name. The type of the column is calculated by the auxiliary
function PrimitiveTypeToSqlType.

transformation umlToRdbms(uml:TinyUML, rdbms:TinyRDBMS) {
top relation PackageToSchema { // maps each package to a schema
pn: String;
checkonly domain uml p:Package {name=pn, kind=‘persistent’};
enforce domain rdbms s:Schema {name=pn};

}
top relation ClassToTable { // maps each persistent class to a table
cn, prefix: String;
checkonly domain uml c:Class {namespace=p:Package {},

kind=‘persistent’, name=cn};
enforce domain rdbms t:Table {schema=s:Schema {}, name=cn};
when { PackageToSchema(p, s); }
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where { prefix=‘’; AttributeToColumn(c, t, prefix); }
}
relation AttributeToColumn { // maps an attribute to a column
an, pn, cn, sqltype: String;
checkonly domain uml c:Class {attribute=a:Attribute {name=an, typeAtt=pn}};
enforce domain rdbms t:Table {column=cl:Column {name=cn, typeCol=sqltype}};
primitive domain prefix:String;
where { cn = if (prefix = ‘’) then an else prefix+‘ ’+an endif;

sqltype = PrimitiveTypeToSqlType(pn); }
}
query PrimitiveTypeToSqlType(primitiveType:String):String {
if (primitiveType=‘INTEGER’) then ‘NUMBER’
else if (primitiveType=‘BOOLEAN’) then ‘BOOLEAN’ else ‘VARCHAR’ endif
endif;}

}

3 Coloured Petri Nets

CPNs is a popular formalism for describing concurrent systems, which is both
state and action oriented. Here we give a brief introduction, see [8,9] for more
details. A CPN model can be seen as a bipartite graph made of two kinds of
nodes: places and transitions. The former represent the states of the net and
are depicted as ovals with the name inside. Transitions model actions and are
depicted as labelled rectangles. Places can be connected to transitions, and tran-
sitions to places, by means of arcs. As an example, Fig. 2 shows to the left a
CPN with three places and one transition (exported from CPNTools). The net
actually models the relation PackageToSchema of the example transformation.

tr_ps^^
[{PackageId=p,
SchemaId=p}] tr_ps

{id=p,name=pn}
PackageToSchema

[not(mem tr_ps 
{PackageId=p,SchemaId=p})]

Trace
PackageToSchema
I/O

1`[]

ListTPackageToSchema

Schema

Schemas Schema

1`{id=1,kind="persistent",
name="s1"}

Package

Schemas

I/O

{id=p,
kind="persistent",
name=pn}

{id=p,
kind="persistent",
name=pn}

Package
PackagesPackages

1 1`[]

1

1`{id=1,kind="persistent",name="s1
"}

Fig. 2. Example CPN model: net (left) and colour set declarations (right)

Each place has a data type defining the kind of data it can contain, whose
name is usually depicted next to the place. Data types (called colour sets) are
declared in a language based on Standard ML, called CPN-ML [9]. The lan-
guage allows declaring simple colour sets – like unit, booleans, integers, strings
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and enumerated – and compound ones, like products, records, lists, unions and
subsets. The declarations for the example appear to the right of Fig. 2.

The state of a CPN is called its marking, and consists of a number of tokens
located in the places. Each token contains data according to the colour set of the
place where it is located. Places contain multi-sets of tokens. For the example,
the Package and the TracePackageToSchema places contain one token each. The
former is a record with value {id=1, kind=“persistent”, name=“s1”}, while
the latter is the empty list []. The number of tokens in a place is indicated in
a circle near the place, whereas the cardinality of each token in a multi-set is
shown explicitly before the element value (e.g. 1’[]).

Transitions are the dynamic elements in the net. An incoming arc to a transi-
tion indicates that the transition, if fired, will remove tokens from the connected
places. Similarly, an outgoing place from a transition indicates that firing the
transition will put tokens into the place. The tokens to be added or removed are
given by the arc expressions. Transitions have a guard, shown between brackets,
which is a boolean expression made of variables typed on the colour sets. The
guard in the example checks the membership of a record in the tr ps list.

A binding of one transition is an assignment of values to the variables in the
incoming arcs and the guard. A transition is enabled if there is a valid binding for
it, i.e. if the incoming places have enough tokens to bind the variables appearing
in the incoming arcs, the variables in the guard are bound, and the expression
evaluates to true. In the example, transition PackageToSchema is enabled (and
hence highlighted) because the arc from Package demands one token with value
“persistent” in the field kind (which exists), while the guard demands a token
containing a list without any record whose two fields are equal to p. Hence, the
transition is enabled with the binding b1 = 〈p = 1, pn =“s1”, tr ps = []〉.

An enabled step is a finite, non-empty multi-set of bindings enabling certain
transitions. An enabled step can occur, changing the marking of the enabled
transitions by the multi-set. In this way, the tokens needed to bind the incoming
arcs of the transitions are removed, while tokens are created in the output places
according to the expressions of the outgoing arcs. In our example, the only
enabled step is made of the binding b1 shown before. Firing the transition: (i)
removes one token from Package, but then creates a token with same data there;
(ii) adds one token to Schema with same name and id as the token from Package;
and (iii) removes the token from the trace, but puts it back adding a new record
at the end of the list. Note that firing the transition prevents it from firing again
for the same binding, as the list in the trace place would contain a record making
the guard expression false.

In addition to execution, CPNs have developed a rich body of theoretical
results enabling analysis. Some of them are based on the occurrence graph, which
contains which is a graph representation of the reachable markings [8]. Section 6
will use some CPN analysis techniques to verify QVT-R transformations.

CPNTools offers additional hierarchical and modular modelling capabilities.
A large net can be divided into pages that can be connected by means of Fusion
Places and Substitution Transitions. The latter are transitions that stand for a
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whole page of the net structure. For example, the net in Fig. 2 is represented as
a single transition in Fig. 6, where we only show the interface places (marked In,
Out, or I/O in the subnets). A fusion place is a place that has been equated with
one or more other places, so that the fused places act as a single place with a
single marking. We say that all these places belong to the same Fusion Set. For
example, the place Package in Fig. 2 is the same as the place Package in Fig. 3,
and both belong to the fusion set “Packages”. Thus, these two mechanisms allow
the modelling in different levels of abstraction (with the substitution transitions)
and using multiple views (with the pages and fusion places).

4 Compiling QVT-Relations into CPNs

In this section we describe the compilation of QVT-R specifications into CPNs.
We use the modular capabilities of CPNTools to create: two pages with places
to store the objects of the source and target models; one page for each relation
in the transformation; and a high-level view of the transformation with one
substitution transition for each relation (linked to the corresponding page) and
places depicting the when and where dependencies between relations.

4.1 Compiling the Meta-models and the Initial Model

The first step is to compile the source and target meta-models into colour sets
declarations. For this purpose, we calculate the transitive closure of the inher-
itance relations in the meta-models so as to copy the attributes and relations
from parent to children classes. Then a record is generated for each class and
association in the meta-models. The record declares one field for each attribute
in the class, plus an additional field id to store a unique object identifier. In
case of an association, the record contains the identifier of the classes in each
association end, as well as the attributes in case of an associative class.

As an example, the declarations for classes Package and Schema were shown
in Fig. 2. As we will see in next subsections, further definitions will be added to
store the traces of the relations, and parameter passing.

Next, we create one place for each created record, and populate it with tokens
representing the model to be transformed. These tokens hold the values of each
object attribute. We split the places of the source and target meta-models in
two different pages to enhance readability. Each place is assigned a fusion set
so that it can be referenced from other pages. Fig. 3 depicts a TinyUML model
to be transformed, and the corresponding generated places and initial marking.
The model contains two classes with equal name (since the meta-model allows
this), having one attribute each with equal name.

4.2 Compiling the Relations

Next, we compile the relations. We restrict to the case with one domain enforced
and the other checkonly, and neglect CBE semantics and keys for the moment.
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ClassAttribute

PackageClass

1`{id=4,name="a1",
typeAtt="INTEGER"}++
1`{id=5,name="a1",
typeAtt="BOOLEAN"}

1`{id=2,kind="persistent",
name="c1"}++
1`{id=3,kind="persistent",
name="c1"}

1`{id=1,kind="persistent",
name="s1"}

Package

PackagesPackages Package

Class

ClassesClasses

Attribute
AttributesAttributes

Class

Attribute

Class-Attribute
Class-AttributeClass-Attribute

Package-Class
Package-ClassPackage-Class

1`{owner=2,attribute=4}++
1`{owner=3,attribute=5}

1`{namespace=1,elements=2}++
1`{namespace=1,elements=3}

1

1`{id=1,kind="persistent",name="s1
"}

2

1`{id=2,kind="persistent",name="c1
"}++
1`{id=3,kind="persistent",name="c1
"}

2

1`{id=4,name="a1",typeAtt="INTEGE
R"}++
1`{id=5,name="a1",typeAtt="BOOLE
AN"}

2

1`{owner=2,attribute=4}++
1`{owner=3,attribute=5}

2

1`{namespace=1,elements=2}++
1`{namespace=1,elements=3}

Fig. 3. Source model (left). Generated places and initial marking (right).

For each relation, we create a transition with its name in a different page.
For each element in the relations domain, we create a place in the fusion set
corresponding to the type of the element. If the domain is checkonly, the place
is connected to the transition with a self-loop, whereas if it is enforced, the
transition is connected to the place. The arc inscriptions contain variables with
same name as in the QVT relation, binding the different fields of the record. In
checkonly domains we make the following simplification: if the attributes of an
object are not accessed, and the object is connected to another through a link
l, then we do not test if the object is present, but just that there is a link l.

Finally, for each relation we generate a colour set for its trace which contains
the identifiers of all objects appearing in the relation. This conforms to the
standard semantics of the compilation of QVT-R into QVT-C [15]. Moreover,
for each relation, we create one place with type equal to the list of traces of the
relation. The transition inspects this place in order to check that the identifiers
of the objects in the relation are not in the list. This avoids enforcing a relation
more than once for the same binding. When the transition fires, the list of traces
is added a new element with the processed objects. Later, we will also use the
trace for the translation of the when clause.

Fig. 2 showed the transition generated for relation PackageToSchema. The
trace place contains one token with the empty list. The read arc takes such list,
the guard checks that a record with the identifiers of the involved objects is
not present, and the write arc adds the record to the list when the transition
fires. For simplicity, the created schema object is given the same identifier as the
package, but in our implementation an ML function calculates unique identifiers.

4.3 Compiling the Where and When Clauses

After generating one transition per relation, we process the when and where
clauses. The latter usually includes calls to other relations using as parameters
bound objects of the current relation. For this reason, we create a colour set with
fields corresponding to the parameters, and create a place with that type in a
new fusion set. We add an arc from the transition to the place that writes one
token with the given parameter values when the transition fires. Another place
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in the same fusion set is added to the page of the called relation, together with
self-loop arcs.

As an example, Fig. 4 shows the transition generated for relation ClassToTable.
The ParamAttrCol place is used to pass the three parameters to the relation At-
tributeToColumn. The marking shows the situation after firing the transition
once, which creates a table with name c1. The transition remains enabled be-
cause there is a class which has not been processed, so its firing creates a new
table also with name c1. As this does not conform to the CBE semantics, we
will describe the needed modifications to the net in Section 4.5.

<<WHEN>><<WHERE>>

{namespace=p,
elements=c}

tr_ct^^
[{PackageId=p,
ClassId=c,
SchemaId=p,
TableId=c}]

tr_ct

{schema=p,
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{namespace=p,
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{id=c,name=cn}

{id=c,
kind="persistent",
name=cn}

{id=c,
kind="persistent",
name=cn}

ClassToTable

[not(mem tr_ct {PackageId=p,
ClassId=c, SchemaId=p, TableId=c}) 
andalso (mem tr_ps {PackageId=p, 
SchemaId=p})]

ParamAttrCol
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SchemaTable
Schema-Table SchemaTable
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Trace
ClassTable
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Tables Table

Trace
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Package-Class Schema-Table

tr_ps
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Out I/O
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1`{id=2,kind="persistent",
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2
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1
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1
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1
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2
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"}++
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Fig. 4. Generated transition from relation ClassToTable

The transition for relation AttributeToColumn is shown in Fig. 5, where
the parameters are received from place ParamAttrCol. The parameters are not
deleted from the place as, in general, a relation may need to be enforced more
than once. Should a relation be called with different parameter sets (e.g. 2 pa-
rameters instead of 3), we will have to replicate the transition for each set.

{Class=c,
Table=t,
prefix=prefix}

{owner=t,
column=a}

{owner=c,
attribute=a}
{owner=c,
attribute=a}

tr_ac^^
[{ClassId=c,
AttributeId=a,
TableId=t,
ColumnId=c}]

tr_ac
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<<PARAMS>>
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1
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Fig. 5. Generated transition from relation AttributeToColumn
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The when clause is handled by querying the trace places. In particular, for each
relation rw appearing in the when clause of a relation r, a self-loop arc reading a
token from the trace place of rw is attached to the transition of r. Then, a guard
is added to the transition of r demanding the read token to have a record with the
values given by the actual parameters. Moreover, all arcs adding tokens to a place
of an enforced domain which corresponds to an element passed as parameter are
deleted. As an example, the transition generated from ClassToTable in Fig. 4
reads the list of traces from place TracePackageSchema, and the guard checks
that the list contains a record indicating that the package and the schema have
already been processed. Moreover, the place corresponding to the schema is not
added tokens as the schema is a parameter in the when clause. In fact, with
our simplified way of assigning object identifiers, we can make the following
optimization: if an object is bound (i.e. present in some relation mentioned in
a when, or comes as a parameter from a where), its attributes are not accessed,
and the object is connected to some other one; then we do not use the place for
the object, but the one for the link. This is why the places for the schema in
Fig. 4 and the table in Fig. 5 are omitted.

4.4 Adding the High-Level View

Finally, we provide a high-level view of the transformation. This contains a
substitution transition for each QVT relation, referring to the page with the
relation details as described in previous sections. The view also shows the places
for the when and where clauses, so as to depict the execution flow and parameter
passing between relations, allowing the identification of dependencies.

maps each package
to a schema

1`[]

ListTPackageToSchema

ParamAttrCol

ClassToTable

Class-TableClass-Table

maps each persistent
class to a table

AttributeToColumn

Attribute-ColumnAttribute-Column

maps an attribute 
to a column

<<WHEN>>

<<WHERE>>

PackageToSchema

Package-SchemaPackage-Schema

ParamAttrCol

Trace
PackageSchema

2

1`{Class=2,Table=2,prefix=""}++
1`{Class=3,Table=3,prefix=""}

1
1`[{PackageId=1,SchemaId=1}]

Fig. 6. High-level view

Fig. 6 shows the high-level view for the ex-
ample. The top-level relations are shown with
thicker border. Even though ClassToTable is top-
level, it depends on PackageToSchema as the
latter is referenced in the when clause of the
former. Relation AttributeToColumn is not top-
level, and can only be executed when it receives
a token with the parameters produced by rela-
tion ClassToTable. Note how the comments in
the QVT transformation are visualized in the net.
The marking shows the result of the transforma-
tion, where two tables have been created. Since
the result does not comply with the CBE seman-
tics, we solve this problem in next section.

4.5 Check-Before-Enforce (CBE) Semantics and Keys

The CBE semantics ensures that, if an object matching the constraints in a
relation already exists in an enforced model, such object will not be created. The
keys define when two objects are considered equal. The presented compilation
has not taken this semantics into account. Even though traces avoided enforcing
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a relation more than once for the same objects, we always created objects in the
enforced domain instead of reusing them. Next we consider such semantics.

The idea is to generate several transitions for each relation. All transitions
are mutually exclusive (at most one can fire at any given step), and each try
to reuse increasingly bigger parts of the enforced domain. Hence, we build a
partial order of graphs, the bottom element being the relation parameters (i.e.
no reuse), and the top one the graph equal to the enforced domain (i.e. maximal
reuse). The keys specify which attributes of an object need to be compared in
order to decide whether an object already exists.

The generated transitions should check if some objects are not present. Neg-
ative tests are problematic in CPNs, as the normal arcs test the existence of
tokens, not their absence. As inhibitor arcs are not supported by CPNs, we use
tokens containing lists of records instead of records. Hence, each place in the
enforced domain contains exactly one token, with a list of the objects present in
the model. In this way, testing if an object is not present amounts to ensuring
that the corresponding record is not in the list.

Fig. 7 shows the two transitions generated from PackageToSchema. The left
one creates a new schema if it is not found on the list sch taken from place
AllSchemas, actually checked by the function existsSchema in the transition
guard. The right one is executed if the schema exists and reuses the schema.
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PackageToSchema

AllSchemas
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1`[]
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Fig. 7. Two transitions generated from PackageToSchema due to CBE

The left of Fig. 8 shows the high-level view of the transformation with all
transitions generated by the CBE semantics. The key for the table was its name
and schema, and for the column its name and table. The marking shows some
of the traces after executing the net, where only one table and one column are
created, in conformance with the CBE semantics. The created model can be
inspected in the page corresponding to the target meta-model.

5 Supporting Architecture

We have implemented a prototype to transform QVT-R specifications into the
input format of CPNTools, for the moment without considering CBE semantics.
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Fig. 8. High-level view with CBE semantics (left). Architecture of the solution (right).

The right of Fig. 8 shows its architecture. The engineer specifies the transfor-
mation using the textual format of QVT-R, and the source and target meta-
models in ecore. We have built a code generator that parses these files using the
MediniQVT parser [12], and then generates the input file to CPNTools through
JET templates [10]. We also have developed another generator that, from an xmi
model, generates a marking in a separate file that is read by the CPN model.
In this way, no recompilation of the whole transformation is needed for differ-
ent starting models. Then, the designer can execute the transformation using
CPNTools, as well as to analyse it to find defects as we show in next section.

6 Verification and Validation of Transformations

This section presents some verification and validation techniques that are possi-
ble once the transformation is expressed in CPNs.

6.1 Verification

Many verification techniques for CPNs are based on the computation of the
occurrence graph [8], a graph-based representation of the space of possible mark-
ings. Fig. 9 shows the graph for the example, considering CBE semantics and
taking the starting model of Fig. 3. The graph shows the labels of two arrows,
depicting the executed transition and part of the binding. To the right, the figure
shows the TinyRDBMS models corresponding to nodes 13 and 14 of the graph.

Confluence. A transformation is confluent if it yields a unique result for every
possible starting model. We can investigate confluence by inspecting the ter-
minal nodes of the occurrence graph. As we use lists, having more than one
terminal node does not imply non-confluence: the lists may contain equal ele-
ments but ordered differently. Also, we obtain two different terminal nodes for
models with the same structure, but different object identifiers. Our example
however is non-confluent. The transformation creates one table (as both classes
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have equal name) with one column. Processing the BOOLEAN attribute first
creates a BOOLEAN column (nodes 16 and 13 in the graph), whereas processing
the INTEGER first creates a NUMBER column (nodes 15 and 14). This is so
because the key for attributes only considers their name and class but not its
type. Considering also the column type solves this problem. Note however that
CPNs only allows investigating confluence on individual starting models.
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Fig. 9. Occurrence graph

Another source of non-confluence is
attribute computation using queries on
enforced domains. For example, if the
column name is computed as cn=if
(owner.column->size()=1) then ‘ ’+
an else an; we have non-determinism.
This is so because the first column to be
processed would be added a prefix ‘ ’,
and this choice can be non-deterministic.
Furthermore, if the table is added sev-
eral columns, actually adding the prefix
for the first column is wrong. Since QVT-
R is declarative, the expression cn=... is
to be interpreted as an invariant. However
it may yield a different result when eval-
uated during the transformation than at
the end of the transformation. Hence, if
there are two columns no attribute should be added the prefix. Thus, “con-
structive” operational mechanisms would run into troubles. In our approach, we
forbid attribute computations using queries on enforced domains.

Termination. This is undecidable for graph and term rewriting systems [4].
QVT-R transformations can be non-terminating due to e.g. a recursive relation
which creates new elements, and passes them to the next step in the recursion
in the where section. If the occurrence graph is finite and has no cycles, then
the transformation always terminates for the given starting model. Our example
transformation is terminating for the given initial model.

Relation Conflicts. Transition persistence allows discovering conflicts between
relations. A transition is persistent if firing it does not disable other enabled
transitions, and weakly persistent if it may disable itself at a different binding.
Hence, if a transition is not persistent, it has conflicts and may lead to a non-
confluent transformation. A conflict in QVT-R may arise if the execution of
some relation depends on a query on an enforced domain, or if a relation A
can be executed if some other B has not (by placing “not B(. . .);” in A’s when
section). In most cases all relations should be non-conflicting, leading to weakly
persistent transitions in the CPN model. In the example, all transitions are
weakly persistent as none disable others but may disable themselves. Persistence
can be efficiently checked using the occurrence graph, and a sufficient condition
for persistence exists by statically checking the underlying uncoloured net [14].
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Boundedness and Invariants. A net is bounded if the number of tokens
of all places remains bounded in all possible executions. This is automated by
CPNTools and is useful to identify sources of non-termination as well as the
maximum number of objects of a certain type that can be created. Invariants are
expressions on the marking that remain true in all reachable states. In a QVT-
R transformation we find two types of invariants: the preservation of elements
in checkonly domains, and maybe the non-creation of some type of element in
enforced domains. Thus, we can check whether for a TinyUML model without
attributes it is an invariant that no column is generated. These invariants are
called synchronization invariants [5] and can be automatically computed.

Model Checking. Reachability analysis can be used to investigate whether
some structure can be produced in the enforced domain, given an initial marking.
This procedure can be automated, as CPNTools allows expressing properties to
be checked on the occurrence graph by means of a CTL-like logic called ASK-
CTL [3]. This logic allows formulating queries about states and state changes
(e.g. the occurrence of certain transitions). This search is useful to check whether
a certain structure is created sometimes or always in each possible result.

For instance, we can ask whether transforming our example model always
produces a BOOLEAN column by using the command eval node INV(POS(NF
("Has Bool Column", hasColumn))) InitNode, which returns false as we may
obtain a NUMBER column instead. In the previous command, InitNode is the
initial marking, hasColumn is a user-defined function that checks whether a
given marking contains a boolean column, POS(A) demands property A to be
eventually satisfied, and INV(A) demands A to be satisfied in all possible paths.
Checking whether sometimes such column is obtained is done through command
eval node POS(NF("Has Bool Column", hasColumn)) InitNode, which re-
turns true. Other interesting properties include whether we always or sometimes
obtain the same number of columns as attributes (false in both cases), the same
number of tables as classes (false), the same number of schemas as packages
(true) or whether a certain relation is always or sometimes executed.

6.2 Validation with CPNTools

In order to validate a transformation, we can use CPNTools to perform run-to-
completion execution, as well as a step-by-step visual simulation for debugging.
Similar to breakpoints in programming environments, one can set monitors es-
tablishing conditions (e.g. the marking exceeds a certain size, a transition occurs
a certain number of times or a place becomes empty) under which some action is
performed (e.g. pause the execution or write to a file). They can also be used to
encode the OCL constraints of the target language, in order to check if they are
violated. The multi-view and hierarchical features permit visualizing the execu-
tion flow in the high-level page, and checking the created elements in the page
corresponding to the meta-models.

Simulation and verification can be combined using the occurrence graph, as
it can be created incrementally, and visually inspected. Each node can show the
marking, and it is possible to set the net in the state of a given node.
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7 Related Work

There are previous attempts to formalize QVT, such as the one in [7] for QVT-C.
Regarding QVT-R, in [1,11] the authors formalize it by using rewriting logic and
Maude; however there is no comment about CBE semantics and no discussion on
termination or confluence. In [6] the author uses OCL for representing the static
semantics, and Alloy for the dynamics. Although Alloy permits execution and
analysis, no discussion on analysis is given. That approach is similar to our pre-
vious work in [2], where we translated QVT-R into OCL and used a constraint
solver for execution and analysis. In that case, the kind of possible analyses is
different, as they are based on “model finding”. For example, we tested whether
a transformation is satisfiable, or whether a source model produces a valid tar-
get model (i.e. conformant to the meta-models and their integrity constraints).
In our approach with CPNs, the validity of the target model has to be checked
by loading and validating the model in the modelling tool, or by setting CPN
monitors. However, CPNs allow the visual step-by-step execution and debug-
ging of the transformation, which is not possible with constraint solvers. Other
approaches like [16] use CPNs for transformations, but they have their own
language, not QVT, and do not provide analysis techniques.

On the other hand, there are few tools for QVT-R. We can mention Me-
diniQVT [12] and ModelMorf [13], but none of them provide analysis capabil-
ities. Thus, we can see our work as a “low-cost” implementation of a QVT-R
engine allowing both execution and analysis.

8 Conclusions and Future Work

In this paper we have presented an approach for the execution, verification
and validation of QVT-R transformations through their compilation into CPNs.
The approach supports when and where clauses and CBE semantics. We have
shown how to use the occurrence graph to check termination and confluence,
how to analyse relation conflicts by transition persistence, and how to determine
whether certain structures are created in enforced domains using model checking,
invariants and boundedness analysis. Finally, we have demonstrated that CPN-
Tools can be used for execution, verification and validation of transformations;
and presented a tool that automates the code generation for it.

One limitation of our proposal is the full support for OCL, which would require
a complex compilation into ML. Up to now we support a small subset enough to
translate the auxiliary query of the example. Complex queries involving negation
would require using tokens with lists also in checkonly domains. We are currently
improving our tool chain and defining back-annotation mechanisms so that the
user does not realise that the execution is based on CPNs, e.g. by translating
the final marking into XMI. It would be also interesting to develop a high-level
language to specify the properties to be model-checked. The use of CPNs opens
the door to other useful techniques, such optimizing the CPN [5] and translating
such optimizations into QVT, or the verification of properties independently



270 J. de Lara and E. Guerra

of the marking. We also plan to complement our analysis techniques with the
automatic generation of initial markings for the nets.

Acknowledgments. Work supported by the Spanish Ministry of Science and
Innovation, projects METEORIC (TIN2008-02081) and MODUWEB (TIN2006-
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Abstract. Predefined composite operations are handy for efficient mod-
eling, e.g., for the automatic execution of refactorings, and for the in-
troduction of patterns in existing models. Some modeling environments
provide an initial set of basic refactoring operations, but hardly offer any
extension points for the user. Even if extension points exist, the intro-
duction of new composite operations requires programming skills and
deep knowledge of the respective metamodel.

In this paper, we introduce a method for specifying composite oper-
ations within the user’s modeling language and environment of choice.
The user models the composite operation by-example, which enables the
semi-automatic derivation of a generic composite operation specification.
This specification may be used in various modeling scenarios, like model
refactoring and model versioning. We implemented the approach in the
Operation Recorder and performed an evaluation by defining multiple
complex refactorings for UML diagrams.

Keywords: Refactoring, composite operation, by-example approach.

1 Introduction

Since modeling is hardly done in terms of single atomic operations but by per-
forming a sequence of operations to reach a desired goal, a well established
approach for specifying and communicating a recurrent sequence of operations
is to give it a name and define a pattern, as is done, e.g., by Gamma et al. [1] and
Fowler et al. [2]. In order to define patterns not only for human interaction, but
also in a machine readable and executable format, composite operations may be
described as model transformations.
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So far, the implementation of such model transformations has mainly been
accomplished by experts, because they require extensive programming effort and
deep knowledge of APIs of modeling environments, metamodels, and dedicated
transformation languages. The contribution of this paper is to overcome this
pitfall. To open the specification of patterns and refactorings to modelers, we
present the Operation Recorder, a front-end for the user-friendly modeling of
composite operations by-example.

The Operation Recorder enables the specification of composite operations by
modeling concrete examples at the model layer, i.e., the same layer the pattern
definition is applied. It allows the user to work within her preferred modeling lan-
guage and editor of choice, without leaving the familiar environment. The exam-
ples consist of the initial model, the revised model, and the differences between
them. These differences of the two models are then generalized by the Operation
Recorder and may be applied to arbitrary models containing a pattern matching
the initial model. In the research project AMOR [3], we use the Operation Recorder
in two orthogonal modeling settings, namely for refactoring and versioning.

Refactoring. Predefined refactoring operations as known from IDEs like Eclipse1

find their way into modeling environments. Since it is not possible to provide all
refactorings out-of-the-box—this is especially the case if domain-specific model-
ing languages (DSMLs) are employed—the modeling editor should offer exten-
sion points for editing and adding user-defined refactorings [4]. The Operation
Recorder is used as a user-friendly front-end for specifying user-defined composite
operations.

Versioning. The state-based recognition of multiple atomic operations as one
refactoring may also improve model versioning [5]. Since refactorings often have
global effects in the overall model, subsuming a set of atomic changes to only
one change makes it easier to read version histories and to understand model
evolution. In the case of optimistic versioning, where parallel editing of model
artifacts is allowed, the recognition of refactorings improves automatic merge
as discussed in [6]. Even if an automatic merge cannot be performed, manual
conflict resolution is accelerated by providing a more readable conflict report. A
comprehensive model versioning environment is part of our future research.

The paper is organized as follows. Starting with a motivating example in
Section 2 we outline the process of composite operation modeling by-example
in Section 3. Section 4 provides a detailed account of the implementation of the
Operation Recorder and Section 5 summarizes the evaluation results for complex
refactorings of UML diagrams. Section 6 discusses related work and we conclude
with an outlook on our future work in Section 7.

2 Motivating Example

To emphasize our motivation for developing the Operation Recorder, we discuss
the refactoring “Introduce Composite State” for UML statecharts. The concrete
1 http://www.eclipse.org/
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Fig. 1. (a) Initial Phone Statechart. (b) Refactored Phone Statechart. [7]

example illustrating the possible states and transitions of a phone conversation
was taken from Sunyé et al. [7] (cf. Figure 1).

Whenever a hangup event occurs in the unrefactored model shown in
Figure 1(a), the phone moves to the state Idle. The multitude of similar transi-
tions, which are pointing to the state Idle and which are triggerd by the same
event, suggests the application of the refactoring pattern “Introduce Composite
State”, i.e., introducing a composite state and folding the hangup transitions to
one single transition as depicted in Figure 1(b). The modification consists of the
following changes:

1. A composite state named Active is created.
2. All states except Idle are moved into Active.
3. The outgoing hangup transitions of these states are folded into one single

transition which leaves the composite state Active.
4. The transition lift is split to an incoming transition of Active and to the

initial pseudostate of Active.

In most modeling tools, the general specification of such a composite operation
is only possible by an implementation in a textual programming language, which
demands dedicated programming skills. Based on our experience when develop-
ing the “Introduce Composite State” refactoring in Java, the solution comprises
nearly 100 lines of code implementing the pure refactoring logic, not counting
preconditions on the applicability of the refactoring pattern and code realizing
a front-end for the application of the refactoring pattern by the user.

Another alternative to specify composite operations is the use of dedicated
model transformation languages. This enables the development of composite op-
erations in a more compact form, since single operations may be described, e.g.,
by declarative transformation rules. However, specifying a set of transformation
rules and their interactions is currently supported by only a few transforma-
tion engines, and requires a deep understanding of the transformation process.
Furthermore, model transformation approaches are rarely included in current
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modeling environments. Thus, tool adapters are required to use these technolo-
gies and the users have to switch to a new environment, which again calls for
dedicated knowledge.

Modelers, as the potential users of the composite operation specification facil-
ities are familiar with the notation, semantics, and pragmatics of the modeling
languages they use in daily activities. They are not experts, however, in pro-
gramming languages, transformation techniques, or APIs.

With the Operation Recorder we aim at providing a tool, which makes the
specification of composite operations practical to every modeler.

3 By-Example Operation Specification at a Glance

Composite operations may be described by a set of atomic operations, namely,
create, update, delete, and move which are executed on a model in a specific
modeling scenario, i.e., adhering to specific preconditions [8]. Furthermore, to en-
able the detection of occurrences of the specified composite operation in generic
change scripts, we need to include also postconditions to the composite operation
specification.

A straightforward way to realize composite operation specification by-example
is to record each user interaction within the modeling environment as proposed
in [9] for programming languages. However, this would demand an intervention in
the modeling environment, and due to the multitude of modeling environments,
we refrain from this possibility. Instead, we apply a state-based comparison to
determine the executed operations after building up the initial model and the fi-
nal model. This allows the use of any editor without depending on editor-specific
modification recording. To overcome the imprecision of heuristic state-based ap-
proaches, a unique ID is automatically assigned to each model element before
the user performes the changes. Moreover, the Operation Recorder is designed in
such a way to be independent from any specific modeling language, as long as it
is based on Ecore [10] or the metamodel may be mapped to Ecore.

Following our design rationale, we propose a two-phase by-example operation
specification process as shown in Figure 2. In the following, we discuss this two-
phase specification process step-by-step.

Phase 1: Modeling. In a first step, the user models the initial situation in
her familiar modeling environment, i.e., the model required in order to apply
the composite operation. The output of this step is called the initial model.
In a second step, each element of the initial model is automatically annotated
with an ID, and a so-called working model, i.e., a copy of the initial model for
demonstrating the composite operation by applying changes, is created. The
IDs preserve the relationship of the original elements in the initial model and
the changed elements in the revised model. The IDs allow a precise detection of
all atomic changes, i.e., also element moves. Consequently, the generated match
between the initial model and the revised model is sound and complete. In the
third step, the user performs the complete composite operation on the working
model, again in her familiar modeling environment by applying all necessary
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Fig. 2. By-Example Operation Specification Process

atomic operations. The output of this step is the revised model, which is to-
gether with the initial model the input for the second phase of the operation
specification process.

Phase 2: Configuration & Generation. Due to the unique identifiers of the
model elements, the atomic operations of the composite operation may be de-
termined automatically in Step 4 using a state-based comparison. The results
are saved in the diff model. Subsequently, an initial version of pre- and postcon-
ditions of the composite operation is inferred in Step 5 by analyzing the initial
model and the revised model, respectively. Usually, the automatically generated
conditions from the example are too strong and do not express the intended pre-
and postconditions of the composite operation completely. They only act as a
basis for accelerating the operation specification process and have to be refined
by the user in Step 6. In particular, parts of the conditions may be activated
and deactivated within a dedicated environment with one mouse click. Gen-
erated conditions may be modified by the user and additional conditions may
be added. After the configuration of the conditions, the Operation Specification
Model (OSM) is generated in Step 7, which consists of the diff model and the
revised pre- and postconditions. Finally, from the OSM, specific artifacts may
be generated in Step 8 such as refactoring wizards which allow the automatic
execution of refactorings. Another use case of the OSM would be to directly
act as a template for change scripts in order to find applications of composite
operations between different model versions.

4 By-Example Operation Recorder in Action

In the previous section we illustrated the operation specification process from
a generic point of view. In the following, we define the refactoring “Introduce
Composite State” from Section 2 showing the operation specification process
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from the user’s point of view. The specification process is supported by the
Operation Recorder using the front-end depicted in Figure 3 which is simplified
for illustration purposes. For details on the implementation of the productive
front-end we refer to [11].

Step 1: Create initial model. The modeler starts with modeling the ini-
tial situation in the upper left area labeled Initial (cf. Figure 3). For this task,
the modeler may apply any editor of her choice, since the Operation Recorder
is independent of editor-specific operation tracking, using a solely state-based
comparison. The Operation Recorder allows to load any GMF2-based graphical
editor for direct editing the example or Ecore XMI-serialized files which have
been created in any other editor. In this step every model element, which is nec-
essary to show the composite operation, has to be introduced. It is not necessary
to draw every state of the diagram shown in Figure 1(a). Therefore, in the Initial
area only those states are depicted, which will later on be modified differently.
The first of those is the state Idle, which will remain outside the composite state
we will add later. Second, the state DialTone, which will be moved to the newly
added composite state acting as first state and finally the state Dialing, which

2 http://www.eclipse.org/modeling/gmf/
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only will be moved to the composite state loosing its transition to Idle. There is
no need to model the state Connecting shown in Figure 1(a), since it is equally
modified like Dialing. For these equally handled states the Operation Recorder
provides techniques to define iterations in the later configuration phase.

Step 2: Copy initial model. When the modeler finishes the initial model she
confirms it by pushing the button Start editing. This initiates the automatic
copy process which adds a unique ID to every model element of the initial model
before the working copy is created.

Step 3: Perform updates. After the ID-annotated working copy is created,
it is displayed in the upper right area of the front-end, named Revised. Now,
the modeler performs each operation of the composite operation on the revised
model. In our example, the modeler has to add a composite state named Active,
move the single states DialTone and Dialing into it, introduce a new initial state
in Active, connect it with DialTone and change or remove the other transitions.
As soon as the composite operation is completely executed, the modeler finalizes
the modeling phase by pushing the Start configuration button.

Step 4: Execute state-based comparison. In this step, the comparison be-
tween the initial model and the revised model is done to automatically identify
the previously executed changes. Internally, the comparison is realized on top
of EMF Compare3. When the comparison is completed, the detected differences
show up in the upper center area named Differences. For a precise definition of
the composite operation it is important that the modeler performs only those
operations which directly represent the composite operation.

Step 5: Imply conditions. Next, the Operation Recorder automatically im-
plies the preconditions from the initial model and the postconditions from the
revised model. The generation process for the pre- and the postconditions is
similar. For each model element in the respective model, a so-called template is
created. A template describes the role, a model element plays in the specific com-
posite operation. When executing or detecting a defined composite operation,
concrete model elements are evaluated against and subsequently bound to these
templates. In the front-end the pre- and postconditions are illustrated on the
lower left and lower right area, respectively. Each template contains conditions
displayed beside the template names. Each automatically generated condition
constrains the value of a specific feature. In our example, the area Preconditions
shows three different templates in the first level for the model elements Idle,
DialTone, and Dialing and their respective preconditions. These templates have
a user-changeable symbolic name, e.g., SingleState 1, and are arranged in a tree
to indicate their containment relationships. Templates may also be used as a
variable in condition bodies to generically express a reference to other model el-
ements or their values. We use the syntax #{Transition 3}.event to access the
event property of the first element matching the template Transition 3. To refer-
ence all matching elements in a condition’s body, the syntax #[Template name]

3 http://www.eclipse.org/modeling/emft/?project=compare
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is used. The scope of a template is either the initial model or the revised model.
It is still possible to access the template of the opposite model in the conditions
using the prefixes initial: and revised:, respectively.

Step 6: Edit conditions. Usually, the conditions automatically generated in
the previous step are too strong and do not express the intended pre- and post-
conditions of the composite operation perfectly. They only act as a kickstart
accelerating the operation specification process and have to be manually refined
in this step. The Operation Recorder allows to adapt the generated conditions in
three different ways.

First, the modeler may relax or enforce conditions. This is simply done by
activating or deactivating the checkboxes beside the respective templates or
conditions. If a template is relaxed all contained conditions are deactivated.
By default, conditions constraining string features and null-values are deacti-
vated, as in our experience they are not relevant in most of the cases. In the
running example, four templates and three conditions in the preconditions as
well as three templates and two conditions in the postcondition have to be re-
laxed additionally to the by-default deactivated conditions. For instance, the
templates representing the initial state as well as the template representing
the reflexive transition dial in state Dialing are not relevant in the precon-
ditions and have to be relaxed properly. The same is true for the condition
incoming->includesAll(#{Transition 0}) in template Idle as it is not nec-
essary that this state has the incoming transition matching Transition 0.

Second, the modeler may modify conditions by directly editing them. For our
example it is necessary to specify that a state which is moved into the composite
state has to own the event which is folded as an outgoing transition (in our
example hangup). For this reason, the condition in the preconditions and the
postconditions highlighted in bold font are modified to express this constraint.

Finally, users may adapt the composite operation specification by augmenta-
tion, e.g., introducing custom conditions, defining iterations, and annotating nec-
essary user input for setting parameters of the composite operations. In our
example, the modeler has to introduce one iteration for the template SingleState 3.
This iteration specifies that the two operations executed on this template have to
be repeated for all its matching model elements. In other words, for defining this
iteration, all model elements containing the transition to be folded are moved to
the composite state. Further, the modeler introduces a user input facility for the
property name of template CompositeState 0 to indicate a value which has to be
set by the user of the refactoring. Obviously, iterations may only be specified for
templates from the initial model and user input for features of templates from the
revised model. To ensure the syntactic and semantic correctness of all conditions,
the modeler may test all conditions against the initial or revised model by push-
ing the Test conditions button. A failing condition indicates a wrongly specified
constraint, because the conditions have to match at least the example models.

Step 7: Generate OSM. To finalize the operation specification, the mod-
eler pushes the Finish button. This initiates the generation of the OSM. This
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ConditionsModel

createdAt : String

<<enumeration>>
ModelType

INITIAL
REVISED

Condition

type : ConditionType
active : Boolean

FeatureCondition

oclStrings : List<String>

CustomOCLCondition

oclExpression : String

EObject
(from Ecore)

EStructuralFeature
(from Ecore)

Template

name : String
title : String
/model : ModelType

CompositeOperationSpecification

name : String
titleTemplate : String
version : String
modelingLanguage : String
refactoring : Boolean
initialModel : EObject
revisedModel : EObject

<<enumeration>>
IterationType

EXISTS
FOR_ALL

DiffElement
(from EMFCompare)

DiffModel
(from EMF Compare)

Iteration

type : IterationType

representative

subTemplates

feature

root
Template

globalConditions

sub
Iterations

diffElementsdifferenceModel

preconditions

postconditions

1

* iterations

*

*

1 1

*

*

* specification 1

1

*

differenceElements

templates

*UserInput

name : String
feature : EStr.F.

*

template

inputs

*

1

Fig. 4. Operation Specification Metamodel

model contains all necessary information for further usage like its detection of
occurrences in generic difference models or its execution in various specific mod-
els. Operation specifications conform to the metamodel depicted in Figure 4.
The class CompositeOperationSpecification contains general information
about the operation like the name, a description as well as the initial and re-
vised model, the pre- and postconditions, the iterations, and the differences.
For the initial and the revised model kept in the attributes initialModel and
revisedModel, the class CompositeOperationSpecification holds a reference
to ConditionsModel which consists of a root Template representing the previ-
ously mentioned root object of the initial or revised model’s conditions. Each
template may have a number of subtemplates corresponding to the containment
hierarchy of the elements in the initial or revised model. The specific model
element in the initial or revised model is referenced in representative. Fur-
thermore, a Template is specified by a list of custom conditions and feature
conditions. FeatureConditions constrain the value of a specific feature and are
generated automatically in Step 5.

Figure 5 illustrates an excerpt of the object diagram representing the OSM
for the previously described statechart example. This diagram highlights some
aspects, like the introduced iteration, the template hierarchy and its references
to the concrete model elements as well as an instance of a FeatureCondition
for the feature name. All of these components have their counterpart in the
front-end already presented in Figure 3.

Step 8: Generate specific artifacts. The last step of the process is the gen-
eration of specific artifacts from the OSM for using it outside the Operation
Recorder. To execute the refactoring specification depicted in Figure 3, the user
has to choose which single state remains outside the composite state and which
single state should be transformed to the starting node within the composite
state. This is done by simply binding the respective single states to the tem-
plates SingleState 1 and SingleState 2. To keep this process user-friendly, users
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“Dialing has been moved”

: DiffElement
(from EMF Compare)

… : Template

…

: CompositeOperationSpecification

name = “Introduce Composite State”
titleTemplate = “#{SimpleState_2}.name …” 
modelingLanguage = “SimpleStateChart”
refactoring = true
initialModel = initial_stateMachine
revisedModel = revised_stateMachine

: DiffModel
(from EMF Compare)

iteration1 : Iteration

type = FOR_ALL

representative

initial_stateMachine :
StateMachine

…

initial_templ: Template

name = StateMachine_0
title = StateMachine
model = INITIAL
…

preconditions : 
ConditionsModel

…

singleState3 : Template

name = SingleState_3
title = Dialing : SingleState
model = INITIAL
…

… : Template

…
… : Template

…

: DiffElement
(from EMF Compare)

“Dialing has been moved”

: DiffElement
(from EMF Compare)

“Dialing has been moved”

dialing : SimpleState

name = “Dialing”
isFinal = true
isInitial = false

dialTome : SimpleState

name = “Dialing”
isFinal = true

dialing : SimpleState

name = “Dialing”
…

: FeatureCondition: FeatureCondition: FeatureCondition

name = “Dialing”
active = false

specifications

: StructuralFeature
(from Ecore)

name = “name”
type = EString
…

feature

template

Fig. 5. Excerpt of the Operation Specification Model for the Running Example

Listing 1. Generated OCL Code

1 . . .
2 attr s i n g l e S t a t e 1 : S i ng l eS ta t e = . . . /∗ s e l e c t e d by use r ∗/
3 attr t r a n s i t i o n 3 : Tran s i t i on = . . . /∗ s e l e c t e d by use r ∗/
4 . . .
5 s e l f . i n c l u de sA l l ( s e l f . outgo ingTrans i t ion−>s e l e c t (
6 event = t r a n s i t i o n 3 . event and ta rge t = s i n g l e S t a t e 1
7 and source = s e l f ) )

Listing 2. Generated Refactoring Code

1 method in t roduceCompos iteState ( S t r i ng cs name ,
2 Trans i t i on t r an s i t i o n 3 , S i ng l eS ta t e s i n g l e S t a t e 1 ){
3 . . .
4 //Create composite s t a t e
5 CompositeState c s = new CompositeState( cs name ) ;
6 . . .
7

8 // Sh i f t States into composite s t a t e
9 I t e r a t o r i t e r = s t a t e s . s e l e c t ( s | cond ( s ) ) . i t e r a t o r ( ) ;

10 while ( i t e r . hasNext ( ) ){
11 State s t a t e = i t e r . hasNext ( ) ;
12 c s . ownedStates ( ) . add ( s t a t e ) ;
13 s t a t e . outgoing ( ) . remove ( s t a t e . outgoing . s e l e c t ( t |
14 t . event = t r an s i t i o n 3 . event and
15 t . t a rg e t = s i n g l e S t a t e 1 ) ;
16 . . .
17 }
18

19 . . . //Create add i t iona l e lements and l i n k them proper ly
20 }
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do not have to bind model elements based on template names directly. Instead,
users are referred to the example initial model and have to assign concrete ele-
ments to the elements of this example. Then, the direct binding to the templates
is induced automatically. Based on this binding the concrete transition element
matching Transition 3 is evaluated. As an example for a generated artifact, in
Listing 1 the OCL code evaluating all model elements the iteration has to be
applied to (i.e., elements matching the template SingleState 3 ) is illustrated.
The code implementing the iteration itself is shown in Listing 2.

5 Evaluation

For evaluating the effort necessary to define new composite operations with the
Operation Recorder we performed a case study with the objective to specify
five refactorings for the UML class diagram and two refactorings for the UML
state diagram (cf. Table 1). Those well-known refactorings were adapted—if
necessary—for the application on models as those refactorings are mostly de-
fined for the application on code. The complexity of the refactorings varies from
simple, e.g., “Move Attribute”, to complex, e.g., “Introduce Composite State”.
Due to space limitations, we kindly refer to our project page for a detailed de-
scription [11].

The values shown in Table 1 reflect the effort for the user to specify the refac-
torings. The #Template column refers to the number of templates derived from
the initial model and for the revised model, respectively, in order to establish the
pre- and postconditions. The #Conditions/#Selected column contains the total
number of pre- and postconditions as well as the number of initially selected
conditions. These numbers are strongly related to the size of the metamodel
employed for the editor. In our experiments, we used specialized UML editors
which allowed us to focus on efficiently testing the refactorings. For example, if
we had used the full UML2 editor for “Move Attribute” we would have obtained
again four templates, but more than 100 conditions. To increase readability, we
plan to integrate general condition filters in the Operation Recorder as well as to
provide extension points for metamodel specific condition filters, which allow to
hide unused metamodel feature conditions.

The column #Diffs shows the number of differences between the initial model
and the revised model. The concrete value depends on the way a refactoring is
modeled. We asked two modelers to specify the “Introduce Composite State”
refactoring starting from the same initial model. Although their revised models
contained the same elements, the one performed nine changes whereas the other
needed 14 changes. The first reused the existing elements of the model and
modified them accordingly, whereas the other deleted them and introduced new
elements.

The configuration effort is reflected by the remaining columns of Table 1. The
#Relax/#Enforce column describes how many conditions have to be (un)selected
manually by the user. #Modifications refers to the number of edits which have to
be performed and the last column shows the number of introduced iterations. In
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Table 1. Refactorings: Move Attribute (mvAtt), Convert to Singleton (convSing),
Encapsulate Variable (encVar), Replace Data Value with Object (repDV), Extract
Superclass (extSC), Introduce Composite State (intCS), Merge States (merge)
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Pre Post Pre Post Pre Post Pre Post

mvAtt 4 4 13/3 13/3 1 3/0 3/1 0 1 0
convSing 3 4 8/2 11/4 2 2/2 2/2 1 1 0
encVar 3 7 8/3 16/8 4 3/0 2/4 0 3 0
repDV 3 5 8/3 16/6 4 3/0 2/2 0 1 0
extSC 5 5 16/4 18/6 6 0/2 0/0 1 2 1
intCS 11 13 41/27 48/32 9 7/0 5/0 1 1 1
merge 10 8 36/22 29/17 6 6/0 4/0 2 0 1

general, our case study showed, that the configuration effort mostly consists of re-
laxing conditions which is done with some clicks. The few condition modifications
are typically needed to refer to properties of other templates and therefore are
easily accomplished. Even for more complicated refactorings like, e.g., “Extract
Superclass”, only a few configuration steps are necessary.

Overall, the Operation Recorder approach allowed a very intuitive specification
of the refactorings where the tasks which have to be performed by a human user
are straightforward. In future, we plan to perform a more extensive evaluation
with a wide range of modelers with different levels of modeling experiences.

6 Related Work

In this section, we give an overview of work related to our by-example operation
specification approach organized in the categories composite operations for mod-
els, user-friendly model transformation, and model transformation by-example.

Composite operations for models. Most existing approaches for defining
composite operations focus solely on model refactorings. One of the first inves-
tigations in this area was done by Sunyé et al. [7] who define a set of UML
refactorings on the conceptual level by expressing pre- and postconditions in
OCL. Boger et al. [12] present a refactoring browser for UML supporting the au-
tomatic execution of pre-defined UML refactorings within a UML modeling tool.
While these two approaches only focus on pre-defined refactorings, approaches
by Porres [13], Zhang et al. [8], Kolovos et al. [14], and Verbaere et al. [15] allow
the introduction of user-defined refactorings in dedicated textual programming
languages. A similar idea is followed by Mens [16] and Biermann et al. [17] who
use graph transformations to describe the refactorings within the abstract syn-
tax of the modeling languages. The application of this formalism comes with the
additional benefit of formal analysis possibilities of dependencies between differ-
ent refactorings. In any case, the definition of new refactorings requires intense
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knowledge of the modeling language’s metamodel, of special APIs to process the
models, and finally of a dedicated programming language. In other words, very
specific expertise is demanded.

The Operation Recorder yields an orthogonal extension of existing approaches
by providing a front-end to the modeler for defining the refactorings by modeling
examples. The otherwise manually created refactoring descriptions are automat-
ically generated from which representations in any language or formalism like
graph transformation may be derived. Then it is possible to apply formal meth-
ods for analyzing the dependencies between refactorings as proposed by Mens.

User-friendly model transformation. Defining model transformation rules
by using the abstract syntax of graphical modeling languages comes on the one
hand with the benefit of generic applicability. On the other hand the creation
of such transformation rules is often complicated and their readability is much
lower compared to working with the concrete syntax as has been reported in sev-
eral papers [18,19,20,21]. As a solution, the usage of the concrete syntax for the
definition of transformation rules has been proposed like in AToM3 [19]. More
recently, Baar and Whittle [18] discuss requirements and challenge how to define
transformation rules in concrete syntax within current modeling environments. A
specific approach of describing transformation rules for web application models
is presented by Lechner [22]. In the field of aspect-oriented modeling, transfor-
mations are also required for weaving aspect models into base models. Whittle
et al. [23] describe aspect composition specifications for UML models by using
their concrete syntax. Summarizing, all these approaches significantly contribute
to the field of user-friendly development of transformations.

Model transformation by-example. Strommer and Wimmer [20] as well as
Varró [21] go one step further by defining transformations purely by-example,
i.e., instead of developing transformation rules, an example input model and the
corresponding output model are given. From these example pairs, the general
transformation rules are derived by a reasoning component. Currently, the focus
lies on model-to-model transformations between different languages, e.g., class
diagrams to relational models. In-place transformations required for composite
operations such as refactorings have not been considered by these approaches.

With the Operation Recorder we fill the gap between composite operation def-
inition approaches and model transformation by-example approaches. Although
the need for introducing refactorings by the user of modeling tools as well as
the need for describing transformations in a more user-friendly way have been
frequently reported, to the best of our knowledge, the Operation Recorder is the
first attempt to tackle the by-example definition of model transformations rep-
resenting composite operations such as refactorings. The only comparable work
we are aware of is [9] which allows to define composite operations by-example for
program code using the Squeak Smalltalk IDE [24]. Although their general idea
is similar to ours, three fundamental design differences exist, namely the Oper-
ation Recorder operates on models, is independent from any specific modeling
language, and may be employed for any modeling environment.
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7 Conclusions and Future Work

In this paper we introduced a tool for defining composite operations, such as
refactorings, for software models in a user-friendly way. Modeling using the mod-
eling language and environment of choice underlines this ease of use. Our by-
example approach prevents modelers from acquiring deep knowledge about the
metamodel and dedicated model transformation languages. The results of our
evaluation emphasize the usability of our Operation Recorder because of minimiz-
ing the user’s effort when defining such complex operations. We will integrate
and use the Operation Recorder as component in a model versioning system. From
this, we expect a reduction of merge conflicts and an improvement of conflict
resolution.

In future work, we plan to enable the reuse of already defined refactorings for
composing more complex refactorings. Preconditions of refactorings sometimes
may include negative application conditions. For this reason, we will integrate the
possibility of modeling forbidden model elements to match for non-existence of
elements within preconditions. In a further step, translating operation specifica-
tion models to graph transformations allows critical pairs analysis and, thus, the
detection of conflicts between refactorings. Finally, we would like to extend the
operation specification model by adding smells—indicating problematic model
fragments [25]—that may be solved using the defined refactorings.
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Abstract. Aspects use pointcut expressions to specify patterns that are matched 
against a base model, hence defining the base locations to which aspects are ap-
plied. The fragile pointcut problem is well-known in aspect-oriented modeling, 
as small changes in the base may lead to non-matching patterns. Consequently, 
aspects are not applied as desired. This is especially problematic for refactoring. 
Even though the meaning of the model has not changed, pointcut expressions 
may no longer match. We present an aspect-oriented modeling technique for 
scenarios that is refactoring-safe. The scenarios are modeled with Aspect-
oriented Use Case Maps (AoUCM), an extension of the recent ITU standard 
User Requirements Notation. AoUCM takes the semantics of the modeling no-
tation into account, thus ensuring pointcut expressions still match even after, for 
example, refactoring a single use case map into several hierarchical maps. Fur-
thermore, AoUCM allows the composed model to be viewed without having to 
resolve complex layout issues. The general principles of our approach are also 
applicable to other aspect-oriented modeling notations. 

Keywords: Aspects-oriented Modeling, User Requirements Notation, Aspect-
oriented Use Case Maps. 

1   Introduction 

Aspect-oriented Modeling (AOM) [6] has attracted considerable attention in the mod-
eling world over the last few years. One problem faced by AOM is the fragile point-
cut problem [4, 11, 13] – the patterns that describe where in the base model an aspect 
is applied are often very susceptible to rather small changes in the base model (i.e., a 
small change is enough for the pattern to no longer match and the aspect not being 
applied as desired). This paper presents an approach that addresses this problem for a 
specific set of changes, i.e., refactoring operations which do not change the meaning 
of the model but only its syntactic representation. A modeler should rightly expect 
that such operations do not affect the specification and impact of an aspect. 

This research is carried out in the context of the recent ITU standard User Re-
quirements Notation (URN) [8], a modeling language for requirements engineering 
and high-level design that incorporates goal-oriented and scenario-based models in 
one framework. The Aspect-oriented User Requirements Notation (AoURN) is an 
effort that seeks to evolve URN into a complete aspect-oriented modeling environ-
ment for requirements engineering activities. We apply our approach to AoURN’s 
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scenario notation Aspect-oriented Use Case Maps (AoUCM). A prerequisite of this 
research is a clear semantic definition of UCM [8, 15]. While we use AoUCM to 
demonstrate our approach, its general principles are not just applicable to AoUCM but 
may be applied to other aspect-oriented modeling notations. 

In the remainder of this paper, section 2 gives a brief overview of Use Case Maps 
(UCM) and Aspect-oriented Use Case Maps (AoUCM) including the current match-
ing and composition approach. Section 3 first enumerates semantic equivalences of 
AoUCM models and common refactoring operations and then introduces the im-
proved matching and composition algorithm based on semantics. The section con-
cludes with an example of how to apply our technique to another modeling notation, 
namely UML sequence diagrams. Section 4 discusses related work, and finally,  
section 5 concludes the paper and identifies future work. 

2   Overview of Aspect-Oriented Use Case Maps (AoUCM) 

2.1   Use Case Maps 

The User Requirements Notation (URN) [1, 8] supports the elicitation, analysis, 
specification, and validation of requirements. URN captures early requirements in a 
modeling framework containing two complementary sub-languages called Goal-
oriented Requirement Language (GRL – for goal-oriented modeling) and Use Case 
Maps (UCMs – for scenario-based modeling). GRL models are used to describe and 
reason about non-functional requirements (NFRs), quality attributes, and the inten-
tions of system stakeholders, whereas UCM models are used for operational require-
ments, functional requirements, and performance and architectural reasoning. While 
GRL identifies at a very high level of abstraction possible solutions to be considered 
for the proposed system, UCM models describe these solutions in more detail. In 
summary, URN has concepts for the specification of stakeholders, goals, non-
functional requirements, rationales, behaviour, actors, scenarios, and structuring. 

 
Customer DVD Store

processOrder

bought

buy

send
Movie

selectMovie

payForMovie rewardReferrer

Path with Start/End Point

Responsibility

Or-Fork

And-Fork And-Join

Empty Point

Direction Arrow

Static Stub

Waiting Place

Dynamic Stub Legend of UCM Symbols

Component

Or-Join

Customer DVD Store

processOrder

bought

buy

send
Movie

selectMovie

payForMovie rewardReferrer

Customer DVD Store

processOrder

bought

buy

send
Movie

selectMovie

payForMovie rewardReferrer

Path with Start/End Point

Responsibility

Or-Fork

And-Fork And-Join

Empty Point

Direction Arrow

Static Stub

Waiting Place

Dynamic Stub Legend of UCM Symbols

Component

Or-Join

Path with Start/End Point

Responsibility

Or-ForkOr-Fork

And-Fork And-Join

Empty Point

Direction Arrow

Static Stub

Waiting Place

Dynamic Stub Legend of UCM Symbols

ComponentComponent

Or-JoinOr-Join

 

Fig. 1. The Buy Movie Use Case of a Simple Online DVD Store System 

A UCM model consists of a path that begins at a start point ( ) and ends with an 
end point (▌). A path may contain responsibilities ( ), identifying the steps in a 
scenario, and notational symbols for alternative ( ) and concurrent ( ) branches. 
Path elements may be assigned to a component ( ). Stubs are containers for sub-
models called plug-in maps. Drilling into a stub leads to a submap that provides more 
details, thus allowing for hierarchical structuring of UCM models. A binding between 
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the stub and elements on the plug-in map precisely defines how the scenario continues 
from the parent map to the submap and back to the parent map. A static stub ( ) may 
have only one plug-in map, while dynamic stubs ( ) may have several. 

The most comprehensive URN tool available to date is the Eclipse plug-in jUCM-
Nav [10]. Some support for aspect-oriented modeling is already available for jUCM-
Nav. Further AO functionality is being prototyped and will be added to the tool in the 
near future. For more details about URN, visit the URN Virtual Library [21]. 

2.2   Aspect-Oriented Use Case Maps 

The Aspect-oriented User Requirements Notation (AoURN) [16, 17, 18, 19] extends 
the User Requirements Notation (URN) with aspect-oriented concepts, allowing  
modelers to better encapsulate crosscutting concerns which are hard or impossible to 
encapsulate with URN models alone. AoURN adds aspect concepts to URN’s sub-
languages, leading to and integrating Aspect-oriented GRL (AoGRL) and Aspect-
oriented UCMs (AoUCM). The three major aspect-oriented concepts that have to be 
added to URN are concerns, composition rules, and pointcut expressions. Note that 
the term aspect refers to a crosscutting concern, while the term concern encompasses 
both crosscutting and non-crosscutting concerns. 

A concern is a new unit of encapsulation that captures everything related to a par-
ticular idea, feature, quality, etc. AoURN treats concerns as first-class modeling ele-
ments, regardless of whether they are crosscutting or not. Typical concerns in the 
context of URN are stakeholders’ intentions, NFRs, and use cases. AoURN groups all 
relevant properties of a concern such as goals, behavior, and structure, as well as 
pointcut expressions needed to apply new goal and scenario elements to a URN model 
or to modify existing elements in the URN model. 

Pointcut expressions are patterns that are specified by an aspect and matched in the 
URN model (often referred to as the base model). If a match is found, the aspect is 
applied at the matched location in the base model. The composition rule defines how 
an aspect transforms the matched location. AoURN uses standard URN diagrams to 
describe pointcut expressions and composition rules (i.e., AoURN is only limited by 
the expressive power of URN itself as opposed to a particular composition language). 
AoURN’s aspect composition technique can fully transform URN models. 

UCM pointcut expressions define the pattern to be matched with a pointcut map. 
Grey start and end points on the pointcut map are not part of the pointcut expression 
but rather denote its beginning and end. The aspectual properties are shown on a sepa-
rate aspect map, allowing the pointcut expression and the aspectual properties to be 
individually reused. The aspect map is linked to the pointcut expression with the help 
of a pointcut stub ( PP ) (i.e., the pointcut map is a plug-in map of the pointcut stub). 
The causal relationship of the pointcut stub and the aspectual properties visually de-
fines the composition rule for the aspect, indicating how the aspect is inserted in the 
base model (e.g., before, after, optionally, in parallel, interleaved, or anything else 
that can be expressed with UCM). The replacement pointcut stub ( PP ) is a special kind 
of pointcut stub, indicating that the aspect is replacing the matched base elements. 

For example, Fig. 2 shows a simple Logging concern. The pointcut map matches 
against any responsibility of the DVD store (the wildcard * means any name). Hence, 
the pointcut expression matches each of the three responsibilities in the DVD store in 
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Fig. 1. The aspect map defines that a log is created after the loggable action occurred 
(i.e., the causal relationship of the pointcut stub and the aspectual property – the re-
sponsibility log in this case – states that log happens after the pointcut stub which 
means after the matched base elements). 
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Fig. 2. Aspect Map and Pointcut Map for the Logging Concern 
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Fig. 3. Aspect Markers and Their Corresponding AoView for the Logging Concern 

The three aspect markers ( ) in Fig. 3 indicate the affected base locations in the 
UCM model from Fig. 1. If the aspect adds elements before or after the base location 
matched by the pointcut expression, the aspect marker is added before or after the 
base location, respectively.  An aspect marker is a kind of stub that links the base 
model with a submap, i.e., the aspect map. The AoView highlights the portion of the 
aspect map that is inserted. The aspect markers and the AoView effectively construct 
the composed model using the layout information provided by the modeler when the 
aspect was defined. When an aspect marker is reached in the Buy Movie scenario, the 
scenario continues with the aspectual behavior as highlighted in the AoView (i.e., 
right after the pointcut stub). When the end point is reached in the AoView, the sce-
nario returns to the same aspect marker and continues with the Buy Movie scenario. 

The purpose of the Communication concern in Fig. 4 is to define in more detail the 
interaction between the customer and the online DVD store. The pointcut map there-
fore matches against all interactions between the Customer and the DVD Store com-
ponents that are started by any responsibility in Customer and followed immediately 
by an arbitrary sequence of elements in the DVD Store before the path crosses back 
into Customer. The anything pointcut element (.....) therefore ensures that the pointcut 
expression matches against selectMovie, processOrder, and rewardReferrer as well as 
payForMovie and sendMovie in Fig. 1. 

Furthermore, variables ($initiateRequest, $performRequest, $Requester, and  
$Replier) are defined in the pointcut expression to allow matched elements to be re-
used in the aspect map. The replacement pointcut stub on the aspect map in Fig. 1 
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indicates that the matched elements are replaced with the aspectual properties de-
scribed on the aspect map. The aspect map, however, reinserts the matched elements 
with the help of the variables. The aspect map also adds explicit request and reply 
responsibilities as well as a waiting place, specifying that the customer has to wait for 
the response of the DVD store. 
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Fig. 4. Aspect Map and Pointcut Map for the Communication Concern 
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Fig. 5. Aspect Markers and Their Corresponding AoViews for the Communication Concern 

In the base model in Fig. 5, a replacement is indicated by two special aspect mark-
ers. The tunnel entrance aspect marker ( ) is added before the matched elements 
and the tunnel exit aspect marker ( ) is added after the matched elements. In this 
case, two pairs of the tunnel aspect markers are added to the base model, because the 
pointcut expression is matched twice. The AoViews in Fig. 5 highlight the portion of 
the aspect map that is inserted. When the first tunnel entrance aspect marker is 
reached during the Buy Movie scenario, the scenario continues with the aspectual 
behavior on the aspect map (right after the pointcut stub) as shown in the top 
AoView. When the aspect map’s end point is reached, the scenario continues with the 
first tunnel exit aspect marker, thus skipping the replaced base elements. The inserted 
portion for the second pair of tunnel aspect markers is shown in the bottom AoView. 

Note how the variables in the aspect map have been replaced by the actual matched 
elements in the AoViews (i.e., $initiateRequest is replaced by selectMovie or by  
payForMovie; $performRequest is replaced by processOrder and rewardReferrer or  
by sendMovie; $Requester is replaced by Customer; and $Replier by DVD Store). 
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Furthermore, if the actual matched elements are complicated because a complex se-
quence was matched by the anything pointcut element, it may not be possible to add 
the matched elements directly to the aspect map. In this case, a static stub is added to 
the AoView and linked to the matched elements. This still allows layout information 
to be reused from the models defined by the requirements engineers. 

The general approach of AoUCM’s matching algorithm is to scan the base model 
and a pointcut expression in parallel. Starting with the first element of the pointcut 
expression, the matching algorithm tries to find a matching element in the base model. 
If a match is found, the algorithm moves on to the next element of the pointcut ex-
pression and tries to match it with the base element following the first matched base 
element. This continues until ideally the complete pointcut expression has been 
matched. For elements that may have more than one following element, all permuta-
tions are taken into consideration. For more details on the matching algorithm, the 
reader is referred to [17]. In summary, the matching algorithm uses the following 
criteria to decide whether a path node in the pointcut expression matches a path node 
in the base model. This list is the most up-to-date and includes all additions due to 
new capabilities of AoUCM that postdate the publication of [17]: 

 

• The types and names of the path nodes must match. 
• The node connection to the following path node (regular or timeout branch) and 

the direction of the path must match. 
• The anything pointcut element may be matched to any sequence of path nodes 

and path node connections in the base model. 
• The names of conditions must match, if the path nodes are start points, waiting 

places, timers, or OR-forks. If the pointcut expression does not specify condi-
tions, any condition may be matched. 

• The component hierarchy of the path nodes must be compatible. 
• The location of the path nodes in their components must match (either first, last, 

or any location in the component). 
• The metadata of the pointcut element must be a subset of the metadata of the 

base element (metadata are annotations in the form of name/value pairs that may 
be added to any URN model element). 

3   Refactoring of AoUCM Models 

The problem addressed in this section is how to ensure refactoring-safe AoUCM mod-
els. Refactoring-safe means that if the AoUCM model is refactored, then a pointcut 
expression that matches the initial model will also match the refactored model. Simi-
larly, a pointcut expression that does not match the initial model will still not match the 
refactored model. As a refactoring operation transforms one model into a semantically 
equivalent model, the improved matching algorithm presented in section 3.2 somehow 
has to take into account the semantic equivalences discussed in section 3.1. 

However, even if the matching algorithm is able to guarantee refactoring-safe 
AoUCM models, the composed model also needs to be automatically constructed to 
help the modeler understand the overall behaviour and assess the impact of aspects on 
the model. Finding the right layout for the composed model is a difficult problem for 
most aspect-oriented modeling notations. The layout must be intuitive to the modeler. 
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The AoUCM notation with its paths bound to components has proven to be difficult 
to layout automatically. jUCMNav’s auto-layout mechanism [10] only works for 
rather simple models. This problem is compounded by the fact that the enhanced 
matching algorithm based on semantics now allows for pointcut expressions to be 
matched across map boundaries, e.g., the first part of a single pointcut expression may 
match one map while the remaining part of the pointcut expression may match an-
other map that is connected to the first as discussed in section 3.2. The composition 
technique also described in section 3.2 addresses this problem because it does not 
require auto-layouting. Furthermore, the general principles of this technique may be 
applied to other aspect-oriented modeling notations and section 3.6 demonstrates this 
using UML sequence diagrams. 

3.1   Semantic Equivalences in AoUCM Models 

The following semantic equivalences can be found in the AoUCM notation. They also 
apply to traditional UCM models as defined in the URN standard [8]. Fig. 6.a shows 
the first and most straightforward equivalence type involving direction arrows (>), 
empty points ( ), and connected end and start points (▌ ). These elements are simply 
ignored by the current matching algorithm. 

The second type of equivalence involves hierarchical structuring with static, dy-
namic, or synchronizing stubs. The latter is defined in the recent standard as a dy-
namic stub whose plug-in maps are synchronized, requiring them to finish before 
traversal can continue past the stub. Flattened models that are equivalent to all three 
types of stubs are defined in the standard and are shown in Fig. 6.b. The flattened 
model of a synchronizing stub is not shown as it is very similar to the one of a stan-
dard dynamic stub. If the dynamic stub in Fig. 6.b were a synchronizing stub, then the 
OR-join o1 would be an AND-join instead. That is the only difference in the flattened 
model. The current matching algorithm also simply ignores static stubs and the start 
and end points of their plug-in maps. While this is mentioned in [17], the specific 
implications for the matching and composition mechanisms have not yet been pre-
sented. In any case, this approach is too simplistic as will be discussed further below. 
Furthermore, dynamic stubs are not addressed at all by the current algorithm. 

Fig. 6.c illustrates the third and last type of semantic equivalences in UCM and 
AoUCM models, covering loop unrolling. This paper, however, focuses on the second 
type as the first is trivial and the last has been discussed in detail in [12]. While the 
findings of [12] could be incorporated into the AoUCM approach, we focus on hierar-
chical structuring because a) to the best of our knowledge this has not yet been ad-
dressed in literature, b) it introduces additional challenges, particularly regarding how 
to layout the composed model, and c) it is a much more common refactoring opera-
tion in AoUCM models than loop unrolling based on our decade of experience in 
creating and maintaining UCM and AoUCM models. 

The particular refactoring operations that are to be supported for AoUCM models 
therefore are extracting a plug-in map, inlining a plug-in map (the reverse of the first), 
as well as the adding/deleting of direction arrows, empty points, and connected end 
and start points. These types of operations are applicable to most modeling notations 
as most notations provide some form of hierarchical structuring that can benefit from 
extracting/inlining as well as many notations have purely syntactical elements that do 
not change the meaning of the model but are visual aids for the modeler. 
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Fig. 6. Semantic Equivalences in UCM and AoUCM Models 

3.2   Improved Matching and Composition Algorithms Based on Semantics 

A first intuition is to use only the flattened model as the basis for the matching algo-
rithm, thereby reducing each UCM model to its normalized form. In this case, point-
cut expressions cannot match against stubs since flattened models do not contain 
stubs. However, there is no good reason to exclude stubs from pointcut expressions 
since a modeler may want to match stubs explicitly. Therefore, the improved match-
ing algorithm distinguishes between model elements that can always be ignored (i.e., 
direction arrows, empty points, connected end and start points) and model elements 
that potentially can be ignored depending on the context (i.e., stubs and the start and 
end points on their plug-in maps). 

For example, Fig. 7 depicts two equivalent UCM models with five responsibilities 
each (R1 to R5). The first UCM model consists of only one map whereas the second is 
split up over three maps. Three of the five responsibilities are matched by the first 
pointcut expression in Fig. 7.a. The aspect map adds two responsibilities A1 and A2 
before and after the matched elements, respectively. Hence, aspect markers are added 
before R1 and after R3. The second pointcut expression in Fig. 7.b contains two re-
sponsibilities and a stub. In this case, the aspect markers are added before R1 and after 
the stub on the second-level map. The UCM model without stubs is not matched even 
though it is semantically equivalent to the UCM model with stubs, because the mod-
eler’s decision to require a stub in the matched pointcut expression takes precedence 
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over matching based on semantics. If, however, the modeler adds a plug-in map to the 
stub in the second pointcut map, the normal form for the pointcut map is used by the 
matching algorithm as in this case, it is deemed that the modeler used the stub to struc-
ture a model hierarchically and not to explicitly match a stub. 

For both examples in Fig. 7, the aspect markers before R1 link to the portion of the 
aspect map that contains A1, thus inserting it. Similarly, the aspect markers after R3 
and after the stub link to the portion of the aspect map that contains A2. 
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Fig. 7. Enhanced Matching and Composition Based on Semantics 

Assume that the matching algorithm has already matched responsibility R1 in the 
second UCM model against the first responsibility in both pointcut expressions. The 
next element in the UCM model is a static stub, i.e. an element that may potentially be 
ignored. Both pointcut expressions, however, expect another responsibility. There-
fore, the matching algorithm ignores the stub and its start point on the second-level 
map. It then continues with R2 and finds a match. At this point, the first pointcut 
expression expects a third responsibility whereas the second pointcut expression ex-
pects a stub. For the first pointcut expression, the matching algorithm ignores the stub 
on the second-level map and the start point on its plug-in map and matches the third 
responsibility. For the second pointcut expression, the stub is not ignored and 
matched against the pointcut expression. 

Note that if the pointcut expression contains a named start/end point that needs to 
be matched, then the start/end points of plug-in maps are taken into account similarly 
to stubs being taken into account if they appear in the pointcut expression. 
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In summary, the matching algorithm takes the semantic equivalence for static stubs 
into account. If the stub in the UCM model is a dynamic stub, then the matching algo-
rithm also ignores the stub but expects instead an AND-fork before continuing with 
the matching of elements on the plug-in map. An AND-fork is expected because the 
AND-fork is defined by the semantic equivalence (see Fig. 6.b). Furthermore, the 
matching algorithm expects an OR-join before continuing past the stub; again because 
it is so defined by the semantic equivalence. 

3.3   Shared Plug-In Maps 

There is, however, a problem with the approach presented in section 3.2 if a plug-in 
map is shared by several stubs. For example in Fig. 8, another map exists in the sec-
ond UCM model that does not have the R1 responsibility but the XYZ responsibility 
instead. The plug-in maps, however, are reused. The pointcut expression does not 
match the hierarchy of maps that includes the map with XYZ but still matches the one 
with the map with R1. If the traversal of the UCM model arrives at the bottom-level 
map from the map with XYZ, the scenario must not continue via the aspect marker to 
the aspect map. The matching algorithm ensures that this is the case by encoding the 
required hierarchy context as a condition for the aspect marker (stubs have conditions 
that are checked before a plug-in map is chosen and, as mentioned earlier, an aspect 
marker is a type of stub). The condition for the aspect marker on the bottom-level 
map is as follows: 

_context = stubID_on_map_with_R1 && stubID_on_mid_level_map 
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Fig. 8. Shared Plug-in Maps 

The variable _context is a new variable provided by the UCM path traversal 
mechanism that allows access to the current stack of visited maps during the traversal. 
The current stack of visited maps must match the condition of the aspect marker for 
the traversal to continue on to the aspect map. In all other cases, the aspect marker is 
ignored and the traversal continues past the aspect marker. This possibility is indi-
cated by brackets above the aspect marker (brackets are used in UCM for conditions). 

3.4   Replacement Pointcut Stubs 

Another problem appears when a replacement pointcut stub is used instead of a regu-
lar pointcut stub. In this case, the location of the aspect markers are exactly the same 
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but the UCM path traversal mechanism loses important contextual information during 
the traversal of the UCM model. Fig. 9 illustrates what happens if a replacement 
pointcut stub is used. When the tunnel entrance aspect marker is reached in the UCM 
model, the traversal continues with the aspect. On the aspect map, A1 and A2 are 
traversed. Since the end point eA is connected to the tunnel exit aspect marker, the 
traversal continues with the bottom-level map. When its end point e3 is reached, the 
scenario should continue with the mid-level map because R4 used to be after R3 in 
the original model. However, the traversal mechanism is not aware of the mid-level 
map at this point, because it never reached the stub after R1. 
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Fig. 9. Replacement Pointcut Stub 

The matching algorithm, however, is aware of the hierarchy since the match spans all 
involved map levels. Therefore, the lost hierarchy information needs to be retained for 
the tunnel exit aspect marker by the matching algorithm. This is achieved by annotating 
the aspect marker with metadata. The name of the metadata is aspect, while the value is 
“context stubID_on_map_with_R1 stubID_on_mid_level_map”. With this context 
information, the traversal mechanism adjusts the stack of visited maps – adding the mid-
level map to it – and is then able to continue traversing the UCM model as required. 

3.5   Multiple Matches of a Pointcut Expression 

Finally, the last ambiguity that needs to be resolved for the improved matching and 
composition algorithm is related to multiple matches of a pointcut expression. If mul-
tiple matches exist, then the end point of the aspect map will be bound to many aspect 
markers. This is not a problem for simple before and after composition rules, because 
the scenario continues with the same aspect marker once the aspectual behaviour is 
finished. More complex replacement or interleaving composition rules, however, may 
not continue with the same aspect marker as shown in Fig. 10. When the traversal has 
reached the aspect map from the aspect marker of the map with responsibility R7, it is 
not clear which plug-in binding of end point eA to use. Therefore, the composition 
mechanism groups all tunnel entrance and tunnel exit aspect markers related to one 
match of the pointcut map. This is achieved by again adding metadata to each aspect 
marker. The name of the aspect marker is again aspect, while the value is “group 
<someID>”. The UCM path traversal mechanism is then able to choose the correct 
plug-in binding of the end point eA by matching the group numbers of the tunnel 
entrance and tunnel exit markers. 
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Fig. 10. Multiple Matches for a Pointcut Map 

In summary, the improved matching algorithm now differentiates between three 
types of path nodes. Type I path nodes are matched as is and most path nodes fall into 
this category. Type II path nodes are always ignored, i.e., direction arrows, empty 
points, and connected end and start points. Type III path nodes are possibly ignored. 
Stubs and the start and end points of their plug-in maps fall into this category. If a 
direct match is not possible, the algorithm attempts to match type III path nodes based 
on semantic equivalences to their flattened representation. 

The improved composition algorithm, on the other hand, supplements with the help 
of metadata all aspect markers with sufficient information to identify required and lost 
map traversal hierarchies and the groups to which aspect markers belong. All of this is 
possible without having to create a new layout for the composed model because the 
addition of aspect markers is the only change required for composition. Large scale 
changes to the original models created by the requirements engineer are not required. 
Hence, these models can be used, ensuring that requirements engineers can continue 
working with familiar base and aspect models even if the models are composed. 

The improved matching and composition algorithm is important for AoUCM as it 
also allows AoUCM models to be matched more consistently even if aspects have 
already been applied. If aspects are applied, then aspect markers will appear in the 
AoUCM model. Since an aspect marker is a type of stub, it can now also be matched 
on a semantic level. At this point, aspect markers are interpreted as static stubs. In the 
future, however, they may have a slightly different semantic interpretation due to 
concern precedence rules. The approach presented in this section is extensible in that 
a flattened representation always can define a new semantic equivalence which can 
then be incorporated into the matching and composition algorithm with minor adjust-
ments to the algorithm. 

3.6   Applying the General Principles of Our Approach to Sequence Diagrams 

In order to apply the general principles of our approach to another modeling notation, 
the following steps have to be followed. First, type II and III model elements need to 
be identified. For example, comments may be considered as type II elements for se-
quence diagrams (SDs). Type III elements, on the other hand, may be interaction uses 
(essentially references to sub-sequence diagrams). 

Second, semantic equivalences for each type III element need to be defined. In the 
case of SDs, the semantic equivalence of a sequence diagram with an interaction use 
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plus its sub-sequence diagram is a single sequence diagram that merges both original 
ones together. The improved matching algorithm would therefore consider either an 
interaction use or the next element on the sub-sequence diagram as possible candi-
dates for a match. 

Third, the concept of aspect markers needs to be applied to the modeling notation. 
Two options exist here. Either aspect markers are added as a new concept to the nota-
tion or an existing concept may be used or adapted. In the case of SDs, states could be 
used as illustrated in Fig. 11. The aspectual notation used for Fig. 11 is MATA [22]. 
In MATA, elements in the aspect stereotyped with <<create>> are added by the as-
pect to the base model while elements stereotyped with <<delete>> are to be matched 
in the base model and then removed from the base model when the aspect is applied. 
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Fig. 11. “Aspect markers” in UML Sequence Diagrams 

The states with the stereotypes <<start>> and <<end>> essentially encode the 
plug-in binding of the aspect markers in the AoUCM notation, connecting the base 
behavior with the aspectual behavior even if the match spans several hierarchical 
levels of SDs (not shown here due to space constraints). Additional tagged values (not 
shown in the figure) provide information on lost and required hierarchies as well as 
the groupings of the “aspect markers” for SDs as explained in section 3.2. 

4   Related Work 

While many aspect-oriented modeling techniques exist for requirements engineering 
such as use cases [2, 9], viewpoints [20], problem frames [14], and UML models [7, 
22], none to the best of our knowledge addresses semantic equivalences in their 
matching and composition mechanisms with the exception of the following work in 
semantic-based aspect weaving. Chitchyan et al. [5] use natural language processing 
to take into account English semantics when composing textual requirements docu-
ments. For aspect-oriented modeling, Klein et al. [12] weave UML sequence dia-
grams by matching semantically equivalent but syntactically different sequences. 
Klein et al. give a thorough explanation on how to deal with loops but do not address 
the problems related to hierarchical structuring and replacements discussed in section 
3.2. Furthermore, this work does not address complex layout issues that may have to 
be resolved when the woven end result is presented to the modeler. In the context of 
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aspect-oriented programming, Bergmans [3] discusses the use of semantic annotations 
for composition filters. 

5   Conclusion 

We have presented an enhanced, semantics-based matching and composition algo-
rithm for aspect-oriented scenario models. Our approach ensures that refactoring 
operations for which semantic equivalences were defined can be performed without a 
risk of breaking the aspects’ pointcut expressions. Our approach is extensible as new 
refactoring operations may be added by defining their semantic equivalences and 
making small incremental adaptations to the existing algorithm. With this approach, 
aspect markers are also interpreted as model elements to which semantics-based 
matching may be applied, leading to a more consistent and powerful treatment of 
AoUCM models to which aspects have already been applied. 

The composition mechanism makes use of the layout information provided natu-
rally by the modelers themselves at the time the base and aspect models are defined. 
This allows the composed model to be presented in a familiar way to the modelers 
without having to resolve complex layout issues. The general principles of our work 
are also applicable to other aspect-oriented modeling notations as illustrated by as-
pect-oriented UML sequence diagrams expressed with the MATA notation. In future 
work, we plan to apply our approach to further AOM notations and to investigate 
empirically how intuitive the matching and composition algorithm and the usage of 
aspect markers is to requirements engineers, especially when base elements spanning 
multiple maps are replaced by an aspect. 

Acknowledgments. This research was supported by NSERC Canada, through its 
programs of Discovery Grants and Postgraduate Scholarships. 

References 

1. Amyot, D., Mussbacher, G.: Development of Telecommunications Standards and Services 
with the User Requirements Notation. In: Workshop on ITU System Design Languages 
(2008),  
http://www.itu.int/dms_pub/itu-t/oth/06/18/ 
T06180000010012PDFE.pdf 

2. Araújo, J., Moreira, A.: An Aspectual Use Case Driven Approach. In: Pimentel, E., 
Brisaboa, N.R., Gómez, J. (eds.) VIII Jornadas de Ingeniería de Software y Bases de Datos 
(JISBD 2003), pp. 463–468. Alicante (2003) 

3. Bergmans, L.M.J.: Towards Detection of Semantic Conflicts between Crosscutting Concerns. 
In: Workshop on Analysis of Aspect-Oriented Software (2003), 
http://www.comp.lancs.ac.uk/~chitchya/AAOS2003/Assets/ 
bergmansl.pdf 

4. Braem, M., Gybels, K., Kellens, A., Vanderperren, W.: Inducing Evolution-Robust Point-
cuts. In: Duchien, L., D’Hondt, M., Mens, T. (eds.) Second International ERCIM Work-
shop on Software Evolution (EVOL 2006), pp. 17–22. Lille (2006) 

5. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-Based Composition for As-
pect-Oriented Requirements Engineering. In: 6th International Conference on Aspect Ori-
ented Software Development (AOSD), pp. 36–48. ACM, New York (2007) 



300 G. Mussbacher, D. Amyot, and J. Whittle 

6. Chitchyan, R., et al.: Survey of Analysis and Design Approaches,  
http://www.aosd-europe.net/deliverables/d11.pdf 

7. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach. 
Addison-Wesley, Reading (2005) 

8. ITU: Recommendation Z.151 (11/08): User Requirements Notation (URN) – Language 
definition, http://www.itu.int/rec/T-REC-Z.151/en  

9. Jacobson, I., Ng, P.-W.: Aspect-Oriented Software Development with Use Cases. Addi-
son-Wesley, Reading (2005) 

10. jUCMNav website, University of Ottawa, 
http://softwareengineering.ca/jucmnav 

11. Kellens, A., Gybels, K., Brichau, J., Mens, K.: A Model-Driven Pointcut Language for 
More Robust Pointcuts. In: Workshop on Software Engineering Properties of Languages 
for Aspect Technology (2006),  

  http://aosd.net/workshops/splat/2006/papers/kellens.pdf 
12. Klein, J., Hélouët, L., Jézéquel, J.M.: Semantic-based Weaving of Scenarios. In: 5th Inter-

national Conference on Aspect Oriented Software Development (AOSD), pp. 27–38. 
ACM, New York (2006) 

13. Koppen, C., Stoerzer, M.: Pcdiff: Attacking the Fragile Pointcut Problem. In: European In-
teractive Workshop on Aspects in Software (EIWAS 2004), Berlin, Germany (2004) 

14. Lencastre, M., Araújo, J., Moreira, A., Castro, J.: Towards Aspectual Problem Frames: an 
Example. Expert Systems Journal 25(1), 74–86 (2008) 

15. Mussbacher, G., Amyot, D.: Assessing the Applicability of Use Case Maps for Business 
Process and Workflow Description. In: 2008 International MCeTech Conference on 
eTechnologies (MCeTech), pp. 219–222. IEEE Computer Society, Washington (2008) 

16. Mussbacher, G., Amyot, D.: Extending the User Requirements Notation with Aspect-
oriented Concepts. In: Bilgic, A., Gotzhein, R., Reed, R. (eds.) SDL Forum Conference 
2009. LNCS, vol. 5719, pp. 119–137. Springer, Heidelberg (2009) 

17. Mussbacher, G., Amyot, D., Weiss, M.: Visualizing Early Aspects with Use Case Maps. 
In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD III. LNCS, vol. 4620, pp. 105–143. 
Springer, Heidelberg (2007) 

18. Mussbacher, G.: Aspect-Oriented User Requirements Notation: Aspects in Goal and  
Scenario Models. In: Giese, H. (ed.) MoDELS 2007. LNCS, vol. 5002, pp. 305–316. 
Springer, Heidelberg (2008) 

19. Pourshahid, A., Mussbacher, G., Amyot, D., Weiss, M.: An Aspect-Oriented Framework 
for Business Process Improvement. In: Babin, G., Kropf, P., Weiss, M. (eds.) 4th Interna-
tional MCeTech Conference on eTechnologies (MCeTech 2009). LNBIP, vol. 26, pp. 290–
305. Springer, Heidelberg (2009) 

20. Rashid, A., Moreira, A., Araújo, J.: Modularisation and Composition of Aspectual Re-
quirements. In: 2nd International Conference on Aspect Oriented Software Development 
(AOSD), pp. 11–20. ACM, New York (2003) 

21. URN Virtual Library, http://www.usecasemaps.org/pub  
22. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: A Unified  

Approach for Composing UML Aspect Models based on Graph Transformation. In: Trans-
actions on Aspect-Oriented Software Development. LNCS. Springer, Heidelberg (to be 
published)  



Model-Based Testing Using LSCs and S2A�,��
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Abstract. We report on our preliminary experience in using high-level visual
scenario-based models for tests specification, test generation, and aspect-based
test execution, in the context of an industrial application. To specify scenario-
based tests, we used a UML2-compliant variant of live sequence charts (LSC).
To automatically generate testing code from the models, we used a modified ver-
sion of the S2A Compiler, outputting AspectC++ code. Finally, to examine the
results of the tests, we used the Tracer, a prototype tool for model-based trace
visualization and exploration. Our experience reveals the advantages of integrat-
ing models into industrial settings, specifically for model-based test specification
and aspect-based execution: generating aspect code from visual models enables
exploiting the expressive power of aspects for testing without manual coding and
without knowledge of their rather complex syntax and semantics. We further dis-
cuss technological and other barriers for the future successful integration of our
initial work in industrial context.

1 Introduction

Model-based test techniques may provide benefits over conventional script-based test
automation solutions in terms of productivity and test coverage. Still, at least two major
challenges hinder the adaption of such testing approaches. First, difficult deployment
and suboptimal use of technology due to testers lack of specialized modeling skills.
Second, the use of technology that limits the high-level testing of the system under
test (SUT) to interface testing, where inputs are passed as parameters and the output is
observed only from the return values.

In this work we introduce a novel approach to model-based testing where models
based on high-level visual scenarios are compiled automatically into test aspects. This
aims at partly addressing the above challenges, using a visual language to make test
specifications more accessible to engineers while taking advantage of aspect-oriented
technology in order to access the SUT internals.

Specifically, to visually specify testing scenarios we use a UML2-compliant variant
of Damm and Harel’s live sequence charts (LSCs) [1,2]. LSCs is a visual formalism
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that extends classical sequence diagrams partial order semantics mainly by adding uni-
versal and existential hot/cold modalities, allowing a visual and intuitive specification
of scenario-based liveness and safety properties. To execute the tests, we automatically
translate the diagrams into test scenario aspects using a modified version of the S2A
compiler [3]. After weaving with the SUT code, the generated aspects follow the exe-
cution of the tests specified in the diagrams and report on their run time progress and
results using scenario-based traces [4], which are visualized and explored in a proto-
type tool called the Tracer [5].

Aspects have been used for testing before (see, e.g., [6]). Our approach to using
generated scenario aspects for test execution has a number of advantages. First, test
definition is done visually, using popular standard diagrams, within a commercial tool,
and does not involve code writing. Second, the diagrams are automatically translated
into test scenario aspects, which are woven into the code of the SUT, taking advantage
of aspect technology in order to access the SUT internals without explicitly changing
the original code. Third, the results of the tests are not limited to Boolean pass/fail
output but instead provide rich information on traces of execution, exactly at the level
of abstraction defined by the scenarios used for testing.

We report on a preliminary case study where we tried out our approach on an indus-
trial system: a C++ application, running on Symbian OS, inside a Nokia smartphone.
The case study has been carried out by the second listed author while he was at Nokia
Corp., Devices R&D. We present the study results, and further discuss technological
and other barriers for the future successful integration of our work in the industrial
context.

This short paper focuses only on the introduction of the tool chain and on the initial
case study evaluation. An extended version that includes background material, example
diagrams and code snippets from the case study, additional technical details on the
aspect code generation, a discussion of related work etc., is available as a tech. report1.

2 Overview of the Tool Chain and Case Study

Defining the Scenarios. First, the test designer draws LSCs (that is, UML2-compliant
modal sequence diagrams) using IBM RSA [7] (extended with the modal profile de-
fined in [2]). The profile extension allows the engineer to set hot and cold modes to
methods and conditions, as required by LSCs. In general, any UML2-compliant editor
that supports profiles could be used to draw the LSCs. A number of LSCs are drawn,
divided between several use cases for better manageability.

Some of the scenarios monitor for forbidden behaviors. If they occur, a violation is
recorded. Note that the modeled scenarios combine monitoring with execution; they
do not only listen for relevant events to monitor the progress of the tests. Rather, some
methods are designated with the execution mode. When such a method is enabled in one
chart and not violating in any other chart, the generated code, described next, executes

1 Maoz, S., Metsä, J., Katara, M.: Model-Based Test Specification and Execution Using Live
Sequence Charts and the S2A Compiler: an Industrial Experience. Technical Report 4, Tam-
pere University of Technology, Department of Software Systems (2009)
http://practise.cs.tut.fi/publications.php?project=amoeba-testing

http://practise.cs.tut.fi/publications.php?project=amoeba-testing
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this method using generated inter-type declarations. Typically, a scenario includes a mix
of monitoring and executing methods, to follow a test and advance it, alternately.

In our case study, we created test scenarios based on three test objectives: (1) generic
monitoring, (2) monitoring for regression testing, and (3) simple new tests. The generic
monitoring scenarios verify that the SUT actually behaves as designed to, e.g., that
certain method calls are indeed followed by certain behavior. For regression testing, we
created scenarios that had revealed certain problems in the older versions of the SUT.
Finally, we created new test scenarios that after certain sequence of events exercise the
target system with additional method calls. These scenarios were very simple, since
we wanted to be able to notice other problems related to adopting the technique in the
target platform. In total we had 32 different test scenarios. After modeling, the LSCs
are compiled to generate executable test code.

Generating and Executing Testing Scenarios. The engineer runs the S2A compiler
[3], (optionally) from within RSA, to generate AspectC++ scenario aspects. In addition
to the LSCs, S2A reads a properties file that has properties such as the path for the
target folder where the generated code should be written to, a list of files that need to
be ‘included’ in the generated code, etc.

S2A translates LSCs, given in their UML2-compliant variant using the modal profile
of [2], into AspectJ code. It implements the compilation scheme presented by Maoz and
Harel in [8] and supports scenario-based execution following the play-out operational
semantics of LSC [9]. Roughly, each sequence diagram is translated into a scenario
aspect, which simulates an automaton whose states correspond to the scenario cuts;
enabled events are represented by transitions that are triggered by pointcuts, and corre-
sponding advice is responsible for advancing the automaton to the next cut state. The
compiler comes with a runtime component (not generated), which includes code that
is common to all scenario aspects, utility methods and super classes, making the gen-
erated aspect code more specific and readable. To use S2A with our industrial SUT,
which is written in C++, we have designed and implemented a version of S2A that
outputs AspectC++ [10] rather than AspectJ code.

The generated AspectC++ code is then copied onto the SUT environment. In our
case, a mobile phone running Symbian OS and several applications written in C++. The
generated aspect code is woven to the SUT code prior to compilation and linking, thus
producing SUT instrumented with the generated test harness. The tests are performed
according to the test plan exercising the SUT based on test cases defining test data and
control. In our case study we used the test plan and related test cases defined for the
SUT for release testing purposes.

Tracing and Trace Visualization and Exploration. S2A’s runtime component sup-
ports scenario-based monitoring, that is, the generation of model-based execution traces
[4] (specifically, scenario-based traces) from programs instrumented with S2A’s gen-
erated aspects. In our context, the generated model-based traces provide information
about the executed tests progress and completion states. These are viewed and explored
using the Tracer (see [5,11]), a trace visualization and exploration tool, providing the
engineer effective means to explore the test results.
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3 Evaluation

Lessons learned include both technical issues and other issues that are more social or
cultural. We present the strengths and weaknesses we have identified and list recom-
mendations for future successful adaption of our work in the industrial context.

No need to know aspects. One clear strength of our approach to model-based testing
and tool chain is that test scenario definition is done at a rather high-level of abstraction;
while it takes advantage of aspects ability to access the SUT internals, it does so with-
out requiring the engineer to know aspects and their complex semantics. This seems a
potentially positive adaption factor, since a good command of aspect-oriented program-
ming is not common in testing organizations (and in the industry in general). Moreover,
the fact that the aspect code is automatically generated from the models guarantees
certain quality in the code executing the tests.

End-to-end visualization. Another positive adaption factor is the end-to-end visual
nature of our model-based testing tool chain. Visualization is known as a way to address
complexity and to make tasks more accessible to engineers. Again, test developers need
neither write nor even understand the generated (aspect) code.

Access to a model of the SUT. Based on our experiments, it is easy to create monitoring
scenarios using LSCs. In case the class names and methods are known, it is easy to
draw a scenario describing a sequence of method calls that should happen. However,
it is mandatory to have a proper model of the SUT available, e.g., a class diagram,
and to understand the model elements and their relationships to the scenario. Since
test designers often tend to be unaware of the system internals, the true potential of
the aspects may remain unused. Good knowledge of the SUT model, in terms of the
classes and their relationships, is thus a necessary requirement for test developers. If
such model is partly available, as in our case, some tests could be developed simply by
copying sequence diagrams from the model’s documentation and extending them with
hot/cold modes etc. If this is not available it is difficult to draw useful LSCs.

Knowing the modeling language. Good knowledge of the modeling language itself,
LSCs in our case, is another necessary requirement for test developers. While sequence
diagrams in general and LSCs in particular are quite intuitive to draw and to under-
stand, when combined with additional features such as symbolic instances, and when
put against a real system with a complex structure, intuition alone does not suffice.
When the test developer knows the SUT well but is not an expert in the modeling lan-
guage, as in our case, some tests simply do not happen or result in unexpected behavior,
as the generated aspects code does not match the developer’s intention. One way to
address this is to divide the work between a modeler and a tests engineer; the modeler
would develop scenario templates, while the tests engineer would instantiate these with
classes and methods specific to the SUT. Our experience shows that this could work in
practice; many of our test scenarios were actually defined by taking a valid test scenario
and just making changes in lifeline references and method signatures.

The modeling language expressive power and semantics. We used LSCs’ semantics
of symbolic lifelines, with a polymorphic interpretation. Thus, lifelines are labeled with
class names, and any instance of the class may advance the related automaton. Although
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this allows defining powerful scenarios, it does not allow capturing issues related to
certain specific instance of the class (when exploring the produced traces, it is possible
to identify the instances. Thus we consider this issue as partly resolved). In addition, not
all original test cases could be modeled using scenarios; some required more complex
support for data and control. A different, considerable disadvantage, is the inability to
create scenarios that explicitly cover behavior across separate threads or processes. The
current semantics and implementation generates aspect code that can only be thread
specific. This is a true limiting factor in many settings.

Single IDE support. We did not have a single integrated development environment
(IDE) that could be used throughout the tool chain. Modeling was done in IBM RSA;
S2A is written in Java but its AspectC++ output is weaved to and compiled with the
SUT; resulting execution traces are viewed with the Tracer, outside the SUT. The lack
of a single IDE resulted in technical problems and process overhead; for example, if the
generated code does not compile with the SUT, it is difficult to know where to look for
the problem. We acknowledge that this hinders industrial adoption; a solution needs to
be developed to combine the different pieces into a single integrated environment.

4 Conclusion

The contribution of our work is twofold. First, the introduction of a new tool chain
for model-based testing, presenting an end-to-end visual testing approach, from visual
specifications to generated tests and from test execution to model-based trace generation
for test result analysis. The new tool chain includes a modified version of the S2A
compiler, generating AspectC++ scenario aspects. Second, the empirical evaluation of
the presented tool chain, examined against an industrial system, yielding a discussion
of technological and other advantages of and barriers to its future integration, from a
practical perspective.
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Abstract. We discuss our experience in applying model-driven techniques to 
build Graphical User Interfaces (GUI) of large enterprise business applications. 
Our approach involves capturing various user interface patterns in the form of 
platform independent parameterized templates and instantiating them with rele-
vant application data, serving as the template arguments. Models thus instantiated 
are translated to platform specific GUI implementation artifacts by a set of tem-
plate-specific code generators. We describe this approach in detail and share our 
experiences and the lessons learnt from using the approach in developing large da-
tabase-centric business applications for the past fourteen years. Our ongoing work 
to address some of the limitations of this approach, especially on variability man-
agement of GUI in software product lines, is also presented in brief.  

Keywords: Modeling, Graphical User Interfaces, Meta Modeling, Code  
Generation. 

1   Introduction 

Our foray into model driven development began fourteen years ago, when our organi-
zation decided to develop a banking product that was to be capable of being delivered 
on multiple technology platforms, and easily keeping pace with the technological 
advances. The product team approached the R&D team for coming up with an ap-
proach to achieve these qualities along with a requirement of making the average 
developer productive for building the product’s functional capabilities without being 
concerned about the technological aspects. A specification-driven approach was sug-
gested [1], wherein specifications abstract out low-level platform details that can be 
filled in later through code generation. The implementation code of a typical business 
application can  be broadly classified into business logic and code for solution archi-
tecture that addresses concerns such as design strategies, architecture and technology 
platform. The implementation is characterized by a number of recurring code patterns 
pertaining to data access, distributed architecture, presentation, transaction-processing 
and so on. 

                                                           
* Empirical results category paper. 
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Based on this observation, we devised an approach wherein models are used to 
capture these patterns, and a set of high-level model-aware languages are used for 
specifying business logic, complex data access queries, GUI event handling etc. We 
developed a set of tools to transform these models and high-level specifications to 
platform-specific implementations having the desired engineering properties [2]. 
Later, when UML [3] started gaining good traction within the industry we started 
aligning to it by using the UML metamodel with some specific extensions to model 
various aspects of our interest. 

Section 2 presents a brief critical analysis of Graphical User Interfaces, isolates the 
various concerns in specifying GUIs in the form of retargetable specifications, and de-
scribes how our model driven development approach addresses some of these concerns. 
Section 3 describes our experience with this approach in terms of the various desirable 
characteristics of a typical model driven approach. Section 4 describes the lessons learnt 
from these experiences. Section 5 discusses the ongoing work inspired from the lessons 
we learnt. Section 6 briefly examines a few prominent approaches in model driven de-
velopment of GUIs and positions our approach against them. Section 7 summarizes 
what we were able to achieve and what remains as open problems. 

2   Our Model Driven Development Approach for GUI 
Development 

Online functionality of business applications is typically implemented using a layered 
architecture consisting of presentation layer, business logic layer, and data access 
layer. We defined a metamodel for each layer by extending the UML metamodel. A 
unified metamodel, of which the layer-specific metamodel is a view, was then defined 
to ensure consistency between the three layers in specification as well as in imple-
mentation [2]. A simple projection sufficed as a view, for the kind of applications that 
interested us. The focus of this paper is only the presentation layer and its integration 
with the business logic layer. 

The Presentation layer deals with the following four principal concerns: (i) the 
presentation concern specifying how the user interface is visually presented to  
the user (ii) the user interaction concern specifying user interaction capabilities of the 
interface (iii) the event-reactional concern capturing the behavior of a user interface 
in response to user actions and (iv) the data-flow concern specifying data flows within 
the user interface and with the business layer. The presentation and user interaction 
concerns are typically implemented by widgets which are basic GUI components with 
predefined presentation and user interaction capabilities. User interfaces are built by 
putting together many such widgets. The event-reactional concerns are specified using 
event handlers, which are executable reactions to the events raised by widgets.  Data 
flow is realized by binding of these widgets to business layer messages.  

The fundamental unit of development, deployment and user interaction in a data-
base centric GUI is a screen. Most of the GUI platforms handle screens in the form of 
windows. Windows are special container widgets that identify a user interaction task, 
representing a business task or a part thereof. A navigation model connects these  
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windows with one another forming a user interaction process, which can be thought 
of as a user view of an overarching business process. Specifying the presentation 
layer for an enterprise business application therefore narrows down to – identifying 
the windows, defining the window as a composition of widgets, defining the naviga-
tion model, defining the binding between the widgets and the business layer mes-
sages, and finally, defining the event handlers to specify the behavior of a window in 
response to each particular event possible.  

In order to specify windows using widgets, we defined a widget type library which 
is a collection of widget types for a particular platform. Widget types are parameter-
ized templates that can be instantiated with appropriate application models to get 
widgets, which can then be used to define windows. Widget types define their own 
presentation, user interaction capabilities and a set of events that they can raise. Pres-
entation can be in the form of textbox, tree, grid, and so on, while user interaction 
capabilities can be like typing in a value, selecting a value from a list of values, and 
dragging a slider using mouse etc. The set of events that they can raise correspond 
with each of their user interaction capabilities. For example, Click Event, Node-
Expand Event, and Row-Select Event etc. are events that correspond to clicking ac-
tion, node expansion action and row selection action on a widget. The presentation, 
user interaction capabilities, and events supported by a widget type are seen to vary 
from one GUI technology platform to another. However, specification of GUIs for 
enterprise business applications needs a higher level of abstraction than what is of-
fered by the widget type library of a platform. A good example is the defunct widget 
model for Grids in HTML which does not support events like Row-Select, Column 
Sort etc. Therefore, to be practically usable, a widget type library should be defined 
with widget types having capabilities that can be simulated on the target platform, 
rather than depending only on what is available on the target platform. For example, 
data pagination is a standard capability available on Grid Widgets in all database-
centric business applications. 

Consequently, widget libraries differ across platforms in all the three aspects men-
tioned earlier, namely, presentation, user interaction, and the events raised. This pre-
sents a fundamental problem in applying model driven techniques to the development 
of user interfaces - the specification has to refer to a technology platform specific 
widget library and at the same time be retargetable to various technology platforms. 
However, we decided not to attempt for a truly platform independent solution for the 
following two pragmatic reasons: (i) A truly platform independent GUI specification 
would offer only those capabilities that are common across the various target plat-
forms and therefore would prevent the GUI developers from exploiting the capabili-
ties of the underlying platform to the maximum extent to deliver rich user interfaces 
and (ii) Even though the lifespan of the targeted banking product was expected to be 
beyond a decade we knew that our focus would be on data intensive GUIs on a lim-
ited set of technology platforms. Retargetability can be achieved, even though techni-
cally restricted to platforms of similar capabilities, by using appropriate platform 
specific code generators for each widget type in the widget type library. Template-
based code generation with different templates for different technology platforms 
sufficed as most of the code for GUI implementations is for the presentation , which  
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is static after defined for a project. A widget is defined to be an instance of a widget 
type through a special instance-of association. As widget types are parameterized 
templates, each widget type defines its formal parameters, called ParamTypes, and 
each widget specifies its actual parameters, called Params. Params are bound to the 
corresponding ParamTypes using the same instance-of associations to complete wid-
get instantiation. The parameters for instantiating widget types can be of different 
kinds depending on the application architecture.  In our case, the kinds of parameters 
we defined were – OperationParamType and OperationParam, WindowParamType 
and WindowParam, and UIClassParamType and UIClassParam. Each kind of Param 
can be mapped to only its corresponding ParamType. Further, an OperationParam 
can be bound only to an operation, a WindowParam can be bound only to a window 
and a UIClassParam can be bound only to a UIClass. A UIClass is a projection over 
message objects related to a screen. Elements of the UIClass are called UIAttributes 
which are displayed as fields on the screen using form widgets like textbox, drop-
down box etc. and they define field level properties like mandatory, read-only, visible 
etc. UIClasses essentially form the data content of all screens. Fig. 1 shows this meta-
model.  

 

 

Fig. 1. Metamodel for defining and instantiating widgets 

The widget type library is defined by instantiating the widget types with the correct 
number of parameters. These widget types are instantiated by the application 
developers to define the widgets that constitute the application screen. An example of 
this user model is shown in Fig. 2. 

 
 

Widget Type Metamodel 

Widget Metamodel Application Metamodel 
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Fig. 2. A GUI Application Model Example 
 
Larger patterns spanning multiple widgets are often found in GUI design. Since 

these are patterns, they can also be captured as widget types or as window types with 
its own formal parameter list. However, as these patterns are actually partially instan-
tiated composition of other widgets, these higher level types can be specified as a 
composition of widgets with partially instantiated parameters, called ParameterLinks. 
As most of the formal parameters for the composite are actually handled by its con-
stituents, our composition technique maps the composite’s formal parameters to the 
formal parameters of the constituents using these ParameterLink objects. Using this 
approach, we could define commonly occurring window level patterns in the form of 
Window types. For example, a Search-List window type captures the data search pat-
tern in an application which allows the user to specify parameters to a pre-defined 
search operation and invokes the operation. The result of this search gets displayed in 
a list pane. It is composed of a form widget type for entering search criteria and a grid 
widget type for displaying the search results. Fig. 3 shows the composition technique 
for defining a Search-List Window Type.  

The composite type has parameters for Search Criteria and Search Results, both of 
type UIClassParamType. It also has a parameter, of type OperationParamType, for 
mapping the search operation (not shown in the figure for the sake of clarity). This 
window type is instantiated by defining a window with a type association to the  
window type. An instance of this window-type defines UIClassParam instances as 
arguments to the SearchCriteriaParamType and SearchResultParamType and an 
OperationParam application service as argument to the SearchOperationParamType. 
These parameters are internally passed to the constituents through the ParameterLinks 
to instantiate the window. 
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In addition to the structural aspect, window types typically capture some behavioral 
patterns as well. Considering the complexity involved in modeling behavior, we decided 
to embed the behavioural code as template text in the code generation templates for the 
window types. This behavioral part however introduces some constraints on the parame-
ters. For example, a service mapped to the search service parameter of a search-list 
window type needs to have a signature that can work with the window behavior – i.e. 
pagination related parameters, returning a list of data and so on. We enforced these 
constraints through a set of constraint scripts written in our own model aware language. 

For specifying the event handler implementation, we decided to use the language 
provided by the underlying platform itself. As different presentation platforms have 
different event processing capabilities, a generic event language would have been a 
least common denominator of these capabilities. Application developers felt that this 
would prevent them from exploiting the richness offered by a presentation platform. 

3   Experience 

Over the last 14 years, this approach has been used to deliver a product line (around 
1000 screens), several large applications (>100 person years effort each and more 
than 100 screens each) and a few small to medium sized projects (5-10 person years 
effort each with 30-40 screens each). Using this approach we can generate the entire 
code for fully functional screens, such as screen layout, default event handling, screen 
navigation, and opening of a child screen with requisite data from its parent screen, 
from the model. Table 1 shows the percentage of delivery quality screens we could 
generate completely using our tool across various projects.  

Composite Widget 

Components 

Fig. 3. Creating composite widget types 
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Table 1. Productivity Metrics across Various Projects 

Project 
Core Banking 
Product 

Clearing and 
Settlement 
System 

Commissions 
System 

Payment  
and Loyalty 
Card  
System 

Size 
(No of Screens) 

>1000 580 54 200 

Coverage 
(% of screens 
generated) 

97 97 100 95 

Avg. 3 3 1 2 Effort / 
Screen 
(Person 
Days) 

Hi 7 6 4 4 

Technologies 

Power 
Builder[15], 
Struts[13], 
ASP.Net[16] 

JSP, Servlets, 
Struts 

Struts JSP, Servlets 

Our observations regarding the various desirable properties from a model driven 
approach are discussed in the rest of this section.  

Productivity: Specification driven approach by itself was found to increase overall 
productivity [1]. Table 1 shows the average developer productivity figures across 
some applications for windows with average complexity and for highly complex win-
dows. This data shows that the average developer productivity using our tool is better 
than the corresponding industrial average values by a factor of 2 to 3. Capturing the 
frequently occurring patterns and their reuse further improved productivity, but our 
approach of capturing the patterns as new types in the Widget Type library model and 
instantiating it hindered efficient reuse due to three reasons – (i) GUI patterns across 
different applications were always found to be different though the variations were 
typically minor. This results in a large, unmanageable number of types being defined 
with only slight variations among them. (ii) Defining a type is invariably accompa-
nied by writing a code generator for the new type, making the process of capturing 
and reusing patterns a complex programming task. This complexity was a principal 
deterrent in enthusiastic user acceptance even though GUI patterns do get identified 
naturally in every large development project. Also, programming is required for creat-
ing composite types as a composite type usually has its own code contribution in 
addition to what its constituents offer, and (iii) creating complex types requires 
knowledge of the type metamodel. This skill requirement further discouraged devel-
opment teams from defining the types in the development phase. 

Quality: GUI development, especially for web applications, is usually more prone to 
errors than the rest of the system because of the number of specification languages in-
volved. Our approach eliminated these errors completely since the entire code, except 
for the event-handler implementation code, is generated. Architectural and design 
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choices could therefore be encoded in the code generators thus guaranteeing applica-
tion-wide uniformity and compliance in the implementation. However, as the event-
handler coding was manual and used the language offered by the platform, we could 
neither enforce quality of the event codes nor automatically check for violations to the 
architectural and design principles. 

Table 2. Template Fitment across Projects 

Template Fitment 

Project 

Window Types 

Type  
Fitment 
(% of 

screens) 
Search List Type 40 
Form Type 36 
Form + Grid + Form 18 

Core Banking Product 

Form +  Editable Grid 6 
Search List Type 54 
Form Type 26 
Form + Grid + Form 9 
Form + Form + Button Panel +  
Editable Grid 

4 

Form + Button Panel + Multi-select 
Grid 

4 

Clearing and Settlement 
System 

Form + Button Panel + Editable Grid 3 
Search List Type 16 
Form Type 12 
Form + 2 Grids 15 

Commissions System 

Form + Form + Grid 57 

 
Consistency: It was observed that three to four different window types could cover 
more than 80 percent of the application screens in most cases as shown in the type cov-
erage data in Table 2. More than 50 percent of the screens in most business applications 
are of the same type - usually Search List Type. Defining these window types and em-
ploying template based code generation ensures consistency in the look and feel as well 
as in usability patterns throughout the application. By associating default widgets to 
domain data types, consistency in the widget types used for the each data type could 
also be ensured across screens in a developer independent manner, for instance, date is 
always displayed using calendar control. Template based code generation also ensured 
consistency in error reporting and displaying validation messages. 
 

Ease of Testing: Independent and isolated testing of the presentation layer freed GUI 
developers and testers from waiting for the business layer to be available. Layout of the 
screens, navigation, user interaction, service invocation and copying of data between 
screens could thus be tested much early in the development lifecycle, using test data 
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supplied in a text file wherever required. Since the GUI was modeled with binding to 
the business layer specifications and tested independently with stubs for services, inte-
gration with an implementation of the business layer specifications was found to be 
completely error-free, as expected. However, for really large applications, this approach 
for testing was often found to be extremely difficult to perform because of complex 
relationships between services and complex data dependencies, making simulation hard. 
 

Change Management: Traceability across the layers was easily possible because of 
the unified metamodel we used. For instance, changes in the data type of a database 
column could be easily traced across the layers up to the fields on the screens. We 
developed an impact analysis tool that could report impact of changes at any layer of 
the application using a pattern directed model traversal. Making a change in the screen 
content and re-generating the screen takes only a couple of minutes. Presentation 
changes across the entire application could be made available in the implementation in 
one shot by re-generating code using modified templates. This allowed comments from 
the usability review team to be incorporated in the application throughout the devel-
opment phase without impacting the functionality. Layout changes were not possible 
as it was auto generated by an algorithm in the code generation process. We solved this 
to an extent by externalizing the generated layout information in XML files for the 
later editing by developers. Subsequent code generation simply preserves the edited 
layout in the application screens. A better solution which allows the layout to be modi-
fied at any stage of development and shows the updated screen with the new layout 
within seconds is definitely required going ahead. 
 

Retargetability: Usage of this approach has greatly helped retarget the application 
over many GUI platforms over the years, right from PowerBuilder [15] to ASP.Net 
[16] Windows Forms, Java Swing [17], Java Server Pages, and recently to Apache 
Struts [13] with Ajax and to JSF [14]. Retargeting GUI specifications to newer plat-
forms is not limited to a re-translation, but enhancements in the specification were 
always found to be necessary to make effective use of the newer capabilities offered 
by new platforms. Combined with the fact that presentation technologies evolve much 
faster than the rest of the application layer technologies, this translates to a substantial 
investment in the evolution of an application; more so for software products. Our 
approach tried to tackle this need by enhancing the existing type library for the new 
target platform, writing new code generation templates, updating the model to utilize 
the new capabilities added, and re-writing the event handlers for the new platform. 
However, the metamodel itself often requires minor enhancements in addition to these 
steps thus complicating the retargeting process. Platform specific event handler code 
was also another source of concern. We feel the need for a platform independent 
event coding mechanism which can use the capabilities of the underlying platforms to 
the maximum extent. Another solution could be to reduce the event codes itself by 
providing a richer metamodel and constraints language to establish cross-field con-
straints. This richer metamodel is discussed later in the paper. 
 

Reuse: We were able to reuse the same windows at multiple places by introducing a 
concept of window mode. A window can be opened in multiple modes like view 
mode, delete mode, authorize mode, approve mode and so on. The window would 
behave differently based on the mode and some of the fields would be enabled or 
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disabled based on the mode. Reuse of parts of window was not found to be feasible 
since there would always be some context specific variations in its appearance and 
behavior. However, reuse of window parts at a specification level is possible where 
some parts of a window model - an address form panel, could be taken and copied to 
other places to kick-start the development of new windows. Such model fragments 
could be saved in a repository for long term reuse as well. 

Ease of use: The absence of a WYSIWYG user interface for the GUI modeler was a 
prominent drawback in our implementation. Our dialogue based modeling tool posed 
a steep learning curve. Absence of an explicit navigation model is another drawback 
because of which developers are not able to see a window in its context. Developers 
often felt a lack of control over layout of the screen since the layout was visible only 
after code generation. The cycle time in introducing layout as well as other modifica-
tions, and seeing them reflect in the window was around one to two minutes. This 
needs to be reduced to the order of seconds. An incremental code generation mecha-
nism that generates only the relevant parts of the code for a modification could be a 
solution. 

Customizability: Look and feel customizations in GUI code generators are found to 
be much more frequent than the customizations for architectural and design changes. 
We found it not possible to completely separate the look and feel aspect from the 
other aspects in code generation since a lot of the generated scripts depend on the 
page structure. These customizations present a significant activity at the beginning of 
the development phase. Customizability of the code generation templates is restricted 
in our approach by the complexity of the dual metamodel – a metamodel to specify 
the windows, widgets, UIClasses etc, and another metamodel to specify the types 
which are then connected using instance-of associations. Poor separation of concerns 
in the templates also hindered customizability. Further, customizing the code genera-
tors requires knowledge of both the metamodels and our template language which 
was proprietary and did not support any mechanism like inheritance for code reuse. 

Extensibility: Extensibility of the application is a major problem in software product 
line development. The product line team wound up maintaining separate copies of the 
application models for each customer, on which they do the customizations. Reconcil-
ing these branches to the main product line is an extremely cumbersome and laborious 
exercise, and hence is postponed for as long as possible. Extensibility of the specifica-
tion capabilities itself were possible by extending the type model, but most of the 
extensions also required extending the application models. The code generators also 
needed to be modified either way. Extensibility was limited because of the difficulty 
in extending the dual metamodels, and in extending the code generators due to poor 
customizability as discussed earlier. 
 

Acceptance of the approach: Technical architects, particularly those who are devel-
oping large applications and managing software product lines, find this approach very 
attractive and are benefitting from this. Architects for small to medium sized applica-
tions, however, are discouraged by the learning curve introduced by our implementa-
tion and by the difficulty in customizing the code generators, especially because the 
shelf life for those customizations are short. Developers tend to dislike our specifica-
tion driven approach due to the following perspectives – (i) Learning a ‘proprietary’ 
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technology or specification language, such as ours, does not contribute to the résumés 
of the developers (ii) The tools shield them from the technology platforms that they 
want to learn (iii) The modification turnaround time in the order of a few minutes 
makes the development process slow (iv)Developers often feel constrained by the 
specification language - that it is preventing them from writing the code they want. 
These are usually deviations from the design patterns enforced by the architect. 

4   Lessons Learnt 

On an average, 50 percent of screens in any database-centric business application can 
be generated from two window types – Form Type and Search List Type, which we 
provided out of the box. Another 40 percent of the windows can be generated by 
defining 2-4 project specific window types. Our approach lacked any mechanism for 
the developers to define these window types. Hence, these windows were developed 
as composite windows whose components are instantiated from the supplied widget 
type library. Providing a mechanism by which the developers themselves can define 
the window types and use them as new patterns get identified would improve produc-
tivity substantially – the biggest stumbling block in realizing this mechanism is the 
complexity of our metamodel. Nevertheless, there would always be some windows 
that do not fit into any window type, which accounts for the rest 10 percent. These 
would have to be developed as composite windows, provided that the widget type 
library is rich enough. Our experience shows that there would still be around 3 per-
cent of the windows that either need to be developed outside and integrated or need to 
be generated and then modified outside the tool. Ease of integration with externally 
developed windows and with externally developed window components would help 
in such scenarios. 

Separating the content model and type model is a good technique, but realizing the 
type model at the same level as the content model and typifying the content using a 
binding association with the types makes the metamodel very complex. Complexity in 
the metamodel reflects heavily on the code generators and also on the modeling tool 
thus affecting the overall productivity and customizability. Specification of the types 
as a metamodel to the GUI models would simplify the whole approach.  A mechanism 
to modify the metamodel also should be part of the solution. 

Since we had our reasons not to capture the GUI specifications as platform inde-
pendent models, aligning to UML and realizing our metamodels as extensions to the 
UML metamodel did us little help. A custom metamodel described using MOF 
[4]would be a better proposition for us and would greatly help us in building con-
figurability and extensibility around our modeling tool.  

A truly platform independent specification of GUIs is difficult to achieve without 
compromising on the efficient use of platform capabilities. However, the platform 
specificity of the GUI models can be reduced to the level of a class of platforms and 
GUIs, rather than being fully platform independent for all classes of GUIs. We find 
this limited platform independence practical. Consequently, re-targeting such a GUI 
model will involve enhancements to the metamodel as well as applying transforma-
tions on the source model. Moving towards MOF described models would make this 
easier with the help of QVT [5]. 
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Template based code generation is natural for generating the view layer code but 
the controller layer code seems better generated using procedural code generation. 
Re-writing our code generators, currently written using our proprietary template lan-
guage, with a standardized template language, such as MOF2Text [6], would increase 
the acceptance of our approach and thereby increase willingness from the tool users to 
make the changes themselves. A code generation language that supports code reuse 
and isolation of concerns is critical for organizing the code generators and making 
them customizable. Aspectual decomposition of the code generators need to be evalu-
ated for isolating the cross cutting concerns like validation, data conversion, logging, 
and error handling. 

A WYSIWYG user interface for the screen modeler can reduce the turnaround 
time for minor modifications, especially in layout. Automatic layout generation is 
required but only for generating a default layout. 

A very large number of screens in any database-centric business applications are of 
Create/Retrieve/Update/Delete (CRUD) type. A mechanism to create such screens 
rapidly from the data model can kick-start the GUI development with a lot of default 
content to work on. 

A richer specification language can reduce the amount of event handler codes be-
ing written and improves the retargetability. 

Explicit modeling of navigation would help the developers to see the windows they 
model in context and would greatly help in aligning to the related business process. 

Socio-cultural concerns related to acceptance by tool users (developers) can be 
mitigated to a good extent by adopting industry wide standards like MOF, MOF2Text 
and QVT which would add to their resumes. Small to medium projects can benefit 
from a specification driven approach by reducing the learning curve (WYSIWYG 
interface for the modeler, for example) and improving customizability and turn-
around time for code generation. 

5   Ongoing Work 

We could simplify the code generators by specifying the widget type model as a 
metamodel for the GUI models. Specifying these code generators using MOF2Text 
further improved their customizability. With MOF2Text, developers find it very easy 
to move the externally verified HTML fragments to template body facilitating rapid 
customization of code generators. Going a step ahead, we were able to define a 
metameta-model for GUI that, we feel, can be used to define the type models for a 
class of platforms and for a class of GUIs. Such an approach demonstrates the follow-
ing benefits – (i) GUI models can be retargeted by defining the widget type library for 
the new platform and transforming the source model as an instance of the target 
metamodel using our QVT implementation which takes a mapping specification as 
input (ii) We can build an adaptive visual modeling tool that can operate on an evolv-
ing widget type library without requiring code modification, thus improving the tool 
extensibility and customizability. 

The approach presented in this paper follows the conventional application devel-
opment paradigm where window-flows realize the overarching implicit business proc-
ess flow. Business process modeling and business process driven applications are 
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gaining good traction in the industry. We are developing a specification and tool for 
GUI development using this paradigm, where the major part of the navigation flow 
will be controlled by the business process, instead of the UI controller. A key chal-
lenge in this area is supporting multi-channel interaction for business processes over 
multiple devices.  

Our partnership with the banking product continues even today and has presented 
newer problems for us to work on. The product itself eventually evolved into a prod-
uct line with multiple customer specific implementations for each product – essen-
tially, a product line of product lines. Each product and each customer specific  
implementation inherits a lot from its parent, but has some variations. Implementing 
these variations on copies of the specifications quickly results in an irreconcilably 
large number of specification copies. We are attempting to solve this product line 
variability management problem by treating customizations as configurations which 
use available configuration options, and extensions which deals with building new 
options to existing configurations or as pure addition to the specifications. Our solu-
tion attempts to capture these variations using an extensibility and configurability 
metamodel.  

In addition to the generative approach discussed in this paper, we are also explor-
ing a hosted model of operation wherein an adaptive, multi-tenant GUI implementa-
tion can be deployed to deliver tenant-specific GUI content. The implementation 
would be driven by meta-data generated from the tenant specific specifications. This 
would require exposing the specification tool itself as a service as part of the platform. 
We feel that the growing number of PaaS [7] (Platform as a Service) providers would 
greatly benefit from this work. 

6   State of Art 

Numerous techniques for model driven development of GUIs have been suggested 
[12], but very few had the required maturity for usage in large enterprise business 
applications. AndroMDA [8] proposes a UML Profile [9] for annotating activity dia-
grams with GUI information to indicate the activities requiring screens, the widgets to 
be used for message elements etc. The code generator translates this model to a skele-
ton code which needs to be enhanced by the developer. Its approach of using Tiles 
[10] to separate the user written code and generated code is not practical for large 
application development. Further, the specification language is too sparse to express 
the complexities of today’s business application screens. WebML [11] is a web appli-
cation modeling language that specifies the composition and navigation of web appli-
cation by defining views over the Entity Relationship Model of the application. The 
hypertext model is then augmented with a presentation model. All three models are 
used for code generation. This approach works well for data intensive small to me-
dium web applications where generation of Search and Create/Modify/Delete 
(CRUD) screens alone gives good productivity advantage. Applicability of this tech-
nique for large enterprise applications is very limited as the screens are typically more 
complex than CRUD screens. Most of these approaches focus on a functional specifi-
cation of GUIs using high level abstractions and filling in the details by a developer. 
In contrast, our approach proposes a presentation centric approach to specify the GUI 
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parallel to the business or data layer development process. The independently devel-
oped presentation layer can be tested and bound to any business layer - be it Services, 
Business Processes or ER Models - without any programming. We feel that this ap-
proach is better because it allows modification in the design of the presentation layer 
and produces a demonstrable high-fidelity prototype quite early in the development 
phase. 

7   Summary 

We presented our experiences in applying model-driven techniques for GUI devel-
opment for over 14 years in several large enterprise business applications. We de-
scribed the approach in detail and showed how it resulted in substantially improved 
productivity. Our approach resulted in improved quality with application-wide uni-
formity and consistency in the implementation as the entire presentation layer code, 
except for event handlers, was generated with architectural and design choices en-
coded in the code generators. Our approach of defining a unified metamodel, of which 
the GUI specific metamodel is a view, ensured consistency between all the layers in 
specification as well as in implementation and resulted in better traceability and 
change management across the layers. We also highlighted the areas where the  
approach had a scope for improvement, namely, retargetability, customizability, ex-
tensibility, ease of use, and ease of testing. We discussed these limitations and the 
lessons learnt from the experience in detail. We concluded with a brief description of 
our ongoing work which tries to overcome these limitations. Availability of a key set 
of MDD standards like MOF, MOF2Text, and QVT, we believe, will help in realiza-
tion of the ongoing work. 
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Abstract. Recently, a generic approach for syntax-based user assistance
in diagram editors has been proposed that requires the syntax of the vi-
sual language to be defined by a graph grammar. The present paper
describes how this approach can be applied to the language of business
process models (BPMs), which is widely used nowadays. The resulting
BPM editor provides the following assistance features: combination or
completion of BPM fragments, generation of BPM examples, an exten-
sive set of correctness-preserving editing operations for BPMs, and auto-
link, i.e., the automatic connection of activities by sequence flow.

Furthermore, this paper contains a discussion of the scalability and
scope of the used approach. This also comprises a characterization of the
languages where it can be put to a good use.

Keywords: Diagram editor, syntax-based assistance, graph parsing.

1 Introduction

These days, meta-tools are widely used for the development of diagram editors.
That way, an editor can be developed with virtually no programming effort.
Just an abstract language specification, e.g., based on a metamodel or a kind of
grammar, has to be provided from which the complete editor is generated. Well-
known examples of meta-tools are MetaEdit+ [1] and GMF [2]. Beyond these
there are several research tools like AToM3 [3], Pounamu [4], or DiaGen [5].

State-of-the-art meta-tools provide a lot of assistance for the editor developer.
For instance, the appearance of diagram components and the syntax of the lan-
guage mostly can be specified in a visual way. In contrast, the generated editors
often do not provide a lot of assistance for their actual users (such as help with
incorrect diagrams). This observation motivates the development of generic ap-
proaches to user assistance in diagram editors. An important requirement for
the adoption of such an approach surely is that minimal additional program-
ming or specification effort should be imposed on the editor developer. Rather
the already existing specification should be pushed to its limit.

Recently, such an approach has been proposed and integrated into DiaGen
[6,7]. Furthermore, the different assistance features enabled by this approach
have been described, i.e., auto-completion (deduce missing diagram components),
diagram correction (combine diagram fragments) and example generation [7],

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 322–336, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Syntax-Based Assistance in Diagram Editors 323

correctness-preserving editing operations [8], and diagram contraction resp. auto-
link [9] — Sect. 3 provides concrete examples of all those. However, up to now
this approach only has been applied to toy examples such as the archaic Nassi-
Shneiderman diagrams or the equally simple Flowcharts. Although the results
have been promising, a real world example is required to foster further adop-
tion of the approach. Therefore, this paper discusses in detail how the approach
can be applied to business process models (BPMs), which are certainly a highly
relevant language today, and what has been achieved in doing so.

The paper is structured as follows: First, the language BPM is briefly in-
troduced (Sect. 2). For the sake of motivation, this paper continues with the
presentation of the actual outcome, i.e., the assistance features of the generated
BPM editor (Sect. 3). Only then it is explained how the language had to be
modeled in order to apply the approach (Sect. 4). Along the way the approach
itself is recapitulated to make this paper self-contained (Sect. 5). Moreover, a
basic understanding of the approach is also required in order to understand its
scope, which is discussed in Sect. 6. This section contains some performance data
as well. Finally, related work is reviewed (Sect. 7) and the paper is concluded.

2 Business Process Models

BPMs are mostly used to represent the processes (i.e., workflows) within an
enterprise. In recent years a standardized visual notation, the Business Process
Modeling Notation BPMN [10], has been developed, which is readily understand-
able by different kinds of business users with different levels of expertise. In this
paper a subset of BPMN is considered that is outlined by example next.

Fig. 1 shows a typical sales process: A customer orders a product from a
company, which ships it if available. The diagram consists of two pools (large
rectangles), “Customer” and “Sales Department”, which act as containers for
the actual processes. The upper pool contains a start event (simple circle), an
activity (rounded rectangle), an intermediate receive event (two nested circles),
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and an end event (thick circle), which are connected by arrows representing the
sequence flow. The other pool contains, among others, two gateways (diamonds),
which are used to split and join the sequence flow. Finally, messages (dashed
arrows) can be sent in the course of an activity.

In the following only well-structured BPMs are considered, i.e., it is required
that splits and joins are properly nested such that each split has a corresponding
join. This restriction is supposed to improve the quality of process models [11]
similar to structured programming, which improves the quality of program code.

3 Resulting Assistance

Next, the assistance features are described that are provided by the generated
BPM editor. It has to be stressed again that the realization of all these features
has required virtually no extra programming effort.

Auto-completion: Incomplete BPMs usually occur as intermediate diagrams dur-
ing modeling. But they might also result from a lack of knowledge of a beginner
user. The developed editor can generate suggestions on how to complete such
diagrams [7]. Actually, it computes all possible completions up to a user-defined
size. Fig. 2 shows three examples how given incomplete BPM diagrams can
be completed. For the first one, the smallest possible completion consists of a
gateway and three arrows. The second one can be completed by adding a fresh
activity with a default text and linking it properly. Finally, the two BPM frag-
ments given at the right-hand side can be combined into a well-structured process
just by introducing two arrows. Regarding the user interface, auto-completion
is supported by a dialog that allows the user to browse and preview all possible
completions for his diagram.

Example generation: An important special case of completion is the empty dia-
gram, completions of which can be used to enumerate the language. Given the
number of diagram components (arrows are not counted), all possible BPMs of
this size without messages (cf. Sect. 6) can be generated. The user can browse
this set to get valuable insight into the language. This is shown in Fig. 3. There
are no BPMs of size less than three (intermediate events and pools are not con-
sidered in the figure for the sake of conciseness). Since all structurally different
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Fig. 2. Auto-completion of BPMs
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examples are generated, their number grows exponentially with the size param-
eter. Still it is useful to have a look at some of them, in particular because an
example can be selected to be the starting point of further editing.

Editing operations: In addition, powerful correctness-preserving editing opera-
tions can be generated [8]. Some example operations are shown in Fig. 4. In
the diagram at the left-hand side, the thick arrow has been selected by the user
to determine the context for the operations he is interested in. The highlighted
components are introduced by the particular operation. The figure also shows
that it is sometimes meaningful to allow operations to introduce more than one
new component. Otherwise, a gateway could not be inserted into a correct BPM.
On the right-hand side the operations provided in the context of a gateway are
shown (only a fragment of a correct BPM is shown though). Besides operations
that add components, there also is an intelligent remove operation. Therewith,
one or several selected components can be removed and the remaining diagram
is reconnected automatically (if possible), cf. Fig. 5.

act1 act2 act2

Fig. 5. Intelligent remove
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Fig. 6. Auto-link

Auto-link: Finally, inspired by [12], the editor provides auto-link to further im-
prove the user’s editing performance. This is shown by example in Fig. 6. The
missing arrows are derived from the spatial arrangement of the activities, which
is mostly preserved. The realization of auto-link is explained in detail in [9].

4 Modeling BPMs with a Graph Grammar

The editor, whose features have been discussed in the previous section, has been
realized using the DiaGen framework [5]. However, the abstract assistance part
of [6] is also provided as a stand-alone library ready for use by any other tool.1

The main advantage of DiaGen editors is that they seamlessly integrate
syntax-directed and free-hand editing. In free-hand mode, diagrams can be drawn
without any restrictions in the manner of a drawing tool. Thereby, feedback
about the syntactical correctness of the diagram is consistently provided by an
analysis module. On the other hand, syntax-directed editing operations can be
defined by the editor developer to simplify frequent editing tasks of the users.
With the newly developed user assistance described in the previous section fur-
ther guidance is provided. So, for the sake of editing freedom the editor still does
not prevent the user from drawing an incorrect diagram. But on request it offers
powerful syntactical assistance helping him to end with a correct one.

DiaGen editors use hypergraphs as a diagram model and hypergraph gram-
mars to define the syntax of the language. Furthermore, all editors generated
with DiaGen follow the same general editing process. This process consists of
several steps as shown in Fig. 7. Those are informally described next.

With the drawing tool, the editor user can create, delete, arrange and mod-
ify the diagram components as defined in the editor specification. Components
usually have some layout attributes, e.g., the position and size of an activity.
Additionally, a set of properties like the label of an activity or the type of an
intermediate event can be defined, which can be manipulated via a special dialog.

The first processing step, the modeler, creates the Spatial Relationship Graph
(SRG) from these components. Therefore, it first creates component hyperedges
for each diagram component and nodes for each of their attachment areas. An
attachment area is a determined part of a diagram component that can interact
with other diagram components. Afterwards, the modeler checks for each pair
of attachment areas whether they are related as defined in the specification. For
instance, an arrow end and an event are at-related if both attachment areas
1 http://www.steffen-mazanek.de/graphcompl/

http://www.steffen-mazanek.de/graphcompl/
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overlap. As another example, a pool p1 is below another pool p2 if p1.y >
p2.y + p2.h. For each relationship detected, the modeler adds a corresponding
relationship edge between the two attachment nodes involved. This graphical
scanning step is crucial for free-hand editing.

In Fig. 8, a BPM fragment and its SRG are shown. The hyperedges are rep-
resented as rectangular boxes and the nodes as black dots. If a hyperedge and a
node are incident, they are connected by a line.2 Binary hyperedges (such as all
relation edges, the sequence arrows, and the messages) are simply represented
as arrows. Activities and intermediate events have three attachment areas: two
for incoming resp. outgoing sequence flow, one for messages. Gateways have four
attachment areas (namely their corners), and start events have three (one for
the corresponding pool, one for messages, and one for outgoing sequence flow).

As one can already see, the SRG becomes quite large. DiaGen editors there-
fore do not analyze the SRG directly, but simplify it first according to the spec-
ification (similar to lexical analysis in compilers). This step is performed by the
2 Each line represents a particular role (like “incoming sequence flow”). However,

instead of using labels the graphical arrangement implicitly determines the roles.
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Fig. 9. ASG of the example sales process shown in Fig. 1
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Fig. 10. Hypergraph grammar for BPMs

reducer, which creates the so-called Abstract Syntax Graph (ASG). In case of
BPM there is a close correspondence between SRG and ASG. In the ASG, nodes
of the SRG that are connected by a relationship edge are merged. Furthermore,
the arrows for sequence flow do not occur in the ASG anymore. Rather the nodes
connected by such an arrow are also merged. Fig. 9 shows the complete ASG
of the example sales process. This ASG now directly represents the structure of
the diagram and, thus, can be syntactically analyzed by the parser.

In DiaGen, hypergraph grammars are used for language definition. They gen-
eralize the idea of Chomsky grammars for strings as used by standard compiler
generators. Each hypergraph grammar consists of two finite sets of terminal and
nonterminal hyperedge labels and a starting hypergraph that contains only a
single nonterminal hyperedge. Syntax is described by a set of productions. The
hypergraph language generated by the grammar is defined by the set of termi-
nally labeled hypergraphs that can be derived from the starting hypergraph.
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Fig. 10 shows the productions of the hypergraph grammar GBPM whose lan-
guage is just the set of all ASGs of structured BPMs. For conciseness, productions
L ::= R1, L ::= R2, ... with the same left-hand side are drawn as L ::= R1|R2|...
The types pool, start, end, inter, activity, gateway and message are terminal
hyperedge labels being used in ASGs. The set of nonterminal labels consists of
BPM, Pool, Process, Flow and FlElem. The starting hypergraph consists of just
a single BPM edge with an incident node. Most of the required productions are
context-free, i.e., their left-hand side consists of just a single nonterminally la-
beled hyperedge together with the appropriate number of nodes. There are only
three non-context-free productions, P10-P12, that embed a message between
two activities or an activity and a start resp. intermediate event.

The application of a context-free production removes an occurrence e of the
hyperedge on the left-hand side of the production from the host graph and re-
places it by the hypergraph Hr on the right-hand side. Matching node labels
of both sides of a production determine how Hr has to fit in after removing e.
Context-free hypergraph grammars are described in detail in [13]. Fig. 11 shows
an example derivation starting from Process. Only for the last step, the intro-
duction of a message, an embedding production has to be applied. The grammar
GBPM is unambiguous, so that there is a unique derivation tree (which can be
constructed by the parser in an efficient way) for the context-free part of every
hypergraph of the language.

The final processing step of a DiaGen editor is the layouter, which computes
a layout for the diagram. The developed BPM editor relies on an incremental
constraint-based layout, where the constraints are gathered, among others, from
the derivation information resulting from the parser.

As already mentioned, DiaGen also allows the developer to explicitly specify
editing operations. Hypergraph transformation rules are used to this end (see [5]
for further information). The application of such an operation is performed by
a so-called transformer component (omitted in Fig. 7).
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5 Hypergraph Patches for User Assistance

In previous work [7], hypergraph patches have been proposed as a means for the
realization of user assistance in diagram editors. A patch basically describes a
modification of a given hypergraph H . Two different kinds of atomic modifi-
cations are considered: merging nodes and adding edges. Of course, arbitrary
modifications of a hypergraph are not very helpful. Rather those modifications
are required that transform H into a valid member of the language defined by a
given grammar G. Such patches indeed can be computed while parsing [6].

Consider the hypergraph H given in Fig. 12 as an example. For simplicity,
assume that Process is the start symbol of GBPM, i.e., disregard pools for a
moment. H then can be corrected by merging the nodes n5 and n6. However, it
can also be corrected by inserting an activity hyperedge at the proper position.
Note that there might be an infinite number of correcting patches. Actually, an
arbitrary number of activities or intermediate events could be inserted between
the activity and the end hyperedge in H . So the size of desired patches (i.e., the
number of additional hyperedges) has to be restricted.3

n2

n1
activitystart endH:

n3 n5 n6

activitystart end
n3 n5~n6

merge nodes add edges

n4

n4

activitystart end
n3 n5 n6

n4

activity

n2

n1

n2

n1

Fig. 12. Hypergraph patches in the context of BPM

Fig. 7 also shows how patches can be integrated into the DiaGen editing
process: On user’s request the parser is triggered with the desired size of patches
as a parameter. It computes all possible correcting hypergraph patches of this
size. From those the user has to choose. Next, the selected patch is applied and
embedded into the SRG using a language-specific update translator. The editor
then calls the reducer and parser again. Finally, the layouter arranges the new
components within the diagram and adapts existing components if necessary.

The update translator for BPMs can be implemented quite straightforwardly.
For instance, if n5 and n6 in Fig. 12 are to be merged, this is translated to
embedding a sequence arrow (and some relations) between the activity and the
end event. As another example, imagine n1 had to be merged with an attachment
node of a particular pool edge. Then a spatial relationship edge inside has to
3 The deletion of edges and the splitting of nodes has not been considered, because

existing diagram components and “relevant” spatial relations of the user’s diagram
should be respected (except for intelligent remove). Also, patches are not allowed to
introduce nonterminal edges, because those do not have a visual representation.
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be inserted between the corresponding nodes in the SRG. After reduction and
parsing, the layouter moves the corresponding sub-process inside of the pool.

Patches are also useful if the given diagram is correct already. For instance,
the operations introduced in [8] even require the input diagram to be correct.
Additionally, the user has to select a context in order to access possible oper-
ations. The key idea has been to separate those edges on the ASG level that
correspond to the user’s selection from the non-selected part. Roughly speak-
ing, the ASG is artificially broken into pieces and repaired again with certain,
relevant patches that constitute meaningful operations.

6 Discussion

It is important to stress that the described patches are solely computed from
the grammar. Semantics is not at all considered. Therefore, an activity (or any
other diagram component) inserted as assistance only carries a default label.

Generally, the possible assistance is heavily affected by the way a language is
modeled. For instance, with the grammar shown in Fig. 10 only the start event
is connected to the containing pool on the abstract syntax level. Therefore,
an unconnected activity could even be moved to another pool for the sake of
correction. One could have also modeled the language in a way such that each
activity is connected to the pool it is surrounded by. This would prevent the
movement of activities to other pools.

Another important issue is how to deal with the different gateway types that
are possible in BPMN, cf. [10]. At the moment, the type (parallel, exclusive, etc.)
can be adjusted in a property dialog, but it only affects the visual appearance
of the gateway component. However, a branching can easily be prevented from
being joined by a different type of gateway: It is sufficient to add another terminal
symbol par gateway and another production equal to P9, but with par gateway
edges instead of gateway. The grammar could also be extended to support more
than two parallel branches or other kinds of structured concepts such as loops.
However, with loops it has to be accepted that mostly there will not be a unique
solution for auto-link anymore.

Note that based on GBPM example generation yields a very large number of
results (at least if used straight away). The problem is that activities and in-
termediate events can be used interchangeably according to the syntax of the
language. So, in order to get an example with n activities, a lot of (i.e., 2n − 1)
further examples will be generated with intermediate events instead of certain ac-
tivities. Therefore, the editor developer can list such (somehow redundant) edge
types so that the parser does not create those edges for the sake of completion.
Of course, intermediate events drawn by the user are still perfectly accepted.

6.1 Who Benefits?

An empirical user study has not been conducted yet. At the moment, interviews
with language experts (i.e., business modelers) are being planned to find out
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whether the provided functions are perceived as useful. Also it has to be studied
whether users can learn new languages more easily once having learnt these fea-
tures. However, some benefits of the provided assistance can already be discussed
in an abstract way. Remarkably, both the users and the developer benefit.

Beginner users can quickly explore the visual language at hand by looking at
example diagrams. That way, they do not need to know anything about gram-
mars, which makes the editor more accessible. After having gained some insight
in the particular language, they can start drawing diagrams. In case of modeling
errors they can rely on the provided assistance.

Advanced users benefit from auto-link, which avoids the tedious work of draw-
ing connections, and the generated editing operations, which provide a lot of
flexibility and speed up editing.

The editor developer does not need to specify (certain) editing operations by
hand anymore, which is a tedious and error-prone task. Rather diagram-specific
editing operations are automatically computed from the grammar at runtime.
Moreover, prototyping and testing of editors is simplified, because the generated
examples can be used to quickly validate the specification.

6.2 Scope of the Approach

There is a severe general restriction of the approach: Only languages that are
mostly context-free can benefit from its application. So, for the computation of
patches, embedding productions are not considered. In case of BPMs this means
that messages, which can be embedded between arbitrary activities, are not part
of the computed patches. Existing messages drawn by the user are tolerated by
the parser, of course. If only well-structured BPMs have to be covered, all other
productions are context-free (cf. Fig. 10), so that the approach is still applicable.
Arbitrary sequence flow, however, cannot be supported.

But why not consider embedding productions for the sake of completion?
There is a simple intuition behind this restriction: The more restricted a language
is, the more powerful the possible assistance can be. If everything is allowed, no
corrections are required at all. Since messages can be inserted between arbitrary
activities, just too many solutions would exist (n2 for n activities). Those cannot
be browsed easily anymore. A completely different user interface (e.g., drawing
connectors by using special handles) would be required to make effective use
of this information. Therefore, the parser does not create messages (and other
kinds of embedded edges) as part of patches.

Another reason why languages such as class diagrams can hardly be supported
is that graphs of this language usually consist of a lot of different connected com-
ponents. However, heavily disconnected graphs can be derived from a grammar
in a lot of different ways, i.e., the language is inherently ambiguous. Therefore,
one and the same completion would be returned as a result very often. Even
worse, for disconnected graphs parsing is known to be inefficient. To overcome
this issue, DiaGen provides so-called set-productions that can be used if the
order in which components are derived does not matter. But those are not sup-
ported (yet) for completion.
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lifeline lifeline lifeline

action action

action
message

Fig. 13. Modeling MSCs: example diagram and corresponding ASG

However, several practical languages already can be modeled in a way that
avoids these issues. For instance, an editor for Message Sequence Charts (MSCs)
with user assistance has also been specified already. Lifelines thereby have to be
arranged in the ASG in a particular order, i.e., from left to right.4 Messages,
again, are just embedded. Fig. 13 shows an MSC and its ASG to clarify this issue.
Modeling MSCs that way allows for plenty of user assistance: Examples (without
messages) can be generated, isolated actions can be moved onto lifelines, editing
operations can be used to insert an action between existing actions and so on.

6.3 Performance

Performance has always been a problem of the approach (or, more precisely,
its realization). However, recently a substantial improvement factor has been
achieved with respect to performance, so that the patch-computing parser is
now ready for practice. On the one hand, the algorithm itself has been improved
by using more intelligent data structures. On the other hand, support for multi-
threading has been added. Indeed, the filling of layers by the parser as described
in [6] can be parallelized in a straightforward way (one thread per production).

Fig. 14 provides some performance data gathered on a standard Notebook
(Intel Core2 Duo with 2GHz each, 2GB RAM). As input BPMs with several
pools have been used that contain a process at a time consisting of a start
event, an activity, and an end event. Every input graph contains exactly one
error that can be repaired by merging two nodes. The x-axis determines the
size of the input graph, i.e., the total number of edges. Data for different patch
sizes (number of additional edges to be added by the parser) has been collected.
With zero edges just the two separated nodes are merged. If several edges are
to be introduced the only result is the introduction of this number of activities
between the separated nodes. Performance naturally drops if too many edges are
to be introduced. However, it can be seen that for most small and medium-sized
diagrams assistance can be computed in less than a second.

Future performance improvements are possible by introducing better support
for modularization. For instance, in BPM better performance could be achieved,
if the pools with their respective contents would be treated independently.
4 The same approach has also been used for modeling the pools in BPMs.
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Fig. 14. Performance measurements when computing patches of different sizes

7 Related Work

Text editors: In the context of text editors, approaches for the combination
of different editing modes have a long tradition. A widely known system is the
Synthesizer Generator [14], which allows the generation of editors that support
both structure and text editing. However, following this approach the editor
developer has to decide which syntactic construct is to be edited in which mode.
The Syned system [15] overcomes this limitation by seamlessly integrating both
editing modes, so that the users can edit as they like and not as the developer
thought they would like. However, this approach cannot directly be transferred to
diagram editors, because in diagrams there is no obvious concrete representation
of nonterminal symbols in general. Moreover, for a novice user it is probably
easier to only deal with fully expanded diagrams (and still have syntax-directed
operations at hand). Regarding error recovery, modern textual IDEs, be they
generated or hand-crafted, certainly provide sophisticated user support [16].

Meta-tools: GMF [2] editors provide connector handles (drag connections out
of a node) and action toolbars (fill compartments of a node, e.g., adding an
attribute to a class). MetaEdit+ [1] provides different kinds of static assistance
[17]. So, it automatically creates a language help based on the data entered
by the language developer. It also supports the creation of so-called tutorial
projects. The tool AToM3 has been extended to support model completion [18].
Constraint logic programming is exploited to this end (as in SmartEMF [19],
GEMS [20], or the check engine of [21]). Ehrig et al. suggest the generation of
instance models of a particular metamodel by means of a graph grammar [22].

BPM tools: Koschmider et al. have proposed ideas for user assistance in BPM
tools. In a recent approach [23] relevant process fragments are recommended
based on a repository of semantically annotated processes. Such repository-based
approaches have the advantage that best practices in modeling can be promoted.
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Indeed, a syntactically correct process resulting from our assistance might still
violate particular modeling guidelines or comprise semantical problems such as
deadlocks. In [12] a pattern-based approach for BPM editing has been proposed
and implemented for the IBM WebSphere Business Modeler. Also the auto-
link feature has been described already in [12]. Finally, it has to be admitted
that special-purpose approaches usually are more efficient. Language-specific
optimizations often can be incorporated into the parser. For instance, in [24] an
efficient parser for workflow graphs has been proposed that runs in linear time.

8 Conclusion

In this paper a BPM editor with user assistance has been presented as a showcase
for the previously introduced generic approach to syntax-based user assistance in
diagram editors. With virtually no programming effort powerful assistance fea-
tures have been realized most special-purpose modeling tools not even provide.
Those features help both in learning and dealing with BPMs. Moreover, thanks
to the underlying formal approach (hypergraph grammars and hypergraph trans-
formation) the provided assistance satisfies several desirable properties, e.g., the
preservation of correctness. Since the editor is generated from an abstract specifi-
cation it can be extended or adapted easily. A screencast of this editor in action is
provided at http://www.unibw.de/inf2/DiaGen/assistance/bpm. There, the
editor is also available for download as an executable Java archive.

In future, an incremental version of the used parser has to be developed. This
would have two benefits: First, the performance can be further improved. And
second, it would be possible to provide assistance in a more pervasive way, i.e.,
suggestions could be given while editing and not only on user’s request. Finally,
a comparative user study has to be performed.
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Abstract. To address problem of modeling service choreographies, the paper 
tackles the following challenges of the state of the art in choreography model-
ing: i) choreography models are not well-connected with the underlying busi-
ness vocabulary models. ii) there is limited support for decoupling parts of 
business logic from complete choreography models. This reduces dynamic 
changes of choreographies; iii) choreography models contain redundant ele-
ments of shared business logic, which might lead to an inconsistent implemen-
tation and incompatible behavior. Our proposal – rBPMN – is an extension of a 
business process modeling language with rule and choreography modeling sup-
port. rBPMN is defined by weaving the metamodels of the Business Process 
Modeling Notation (BPMN) and REWERSE Rule Markup Language (R2ML). 

Keywords: BPMN, R2ML, rules, processes, metamodels, MDE. 

1   Introduction 

Responding to the increasing demands for developing advanced solutions to the inte-
gration of business processes in collaborative information systems, service-oriented 
architectures (SOAs) emerged as a promising approach. Considering the present state 
in the area of SOA, we can witness a need for the development of new software engi-
neering approaches suitable for this development context. Being grounded on proven 
principles of business process modeling, service engineers have prevalently based 
their approaches on languages such as BPMN [4]. Such languages offer a suitable 
way for requirements elicitation from stakeholders, which can (semi-)automatically 
be bound to the existing services and transformed onto the executable service compo-
sitions (i.e., languages such as BPEL). In the service composition task, we generally 
have two main approaches [7]: i) service orchestration – composition of service from 
the perspective of one of the participants. Orchestrations are typically modeled w.r.t. 
control flows, while workflow patterns are used as best practices and evaluation 
framework for comparison of orchestration languages; ii) service choreographies – 
composition of services from a global perspective where service interaction is the 
primary focus. In this paper, we exactly focus on the problem of modeling choreo-
graphies in order to address challenges from we give in the abstract.  
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2   Background 

2.1   BPMN Language: Graphical Concrete Syntax and Metamodel 

BPMN represents an OMG adopted specification [1] whose intent is to model busi-
ness processes. Business process models are expressed in business process diagrams. 
Each business process diagram consists of a set of modeling elements. BPMN in-
cludes three types of flow objects which defines behavior: Events, Activities and 
Gateways. Events can be partitioned into three types, based on their position in the 
business process: start events are used to trigger processes; intermediate events can 
delay processes, or they can occur during processes [4] [7]; and end events signal the 
termination of processes. A BPMN activity can be atomic or non-atomic (represented 
by a rectangle). BPMN supports three types of activities: Process, Sub-Process and 
Task. Gateways are used for guiding, splitting and merging control flow.  

The key element of the definition of the BPMN language is a metamodel. Although 
BPMN is an OMG standard, there is presently no standard metamodel for BPMN. We 
choose a BPMN metamodel proposal given in [4], because it uses an explicit BPMN 
terminology; and its mapping relations to BPEL are clearer than in the case of other 
proposals.  

2.2   Business Rules: REWERSE I1 Rule Markup Language 

REWERSE I1 Rule Markup Language (R2ML) is a general rule language [5]. R2ML 
is completely built by using model-driven engineering principles, which means that 
the R2ML language definition consists of the three main parts: i) metamodel – an ab-
stract syntax in the Meta-Object Facility (MOF) language; ii) textual concrete syntax 
– an XML based syntax that facilitates rule interchange; and iii) graphical concrete 
syntax – a graphical notation suitable for modeling rules in a style similar to software 
modeling languages. In fact, its graphical syntax is defined as an extension of UML 
and named UML-based Rule Modeling Language (URML) [6]. There are different 
categories of business rules such as [7] integrity, derivation, reaction, and production. 
R2ML defines all of these four types of rules and provides modeling concepts for de-
fining vocabularies. All R2ML rule definitions (e.g., ReactionRule) are inherited from 
the Rule class. Each type of rule is defined over the R2ML vocabulary, where ele-
ments of the vocabulary are used in logical formulas (e.g., LogicalFormula – with no 
fee variables) through the use of Atoms and Terms. 

3   rBPMN Metamodel: Rule and Choreography Modeling 

The rBPMN metamodel is defined by importing the elements from the BPMN and 
R2ML metamodels. In Fig. 1, we show extension to the Process package of the 
rBPMN metamodel. RuleGateway is an element, which we added in the Process 
package of the BPMN metamodel and which actually relates to R2ML Rules. In this 
way, we enabled that R2ML Rule can be placed into a process as a Gateway, but in 
the same time not to break the R2ML Rule syntax and semantics. We should note here 
that one rule gateway could have one or more rules attached to it. This is quite impor-
tant, as in some cases, we need to first derive or constrain some part of the business 
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logic, before being able to perform some other rules such as reaction or production. In 
Fig. 1, we can see that RuleGateway as a Gateway can be connected by using Se-
quenceFlow with other FlowElements such as Tasks, Events and Gateways. This en-
ables us to use rules in different places in rBPMN process models. Additionally, we 
added a RuleCondition concept, which is used to show rule condition directly attached 
to the RuleGateway in a business process diagram. 

 

Fig. 1. Process package in rBPMN metamodel 

We can have a rule as a valid element in a business process, but we should also 
have a way to connect underlying data models to business rules. In rBPMN, we use 
R2ML Vocabulary as an underlying data model, so that any BPMN message can be 
represented with an R2ML concepts. The StructureDefinition element is used to spec-
ify a Message structure.  

As the standard BPMN cannot capture several choreography aspects, as recognized 
in [3]. In order to fully support these patterns we need to integrate several aspects into 
rBPMN. Those aspects are as follows: Multiplicity of Participants, References and 
Correlation information. 

4   Service Interaction Patterns: A Contingent Requests Example 

There are two approaches to modeling of choreographies: interaction models and in-
terconnected interface behavior models (interconnection models) [2]. Interaction 
models are built up of basic interaction, while interconnected interface behavior mod-
els define control flows of each participant a choreography. As rBPMN can be used 
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for both modeling 
approaches, we here 
show an example of 
Contingent requests 
pattern [9] expressed 
in rBPMN only as in-
teraction model, be-
cause lack of space. 

In the contingent 
requests pattern, a 
participant sends a re-
quest to another par-
ticipant. If this second 
participant does not 
respond within a given 
period of time, the re-

quest is sent to another (third) participant. Again, if no response comes back, a fourth 
participant is contacted, and so on. For the decision about delayed responses, we propose 
using rule gateways with attached reaction rules. If a late (time-outdated) response from 
some earlier participant came during the processing of the contingent request (by a Pool 2 
participant in Fig. 2), a reaction rules attached to the rule gateway R1 decides if such a re-
sponse should be accepted or not.  

In this pattern, the “Send” task in Pool 1 selects participants to which a request will 
be sent. The participants are selected from the attached participant set (<par>). The 

message is received by 
Pool 2, which uses its 
own logic represented 
with the rule gateway 
R2 to decide whether to 
respond or not. Pool 1 
waits for some amount 
of time for a message 
from Pool 2 and when 
such a message arrives 
in, Pool 1 invokes its 
“Task”, which is fol-
lowed by a rule gate-
way R1 to determine if 
this process will end or 
it will return to the 
event-based gateway to 
wait for new messages. 
If the message from 
Pool 2 is not received 

in a given amount of time, the intermediate timer event occurs and the sequence flow 
is returned to the start (the “Send” task). 

Fig. 2. The “Contingent requests” pattern 

Fig. 3. “Contingent requests” pattern (interaction model) 
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The contingent requests pattern as an interaction model in rBPMN is shown in Fig. 3. 
In this model, we have a message that is sent on the start of the process from Pool 1 to 
one of the participants of the Pool 2 type, by using a reference to that participant from 
the participant set (<par>). Then, response messages are expected from Pool 2 in a 
given amount of time. When the message arrives from Pool 2, the rule gateway is used 
to determine whether the process will end or it will be back to wait for another message.  

Another important implication of our model is that for each reaction rule in R2ML, 
we can also generate its implementation in a concrete rule-based language. In our ex-
periments, we provide full definition several languages (e.g., Drools or Jess) by simu-
lating semantics of reaction rules on production rule engines. We call such rules 
“how-to-use” rules, as they specify conditions under which a service can be used. 

5   Conclusion and Future Work 

To the best of our knowledge, the presented work is the first modeling language that  
integrates business rules with a process-oriented language for modeling service choreo-
graphies. Our evaluation demonstrated that the proposed rule and choreography model-
ing support resulted in the improvement of modeling of service-interaction patterns 
comparing to other relevant languages. Another important contribution of our work is 
that the metamodel-based systematic integration of rules in choreography model is also 
advances the state of the art in the integration of rules into business process modeling. 
Given that our rule language of choice (R2ML) can define business rules and message 
types over business vocabularies, our models have two key benefits: process models and 
business vocabularies are integrated (i.e., type safety is improved); and we can make use 
of the transformations of R2ML into executable rule engines.  
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Abstract. Nowadays, evolving models are prime artefacts of model-driven soft-
ware engineering. In tool integration scenarios, a multitude of tools and modeling
languages are used where complex model transformations need to incrementally
synchronize various models residing within different external tools. In the pa-
per, we investigate a novel class of transformations, that are directly triggered by
model changes. First, model changes in the source model are recorded incremen-
tally by a change history model. Then a model-to-model transformation is carried
out to generate a change model for the target language. Finally, the target change
history model is processed (at any time) to incrementally update the target model
itself. Moreover, our technique also allows incremental updates in an external
model where only the model manipulation interface is under our control (but not
the model itself). Our approach is implemented within the VIATRA2 framework,
and it builds on live transformations and incremental pattern matching.

Keywords: Incremental model transformation, change models, change-driven
transformations.

1 Introduction

Model transformations play a key role in model-driven software engineering by provid-
ing embedded design intelligence for automated code generation, model refactoring,
model analysis or reverse engineering purposes.

Most traditional model transformation frameworks support batch transformations
where the execution of a transformation is initiated (on-demand) by a systems designer.
As an alternate solution (proposed recently in [1, 2]), live transformations (or active
transformations) run in the background as daemons, and continuously react to changes
in the underlying models. In this respect, a transformation can be executed automati-
cally as soon as a transaction on the model has completed. Up to now, the design and
execution of batch transformations and live transformations were completely separated,
i.e. the same transformation problem had to be formulated completely differently.
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In the paper, we bridge this conceptual gap by introducing change-driven model
transformations. More specifically, we first define the concept of a change history model
to serves as a history-aware log of elementary model changes, which record causal de-
pendency / timeliness between such changes. We show how change history models
can be derived incrementally by live transformations during model editing. Then we
describe how change history models can be used to incrementally update a model asyn-
chronously (at any desired time) by propagating changes using batch transformations.

The use of change history models in model-to-model transformation scenarios has
far-reaching consequences as incremental model transformations can be constructed
with minimal knowledge about the current structure of the target model. For instance,
transformations can still be implemented when only identifiers and a model manipu-
lation interface are known, but the rest of the actual target model is non-materialized
(i.e. does not exist as an in-memory model within the transformation framework). As
a result, our concepts can be easily applied in the context of runtime models as well
as incremental model-to-code transformation problems (where the latter will actually
serve as the running example of the paper).

The rest of the paper is structured as follows. In Section 2, a motivating case study
is introduced as a running example for our paper. The main concepts of change-driven
transformations and change history models are introduced in Section 3. Section 4 details
the main steps of the approach on the running example. Finally, Section 5 summarizes
related work and Section 6 concludes our paper.

2 Motivating Scenario

Our motivating scenario is based on an actual tool integration environment developed
for the SENSORIA and MOGENTES EU research projects. Here high-level workflow
models (with control and data flow links, artefact management and role-based access
control) are used to define complex development processes which are executed auto-
matically by the JBoss jBPM workflow engine, in a distributed environment consisting
of Eclipse client workstations and Rational Jazz tool servers. The process workflows
are designed in a domain-specific language, which is automatically mapped to an an-
notated version of the jPDL execution language of the workflow engine. jPDL is an
XML-based language, which is converted to an XML-DOM representation once the
process has been deployed to the workflow engine.

A major design goal was to allow the process designer to edit the process model and
make changes without the need for re-deployment. To achieve this, we implemented an
asynchronous incremental code synchronizing model transformation. This means that
(i) while the user is editing the source process model, the changes made are recorded.
Then (ii) these changes can be mapped incrementally to the target jPDL XML model
without re-generating it from scratch. Additionally, (iii) the changes can be applied
directly on the deployed XML-DOM representation through jBPM’s process manipula-
tion DOM programming interface, but, (iv) in order to allow the changes to be applied
to the remote workflow server, the actual XML-DOM manipulation is executed on a
remote host asynchronously to the operations of the process designer.
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(a) Domain-specific workflow model (b) JPDL XML Document

(c) Domain-specific workflow metamodel (d) jPDL interface

Fig. 1. Model representations in the motivating scenario

Example. A simple tool integration workflow model is given in Fig. 1(a) together
with its jPDL XML representation (in Fig. 1(b)). Moreover, a metamodel of the source
language is given in Fig. 1(c). In case of the target language, an interface is provided to
manipulate XML documents (see Fig. 1(d)).

Metamodeling background. Since the actual tool integration framework is built upon
the model repository and transformation support of the VIATRA2 framework [3], we
also use it for the current paper for demonstration purposes. However, all metamodels
will be presented as a traditional EMF metamodel to stress that all the main concepts
presented could be transferred to other modeling environments as well.

VIATRA2 uses the VPM [4] metamodeling approach for its model repository, which
uses two basic elements: entities and relations. An entity represents a basic concept of
a (modeling) domain, while a relation represents the relationships between other model
elements. Furthermore, entities may also have an associated value which is a string that
contains application-specific data.

Model elements are arranged into a strict containment hierarchy, which constitutes
the VPM model space. Within a container entity, each model element has a unique local
name, but each model element also has a globally unique identifier which is called a
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fully qualified name (FQNs are constructed by hierarchical composition of local names,
e.g. “workflow.model.node0”).

There are two special relationships between model elements: the supertypeOf (in-
heritance, generalization) relation represents binary superclass-subclass relationships
(like the UML generalization concept), while the instanceOf relation represents type-
instance relationships (between meta-levels). By using an explicit instanceOf relation-
ship, metamodels and models can be stored in the same model space in a compact way.

3 Change History Models in Incremental Model Synchronization

In the current paper, we investigate a model synchronization scenario where the goal is
to asynchronously propagate changes in the source model MA to the target model MB.
This means, that changes in the source model are not mapped on-the-fly to the target
model, but the synchronization may take place at any time. However, it is important
to stress that the synchronization is still incremental, i.e. the target model is not re-
generated from scratch, but updated according to the changes in the source model.

Moreover, our target scenario also requires that MB is not materialized in the model
transformation framework, but accessed and manipulated directly through an external
interface IF of its native environment. This is a significant difference to traditional
model transformation environments, where the system relies on model import and ex-
port facilities to connect to modeling and model processing tools in the toolchain.

Fig. 2. Model synchronization driven by CHMs

To create asynchronous incremen-
tal transformations, we extend tradi-
tional transformations (which take
models as inputs and produce models
as output) by change-driven transforma-
tions which take model manipulation op-
erations as inputs and/or produce model
manipulation operations as output. By
this approach, our mappings may be ex-
ecuted without the need of materializing source and target models directly in the trans-
formation system, and may also be executed asynchronously in time.

As we still rely on model transformation technology, operations on models need to
be represented in the model space by special trace models which encode the changes of
models as model manipulation sequences. We call these models change history models
(CHMs in short). These models are generated automatically on-the-fly as the source
model changes (see CHMA in the left part of Fig. 2) using live transformations [2].
Live transformations are triggered by event-driven condition-action rules whenever a
change is performed in the model space, and create an appropriate change history model
fragment (connected to those parts of the model which were affected by the change).

The actual model transformation between the two languages is then carried out by
generating a change history model CHMB for the target language as a separate transfor-
mation (see middle part of Fig. 2, and also note that traceability information between
CHMA and CHMB can recorded as inter-model links).
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As change history models represent a trace of model evolution, they may be auto-
matically applied to models (see right part of Fig. 2). More precisely, we combine a
snapshot of the model MB (representing the initial state) and a change history model
CHMB (representing a sequence of operations applicable starting from the initial state)
to create the final snapshot M′

B. In other words, the change history model CHMB rep-
resents an “operational difference” between M′

B and MB, with the order of operations
preserved as they were actually performed on MB.

3.1 Change History Models

Change history models are conceptually derived from the model manipulation opera-
tions defined on the host language. These operations may be generic (i.e. corresponding
to graph-level concepts such as “create node”, “create edge”, “change attribute value”),
or domain-specific (corresponding to complex operations such as “remove subprocess”,
“split activity sequence”). In this paper, we discuss the generic solution in detail, how-
ever, we also show how our approach can be extended to domain-specific languages.

Change history metamodel. The generic change history metamodel for VPM host
models is shown in Fig. 3. CHM fragments are derived from the abstract Operation
class, which can be optionally tagged with a Timestamp attribute for time-based tracing
of, e.g. user editing actions. Operations are connected to each other by relations of type
next, which enables the representation of operation sequences (transactions).

It is important to stress that CHMs do not directly reference their corresponding host
models, but use fully qualified name (or unique ID) references. The reason for this is
two-fold: (i) by using indirect references, CHMs may point to model elements that are
no longer existent (e.g. have been deleted by a consecutive operation), and (ii) CHMs
are not required to be materialized in the same model space as the host model (sym-
metrically, host models are not required to be materialized when processing CHMs).
This allows decoupling the actual models from the transformation engine which is a
requirement for non-invasive scenarios where target models are indirectly manipulated
through an interface.

By our approach, change history metamodel elements are either EntityOperations
or RelationOperations. Entity operations use the parentFQN reference to define the
containment hierarchy context in which the target entity is located before the operation
represented by the CHM fragment was executed. Analogously, relation operations use
srcFQN and trgFQN to define source and target endpoints of the target relation element
(prior to execution). Note that we omitted inheritance edges from EntityOperation and
RelationOperation in Fig. 3 for the sake of clarity.

All CHM elements correspond to elementary operations in the VPM model space, in
the following categories:

– creation (shown on the far left): CreateEntity and CreateRelation represent opera-
tions when an entity or relation has been created (an entity in a given container, a
relation between a source and target model element). Both CHM fragments carry
information on the type (typeFQN) of the target element.

– deletions (shown on the near left): DeleteEntity and DeleteRelation correspond to
deletions of entities and relations.
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Fig. 3. Generic change history metamodel

– updates (shown on the near right): SetValue indicates an operation where the value
field of an entity is overwritten; similarly, SetName represents an update in the local
name of the target (in this case, as always, targetFQN points to the original FQN
of the target model element, so this CHM fragment needs to be used carefully).

– moves (shown on the far right): MoveEntity corresponds to the reparenting of an
entity in the VPM containment hierarchy. SetRelationTarget and SetRelationSource
represent retargeting and resourcing operations.

4 Change-Driven Transformations

In this section, we demonstrate the concept and application of change-driven transfor-
mations (see Fig. 2) using change history models by the elaboration of the motivating
scenario described in Section 2. First, we demonstrate (in Section 4.1) how CHMs can
be derived automatically by recording model manipulations using live transformations.
We introduce both generic (metamodel-independent) and domain-specific (metamodel-
dependent) techniques to achieve this. Then we discuss (in Section 4.2) how model
transformations can be designed between two CHMs of different languages. Finally,
we describe (in Section 4.3) how CHMs can be asynchronously processed to incremen-
tally update a model resided in a model repository or within a third-party tool accessed
via an external interface.

4.1 Automatic Generation of CHMs by Live Transformations

First, we demonstrate the automatic generation of change history models for record-
ing modification operations carried out on the host model. Model changes may be ob-
served using various approaches, e.g. by model notification mechanisms such as the
EMF notification API, where the model persistence framework provides callback func-
tions for elementary model changes. This approach is limited to recording only basic
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model manipulation operations, i.e. an appearance of a complex model element (e.g.
a graph node with attribute values and type information) requires the processing of a
sequence of elementary operations (e.g. “create node”, “set value”, “assign type”, etc).
If the modification operations may be interleaving (e.g. in a distributed transactional
environment, where multiple users may edit the same model), it is difficult to process
operation sequences on this low abstraction level.

In contrast, live transformations [2] define changes on a higher abstraction level as
a new match (or lost match) of a corresponding graph pattern (as used in graph trans-
formations [5]). By this approach, we may construct a complex graph pattern from
elementary constraints, and the system will automatically track when a new match is
found (or a previously existing one is lost) – thus, model manipulation operations may
be detected on a higher abstraction level, making it possible to assign change history
models not only to elementary operations, but also to domain-specific ones.

More precisely, live transformations are defined by event-condition-action triples:

– an event is defined with respect to a graph pattern, and may correspond to an ap-
pearance of a newly found match, or a disappearance of a previously existing one.

– conditions are evaluated on the transaction of elementary operations which resulted
in the triggering of the event. They correspond to elementary operations affecting
elements of the subgraph identified by the event’s (newly found or deleted) match.

– actions are model manipulation operations to be carried out on the model.

Basic patterns. Fig. 4 shows three basic graph patterns and their VIATRA2 transfor-
mation language representations. Pattern entity in parent encompasses a contain-
ment substructure where an entity E is matched in a given parent entity Parent. A new
match for this pattern occurs when any entity is created in the host model (when a new
match is detected, concrete references as substitutions for pattern variables E,Parent
are passed to the transformation engine). Similarly, pattern relation source target
corresponds to a relation R with its source S and target T elements, while pattern
modelelement type references any model element with its type. These patterns corre-
spond to basic notions of the VPM (typed graph nodes and edges), and may be com-
bined to create precondition patterns for event-driven transformation rules.

Generic derivation rules. On the left, Fig. 5 shows a sample CHM generation rule for
tracking the creation of model elements. A triggered graph transformation rule is de-
fined for a composite disjunctive pattern, which combines cases of new appearances
of entities and relations into a single event. Condition clauses (when(create(E)),
when(create(R))) are used to distinguish between the cases where an entity or a re-
lation was created. Finally, action sequences (encompassed into seq{} rules after the
when-clauses) are used to instruct the VIATRA2 engine to instantiate the change his-
tory metamodel, create a CreateEntity or CreateRelation model element and set their
references to the newly created host model entity/relation.

The right side of Fig. 5 shows an example execution sequence of this rule. The se-
quence starts with a model consisting only of a top-level container node w0 of type
Workflow. In Step 2, the user creates a new Invocation node i0 inside w0. Note that
on the VPM level, the creation of i0 actually consists of three operations: (1) create
entity, (2) set entity type to Invocation, (3) move entity to its container. However, the
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pattern
entity_in_parent(E,P)=

{
entity(Parent);
entity(E) in Parent;

}

pattern
modelelement_type(ME,T)=

{
modelElement(Type);
instanceOf(ME,Type);

}

pattern
relation_source_target(R,S,T)=
{
modelElement(S);
modelElement(T);
relation(R,S,T);

}

Fig. 4. Patterns for identifying relevant model manipulation events

@Trigger(sensitivity=’rise ’)
// ’rise’ indicates that the rule
// should fire for newly detected
// matches of the pattern
gtrule handleCreation()=
{
precondition(E,Parent,R,S,T,Type)=
{
find entity_in_parent(E,Parent );
find modelelement_type(E,Type);

} OR {
find relation_source_target(R,S,T);
find modelelement_type(R,Type);

}
action {\ldots} //cont. next column

}}

when(create(E)) seq {
new CreateEntity(CE);
setValue(CE.elementName ,name(E));
// store FQNs
setValue(CE.targetFQN ,fqn(E));
setValue(CE.typeFQN ,fqn(Type));
setValue(CE.parentFQN ,fqn(Parent ));

}
when(create(R)) seq {
new CreateRelation(CR);
setValue(C.elementName ,name(R));
// store FQNs
setValue(CE.targetFQN ,fqn(R));
setValue(CE.typeFQN ,fqn(Type));
setValue(CE.targetFQN ,fqn(T));
setValue(CE.sourceFQN ,fqn(S));

Fig. 5. Live transformation rule for automatic CHM generation
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(a) CHM for jPDL (b) Domain-specific CHM generation for jPDL

Fig. 6. Domain-specific change history models

live transformation engine triggers the execution of handleCreation() only if the
subgraph w0 − i0 is complete. In Step 3, handleCreation() is fired with the match
{Parent = w0,E = i0,Type = Invocation}, and – as the condition create(E) is satisfied
in this case – the appropriate CreateEntity instance ce0 is created.

Domain-specific CHMs. Change history models can also be defined on a higher ab-
straction level, directly applicable to domain-specific modeling languages. In Fig. 6(a),
a part of the change history metamodel for manipulating jPDL XML documents is
shown. This metamodel uses unique IDs to refer to (non-materialized) model elements
(as defined in the jPDL standard); since jPDL documents also follow a strict contain-
ment hierarchy, creation operations (as depicted in Fig. 6(a)) refer to a parentID in
which an element is to be created. In the follow-up examples of our case study, we will
make use of CreateJPDLNode and CreateJPDLAttribute to illustrate the usage of this
domain-specific change history metamodel.

It is important to note, that domain-specific CHMs can be created analogously to
generic ones, by using more complex graphs as precondition patterns for events. The
domain-specific CHM construction rule in Fig. 6(b) includes direct type references to
the domain metamodel (Fig. 1(c)) – in this case, it fires after the creation of an Invo-
cation and associated DataInputs and DataOutputs is completed, and it creates three
connected domain-specific CHM fragments accordingly.

4.2 Model Transformations between Change History Models

Since CHMs are automatically derived as models are modified, they essentially rep-
resent a sequence of operations that are valid starting from a given model snapshot
(Fig. 2). As such, they may be used to drive mapping transformations between two
modeling languages: such a change-driven transformation takes CHMs of the source
model and maps them to CHMs of the target model.
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This is a crucially different approach with respect to traditional model transforma-
tions in the sense that the mapping takes place between model manipulation opera-
tions rather than models, which makes non-invasive transformations possible (where
the models are not required to be materialized in the transformation system).

Fig. 7. Transformation of change history models

Fig. 7 shows an example transformation rule where the creation of an Invocation in
the domain-specific workflow language is mapped to the creation of a corresponding
jPDL Node and its attribute. In this case, a batch graph transformation rule is used,
however, this transformation may also be formulated as a live transformation. The rule
looks for a CreateEntity element referencing a node of type Invocation, and maps it to
the domain-specific CHMs of the jPDL language. As Invocations are represented by
jPDL Nodes with an attribute node, the target CHM will consist of two “create”-type
elements, chained together by the Operation.next relation.

The core idea of creating CHM transformations is the appropriate manipulation of
reference values pointing to their respective host models (as CHMs only carry infor-
mation on the type of the operation, the contextual information is stored in their ref-
erences). In this example, we make use of the fact that both source and target models
have a strict containment hierarchy (all elements have parents), which is used to map
corresponding elements to each other:
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– Based on parentFQN in the source model, we calculate the target parent’s ID par-
entID as name(CE.parentFQN).

– Similarly, the target jPDL node’s ID targetID is calculated as the concatenation of
parentID and name(CE.targetFQN) to place the target node under the target parent.

– Finally, the attribute functionName designates a particular function on a remote
interface which is invoked when the workflow engine is interpreting an Invocation
workflow node. It is represented by a separate node in the jPDL XML-DOM tree.
The targetValue attribute of the additional CreateJPDLAttribute element is derived
from the appropriate attribute value of Invocation node in source model (as denoted
by the ref(CE.targetFQN) function in the sample code).

The right side of Fig. 7 shows a sample execution result of the mapCreate() rule. First,
in Step 4, the precondition pattern is matched, and a match is found to the subgraph
created in Step 3 of Fig. 5. Following the successful matching, the action sequence is
executed to create the domain-specific CHM nodes c jn0 (corresponding to a creation
of a jPDL Node) and c ja0 (creation of a jPDL attribute node). These CHM nodes are
chained together by a next relation to be executed in sequence.

Designing change-driven transformations. When designing transformations of
change history models, it is important to focus on the fact that the transformation will
operate on operations rather than models. Consequently, the first step in designing such
a transformation is to define the concept of operation – which may be generic (graph-
level operations), or domain-specific. This requires a partitioning scheme for the host
modeling language, where the partitions correspond to parts whose creation/deletion
constitutes an operation which can be represented by a CHM fragment.

It is important to note that the granularity of this partitioning can be determined
freely (since it is possible to perform the ”aggregation” of operations in, e.g. the trans-
formation between CHMs of source-target host languages); however, we have found
that it is useful to define these partitions so that they represent a consistent change (i.e.
the results of valid modification steps between two consistent states of the host model).

4.3 Processing Change History Models

On the macro level, change history models are represented as chains of parametrized
elementary model manipulation operations. As such, they can be processed linearly,
progressing along the chain until the final element is reached (thus modeling the execu-
tion of a transaction). The consumption of a CHM element is an interpretative step with
the following actions performed in the context defined by the CHM’s references:

– creation: the target entity/relation is created with the correct type assignment; en-
tities are created in the container designated by the parent’s fully qualified name
(parentFQN), relations are created between source and target elements referenced
by sourceFQN and targetFQN, respectively.

– moves: for MoveEntity, the target entity is moved to the container designated by
newParentFQN; for SetRelationSource, the source end of the target relation is redi-
rected according to newSourceFQN.
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– updates: SetName and SetValue are mapped to updates in the name and value at-
tributes. SetRelationTarget is handled similarly to SetRelationSource.

– deletions: DeleteEntity and DeleteRelation are interpreted as deletions of their tar-
gets (targetFQN).

Applying CHMs to non-materialized models. As Fig. 2 shows, we apply CHMs to
manipulate non-materialized models through an interface. The speciality of this sce-
nario is that instead of working on directly accessible in-memory models, the transfor-
mation engine calls interface functions which only allow basic queries (based on ids)
and elementary manipulation operations. In this case, CHMs are very useful since they
allow incremental updates, as they encode directly applicable operation sequences.

Case study technical details. For the jPDL models of the motivating scenario, we
mapped the XML-DOM process model manipulation programming interface to VI-
ATRA2’s native function API, which enables the system to invoke arbirary Java code
from the transformation program. The following native functions are used:

– getElementById(ID): retrieves a jPDL element identified by its unique ID.
– createElement(parentRef,targetID): creates a new jPDL DOM element as a child

of its parent (identified by parentRef ), with a given unique ID (targetID).
– addElement(elementRef,DocID): adds the element elementRef to the jPDL DOM

identified by DocID.
– setContents(elementRef,text): sets the textual content of the given DOM element

(elementRef ) to text.

gtrule newCompoundJDPLNode(JPDL_DOM) = {
precondition(CJN,CJA) = {
CreateJPDLNode(CJN);
CreateJPDLAttribute(CJA);
Operation.next(_,CJN,CJA);

}
action {

\ldots // See contents below
}

}

// create JPDL Node -- Step 7
let TargetNode = createElement(getElementById(CJN.parentID),CJN.targetID),

Result0 = addElement(TargetNode , JPDL_DOM) in
println("Debug created JPDL Node:"+Result0);

// create JPDL Attribute -- Step 8
let TargetAttrNode = createElement(getElementById(CJA.parentID),CJA.targetID),

Result1 = setContent(TargetAttrNode,ref(CJN.targetFQN).functionName),
Result2 = addElement(TargetAttrNode,JPDL_DOM) in
println("Debug created JPDL Attribute:"+Result2);

Fig. 8. Applying CHMs through the jPDL XML-DOM API
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Example transformation rule. In this final case study example, we define an applica-
tion rule based on domain-specific CHMs for the jPDL XML-DOM model (Fig. 6(a)).
Fig. 8 shows the newCompoundJPDLNode() rule, which is used to interpret a subse-
quence of CHM chains for the jPDL domain. More precisely, this rule’s precondition
matches the pair of CreateJPDLNode and CreateJPDLAttribute CHM fragments which
correspond to the addition of a new ”compound” jPDL node (with a specified function
invocation attribute). The rule uses native functions createElement, addElement to
instantiate new jPDL XML elements directly in the deployed process model on the
workflow server; setContent is used to overwrite the attribute node’s textual content.

The left side of Fig. 8 shows the final three steps of our running example. In Step 6,
the initial state of the deployed workflow model, the process definition corresponding to
Workflow w0 is still empty. During the rule’s execution, first, the jPDL Node i0 is created
(Step 7), and then in Step 8, the attribute node is added with the appropriate textual
content. (Debug calls are used to write debugging output to the VIATRA2 console.)

The entire algorithm which applies CHMs follows the linear sequence of operations
along the relations with type Operation.next; the first operation in a transaction can be
determined by looking for a CHM fragment without an incoming Operation.next edge.

5 Related Work

Now an overview is given on various approaches showing similarity to our proposal.

Event-driven techniques. Event-driven techniques, which are the technological basis
of live model transformations, have been used in many fields. In relational database
management systems (RDBMS), even the concept of triggers [6] can be considered as
simple operations whose execution is initiated by events. Later, event-condition-action
(ECA) rules [7] were introduced for active database systems as a generalization of trig-
gers, and the same idea was adopted in rule engines [8] as well. The specification of
live model transformations is conceptually similar to ECA rules (see Section 4.1). How-
ever, ECA-based approaches lack the support for triggering by complex graph patterns,
which is an essential scenario in model-driven development.

Calculation of model differences. Calculating differences (deltas) of models has been
widely studied due to its important role in the process of model editing, which re-
quires undo and redo operations to be supported. In [9], metamodel independent al-
gorithms are proposed for calculating directed (backward and forward) deltas, which
can later be merged with initial model to produce the resulting model. Unfortunately,
the algorithms proposed by [9] for difference and merge calculation may only oper-
ate on a single model, and they are not specified by model transformation. In [10], a
metamodel independent approach is presented for visualizing backward and forward
directed deltas between consecutive versions of models. Differences (i.e., change his-
tory models) have a model-based representation (similarly to [11]), and calculations are
driven by (higher order) transformations in both [10] and our approach. However, in
contrast to [10] to [11], our current proposal operates in an exogeneous transformation
context to propagate change descriptions from source to target models.

Incremental synchronization for exogeneous model transformations. Incremental
synchronization approaches already exist in model-to-model transformation context
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(e.g. [12]). One representative direction is to use triple graph grammars [13] for main-
taining the consistency of source and target models in a rule-based manner. The pro-
posal of [14] relies on various heuristics of the correspondence structure. Dependencies
between correspondence nodes are stored explicitly, which drives the incremental en-
gine to undo an applied transformation rule in case of inconsistencies. Other triple graph
grammar approaches for model synchronization (e.g. [15]) do not address incremental-
ity. Triple graph grammar techniques are also used in [16] for tool integration based on
UML models. The aim of the approach is to provide support for change synchroniza-
tion between various languages in several development phases. Based on an integration
algorithm, the system merges changed models on user request. Although it is not a
live transformation approach, it could benefit from being implemented as such. The ap-
proach of [17] shows the largest similarity to our proposal as both (i) focus on change
propagation in the context of model-to-model transformation, (ii) describe changes in a
model-based and metamodel independent way, and (iii) use rule-driven algorithms for
propagating changes of source models to the target side. In the proposal of [17] target
model must be materialized and they can also be manually modified, which results in
a complex merge operation to be performed to get the derived model. In contrast, our
algorithms can be used on non-materialized target models, and the derived models are
computed automatically on the target side.

6 Conclusion and Future Work

In the paper, we discussed how model synchronization can be carried out using change-
driven model transformations, which rely upon the history of model changes. We pre-
sented an approach to automatically (and generically) derive change history models by
recording changes in a (source) model using live transformations. Then a change history
model of the target language is derived by a second (problem-specific) model transfor-
mation. Finally, the target change history model can automatically drive the incremental
update of the target model itself even in such a case when only an external model ma-
nipulation interface is available for the target model. Our approach was exemplified
using an incremental code generation case study.

As future work, we plan to investigate how to derive aggregated and history inde-
pendent change delta models (like in [10]) automatically as union of change history
models. Additionally, we also plan to work on elaborating the design methodologies
of change-driven transformations, and intend to investigate the correctness and consis-
tency checking of change-driven transformations (with respect to a batch transformation
reference). Furthermore, we aim at using change history models for model merging.
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13. Schürr, A.: Specification of graph translators with triple graph grammars. Technical report,
RWTH Aachen, Fachgruppe Informatik, Germany (1994)

14. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp.
543–557. Springer, Heidelberg (2006)
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Abstract. We present a novel technique for applying two-level runtime
models to distributed systems. Our approach uses graph rewriting rules
to transform a high-level source model into one of many possible target
models. When either model is changed at runtime, the transformation is
incrementally updated. We describe the theory underlying our approach,
and show restrictions sufficient for a simple and efficient implementation.

We demonstrate this implementation in Fiia.Net, our model-based
toolkit for developing adaptive groupware. Developers using Fiia.Net
control components and connections through a high-level conceptual run-
time model. Meanwhile, the toolkit transparently maintains the underly-
ing distributed system, and propagates failures back into the conceptual
model. This approach provides high stability, and performance that is
sufficiently fast for interactive applications.

Keywords: Adaptive groupware, runtime models, incremental model
transformation.

1 Introduction

Recent years have seen a proliferation of computing devices, ranging from smart
telephones and PDAs, to netbooks and tablet PCs. When connected over a net-
work, these devices enable new styles of communication and collaboration in
mobile settings. Applications include meetings at a distance [1], tele-health [2]
and online games [3]. Such applications, which we term adaptive groupware, are
fundamentally distributed systems which undergo significant runtime adapta-
tion: as users move between tasks, roles, devices and locations; and as network
conditions and connections change. Adaptive groupware systems are difficult to
build, because they must provide intuitive user interfaces while maintaining high
performance in the face of varying user demands and partial failure.

Model-based techniques have great potential for aiding the development of
adaptive groupware. High-level conceptual models [4,5,6,7] can describe the
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system’s structure, abstracting low-level issues like data sharing and caching
policies, concurrency control algorithms, and network protocols. Distribution
models can help reason about architecture trade-offs [8] or configure an imple-
mentation [9].

To address the challenges of adaptive groupware, we have developed a model-
based system which supports runtime adaptation in both conceptual and distri-
bution models:

– The runtime system automatically refines the conceptual model into a dis-
tribution model. This mechanism allows many possible implementations of
each conceptual model.

– Developers specify high-level changes as runtime adaptations to the concep-
tual model (e.g., a user changes device, or new data is shared between users).
The runtime system propagates these adaptations through refinement to the
distribution model.

– The underlying distributed system is reconfigured following the distribution
model, and reports failures as distribution adaptations (e.g., a smartphone’s
battery dies, or a network becomes unavailable). Following failure, the run-
time system restores the models to a consistent state, allowing the applica-
tion to detect and manage failures via the conceptual model.

This approach requires us to maintain consistency between the two models at
runtime. Existing model transformation techniques, outlined in Sec. 2, do not
support bidirectionality, limit the flexibility of the transformation, or are too
slow for use in a running groupware system.

Underpinning our solution is a novel algorithm for maintaining bidirectional
model consistency. Using this algorithm, refinement from a conceptual model
to a distribution model is specified using unordered graph rewriting rules. Both
models are maintained at runtime. Arbitrary changes in the conceptual model
and removals from the distribution model are rapidly propagated through the
transformation. The algorithm performs adaptations incrementally, and with
minimal change to the models.

Our algorithm is possible because we forbid additions to the distribution
model. In our application, direct changes to the distribution level result from
partial failure, so are always expressed as removals. This restriction avoids the
need to reverse-engineer newly-added distribution model elements, so permits
extremely general rules and high performance. Our algorithm does not other-
wise depend on the behavior of distributed systems, and is independent of our
particular metamodels and rewriting rules.

We have used this algorithm in the Fiia.Net groupware development toolkit
[10]. Fiia.Net has been used to develop a range of applications, distributed across
desktop PCs, smartphones, and tabletop computers. Significant examples include
a game sketching tool [11] and a furniture layout application [10].

This paper is organized as follows. After reviewing related work, we describe
the framework underlying our algorithm, building from abstract examples to the
underlying theory and pseudocode. Finally, we provide a short evaluation of the
algorithm as implemented in Fiia.Net.
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2 Related Work

Model transformations are often applied to link two-level models of software ar-
chitecture, as popularized by the OMG MDA [12] initiative. As software evolves,
designers and developers make changes to both levels. Incremental bidirectional
transformations allow these changes to be propagated through to the opposite
model [13]. Unlike our runtime approach, however, these traditional techniques
focus on static design and source code.

Most model transformations represent models as graphs. Triple Graph Gram-
mars (TGGs) [14] are a common basis for incremental bidirectional transforma-
tions (e.g. [15,16]).TGGs are difficult to apply to graphs which have dissimilar
structure [16], primarily because TGG rules map directly from source to tar-
get models without performing intermediate steps. This presents problems for
our application to distributed systems: high-level behaviors are typically built
from lower-level behaviors, and our rules naturally follow this structure using
intermediate elements and non-determinism.

Other approaches for bidirectional model transformation impose a wide vari-
ety of restrictions [17]. QVT [18] defines two user languages: QVT Relational is
similar to TGGs [19], and similarly does not support intermediate steps. QVT
Operational, meanwhile, is an imperative language that would require hand-
coded inverse rules to support bidirectionality. This relational versus operational
split is typical of the remaining literature.

The Atlas Transformation Language (ATL) is a notable exception. It is an
imperative model rewriting system, which has been extended to support con-
ceptual adaptations and distribution removals [20]. The ATL-based technique
does not preserve partial transformations, so is not stable in the presence of
non-determinism.

Without supporting bidirectionality, Hearnden at al. [21] present a technique
for incrementally updating a model transformation. Their formulation is similar
to ours, but based on maintaining the tree of possible derivations in a logic
language.

Model transformations are also used in the area of distributed systems to
specify adaptation between different configurations [22,9]. These systems support
high level specification of changes in a single-level model. We believe that similar
techniques will be useful extensions to the Fiia.Net conceptual model API.

To the best of our knowledge, none of these systems satisfy our joint require-
ments of speed, generality, stability and limited bidirectionality.

3 Framework

The core of our approach is the use of two runtime models representing snapshots
of the conceptual and distribution-level configuration of the distributed interac-
tive system. These models are related via a refinement model transformation,
while adaptations result in runtime changes to these models.
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C1

s1

s2

D1

Fig. 1. One refinement in a tree of
possibilities

C1 C2

D1 D2

s1; s2 = T1 T2

ΔC

ΔD

Fig. 2. Commuting of refinements over adapta-
tions

The high-level conceptual model is exposed to applications via reflection,
events, and an editing API. Applications call into the API to specify runtime
adaptations, and use events and reflection to gauge the effects of partial failure.

The low-level distribution model describes the underlying distributed system.
It is modified automatically through refinement, as a result of conceptual adap-
tations. Partial failures are first reported as distribution adaptations, and then
propagated up through the refinement to the developer’s conceptual view.

Figure 1 shows the relationship between the models. A conceptual model C1
corresponds to a distribution model D1 through a sequence of transformation
steps (such as s1, s2). Many different sequences of steps are possible, often lead-
ing to different distribution models. Figure 2 combines the steps into a single
transformation T1. The transformation steps are generated by non-deterministic
application of a set of refinement rules.

At runtime, either model may be modified, as shown in Fig. 2. If a modification
ΔC is applied to C1, the resulting conceptual model C2 may not correspond with
D1. The runtime system must find a new transformation T2 and distribution
model D2 which are compatible with C2. Likewise, if a modification ΔD is applied
to D1, the runtime system must find T2 and a new conceptual model C2.

The fact that updates are applied to both models excludes many transforma-
tion techniques. As we shall see in the following sections, limiting distribution
adaptations to deletion allows our algorithm to support both general rules and
fast, incremental updates. In summary, the main features of our approach are:

– Unordered graph rewriting rules are used to refine from conceptual to dis-
tribution models.

– Arbitrary changes may be applied to the conceptual model.
– Removals may be applied to the distribution model.
– Updates are applied stably, and at speeds suitable for interactive systems.

In the next sections, we expand on our algorithm and the underlying theory.
We first describe how the model transformation is recorded into a trace of
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steps. From there, we show how the trace and distribution are updated fol-
lowing changes in the conceptual model. Finally, we expand the algorithm to
deal with removals from the distribution model.

4 Refinement and Trace

Refining the conceptual model into a distribution requires a very general refine-
ment algorithm. There are multiple implementations of each conceptual mode, so
the refinement must deal with non-determinism. Choosing the implementation
of many patterns involves a set of nested choices, so the rules are most naturally
written using intermediate elements, which appear in neither conceptual nor dis-
tribution model. Furthermore, adaptation must be permitted at either level. To
the best of our knowledge, this combination is not addressed by existing tech-
niques. Our algorithm solves a significant subset of this problem by supporting
arbitrary adaptations at the conceptual level and removals at the distribution
level. This section defines how we perform refinements and establish a trace.
This information is then used to perform conceptual (Sect. 5) and distribution
(Sect. 6) adaptations.

The relationship between conceptual and distribution models is specified via
a set of graph rewriting rules. These rules are applied in arbitrary order until
no more rules match, and their effects are recorded in a trace. This process is
outlined in Alg. 1. As in other unordered graph rewrite systems, the rules can be
very general: they need not be bidirectional, and can include non-determinism,
intermediate elements, and multiplicities.

Rather than limit the behavior of individual rules, we enact adaptations by
manipulating the trace. This section describes our formalization of the graphs,
rules and trace.

The conceptual and distribution models are stored as graphs, each represented
as a set of directed edges. Edges have a source vertex, a target vertex, and a
label. Vertices are implicit, existing only as unique identifiers associated with

g ← the graph to refine;

while any rules match g do
r ← any matching rule;

append step s to trace where:
s.consumes = edges consumed by the rule;
s.requires = edges required by the rule, but not modified;
s.produces = edges produced by the rule;

g ← g − s.consumes; /* Delete edges */

g ← g ∪ s.produces; /* Add edges */

end

the resulting distribution graph ← g;

Alg. 1. refine: apply rewriting rules to a graph
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k : Call Connector

caller callee

n1 : Node n2 : Node

t : Transmitter r : Receiver

source-of target-of

in in

in in

connected-to connected-to

remote-connected-to

(a) Rule definition. Dashed elements
are consumed, while underlined ones
are produced.

caller k callee

caller t r callee

step

(b) Rule application. This step re-
places k with a network RPC link via
t and r.

Fig. 3. Example Fiia.Net rule: Implement a synchronous call connector as an RPC
link

an edge. All modifications to a model or intermediate graph can therefore be
expressed via the removal and addition of edges.

Rewriting rules are represented as three sets of edges, plus subrules and ex-
ecutable code for advanced features. The three sets of edges describe most of
the rule’s behavior, so are where we focus this discussion. Each set describes a
sub-graph, with the following meanings:

consumes: must exist for the rule to match, will be deleted;
requires: must exist for the rule to match, will not be modified;
produces: must not exist for the rule to match, will be added.

These sets describe both the prerequisites of a rule, and its effects when applied.
This design is similar to many others, including the well-known double-pushout
approach [23]. We now present an example of a Fiia.Net rule, and continue with
the details of the trace.

In Fiia.Net, the conceptual model specifies a component-oriented distributed
system. Components interact via explicit connectors, which express patterns of
communication. For example, a synchronization connector between two compo-
nents establishes them as copies of the same shared data, while a stream con-
nector conveys realtime data such as sound or video. There are many possible
ways to implement these connectors, expressed via a choice of refinement rules.

A much simpler connector is the call connector, which enables blocking method
calls. In Fiia.Net ’s rule set, a call connector can be implemented as a local pointer
or remote procedure call (RPC). The remote procedure call can be direct, cached,
or routed via a server.

The Fiia.Net rule for rewriting a call connector into a direct RPC is sketched
in Fig. 3(a). This rule deletes a call connector (k) between two endpoints (caller
and callee) on different physical nodes (n1 and n2). It replaces the call connector
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t ← the trace to apply;
g ← the original graph;

for each s in t do
/* Ensure the preconditions are met. */

if s.consumes �⊆ g ∨ s.requires �⊆ g ∨ s.produces ∩ g �= ∅ then
raise the graph and trace are incompatible;

end

g ← g − s.consumes; /* Removed consumed edges. */

g ← g ∪ s.produces; /* Add produced edges. */

end

the resulting graph ← g;

Alg. 2. apply: apply a trace to a graph

with a network RPC link (t to r), as shown in Fig. 3(b). Call connectors appear
in the Fiia.Net conceptual model, and are produced by many other rules. Even
the caller and callee are often the product of earlier rules.

Matching a rule against a target graph consists of finding an embedding. An
embedding is a mapping from a rule’s precondition vertices (those consumed or
required) to vertices in the target. As in other systems, the mapping must be
injective, and applying it to the rule must produce a subgraph of the target.
Vertices in the rule are either variables (e.g. k and caller), which could map to
any one of many graph vertices, or exact values (e.g. “Call Connector”)1.

If an embedding exists, the rule can be applied to the target graph. Rule
application consists of deleting consumed edges and adding produced edges.
Produced variables which do not appear in the embedding (e.g. t and r) are
mapped to unique new vertices.

Each trace step records the effect and dependencies of a single rule applica-
tion, i.e., the sets of edges consumed, required, and produced. The trace of a
refinement is a sequence of trace steps recording all its rule applications.

A trace can sometimes be applied to graphs other than its original conceptual
model. This process is shown in Alg. 2. If the graph is missing edges consumed
or required by the trace, the apply will fail. In this case, the graph and trace
are incompatible.

The rules are applied in an unordered fashion. When multiple rules match, or
multiple embeddings are possible, one is chosen arbitrarily2. The transformation
continues applying rules until none match. This approach requires that the rule
set be terminating and complete: all sequences of rule applications must be finite,
and the final graph must be a distribution model.
1 We express negative and repeated patterns as subrules. Matching a negative pattern

prevents the containing rule from matching. Repeated patterns match zero or more
times, and contribute to steps produced from their containing rule.

2 A steering algorithm can be attached to the rule refinery in order to guide these non-
deterministic choices based on application-specific criteria, e.g. to minimize latency
between components.
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C1 C2

H

D1 D2

T1

ΔC

ΔD

T−
1

prune(ΔC)

TH

T2

Fig. 4. Steps used in performing a
conceptual adaptation

Δ+ ← edges added by the change;
Δ− ← edges deleted by the change;
g ← the graph to adapt;

g ← g − Δ−; /* Delete edges */

g ← g ∪ Δ+; /* Add edges */

g → the resulting graph;

Alg. 3. adapt: apply a change to a graph

In the next sections, we build from these properties to the complete theory of
our algorithm.

5 Conceptual Adaptations

Conceptual adaptations typically represent local changes within a larger model.
Because the changes reconfigure a live system, they need to be propagated
through the refinement quickly and incrementally. Existing techniques for such
incremental updates greatly restrict the space of supported rules. Our algorithm
solves this problem for unordered rewrite rules. This section describes how we
apply conceptual adaptations to an existing refinement, using the explicit trace
defined in Sec. 4.

Conceptual adaptations are defined using the graph representation of the
conceptual model. An adaptation is a set of edges which are removed from the
graph, and a set of edges which are added. Figure 4 shows the operations used to
resolve a conceptual adaptation. From initial models C1 and D1, corresponding
via trace T1, and a conceptual adaptation ΔC , our algorithm proceeds as follows:

1. Using ΔC , adapt C1 to C2 (Alg. 3).
2. Using ΔC , prune T1 to a partial refinement of C2, producing T−

1 (Alg. 4).
3. apply T−

1 to C2, producing H (Alg. 2).
4. refine H , producing a trace TH and model D2 (Alg. 1).
5. Concatenate the steps of T−

1 and TH , producing a new trace T2.

The prune operation converts T1 into a trace which represents a partial refine-
ment of C2. It does this by discarding steps which would not have been generated
by a refine of C2. Determining which steps to discard depends on the consumes,
requires, and produces sets saved in each step. We now give an example of this
pruning, and then present the complete algorithm.

Consider the abstract initial state shown in Fig. 5(a). Edges ea and eb exist
in the conceptual model C1. The first refinement step (s1) consumes eb and
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ea eb

s1

ec

s2

ed

C1

D1

consumes

produces

consumes

produces

consumes

(a) Initial models and
trace T1 = s1; s2

ee eb

s1

ee ec

C2

H

consumes

produces

(b) Pruned trace
T−

1 = s1

ee eb

s1

ec

s3

eg

C2

D2

consumes

produces

consumes

consumes

produces

(c) Final models and
trace T2 = s1; s3

Fig. 5. Example conceptual adaptation ΔC = { del: ea, add: ee }

produces ec. After the first step, the intermediate model consists of ea and ec.
The second step (s2) consumes both ea and ec, producing ed. After the second
step, no more rules match, so the distribution model consists of only ed.

Now suppose that we apply a conceptual adaptation ΔC that removes ea and
adds the new ee. This causes the trace to be pruned to the T−

1 shown in Fig. 5(b).
T−

1 is the same at T1, except that steps that no longer apply in C2 have been
removed. Specifically, s2 consumes ea, so must be discarded. With the loss of s2,
ed is no longer available. As neither ec nor ee are consumed in the trace, they
appear in the intermediate model H .

Applying rewriting rules to H and concatenating the traces yields the T2
shown in Fig. 5(c). s1 remains unchanged from the initial state, but s2 has been
replaced by s3.

The operational definition of prune is show in Alg. 4. It performs the depen-
dency search outlined above based on the ordering of steps in the trace. Each
step is defined from a graph rewrite operation in the transformation. As a re-
sult, all edges consumed or required by a step si in T1 must appear in C1, or be
produced by a previous step (sp where p < i). The iteration will always consider
sp before si, so can show dependency using a simple set intersection check.

For simplicity, this definition ignores negative and repeated patterns. In the
complete algorithm, these are handled during the iteration. Negative patterns are
checked against an intermediate graph when Alg. 4 considers the step compatible.
Repeated patterns may expand or contract the step if their number of matches
has changed. Both cases add to the complexity of the operation, but their use
in Fiia.Net does not significantly impact runtime speed.
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t ← T1;
r ← edges removed by ΔC ;

/* Propagate ΔC down through the trace. */

for each s in t do
if removed ∩ s.consumes �= ∅ or removed ∩ s.requires �= ∅ then

/* A prerequisite is unavailable, so delete this step. */

delete s from t;
removed ← removed ∪ s.produces;

end

end

T−
1 ← t;

Alg. 4. prune: update the trace for a conceptual adaptation

This technique allows us to quickly update an existing transformation with
arbitrary conceptual changes. The resulting trace T2 will always correspond to
a possible sequence of rule applications on C2, and so can be used in further
adaptations. Unlike other approaches to live model transformation, our approach
maintains general graph rewriting semantics throughout.

6 Distribution Adaptations

Partial failures in distributed systems are notoriously hard to resolve. A two-level
runtime model provides a natural way of capturing this behavior: failures are
removals in the distribution model, and are propagated back to the conceptual
model. This allows the developer to work exclusively with the conceptual model,
rather than delving into implementation details to diagnose and repair problems.

Our requirement for general rewriting rules excludes existing techniques for
bidirectional adaptation. Restricting distribution adaptations to removals allows
us to apply them quickly and incrementally. We are not aware of any other
algorithm for unordered rewrite rules that offers this capability. This section
defines how we handle distribution adaptations, building on operations defined
earlier.

Like conceptual adaptations, distribution adaptations are specified as graph
edits; however, they are restricted to removals. Figure 6 shows the operations
used to resolve a distribution-level adaptation. Initial models C1 and D1 corre-
spond via trace T1. The distribution adaptation ΔD produces a new distribution
Di from D1. The unrestricted rule set implies that Di might not correspond to
any conceptual model. Our algorithm resolves this conflict by removing addi-
tional distribution edges to restore consistency (ΔD2). This whole operation is
performed as follows:

1. findSourceDelta with ΔD and T1 to generate ΔC (Alg. 5).
2. Using ΔC , adapt C1 to C2 (Alg. 3).
3. Using ΔC , prune T1 to its parts compatible with C2, producing T−

1 (Alg. 4).
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Fig. 6. Steps used in performing a distribution adaptation

4. apply T−
1 to C2, producing H (Alg. 2).

5. refine H , producing a trace TH and model D2 (Alg. 1).
6. Concatenate the steps of T−

1 and TH , producing a new trace T2.

The findSourceDelta operation finds conceptual removals ΔC sufficient to
cause ΔD. The derived ΔC is then applied like a normal conceptual update,
following the algorithm described in Sect. 5. This conceptual update often re-
moves more distribution elements than ΔD, causing the additional ΔD2.

Consider the abstract example shown in Fig. 7(a). We apply a distribution
update ΔD which removes ed. The task of findSourceDelta is then to identify
the conceptual edges which led to ed, so they can be removed. ed was produced
by s2, which, in turn, consumes ea. As a result, ΔC will remove ea.

Applying prune with ΔC = { del: ea } produces the T−
1 trace shown in

Fig. 7(b). Without ea, pruning discards both s2 and s3. This leaves only ec, no
longer consumed by s3, to appear in the intermediate model H .

To refine H to a valid distribution model, we rely on the earlier property of
completeness. The trace T−

1 describes a sequence of rule applications from the
conceptual model C2 to H . In our example, ec happens to be an intermediate
element, which can not appear in the distribution model. For the completeness
property to hold, applying the refinement rules must eventually refine H into a
distribution model. In this example, s4 is sufficient, and yields the final T2 shown
in Fig. 7(c).

The operational definition of findSourceDelta is shown in Alg. 5. It performs
the inference described above by walking backward through the trace. As for
prune, all edges consumed by a step must appear in C1 or be produced by a
previous step. This iteration always considers the consume before the produce,
so can accumulate the banned edges in “removed”.

This technique quickly updates an existing transformation to apply distribu-
tion removals. Our approach is particularly unique, because it does not require
bidirectional rules. Indeed, the transformation used in our Fiia.Net system is
neither bijective nor surjective, and is massively non-deterministic.
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Fig. 7. Example distribution adaptation ΔD = { del: ed }

T ← T1;
Δ− ← edges removed by ΔD;

/* Propagate ΔD up to the conceptual model. */

for each s in reverse T do
/* Check whether this step is compatible with the change. */

if Δ− ∩ s.produces �= ∅ or Δ− ∩ s.requires �= ∅ then
delete s from T ; /* Discard the incompatible step. */

/* Discarding this step means more edges should not exist. */

Δ− ← Δ− ∪ s.consumes;
end

end

ΔC ← { del: Δ− ∩ ΔC } ; /* Compute the conceptual adaptation. */

Alg. 5. findSourceDelta: find a sufficient conceptual removal for a distribution re-
moval

7 Experience

The algorithm presented in this paper is used by our Fiia.Net toolkit. Fiia.Net
represents a distributed interactive system using a high-level conceptual model
which is visible to the application, and a low-level distribution model which config-
ures the actual implementation [10]. An application enacts adaptations by mod-
ifying the conceptual model, while the underlying implementation removes any
failed elements from the distribution model. Our algorithm efficiently propagates
both types of updates through the transformation. Fiia.Net ’s rule set consists of
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Fig. 8. Adaptation times for varying model sizes

34 graph rewrite rules, each of which is simple, but which in combination express
a rich set of possible implementations for each conceptual model.

We have used Fiia.Net to implement several applications within our lab. These
include a shared presentation program; a multimodal furniture layout [10] in-
volving participants using an electronic tabletop surface, a standard PC, and a
smartphone; a textual chat application; and a collaborative game prototyping
tool [11]. These examples have shown the effectiveness of the two-level model for
groupware, and the practicality of using Fiia.Net toolkit for rapid application
development.

To evaluate the performance impact of our model transformation algorithm,
we have recorded the time it requires for various adaptations based on the Raptor
game prototyping tool [11]. Raptor allows designers to add and control in-game
entities while a tester plays. Each in-game entity is a single Fiia.Net component.
Adding, removing, and connecting entities causes Raptor to make changes in the
conceptual model. Similarly, partial failures will cause changes to the distribution
model.

Figure 8(a) compares the incremental algorithm, described in this paper, to
a straight-forward full refinement. In both cases, the experiment gradually in-
troduces 1000 new entities into a game world via conceptual adaptations. All
transformation is performed in one thread, on an Acer Aspire 5110 (AMD TL-
50 1.6GHz with 2GB RAM, running Windows XP and Microsoft .Net 3.5). The
size of the trace and models grows linearly with the number of entities. At 1000
entities, it reaches 8022 steps, with 16054 and 19076 edges in the conceptual and
distribution graphs, respectively. Applying a full refinement after each adapta-
tion rapidly becomes too expensive for interactive applications, peaking at nearly
4 seconds. Our incremental algorithm performs much better, remaining below
500 ms. This gap appears because prune preserves almost all of the previous
steps, so the ensuing refine requires few graph searches.
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Figure 8(b) shows the same system, removing entities from the game world
via conceptual and distribution adaptations. Applying the adaptations in the
conceptual model behaves similarly to the incremental additions. The distribu-
tion adaptations are slightly different, because removing components from the
distribution model indicates their failure. To ease application recovery, Fiia.Net
preserves some information about connections to failed components. This be-
havior is responsible for both the slightly higher performance of, and the 10076
distribution edges remaining after the distribution case. Again, performance is
adequate for interactive use.

Our current graph rewriting engine is relatively crude. It stores all interme-
diate models as untyped graphs, and dynamically matches rules using recursive
search. In spite of these shortcuts, our current implementation works well with
a few thousand components and connections.

While our approach is motivated by the difficulties of developing distributed
systems, the algorithm is independent of Fiia.Net ’s models and rules.

8 Conclusion

In this paper, we have presented an efficient algorithm for maintaining consis-
tency in two-level runtime models. This allows systems like Fiia.Net to maintain
all the flexibility of model-driven architecture, in a highly-adaptive and fault-
tolerant runtime.

Because our algorithm is built on graph rewriting and tracing, it should also
permit many optimizations and heuristics that we have not explored. We believe
that this approach will prove useful for similar two-level runtime models, whether
specialized for groupware or other fields.
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14. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

15. Giese, H., Wagner, R.: Incremental model synchronization with triple graph gram-
mars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006.
LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

16. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, extensions, imple-
mentations, and application scenarios. Technical Report tr-ri-07-284, Department
of Computer Science, University of Paderborn (June 2007)

17. Stevens, P.: A landscape of bidirectional model transformations. In: Lämmel, R.,
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Abstract. Many tools in software engineering projects support the visualization 
and collaborative modification of custom sets of artifacts. This includes tools 
for requirements engineering, UML tools for design, project management tools, 
developer tools and many more. A key factor for success in software engineer-
ing projects is the collective understanding of changes applied to these artifacts. 
To support this, there are several strategies to automatically notify project par-
ticipants about relevant changes. Known strategies are limited to a fixed set of 
artifacts and/or make no use of traceability information to supply change notifi-
cations. This paper proposes a change notification approach based on traceabil-
ity in a unified model and building upon operation-based change tracking. The 
unified model explicitly combines system specification models and project 
management models into one fully traceable model. To show the benefit of our 
approach we compare it to related approaches in a case study.  

Keywords: Change awareness, traceability, unified model, operation-based,  
notification. 

1   Introduction and Related Work 

A common technique to handle the complexity in software development projects is 
the use of different models. On the one hand, models such as requirement models and 
detailed specifications are used to describe the system under construction on different 
levels of abstraction. We call this the system model. On the other hand, there is the 
project model [7] containing tasks lists, schedules, or the organizational structure. All 
these do not describe the system, but the project itself. In the course of a software 
project, all models constantly evolve over time. A change in one model often triggers 
a change in another. For example, a change in the functional requirements most likely 
affects the work break down structure. 

Change awareness is the ability to keep up with changes that were made to devel-
opment documents and artifacts. It is difficult to achieve this without computer assis-
tance, especially for complex systems [10]. As a consequence, most tools, which store 
software engineering models, offer some degree of support for change awareness. To 
notify project participants only about changes relevant to them, change notification 
strategies are required. Existing approaches provide notification strategies based on 
either the system and project model (e.g. [3], [5], [11], [13], [15]), based on source 
code (e.g. [1], [12]) or even both (e.g. [4], [9]). Unfortunately, the effects of changes 
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crossing the boundaries between the system model and the project model have been 
studied a lot less. A comparison done by Storey et. al. [14] showed that none of the 12 
tools included in the study made significant use of project documentation (e.g. re-
quirements, tests, design or architecture). 

This paper proposes a novel change notification approach to notify project partici-
pants about such relevant changes based on traceability. The approach was implemented 
and evaluated based on a CASE-Tool called UNICASE [3]. UNICASE provides a 
unified model, which explicitly combines the system model and the project model into 
one model stored in one repository. The underlying unified model enables model-based 
notifications: As even the user is part of the unified model, notifications can be gener-
ated based on the context-rich and highly traceable model. For example, a user can be 
notified about direct or indirect changes on artifacts he is currently working on. To show 
the benefit of our approach, we compare it to related approaches in a case study. 

2   Traceability-Based Change Notification 

Our suggested change awareness approach uses links between system model and 
project model to determine which notifications are relevant for project participants. 
For example if a project participant is working on a task, which refers to a functional 
requirement, he might be interested in any change pertaining to this functional re-
quirement. Furthermore he also might be interested in changes related to the detailing 
use case of the requirement as well as changes in requirements that refine the re-
quirement he is working on. The proposed change notification strategy would trace 
these links and notify the user about changes on all mentioned model elements. 
In the example (see Figure 1), a change of the functional requirement by UserA would 
lead to a notification of UserB, because he or she is working on a task related to the 
functional requirement. Starting from the task the change notification strategy follows 
a trace of length one. Therefore we will call this type of change notification trace-
based change notification of length one. 

 

Fig. 1. Notification workflow (custom UML diagram) 

The exclusive use of trace-based notifications of length one would ignore the fact 
that there are dependencies inside the system model, which require change propagation. 
If there was a detailing use case for the functional requirement in the previous example, 
UserB should be also notified about changes on that use case. UNICASE provides a 
concept called opening link taxonomy [6], which determines which links require such 
change propagation. The opening link taxonomy allows us to find all model elements 
that are influencing a given model element in a way that the model element in question 
cannot be entirely completed without completing these.  In other words, the opening 
links allow us to calculate the transitive closure on model elements a user is working on. 



374 J. Helming et al. 

This leads to trace-based change notifications of length two or more. We will compare 
different lengths later in the evaluation in chapter 3.  

In an application context the notifications are generated whenever the user receives 
changes from the central repository to synchronize the local model instance. The changes 
in UNICASE are represented as so-called operations [8]. An operation describes one 
atomic change on a model such as assigning a task to user. Using operation-based change 
tracking to generate notifications results in two major benefits: performance and time-
order preservation. The changes do not have to be calculated and are in the order in 
which they occurred in time [15]. This means the notifications can be generated effi-
ciently and are ordered by the time at which they occurred. From the list of given opera-
tions a set of notifications is derived and presented to the user in a list oriented view.  

 
Fig. 2. TraceNotificationProvider (UML class diagram) 

A NotificationProvider generates notifications based on a certain strategy (see  
figure 2). Each Notification is targeted at a specific User, describes a change on a 
certain ModelElement and was derived from a given Operation.  

3   Evaluation 

To evaluate our approach we conducted a case study in which users manually rated 
change notifications according to their personal relevance. To allow for comparison 
with other approaches, we implemented the most common automatic approaches for 
providing change notifications: 

• Modifier-based notifications (e.g. [5]): A user is notified on every change in any 
artifact he or she has previously modified. 

• Creator-based notifications (e.g. [23]): A user is notified on every change on any 
artifacts he or she created. 

• Assignment notifications (e.g. [25]): A user is notified on the assignment of a 
task and on any subsequent change to an assigned task. 

We did not include notification strategies that rely on manual selection of the artifacts 
the user wants to be notified about, since they are not comparable with automatic ap-
proaches and have a different objective. The data for our case study was collected in a 
project named DOLLI2 (Distributed Online Logistics and Location Infrastructure) at a 
major European airport. More than 20 developers worked on the project for about five 
months. All modeling was performed in UNICASE resulting in a comprehensive pro-
ject model that consisted of about 1000 model elements and a history of more than 600 
versions. Using the traceability-based notification provider as well as the three other 
notification providers, we generated notifications for the DOLLI2 project data post 
mortem. To evaluate the quality of the notifications generated by the different providers, 
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we interviewed 5 project participants on 12 of their notifications randomly selected for 
each provider. Figure 3 shows an overview of the statistics of the number of notifica-
tions and their percentage for the different users and for the different providers. 

 

Fig. 3. Notification Overview Statistics Table 

Out of the three notification providers we implemented for comparison, we ex-
pected the assignment provider to be rated highest based on the assumption, that eve-
rybody should be notified about changes in his or her directly assigned tasks. Further, 
we expected the creator provider to be rated second best, as the creation of an artifact 
usually implies some kind of ownership. As the modifier-based provider also includes 
creator-based notification, but generates a significantly higher number of notifica-
tions, it was expected to be rated third. 

The table shows that the trace provider generates relatively few notifications, whereas 
other providers generate up to 1000 times more notifications for the same data. In a prac-
tical appliance the number of change notifications provided should be as low as feasible 
in order not to overwhelm the notified users. As the traceability-based notification pro-
vider generates a low number of total notifications, but also produces notifications not 
covered by other providers (because of the traces between system and project model), we 
claim it is useful if it is rated better than at least one of the existing notification providers. 
Our hypothesis was that the TaskTrace provider would result in a significantly higher 
rating than the Modifier provider, since we measured the mean ratings as mModifier = 2.53 
and mTaskTrace = 3.19 based on n1=60 and n2=47 items in each category, respectively. The 
negative correlation (L,R)=-0.127  (Pearson) between the trace length L and the rating 
R showed a tendency of shorter trace lengths causing higher ratings. Therefore, we only 
used those ratings that concerned notifications with a trace length of less or equal than 
two (resulting in 47 instead of 60 items). We used the non-parametric Kolmogorov-
Smirnov test to analyze the difference in the user rating. To perform this kind of test, two 
(discrete) empirical distribution functions F and F’ − one for the Modifier rating and one 
for the TaskTrace rating − had to be computed from the data sample. The supremum of 
the differences of the distribution functions dn=supx |Fn(x) – Fn’(x)| for n:=n2=47 was 
d47=0.2341 > c(α=5%; n) = 1.36 / n1/2 = 0.198, which means that the maximum of the 
distances exceeds the acceptable constant c(α=5%; n) corresponding to the 5% level. 
Thus the null-hypothesis has to be rejected on the 5% level of significance. 

Summing up this statistical result, we showed that our traceability-based notifica-
tion provider performs better than the modifier-based notification provider. Regarding 
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the significantly lower number of created notifications, we claim our traceability-
based notification provider to be useful in practical appliance. 
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Abstract. Throughout the evolution of software development and soft-
ware engineering methods, human interaction and the interfaces that
support it have been too often ignored or treated as secondary con-
cerns. Most modern modeling languages and methods - UML and the
unified process most definitely among them - have been devised with
a highly focused concern for representing procedures, information, and
software structures. The needs of interaction design and designers have
been addressed, if at all, in afterthought. Instead of well-conceived no-
tations and techniques, interaction designers have been given awkward
adaptations of models conceived for completely different and largely in-
compatible purposes. Instead of placing users and use at the center of
developmental and methodological focus, the dominant modeling lan-
guages and methods have relegated them to the periphery. Despite noble
calls for rapprochement and valiant attempts to build bridges, the gap
between software engineering on the one side and human-computer in-
teraction on the other remains stubbornly deep and wide, filled with
misunderstanding and devoid of meaningful integration.

Model-driven development, the latest in a long series of well-intentioned
initiatives tracing all the way back to the first so-called auto-coders, is
an approach that, like its antecedents, promises to eliminate or radically
reduce the need for manual coding by automatically generating software
from higher-level descriptions and models. Unfortunately, model-driven
development may be on track to perpetuate many of the problems and
shortcomings of its forerunners. This presentation will critically examine
the place of users, usability, and user interfaces in modern model-based
software development methods. It will argue that the user interfaces of
software intended for human use are more than mere surface projections
of underlying process and information models and that interaction design
is more than mere spit-and-polish added onto that surface. It will consider
both the promises and the problems in current thinking and will propose
specific solutions and new directions grounded in models and techniques
tailored to the core issues of interaction design but which are also well in-
tegrated with established software engineering models. Outstanding prob-
lems and work-in-progress will also be reported.
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Abstract. Behavioral models are getting more and more important
within the software development cycle. To get the most use out of them,
their behavior should be defined formally. As a result, many approaches
exist which aim at specifying formal semantics for behavioral languages
(e.g., Dynamic Meta Modeling (DMM), Semantic Anchoring). Most of
these approaches give rise to a formal semantics which can e.g. be used
to check the quality of a particular language instance, for instance using
model checking techniques.

However, if the semantics specification itself contains errors, it is more
or less useless, since one cannot rely on the analysis results. Therefore,
the language engineer must make sure that the semantics he develops is
of the highest quality possible. To help the language engineer to achieve
that goal, we propose a test-driven semantics specification process: the
semantics of the language under consideration is first informally demon-
strated using example models, which will then be used as test cases dur-
ing the actual semantics specification process. In this paper, we present
this approach using the already mentioned specification language DMM.

Keywords: Semantics specification, testing, model checking.

1 Introduction

In today’s world of software engineering, behavioral models play an increasingly
important role within the software development process. Just a couple of years
ago, models were mainly used for documentation purposes: for instance, a UML
Activity served as an easily understandable sketch of some process, but was not
supposed to be used e.g. for code generation or direct execution. One conse-
quence of this usage of behavioral diagrams was that an informal description of
a language’s semantics was considered appropriate (the UML specification [1]
probably is the most prominent example here).

However, this approach of describing a language’s semantics has severe draw-
backs: an informal semantics description will in almost all cases leave room for
interpretations, therefore leading to models having an ambiguous semantics. This
does not only hamper the usage of models as a base for discussion (e.g. when
groups with different skills are working together), but also does not allow for
an automatic analysis of a complex model’s behavior. As an example, analyzing
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a Petri net or UML Activity for soundness [2,3] only becomes possible because
both languages are equipped with a formal semantics1.

As a result, quite some approaches for specifying formal semantics have been
proposed (e.g. [4,5,6,7], more on this in Sect. 5). However, all these approaches
focus on delivering a semantics which can then be used for model analysis as
described above, but they do not consider the quality of the semantics specifi-
cation itself. This is surprising, since a semantics specification is only useful if it
is correct in some sense – otherwise, one cannot rely on the analysis results.

Given a formal specification, the first and obvious idea is to define a notion of
correctness by means of requirements the specification shall fulfill, and then to
prove that this is indeed the case. Unfortunately, the experiences from software
development seem to imply that proving the correctness of a reasonable complex
system is often just not feasible; therefore, the most important technique in
software quality assurance is testing.

In this paper, we propose a pragmatic approach to help creating high-quality
semantics, which is inspired by the well-known approach of Test-Driven Devel-
opment [8]. This is motivated by the fact that a semantics specification basically
follows the Input-Process-Output (IPO) model, where a certain model can be
seen as the input, and the semantics of that model is the output (e.g., represented
as a transition system).

Figure 1 shows our approach and its relation to the testing of software systems.
In the latter case, a test case consists of some input for the software system and
the system’s expected result. The test succeeds if the actual output of the system
is equal to the expected result.

In contrast to that, we want to test a semantics specification. Therefore, a test
consists of an example model ad its expected behavior. From that model and the
semantics specification, a transition system can be computed which represents
the model’s behavior. The test succeeds if the actual behavior conforms to the
expected behavior. There is only one requirement on the semantics specification
technique used: the behavior of a model must be represented as a transition
system which can be model checked for certain execution events, i.e., events
occuring when a model is executed.

In the following, we will consider two scenarios while discussing our approach:
the UML scenario and the DSL scenario. The former has already been intro-
duced above: a language is given which is already equipped with an informal
semantics which has to be formalized. Consequently, the goal must be to create
a formal semantics specification which is as close to the informal one as possible.

The second scenario occurs when defining a Domain Specific Language (DSL).
This type of language—only usable within a certain, usually narrow domain—
has become increasingly important in the last years, partly due to the fact that
the task of defining a language (including abstract and concrete syntax) is now
supported by sophisticated tooling (e.g., the Eclipse foundation’s Graphical Mod-
eling Framework or Microsoft’s DSL Tools [9,10]). The main difference to the

1 Note that in the case of UML Activities, there is no commonly accepted formal
semantics yet.
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Fig. 1. Comparison of testing of software systems (left) and semantics specifications
(right); the test subject is depicted as an oval

UML scenario is the lack of an informal description of the DSL’s semantics; the
semantics specification has to be created from scratch, usually together with a
documentation targeting the users of the DSL.

In a nutshell, our approach works as follows: In a first step, a set of example
models will be created which demonstrate the constructs the language under
consideration consists of. Additionally, the expected semantics of each example
will be identified and fixed in terms of traces of execution events. In the second
step, the actual semantics specification is performed and tested continously, using
a formalization of the traces identified in step 1.

The result is a semantics specification which realizes the expected behavior of
the example models. Additionally, the language engineer has a set of examples
at hand which can be used e.g. for documentation purposes within the DSL
scenario.

In the following, we will explain our approach of test-driven semantics spec-
ification in detail. We will use the semantics of UML Activities as the running
example, and we will construct a semantics specification using the already men-
tioned DMM technique. While doing this, we will lay out differences between
the two scenarios where appropriate.

Structure of paper: The following section will briefly introduce the DMM speci-
fication technique, using UML Activities as the language whose semantics is to
be formalized. Section 3 will show how to systematically create example models,
and how to describe the expected behavior of those models in terms of traces
of execution events. Section 4 will then show how to derive test cases from the
example models and the associated traces, and how to use these test cases to
ensure that the semantics specification indeed works as expected. Section 5 will
investigate related work, and Sect. 6 will conclude and give an outlook on work
to be performed in the future.

2 Dynamic Meta Modeling

We have argued in Sect. 1 that the lack of a formal semantics seriously hampers
the usability of a language. There is one drawback of most formalisms, though:
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they can only be used by experts of that formalism. For instance, the π calculus
is a powerful formalism for semantics specification, but the average language
user can not be expected to understand a π calculus specification, let alone use
it to specify the semantics of a language.

DMM aims at delivering semantics specifications which indeed can be under-
stood by such users. It does that by providing a visual language for semantics
specification. Additionally, a DMM specification is based on the metamodel of
the according language, allowing users who are familiar with that metamodel to
easily read a DMM specification.

In a nutshell, a DMM specification is created by first extending the language’s
metamodel with concepts needed to express states of execution; the enhanced
metamodel is called runtime metamodel. Then, the behavior is defined by cre-
ating operational rules which modify instances of that runtime metamodel. An
overview of DMM is provided as Fig. 2.

Fig. 2. Overview of the DMM approach

Let us investigate the semantics specification of UML Activities: the meta-
model provided by the OMG only contains static information, i.e., it describes
the set of valid UML Activities. The language’s dynamic semantics is specified
using natural language: for instance, the UML specification document states that
“the semantics of Activities is based on token flow”. However, the language’s
metamodel does not contain the concept of token.

Therefore, the runtime metamodel adds that concept: A class Token is intro-
duced such that instances of that class are associated to the language elements
they are located at (e.g., Actions). Therefore, an instance of the runtime meta-
model describes a state of execution of an Activity by having Token objects
sitting at particular elements.
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Now, the operational rules come into play; a (simplified) DMM rule is depicted
as Fig. 3. Its semantics is as follows: The rule can be applied if all incoming
ActivityEdges of an Action carry at least one token. If this is the case, the
rule is applied: all tokens are deleted from the incoming edges, and a new token
is created on the Action, corresponding to the fact that the Action has started
execution.

Fig. 3. DMM rule action.start(action.name)

The underlying formalism of DMM are graph transformations. Using the
GROOVE toolset [11], DMM specifications give rise to transition systems which
describe the complete behavior of the according models. The start state of such
a transition system is a model (in our case, a UML Activity). Now, every rule
of the DMM specification is checked for applicability; if a rule can be applied,
the application will lead to a new (and different) state (where e.g. the location
of tokens has changed); the resulting transition is labeled with the applied rule.
For every newly derived state, the process starts over again until no new states
are found.

A transition system computed in that way can then be analyzed using model
checking techniques. The properties to be verified need to be formulated over the
applications of rules. For instance, if we want to know if a certain Action can
ever be executed, we need to check if the transition system contains a transition
which is labeled with the rule corresponding to the Action’s execution.

There is only one generic rule implementing the semantics of Actions. There-
fore, DMM rules can be parameterized; in our example, the rule’s parameter is
the name of the Action the rule is working on. Consequently, if we want to know
if the Action with name “A” is ever executed, we have to check whether the
transition system representing the model’s behavior contains a transition labeled
action.start(“A”).

3 Creating Example Models

Defining formal semantics for a language is not an easy task. Typically, working
with a formalism is more difficult than working with a standard programming
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language like Java, partly due to the fact that for the latter, there is very so-
phisticated tool support, which is not the case for the formalism used (DMM is
no exception here, although we believe that DMM is more intuitive than most
other formalisms; however, the tool support does not (yet) meet standards set
by e.g. Java IDEs).

This is only part of the problem, though: especially in the UML scenario, one
obviously has to figure out the exact meaning of the language constructs before
their behavior can be formalized. This is where example models come into play:
if they are chosen appropriately, they can serve as a good base for discussion of
the meaning of the example’s language elements.

But what means “appropriate” in this case? The example models should

– concentrate only on a few language elements and their meanings,
– all together cover all elements of the language under consideration, and
– give rise to a finite transition system.

Section 4 shows how the last requirement is needed to reuse an example model
as a test case. In this section, we will describe how to systematically create
appropriate example models, and we will show how to precisely but informally
describe their meanings. The steps described within this section are shown in
Fig. 4.

Fig. 4. Create example models

The starting point is the abstract syntax of the language under consideration.
It defines all language elements and their relations with each other. In the case
of the UML, the abstract syntax is given as a metamodel, but other descriptions
could be used here, e.g. some kind of grammar. Based on the abstract syntax,
the example models should be created step by step, systematically going from
the most basic to more complex language constructs2.

3.1 A Very Simple Example

Create example model: The very first step is the creation of an example model
which should be as simple as possible. Let us investigate this in the case of UML
2 The example models can of course be created using the language’s concrete syntax.
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Activities. The UML metamodel is structured into packages which depend on
each other, and which indeed start with the most fundamental language elements
(contained in the package FundamentalActivities) up to the sophisticated lan-
guage elements contained in package ExtraStructuredActivities. Obviously,
this is helpful for our task of systematically creating example models.

In fact, the package FundamentalActivities only allows to create Activities
containing Actions which can be grouped using ActivityGroups3. Therefore,
the first example model we create only contains one Action; it is depicted as
Fig. 5.

Single Action

A

Fig. 5. Example Activity “Action” containing only one Action having name “A”

Discuss semantics: The next step will be to figure out the supposed behavior of
our newly created example. For our simple Activity containing only one Action,
this is not very difficult: the UML specification states that “when an activity
starts, a control token is placed at each action or structured node that has no
incoming edges”. Therefore, if the Activity is started, the only occuring event is
that the contained Action is executed.

Identify execution events: Now that the semantics of the example model is rea-
sonably clear, we want to describe it precisely. For this, we first have to identify
important execution events, i.e., events which will occur during the execution of
our example model, and which will describe what happens at a certain point in
execution time. Again, this is not too difficult for our example model: the only
event is that the contained Action is executed. We therefore define an execu-
tion event ActionExecutes. Since we will later refer to more than one Action, we
parameterize that execution event with the Action’s name.

Describe semantics: The last step of treating the current example model is to
actually describe the model’s semantics. We do that in terms of traces of exe-
cution events : Here, a trace is just a possible sequence of events as identified
above. Our example model only has one possible trace, which we can describe
as

ActionExecutes(“A”)

Obviously, the example presented is very simple, but it serves well to demon-
strate the overall approach. The next step would now be to proceed to more
complex examples, taking the package structure of the UML metamodel into ac-
count. It turns out that the concept of ActivityEdges is introduced in package
3 Note that according to the UML specification, ActivityGroups “have no inherent

semantics” and are therefore not used in our examples.
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BasicActivities, together with concepts like InitialNode (which produces
a token when the Activity starts) and ActivityFinalNode (which consumes
tokens). Therefore, the next example model will consist of a sequence of two
Actions, connected by an ActivityEdge, with an according trace consisting of
the execution of the two Actions in the according order. We skip that example
model and proceed to a more complex one in the next section.

3.2 A More Complex Example

Let us now turn to a (slightly) more complex example model, which is depicted
as Fig. 6. Its purpose is to demonstrate the semantics of the DecisionNode and
MergeNode.

Decision and Merge

A

B

C

Fig. 6. Example Activity containing a simple DecisionNode/MergeNode structure

This example is interesting because of the fact that it allows for more than
one possible execution: a token flowing through the Activity will—as soon as
it has passed Action “A”—be routed either to Action “B” or to Action “C”.
Therefore, we will describe the model’s behavior by two traces of execution
events:

ActionExecutes(“A”) ActionExecutes(“B”)

and
ActionExecutes(“A”) ActionExecutes(“C”)

We decided to reduce the semantics of Activities to the possible orders of ex-
ecution of Actions, since the Actions are the places where the actual work
will be performed. However, it would also be possible to use more fine-grained
traces like InitialNode() ActionExecutes(“A”) DecisionNode() ActionExecutes(“B”)
MergeNode() ActivityFinalNode().

In fact, some execution events (e.g., when a token traverses an edge) might
become important only when investigating more complex examples at a later
stage. If this is the case, an additional event can (and should) of course be used
to describe the complex model’s behavior. Note that this does not render the
traces of the simpler examples useless: if such an execution event does occur in a
simpler model, too, but has not been used to describe that model’s behavior, it
is not important for that behavior; otherwise, it would have been added to the
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traces of the simpler model when its behavior was investigated. In other words:
there is no need to refine the traces of a simple model at a later stage.

3.3 Guidelines for Creating Example Models

We have seen how to systematically create example models, and how to pre-
cisely but informally describe their behavior. Before we continue with the actual
semantics specification and derivation of test cases from the examples, we will
outline a few more guidelines for the creation of the examples.

Existing Examples: In the UML scenario, the starting point for semantics spec-
ification is the existing but informal specification provided by the OMG. That
specification already contains many example models, which should be reused for
two reasons: first, these models have been developed by the UML creators and
are therefore expected to be relevant. Second, the examples are well-known to
other users of the UML; these users—if in doubt about the precise meaning of
one of the examples—can use our traces of execution events as a reference.

Difficult Semantics: Some language element’s semantics will probably be more
difficult to understand than other’s, most likely leading to a more difficult to im-
plement semantics specification (leading to a higher probability of introducing
flaws into the semantics specification). Such elements will probably be identi-
fied when discussing their precise meaning. In this case, more example models
containing these elements should be created, and each of these examples should
concentrate on one or more of the identified difficulties.

Language creation: In the DSL scenario, a new language has to be created from
scratch, having certain target users in mind (e.g., business analysts). Creation
of the new language should involve these users, and the easiest way to do this
is through the discussion of example models, including their precise meanings.
In other words: the example models should be created in parallel with the ac-
tual language. The examples can later be reused for documentation of the new
language.

4 Creating the Semantics Specification and Deriving Test
Cases

We have already argued in Sect. 3 that formal semantics specification is a dif-
ficult task. Therefore, we have described how to first gain an understanding of
the semantics to be created by investigating example models, and by precisely
describing the example’s behavior by means of traces of execution events. In
this section, we will perform the actual semantics specification, and we will test
that specification using the example models and their behavior. As formalism,
we will use DMM as briefly introduced in Sect. 2. The overall process is depicted
as Fig. 7.
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Fig. 7. Specify semantics, create test cases from example models

4.1 Creating the Semantics Specification

Recall from Sect. 2 that DMM uses operational rules to describe behavior: a
DMM rule has a precondition and a postcondition, formulated in terms of typed
graphs. If a state fulfills the precondition (i.e., if the precondition’s graph can
be found within the current state graph), the rule will be applied, leading to a
new state which fulfills the postcondition (i.e., the precondition’s graph will be
replaced by the postcondition’s graph within the current state, leading to a new
state).

This means that in principle, one ore more DMM rules have to be defined for
each language construct. Naturally, one starts with defining DMM rules for the
more simple language constructs and adds rules for more complex constructs
step by step. Now, the idea is that as soon as all language constructs a partic-
ular example model consists of are covered, that example is executable, and its
execution should result in a behavior similar to the one identified when creating
the example (and described by traces of execution events).

In other words: the example model and the current state of the semantics
specification should give rise to a transition system, and that transition system
should contain the traces of execution events (and only those traces). This puts
a requirement on the DMM specification we are creating: in Sect. 2, we have seen
that the transition systems produced by a DMM specification and a model can
be model checked against CTL expressions about the application of DMM rules.
Since we want to check the transition systems for traces of execution events, we
must make sure that for each such event, a corresponding DMM rule exists.

Note that this is not a restriction, but a benefit of our approach: one of the
goals of creating a formal semantics specification is to check the behavioral qual-
ity of models, i.e., to check whether certain behavioral properties hold for the
model under consideration. These properties need to be expressed in terms of ex-
ecution events. To put it another way: our approach makes sure that the resulting
semantics specification indeed allows for the verification of such properties.
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4.2 Translating Traces into CTL Formulas

But how to convert the traces of execution events into properties which can be
checked against a transition system? This is in fact quite simple; let us demon-
strate our approach using the more complex example introduced in Sect. 3.2.
The trace

ActionExecutes(“A”) ActionExecutes(“B”)

can also be read as follows: the transition system representing the model’s be-
havior must contain a trace where at some point in time, Action “A” must be
executed. From that point on, there must be a “subtrace” such that Action “B”
is executed at some point in time. Using the temporal logic dialect CTL [12],
this is quite easy to express: The CTL formula

EF(r)

expresses the fact that there must Exist a path such that Finally4, property r
holds. Since we model check against the application of DMM rules, r will be a
such a rule (and reveals information about the state the rule is applied to: it
must be the case that the precondition of r holds for that state).

Now, our DMM specification will contain a rule action.start(action.name), cor-
responding to the execution event ActionExecutes(name) as described earlier.
Therefore, the trace shown above can be translated into the following CTL for-
mula, which can then be checked against the transition system:

p1 := EF(action.start(“A”) ∧ EF(action.start(“B”)))

Checking that the CTL formula is true with respect to our transition system
ensures that it indeed contains the trace as desired. There is one remaining
problem, though: Up to now, we only know that there are traces such that
Actions “A” and “B” are executed, but we do not know what happens before
“A”, between “A” and “B”, and after “B”.

To make our CTL formula more precise with respect to that problem, we have
to dive deeper into CTL: we have to make use of the Until operator, the neXt
operator, and the All quantifier. To explain the new formula, we first define
some helper constructs.

First, to be able to use a more compact representation, we will write ac-
tion.start(“A”) as aA (aB, aC accordingly). Now, let R = {aA, aB, aC} be the
set of all rules corresponding to execution events relevant for the model under
consideration. Finally, we define the predicate R̂ as ∧r∈R(¬r).

We will now construct the formula step by step. The first part looks as follows:

P1 := E(R̂ UXA)

The intuition is that we want to find the first occurrence of rule aA on some
path; therefore, we require that none of the rules contained in R occurs Until
aA occurs (which will be part of XA). The definition of XA reads as

XA := aA ∧ EXE(R̂UXB)
4 “Finally” must be understood as “at some point in time” here.
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This is the most important part of the formula to construct. The idea is that
since we have found the first occurrence of aA, we want to make sure eventually
in the future XB will hold, and before that, now other rules out of R will occur.
Note that the EX is needed since we have to look at the next state, because in
the current state, aA holds, so R̂ can never be true. Now for XB:

XB := aB ∧ AXAG(R̂)

This formula completes our definition of P1. It expresses the fact that after aB

has occurred, no other rule from R will ever occur again on all paths.
All together, P1 expresses exactly the desired property of our transition sys-

tem: it is true iff the transition system contains a trace such that aA and aB

occur in the desired order, and there are no other occurrences of rules from R
at other places. Additionally, it is easy to see that the above construction can
be extended to traces of arbitrary length by using several expressions similar to
XA, where aA is replaced by the rule to be checked, and by nesting them as
above.

4.3 Creating Test Cases

In the last section, we have seen how to translate a trace of execution events into
a CTL formula, which can then be model checked against the transition system.
It is now straight-forward to create a test case from a model and a set of such
traces.

First, all the traces belonging to the example model under consideration have
to be translated into CTL formulas as explained above. In the case of our more
complex UML Activity, this will result in two CTL formulas P1 and P2 (we have
seen P1 in the last section). Then, a model checker can be used to verify if all
these properties hold. If this is the case, we know that the expected behavior is
contained within the transition system; this means that our semantics specifica-
tion so far produces the behavior as desired. Otherwise, we know which trace of
execution events is not contained in the resulting behavior, and we can use that
information to fix the semantics specification.

It remains to show whether this is the only behavior produced by our se-
mantics specification: there might be other traces which do not fulfill P1 or P2,
i.e., some undesired behavior is going on. Therefore, we check one more prop-
erty which ensures that the transition system indeed only contains the desired
behavior:

AF(P1 ∨ P2)

The above formula holds iff for all traces through the transition system, either
P1 or P2 hold. Its verification will fail if the transition system contains undesired
behavior. In this case, the model checker will provide a counter example, i.e.,
a trace which does not belong to the expected ones. That counter example can
then be used to fix the semantics specification.
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4.4 Automatic Execution of Test Cases

To support the creation of DMM semantics specifications, we have implemented a
Java framework which enables the automatic execution of test cases as described
above. For this, we have used JUnit, which provides convenient ways to execute
our test cases, including a GUI showing which tests passed or failed for which
reasons. An execution of a test case works as follows:

First, the example model under consideration is translated into a GROOVE
graph, which serves as the start state for the transition system to be computed.
Next, the traces of execution events are translated into CTL formulas as de-
scribed in Sect. 4.2; the traces themselves are (for now) contained in a simple
text file. Then, the generation of the transition system is started, using the cur-
rent state of the DMM specification to be built. Finally, the CTL formulas are
verified one by one; if a verification fails, the according JUnit test will fail, pro-
viding a message which points at the trace not being contained in the transition
system.

4.5 Generalizing the Approach

We have proposed in Sect. 1 that our approach can be used for every semantics
specification which gives rise to transition systems on which the occurrence of
execution events can be model checked. In Sect. 4.2, we have seen how this works
for DMM specifications, where the execution events correspond to DMM rules
whose application can indeed be model checked.

It is now straight-forward to generalize our approach to other semantics spec-
ification techniques: for each execution event e, a property p has to be defined
such that if p holds for a state s, that state corresponds to the occurrence of the
according event e. The property p can then be used within the CTL formulas,
just as we did with the corresponding DMM rule. The construction of the CTL
formulas as well as the execution of the test cases does not change.

5 Related Work

The existing work related to our approach of test-driven semantics specification
can mainly be grouped into two categories: related test approaches and language
engineering. For the former, a comparable approach is the so-called scenario-
based testing. Xuandong et.al. [13] use UML Sequence diagrams to validate Java
programs for safety consistency (sequences of method calls which must not occur
during execution) and mandatory consistency (sequences of methods calls which
have to occur). The main difference to our approach is that scenario-based testing
focuses on testing a concrete object-oriented system, i.e., the communication
between some objects, whereas we are testing semantics specifications describing
the behavior of a complete language.

In the area of language engineering, several approaches for defining DSLs exist.
For instance, MetaCase provides MetaEdit [14], Microsoft provides the DSL
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Tools as part of MS Visual Studio [15], and the Eclipse foundation provides the
Graphical ModelingFramework [9]; all these approaches aim at an easy creation
of visual languages. openArchitectureWare [16] provides a set of tools which allow
for the easy creation of textual languages, including powerful editor support.

To our knowledge, all the above approaches focus on defining a DSL’s behav-
ioral semantics by providing support for code generation, but they do not provide
a means to systematically create high-quality code generators; the generation is
pretty much done ad-hoc.

The same holds for other semantics specification techniques which can be
used in language engineering, e.g., the π calculus [17], Structural Operational
Semantics [6], and others – we are not aware of a comparable test-driven process
which helps to create high-quality semantics specifications.

6 Conclusion

In this paper, we have shown a test-driven semantics specification process which
helps the language engineer to create high-quality semantics specifications. Our
process is divided into two phases: in the first phase, the semantics of the lan-
guage under consideration is discussed using example models, and the supposed
behavior is described precisely as traces of execution events.

The actual semantics specification is performed in the second phase, where the
example models serve as test cases: the traces of execution events are formalized
using CTL and then model checked against the transition systems resulting from
the example models and the language’s semantics specification.

Test-driven software development has a positive impact on the quality of
software systems in several ways: for instance, when implementing new features,
resulting regressions can be identified by executing tests of the old code; there is
also some evidence that the test-driven approach leads to cleaner interfaces and
helps the developer to focus on the functionality to be implemented; last, but
not least, the developer has confidence that the resulting code at least works for
the existing test cases [8].

We believe that our approach transfers these benefits of test-driven software
development into the world of semantics specifications, resulting in specifications
of higher quality. Additionally, in the DSL scenario, the resulting test cases can
be used not only for testing, but also for discussions with the customer and for
documentation purposes.

The description of a model’s behavior as traces of execution events has one
drawback, though: such traces might be quite redundant. For instance, consider
the UML Activity shown as Fig. 6: if Action “A” would be replaced by a se-
quence of 10 Actions, the resulting traces would be much longer, and they would
only differ in the very last Action execution. Therefore, we plan to investigate
more compact representations of the example model’s behavior.
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Abstract. Including semantic information in models helps to expose
modeling errors early in the design process, engage a designer in a deeper
understanding of the model, and standardize concepts and terminology
across a development team. It is impractical, however, for model builders
to manually annotate every modeling element with semantic properties.
This paper demonstrates a correct, scalable and automated method to
infer semantic properties using lattice-based ontologies, given relatively
few manual annotations. Semantic concepts and their relationships are
formalized as a lattice, and relationships within and between components
are expressed as a set of constraints and acceptance criteria relative to
the lattice. Our inference engine automatically infers properties wher-
ever they are not explicitly specified. Our implementation leverages the
infrastructure in the Ptolemy II type system to get efficient and scalable
inference and consistency checking. We demonstrate the approach on a
non-trivial Ptolemy II model of an adaptive cruise control system.

1 Introduction

Model-integrated development for embedded systems [1,2] commonly uses actor-
oriented software component models [3,4]. In such models, software components
(called actors) execute concurrently and communicate by sending messages via
interconnected ports. Examples that support such designs include Simulink, from
MathWorks, LabVIEW, from National Instruments, SystemC, component and
activity diagrams in SysML and UML 2 [5,6,7], and a number of research tools
such as ModHel’X [8], TDL [9], HetSC [10], ForSyDe [11], Metropolis [12], and
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Fig. 1. Models using an Integrator, where (a) labels connections and (b) labels ports

Ptolemy II [13]. The techniques of this paper can also be extended for equational
models such as Modelica [14].

The goal of this paper is to improve model engineering techniques by providing
semantic annotations. Semantic annotations help in several ways. First, if we can
check consistency across such annotations, then they expose modeling errors
early in the design process. This is similar to the benefits provided by a good
type system. Second, they engage a designer in a deeper understanding of the
model. Third, they help standardize semantic information across a development
team. This can help prevent misunderstandings. Annotations can be provided
manually by the designer or inferred by a tool. A model may have multiple sets
of annotations, each specific to a particular use case domain.

To illustrate the key idea, consider a simple modeling component commonly
used in a language such as Simulink for control system design, an Integrator.
Such a component might be represented graphically as shown in Figure 1. The
inputs and outputs of this component are represented as ports, depicted as small
black triangles, with the input port pointing in to the component and the output
port pointing out. These ports mediate communication between components.
Components are composed by interconnecting their ports, and our goal is to
ensure that such composition is consistent with the designer’s intent.

The Integrator component has some particular properties that constrain its
use. First, its input and output ports receive and send continuous-time signals,
approximated in a software system by samples. Second, the samples will have
data type double. Third, if the input represents the speed of a vehicle, then
the output represents the position of the vehicle from some starting point; if
the input represents acceleration, then the output represents speed. Fourth, the
output value may vary over time even if the input does not.

A conventional type system can check for correct usage with respect to the
second property, the data type of the ports. Such a type system can check for
incompatible connections, and also infer types that may be implied by the con-
straints of the components. A behavioral type system can check for correct usage
with respect to the first property, the structure of the signals communicated be-
tween components [15]. The purpose of this paper is to give a configurable and
extensible mechanism for performing checks and inference with respect to prop-
erties like the third and fourth.

We refer to the third and fourth properties as semantic types, or more
informally as properties. Properties in a model will typically be rather domain
specific. The fact that a model operates on signals representing “speed” and
“acceleration” is a consequence of the application domain for which the model is
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built. Thus, unlike type systems, in our case it is essential for the model builders
to be able to construct their own domain-specific property system. Our goal
is to provide a framework for doing that without requiring that application
designers understand the nuances of type theories.

An even more essential goal is that our system be sound, correct, and scalable.
This will be our primary goal. Making it easy to construct and use such a
property system is a secondary goal, equally important to the success of the
technique, but useless without the primary goal. To accomplish the primary goal,
we build on the theory of Hindley-Milner type systems [16], the efficient inference
algorithm of Rehof and Mogensen [17], the implementation of this algorithm in
Ptolemy II [18], and the application of similar mathematical foundations to
formal concept analysis [19].

The paper is organized as follows: we introduce first the concept lattice data
structure and review some of its useful properties. Section 3 then gives an
overview of the mathematical foundation of our property system as a fixed point
of a monotonic function. Section 4 shows how the monotonic function can be
defined implicitly by a set of composable constraints associated with model com-
ponents. We then give an in-depth application in Section 5, an adaptive cruise
control model. Finally, we briefly describe the software architecture of our im-
plementation in Section 6 and discuss related work in Section 7.

2 Concept Lattice

In a Hindley-Milner type system, data types are elements of a complete lattice, an
example of which is illustrated in Figure 2. In that diagram, each node represents
a data type, and the arrows between them represent an ordering relation. In type
systems this relation can be interpreted as an “is a” relation or as a “lossless
convertability” relation. For example, an Int can be converted losslessly to a
Long or a Double, but a Long cannot be converted to a Double nor vice versa.

A complete lattice is a set P and a binary relation ≤ satisfying certain
properties. Specifically, the relation is a partial order relation, meaning it is
reflexive (∀ p ∈ P, p ≤ p), antisymmetric (∀ p1, p2 ∈ P, p1 ≤ p2 and p2 ≤
p1 ⇒ p1 = p2), and transitive (∀ p1, p2, p3 ∈ P, p1 ≤ p2 and p2 ≤ p3 ⇒ p1 ≤ p3).
A lattice also requires that any two elements p1, p2 ∈ P have a unique least upper
bound (called the join and written p1 ∨ p2) and a greatest lower bound (called
the meet and written p1 ∧ p2). To be a complete lattice we further require that
every subset of P has a join and a meet in P . Every complete lattice has a top
element and a bottom element. The top element is typically written as � and
the bottom element ⊥. A concept lattice is a complete lattice.

3 Property Systems

A property system consists of a concept lattice, a collection of constraints
associated with modeling components, and a collection of acceptance criteria.
The type lattice of Figure 2 is an example of a concept lattice, as are figures 3
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Fig. 2. A type lattice modeling a simpli-
fied version of the Ptolemy II type system

Fig. 3. A property lattice modeling sig-
nal dynamics

Fig. 4. A lattice ontology for dimen-
sions Time, Position, Speed, Accelera-
tion, and Unitless (dimensionless)

and 4. We will illustrate how to use the dimension concept lattice (Figure 4) to
check for correct usage of an Integrator component as discussed above.

Consider a very simple model with three components as shown in Figure 1(a).
Component C provides samples of a continuous-time signal to the integrator,
which performs numerical integration and provides samples of a continuous sig-
nal to component B. Suppose that we associate the input x of the Integrator
with a concept px in the concept lattice L. We say that the input of the Integra-
tor “has property” px. We wish to catch errors, where, for example, component
C sends position information to the Integrator, and component B expects speed
information. This is incorrect because position is the integral of speed, not the
other way around. We can construct a property system that systematically iden-
tifies such errors.

The concept lattice for this property system is shown in Figure 4. To complete
the property system, we need to encode the constraints imposed by the integra-
tor. To do this, we leverage mathematical properties of a complete lattice.

Suppose we have a model that has n model elements with properties. In
Figure 1(a), we have two such elements, x and y, and their properties are
(px, py) ∈ L2, where L is the concept lattice of Figure 4. A property system
for this model defines a monotonic function F : L2 → L2 mapping pairs of
properties to pairs of properties. Monotonic means that

(px, py) ≤ (p′x, p′y) ⇒ F (px, py) ≤ F (p′x, p′y).
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A fixed point of such a function is a pair (p1, p2) where (p1, p2) = F (p1, p2).
The theory of lattices tells us that any such function has a unique least fixed
point that can be found iteratively as follows

(p1, p2) = lim
n→∞ Fn(⊥, ⊥). (1)

We define the inferred properties of a model to be this least fixed point. The
least fixed point associates with each model element a property in the lattice,
which is the inferred property for that model element. If the lattice is finite, the
above induction terminates in a finite number of steps.

Even for the simple Integrator example above, defining the function F is
rather tedious (we explain below that it can be defined implicitly in an elegant
and modular way). To reflect the constraints of the integrator, the function is

F (px, py) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(�, �) if px = � or py = �
(px ∨ A, py ∨ S) else if px = A or py = S
(px ∨ S, py ∨ P ) else if px = S or py = P
(px ∨ U, py ∨ T ) else if px = U or py = T
(px ∨ py, px ∨ py) otherwise

(2)

where L = {⊥, T, P, S, A, U, �} are the elements of the lattice in Figure 4.
The least fixed point of this function is (px, py) = (⊥, ⊥), found in one step

by (1), which we interpret to mean that we do not have enough information to
draw conclusions about the properties associated with x and y.

Suppose that component B is known to read data at its input that is inter-
preted as Speed. Then the function F simplifies to

F (px, py) =
{

(�, �) if px = � or py = �
(px ∨ A, S) otherwise.

In this case, the least fixed point is (px, py) = (A, S). The fact that x has property
Acceleration is inferred.

Suppose further that component C is known to provide data at its output that
is interpreted as Position. We can encode that fact together with the previous
assumptions with the function:

F (px, py) = (�, �)

which has least fixed point (px, py) = (�, �), which we can interpret as a model-
ing error. Of course, we don’t want model builders to directly give the function
F . We will show below how it is inferred from constraints on the components.

We are closer to being able to formally define a property system. A property
system for n modeling elements is a concept lattice P , a monotonic function
F : Pn → Pn, and a collection of acceptance criteria that define whether the
least fixed point yields an acceptable set of properties. We next show how the
monotonic function F can be implicitly defined in a modular way by giving
constraints associated with the components.
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4 Property Constraints and Acceptance Criteria

Rehof and Mogensen [17] give a modular and compositional way to implicitly
define a class of monotonic functions F on a lattice and an efficient algorithm
for finding the least fixed point of this function. The algorithm has been shown
to be scalable to very large number of constraints, and is widely used in type
systems, including that of Ptolemy II, which we leverage. Specifically, for a fixed
concept lattice L, this algorithm has a computational upper bound that scales
linearly with the number of inequality constraints, which is proportional to the
number of model components, or the model size.

First, assume model element x (such as a port) has property px ∈ L, and
model element y has property py ∈ L. For any two such properties px, py ∈ L,
define an inequality constraint to be an inequality of the form

px ≤ py. (3)

Such an inequality constrains the property value of Y to be higher than or equal
to the property value of X, according to the ordering in the lattice. An arbi-
trary collection of inequality constraints implicitly defines a monotonic function
F : Ln → Ln that yields the least (p1, · · · , pn) that satisfies the inequality con-
straints for modeling elements 1 through n. Of course, two inequality constraints
can be combined to form an equality constraint,

px ≤ py and py ≤ px ⇒ px = py (4)

because the order relation is antisymmetric.
In Figure 1(a), we implicitly assumed an equality constraint for the output

of C and the input of the Integrator. We could equally well have assumed that
each port was a distinct model element, as shown in Figure 1(b), and imposed
inequality constraints pw ≤ px and py ≤ pz. These constraints are implied by
each connection between ports. Our tool permits either interpretation for the
port connections, equality or inequality constraints.

Rehof and Mogensen also permit constraints that we call monotonic func-
tion constraints, which have the form

f(p1, · · · , pn) ≤ px (5)

where p1, · · · , pn and px represent the properties of arbitrary model elements,
and f : Pn → P is a monotonic function whose definition as a function of the
property variables p1, · · · , pn is part of the definition of the constraint. Notice
that this function does not have the same structure as the function F above. Its
domain and range are not necessarily the same, so it need not have a fixed point.
An example of such a monotonic function is a constant function, for example

fs(p1, · · · , pn) = S

where S represents Speed. Hence, to express that component B in Figure 1(b)
assumes its input is Speed, we simply assert the constraint

fs(p1, · · · , pn) ≤ pz ,
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which of course just means
S ≤ pz . (6)

However, this does not quite assert that pz = S. Indeed, that assertion would
require an inequality different from (5) that is not permitted by Rehof and
Mogensen’s algorithm. Hence, to complete the specification, we can specify ac-
ceptance criteria of the form

pi ≤ l (7)

where l ∈ L is a particular constant and pi is a variable representing the property
held by the ith model element. For example, we can give the acceptance criterion

pz ≤ S , (8)

which when combined with (6), means pz = S, or z is Speed. We can also declare
an acceptance criterion that for each model element i with property pi,

pi < � , (9)

which means that � is not an acceptable answer for any property.
Acceptance criteria do not become part of the definition of the monotonic

function F , and hence have no effect on the determination of the least fixed
point. Once the least fixed point is found, the acceptance criteria are checked.
If any one of them is violated, then we can conclude that there is no fixed point
that satisfies all the constraints and acceptance criteria. We declare this situation
to be a modeling error.

Constraints of the Integrator include one given in the form of (5) as

fI(pz) ≤ px where fI(pz) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊥ if pz = ⊥
S if pz = P
A if pz = S
U if pz = T
� otherwise

(10)

This constraint is a property of the Integrator and is used together with other
constraints to implicitly define the monotonic function F . The constraint (10) is
more intuitive than (2) because it directly describes constraints of the Integrator
component, and more modular because it only describes a constraint of the
Integrator. The complete constraints for the Integrator is shown in Table 1.

To see how this works in Figure 1(b), suppose we assume constraints (6)
and (10). Together, these imply that A ≤ px. Our inference engine finds the
least fixed point to be pw = px = A and py = pz = S. This solution meets
the acceptance criterion in (8). We leave it as an exercise for the reader to
determine that if instead of (6) we require A ≤ pz, then the least fixed point
is pw = px = py = pz = �, which fails to meet acceptance criterion (9). This
would be a modeling error because the output of the Integrator cannot represent
Acceleration in our ontology.

In summary, a property system is a concept lattice, a set of constraints in
the form of (3) or (5), and a set of acceptance criteria in the form of (7). The
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constraints come from component definitions, an interpretation for connections
between components, and annotations made on the model by the model builder.

5 Adaptive Cruise Control Example

We now give a detailed example showing how this mechanism can be used in
practical models. Consider an adaptive cruise control system that detects slower
vehicles in front of a following vehicle and adjusts the speed of the following
vehicle accordingly. Adaptive cruise control requires some form of inter-vehicle
coordination, which can be implemented with a radar transmitter/receiver in
the following vehicle [20]. The system must tolerate faults in coordination, such
as sensor misalignment or erroneous power supply voltage for radar transceivers.

A model of such a system is shown in Figure 5 (inspired by Ptolemy II demo
created by Jie Liu). In that (oversimplified) example, a leading car transmits via
some channel a packet that consists of a time stamp and its current acceleration,
speed, and position. A following car will use that information to adjust its speed,
but only if it trusts the information it is receiving. To determine whether it trusts
that information, it checks the information against a simple model of the leading
car. Specifically, if a packet indicates a certain position and speed at a particular
time, then when it gets a new packet, it performs a simple sanity check to see
whether the new position makes sense, given the previous position and speed. If
it does, then it trusts the packet.

The model composes submodels, and our task will be to show that our on-
tology framework can detect errors in such composition, and thus help ensure
correctness of the model. Our framework can also help transform or optimize
models by enabling transformations that are based on semantic annotations.

The component on the far left of Figure 5 is a model of a driver, the internals
of which are not shown. The driver submodel feeds data to a car model (labeled
Leading Car Model), the internals of which are shown in Figure 6. This models

Fig. 5. Top level of an actor-oriented model of an adaptive cruise control system
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Fig. 6. A model of a car that accepts a desired speed and matches it using a feedback
control loop. This model has three parameters, the initial position, the initial speed,
and the time constant of the control loop.

Fig. 7. A model of a wireless network that passes inputs to outputs unchanged in
normal operation, but replaces an input with an arbitrary constant upon faults

the dynamics of the leading car. Specifically, given an input desired speed, it
accelerates to achieve that speed using a control loop with a specified time
constant. It uses an Integrator component to convert acceleration to speed, and
another Integrator to convert speed to position. The output is the acceleration,
speed, and position as a function of time. These data are then sampled and
transmitted over a wireless network, as shown in the middle of Figure 5.

Given a suitable ontology, our framework can infer that if the input to the
Leading Car Model is a Speed, then its outputs are Acceleration, Speed, and
Position, respectively. Moreover, our ontology system can be used to check that
the Following Car model uses the position as a Position, not as a Speed, and
vice versa. Many possible design errors can be caught by such models.

The wireless network submodel is shown in Figure 7. This is a modal model
with two modes of operation, normal and faulty. In the normal mode, inputs are
passed directly to the outputs. In the faulty mode, one of the inputs is replaced
with an arbitrary constant (−10 in this simple example).

The model of the following car is shown in Figure 8, where a Fault Detector
component performs the above mentioned sanity check, and uses the result to



402 M.-K. Leung et al.

Fig. 8. A model of a following car with a simple fault detection algorithm and fault
adaptation policy

control another modal model. The details of this modal model are not shown, but
like that of Figure 7, it has two modes, normal and faulty. In the normal mode,
its output is equal to the input speed, and in the faulty mode its output is zero.
Thus, the policy of this particular cruise control algorithm is for the following car
to stop if it does not trust the data coming from the leading car, thus returning
control to the driver. The output of the modal model is a desired speed, which is
converted to a continuous-time signal by the ZeroOrderHold component, which
then feeds it into another car model like that shown in Figure 6, which simulates
the dynamics of the following car.

To perform property inference and checking for the adaptive cruise control
example, we need a collection of constraints for components in the model, an
illustrative subset of which are shown in Table 1. These constraints form part of a
property system that can be reused in a variety of models. In addition, we added
constraints and acceptance criteria that are specific to this model. Once these
are specified, we can run our property inference tool on the model. A portion of
the result of such a run is shown in Figure 9, where the inferred properties of
ports and parameters are highlighted by the tool in a color matching that of the
concept lattice elements in Figure 4. The inferred properties are also shown in
text next to each port.

In Figure 9, there is exactly one constraint specified by the model builder,
which is that the timeConstraint parameter has a property greater than or equal
to Time. The input to this model resolves to Speed because we have specified
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Table 1. Some of the constraints for components used in the Cruise Control example

Component Elements Constraints Where
CurrentTime output y T ≤ py

py ≤ T

Add/Subtract plus x,
minus y,
output z

py ∨ pz ≤ px

px ∨ pz ≤ py

px ∨ py ≤ pz

Integrator input x,
initialState y,
output z

fI(pz) ≤ px

fO(px) ≤ pz

py ≤ pz

pz ≤ py

fI(pz) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊥ if pz = ⊥
S if pz = P
A if pz = S
U if pz = T
� otherwise

fO(px) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊥ if px = ⊥
P if px = S
S if px = A
T if px = U
� otherwise

Divide multiply x,
divide y,
output z

fD(px, py) ≤ pz fD(px, py) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if px = ⊥ or py = ⊥
A if px = S and py = T
S if px = P and py = T
T if px = P and py = S
T if px = S and py = A
U if px = py

px if py = U
� otherwise

Scale input x,
factor y,
output z

fS(px, py) ≤ pz fS(px, py) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if px = ⊥ or py = ⊥
S if px = A and py = T , or

px = S and py = U
P if px = S and py = T , or

px = P and py = U
py if px = U
px if py = U
� otherwise

Fig. 9. Car model of figure 6 with properties resolved

similar constraints upstream in the driver model (not shown). Everything else
resolves to Time, Acceleration, Speed, or Position as a consequence of the compo-
nent constraints in Table 1 and the constraints implied by connections between
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components. Such a visual display of the inferred properties makes it easy to
identify inconsistencies in the model, if there are any. Our model has none.

A property system is domain specific. We can construct multiple property sys-
tems, and even use them within the same model. Another example of a concept
lattice is given in Figure 3. We interpret the property Const, when associated
with a port, to mean that the value of data on that port is constant throughout
the execution of the model. The property Nonconst means that the value may
change during execution. We have applied this property system to analyzing the
same cruise control example, and find that it successfully identifies portions of
the model where messages between components have a constant value. This can
be used to optimize the model automatically, or, more interestingly, to manage
multiple models that represent product families. Specifically, variants of a model
may result in different parts of the model being constant due to different pa-
rameterizations, which enables optimization of particular variants of the model
without losing the generality of the master product family model.

6 Software Architecture

Our tool is an extension of the Ptolemy II type system that enables the definition
of a concept lattice and the specification of constraints and acceptance criteria.
The lowest level of the tool is a set of Java base classes for defining the lattice,
constraints, and acceptance criteria. We have provided as well a set of model
elements that can be incorporated with a Ptolemy II model that associate all of
these objects with the model. Thus, a model designer can browse from a library
of preconfigured property systems, and choose to use those that are useful.

Defining a property system requires a fair amount of work. A property sys-
tem can be specific to a particular model, or it can be provided in a library of
property systems for use with multiple models. Constraints that are specific to
a particular model element, like the Integrator above, need to be part of the
property system. We have developed an adapter pattern that facilitates asso-
ciating constraints with preexisting components in a library. A key concern is
that specifying constraints for model elements requires considerable expertise.
We are exploring visual specifications of the concept lattice and constraints in
order to improve usability. Another key concern is to be able to define reason-
able default constraints that apply to modeling elements that are added after
the property system is defined.

We provide a few generic mechanisms that make it easier to define property
systems for complex models. For example, many models have modal behavior,
as illustrated in Figure 7. A modal model is a finite state machine (FSM) where
each state may contain refinement models. The public interface (e.g. ports and
parameters) of the modal model is shared across its refinement models. Each
refinement defines the behavior of the modal model component when it is in
that mode. A reasonable default strategy is that the constraints of the modal
model should be the conjunction of the constraints of the refinements. While our
framework permits overriding this default, most model builders will likely find
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it to be exactly what they want. An interesting extension would be to combine
property analysis with model checking to get less conservative analysis.

Another generic mechanism we provide concerns arithmetic expressions.
Figure 8, for example, contains a component labeled “ Estimate Current Po-
sition,” which is an instance of the Ptolemy II Expression actor, whose behavior
is given by the expression shown in its icon. The constraints of Table 1 apply
equally well to nodes of the abstract syntax tree (AST) of such expressions as
to actors that add, subtract, multiply, or divide signal values. Hence, property
inference and checking works automatically across such expressions. Again, we
provide reasonable defaults for setting up the constraints, but the framework
supports fine-grained customization to allow easy experimentation.

7 Assessment and Related Work

Much work in formal concept analysis attempts to extract an ontology from a
set of object instances. It is more concerned with concept mining or clustering.
Our property analysis, on the other hand, infers concept values for model objects
based on a given ontology specification. Our focus, therefore, is on facilitating
correct modeling by providing better model engineering tools that, like type
systems, expose errors early in the design process and facilitate transformation.

Our work can also be viewed as providing a mechanism for incremental or
partial construction of a metamodel. A traditional metamodel is more complete
than our property systems need to be. A simple property system can be associ-
ated with a complex model and incrementally elaborated as the model evolves.

Our property systems are comparable to ontology modeling supported by
OWL-protègè and EMF. These tools provide a flexible set of primitives to model
complex ontologies. Like them, our lattice ontology description is based on the
principle of modeling concepts and relationships. OWL leverages description
logic for specifying relationship between classes of concepts. EMF specializes in
a subset of relationships borrowed from UML to provide useful features such as
model querying and model-to-text support. Our lattice ontology can be viewed
as a specialization that restricts ontologies to a lattice structure and constraints
to those compatible with efficient inference and checking. Our objectives are
also similar to [21], but our lattice foundation ensures unique inference results,
supports cyclic dependencies, and scales to large models.

There are a number of obvious extensions to this work. For example, our prop-
erty system with the lattice in Figure 4 stops short of checking units, although
limited forms of such checks are known to be possible [22]. Our ontology includes
concepts like “speed,” but not “meters per second” or “miles per hour.” An open
question is the extent to which our lattice ontology approach can be extended
to include units. Most unit analysis systems we are aware of check for consistent
use of units at run time, not at compile time. We are aware of three exceptions:
a static unit system in Ptolemy II created by Roland Johnson [unpublished],
the SIunits library [23], which uses C++ templates, and SCADE [24]. Brown’s
approach in [23] relies on the type checking of C++. However, the C++ type
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system in general does not conform with our lattice structure (witness multiple
inheritance), so such an approach may not yield unique solutions.

Schlick, et al. in [24] point out that unit checkers face a fundamental problem
with “ambiguous units” like work and torque, both of which are Newton-meters.
They suggest introducing “radial meters” to disambiguate the two, suggesting
that associating more general ontology information with units is useful. Their
mention of multiple disjoint uses of dimensionless numbers also reinforces this
need for more general ontology information.

Another interesting obvious extension is to support infinite concept lattices.
The Ptolemy II type system already does this, in order to support composite
types such as arrays and records. Inference in such systems is known to become
undecidable in general (witness dependent types), but practical heuristics lead
to very usable inference algorithms, at least for type systems. One key question
is whether such heuristics would work for domain-specific property systems. It is
also challenging to find or invent mechanisms for model builders to define infinite
lattices easily and specify constraints over them.

8 Conclusions

We have described a strategy for annotating models with semantic information
and automatically performing inference and consistency checking. Our mecha-
nism is scalable and customizable, and thus provides a foundation for research in
domain-specific model ontologies and model engineering. Its mathematical foun-
dation ensures that inference results are unique. A model builder can specify just
a few semantic annotations, and the implications of these annotations through-
out the model are automatically inferred. This will expose modeling errors early,
will help designers to better understand their models, and help design teams to
agree on interfaces between subsystems, on design concepts, and on terminology.
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Abstract. Domain-specific languages (DSLs) are high-level and should
provide abstractions and notations for better understanding and easier
modeling of applications of a special domain. Current shortcomings of
DSLs include learning curve and formal semantics. This paper reports
on a novel approach that allows the use of ontologies to describe DSLs.
The formal semantics of OWL together with reasoning services allow
for addressing constraint definition, progressive evaluation, suggestions,
and debugging. The approach integrates existing metamodels, concrete
syntaxes and a query language. A scenario in which domain models for
network devices are created illustrates the development environment.
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1 Introduction

Domain-specific languages (DSLs) are used to model and develop systems of ap-
plication domains. Such languages are high-level and should provide abstractions
and notations for better understanding and easier modeling of applications of a
special domain. A variety of different domain-specific languages and fragments
of their models are used to develop one large software system. Each domain-
specific language focuses on different problem domains and as far as possible on
automatic code generation [1].

There is an agreement about the challenges faced by current DSL ap-
proaches [2]: (challenge (1)) tooling (debuggers, testing engines), (challenge (2))
interoperability with other languages, (challenge (3)) formal semantics, (chal-
lenge (4)) learning curve and (challenge (5)) domain analysis.

Addressing these challenges is crucial for the success adoption of DSLs. For ex-
ample, improving tooling enhances user experience. The interoperability between
different languages plays an important role, because more than one language has
to be combined in the modeling of systems. Finally, formal semantics is the basis
for interoperability and formal domain analysis.
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Issues like interoperability and formal semantics motivated the development
of ontology languages. Formal semantics precisely describes the meaning of mod-
els, such that they do not remain open to different interpretations by different
persons (or machines). For example, Description Logics formalize the W3C stan-
dard Web Ontology Language (OWL) [3] and provides a language for ontologies.
Indeed, OWL, together with automated reasoning services, provides a powerful
solution for formally describing domain concepts in an extensible way, allowing
for precise specification of the semantics of domain concepts.

Taking into account that some of the main challenges of DSLs were motivation
for developing OWL, the following two questions arise naturally: which charac-
teristics of ontology technologies may help in addressing current DSL challenges?
What are the building blocks of a solution for applying ontology technologies in
DSLs?

Recent works have explored ontologies to address some DSL challenges. Tairas
et al. [4] apply ontologies in the early stages of domain analysis to identify domain
concepts (challenge (5)). Guizzard et al. [5] propose the usage of an upper ontol-
ogy to design and evaluate domain concepts (challenge (3)) whereas Bräuer and
Lochmann[6] propose an upper ontology for describing interoperability among
DSLs (challenge (2)). Nevertheless, the application of ontology languages and
ontology technologies to address the remaining challenges (1) and (4) as well as
a comprehensive integration is an open issue.

We present OntoDSL, an ontology-based framework for DSLs that allows for
defining DSLs enriched by formal class descriptions. It allows DSL users to check
the consistency of DSLs models and helps to verify and debug DSL models by
using reasoning explanation. Moreover, novice DSL users may rely on reasoning
services to suggest domain concepts according to the definition of the domain-
specific language.

1.1 Advantages

The pragmatic advantages of the ontology-based OntoDSL framework are pri-
marily the guidance of DSL designers and DSL users during the modeling pro-
cess, the support of incomplete knowledge of concepts a DSL provides and the
possibility of debugging domain models. Furthermore, OntoDSL provides DSL
users with suggestions during building domain models and progressive evalua-
tion of domain constraints. To get these and more advantages, OntoDSL provides
automated reasoning services that can be practically used by DSL designers and
DSL users.

The correctness of the domain-specific language in development is important
for DSL designers. Thus, they want to check the consistency of the developed
language, or they might exploit information about concept satisfiability, checking
if it is possible for a concept in the metamodel to have any instances.

If DSL users want to verify whether all restrictions and constraints imposed
by the DSL metamodel are observed, they can use a reasoning service to check
the consistency of domain models. It is important for a domain model, that its
elements have the most specific type. Thus, DSL users should be able to select a
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model element and call by pressing a button a reasoning service for dynamic clas-
sification. Dynamic classification allows for dynamically determining the classes
which model objects belongs to, based on object descriptions. Later this might
be useful, for example, to generate the most specific and complete source code
from it. Further, it might be interesting for DSL users to retrieve existing model
elements of a model repository by describing the concept in different possible
ways. Here, OntoDSL can support the reuse of elements with retrieval services.

1.2 Methodology

To help DSL designers to define languages compatible with the aforementioned
services, we create a new technical space (M3 metametamodel). The framework
with its own technical space is arranged according to the OMG’s layered ar-
chitecture depicted in Figure 1 and the roles of DSL user and DSL designer
are assigned to the different layers they are responsible for. The metametamodel
consists of the KM3 metamodel, the OWL2 metamodel and the OCL metamodel
(cf. section 4.2). KM3 is used to define the general structure of the language,
OWL2 is used to define its semantics, OCL is used to define operations for calling
the reasoning services.

To support the aforementioned reasoning services, we propose OWL to define
constraints and formal semantics of DSLs. OWL is formalized by Description
Logics, which provides the reasoning simultaneously on the M1-layer (model)
and M2-layer (metamodel). In order of possible ontology reasoning, the DSL
metamodel and domain model are transformed into a Description Logics knowl-
edge base (TBox and ABox).

In order to reduce the learning effort, OntoDSL allows for using the familiar
Java-like KM3 syntax to a very large extent. If DSL designers recognize that it is
not expressive enough they can benefit from an easy to implement OWL natural
style syntax to define semantics, constraints and restrictions (cf. section 4.3).

DSL users should not be confronted with the ontology technology. They only
have to call operations that automatically invoke the reasoning services. Only
DSL designers have contact with OWL, to define constraints and restrictions on
the DSL metamodel.

In the scope of this paper, a DSL framework is a model-driven underlying
structure to support the DSL development process and usage. Section 4 gives
more details about the OntoDSL framework.

We organize the remaining sections as follows: Section 2 describes the run-
ning example used through the paper and analyzes the DSL challenges to be
addressed with ontology technologies. Section 3 describes the state-of-the-art
in domain-specific languages with ontology technologies and discusses the us-
age of Description Logics to formally describe domain models. The OntoDSL
framework is described in section 4 by presenting its metametamodel, its im-
plementation and an example of using it. We revisit the running example in
section 5 and analyze related work in section 6. Section 7 finishes the paper.
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Fig. 1. DSL Designer and DSL User in the OMG’ four-layered architecture

2 Running Example

Comarch1, one of the industrial partners in the MOST project2 has provides the
running example used in this paper. It is a suitable simplification of the user
scenario being conducted within the MOST project.

Comarch is specialized in designing, implementing and integrating IT solu-
tions and services. For software development, Comarch uses model-driven meth-
ods where different kinds of domain-specific languages are deployed during the
modeling process.

Comarch uses a domain-specific language defined using MOF (metameta-
model at M3-layer) to model physical network devices. Using such a language,
Comarch DSL designers design a DSL to define device structures (e.g. all devices
from the Cisco 7600 family) at the M2-layer. Here, the goal of DSL designers
is to formally define the logical structures of devices and restrictions over these
structures (which leads to the below listed requirement (1)).

DSL users use DSLs defined by DSL designers to write DSL models that model
concrete physical devices (M1-layer). A framework that instructs and guides
DSL users during this process is desirable. For example, the consistency of DSL
models should be verified, domain concepts should be suggested to DSL users,
incomplete parts in the models should be detected and redundancies should be
removed [7].

Let us elaborate the following example: The general physical structure of a
Device consists of a Bay which has a number of Shelfs. A Shelf contains Slots
into which Cards can be plugged. Logically, a Shelf with its possible Slots and
Cards is stored as a Configuration.

Figure 2 depicts the development of a DSL model of physical devices by a
given DSL user. Firstly (step 1 ), the DSL user starts with an instance of the
general concept Device. A device requires at least one configuration. Thus he
plugs in a Configuration element into the device.

In step 2, the DSL user adds exactly three slots to the device model. At this
point, the DSL user wants to verify whether the configuration satisfies the DSL
1 http://www.comarch.com/
2 http://www.most-project.eu/

http://www.comarch.com/
http://www.most-project.eu/


412 T. Walter, F. Silva Parreiras, and S. Staab

restrictions, which is done, for example, by invoking a query against the current
physical device model (requirement (2)).

After adding three slots to the model of the physical device, the DSL user plugs
in some cards to complete the end product (step 3 ). Knowing which cards and
interfaces should be provided by the device, he may insert an SPA Interface Card
for 1-Gbps broadband connections, a Supervisor Engine 720 card for different IP
and security features and a controller for swapping cards at runtime (Hot Swap
Controller).

At this point, reasoning services are available for the DSL user by calling
operations that are provided by model elements in his DSL model. The calling
of operations in our OntoDSL is realized by right-clicking on model elements,
opening a context menu. This menu provides a list of the reasoning services that
can be directly executed in the context of the model element.

The DSL defines the knowledge of which special types of cards are provided
by a Configuration. Having further the information that its instance is connected
with three slots, the refinement of the Configuration type of the instance by the
more specific type Configuration7603 is recommended to the DSL user (require-
ment (3)) as result of activating the reasoning service. Moreover, the DSL user is
informed how this suggestion takes place and about restrictions related to such
a configuration. Here, debugging support is required (requirement (4)).

Since it has been inferred that the device has the Configuration7603, in step
4, the available reasoning service for the Device element infers that the device is
one of type Cisco7603. The necessary and sufficient condition to be a Cisco7603
are verified and achieved by reasoning services.

Steps 2a and 2b shows a second path in the scenario of modeling a physical
device where debugging comes into play. After creating elements for a device, a
configuration and slots, the DSL user plugs into one slot a HotSwappableOSM
card and into the remaining slots two SPAInterface cards (step 2a). Here, the DSL
user can invoke the debugging functionality provided by OntoDSL. It explains
that each configuration must have a slot in which a SuperVisor720 card is plugged
in. OntoDSL advises the type change of one of the SPAInterface elements to
SuperVisor720 (requirement (4)). Having a correct configuration, the DSL user
can continue with steps 3 and 4 as described above.

2.1 Requirements

Although the list of requirements for a DSL framework may be extensive, we
concentrate on those requirements derived from the running example and from
the challenges mentioned in section 1, mainly on challenges 1 and 4. The re-
quirements are classified by two actors: DSL designer and DSL user. At first we
present the ones for the DSL designer:

1. Constraint Definition (challenge (3)). The DSL development environment
should allow defining constraints over the DSL metamodel. DSL designers
have to define formal semantics of the DSL in development to describe con-
straints and restrictions the DSL models have to fulfill.
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Fig. 2. Modeling a physical device in four steps (M1 layer)

The following requirements we assign to the DSL user:

2. Progressive verification (challenges (1), (4)). Even with an incomplete
model, the DSL development environment must provide means by verify-
ing constraints. For example during the modeling phase in step 2a the DSL
user wants to debug his domain model in the aforementioned scenario, where
the inconsistency occurs after adding the two SPAInterface cards.

3. Suggestions of suitable domain concepts to be used (challenge (4)). The DSL
development framework should be able to dynamically classify the elements
of the DSL model according to class descriptions in the DSL metamodel. DSL
users normally start the modeling with general concepts, e.g. with Device or
Configuration in the aforementioned scenario. The framework suggests the
refinement of elements to the most suitable ones, e.g. to Configuration7603 or
Cisco7603 (step 3, 4 ). Further, such classifications together with explanation
help novice DSL users to understand how to use the DSL.

4. Debugging (reasoning explanation) (challenges (1), (4)). Debugging is a re-
quirement for the success of the DSL [8]. DSL users want to debug their
domain models to find errors inside them and to get an explanation how
to correct the model. They want to have information about consequences of
applying given domain constructs. In the scenario, DSL users want to know
that they have to replace an SPAInterface card with a Supervisor720 card
(step 2b).

5. Different ways of describing constructs (syntactic sugar) (challenge (4)).
DSL users are not always familiar with all specific concepts a DSL provides.



414 T. Walter, F. Silva Parreiras, and S. Staab

In the aforementioned scenario, for example, DSL users do not have the
complete knowledge of the Configuration7603. Thus, they use an alternative
way to describe an instance of this concept (step 2 and 3 ). Providing such
alternative ways of writing DSL models might improve productivity.

3 Domain-Specific Modeling and Ontologies

The DSL development process may be divided into the following phases [9]: de-
cision, analysis, design and implementation. Usually, ontologies can be employed
as a design time enhancement in the analysis and design phases and as runtime
enhancement. This section illustrates the suitability of ontologies for each of
these phases.

In the analysis phase, the problem domain is examined. Beside different do-
main analysis approaches (e.g. Feature Oriented Domain Analysis (FODA) or
others [9]) ontologies can be used in the early phases of the development during
the domain analysis. The process of ontology-based domain engineering [10] can
be used to develop a vocabulary for the specification of a domain that can be
translated into different formats for forthcoming phases. Existing ontologies may
also provide a starting point for domain analysis without the need to start from
scratch.

In the design phase, the domain model produced in the analysis phase is
used to define the metamodel of the DSL. MOF-like metametamodels usually
describe the metamodels. The semantics of MOF-based metamodels is limited
compared to the ones of ontologies, i.e., ontology languages are more expressive
than MOF-like technical spaces and provide a better support for reasoning than
MOF-based languages [11].

In the implementation phase, interpretation and compilation of the DSL are
addressed. Here, DSL compilers or interpreters may implement calls to reasoner
APIs to enable services like reasoning explanation, instance checking, consistency
checking and query answering.

To sum up, ontologies may be applied during different phases of the DSL
development process. Ontology-based approaches lead to formal domain-specific
models that may be exploited for a variety of services, from consistency check-
ing [12] to semi-automatic engineering and to explanations [13].

3.1 Ontologies as Conceptual Models

Among ontology languages, we highlight the W3C standard OWL. OWL actu-
ally stands for a family of languages with increasing expressiveness. OWL2, the
emerging new version of OWL, is more expressive and still allows for sound and
complete calculi that are decidable as well as pragmatically efficient.

The capability to describe classes in many different ways and to handle in-
complete knowledge distinguishes OWL from class-based modeling languages
like UML class diagrams, MOF and Ecore. These OWL features increase the
expressiveness of the metamodeling language, making OWL a suitable language
to formally define DSL metamodels.
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We use the running example to illustrate these features. In the following list,
we describe the knowledge base of the running example. The class Supervisor720
is a subclass of SupervisorCard (eq. 1). The class Card is a complete generalization
of HotSwappableOSM, SPAInterfaceProcessor and SupervisorCard (eq. 2).

Supervisor720 � SupervisorCard (1)
Card ≡ HotSwappableOSM � SPAInterfaceProcessor

�SupervisorCard (2)
Configuration � ∃ ≥ 1hasSlot.Slot �
∃hasSlot.(∃hasCard.SupervisorCard) (3)

Configuration7603 ≡ ∃ = 3hasSlot.Slot �
∃hasSlot.(∃hasCard.(HotSwappableOSM � SPAInterfaceProcessor)) (4)

Cisco7603 ≡ ∃hasConfiguration.Configuration7603 (5)
Configuration � Slot � ⊥ (6)

Addressing Constraint Definition. OWL allows for describing logical re-
strictions over classes. For example, the class Configuration requires at least one
Slot and a Slot in which a SupervisorCard is inserted (eq. 3). Moreover, class
descriptions may be declared as equivalent (eq. 2, 4, 5), e.g., the class Configu-
ration7603 is equivalent to an anonymous class that has exactly 3 Slots, one of
them with either a HotSwappableOSM or SPAInterfaceProcessor inserted (eq. 4).
It means that individuals of the class Configuration7603 belong to the anonymous
class and vice versa.

Addressing Progressive Verification. The logical restrictions above can be
verified progressively. For example, supposing that a DSL user adds an instance
of the class Configuration7603. The reasoner infers that this instance has exactly
3 slots. If there are less than 3 slots in the model, the reasoner will throw an
inconsistency. As soon as the DSL user adds 3 slots, the model becomes con-
sistent again. Although the DSL user did not associate the 3 slots with the
Configuration7603, the reasoner infers that there is a relation. When the DSL
user associates the 3 slots with another instance of the class Configuration, the
reasoner points the inconsistency again.

Addressing Debugging. Reasoning services may be combined with non-
standard reasoning services to provide reasoning explanation. The goal is to
identify minimal and sufficient sets of axioms that explain relationships between
domain elements, i.e., to identify justifications [13].

Addressing Syntactic Sugar. By declaring two classes as equivalent, DSL
designers give DSL users the possibility of modeling a concept in two different
ways. In our example, DSL users have different ways of creating instances of
the concept Cisco7603 (eq. 5): by declaring it directly or by creating an De-
vice with one Configuration7603. As illustrated, OWL provides various means
for expressing classes: enumeration of individuals, property restrictions (eq. 3),
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intersections of classes (eq. 6), unions of class descriptions (eq. 2), complements
of a class description or combinations of any of those means.

Open vs. Closed World Assumption. While the underlying semantics of
UML-based class modeling adopts the closed world assumption, OWL adopts
open world assumption by default. However, research in the field of combining
description logics and logic programming [14] provides solutions to support OWL
reasoning with closed world assumption. Different strategies have been explored
like adopting an epistemic operator [15], already supported by the tableau-based
OWL reasoner Pellet [16,17]. Thus, it allows us to avoid the semantic clash in
merging the two languages.

In this section, we have seen that Description Logics can attend as conceptual
models for describing domain-specific languages. However, our intention is not
to demand DSL designers to develop DSLs directly and completely as ontologies.
Instead, we have an ontology-based domain-specific language framework which
provides a seamless and integrated development of formal semantics within the
language definition itself using some natural to use and simple to learn ontology
languages, which can be used in combination with other, more familiar concrete
syntaxes.

4 An Ontology-Based Framework for DSLs

In this section, we introduce our ontology-based domain-specific language frame-
work – OntoDSL. After presenting the general idea of our approach in section 4.1,
we concentrate on the implementation of the new technical space in section 4.2.
We integrate the KM3 metametamodel, a simplified subset of MOF, with the
OWL2 metamodel and additionally with the OCL metamodel at the M3 layer.
Thus, we can provide a new technical space which allows implementing DSL
metamodels with formal semantics, conditions and queries. Finally, we give an
example of defining a new metamodel in OntoDSL concrete syntax in section 4.3.

4.1 Overall Approach

As already mentioned in ection 1.2, figure 1 depicts the layered architecture and
provides an overview of all roles and models considered in the running example.
Now we consider more technical details of the framework.

At the M3 layer, we first have a seamless integration of the MOF based
metametamodel KM3, the OWL metamodel and the OCL metamodel. Having
the integrated metametamodel at the M3-layer (the new technical space), DSL
designers can define domain-specific languages using KM3, OWL and OCL con-
structs in seamless manner. They describe the static structure of DSL metamod-
els (e.g. using KM3 constructs), formal semantics (e.g. using OWL constructs)
or operations (e.g. using OCL constructs).

DSL users may then use the developed DSL with additional benefits. Results
are domain models (M1-layer). Having formal semantics of the DSL, consistency
checking is available. Furthermore, the execution of operations in the context
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of a model element is available. These operations call reasoning services which
work on ontologies constituted from the DSL metamodel and the domain models
DSL users have created.

4.2 Implementation

In this subsection we consider the implementation of OntoDSL. We mainly fo-
cus on how we build the abstract syntax of the new technical space and how
we developed the concrete syntax. Both, the abstract syntax, represented as
metamodel and the textual concrete syntax can be downloaded from our project
website http://ontodsl.semanticsoftware.eu

Abstract Syntax. The core of our technical space (our M3 metametamodel)
consists of KM3 [18], OCL [19] and OWL2 [20]. We use our metamodel integra-
tion approach presented in [21] and [22] to combine the different metamodels.
The result is the integrated metametamodel at the M3 layer which describes the
abstract syntax of our technical space.

The OntoDSL metamodel provides all classes of the KM3 metametamodel, the
OCL and OWL metamodel. It contains different adapter classes to integrate, for
example, OWL class with KM3 class, OWL Object Property with KM3 reference
attribute or OWL Data Property with KM3 simple attribute. Thus, we build a
bridge between the different languages. Furthermore, we define that classes can
contain operations. A new operation class in the integrated metametamodel is
associated to classes for OCL operation definitions of the OCL metamodel.

Overall, with the new abstract syntax we describe all aspects DSL designers
can use to define metamodels. To provide reasoning based on domain metamodels
and models we implemented several transformations, e.g. using ATL [23], that
translate the metamodels and models to pure OWL ontologies. We use the Pellet
reasoner [16] to provide OWL reasoning services.

Concrete Syntax. Listing 1 in the section below gives an example of using the
concrete syntax to define a metamodel.

The concrete syntax of OntoDSL is based on KM3. The motivation is that
DSL designers should use the Java-like KM3 syntax as much as they can. To
take benefit from OWL or OCL, they should be able to annotate elements of
their DSL metamodel in a textual manner. Hence, we extend the grammar of
the KM3 concrete syntax by new non-terminals which are defined in grammars
of a textual OWL2 concrete syntax or of a textual OCL concrete syntax.

For example, we are able to annotate KM3 classes with OWL class axioms,
KM3 reference attributes with OWL Object Property axioms or implement OCL
operations within KM3 classes. We have developed our own OWL 2 natural
style syntax which is an adaptation of the OWL Manchester Syntax [24] to get
a natural controlled language for coding OWL2 ontologies. As OCL concrete
syntax we take the one from [19].

Overall, we have a grammar which consists of rules to produce KM3 state-
ments in combination with textual OWL annotations and embedded OCL oper-
ation definitions.

http://ontodsl.semanticsoftware.eu
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We solve the mapping between abstract and concrete syntax by using the
Eclipse component TCS [25] for textual concrete syntax specification of DSLs.

4.3 Example in Concrete Syntax

In Listing 1, we see an excerpt of an M2 metamodel that is created by a DSL
designer using the new integrated metametamodel. Using the KM3 syntax, he
defines that a Device has Configurations, a Cisco7603 is a specialization of Device,
each Configuration has Slots and in each Slot one to many cards can be plugged in.

Furthermore, the DSL designer defines some formal semantics using the OWL
natural style concrete syntax, which is integrated with the existing KM3 syntax.
In Listing 1, he states that every Cisco7603 device has at least one Configura-
tion7603. A Configuration is a Configuration7603 if and only if it has exactly three
slots in which either a HotSwappableOSM card or a SPAinterfaceProcessors card
is plugged in.

At the end of Listing 1, we see the definition of the class Thing, which is in
OWL the superclass of all classes. Here, using OCL syntax, we define a new oper-
ation getSpecificSubClasses(). Because of inheritance from the superclass Thing,
this operation can be executed in the context of all classes. Having an opera-
tion called getSpecificSubClasses(), the DSL designer can support the DSL user
with suggestions of suitable domain concepts. In this case, the DSL user has to
call the operation in the context of a model element and gets as feedback the
suggestion to refine the type of the current model element (requirement (3)).

Listing 1. Example of defining an M2 metamodel

1 class Device {
2 reference hasConf igurat ion [1 −∗ ] : Conf igurat ion ;
3 }
4

5 class Cisco7603 extends Device , equivalentWith restrictionOn
hasConf igurat ion with min 1 Conf igurat ion7603 {

6 }
7

8 class Conf igurat ion extends IntersectionOf ( restrictionOn hasS lot with
min 1 Slot , restrictionOn hasS lot with some restrictionOn

hasCard with some SuperVisor720 ){
9 reference hasS lot [1 −∗ ] : S l o t ;

10 }
11

12 class Conf igurat ion7603 extends Conf igurat ion , equivalentWith
IntersectionOf ( restrictionOn hasS lot with exactly 3 Slot ,
restrictionOn hasS lot with some restrictionOn hasCard with some
UnionOf(HotSwappableOSM , SPAinte r faceProcessor ) {

13 }
14

15 class S l o t {
16 reference hasCard [1 −∗ ] : Card ;
17 }
18

19 class Thing {
20 query ge tSpe c i f i c SubCla s s e s ( ) : Set ( Thing )
21 = s e l f . owlAllTypes ( )
22 }
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5 Analysis of the Approach

In this section, we establish the viability of our approach by a proof of con-
cept evaluation. We analyze the approach with respect to the requirements of
section 2.1.

To address formal semantics and constraints (requirement (1)), we integrated
the EMOF based metametamodel KM3 and its concrete syntax with OWL, al-
lowing for a formal and logical representation of the solution domain. Thus,
DSL designers count on an expressive language that allows for modeling log-
ical constraints over DSL metamodels (requirement (1)). Reasoners check the
consistency of metamodels and constraints and debugging services clarify the
inferences (requirement (4)).

Formal semantics enable the usage of reasoning services to help DSL users to
find appropriate constructs based on DSL models (requirement (3)). For exam-
ple, DSL users may get suggestions of devices to be used in their DSL models
based on the configuration of the device.

The expressiveness of OWL enables DSL designers to define classes and prop-
erties as equivalent. DSL designers may use this functionality to provide DSL
users with different means for declaring objects (requirement (5)). For example,
a DSL user may describe a Cisco 7603 device in two different ways: by creating
an instance of class Device with a configuration with three slots and a supervisor
card in one slot; or by directly creating an instance of class Cisco7603.

The nature of the logical restrictions allowed by OWL enables progressive
evaluation of DSL model consistency (requirement (2)). For example, a DSL
user may drag a new configuration into a DSL model with already two supervisor
cards. A configuration requires at least one supervisor card. Even though it is not
asserted that any of the supervisor cards are part of the new configuration, the
reasoner assumes that at least one of the cards is related with this configuration.

DSL users call OCL-like queries defined by DSL designers within the DSL
metamodel to query objects in DSL models (requirement (3)). These queries are
the interface between DSL users and reasoning services. For example, a DSL user
may use a reasoning service which is implemented as query defined in the DSL
metamodel and queries all classes that describe an object in the DSL model.

While solutions provided by DSL development environments for teaching DSL
users are usually limited to help files and creation of the example models, we
have an interactive assisted solution by suggesting concepts and explaining in-
ferences (requirement (3)). Nevertheless, addressing the aforementioned require-
ments lead us to new challenges as well as it demands to consider trade-offs
between expressiveness and completeness/soundness, expressiveness and user
complexity.

6 Related Work
In the following, we group related approaches into two categories: approaches
with formal semantics and approaches for model-based domain-specific language
development.
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Among approaches with formal semantics, one can use languages like F-Logic
or Alloy to formally describe models. In [26], a transformation of UML+OCL to
Alloy is proposed to exploit analysis capabilities of the Alloy Analyzer [27]. In
[28], a reasoning environment for OWL is presented, where the OWL ontology
is transformed to Alloy. Both approaches show how Alloy can be adopted for
consistency checking of UML models or OWL ontologies. F-Logic is a further
prominent rule language that combines logical formulas with object oriented and
frame-based description features. Different works (e.g. [29,30]) have explored the
usage of F-Logic to describe configurations of devices or the semantics of MOF
models.

The integration in the cases cited above is achieved by transforming MOF
models into a knowledge representation language (Alloy or F-logic). Thus, the
expressiveness available for DSL designers is limited to MOF/OCL. Our ap-
proach extends these approaches by enabling DSL designers to specify class
descriptions à la OWL together with MOF/OCL, increasing expressiveness.

Examples of model-based DSL development environments are MetaEdit+ [31],
XMF (eXecutable modelling framework) [32], Generic Modeling Environment
(GME) [33] and ATLAS Model Management Architecture (AMMA) [34]. These
approaches are aligned with the OMG four-layer metamodel architecture and
provide support to OCL-like languages (like in XMF GME and AMMA) for
specifying queries and constraints. Our approach adds value on them by provid-
ing a logic-based approach to define formal semantics of DSLs. The logic-based
approach allows us to provide functionalities based on Description Logics con-
structs like equivalence, class descriptions to DSL users. Concretely, it allows us
to support guidance and suggestions to DSL users.

7 Conclusion

In this paper, we presented an approach how to address major challenges in the
field of domain-specific languages with OWL ontologies and automated reason-
ing. The new technical space integrates EMOF and OWL at the M3-layer and
enables applications of reasoning to help DSL designers and DSL users through
the development and usage of DSLs. DSL designers profit by formal represen-
tations, an expressive language and constraint analysis. DSL users profit by
progressive verification, debugging support and assisted programming. The ap-
proach has been used and tested in the telecommunication domain under EU
STReP MOST. Future work into this direction would investigate ways of ex-
tending concrete syntaxes to support the flexibility of OWL.
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Abstract. In this paper we present an empirical study on the use of a domain-
specific language(DSL) in industry. This DSL encapsulates the details of services
that communicate using Windows Communication Foundation (WCF). From def-
initions of the data contracts between clients and servers, WCF/C# code for ser-
vice plumbing is generated. We conducted a survey amongst developers that use
this DSL while developing applications for customers. The DSL has been used in
about 30 projects all around the world.

We describe the known success factors of the use of DSLs, such as improved
maintainability and ease of re-use, and assert how well this DSL scores on all of
them. The analysis of the results of this case study also shows which conditions
should be fulfilled in order to increase the chances of success in using a DSL in a
real life case.

1 Introduction

Domain-specific languages(DSLs) are languages tailored to a specific application do-
main [1]. DSLs have been described in literature for several decades. They often appear
under different guises, such as special purpose [2], application-oriented [3], special-
ized [4] or task-specific [5] programming languages. An overview of widespread DSLs
can be found in [1]. Most authors agree that the use of domain-specific languages has
significant benefits, amongst which reduced time-to-market [6] and increased maintain-
ability [7,8].

However, very little research has been done to the use of DSLs in industry. Are DSLs
really as helpful as we think when used within large companies? And if they are, what
makes them?

In order to answer this, empirical studies of actual DSL usage are required. In this
paper, we report on such a study. It involves the DSL called ACA.NET that is used
to create web services that communicate using Windows Communication Foundation
(WCF). ACA.NET has been used in over 30 projects all around the world.

In this paper we investigate factors that contribute to the success of this DSL. We
conducted a study among 18 users of ACA.NET, by means of a systematic survey,
investigating issues such as usability, reliability, and learnability. With the results of
this study, we seek to answer the following research question

– What are the main factors contributing to the success of a DSLf?

� Empirical results category paper.
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The remainder of this paper is structured as follows. In Section 2 we summarize re-
lated work with focus on papers describing known success factors of DSLs. Section 3
introduces ACA.NET, the studied DSL, to the reader. Section 4 presents DSL success
factors, the questionnaire and the experimental set-up. The results of the survey can be
found in Section 5. In Section 6 the research question is answered, both for ACA.NET
as well as for domain-specific languages in general. A summary of our contributions
and an outlook towards future work can be found in Section 7.

2 Related Work

Several papers discuss advantages and disadvantages of the use of DSLs. For instance,
van Deursen and Klint [8] observes that DSLs can substantially ease the maintenance ,
however it also indicates that the cost of extending a DSL for unanticipated changes can
be substantial. Kieburtz et al. describes that DSLs can increase flexibility, productivity
and reliability [9]. Reusability is also mentioned as an advantage of the use of DSLs, for
instance by Ladd and Ramming [10] and Krueger [11]. The latter furthermore points
out that a DSL can reduce the effort to create a system from a specification. From
Bell [12] and Spinellis and Guruprasad [13] we learn that DSLs can ease design and
implementation of a system, by reducing the distance between problem and program.

Spinellis [14] describes reliability as an advantage; because of the small domain and
limited possibilities of a DSL, correctness of generators or interpreters can be easily
verified. However, he also discusses disadvantages, such as training costs for users of
the DSL and the lack of knowledge of how to fit the use of a DSL into standard software
development processes [14]. Finally, Mernik et al [1] mentions that a DSL can also be
used as a domain-specific notation. This way, existing jargon can be formalized.

Most of these papers primarily provide anecdotal evidence for the benefits claimed,
often based on a handful of usage scenarios for the language in question. While this
provides useful information, more confidence can be gained from rigorous empirical
studies. Unfortunately, we only found a few of such studies in the literature. Batory et
al [7] describes a case study where a DSL is used for simulations. They report improved
extensibility and maintainability. Kieburtz et al. [9] describes a series of experiments
comparing code generation using a DSL to code generation via templates. Herndon
and Benzins [6] reports on improvements, amongst which reduced time-to-market and
improved maintainability due to the use of DSLs. Unfortunately they lack to report how
they come to their observations. Furthermore, their Kodiyak language has been used in
only four cases. Both Weiss [15] and Bhanot et al. [16] report on a productivity increase
of 500%, but is is not made explicit how these numbers were obtained.

Empirical work in the area of model-driven engineering in general is somewhat more
common. For example, Baker et al. [17] describes a large case study, in which source
code and test cases were generated from models. It presents numbers on increased pro-
ductivity, quality and maintainability. White et al. [18] also describes a case study in
which code is generated. Their paper reports on reduced effort on development and
improved quality, but they only describe the results of one case. We have found one
account where a questionnaire was used to study the ideal situations for model-driven
development [19]. This questionnaire, however, addressed model-driven engineering in
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general, rather than the specific merits of the domain-specific notation used in a soft-
ware project. To the best of our knowledge, no user study like ours has been performed
before.

3 About ACA.NET

ACA.NET,1Avanade Connected Architectures for .NET, is a visual DSL developed by
Avanade.2 It is used to build web services that communicate via Windows Communi-
cation Foundation.3 Developers from Avanade noticed that for many projects in which
a service oriented application had to be created, the same simple, but time consum-
ing tasks had to be repeated for each project. Typical tasks include creating classes for
service contracts, data contracts, writing service configuration, writing endpoint defini-
tions and creating service clients. Because these tasks appeared very similar for each
project, Avanade decided to create an abstraction for these tasks.

With ACA.NET a large part of the development of service oriented applications can
be automated. ACA.NET enables the user to draw a model of a service oriented appli-
cation on the Visual Studio-integrated design surface. This model consists of server and
client objects and the data contracts between them. From this model, a large part of the
C#-code is generated. Only the business logic that describes the behavior of the service
has to be implemented by hand, which can be done through C# partial classes.

ACA.NET is built with Microsoft DSL Tools [20]. The code generation is imple-
mented using Microsoft’s Text Template Transformation Toolkit (T4) that is part of the
DSL Tools suite.

4 Experimental Design

To measure the success of ACA.NET we conducted a survey amongst ACA.NET
developers. The survey was set up according to the guidelines of Pfleeger and Kitchen-
ham [21]. Their guidelines propose to start by setting the survey objective. The objec-
tive of our study is to provide an answer to the following ACA.NET specific research
question

– What are the main factors contributing to the success of ACA.NET?

4.1 DSL Success Factors

To reason about the success of ACA.NET, we identified a number of success factors
of DSLs. We obtained these factors from the related work in the field which has been
presented in the Section 2. We aimed at making this list of factors specific to the use of
DSLs. Thus general success factors, such as commitment from higher management or
the availability of skilled staff were not taken into consideration, as they are not directly
affected by the use of a DSL.

1 See http://www.avanade.com/delivery/acanet/
2 Avanade is a joint venture between Accenture and Microsoft. See www.avanade.com
3 See http://en.wikipedia.org/wiki/Windows_Communication_Foundation

http://www.avanade.com/delivery/acanet/
www.avanade.com
http://en.wikipedia.org/wiki/Windows_Communication_Foundation
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The resulting factors under consideration are:

Reliability (I) [14,9]: With a DSL, large parts of the development process can be
automated, leading to fewer errors.

Usability (U) [12,13]: Tools and methods supporting the DSL should be easy and
convenient to use.

Productivity (C) [6]: The DSL helps developers to model domain concepts that oth-
erwise are time-consuming to implement. The corresponding source code is gener-
ated automatically. This lowers development costs and shortens time-to-market.

Learnability (L) [14]: Developers have to learn an extra language, which takes time
and effort. Furthermore, as the domain changes the DSL has to evolve and devel-
opers need to stay up-to-date.

Expressiveness (E) [1]: Using a DSL, domain specific features can be implemented
compactly, however, the language is specific to that domain and limits the possible
scenarios that can be expressed.

Reusability (R) [10,11]: With a DSL, reuse is possible at model level, making it easier
to reuse partial or even entire solutions, rather than pieces of source code.

With the reliability we mention we do not mean the number of bugs per line of code
or other objective measures. We did not use that kind of measures for a few distinct
reasons. Firstly, these measurements were not available for all of the projects in which
ACA.NET was used. Secondly, since large parts of the code are generated, the amount
of lines of code is not comparable to projects without ACA.NET. We believe the per-
ceived reliability we use is a good measure, because developers often have a good feel-
ing for improved quality of the software. They know whether the number of bugs is
reasonable with respect to both the complexity and the size of the project. The same
goes for the productivity. Since we did not have project data like lines of code or hours
spent on it, we asked the developers to estimate it. We believe developers have a good
idea on how much time they spent on their projects.

4.2 Questionnaire to Measure DSL Success Factors

Every question in the questionnaire relates to one or more of these factors of a DSL,
because to cite [21] it’s essential that the survey questions relate directly to the survey
objectives. In the following we review the success factors and describe the questions that
we use to measure them. Every success factor is covered by at least one Likert question,
so it is possible to measure it. Open questions are added to the questionnaire to obtain
more insight into the results. Table 1 provides an overview of the questionnaire. A pdf
version of the questionnaire can be downloaded from http://www.st.ewi.tudelft.
nl/˜hermans/

The questionnaire consists of three parts. The first part, questions Q1 and Q2, con-
cerns the background of the subject. The second part, questions Q4–Q10, contains the
questions related to one specific ACA.NET project. For all subjects we investigated the
set of projects for which they were listed as contact person. The third part of the sur-
vey, questions Q11–Q20, comprises questions on ACA.NET in general. In this part, we
limited the answer-space to two five-point Likert scales to facilitate the measurement

http://www.st.ewi.tudelft.nl/~hermans/
http://www.st.ewi.tudelft.nl/~hermans/
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Table 1. Overview of the questionnaire used for the ACA.NET survey

ID Question Factor
Background Questions
Q1 How many years have you worked as a professional software developer? L
Q2 How much experience do you have with ACA.NET L
Project specific questions
Q3 Was this a new ACA.NET project or built on an existing version? R
Q4 If you start a new ACA.NET project, how do you proceed? R
Q5 Did the ACA.NET user interface help you modeling? U
Q6 Did you use other tools for modeling in this project, next to the ACA.NET

interface?
U

Q7 Can you estimate the percentage of time that would be spent on the following
tasks if ACA.NET was not used for this project?

C

Q8 Can you estimate the percentage of time that you actually spent on the following
tasks?

C

Q9 Estimate the percentage of code that was generated C
Q10 How many lines of code did this project consist of? C
General ACA.NET questions
Q11 How many days did it take you to get to know ACA.NET? L
Q12 How many hours a month does it take you to stay up to date on ACA.NET? L
Q13 Did you ever consider to use ACA.NET but decided against? U
Q14 In case you answered Yes to the previous question, please indicate why. U,E
Q15 Indicate your agreement with
Q15a The code is more readable I
Q15b Fewer errors occur I
Q15c The product complies better with the customers requirements I
Q16a ACA.NET makes designing easier U
Q16b ACA.NET makes implementing easier U
Q16c ACA.NET is powerful U,E
Q17 Did you ever deny a customer a feature because you knew you would not be

able to implement it using ACA.NET?
E

Q18 Did you ever have to write extra code (other than custom code for business
logic) to implement features?

E

Q19 Indicate your agreement with
Q19a ACA.NET is difficult to use U
Q19b ACA.NET restricts my freedom as programmer E
Q19c ACA.NET doesn’t have all features I need E
Q20a I look into the generated code in order to be able to understand the underlying

models
E

Q20b I look into the generated code in order to be able to be able to write custom code E

of the various success factors. The first one ranges from strongly disagree, disagree,
neutral, agree, to strongly agree. The second Likert scale ranges from very often, often,
sometimes, seldom, to never.

Reliability of ACA.NET solutions (I). The first success factor we consider is relia-
bility. Because parts of the development process are automated, software constructed
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using a DSL is expected to be less error prone. To measure the reliability of ACA.NET
we ask the subjects whether they think that the use of ACA.NET increases the quality
of the delivered code in the following ways: the code is more readable (Q15a), fewer
bugs occur (Q15b), and the product complies better with the customer requirements
(Q15c). The possible answers to each question are defined by a five point Likert scale.
We expect that DSLs help to communicate requirements better to the customer and de-
velopers. Furthermore, ACA.NET code is assumed to be more readable and easier to
understand. Both aspects are expected to lead to fewer bugs in ACA.NET web services.
We want to stress again that we measure perceived reliability, meaning we measure how
users feel about the increased reliability.

Usability of ACA.NET (U). Another factor is ease of using the DSL and the tools that
support it. We included several questions dedicated to the usability of the ACA.NET
toolkit for developing web services. For instance, does the ACA.NET user interface
help in modeling web-services (Q5) and were other tools used in the project (Q6). We
asked whether subjects decided against the use of ACA.NET (Q13) in any project, and,
if yes, reasons why they did so (Q14). Descriptions of reasons could be provided in free-
text. We also added questions to assess whether ACA.NET eases designing (Q16a) and
implementing web services (Q16b), and summarizing, whether ACA.NET is a powerful
DSL (Q16c). Question Q19a is used to obtain the level of agreement on the statement
that ACA.NET is difficult to use.

Productivity of ACA.NET (C). With the use of ACA.NET, developers can focus
on the business logic while other web-service related source code is generated by
ACA.NET. Therefore time spent on tasks related to web-services is assumed to be
shorter and development costs are assumed to be lower. For measuring the effect of
ACA.NET on productivity, we formed a set of questions related to the experiences with
the selected project. For instance, we ask each subject to estimate the percentage of time
that would have been spent on the following tasks if ACA.NET was not used: write data
contracts, write service configuration, and write business logic (Q7). Next, we ask the
subjects to estimate the percentage of time they spent on actually: design contracts,
generate the source code, and write the business logic with ACA.NET for the selected
project (question Q8). In addition, we ask the subjects to estimate the percentage of
source code that has been generated with ACA.NET (Q9).

Learnability of ACA.NET (L). The time invested in actually learning and staying
up-to-date represents another success factor for DSLs. For measuring the learnability
of ACA.NET we first ask the subjects for their level of experience in terms of years
worked as professional software developer (Q1) and in terms of years worked with
ACA.NET (Q2). Later on in the questionnaire we ask for the detailed effort numbers.
In particular, we were interested in the number of days invested in learning ACA.NET
(Q11) and the number of hours invested in staying up-to-date on ACA.NET (Q12).

Expressiveness of ACA.NET DSL (E). To measure the expressiveness of ACA.NET
we asked the subjects how often they had to deny a customer a feature, because it could
not have been implemented with ACA.NET (Q17) and how often they had to write extra
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code to implement a feature (Q18). Answers to both questions are given by a five-point
Likert scale. Furthermore we investigated whether respondents feel that ACA.NET re-
stricts their freedom (Q19b) and whether ACA.NET provides all the features needed
to develop web services (Q19c). The answers to the latter two questions are also given
with a five-point Likert scale.

To obtain a deeper insight into the expressiveness of ACA.NET we added questions
Q20a and Q20b. We ask whether developers look into the source code to understand the
models defined with ACA.NET (Q20a). Question Q20b assesses whether developers
use the generated source code instead of the models to add custom code. Frequent use
of the generated code indicates the model does not express all properties of the domain.

Reusability of ACA.NET models (R). As with traditional software engineering, one
goal of a DSL is to reuse existing solutions. We addressed the reusability of ACA.NET
models in question Q3. We ask the subjects whether they reuse models of existing
projects. For instance, when they start a new project do they start from existing assets
or from scratch.

4.3 Survey Set-Up

We conducted our survey online, in a Sharepoint environment, making it cost-effective
and also appropriate, because our target group is used to this kind of surveys. We
choose a self-control study [21], comparing user experience with and without the use
of ACA.NET. The fact that the subjects are not able to see each others results makes
the survey more resilient to bias. The fact that the survey is cost-effective, appropriate
and resilient to bias, makes it efficient according to Pfleeger and Kitchenham [21]. Fur-
thermore, automation reduces the contact between subjects and researchers, giving the
researchers less opportunity to bias responders.

In total we invited 48 people to participate in this survey. Of 21 subjects we knew
for sure they used ACA.NET and of 27 people we thought they might have experience
with it. 28 people responded, of which 10 indicated they did not use ACA.NET, or
their experience was too limited to answer the questions. We got 18 meaningful results,
giving our survey an effective response rate of 38%. Since our target population is small,
we did not use any form of sampling.

Together with the invitation for the survey, developers received an email explaining
them the purpose of the survey; helping to improve the tool set they work with everyday.
We expect this to be a good motivation for them to participate, especially since there
has been no opportunity to give official feedback, other than bug reports on ACA.NET.

By testing the survey, we estimated the time needed to fill out the questionnaire
at about 60 minutes, which is appropriate for a self-administered survey on a subject
important to responders. As recommended by Pfleeger and Kitchenham [21], we added
a neutral option to all Likert-scaled [22] questions.

We believe there is little risk of researcher bias, because the researchers are not part
of the users or designers of ACA.NET. When creating this survey, we ensured that
subjects got the possibility to reflect on both, the positive and the negative aspects of
ACA.NET.
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5 Results

In this section we present the results of the survey, grouped by success factor.

5.1 Reliability (I)

Developers clearly believe that the use of ACA.NET increases the quality of the de-
livered code, since 40% of the respondents agree with, and 50% strongly agree with
Question 15b as shown in Figure 1. As one of the respondents put it: “The applica-
tion becomes less error prone since lots of tasks are automated”. Note that only one
respondent disagrees with this statement.

5.2 Usability (U)

Over 75% of the developers indicate that ACA.NET aids them in modeling by giving
them a good overview of the whole connected system of servers and clients (Figure 2).
The reasons indicated by the respondents include that “using ACA.NET gives us a better
overview at higher abstraction”, and that “the DSL design surface helps to model the
services even before business logic has been designed”. Furthermore, the ACA.NET
tools were considered easy to use (“ACA.NET provides an easy to use interface that
can be taught to others very quickly.”). Note that none of the respondents agrees to the
statement that ACA.NET is difficult to use (Question 19a) as shown in Figure 3.

Fig. 1. Question 15b. Agreement with the
statement that “fewer errors occur”

Fig. 2. Question 5. Did the ACA.NET user
interface help you in modeling?

5.3 Productivity (C)

Based on the results of the survey, we can conclude that the use of ACA.NET indeed
increases productivity. One of the respondents says: “ACA.NET speeds up the imple-
mentation of trivial tasks”. From the answers to Question 7 and Question 8 we can
conclude that time spent on actually coding the services is reduced from 46% to only
18%, as shown in Figure 6. The shift in focus to the more important business logic is
also underlined by a subject who responded: “We don’t think too much about Windows
Communication Foundation services or the Data Access Layer anymore as we are able
to concentrate on the business requirements.”
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Time is not the only measure for increased productivity: we also take the amount of
generated code into account. The respondents estimate that on average 40% of the code
is generated, distributed as shown in Figure 4.

According to the answers on Question 16a and Question 16b, developers also feel
that ACA.NET eases the design and implementation phases (Figure 5), which is likely
to result in less time spent on these tasks.

Fig. 3. Question 19a. ACA.NET is difficult
to use

Fig. 4. Question 9. Estimate the percentage
of code that was generated

Fig. 5. Question 16. ACA.NET makes de-
signing and implementing easier

Fig. 6. Question 7 and 8. Please estimate the
percentage of time you spent on typical de-
velopment tasks

5.4 Learnability (L)

The respondents indicate that it took them quite some time to learn the basics of
ACA.NET, as shown in Figure 7. Most respondents were able to learn ACA.NET
within one week, while the maximum time mentioned was 15 days. Apart from learning
ACA.NET, it also takes time to stay up to date, as shown in Figure 8.
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Fig. 7. Question 11. How many days did it
take you to get to know ACA.NET?

Fig. 8. Questions 12. How many hours a
month does it take you to stay up to date
on ACA.NET?

5.5 Expressiveness (E)

The developers turn out to be satisfied with the expressive power of ACA.NET: 60%
of them agrees that ACA.NET is powerful (Figure 9). Furthermore, we see that the
limited scope is not considered a problem; only few developers indicate their freedom
is restricted (Figure 10). There are however some developers that indicate they miss
features (Question 19c, Figure 10).

The model is a good representation of the code, since developers do not have to
look into the code to understand or complete their own code (see Figure 11). However,
respondents mention that it is very hard to evolve the models along with the code, which
indicates lack of expressiveness. “When the models get more complicated, such as for
the web factory where you can set a lot of properties, the model loses its value - its not
practical to maintain or set a lot of properties using the visual tool.” and “For the more
complex, it was to time-consuming to maintain the graphical details between updates,
and you lost the overview.”

Fig. 9. Question 16c. Is ACA.NET power-
ful?

Fig. 10. Question 19. Is ACA.NET restric-
tive / feature-incomplete?
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Fig. 11. Question 20. Inspection of gener-
ated code for different purposes

Fig. 12. Question 3. If you start with a new
ACA-project, how do you proceed?

5.6 Reusability (R)

A somewhat surprising result is that reuse hardly contributes to the success of ACA.NET.
The answers to Question 3, Figure 12, tell us ACA.NET models are never reused. Even
conceptual designs are hardly ever reused, in only 10% of the cases. One possible expla-
nation is that the current ACA.NET implementation does not directly support exporting
or importing models. In particular, respondents indicated that they would like to be able
to import parts of earlier models, to reuse standard architectures for services across
projects, and to compose services from multiple earlier defined models. As one respon-
der said: “ACA.NET could be improved by providing import mechanisms which allow
the importation of other ACA-files into the model.”

6 Discussion

6.1 Lessons Learned Concerning ACA.NET

Based on our study we can draw several lessons concerning ACA.NET. First, the de-
velopers indicate ACA.NET helped in increasing productivity by reducing time spent
on programming services. Because project managers at Avanade indicate that program-
ming a web service accounts for a large part of the development process, we conclude
that ACA.NET also lowers time-to-market. The results also show that ACA.NET helped
in increasing reliability, the vast majority of developers agree that the use of ACA.NET
helps to avoid faults.

Underlying success factors were usability of the language and tool set (which was
rated as positive), the learnability of the language (several days initial learning, and
several hours per month to stay up to date), and the expressiveness of the language
which was focused specifically towards the web services domain (and which was rated
as powerful). Much to our surprise, reuse of models did not contribute to the success of
ACA.NET.

Conducting the study also resulted in several suggestions for improving the
ACA.NET language and tool set. A first observation is that adding the possibility to
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import or export partial models would make it possible to actually reuse (parts of) mod-
els, adding even more benefits to the use of ACA.NET.

Second, some of the developers observed that the abstraction that is made in
ACA.NET for web services is not specific to .NET/WCF services: “ACA.NET is very
good for modeling the service layer of an enterprise application structure, but only code
for the .NET based services can be generated. Unfortunately it is not possible to gener-
ate code for Java or SAP platform based services.” By appropriately extending the code
generators, ACA.NET could be used to integrate services from different platforms.

Furthermore, several respondents indicated that ACA.NET was not used as often as
possible, because customers do not want to make use of or be dependent on proprietary
software. To cite one of the respondents: “Customers don’t use ACA.NET in quite some
cases since it’s an Avanade specific tool.” A way out of this could be to give customers
access to the source code of the underlying code generation infrastructure.

Last but not least, several of the developers would have liked access themselves to the
generator and underlying meta-models, as this would enable them to build in customer-
specific features in an easier way. This actually calls for proper extension points and
hooks in the language, and suggests that the level of expressiveness of the language
could be further improved.

6.2 Beyond the Case at Hand

An interesting question is which general lessons we can learn from the case at hand.
First of all, the case provides further evidence that the use of a domain-specific lan-

guage can reduce time-to-market and can improve system reliability. The evidence, in
this case, not just comes from the creators of the language, but from the people who are
actually using the language to deliver working software to their customers.

Second, the case suggests that reuse is not a critical success factor. Reuse is a notori-
ously hard problem, involving the identification, adaptation, and integration of existing
parts. For many application domains, light-weight, copy-paste based forms of reuse
may be enough, having the additional benefit of full flexibility.

Another lesson we can draw from the study is that the questionnaire itself is a useful
instrument for, e.g., identifying opportunities for improving the language. In fact, we
would recommend engineers involved in the design of a new domain-specific language
to compose a questionnaire as part of their design effort. This questionnaire, for which
ours can form a starting point, can then be used in a later stage to evaluate whether the
language has met its design goals.

6.3 Threats to Validity

Content Validity. One of the threats to content validity when conducting an (online)
survey is the fact that respondents could be influenced by other replies [21]. Therefore
we made sure that it was not possible for respondents to view each others results. Fur-
thermore, responses came from different divisions of Avanade, making it less likely that
responders spoke to each other about the survey.
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Another threat to content validity is the fact that respondents have to estimate the
percentage of generated code and time spent on different tasks. This is the case be-
cause corresponding data were not collected during the development process. Develop-
ers could be imprecise in their memory. Because all results show similar numbers, we
believe the results are sufficiently reliable.

The survey was pre-tested on a focus group, consisting of domain experts — the
developers that created ACA.NET — and members of the target population. The survey
questions were also reviewed by university staff with experience in empirical research.
Their feedback helped in further assuring content validity.

Internal Validity. The calculations used to manipulate the data were all very simple,
and constitute no threat to internal validity.

An issue of concern could be that the respondents have a commercial interest in
putting up a bright picture, thus giving answers that are too positive. While we cannot
exclude this possibility, we do not believe this is the case. We explicitly announced the
questionnaire as an opportunity to suggest improvements for ACA.NET, encouraging
them to be as critical as possible.

Survey Reliability. In order to ensure repeatability of the experiment, the full question-
naire including answer options and descriptions is available online.4 Unfortunately we
were not able to make Avanade’s answers available too, for reasons of confidentiality.

External Validity. Some of the issues concerning external validity were discussed in
Section 6.2, where we addressed the implications of our study beyond ACA.NET. Fur-
thermore, we have no reason to believe that our results are specific to the web services
domain. One characteristic of this domain, however, is that it is a “horizontal” domain,
applicable in many different settings, and aimed at developers as language users. This has
clearly had some influence on our questionnaire, which is tailored towards developers.

Another issue may be that the results were obtained in a commercial setting: we have
no reason to believe that they would be different for, e.g., open source projects.

7 Conclusions

The goal of the present paper is to obtain a deeper understanding of the factors affecting
the success of a domain-specific language in practice. To that end, we have analyzed
experiences of developers that made use of the ACA.NET DSL in over 30 projects
around the world.

The key contributions of this paper are as follows:

– The identification of a number of DSL success factors;
– A questionnaire that can be used to assess these factors in concrete DSL projects.
– The ACA.NET empirical study, in which we use the proposed questionnaire to

evaluate success factors in the use of ACA.NET.

4 See http://www.st.ewi.tudelft.nl/˜hermans/

http://www.st.ewi.tudelft.nl/~hermans/
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The outcomes of the study indicate that in the given case study the DSL helped to
improve reliability, and to increase productivity. Furthermore, conducting the survey
resulted in a number of suggestions for improving the DSL under study, such as in-
creasing the level of reuse.

We see several areas for future work. One direction is to conduct a similar survey in
a DSL from a less technical (horizontal) domain, but from a vertical, highly specialized
DSL. The challenge here will be to find such a DSL in industry and the corresponding
industrial partner that is willing to collaborate in such a survey. A second direction is
to compare the results we obtained from interviewing with “hard” data obtained from,
e.g., measurements on code or the software repository used. One of the challenges here
will be the availability of accurate data on, e.g., reliability of projects conducted with
the DSL under study.

Acknowledgements. We owe our gratitude to all responders that took the time to fill
out our survey. Special thanks go out to Gerben van Loon and Steffen Vorein, for re-
viewing the questionnaire itself extensively.
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Abstract. A well known challenge in the formal methods domain is to improve 
their integration with practical engineering methods. In the context of embed-
ded systems, model checking requires first to model the system to be validated, 
then to formalize the properties to be satisfied, and finally to describe the be-
havior of the environment. This last point which we name as the proof context 
is often neglected. It could, however, be of great importance in order to reduce 
the complexity of the proof. The question is then how to formalize such a proof 
context. We experiment a language, named CDL (Context Description Lan-
guage), for describing a system environment using actors and sequence dia-
grams, together with the properties to be checked. The properties are specified 
with textual patterns and attached to specific regions in the context. Our contri-
bution is a report on several industrial embedded system applications. 

Keywords: Formal methods, context description, property patterns, observers, 
timed automata, model checking. 

1   Introduction 

In the field of embedded systems, software architectures must be designed to ensure 
increasingly critical functions subjected to strong reliability and real time constraints. 
Due to these constraints, embedded software architectures often have to go through 
certification which requires a rigorous design process based on tight rules. However, 
due to the increasing complexity of systems, there is no guarantee that such a design 
process leads to error free systems. Formal methods offer rigorous and powerful solu-
tions for helping embedded system designers analyze, validate, or transform systems in 
a provable sound way. For that purpose, behavior checking methods have been explored 
for several years by many research teams [2, 8], but also by major companies. 

                                                           
* Empirical results category paper. 
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Nevertheless, integration of formal methods in the engineering process is still too 
weak comparatively to the huge need for reliability in critical systems. This contradic-
tion partly finds its causes in the actual difficulty to handle theoretical concepts within 
an industrial framework. Besides, formal verification techniques suffer from the com-
binatorial explosion induced by the internal complexity of the software to be verified. 
This is particularly recurrent when dealing with real-time embedded systems, interact-
ing with a large number of actors. Additionally, formally checking properties on sys-
tem models requires the expression of these properties in the form of temporal logic 
formula such as LTL [18] or CTL [16]. While these languages have a high expres-
siveness they are not easily readable and easy to handle by the engineers in industrial 
projects. To overcome this problem, some approaches [5, 12, 10] propose to formu-
late temporal properties using textual definition patterns. 

One way to circumvent the problem of combinatorial explosion consists of specify-
ing/restricting the system environment behavior or the context in which the system 
will be used. The system is then tightly synchronized with its environment. This con-
text corresponds to well-defined operational phases, such as, for example, initializa-
tion, reconfiguration, degraded modes, etc. Moreover, properties are often related to 
specific use cases of the system. So, it is not necessary to verify them over all the 
environment scenarios. To the best of our knowledge, no approach currently provides 
such feature dedicated to an industrial use. In the case of an environment composed of 
several parallel actors, describing the environmental context can be a difficult task. To 
address these problems, we proposed [21, 22] the Context Description Language 
(CDL). This DSL allows specifying the context with scenarios and temporal proper-
ties using property patterns. Moreover, CDL provides the ability to link each ex-
pressed property to a limited scope of the system behavior.  

In this paper, we provide a two years experience feedback on applying our formal 
verification approach on several aeronautic and military case studies. This paper pre-
sents the approach and discusses the results on an exercise in bringing engineers to 
use a formal method. First, we show that specifying more precisely the context in 
which the system will be used can reduce the problem of state explosion. Second, we 
show how to formalize, with CDL, specifications of an execution context, how to 
formalize properties and how to attach these properties to specific regions in this 
context.    

For better understanding, this approach is illustrated with one industrial case study: 
the software part of an anti-aircraft system (S_CP1), shown Fig.1. It controls the in-
ternal modes of the system, its physical devices (radars, sensors, actuators…) and 
their actions in response to incoming signals from the environment. Due to page limi-
tation, only one requirement (Listing 1) and one sequence diagram are considered to 
illustrate our approach along the paper.  

The paper is organized as follows: Section 2 sets the scope of our work in current 
formal verification practices and presents related work. Section 3 describes our DSL 
for contexts and properties specification. Section 4 presents the proposed methodol-
ogy used for the experiments, as well as the framework supporting it. In section 5 we 
give selected results on several industrial case studies. Finally, section 6 discusses our 
approach and future work and concludes. 

                                                           
1 For confidential reasons, company and system names are not mentioned in this paper. 
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Fig. 1. S_CP system: partial use case and sequence diagram describing the behavior of the 
system during the initialization phase 

Requirement: “During initialization procedure, the S_CP shall associate a generic device 
identifier to one or several roles in the system (Device), before dMax_dev time units. It 
shall also associate an identifier to each console (HMI), before dMax_cons time units. 
The S_CP shall send a notifyRole message for each connected generic device, to each 
connected console. Initialization procedure shall end successfully, when the S_CP has set 
all the generic device identifiers and all console identifiers and all notifyRole messages 
have been sent.” 

End Requirement 
 

Listing 1. Initialization requirement for the S_CP system 

2   Context and Related Work 

These days, embedded software systems integrate more and more advanced features, 
such as complex data structures, recursion, multithreading. These features pose chal-
lenging theoretical and practical problems to developers of automatic analysis and 
verification methods. Despite the increased level of automation, users of finite-state 
verification tools are still constrained to specify the system requirements in their 
specification language, which is most of the time informal. This fact is more challeng-
ing than it appears because of the difficulty to write logic formula correctly without 
some expertise in the idioms of the specification languages. While temporal logic 
based languages allow a great expressivity for the properties, these languages are not 
adapted to practically describe most of the requirements expressed in industrial analy-
sis documents. First, a requirement can refer to many events related to the execution 
of the model or environment (cf. Listing 1). Then, it depends on an execution history 
that has to be taken into account when checking it. As a result, the logical formulas 
are of great complexity and become difficult to read and to handle by engineers. It is 
thus necessary to facilitate the requirement expression with adequate languages: ab-
stracting some details in the property description, at a price of reducing the expressiv-
ity. This conclusion has been done by many authors a long time ago and some [5, 12, 
10] proposed to formulate the properties using definition patterns. Patterns are textual 
templates that capture common temporal properties and that can be instantiated in a 
specific context to express application-specific properties. 
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Specification patterns [5, 10] have been proposed to assist engineers in expressing 
system requirements directly in a formal specification language, such as linear-time 
temporal logic (LTL). These patterns represent commonly occurring types of real-
time properties found in several requirement documents for appliances and automo-
tive embedded systems applications.  

In addition to the ease of writing real time properties, the patterns proposed by 
Dwyer [5] and Cheng [10] have been defined to deal with high-level specifications. 
Providing high-quality requirements is important since they serve as a baseline be-
tween multiple teams working on the model under study (MUS2). Besides, Hassine et 
al. [17] suggest an abstract high level pattern-based approach to the description of 
property specifications based on Use Case Maps (UCM). They propose to build prop-
erty pattern systems that consider architectural aspects. Smith et al. developed Propel 
[12], in which they extended the specification patterns of Dwyer et al. [5] to address 
important aspects about properties. They extend the patterns with options that can be 
used explicitly on these patterns. 

In this paper, we reuse the categories of Dwyer’s patterns and extend them to deal 
with more specific temporal properties which appear when high-level specifications 
are refined. Furthermore, in several industrial projects, intended requirements are not 
associated to the entire lifecycle of software, but only to specific steps in its lifecycle. 
In the system specification documents, requirements are often expressed in a context 
of the system execution. For that reason, in addition to the use of property patterns, 
we propose to link formalized properties to a specific execution context and thus to 
limit the scope of the property. Hassine et al.[17] consider applying patterns to archi-
tectural aspects; we focus on applying them to specific functional contexts, which 
refer to system use cases. The benefit is to explicitly specify the conditions under 
which is its meaningful to check the validity of a given property. So, according to this 
feature, properties will be checked only in a specific execution context. Consequently, 
the number of states over which the property is checked considerably decreases. In 
this paper, we address the problem of applying property patterns in industrial prac-
tices and provide concrete statistical results.  

3   Context Description Language 

In our approach, CDL aims at formalizing the context with scenarios and temporal 
properties using property patterns. This DSML3 is based on UML 2. A CDL model 
describes, on the one hand, the context using activity and sequence diagrams and, on 
the other hand, the properties to be checked using property patterns. The originality of 
CDL is its ability to link each expressed property to a context diagram, i.e. a limited 
scope of the system behavior. For formal validation, CDL associates a formal seman-
tics to UML models, described as a set of traces [7, 13, 22]. The language is designed 
and tooled to offer a simple and usable context description framework. 

The syntax of the CDL language is specified in multiple and complementary ways. 
One is the metamodel (e.g. the domain ontology) enhanced with OCL constraints. The 
                                                           
2 In this paper, MUS denotes the component model specified by the industrial in languages such 

as UML 2, AADL [19], SDL [4], etc.  
3 Domain Specific Modeling Language. 
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metamodel is an ECore model (EMF). It is annotated with OCL invariants to enforce 
its semantics. A diagrammatical concrete syntax is created for the context description 
and a textual syntax for the property expression. The following paragraphs outline: (i) 
the proof context formalization, (ii) the property expressions. 

In [11], we proposed a context description language using UML 2 diagrams (cf. Fig.2 
for case study illustration). It is inspired by Use Case Charts of [13]. We extend this 
language to allow several entities (as Device and HMI in Fig.1 and Fig.2) to compose 
the proof context. Those entities are running in parallel. CDL is hierarchically con-
structed in three levels: Level-1 is a set of use case diagrams which describes hierarchi-
cal activity diagrams. Either alternative between several executions (alternative/merge) 
or a parallelization of several executions (fork/join) is available. Level-2 is a set of sce-
nario diagrams organized by alternatives. Each scenario is fully described at Level-3 by 
UML 2 sequence diagrams. These diagrams are composed of two lifelines, one for the 
proof context and another for the MUS. Delayable interaction event occurrences are 
specified on these lifelines. Counters limit the iterations of diagram executions. It en-
sures the generation of finite context automata, as described in [11]. Transitions at 
Level-1 and Level-2 are enabled according to the values of some un-timed guards or 
timed guards. As mentioned in the introduction, the approach links the context descrip-
tion (Level-1 or Level-2) to the specification of the properties (as P1 and P2 in Fig.2) to 
be checked by stereotyped links property/scope. A property can have several scopes and 
several properties can refer a single diagram. Semantics of Level-1 and Level-2 is de-
scribed in terms of traces, inspired by [7]. Level-1 and Level-2 are based on the seman-
tics of the scenarios and expressed by construction rules of sets of traces built using seq, 
alt and par operators (par only for Level-1). At Level-3, the semantics of a scenario is 
expressed by a set of traces as described in [7] and in accordance with the semantics of 
UML 2 sequence diagrams. A scenario trace is an ordered events sequence which de-
scribes a history of the interactions between the context and the model. A scenario with 
several interactions is described by a set of traces. 

 

Fig. 2. S_CP case study: partial representation of the context. Initial Use cases and Sequence 
diagrams (cf. Fig.1) are transformed and completed to create the context model. All context 
scenarios are represented, combined with parallel and alternative operators, in terms of CDL. 

 
For the property specification, we use a pattern-based approach and integrate property 
patterns description in the CDL language (we refer the reader to [22] for details). 
Patterns [5] are classified in basic families, which take into account the timed aspects 
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of the properties to be specified. The patterns identified allow properties of answer 
(Response), the necessity one (Precedence), of absence (Absence), of existence (Exis-
tence) to be expressed. The properties refer to detectable events like transmissions or 
receptions of signals, actions, and model state changes. These basic forms are en-
riched by options (Pre-arity, Post-arity, Immediacy, Precedence, Nullity, Repeatabil-
ity) using annotations [10]. The property must be taken into account during all the 
model execution, before, after or between occurrences of events. Patterns have the 
possibility of expressing guards on the occurrences of events expressed in the proper-
ties [22]. Guards refer to variables declared in the context model. This mechanism 
adds precision to the property/scope reference introduced in the previous section. 
Another extension of the patterns is the possibility of handling sets of events, ordered 
or not ordered similar to the proposal of [9]. The operators AN and ALL respectively 
specify if an event or all the events, ordered (Ordered) or not (Combined), of an event 
set are concerned with the property. Illustrating with our case study, Fig.3 depicts one 
bounded liveness property (P1) obtained from the R1 requirement decomposition as 
explained in section 4: 

R1: During initialization procedure, the S_CP shall associate an identifier to 
NC console (HMI), before dMax_cons time units.  

R1 is linked to the communication sequence between the S_CP and consoles (HMI). 
According to the sequence diagram of Fig.1, the association to other devices has no 
effect on R1.  

 
 

Property P1 ; 
     exactly  one  occurence of   S_CP_hasReachState_Init 
     eventually  leads-to  [0..dMax_cons] 
     ALL Ordered  
             exactly  one  occurence of   sendSetConsoleIdToHMI1 
             exactly  one  occurence of   sendSetConsoleIdToHMI2 
     end 
     S_CP_hasReachState_Init  may never occurs 
     one of sendSetConsoleIdToHMI1  cannot  occur before  S_CP_hasReachState_Init 
     one of sendSetConsoleIdToHMI2  cannot  occur before  S_CP_hasReachState_Init 
     repeatibility : true 

Fig. 3. S_CP case study: A response pattern from R1 requirement 

In the illustrated case study, the number of consoles (HMI) considered is two (NC=2). 
R1 specifies an observation of event occurrences. S_CP_hasReachState_Init refers a state 
change in a MUS process. sendSetConsoleIdToHMI1 and sendSetConsoleIdToHMI2 refer 
to the ones described in the CDL model (Fig.2). As mentioned in section 4, our OBP 
toolset transforms each property into an observer automaton [6], including a reject node. 
With observers, the properties we can handle are of safety and bounded liveness type. The 
accessibility analysis consists of checking if there is a reject state reached by a property 
observer. This reject node is reached after detecting event “S_CP_hasReachState_Init” if 
the sequence “sendSetConsoleIdToHMI1” and “sendSetConsoleIdToHMI2” is not pro-
duced in that order before dMax_cons time units. Conversely, the reject node is not 
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reached either if event “S_CP_hasReachState_Init” is never received, or if the sequence 
of the two events above is correctly produced (in the right order and with the right delay). 
Consequently, such a property can be verified by using reachability analysis imple-
mented in a formal model checker. 

4   Methodology and OBP Toolset 

Our proposed specification and analysis process is based on checking a set of re-
quirements on the system interacting with its environment. To perform such checking, 
we suppose that the set of properties can be formalized into a logic form, that the 
environment interactions are also formally modeled as well as the possibility to simu-
late the MUS in order to use a formal verification tool. With this hypothesis, the proc-
ess is decomposed into the following steps: 

– Context Description (Fig.4.a): The environment interactions are formally modeled 
with CDL activities diagrams (as illustrated Fig.2). This activity produces a set of 
CDL context diagrams. 
– Property Specification (Fig.4.b): The set of properties are formalized with property 
patterns (as illustrated Listing 1). This activity produces a set of CDL pattern-based 
properties. 

 
Fig. 4. Activity diagram overviewing our specification and analysis process 

 
– Proof Unit Construction (Fig.4.c): We proposed in [20] the Proof Unit (PU) con-
cept, which gathers all required data to perform proof activities, i.e. a reference to the 
model to be checked (MUS), the context models and the properties (CDL model) to 
be verified. The set of constructed PUs represents the set of requirements to be 
checked on the MUS to prove it is correct (cf. Fig.5). 
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– Model Under Study (Fig.4.d): It has to be simulated in order to use a formal verifi-
cation tool. For this, OBP produces set of error observers. The observers perform 
dynamic diagnosis and play the role of probes to locate the cause of an error. When a 
fault is located, it is necessary to modify the model and create or modify requirement  

The prerequisite of the methodology is the organization of the industrial specifi-
cations into two sets: (i) the design models that represent the MUS structure and 
behavior; (ii) the requirements that design models have to fulfill. This organiza-
tion is necessary to extract useful information about the context execution for a 
given requirement (conditions under which a requirement has to be fulfilled). In-
deed, in industrial requirement documents, this contextual information is very  
often implicit or disseminated in several documents and long discussions with 
engineers are usually needed to precisely understand the different contexts for the 
system and capture them in a model. Considering our case study, the given re-
quirement (Listing 1) can be decomposed and reordered into four sub-
requirements, stated as follow: 

R1: During initialization procedure, the S_CP shall associate an identifier to NC 
console (IHM), before dMax_cons time units.  

R2: After, the S_CP shall associate a generic device identifier to NE roles in the 
system (Device), before dMax_dev time units. 

R3: Each device returns a statusRole message to S_CP before dMax_ack time 
units. 

R4: The S_CP shall send an notifyRole message for each connected generic device, 
to each connected console. Initialization procedure shall end successfully, when 
the S_CP has set all the generic device identifiers and all console identifiers and 
all notifyRole messages have been sent. 

 

After this decomposition, the user can specify more easily these requirements with 
definition property patterns.  

We use the CDL language to represent the context, using actors and sequence dia-
grams, and all the requirements. The constructed CDL models reference elements of 
the MUS (events, variables). Elements of CDL models and MUS are at the same 
abstraction level. Moreover, we extract a formal specification describing the MUS’s 
behavior. This description is generally represented as a timed automaton so that it can 
be executed by a simulator after model transformations. Property patterns capture, 
with a textual format, types of properties translated from the requirement documents. 

It is obvious that providing all these verification proof units is not a trivial activity. 
It takes a great part of time and effort within a project. Besides, verification efforts 
made to check whether an implementation meets the requirements have to be capital-
ized. This capitalization captures the business logic to be used to redo the proof if the 
requirements and thus the implementation evolve over the development lifecycle. The 
definition of a general formal framework for the proof unit concept is out of the scope 
of this paper and left for future work. 

To carry out our experiments, we implemented the Observer Based Prover (OBP4) 
tool onto the Eclipse platform through plug-ins. OBP takes as input the MUS behav-
ior model and CDL models. OBP is an implementation of a CDL language translation 
                                                           
4 OBP is available (version 2.0) under EPL license at : http://gforge.enseeiht.fr/projects/obp 
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in terms of formal languages, i.e. IF2 [2] or FIACRE [15] language. IF2 is based on 
timed automata [1] extended to the asynchronous communicating process context. 
Work is in progress to finalize the translation into FIACRE language and thus take 
benefits from the TINA [14] model checker. The essence of a translational approach 
to semantics is to move to a technological space that has a precise semantics [3] and 
tools. As depicted in Fig.5, OBP leverages existing academic simulators and model 
checkers, as TINA, IFx [2] or CADP [8]. 

To handle the gap between CDL meta-model and the final DSLs (e.g. IF2 or FI-
ACRE) the translation has several stages. We defined an ad-hoc domain-specified 
transformation language in terms of ECore metamodel and define a Model to Model 
transformation chain. From CDL context diagrams, OBP tool generates a set context 
path automata which represent the set of the environment runs. OBP generates all the 
possible paths. Each path represents one possible interaction between model and con-
text. The OBP tool generates, with a similar model transformation technique, the 
observer automata from the properties. Each generated context path is transformed 
into an IF2 automaton which is composed with the MUS and the generated observer 
automata by the IFx simulator. To validate the component model, it is necessary to 
compose each path with the model and the observers. Each property must be verified 
for all paths. The accessibility analysis is carried out on the result of the composition 
between a path, a set of observers and the MUS. If there is a reject state reached of a 
property observer for one of paths, then the property is considered as false. 

 
Fig. 5. Proof Units transformation with OBP 

 
At present time, the input MUS of OBP (Fig.5) are imported currently with IF2 

format. To import models with standard format as UML 2, AADL [19] or SDL [4], it 
is necessary to implement adequate translators as studied in projects such as Top-
Cased5 or Omega6. The model driven developed tool OBP set out in this paragraph 
was used in several case studies which are summed up in the experiment following 
section.  
                                                           
5 http://www.topcased.org 
6 http://www-omega.imag.fr 
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5   Experiments and Results 

Our approach was applied to several embedded systems applications in avionic or 
electronic industrial domain. These experiments are carried out with our french indus-
trial partners. This section reports on six case studies (CS1 to CS 6). Four of the soft-
ware components come from an industrial A and two from a B. For each industrial 
component, the industrial partner provided requirement documents (use cases, re-
quirements in natural language) and the component executable model. Component 
executable models are described with UML, completed by ADA or JAVA programs, 
or with SDL language. The number of requirements in Table 1 evaluates the complex-
ity of the component. To validate these models, we follow the methodology described 
in section 4. So, we describe the following phases: property specification, context 
description and proof unit construction. 

Table 1. Industrial case study classification 

 CS 1 CS 2 CS 3 CS 4 CS 5
7 CS 6 

Modeling language SDL SDL SDL SDL UML2 UML2 
Number of code lines 4 000 15 000 30 000 15 000 38 0008 25 0009 

Number of requirements 49 94 136 85 188 151 

5.1   Property Specification 

Requirements are inputs of our approach. Here, the work consists in transforming 
natural language requirements into temporal properties. To create the CDL models 
with patterns-based properties, we analyzed the software engineering documents of 
the proposed case studies. We transformed textual requirements. We focused on re-
quirements which can be translated into observer automata. Firstly, we note that most 
of requirements had to be rewritten into a set of several properties (as shown in the 
S_CP case study along the paper). Secondly, model requirements of different abstrac-
tion levels are mixed. We extracted requirement sets corresponding to the model  
abstraction level. Finally, we observe that most of the textual requirements are am-
biguous. We had to rewrite them consequently to discussion with industrial partners.  

Table 2 shows the number of properties which are translated from requirements. 
We consider three categories of requirements. Provable requirements correspond to 
requirements which can be captured with our approach and can be translated into 
observers. The proof technique can be applied on a given context without combinato-
rial explosion. Non computable requirements are requirements which can be inter-
preted by a pattern but cannot be translated into an observer. For example, liveness 
properties cannot be translated because they are unbounded. Observers capture only 
bounded liveness properties. From the interpretation, we could generate another tem-
poral logic formula, which could feed a model checker as TINA. Non provable  
 

                                                           
7 CS 5 corresponds to the S_CP case study described partially in section 2. 
8 The UML model is implemented by 38 000 lines ADA program. 
9 The UML model is implemented by 25 000 lines JAVA program. 
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Table 2. Table highlighting the number of expressible properties in 6 industrial case studies 

 CS1 CS2 CS3 CS4 CS5 CS6 Average 
Provable  
properties 

38/49 
(78%) 

73/94
(78%) 

72/136
(53%) 

49/85
(58%) 

155/188
(82%) 

41/151
(27%) 

428/703 
(61%) 

Non-computable 
properties  

0/49 
(0%) 

2/94 
(2%) 

24/136
(18%) 

2/85 
(2%) 

18/188
(10%) 

48/151
(32%) 

94/703 
(13%) 

Non-provable 
properties 

11/49 
(22%) 

19/94
(20%) 

40/136
(29%) 

34/85
(40%) 

15/188
(8%) 

62/151
(41%) 

181/703 
(26%) 

 
requirements are requirements which cannot be interpreted at all with our patterns. It 
is the case when a property refers to undetectable events for the observer, such as the 
absence of a signal. 

For the CS5, we note that the percentage (82%) of provable properties is very high. 
One reason is that the most of 188 requirements was written with a good property 
pattern matching. For the CS6, we note that the percentage (27%) is very low. It was 
very difficult to re-write the requirements from specification documentation. We 
should have spent much time to interpret requirements with our industrial partner to 
formalize them with our patterns. 

5.2   Context Description 

After property definition, we had to link each property to environment scenarios. 
Here, the work consisted in transforming use cases into context with our CDL lan-
guage. One or several CDL contexts have been created according to the complexity of 
behavior contexts and to the environment actor number. Table 3 shows the number of 
paths obtained for different CDL models for the case study CS1. This number depends 
on alternative and parallel operators, actors, interactions used in the CDL model. We 
linked a set of properties related to a specific phase or scenarios at each CDL model. 
We note that the verification time can be long (for example, 20 minutes for CDL4 and 

CS1) because the compilation time for state graphs IFx generation for each context 
path. In the future work, we focus on path reduction and evaluating how paths can be 
equivalent with respect to a particular property. 

Table 3. Table highlighting the number of CDL and paths generated for CS1 

 CDL1 CDL2 CDL3 CDL4 CDL5 
Number of actors 1 3 3 5 3 
Number of path 3 128 82 612 96 
Time of verification (sec) 6 256 164 1224 192 

5.3   Proof Unit Exploitation 

In the case studies, for each CDL model, one proof unit is created. A proof unit enables 
to organize a set of observers and one context. For each path generated by OBP, one 
accessibility graph is generated and represents the set of all possible model executions. 
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A property is not verified by the tool if a “reject” observer automata state exists. For 
this, OBP produces set of error observers. During simulation execution, combinatorial 
explosion may appear. We do not resolve this point, but we propose this partial solution. 
It is necessary to create specific contexts in order to restrict the behaviors of the model. 
The solution is to initialize the system in specific configurations and to create specific 
CDL models which restrict scenario spaces with counters, actors, message parameters. 
So, partial verification is made on restricted scenario spaces. 

6   Discussion and Conclusion  

CDL is a prototype language to formalize contexts and properties. But CDL concepts 
can be implemented in another language. For example, context diagrams are easily 
described using UML 2. CDL permits us to check our methodology. In future work, 
CDL can be viewed as an intermediate language. Today, the results obtained using the 
currently implemented CDL language and OBP are very encouraging. For each case 
study, it was possible to build proof units which take CDL models as input and which 
generate sets of paths.  

6.1   Approach Benefits 

CDL contributes to overcome the combinatorial explosion by allowing partial verifi-
cation on restricted scenarios specified by the context automata. CDL permits to for-
malize contexts and non ambiguous properties. Property can be linked to whole or 
specific contexts. During experiments, we noted that some requirements were often 
described in the available documentation in an incomplete way. The collaboration 
with engineers responsible for developing this documentation has motivated them to 
consider a more formal approach to express their requirements, which is certainly a 
positive improvement. In some case study, 70% textual requirements can be rewritten 
more easily with pattern property. So, CDL permits a better formal verification ap-
propriation by industrial partners. 

Contexts and properties are verification data. The set of proof units gather all these 
data to perform proof activities and validate models. These data have to be “capital-
ized” if the implementation evolves over the development lifecycle. Proof units for-
malize proof contexts. It thus appears essential to study a framework to describe and 
formalize proof contexts as MDA components jointly describing the requirements to 
be checked and environment behaviors in which the model is plunged at the time of 
simulations and the formal analysis.  

6.2   Using the CDL Language 

In case studies, context diagrams were built, on the one hand, from scenarios de-
scribed in the design documents and, on the other hand, from the sentences of re-
quirement documents. Two major difficulties are raised. The first one is the lack of 
complete and coherent description of the environment’s behavior. Use cases describ-
ing interactions between the MUS (S_CP for instance) and its environment are often 
incomplete. For instance, data concerning interaction modes may be implicit. CDL 
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diagrams development thus required discussions with experts who have designed the 
models under study in order to explicit all context assumptions.  

The problem comes from the difficulty to formalize system requirements into for-
mal properties. These requirements are expressed in several documents of different 
(possibly low) levels. Furthermore, they are written in a textual form and many of 
them can have several interpretations. Others implicitly refer to an applicable configu-
ration, operational phase or history without defining it. Such information, necessary 
for verification, can only be deduced by manually analyzing design and requirements 
documents and by interviewing expert engineers. 

The use of CDL as a framework for formal and explicit context and requirement 
definition can overcome these two difficulties: it uses a specification style very close 
to UML and thus readable by engineers. In all case studies, the feedback from indus-
trial collaborators indicates that CDL models enhance communication between devel-
opers with different levels of experience and backgrounds. Additionally, CDL models 
enable developers, guided by behavior CDL diagrams, to structure and formalize the 
environment description of their systems and their requirements.  

Furthermore, constraints from CDL can guide developers to construct formal prop-
erties to check against their models. As a result, developers can formalize system 
requirements. Using CDL, they have a means to rigorously check whether require-
ments are captured appropriately in the models using simulation and model checking 
techniques. Nevertheless, property patterns will continue to evolve as we receive 
feedback from academia and industry about possible improvements.  

6.3   Property Proofs 

In the case studies, about forty significant requirements have been formally verified. 
These requirements were written by using the property language presented section 3, 
and then was translated automatically into IF2 observer automata. About 13% (non-
computable) of the requirements (cf Table 2) required manual translation. They did 
not match the safety and bounded response time translation pattern,. The 61% (prov-
able) are translated and afterwards verified automatically. For the others 26%, the 
requirements have to be discussed with the industrial partners to improve their use. 
Following that approach, we found, in two case studies (CS1 and CS5), an execution 
that didn’t meet the requirements. Each case study corresponds to an operational em-
bedded system. The classical simulation techniques could not permit to find these 
errors. 

6.4   Future Work 

One element highlight, working on embedded software case studies with industrial 
partners, is the need of formal verification expertise capitalization. Given our experi-
ence in formal checking for validation activities, it seems important to structure the 
approach and the data handled during the proof. For that purpose, we identified MDA 
components, called proof units, referencing all the data, models, meta-models, etc. 
necessary to the verification. The definition of such MDA components can take part 
in a better methodological framework, and afterwards a better integration of valida-
tion techniques in model development processes. Indeed, proof units themselves are 
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handled as models, and are managed like a product resulting from the specification 
activities. As a conceptual framework, they allow the activity and the knowledge to be 
capitalized by gathering the necessary data to the proof. Consequently, the develop-
ment process must include a step of environmental specification making it possible to 
generate sets of bounded behaviors in a complete way. This assumption is not for-
mally justified in this article but is based on the essential idea that the designer can 
correctly develop a software system only if he knows the constraints of use. This must 
be provided formally by the process analysis of the designed software architecture, 
using a framework of development process. Although the CDL approach has been 
shown scalable on several industrial case studies, the approach suffer from a lack of 
methodology. The handling of contexts, and then the formalization of CDL diagrams, 
must be done carefully in order to avoid the combinatorial explosion when generating 
linear context path to be composed with the observer automata. The definition of such 
a methodology will be addressed by the next step of this work. 

One essential point, dealing with model transformations, is the feedback obtained in 
the formal target technical space into the source one. We take advantages of model 
driven techniques and transformation traces in tooling to have validation feedbacks on 
source models. Current and future works are dealing with increasing diagnosis feedbacks 
to different users, including requirement managers and component model designers. 

In addition, work is still in progress at CDL level. It focuses on path reduction, 
evaluating how paths can be equivalent with respect to a particular property. This 
optimization aims at reducing the combinatorial explosion, allowing treating larger 
and larger applications. Otherwise, experiments shown that part of the requirements 
found in industrial specification documents were not translatable into property pat-
terns proposed by the approach. Several directions are followed to face the problem, 
one is to extend actual patterns, and another is to create other patterns. Implementa-
tion of experimental extended patterns is in progress. 
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Abstract. Domain-specific languages (DSL) are specialized modeling lan-
guages targeting a narrow domain. In this paper, we present the results of a re-
search project on visual DSLs set in an industrial context, using the domain of 
elevator controllers. After domain analysis and inception of new, abstract mod-
eling concepts a language prototype was developed, considering aspects such as 
usability, combination of visual and textual DSLs, and performance of gener-
ated code. We describe the challenges encountered during the project, such as 
defining a user-friendly concrete syntax or tool limitations, and analyze them in 
retrospective. The paper concludes with several metrics to support the findings. 

Keywords: Domain-specific language, visual, textual, code generation. 

1   Introduction 

Domain-specific languages (DSL) are specialized modeling languages that target 
narrow domains and provide organized abstraction over concepts in those domains. 
DSLs allow for managing complexity through abstraction, involving domain experts 
and developing software more efficiently than with general purpose programming and 
modeling languages (e.g. UML). Models based on such DSLs are typically used as 
input for code generation (model to text, or M2T) and model-to-model (M2M) trans-
formations, therefore elevating models from pure documentation to first-class citizens 
of software development. Visual DSLs, as opposed to textual DSLs, are advantageous 
for modeling graphs and complex hierarchies. The richness of a truly visual represen-
tation can further improve the modeling experience and efficiency, and increase 
model expressiveness. 

However, the development of visual DSLs and their introduction into an organiza-
tion is typically a labor-intensive task, even with today’s available DSL workbenches. 
Contributing factors can be limited experience of DSL authors, difficulties to find 
appropriate and usable visual representations, complexity of implementing them, 
customizing the tool chain, etc. 

The goal of this research project was to develop a visual DSL set in an industrial 
context from inception to a finished product to gain more experience with model-
driven development, identify pitfalls, verify previous assumptions and findings, col-
lect metrics and evaluate the results. We chose the domain of elevators for several 
                                                           
* Empirical results category paper. 
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reasons. 1) Elevator controllers represent the application domain of embedded control 
systems which are very relevant to Siemens, 2) the domain is relatively small but non-
trivial and can be comprehended in an acceptable amount of time, and 3) a software 
elevator simulator can be developed with relative ease to eliminate the need for ex-
pensive hardware. 

In this paper, we will first give a short introduction to the elevator controller do-
main, our elevator simulator and the general architecture of the DSL. After that, rele-
vant challenges and findings during the development of the DSL will be presented. 
The paper will end with an evaluation of gathered metrics to better substantiate some 
of the findings. 

2   Elevator Controllers as Research Subject for DSLs 

Elevator controllers control the movement of one or more elevator, which are grouped 
together in elevator banks. High-level aspects of controlling an elevator bank consist 
of opening/closing doors, accelerating/decelerating elevator car and reacting to floor 
and car calls (buttons pressed on the floors outside respectively inside the car). The 
first two aspects can be solved for each elevator individually but responding to floor 
and car calls requires synchronization between elevators. 

Serving floor calls involves the concept of ‘committed direction’. The committed 
direction is the direction an elevator car will travel after the next stop and is not nec-
essarily the same as the current traveling direction. Fig. 1, a screenshot from our ele-
vator simulator, shows passengers waiting on the 1st, 3rd, and 5th floor wanting to 
travel up, down and down respectively. The committed direction is shown by the 
arrow inside the elevator. Under normal circumstances, passengers will only enter an 
elevator car whose committed direction is the same as their desired travel direction. 

 

 

Fig. 1. Elevator simulator showing concepts of moving and committed direction 
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The main sources of complexity in elevator controllers are the optimized assignment 
of floor calls to individual controllers, the coordination of moving and committed direc-
tion, and opening doors. Beyond a regular operating mode, elevators typically support 
several maintenance and emergency modes, or special operating modes such as the 
‘Sabbath’ mode (elevator automatically stops at each floor and continuously travels up 
and down a building). 

According to [9], in regular operating mode elevators and passengers need to fol-
low these rules: (1) Car calls always take precedence over floor calls, (2) an elevator 
must not reverse its direction of travel with passengers in the car, (3) an elevator must 
stop at a passenger’s destination floor, (4) passengers wishing to travel in one direc-
tion must not enter an elevator car committed to travel in the opposite direction, and 
(5) an elevator must not open its doors at a floor where no passengers wish to  enter or 
leave the car. 

For the purposes of this research project, an elevator simulator was developed that 
allows for plugging in different elevator controller implementations, which will be 
generated from visual models. Controllers are invoked periodically by the simulator 
and can query the simulator for the current elevator and building status. Controllers 
can send elevator cars to target floors, set their committed direction and request that 
doors be opened. The low-level, but security-relevant functionality of controlling the 
movement of elevator cars (acceleration and deceleration) and door operation (delay-
ing and closing) of doors is built into the simulator. Furthermore, the elevator gener-
ates random traffic patterns in a building by using a set of configuration parameters, 
such arrival and exit rate. 

3   DSL Tooling Architecture 

This section describes the applied technologies and the resulting architecture of the 
elevator controller DSL. The most influential choice was to use the Graphical Model-
ing Framework (GMF) as workbench for the visual part of the DSL, which we found 
the most powerful of royalty free tools during an evaluation of workbenches for visual 
DSLs. GMF is part of the Eclipse Modeling Project initiative [1]. Table 1 explains the 
purpose of each applied technology. 

Table 1. Applied technologies 

Technology Description 
Graphical Modeling Framework (GMF) Eclipse-based workbench for visual DSLs 
Eclipse Modeling Framework (EMF) Underlying (meta) model library 
Graphical Editing Framework (GEF) Underlying library for editors 
Java Emitter Templates (JET) Code generation, model-to-text 
openArchitectureWare Xtext Parser for mini scripting language 
openArchitectureWare Xpand Code generation for scripting language 
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Fig. 2 shows the complete DSL tool chain. 1) A JET template processes an elevator 
controller model, during which 2) condition and action scripts (explained below)  
are passed on to an Xtext parser and 3) Xpand generator template. 4) The target  
platform-specific output is returned to the JET template, which 5) combines both the 
output from the model transformation and the script output in the generated controller. 
6) The controller is then compiled and can be loaded by the elevator simulator. 

 
Fig. 2. Tool chain from model to execution in simulator 

4   Domain Engineering 

The power of domain-specific languages comes from the abstractions incorporated in 
the modeling concepts. These abstractions make modeling more intuitive and efficient 
than manually writing code for a target platform. Typically in DSL projects, these 
abstractions can be elicited from domain experts, technical literature, or by analyzing 
existing software. 

In absence of elevator controller specialists, analysis of literature and of several 
software elevator simulators did not reveal any high level abstractions that could be 
used in a visual modeling language. Therefore, we incepted three abstract modeling 
concepts: State machine, call lists and call list projections. For a better understanding, 
we provide an actual screenshot of a model in Fig. 3. 

4.1   Choice of Diagram Type – State Machine 

The diagram type of a visual DSL is a combination of visual, representational ele-
ments and some of its semantics. Analysis of existing DSLs (e.g. as described in [2]) 
yielded frequently used diagram types, which are presented in Table 2. Some DSLs 
are actually a mix of two or more types, or have other visual enhancements, but one 
diagram type typically dominates and determines the character of a DSL. It is no 
coincidence that the general purpose modeling language UML contains entity rela-
tionship, state and activity diagrams. Other UML diagram types such as use case or 
sequence diagrams are rarely encountered in DSLs because they lack the precision of 
those other diagram types [8], making them less suited for model transformations and 
code generation. 
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Fig. 3. Screenshot of a regular mode controller (29 lines of TSL script code not shown) 

Table 2. Frequently used diagram types of visual DSLs 

Style Description 
Entity relationship diagram Static structures consisting of related elements.  

Especially well-suited for cyclical graphs but also to 
hierarchical trees limited in size. 

Tree diagram Strictly hierarchical structures. 
Activity diagram Sequential workflows, with actions, decisions, loops 
State diagram States connected by transitions, which are guarded 

by conditions and triggered by events. 
User interface editor Editor for graphical user interfaces, XAML for  

Windows Presentation Foundation, etc. 
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Elevator systems provide many different types of events, such as door status changes, 
floor or speed changes, and pressed or released call buttons. Many decisions an elevator 
controller needs to make strictly depend on the status of the elevator, e.g. buttons inside 
the car are pressed so the elevator first needs to drop of passengers before responding to 
buttons pressed on the outside floors. Therefore, a state diagram with an underlying 
state machine concept was deemed the most appropriate for a visual elevator controller 
DSL. This was further confirmed through whiteboard exercises. 

Transitions in a state machine require trigger events. Several events are provided 
by the elevator, such as DoorOpened, FloorChanged, CarStopped and others. 

4.2   High-Level Concepts – Call Lists and Call List Projections 

A call list is a logical construct, a dynamic list that contains calls (of any type) and 
sorts them ordered by floor. Every elevator will have one call list for assigned floor 
calls and one for its own car calls. Call list projections are logical filter mechanisms 
that aggregate calls from one or more input call lists, and sort and filter calls con-
tained in the lists according to some static settings and according to the elevator state. 
For example, a call list projection might filter out any calls that do not lie ahead in 
moving direction of an elevator car, or another one might only let through floor calls 
pointing the opposite direction as the elevator moving direction (e.g. floor call point-
ing down when elevator is moving upwards). 

Both call lists and call list projections are event sources and make more events 
available beyond the events provided by the elevator, namely CallAdded and CallRe-
moved. Therefore, events from call lists and call list projections can be used as trigger 
events for transitions. 

5   Challenges during Development of Visual DSL 

During the development of the DSL and the code generator, we encountered several 
hurdles. Many of the challenges were caused by a steep learning curve of the underly-
ing technologies, especially of GMF and the technologies it is based upon, EMF and 
GEF. Because GMF ties together these independently developed technologies, DSL 
authors need to be proficient in each one of those. The last section in this paper is 
dedicated to metrics, which will go into more detail about ramp-up efforts. The re-
mainder of this section will cover challenges that are more generally applicable to 
DSL development and less dependent on technology choices. 

5.1   Defining and Implementing an Efficient Concrete Syntax 

Structural features for concrete syntaxes include containment shapes (elements visibly 
containing other elements), explosion and decomposition (two forms of diagram parti-
tioning into subdiagrams). In [5], the author identifies three key challenges to designing 
modeling languages: (1) The need to simultaneously support different levels of preci-
sion, (2) the need to represent multiple different but mutually consistent views of certain 
model elements, and (3) the graph-like nature of most modeling languages. Solving 
these challenges often requires using structural language features appropriately. 
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Our experience from working with several visual DSL workbenches showed that 
not all DSL workbenches support the same set of structural features and that there are 
great differences in ease of use of those workbenches. Table 3 gives a brief overview 
of capabilities of three well-known DSL workbenches: GMF, Microsoft DSL Tools 
[14], and MetaCase’s MetaEdit+ [15]. 

Table 3. Support for structural concrete syntax features in DSL workbenches 

Structural Feature GMF v3.4.1 MS DSL Tools '08 MetaEdit+ v4.5 
Containment shapes Yes, free or  

ordered layout 
Yes, list layout Yes, free layout 

Explosion (subdiag. 
same type) 

Yes No Yes 

Decomposition 
(subdiag. other type) 

Yes, but requires 
much manual work 

No Yes 

Multi-element 
connectors 

No No Yes 

 
During the conception phase of the elevator controller DSL, several prototypes for 

concrete syntaxes were evaluated on a whiteboard. The most favored concrete syntax 
candidate used decomposition, where a double click on a certain element type in a 
diagram would open up a subdiagram of a different diagram type. Unfortunately, 
support for decomposition is still very weak in GMF and requires an elaborate work-
around [6]. Because of limited resources, a simplified concrete syntax that combines 
two modeling aspects in one diagram type was chosen. 

GMF posed some further challenges during the creation of the concrete syntax. 
GMF provides a lot of flexibility for mapping an ecore metamodel to a concrete syn-
tax, or even multiple concrete syntaxes. The example in Fig. 4 shows how a connector 
in concrete syntax might be derived from an association, or from an explicit associa-
tion class using containment and association. 

 

 

Fig. 4. Two metamodel association concepts mapped to a connector in concrete syntax 

In GMF, the mapping model binds together three independent (and independently 
edited) artifacts: The domain model, the graphical definition model, and the tooling 
definition. The mapping model provides a large and flexible set of options how 
metamodel elements, graphical definitions and tooling definitions can be combined. 

The trade-off for such flexibility is the inherent complexity. Despite basic support 
through derivation wizards, it is difficult to identify the correct settings for advanced 
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features in a concrete syntax and most of the time we had to develop features incre-
mentally in minimal steps with immediate testing. 

In comparison, other DSL workbenches are more restrictive how a particular 
metamodel can be mapped to a concrete syntax and the metamodel to a large degree 
already determines what the concrete syntax will look like. For example, in MS DSL 
Tools, the concrete syntax is defined in the same diagram as the metamodel. While 
this facilitates the creation of a DSL in general, the downside is that DSL authors will 
more likely be influenced to adapt the metamodel to the concrete syntax capabilities 
of the DSL workbench. 

5.2   Customization of DSL and DSL Editor 

Unlike textual concrete syntaxes, visual concrete syntaxes provide a much richer 
feature set that can be used to design a usable, efficient, intuitive modeling language. 
Basic feature include nodes (rectangles, circles, icons, etc.), edges (lines, arrows), 
regions (complex shapes made up of primitives), decorators (icons, labels, etc.) [7]. 
Many DSLs require customization of visual elements and behavioral adaptation (e.g. 
conditional display of decorators). Features for concrete syntax customization pro-
vided by DSL workbenches are complementary to the structural features described 
earlier. 

The number and complexity of built-in customization features greatly depends on 
the DSL workbench. Products such as GMF and Microsoft DSL Tools do not include 
as many or as complex features because DSL authors can implement them manually 
using the underlying open and documented frameworks. Workbenches without such 
open frameworks, like MetaEdit+, therefore provide more customization possibilities 
that are readily accessible from graphical editors, without the need for programmatic 
extensions and manual customizations. 

In the case of the elevator controller DSL, these customizations included (1) read-
only attributes derived from attribute values of referenced objects, (2) propagating 
attribute and reference change notifications, (3) initializing model graphs with ele-
ment instances, (4) pre-populating diagrams, (5) and context menus. 

Most customizations required changes outside of the model artifacts graphical 
definition, tooling definition, mapping model, and had to be implemented manually in 
a time-consuming fashion. For example, changes (1, 2) required code modifications in 
the object model generated from the metamodel, whereas changes (3, 4) require code 
modifications to the generated diagram editor. 

6   Transition Scripting Language 

Transitions in the modeled state machine require guard conditions and actions. Early 
on it was determined that it would be very difficult to model these visually, but rather 
that a textual representation was more appropriate. During the first project iteration, 
conditions and actions were merely Java code that was passed through by the code 
generator unchanged into the generated elevator controller. 
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The goal of a later iteration was to not only generate Java-based elevator control-
lers but also to target a native C platform by implementing a second code generator. 
Native C platforms are much more common for embedded devices and metrics for 
code generation results would become more meaningful. This in turn caused problems 
because the scripts stored inside transitions were Java platform-specific and could not 
easily and reliably be transformed into valid C code. 

This challenge prompted the introduction of a mini textual scripting language spe-
cialized for transition conditions and actions. The transition scripting language (TSL) 
is therefore a small textual DSL used inside the larger visual elevator controller DSL. 
A newly introduced Xtext-based parser component parses TSL scripts into abstract 
syntax trees, from which a platform-specific Xpand-based generator template will 
generate the appropriate output. 

The introduction of a textual DSL raises the following concern: If users of the vis-
ual DSL, who are thought to not necessarily be programmers, have to develop textual 
scripts, where is the advantage of having a visual DSL in the first place and would 
writing these scripts be too challenging? The next section will address these concerns. 

6.1   Simplicity of Transition Scripting Language 

The TSL was purposely designed to have a minimal syntax and a minimal API. Table 
4 demonstrates several expressions and statements from actual controller models. The 
scripting language’s syntax is very similar to other scripting languages and features 
objects, properties, enumerations, static methods, integer constants and basic Boolean 
operators. However, the concepts offered by the scripting language are reduced to the 
absolute minimum required to build elevator controllers (e.g. no variables, no type 
declarations, namespaces, limited operators, no assignments, etc.). Therefore, master-
ing such a minimal scripting language and the available API will require significantly 
less effort than learning a more complex language like Java or C#. 

Table 4. Examples of scripts for transition conditions and actions 

AssignedFloorCalls.Size != 0 || 
  ElevatorCalls.Size != 0 

CallsAhead.Size != 0 &&  
   ElevatorDirection == Direction.Up 

Conditions 
(expressions)

Elevator.Floor == Building.FloorCount – 1 

SetElevatorTarget(CallsAhead.First); Actions 
(statements) SetElevatorCommittedDirection(Direction.Up); 

 

 
TSL has a very simple C-like grammar, and an excerpt is shown in the listing be-

low. Xtext uses EBNF-style grammars but is not 100% compliant with ISO standard 
14977 [4]. Production rules in Xtext parsers are contained in the grammar itself, 
which makes editing the grammar and defining the parse tree very easy. 
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Statement: ex=PrimaryExpr ";"; 
  

PrimaryExpr: niex=NonInfixExpr (iex+=InfixExpr)*; 
 

InfixExpr: op=InfixOp ex=NonInfixExpr; 
 

NonInfixExpr: ID | INT | ParenthesizedExpr |  
PropertyAccessExpr | InvocationExpr | UnaryExpr; 
 

UnaryExpr: op=PrefixOp ex=PrimaryExpr; 
  

ParenthesizedExpr: "(" ex=PrimaryExpr ")"; 
  

PropertyAccessExpr: obj=ID "." prop=ID; 
  

InvocationExpr: method=ID "(" (args=ArgumentList)? ")"; 
 

ArgumentList: ex+=PrimaryExpr ("," ex+=PrimaryExpr)*;  
  

InfixOp: "||" | "&&" | "==" | "!=" | "<" | ">" | 
"<=" | ">=" | "+" | "-" | "*" | "/" | "%"; 
 

PrefixOp: "!" | "-"; 

6.2   Use of Textual DSLs Inside Other Visual DSLs 

Combining modeling languages has been described many times [12 and 13], whether 
visual DSLs, textual DSLs or a combination thereof. Nevertheless, the argument, that 
using a textual DSL within a greater visual DSL would invalidate the concept of hav-
ing a visual DSL in the first place, prompted us to find and empirically study other 
products that incorporate both visual and textual DSLs in a similar fashion as the 
elevator controller DSL. Two of them we document here. 

 
UML Class Diagrams. The textual Object Constraint Language (OCL) is used to 
describe constraints on class diagrams that otherwise cannot be expressed through the 
capabilities of the class diagram notation. For example, OCL is used in several GMF-
related graphical editors to define integrity checks and automatically derived values in 
domain models. 
 
Siemens SIMATIC STEP 7. The SIMATIC STEP 7 automation platform allows for 
creating control software for programmable logic controllers. STEP 7 in fact provides 
several DSLs, out of which three are used for developing programs: Ladder logic 
diagrams, function block diagrams, and statement lists (textual). These languages are 
defined by IEC 61131 [10]. 

While the combination of visual and textual DSLs in STEP 7 is not exactly the 
same scenario as with the elevator DSL, we believe that it still serves as a good ex-
ample where different types of DSLs are used to achieve the higher efficiency by 
allowing users to choose and model in the most appropriate language. 
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7   Optimization of Code Generator for Native C Platform 

A commonly heard argument against using domain-specific modeling is that software 
generated from models is not as performant or requires more resources than manually 
written and optimized software. Indeed, the code generator developed during the first 
iteration of the elevator controller DSL targeted the Java platform and a custom de-
veloped domain framework, which supported the generated code. 

The domain framework for the Java platform provided software components that 
directly mapped to the abstract concepts used in the high-level modeling language, 
such as a dynamic event registration and invocation mechanism, dynamic call lists 
and projections, a rich object model and more. While the development of the domain 
framework and the code generator were straightforward, the result principally was ill-
suited for embedded platforms, which typically require frugal use of resources: Mem-
ory consumption of dynamic array lists is not easily predictable, call-by-name method 
invocations are slower than statically linked invocations, and object models consume 
more memory than basic structures such as arrays. 

One goal of the elevator controller DSL project was to examine the potential for 
optimization of generated code. Therefore in a later iteration, an optimized domain 
framework based on a native C platform and a code generator targeting this domain 
framework were developed. The remainder of this section describes the applied opti-
mization techniques. 

7.1   Avoiding Dynamic Memory Allocation 

The first optimization during the implementation of the C domain framework (which 
to some degree was a port of the Java domain framework to C) was to avoid, where 
possible, dynamic memory allocations and to move all remaining allocations into the 
initialization code. As a result, the memory footprint of the elevator controller re-
mains constant at runtime. 

7.1.1   Static Linking of Event Chains 
The Java domain framework provided a dynamic event registration and invocation 
mechanism. Because elevator controllers do not require reconfiguration at runtime, 
the event mechanism could completely be replaced with statically linked method 
invocations generated by the code generator. Generated empty event handlers and 
invocations thereof are of no concern because they will be detected and pruned in a 
later step by the C compiler. 

7.1.2   Optimized Queries for Call List Projections 
The filter algorithm for call list projections is fairly complex because of the many 
independent input variables. Static, configuration-time input variables are projection 
direction (same direction, opposite direction), projection coverage (ahead, behind, 
all), and maximum elevator acceleration/deceleration. Runtime input variables are 
elevator position, elevator moving direction, elevator speed, and door status. 

To simplify and optimize filter queries, the C code generator generates filter ex-
pressions specific to each call list projection element by eliminating checks for con-
figuration-time input variables and hardcoding their logic instead. 
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7.2   Minimal Status Update 

As it is common practice for components in embedded systems, the generated eleva-
tor controller will query the elevator simulator during its invocation cycle and update 
its internal status. The simulator provides many information types such elevator 
speed, weight, position, button and door status. However, depending on the modeled 
elevator controller, not all of these information types are needed as a less sophisti-
cated elevator controller might not take car weight (~number of persons in car) into 
consideration. 

Therefore, as a further optimization the C code generator applies a static code 
analysis step to transition scripts to identify what information types are truly required, 
and eliminates memory allocations and query/update operations for those that are not. 

Obviously, the above described optimizations are not necessarily applicable to 
other domains and target platforms. Additionally, as we will document in the next 
section about project metrics, the amount of effort spent on optimizing a code genera-
tor was significantly higher than writing a single implementation manually. However, 
this optimization process shall serve as an example that it is possible to optimize code 
generators such that they create output with similar attributes as manually written 
code. 

8   Metrics 

This section presents the metrics that were collected during and after the elevator DSL 
project. Table 5 shows the effort spent on the creation of the DSL tool chain. Promi-
nent is the large ramp-up effort to learn the GMF, Xtext and Xpand technologies. 

After completion of the DSL, we performed an experiment where a domain expert 
(one of the authors) and a novice to the elevator domain (still an expert developer) 
would build elevator controllers for the regular operating mode. First, controllers were 
built using the elevator controller DSL, then manually from scratch. The results 
shown in Table 6 suggest that even novices will significantly gain efficiency when 
developing elevator controllers. 

Table 5. Effort spent during creation of Elevator Controller DSL 

Work item Effort (days) 
Domain frameworks 3.0 (Java) + 2.5 (C) = 5.5 

GMF ramp-up 4.5 

Xtext/Xpand ramp-up 4.0 

Visual DSL editor 2.5 

Elevator script DSL 3.0 

Code generation 3.0 (JET) + 2.5 (Xpand) = 5.5 

Total 25.0 
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Table 6. Effort for creation of a elevator controller by domain expert vs. domain novice 

Development method Effort expert (hours) Effort novice (hours) 
Using Elevator DSL (therefore 
works on both target platforms) 

1.0 5.0 

Manually developed against C 
domain framework 

1.5 - 

Manually developed for C  
platform (no domain framework) 

4.0 8.0+ (out of time, 
believed to be at least 
12h until complete) 

 
The last metrics are dedicated to measuring the efficiency of the generated code. 

The static analysis results in Table 7 compare lines of code for generated controllers 
with manually implemented controllers (excluding JNI and other overhead). If we 
subtract the effect of intentional code duplication for optimization, we observe a two-
fold increase in code size. However, the relative difference in binary size is consid-
erably smaller, due to runtime library overhead. 

Table 7. Efficiency of generated code 

Metric DSL-based controller Manually dev. controller 
Static analysis 
LOC     791 domain framework 

+  462 generated controller 
=1253 total 

508 controller 

Binary size 56kB 40kB 
Implementation effort 4 call list projections, 

5 states, 13 transitions and 
29 lines of TSL script 
(conditions, actions) 

508 lines of C code 

Runtime analysis 
Avg. instructions/cycle 184 223 

 
To judge the runtime behavior of generated code vs. manually written code, both 

controller versions were annotated with performance counter code. Both code bases 
were manually reviewed to ascertain that the injected code would not favor either 
version. Then, three simulations with identical settings were executed for each con-
troller and the results averaged.  The runtime analysis results in Table 7 came indeed 
as a little surprise: The generated code required 17% less instructions per invocation 
cycle than the manually developed controller. Further investigation showed that the 
manual controller, which we thought was built fairly optimal though not using an 
explicit state machine concept, needs to execute more filter and search routines than 
the generated controller, which is built on a true state machine and therefore optimally 
reduces the number of conditions that need to be checked. 
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9   Further Research and Need for Improvements 

Having completed the elevator controller DSL, we see room for improvements and 
further research. In the current version, TSL scripts are edited in a regular textbox, 
which means that users have no auto-completion support and syntax errors are not 
reported until model validation in a later step. Xtext technology allows for generation 
of auto-complete capable editors, which would have to be integrated with the visual 
editor. This measure would greatly increase the usability of the embedded scripting 
language and immediately reduce syntax errors. 

A critical point is the disconnect between controller models at design-time and 
their behavior at execution time. The underlying domain frameworks print out tracing 
information to the console, which is currently the only way to debug race conditions 
in controller state machines. According to [3], model level debugging is still a very 
young field with little tool support. MetaEdit+ supports a model-level tracing mecha-
nism but no true step-by-step debugging on the model level. We believe that ad-
vancements in this field are crucial for the broader adoption and warrant further  
research. 

Finally, having worked with other DSL workbenches before, the efforts for GMF 
ramp-up and editor customization seem very high. A future case study could port the 
elevator controller DSL to other visual DSL workbenches, such as MS DSL Tools or 
MetaCase’s MetaEdit+, to compare learning curve, customization support and inte-
gration of an embedded scripting language between tools. 

10   Summary 

In this paper we presented the development of a DSL for elevator controllers set in an 
industrial context. GMF, JET and openArchitectureWare Xtext/Xpand were used to 
build the DSL tool chain. 

A thorough domain analysis yielded important abstract concepts not found in exist-
ing elevator controller implementations: State machines as underlying diagram type, 
and call lists and call list projections as event sources. Among the challenges during 
development were a steep learning curve, mapping the metamodel to a concrete syn-
tax, and customization of DSL and DSL editor.  

The evaluation of our elevator controller case study supports previous findings that 
model-driven development and domain-specific languages increase productivity. For 
development effort, we measured efficiency gains up to 75%, which partly depend on 
the previous domain knowledge of the user. With small additional effort, we introduced 
support for a second target platform through a platform-specific code generator. 

During the evaluation of code generation efficiency, the runtime behavior of gen-
erated code actually was slightly better than that of manually developed code. We 
believe the determining factors were a justifiable investment into the underlying do-
main framework and the optimizations implemented in the code generator. 
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the software may need to be reconfigured at run time (e.g., software uploaded
or removed) in order to handle new environmental conditions.

Specifying the requirements for DASs is a challenging task because of the in-
herent uncertainty associated with an unknown environment. This paper presents
an approach in which goals [1] are used to systematically model the requirements
of a DAS. In particular, we use a variation of threat modeling (see, e.g., [2]) to un-
cover places in the model where the requirements need to be updated to support
adaptation. In this case, threats correspond to changes in the environment that
may require the software to dynamically adapt at run time in order to maintain
high-level goals. This process results in a goal-based requirements model that ex-
plicitly captures where adaptations are needed, documents the level of flexibility
supported during adaptation, and takes into account enviromental uncertainty.

This paper builds directly on our previous work. Previously, we observed that
a DAS is conceptually a collection of target systems, each of which handles a
different combination of environmental conditions [3]. As such, we can model
the requirements of individual target systems and the adaptive logic that transi-
tions between the configurations as separate concerns. The LOREM process [4]
describes how to use this strategy to develop goal models to represent the indi-
vidual target systems and the adaptive logic. However, LOREM does not support
requirements engineers in identifying the requirements for these target systems.
Recently, we introduced the RELAX language, a textual language for dealing
with uncertainty in DAS requirements that allows requirements to be temporar-
ily relaxed if necessary to support adaptation [5]. This flexibility is required,
for example, if non-critical requirements must be partially neglected in order to
satisfy short-term critical requirements. RELAX, however, was not integrated
with modeling approaches used in the requirements engineering community.

This paper, therefore, makes three main contributions. Firstly, it gives a pro-
cess for identifying requirements for target DAS systems that can then be mod-
eled using a process such as LOREM. Secondly, it integrates our previous work
on RELAX with goal modeling. Finally, the paper presents a novel application
of threat modeling to systematically explore environmental uncertainty factors
that may impact the requirements of a DAS.

We illustrate our approach by applying it to Ambient Assisted Living (AAL),
an adaptive system providing assistance to elderly or handicapped persons in
their homes. The remainder of the paper is organized as follows. Section 2 in-
troduces AAL as our running example and presents our approach, including
the stepwise process for creating the goal and uncertainty models. Section 3
describes the details of applying the approach to the AAL system. Section 4
discusses related work. Finally, in Section 5, we present conclusions and discuss
future work.

2 Modeling Approach

A key characteristic of a DAS is that there may be numerous approaches to realiz-
ing its high-level objectives, where a specific set of run-time environmental condi-
tions will dictate which particular realization is appropriate at a particular point
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in time. In order to support this type of variation, this paper uses goal modeling
to describe requirements of a DAS, since goal-based modeling offers a means to
identify and visualize different alternatives for satisfying the overall objectives of
a system [1,6]. The alternatives may be due to different tradeoffs between non-
functional goals (e.g., performance, reliability, etc.); and, in the case of DASs, dif-
ferent goal paths may be due to uncertainty factors in the environment. As such,
goal-based modeling offers a means to explicitly capture the rationale for how and
why goals and requirements are decomposed (as represented by alternate paths
of goal refinements). Furthermore, requirements identified through goal modeling
can be used as the basis for model-driven engineering (MDE) [1,7,3]. The ratio-
nale for a particular path of goal refinement can be captured in a goal model and
may be used as constraints and/or guidance during the MDE process [3].

2.1 Running Application

To validate our approach, we conducted a case study provided by Fraunhofer
IESE in the form of an existing concept document describing a smart home for
assisted living. The concept document was written previously and independently
of this research. We present an excerpt of the document here to serve as a running
example for introducing our approach.1

Mary is a widow. She is 65 years old, overweight and has high blood pres-
sure and cholesterol levels. Mary gets a new intelligent fridge. It comes with 4
temperature and 2 humidity sensors and is able to read, store, and communicate
RFID information on food packages. The fridge communicates with the ambient
assisted living (AAL) system in the house and integrates itself. In particular, it
detects the presence of spoiled food and discovers and receives a diet plan to be
monitored based on what food items Mary is consuming.

An important part of Mary’s diet is to ensure minimum liquid intake. The
intelligent fridge partially contributes to it. To improve the accuracy, special
sensor-enabled cups are used: some have sensors that beep when fluid intake is
necessary and have a level to monitor the fluid consumed; others additionally
have a gyro detecting spillage. They seamlessly coordinate in order to estimate
the amount of liquid taken: the latter informs the former about spillages so that
it can update the water level. However, Mary sometimes uses the cup to water
flowers. Sensors in the faucets and in the toilet also provide a means to monitor
this measurement.

Advanced smart homes, such as Mary’s AAL, rely on adaptivity to work
properly. For example, the sensor-enabled cups may fail or Mary may forget to
drink, but since maintaining Mary’s hydration levels is a life-critical feature, the
AAL should be able to respond by achieving this requirement in some other way.

2.2 Overview of Approach

Our approach follows the principles of the model-based approach described
by Zhang and Cheng [3] which considers a DAS to comprise numerous target
1 See www.iese.fraunhofer.de/fhg/iese/projects/med projects/aal-lab/index.jsp
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systems, each of which supports behavior for a different set of environmental
conditions (posed by the environmental uncertainty). At run time, the DAS
transitions from one target system to another, depending on the environmental
conditions. While the earlier work emphasized design-phase models, this paper
focuses on the identification of the goals and requirements for each of the target
systems.

Scope of Uncertainty. Before we start the goal derivation process, we identify
the top-level goal for the system; this goal should state the overall objective for
a system, while not being prescriptive for how to realize the objective. And we
also create a conceptual domain model (as a UML class diagram) that identifies
the key physical elements of the system and their relationships (e.g., sensors,
user interfaces); see Figure 1. It also includes actors that may be human (e.g.
Person) or software-controlled (e.g. iCup, an intelligent cup with sensors). These
elements identify the environmental conditions and the uncertainty that must
be handled by the system. In essence, the domain model serves to scope the
uncertainty for the system; that is, elements in the domain model are either the
sources of uncertainty or they are used to monitor environment conditions that
pose uncertainty. (In general, it is not practical nor useful to model every element
in the environment, particularly, if they play little or no role in the functionality
of the system.)

Target System Modeling. From the top-level goal, we develop a goal lattice
using a process of goal refinement, where the first level of subgoals are termed
high-level goals, representing the key services to be provided by the system. This
refinement process is informed by the conceptual domain model and any problem
descriptions, use-cases or other sources of information elicited about the problem
to be tackled by the system under development (herein referred to as system). We
use KAOS, a goal-oriented requirements engineering language [1]; one influencing
factor for using KAOS is its support for threat modeling. In KAOS, goals describe
required properties of a system that are satisfied by different agents such as
software components or humans in the system’s environment. Goal refinement
in KAOS stops when responsibility for a goal’s satisfaction can be assigned to
a single agent. KAOS defines such a goal as a requirement if satisfied by a
software agent or an expectation if satisfied by a human agent. Requirements
and expectations form leaves of the goal lattice. It should be noted that the
KAOS definition of requirement is specific to KAOS but, for consistency sake,
we shall use the KAOS convention in the remainder of this paper.

Figure 2 gives a goal model for the AAL system, where the top-level goal is
to keep Mary healthy (i.e., Maintain[Health]). The right leaning parallelograms
represent goals, while the left leaning parallelograms represent KAOS obstacles
that act to confound goal satisfaction. Considering the goals first, requirements
and expectations are denoted as goals with embolded outlining. The hollow cir-
cles represent goal refinement junctures, where multiple edges represent AND
goals (all subgoals must be satisfied in order to satisfy a parent goal). Goals can
also be OR-ed, denoted by multiple arrows directly attached to a parent goal;
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Fig. 1. Conceptual domain model

an example appears in Figure 5. Goals can be elaborated to provide a number of
attributes including a definition. The dashed box attached to the Maintain[Health]

goal shows its definition formulated as a conventional SHALL statement.2 Fi-
nally, agents are represented by hexagons. The network of goal-related elements
form a goal lattice.

Identifying Uncertainty. We use a combination of bottom-up and top-down
strategies to identify uncertainty. We start by assessing the goal lattice in a
bottom-up fashion, looking for sources of uncertainty (i.e., elements in the do-
main model) that might affect the satisfaction of the goals. When looking for
mitigation strategies for dealing with the uncertainty, new (high-level) goals may
be introduced that may, in turn, uncover other sources of uncertainty (thus cor-
responding to top-down uncertainty discovery).

2 SHALL statements are commonly used to specify requirements, indicating a contrac-
tual relationship between the customer and the developer as to what functionality
should be included in the system.
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Fig. 2. Initial refinement of goals to keep Mary hydrated

Previously, threat modeling has been used to identify threats that might ex-
ploit (security) vulnerabilities of system assets [8,9]. In this current work, we
introduce a variation of threat modeling to identify uncertainty. More specifi-
cally, in the case of DASs, the “threats”are the various environmental conditions
(or the impact of environmental conditions) that pose uncertainty at develop-
ment time and thus may warrant dynamic adaptation at run time to ensure
acceptable behavior. The obstacles in Figure 2 represent uncertainty factors im-
pacting the goals which, like the goals, form a lattice, termed uncertainty lattice,
in which obstacles can be AND-ed and OR-ed to combine their effects and prop-
agate uncertainty upwards towards the top-level goal. The lower uncertainty
nodes represent the sources of uncertainty. The barred arrows indicate the goals
that they affect. The upper uncertainty nodes and the barred, broken arrows
that lead from them represent the impact of the uncertainty.

Mitigating Uncertainty. The impact of the uncertainty is assessed to deter-
mine what type of mitigation, if any, is needed. Three possible tactics can be
used to mitigate the offending uncertainty factors, with each requiring different
levels of effort to realize. For a goal affected by uncertainty, the least costly miti-
gation tactic is to define new behavior in the form of a further subgoal to handle
the condition; this step equates to adding incremental functionality to a target
system. If the subgoal refinement is not sufficient to mitigate the uncertainty,
but partial satisfaction of the goal is tolerable, then we attempt to add flexibility
to the goal to account for the uncertainty. For this tactic, we use the RELAX
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specification language [5] to add flexibility to the goal specification by speci-
fying requirements declaratively, rather than by enumeration. Briefly, RELAX
can be used to specify several dimensions of uncertainty, including duration and
frequency of system states; possible states of a system; and configurations for a
system. A RELAXed requirement also specifies the elements of the domain that
must be monitored to gauge the extent to which the requirement is being sat-
isfied and their impacts (both positive and negative) on other requirements [5].
While the RELAX specifications are in the form of structured natural language
with Boolean expressions, the semantics for RELAX have been defined in terms
of temporal fuzzy logic [5]. Due to space constraints, we can only briefly overview
the RELAX language here; details may be found in [5].

To illustrate the use of RELAX to mitigate uncertainty, consider the following
goal that may not be satisfiable all the time.

“The System SHALL ensure that cold fresh water is constantly available.”

If we fail to take into account the uncertainty surrounding water supply and
design the system as if interruptions in water supply will never occur, then the
system may be too brittle and fail when an interruption does occur. However,
if the recipient of the system’s services can tolerate short disruptions in supply,
then we might RELAX the goal using a temporal RELAX operator (in upper
case) as follows:

“The System SHALL ensure that cold fresh water is AS CLOSE AS POSSIBLE

to constantly available.”

The RELAXed goals can be realized by implementations that have built-in flexi-
bility (e.g., through parameter definitions or alternate branches of functionality).
Note that goals for which partial satisfaction is not tolerable are considered to
be invariants – must always be satisfied even during adaptation.

If the adverse impact of the uncertainty cannot be mitigated by formulating
new subgoals or by RELAX-ation, then we have to consider the given goal as
failed. As such, we need to create a new high-level goal that captures the objective
of correcting the failure. This uncertainty-mitigation tactic is the most costly
since the new high-level goal and its subsequent refinement correspond to the
goal lattice for a new target system. Examples of each uncertainty-mitigation
tactic are described in Section 3.

Not shown in the text or the figures above are two key non-functional require-
ments that guided the goal refinement process: the solutions offered by the AAL
should, as far as practicable, be non-invasive and of low cost. Since the focus of
this paper is on detecting and modeling uncertainty in the context of DASs, we
only consider the non-functional requirements implicitly in this discussion. In
the LOREM work [4], we described how to use goal modeling of non-functional
requirements (e.g., performance, battery usage) as the sole basis for dynamic
adaptation, where the different combinations of environmental conditions were
explicitly enumerated. In contrast, this paper describes a technique for identi-
fying the environmental conditions warranting dynamic adaptation (e.g., sensor
failure, violation of safety conditions).
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2.3 Process Overview

The analysis steps described above can be applied systematically using the fol-
lowing stepwise process: Figure 3 gives the data flow diagram for the process.
Processes, data flows, and data stores are represented by ovals, arrows, and par-
allel lines, respectively.

Fig. 3. Process for Goal-Based Modeling of Adaptive Systems

Step 0: Identify Top-level goal and Environment: Identify the top-level
goal for system. Create a conceptual domain model that identifies the ob-
servable environmental elements relevant to the system; these elements are
potential sources of uncertainty for the system.

Step 1: Derive the goal models: Perform goal refinement until we derive
leaf requirements/expectations and their respective agents.

Step 2: Identify Uncertainty Factors: Starting from the leaf requirements/
expectations identify the uncertainty factors that might prevent their satisfac-
tion. These uncertainty factors represent environmental conditions that poten-
tially affect the behavior of the system. The uncertainty and/or the impact
of the uncertainty factors may propagate up the goal lattice if not adequately
mitigated.

Step 3: Mitigate Uncertainty Factors:
Below are the mitigation tactics, presented in order of increasing cost (i.e. effort
to realize).

i. No refinement: If the uncertainty factors do not prevent satisfaction of the
goals, then do not modify the respective goal.

ii. Add low-level subgoals: If the uncertainty can be mitigated by introduc-
ing new low-level goals, then refine with new subgoals.

iii. RELAX goals: If the uncertainty prevents high-level goals from being
completely satisfied but we can accept their partial satisfaction, then RELAX
the highest level goal impacted by the corresponding uncertainty.

iv. Add high-level goal: If the effect of uncertainty on a high-level goal is
unacceptably severe (i.e., environmental conditions have changed significantly
beyond previous expectations), then identify a new (high-level) goal to mitigate
the uncertainty. This new goal represents a new target system and the closer
to the top-level goal it is, the greater the implied cost of implementation. Steps
1 - 3 must be applied to the new portion of the goal lattice for refinement.
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3 Application of Goal Modeling for the AAL System

This section describes the results of applying our modeling approach to the AAL
system. Due to space constraints, we can only present excerpted goal models of
each of the types of uncertainty mitigation.

Step 0: Identify Top-level goal and Environment. Recall that Figure 1
gives the conceptual domain model for the AAL, which serves to scope the envi-
ronment and uncertainty factors for the AAL. Step 0 of our analysis identified the
top-level goal of the AAL house as keeping Mary healthy (i.e., Maintain[Health]),
as shown in Figure 2. The ‘Maintain’ predicate of the label denotes the goal as
a behavioral goal specifying a property that should always hold. The inverse of
a ‘Maintain’ goal is an ‘Avoid’ goal. Hence the top-level goal could be denoted
by the goal Avoid[BadHealth]. A third class of behavioral goals is denoted by an
‘Achieve’ predicate, indicating a property that should eventually hold.

Step 1: Derive the goal models. Figure 2 shows Step 1 of our process to
refine the top-level goal as a lattice of subgoals. We elide all but one branch of
the lattice to illustrate the refinement of the goals concerned with ensuring that
liquid intake is sufficient. The branch has been refined to a single expectation
that Mary drinks and a single requirement that the iFridge supplies cold drinking
water. These are AND-ed to indicate that both need to be satisfied in order to
satisfy the goal of maintaining adequate liquid intake.

Step 2: Identify Uncertainty Factors. Following identification of the goals,
Step 2 analyses the extent to which they are satisfiable by developing the un-
certainty model using KAOS obstacles. The key uncertainty factor in Figure 2
is represented by the obstacle Forgets to drink. It is uncertain whether Mary will
drink enough liquid; she could forget to drink and the effect of this would mean
that she gets too little liquid, becomes dehydrated, and ultimately, unhealthy.

Step 3(ii): Mitigate Uncertainty Factors. Completion of the uncertainty
model triggers Step 3 whose purpose is to evaluate the uncertainty factors and
decide whether to try to mitigate them. Assuming that the uncertainty is suffi-
ciently serious that some mitigation is needed, we start by attempting to apply
3(ii), adding a new subgoal to mitigate the obstacle. Uncertainty about whether
Mary will drink enough, which is represented by the Forgets to drink obstacle in
Figure 4, has been mitigated by adding a new goal Achieve[ReminderToDrinkIssued],
highlighted by the block arrow 3(ii). This new goal is AND-ed with the expecta-
tion that Mary drinks and the requirement that the iFridge supplies cold drinking
water. In other words, we can reduce the likelihood of Mary forgetting to drink
by giving her a reminder by exploiting the iCups’ capability to beep; this new goal
mitigates the obstacle Forgets to drink, denoted by a solid bold arrow from goal
to obstacle. An implication of the new goal, however, is that we need to estimate
how much Mary drinks over time and issue reminders if her liquid intake falls
below some ideal level. Hence, identification of the Achieve[ReminderToDrinkIssued]

goal triggers a repeat of Step 1 to refine it down to the level of requirements,
followed by Step 2 to build an uncertainty model for these new requirements.
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This mitigation tactic is illustrated in Figure 4; the goal lattice is extended with
the goal Achieve[RemindertoDrinkIssued] and its refinements, and the correspond-
ing uncertainty lattice is extended with the nodes Doesn’t act on prompt and
Calculated liquid intake shortfall inaccurate, along with their respective refinements.
The extended goal lattice also includes a domain assumption, denoted by the
trapezoid labelled Most drinking vessels are iCups, which we use here to record an
assumption upon which the correctness of our analysis depends; that Mary will
drink most of her water from iCups.

Step 3(iii): Mitigate Uncertainty by RELAXation. Performance of Step
3 on the new goals and uncertainty factors is interesting because it reveals that
the uncertainty can be mitigated but not be entirely eliminated. In this case, the
mitigation tactic is to add flexibility that accounts for the uncertainty directly
into the goal specification, assuming that the goal is not an invariant. Hence,

Fig. 4. Uncertainty mitigation: new subgoal (3(ii)) and RELAX subgoal (3(iii))
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for example, the amount of liquid being taken from an iCup can be sensed,
but it cannot be guaranteed that the liquid taken is being consumed by Mary.
Mary might be using it to water her potted plants or simply spilling it. As
a consequence, the Maintain[AdequateLiquidIntake] goal from Figure 2 cannot be
guaranteed to be satisfiable under all circumstances. This uncertainty poses a
problem; there does not appear to be a technological solution that can guarantee
to accurately measure Mary’s liquid intake, or one that will guarantee that Mary
will act on reminders that she should drink. On the other hand, a temporary
shortfall in the ideal liquid consumption may:

– Be normal - the temperature may be low, causing Mary to lose less liquid
through perspiration;

– Be recouped later - it may lead to a mild headache (which may in turn
prompt Mary to drink) rather than immediate organ failure;

Step 3 reveals that there is uncertainty about the environment (Mary’s be-
havior), yet, rather than calling into question the viability of the AAL, the
uncertainty can be tolerated. Figure 4 shows the result of applying RELAX to
Maintain[AdequateLiquidIntake], which has been reformulated as the goal (indicated
by the block arrow 3(iii))

The System SHALL ensure AS CLOSE AS POSSIBLE TO a minimum of

liquid intake. The system SHALL ensure minimum liquid intake EVENTU-

ALLY.

The arc leading from the goal and pointing to the Inadequate liquid intake obstacle
indicates partial mitigation of the uncertainty over Mary’s liquid intake. The goal
is a composite comprising two clauses. The first mandates that although Mary’s
liquid intake cannot be measured with complete accuracy, the system should
be designed to exploit the capabilities of the resources identified in the domain
model to provide a best effort at liquid intake estimation. The second clause
mandates that although under-consumption of liquid may occur, whenever this
happens, the AAL must ensure that Mary’s liquid intake recovers to acceptable
levels at some point in the future. How to achieve eventual intake of the minimal
level of liquid, and how soon is left to the AAL system’s designers to determine.

Step 3(iv): Mitigate Uncertainty by adding a High-Level Goal. As
implied above, Mary’s liquid intake may fall below minimal levels (i.e., environ-
mental condition sensed by the various domain elements, such as iCups, sensors
in faucets, toilets, etc.) so specification and RELAX-ation of goals aimed at get-
ting Mary to drink cannot guarantee that she will not become dehydrated at
some point. Mary might still forget to drink enough, or she could become de-
hydrated as a side-effect of acquiring an infection or drinking diuretics (such as
coffee). If we are to prevent Mary from becoming unhealthy due to dehydration,
we need to mitigate the uncertainty represented by the Become dehydrated ob-
stacle in Figure 4. Mitigation of this uncertainty requires recourse to the most
costly of our tactics, which is represented as Step 3(iv) of our process. Step 3(iv)
triggers the search for a new high-level goal, a peer goal to our RELAXed goal
to maintain Mary’s liquid intake, concerned with rehydrating Mary.



A Goal-Based Modeling Approach to Develop Requirements of an AS 479

Fig. 5. Uncertainty mitigation with new high-level goal for new target system

This mitigation approach is shown as the goal Achieve[ReHydration], indicated
by the block arrow 3(iv) in Figure 5. Rehydrating Mary represents a radical
change in the system behavior; that is, we have identified a new target system.
Instead of merely getting her to drink enough, we now need to cope with the
emergency situation of getting her rehydrated before organ damage occurs. So
urgent is this condition, that the new goal is OR-ed with the other high-level
goals. In other words, the AAL suspends its goal of maintaining a healthy diet
along with all the other goals that need to be satisfied if Mary is to lead a
normal life, and diverts resources into getting her rehydrated. This high-level goal
represents a new target system, specified by refining the Achieve[ReHydration] goal
and, of course, applying uncertainty modeling to ensure this new goal’s refined
sub-lattice is robust too. The arc leading from the new goal Achieve[ReHydration]

to the obstacle Become dehydrated indicates the mitigation of the associated
uncertainty.

Discussion. In summary, this example illustrated three different mitigation
strategies for handling uncertainty in the environment. At the end of this pro-
cess for addressing the Maintain[IsHydrated] goal, we included functionality in the
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requirements for the original target system to support a reminder to drink fea-
ture in the iCups to account for the uncertainty with Mary’s behavior. In order to
make the target system more flexible with respect to the uncertainty associated
with the water supply provided by the iFridge and take into account the lack
of accuracy in the sensors measuring the liquid intake, we RELAXed the goal
Maintain[AdequateLiquidIntake] to introduce flexibility in the quantity of liquid con-
sumed and the time frame in which it can be consumed. Finally, to handle the
uncertainty associated with severely adverse conditions with Mary (either her
unwillingness to respond to the reminders or illness) and/or adverse conditions
with the water supply, we introduced a new high-level goal Achieve[Rehydration]

to account for the situation where Mary has become dehydrated and the system
must provide new behavior (via a new target system) to correct the situation.
Dynamic adaptation is required to realize the third mitigation tactic since it
requires a different target system to handle Mary’s dysfunctional state, with the
objective of bringing her and the system back to the point where the goal Main-

tain[IsHydrated] is satisfiable again. The other two mitigation strategies may be
implemented statically with different branches of alternative behavior or realized
by run-time adaptation, depending on the available run-time technology.

4 Related Work

The increasing demand for self-adaptation has led to a surge of interest in soft-
ware engineering for self-adaptive systems – see [10] for a recently compiled
summary. Most of this work has been in the design of software architectures
that enable flexible adaptations [11]. In general, such architectures share com-
mon characteristics that enable them to monitor and respond to environmental
changes. Much less work has been carried out on how to explicitly incorporate
the inherent uncertainty associated with adaptive systems into existing model-
ing languages. UML profiles exist that provide stereotypes for marking model
elements that are in some way uncertain – e.g., an uncertainty profile [12] for
capturing uncertainty in process modeling and fuzzy UML [13] for representing
imperfect information in databases. Uchitel et al. [14] have also dealt with un-
certainty using partial labelled transition systems (PLTS) to model aspects of
the system behaviour that are unknown and remain undefined.

Limited work has also been performed in modeling and monitoring require-
ments for adaptive systems. Goal-based modeling notations, such as i* [15] and
KAOS [1], have been applied to the specification of requirements of self-adaptive
systems. Specifically, goal-based models are well suited to exploring alternative
requirements and it is natural to use goal models to represent alternative behav-
iors that are possible when the environment changes [4,16,17,6]. Furthermore,
goal models can effectively be used to specify the requirements for transition
between adaptive behaviours [4,18]. With these approaches, however, the mod-
eler must explicitly enumerate all possible alternative behaviours. In contrast,
RELAX [5] supports a declarative approach for specifying requirements for a
DAS, thus accounting for more flexibility in the system behavior.
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Run-time monitoring of requirements dynamically assesses the conformance
of run-time behaviour to the specified requirements [19]. This capability is a cru-
cial enabler for self-adaptive systems as non-conformance to requirements may
trigger an adaptation. Requirements monitoring approaches often rely on ad-hoc
run-time representations of the requirements [20]. A more promising approach
is to monitor goal models at run time as described in [21], where failed goals are
diagnosed and fixed at run time using AI theories of diagnosis. More generally, in
the context of self-adaptive systems, it may only be possible to partially satisfy
run-time goals – that is, goal satisfaction is not a “yes” or “no”decision. Adapta-
tion decisions, therefore, may have to be made probabilistically. Letier and van
Lamsweerde [22] have proposed a technique to quantify degrees of satisfaction
in goal models but the work has not yet been applied to adaptive systems.

5 Conclusions and Future Work

Goals are objectives or statements of intent that the system should accomplish.
For the case of adaptive systems, different environmental uncertainty factors may
put at risk the accomplishment of such goals. In this paper, we have presented
a goal-based modeling approach to specify the requirements of a DAS, where
environmental uncertainty associated with the goal specifications are explicitly
integrated. The approach offers a systematic use of a range of tactics for adap-
tation to deal with uncertainty on a rising scale of costs. The tactics include
adding low-level goals (the least costly approach), RELAXing requirements to
express bounded uncertainty to accomplish a partial but still suitable satisfac-
tion of the goals, and the identification of a new (high-level) goal to mitigate the
uncertainty that leads to the identification of a new target system.

The general objective of goal modeling is to refine goals so that the set of
subgoals that satisfy their parent goal is necessary and sufficient. One key lesson
from reasoning with uncertainty is that, where uncertainty exists, the most we
can hope for is that the subgoals are necessary. They will never be sufficient.
Uncertainty must be handled, therefore, by assigning responsibility to a human
agent or by introducing some intelligent or adaptive behavior into the software.

Several avenues for future research are possible. Estimation of the risk posed
by uncertainty is implicit in the application of our process; i.e., our work requires
risk to be inferred from the goal and uncertainty models. Further work is required
towards systematic techniques to quantify the risk as a complement to threat
modelling, understanding what we can RELAX (i.e. what is variant vs. what is
invariant), and the extent to which we can RELAX requirements. We speculate
that risk could be made explicit by quantifying it in the manner of attack trees
[2]. The systematic approach for identifying target systems makes it possible
to extend existing MDE-based approaches to DAS development (e.g., [3,23]) to
start at a higher-level of abstraction. That is, with the results from this work, we
can start with a conceptual domain model of a DAS and systematically progress
from goals and requirements to their designs and implementation.
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D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 1–16.
Springer, Heidelberg (2008)

7. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1), 31–37 (1999)

8. Mead, N.: Identifying Security Requirements using the SQUARE Method. In: In-
tegrating Security and Software Engineering: Advances and Future Visions, pp.
44–69. Idea Group, USA (2006)

9. den Braber, F., Dimitrakos, T., Gran, B.A., Lund, M.S., Stölen, K., Aagedal, J.O.:
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Abstract. Use case modeling (UCM) is commonly applied to document re-
quirements. Use case specifications (UCSs) are usually structured, unrestricted 
textual documents complying with a certain template. However, because they 
remain essentially textual, ambiguities are inevitable. In this paper, we propose 
a new UCM approach, which is composed of a set of well-defined restriction 
rules and a new template. The goal is to reduce ambiguity and facilitate auto-
mated analysis, though the later point is not addressed in this paper. We also re-
port on a controlled experiment which evaluates our approach in terms of its 
ease of application and the quality of the analysis models derived by trained in-
dividuals. Results show that the restriction rules are overall easy to apply and 
that our approach results in significant improvements over UCM using a stan-
dard template and no restrictions in UCSs, in terms of the correctness of derived 
class diagrams and the understandability of UCSs. 

Keywords: Use Case, Use Case Modeling, Use Case Template, Restriction 
Rules, Analysis Model, Controlled Experiment. 

1   Introduction 

Use case modeling (UCM), including use case diagrams and use case textual specifi-
cations, is commonly applied to structure and document requirements [6, 8, 11]. Use 
Case Specifications (UCS) are usually textual documents complying with a use case 
template that, though helping read and review use cases, inevitably contains ambigui-
ties. In this paper, we propose a set of restriction rules and a new template, which are 
based in part on the results of a thorough literature review [25]. The goal is to restrict 
the way users can document UCSs in order to reduce ambiguity and facilitate auto-
mated analysis to derive initial analysis models, which in the Unified Modeling Lan-
guage (UML) [15] are minimally composed of class and interaction diagrams, and 
possibly other types of diagrams and constraints. We denote our UCM approach as 
RUCM, which stands for Restricted Use Case Modeling. 

The restriction rules and the use case template we specify should be applied during 
the requirements elicitation phase of use case-driven software development (e.g., [4]) 
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in order to produce, to the extent possible, precise and unambiguous use case models. 
A use case diagram in UML [15] is used to represent relationships among actors and 
use cases described by UCSs. The restriction rules are applied to restrict the way users 
can write UCSs; the use case template is a means to structure UCSs. With a use case 
model documented by applying RUCM, initial analysis models of higher quality can 
hopefully be derived with greater ease. This step is usually manually performed by 
system analysts but the derivation of an initial analysis model could potentially be 
automated. This paper, however, does not address automation but focuses on describ-
ing RUCM and assessing empirically its limitations and benefits. 

More precisely, by means of experimentation, we aim at assessing whether our re-
striction rules are easy to apply while developing use case models and whether the 
overall approach helps the designer generate higher quality analysis models. Our ex-
periment, involving fully trained, senior undergraduate students, shows that RUCM 
results into higher quality class diagrams and that restriction rules are perceived over-
all to be easily applicable.  

The rest of the paper is organized as follows. The related work is reported in  
Section 2. In Section 3, we discuss RUCM: the use case template and the restriction 
rules. The experimental evaluation of these rules and the use case template is pre-
sented in Section 4 (experiment planning), Section 5 (experiment results and analy-
sis), and Section 6 (threats to validity). We conclude in Section 7. 

2   Related Work 

Various use case templates (e.g., [5, 9, 11-13]) have been suggested in the literature to 
satisfy different application contexts and purposes. These templates share common 
fields such as: use case name, brief overall description, precondition, postcondition, 
basic flow, and alternative flows. In addition to capturing requirements, use cases can 
also facilitate the automated derivation of initial analysis models – one of our goals. 
The systematic review [25] we conducted to examine works that transform textual 
requirements into analysis models reveals that six approaches require use cases. Their 
proposed templates (e.g., [7, 10, 14, 20]) are similar to conventional ones but with 
some variations to facilitate the process of automatically deriving analysis models. 

The use case template we propose in this paper (Section 3.1) integrates elements from 
many related works. It contains fields similar to those encountered in conventional tem-
plates but also seeks to better specify the structure of the flow of events. The ultimate 
motivation is to reduce ambiguity when models are derived manually but also support the 
automated generation of analysis models. Given our goals, we made the following deci-
sions: (1) We included fields commonly encountered in most templates; (2) Some of the 
fields (e.g., scope) proposed in the literature to capture requirements were excluded since 
they do not help deriving analysis models; (3) We excluded the fields (e.g., the three-
column steps modeling style proposed in [7]) that, on the one hand may increase the  
precision of UCSs but, on the other hand require that the designer provide much more 
information that in the end we do not need for our purpose. In other words, we believe 
that the additional precision does not warrant the additional cost, and that these fields do 
not bring clear advantages with respect to our objectives; (4) Six interactions types (five 
from [5], one we newly propose) are suggested to describe action steps in flows of 
events; (5) Differing from most of existing use case templates that suggest having one 
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postcondition for one use case, our template enforces that each flow of events (both basic 
flow and alternative flows) of a UCS contains its own postcondition. 

In [25], we summarize and classify the restriction rules applied in [19-21, 23], 
which propose transformations from requirements to analysis models. Some guide-
lines on writing UCSs are also provided in various sources (e.g., [1, 3, 5]), based on 
practitioners’ experience and to reduce ambiguities in UCSs or to facilitate the proc-
ess of (automatically) deriving analysis models from them. In this paper, we propose a 
total of 26 restriction rules on the use of natural language to document UCSs that 
complies with our use case template. None of the related works we looked at relies on 
a set of rules as complete as the one we suggest. We reused some of the existing rules, 
excluded others, recommended new ones, and classified all the rules. Additionally, we 
explicitly describe why each of our restriction rules is needed either to reduce ambi-
guities or facilitate the process of (automatically) deriving analysis models, a crucial 
piece of information that is often omitted in the literature. We also indicate how and 
where to apply (Section 3.2) each of our restriction rules, another piece of information 
often left out by most papers on the topic. Several rules we newly propose in this 
work are based on our experience with several natural language parsers (e.g., [22]) 
and are proposed because sentences with certain structures cannot be correctly parsed. 
These rules can also help reduce ambiguity of UCSs and therefore help to manually 
derive analysis models from them. Furthermore, as opposed to many related works, 
our restriction rules are integrated with our use case template together as a compre-
hensive solution for UCM: several of our restriction rules refer to some of the features 
of our use case template (Section 3.1). 

Some empirical studies (e.g., [1, 2, 17]) evaluated the impact of applying restriction 
rules on the quality of UCSs in terms of, for example, their completeness, structuredness 
and understandability. Results showed that using restriction rules led to more complete 
and better structured UCSs. These experiments evaluated restriction rules as a whole 
only, whereas we evaluate our restriction rules both individually and as a whole. By 
doing so, we can tell which rule(s) are difficult to apply and therefore require extra fo-
cus during training. It is also worth noticing that previous works assess the quality of 
UCSs against some quality criteria (e.g., understandability, structuredness, complete-
ness), rather than test the ability of individuals to extract relevant information from 
UCSs to derive analysis models. In this paper, we report on a controlled experiment 
which evaluates the impact of our restriction rules and use case template both on the 
understandability of UCSs and the quality of analysis models generated from them in 
terms of correctness, completeness, and redundancy. 

3   Use Case Modeling Approach (RUCM) 

3.1   Use Case Template 

Our use case template has eleven first-level fields (1st column in Table 1). The last 
four fields are decomposed into second-level fields (2nd column in the last four rows). 
The last column of each row explains the corresponding field(s). There is no need to 
further discuss the first seven fields since they are straightforward and commonly 
encountered in many templates. Below we focus the discussion on the Basic Flow and 
Alternative Flows fields. 
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A basic flow describes a main successful path. It often does not include any condi-
tion or branching [13]. It is recommended to describe separately the conditions and 
branching in alternative flows. A basic flow is composed of a sequence of steps and a 
postcondition. Each UCS can only have one basic flow. Alternative flows describe all 
the other scenarios or branches, both success and failure. An alternative flow always 
depends on a condition occurring in a specific step in a flow of reference, referred to 
as reference flow, and that reference flow is either the basic flow or an alternative 
flow itself. The branching condition is specified in the reference flow by following 
restriction rules (R20 and R22—Section 3.2). We refer to steps specifying such condi-
tions as condition steps and the other steps as action steps. Similarly to the basic flow, 
an alternative flow is composed of a sequence of numbered steps. The action steps 
can be one of the following five interactions (which are reused from [5] except for the 
fifth): 1) Primary actor  system: the primary actor sends a request and data to the 
system; 2) System  system: the system validates a request and data; 3) System  
system: the system alters its internal state (e.g., recording or modifying something); 4) 
System  primary actor: the system replies to the primary actor with a result; 5) Sys-
tem  secondary actor: the system sends requests to a secondary actor. All steps are 
numbered sequentially. This implies that each step is completed before the next one is 
started. If there is a need to express conditions, iterations, or concurrency, then spe-
cific keywords, specified as restriction rules should be applied. 

We classify alternative flows into three types: specific, global, and bounded alterna-
tive flows. This classification is adapted from [3]. A specific alternative flow is an alter-
native flow that refers to a specific step in the reference flow. A bounded alternative 
flow is a flow that refers to more than one step in the reference flow–consecutive steps 
or not. A global alternative flow (called general alternative flow in [3]) is an alternative 
flow that refers to any step in the reference flow. Distinguishing different types of alter-
native flows makes interactions between the reference flow and its alternative flows 
much clearer. For specific and bounded alternative flows, a RFS (Reference Flow Step) 
section, specified as rule R19, is used to specify one or more (reference flow) step num-
bers. Whether and where the flow merges back to the reference flow or terminates the 
use case must be specified as the last step of the alternative flow. Similarly to the 
branching condition, merging and termination are specified by following restriction 
rules (R24 and R25—Section 3.2). By doing so, we can avoid potential ambiguity in 
UCSs caused by unclear specification of interactions between the basic flow and its 
corresponding alternative flows. Each alternative flow must have a postcondition (en-
forced by restriction rule R26—Section 3.2). 

It is usual to provide a postcondition describing a constraint that must be true when 
a use case terminates. If the use case contains alternative flows, then the postcondition 
of the use case should describe not only what must be true when the basic flow termi-
nates but also what must be true when each alternative flow terminates. The branch-
ing condition to each alternative flow is then necessarily part of the postcondition (to 
distinguish the different possible results). In such a case, the postcondition becomes 
complex and the branching condition for each alternative flow is redundantly de-
scribed (both in the steps of flows and the postcondition), which therefore increases 
the risk of ambiguity in UCSs. Our template enforces that each flow of events (both 
basic flow and alternative flows) of a UCS contains its own postcondition and there-
fore avoids such ambiguity.  
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Table 1. Use case template 

Use Case Name The name of the use case. It usually starts with a verb. 
Brief Description Summarizes the use case in a short paragraph. 
Precondition What should be true before the use case is executed. 
Primary Actor The actor which initiates the use case. 
Secondary Actors Other actors the system relies on to accomplish the services of the use case. 
Dependency Include and extend relationships to other use cases. 
Generalization Generalization relationships to other use cases. 

Specifies the main successful path, also called “happy path”. 
Steps (numbered) Flow of events. 

Basic Flow 

Postcondition What should be true after the basic flow executes. 
Applies to one specific step of the reference flow. 
RFS A reference flow step number where flow branches 

from. 
Steps (numbered) Flow of events. 

Specific  
Alternative Flows

Postcondition What should be true after the alternative flow executes. 
Applies to all the steps of the reference flow. 
Steps (numbered) Flow of events. 

Global  
Alternative Flows

Postcondition What should be true after the alternative flow executes. 
Applies to more than one step of the reference flow, but not all of them. 
RFS A list of reference flow steps where flow branches 

from. 
Steps (numbered) Flow of events. 

Bounded  
Alternative Flows

Postcondition What should be true after the alternative flow executes. 

3.2   Restriction Rules 

The restriction rules are classified into two groups: restrictions on the use of natural 
language, and restrictions enforcing the use of specific keywords for specifying con-
trol structures. The first group of restrictions is further divided into two categories 
according to their location of application (see below). Each restriction rule is assigned 
a unique number.  

Restriction rules R1-R16 in Table 2 constrain the use of natural language: the table 
explains why they are needed to reduce ambiguity. Rules R1-R7 apply only to action 
steps; they do not apply to condition steps, preconditions or postconditions. Rules  
R8-R16 apply to all sentences in a UCS: action steps, condition steps, preconditions, 
postconditions, and sentences in the brief description. Rules R8-R11 and R16 aim to 
reduce ambiguity of UCSs; the remaining rules (R12-R15) can help reduce ambiguity 
and also facilitate automated generation of analysis models. Recall that, as we dis-
cussed in Section 1, facilitating automated derivation of initial analysis models from 
UCSs is also one of our goals, though this is not discussed in this paper. These two 
sets of restrictions are thought to be good practice for writing clear and concise UCSs 
(e.g., [3, 5, 18]) except for R13 and R15. We add these two rules because we ob-
served that negative adverbs, negative adjectives, and participle phrases are very dif-
ficult to parse by natural language parsers. R9 requires using words consistently to 
document UCSs. A common approach to do so is to use a domain model and glossary 
(e.g., [13], [4]) as a basis to write UCSs. 
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Table 2. Restrictions (R1-R16) 

# Description Explanation 

R1 The subject of a sentence in basic and alter-
native flows should be the system or an actor. 

R2 Describe the flow of events sequentially. 
R3 Actor-to-actor interactions are not allowed. 

Enforce describing flows of events 
correctly. These rules conform to 
our use case template (the five 
interactions). 

R4 Describe one action per sentence. (Avoid  
compound predicates.) 

Otherwise it is hard to decide the 
sequence of multiple actions in a 
sentence. 

R5 Use present tense only. Enforce describing what the system 
does, rather than what it will do or 
what it has done. 

R6 Use active voice rather than passive voice. 
R7 Clearly describe the interaction between the 

system and actors without omitting its sender 
and receiver. 

Enforce explicitly showing the 
subject and/or object(s) of a  
sentence. 

R8 Use declarative sentences only. “Is the system 
idle?” is a non-declarative sentence. 

Commonly required for writing 
UCSs. 

R9 Use words in a consistent way. Keep one term to describe one thing.  
R10 Don’t use modal verbs (e.g., might) 
R11 Avoid adverbs (e.g., very). 

Modal verbs and adverbs usually 
indicate uncertainty; therefore  
metrics should be used if possible. 

R12 Use simple sentences only. A simple sentence 
must contain only one subject and one predicate. 

R13 Don’t use negative adverb and adjective (e.g., 
hardly, never), but it is allowed to use not or no. 

R14 Don’t use pronouns (e.g. he, this). 
R15 Don’t use participle phrases as adverbial  

modifier. For example, the italic-font part of the 
sentence “ATM is idle, displaying a Welcome 
message”, is a participle phrase. 

Reduce ambiguity and facilitate 
automated NL parsing. 

R16 Use “the system” to refer to the system under 
design consistently. 

Keep one term to describe the  
system; therefore reduce ambiguity. 

 

The remaining ten restriction rules (R17-R26) constrain the use of control struc-
tures, except R26 that specifies that each basic flow and alternative flow should have 
its own postcondition. R17 and R18 specify keywords to describe use case dependen-
cies include and extend. Sentences containing the keywords INCLUDE USE CASE 
and EXTENDED BY USE CASE are referred to as dependency sentences. R19 speci-
fies keyword RFS, which is used in a specific (or bounded) alternative flow to refer to 
a step number (or a set of step numbers) of a reference flow that this alternative flow 
branches from. Rules R20-R23 specify the keywords used to specify conditional logic 
sentences (IF-THEN-ELSE-ELSEIF-ENDIF), concurrency sentences (MEAN-
WHILE), condition checking sentences (VALIDATES THAT), and iteration sen-
tences (DO-UNTIL), respectively. Keyword VALIDATES THAT (R22) specifies 
that a condition is evaluated by the system and must be true to proceed to the next 
step. This rule also requires that an alternative flow describing what happens when the 
validation fails (the condition does not hold) be described. Rules R24 and R25 specify 
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that an alternative flow ends with a step using either keyword ABORT or keyword 
RESUME STEP, thereby clearly specifying whether the flow returns back to the ref-
erence flow and where (using keyword RESUME STEP followed by a returning step 
number) or terminates (using keyword ABORT).  

R17-R21 and R23 have been proposed in the literature and we reused them with 
some variation. R22, R24 and R25 are newly proposed in this work for the purpose of 
making the whole set of restrictions as complete as possible so that flows of events 
and interactions between the basic flow and the alternatives can be clearly and con-
cisely specified. Applying these rules helps reducing ambiguity in UCSs, and also 
facilitates automated NL processing (e.g., correctly parse sentences with our specified 
keywords) and the generation of analysis models, especially sequence diagrams. 

The detailed description of all the 26 restriction rules and an example of applying 
RUCM are provided in [26]. 

4   Experiment Planning 

In this section, we follow the experiment reporting template proposed in [24]. All 
aspects of the experiment we conducted to assess our use case template and restriction 
rules are described and justified.  

4.1   Experiment Definition 

We are interested in the applicability of the restriction rules, combined with the use 
case template we propose. We refer to a use case model with UCSs that follow our 
restriction rules and template as a restricted use case model. We are also interested in 
the impact of a restricted use case model on the quality of analysis models that are 
manually derived from it, for instance by following standard guidelines for building 
analysis models (e.g., [4]). Indeed, if the restriction rules actually reduce ambiguity, 
then such models should exhibit higher quality. The experiment objectives are: char-
acterizing each restriction rule with respect to their applicability (Goal 1), and evalu-
ating the restriction rules and the template with respect to their impact on quality of 
derived analysis models (Goal 2). The evaluation of Goal 1 is a necessary pre-
requisite to the investigation of Goal 2 in order to ensure that the restriction rules can 
be applied at a reasonable level of correctness. If the result of the experiment for Goal 
1 shows that the restriction rules are applicable, then reliable use case models can be 
produced and we can go further to evaluate whether these restriction rules have an 
impact on the quality of manually generated analysis models (class and sequence dia-
grams in our experiment). In this paper, we focus on the experiment for Goal 2. Due 
to space limitation, the detailed discussion of the experiment for Goal 1 is omitted but 
is however provided in [26] for reference. Most noticeably, results for Goal 1 indicate 
that our 26 restriction rules are easy to apply [26]. 

4.2   Context Selection and Subjects 

The context of the experiment is a 4th Software Engineering course at Carleton Univer-
sity, Ottawa, Canada. The subjects selected were the 34 students registered in this course. 
The students were all trained in UML-based, object-oriented software development over 
the three years prior to the experiment and had therefore received substantial training. 
Additionally, a lecture was given to them regarding the restriction rules and the use case 
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template before the experiment. One assignment was also designed for the students to 
practice the restriction rules and the template. The results of the assignment were used to 
group the students into two blocks and therefore ensure better homogeneity across the 
two groups involved in the experiment. The experiment plan had been reviewed and re-
ceived clearance through the Carleton University’s Research Ethics Committee. 

4.3   Hypotheses Formulation 

The experiment for Goal 2 has one independent variable Method, with two treatments: 
UCM_R and UCM_UR, respectively denoting the use or not of the restriction rules, 
and two dependent variables CD and QC, respectively denoting the quality of analysis 
class diagrams and the correctness of responses to a comprehension questionnaire. 
We therefore can formulate the following null hypotheses (H0) to be tested for each 
dependent variable of the experiment for Goal 2: there is no significant improvement 
in terms of CD and QC when using restricted use case models. The alternative hy-
potheses (Ha) is then one-tailed and stated as: restricted use case models result in high 
quality analysis models or high correctness of responses to the comprehension ques-
tionnaire when compared to unrestricted use case models. 

4.4   Experiment Design 

As stated previously, an assignment was designed to train the students to apply our 
restriction rules and use case template. Individual feedback was given to each student 
and a solution to the assignment was also provided before the experiment was con-
ducted. Based on the grades of the assignment preceding the experiment, we defined 
the following three blocks: grades B to A+, grades B- to F, and absent (ABS). The 
students were then divided into two groups: A and B. Each of the two groups was 
then randomly assigned students from the three blocks in nearly identical proportions.  

The students were asked to perform two tasks over two laboratories (3 hours each). 
In Lab 1 (Task 1), the students in group A were asked to produce UCSs of the Video 
Store (VS) system by applying the restriction rules and the use case template, whereas 
the students in group B did the same task on the Car Part Dealer (CPD) system. This 
first task was designed to address Goal 1: recall that this is omitted from this paper 
due to space limitation (the interested reader is referred to [26]). In Lab 2 (Task 2), 
which is dedicated to Goal 2, we further divided the students of group A into groups 
A1 and A2, so that the students in A1 derive class and sequence diagrams from a re-
stricted use case model for the CPD system, while the students in A2 do the same 
from the unrestricted use case model following a standard template [4] of the same 
system. A discussion on the differences between the standard template and our tem-
plate is provided in [26]. The same strategy was followed for group B but using the 
VS system instead. These two sub-groupings follow the same blocking strategy as the 
one used to group the students for Task 1 into groups A and B. Note that we use dif-
ferent systems for the two labs for each group of students in order to avoid learning 
effects that would otherwise constitute a threat to validity. For example, group A uses 
the VS system in Lab 1 but the CPD system in Lab 2. In total, 26 data points were 
obtained for Task 1 and Task 2 (14 data points for treatment UCM_R and 12 for 
treatment UCM_UR) respectively; however only 23 data points (14 for treatment 
UCM_R and 9 for treatment UCM_UR) were used for analyzing Task 2. Three data 
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points were excluded from the analysis in order to avoid constituting a threat to valid-
ity: one student missed the lab for Task 2 and had to perform the task at home, an-
other spent 3 hours 40 mins on Task 2, and the other produced a very incomplete  
result (no class diagram were derived). 

4.5   Instrumentation 

The instruments of an experiment are classified into three types: experiment objects, 
guidelines, and measurement instruments [24]. In this section we discuss our experi-
ment instruments for Task 2 by conforming to this classification. 

Experiment objects. The CPD and VS systems come in two versions for this part of 
the experiment: they contain the same use case diagram but have different UCSs (with 
or without restrictions). Both sets of UCSs—one with our restrictions and template, 
one with a standard template—were created by the first author of this paper. Both use 
case model versions were carefully reviewed by the authors to ensure that they 
contained equivalent information. Notice that the students were equally trained to 
understand our use case template and the standard template. 

Experiment guidelines. A lab description was provided to the students at the 
beginning of each lab, describing the list of documents provided, the task of the lab, 
and the submission guidelines. The students belonging to different groups were 
monitored to ensure they would not access each other’s documents during the entire 
lab duration. With a use case model as input documents, the students were asked to 
design a class diagram. We made it clear in the lab description that the students 
should, based on the use case description, assign meaningful names for each class, 
attribute, and operation, and apply the traditional Entity/Boundary/Control stereotype 
classification for each class. The students were also asked to complete a 
comprehension questionnaire during the lab, which was designed to evaluate how 
well they were able to understand the flow of events of each UCS. The students were 
also asked to derive sequence diagrams for two selected use cases; however most of 
the students were not able to derive these diagrams due to time constraints, which 
were therefore not analyzed. 

Measurement instruments. A comprehension questionnaire was designed for each 
system to quickly evaluate, in a repeatable and objective way, the extent to which 
students understood the main body (flows of events) of each UCS. The standard 
guidelines proposed in [16] were followed to create the questionnaires. To avoid 
introducing any bias, we ensured comprehension questions were answerable by the 
students using both the restricted or unrestricted use case models. The complete 
questionnaires for the two systems are discussed in [26].  

4.6   Evaluation Measurement and Data Collection 

There are two dependent variables for Goal 2, for which data must be collected in 
Task 2: the quality of class diagrams (abbreviated as CD) and the correctness of re-
sponses to the comprehension questionnaires (abbreviated as QC). 

Variable CD. The quality of an analysis class diagram is evaluated from three aspects: 
Correctness, Completeness, and Redundancy. We used reference class diagrams, 
designed by the authors, as the basis to evaluate class diagrams designed by the 
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students. Data are collected from the reference class diagrams (i.e., number of classes, 
associations and generalizations), and data are also collected from the class diagrams of 
each student (e.g., number of missing classes, missing attributes of a class, incorrect 
associations, and redundant classes). All these data are then used to compute the 
measures of Completeness, Correctness and Redundancy of a student class diagram. 
The completeness of a class diagram is inversely related to the numbers of missing 
classes, associations and generalizations, which are considered to be three important 
element types in a class diagram; the correctness of a class diagram is determined by the 
correctness of matching classes (computed as the average, over the complete class 
diagram, of the class measures of Completeness and Correctness) and associations; the 
redundancy of a class diagram is computed as the ratio of redundant classes over all the 
classes of a student’s class diagram. The completeness of a class is related to whether its 
stereotype is missed and whether there are missing attributes and operations; the 
correctness of a class is determined by whether the class is correctly named, stereotyped 
and specified as abstract, and whether a single logical concept is represented and a 
cohesive set of responsibilities is assigned to the class. The detailed description of the 
measures and calculation formulas is provided in [26] due to space limitations. 

For each reference class of the reference class diagram of a case study system, we 
look for a class with the same name as the reference class in a student class diagram. 
If such a class is found, then this matching class is evaluated according to the quality 
measures for a class; otherwise, we keep looking in the student class diagram for a 
design equivalent1 to the reference class. If no such equivalent design exists in the 
student class diagram, then we identify the reference class as missing and therefore 
the student diagram as incomplete. When all the reference classes in the reference 
class diagram have been looked at, there are three outputs: 1) a set of matching 
classes are identified and evaluated by using the quality measures for a class; 2) a set 
of equivalent designs are identified but not measured because either a subjective 
measurement or a large number of specific measures would be required to measure 
them. Besides, not many such equivalent designs have been found and not measuring 
them does not really impact the measurement of CD; and 3) a set of reference classes, 
missing in the student class diagram (i.e., not matching classes or equivalent design), 
are listed. A procedure similar to this identification of matching class, missing class, 
and equivalent class designs is also applied to identify matching/missing attributes, 
operations, associations, and generalizations. 

Variable QC. Data about the correctness of responses to the questions of the 
comprehension questionnaires of Task 2 are used to evaluate the understandability of 
UCSs, which is normalized between 0 and 1:  

For the CPD system: QC_CPD = number of correct responses / 15 
For the VS system: QC_VS = number of correct responses / 25 

where the denominators are the total numbers of questions in each system questionnaire. 

                                                           
1 An equivalent design may contain one or more model elements, which could be attributes, 

multiple classes connected by associations, etc. It is difficult to determine such an equivalent 
design and it would probably easier to prove the equivalence of sequence diagrams since such 
information is already included in UCSs. 
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5   Experiment Results and Analysis 

In this section, we present the results from the controlled experiment described in the 
previous section. Though the two systems used for the experiment might lead to dif-
ferent results, the number of observations does not allow us to perform a separate 
analysis for each of them. We, however, counter-balance their possible effect by en-
suring a similar proportion of observations coming from each system, for each of the 
tasks. Recall that Goal 1 is to evaluate whether RUCM (the use case template and the 
restriction rules) is easy to apply while developing use case models. Each restriction 
rule is evaluated in terms of its understandability, applicability, restrictiveness, and 
error rate. Though we do not report these results in detail here, they indicate that our 
26 restriction rules are easy to apply and with appropriate tool support and focused 
training on the rules receiving higher error rates, error rates can be expected to de-
crease, as detailed in [26]. Based on these results, we are therefore confident that 
trained engineers are capable to properly apply our restriction rules and template and 
obtain UCSs from which to derive analysis models. In the rest of the section, we re-
port the experiment results for Goal 2 (Task 2). 

As we have discussed in Section 4.3, Goal 2 involves one independent variable 
(Method) with two treatments, UCM_R and UCM_UR, respectively denoting the use 
or not of restriction rules, and two dependent variables CD and QC, respectively de-
noting the quality of analysis class diagrams and the correctness of responses from a 
comprehension questionnaire. In this section, we report on one-tailed t-test results 
using the factor Method. 

Table 3. Descriptive statistics of all measures 

 Completeness Correctness Redundancy QC 
Methods Mean Size Mean Size Mean Size Mean Size 
UCM_R 0.260 14 0.882 14 0.093 14 0.913 12 

UCM_UR 0.178 9 0.807 9 0.141 9 0.527 8 
All Methods 0.219 23 0.845 23 0.117 23 0.72 20 

The descriptive statistics of all measures are presented in Table 3. As shown in this ta-
ble, all means for Completeness are below 0.3. This means that less than 30% of required 
class diagram elements (e.g., classes, associations, and generalizations) were derived 
from UCSs by the students. This is likely due to time constraints of the experiment. All 
means for Redundancy are below 0.15, which indicates that student-derived class  
diagrams have very low redundancy2. This can also be explained by time constraints 
during the experiment: the students were not able to completely design class diagrams 
(low Completeness) and there was therefore less opportunity to define redundant classes. 
Correctness evaluates each matching class and association3 in the students’ class dia-
grams; therefore time constraints have no impact on the results of this measure. This 
statement is also supported by the data shown in Table 3: All Correctness means are 

                                                           
2 Only redundant classes are used to measure Redundancy of class diagrams. 
3 Missing classes and associations are taken care of by Completeness and redundant classes are 

measured by Redundancy. 
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above 0.8, which means a 80% Correctness in the matching classes and associations of 
the students’ class diagrams. The QC (Questionnaire) mean of treatment UCM_R is over 
90%, which means that time constraints had little impact on QC results: the students had 
enough time to correctly answer over 90% of the questions. The students with treatment 
UCM_UR only correctly answered 52.7% of the questions during the same period of 
time. The significant difference between the two treatments is what we expected (i.e., 
restrictions helped), which is analyzed next. 

Table 4 presents a summary of the statistical t-test results for dependent variables 
CD and QC. Regarding CD, the students with treatment UCM_R performed slightly 
better in terms of Completeness and Redundancy than otherwise, but the difference is 
not statistically significant, due perhaps to time constraints of the experiment (both of 
the two measures received low mean values as shown in Table 3) and the small size 
of our sample. However, there is a statistically significant difference regarding Cor-
rectness: the students with treatment UCM_R produced significantly higher quality 
class diagrams than the students with treatment UCM_UR. Regarding QC, the t-test 
result also shows a significant difference between the two treatments in the expected 
direction, thus indicating an increased understanding due to restriction rules and the 
template. The magnitude of the difference is also very large: 38.7% (Table 4). Non-
parametric tests were also performed. The results are not very different from the t-test 
results and are therefore not presented in this paper.  

Table 4. t-test – CD and QC 

Measures Mean difference 
(UCM_R – UCM_UR) 

DF t-value p-value 

Completeness 0.082 17 1.552 0.0695 
Correctness 0.074 17 2.348 0.0155 
Redundancy -0.048 12 -0.792 0.2218 

QC 0.387 8 5.189 <0.0004 

As stated previously, statistically significant differences are obtained in terms of 
both Correctness and QC (differences of 0.074 and 0.387, respectively—Table 4). 
The difference in size between the effect on Correctness and QC can also be ex-
plained. As discussed in Section 3.2, R1-R7 put restrictions on the use of natural lan-
guage but can only be applied to action steps; R8-R16 also put restrictions on the use 
of natural language but can be applied to both action steps and condition steps; R17-
R25 are rules on the use of control structures specified as keywords. By looking at 
those rules, it appears that R1-R7 and R17-R25 primarily put restrictions on docu-
menting flows within steps (sentences) or flows of steps in UCSs, while R8-R16 are 
more related to the vocabulary being used in all the sentences of a UCS. Therefore we 
believe that R8-R16 impacted the quality of derived class diagrams (CD) to a larger 
extent than the other rules. On the other hand, we believe that rules R1-R7 and R17-
R25 had a greater impact on the result of comprehension questionnaires (QC) than 
R8-R16, since questionnaires evaluated the extent to which students understood the 
flows of events of each UCS. Then because a much larger number of restriction rules 
have an impact on QC than CD, the mean differences between the two treatments in 
terms of CD Correctness and QC are likely to reflect that difference of impact: the 
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mean difference in QC is much larger than the mean difference in CD Correctness. 
This intuition could perhaps be confirmed by studying the quality of interaction dia-
grams generated by students: since they relate more to flow than vocabulary we 
would expect their quality to be higher. However, recall that due to time constraints, 
our students did not have time to produce interaction diagrams.  

6   Threats to Validity 

Two main threats to external validity are relevant to our experiment, and are typical of 
what can be found when running controlled experiments in artificial settings and 
within time constraints: 1) Are the subjects representative of software professionals? 
2) Is the experiment material representative of industrial practice? 

Regarding issue 1), recall that in Task 1 the students designed use case models by 
applying RUCM. This task is usually performed by requirements engineers during the 
requirements elicitation phase of a typical software development lifecycle. Given the 
state of practice in most of the software industry, whether for students or professional 
requirements engineers, it is likely to require training. The students of our experiment 
are 4th year software and computer engineering students who had received training in 
use case modeling in previous courses. In addition, they were given a 90 minute lec-
ture and an assignment specifically focusing on how to apply the restriction rules and 
template. In our context, the main difference between students and professional re-
quirements engineers, is that the latter could have more experience on designing use 
case models, and thus we assume that they would probably apply more effectively 
RUCM than students given the same amount of training. Thus, professional require-
ments engineers would be able to further benefit from RUCM, and thus provide a 
more positive opinion on the rules’ applicability. As for Task 2, the students derived 
analysis models from both the restricted and unrestricted use case models. This task is 
usually performed by system analysts in industry. Again, our 4th year software and 
computer engineering students had received extensive training on software modeling 
with the UML, through several courses, and this is more than what we have observed 
in most software development environments.  

As for issue 2) above, the scale of the systems is not likely to have a significant 
impact on the results of the experiment for Task 1. Indeed, this task does not require 
an overall understanding of the systems as the use case diagrams of the two systems 
were provided to the students as part of the experiment material. The students were 
only asked to write some UCSs by applying the restriction rules and the use case tem-
plate. Due to time constraints (two three-hour laboratories), it was anyway not feasi-
ble to consider larger scale systems (with more UCSs) for Task 2. 

Construct validity is related to our measurement instruments: the two comprehen-
sion questionnaires used respectively for the two tasks. The questions of the compre-
hension questionnaire for Task 2 are designed to be answerable from the use case 
models with or without restrictions, therefore introducing no bias for any of the treat-
ments. Three students presented problems related to internal validity. One of them 
missed the lab for Task 2 and had to perform the task at home; another spent 3 hours 
40 mins on Task 2; the other produced a very incomplete result (no class diagram was 
derived). These three data points were excluded from the analysis. 
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7   Conclusion 

Use case modeling (UCM) is one of the most common practices for capturing functional 
requirements. However, use case specifications (UCSs) are essentially textual documents 
and therefore ambiguity is inevitably introduced. To facilitate the transition towards 
analysis models, whether manual or automated, the UCSs are expected to be the least 
ambiguous possible. In this paper, we propose a UCM approach, denoted Restricted 
UCM (RUCM), which is composed of 26 well-defined restriction rules and a use case 
template, to restrict the way users can document UCSs. The objective is both to reduce 
ambiguity and also facilitate the (automated) transition towards analysis models. 

A controlled experiment was conducted, in the context of a 4th year Software Engi-
neering course, to evaluate whether RUCM is easy to apply while developing use case 
models and whether it helps obtain higher quality analysis models. Each restriction 
rule was evaluated in terms of its understandability, applicability, restrictiveness, and 
error rate. Though not presented in full details here, the experiment results indicate 
that our 26 restriction rules are easy to apply and can therefore help obtain UCSs that 
are a reliable source from which to derive analysis models. This was a prerequisite to 
the investigation reported in this paper. 

The second part of the controlled experiment, presented in detail here, was to 
evaluate whether RUCM helps derive higher quality analysis models, by comparing it 
to a common UCM approach that does not put restrictions on natural language. The 
quality of analysis class diagrams is evaluated in terms of their correctness, complete-
ness, and redundancy. The results show that RUCM leads to significant improvements 
regarding the correctness of derived class diagrams, but not their completeness and 
redundancy. We believe this is likely due to the time constraints of the experiment; 
the students were not even close to complete the class diagrams and there was there-
fore less opportunity to define redundant classes. Furthermore, RUCM resulted in a 
large improvement in term of the students’ comprehension of the use case model as 
measured by a carefully designed questionnaire.  

Based on our knowledge, this study represents the first controlled experiment that 
evaluates the applicability of restriction rules used to document UCSs, both individu-
ally and as a whole, and that also evaluates the impact of these rules and our proposed 
use case template on the quality of generated analysis class diagrams. The measures 
we have defined to characterize restriction rules and evaluate the quality of analysis 
class diagrams can be reused for similar experiments in the future.  

During the second part of the experiment, the students were also asked to derive 
sequence diagrams for two use cases. However, most of the students were not able to 
do so due to time constraints. Evaluating the impact of RUCM on the quality of 
analysis sequence diagrams would be relevant future work. In addition, we also plan 
to replicate the experiment to see whether significant differences between two treat-
ments can be identified in terms of completeness and redundancy of generated analy-
sis class diagrams if more time is given to participants of the experiment. 
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Abstract. We present polymorphic scenarios, a generalization of a
UML2-compliant variant of Damm and Harel’s live sequence charts (LSC)
in the context of object-orientation. Polymorphic scenarios are visualized
using (modal) sequence diagrams where lifelines may represent classes
and interfaces rather than concrete objects. Their semantics takes ad-
vantage of inheritance and interface realization to allow the specification
of most expressive, succinct, and reusable universal and existential inter-
object scenarios for object-oriented system models. We motivate the use
of polymorphic scenarios, formally define their trace-based semantics,
and present their application for scenario-based testing and execution,
as implemented in the S2A compiler developed in our group.

1 Introduction

Scenario-based modeling, where interactions between system objects are speci-
fied using variants of sequence diagrams, has been adapted to the UML2 stan-
dard and has attracted much research efforts in recent years (see, e.g., [1,2,3]).
Specifically, we are interested in a UML2-compliant variant of Damm and Harel’s
live sequence charts (LSC) [4,5], which extends classical sequence diagrams with
universal/existential and must/may modalities.

Polymorphism – the ability of a type T1 to appear and be used like another
type T2 – is a fundamental characteristics of object-oriented design, enabling
important features such as modularity and reuse. While UML class diagrams
syntax includes constructs that support a polymorphic interpretation, such as
inheritance and interface realization relations, a polymorphic interpretation for
UML inter-object behavioral diagrams, such as sequence diagrams, seems to be
missing. This limits the applicability of these diagrams to object-oriented system
models.
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In this paper we address this limitation by presenting polymorphic scenarios,
as a generalization of sequence diagrams in the context of object-oriented sys-
tem models. In polymorphic scenarios, sequence diagram lifelines may represent
classes or interfaces rather than specific objects. Semantically, they thus apply
to all objects directly or indirectly instantiated from the represented classes, or
all objects realizing the represented interfaces in the model.

Combined with the expressive power of LSC, the polymorphic extension re-
sults in a powerful modeling language. A polymorphic scenario-based specifica-
tion made of a set of universal and existential scenarios is a succinct specification
that entails a rather strong notion of behavioral sub-typing : liveness and safety
properties of a super class’s interaction with its environment hold for all objects
directly or indirectly instantiated from it in the model. Thus, inter-object behav-
ior common to all objects derived directly or indirectly from a certain type, can
be formally specified at the most abstract level where it is applicable, instead of
being repeated for each class (or worse, for each object).

The polymorphic extension is independent of other semantic concerns related
to sequence diagrams, e.g., the existential vs. universal interpretations, the use
of negative scenarios, strict vs. weak sequencing, synchronous vs. asynchronous
messages etc., supported by UML2 interactions. Similar to the lifeline composi-
tion extension of [6], the focus of the polymorphic extension is on the relations
between the lifelines that appear in the interaction and the objects in the system.

The main technical contribution of our work is in defining a semantics for a
polymorphic extension of the UML2-compliant variant of LSC. Specifically, we
give a trace-based semantics that generalizes the definitions given in [5] from
the concrete to the polymorphic case. Technically, this is done by adding to the
automata defined in [5] a dynamic (ad-hoc, late) binding mechanism supporting
classical object-oriented polymorphism. Moreover, following LSC, the semantics
is defined not only for single diagrams, but also for scenario-based specifications,
which include several, possibly inter-dependent interactions. When realized in a
system model, the polymorphic interpretation may result in different concrete
interpretations based on the inter-dependencies in the specification model.

The polymorphic interpretation has far reaching consequences on the use of
scenario-based models throughout the development cycle. Specifically, we discuss
its application to scenario-based testing and execution. An implementation of
scenario-based testing and execution supporting the polymorphic semantics has
been carried out in S2A [7], a compiler that translates UML2-compliant LSCs
into AspectJ code. See Sec. 4.

Finally, our work on polymorphic scenarios extends and generalizes the notion
of symbolic lifelines presented for LSC in [8]. We are not aware of any other work
that explicitly and formally considers a polymorphic interpretation for sequence
diagrams. See Sec. 5 for a discussion of related work.

The paper is organized as follows. Sec. 2 presents a motivating example, demon-
strating the advantages and unique features of the polymorphic interpretation.
Sec. 3 formally defines the syntax and semantics of polymorphic scenario-based
specifications. A discussion of applications, specifically, polymorphic model-based
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testing and execution and their implementation, appears in Sec. 4. Sec. 5 discusses
related work, and Sec. 6 concludes and suggests future research directions.

2 Motivating Example

We start off with a motivating example. The example is intentionally small and
simple, to help us focus on the specific issue of interest.

Consider a model of an alarm system, made of an alarm controller, some
sensors, and a buzzer. We consider a single simple use case where the alarm
controller activates a sensor, the sensor notifies the controller when it senses
a movement, and the alarm controller starts the buzzer. More formally, see
the class diagram shown in Fig. 1, which includes the class CBuzzer, an ab-
stract class CAlarm and its two sub classes CStdAlarm and CAdvAlarm, two
classes CDoorSensor and CFireSensor realizing the ISensor interface, and a
class CSimpleLogger realizing the interface ILogger. One difference between
the standard alarm controller and the advanced one is that the latter maintains
a log of alarm notifications, using a class realizing the ILogger interface.

CBuzzer

alarmsystem

alarmsystem.sensors

start()
stop()

CAlarm

notify()

ISensor

activate()
deactivate()

<<interface>>

CFireSensor CDoorSensor

CAdvAlarm

CStdAlarm

logging

ILogger

notifyLog()

<<interface>>

CSimpleLogger

Fig. 1. The class diagram of the alarm system model

Consider the following semi-formal behavioral specification:

R1: Whenever an alarm controller (an object of type CAlarm) sends the message
activate to a sensor (realizing the ISensor interface), and the sensor some
time later sends the message notify to the alarm controller, the controller
must eventually send the message start to a buzzer.

R2: Whenever a sensor sends the notifymessage to an advanced alarm controller
(an object of type CAdvAlarm), the advanced alarm controller must even-
tually send the message notifyLog to a logger (implementing the ILogger
interface).
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R3: The following sequence of events must be possible: an alarm controller sends
the message activate to a sensor, the sensor sometime later sends the
message notify to the alarm controller, and the alarm controller sends the
message activate to the sensor (again).

The above specification is formalized in Fig. 2, which includes two universal
diagrams D1 and D2 and an existential diagram D3. First, recall the univer-
sal/existential modality of LSC. Roughly, the universal diagrams specify a tem-
poral invariant that must hold on all system runs, and from every point in a
run; whenever the cold (dashed, blue) messages happen in the specified order,
eventually the hot (solid, red) messages must happen in the specified order. The
existential diagram specifies an example trace that must hold (that is, must
happen in the specified order) in at least one point of some system run.

Second, and more importantly in the context of this paper, the sequence
diagrams shown in this example have a polymorphic interpretation. That is,
their semantics, when given as a set of system-model event traces (or ‘runs’),
includes events occurring on all objects derived from the referenced classes or
realizing the referenced interfaces. For example, the traces tr1 and tr2 shown
in Fig. 3 are both in the trace-language defined by diagram D1 shown in Fig. 2.

Moreover, the semantics of the entire specification consisting of the three
diagrams together is polymorphic: the same concrete object instance may be
referred to by more than one diagram using different (ad hoc) polymorphic
bindings. For example, the behavior of an instance of the class CAdvAlarm is
constrained both by D1 – where it is referenced as its super class CAlarm using
implicit up-casting – and by D2 – where it is represented by its direct class.

Fig. 2. A scenario-based specification model for the alarm system. Cold messages are
drawn using dashed lines, hot messages are drawn using solid lines (see [4,5]).

Note how the polymorphic interpretation allows us to create succinct specifi-
cations; inter-object behavior common to all objects derived directly or indirectly
from a certain type is specified at the most abstract level where it is applicable,
instead of being repeated for each class (or worse, for each object). The resulting
specifications may thus also be reusable and applicable to other systems, e.g.,
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tr1: <cstdalarm,activate,fs1><cstdalarm,activate,ds1><fs1,notify,cstdalarm>

<cstdalarm,start,cbuzzer><cstdalarm,activate,ds1>...

tr2: <cadvalarm,activate,fs3><cadvalarm,activate,ds1><fs3,notify,cadvalarm>

<cadvalarm,notifyLog,simplelogger><cadvalarm,start,cbuzzer>...

Fig. 3. Two excerpts from traces of the alarm system. Events are represented as triplets
of the form 〈caller object id, message signature, receiver object id〉.

where we may have different realizations of some of the same interfaces. For
example, if another type of sensor is added to the system, say a CFloodSensor,
the scenario-based specification model need not change.

The example demonstrates the significant consequences the polymorphic in-
terpretation may have on the use of scenario-based models throughout the de-
velopment lifecycle. Requirements can be formally specified in a succinct way, at
the highest level of abstraction where they are applicable. Scenario-based tests
may be succinctly defined and capture polymorphic behaviors. We return to
these applications and to the alarm system example in Sec. 4.

The next section provides the required formal definitions for the syntax and
semantics of polymorphic scenario-based specifications.

3 Polymorphic Scenarios

We now give trace-based semantics for polymorphic scenarios. For simplicity we
limit the presentation to synchronous messages. We assume the reader is familiar
with well-known basic notions in the context of classical sequence diagrams such
as the partial order on events induced by a diagram and the notion of a cut, and
thus concentrate on the features unique to the polymorphic extension. We use
the terms interaction and scenario interchangeably.

A polymorphic interaction, represented by a sequence diagram, is made of a
set of lifelines, each of which represents a class or an interface in a system-model.
Trace-based semantics for a scenario-based specification is given by constructing
an automaton for each diagram in the specification and relating the language
accepted by the automaton to inter-object event traces of the system-model.
We adopt the modal profile defined in [5] and the distinction of LSC between
existential and universal diagrams (see [4,5]).

The following generalizes the formal definitions given in [5] from concrete to
polymorphic scenarios. We start off with formal definitions of the system-model
and the syntax of polymorphic scenarios. We then give the semantics of uni-
versal and existential polymorphic scenarios, first informally and then formally.
Finally, we relate a polymorphic scenario-based specification to a system-model.
For simplicity, we consider here only Messages. Adding other constructs available
for UML2 interactions such as StateInvariants (LSC conditions) and Interaction-
Fragments with InteractionOperators such as alt and loop, does not change the
essence of the construction. We assume strict sequencing only.
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3.1 The Basics

System-Model. We consider a system-model Sys = 〈O, Ty, type, ≤Ty〉, which
includes a (possibly infinite) set of objects O = {o1, o2, . . .}, a partially ordered
set of types Ty = {ty1, ty2, . . . , tym}, and a mapping from each object in O to its
type type : O −→ Ty. The mapping type derives an instanceof Boolean function
instanceof : (O × Ty) −→ {true, false} such that instanceof(o, ty) = true iff
type(o) ≤Ty ty.

A type ty ∈ Ty has a finite set of method signatures m(ty) = {m1, m2, . . . , ms}.
The subtyping partial order ≤Ty over Ty implies signatures set inclusion: ∀ty1, ty2
∈ Ty, ty1 ≤Ty ty2 implies m(ty2) ⊆ m(ty1). We allow multiple inheritance with a
disjoint signatures restriction: ∀ty1, ty2, ty3 ∈ Ty, if ty1 ≤Ty ty2 and ty1 ≤Ty ty3
and ty2 �Ty ty3 and ty3 �Ty ty2 then m(ty2) ∩ m(ty3) = ∅. Note that we ignore
the difference between class and interface types as it has no semantic significance
in the trace-based semantics we present.

A system-model event e is a tuple 〈osrc, m, otrg〉 where osrc, otrg ∈ O and
m ∈ m(type(otrg)), carrying the intuitive meaning of object osrc calling method
m of object otrg (we allow osrc = otrg). A system-model trace is an infinite
sequence of events e1, e2, e3, . . ..

Polymorphic Scenario. A (modal) polymorphic scenario is a tuple
D = 〈mode, L, ltype, LPME, eventMode〉 where:

– mode ∈ {existential, universal} is the mode of the scenario;
– L = {l1, l2, . . . , lk} is a finite set of lifelines; each lifeline li includes an ordered

set of ri event occurrence specifications (denoting message sent or received)
on this lifeline: ∀i, 1 ≤ i ≤ k, li = {l1i , l

2
i , . . . , l

ri

i };
– ltype : L −→ Ty is a mapping from each lifeline to a type;
– LPME is a set of lifeline-polymorphic-message-event triplets 〈lpsrc, m, lqtrg〉

where lpsrc is a send message event occurrence specification on the source
lifeline, lqtrg is a receive message event occurrence specification on the target
lifeline, and m ∈ m(ltype(ltrg)) is the signature of the message;

– and eventMode : LPME −→ {cold, hot} is a mapping giving a tempera-
ture to each message triplet in D (in existential diagrams we consider cold
messages only).

The set of lifelines L and the mapping ltype define the set of possible bindings
Bind(L) ⊆ (O∪{⊥})k such that 〈o1, o2, . . . , ok〉 ∈ Bind(L) iff ∀i, 1 ≤ i ≤ k, oi =
⊥ ∨ instanceof(oi, ltype(li)). A given binding 〈o1, o2, . . . , ok〉 ∈ Bind(L) defines
a trivial projected function bind : L −→ (O ∪ {⊥}) from a lifeline to its bound
object: ∀i, 1 ≤ i ≤ k, bind(li) = oi.

For a lifeline-polymorphic-message-event triplet lpme=〈lpsrc, m, lqtrg〉∈LPME
we use src(lmpe), m(lpme), trg(lpme) to denote its source lifeline, mes-
sage signature, and target lifeline, resp. Based on LPME we define the
set of polymorphic-message-events in D: PME = {〈tysrc, m, tytrg〉|∃lpme ∈
LPME s.t. tysrc = ltype(src(lpme)) ∧ tytrg = ltype(trg(lpme)) ∧ m =
m(lmpe)}. PME abstracts away lifeline locations and identities, but keeps their
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types. We use PME in the definition of the semantics below. Note that the
same triplet 〈tysrc, m, tytrg〉 ∈ PME may correspond to more than one message
event occurrence in LPME over identical lifelines in different locations or over
different pairs of lifelines.

The Semantics of a Polymorphic Scenario. The semantics of a polymor-
phic scenario D is given using an automaton AD; the trace-language of a scenario
is the language accepted by its automaton L(AD). The construction of the au-
tomaton AD is based on an unwinding structure S (see, e.g., [9]). Intuitively, this
structure is made of states representing cuts and includes paths for all possible
linearizations of the partial order between events defined by the diagram; that
is, where event occurrences on each lifeline are ordered from top to bottom, and
message send event precedes the same message receive event.1 For simplicity in
this paper we treat message send and receive as a single event. We consider only
well-formed diagrams, that is, that indeed induce a partial-order (see [10]).

The unwinding structure is made of a set of cut-states S (with a desig-
nated minimal cut-state smin ∈ S), and a partial (transition) function R :
S × LPME −→ S.

The set of enabled -lifeline-polymorphic-message-event-occurrences in a cut
s ∈ S is defined by EnLPME(s) = {e ∈ LPME|∃s′ ∈ S : R(s, e) =
s′}. The set of enabled -polymorphic-message-events in a cut s is defined by
EnPME(s) = {〈tysrc, m, tytrg〉 ∈ PME|∃e ∈ EnLPME(s) : m(e) = m ∧
tysrc = ltype(source(e)) ∧ tytrg = ltype(target(e))}.

The mapping eventMode : LPME −→ {cold, hot} of the diagram is extended
in the unwinding structure S to cut-states as follows: mode : S −→ {cold, hot}
is defined s.t. mode(s) = hot if ∃e : e ∈ EnLPME(s) ∧ eventMode(e) = hot;
otherwise mode(s) = cold. That is, a cut is hot iff at least one of its enabled
message event occurrences is hot. The intended semantics of a hot cut is that of
an unstable state; when the scenario is in a hot cut, there is at least one message
that must eventually occur in order for the scenario to be satisfied (see [5]).

Note that while the ‘alphabet’ for messages appearing in a polymorphic sce-
nario D is the ‘abstract’ type-level events alphabet Σabs ⊆ Ty × M × Ty
such that Σabs = {〈ty1, m, ty2〉|ty1, ty2 ∈ Ty ∧ m ∈ m(ty2)}, the alphabet Σ
for the automata defined below is the ‘concrete’ object-level message events
alphabet Σ ⊆ O × M × O such that Σ = {〈o1, m, o2〉|o1, o2 ∈ O ∧ m ∈
m(type(o2))}. We define the set of concrete object-level message events in Σ
that may be unified with polymorphic message events in PME as follows:
CPME = {〈osrc, m, otrg〉|〈osrc, m, otrg〉 ∈ Σ ∧ ∃〈tysrc, m, tytrg〉 ∈ PME s.t.
instanceof(osrc, tysrc) ∧ instanceof(otrg, tytrg)}.

The intended semantics for a universal polymorphic scenario is that of a tem-
poral invariant that holds on all system-model traces and from any point on those
traces. Thus, the semantics of a universal polymorphic scenario is given using
an alternating automaton (see below). Roughly, for each run of the automaton,
1 This structure is common to most variants of sequence diagrams presented in the

literature; we thus assume the reader is familiar with it and concentrate on the issues
unique to the polymorphic extension we present here.
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instantiated following the occurrence of a minimal event in the partial-order in-
duced by the diagram, the automaton checks whether the message of this event
is enabled or violating with regard to the current cut. If it is enabled, it checks
for a binding: if there are free (yet unbound) lifelines that can bind to the event’s
concrete source and target object (or there are lifelines that are already bound
to the event’s source or target), it binds the free lifeline(s) and advances the cut-
state accordingly. Otherwise, it ignores the event. If the message in this event
is violating, that is, it appears in the diagram but is not currently enabled, the
automaton checks for binding too: if there are lifelines that are already bound
to the event’s source and target, the event is indeed violating and the violation
is handled according to the current cut-state mode: if the cut is hot, it is a hot
violation, and the run moves to a rejecting sink state. If the cut is cold, it is a
cold violation, and the run moves to an accepting sink state. If the automaton
reaches the maximal cut-state it moves to its accepting sink too.

The intended semantics of an existential polymorphic scenario is that of an
example; there must be at least one possible system-model run where the sce-
nario ‘happens’ at least once. Thus, the semantics of an existential polymorphic
scenario is given using a nondeterministic automaton whose first state needs to
‘guess’ when does an accepting sequence begin. A similar mechanism to the one
described above for binding of enabled events is used in the existential case.

The above intended semantics and informal automata constructions are for-
malized in the definitions of the two automata given in the following subsections.

3.2 Universal Polymorphic Scenarios: Formally

The semantics of universal polymorphic scenarios is given using an alternating
automaton; the trace-language of a diagram is the language accepted by its
automaton. Recall that in an alternating automaton the transition function is
defined as δ : Q × Σ −→ B+(Q) where B+(Q) is the set of positive Boolean
formulas over Q (see, e.g., [11]). Given a universal diagram D we construct an
alternating Büchi automaton AD = 〈Σ ∪ ε, Q, qin, δ, α〉, where

– Σ = {〈o1, m, o2〉|o1, o2 ∈ O ∧ m ∈ m(type(o2))};
– Q = S ×Bind(L)∪{qrej, qacc} is a set of states (we use cut(q) to denote the

cut-state s of a state q = 〈s, 〈o1, . . . , ok〉〉);
– qin = 〈smin, 〈{⊥}k〉〉 is the initial state;
– α = {〈s, 〈o1, . . . , ok〉〉|mode(s) = cold} ∪ {qacc} is the accepting condition

(that is, all cold states and qacc are accepting);
– and δ : Q × Σ −→ B+(Q) is a transition function defined as follows:

– Σ labeled self transitions on qacc and qrej :

∀cme ∈ Σ : δ(qacc, cme) = qacc, δ(qrej , cme) = qrej

– Σ \ CPME labeled self transitions on all cut-states:

∀q ∈ Q \ {qrej, qacc}, ∀cme ∈ Σ \ CPME : δ(q, cme) = q
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– Handling message events in CPME:

∀q = 〈s, 〈o1, . . . , ok〉〉 ∈ Q \ {qin, qrej , qacc}, ∀cme ∈ CPME:

• (the source and target objects of cme are already bound)
for lisrc, l

j
trg s.t. source(cme) = bind(lsrc) ∧ target(cme) =

bind(ltrg) ∧ 〈lisrc, m(cme), ljtrg〉 ∈ EnLPME(cut(q)):
δ(q, cme) = 〈R(cut(q), e), 〈o1, . . . , ok〉〉 where e = 〈lisrc, m(cme), ljtrg〉;

for lisrc, l
j
trg s.t. source(cme) = bind(lsrc) ∧ target(cme) = bind(ltrg) ∧

〈lisrc, m(cme), ljtrg〉 /∈ EnLPME(cut(q)):
- if mode(cut(q)) = cold then δ(q, cme) = qacc,
- if mode(cut(q)) = hot then δ(q, cme) = qrej ;

• (otherwise, the source object of cme is already bound and the target can
bind to a free lifeline)
for lisrc s.t. source(cme) = bind(lsrc)
for all ljtrg s.t. instanceof(target(cme), ltype(ltrg)) ∧ bind(ltrg) = ⊥ ∧
〈lisrc, m(cme), ljtrg〉 ∈ EnLPME(cut(q)):
δ(q, cme) =

∧
ljtrg

〈R(cut(q), e), 〈o1, . . . , oltrg , . . . , ok〉〉

where e = 〈lisrc, m(cme), ljtrg〉∧oltrg = target(cme)∧∀h �= ltrg : oh = oh;
• (otherwise, symmetrically, the target object of cme is already bound and

the source can bind to a free lifeline)
Same as above only replace source(cme) and target(cme), ltrg and lsrc.

• (otherwise, the source and the target objects of cme are not yet bound
but each can bind to a free lifeline)
for all lisrc, l

j
trg s.t. bind(lsrc) = ⊥ ∧ bind(ltrg) = ⊥ ∧

instanceof(target(cme),
ltype(ltrg))∧instanceof(source(cme), ltype(lsrc))∧〈lisrc, m(cme), ljtrg〉 ∈
EnLPME(cut(q)):

δ(q, cme) =
∧

lisrc,ljtrg
〈R(cut(q), e), 〈o1, . . . , olsrc , . . . , oltrg , . . . , ok〉〉

where e = 〈lisrc, m(cme), ljtrg〉 ∧ olsrc = source(cme) ∧ oltrg =
target(cme) ∧ ∀h �= ltrg, lsrc : oh = oh;

• (otherwise, cme is ignored)
δ(q, cme) = q;

and for the initial state qin = 〈smin, 〈{⊥}k〉〉, ∀cme ∈ CPME:

δ(qin, cme) = qin ∧
∧

lisrc,ljtrg
〈R(smin, e), 〈o1, . . . , olsrc , . . . , oltrg , . . . , ok〉〉

for all lisrc, l
j
trg s.t.

instanceof(target(cme), ltype(ltrg))∧instanceof(source(cme), ltype(lsrc))∧
〈lisrc, m(cme), ljtrg〉 ∈ EnLPME(cut(qin))

where e = 〈lisrc, m(cme), ljtrg〉 ∧ oltrg = target(cme) ∧ olsrc =
source(cme) ∧ ∀h �= lsrc, ltrg : oh = oh.
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Below we add some important remarks about the construction above.

Remark 1 (multiple copies). The automaton construction induces two types of
‘multiple scenario copies’. First, multiple copies of the same scenario where life-
lines bind to different concrete objects. These are ‘instantiated’ whenever the
automaton reads a minimal event that has a new binding. Second, multiple
copies of the same scenario where lifelines bind to the same objects. These are
‘instantiated’ whenever the automaton reads a minimal event that has an exist-
ing binding that is also currently enabled in another copy. Both ‘instantiations’
are formalized in the universal ‘and’ transition defined on the initial state. In the
existential case defined in the next subsection no ‘multiple copies’ are induced.

Remark 2 (multiple binding choices). When two or more lifelines in a single
diagram represent the same type (or different types related by ≤Ty), two or
more transitions for a single event but with different bindings may be enabled at
some state. In the construction above this case is represented by the ‘and’ choices
over source and target lifeline selection (recall that the automaton is alternating,
hence allowing both ‘and’ and ‘or’ transitions). Formally, this means that for the
trace to be accepted, all possible transitions resulting from the different binding
choices must be extended to an accepting trace. That said, one may consider the
above to be too strong a requirement, and instead suggest a non-deterministic
‘or’ selection between binding choices (in the above construction this means
replacing

∧
with

∨
, except for the ‘and’ transition on the initial state).

For lack of space in this proceedings, we can neither give an explicit example
for the multiple binding choices problem nor evaluate the two different semantic
possibilities. We hope to present this in a future paper.

Remark 3 (combining static and dynamic binding). The above automaton con-
struction is a conservative generalization of the non-symbolic case, where lifelines
are statically bound to concrete objects. To handle non-symbolic lifelines, use an
initial state qin where lifelines are already bound (that is, where not all lifelines
are bound to ⊥). Note that this supports the definition of scenarios where some
lifelines are statically bound while others are dynamically bound. We consider
this to be a useful feature of our work.

Remark 4 (single binding constraint). Note that our construction ensures that no
two lifelines bind to the same object (in a single ‘instance’ of the scenario). That
is, although we allow (as we should allow) two lifelines in the same scenario to
represent the same type (or two related types), the construction of the transition
function δ ensures they will never bind to the same concrete object in a single
path in the automaton runs tree.

3.3 Existential Polymorphic Scenarios: Formally

The semantics of existential polymorphic scenarios is given using a non-
deterministic automaton; the trace-language of the diagram is the language ac-
cepted by the automaton.
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Given an existential diagram, we construct a non-deterministic Büchi automa-
ton A = 〈Σ, Q, qin, δ, α〉, where

– Σ = {〈o1, m, o2〉|o1, o2 ∈ O ∧ m ∈ m(type(o2))};
– Q = S × Bind(L) ∪ {qrej} is a finite set of states (we use cut(q) to denote

the cut-state s of a state q = 〈s, 〈o1, . . . , ok〉〉);
– qin = 〈smin, 〈{⊥}k〉〉 is the initial state;
– α = {q ∈ Q : cut(q) = smax} is the accepting condition;
– and δ : Q × Σ −→ 2Q is defined as follows:

– Σ labeled self transitions on qmax and qrej :

∀cme ∈ Σ : δ(qmax, cme) = {qmax}, δ(qrej, cme) = {qrej};

– Σ \ CPME labeled self transitions on all cut-states:

∀q ∈ Q \ {qrej}, ∀cme ∈ Σ \ CPME : δ(q, cme) = {q};

– Handling message events from CPME:
Same as in the universal case, only replace the conjunction

∧
with set union⋃

and have bounded 〈lisrc, m(cme), ljtrg〉 /∈ EnLPME(cut(q)) leading to
{qrej}. On the initial state qin replace the conjunction ∧ with set union.

Remark 5 (existential acceptance). According to the construction above, a single
possible completion of an existential scenario, at whatever level of abstraction
in the type hierarchy, is enough for trace acceptance. We could have suggested
other, different, semantics, following different notions of polymorphic coverage:
all combinations at all derived levels (which may be too strong), all derived
objects at least once (very strong requirement but may be useful), or all types
at least once (that is, one object per type has to participate). We leave the formal
definitions of these and the evaluation of their usefulness for future work.

3.4 Relating a Polymorphic Specification to a System-Model

Recall that the trace-language of a polymorphic scenario D is the word language
L(D) accepted by its automaton. Following LSC, a specification is a set Spec =
Ex ∪ Un, where Ex and Un are sets of existential and universal diagrams, resp.
(see [4,5]). We denote the runs of a system-model Sys by LSys. We say that a
system-model Sys satisfies a specification Spec = Ex ∪ Un iff

– ∀D ∈ Un, ∀r ∈ LSys : r ∈ L(D)
– ∀D ∈ Ex, ∃r ∈ LSys : r ∈ L(D)

4 Applications

4.1 Polymorphic Scenario-Based Testing

A common use of sequence diagrams in model-driven development is for testing
purposes. That is, one may specify testing scenarios using sequence diagrams.
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Taking advantage of the polymorphic extension, testing scenarios can be defined
at a rather high level of abstraction, i.e., at the interface or abstract classes
level, and thus be applicable to, and reused across, all concrete system models
realizing the generic behavior.

As an example, recall the alarm system described in Sec. 2. One may use
diagram D1 as a test case, activating a sensor, generating a notification, and
waiting for the alarm object to call the buzzer. The test is specified at the
ISensor interface and CAlarm abstract class level; its definition need not change
when applied to different system model implementations of the alarm system,
e.g., with different sensors or an instance of a new class derived from CAlarm.

An implementation of polymorphic scenario-based testing, following the se-
mantics presented in this paper, has been carried out in the context of Java
within the S2A compiler [7]. S2A (for Scenarios to Aspects) is a compiler that
translates (universal) LSCs, given in their UML2-compliant variant using the
modal profile, into AspectJ code [12], and thus provides full code generation
of reactive behavior from visual declarative scenario-based specifications. S2A
implements a compilation scheme presented in [13]. Roughly, each sequence di-
agram is translated into a scenario aspect, implemented in AspectJ, which sim-
ulates an automaton whose states correspond to the scenario cuts; transitions
are triggered by AspectJ pointcuts, and corresponding advice is responsible for
advancing the automaton to the next cut state.

Most important in the context of this paper, though, is that S2A supports
polymorphic scenarios. Taking advantage of AspectJ and Java semantics, the
generated code is able to monitor the activation and progress of all realizations of
the polymorphic UML2-compliant LSCs as they come to life during an execution
of a reference Java program. This includes the instantiation of multiple copies of
each scenario aspect and the implementation of the late binding and unification
mechanism of the trace-based semantics formally defined in the previous section.
That is, the generated aspect advice code is responsible not only for advancing
the automaton to the next cut state but also for checking and handling late
binding and ‘new automata’ instantiation.

We have created a Java implementation of a simple simulation of an alarm
system following the design shown in Sec. 2. We used the diagrams shown in
Fig. 2 as input for S2A and generated scenario aspects for them. Thus, when
executing the (automatically instrumented) system, we were able to view how the
polymorphic semantics is realized. For example, multiple instances of scenario
D1 were created, each with a binding to a different sensor. Then, when one sensor
notified the alarm, only the corresponding scenario instance, where the notifying
sensor was bound, advanced to its next cut state.

Next, we modified the implementation: replaced the CStdAlarm with a
CAdvAlarm and added another sensor. Then, we were able to reuse exactly the
same test case specifications for the modified system. Moreover, now we could
also observe how diagram D2 is realized; after activation and notification, the
alarm object was bound as a CAdvAlarm to an instance of diagram D2, and at
the same time as a CAlarm to all instances of diagram D1, resulting in a truly
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polymorphic setting. These observations were made visible using scenario-based
traces, see [14].

S2A supports not only method calls but also conditions (defined using UML2
StateInvariants), alt and loop interaction fragments, and exact, symbolic,
and opaque method parameters. It also supports combined static and dynamic
lifeline binding (see Rem. 3). However, S2A does not support ‘and’ or ‘or’ mul-
tiple binding choices (see Rem. 2); in S2A, binding non-determinism is solved
ad-hoc by arbitrarily choosing an available binding if one exists.

4.2 Polymorphic Scenario-Based Execution (Play-Out)

S2A supports not only polymorphic scenario-based monitoring and testing but
also execution (play-out). Play-out, originally defined and implemented in the
Play-Engine tool [15], is an operational (executable) semantics for LSC, that
is, a method to simulate or execute an LSC specification. Recalling the details
of play-out and describing an operational (play-out) semantics for polymorphic
scenarios is outside the scope of this paper. However, for readers familiar with
play-out, we briefly present the following issues.

A key part of play-out semantics concerns the strategy for choosing the next
method to execute. The original (so called näıve) play-out arbitrarily chooses one
enabled method that is not violating in any chart and executes it. In a polymor-
phic settings, however, this becomes more complicated: the ‘same’ method may
be simultaneously enabled (or violating) in different scenarios at different levels
of the type hierarchy (or even within a single scenario, see Rem. 2 about multiple
binding choices). Also, in some cases, a method may be enabled for execution
(not just monitoring) while one of (or both of) its lifelines are not yet bound.
These problems need to be addressed when defining an operational play-out
semantics for polymorphic scenarios. Note that the smart play-out mechanism
defined in [16] does not support LSCs with symbolic instances.

The code generated by S2A supports play-out in a polymorphic settings (see
the section on the coordinator and the strategy in [13]). However, some of the
complicated cases mentioned above, e.g., where the ‘same’ method is simulta-
neously enabled for execution (or violating) in different scenarios at different
levels of the type hierarchy, are not fully addressed. The complete definitions of
play-out semantics for the polymorphic case and their implementation in S2A is
beyond the scope of this paper.

5 Related Work

Our work extends and generalizes the notion of symbolic lifelines originally pre-
sented for LSC in [8] and implemented in the Play-Engine [15]. There, an exten-
sion of play-out is defined for LSCs with symbolic lifelines, such that a lifeline
representing a type may apply to any object of this type. A generalization to
support class hierarchies and interfaces in the context of object-orientation is
not defined. Moreover, a trace-based semantics is not given. Thus, also, some of
the issues discussed above in subsection 4.2 do not appear in this previous work.
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[17] presents a UML-based technique for pattern specification, including inter-
action pattern specifications (IPSs), where lifelines are labeled with role names.
Conformance rules are defined between a pattern and its concretization. How-
ever, a polymorphic interpretation is not explicitly and formally considered.

[18] considers MSCs with symbolic lifelines; symbolic execution semantics is
defined, allowing to validate models capturing interactions between unbounded
number of objects. The semantics presented in [18] is different than LSC seman-
tics. Also, unlike in our work, object-oriented hierarchies are not considered.

STAIRS [1] is an approach for the compositional development of UML interac-
tions. It defines a trace-based three-valued semantics and a number of refinement
mechanisms. To the best of our knowledge, STAIRS does not consider polymor-
phism. Extending STAIRS to support polymorphism seems possible.

We are aware of a number of research efforts towards a semantics for UML2
interactions (see, e.g., [19,20,2]). It seems that none of these considers the rela-
tionship between interactions and a polymorphic object-oriented system-model.

6 Conclusion and Future Work

The main contribution of this paper is in extending sequence diagrams with sym-
bolic lifelines to support object-oriented inheritance and interface realization,
and providing the extension with formal trace-based semantics. The work ex-
tends the expressive power of UML interactions in the context of object-oriented
modeling, and presents its application to scenario-based testing and execution.

[8] suggests a distinction between existential and universal bindings for sym-
bolic lifelines, and a notion of a lifeline’s binding rule (which appears also, albeit
differently, in the UML2 standard). We did not consider these in the present
work. Our binding semantics for polymorphic lifelines may be viewed as ‘ex-
istential binding’. A ‘universal binding’ would have resulted in the ability to
specify ‘broadcasting’. Binding rules allow to limit lifeline bindings beyond the
constraint defined by its type. Adding these features or a variant thereof to the
polymorphic scenarios presented in this paper is a possible future work direction.

Finally, we consider additional applications for polymorphic scenario-based
specifications. Specifically, these include the extension of recent work in the area
of model-checking sequence diagrams (e.g., [21]) and synthesis from sequence
diagrams (e.g., [22,23,3]) to support a polymorphic semantics.

Acknowledgements. I would like to thank Yoram Atir, David Harel, Amir
Kantor, Assaf Marron, Itai Segall, and the anonymous reviewers for comments
on a draft of this paper.
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ing MSCs. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 387–402. Springer,
Heidelberg (2003)

3. Whittle, J., Kwan, R., Saboo, J.: From Scenarios to Code: An Air Traffic Control
Case Study. Software and Systems Modeling 4(1), 71–93 (2005)

4. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. J. on
Formal Methods in System Design 19(1), 45–80 (2001)

5. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Se-
quence Diagrams. Software and Systems Modeling (SoSyM) 7(2), 237–252 (2008)

6. Atir, Y., Harel, D., Kleinbort, A., Maoz, S.: Object Composition in Scenario-Based
Programming. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 301–316. Springer, Heidelberg (2008)

7. Harel, D., Kleinbort, A., Maoz, S.: S2A: A Compiler for Multi-Modal UML Se-
quence Diagrams. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422,
pp. 121–124. Springer, Heidelberg (2007)

8. Marelly, R., Harel, D., Kugler, H.: Multiple Instances and Symbolic Variables in
Executable Sequence Charts. In: OOPSLA 2002, pp. 83–100 (2002)

9. Klose, J., Wittke, H.: An Automata Based Interpretation of Live Sequence Charts.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 512–527.
Springer, Heidelberg (2001)

10. Westphal, B., Toben, T.: The Good, the Bad and the Ugly: Well-Formedness of
LSCs. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 230–246.
Springer, Heidelberg (2006)

11. Kupferman, O., Vardi, M.Y.: Weak Alternating Automata Are Not That Weak.
ACM Trans. Comput. Log. 2(3), 408–429 (2001)

12. AspectJ., http://www.eclipse.org/aspectj/
13. Maoz, S., Harel, D.: From Multi-Modal Scenarios to Code: Compiling LSCs into

AspectJ. In: SIGSOFT FSE 2006, pp. 219–230. ACM, New York (2006)
14. Maoz, S.: Model-Based Traces. In: Chaudron, M.R.V. (ed.) Workshops and Sym-

posia at MODELS 2008. LNCS, vol. 5421, pp. 109–119. Springer, Heidelberg (2009)
15. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs

and the Play-Engine. Springer, Heidelberg (2003)
16. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-out of Behavioral

Requirements. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 378–398. Springer, Heidelberg (2002)

17. France, R.B., Kim, D.K., Ghosh, S., Song, E.: A UML-Based Pattern Specification
Technique. IEEE Trans. Software Eng. 30(3), 193–206 (2004)

18. Roychoudhury, A., Goel, A., Sengupta, B.: Symbolic Message Sequence Charts. In:
ESEC-FSE 2007, pp. 275–284. ACM, New York (2007)

19. Cengarle, M.V.: System Model for UML – The Interactions Case. In: MMOSS.
Dagstuhl Seminar Proc., vol. 06351 (2006)

20. Knapp, A.: A Formal Semantics for UML Interactions. In: France, R.B., Rumpe,
B. (eds.) UML 1999. LNCS, vol. 1723, pp. 116–130. Springer, Heidelberg (1999)

21. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

22. Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Speci-
fications. Int. J. of Foundations of Computer Science 13(1), 5–51 (2002)
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Abstract. Since software systems need to be continuously available,
their ability to evolve at runtime is a key issue. The emergence of mod-
els@runtime, combined with Aspect-Oriented Modeling techniques, is a
promising approach to tame the complexity of adaptive systems. How-
ever, with no support for aspect unweaving, these approaches are not ag-
ile enough in an adaptive system context. In case of small modifications,
the adapted model has to be generated by again weaving all the aspects,
even those unchanged. This paper shows how aspects can be unwoven,
based on a precise traceability metamodel dedicated to aspect model
weaving. We analyze traceability models, which describe how aspects
were woven into a base, to determine the extent to which an aspect has
affected the woven model in order to determine how it can be unwoven.
Aspect unweaving is finally performed by applying inverse operations of
a sub-sequence of the weaving operations in opposite order.

1 Introduction

Since software systems need to be continuously available, their ability to evolve at
runtime is a key issue. A very promising approach is to implement such systems
as Dynamically Adaptive Systems (DAS), including self-adaptation and dynamic
evolution facilities. Modern execution platforms like Fractal [1], OpenCOM [2]
or OSGi [3] propose low-level APIs to reconfigure (add/remove/update compo-
nents, add/remove bindings, etc) a system at runtime. However, with no higher
level support, reconfiguration rapidly becomes a daunting and error-prone task
to specify, validate, implement and understand. Indeed, implementing a recon-
figuration script consists in identifying the components and bindings involved in
the reconfiguration, and writing the whole sequence of atomic actions in a correct
order. It is really difficult to validate the effect of such a script before actually
executing it, detect dependencies or interactions between different scripts, etc.

Recently, some approaches [4,5] use Model-Driven Engineering (MDE) and
Aspect-Oriented Modeling (AOM) techniques at runtime (models@runtime [6])
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to tame the complexity of DAS. Keeping a model synchronized with the running
system offers a high-level support for reasoning about the system [4] before
actual adaptation. The first step of the dynamic adaptation process consists in
selecting, according to the context, the most adapted architectural model. Then,
after validation of the model, the running system is automatically adapted by
analyzing the selected model. This prevents the designer from writing low-level
platform-specific reconfiguration scripts by hand.

However, AOM approaches and tools [7,8,9,10,11] were formerly designed to
operate at design-time, where performance (especially time) issues are not so
critical. The key problem of current AOM weavers is that in case of small mod-
ifications, the adapted model has to be generated by again weaving all the as-
pects, even those unchanged. In other words, if the configuration is currently
composed of n aspects, and if one of them should be “unwoven” (because of a
change in the context), we have to restart from a core base model (containing
the mandatory elements) and weave the n−1 unchanged aspects. More precisely,
this means that we should detect the join points of the n − 1 aspects, matching
their associated pointcut model, and weave these aspects. The weaving process
itself is efficient: it simply consists in adding or removing some model element
and setting attributes and references. However, the join point detection step is
more complex: for example, it can rely on graph theory to match sub-graphs in
a graph, or rely on Prolog (logic programming) back-end [12] to execute queries
on a fact base. In the second case, this requires to transform back and forth the
base model, its metamodel (fact) and the pointcut (query) into Prolog artifacts,
before actually executing the query. With no real support for aspect unweaving,
AOM is not agile enough in an adaptive system context.

This paper shows how aspects can be unwoven, based on a precise traceability
metamodel dedicated to aspect model weaving. We analyze traceability models,
which describe how aspects were woven into a base, to determine the extent
to which an aspect has affected the woven model in order to determine how
it can be unwoven. Aspect unweaving is finally performed by applying inverse
operations of a sub-sequence of the weaving operations in opposite order.

The remainder of the paper is organized as follows. Section 2 presents an
overview of the existing approaches used in this paper. Section 3 introduces
essential definitions on the unweaving of aspect models. Section 4 describs a
traceability metamodel for aspect model weaving, and shows how a traceability
model can be exploited. The main section of this paper is Section 5 which details
our unweaving method. Finally, Section 6 presents related work and Section 7
concludes this paper.

2 Background

This section presents first GeKo [13], a generic aspect model weaver, and then
an operation-based model construction approach. The objective of this paper is
to present how we combined GeKo with this approach to support the unweaving
of aspect models.
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2.1 GeKo: A Generic Aspect Model Weaver

GeKo [13] is a generic aspect-oriented model composition and weaving approach
easily adaptable to any metamodel with no need to modify the domain meta-
model or to generate domain specific frameworks. It keeps a graphical repre-
sentation of the weaving between an aspect model and the base model. It is a
tool-supported approach with a clear semantics of the different operators used
to define the weaving. The formalization of GeKo allows clearly identifying the
sets of removed, added and altered elements.

In this sub-section, we introduce GeKo through an example of class diagram
weaving, but GeKo can be used to weave other models such as state diagrams,
sequence diagrams, feature diagrams, etc. . .

C1

C2

C3
- name

Base B

C2
Pointcut

C2 X
- name

Advice
myX
0..1

Aspect A1

C1

C2

C3
- name

X
- name

myX
0..1

Woven Model B  A1

Fig. 1. Example of Class Diagram Weaving with GeKo

Fig. 1 shows an example of weaving with GeKo. The result of the weaving
of the advice class diagram into the base class diagram is shown in the Woven
Model of Fig. 1. The weaving process is two-phased. The first step consists in
the detection of the match points corresponding to the Pointcut diagram. This
detection step uses a Prolog-based pattern matching engine which yields a map-
ping from the pointcut model to the base model for each detected join point. In
Fig. 1, the detection yields a mapping from the class C2 of the Pointcut model
to the class C2 of the Base model. The second step consists in the composi-
tion of the advice model with the base model at the level of the match points
previously detected (for each match point the advice model is composed). The
composition is based on the definition of a mapping between the pointcut and
the base model (automatically obtained from the detection step), and a mapping
between the pointcut and the advice model (specified by the user). These map-
pings are defined over the concrete syntax of models by linking model elements.
These links are fully generic and do not use any domain-specific knowledge, so
that we can define mappings for any domain metamodel. These mappings allow
the identification of several sub-sets of objects in the base and advice models
characterizing the objects of base which have to be kept, to be removed and to
be replaced with those of advice. Note that in the remainder of the paper, when
the mapping between the pointcut and the advice model is obvious, we will omit
to specify it.

2.2 Operation-Based Model Construction

In [14], the authors proposed to use a sequence of model construction operations
to check consistency rules. In our paper, we present an approach which allows the
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generation the sequence of construction operation corresponding to the weaving
of a sequence of aspects A1, A2, . . . , An in a base model B. Consequently, similar
to [14], we can use the generated sequence of operations to check consistency
rules, but in this paper, we will rather use the operation-based approach to
efficiently unweave an aspect from a woven model.

More specifically, in [14] the authors propose to represent models by sequences
of elementary construction operations, rather than by the set of model elements
they contain. They propose four elementary operations inspired from the MOF
reflective API [15] : 1) create(me,mc) corresponds to the creation of a model ele-
ment instance me of the meta-class mc; 2) delete(me) corresponds to the deletion
of the model element instance me; 3) setProperty(me,p,Values) corresponds to
the assignment of a set of Values to the property p of the model element me; 4)
setReference(me,r,References) corresponds to the assignment of References to
the reference r of the model element me.

3 Unweaving Definitions

Let mp be a match point corresponding to pointcut of an aspect Ai and a base
model B, i.e., mp is a place in B where the pattern defined by the pointcut
model in Ai matches. The weaving of Ai in B at the level of mp can be defined
by a sequence of construction operations:

weave(Ai, mp) = σi
mp,1 • σi

mp,2 • ... • σi
mp,k

Fig. 1 shows a weaving example with class diagrams. Since there is only one
match point mp at which the pointcut of A1 matches, the sequence of construc-
tion operation to implement the weaving of A1 is:

weave(A1, mp) = create(X, EClass) • setProperty(X, name, {X})•
create(nameAtt, EAttribute) • setProperty(nameAtt, name, {“name′′})•
setReference(X, EAttribute, {nameAtt}) • create(ref, EReference)•
setProperty(ref, name, {“myX ′′}) • setProperty(ref, EType, {X})•
setReference(C2, EReference, {ref})
If Ai matches B h times, the weaving of the aspect Ai into B can be defined by
the sequence of construction operations:

weave(Ai) = weave(Ai, mp1) • weave(Ai, mp2) • ... • weave(Ai, mph)

= σi
mp1,1 • ... • σi

mp1,k • σi
mp2,1 • ... • σi

mp2,k • ... • σi
mph,1 • ... • σi

mph,k

The weaving of a sequence of aspects A1, A2, ..., An is defined by:

weave(A1, A2, ..., An) = weave(A1) • weave(A2) • ... • weave(An)

Undoing a weave operation
For an aspectAi and a match pointmp, we define the undo operationundo(Ai, mp)
as the execution, in opposite order, of the sequence of inverse construction oper-
ations of the construction operations of weave(Ai, mp). More formally:
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undo(Ai, mp) = undo(σi
mp,1 • σi

mp,2 • ... • σi
mp,k)

= inverse(σi
mp,k) • inverse(σi

mp,k−1) • ... • inverse(σi
mp,1)

where the corresponding inverse operation of an operation is detailed in Table 1.

Table 1. Corresponding inverse operations

σmp,j inverse(σmp,j)

create(me,mc) delete(me)
delete(me) create(me,mc) (in practice, mc is easily obtained from the

sequence of construction operations)
setProperty (me, p, value) if ∃setProperty(me,p, value′) ∈ weave(Ak,k<i) then

setProperty(me,p, value′) else setProperty(me,p, ∅)
setReference (me, r, ref) if ∃setReference(me,r, ref ′) ∈ weave(Ak,k<i) then

setReference(me,r, ref ′), else setReference(me,r, ∅)

If we note mpk, k ∈ {1, . . . , h} the match points corresponding to the weaving
of an aspect Ai in a base B, we can extend the notion of undo to all the match
points by:

undo(Ai) = undo(Ai, mph) • undo(Ai, mph−1) • . . . • undo(Ai, mp1)

Unweaving
Let A1, A2, ..., An be a sequence of aspects that have been woven into a base
model B to result in a woven model BW . Unweaving of an aspect Ai from BW
should result in a model that is equivalent to the model obtained by starting
again with the base model B and weaving all aspects into B again in the same
order, but omitting Ai. More formally, ∀i ∈ {1, ..., n} ,

unweaving(Ai) =

⎧
⎪⎨

⎪⎩

weave(A2, A3, ..., An) i = 1
weave(A1, A2, ..., Ai−1, Ai+1, ..., An) 1 < i < n

weave(A1, A2, ..., An−1) i = n

4 Aspect Traceability Metamodel

4.1 Traceability Metamodel for GeKo

Weaving in GeKo is asymmetric, i.e., the weaving process is performed by applying
a set of operations on a base model1. During the model weaving process, to com-
pose an advice model with a base model, GeKo can: (1) Remove a model element
from the base model; (2) Add a model element to the base model. The added model
element is defined in the aspect’s advice model; (3) Replace a model element of the
base model by a model element of the aspect’s advice model. This replace oper-
ation can be considered as a sequence of remove and add operations (remove the
1 Since aspects can be applied to other aspects, the GeKo base model can, of course, be

any model, even an advice model of some other aspect.
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Fig. 2. Traceability Metamodel

replaced element and add the element which replaces it); (4) Update the properties
of a base model element (e.g. change the name of a model element); (5) Update the
references that a base model element has towards other model elements.

We propose to keep a trace of the application of these operations as the
weaving takes place. For this, we defined the traceability metamodel for as-
pect model weaving presented in Fig. 2. The WovenAspectSequence class is
the root class of the metamodel presented in Fig. 2. It contains a sequence
of AspectWeaving. An AspectWeaving references a Base, a Result and an
Aspect model. An Aspect model is composed of a Pointcut and an Advice model.
All these models are defined by a list of ModelElements. The AspectWeaving
class is also associated with a list of PointcutMatches. Each PointcutMatch
stores the list of base model elements that were used to obtain this particu-
lar match when matching the pointcut of the aspect model to the base model.
Each of the referenced base model elements is essential, i.e., if only one were
omitted, the pointcut model would not match the base anymore. Finally, the
class PointcutMatch also stores the effects of the weaving of the advice model
of the aspect at this particular match point. PointcutMatch is associated with
a sequence of ConstructionOperations. There are five types of possible op-
erations corresponding to the five GeKo operations: Replace, Remove, Add,
UpdateReference, UpdateProperty.

4.2 Using the Traceability Model

Once a sequence of aspects A1, A2, . . . , An is woven with a base model B to
produce a woven model BW , the information stored in the traceability model
contains the complete trace of operations that transformed B into BW . To
re-execute the weaving, it suffices to start with B, and execute the associated
sequence of elementary construction operations, which can be easily obtained by
concatenating the sequence of tracedOp for each aspect weaving and for each
associated match point. This sequence of construction operations is used in the
algorithms presented in the next section.2

2 Note that the construction operations defined in the traceability metamodel are
implemented using the MOF primitives presented in subsection 2.2.
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The traceability model can also be used to determine the impact that the
weaving of an advice model at a match point had on the final woven model.
We define the impact of a match point of the pointcut model in Ai as all the
model elements in the final woven model that were directly or indirectly changed
because of the weaving of the advice model of Ai at the match point.

For instance, if an aspect Ai adds a model element, then this model element
might be used in a match point of a following aspect Ak,k>i, which again triggers
the weaving of the advice model of Ak. Hence, the impact of weaving the advice
model of Ai is not limited to the changes specified in the advice model of Ai, but
also includes the changes specified in the advice model of Ak. The same reasoning
can be applied to Ak as well, and hence the impact of a weaving of Ai at a match
point can potentially include changes in all advice models of aspects Ak,k>i.

To determine the impact of a pointcut match, not only Add operations have
to be considered. SetReference and SetProperty operations can also result in
the creation of a match point of subsequent aspects Ak,k>i. For instance, the
SetProperty operation can be used by an aspect A1 to change the value of the
balance field of an object to 200. A following aspect A2 might declare a pointcut
which matches for all objects that have a balance attribute with a value ≥ 100.
In this case, the impact of A1 should only include the changes specified in the
advice model of A2 if the previous value of balance, i.e., the value that balance
had before weaving A1, was < 100. The detailed algorithm that calculates the
impact of a match point mp of an aspect Ai is shown in Alg. 1.

Algorithm 1. Impact(Ai, mp)
Input: the aspect Ai, the match point mp, the traceability model corresponding

to the weaving of the aspects A1, A2, . . . , An in a base model B
Output: the set of pairs (Ak, mp′) where the match point mp′ of the aspect

Ak,k>i is impacted by the weaving of Ai at the match point mp

k ← i + 1
while k ≤ n do

foreach operation σ ∈ weave(Ai, mp) do
foreach match point mp′ of Ak do

if σ == add(elt, eltT ype) and elt is shared with mp′ then
impact ← impact ∪ (Ak, mp′)

end
if σ == setReference(elt, ref, {eltList}) and elt and ref are shared
with mp′ and the previous set of values for the reference ref is not
included in the set of values for the reference ref of elt of the
pointcut of Ak then

impact ← impact ∪ (Ak, mp′)
end

end
end
k ← k + 1

end
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5 Using the Traceability Model for Unweaving of Aspects

This section presents the core contribution of our paper. It shows how the tracing
information gathered during the model weaving (see section 4) can be used to
unweave aspects from a woven model in an efficient way.

Let A1, A2, ..., An be a sequence of aspects woven into a base model B resulting
in a wovenmodel BW . As presented in the definitions section, unweaving an aspect
from BW is equivalent to re-weaving all aspects A1...An into B except for Ai. Re-
weaving is, however, very inefficient. Not only does the tool have to re-execute all
construction operations defined by the n − 1 advice models of the aspects Aj,j 	=i,
but it also has to re-execute the patternmatching algorithmthat searches formatch
points based on the patterns defined in the n − 1 pointcut models.

The technique presented in this paper allows a tool to unweave an aspect Ai

from BW without having to re-weave all the aspects Aj,j 	=i into B. Depending on
the nature of the relation between the aspect Ai and the aspects Ak,k>i that were
woven into the base model after Ai, unweaving Ai is more or less complicated.
In the following discussion, we distinguish 3 different cases. At this point, the
reader is reminded that our solution is based on the use of the generic weaver
called GeKo, which performs aspect weaving using the operations 1) add model
element, 2) remove of a model element, 3) replace model element (which can be
seen as a remove followed by an add), 4) set property, and 5) set reference.

5.1 Case 1, Independent Aspects

Informal description: In the most advantageous case, Ai is independent of the
aspects Ak,k>i that were woven after Ai to obtain BW . This situation occurs
when Ai neither introduced model elements which were used in a match point of
one of the aspects Ak,k>i, nor removed model elements which could have formed
a match point for a Ak,k>i, nor changed any properties or references that were
used or could have been used in a match point of one of the aspects Ak,k>i.

Fig. 3 shows an example illustrating this case. The example presents the
weaving of an aspect A2 into the model obtained after the weaving of the aspect
A1 already presented in Fig. 1. The resulting model is B•A1•A2. In this example,
A1 is independent from A2, because the model elements introduced (the class
X) and the changes to model elements (adding of the reference to C2) are not
part of the match point of A2 (which matches on the class C1). Also, A1 does
not remove any model elements from B.

Unweaving of Independent Aspects: Unweaving of aspect Ai simply consists in
undoing the weave operation, i.e., in applying, for each match point, the inverse
construction operations in opposite order of the construction sequence defined
by weave(Ai, jp). More formally:

If match point mp of Ai is independent of Ak,k>i:unweave(Ai, mp) =
undo(Ai, mp)
⇒ If Ai independent of Ak,k>i: unweave(Ai)=undo(Ai)=∀mpAi :undo(Ai, mp).
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Fig. 3. Weaving of A2 and Unweaving of A1 (previously presented in Fig. 1)

Therefore, in Fig. 3, the unweaving of A1 consists in applying undo(A1), i.e.,
applying inverse operations in opposite order of the construction sequence
weave(A1).

unweave(A1) = undo(A1) = setReference(C2, EReference, ∅) •
setProperty(ref, EType, ∅) • setProperty(ref, name, ∅) • delete(ref) •
setReference(X, EAttribute, ∅) • setProperty(nameAtt, name, ∅) •
delete(nameAtt, ∅) • setProperty(X, name, ∅) • delete(X)

5.2 Case 2, General Aspects

Informal description: In the worst case, when the weaving of an aspect Ai re-
moves or changes model elements in the base model, it is possible that these
elements could have been used to form a match point of an aspect Ak,k>i. As
a result, the unweaving of the aspect Ai could introduce completely new match
points for the following aspects Ak,k>i. In this case, the unweaving of Ai can-
not be done by simply applying a sequence of undo operations. Unfortunately,
the pattern matching operation that detects match points corresponding to the
pointcut models in the aspects Ak,k>i has to be launched again.

Fig. 4 shows an example of Final State Machine (FSM) weaving illustrating
this case. The example presents the successive weaving of the aspect A1 and A2
into the base model B. The resulting model is B •A1 •A2. The weaving of aspect
A1 consists in replacing the state c by a state e and by removing the state a.
The weaving of aspect A2 consists in replacing the state a by a state b with a
loop transition. After the weaving of A1, A2 matches only once, but without A1,
the pointcut of A2 would also match against the first a state that was removed
when A1 was woven. This example shows that the only solution to unweave A1
is first to unweave A2, then to unweave A1 and finally to weave A2 again.

Unweaving General Aspect Ai: To unweave a general aspect Ai the idea is to
first compute index j > i such that Ai is not general for the aspects Ah,i≤h<j .
The second step consists in unweaving of the aspects Ak,k≥j in the opposite
order of the sequence of weaving, i.e., An first, then An−1, . . . , Aj . For these
unweavings, since the aspect unwoven is always the last aspect that had been
woven, the unweaving operation corresponds to the undo operation. The next
step is to unweave Ai. The final step consists in weaving of the aspects Ak,k≥j

in the same order as the initial sequence of weaving.
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Depending on the value of i and j, it might be faster to start from scratch,
i.e., start with B and re-execute the weave operations of the aspects A1 . . . Ai−1
stored in the traceability model rather than to unweave aspects Aj . . . An and
Ai. The cut off values of i and j at which it is better to re-weave than to
unweave depends heavily on the number of match points of each aspect, and
the number of construction operations needed to implement the weaving of each
match point. If the length of the sequence of construction operations for weaving
aspects A1 . . . Ai−1 is smaller than the length of the sequence of operations for
weaving Ai, Aj . . . An, then re-weaving is more efficient than unweaving.

5.3 Case 3: Additive Aspects

Informal description: Some aspects Ai are not general, i.e., they did not remove
or alter elements which could have been used in a match point of a following
aspect Ak,k>i, but are also not independent, because they added or changed
model elements which were later on used in a match point of at least one of the
Ak,k>i. We call these additive aspects.

Fig. 5 presents an example of this case. A1 introduces a message m4 from O2
to O3 after an exchange of messages m1, m2 between O1 and O2. A2 introduces
an message m5 after any message m4. If we consider the sequence of weaving
A1 • A2 as shown in Fig. 5, A1 is clearly an additive aspect. The message m4
introduced by A1 is matched by the pointcut model of aspect A2 and hence
creates a match point. Also, A1 does not remove any model elements.

Unweaving of Additive Aspects: In the case of an additive aspect Ai, the un-
weaving of the aspect does not simply consist in undoing the weave operation of
Ai as for the case of independent aspects, because some elements added by the
weaving of Ai have been used to form match points of aspects Ak,k>i, and hence
resulted in further changes to the model. Therefore, the unweaving operation
has to also undo the weaving of all advice of aspects Ak,k>i that were woven
because of a pointcut match that contained elements that Ai added or changed.

Let us consider the example of Fig. 5. To unweave the aspect A1, we have
to remove both the operations directly related to the weaving of A1 (i.e., the
introduction of a message m4 ) and the operations related to the match point
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of A2 formed by elements introduced by A1. In Fig. 5, the pointcut model of A2
matched twice in the model B • A1, once on each message m4. However, only
the second match is due to A1, and therefore only the second introduction of a
new message m5 has to be undone.

More formally, to unweave an aspect Ai, we apply the algorithm described in
Alg. 2 for all the match points of Ai. It describes that, to unweave an additive
aspect Ai, we have to also recursively unweave the impacted match points of
aspects Ak,k>i. These impacted match points can, of course, be of any type, i.e.,
independent, additive, or general.

5.4 Classification of Aspects

This section presents how our tool classifies a match point of an aspect into one of
the 3 cases described above, followed by the complete algorithm of classification.

Conditions for Detecting General Aspects: To determine if mp of Ai is general,
we must check if Ai modified or removed model elements that could have created
a match point for one of the pointcuts of one of the following aspects Ak,k>i.
Note that when the advice model in Ai removes an element which corresponds
to an element of a match point of an aspect Ak,k>i, mp is immediately classified
as general. However, as specified in Algorithm 3, additional conditions have to be
respected in the case where Ai only modifies (with setReference or setProperty)
an element which corresponds to an element of a pointcut of an aspect Ak,k>i.
For instance, when Ai modifies the reference of an element elt, this modification
cannot remove a match point if elt was previously added by Ai.

Condition for Detecting Additive Aspects: To determine if mp of Ai is additive,
we check if Ai is not general and if Ai adds and modifies any model elements
which are used to form a match point of a following aspect Ak,k>i. Note that
when Ai adds an element used to form a match point mp′ of an aspect Ak,k>i,
mp′ cannot be a match point of Ak anymore when Ai is unwoven. However, when
Ai modifies an element that used to form a match point mp′ of an aspect Ak,k>i
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Algorithm 2. additiveUnweave(Ai, mp, Ak,1≤k≤n)
Input: the aspect Ai, the additive match point mp to unweave, the traceability

model corresponding to the weaving of the sequence of aspects
A1, A2, . . . , An in a base model B. The sequence Ak,1≤k≤n is such as
there is no genral match point mp′ of an aspect Aj impacted by Ai or
recursively by a match point of an aspect impacted by Aj

Output: the sequence of unweaving operations σ

σ ← undo(Ai)
Let impact be the set of model elements added or modified by the advice model
of Ai when applied to mp (see Alg. 1)
j ← i + 1
while j ≤ n do

foreach match point mp′ of the aspect Aj do
Let me be the set of model elements associated with the match point mp′

if me ∩ impact �= ∅ then
σ ← unweave(Aj , mp′) • σ

end
end
j ← j + 1

end

(with setReference or setProperty), mp′ can still be a match point even after
Ai is unwoven. This is the case if the previous value of the property or reference
being modified also resulted in the creation of the same match point.

Condition for Detecting Independence: mp of Ai is independent, if mp is neither
general nor additive.

More formally, to classify the match point of an aspect Ai with respect to the
following aspects Ak,k>i, we apply Alg. 3. Note that for space reasons, Alg. 3
does not show how to handle the setProperty operation, but the conditions are
exactly the same as for the setReference operation. To extend this classification
for a mach point of Ai to the aspect Ai itself, we use the following rules: 1) Ai

is general if for all match points of Ai, at least one match point is general; 2) Ai

is additive if Ai is not general and at least one match point of Ai is additive; 3)
Ai is independent if Ai is neither general nor additive.

5.5 Complete Unweaving Algorithm

To unweave Ai, the first step consists in the determination of the lowest index
j ≥ i of an aspect that contains a general match point mp that needs to be
unwoven because of the unweaving of Ai. In other words, j is the index of the
first aspect Aj in the sequence of aspects whose match point mp cannot be
unwoven by applying a sequence of undo operations.

This is done by the lowestGeneralIndex algorithm presented in Alg. 4. This
index is then used in the general unweaving algorithm presented in Alg. 5. The
first foreach loop unweaves the general aspects. The lowestGeneralIndex allows
us to ensure that for all unweaving operations in the second foreach loop (even
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Algorithm 3. classify(Ai, mp)
Input: the aspect Ai, the match point mp, the traceability model corresponding

to the weaving of the sequence of aspects A1, . . . , An in a base model B
Output: Classification of the application of the advice model of Ai at the

match point mp and the aspects Ak,k>i

if i = i then
mp is independent

else
if ∃delete(elt) ∈ weave(Ai, mp) such as elt corresponds to a model element of
a pointcut of Ak,k>i OR ∃setReference(elt, ref, {eltList}) ∈ weave(Ai, mp)
such that elt is shared with a match point of Ak,k>i and elt is an element not
added by Ai and the previous set of values for the reference ref is not
included in the set eltList then

mp is general
else

if ∃add(elt, eltT ype) ∈ weave(Ai, mp) such as elt is shared with a match
point of Ak,k>i OR
∃setReference(elt, ref, {eltList}) ∈ weave(Ai, mp) such as elt and ref
are shared with a match point of Ak,k>i and the previous set of values for
the reference ref is not included in the set of values for the reference ref
of elt of the match point of Ak then

mp is additive
else

mp is independent
end

end
end

Algorithm 4. lowestGeneralIndex(Ai)
Input: the aspect Ai, the traceability model corresponding to the weaving of

the sequence of aspects A1, . . . , An in a base model B
Output: the lowest index of a general aspect impacted by Ai

Let j be the smallest index > i such that Ai is not general for the sequence of
aspects Ah,i≤h<j

lowestGeneralIndex ← j
foreach couple (Ah, mp′) impacted by the match points of Ai do

if ∃l such that h < l < j and the match point mp′ of Ah is general for a
match point of Al then

lowestGeneralIndex ← l
end

end

for the operations recursively called), the match point mp is either independent
or additive, but never general. As a result, the unweaving operation consists in
either the undo operation or the operation described in Alg. 2. Finally, the last
for loop executes the necessary re-weaving, if any.
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Algorithm 5. unweave(Ai)
Input: the aspect Ai, the traceability model corresponding to the weaving of

the sequence of aspects A1, A2, . . . , An in a base model B

j ← lowestGeneralIndex(Ai)
for k = n . . . j do

apply undo(Ak)
end
foreach match point mp of the aspect Ai do

if classify(Ai,mp) = independent then
apply undo(Ai, mp)

else
additiveUnweave(Ai, mp,Ak,1≤k≤j−1)

end
end
for k = j . . . n do

weave(Ak)
end

6 Related Work

Although the method described in this paper is applied in the context of the
GeKo aspect model weaver, the same ideas can easily be generalized to other
model weavers (such as [9,16,17,18]), once an appropriate traceability model is
constructed.

In [17], the authors present an interesting way to modify models before and
after their composition, by means of the use of a language of directives. This
support is not automatised, but in our approach, the directive language could
be used to apply the generated unweaving sequence of elementary operations.

To the best of our knowledge and belief, no Aspect-Oriented Modeling ap-
proach provides support for aspect model unweaving. At the platform level,
however, some approaches provide support for weaving and unweaving.

FAC (Fractal Aspect Component) [19] is an open-source aspect-oriented exten-
sion to the Fractal component model [1]. It combines Component-Based Software
Development (CBSD) and Aspect-Oriented Programming (AOP) by integrating
CBSD notions into AOP, and vice-versa. FAC introduces new aspect-oriented
structures into the Fractal platform: Aspect Component (AC), Aspect Domain
(AD) and Aspect Binding (AB). An Aspect Component is a regular component
that encapsulates a crosscutting concern providing advice pieces of code as ser-
vices. An Aspect Binding is a binding that links an AC to other components.
Finally, an AC and all the aspectized components bound via ABs constitute an
Aspect Domain (AD). Note that FAC leverages the notion of shared components
provided by Fractal to allow components to be contained in several ADs. Basically,
weaving an aspect component consists in creating the composite component corre-
sponding to the AD, containing the components of the aspect itself as well as the
components impacted by the aspect (still contained by their former container),
and introducing bindings. Unweaving the aspect consists in removing all these
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previously introduced elements.However, no real description of the unweaving pro-
cess is provided, especially when an aspect depends on other aspects.

Very similar to FAC is AOpenCOM [20], which provides aspect-oriented con-
struction for the OpenCOM component model [2]. Again, very few details are
provided about the unweaving process.

CaesarJ [21] extends Java with aspect-oriented constructs. It combines
AspectJ-like constructions (pointcut/advice) with advanced modularization and
composition techniques such as virtual classes and mixins. Aspects can dynam-
ically be deployed or undeployed on all the join points currently identified in
the JVM matching the pointcut. Similarly to above mentionned approaches, no
detail is given on the unweaving strategy, especially when aspects are interacting.

In this paper, we have proposed clear and formalized unweaving strategies at
the model level, independently from any metamodel. Depending on how an as-
pect interacts with the other, we precisely determine the way the aspect should
be unwoven. With the emergence of the notion of models@runtime, it becomes
important to optimize approaches and tools usually used at design-time. In pre-
vious work [4], we use AOM and MDE in order to manage complex dynamic
software product lines at runtime. Each dynamic feature of the system is rep-
resented as an aspect model [22] (an architecture fragment), which is selected
depending on the context. When the context changes, new aspects can be se-
lected while others are discarded. Working at the model level provides a better
basis for reasoning, validation, and automation [4,5]. However, without support
for unweaving, we had to systematically restart from a core base model and
weave again all the aspects, which is very inefficient.

7 Conclusion

In this paper we have presented a method to efficiently unweave an aspect Ai

from a sequence of aspects A1 . . . An woven into a base model B. Our method
is based on the use of a traceability model recording construction operations
at weave-time. The traceability model allows the determination of the relation
between Ai and the following aspects. According to this relation, which is either
independent, additive or general, the unweaving is more or less complicated.
If no general relationship is detected, unweaving can be performed by directly
applying a set of undo operations to the woven model.

Although the method described in this paper is applied in the context of the
GeKo aspect model weaver, we believe the same ideas can easily be applied in
other tools, once an appropriate traceability model is constructed.

In the future, we plan to apply and evaluate the performance of our unweaving
method in the context of dynamic, adaptive systems.
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Abstract. The state-of-the-art in aspect-oriented programming and modeling
provides flexible querying and composition mechanisms that allow virtually un-
restricted modifications to base code or models using static or dynamic weaving.
There is, however, a lack of support for specifying and controlling the permit-
ted effects of compositions with respect to the base models involved. We present
model composition contracts, which govern access to the base models via aspects;
in essence, the contracts control how aspect compositions may or may not access
and change the models, or the underlying code reflected by models. The compo-
sition contracts define constraints in terms of pre- and post-conditions restricting
the eligibility for composition. We argue that composition contracts improve re-
liability of model composition in software engineering, and evaluate their effects
on model designs and implementations using a case study. We support the app-
roach with a prototype tool for specifying and checking contracts.

Keywords: Model composition, design by contract, aspect-oriented development.

1 Introduction

Aspect-oriented techniques for programming and modeling languages [1,2] provide
flexible ways of separating and recomposing cross-cutting concerns. In many app-
roaches, there is a clear separation of the base model and the aspects applied to it.
There is a unidirectional relation between aspects and base models; base models are
unaware of, or oblivious to, the existence of aspects. AspectJ [3] is an example of such
an approach. Obliviousness is a major discussion topic in the aspect-oriented commu-
nity [4]. While we do not argue against obliviousness, we acknowledge that it can harm
the evolution of the base model. In fact, aspects can break the interfaces and assump-
tions the creator of the base model relies on. Therefore, we propose to extend model
composition by associating composition contracts with the base model.

In aspect-oriented systems with oblivious composition, the base model has no control
over what happens to its structure or behavior. For example, in AspectJ, an aspect may
intercept any private method and override its behavior. This breaks the encapsulation
assumptions of the base code programmer. To obtain a working program, the creator of
the aspect must know the base code, and make sure that the base code business logic
will still work correctly when the aspect is applied. Unfortunately, this is not possible,
in general, if the base code is modified after the aspect has been created.

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 531–545, 2009.
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To support a more controlled model composition paradigm where models are shiel-
ded from unintended changes, we propose Model Composition Contracts. In this app-
roach, a contract-like mechanism controls what compositions (such as the weaving-in
of aspects) are allowed to do. This resembles the Design by Contract (DbC) methodo-
logy, where assertions are used to specify contracts between suppliers and consumers of
services in terms of obligations (preconditions) and guarantees (post-conditions). DbC
was originally defined as part of the Eiffel language [5], and provides more precise
specifications that improve system reliability and robustness.

Inspired by DbC, we propose to associate contracts with base models. Contracts
constrain the effects of aspect composition on models, by specifying which elements
of the base model an aspect can access; hence, they act as an extended interface for
the base model. They constrain the changes that can be made not only by restricting
access, but also by enforcing invariants on the composite model. Our contract specifi-
cation approach uses Object Constraint Language (OCL) for constraint specification,
and is generally applicable to any Meta Object Facility (MOF)-based language; in this
paper, however, we narrow the focus to scenario descriptions. This allows us to tackle
a problem highly relevant in practice: modeling the key interaction patterns of com-
plex software systems, while factoring out cross-cutting interactions aspects, such as
message type transformation, encryption, or failure management. The resulting inter-
action models are more concise, and display a clear relationship between desired base
behavior and allowed modifications via aspects. We posit that this increases the overall
readability, quality, and utility of the resulting models.

The interaction specifications we use as a case study in this paper come from the
Common Component Modeling Example (CoCoME) [6]. CoCoME displays many of the
complexities of enterprise systems; specifically, it has interesting interaction patterns
for product exchange among multiple distributed, interdependent department stores. We
will use the interaction pattern for trading of stocked items when one store runs low on a
particular product as an example of a base model. Furthermore, CoCoME also allows us
to represent realistic examples of cross-cutting aspects. We will use message parameter
type transformation (to adapt among different product representations between stores),
and message encryption among stores and between stores and banks as examples of
interaction aspects to be composed with the base model. Specifically, we will define
contracts that will allow message parameter type transformation, and disallow message
encryption to show how contracts limit aspects’ accesses to base models.

We support our composition contract approach with a prototype tool for specifying
and checking contracts associated with base models. Fig. 1 shows the high-level ac-
tivities implemented by the contract checking tool. The tool checks the composition
contract specified by the author of the base model against an assumption contract we
derive from the aspect. The assumption contract summarizes what the aspect “plans to
do” to the base code. The composition contract summarizes what any aspect is allowed
to do to the base code. The tool’s pre-check analyzes the assumption contract exported
from the aspect against the base model contract to determine contract violations. If the
first pre-check (1) result is uncertain (this can happen if the OCL queries in the contract
are too complex to evaluate by the pre-check), a second pre-check (2) executes and
compares the results from the queries in the contract with those from the assumption
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Fig. 1. Contract Prototype Process Overview

contract. If the aspect passes the pre-check, the composition can commence. After com-
position (3), a post-check (4) is performed to check the contract post-conditions on the
composite model. If the contract is violated, the composition is undone.

Outline. The paper is organized as follows: in Section 2, we introduce our case study
and show how concerns may violate policies governing our system. Then, in Section 3,
we describe the concepts in our composition contract approach and how contracts are
specified and checked. Section 4 evaluates the approach and Section 5 discusses benefits
and trade-offs of our approach. We present the related work in Section 6, and conclude
in Section 7.

2 Motivating Case Study – CoCoME

The Common Component Modeling Example - CoCoME - is a distributed software
system that supports an enterprise with different points of sale. It manages products
ordering from suppliers, product exchanges between stores, along with sales to cus-
tomers. It was introduced as a common modeling example for a Dagstuhl seminar [6].
For this seminar, we modeled CoCoME as a service-oriented architecture with a fo-
cus on interaction models that define the interplay among all the services/features of
the overall enterprise. Specifically, we used UML sequence diagrams to specify inter-
actions among the various services. Each lifeline in the sequence diagrams represents
a role that is mapped to a service in the implemented system; the system was realized
using an enterprise service bus infrastructure (ESB), Mule [7].

The system contains cross-cutting behaviors we want to describe as separate con-
cerns. These are specified using sequence diagrams that show how the respective aspect
affects other interaction patterns in the system when they are composed. We wanted
to control how these behaviors are allowed to modify our system by allowing modifi-
cation by composition (imposed by aspects), but restricting the kind of changes that can
occur. Why? Composition contracts will allow teams of engineers with interdependent
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Fig. 2. The CoCoME Trading System Overview

Fig. 3. Product Exchange Scenario in the CoCoME Case Study

development tasks to work together without violating system constraints. This will re-
duce potential errors in the composition process, making the development process more
efficient, and, in the end, increasing the robustness of systems.

In the CoCoME system, Stores collaborate as an enterprise to exchange products
from one store to another when stock is low in one of the stores (Fig. 2). Purchases
from stores may result in payment transactions with the bank. The domain requires the
product exchange and bank payment transactions to be secured by encryption. However,
the infrastructure cannot be allowed to see plain-text messages, so encryption must be
introduced at the endpoints rather than by the infrastructure.

The sequence diagram in Fig. 3 shows how a store requests a product exchange from
another nearby store in the collaboration, by interacting with the enterprise role. The
enterprise sends a flush request for the products to all nearby stores in parallel and
receives results back. If the products requested can be delivered by a nearby store, the
enterprise requests delivery. Finally, it sends a response back to the requesting store.

In the context of this case study, several concerns are identified and described
separately. One is a message filtering concern, where messages between the store and
enterprise roles are intercepted and their content filtered to meet context-specific re-
quirements. Another is a security concern regarding communication between stores in
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an enterprise – it is handled by encrypting the communication. Note that both of these
are realistic concerns that, today, are increasingly handled by aspect-oriented runtime
environments such as dependency-injection and Enterprise Service Bus (ESB) tech-
nologies. However, the communication protocol between stores is subject to change
over time, and thus aspect definition and composition are brittle unless special provi-
sions are made. Here, we show how composition contracts can reduce this brittleness.

Message Filtering. When stores communicate with the enterprise for requesting prod-
uct exchange, the product information required at different stores may vary. An inter-
ceptor is provided for filtering/modifying relevant messages between the roles. In our
case, the interceptor should intercept certain messages and change their content argu-
ments to match the requirements for the different stores.

(a) Interceptor (b) Encryption

Fig. 4. Message Filtering and Encryption Concerns

To illustrate our examples for base code and composition contracts, we use a nota-
tion adapted from [8]; this notation allows us to specify interaction aspects by specify-
ing “queries”, yielding modeling items to which an aspect will be applied. The query
part of the aspect is defined by messages specified as regular expressions, as in As-
pectJ. To simplify query specification, we use identifiers that can be assigned a query
by using the <?id> notation before the query search criteria. The identifier can then
be referenced other places in the sequence diagram to refer back to the matching mod-
eling element(s). An <<X>> stereotype signifies deletion of matches. References to
identifiers are specified using the ‘&’ symbol followed by the identifier name. The ad-
vice part of the sequence diagram aspect is placed within a combined fragment with a
<<create>> stereotype.

The interceptor is described as an aspect by using sequence diagram notation. The
aspect (pointcut) queries for messages going from roles of type Store to an Enterprise
role that pass Product as an argument. It replaces its findings with copies of this message
going via the interceptor. The interceptor forwards the message to the enterprise, but
modifies the argument by sending an object of a different type (Product2 vs Product).
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Encryption. Encryption is required for communication between stores in an enterprise
and between the enterprise and the bank. Here, our focus is on the exchange between
stores. The aspect in Fig. 4(b) specifies that any message sending product information
between a store and an enterprise role should be routed through encryption roles. The
notation is the same as for Fig. 4(a). In addition, standard template mechanisms are
used to templatize the aspect. Two concrete aspect instances are described, covering
communication going to and from the enterprise. As mentioned earlier, however, the
infrastucture cannot be allowed to access plain-text message contents, and to prevent
this, the composition contract requires that encryption/decryption is taken care of by the
endpoints rather than the infrastructure. Therefore, the aspect will violate the contract
policy, which prevents introduction of encryption.

The Implementation Code. We can now discuss how the terminology we just introduced
is relevant for our CoCoME case study. We implemented the CoCoME system using an
enterprise service bus (ESB) infrastructure, the Mule ESB [7]. ESBs support decompo-
sition of system functionalities into services. Services are composed using a message-
based communication infrastructure; advanced routing capabilities enable interception,
modification, and rerouting of messages. By utilizing Mule, our implementation of Co-
CoME decouples the main application business logic from the implementation of cross-
cutting concerns. It delegates concerns such as encryption, failure management, and
auditing to the interception and routing layer of Mule.

From a coding point of view, we use aspects for capturing concerns and separating
them into aspect modules. We implement them using the Spring AOP framework. The
aspects are implemented as state machines, which are derived from sequence diagrams
that model the interactions we want to advise. When the state machine reaches a state
matching a pointcut, the advice prescribed by the aspect is executed. Our code is then
the implementation of a sequence diagram aspect, which is applied to the normal appli-
cation message flow without cross-cutting concerns. The implementation of the aspect
generation is based on the work on mapping MSC semantics to state machines in [9].
The details of the mapping from sequence diagram aspect to implementation are given
in [10].

Contracts for aspect composition play a key role in systems such as our CoCoME
implementation. In fact, since ESBs empower developers to arbitrarily change the me-
ssage flow of a service interaction, unmanaged changes to the basic services of the
application can jeopardize the functionality of the whole program. This is especially
true in the context of service oriented architectures (SOAs). In fact, SOAs aim at de-
coupling service definitions from implementations. Service instances are expected to
be replaceable by other implementations of the same service during the lifetime of the
application. Contracts help in defining a clear interface against which aspects can be
applied. This interface is separated from all the interfaces of the services that compose
the system. Thus, contracts give system architects an opportunity to impose restrictions
on which details of the service integration are accessible to cross-cutting concerns im-
plementations. Contracts enable the creation of architectures that are open to future
modifications and still can utilize the power of ESBs.
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3 Specifying and Checking Composition Contracts

We extend model-based aspect composition by introducing composition contracts. Such
contracts extend the definition of base models and specify which parts of the base model
can be queried and modified by a composition/aspect using constraints. A contract is,
therefore, an interface of the base model that governs its accessibility via composi-
tions/aspects. A contract shields the base models features from unwanted external mod-
ifications. We use OCL with extensions to specify access constraints.

We use the term query to denote pointcuts that access model join points, and the term
modifier to denote advice that modifies a model in the context of a query. We call the
mechanism that performs composition of an aspect a composition system. A join point is
any element, or set of elements, that can be queried within the (domain) model at hand.
For instance, if our modeling language is UML sequence diagrams (as in this paper),
our join points can be interaction fragments, messages, and lifelines. The actual set of
join points is determined by the composition system; for example, if our composition
system is AspectJ, the join points are all observable calls or executions. In our context,
we also consider static features to be join points, for example, the attributes declared
for a class. A contract-aware composition system checks and adheres to base model
composition contracts.

The contract checking process has two phases: (1) the pre-composition checking,
which compares the access required by a composition model (aspect) with the access
provided by the base model contract, and (2) the post-composition checking, which
compares a resulting composition with contract post-conditions. Any violation of the
contract found during pre-composition checking should result in prevention or abortion
of the composition process. Any post-condition violations should result in a rollback of
the composition. If the contract is respected in both phases, the composed model should
be kept.

3.1 Composition Contracts Concepts

A composition contract is defined by a meta-model, which is populated with elements
that refer to and constrain elements in a base model. The full details of the meta-model
go beyond the scope of this paper; instead, we describe the essential concepts in a
composition contract, as illustrated in Fig. 5.

Fig. 5. Contract Concepts
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A CompositionContract references the base model to which it applies. The accessi-
bleElements define the type of elements a composition may access by linking to base
model elements. JoinPointQueries define accessors for the base model with OCL con-
straints related to base model types. These may for instance express that ‘only messages
that are public can be queried’. The set of join point queries represent a ‘query inter-
face’ offered by the base model, which restricts the eligibility of queries to access the
base model. The allowedChanges are used to specify legal modifications (changes) in
the context of allowed queries. They define which features an aspect is allowed to per-
form changes on, and the nature of those changes. Types of modifiers are ‘introduction’,
‘removal’, and ‘modification’, which allow introduction of elements for a feature, re-
moval of elements for a feature, and any change to a feature, respectively. For example,
a composition may only be allowed to modify the ‘arguments’ feature of queried mes-
sages. Contract post-conditions specify invariant constraints on the composition result
using OCL. A post-condition may, for instance, specify that ‘all messages that were in
the original base model should be present in the composition.’. Finally, helper queries
allow the definition of named OCL queries that can be used within other OCL expres-
sions, within join point queries, and post-conditions.

3.2 Textual Contract Language

A contract is an instance of the meta-model conceptualized by Fig. 5, which can be
expressed in terms of textual syntax or populated in graphical editors. We have defined
a textual syntax, which provides a declarative way of defining the contract. Prog. 1
illustrates a simple contract associated with a UML Interaction (sequence diagram).

This contract allows querying messages of interactions where the sender role type is
‘Store’, the receiver role type is ‘Enterprise’, and the message name matches any string
(using Java-style regular expressions - ‘.*’). The modifiers allow arguments of queried
messages to be modified (i.e., arguments can be added, removed, or modified). They
also allow lifelines to be introduced to interactions. The helper queries sendRole and
receiveRole return the sending and receiving lifelines associated with a message, and the
type() returns the type name associated with a lifeline. The first post-condition specifies
that the number of fragments (events) on a lifeline must be preserved by a composition.
The second one specifies that encryption cannot be introduced by a composition, in
accordance with the infrastructure policy.

All constraints in a contract are specified using Object Constraint Language (OCL).
We have defined OCL extensions to improve expressiveness of matching in queries
and to support pre-values in post-conditions. The operation matches(‘’) is introduced
to support regular expression matching for strings within join point queries. The opera-
tion preval() is introduced to support references to object values prior to a composition
in post-conditions. A post-condition may, therefore, constrain the model state relative
to the model state prior to composition. Prog. 1 illustrates how these additional OCL
operations are used. The constraints in join point queries, post-conditions, and helper
queries are specified with OCL. The modifiers define feature constraints by referencing
features of its context type.
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Prog. 1. Contract Example
context uml="http://www.eclipse.org/uml2/2.1.0/UML";
contract InteractionContractCoCoME {

elements Interaction, Lifeline, Message;
accessor Message[*] msgs : self.sendRole().type().matches(’Store’)

and self.receiveRole().type()=’Enterprise’ and
self.name.matches(’.*’);

accessor Interaction[*] interactions: true;
modification msgs::validMod2() {feature argument;}
introduction interactions::newlifelines() {feature lifeline;}
query Message::sendRole() : self.sendEvent.oclAsType(Message

OccurrenceSpecification).covered->asOrderedSet()->first();
query Message::receiveRole() : self.receiveEvent.oclAsType(

MessageOccurrenceSpecification).covered->asOrderedSet()->first();
query String Lifeline::type() : self.represents.type.name;
/**** Post-cond: each lifeline should have the same number of fragments ****/
context Lifeline post: self.preval() <> null implies self.coveredBy->size()
= self.preval().oclAsType(Lifeline).coveredBy->size();

/**** Post-cond: Encryption cannot be introduced ****/
context Lifeline post: self.type()=’Encryption’ implies self.preval() <> null;

}

3.3 Checking and Enforcing Contracts

The purpose of a composition contract is to make composition less prone to semantic
errors and to prevent illegal modifications to occur. As mentioned, the contract must be
checked in two separate steps, pre- and post-composition checking.

The constraints on element access, join point queries, and modifications can all be
checked before a composition takes place. This puts certain requirements on the com-
position system itself, which must be contract-enabled. By this, we mean that it must be
able to either (1) export the set of queries and modifiers defined by a composition spec-
ification (i.e., aspect), or (2) itself be able to read associated base model contracts and
comply to them. In the following, we assume scenario (1). We call an exported set of
queries and modifiers the assumption contract. It is represented in the same language as
the contract itself, but only specifies the actual join point queries and modifiers imposed
by the aspect. An assumption contract corresponding to the SD aspect from Fig. 4(a) is
shown in Prog. 2.

Prog. 2. The Assumption Contract Exported from the Interception Aspect
context uml="http://www.eclipse.org/uml2/2.1.0/UML";
contract SdAspectJoinPoints {

elements Interaction, Lifeline, Message;
accessor Message[*] messages : self.sendRole()type().name=’Store’ and

self.receiveRole().type().name=’Enterprise’ and
self.name=’.*’ and self.hasArgType(’Product’);

accessor Interaction[*] interaction: true;
modification messages::msgmods() {feature argument}
introduction interaction::intmods() {feature lifeline, messages;}
query Message::hasArgType(s String) : self.argument->exists(iv2:

ValueSpecification | iv2.oclIsTypeOf(InstanceValue) and iv2.oclAsType(
InstanceValue).instance.classifier->exists(c|c.name=s);

}
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We currently check the assumption contract in two separate activities. The first per-
forms a partial analysis of the expression tree and attempts to determine whether the
assumption contract expressions are valid sub expressions of the contract, meaning that
the queries should always return subsets of the contract query values. This analysis
is, however, limited to expressions without complex operators such as iterators, exis-
tence, or type checking. Property references (in OCL, PropertyCallExp) are compared
by syntactic equality. Operations such as ‘=’ are evaluated by checking equality of each
operand. Logical operators (and, or, not) are checked by analyzing their operands and
evaluating the coherence with the contract expressions. For example, the expression α
or β in the assumption contract is not valid for the contract query α or γ, for γ �= β,
while the expression α and β is valid. Binary Decision Diagrams (BDD) [11] could
have been used to represent and compare these expressions; the BDD of the assumption
contract should never yield a boolean true/1 value result where the contract yields a
false/0 value. We have, however, not studied the mapping and solving of OCL expres-
sions by SAT solvers here; this problem has been addressed by others (e.g., in [12]).

The analysis can determine contract adherence if the queries in the contract speci-
fication are not using complex OCL operations. If this is not case, the analysis returns
with an uncertainty value (maybe). The assumption contract can then be checked by a
second activity, query execution. The queries associated with the assumption contract
are evaluated on the base model and compared with a base model evaluation. To com-
ply, the object set in evaluation resulting from the assumption contract queries should
be a subset of those from the contract evaluation. If it is not a subset, the contract is
violated. If it is a subset, the assumption contract is valid for this particular base model;
it may, however, not be generally valid for other base models.

If the pre-composition checking is successful and the contract is not violated, the
composition process can commence. The contract may express post-conditions that
constrain the result of the composition. These constraints are like ordinary OCL invari-
ants for the base model, with the exception of using preval() to reference base model
state prior to composition. This again puts requirements on the composition system;
it must produce a trace map between elements of the newly composed model to the
original base model. These links are used to evaluate OCL expressions containing the
preval() operation. The contract in Prog. 1 shows an example of a post-condition. If
post-composition checking fails, the composition-system should rollback the composi-
tion performed on the base model, and let the base model return to its original state.

3.4 Contract Example for the CoCoME Case Study

Prog. 3 shows a contract related to the message filtering concern. (This contract also
contains the queries, modifiers, and post-conditions from Prog. 1, but these are omit-
ted here for brevity, as are the details of some of the queries.) The example illustrates
queries related to the types of object arguments being passed in sequence diagrams. In
addition to Prog. 1, there is one post-condition: all messages to/from lifelines in the
composition must be refinements of messages to/from the corresponding (preval) base
model lifeline. Refinement in this context is defined by the contract as equality of me-
ssage names and type compatibility of instance value arguments being sent in messages.
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Prog. 3. CoCoME Contract Allowing Only Argument Refinement and new Lifelines in
Sequence Diagrams
context uml="http://www.eclipse.org/uml2/2.1.0/UML";
contract MessageDataRefinementPolicy {

query Message::refinementOf (m2 Message) : (self.name=m2.name) and (m2.argument
->isEmpty() and self.argument->isEmpty()) or (m2.argument->notEmpty() implies
m2.argument->forAll(iv:ValueSpecification | iv.oclIsTypeOf(InstanceValue)
implies self.argument->exists(iv2:ValueSpecification | iv2.oclIsTypeOf(
InstanceValue) and iv2.oclAsType(InstanceValue).refinementOf(
iv.oclAsType(InstanceValue)))));

query InstanceValue::refinementOf (iv2 InstanceValue) : ...................
query InstanceSpecification::refinementOf (is InstanceSpecification) : ....
query Class::refinementOfClass (cl Class) : ...............................
context Message post: let m:Message=self, life:Lifeline=self.receiveRole() in
life.preval() <> null implies life.preval().oclAsType(Lifeline).
coveredBy->exists(prefrag:InteractionFragment | prefrag.oclIsKindOf(
MessageOccurrenceSpecification) and m.refinementOf(prefrag.oclAsType(
MessageOccurrenceSpecification).message));

}

As this contract addresses quite complex relationships of the UML model, the con-
straints become elaborate. Hence, good tool support, and knowledge of OCL and the
domain meta-model are important to provide efficient support for contract specifiers.
The same, however, is true for general OCL constraint authoring. The contract in Prog. 3
will invalidate any composition that modifies a message argument to an illegal type. In
this example, we use the instance values in the message argument as basis for defining
message refinement. An aspect that tries to modify a message with missing or incom-
patible instance values will not be accepted by the composition checker.

4 Evaluation

Implementation. We have implemented a prototype to support our composition contract
approach. It provides an editor and parser for the contract language. The parser gene-
rates an EMF (Eclipse Modeling Framework) model instance of the contract. Standard
OCL support is provided by the EMF OCL and Query frameworks, which we have
extended to support the regexp matching and the preval operations. Contract helper
queries are added to the OCL environment during contract parsing, and can therefore
be used by the join point queries and post-conditions.

The prototype implements the contract checking process as illustrated in Fig. 1. Both
query analysis and query execution testing have been implemented and tested against
the case study models. The post checking implementation checks invariants for the
composed model. This process relies on element trace links from the composed model
to the original base model being provided in order to implement the preval operation.
We have currently tested our tool on UML Sequence Diagram Aspects, where trace
links are set up between lifelines in the composition and the base model. The approach,
however, is general, and can be used for contract specification and checking for all
EMF-based modeling languages. Important examples of such languages are UML and
extensions obtained by means of new profiles.

Applying Contracts. A contract may reduce potential errors in the composition process
and increase system consistency. This may apply both to the system model and the
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system implementation. In our ESB implementation of the CoCoME system, the model-
level contracts have a direct relation to the system through the mapping of the aspects.
The contracts could, therefore, potentially also be reflected in the implemented system
(e.g., for providing run-time checking of contract constraints). This is, however, subject
to future investigations.

In the case of composition at the model level, the contract pre-conditions specify
assumptions on the part of the aspects, which is analyzed by the pre-checking activity.
We evaluated our approach using the aspect examples shown in Fig. 4. Each of these
represents an assumption contract, one of which was shown in Prog. 2. The checking of
these contracts proceeds as follows:

– The assumption contract for the interceptor (Prog. 2) is accepted by the contract
pre-checking.

– For the encryption concern(s), there will be two assumption contracts – one for each
binding of the templates. One of these is not accepted by the contract checking,
since its queries for message sender and receiver are not matched by the contract.

The contract post-conditions in our example were tested using our tool on the composi-
tions resulting from applying our aspects on the productExchange and other interactions
in the case study. Any composition that adds messages to lifelines from the original base
model will break the contract if they are not refinements of a corresponding base model
message. A slightly modified interceptor aspect that modifies instance value message
arguments to non-compatible (non-refinement) values, will violate the contract post-
condition. The encryption aspect violates the post-condition, as it introduces an illegal
Lifeline (Encryption) in the interaction.

5 Discussion

The contracts we have introduced specify which parts of the base model are exposed for
composition with aspects. In particular, contracts restrict the changes that aspects can
perform on base model elements. A complementary approach would be to enable the
definition of contracts for aspects. Aspect contracts would define which elements a base
model must expose and the type of changes an aspect can impose on such elements. This
would be equivalent to the assumption contract, which can be derived from an aspect.

The contract post-conditions specify invariants for the composed model. We are cur-
rently exploring the extension of contracts with invariants also for the base models. This
will make the interface toward the base models even clearer, since it provides guarantees
with respect to base model properties. This can simplify the creation of contracts, since
we can rely on compliance with the invariants when specifying queries. For the base
modeler, defining invariants is a natural activity, whereas reasoning about accessibility
of meta-model elements may be more challenging. Moreover, invariants can potentially
improve the base model quality; even without being composed with an aspect, the base
model should comply with its invariants. On the other hand, the weaving process be-
comes more challenging because the weaver must prove that applying an aspect will not
break the invariants. However, they may, similar to post-conditions, be evaluated after
the composition has been done. Decidability and complexity analysis of verifying such
invariants prior to composition are left as future work.
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Our approach extends the standard aspect weaving process with two additional steps.
First, before applying an aspect, our contract checker verifies that the pointcut does not
select any join point forbidden by the contract. Then, it verifies that all advices modify
the model only according to the contract rules. In case one of those two conditions is
not fulfilled: the weaving process fails, the aspect is not applied, and the base model
is not modified. Letting the weaving process fail, however, is not the only reasonable
solution. We could choose at least two other approaches. First, we could try to apply
the aspect only partially. To this end, we can include in the pointcut selection only the
join points that are visible according to the contract. This approach would extend the
applicability of aspects, but it would reduce the guarantees they can provide. Second, we
could eliminate from the system the base models whose contracts are violated by some
aspect. This second approach is a good candidate for federated systems, where aspects
define system policies. In this scenario, when a base model contract conflicts with an
aspect, the service it defines is not able to cope with the infrastructure requirements;
therefore, it cannot be run.

OCL is a general constraint language, and constraints may become complex to write
and understand. The complexity of the meta-model is an important contributing factor
to this complexity. Simpler meta-models can help simplify contracts. In the case of
UML sequence diagrams, this can be done by creating a simplified sequence diagram
meta-model and an automated mapping to this meta-model. The contract may then be
authored against the simplified meta-model. The downside is the added workload of
creating the simplified meta-model and the transformation to that meta-model. The
upside is simplified contract authoring. As a proof of concept, we rewrote our contract
example for a highly simplified interaction meta-model. It saved about 40 percent in
terms of contract length (number of characters). This, of course, is not a statement
about the comprehension complexity of the resulting contract per se.

The contracts control the eligibility for composition, thus protecting the base model
from undesired changes. The contracts do not, however, prevent aspects from interfering
with each other. The aspects in our example will interfere with each other, since they
query and modify overlapping parts of the base model. By comparing the assumption
contracts, we may be able to detect these interferences and take them into account when
applying the aspects, or consider a redesign of the aspects. However, the composition
contracts currently do not address this problem explicitly.

6 Related Work

Composition contracts for aspects provide means for controlling how join points of base
models are exposed to aspects. The same issue has been tackled by Griswold et. al., in
the context of programming-level aspects, using crosscutting programming interfaces
(XPIs) [13]. XPIs provide a way of insulating aspects from implementation details and
exposing only the desired behaviors. This approach enables specifying invariants, and
supports checking and reporting any violation. While XPIs are defined using AspectJ,
the same approach can support other technologies as well. One drawback of XPIs is that
they may require redesigning the base model. Moreover, they rely on object-oriented
interfaces, which are not directly applicable to our modeling context. Our approach is
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inspired by this work; we define an interface (the contract) that limits the access to
the internals of a base model as well. However, we take advantage of meta-models
to define contracts that are not dependent on a specific modeling language. Contracts
can, therefore, base their rules on elements coming from different models, even those
expressed using different modeling languages. For example, we can base a contract for
a sequence diagram on deployment information defined in a deployment model.

In [14], Ossher describes a hiding mechanism that requires a base program to ex-
plicitly confirm or deny pointcuts that aspects can use in advising it. In addition, the
decision can be based on organizational roles and responsibilities (e.g., any aspect de-
fined by a particular organization is confirmed). The concept of confirmed roles and
organizations, currently not supported by our contracts, could be a useful extension in a
future version of our language. In our context, to implement this feature we must relate
organizational models to implementation models. Dantas and Walker [15] define harm-
less advices aspects that do not influence the final result produced by the base program.
In our context, given that base models can be defined in multiple languages, identifying
harmless advices is not easy. To support multiple modeling languages, we define con-
tracts based on a meta-model common to the different languages. Unfortunately, such
meta-models do not encode enough execution information to define what “harmless”
means. Klaeren et. al. [16] define an aspect composition and validation mechanism
based on assertions. Their composition approach uses a knowledge base of valid as-
pect configurations to specify, for each class, which aspects are valid. In particular, it
supports specifying valid configurations of several aspects. A similar knowledge base
could complement our finer-grained approach, where we do not consider interactions
of multiple aspects.

7 Summary and Conclusion

We have described an approach for specifying, checking, and enforcing model com-
position contracts. Composition contracts constrain both the pointcuts and advices that
can be applied to a base model. Constraints are defined using an extended Object Con-
straint Language supporting quantification and pre-value references in post-conditions.
We showed by examples from our case study how authoring of contracts and the details
of the contract checking process work, specifically for behaviors described by sequence
diagrams. We developed a prototype supporting specification and checking of contracts
for general EMF models.

Future work will address further the mapping of the contracts to implementation level
and how to validate the contracts at the code-level. Also, improvements to our tools to
support more expressive contracts (e.g., by allowing base model invariants also offer
excellent opportunities for further research). Increasing the usability of contract speci-
fications by looking at increased integration with modeling environments and graphical
notations will enhance the utility of the overall approach for practical applications even
further.
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Abstract. Domain-specific languages (DSLs) can simplify the develop-
ment of complex software systems by providing domain-specific abstrac-
tions. However, the complexity of some domains has led to a number of
DSLs that are themselves complex, limiting the original benefits of using
DSLs. We show how to develop DSLs as abstractions of other DSLs by
transfering translational approaches for textual DSLs into the domain
of modelling languages. We argue that existing model transformation
languages are at too low a level of abstraction for succinctly expressing
transformations between abstract and concrete DSLs. Patterns identi-
fied in such model transformations can be used to raise the level of ab-
straction. We show how we can allow part of the transformation to be
expressed using the concrete syntax of the concrete DSL.

1 Introduction

Domain-specific languages (DSLs) [1] are used to reduce the complexity aris-
ing when developing software systems using general-purpose languages (GPLs).
A DSL contains a relatively small number of constructs that are immediately
identifiable to domain experts and allow modellers to construct concise models
capturing the design of the system at an appropriate level of abstraction. While
DSLs typically start off with a small number of constructs, they tend to grow
over time: as they are used, new concepts, features and relationships are iden-
tified and are subsequently added to the DSL—making it more flexible within
a wider domain. This flexibility introduces accidental complexity as modellers
need to make decisions about using each feature. This can eventually compro-
mise the very aims for which the DSL was built: domain focus and conciseness.
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However, the additional concepts and features have been added for specific pur-
poses and cannot be simply dismissed; the complexity of the DSL is intentional.
One example of such a complex DSL is the Common Information Model (CIM)
[2] DSL for network configuration. While CIM is a DSL, its size in terms of the
number of concepts and features it contains has progressively become compara-
ble to that of a GPL such as the UML. Many of the internal details of devices
in a network configuration, however, are quite irrelevant when we try to model
and understand the configuration as a whole. Still, these details are very much
relevant when the configuration is to be implemented or manipulated.

This paper is about how we can efficiently develop layers of DSLs; that is,
new DSLs that provide abstractions of the concepts in existing DSLs. Such ab-
stractions also may help to obtain models with desirable properties, e.g., models
that can be more easily navigated for transformation purposes. The abstractions
can also support ensuring the correctness of the models by construction instead
of relying solely on post-construction verification, by allowing only particular
combinations of model elements to be used.

The main contribution of this paper is the presentation of a generic trans-
lational approach for abstract DSLs, based on the identification of patterns in
model transformations. The approach works for all situations where each concept
in the abstract DSL can be translated into a partial model in a concrete DSL.
Complete models in an abstract DSL are then translated into compositions of
partial models in the concrete DSL. The approach has been implemented pro-
totypically using existing model transformation and composition technologies.
Due to space restrictions, we cannot give more than a general overview. Readers
interested in a more detailed discussion are referred to [3].

An obvious solution to the problem of building layers of DSLs is to design
a more abstract DSL using a standard modelling framework (e.g. EMF) and
then to use a model-to-model (M2M) transformation language such as QVT,
ATL or ETL to transform models expressed in the abstract DSL, into models
that conform to the concrete DSL. The main advantage of this approach is that
it is based on robust and well-understood technologies. Nevertheless, having
written several such abstract DSLs and transformations we have also identified
several shortcomings. First, the produced transformations are very much alike
and demonstrate several recurring patterns which need to be implemented from
scratch every time. Moreover, as single elements in models expressed in the
abstract DSL typically correspond to fragments consisting of several elements in
the target models that conform to the concrete DSL, constructing such fragments
needs to be done programmatically in the context of the M2M transformation—
which we have found to be counter-intuitive and error-prone.

If creating an abstractDSL from a more concrete one was a one-off, building new
tool support for automating it would most likely be unreasonable. From our expe-
rience in providing tool-support for DSLs for industrial partners in the ModelPlex
EU project, this appears to be a recurring pattern. To address the aforementioned
shortcomings in a systematic way, a mechanism is needed which allows developers
to abstract from the commonalities of these concrete-to-abstract DSL mappings
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and specify the mapping logic in a high level declarative formalism that provides
first-class support for recurring patterns.

2 Language Mapping Patterns

We have identified the following recurring patterns in the relationship between
abstract DSL model elements and concrete DSL model elements:

1. Element Mapping. This pattern embodies the fundamental form of abstrac-
tion in our scenario: the representation of a recurrent configuration of con-
crete DSL model elements by a single model element in the abstract DSL.

2. Element Mapping with Variability. This pattern maps an abstract DSL model
element to a network of model elements of the concrete DSL. The model
elements in the network and their connections are selected based on the
value(s) of one or more attributes of the abstract DSL model element.

3. Attribute Mapping. This pattern maps the value of an attribute of an abstract
DSL model element to the value(s) of one or more attributes of concrete DSL
model element(s). This mapping pattern is essential because, unlike the two
patterns discussed above, it allows concrete data values to be passed from
the abstract DSL model into the concrete DSL model.

4. Link Mapping. This pattern maps a link between two abstract DSL model
elements to one or more links between concrete DSL model elements. This
pattern is essential to translate relationships between elements in an abstract
DSL model into relationships in a concrete DSL model.

To make transformations easier to understand and write, it would be useful
to make explicit the use of each mapping pattern. That is, rather than manu-
ally writing the complete transformation, one could, for example, annotate the
abstract DSL metamodel with appropriate mapping patterns and generate the
transformation from these annotations in an automated manner. Generating the
transformation has the added benefit that each pattern can be implemented
consistently wherever it is instantiated.

By modelling the concrete-DSML configurations as separate model fragments
and referencing these fragments from the pattern annotations, we can further
improve our specifications. This avoids cluttered specifications, allows the use of
concrete-DSML editors for defining large parts of the transformation, and can
remove scattering and tangling from the transformation specification [3].

3 Implementation

Here, we present a prototypical implementation of our approach, based on the
Reuseware Composition Framework [4] as well as the Epsilon Transformation
Language (ETL) [5] and the Epsilon Generation Language (EGL) [6]. Figure 1
gives an overview of the prototype and the process of using it. Most of the steps
presented are automatic, artefacts that need to be provided to the prototype
have been highlighted in grey in the figure. There are two phases to using the
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Fig. 1. Overview of the architecture of our prototypical implementation

prototype: The first phase (named ‘meta level’ in Fig. 1) comprises the design of
the abstract DSL, while the second phase (named ‘model level’ in Fig. 1) starts
when the abstract DSL is used.

To define a new abstract DSL, language designers need to provide two arte-
facts: 1) a metamodel of the abstract DSL (labelled ‘a’ in Fig. 1), annotated to
define the transformation to the concrete DSL, and 2) a set of partial models
(labelled ‘b’ in Fig. 1) that will be mapped to by this model transformation.
Partial models are represented in our prototype through the notion of ‘Model
Fragments’ defined in Reuseware. Among other things, developers can assign a
Unique Fragment Identifier (UFI) to each model fragment. Reuseware then pro-
vides an API to obtain a model fragment by its UFI. These UFIs can be used
in the metamodel annotations to uniquely refer to a fragment to map to.

From an annotated metamodel, our prototype then generates a model trans-
formation program in ETL. The code generator that creates this model trans-
formation is written in EGL and contains the definitions of the four patterns
identified in Sect. 2. The generated ETL model transformation expects an in-
stance of the abstract DSL metamodel and transforms this into a composition
of the appropriate model fragments.

Reuseware provides a so-called composition interface for each fragment. This
interface contains two types of named points: reference points and variation
points. The former allow to extract a partial model from a complete model, while
the latter define points in a partial model that can be modified from the outside.
The actual inner structure of the fragment is hidden behind its composition
interface: which model elements a certain point maps to and whether it maps
to one or more model elements is completely transparent to the user of the
fragment. Names of points can be used for reference, e.g., from other patterns.

Fragments are composed by replacing a variation point in one fragment with
the contents of a reference point in another fragment (i.e., with a partial model).
Reuseware will ensure that such compositions always result in syntactically cor-
rect models. Compositions of fragments are expressed in composition programs.
In addition to composition links, a composition program may also include settings
through which attributes of elements of a model fragments can be set directly
(by providing a primitive value rather than other model fragments). The model
transformation generated by our prototype (cf. Fig. 1) produces a composition
program for each instance of the abstract DSL metamodel.
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Once these preparations have been completed, we can begin using our new
abstract DSL. Editors for creating instances of the abstract DSL can, for ex-
ample, be built using EuGENia [7], which uses an approach similarly based on
annotations of the metamodel to generate graphical editors for DSLs. Once an
instance of the abstract DSL is created (labelled ‘c’ in Fig. 1), our prototype
transforms it into a Reuseware composition program, which is then executed to
produce the corresponding model in the concrete DSL.

4 Conclusions

We have presented a translational approach for defining abstract languages based
on more concrete languages. In contrast to an approach where a single monolithic
model transformation is constructed from scratch, our approach provides the
following benefits:

1. Simplified construction of abstract languages: details of the metamodel of the
concrete DSML are encapsulated in annotations for the mapping patterns.

2. Vertical separation of concerns in the model transformation. The approach
separates two concerns in the model transformation: 1) which configurations
of concrete-language model elements represent a specific abstract-language
model element, and 2) the mapping pattern to use when translating abstract-
language model elements into concrete-language model elements.

3. Use of concrete language tooling for the definition of concrete language
configurations. The approach allows the concrete-language model to be com-
posed from partial template models, each of which can be created and ma-
nipulated using standard concrete-language tooling without any need to refer
back to the concrete-language metamodel.
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Abstract. A transformation chain (TC ) generates applications from
high-level models that are defined in terms of problem domain concepts.
The result is a low-level model that is rooted in the solution domain. The
evolution of a TC is a complex and expensive endeavor since there are
intricate dependencies between all its constituent parts. More specific,
an evolution problem arises when we need to add an unanticipated con-
cern (e.g., security) that does not fit the expressiveness of the high-level
metamodel, because such an addition forces us to adapt existing assets
(i.e., metamodels, models, and transformations). We present a solution
that adds a new concern model to the TC, in an independent way.

Keywords: Model Driven Engineering, Model transformation, Model
composition.

1 Introduction

Model-Driven Engineering (MDE ) implementations promote the use of models
expressed in terms of problem domain concepts (e.g. Bank Account, Insurance
Claim) as the prime artifact to develop software. These models, to which we refer
as high-level models, are used as input for a transformation chain (TC ). A TC
is a sequence of transformation steps that converts the high-level model, which
is rooted in the problem domain, into a low-level model, which is rooted in the
solution domain. In addition to the translation from problem domain concepts
to solution domain concepts (e.g., mapping a Business Entity onto a Java Class),
the TC adds implementation details in every transformation step.

For high-level models, the metamodels are rooted in the problem domain.
These metamodels define the abstract syntax of a domain-specific modeling lan-
guage (DSML) that is suitable to be used by domain experts [1]. For the low-level
models, the metamodels are rooted in the solution domain. These metamodels
are typically closer to the definition of general-purpose languages (GPLs).

The particular problem we address is the addition of a new concern (e.g.,
security, monitoring, etc.) that was not anticipated in the existing MDE imple-
mentation. No real problem arises if the new concern can be cleanly expressed
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using the existing high-level metamodel. However, if this is not the case, then
a number of problems arise when trying to extend the existing high-level meta-
model with new concepts (e.g., the notion of security in a business domain meta-
model): 1) the existing metamodel will be polluted with concepts that do not
belong to its main problem domain, 2) including all the new elements in the
core application model produces a single monolithic model which is detrimental
to the overall maintainability, and 3) the new concepts will impact the TC by
imposing intricate changes (adding, updating or deleting TC elements) to its
existing implementation, which increases the complexity and the number of de-
pendencies within the TC. These problems make it hard to evolve an existing
MDE implementation and to maintain applications.

To overcome these problems we propose a strategy that consists of specifying
the new concern in a separate high-level model. This leaves the original model
unaltered and oblivious of the added concern. The concern-specific model can
thus be specified using concepts close to its domain which is expressed in a sepa-
rate meta-model. Therefore, we have two high-level models that conform to two
different metamodels. Consequently, to obtain the final application, it is neces-
sary to compose both models. If we perform a high-level composition, then we
face a heterogeneous composition because both models conform to two different
metamodels (e.g., composition of a business entity from the business domain
and a secured resource from the security domain). A heterogeneous composition
is a complex task and requires a particular composition mechanism for every
added concern. Therefore, we chose to align the high-level models using a Cor-
respondence Model (CM) [2], which explicitly describes the relationships among
the elements of different models. We use these correspondence relationships to
identify the elements to compose.

We have developed a mechanism to automatically derive the CM through the
various steps in the TC. The actual composition is postponed until the lowest
level. At this level, every model conforms to the same metamodel (e,g,. Java
metamodel), or to metamodels that are extensions of this metamodel. Having
models that conform to the same low-level metamodel and a low-level CM re-
lating these models allows us to perform a homogeneous composition (e.g., com-
position of two Classes). This reduces the complexity of the composition and it
gives the means to use a single composition mechanism for multiple concerns. In
our case study, we use a model composition strategy based on the UML Package
Merge [3] mechanism that composes the low-level models into a single model
that conforms to the existing low-level platform metamodel.

2 Approach Overview

The overall approach is to add a new TC next to the existing MDE imple-
mentation that takes a high-level concern-specific model as input and produces
a low-level concern model as output. We align the new high-level model with
the original one by using a Correspondence Model (CM), which needs to be
propagated through the TC. The main challenge is to define a mechanism to
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automatically derive the new correspondence relationships, having in mind that
the TC increments the complexity of the models by adding elements at each
step. Once we reach the lowest level, the models conform to the same existing
metamodel (e,g,. Java metamodel), or conform to an extension of it. Therefore,
both TCs produce two complementary low-level models that can be composed
using a common composition mechanism.

To derive a low-level CM it is necessary to trace back the elements of the
low-level models and to check if they come from pairs of related elements in the
high-level. With a trace model (TM) [4] we determine the elements in both low-
level models that come from a couple of related elements in the high-level. For
instance, an Attribute in the business model is transformed into an Attribute,
a GetterMethod and a SetterMethod in the low-level model. In the security
model a ResourceAttribute with a ReadPermission is transformed in a private
Attribute and an annotated ReadMethod in the low-level security model. There-
fore, it is necessary to trace back all these low-level elements and verify that the
high-level source element (Attribute) from which they originate, is related with
a correspondence relationship to the high-level concern-specific element (Re-
sourceAttribute).

Once the elements in the low-level models that have a pair of correspondent el-
ements as sources are determined, we have to relate these elements by identifying
the correct match for each one. For instance, a GetterMethod (in the low-level
application model) can be related to a ReadMethod (in the low-level security
model) but not to a WriteMethod. To avoid, erroneous correspondences, the
modeler has to specify some constraints. A constraint is a relationship between
two metaclasses that defines if the correspondence link between the concepts that
conform to them can be established or not. In our solution this set of constraints
is called a Derivation Model (DM).

Figure 1 presents the general schema of our approach. The original TC is in the
left (MMbus, Mbus, MMjava, Mjava, T1)1. The new concern (e.g., security) TC is
presented in the right (MMsec, Msec, MMsec−java, Msec−java, T2). CMhigh−level

is the high-level correspondence model that aligns the two high-level models.
TMA and TMS are the trace models that relate the high-level models with
the low-level models. The DM relates the low-level metamodels with constrains
between their metaclasses. The DM is used to generate the transformation T3,
that uses the trace models and the CMhigh−level to generate the CMlow−level.
Finally, the low-level models are composed and transformed into code by the
original model-to-text transformation (G1).

3 Derivation of Correspondence Model and Composition

The key element in our approach is the derivation of the low-level CM in order
to perform an homogeneous composition which we will briefly detail below.

We align the two high-level models using the CMhigh−level which relates the
elements to be composed. For example, the business model (Mbus) contains the
1 MM = Metamodel, M = Model, T = Transformation chain.
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Fig. 1. General Schema

Attribute dueDate and the security model (Msec) contains the Resource date
that needs to be protected. These two elements are related by a correspondence
relationship in CMhigh−level. The modeler creates these correspondence links
because he knows the meaning of the relationships between elements.

Low-level correspondence relationships are derived automatically by the trans-
formation (T3). For instance, two elements a′ and b′, from Mjava and Msec−java

models respectively, will have a correspondence relationship if: 1) There is a CM
relationship at the higher level between a and b, where a′ was produced from
a by T1, and b′ was produced from b by T2. 2) The metaclasses ma′ and mb′

where a′ conforms to ma′ and b′ conforms to mb′, allow for a correspondence
relationship between their instances. Intuitively, the first condition establishes
that elements a′ and b′ trace back to a pair of elements that have a high-level
correspondence relationship between them. The second condition means that the
metaclasses ma′ and mb′ are the same metaclass or extensions of the same one.
Therefore, it is permitted to define correspondence links between their instances
and finally to compose them. If both conditions are satisfied for an element a′

and b′, T3 will produce a correspondence link between a′ and b′.
In order to fulfill the first condition, we need traceability. For instance, when

T1 is applied to the Attribute dueDate, it is transformed into the Attribute
dueDate, the GetterMethod getDueDate and the SetterMethod setDueDate. To
make this information available to T3, we generate trace links between target
elements and source elements. The same happens in the T2 side, T3 needs to
know if the ReadMethod traces back to a related Resource. Once T1 and T2 are
executed, two tracing models are generated (TMA and TMS); with these links,
T3 can find the elements in both lower-level models that trace back to the pair
of related elements in both higher-level models.

To fulfill the second condition, the modeler has to define a Derivation Model
(DM ) to make explicit if the instances of two metaclasses can be related by a
correspondence link. Furthermore, the modeler has to decide constraints stating
if a couple of metaclasses can be composed. We have defined different types of
constraints in the Derivation Metamodel. These types are: Inheritable constraint
(to allow submetaclasss), Final constraint (to reject submetaclasses), Incompat-
ible constraint (to explicitly reject two metaclasses), and Composition constraint
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(to allow composites). Due to space restrictions the details of the semantics of
these constraints are out of the scope of this paper.

To generate the CM Transformation (T3), the DM is processed by a High
Order Transformation (HOT ). This HOT analyzes the constraints in the DM
and generates the CM transformation T3. Therefore, it is not necessary to develop
a new transformation for every pair of metamodels. The developer only requires
defining the constraints between them.

The final step is the composition of both low-level models, which uses the
generated CMlow−level. This CM model has the information of what will be com-
posed. For instance, Classes in the application low-level model Mjava will be com-
posed with the annotated Classes in the security low-level model Msec−java, the
Attributes in Mjava with the private Attributes in Msec−java, and the Methods
in Mjava with the annotated methods in Msec−java. By using the correspondence
links every pair of elements to be composed is identified. We use a mechanism
based on the UML Package Merge [3] to preform the composition.

4 Conclusions

Our approach facilitates the modeling of multiple concerns in separated models
each one close to the problem domain. The different concern models are aligned
using a CM, which explicitly capture the overlapping and dependencies among
their elements. Our approach offers an automatic derivation mechanism to main-
tain both models aligned from the high-level until the lowest level through the
TC. This is one factor that differentiates our approach from others approaches
where the correspondence relationships are only defined as an input, but not
maintained during the TC. As a result of delaying the composition to the lowest
level, where all the models conform to the same metamodel, it is possible to
perform a homogeneous composition using a single composition mechanism.

Summarizing, our approach offers several advantages: 1) it facilitates the mod-
eling of multiple concerns in separated models and close to the problem domain,
2) it offers an automatic derivation mechanism to identify the elements to com-
pose in the low-level models based on relationships defined in the high-level, 3)
it eases the use of a single composition mechanism at low-level of abstraction,
4) it reuses the existing assets (metamodels, models and transformations).
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Abstract. The interconnection between UML activities and state ma-
chines enables the comprehensible modeling of systems based on data
flows and events. In this paper, we propose a novel approach to guarantee
a deterministic behavior for models in which activity and state diagrams
work together. At first, deterministic models are ensured independently
within both diagrams by using our UML profile for Deterministic Mod-
els for signal processing embedded systems (DMOSES). The relationship
between executions of the model elements is analyzed according to in-
terconnections of the activity and state diagrams described in the UML
standard. To avoid nondeterministic models, we define the execution be-
havior of cooperating activities and state machines. The interconnection
of both diagrams and their corresponding behavior are illustrated in an
embedded system example that uses parallel processing for data as well
as for events. Our approach simplifies the development of deterministic
embedded systems by code generation from UML models.

Keywords: Activity, state machine, deterministic behavior.

1 Introduction

The need for systems with high performance results in an increased utilization of
parallel processing (e.g. multi-core and multi-threading). Development of embed-
ded systems has become more complicated due to the guaranteeing of determin-
istic behavior within parallel processing systems. Modeling techniques support
the development of embedded systems at a higher abstraction level. The Unified
Modeling Language (UML) [1] is the most widely used modeling language in this
area. Therefore, many efforts are undertaken to generate code from UML mod-
els. However, the UML semantics in some diagrams is not completely defined.
This makes a consistent generation code difficult. Furthermore, uncertainty in
the modeling semantics of embedded systems with parallel processing leads to
unpredictable behavior.

Flow processing and event-driven systems are usually present in embedded
systems. Those can be modeled in UML by using activity and state machine
diagrams. Hence, interconnecting both diagrams provides precise models for
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embedded systems. However, the execution behavior of interconnected activi-
ties and state machines is not precisely defined in the UML standard.

Several UML tools can generate code from UML models. Nevertheless, not
all diagram types are supported for code generation, e.g. not many tools can
handle the activity diagram in that aspect. Furthermore, the interconnection of
activities and state machines is not at all taken into account.

In this paper, we introduce the UML profile DMOSES for Deterministic MOd-
els of Signal Processing Embedded Systems. This profile ensures deterministic be-
havioral models independently of the hardware structure. Modeling of parallel
processing is especially considered within activity and state machine diagrams
to avoid uncertain execution order. The semantics of concurrent state machines
(CSM) are extended avoiding nondeterministic results if they are not completely
independent. Information about the execution is added within the diagrams by
using DMOSES stereotypes. This guarantees a deterministic behavior of the
generated code. We show different forms to interconnect activities and states
machines as defined in the UML standard. Furthermore, the relationship be-
tween the execution of the interconnected elements is analyzed for ensuring the
deterministic behavior of the whole system.

The remainder of this work is organized as follows: in the next section we
present related work. Section 3 introduces the DMOSES profile for behavioral
diagrams. Deterministic behavior of interconnected activities and state machines
is explained in section 4. The paper concludes with a summary and an outlook.

2 Related Work

Embedded systems development has been supported by using UML models.
Several UML profiles are developed to model embedded systems more accurately.
The UML/SPT profile (UML for Schedulability, Performance and Time) [2] [3],
adopted by the OMG in 2002, centers on the analysis of schedulability. The
profile TURTLE (Timed UML and RT-LOTOS Environment) [4] [5] is a UML
profile for the modeling of real-time systems which is not standardized by the
OMG. This profile extends the UML classes and activities for the structural
and behavioral modeling of real-time systems. Furthermore, time units can be
modeled with TURTLE. The profile MARTE (Modeling and Analysis of Real
Time and Embedded Systems) [6] was standardized by the OMG in 2007. This
profile supports the modeling of software and hardware platforms, and is also
focused on the analysis of scheduling and performance.

Our approach focuses on the UML diagrams: activity and state machine. Sys-
tem behavior can be modeled by using these diagrams. The semantics precision
of UML activities has been improved in the UML 2.0. Nevertheless, their seman-
tics are still lacking. [7] analyzes the semantics in relation to the Petri-Nets and
proposes some features for the activity diagrams, namely exceptions, traverse-to-
completion, and streaming. [8] confronts practical problems with the activities
semantics and suggests possible solutions. This lack of the semantics led OMG
to develop the Semantics of a Foundational Subset for Executable UML Models
(fUML) [9] [10] that offers a precise definition of the execution semantics.
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The semantics of state machines in UML are quite robust. However, the se-
mantics of concurrent state machine (CSM) are not precise enough to allow a
coherent execution. The behavior and advantage of CSMs is describe by [11] [12]
[13] [14].

In this paper, we present a UML profile, DMOSES, for modeling of embedded
systems. This area is also the focus of the profiles mentioned above. However,
our profile centers on the description of executable models that ensure a de-
terministic system behavior. Furthermore, we increase the possibilities of the
UML standard to interconnect activities and state machines. Interconnections
completely defined for the description of asystem more precise and comprehen-
sible. Our approach expands the UML semantics to describe the functionality of
CSMs, guaranteeing stable models.

3 Deterministic Behavioral UML Models by Using the
DMOSES Profile

Due to increased parallel processing in embedded systems, it is becoming more
difficult to ensure systems with a deterministic behavior. Nondeterministic par-
allel processing leads to an unstable system. Therefore, its behavior can not be
predicted. For example, the same input can produce different results, even with
varying propagation time. Our approach guarantees a deterministic behavior at
the model level by using the DMOSES profile. Furthermore, the development
of deterministic embedded system can be simplified and improved through code
generation based on DMOSES models. In this section, we describe the DMOSES
profile that ensures a deterministic behavior within activity and state machine
diagrams.

3.1 DMOSES Profile

The UML offers the possibility to be adapted to a specific domain by profiling.
Our DMOSES profile is a UML profile for deterministic models of signal pro-
cessing embedded systems. The main goal of the DMOSES profile is to extend
the UML semantics to guarantee deterministic behavior of embedded systems
models independent of the hardware platform. DMOSES models have additional
information about the model execution. This information provides a precise de-
scription of the system behavior. The profile is divided into two subprofiles:
Hardware Management and Deterministic Behavior.

Usually, multiple resources are used simultaneously due to the need for sys-
tems with high performance. The Hardware Management package supports the
relationship between hardware structure and the behavioral models (Figure 1).
DMOSES activities and state machines are assigned to a specific execution unit
within the behavioral diagrams by using stereotypes defined in this sub profile.
The platform related to the stereotype resource corresponds to a resource which
is described within the deployment diagram. Furthermore the Hardware Man-
agement package extends the deployment diagram for a complete modeling of
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Fig. 1. Assignation of execution unit within an activity

the processing units. The information about the execution unit related to the
model functionality can be used to analyze synchronization and parallelism in
the model.

The Deterministic Behavior package extends the UML activities and state
machines to avoid nondeterministic models. The extended behavioral diagrams
are named DMOSES activity and DMOSES state machine. By using stereotypes
of this package, deterministic behavior is ensured specially for parallel processing.
Elements of this profile add information about the execution within the both
behavioral diagrams.

3.2 Behavior of DMOSES Activities

DMOSES activities guarantee deterministic behavior at the model level. Par-
allel processing can be unstable if it is not completely described. Concurrency
within a UML activity diagram can be modeled through non-related flows or by
the use of determinate model elements as shown in figure 2. The most common
element to model concurrent flows is the ForkNode (Figure 2(b)). The UML
standard specifies concurrent flows when they are not related within the model.
In that account, concurrent flows can be modeled by using multiple InitialNodes

(a) Concurrent non-related flows (b) Concurrent flows by using synchronized
model elements

Fig. 2. Models of concurrency in UML
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and ActivityParameterNodes within a UML activity (Figure 2(a)). Multiple
outgoing flows of a UML action can also model concurrency. Although, the ex-
ecution order of model elements is not defined within the model. The lack of
this information causes a nondeterministic behavior. The Deterministic behav-
ior package adds information about the execution of DMOSES activities. The
stereotype async makes it possible to distinguish concurrent flows and parallel
executable flows within the model. Concurrent flows are modeled by using the
element mentioned above as shown in figure 2. They describe independent flows
which will be executed sequentially if they do not have the stereotype, async.
A DMOSES activities edge with async stereotype models a concurrent flow
that will be executed in parallel (simultaneously) if there are enough resources
(Figure 3). In this way, hardware resources can be managed. For example, the
creation of threads in a multitasking system can be controlled by the use of the
async stereotype. By using this stereotype, developers can define which flows
with independent functionality must be executed simultaneously or sequentially.
Furthermore, this method allows that the same model can be used for a different
amount of resources without additional effort. The model behavior, thus, will not
change.

Fig. 3. Prioritization of parallel executable flows with in a DMOSES activity

Uncertainty in the execution order of concurrent flows causes nondetermin-
istic behaviors. For this reason, the execution order is defined within DMOSES
activities by using prioritization of ActivitiesEdges as shown in figure 3. The ex-
ecution order of model elements is based on the incoming flows priority. In this
way, the user can define the execution order at the model level. Figure 3 depicts
a DMOSES activity with two parallel executable flows and prioritized edges. The
priority of flows is derived from edge prioritization. The resource management
is also based on this priority (e.g. the priority of the thread in a multi-threading
system).

The edge value corresponds to the local priority of the flow in relation to
the previous flow. The local priority description maintains the modularity of
the models. In this manner, the model element is behaving in the same way
independently of the structure of the whole system. The priority distribution
through the DMOSES activity must be specified to ensure an exact behavioral
modeling. Some elements of the UML activity diagram can increase or reduce the
number of flows. Only for these model elements, the handling of flow priority
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must be defined. Elements that can split flows are the same that can model
concurrent flows mentioned as above. The DMOSES activity PrioDistActivity
models flow splitting by using two ForkNodes (Figure 4). Priorities 1 and 2
are assigned to the parallel executable flows of the DMOSES actions B and C
respectively. After the second ForkNode, the flow of the action C is split in two
parallel executable flows that also have defined local priorities. If the action B is
still executing, the global execution priorities 2 and 3 are assigned to the actions
E and D, respectively, the action B has first priority with respect to the all flows
derived from the flow of the action C. If the first ForkNode would not have any
async-edge the action C and its following actions can be only executed after the
action B is completely executed.

Fig. 4. Edge prioritization for parallel executable flows in DMOSES

Figure 5(a) and 5(b) show three model elements that can join multiple incom-
ing edges. The merge node offers all tokens on incoming edges to the outgoing
edge. There is no synchronization of flows or joining of tokens. The execution
priority of the action C depends on the flow priority of the incoming token
(Figure 5(a)). For instance, the actions A and B are executed simultaneously,
but if the execution of A is shorter than B, the flow of action C will have the
local priority 1.

(a) Non synchronized flows joining by
using Priority a merge node

(b) Join of multiples flows by using a
DMOSES action

Fig. 5. Priority distribution for elements that join flows

UML action as well as UML joinNode synchronize the incoming edges. Per
default, the highest priority of the incoming edges is assigned as the priority
reference. The priority of the outgoing flows is based on this reference (e.g. the



562 Z. Daw and M. Vetter

outgoing flow with the priority 1 receives the highest priority of all incoming
flows). In this way, the execution priority of the model element can be changed
in every place within a DMOSES activity. The flow prioritization allows the
user to add information about the model execution while ensuring deterministic
system behavior.

Unambiguous execution order guarantees deterministic system behavior. This
is defined on the model level using local priorities for the activity edges and
orthogonal regions within the state machine (next section). Figure 6 shows a
directed graph of branches from data flow in a DMOSES system. The first hier-
archy level contains only one vertex which is the root of the entire system which
is abstract and thus not implemented. The second level is descibed for flows off
Inital Node, Activity Parameter Node and Send Action Node within an activity.
A graph vertex represents a single data flow of an activity. A local and a global
priority are assigned for each vertex by the use of a 2-tuple.

G = (V, E) where V = (Pl, Pg) (1)

Edges depict branches from a single data flow. The graph is transversed in a
preorder to calculate global priorities taking in account that the left child node
has the highest priority 1. The global activity edge priorities ensure an unique
execution order.

Fig. 6. Graph of data flow branches with local and global priorities

3.3 Behavior of DMOSES State Machine

The UML standard provides modeling of concurrent processing within the UML
state machine. The presence of concurrency within the model leads to non-
deterministic behavior if there is a lack of information about the execution.
To avoid unstable system models, the DMOSES profile extends the UML state
machine. Concurrent states can be modeled by using orthogonal regions within a
composite state. Figure 7 depicts a composite state with two orthogonal regions.
The composite state, State1, can be in two states simultaneously due to the
orthogonal regions. A UML state can own three behaviors that can be described
for UML activities. Their execution order is linked with the following labels:
entry, do and exit. These labels define when the behaviors must be executed in
relation to the activation of the state.
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Fig. 7. DMOSES state machine with concurrent states by the use of orthogonal regions

The DMOSES profile offers in its Deterministic behavior package a group of
stereotypes to define the execution order within the DMOSES state Machine.
The information about the model execution is related to the orthogonal regions
by using stereotypes. These stereotypes are also used within the DMOSES activ-
ity diagram. The transition execution is linked with the region properties. The
stereotype async within orthogonal regions models that behaviors corresponding
to states (e.g. do behavior) will be executed simultaneously (Figure 7). Never-
theless, the stereotype cannot force a simultaneous execution if there are not
enough resources available. If there is only one resource or the stereotype async
is not included, the triggered transitions and states behaviors are executed se-
quentially. The execution order of the transition is determined for the region
priority to avoid uncertain conditions. Figure 7 illustrates a DMOSES state ma-
chine with prioritized regions. A non-deterministic behavior can already occur
at the entrance of the composite state, State1, due the execution order of the
behavior not being defined. The regions priorities define the execution order
between the entry behaviors of the DMOSES states SubState1 and SubStateA.
Region priority is a local value that is only valid within the composite state.

The priority distribution in the DMOSES state machine must be specified.
This distribution also take into consideration model elements that change the
number of flows defined within the DMOSES activities. Within a state diagram,
this situation occurs when a state contains multiple regions. Every orthogonal
region is represented for a vertex within the prioritiy graph. An edge is depicted
when a state contains orthogonal regions. Figure 8 shows the graph of the state
machine on figure 7. This figure shows a rectangle with a subgraph. The subgraph
represents an asynchronous area. This area is asynchronous executed in relation
to the entire system.
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Fig. 8. Priority distribution of PrioDistCompState (Figure 7) described in a graph

3.4 Deterministic DMOSES Concurrent State Machines

Concurrent state machines (CSM) facilitate the modeling of orthogonal or inde-
pendent state machines. The modeling with CSMs of orthogonal behaviors can
drastically decrease the number of states and transitions. Figure 9(a) depicts an
example of one state machine. The state machine ExaStateMachine has 9 states
and 22 transitions. In this diagram, the orthogonality between the states can be
identified. The state machine, ExaStateMachine, can be transformed into two
concurrent state machines as shown in figure 9(b). The final number of states is
reduced to 6 as well as the number of transitions to 8.

The UML standard defines the assumption run-to-completion to process an
event occurrence. Run-to-completion processing means that an event occurrence
can only be processed if the previous is fully completed. The processing is con-
cluded when all transitions are completed as well as the invocation of the corre-
sponding activities. Multiple transitions can be triggered within one UML state
machine if it has orthogonal regions. The firing order of these transitions is
not determined in the UML standard. This causes the state machine to behave
nondeterministically.

(a) One state machine with independent state (b) Concurrent state
machines

Fig. 9. Decrease of the model complexity by using concurrent states
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Fig. 10. Reciprocal state query of two concurrent state machines with the same tran-
sition trigger

Fig. 11. Execution se-
quence for multiple
transitions

In the CSMs, multiple transitions can be fired as well
as within orthogonal regions. Furthermore, the CSMs can
query each other. The multiple transitions and the re-
ciprocal state queries lead to different results for each
execution order of the individual transitions. Figure 10
depicts two CSMs that respond to the same event e1.
Both transitions have guards that query the state of the
other state machine. If the transition of the state ma-
chine, CSM1, is executed first then the result of the event
is StateB and State1. But if the execution order is re-
versed then the resulting states are StateA and State2.
Since the order in which the transitions fire is not de-
fined in the UML standard, we propose to extend the
run-to-completion, to guarantee a deterministic behav-
ior of CSM. The activity, ExecutionMultipleTrans, of fig-
ure 11 illustrates the extended run-to-completion process
for multiple transitions. When an event occurrence is de-
tected the state machines involved are identified. Guards
of the potential transitions are verified. Once all transi-
tions to be executed are found, the corresponding exit -
activities are invoked followed by the behaviors associated
with the transition, named effect -behaviors. After this,
the state change of all state machines is carried out and
then the entry-activities are executed. The execution or-
der ensures that the result of state queries to other state
machines is independent of the transition execution or-

der. It must be considered, that the query can also be made within some state
behavior (e.g. exit behavior).

To guarantee a deterministic behavior of the CMSs, the execution order be-
tween the behaviors of the same type must be defined. Figure 12 shows how to
define this order. This DMOSES state machine PrioDistGCSM has a stereotype
named globalStateMachine. Region priorities within the composite state with this
stereotype determine the relationship between the global concurrent state ma-
chines (GCSM). The execution order of the activities associated with a transition
is derived from this relationship.
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Fig. 12. Priority distribution for global concurrent state machines by using orthogonal
regions

4 Deterministic Behavior for Interconnected DMOSES
Activities and States

In our approach, activity and state diagrams are used to model the system be-
havior. Nevertheless, each diagram is focused to describe different system types.
Systems based in data flow processing can be best modeled with activities (e.g.
the signal processing area). Event-driven systems can also be modeled with ac-
tivities diagrams. Therefore, the effort of modeling and complexity is increased.
State diagrams are especially designed to describe this kind of systems. Since
UML 2.0, activities and state diagram have become orthogonal allowing the use
of both independently. We propose to interconnect both diagrams to model data
flow processing as well as event-driven systems. Those are often present in an
embedded system. The development of embedded systems is facilitated by using
code generation from interconnected activities and states. In this section, we
describe deterministic models based on interconnected DMOSES activities and
state machines.

4.1 Interconnection Forms between Activities and States Described
in the UML Standard

The UML standard provides different mechanisms to relate UML activities with
states and vice versa. The behavior of model elements within a UML state ma-
chine can be described for UML activities. It can be associated to a UML state
as well as to a transition. The invocation point of a UML activity depends on
the activation of the corresponding element within the UML state diagram. For
instance, the UML activity linked to a transition is executed when the transi-
tion is carried out. A UML state can have up to three UML activities. Each
of these activities are related to the following labels: entry, do and exit. These
labels define the execution point of the associated UML activities in relation to
the activation of the UML state. Between the UML activity and the state, there
is not any data transfer. The UML standard allows the invocation of behaviors
from UML activity diagrams by using InvocationActions. SendSignalAction is an
InvocationAction that creates a signal instance, and transmits it to the target
object. This model element can be used to fire a UML state machine transition.
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Figure 13(a) shows a SendSignalAction within the UML activity, FireTrans, that
fires a transition of the UML state machine, TriggerfromAct, between the state
State1 and State2.

(a) Signal Sending to fire a transition
within a state machine

(b) State machine responds to an event
sent within an activity

Fig. 13. Transition fired within an activity by the use of a SendSignalAction

4.2 Interconnection of DMOSES Models

The UML standard describes a possible interconnection between activities and
states by using state behaviors (e.g. exit behavior). This kind of interconnection
will be maintained for DMOSES model elements. Furthermore, we introduce ad-
ditional relationships between both diagrams to facilitate modeling of embedded
systems. For instance, the processing flow within a DMOSES activity changes
depending on the state of a DMOSES state machine. This can be realized by
using a DecisionNode. Guards of the DecisionNode outgoing flows can be related
to the state of any DMOSES state machine. Within the DMOSES activity of
figure 14, the action B is only executed if the state machine SMA is in the state
State1. In this manner, different flows can be executed depending on the state
of a state machine.

Fig. 14. Query of a state within a UML activity diagram

The behavior of a UML state machine can be modeled by using UML ac-
tivities. The DMOSES profile enables activities and actions to have their own
DMOSES state machine by the use of the stereotype, stateAction as shown in
figure 15(a). With this relationship, the state of a DMOSES activity execution
can be described as well as an Action. The information saved within a state
machine can be used to change the processing flow within an activity. In this
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manner, errors or features in the outgoing data can also be modeled, and con-
sidered outside of the action or the activity. Figure 15(a) depicts the DMOSES
activity, ActivitySt, that have the state machine St Act. A transition of St Act
can be only fired within the ActivitySt (e.g. by using SendSignalAction). Fur-
thermore, the state of St Act determines which signal will be sent because of the
DesicionNode. ActivitySt executes a different processing flow for each state of
St Act. In addition, the state of the activity can be queried within an external
DMOSES activity as shown in figure 15(b). In this example, the outgoing data
of the DMOSES action, Action1, is not processed for the next DMOSES action
when the outgoing data is negative and the state machine of Action1 is in the
state, State2.

(a) Internal state can be change within
the activity

(b) External state queries of the state ma-
chine associated with an activity

Fig. 15. DMOSES activity having a state machine

4.3 Deterministic Behavior of the Interconnection between
DMOSES Models

The DMOSES profile guarantees deterministic behavior for activities as well as
states separately. Information about the model execution within the DMOSES
elements allows for the definition of the execution order of the model elements.
The relationship between the execution order of the DMOSES activities and
State Machines is not defined. Hence, the interconnection of both model elements
leads to an uncertain model behavior. Figure 16 shows a DMOSES activity that
fires a transition a the state Machine with this event. The execution of this tran-
sition entails the invocation of the corresponding behaviors. The execution order
of these behaviors must be related to the PrioSendSig to avoid nondeterministic
behaviors. The execution priority of the state machine behaviors is associated
to the flow priority of the SendSignalAction that triggers the transition.

The execution behavior of a DMOSES state machine can be executed in
parallel by using the stereotype async for the SendSignalAction as shown in
figure 16. In this manner, the user can decide the priority of a transition (e.g.
a new thread with a high priority can be created to execute the transition in
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Fig. 16. Different forms to prioritize tran-
sitions of a state machine

a multithreading-system). The tran-
sition can be executed in parallel by
using async in the edge of the
SendSignalAction-incoming. The pri-
ority of this flow is assigned to the
transition while the following flow as-
sumes a priority level lower (e.g. the
flow of C). The action D is executed
after the transition execution is com-
pleted due to the fact that the flow
does not have any async stereotype. The same priority distribution is valid for
DMOSES activities and actions that contain a DMOSES state machine.

5 Conclusions and Future Work

In this paper, we have presented a novel approach for interconnection between
activities and state machines ensuring a deterministic behavior. We have shown
how to describe deterministic models by using the DMOSES profile. Informa-
tion about the execution is included within the model. This allows the user to
manage the resource at the model level. Furthermore, we demonstrate that the
concurrent state machines cause uncertain execution if any relationship between
their executions is not defined within the model. A new semantics for DMOSES
profile, is introduced to extend the interconnection between activities and state
machines. To maintain a deterministic behavior of the entire model, we add some
stereotypes to this profile package. Future work is to ensure the development of
deterministic signal processing embedded systems. For this reason, we will de-
velop a tool to support code generation from DMOSES models. The generated
code is based on a framework that maintains a deterministic behavior in the
implementation.
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Abstract. With their revision in the UML 2.x standard, activities have
been extended with streaming parameters. This facilitates a reuse-orien-
ted specification style, in which dedicated functions can be contributed
by self-contained activities as building blocks: Using streaming param-
eters, activities can be composed together in a quite powerful manner,
since streaming parameters may also pass information while activities
are executing. However, to compose them correctly, we must know in
which sequence an activity may emit or accept these streaming parame-
ters. Therefore, we propose special UML state machines that specify the
externally visible behavior of activities. Further, we develop an algorithm
to construct these state machines automatically for an activity based on
model checking. Using these behavioral contracts, activities can then be
composed without looking at their internal details. Moreover, the con-
tracts can be used during system verification to reduce the complexity
of the analysis.

Keywords: SystemComposition, UML Activities, UML State Machines,
UML Streaming Parameters, Model Reuse, Verification.

1 Introduction

UML activities can be used on several levels of decomposition for the specifica-
tion of systems. On a high level, activities may cover coarse business processes
and provide the big picture of a system’s behavior. Activities are also equipped
with the necessary concepts to express fine-grained logic on a more detailed level,
close to an implementation in a programming language. These different levels of
abstraction are not in conflict with each other, and can all be part of a consistent
specification: By using call behavior actions, an activity may refer to subordi-
nate activities, so that a complete system specification may be decomposed on
numerous levels, from the high level focusing on the overall behavior, towards
such a degree of detail that code can be generated from them.

When referred to via call behavior actions, activities may pass data and con-
trol flow between each other using input and output parameter nodes. With
version 2.0 of the UML standard [1], activity parameter nodes were extended
with the concept of streaming parameters. While non-streaming parameters may
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only accept tokens at the start or emit tokens at the termination of an activity,
streaming parameters may pass tokens throughout the execution of an activity,
in any order and frequency. This enables more elaborate dependencies between
activities, so that related functionality can still be encapsulated within one ac-
tivity, but a detailed synchronization between those activities is enabled by using
streaming parameter nodes. This is a form of interleaving composition, and from
the experience gained from our case studies introduced later we have seen that
enabling this composition fosters the reuse of activities in the form of building
blocks.

To effectively exploit the potential of interleaving compositions enabled by
streaming parameter nodes, however, we need a description of the external be-
havior of an activity relevant for an enclosing context. This is a kind of interface,
hiding the internal details of an activity. For this purpose, we complement ac-
tivities with so-called External State Machines (ESMs) which are a variant of
UML state machines. An ESM describes the order in which tokens can pass the
various parameter nodes of an activity. This order has to be obeyed to guarantee
a correct interplay between an activity and its environment. The concise notion
of the external behavior of activities by ESM offers a number of advantages for
the incremental development and verification of system specifications:

– Developers reusing an activity do not have to consider its internal details,
but may rely on the description given by its ESM.

– The formal interface description described by an ESM can be used to verify
that the activity is correctly embedded in a surrounding specification.

– ESMs support the incremental development of systems. In a bottom-up style,
activities can be encapsulated by ESMs, facilitating their composition to
more comprehensive models since details are hidden. In a top-down style,
ESMs can be used to first sketch the external behavior of an activity, which
can be subsequently implemented separately from a global model, just by
considering its ESM.

– ESMs can be used to guard changes in models. The internals of an activity
can be modified without affecting models referring to it if it still complies
with its ESM, which can be verified automatically by tools.

– ESMs enable incremental verification. During a formal analysis of a system
specification based on model checking, activities can be analyzed separately.
This reduces the state space needed during the analysis significantly. More-
over, once an activity is verified, this verification does not have to be repeated
when the activity is reused. The surrounding context only has to comply with
its ESM.

As one realization of a model-driven development process using UML activities
and ESMs, we have proposed the engineering method SPACE [2,3], depicted in
Fig. 1. Systems are specified as hierarchies of activities encapsulated by ESMs.
Those activities useful in several applications are stored together with their ESMs
as self-contained building blocks in libraries for different domains. Currently, we
have libraries for embedded sensor systems [4], trust management [5], and web
service-based telecom services [6].
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Fig. 1. Model-driven development method based on UML activities and ESMs

The method aims at a high degree of automation. With the tools described
in [7,8], activities and their compositions can be checked automatically for nu-
merous properties that should hold for any applications. This analysis is per-
formed incrementally, i.e., on each activity separately and utilizes the reduction
of state space as provided by the ESMs. To automatically implement the sys-
tems specified by activities, we developed and implemented a transformation
algorithm that synthesizes UML state machines and composite structures [9,10].
From these state machines, we generate code for different execution platforms,
for example for Java in different editions [11,12].

In this article we focus on the encapsulation of activities by ESMs, how this
process can be automated, and present the impact on the development and
verification from our case studies. In the following two sections, UML activities
and ESMs are introduced. Thereafter, we discuss in Sect. 4 how ESMs can be
utilized to perform incremental development. The contribution of the ESMs to
reduce the complexity of model checking is pointed out in Sect. 5 while Sect. 6
introduces a tool to generate ESMs automatically from activities. We close with
a discussion of related work and concluding remarks.

2 Activities and Streaming Parameter Nodes

Figure 2 shows an activity which sends SMS messages to mobile phone users.
The surrounding system passes SMS messages to be sent out via streaming
parameter node send. The actual sending happens via a web service call to
a Parlay X server [13] within action s, which refers to a subordinate activity,
taken from [6]. Since this invocation takes some time, SMS messages arriving
in the meantime via send are stored in a buffer variable. In addition, the logic
in Fig. 2 takes care of authentication and optional re-sending in case of errors.
This activity is part of our library for telecom services provided by the PATS
laboratory operated by Telenor [14], further described in [6].
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[retry]

create request

sending = true

add to buffer

[sending]

[else]

sending = false

[else]

[buffer.size()=0]
[else]

stopped = true

[sending or 
buffer.size()>0]

[else]

[stopped]

Buffered SMS Sending
send:
SMSMessage

stop

start

ok

stoppedfailed

ok failedok: Auth failed

report error

[else]

buffer: List // holding SMS messages
sending: boolean
stopped: boolean
credentials: Auth

: Request

remove sms
from buffer

s: Send SMSa: Authenticate

store
credentials

Fig. 2. Activity for Buffered SMS Sending

The activity is started via pin start, which invokes call behavior action a:
Authenticate to retrieve authentication credentials from the Parlay-X server. If
this inquiry fails via pin failed on a, activity Buffered SMS Sending terminates
via failed. If the authentication is successful, the credentials are stored, and a
token is emitted via ok to signal the surrounding system that SMS messages for
sending are accepted from now on. These SMS messages arrive via parameter
node send, and are added to the buffer. If the activity is currently in the process of
sending another SMS, indicated via variable sending, the token flow ends. If it is
not sending, the flow continues by setting flag sending and preparing a sending
request, which combines the first SMS in the buffer with the authentication
credentials. This request is used to start action s. If the sending of the SMS
fails, a repetition is possible, depending on guard retry, which we do not detail
further. If the sending of the SMS was successful or should not be repeated, the
SMS is removed from the buffer. In case there are further messages in the list,
sending continues with the next message.

To terminate the activity, the surrounding system sends a token via node
stopped. If the activity is currently sending an SMS message, or the buffer is not
yet emptied, only flag stopped is set, and the termination is deferred until the
buffer is emptied. In the other case, the activity is stopped immediately and a
token is emitted via stopped.
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SMS Inquiry Service

start

stoppedfailed

stop

create setup

failedstopped

create answer

report

t:TERMINATE

report

send: SMSMessage

stop

s2: Buffered SMS Sending s1: SMS Reception

sms: SMSMessage

start: ReceiveSMSSetupok

Fig. 3. Example system composing two building blocks s1 and s2

The activity in Fig. 2 uses different types of parameter nodes. The input
parameter ( ) activates an activity and the output parameters ( ) emit to-
kens once the activity has terminated. Since the output nodes failed and stopped
are alternatives, they are assigned to different parameter sets, indicated by the
additional box. The other parameters ok, send and stop, are streaming parame-
ters, here shown as filled boxes ( ). They can emit or accept tokens during the
execution of an activity, i.e., while it is active.

Streaming parameter nodes enable an interleaving composition in which sev-
eral call behavior actions may be active, modeling separate functionalities of a
system, and may synchronize with each other every now and then. In the sys-
tems of our case studies introduced in Sect. 4.1, such interleaving compositions
using streaming parameters occur very often. About 65% of all building blocks
in our libraries use them.

The activity in Fig. 3 illustrates such an interleaving composition of two sub-
ordinate activities, referred to by call behavior actions s1 and s2. The system
realizes a simple SMS-based inquiry service, in which mobile phone users may
request information such as a weather forecast by sending a certain keyword
to a special number. To the right, call behavior action s1 refers to an activity
SMS Reception taken from our library. This activity can receive incoming SMS
messages that are sent by mobile phone users to a certain number. Call behavior
action s2 refers to the activity for sending out SMS messages described above.
With the activity nodes and edges surrounding them, these two building blocks
are composed to obtain the complete system specification. When the system
starts, a token is emitted by the initial node ( ) and action s2 starts the block
for buffered SMS sending by contacting the corresponding web service. In case
the startup fails, a token is emitted via failed of s2 and the system is terminated.
In case of success, a token is emitted via pin ok, which starts sub-activity s1.
In addition, it places a token into accept signal action t: TERMINATE, which
receives a token when the system should be terminated. Once users send in SMS
messages, they are received by s1 and a corresponding data object is emitted via
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pin sms. This SMS is then processed by operation create answer. For the key-
word weather, for example, the current weather forecast is retrieved and wrapped
into a new SMS message which is then sent out to the user. When the system is
terminated, a token is emitted from t, stopping first s1 and then s2.

3 External State Machines – ESMs

An engineer not involved in the design of activities Buffered SMS Sending and
SMS Reception does not know in which exact order parameters have to be passed
to or expected from the activity. To construct a sound system, however, this
knowledge is necessary. To hide the internal details such as the one from Fig. 2,
we use the ESMs. These are UML state machines, stereotyped with �esm, that
refer with their transitions to the activity parameter nodes of the activity they
describe. Parameter nodes are referred to as either triggers or effects, separated
by a “/”, depending on where a flow originates. The stereotypes and constraints
are further detailed in our profile for service engineering [2].

Figure 4 shows the ESM for the buffered SMS sending activity of Fig. 2. It
specifies that after the start of the activity via start, the activity is in a starting
phase, which can result in the termination via failed. Since start is invoked
from the outside, the label declares start as trigger, while /failed points out
that the termination is caused by the internals of the activity, perceived by
the surrounding context as a spontaneous transition. If, however, the start is
successful, ok emits a token, and the activity is in its active phase. Within this
phase, the activity accepts SMS messages via send. To stop the activity, we may
in this phase send a token through stop. If the block’s internal buffer is empty and
no SMS messages are left to send out, the stopping happens immediately, and
a corresponding token is emitted via the output node stopped. This is specified
by the transition labeled stop/stopped. If there are still SMS messages to send
out, the eventual termination of the activity is delayed until all messages are
processed, and output node stopped emits a token after phase stopping. Figure 5
shows the ESM of the SMS Reception activity.

Obviously, for a system to be sound, all activities must actually implement
the behavior described by their ESMs, i.e., all ESMs must be true abstractions
of their respective activities. For this reason, we defined the formal semantics of
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«esm» Buffered SMS Sending

/failed
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stop/
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/stoppedstop/stopped

Fig. 4. ESM for Buffered SMS Sending
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Fig. 5. ESM for SMS Reception



Encapsulating UML Activities 577

activities using the Temporal Logic of Actions (TLA, [15]), as introduced in [16].
Each activity corresponds to a temporal logic specification Ai, describing all its
possible behaviors by a set of actions. An ESM is expressed by a specification
Ei. Since an implementation relation in TLA corresponds to logical implication,
for any building block i, Ai ⇒ Ei must hold. This formula means that each
action of an activity maps to a compatible action of the ESM, or the ESM is not
involved in the action.

To ensure this sound relation between an activity and its ESM, our tools
support two strategies, named encapsulation and refinement :

– Encapsulation of existing Activities by an ESM. Following this de-
velopment strategy, an existing activity Ax solving a certain problem x is
encapsulated by an ESM Ex, so that Ax ⇒ Ex holds. In Sect. 6, we describe
a tool to generate the ESM from a given activity.

– Refinement of a given ESM by an Activity. In this development strat-
egy, a building block to contribute some function y is first described by its
externally visible behavior Ey. Since Ay is more detailed than Ey , it can
in general not be automatically derived from Ey and is a manual engineer-
ing step. However, the necessary refinement relation that must hold can be
ensured by an automated verification based on model-checking. We have
implemented this by our tools presented in [8,17,18].

We should note that users of our tools are not required to work with temporal
formulas. Feedback about the consistency of a specification is given on the level
of activities, as explained later. TLA is therefore merely used as a reasoning
instrument to ensure that the method and tools are sound.

4 Incremental Development with ESMs

The encapsulation of activities in ESMs facilitates an incremental development
style, in which systems can be specified activity by activity, with the ESMs as
contracts separating the individual activities from each other. In particular, two
styles are enabled by the previously introduced strategies of encapsulation and
refinement:

– The strategy of encapsulation supports a bottom-up development style, de-
picted in Fig. 6, in which an ESM is generated for an activity Ax, which can
be composed in an enclosing activity Sx together with other activities.

– Vice versa, the strategy of refinement, in which an ESM Ey is used to ini-
tially specify the abstracted behavior of an activity Ay, supports a top-down
development style, illustrated in Fig. 7. Here a higher level specification Sy

is developed first, and the subordinate activity Ay is in a first step only de-
scribed by its ESM Ey. Later on, Ey can be implemented even by a developer
unaware of Sy since its expected behavior is described by Ey.

Systems usually have several decomposition levels, with each level corresponding
to an activity referred to by call behavior actions. Throughout the development
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of a system, both styles may be combined: An activity developed bottom-up may
at some level be composed with one that is to be developed top-down, and an
initial top-down design of an application may be refined until a level is reached
where existing activities can be used and encapsulated. If an activity is useful in
a number of applications, it can be stored in a library and reused later in other
systems.

4.1 Case Studies

To evaluate the impact of the presented specification technique with streaming
parameters and ESMs, we conducted a number of case studies, covering several
domains:

Web Services. For the orchestration of web services, we demonstrated in [6]
how WSDL descriptions can be imported automatically as activities. Each
web service operation can be invoked by corresponding streaming parameter
nodes. The ESMs ensure that these operations are invoked in a sensible order
only.

Embedded Systems. In [4] we composed a sensor network from reusable build-
ing blocks. A complete leader election protocol is contributed by one single
activity, encapsulated by an ESM. The system was automatically imple-
mented on Sun SPOTs for embedded Java [19].

Mobile Services. In [17] we developed a mobile, location-aware application,
in which users solve tasks depending on their current location. This system
is used within the FABULA project for mobile learning platforms [20]; the
developed activities are also usable in other application areas.

Home Automation. Within the project ISIS (Infrastructure for Integrated
Services), we develop solutions for the domain of home automation together
with our project partner Telenor. In [7], we demonstrate the composition of
a remote fire alarm, in which most parts are reused from libraries.

Trust Management. [5] presents a number of activities encapsulated by ESMs
for the domain of trust management.

4.2 Libraries of Reusable Building Blocks

The ESMs act as behavioral interfaces [21] that can be used to separate the
work of different developers. When a new activity is introduced providing some
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functionality, only its ESM needs to be known in order to use it correctly in an
enclosing activity. This facilitates the provision of domain-specific libraries by
experts. With the library for trust management [5], for instance, also non-experts
in trust management can provide trust-based functions in systems. Due to the
ESMs, the correct invocation of these activities is ensured, which guarantees
that the trust-based functions are applied correctly.

To determine the degree of reuse enabled by the activities encapsulated by
ESMs, we use the reuse proportion R described in [22]. This metric represents the
proportion of reused code lines to overall code lines. For the application to UML
models, we count the number n of nodes and edges in an activity instead. For
a system specification consisting of many activities, each n is then either added
to nreused or nspecific, depending on if it is reused from a library or developed
specifically for the application. The resulting reuse proportions R in percent for
each system from our case studies is shown in Table 1. The numbers indicate
that, in average, 71% of a system specification are contributed by reusable blocks
from libraries.

Table 1. Reuse proportions R in percent

nreused nspecific R

Trusted Auction System [5] 228 76 75%
Telecom Web Service System [6] 334 89 79%
Treasure Hunt System [17] 131 73 64%
Mobile Alarm System [7] 145 70 68%
Embedded Sensor System [4] 144 75 71%

To use the words of Wills and D’Souza in [23], the reuse enabled by ESMs is
a “good one,” since it goes beyond simple copy-paste of specification fragments.
This is also characterized as compositional black-box or verbatim reuse [24]. In
Sect. 5 we will point out that the reuse holds also for verification purposes, i.e.,
an activity once verified does not have to be verified again when is is reused.
This implies that a reuse proportion of 71% implies real gains in productivity.

The ESMs also serve as an effective guard for changes: Any activity may be
modified arbitrarily without affecting the soundness of the system as long as it
complies with its original ESM. From a practical point of view, this means we
can update and improve the internal realization of a building block in a library
without affecting applications using it. Illegal changes harming the ESM are
detected by our automatic analysis tools.

5 Incremental Verification with ESMs

Due to the formal definition of the activity semantics based on temporal logic
in [16], we can use the technique of model checking for the analysis of specifi-
cations. The examples in [8,17] demonstrate how this process can be performed
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automatically on UML activities in order to check numerous properties that
should hold for any application, like the freedom of deadlocks or bounded com-
munication queues. Problems identified are presented in the form of animations
and annotations within the diagrams, as demonstrated in [7], so that engineers
do not require a formal background to assure the quality of their models.

A well-known challenge of model checking is the problem of state explo-
sion [25], i.e., that realistic systems often have so many reachable states that
a complete analysis cannot be handled within acceptable time. By using ESMs,
however, we can verify systems incrementally, since each activity is analyzed
separately. When an activity is model checked, all its subordinate activities re-
ferred to by call behavior actions are represented by their respective ESMs. This
reduces the number of states to be checked significantly, since the ESMs have
usually much less states as they are more abstract than the activities they en-
capsulate. To achieve that, our model checker verifies two properties for each
activity:

(i) The activity has always to comply with its own ESM, i.e., Ax ⇒ Ex as
mentioned in Sect. 3 holds.

(ii) An activity must always fulfill the ESMs of its subordinate activities.

Formally, a system S using activity Ax is described by S � Ax ∧ N , with N as
the behavior of the surrounding context of Ax (see [16]). To prove a property
I during the analysis, PA � S ⇒ �I must hold.1 Using the ESMs instead,
the model checker verifies the less complex proof PE � Ex ∧ N ⇒ �I. Since
PE ∧ (Ax ⇒ Ex) ⇒ PA holds trivially and (i) holds, the replacement of the
activities by their ESMs is formally correct. (See also [2].)

The degree of reduction of the size of the state space is discussed below.
Further, when an activity is reused, the analysis effort spent will be reused as
well. We assume that the designer of a building block only adds an activity to
a library after it passed the analysis and does not contain any errors. Thus,
other engineers may simply apply the building block without the need to check
the correctness of it’s internal behavior again. They only have to prove that the
environment of the block complies with its ESM.

It is also beneficial for the human developers that the analysis is focused on
one activity at a time: Once an erroneous situation is identified by the model
checker, the underlying problem is typically easier to understand and solve when
only a single activity has to be understood. This makes it also possible to study
intricate synchronization problems isolation, as demonstrated in [8].

5.1 Scalability and Reduction of State Space

To make a point in case, we consider a simple example from the domain of
Grid technology. These systems stand out for their high number of processes
running in parallel. Here, each combination of the local process states forms a
1 In temporal logic, � is the “always” operator stating that a property holds in all

states of a system description.
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unique system state to be checked separately. Formally, if a system consists of
p independent processes and each process may reach s different process states,
the overall system contains up to sp many different system states. If, however,
we model each process by a separate activity, this will comprise only s differ-
ent states. The ESMs of the activities typically contain only two or three states
modeling whether the process is either idle, active, or terminated. Thus the over-
all system model encompassing p call behavior actions for each of the processes
affords only two or three states since all processes can be started and terminated
at once. Thus, if the sub-activities differ for each process, we have to check alto-
gether only p · s + 3 different states. In the case that all processes are identical
and we can model them by the same activity, the effort is even reduced to s + 3
reachable states since this activity has to be verified only once. So, we can reduce
exponential complexity with respect to the number of processes and polynomial
complexity with regard to the number of process states to linear complexity.

Also for systems with less parallel behavior than the one sketched above, the
reduction of states to be proven is still significant. For instance, the trusted auc-
tion system presented in [5] has in total 957 distinct reachable states when the
global specification is explored, although it only models two communicating par-
ties and has only three decomposition levels. When we use the ESMs, however,
and analyze each activity of the system separately, the state spaces to explore
have only a size of 38, 63, 5, 6, 54, and 50 states. Thus, even for such a relatively
small system, we could reduce the maximum number of states to be checked in
one single run from 957 to 63. The fact that four of these six blocks, including
the largest one, were taken from our libraries and were already verified, reduced
the effective effort even more.

6 Automatic Generation of ESMs from Activities

When designing an activity, the designer needs to make some assumptions about
the environment. To describe these, the activity to encapsulate is placed within
a minimal environment. In our editor, such an environment is part of a building
block, since it is helpful to illustrate a building blocks usage. Figure 8 shows
an environment for the buffered SMS sending: repeated SMS sending by the
surrounding system is represented by a periodic timer, and the termination is
triggered by a timer. Once the activity is instantiated in its context, the con-
struction of the ESM is completely automated and consists of the following steps:

1. Following the semantics defined in [16], the discrete action steps of the ac-
tivity within its minimal environment are generated using the tool described
in [26]. The state space exploration starts then with the initial marking, in
which all initial nodes hold one token. From this initial state, all reachable
states are computed by executing all enabled activity steps. As a result, we
obtain the state space graph Gx, with the reachable states as nodes and
the executed activity steps as edges. The state space during this analysis is
limited, since all call behavior actions within the activity to encapsulate are
abstracted by their respective ESMs.
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Fig. 8. Illustration of the steps for the automatic encapsulation

2. For each step in the state space, we analyze which parameter nodes of the
activity to encapsulate are passed, and assign a corresponding label to the
step. If no parameter node has been passed, the step is labelled with τ .

3. The τ -steps do not contribute to the visible behavior expressed by an ESM
and therefore removed. For that, every pair of states that is connected by a
τ -step is merged, and the τ -step is deleted.

4. After the removal of τ -steps, the resulting graph is minimized using the
algorithm for state machine minimization described by Holzmann in [27].

5. From the resulting minimized graph, the UML representation in form of
the ESM is constructed. The initial graph state is represented by an initial
pseudo state. Each remaining graph state is represented by a UML state,
resp. final state if the graph state has no outgoing steps.2 For each graph
step, an ESM transition referring to the corresponding activity parameter
nodes is added.

We implemented the algorithm as an Eclipse plug-in, integratedwith our modeling
tool Arctis [7,28], using the UML repository of the Eclipse Modeling Project [29].
So far, we have used it on over 200 of our activities to encapsulate them by ESMs.

The implication relation between the ESM and the activity is ensured by
construction, due to the layout of the algorithm. Formally, this can be verified
by a refinement proof Ax ⇒ Ex in temporal logic. The necessary refinement
mapping (see [30]) can be obtained from the algorithm, by observing which
states are merged during τ -step removal and minimization. For the Buffered SMS
Sending example, we verified this refinement using the model checker TLC [31].

7 Related Work

There exists a number of language constructs to describe the visible behavior of
components at distinct interaction points. ROOM [32], for instance, used pro-
tocols to define the ordering of signals transmitted by actors. The UML 2.x
2 The algorithm assigns generic names to the states, which can be renamed in an

optional, manual step.
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standard proposes protocol state machines to define the allowed invocation se-
quences for operations on an object. Mencel [33] extends these descriptions by
port state machines, to handle also nested calls and dependencies between re-
quired and provided interfaces. For the derivation of visible component behavior,
Floch describes in [34] an algorithm that projects the observable behavior (i.e.,
the transmission of signals) of SDL processes towards specific gates. This work
has been adapted in [35] for UML state machines. Our work, in contrast, handles
the encapsulation of behavior on the level of activities; components and state
machines are generated in an automated process, as described in [10]. The in-
terfaces derived in [34] describe the transmission of signals between components.
ESMs describe interfaces of activities that are composed within components,
and do not imply signal transmissions. Rather, two activity flows connected via
ESMs can be implemented by the same state machine transition.

Formally, the encapsulation of activities resembles the work of Kellomäkki and
Mikkonen [36], who use the DisCo language [37] to capture specifications that
are reusable solutions to problems. To reuse solutions in an application, they
show that it suffices to integrate a more abstract template, and that properties
proven for the solution are maintained when the template is applied. While this
work is also based on temporal logic and uses refinement relations, it does not
provide a mapping to UML as our work does.

8 Concluding Remarks

The streaming parameters of UML 2.x activities are a useful concept to enable
the composition of systems from building blocks expressed by activities. From
all building blocks involved in the case studies presented in Sect. 4.1, about two
third make use of streaming parameters, so that activities may be composed in
an interleaving manner. This enables that related functions may be offered as
coherent, self-contained building blocks in the form of activities, but still can
synchronize control and data flows with other parts of the system throughout
their execution. To abstract from inner details and focus on the visible behavior
at the streaming pins of an activity, we proposed the concept of ESMs, and
described and implemented an algorithm to construct it. We have shown how
this facilitates the provision of libraries, and how the compositional verification
of systems is made possible by using ESMs as an abstraction mechanism. In
addition, since, once consistent, a building block is encapsulated, an incremental
development style is possible, in which systems can be designed, verified and
composed block by block.
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Abstract. This paper describes an extension of UML statecharts, called
K-statechart, suitable for the formal specification, modeling, and runtime
verification of system behavior that depends on knowledge and belief in
distributed multi-agent systems. With K-statecharts, statechart transi-
tion guards allow the use of knowledge-logic formulae, a form of modal
logic used for reasoning about multi-agent systems. We demonstrate the
proposed formalism using an example of a multi-agent system that con-
sists of three traffic-light controllers. We also describe a newly developed
K-statechart code generator that is part of the StateRover Eclipse-IDE
plug-in for statechart-based modeling and formal specification.
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1 Introduction

The new demand for autonomous agents to collaborate and produce intelligent
behavior necessitates the specification and modeling of adaptive behavior based
on human-like reasoning aspects such as knowledge and belief. However, most
system and software engineers are unfamiliar with the text-based languages for
specifying system behavior that depends on knowledge and belief, nor are these
languages tied with common software engineering standards such as the UML.

Harel statecharts [1], currently part of the UML standard, are typically used
for design analysis and implementation. In his recent book [2], the author
suggested using deterministic and non-deterministic statecharts-assertions for
formal requirement specification and run-time verification. This approach is cur-
rently in active use by the NASA IV&V Facility. Statecharts augment traditional
state diagrams and as such contain states and transitions. A statechart transition
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Fig. 1. A possible-worlds model example

is annotated with a triggering event, an optional condition guard, and an optional
action, written as event[guard]/action [2]. A transition “A →event[guard]/action

B” fires when the event occurs and the guard formula evaluates to true while
the statechart is visiting state A. Typically, the guard is written using stan-
dard propositional logic. This paper describes an extension to this notation that
allows knowledge-logic guards.

Epistemic logic (knowledge logic) [3] is a form of modal logic that deals with
knowledge and belief. Epistemic logic represents modalities using two primary
modal operators: � (interpreted as knows) and ♦ (interpreted as has reason to
believe). A formula is evaluated given a Kripke structure M = (S, π, K1, · · · , Km),
where S is set of states (or possible worlds), π is an assignment of truth values to
the primitive propositions for each state s ∈ S, and Ki, 1 ≥ i ≥ m, is a reflexive
and transitive relation of agent i on S. �iP (♦iP ) holds in system state s if
and only if P holds true in all (some) states reachable from s using relation
Ki. �iP in state s is read as: agent i knows P when in state s; ♦iP is read as:
agent i has reason to believe P when in state s. The Ki relations represent the
availability of information to agent i while in a given system state. For example,
Figure 1 shows the possible-world model1 of a system consisting of two agents
M and C, one residing in Monterey and the other in Cupertino. Each agent
has three states {Low, Mid, High}, representing temperatures below 40 degrees,
between 40 and 60 degrees, and above 60 degrees in their corresponding cities.
The edges Kc(〈Mx, CHigh〉, 〈My, CHigh〉), x, y ∈ {Low, Mid, High}, represent
the fact that given the information at hand (above 60 degrees in Cupertino and
the knowledge that temperatures in Cupertino are never lower than those in
Monterey), the Cupertino agent cannot distinguish whether the temperature in
Monterey is above 60, between 40 and 60, or below 40. Suppose now that the
weather state combination on a particular day is 〈MHigh, CHigh〉. The Cupertino
agent can then formally say he has reason to believe the weather in Monterey
is 40-60. This is because some state that 〈MHigh, CHigh〉 is related to under
the Kc relation (e.g. 〈MMid, CHigh〉) satisfies the basic property: weather in
Monterey is between 40 and 60 degrees. The Cupertino agent, however, cannot

1 This model is symmetric, i.e., all relations are symmetric. However, this is not gen-
erally required. Furthermore, we omit the arrows representing the reflexive relations
Kc(〈Mx, Cy〉, 〈Mx, Cy〉) and Km(〈Mx, Cy〉, 〈Mx, Cy〉), x, y ∈ {Low, Mid, High} to
reduce the crowdedness of the figure.
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formally say that he knows the weather in Monterey is 40 to 60 degrees. This is
because not all states that 〈MHigh, CHigh〉 is related to under the Kc relation
(e.g. 〈MLow, CHigh〉) satisfy the basic property: weather in Monterey is 40 to 60
degrees.

2 K-Statecharts

The syntax of K-statecharts is a straightforward hybrid of the syntax of
statecharts with that of knowledge logic. In fact, the only syntactic difference
between statecharts and K-statecharts is in the statechart transition guard.
A K-statechart transition guard extends a statechart transition in that a guard
condition may contain knowledge-logic Boolean formulae, as illustrated in
Figure 2. As discussed in section 1, an integral part of knowledge logic is the def-
inition of a possible-worlds model. We consider this relation to be defined as part
of a dynamic data-model associated with the statechart. The semantics of K-
statecharts are a straightforward hybrid of the semantics of the statecharts with
that of knowledge logic, as follows. A K-statechart guard evaluates to true if its
formula evaluates to true using the knowledge-logic semantics described earlier.
Consider a system-of-systems (SoS) consisting of three Traffic-Light Controllers
(TLCs) depicted in Figure 2, where the proposition pedestrianIsAllowed only
holds in TLC-C’s Red state. Note the guard condition ρ in the timeout transi-
tion from the Red state to the Green state in the statechart for TLC-A:

ρ: this.believes(get b().knows(get c().pedestrianIsAllowed())).

This reads as: TLC-A has reason to believe that TLC-B knows that TLC-C is
now allowing a pedestrian to cross the junction, where the notion of belief is
described below.

Fig. 2. The multi-agent TLC K-Statechart model
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The source state of the associated transition (state Red of TLC-A) is the
context for this formula, i.e., the condition ρ is evaluated when TLC-A is in its
Red state. The evaluation of ρ depends on the visibility each TLC agent has
into the present-state of the other TLC agents, defined using a possible-worlds
model, as follows. First, let us consider the situation where visibility is perfect,
i.e., each TLC can distinguish the present state of all other TLCs down to their
lowest level of granularity. The formal possible-worlds visibility model consists
of all possible 3-tuples 〈a, b, c〉, where a, (resp. b and c) can be one of TLC-A’s
(resp. TLC-B’s and TLC-C’s) 3 states. Having perfect visibility means there are
no relation edges in the possible-worlds model. Assume that the TLC system is
in the state-configuration s = 〈Red, b, c〉. Then TLC-A will consider b and c as
the only possible state TLC-B and TLC-C can be in at the time. ρ evaluates
the belief operator by examining all states KTLC−A related to s (there is only
one such state, namely 〈Red, b, c〉 itself) to see if some of those states satisfy the
remaining part of the formula ρ, namely,

ψ: TLC-B knows that TLC-C is now allowing a pedestrian to cross the junction

When the system is in 〈Red, b, c〉, TLC-B is in state b; consequently, the evalu-
ation of ψ is performed by evaluating whether TLC-B, when in state b, knows
that TLC-C is now allowing a pedestrian to cross the junction. Again, because of
perfect visibility, the only possible state of TLC-C is state c. Evaluation is now
atomic, it returns the Boolean result of the evaluation of the pedestrianIsAllowed
proposition (implemented as a Boolean method) in state c. Consequently, the ρ
transition guard of Figure 2 succeeds if TLC-C’s state c happens to be Red, and
fails otherwise.

Now consider another situation where the possible-worlds model contains par-
tial visibility, visibility that reflects the fact that TLC-B is designed to be syn-
chronized with TLC-C, i.e., they are always in the same respective states. Here,
the possible-worlds model contains no KTLC−B edges connecting to or from a
state 〈a, b, c〉 where b �= c. With this model, TLC-A considers all states of TLC-B
possible, no matter what state it is in, because TLC-A has no information re-
garding the present state of TLC-B. Consequently, as in the previous case, for ρ
to satisfy that TLC-A has reason to believe ψ while in the Red state, ψ must be
satisfied in one of the three states of TLC-B; one such candidate is TLC-B’s Red
state. When TLC-B is in the Red state, all KTLC−B related state-configurations
have TLC-C in its Red state, a state that satisfies the pedestrianIsAllowed propo-
sition. Hence, the ρ transition guard in Figure 2 succeeds.

3 The StateRover K-Statechart Code Generator and
Run-Time Model

The StateRover is an Eclipse plug-in that supports graphical editing, automatic
code generation, and visual debug animation of statecharts [2]. It is used for
model-driven development and for light-weight formal verification. It supports
code generation for Java, C, and C++. The K-statechart code generator extends
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the existing StateRover Java code generator and generates Java source code.
This code is exercised or invoked, by an external driver. When executing in a
modeling or testing environment this driver is most often JUnit, the de-facto
standard Java unit testing framework.

The driver issues statechart events by calling the respective statechart meth-
ods. For example, a JUnit driver invokes TLC-C’s transition from state Red to
state Green by calling c.timeout(); where c is the TLC-C object. The driver
also sets the run-time possible-worlds model. This means that the multi-agent
K-statechart model can be used with a dynamically changing possible-worlds
model, thereby enabling computer-aided modeling of a multi-agent system in
which information visibility changes over time. For example, listing 1 contains a
JUnit driver that sets the run-time possible-worlds model and fires TLC events.

Listing 1. A JUnit test-case scenario driver for the multi-agent TLC example

// Fire events that move TLC-A, TLC-B, TLC-C to Red
a.shortTimeout(); b.shortTimeout(); c.shortTimeout();

// Set Yellow and Red states of TLC_B (the b object) to
// both be possible when TLC_A (the a object) is in Red
EquivalenceSet equiv = new EquivalenceSet();
equiv.add("Yellow"); equiv.add("Red");
a.knowledge.setEquivalence("Red", b, equiv);

// Set the Red state of TLC_C (the c object) to be possible
// when TLC_B (the b object) is in Red
EquivalenceSet equiv1 = new EquivalenceSet();
equiv1.add("Red");
b.knowledge.setEquivalence("Red", c, equiv1);

// Fire event to invoke transition with knowledge-logic guard:
a.timeout();
assertTrue(a.isState("Green"));
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Abstract. The proliferation of smart spaces and emergence of new standards, 
such as Web Services, have paved the way for a new breed of software systems. 
Often the complete functional and QoS requirements of such software systems 
are not known a priori at design-time, and even if they are, they may change at 
run-time. Unfortunately, the majority of existing software engineering tech-
niques rely heavily on human reasoning and manual intervention, making them 
inapplicable for automatic composition of such software systems at run-time. 
Moreover, these approaches are primarily intended to be used by technically 
knowledgeable software engineers, as opposed to domain users. In this paper, 
we present Service Activity Schemas (SAS), an activity-oriented language for 
modeling software system’s functional and QoS requirements. SAS targets ser-
vice-oriented software systems, and relies on an ontology to provide domain 
experts with modeling constructs that are intuitively understood. SAS forms the 
centerpiece of a framework intended for user-driven composition and adapta-
tion of service-oriented software systems in a pervasive setting. We provide a 
detailed description of SAS in the context of a case study and formally specify 
its structural and dynamic properties. 

Keywords: Requirements Modeling, Domain Specific Modeling Languages, 
Model Driven Development, Autonomic Computing, Pervasive Systems. 

1   Introduction 

Software systems are increasingly permeating a variety of domains, including medi-
cal, industrial automation, defense, and emergency response. The growth of service-
oriented software systems and the emergence of new standards have made it possible 
to develop pervasive systems that were not even conceivable a few years ago.  

In particular, the decoupling of service providers from consumers and the flexibility 
of dynamically discovering and binding to services have facilitated the development of 
software systems intended for execution in smart spaces. The proliferation of portable 
and embedded computing devices and the recent advances in wireless network connec-
tivity have further made the service-oriented architecture (SOA) paradigm a viable 
option in such settings. Web Services [1] have also played a crucial role in enabling 
interoperability and alleviating integration challenges in pervasive settings.  

Domain experts and end-users increasingly rely on such systems for their day to day 
activities. The software deployed in such settings needs to deal with the inherently  
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dynamic and unpredictable nature of pervasive environments. Finally, the functional 
requirements of such software systems are often not completely known at design-time, 
and even if they were, they may change at run-time.  

These characteristics have forced the designers of such systems to deal with two 
emerging and increasingly important classes of daunting challenges: (1) rapid compo-
sition of software systems at run-time based on the users’ changing needs, and (2) 
autonomous adaptation of the software system at run-time to satisfy the system’s 
functional and non-functional requirements. However, the majority of existing soft-
ware engineering techniques for representing, analyzing, and composing software 
systems rely heavily on human reasoning and manual intervention, making them 
unwieldy for use in this setting. Moreover, these approaches are primarily intended to 
be used by technically knowledgeable software engineers, as opposed to domain ex-
perts that use such systems on a daily basis.  

Motivated by the aforementioned challenges, we have developed a framework enti-
tled Self-Architecting Software Systems (SASSY) [2]. SASSY enables autonomic com-
position and adaptation of service-oriented software system based on the domain 
users’ requirements. To that end, domain users express their functional and Quality of 
Service (QoS) requirements in an intuitively understood visual modeling language. 
SASSY in turn automatically generates an architectural model that satisfies the sys-
tem’s requirements, and deploys it through discovery and coordination of available 
services. Moreover, SASSY continuously monitors the running system and, if neces-
sary, adapts the architecture and running system to ensure the user’s requirements are 
satisfied throughout the system’s execution.  

In this paper, we present Service Activity Schemas (SAS), an activity-oriented lan-
guage for modeling the user requirements in the SASSY framework. SAS allows for 
the representation of both functional and QoS requirements in terms of modeling 
constructs that are intuitively understood by domain experts. The SAS modeling nota-
tion relies on a domain ontology that clearly specifies the semantics of the domain 
entities and their interrelationships.  

Unlike existing low-level service coordination languages (e.g., BPEL [3] semantic 
BPEL[4], JOpera [5]) and software modeling languages (e.g., UML [6], ADL [7]), the 
language is intended to be usable by domain experts. While SAS is motivated by 
business process modeling languages (e.g., BPMN [8]), it represents a departure from 
them as it codifies the system requirements in a manner that enables the automatic 
generation of executable pervasive SOA software systems.  

We have developed an implementation of SAS as a Domain Specific Modeling 
Language (DSML) on top of the Generic Modeling Environment (GME) [9]. The 
static and dynamic characteristics of the language are formally specified using the 
GME meta-models and Z notation [10], respectively. Our experiences with applying 
the language and environment to pervasive SOA software systems have been very 
positive. In all cases, the language proved to be both usable and rich enough to accu-
rately represent the domain expert’s requirements. A subset of one of these systems 
for a fire emergency application is described throughout this paper. 

The remainder of the paper is organized as follows. Section  2 introduces the 
SASSY framework and describes the role of SAS in the overall scheme. Section  3 
presents the related work. Section  4 describes a case study, which is used to introduce 
the language in Section  5. Section  6 details the process of using the language for the 
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composition of service-oriented software system. Sections  7 and  8 present the struc-
tural and dynamic semantics of SAS, respectively. Finally, the paper concludes with 
an outline of our future work. 

2   The SASSY Framework 

SASSY [2] is a model-driven framework for composing SOA software systems (see 
Fig. 1 for an overview). The domain expert specifies the functional and QoS require-
ments using the SAS language, which is the focus of this paper. With the help of a 
domain ontology, these requirements are translated into the system’s base software 
architecture. The domain 
ontology provides the 
means for unambiguously 
distinguishing different 
concepts and elements, 
which as outlined further 
below facilitate discovery 
of services and resources 
in support of activities. 
We assume the domain 
ontology is created and 
maintained by a consor-
tium of domain experts, 
who specify the various 
domain activities and 
concepts, including the 
properties of respective 
services that realize them. 
Examples of such ontology and directories provided by the US government for vari-
ous domains can be found at [11]. 

After generating the base architecture, SASSY instantiates the architecture by dis-
covering the required services and selecting the ones that maximize a global utility 
function that depends on the system’s QoS requirements. SASSY generates alterna-
tive architectures by exploring and applying architectural patterns that increase the 
utility. For instance, in a situation where a service provider’s availability causes the 
utility to be reduced, SASSY may employ a replication pattern to compose two ser-
vices in a way that one can be used as a hot standby for the other.    

At run-time, SASSY monitors the services and computes the value of the global 
utility function. When it is reduced by a given threshold, SASSY re-architects the 
system and adapts it accordingly. Similarly, SASSY re-architects the system when the 
domain experts change the system requirements, and thus evolves the system. 

3   Related Work 

There are fundamentally two schools of thought concerning the modeling of activi-
ties: one focuses on the modeling of human activities, the other focuses on the model-
ing of workflow of computational and/or business processes.  

Fig. 1. An overview of SASSY framework 
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The first has its roots in psychology, going back to Leont’ev’s modeling of crafts-
men activities [12], which inspired design approaches in human-computer interaction 
based on the modeling of user activities (e.g., [13]). This approach recognizes that 
users carry out actions to achieve their goals, but that the specific actions and their 
ordering is adapted to the material conditions of execution, that is, it cannot be pre-
scribed a priori: a concept called situated action.   

In contrast, workflow modeling prescribes a concrete flow of actions to be followed.  
Recently, there has been considerable work on Business Process Execution Language 
(BPEL [3]), and Business Process Modeling Notation (BPMN [8]).  BPEL is an execu-
table business process language, serialized in XML, to support programming in the 
large (e.g., see [14] for an overview and formal semantics and [4] for application of 
ontology to make BPEL accessible in semantic level). BPMN [8] is a business process 
modeling language, intended to be used by domain experts in a variety of domains. 
BPMN has three major drawbacks: (1) it is a general purpose language and semantically 
loosely defined, making it difficult to automatically generate executable models from it; 
(2) it does not support specification of QoS requirements; and (3) it is not suitable for 
pervasive settings as it lacks support for long living activities. 

Our modeling approach in SASSY combines the adaptability of situated action, for 
dealing with uncertainty and emergent behaviors in domains such as emergency re-
sponse, and the efficacy of workflow, for coordinating the behaviors of complex soft-
ware systems. 

In general, the development of visual modeling languages and tools for supporting 
the design of complex service-oriented systems is lagging behind the development of 
the underlying technology. Among the existing works, JOpera [5] is most closely 
related to our language. JOpera provides a workflow modeling language for repre-
senting the transformation of data among services. However, unlike SAS, the lan-
guage provided by JOpera is very low-level and not intended for use by domain  
experts. Moreover, JOpera does not provide support for modeling QoS requirements, 
long living activities, and distinguishing local activities from services.    

Finally, UML [6,15] is a commonly used notation for the visual modeling of to-
day’s software systems. UML’s diagrams provide a standard notation for representing 
the various structural and behavioral aspects of a system’s software. Several ap-
proaches extend UML’s notation via stereotypes [16,17]. However, using UML to 
visualize the requirements of a software system has several drawbacks: UML’s dia-
grams are relatively static; they do not consider services as first-class modeling enti-
ties; do not provide native support for representing and visualizing the parameters that 
affect the system’s QoS properties; and are not semantically constrained to enable 
automatic composition of SOA software. Moreover, UML is not aligned with SASSY 
objectives, as it is geared to software engineers, instead of domain experts. 

4   Case Study 

We use a software system, called Fire Emergency Response System (FERS), for de-
scribing the language and demonstrating its properties throughout this paper. FERS is 
developed internally and motivated by existing standards [11]. It targets SOA-enabled 
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smart spaces and is intended for use by emergency response organizations to auto-
matically detect, respond, and manage fire emergencies.  

An FERS school is equipped with two types of sensors: smoke detectors and fire 
sprinklers. There may be many smoke detectors and fire sprinklers throughout a 
school. A sensor exposes a web service that provides operations for accessing its 
status and controlling it. For instance, a fire sprinkler service provides operations that 
allow other entities in the system to turn the sprinkler on/off. A school also exposes a 
service that provides profile information, such as the name of the school, location, 
number of students, and hours of operation.  

An FERS fire station has a fire monitoring service (FMS) that keeps track of all the 
sensors in the schools. A fire station also has several fire engines. Once smoke is 
detected by the FMS, it uses the fire station’s fire dispatch service to dispatch the 
closest smart fire engines to the scene. In order to determine the number of required 
fire engines that need to be dispatched, the dispatch service uses a heuristic based on 
the information (e.g., number of students, size of the school, and hours of operation) 
made available by the school's profile service and the number of smoke sensors that 
have detected smoke.  

A fire engine constantly communicates its status and progress to the station's dis-
patch service. As soon as the fire has been extinguished, the system resets the smoke 
detectors, turns off the fire sprinklers, and orders the fire engines to return to base. 

5   Language Overview 

This section introduces the SAS language through a small subset of the FERS system. 
In Sections  7 and  8, we revisit the language constructs and precisely define their  
semantics. 

Fig. 2 shows some of the modeling constructs available in the SAS language. 
Events are messages exchanged between two separate entities. Gateways manage the 
flow of control within an entity. Some of the supported gateways include Inclusive-
Gateway (Conditional-Or), ExclusiveGateway (Switch), and ParallelGateway (Fork 
and And-Join). 

The language distinguishes local Activities from ServiceUsages, i.e., activities per-
formed by external entities (another organization). An underlying assumption in our 
work is that activities and service types are defined in a domain ontology, and com-
monly understood by domain experts. SAS also supports hierarchical composition 
through the notion of Sub-SAS. Activities, Sub-SASs, and ServiceUsages are repre-
sented by rectangles with round corners. A Sub-SAS is delineated with a plus sign, for 
bringing up the internal composition, and a ServiceUsage with a server icon. Com-
munication with a service is via Input and Output events, while communication with a 
Sub-SAS is via StartLink and EndLinks.  

An SAS model is a graph where nodes correspond to activities and services that are 
coordinated to realize some functionality. In fact, as detailed in Section  6, an SAS 
may realize the functionality of a service type defined in the ontology.  

Fig. 2b shows an SAS model that realizes the dispatching service of FERS. When a 
dispatch message arrives, dispatching service calculates which fire engines should be 
assigned to the incident. The SAS is divided into two parallel sequences through a 
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ParallelGateway, which behaves as a fork/join. The first path queries the School 
service where the smoke detector is located to get an estimate of the number of people 
in the school. The second path uses the createInc interface of the MissionManager 
Sub-SAS to create a record for the incident.  

When both the incident and occupancy messages have arrived, they are joined by a 
ParallelGateway into a single sequence. assignFE is a looping activity that uses this 
information to determine which fire engines (FE), if any, should be dispatched.  

When the dispatching service receives a normalcy message, it uses the cancelMis 
interface of MissionManager to send a callBack message to command the fire engines 
to return to base. Throughout the mission each fire engine periodically reports its 
status to the dispatch service by sending a report message. 

Fig. 2c shows the association of a QoS requirement with a path through the dis-
patching service SAS. A QoS requirement is specified via a Service Sequence Sce-
nario (SSS). In this case, the response SSS indicates that the School service should 
respond to a request made by the coordinator within a pre-specified time. Section  7 
describes how such QoS requirements are specified as attributes of an SSS.   

An SAS may be made available for reuse as a service, a Sub-SAS, or both. An 
SAS exposed as a service may be used by external organizations for constructing their 
own SASs. Similarly, a Sub-SAS allows for hierarchical composition of SASs, and 
enables reuse within the same organization. The details of SAS reuse are further dis-
cussed in Section  6. 

 

 
 

Fig. 2. SAS for dispatch service: a) language constructs, b) basic flow, and c) response SSS is 
selected 
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Note that since one of our objectives has been to make the SAS language usable by 
domain experts, the coordinator is implicitly defined. In other words, an SAS model 
represents the coordination between internal activities and external services. This 
differs from a software design perspective, where a coordinator component is explic-
itly delineated and separated from the rest of the system. Our approach is compatible 
with existing business process modeling languages (e.g., BPMN [8]) that are also 
intended for use by domain experts.  

6   Building Service-Oriented Systems with SAS 

In our work we assume each domain has either a standard body or an organization in 
charge of defining the domain ontology. For example, in the emergency response 
domain a government authority typically defines the corresponding ontology (e.g., 
[11]). SAS enables an organization to realize a service type defined in the ontology, 
and make it available for external use by registering it in a service directory (e.g., 
UDDI [18,19]). In this way each organization retains its autonomy. At the same time, 
the ontology enables interoperability and integration among the various organizations, 
and forms them into a coherent task force. We further elaborate on the details of this 
process below. 

Defining a service type in the ontology consists of specifying (1) the service’s in-
terfaces, and (2) the service’s interaction protocol. A service type’s interfaces corre-
spond to its input and output messages, similar to the information provided in a 
WSDL [18]. A service type’s interaction protocol describes the relationship between 
the service’s interfaces. It indicates the output messages and the order they are gener-
ated when the service receives a particular input.  

For defining the interaction protocol a subset of the SAS constructs (i.e., Input, 
Output, Gateway, and Flow) is used. Fig. 3a shows the interaction protocol for the FE 
service (recall example of Fig. 2b). This interaction protocol specifies that a service of 
FE type receives return and missionSend messages and as result of that generates one 
or more report messages. The flow from the gateway to itself in Fig. 3a specifies that 
in response to one request message several report messages can be generated. 

Organizations query the ontology for a service type’s definition to determine how 
an instance of it can be used in their own SAS. An organization that intends to pro-
vide an instance of a service type creates a corresponding SAS as follows: replaces 
the Inputs and Outputs messages with StartLink and EndLinks, respectively; and pro-
vides an implementation for each of the service’s interfaces that comply with its inter-
action protocol. The constructed SAS is then made available to other organizations by 
registering it in a service directory. 

Fig. 3b illustrates the corresponding SAS for the interaction protocol of the FE ser-
vice shown in Fig. 3a. As a result of the FE service receiving a return order, the fire 
engine goes back to its base station. The location of base station is a parameter in the 
return message that is delivered to goToLocation activity.  While on its way back, the 
goToLocation activity periodically sends a report message, which as you may recall 
from recall Fig. 2b updates the fire station of the vehicle’s current status.  

When the FE service receives the missionSend message, the vehicle is directed to 
go to the fire scene, and as before continuously sends updates of its current status.  
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Fig. 3. Fire engine (FE) service: a) interaction protocol specification, and b) an SAS imple-
menting the service specification 

When the fire engine arrives, it checks whether there is a real fire or not. If it is a false 
alarm, the smoke sensors are turned off. Otherwise, the sprinklers are turned on, and 
the FE is directed to extinguish the fire. Meanwhile, the FE continuously sends report 
messages to update the fire station of its progress.  

Note that activities such as goToLocation, fightFire, and checkFire may either be 
automatically enabled, or rely on a firefighter to manually check the existence of a 
fire and inform the system through a user interface.  In other words, we model the 
humans through the user-interface (itself a service) they use for the interaction with 
the system. The domain experts are advised to be careful with the specification of 
QoS goals (SSS) involving such activities, since the ability to satisfy such QoS prop-
erties relies on the humans, whose behavior cannot be controlled by SASSY.  

The SAS depicted in Fig. 3b is only one implementation of the FE service. Other 
organizations may provide their own implementation of FE using different SASs. The 
only restriction is that the SAS needs to adhere to the interface definition and the 
interaction protocol (i.e., Fig. 3a) described in the ontology. Note that our approach 
does not prevent organizations from providing an implementation of a service type 
using other more traditional techniques (e.g., programming languages, BPEL). 

7   Structure of SAS 

The linguistic structure of SAS is defined using the meta-model provided by the Ge-
neric Modeling Environment toolkit (GME) [9].  GME is a general purpose model-
driven engineering environment that enables the development of domain-specific 
modeling languages. Just as formal grammars define the structure of valid sentences 
for textual languages, meta-models play a similar role for graphical languages. GME 
has the ability to interpret a given meta-model and automatically build a modeling 
environment that enforces the structural rules. 

The meta-modeling language supported by GME is a stereotyped variant of UML, 
which we explain below, as needed. 

Fig. 4 shows the meta-model for SAS divided into three parts, for readability: graph, 
service, and QoS.  Starting with graph, an SAS model contains Nodes, ServiceUsages, 
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and Flows between those.  Nodes may be either ActivityUsages or Gateways, which in 
turn may be Parallel, Inclusive, or Exclusive.  We elaborate on each of these below. 

Furthermore, hierarchical decomposition is supported by allowing an SAS to  
contain other SASs (i.e., a Sub-SAS). A parent SAS interacts through StartLink and 
EndLink nodes, which act respectively as input and output interfaces to a child SAS.  
Ultimately, a number of SASs may be included in a hierarchical structure of folders 
containing the Requirements for a system. 

With respect to the stereotypes that annotate this meta-model, GME defines Model 
which corresponds to a diagram, Set for defining subsets of objects within a diagram, 
Atom which has a graphical representation, and Connection, represented as a line 
between two atoms.  Additionally, Reference provides a mechanism to describe sev-
eral usages of a single definition.  First class object (FCO) is a super type of the above 
used for organizing the meta-model, and has no associated graphical representation of 
its own, e.g., SAS is a Model, an Exclusive gateway is an Atom, and Gateway is an 
FCO. 

A Flow represents a line between two GenericNodes: the source and destination of 
the flow. A Flow carries data from between two nodes. The Condition field of a Flow 
determines whether a particular data can traverse that Flow. The Mapping field of a 
GenericNode specifies the transformation of data as it enters and exits a node.  This 
transformation describes which data is passed into the node, and which data is re-
turned from the node. Since the transformation of data is a common feature of several 
SAS constructs (e.g., Gateways, ActivityUsages, Links), it is modeled as an attribute 
of GenericNode. Gateways play a key role in coordinating the behavior of an SAS, 
and are best explained in behavioral terms: see Section  8. 

7.1   Services and Activities 

ServiceUsage and ActivityUsage constitute the basic functional elements of an SAS.  
While an activity is carried out internally by the component, e.g., a call to a system 
library, a service is requested to another component, possibly across the network. A 
LoopingActivityU may repeat a number of times determined by the Condition field, 
before completion. An Activity may have a return value which can be specified using 
Result. The Results are added to the outgoing data. 

Both ActivityUsage and ServiceUsage are stereotyped with Reference, which al-
lows for referring to existing Activity and Service definitions. Such definitions exist in 
ActivityDirectory and ServiceDirectory, respectively, which are populated based on 
the information available in a domain ontology, and may be consulted by the domain 
experts while designing an SAS.  

Fig. 4b shows the meta-model for services. A ServiceDirectory is a Folder contain-
ing multiple Service definitions. A Service is a Model, that is, it has an associated 
diagram containing Input and Output interface nodes.  The role of the latter is similar 
to the role of the StartLink and EndLink interface nodes: to facilitate the interaction 
between other constructs in the SAS and the internals of the particular box (a service 
or sub-SAS, respectively). Outputs are responsible for returning the Result from the 
Service. The Proxies that annotate the meta-model are simply a mechanism provided 
by GME for referring to objects defined in other parts of the meta-model. 
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Fig. 4. Meta-model for SAS in three parts: a) graph, b) service, and c) QoS 

7.2   Service Sequence Scenarios and QoS 

Service Sequence Scenarios (SSS) are used to represent the user’s QoS preferences. 
For that, each SSS defines a path through the SAS (recall Fig. 2c). In the meta-model, 
we represent an SSS path as a set of GenericNode and Flow constructs.  Naturally, an 
SAS may contain several SSS sets, each modeling a separate QoS concern. Fig. 4c 
shows the internal structure of an SSS, which consists of QoSMetric and SSSUtility for 
defining the QoS and  the user’s preferences, respectively.   

QoSMetric may be typed as Plain or Aggregatable. Values of Plain QoS cannot be 
aggregated into more complex measures, e.g., a measure of Security in a qualitative 
scale could be: Low, Medium, High. In contrast, the values of Aggregatable ones may 
be combined using aggregation operators, such as summation or mean, in the case of 
numbers. For example, a measure of throughput may be derived from measures of 
response time and parallel capacity.  Fig. 4c shows ResponseTime as an Aggregatable 
measure, but the approach is not limited to a predetermined set of metrics.  

An SSSUtility contains one or more QoSMetrics and provides a Function, which 
returns the utility associated with a given level of QoSMetric(s) for a user.  

Finally, an SAS contains a global utility function, called SASUtility. It includes a 
set of SSS and is used to specify the users’ preferences in resolving the trade-offs 
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among multiple SSS constructs. Its Function field specifies the relationship between 
the contained SSS constructs, i.e., quantifies the impact of achieving QoS specified in 
the SSSUtilities on the value of the global utility (SASUtility). 

8   Behavior of SAS 

The model presented in this section complements the meta-model in section  7 by 
clarifying the behavior of the different kinds of Nodes (Fig. 4).  Similar to BPMN and 
Petri Nets [20], this model is based on the notion of execution token. Specifically, the 
purpose of the behavior model herein is to answer the question: if a token is presented 
as an input to a node, how does that node process the token? 

By specifying the behavioral semantics of the nodes in SAS, this model offers a 
precise guideline for the automatic generation of implementation code (i.e., coordina-
tion logic) from SASs. We selected Z [10] as a convenient notation to express the 
behavior of SAS constructs.  Z builds on set theory and offers constructs such as base 
sets, functions, schemas, and operations, which are explained by example, below. 

Tokens and nodes are modeled as elements of base sets Token and Node, respec-
tively.  At the implementation level, tokens correspond to messages circulating in the 
system, possibly with a data payload, and nodes correspond to the functional elements 
that process those messages and decide what to do next.  By modeling tokens as ele-
ments of a base set, they are individually distinguishable, but their internal structure is 
abstracted out. The same holds for nodes. The left side of the model below shows the 
definitions for these base sets, an enumeration, Type, and a schema, SAS: 

[Node,Token] 
Type ::= In | Out | Start | End | 

ExclusiveGW | InclusiveGW |  
ParallelGW | Activity | 
LoopingActivity 

»SAS___________ 
ÆTokens : P Token 
–_____________ 

ÆInput: Node x P Token f P Token 
ÆLoop: Node x P Token f P Token 
ÆMerge: Node x P Token f P Token 
ÆGenerate: Node x P Token f P Token 
ÆAll: Node x P Token f P Token 
ÆPossible: Node x P Token f P Token 
ÆOnePoss: Node x P Token f P Token  

The Type enumeration captures the type of node as defined in section  7: activities, 
start and end links of Sub-SASs, etc. The set of tokens currently in circulation charac-
terizes the execution state of an SAS.  The schema SAS above holds the Tokens set as 
a state attribute.  This set is modified by operations that capture the behavior of the 
different kinds of nodes.  Consumed tokens are removed from Tokens, while the pro-
duced ones are added to it. To help specify the behavior of nodes, a number of func-
tions are defined on the right side of the model excerpt above. These functions can be 
grouped into three categories: query, generate, and replication functions.  

Input, Loop, and Merge query the availability of tokens at the input of nodes. 
These three functions take two arguments: a node of interest and the set of tokens 
currently in circulation in the SAS. Specifically, Input returns (a set containing) a 
token that is present at an input flow of the node, if such a token is available among 
the ones currently in circulation in the SAS (passed as the second argument).  If not, 
Input returns the empty set.  Loop returns (a set containing) a token, if the node is a 
LoopingActivity that currently holds a token, and if its associated looping condition 
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remains true.  Merge returns a set of tokens, one token taken from each of the inputs 
leading up to the node, provided each of the inputs has at least one token available. 
The Generate function abstracts out the transformations of the data payload of tokens 
that may occur within nodes.  Specifically, given a node and a set of tokens at the 
node’s input, Generate returns the token produced by the node. 

All, Possible, and OnePoss are replication functions.  They take a newly generated 
token and a node, and place copies of the token on the node’s output flows. 

Replication functions take into account the constraints on the flow of tokens, as 
represented by the Condition in the Flow object in Fig. 4a.  Specifically, Possible 
places a token on each of the output flows where the associated condition holds, while 
OnePossible does the same for only one of the output flows, selected non- determinis-
tically.  For nodes that do not impose constraints on the output flows, such as the 
ParallelGateway, the All function places a new token on each output flow. 

8.1   Services and Sub-SAS 

The SAS initialization function and the specifications of Input, Out, and Link are: 

»SASInit___ 
ÆSAS' 
«_____ 
ÆTokens' = 0 
–_______ 

»InputNode__________________ 
ÆDSAS; n?: Node; t?: Type 
«______ 
Æt? = In ¶ Tokens' = Tokens \ Input(n?,Tokens) 
–_______________________ 

»OutputNode__________________________ 
ÆDSAS; n?: Node; t?: Type 
«________ 
Æt? = Out ¶ Tokens' = Tokens U Possible(n?,Generate(n?, 0)) 
–________________________________ 
»LinkNode___________________________ 
ÆDSAS; n?: Node; t?: Type; i: P Token 
«________ 
Æ(t? = Start v t? = End) ¶ i = Input(n?,Tokens) 
ÆTokens' = (Tokens U Possible(n?,Generate(n?,i))) \ i 
–________________________________  

SASInit specifies that initially there are no Tokens inside the SAS. A Link could be 
considered an interface of an SAS that connects its constructs to those outside of it. A 
Link passes a subset of the data on an arriving Token to the output Token. A StartLink 
does this on Tokens received from the outside of an SAS, while the EndLink does this 
on the Tokens leaving an SAS.  

Note that a sub-SAS shares the same set of Tokens with the parent SASs. As you 
may recall from Section  6, an SAS may expose its interfaces as services, in which 
case the run-time environment (i.e., the coordination engine) provides the inputs to its 
StartLinks and collects the outputs at its EndLinks.  

The In and Out are the interfaces of a ServiceUsage (see Fig. 4b), and hence they 
serve as destination and source of tokens, respectively. The run-time environment 
transfers the Tokens between the SAS and external services. 
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8.2   Gateways 

Gateways synchronize activities by forking and joining several threads of activities. 
The ParallelGateway requires all the inputs to arrive (And-join) and activates all the 
output flows (fork) at the same time. When an input flow is activated, the Inclusive-
Gateway (Conditional-Or) activates a subset of the output flow. For an outgoing flow 
to be activated, the condition specified on the flow must be satisfied. On the other 
hand, the ExclusiveGateway activates the first outgoing flow that has its condition 
satisfied. The outgoing sequence that is activated is selected non-deterministically. 
The join semantic for both the InclusiveGateway and ExclusiveGateway are the same. 

The behavior of ExclusiveGateway and InclusiveGateway, which are the main con-
structs for enforcing conditions in forking and joining, are specified as follows: 

»ExclusiveNode_________________________ 
ÆDSAS; n?: Node; t?: Type; i: P Token 
«________ 
Æt? = ExclusiveGW ¶ i = Input(n?,Tokens) 
ÆTokens' = (Tokens U OnePoss(n?,Generate(n?,i))) \ i 
–________________________________ 
»InclusiveNode_________________________ 
ÆDSAS; n?: Node; t?: Type; i: P Token 
«________ 
Æt? = InclusiveGW ¶ i = Input(n?,Tokens) 
ÆTokens' = (Tokens U Possible(n?,Generate(n?,i))) \ i 
–________________________________  

The ExclusiveGateway consumes the available input and generates a token for one 
of the possible output flows. The InclusiveGateway does the same thing except it 
generates a token for all the output flows where the associated condition holds. 

Finally, the behavior of the ParallelGateway is: 

»ParallelNode__________________________
ÆDSAS; n?: Node; t?: Type; m: P Token
«________
Æt? = ParallelGW ¶ m = Merge(n?,Tokens)
ÆTokens' = (Tokens U All(n?,Generate(n?,m))) \ m
–________________________________  

The ParallelGateway merges all of the input flows and produces tokens for all of 
the outgoing ones, regardless of the conditions specified on the outgoing flows. If one 
of the input tokens is not available, ParallelGateway does nothing (i.e., it does not 
consume or generate tokens). 

8.3   Activities 

The Activity operation captures the behavior of ActivityUsage nodes, and is very simi-
lar to the Link operation. The only difference is that the Generate function for Activity 
may add new data (i.e., result of the activity) to Tokens. 
 



604 N. Esfahani et al. 

A Looping activity is an extension of a regular activity. It queries for an available 
token as follows: it first uses the Loop function to find any available tokens inside the 
Looping activity to consume, when there are no more tokens available in the activity, 
it uses the Input function to consume tokens from the inputs.  

These concepts are specified as follows: 

»ActivityNode__________________________ 
ÆDSAS; n?: Node; t?: Type; i: P Token 
«________ 
Æt? = Activity ¶ i = Input(n?,Tokens) 
ÆTokens' = (Tokens U Possible(n?,Generate(n?,i))) \ i 
–________________________________ 
»LoopingNode__________________________ 
ÆDSAS; n?: Node; t?: Type; i,l: P Token 
«________ 
Æt? = LoopingActivity ¶ i = Input(n?,Tokens) ¶ l = Loop(n?,Tokens) 
Æ(l Î 0 ¶ Tokens' = (Tokens U Possible(n?,Generate(n?,l))) \ l) v 
Æ(l = 0 ¶ Tokens' = (Tokens U Possible(n?,Generate(n?,i))) \ i) 
–________________________________  

9   Conclusion 

The emergence of SOA-enabled systems in pervasive settings calls for major ad-
vances in the software engineering methods currently employed. In this paper, we 
presented SAS, a novel visual modeling language intended to alleviate the existing 
shortcomings by automating the composition of such systems. SAS relies on a domain 
ontology to allow an expert specify the system’s functional and QoS requirements 
using commonly understood terminology. The formal specifications of the structural 
and behavioral semantics of SAS provide a precise guideline for the automatic gen-
eration of a system’s architectural model and executable code (i.e., coordination 
logic), respectively.  

Unlike the existing software design languages (e.g., UML [6], ADLs [7]), SAS is 
intended for use by domain experts, as opposed to software engineers. To that end, the 
language is motivated by existing business process modeling languages (e.g., BPMN 
[8]), which are commonly used by domain experts. However, in contrast, SAS codi-
fies the software requirements in a manner that enables the automatic composition of 
service-oriented systems.  

SAS is part of an ongoing research effort on Self-Architecting Software Systems 
(SASSY) framework [2]. SAS models have been used in SASSY to successfully 
compose service-oriented system. Some of the ongoing research include, automati-
cally finding the optimal architecture with respect to QoS objectives specified in SAS 
models, adaptation of a running system in response to environmental changes, and 
evolution of a system due to changes in the SAS models. 
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Abstract. Constructing and executing distributed systems that can automati-
cally adapt to the dynamic changes of the environment are highly complex 
tasks. Non-trivial challenges include provisioning of efficient design time and 
run time representations, system validation to ensure safe adaptation of interde-
pendent components, and scalable solutions to cope with the possible combina-
torial explosions of adaptive system artifacts such as configurations, variant  
dependencies and adaptation rules. These are all challenges where current ap-
proaches offer only partial solutions. Furthermore, in current approaches the 
adaptation logic is typically specified at the code level, tightly coupled with the 
main system functionality, making it hard to control and maintain. This paper 
presents a domain specific modeling language (DSML) allowing specification 
of the adaptation logic at the model level, and separation of the adaptation logic 
from the main system functionality. It supports model-checking and design-
time simulation for early validation of adaptation policies. The model level 
specifications are used to generate the adaptation logic. The DSML also pro-
vides indirection mechanisms to cope with combinatorial explosions of adaptive 
system artifacts. The proposed approach has been implemented and validated 
through case studies. 

1   Introduction 

Context-aware software systems that can automatically adapt to changes in their envi-
ronments play increasingly vital roles in society’s infrastructures. The demand for 
Dynamic Adaptive Systems (DAS) appears in many domains, ranging from crisis 
management systems such as disaster or power management, to entertainment and 
business applications such as mobile interactive gaming, tourist guiding and business 
collaborations applications. However, constructing and executing DAS are compli-
cated. A main challenge is to cope with the variability that can lead to explosion of 
several adaptive system artifacts. The set of possible configurations of an adaptive 
system is typically specified by identifying variation points, which represents points 
in the software where variability may occur. Having variability at each variation point 
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implies a combinatorial explosion of configurations and quadratic explosion of possi-
ble configuration transitions, which again can cause possible explosion of variant 
dependencies and adaptation rules. This makes it difficult to provide consistent adap-
tation rules and to convey optimized configurations for the particular context. To cope 
with DAS complexities proper modeling and validation techniques all along the de-
velopment cycle are needed. 

Current approaches rely on the direct use of language or platform mechanisms such 
as reflection, dynamic loading of code or architecture reconfigurations to build and 
execute DAS. Most modern languages and middleware platforms include these kinds 
of low-level mechanisms to support runtime adaptation. Using such techniques, the 
adaptation is captured in low-level platform specific scripts and tightly coupled with 
the application code. The development of these scripts typically comes very late in the 
development cycle, is particularly error-prone, and the resulting system is brittle to 
any change in the platform or in the application. 

To overcome these problems, the state of the art has recently evolved to support 
variability and adaptation modeling, and also to make use of models at runtime to 
drive and monitor runtime adaptation [3][4][7][10][11]. Two main families of formal-
isms have been proposed in order to capture adaptation policies. The most common 
one is based on event-guard-action rules relating environment events to reconfigura-
tion actions (e.g., [7][11]). These approaches benefit from using well-known policy 
definition formalisms, they can be implemented very efficiently and allow early simu-
lation and verification. These approaches are very well suited for small to medium 
scale1 context-aware systems (e.g., many embedded systems). However, they have 
scalability problems related to the management and validation of large sets of rules 
when context and variability spaces grow. To cope with the scalability issue, optimi-
zation based approaches have been proposed (e.g., [4][10]). These approaches do not 
explicitly capture the adaptation rules, instead they use utility functions to capture 
high level goals such as for example “optimizing the performance”. The utility is 
evaluated at runtime for all possible configurations to choose the optimal one. These 
more abstract adaptation policy expressions solve the scalability problem related to 
specifying adaptation policies. However, the problem with these approaches is a 
costly runtime adaptation process since the system has to solve a complex optimiza-
tion problem for every adaptation, and weaker support for early validation. 

The contribution of this paper is an approach that combines the strength of rule-
based and optimization-based techniques in order to offer a solution scalable to 
highly-adaptive systems while providing abstraction, efficiency and early verification 
and validation capabilities. The idea of the approach is to combine local adaptation 
rules and property-based adaptation goals. The approach provides a Domain Specific 
Modeling Language for capturing context information, system variability, constraints 
and adaptation policies. The DSML allow for design-time model-checking and simu-
lation of the adaptation models. Moreover, platform specific adaptation logic can be 
generated form the models. The approach has been implemented in Eclipse and is 

                                                           
1 To better qualify scalability here: small-scale implies that the complete set of possible con-

figuration can be enumerated by the developer, medium-scale implies that the complete set 
can be processed by a computer, large-scale implies that the set of possible configuration is 
too large to be enumerated at all. 
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integrated in a complete model-driven approach for DAS development. The scalabil-
ity of the approach is evaluated on two industrial case studies. Initial results show that 
the proposed formalism is able to cope with large-scale adaptive systems. 

The paper is structured as follows: Section 2 presents an illustrative example.  
Section 3 presents the abstract syntax of the DSML and its application using the illus-
trative example. Section 4 details the semantics of the language and shows how early 
validation can be performed through model-checking and simulation.  Section 5 
briefly describes the implementation and usage of the proposed approach. Section 6 
presents the results of four case studies. Section 7 compares the proposed formalism 
with existing techniques. And finally, Section 8 presents concluding remarks and 
future work. 

2   Illustrative Example: A Semi-autonomous Exploration Robot 

To illustrate our approach we use a simple example of a mapping robot. The system is 
a semi-autonomous exploration robot which builds a map of an unknown environment 
when in motion. The robot is connected to a central system which collects the topog-
raphic data and can give directions to the robot. The robot has 3 main modes: i) idle, 
ii) going to a specific location or iii) exploring autonomously. It is equipped with 
three different sensors which can be used alternatively for routing and for drawing the 
map: i) Camera, which provides the most detailed map, ii) Infrared sensors, which 
can work without light sources and use limited resources, and iii) Ultrasonic sensors, 
which consumes limited resources while providing good routing capabilities. 

While being drawn, the map is either stored locally in the robot’s memory with pe-
riodic transmissions or directly streamed to a server. To allow for transmissions as 
well as for receiving commands the robot is equipped with Bluetooth and GPRS net-
working capabilities. The robot can employ three different routing strategies: i) local 
routing strategy that uses the sensors to navigate, ii) map routing strategy that uses 
pre-knowledge of the terrain, and iii) external routing strategy that involves interac-
tions with a central computer or an operator. Furthermore, to build the map when 
moving, the robot can either use a simple or detailed map drawing strategy.  

Depending on its environment, i.e., on its mode, on the terrain conditions or on the 
resources available, the robot has to dynamically adapt in order to optimize the map 
building and to use appropriate sensors and algorithms. 

3   Modeling Dynamic Variability and Adaptation 

The role of the adaptation model is to formalize how and when a system should adapt. 
The adaptation model thus has to capture the variability in the system, the variability 
in the context of the system and rules to link changes in the context of the system with 
the configuration to be used. In the following we first present the abstract syntax of 
the proposed formalism and then an actual adaptation model for the mapping robot 
are build using a corresponding concrete syntax. An Eclipse based editor is imple-
mented for specifying the adaptation models. 
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3.1   Overview of the DSML Abstract Syntax  

Fig. 1 presents the main concepts of the abstract syntax of the proposed DSML for 
adaptation modeling. The proposed languages can be logically divided in three parts: 
it provides i) simple mechanisms to model the variability in the DAS, ii) simple 
mechanisms to model the context of the DAS and iii) an innovative combination of 
hard constraints and property optimization policies to model adaptation. We have 
chosen simple mechanisms to model variability and context to provide ease of use. 
Moreover, these mechanisms have been sufficient for modeling the current set of case 
studies (see section 5). 

The system variability is modeled using Dimension, Variant and VariantConstraints. 
A dimension typically corresponds to a variation point in the system and the variants 
correspond to the alternatives for this variation point. The multiplicity on the dimension 
(upper and lower properties of class Dimension) specifies how many of the variants can 
be included in order to build a valid configuration. Dimensions and variants can be 
easily represented as a feature diagram. Arbitrary dependency constraints between vari-
ants belonging to different dimensions can be expressed by attaching dependency con-
strains to the variants. The application of such constraints is elaborated further when 
describing the modeling of the robot example in the following subsections. 

 

Fig. 1. Excerpt of the adaptation DSML abstract syntax 

The context of the system is modeled using a set of variables (Variable and its sub-
classes on the diagram of Fig. 1). The objective of these context variables is to capture 
the elements of the environment which can implicate a system adaptation. To keep 
simplicity and remain at a high-level of abstraction, the proposed approach captures 
all the context information in either Boolean or Enumerated variables. If the configu-
ration of a system depends on continuous value such as for example the amount of 
available memory, these will be abstracted into discrete ranges such as {LOW, ME-
DIUM, HIGH}. This kind of abstraction has the benefit of decoupling the adaptation 
model from the actual values and thresholds for a particular domain or application. 
Thus, the actual values might be unknown at design-time, and they may be adjusted at 
deployment time or even at runtime. 
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The most important part of the DSML is to support the specification of the adaptation 
logic, in essence, the relations between the context and the variability of the system. As 
discussed in the introduction, existing approaches are either based on event-guard-action 
rules or on global optimization of some utility function associated to the system con-
figurations. The approach proposed in this paper is a combination of constraints and 
property optimization which intent to provide a scalable solution in order to handle 
large-scale adaptive systems, and at the same time enable early simulation and valida-
tion (detailed comparisons with existing approaches are presented in section 7). 

To determine the adaptation logic the DSML enable firstly to specify constraints as-
sociated to variants. In Fig. 1 these constraints corresponds to the two compositions 
named available and required between Variant and ContextConstraint. These con-
straints are local to each variant and specify in which context the variant can (available) 
or must (required) be used. The constraint can be any first order logic expression com-
bining context variables. Concrete examples are provided with the robot example in the 
next subsection. In practice, variant constraints allow reducing the set of configuration 
suitable for a particular context. However, in general constraints cannot point to the 
specific configuration which should be used. The idea of the proposed approach is to 
enable specification of adequate local hard constraints in order to break the combinato-
rial explosion of the potential number of configurations to be considered, then, a general 
property-based set of adaptation rules is specified to come up with the best suitable 
configuration for the particular context. 

Therefore, secondly, the DSML enable expressing property-based rules. This in-
cludes associating a set of properties of concern for the adaptive system (Property in 
Fig. 1). These properties of concern are qualities of the system which should be opti-
mized through the runtime adaptation, for example, the performance or the power 
consumption. A direction is associated with each property to determine if the property 
value should be minimized or maximized. Typically, performance should be maxi-
mized while power consumption should be minimized. Once the properties are de-
fined, the DSML facilitate specification of the impact implicated by each variant on 
these properties (PropertyValue in Fig. 1). For each variant, a qualitative impact value 
can be defined. In practice an integer is used to represent the impact value but this 
integer just encode qualitative values such as {0: no impact, 1: low, 2: medium, 3: 
high}. These impact values allow comparing the values of the properties for alterna-
tive configuration in order to choose the best suited one. 

Finally, the DSML support specification of priority rules (Rule and PropertyPriority 
in Fig. 1). These rules allow linking the context with the particular set of properties which 
should be optimized. Each rule is related to a context to determine in which context the 
rule applies and it specifies a set of property priorities for the particular context. Basically 
these rules allow specifying which properties should be optimized depending on the 
context. The main benefit of this approach is that the general adaptation policy is cap-
tured at a high-level of abstraction. An example of rule at this level might be “if the bat-
tery runs low, the power consumption should be prioritized over performances”. By 
computing the specified impact each variant has with respect to the properties, these rules 
can be used to evaluate alternative configurations and to choose the most suited. 

The next sub-section details how the proposed adaptation language is applied to the 
robot example. Then section 4 comes back to the details of the semantics of the lan-
guage and presents how adaptation can be simulated. 



 A DSML Supporting Specification, Simulation and Execution of DAS 611 

3.2   Step by Step Modeling of the Mapping Robot  

This section walks through the modeling of the adaptation logic of the mapping robot 
example to show an application of the DSML and elaborate further on its elements. 
We have implemented an Eclipse based editor to support the modeling. 

Fig. 2 presents how the context of the mapping robot was modeled using the 
Eclipse based modeling editor. We have identified 5 context variables for the system. 
The Mode variable captures what the robot has been instructed to do. The robot has 3 
main modes: IDLE, EXPLORE and GOTO. The two next variables “Light” and 
“Bluetooth Signal Available” specifies characteristics of the physical environment of 
the robot. Finally, the two last variables “Low Memory” and “Low Battery” specifies 
resources of the robot itself. 

 

Fig. 2. Model of the context of the robot 

In general, the context variables can correspond to any stimuli of the system that 
should be taken into account for runtime adaptation. It includes user interactions, 
interaction with other systems or sub-systems as well as data coming from sensors. 
For example, in the case of the robot, the LowMem variable is used to determine 
whether the system is running out of memory. When modeling, the actual amount of 
memory the robot will have is not necessarily known. At runtime, probes have to be 
implanted in the system to compute the actual values of these variables and an actual 
threshold for LowMem need to be set. 

 

Fig. 3. Model of the variability and constraints in the robot 
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Fig. 3 presents the variability of the mapping robot and the dependency and adapta-
tion constraints. For example, the robot has 3 alternative routing strategies (see the 
routing dimension and its three variants). A maximum of one of these strategies 
(specified with the lower and upper multiplicity [0..1]) can be used for a particular 
configuration of the robot. The External Routing strategy involves requesting a cen-
tral computer for a route, and then to follow the instructions. To be able to use Exter-
nal Routing, communication with the central computer is required either through a 
Bluetooth network or via GPRS. This hard constraint is modeled in the dependency 
column: The expression GPRS or BT expresses the fact that the variant can only be 
used together with the GPRS or Bluetooth variants. The Available and Required ex-
pressions correspond to contexts in which the variant respectively can or must be 
used. For example, it only makes sense to consider a routing strategy when the robot 
is in GOTO mode as it is the only mode which requires routing capabilities. 

 

Fig. 4. Properties of concern of the robot 

At this point, the context variables, variants and adaptation constraints have been 
modeled. Next we model the properties of concern. Fig. 4 presents the 5 properties of 
concern identified for the mapping robot. These properties correspond to functional or 
extra-functional properties of the system which should be optimized through adapta-
tions. Each property has a name and ID and a direction. The direction specifies if the 
property value should be minimized (0) or maximized (1). For the robot the directions 
specify that we want to minimize Power Consumption, Network Usage and Data 
Latency and we want to maximize the Routing accuracy and the Map Detail.  

 

Fig. 5. Impact of the variants on the properties of the robot 



 A DSML Supporting Specification, Simulation and Execution of DAS 613 

Fig. 5 shows the specification of the impact each variant has on the properties of 
concern. The rows of this table correspond to the dimensions and variants defined 
earlier and the columns corresponds to the properties of the system. For each dimen-
sion the value true specifies that this dimension has an impact on the corresponding 
property. In this case, for each variant a qualitative appreciation of its impact on the 
property has to be specified. In the example of the mapping robot only the values 
Low, Medium and High have been used. If we consider for example the Routing di-
mension, the model specifies that the routing strategy impacts the power consumption 
and the routing accuracy. For each routing strategy variant, values for this impact are 
provided: The local routing has low power consumption but only a medium routing 
accuracy while the external routing has medium power consumption but a high accu-
racy. This table is the base to make different trade-offs and to find the optimal con-
figuration for the actual context. 

Finally, Fig. 6 presents the adaptation rules specified for the mapping robot. These 
rules are Priority Rules: they capture what properties of the system matters depending 
on the context. For example rules 4 and 5 corresponds to the battery level. Rule Bat-
tery is low specifies that if the battery is low, optimizing the power consumption of 
the robot has a high priority. Conversely, rule 5 specifies that when the battery is ok, 
optimizing the power consumption is a secondary concern for the mapping Robot. 

 

Fig. 6. Adaptation rules of the robot 

In this example the guard for every rule is a single context variable, however, the 
DSML allow arbitrary context expressions. If several rules match a given context 
simple strategies such as using the maximum value for each property are used to 
combine them.  

4   Simulation and Validation of the Adaptation Model 

The tables presented in the previous section present the complete adaptation model 
defined for the mapping robot. This section discusses the semantics of the adaptation 
model and describes the tools that were developed in order to simulate and verify it. 

4.1   Semantics and Implementation of the Adaptation Model 

Conceptually, the adaptation model is separated in two parts. On the one hand the 
context variables, the variants and the hard constraints and on the other hand the 
properties and priority rules. From a given context, processing the adaptation model  
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Fig. 7. Implementation of the adaptation simulator 

 
has to yield the best suited configuration for the system in that context. In the pro-
posed approach this is done in two steps: 

1. The hard constraints are processed in order to enumerate candidate configu-
rations for the system. 

2. The priority rules are used to compute a score and rank the candidate con-
figuration. 

After the second step, the candidate configuration which has the best score is chosen 
and the system can be adapted. 

To do early testing and validation an adaptation simulator is implemented. Fig. 7 
presents an overview of the implementation of the adaptation simulator. The simula-
tor starts with a set of values for the context variables and outputs a set of ranked 
configuration which can be used in that context. The first step is to solve the con-
straints to find valid configurations. This is done by deriving an Alloy specification 
from the adaptation meta-model and using constraint solving capability of the Alloy 
framework to output a set of valid configurations. The valid configurations can then 
be ranked according to their properties. The transformation to an Alloy specification 
and the computation of configuration scores are implemented within the Kermeta 
environment. The ranking of configurations is done in four steps: 

1. Compute the values of each property for each configuration.  The value of a 
property p for a configuration C is computed by summing the contributions 
of the variants it contains. If we denote p(C) the value of property p for con-
figuration C, dp the direction of property p and p(v) the impact of variant v 
on property p, then: 

{ } ∑
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2. Compute the priority w associated to each property p. This is done by evalu-
ating the guards of all adaptation rules and combining the priorities provided 
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by the rules Rtrue which guard is true. Let w(p) be the priority of property p 
and w(r, p) the priority of property p in rule r, w(p) is: 

)),((max)( prwpw
trueRr∈

=  (2) 

3. Compute a score S for each configuration C. This is done by summing the 
values of all properties for each configuration using weight corresponding to 
property priorities. If we denote S(C) the score of configuration C: 

∑=
p

pw CpKCS )()( )(   (3) 

Where K is a constant greater than 1 (fixed to 5 in our experiments). The 
constant K corresponds to a weigh associated to priorities. K=5 means that 5 
contributions with a “Low” priority adds up to the same score as 1 contribu-
tion with a “Medium” priority. 

4. Rank the configuration according to their scores S. 

The ranking process involves summing property values and priorities, however, in the 
model these elements are defined as qualitative values (such as “Low”, “Medium” 
and “High” in the robot example). For the simulation, simple strategies are applied to 
transform these qualitative values to integers:  

• For the impact of variants the values can be {N/A, Very Low, Low, Me-
dium, High, Very High} which is mapped to {0, 1, 2, 3, 4, 5}. 

• For priorities the values can be {N/A, Low, Medium and High} and they 
are mapped to {0, 1, 2, 3} 

We have kept the computation of the score very simple and based on integer arithme-
tic since so far our experiments do not seem to require more advanced computation. 
In the literature more advance mechanisms such as fuzzy-logic have been defined in 
order to handle qualitative values consistently. As future work we will investigate 
further if the proposed approach can benefit from such mechanisms. 

4.2   Simulation of the Mapping Robot Adaptation Model 

The meta-model based implementation of the DSML allows simulating the adaptation 
model. Provided with a set of values for the context variables, the simulator outputs 
the ranking of valid configurations together with their scores. The interface of the 
simulator is currently text based.  

Fig. 8 shows the output of one simulation for the mapping robot. The first line cor-
respond to the context of the system, it is the input of the simulation. The variables 
which do not appear (such as “Low Battery”) have the value false. For this simula-
tion, the robot is in exploration mode, Bluetooth signal is available, the memory is 
low and there is light in the area. Based on the hard constraints of the adaptation 
model, only 8 configurations are valid in this context. The scores of these configura-
tion range from 36 to 182. Based on these score, the best configuration to use accord-
ing to the adaptation model includes the following variants: Bluetooth network,  
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(BTSig LIGHT LowMem Mode=EXPLORE)
BT SM STREAM (SCORE = 36)
BT DM STREAM (SCORE = 82)
BT SM STREAM USS (SCORE = 87)
BT IRS SM STREAM (SCORE = 111)
BT DM STREAM USS (SCORE = 133)
BT CS SM STREAM (SCORE = 136)
BT DM IRS STREAM (SCORE = 157)
BT CS DM STREAM (SCORE = 182)
-> | Bluetooth | Camera | Detailed Map | Streaming |  

Fig. 8. Simulation output for a single context 

 

Camera sensor, detail mapping strategy and data streaming to the central computer. 
This intuitively corresponds to what we expected in such a context. 

4.3   Validation of the Adaptation Model 

Like any specification or implementation task, the specification of the adaptation 
model can be error-prone. Before assuming that an adaptation model is correct, it 
needs to be properly validated. Besides the fact that it provide separation of concern, 
the benefit of modeling the adaptation logic separately from the main system func-
tionality is that this model can be validated before it is integrated with the rest of the 
application. Two types of validations can be carried out: the verification of invariant 
properties and the simulation of adaptation scenarios. 

The verification of invariant properties allows validating the constraints defined in 
the adaptation model. The modeler can express invariants using both context variables 
and variants and check that these constraints hold in all reachable configurations of 
the system. If a constraint does not hold the constraint solver can enumerate the con-
figuration which violates the invariant. 

For the mapping robot we might for example express that GPRS network should 
never be used when Bluetooth could be used: Invariant: not BTSig and GPRS. 

To check such invariants, they are translated to the Alloy specification and just like 
for the simulation, the Alloy constraint solver is applied and yields the potentially 
valid configurations which violate the invariant. In the case of the example no viola-
tion is found (which is quite trivial when looking at the availability constraints of the 
adaptation model). 

Checking for properties is a good way of validating the constraints present in the 
adaptation model. For the verification of the impact with respect to the properties of 
concern and the adaptation rules, applying simulation on typical adaptation scenario is 
a complementary way of catching unexpected behaviors of the adaptation model. 
Because the total number of contexts for an adaptive application is huge (it grows 
exponentially with the number of context variables), in general complete simulations 
taking all context into consideration cannot be performed. However, the adaptation 
can be tested with representative context evolution scenarios. The way such represen-
tative scenarios can be chosen is out of the scope of the paper and part of our ongoing 
research based on software testing techniques.  

Fig. 9 presents the simulation of an adaptation scenario for the mapping robot. 
Each step of the scenario corresponds to a change in the context of the system. 



 A DSML Supporting Specification, Simulation and Execution of DAS 617 

| Buffering | Simple Map | 

| Bluetooth | Camera | External Routing | Simple Map | Streaming | 

| Bluetooth | External Routing | Simple Map | Streaming | Ultrasonic | 

| Buffering | Detailed Map | Infrared | 

| Bluetooth | Detailed Map | Infrared | Streaming | 

| GPRS | Infrared | Simple Map | Streaming | 

| Camera | GPRS | Simple Map | Streaming | 

| Bluetooth | Camera | Detailed Map | Streaming | 

| Buffering | Camera | Detailed Map | 

| Buffering | Infrared | Simple Map | 

| Buffering | Local Routing | Simple Map | Ultrasonic | 

| Buffering | Simple Map | 

(BTSig LIGHT Mode=IDLE) →
1) Robot is switched to goto mode 

(BTSig LIGHT Mode=GOTO) →
2) The robot is in the dark

(BTSig Mode=GOTO) →
3) Robot is switched to exploration mode

(BTSig Mode=EXPLORE) →
4) The internal available memory runs low

(BTSig LowMem Mode=EXPLORE) →
5) The Bluetooth signal is lost

(LowMem Mode=EXPLORE) →
6) The robot gets to a lighten area

(LIGHT LowMem Mode=EXPLORE) →
7) The Bluetooth signal comes back

(BTSig LIGHT LowMem Mode=EXPLORE) →
8) The robot has some free memory

(BTSig LIGHT Mode=EXPLORE) →
9) The robot is running out of batteries

(BTSig LIGHT LowBatt Mode=EXPLORE) →
10) Robot is switched to goto mode 

(BTSig LIGHT LowBatt Mode=GOTO) →
11) Robot is back to IDLE mode

(BTSig LIGHT LowBatt Mode=IDLE) →  

Fig. 9. Simulation output for a simple context evolution scenario 

5   Case Studies and Initial Results 

A complete environment for the presented DSML to support both modeling and vali-
dation has been developed. This environment includes an editor, a simulator and vali-
dation tools. The environment has been built using the Eclipse-Modeling Framework 
(EMF) and the Kermeta platform for semantics and simulation support. The editor is a 
table-based editor which allows editing all the aspects of the adaptation model (see 
the screenshot figures in Section 3). The tools are developed as open-source and are 
available from the DiVA project web page http://www.ict-diva.eu/. 

In the context of the DiVA project, the adaptation DSML presented in this paper is 
introduced as the core of a platform for development and execution of adaptive sys-
tems. At runtime, the DiVA approach relies on AOM dynamic weaving techniques to 
adapt the running system. A detailed description of how MDE and AOM techniques 
are combined for that matter can be found in [2]. 

The usability and scalability of the proposed approach has been evaluated on a set 
of academic examples and on two industrial scenarios in the context of the DiVA 
project. The academic examples include the mapping robot presented in this paper 
and a flood prediction system developed at Lancaster University. The industrial cases 
are an airport crisis management system and a Customer Relationship Management 
(CRM) system.  

Fig. 10 presents some characteristics of the adaptation models that have been mod-
eled using the DSML environment presented in this paper for the four case studies. 
For each adaptation model we have counted the number of elements which have to be 
modeled and computed the number of actual contexts and configurations the system 
has to consider. The number of context implies all possible combinations of values for 
the context variables. The number of configurations corresponds to all valid combina-
tion of variants according to the multiplicities defined on the variability dimensions. 
The results show that comparing the academic examples and the industrial scenarios, 
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there is an explosion of the number of possible contexts and configurations (e.g., 
884736 contexts and 1474560 configurations for the airport crisis management sys-
tem). However, there is no explosion in terms of the size of the adaptation model, the 
factor is only between 2 or 3 for the number of context variables, variants and con-
straints. The differences in terms of the number of properties and rules are minor. 
More case studies are need to draw any definitive conclusions, but the current results 
indicate that the proposed approach do scale to handle realistic sized industrial cases. 

# Variables # Context # Variants # Config. # Const. # Prop. # Rules
Maping Robot 5 48 12 192 13 5 7

Flood Prediction 5 48 9 112 9 3 5
Airport Crisis 18 884736 27 1474560 33 8 8

CRM 15 98304 20 92160 25 4 7  

Fig. 10. Characteristics of the adaptation model for four case studies 

The second element that needed to be validated is the ability of the simulator and 
model checking capability to scale properly. Early results indicate that acceptable 
simulation times can be achieved. For example, in the case of the CRM system, simu-
lating the adaptation model for a particular context only takes a few seconds. This 
simulation includes the transformation to an Alloy specification, the resolution of 
constraints, the evaluation of properties priorities and the computation of configura-
tion scores. Overall, the approach seems to be well suited for the applications which 
were considered. We are currently in the process of applying the approach to other 
domains such as a real-time video processing application and to even larger industrial 
scenarios. The initial results of these are promising, however, they are not yet fully 
completed. 

6   Related Work 

There are several recent state of the art reviews in the area of adaptive application 
modeling and execution, e.g., [1][16][17]. [1]  focuses especially on surveying adap-
tive system construction and execution approaches that are based on model-driven 
engineering techniques and aspect-oriented techniques, [16] focuses on surveying 
middleware based self adaptation approaches and related model based approaches 
supporting adaptive system design, [17] focuses especially on surveying adaptation in 
a distributed service oriented environment. While general approaches for adaptive 
system development and execution are contextually relevant for the work presented in 
this paper, we narrow the scope in this related work section and compare our work 
with existing techniques for expression of adaptation policies. This is appropriate 
since the presented DSML is not a complete environment for adaptive system con-
struction and execution, instead our DSML could be an alternative for modeling the 
adaptation logic in these broader scoped approaches. In general there are two families 
of approaches that have been defined for capturing adaptation policies: i) approaches 
based on explicit event-condition-action (ECA) rules and ii) approaches based on the 
definition of utility functions to be optimized. The two-level formalism proposed in 
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this paper has been built in an attempt to combine the strengths of these two ap-
proaches with respect to efficiency, scalability and verification capabilities. 

Most existing approaches are based on using an ECA type of rules to formalize ad-
aptation policies [7][11][14]. For example, in [14] the adaptation rules are triggered 
by context events and express system reconfigurations. In [7] the rules use guards and 
the actions details how the reconfiguration should be performed at the platform level. 
The approach presented in [11] uses event-condition-action rules and has a specific 
focus on conflict resolution and negotiation between interacting adaptive systems. An 
overview of these techniques can be found in [13]. 

The main strengths of ECA approaches are twofold; i) the readability and elegance 
of each individual rules, and ii) the efficiency with which the rules can be processed. 
At runtime, rules are matched and applied to adapt the system configuration. On the 
other hand, the main limitations of these techniques are related to scalability and vali-
dation. Managing a large set of interacting adaptation rules rapidly becomes difficult. 
Validation becomes a major issue: how to ensure that the set of rules will yield the 
best possible configuration for every possible context of the application.  

To overcome the validation problem, [15] proposes to capture adaptation policies 
early in the development cycle using temporal logic. The proposed formalism is an 
extended version of linear temporal logic which includes adaptation specific opera-
tors. Formal validation and verification technique associated with this approach are 
detailed in [6]. In [5] the authors proposes to represent the adaptation policy under the 
form of a state-transition system in which the states correspond to the system configu-
rations and the transitions correspond to the adaptations between these configurations. 
This technique makes adaptation policies easy to understand but can only be applied 
to systems with a very limited number of configurations and possible adaptations. In 
[3] an equivalent state-transition model is derived through design-time simulation of 
condition-action rules. The state-transition model is used for validation and verifica-
tion purposes. The approach is easier to use but still requires the enumeration of all 
possible configurations and adaptations of the system which limits its applicability for 
large systems. 

The second family of techniques consists in viewing adaptation as an optimization 
problem. The adaptation policies are expressed as high-level goals to achieve and at 
runtime the configuration of the system is optimized with respect to these goals 
[4][10][11]. The proposed approach uses parameterization and compositional adapta-
tion. Each component type describes the properties it needs and the properties it of-
fers, while their implementations are responsible for describing how these properties 
are computed. Moreover, each component implementation has to describe a utility 
function. These utility functions describe whether a given component implementation 
is useful in a particular context.  

The main benefit of optimization-based approaches is the abstraction they provide 
through properties in order to allow to expressing much simpler adaptation rules. In 
addition, utility functions are an efficient way to determine how well suited a configu-
ration is, depending on the context.  However, specifying these functions may not be 
easy for designers and may require several iterations in order to adjust. Also, while 
the approach does not explicitly describe all the possible configurations of the system 
a priori, the runtime reasoning has to calculate utility values for all of them, thus en-
countering scalability and efficiency issues. 
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The approach proposed in this paper is a compromise between rule-based ap-
proaches like [3] and optimization-based approaches like [4] which enable for design-
time validation techniques such as defined in [6]. This makes the proposed approach a 
good trade-off for large-scale dynamic adaptive system by mastering the combinato-
rial explosion of the number of contexts and configurations. 

7   Conclusion and Future Work 

In this paper we proposed a modeling language and associated tools for capturing and 
validating runtime adaptation early in the development cycle. The proposed approach 
allows expressing high-level adaptation rules based on properties of the adaptive 
system. Simulation and model-checking capabilities have been implemented to allow 
for the validation of the adaptation model. The approach has been validated on several 
academic case studies and two industrial scenarios. 

The proposed approach has four main benefits. Firstly, it copes with the explosion 
of the number of contexts and configuration by using property-based policies. The 
case studies show that the number of element in the adaptation model only grows 
linearly when the number of contexts and configuration grow exponentially. Sec-
ondly, it allows for early verification and validation. The proposed approach allows 
statically simulating runtime adaptation at design-time in order to model-check prop-
erties on it or to test it on context evolution scenarios. Thirdly, it permits the auto-
mated generation of the adaptation logic. To implement the adaptation the adaptation 
is processed directly by a generic runtime adaptation framework in order to drive the 
architecture adaptations in the running system. And fourthly, it provides separate 
specification of the adaptation logic at the model level, abstracting complexity and 
avoiding adaptation logic and system logic tangling. 

Based on additional studies, future work will include refining how the variants and 
context variables are modeled. We will investigate the possibility of using well de-
fined formalisms such as feature diagrams to better organize variants. For the context 
modeling, we will investigate the introduction of some structuring mechanism (such 
as classes for instance). Both these evolutions might have an impact on the adaptation 
meta-model but will not change the two-stage philosophy of the approach. We will 
also investigate alternative simulation semantics. For instance, the computation of 
configurations scores could rely on fuzzy-logic instead of integer arithmetic. 
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Abstract. Heterogeneous IT-systems rarely rely on a common data for-
mat and structure, so in order to integrate them, the corresponding
data/message transformations must be developed. Transformations may
also be required by the business logic. We present a platform-independent
approach for message transformation specification, in form of a system
integration DSL, and discuss approaches for making it executable.

Keywords: System integration, domain specific language, model execu-
tion.

1 Introduction

Enterprise application integration tasks usually include message transformation
step, which can be caused either by the business logic requirements or data in-
compatibility. Transformations can be implemented using general purpose pro-
gramming languages, but in this case the business logic vanishes in different
cross-cutting concerns and therefore can be understood only by qualified software
developers, not by domain experts; reuse is also limited. Transformations can also
be implemented using workflow executable languages (e.g., BPEL) which can ar-
guably be better understood by domain experts, but these languages suffer from
the lack of expressiveness and standard features offered by programming lan-
guages, such as collections or library support. In this paper we introduce a novel
workflow modeling and transformation solution, including the DSL for system
integration modeling, expression support and model execution environment.

2 Related Work

Workflows and message transformations can be defined using modeling languages
such as BPMN [1], using CWM metamodel [2] as well as schema matching ap-
proaches [3]. Their support for specifying behavior of message transformations
is limited. Service oriented architecture (SOA) approaches support message ori-
ented middleware concepts for system integration, but almost all approaches are
based on XML transformations, and expressions are specified using platform-
specific programming languages. Executable workflow languages, such as BPEL,

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 622–626, 2009.
� Springer-Verlag Berlin Heidelberg 2009
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support direct transformation execution, but most workflow execution servers
have custom language extensions, which are not compatible with each other.

OMG proposes EAI profile [4], included in several UML modeling tools. Model
elements based on this and similar profiles often have no pre-defined relations and
property requirements (tag definitions) which leaves model structure and element
descriptions completely to the user. [5] proposes an object-oriented workflow
modeling language which is limited to modeling Web applications.

Executable models are included in concepts such as executable UML or the
UML virtual machine [6]. In [7] transformation from UML activities to exe-
cutable code in the TAAL programming language is proposed. [8] and [9] make
transformation to BPEL, while [10] defines execution semantics for specific UML
actions. These and similar proposals employ proprietary operational semantics,
only textual action semantics languages are offered and dependency on UML
make them overloaded with technical concepts from the OO analysis.

3 Domain Specific Language for System Integration

In this section we describe developed DSL for EAI pattern-based connector and
expression modeling. We introduce the abstract language syntax as well as three
concrete syntaxes: graphical syntax for connector modeling and graphical and
textual syntax for expression specification which can be used interchangeably.

3.1 Abstract Syntax

Packages structure, types and message contain the static structure description of
used libraries, in particular class structure, type system and supported message
types. We will not discuss them further here. Instead we focus on packages con-
nector and expression which form DSL abstract syntax. The connector package
contains elements of message processing components (EAI patterns), application
endpoints and message routing logic. The expression package contains elements
for expression modeling. Message processors have references to corresponding
message transformation expressions, which define their behavior.

The connector package (Figure 1 right) specifies the upper abstraction
level for connector design and references expression package for behavior specifi-
cation of message processors. Using messages and message processors to abstract
connectors seems to be the most generic and accepted approach, and it enables
service-oriented connector realization. There are two types of connector com-
ponents: application endpoints and message processors. Application endpoints
generate and consume messages by wrapping system interfaces, and message
processors manipulate messages. Components send or receive messages of the
specific message type via ports. Messages are transported by message channels
which have a message channel type and a message exchange pattern.

The following predefined library elements are included in DSL: message
processor types (Aggregator, Content Enricher, Filter, Content-based Router,
Splitter, Timer and Transformer), message channel types (Point-to-Point and
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Publish-Subscribe) and message exchange patterns (Out-Only , Robust Out-
Only, Out-In and Out-Optional-In).

The expression package (Figure 1 left) specifies expressions which define
behavior of message processors. Expressions can be modeled with arbitrary func-
tion/operation calls, support for the high-order function calls and lambda ex-
pressions. The expression flow metamodel is built using abstract notions, which
allows us to define actual types of the activities in runtime. Activity metaclass
represents the actual function or operation call, determined by the corresponding
ActivityType. The Pin metaclass shows a formal parameter value that is passed
to a function call. The value is determined using ActivityEdge metaclass, which
shows directed flow from one Pin to another. The expression metamodel allows
definition of domain specific semantics and custom operations and functions.

Fig. 1. Connector and expression metamodels (excerpt)

3.2 Concrete Syntax

Figure 2 shows an instance of the connector package, realized using our graph-
ical syntax. Application endpoints and message processors are parts of the in-
tegration flow and can generate/consume/transform event and data messages.
Message types are specified as properties and are not visualized in the process
flow. They are assigned to ports of application endpoints and message processors
to specify data schema requirements of connector component interfaces.

Supported activity types of the expression package (graphical and textual syn-
tax) are given in Table 1. Note that presented DSL is a functional language, and
it enables system integrators to create Lambda-expressions and high-order func-
tions. Support of functional concepts allows to offer rich set of collection process-
ing possibilities, such as filtering, sorting or mapping. As additional possibility
we introduce collection flow that acts as ’for’ operator. Finally, the conditional
activity allows to implement branching of message flow.

4 Model Execution

We defined the following requirements for the model runtime environment: com-
plete and directly executable connector component generation; connector deploy-
ment process should be straightforward and accomplished by domain experts
without technical assistance; if business requirements change, domain experts
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Fig. 2. Example of the connector package instance

Table 1. Activity Types in the DSL Graphical Concrete Syntax

Activity Type Name Graphical Notation Textual Concrete Syntax

Function/Operation Call getOrders()

Property Accessors getOrders().first().name

Variable/Parameter Order order=getOrders().first();

Lambda Expression o|o.name.startsWith(”Michael”)
Pin NA

High-Order Function Call getOrders().select(o|o.name.startsWith(”Michael”))

For/Iterator List<Item> l = for(o : orders) returning new Item(o);

Conditional Operator if(expression) { doSmth();} else { doSmthElse();}
Message Flow NA

Conditional Flow NA

Collection Flow getOrders()->items.sum();

should be able to reconfigure running connector alone and perform redeploy-
ment process without technical assistance.

The executable connector application generation process can be represented
as the following chain of automated transformation, generation, compilation and
deployment steps. The connector model is transformed to BPEL process skeleton
by instantiating the BPEL schema using xTend transformation language. The
expression model is transformed to Java Abstract Syntax Tree (AST), which
is implemented using Eclipse JDT. Then Java code is generated by the AST
implementation library. Afterwards, the code is compiled, built and packaged
and BPEL process skeleton is completed with calls to compiled Java components
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containing expressions. Fully generated BPEL process and Java bytecode are
packaged into Composite Application Service Assembly (CASA) which is directly
deployed to the Sun GlassFish ESB as an executable component.

5 Conclusion

We presented design and implementation of the system integration DSL, where
message transformation, dictated by interface incompatibility and business logic,
plays the crucial role. Up to now, such transformations have been embedded
in the workflow logic using XML-based languages or specified using platform-
specific languages, which leads to the low visibility, reusability and maintain-
ability of the transformation logic. Industrial practice showed that hidden and
undocumented transformation logic is a constant source of errors, frustration and
costly workarounds. The proposed solution enables modeling of custom message
transformations, including complex expressions.

Nevertheless, open issues remain related to the use of legacy code, APIs,
message formats, and cross-cutting concerns (security, logging, transactions). We
intend to resolve some of them by adding more modeling and runtime facilities,
such as platform specific workflow models that wrap target platform API.
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Abstract. A back-of-the-envelope calculation suggests that - very, very
conservatively - the world produces well over 33 billion lines of new or
modified code every year. Curiously, the moment that code springs into
being and is made manifest in a running system, it become legacy. The re-
lentless accretion of code over months, years, even decades quickly turns
every successful new project into a brownfield one. Although software
has no mass, it does have weight, weight that can ossify any system by
creating intertia to change and deadly creeping complexity. It requires
energy to make such a system simple, and to intentionally apply that en-
ergy requires that one be able to reason about, understand, and visualize
the system as built.

Considerable research and labor has been invested in model-driven de-
velopment for the purposes of transforming models into running systems,
and while these efforts have yielded some useful results they have not led
to the revolution that some expected. Similarly, considerable work has
been undertaken in static and dynamic analysis and design pattern dis-
covery, and while they too have yielded some useful results, these efforts
have been rather scattered. Still, we believe that there is much more that
can be done. One of the explicit goals we made in the early years of the
UML was that it be a language for reasoning about a system, and so
in this presentation, we’ll reexamine that early goal. In particular, we’ll
look at efforts to consider the other side of MDD, the mining of the
architecture of an as-built system from its source code and its execution.
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Abstract. Many modeling languages share some common concepts and
principles. For example, Java, MOF, and UML share some aspects of
the concepts of classes, methods, attributes, and inheritance. However,
model transformations such as refactorings specified for a given language
cannot be readily reused for another language because their related meta-
models may be structurally different. Our aim is to enable a flexible reuse
of model transformations across various metamodels. Thus, in this pa-
per, we present an approach allowing the specification of generic model
transformations, in particular refactorings, so that they can be applied
to different metamodels. Our approach relies on two mechanisms: (1) an
adaptation based mainly on the weaving of aspects; (2) the notion of
model typing, an extension of object typing in the model-oriented con-
text. We validated our approach by performing some experiments that
consisted of specifying three well known refactorings (Encapsulate Field,
Move Method, and Pull Up Method) and applying each of them onto three
different metamodels (Java, MOF, and UML).

Keywords: Adaptation, Aspect Weaving, Genericity, Model Typing,
Refactoring.

1 Introduction

Software reuse has been largely investigated in the last two decades by the
software engineering community [3,23]. Basili et al. [2] have demonstrated the
benefits of software reuse on the productivity and quality in object-oriented
systems. In the domain of Model-Driven Engineering (MDE), which is often
based on object-oriented metamodels, few works have been devoted to model-
driven reuse [5]. For example, many modeling languages share some common
concepts and principles: Java, MOF, and UML share some aspects of the con-
cepts of classes, methods, attributes, and inheritance. However, a given model
transformation such as the refactoring Pull Up Method specified for the UML
metamodel might not be reused, for instance, for the Java metamodel because
these metamodels are structurally different. Thus, the specification of model
transformations are highly dependent on specific metamodels. Our aim is to

� This work was realized in the context of the MOVIDA project, funded by the ANR
(French National Research Agency) CONVENTION N 2008 SEGI 011.
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enable a flexible reuse of such model transformations across various metamodels
to enhance productivity and quality in the model-driven development.

In this paper, we present an approach to specify model transformations in a
generic way, so that they can be applied to different metamodels. Our approach
relies on two mechanisms: (1) an adaptation based mainly on the weaving of
aspects; (2) the notion of model typing [31], an extension of object typing in the
model-oriented context. We choose to illustrate and demonstrate our approach
on well known model transformations, namely refactorings [10]. A refactoring
is a particular transformation performed on the structure of software to make
it easier to understand and cheaper to modify without changing its observable
behavior [10]. For example, the refactoring Pull Up Method consists of moving
methods to the superclass if these methods have same signatures and/or results
on subclasses [10]. We validated our approach by performing some experiments
that consisted of specifying three well known refactorings (Encapsulate Field,
Move Method, and Pull Up Method) and applying each of them onto three differ-
ent metamodels (Java, MOF, and UML). The specification of refactorings has
been performed with Kermeta, a meta-language for defining the structure and
behavior of models [25].

This article is organized as follows. Section 2 provides an overview of our mo-
tivation. Section 3 introduces the executable metamodeling language, Kermeta,
and highlights some of its new features including the notion of model typing.
Section 4 presents our approach along with the Pull Up Method refactoring.
Section 5 describes the experiments that we performed for the three refactor-
ings (Encapsulate Field, Move Method, and Pull Up Method) on three different
metamodels (Java, MOF, and UML). Section 6 surveys related work. Section 7
concludes and presents future work.

2 Motivation

Our motivation is to enable the specification of generic refactorings, so that
they can be applied to different metamodels. In this section, we clearly state
this motivation using the concrete example of the Pull Up Method refactoring on
three different metamodels (Java, MOF, and UML).

2.1 The Pull Up Method Refactoring

The Pull Up Method refactoring consists of moving methods to the superclass
when methods with identical signatures and/or results are located in sibling
subclasses [10]. This refactoring aims to eliminate duplicate methods by cen-
tralizing common behavior in the superclass. A set of preconditions must be
checked before applying the refactoring. For example, one of the preconditions
to be checked consists of verifying that the method to be pulled up is not a
constructor. Another precondition checks that the method does not override a
method of the superclass with the same signature. A third precondition consists
of verifying that methods in sibling subclasses have the same signatures and/or
results.
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The example of the Pull Up Method refactoring presented in [22] of a Local
Area Network (LAN) application [15] and adapted in Figure 1 shows that the
method bill located in the classes PrintServer and Workstation is pulled up
to their superclass Node.

Fig. 1. Class Diagrams of the LAN Application Before and After the Pull Up Method
Refactoring of the Method bill

2.2 Three Different Metamodels

We consider three different metamodels (Java, MOF, and UML), which support
the definition of object-oriented structures (classes, methods, attributes, and
inheritance). The Java metamodel described in [14] represents Java programs
with some restrictions over the Java code. For example, inner classes, anonymous
classes, and generic types are not modeled. As MOF metamodel, we consider
the metamodel of Kermeta [25], which is an extension of MOF [27] with an
imperative action language for specifying constraints and operational semantics
of metamodels. The UML metamodel studied in this paper corresponds to the
version 2.1.2 of the UML specification [29]. This Java metamodel is one possible
representation of Java programs; there is no standard for such metamodel in
contrast to UML and MOF metamodels.

We provide an excerpt of each of these metamodels in Figures 2, 3, and 4.
These metamodels share some commonalities, such as the concepts of classes,
methods, attributes, parameters, and inheritance (highlighted in grey in the
figures). These concepts are necessary for the specification of refactorings, and
in particular for the Pull Up Method refactoring. However, they are represented
differently from one metamodel to another as detailed in the next paragraph.

2.3 Problems

We list here some of the problems encountered when trying to specify one com-
mon Pull Up Method refactoring for all three metamodels:

– The metamodel elements (such as classes, methods, attributes, and ref-
erences) may have different names.

For example, the concept of attribute is named Property in the MOF and
UML metamodels whereas in the Java metamodel, it is named Variable.
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Fig. 2. Subset of the Java Metamodel

Fig. 3. Subset of the MOF Metamodel

– The types of elements may be different.
For example, in the UML metamodel, the attribute visibility of

Operation is an enumeration of type VisibilityKind whereas the same
attribute in the Java metamodel is of type String.

– There may be additional or missing elements in a given metamodel
compared to another.

For example, Class in the UML metamodel and ClassDefinition in
the MOF metamodel have several superclasses whereas Class in the Java
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Fig. 4. Subset of the UML Metamodel

metamodel has only one. Another example is the ClassDefinition in MOF,
which is missing an attribute visibility compared to the UML and Java
metamodels.

– Opposites may be missing in relationships.
For example, the opposite of the reference related to the notion of inheri-

tance (namely, superClass in the MOF and UML metamodels, and extends
in the Java metamodel) is missing in the three metamodels.

– The way metamodel classes are linked together may be different
from one metamodel to another.

For example, the classes Operation and Variable in the Java meta-
model are not directly accessible from Class as opposed to the corresponding
classes in the MOF and UML metamodels.

Because of these differences among these three metamodels, we are not able to
directly reuse a Pull Up Method refactoring accross all three metamodels. Thus,
we are forced to write three refactorings, one for each of the three metamodels.
In Section 4, we present an approach that allows the specification of one common
refactoring for these different metamodels.

3 Kermeta and Model Typing

We introduce here new features of the Kermeta language and the notion of model
typing to ease the comprehension of our approach presented in Section 4.



Generic Model Refactorings 633

3.1 New Features of Kermeta

In the current version of Kermeta, its action language provides new features for
weaving aspects, adding derived properties, and specifying constraints such as
invariants and pre-/post-conditions. Indeed, the first new feature of Kermeta
is its ability to extend an existing metamodel with new structural elements
(classes, operations, and properties) by weaving aspects (similar to inter-type
declarations in AspectJ or open-classes [7]). This feature offers more flexibility to
developers by enabling them to easily manipulate and reuse existing metamodels
while separating concerns. The second new key feature is the possibility to add
derived properties. A derived property is a property that is derived or computed
through getter and setter accessors for simple types and add and removemethods
for collection types. The derived property thus contains a body, as operations do,
and can be accessed in read/write mode. Thanks to this feature, it is possible
to figure out the value of a property based on the values of other properties
belonging to the same class. The last new feature is the specification of pre-
and post-conditions on operations and invariants on classes. These assertions
can be directly expressed in Kermeta or imported from OCL (Object Constraint
Language) files [28].

3.2 Model Typing

The last version of the Kermeta language integrates the notion of model typ-
ing [31], which corresponds to a simple extension to object-oriented typing in a
model-oriented context. Model typing can be related to structural typing found
in languages such as Scala. Indeed, a model typing is a strategy for typing mod-
els as collections of interconnected objects while preserving type conformance,
used as a criterion of substitutability.

The notion of model type conformance (or substitutability) has been adapted
and extended to model types based on Bruce’s notion of type group matching [6].
The matching relation, denoted <#, between two metamodels defines a function
of the set of classes they contain according to the following definition:

Metamodel M’ matches another metamodel M (denoted M’ <# M ) iff
for each class C in M, there is one and only one corresponding class or
subclass C’ in M’ such that every property p and operation op in M.C
matches in M’.C’ respectively with a property p’ and an operation op’
with parameters of the same type as in M.C.

This definition is adapted from [31] and improved here by relaxing two strong
constraints. First, the constraint related to the name-dependent conformance on
properties and operations was relaxing by enabling their renaming. The second
constraint related to the strict structural conformance was relaxing by extending
the matching to subclasses.

Let’s illustrate model typing with two metamodels M and M’ given in
Figures 5 and 6. These two metamodels have model elements that have dif-
ferent names and the metamodel M’ has additional elements compared to the
metamodel M.
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Fig. 5. Metamodel M Fig. 6. Metamodel M’

C1 <# COne because for each property COne.p of type D (namely,
COne.name and COne.aCTwo), there is a matching property C1.q of
type D’ (namely, C1.id and C1.aC2 ), such that D’ <# D.

Thus, C1 <# COne requires D’ <# D, which is true because:

– COne.name and C1.id are both of type String.
– COne.aCTwo is of type CTwo and C1.aC2 is of type C2, so C1

<# COne requires C2 <# CTwo or that a subclass of C2 matches
CTwo. Only C3 <# CTwo is true because CTwo.element and
C3.elem are both of type String.

Thus, matching between classes may depend on the matching of their related
dependent classes. As a consequence, the dependencies involved when evaluating
model type matching are heavily cyclical [30]. The interested reader can find in
[30] the details of matching rules used for model types.

However, the model typing with the mechanisms of renaming and inheritance
is not sufficient for matching metamodels that are structurally different. We
show in the next section with our approach how we overcome this limitation of
the model typing using aspect weaving.

4 Approach: Specification of Generic Refactorings

In this section, we present our approach for generic model refactoring. The four
steps of the approach are illustrated in Figure 7. The first step consists of speci-
fying a generic metamodel GenericMT1, which corresponds to a metamodel that
only contains elements required for applying refactorings. The second step con-
sists of specifying refactorings based on the source metamodel GenericMT using
a model transformation language such as Kermeta. The third step aims to adapt
the target metamodels (Java, MOF, and UML) to the metamodel GenericMT.
1 MT refers to Model Type.
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Fig. 7. Approach for the Specification of Generic Refactorings

In the last step, refactorings are directly applied to models of all target meta-
models. We detail in the following each of these steps using the Pull Up Method
refactoring as a running example.

Step 1: Specification of Generic Metamodel. Our approach consists first of
specifying a lightweight metamodel that contains the minimum required classes,
methods, and attributes for specifying refactorings. The generic metamodel,
called GenericMT and given in Figure 8, has been designed to specify refac-
torings. GenericMT contains concepts common to most of object-oriented meta-
models such as classes, methods, attributes, and parameters.

Step 2: Specification of Generic Refactorings. In the second step, refac-
torings are specified based on the generic metamodel GenericMT. Listing 1 gives

Fig. 8. Generic Metamodel GenericMT
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a Kermeta code2 excerpt of the class Refactor, which contains the operation
pullUpMethod. This operation aims to pull up the method meth from the source
class source to the target class target. This operation contains a precondition
that checks if the sibling subclasses have methods with the same signatures. In
the body of the operation, the method meth is added to the methods of the
target class and removed from the methods of the source class.

package r e f a c t o r ;

class Refactor<MT : GenericMT> {

operation pullUpMethod ( source : MT: : Class , t a rge t : MT: : Class ,
meth : MT: : Method ) : Void

// Pre cond i t ions
pre sameS ignature InOtherSubc lasse s i s do

t a rge t . subClasse s . f o rA l l { sub |
sub . methods . e x i s t s { op | haveSameSignature (meth , op ) } }

end

// Operation body
i s do

t a rg e t . methods . add (meth )
source . methods . remove (meth )

end
}

Listing 1. Kermeta Code for the Pull Up Method Refactoring

Step 3: Adaptation of Target Metamodels. The third step aims to adapt
the target metamodels to the generic metamodel GenericMT using the new Ker-
meta features for weaving aspects and adding derived properties. The adap-
tation consists of weaving, in the target metamodels, derived properties that
match with those of the generic metamodel. This step of adaptation is neces-
sary because the model typing is too restrictive for allowing a matching between
metamodels that are structurally too different. Thus, this adaptation virtually
modifies the structure of the target metamodel with additional elements, and
uses the model typing to match the metamodels.

The adaptation requires also the weaving of opposites. The opposites are
identified in Kermeta by a sharp � and are computed during the loading of the
model. The opposites make easier the writing of adapters by adding required
navigation links.

Listings 2, 4, and 3 present the adaptations of the derived properties
superClasses and subClasses of Class respectively for the Java, MOF, and
UML target metamodels given respectively in Figures 2, 3, and 4. Because of
lack of space, we provide only the getter accessors of the derived properties; the
setter accessors are symmetric.

Adaptation for the Java metamodel. The derived property superClasses corre-
sponds to a simple access to the property extends that is then wrapped in a Java

2 The interested reader can refer to the Kermeta syntax in [16].
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Class. However, for the derived property subClasses, the opposite inv extends
of the property extends was weaved by aspect on the class Classifier and used
to get the set of subclasses.

package java ;

require ”Java . ecore ”

aspec t class C l a s s i f i e r {
reference i nv ex t end s : C l a s s i f i e r [ 0 . . ∗ ]# extends
reference extends : C l a s s i f i e r [ 0 . . 1 ] # inv ex t end s

}

aspect class Class {

property supe rC la s s e s : Class [ 0 . . 1 ]# subClasse s
getter i s do

r e s u l t := s e l f . extends
end

property subClasse s : Class [ 0 . . ∗ ]# supe rC la s s e s
getter i s do

r e s u l t := OrderedSet<java : : Class >.new
s e l f . i nv ex t end s . each{ subC | r e s u l t . add ( subC ) }

end
}

Listing 2. Kermeta Code for Adapting the Java Metamodel

Adaptation for the UML metamodel. In UML, the inheritance links are reified
through the class Generalization. Thus, the derived property superClasses is
computed by accessing to the class Generalization and the reference property
general. As in Java and MOF, an opposite inv general is specified to get the
set of subclasses.

package uml ;

require ”http : //www. e c l i p s e . org /uml2 /2 . 1 . 2/UML”

aspect class C l a s s i f i e r {
reference i n v g e n e r a l : Gene ra l i z a t i on [ 0 . . ∗ ]# gene ra l

}

aspect class Class {

property supe rC la s s e s : Class [ 0 . . ∗ ]# subClasse s
getter i s do

r e s u l t := OrderedSet<uml : : Class >.new
s e l f . g e n e r a l i z a t i o n . each{ g | r e s u l t . add ( g . g en e ra l ) }

end

property subClasse s : Class [ 0 . . ∗ ]# supe rC la s s e s
getter i s do

r e s u l t := OrderedSet<uml : : Class >.new
s e l f . i n v g e n e r a l . each{ g | r e s u l t . add ( g . s p e c i f i c ) }

end
}

Listing 3. Kermeta Code for Adapting the UML Metamodel
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package kermeta ;

require kermeta

aspect class ParameterizedType {
reference typeDe f i n i t i on : Gener i cTypeDe f in i t ion [ 1 . . 1 ]#

in v typeDe f i n i t i on
}

aspect class Gener i cTypeDef in i t i on {
reference i n v t yp eDe f i n i t i on : ParameterizedType [ 1 . . 1 ]# typeDe f i n i t i on

}

aspect class Type {
reference inv superType : C l a s sDe f i n i t i o n [ 0 . . ∗ ]# superType

}

aspect class Cl a s sDe f i n i t i o n {

reference superType : Type [ 0 . . ∗ ]# inv superType

property supe rC la s s e s : C l a s sDe f i n i t i o n [ 0 . . ∗ ]# subClasse s
getter i s do

r e s u l t := OrderedSet<Cla s sDe f i n i t i on >.new
s e l f . superType . each{ c |

var c l a z z : Class in i t Class . new
c l a z z ?= c
var c l a z zDe f : C l a s sDe f i n i t i o n in i t Cl a s sDe f i n i t i o n . new
c l a z zDe f ?= c l az z . t ypeDe f i n i t i on
r e s u l t . add ( c l a z zDe f ) }

end

property subClasse s : C l a s sDe f i n i t i o n [ 0 . . ∗ ]# supe rC la s s e s
getter i s do

r e s u l t := OrderedSet<Cla s sDe f i n i t i on >.new
var c l a z z : Class
c l a z z ?= s e l f . i nv typeDe f i n i t i o n
c l a z z . inv superType . each{ superC | r e s u l t . add ( superC ) }

end
}

Listing 4. Kermeta Code for Adapting the MOF Metamodel

Adaptation for the MOF metamodel. Because of the distinction in the MOF
between Type and TypeDefinition to handle the generic types, it is less straight-
forward to compute the derived properties superClasses and subClasses. Sev-
eral opposites are required as shown in Listing 4.

Step 4: Application of Refactoring. The last step of our approach consists
of applying the refactoring on the target metamodels as illustrated in Listing 5
for the UML metamodel. We reuse the example of the method bill in the LAN
application. We can notice that the class Refactor takes as argument the UML
metamodel, which thanks to the adaptation of Listing 3 is now a subtype of
the expected supertype GenericMT as specified in Listing 1. The model typing
guarantees the type conformance between the UML metamodel and the generic
metamodel.
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package r e f a c t o r ;

require ”http : //www. e c l i p s e . org /uml2 /2 . 1 . 2/UML”

class Main {
operation main ( ) : Void i s do

var rep : EMFRepository in i t EMFRepository . new

var model : uml : : Model
model ?= rep . getResource ( ” l a n a pp l i c a t i o n . uml” ) . one

var source : uml : : Class in i t ge tC la s s ( ” Pr in tSe rv e r” )
var t a rge t : uml : : Class in i t ge tC la s s ( ”Node” )
var meth : uml : : Operation in i t getOperation ( ” b i l l ” )

var r e f a c t o r : r e f a c t o r : : Refactor<uml : :UmlMM>
in i t r e f a c t o r : : Refactor<uml : :UmlMM>.new

r e f a c t o r . pullUpMethod ( source , targe t , meth )
end

}

Listing 5. Kermeta Code for Applying the Pull Up Method Refactoring on the UML
metamodel

5 Experiments and Discussion

We specified three well known refactorings (Encapsulate Field, Move Method, and
Pull Up Method [10]) on models of the LAN application [15] conforming to three
different metamodels (Java, MOF, and UML). We were able to successfully ap-
ply our approach on these metamodels although they were structurally different.
We experimented also a fourth metamodel, which a subset is given in Figure 9.
In this metamodel, the two classes (corresponding to Class and Parameter in
the generic metamodel) are unified in a same class (Type). This case introduced
an ambiguous matching with the generic metamodel since these classes are dis-
tinct in the latter. This special case illustrates a limitation of our approach
that needs to be overcome and will be investigated in future work. Thus, the
only prerequisite of our approach is that each element in the generic metamodel
should correspond to a distinct element in the target metamodel. The approach
is thus not very restrictive since the mechanism of adaptation enables to raise
the inherent limitations of metamodels.

Our approach theoretically relies on the model typing and is feasible in prac-
tice thanks to the mechanism of adaptation. Writing adaptations can be more or
less difficult depending on the developers’ knowledge of the target metamodels.
However, once the adaptation is done, the developers can reuse all model refac-
torings written for the generic metamodel. Conversely, if a developer specifies a
new refactoring on the generic metamodel, it can readily be applied on all target
metamodels if adaptations are provided.

Although we use a specific kind of model transformations, namely refactorings,
for demonstrating the feasibility of our approach, this one can be applied to any
other endogenous model transformation. In addition, our approach also fits well
in the context of metamodel evolution. Indeed, all model transformations written
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Fig. 9. Subset of the Fourth Metamodel

for an old version of a given metamodel (for example, UML 1.2) can be reused for
a new version (for example, UML 2.0) once the adaptation is done. Moreover,
the models do not need to be migrated from the old version to the new one.
Finally, our approach (with the model typing, the mechanism of adaptation,
and the generic metamodel) can be seen as a framework for specifying arbitrary
model transformations for arbitrary metamodels.

6 Related Work

Genericity and reuse in MDE have not been sufficiently investigated as in object-
oriented (OO) programming. However, we observe some efforts in the MDE com-
munity that are directly inherited from type-safe code reuse in OO programming
and, in particular, from generic programming.

Generic programming is about making programs more adaptable by making
them more general [11]. This style of programming allows writing programs that
differ in their parameters, which may be either other programs, types and type
constructors, class hierarchies, or even programming paradigms [11]. Aspects [17]
and open-classes [7] are powerful generic programming techniques for adapting
programs by augmenting their behavior in existing classes [12,18]. Similarly,
in our approach, we use aspects to align target metamodels with the generic
metamodel. Other languages that provide support for generic programming are
Haskell and Scala [26]. The use of Haskell has been investigated [21] to specify
refactorings based on high level graph algorithms that could be generic accross
a variety of languages (XML, Pascal, Java), but its applicability does not seem
to go beyond a proof of concept. Scala’s implicit conversions [9] simulate the
open-class mechanism in order to extend the behavior of existing libraries with-
out actually changing them. Although Scala is not a model-oriented language,
developers can build type-safe reusable model transformations on top of EMF
thanks to its good integration with Java. However, it would require to write a
significant amount of code and manage relationships among generic types.

In the MDE community, Blanc et al. proposed an architecture, called Model
Bus, that allows the interoperability of a wide range of modeling services [4]. The
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term ‘modeling service’ defines an operation having models as inputs and outputs
such as model edition, model transformation, and code generation. Their architec-
ture is based on a metamodel that ensures type compatibility checking by describ-
ing services as software components having precise input and output definitions.
However, the type compatibility defined in this metamodel relies on a simple no-
tion of model types as sets of metaclasses, but without any notion of model type
substitutability. Other work [1,24] study the problem of generic model transfor-
mations using a mechanism of parameterization. However, these transformations
do not apply to different metamodels but to a set of related models.

Modularity in graph transformation systems was also explored [13]. In this
area, an interesting work was done by Engels et al. who presented a framework
for classifying and defining relations between typed graph transformation sys-
tems [8]. This framework integrates a novel notion of substitution morphism
that allows to define the semantic relation between the required and provided
interfaces of modules in a flexible way.

From another perspective, our approach also relates to the Aspect Oriented
Modeling (AOM) field [19], or more precisely to AO metamodeling. From the
AOM perspective, our notion of model type can indeed be interpreted as a
pointcut defining a (model) pattern to be matched in a specific metamodel (e.g.
UML or Java). The definition of our generic refactorings then would play the role
of advices to be woven into these metamodels through some kind of adaptation
as available in SmartAdapters [20]. Thus from this perspective our paper could
have been title ”Weaving refactoring aspects into metamodels”.

7 Conclusion

In this paper, we have presented an approach for generic model refactorings,
that is refactorings that can be reused on structurally different metamodels.
This approach relies on the model typing and a mechanism of adaptation based
mainly on the weaving of aspects. We illustrated our approach on the Pull Up
Method refactoring and validated it on three different refactorings (Encapsulate
Field, Move Method, and Pull Up Method) for three different metamodels (Java,
MOF, and UML) in a concrete application. We demonstrated that our approach
ensures a flexible reuse of model transformations, in particular refactorings. This
approach seems to be generalisable to other endogenous model transformations
such as the computation of metrics, detection of patterns and inconsistencies.
As future work, we plan to increase the repository of refactorings on other meta-
models and experiment with other model transformations.
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M.: Introducing variability into aspect-oriented modeling approaches. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 498–513. Springer, Heidelberg (2007)
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Abstract. Generic programming is a field of computer science which
consists in defining abstract and reusable representations of efficient
data structures and algorithms. In popular imperative languages, it is
usually supported by a template-like notation, where generic elements
are represented by templates exposing formal parameters. Defining such
generic artifacts may require defining constraints on the actual types that
can be provided in a particular substitution. UML 2 templates support
two mechanisms for expressing such constraints. Unfortunately, the UML
specification provides very few details on their usage. The purpose of our
article is to provide such details with regard to one of these constraining
mechanisms (namely, "substitutable constraining classifiers") as well as
modeling patterns inspired by practices from generic programming.

1 Introduction

UML 2 templates [1] (chapter 17.5) are inspired by template-like mechanisms of
popular programming languages such as C++ or Java. They provide support for
the three fundamental notions of template-based design: templates (i.e., meta-
class TemplateableElement), formal parameters (i.e., TemplateSignature, Tem-
plateParameter and ParameterableElement) and bindings (i.e., TemplateBinding
and TemplateParameterSubstitution). A template is a kind of abstract element
whose definition is parameterized by other elements. Elements that are exposed
as parameters of a template definition are called its formal parameters. A con-
crete element (usually called bound element) can then be instantiated by binding
a template, i.e., specifying a substitution for each of its formal parameters.

Defining generic structures or algorithms typically requires making assump-
tions on the types exposed as formal parameters of a template, by defining
constraints on the actual types that can be provided in a particular substitu-
tion. For this purpose, UML 2 templates provide a refinement of the metaclass
TemplateParameter called ClassifierTemplateParameter (used for the exposure
of classifiers) that can be associated with a set of constraining classifiers. An
additional boolean property of ClassifierTemplateParameter, called allowSubsti-
tutable, enables two potential interpretations of these constraining classifiers. In
the case where it is false, the interpretation is object-oriented. It indeed implies
that a valid actual type must have a direct or indirect generalization relationship
with each of the constraining classifiers. This approach will not be discussed in
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this article (see [2] and [3] for details). In the case where it is true, the set of
constraining classifiers simply specifies a kind of contract. Any actual classifier
satisfying this contract is a valid substitution for the formal parameter, i.e., it
is substitutable. Unfortunately, the UML specification provides very few details
on the usage of this constraining mechanism. It is the purpose of this article to
provide such details and guidelines.

We propose a simple pattern where contracts (i.e., substitutable constraining
classifiers) are defined as template classifiers and used as namespaces containing
any element useful for the definition of a generic behavior or structure. We
show that it is then possible to explicitly specify how an actual classifier realizes
the contract by combining Realization and TemplateBinding relationships. The
details of our proposal are described in section 2. In section 3, we discuss related
works from the generic programming community. Section 4 then concludes this
article and sets guidelines for future research.

2 Substitutable Constraining Classifiers in Action

Using substitutable constraining classifiers is a very loose form of specifying type
compatibility rules. The semantic relationship between an actual classifier and
the constraining classifiers is in fact equivalent to a Realization relationship. In
UML, a Realization relationship is a kind of assertion that a given classifier real-
izes another one. It needs to be augmented with information explicitly specifying
how the realization of the specification is actually done. In order to illustrate
how this information can be made more explicit, let us consider a generic activity
called accum, that computes the sum of the elements contained in a collection.

This activity is generic from two standpoints: 1.) the type of the elements to
be accumulated (which must support the operator "+") and 2.) the type of the
collection containing the elements (which is required to be "iterable forward").
In the following subsections, we illustrate our proposal by focusing on the sec-
ond standpoint. We first describe a template class Iterator with a formal type
parameter C (i.e., the type of the collection) and its associated substitutable con-
straining classifier IterableForward. Then, we show how the substitutability of a
given classifier (Vector in our example) with respect to the contract represented
by IterableForward can be explicitly specified.

2.1 Specifying the Contract

Descriptions of the class Iterator and the constraining classifier IterableForward
(which constrains parameter C ) are shown in Fig. 1. On the left-hand side of
the figure (i.e., template signature of Iterator), the standard keyword "contract"
associated with the formal parameter C renders the fact that allowSubstitutable
is true.

Our proposal consists in using the members of IterableForward (shown in the
nestedClassifier and ownedBehavior compartment of the class) to capture the
requirements that must be fulfilled by a given classifier to be considered as a
valid substitution for parameter C. Literally, a classifier satisfies the contract
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+ « create » Iterator (c : C::CollType)
+ next () : C::ValueType [1]
+ hasNext () : Boolean [1]

- collection : C::CollType [1]
- current : C::IndexType [1]
- last : C::IndexType [1]

Iterator
C : Class > {contract} IterableFoward 

Iterator (c : C::CollType) {
   collection = c ;
   current = first(c) ;
   last = last(c) ;
}
next () : C::ValueType {
   var result : C::ValueType ;
   result = C::get(c, current) ;
   current = C::next(current) ;
   return result ;
}
hasNext () : Boolean {
   return current != last ;
}

« ownedBehavior »
+ first (c : CollType) : IndexType
+ last (c : CollType) : IndexType
+ next (i : IndexType) : IndexType
+ get (c : CollType, i : IndexType) : ValueType

« nestedClassifier »
+ CollType : Class
+ IndexType : DataType
+ ValueType : DataType

     IterableForward
CollType : Class
IndexType : DataType
ValueType : DataType
first : Activity
last : Activity
next : Activity
get : Activity

Fig. 1. Specification of Iterator and its constraining classifier IterableForward

represented by IterableForward if, from this classifier: 1.) It is possible to derive
the type of the collection (CollType), the type of the element used as an index for
accessing elements contained in the collection (IndexType) and the type of the
elements it contains (ValueType) (In the C++ terminology, these types would
be called "traits" [4] of IterableForward.) and 2.) It is possible to derive the
activities that compute the index of the first element (first), the index of the
last element (last), the index following a given index (next) and the value of
the element at a given index (get).

Provided the definition of IterableForward, it is then possible to generically
specify the class Iterator with respect to its formal parameter C. In the left-
hand side of Fig. 1, we can see that the model of the class Iterator relies on
explicit references to traits and activities of C (as illustrated by the usage of fully
qualified names for each element) for typing its properties and implementing
its operations. For a given actual classifier S provided as a substitution for
parameter C (in a binding of the template Iterator), any reference to a member M
of C will be substituted with an element derived from S (provided that S realizes
IterableForward). Defining how a classifier S actually realizes IterableForward
is the purpose of the following section.

2.2 Specifying the Substitutability

Let us show how a class Vector can be made a valid substitution for the param-
eter C of template Iterator. Determining how Vector realizes IterableForward
(and each of its members) can be achieved by specifying a template binding rela-
tionship between Vector and IterableForward (along with a substitution for each
of these members). This solution is illustrated in the left-hand side of Fig. 2.

We can see that the substitutions associated with the binding relationships
state that: CollType will be played by Vector itself, IndexType by Integer and
ValueType by T (which is itself exposed as a parameter of Vector). Similarly, a
substitution is provided for each of the activities of Iterator. The actual activities
(first_vector, last_vector, next_vector and get_vector) are signature compat-
ible with those of IterableForward, except that the type of their parameters
has been substituted with the actual types provided as substitutions for traits
of IterableForward. Additionally, they encapsulate an implementation suited to
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« bind »
CollType -> Vector
IndexType -> Integer
ValueType -> T
first -> first_vector
last -> last_vector
next -> next_vector
get -> get_vector

first_vector (c:Vector) : Integer {
  return 0 ;
}
last_vector (c:Vector) : Integer {
  return c.size() ;
}
next_vector (index:Integer) : Integer {
  return index + 1 ;
}
get_vector (c:Vector, index:Integer):T{
  return c.elementAt(index) ;
}

             IterableForward

CollType:Class
IndexType:DataType
ValueType:DataType
first:Activity
last:Activity
next:Activity
get:Activity

Iterator

C : Class > {contract} IterableFoward 

«create» Iterator(c:Vector<Integer>)
next():Integer[1]
hasNext():Boolean[1]

collection:Vector<Integer>[1]
current:Integer [1]
last:Integer [1]

Iterator<Vector<Integer>>

« bind »
C -> Vector<Integer>

Iterator (c : Vector<Integer>) {
 collection = c ;
 current = first_vetor(c) ;
 last = last_vector(c) ;
}
next () : Integer {
 var result : Integer ;
 result = get_Vector(collection,    

               current) ;
 current = next_vector(current) ;
 return result ;
}
hasNext () : Boolean {
 return current != last ;
}

elementAt(index:Integer):T
size():Integer

elem:T[*]

        Vector T:DataType

Fig. 2. Realization of the contract IterableForward and instanciation of Iterator

the specificities of Vector (e.g., activity get_vector is described using operation
elementAt of Vector).

In UML 2, defining a binding relationship between a bound element and a
template normally implies a two steps generative process. It consists in repli-
cating the template and then substituting any reference to formal parameters
with actual elements provided in the binding. In the case of Vector, we clearly
do not want this generative process to apply. The presence of the Realization
relationship (appearing on the left side of the binding relationship in Fig. 2) cap-
tures this intention. The Realization relationship is just used as an assertion that
Vector realizes IterableForward and the TemplateBinding relationship explicitly
specifies how this realization is actually done without requiring any replication.
This reasonable interpretation is the only extension we introduce in standard
UML 2 templates. Regarding the template Iterator and its formal parameter C,
the binding relationship between Vector and IterableForward provides sufficient
information for determining the substitution to be operated if an instance of the
template Vector (e.g., Vector<Integer>) is provided as a substitution for the for-
mal parameter C. The result of the substitution is illustrated in the right-hand
side of Fig. 2.

Applying the same principles, the activity accum can be specified with two
formal parameters: C:Class > {contract}IterableForward and T:DataType =
C::ValueType > Addable<T>. Just like for Iterator, parameter C represents
a collection type. It is associated with IterableForward as a substitutable con-
straining classifier. The additional formal parameter T represents the elements
contained in the collection. Its constraining classifier Addable<T> is not substi-
tutable (it represents an abstract class owning an operation add(T,T):T ). Note
that T has a default substitution (in the UML2 metamodel, it corresponds to
the property default of metaclass TemplateParameter). It means that for a given
binding of activity accum, the only required substitution concerns parameter C.
The substitution for parameter T will be automatically inferred from C (i.e.,
C::ValueType). The following section sets links between these proposals and the
fundamental principles put into action in the field of generic programming.
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3 Related Works

Concepts and models are the most fundamental notions of generic programming
[5] [6]. We have not used these words until now in order to avoid confusion with
the homonym notions from MDE. A concept defines a set of requirements on
a type (like associated types and functions), and a type models a concept if it
satisfies its requirements. A concept can be associated with a formal type param-
eter to constrain the possible substitutions. A given type is a valid substitution
if it models the concept. Having provided these basic definitions, the mapping
with our proposal is straightforward. A concept is captured with a template clas-
sifier representing a contract. IterableForward (illustrated in Fig. 1) is thereby
a concept, and CollType, ValueType and IndexType are its associated types.
Activities first, last, next and get are used to describe the signatures of func-
tions that should be available for a given type to model the concept. The fact
that a type (for example Vector of Fig. 2) models a concept is captured by the
combined usage of Realization and TemplateBinding relationships.

Concerning works more directly related to UML 2 templates and the ex-
pression of constraints on type parameters, we have shown in previous publica-
tions [2] [3] how classifiers could be parameterized with policy classes by using
non-substitutable constraining classifiers. Except these works, there are (to our
knowledge) no other publications directly addressing the subject.

4 Conclusion

UML 2 provides support for template-based modeling, as well as dedicated
mechanisms for expressing constraints on type parameters. Expressing such con-
straints is crucial when considering behavioral aspects. For that purpose, we have
proposed modeling patterns related to the usage of substitutable constraining
classifiers. Our middle-term goal is now to put these proposals in practice for
the definition of a generic library similar to the STL of C++ (i.e., generic collec-
tion types and iterators). While we have explained that the mechanisms we have
proposed directly map to fundamental notions of generic programming, it would
not make sense to directly map the hierarchy of concepts (with their associated
requirements) of the STL, as it is strongly influenced by the facilities of the
language (i.e., pointers, increment and dereferencing operators, etc.). Further
studies are therefore required to adapt this hierarchy, taking into account the
specific properties of UML.
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Abstract. The Object Constraint Language (OCL) carries a platform
independent characteristic allowing it to be decoupled from implementa-
tion details, and therefore it is widely applied in model transformations
used by model-driven development techniques. However, OCL can be
found tremendously useful in the implementation phase aiding assertion
code generation and allowing system verification. Yet, taking full advan-
tage of OCL without destroying its platform independence is a difficult
task. This paper proposes an approach for generating assertion code from
OCL constraints by using a model transformation technique to abstract
language specific details away from OCL high-level concepts, showing
wide applicability of model transformation techniques. We take advan-
tage of structural similarities of implementation languages to describe
a rewriting framework, which is used to easily and flexibly reformulate
OCL constraints into any target language, making them executable on
any platform. A tool is implemented to demonstrate the effectiveness of
this approach.

Keywords: OCL, constraints, assertion code, programming languages.

1 Introduction

Model-centric methodologies for software development such as OMG’s Model-
Driven Architecture (MDA) [1] are becoming significant in academia and industry,
and Unified Modeling Language (UML) and Object Constraint Language (OCL)
[2] play an important role in these methodologies. For instance, UML class dia-
grams express the structural design of the system, where OCL specifies properties
that must be satisfied at particular times in the system. Figure 1 illustrates how
class diagrams and OCL descriptions could be used during development. The code
skeleton is automatically generated from the class diagram, e.g., by using Eclipse
UML, which is then used by developers to complete the implementation. The OCL
specifications can then be used to generate code for checking the system at run-
time, and/or unit test code. We will generally refer to it as assertion code hereafter.
If we take Java as a possible implementation language, we should translate the
OCL specification into Java-based assertion code. Similarly, for Python and Perl,
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OCL

OCL OCL

UML + OCL
Generate

skeleton code code
Developer’s

Python, Haskell, etc.
Java, C, C++

Translate OCL to
assertion code

Code for
asserting

constraints in

Skeleton Write code

using OCL

using UML

Assert

Fig. 1. UML and OCL usage overview

we need translators from OCL into Python and Perl respectively. It means that
we should have an OCL translator for each programming language that can be an
implementation language. However, a tremendous amount of effort is necessary to
develop an OCL translator from scratch for each language.

We have established a possible usage of OCL that spans implementations in
different languages, which imposes a need for existence of OCL translators for
multiple languages within one design. In such cases using OCL is most desir-
able since OCL is independent of the implementation technology. However, as
outlined in Fig. 1, currently available UML modelling tools, despite having the
facility to input and perform code generation from UML, and for some of them
provide the user with an interface to input OCL constraints, not many allow to
take OCL to the implementation level (dotted section of Fig. 1). Also, looking at
the current approaches (see Sect. 5) we can conclude that currently there exists
no approach suitable for working with OCL constraints on the implementation
level for multiple languages. Thus we should have a technique to develop an OCL
translator for each programming language with least possible effort.

In this paper, we propose an approach to allow developers to make use of
OCL from UML diagrams and to check developers’ programmes written in any
programming language of choice. This will be achieved by translating constraints
in OCL into their equivalent assertion code in the target language (e.g., Java,
C, C++, Python). Our OCL translator is based on model-driven techniques, es-
pecially model transformation. One of the advantages of model transformation
is the ability to reuse transformation rules when developing similar application
software, more concretely, transforming semantically similar models. Specifica-
tions of the OCL and implementation languages can be modelled as an abstract
syntax tree (AST). The transformation rules between these two models can be
used to achieve generation of assertion code that can be executed on the im-
plementation language platform. Consider two different programming languages
that could be possible targets for generating OCL assertions. If these two lan-
guages are similar, e.g., both of them are imperative programming languages,
some of their transformation rules can be shared, so that we can reduce the
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efforts to design the transformation rules. Therefore we can mitigate the above
problem mentioned in the last paragraph, i.e., larger efforts to develop an OCL
translator for each programming language. In addition, we have applied a model
transformation technique to a new area of language processing.

The approach focuses on making sure that most of the OCL translation can be
done within one framework independent of the target implementation language.
On the other hand, because of this lack of dependency, creating an OCL transla-
tor for an additional target language requires little understanding of OCL itself
on behalf of the developer, which is important for cases when software designer
(person working with OCL) and programmer (person working with implementa-
tion languages) are not the same person. The translation process is hierarchically
managed which makes it easily modifiable and extendible. The approach was de-
signed to make the following improvements upon existing approaches:

Extendibility:
– Lower efforts when creating OCL assertion code generators for languages

with no OCL support.
– Minimise efforts when creating support for a new language that is an

extension or a modification of an existing language.
Maintainability:

– Lower modification efforts by having semantically decoupled modules
that make it easier to locate the modification target.

– Because of semantically hierarchical structure, modifications can be
made at higher (more abstract) levels independently of concrete language
implementations. This can be said to be equivalent to the paradigm of
aspect-oriented programming [3], where a good example of useful modi-
fication include: logging, constraint checking, etc.

Understandability:
– OCL assertion code generators can be created with minimum under-

standing of OCL concepts.
– Working at more abstract levels alleviates understanding of concrete

implementation details.

The contribution of the paper can be summarised as follows: 1) providing a tech-
nique to develop an OCL assertion code generator using model transformation
with less efforts and 2) showing a new application area, i.e., language processors
for model transformation. The evaluation in this paper shows that by using our
approach we can develop OCL translators for four different programming lan-
guages with less transformation rules (hence, less effort), opposed to developing
each translator separately.

The rest of this paper is organised as follows. In the next section, we describe
our approach. Section 3 describes its architecture, pointing out how it realises the
contributions we have claimed. In Sect. 4, we cover an evaluation experiment for
our approach and summarise the results. Some related work is covered in Sect. 5,
followed by conclusion in Sect. 6.
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for apple in basket:
if apple.colour == "red":

...

(a) Sample Python code.

For Each apple In basket Do:
If apple.colour Is "red" Then

...

(c) Pseudo-code of the same action.

for (Iterator i = basket.iterator();
i.hasNext(); ) {

Apple apple = (Apple) i.next();
if (apple.getColour().equals("red")) {

...

(b) Sample Java code.

Fig. 2. Language similarities extraction

2 Proposed Approach

Our approach comprises a framework that allows developers to easily and with
minimum effort create a generator of OCL assertion code for any text-based lan-
guage of choice by reusing the mappings to OCL from other languages’ structural
and semantic concepts.

In order to understand the main concept behind our approach, consider the
sample code shown in Fig. 2. We have a sample Python code in Fig. 2(a) that
checks each apple in a collection of apples, basket, to see whether it is of
red colour. The above semantics are expressed in terms of a for-loop and an if-
statement nested inside it. If you further consider a sample Java code in Fig. 2(b),
you will find that even though syntactically it looks somewhat different, seman-
tically and structure-wise it is nearly identical. First, the idea of a for-loop for
iterating over the collection, and an if-statement for doing logical checks is the
same as in the Python example. Also the if-statement is again nested inside the
for-loop. These show that Python and Java programming languages resemble in
their conceptual vocabulary and in structure, even though the detailed syntax
is different.

In fact, we can make similar observations with most imperative programming
languages, including Java, Python, Ruby, Perl, C++ and C#. Since all of these
languages are based on the same imperative programming paradigm, they will
contain for-loops, if-statements, sub-procedures, etc. regardless of whether they
are strongly-typed, interpreted, run in a virtual machine or have some other
unique quality. Because of this similarity, we can describe for-loops such as the
one in Figs. 2(a) and 2(b), with a pseudo-language description which captures
the semantics of the performed action, shown in Fig. 2(c). What we are trying to
say is that, imperative languages all bear similarities in their semantics originally
and therefore share a lot of common programming structures. Of course, other
language types, like functional languages also all share common structures, since
most of them were designed to solve the same problem.

If we can extract common language features from all languages that fall under
a particular category, such as imperative languages, we could create, for example,
an imperative pseudo-language that captured all of the common constructs avail-
able in imperative programming languages. Such imperative pseudo-language
could be used to describe behaviour of OCL constructs in terms of imperative
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Imperative Functional

Java Python Haskell Lisp

OCL AST

MultiJava O’Haskell

DBC

JML

Fig. 3. Hierarchy of languages based on their structural similarities

constructs. By doing this, not only we can make the translation to the target im-
perative language easier, but also alleviate the need to completely comprehend
every OCL expression. Based on this idea, in our approach we define a hierarchy,
based on structural similarities of commonly available languages. Refer to Fig. 3
for an example of such hierarchy. Some languages can be further subdivided
into sub-hierarchies to capture similarities that are more fine-grained, and thus
more specific to particular imperative languages. An example of such languages
would be Python and Java, which both have for-each loops. What such hierarchy
allows us to do is to describe OCL concepts in terms of the intermediary pseudo-
languages (e.g., imperative pseudo-language or functional pseudo-language) in
one or more steps, therefore capturing the most conceptually difficult parts of
OCL at a higher level of abstraction and thus making them more language in-
dependent. This means that at the lower, more concrete levels, the developer
will only need to provide details specific to language syntax and grammar to
complete the mapping.

3 Implementing Our Approach

In order to assess the feasibility of our approach we have implemented an OCL
translation tool based on the language similarities. Our tool was implemented
using the Maude System [4], a term rewriting system, which comprises powerful
equational and rewriting logic capabilities, that would be useful for our multi-
step translation.

3.1 Generation Process

As mentioned in the last section, we have two major steps of translation; 1) from
OCL (precisely, an AST obtained by parsing an OCL description) to pseudo-code
and 2) from pseudo-code to the target source code. The structure of pseudo-code
depends on the class of the target languages. For example, we have a class of
pseudo-code for imperative languages such as Java, C and Python, and have an-
other class for functional programming languages such as Haskell and Lisp. We
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Target language DL
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UML + OCL

OCL AST
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OCL
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Output:
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Fig. 4. Generation process

call this language of pseudo-code Definition Language (DL). The transformation
then follows the hierarchy defined for the target language (see Fig. 3) starting
at the top and proceeding to the leaf DL, performing translations for each inter-
mediate step. The example in Fig. 2(c) is the pseudo-code written in Imperative
DL. Figure 4 shows the overview of our process of generating an OCL assertion
code from an arbitrary UML/OCL model, which consists of three main steps:

1. UML + OCL → OCL AST
The initial input to our system is a UML diagram annotated with OCL
constraints. We therefore require means of interpreting the UML diagram
and parsing the OCL constraints beforehand. After parsing a syntactically
correct OCL description, it is then converted into its AST representation.
UML, e.g., a class diagram, is used in the background to form an environment
containing the type information.

2. OCL AST → Target language DL
The target language for OCL constraints being executed is selected, and
the hierarchy is traversed starting from OCL AST definition step-by-step,
until the final output in the DL of the target language (target language
DL) is produced. The translation is defined as rewriting rules in Maude and
executed by using these rewriting rules and the type information. The details
of using the Maude will be mentioned later. This step is repeated until the
target language DL, e.g., Python DL, is obtained.

3. Target language DL → Code
Finally, the target language DL can be transformed into its equivalent exe-
cutable code by applying a set of printing rules . We call this stage printing.
The technique for this transformation is the same as the last step, i.e., we
define the printing rules as rewriting rules in Maude.
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e.salary > 100000 )
employees−>forAll( e:Employee |inv:

+salary: Integer

EmployeeCompany
1 .. * +employees

context: Company

def callExtMethod_A(self):
for e in self.employees:
if (not(e.salary > 100000)):

return False
return True

def invariant_1():
return self.callExtMethod_A()

(a) Input model. (b) Generated Python code.

Fig. 5. A company example with an OCL invariant

In other words with MDD’s terminology, we can regard the second and third
steps as PIM-to-PSM and PSM-to-PSI transformations respectively.

Combined, these three steps represent a pluggable architecture, which could
be inserted into an existing Integrated Development Environment (IDE) and
used as a provider of assertion code bits fetched from the model specification.
Such assertion code bits can be used in test cases or for run-time assertion.

For implementing the tool to automate the above generation process, as men-
tioned above, we have used the Maude language [4], which uses equational and
rewriting logic. The language contains a functional-like data definition language
used to define data structure and reduction rules, and a rewriting language used
to describe rewriting rules between data structures. In our tool implementation,
the data definition language was used to create each of the DL’s, e.g., OCL
AST (Fig. 6) or Imperative DL (Fig. 8), while the rewriting language was used
for defining mappings between the different levels in the hierarchy, e.g., between
OCL AST and Imperative DL (Fig. 7).

3.2 Example of Transformation Process

Suppose you were given a simple model of a company shown in Fig. 5(a). If
there was a company requirement that all employees must earn over 100,000,
in OCL it could be expressed as an invariant on the Company class as shown
at the bottom of the figure. This OCL constraint consists of a forAll expres-
sion, which enforces all Employee objects contained in the employees collection
to have the salary property set to a value greater than 100000. Generated
Python assertion code is shown in Fig. 5(b). The given OCL is transformed to
the method callExtMethod A and it is checked as the invariant via the function
invariant 1.

As described in the architecture model in Fig. 4, the first step is to convert
OCL expressions from the model into their AST representation. The OCL ex-
pression in our example can be expressed in the Maude language as shown in the
bottom part of Fig. 6, showing an example of mapping from OCL to its AST.
Note that at the top-level hierarchy we have the iteratorExp, applied to the
employees collection, where the type of the iterator expression is forAll, shown
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All employees in the company earn more than 100,000
employees->forAll( e : Employee | e.salary > 100000 )

iteratorExp 
    (assocEndCallExp simpleName("self") . simpleName("employees")) 
    -> simpleName("forAll") ( varDecl(simpleName("e"), pathName("Employee")) |
        operCallExp(
            attrCallExp simpleName("e") . simpleName("salary"), 
            simpleName(">"), 
            intLitExp("100000")
        )
    )

Fig. 6. AST representation of OCL constraint in Maude

iteratorExp OE −> simpleName("forAll")
             ( varDecl(SN,TYPE) | OE’ )

impMethodExtract( {
  impForLoop(
    OE,
    impVarDecl(TYPE, SN), {
      impIf(
        impNot(OE’), {
          impReturn(boolLitFalse)
        }
      )
    }
  )
  ; impReturn(boolLitTrue)
}, pathName("Boolean")) .

LHS: RHS:

Fig. 7. A rewriting rule for OCL AST → Imperative DL

in lines 1, 2 and 3 of the OCL AST part respectively. Lower down the iterator
and the sub-expression to be checked are declared.

At the second step of Fig. 4, we enter the OCL AST rewriting stage where by
means of rewriting rules we transform the OCL AST into the DL for a concrete
programming language. The intention of this step is to declare a transformation
of the OCL concept into an abstract imperative code for its assertion. In our
example, we declare a rewriting rule as shown in Fig. 7. At the top of the fig-
ure, the left-hand-side of the rule is declared to match all occurrences of forAll
expressions, on arbitrary collection expressions OE. Other variable parts of the
matching rule are expressed in capitals. To transform the matched expression
into Imperative DL’s one the right-hand-side states that it should be expressed
as an external method call (impMethodExtract) of return type Boolean that
loops (impForLoop) through the target collection OE and tests (impIf) whether
the sub-expression OE’ holds. If sub-expression is not satisfied, the method re-
turns (impReturn) with the boolean value false (boolLitFalse). The prefix imp
identifies that the following structure belongs to the Imperative DL, and thus
expressions such as for-loops, if-statements and return-statements are marked
with that prefix. One possible implementation of this abstraction in Python is
shown in Fig. 5(b).
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impIf(
impNot(
operCallExp(
(attrCallExp
simpleName("e").simpleName("salary")),

simpleName(">"),
intLitExp("100000")
)

),
{
impReturn(boolLitFalse)

}
)

Python DL (Imperative DL)

Matching

impIf(
impNot(
operCallExp(
(attrCallExp
simpleName("e").simpleName("salary")),
simpleName(">"),
intLitExp("100000")
)

),
{
impReturn(boolLitFalse)

}
)

Python DL (Imperative DL)

Matching

reduce

print (impIf IFEXP `{ THENEXP `}) =
“if (” + (print IFEXP) + "): n" +
" t" + (print THENEXP) .

if( not( e.salary > 10000 ) ):
return False

printing rules

Python code 

print (impNot EXP) =
"not (" + (print EXP) + ")" .

if( not( e.salary > 10000 ) ):
return False

printing rules

Python code

Fig. 8. Printing rules

By applying the above rule to the OCL AST in Fig. 6, we obtain the impera-
tive definition of the OCL constraint, shown in the top part of Fig. 8, the external
method call and the for-loop where omitted for clarity. In this transformation,
the iterator expression e.salary > 100000 is mapped to the variable OE’, and
as a result, appears inside the impIf(impNot(· · ·)) statement in the third line of
Fig. 8. The OCL constraint is now expressed in terms of the desired imperative
language constructs.

To produce executable Python code from the Imperative DL it can first be
transformed into Python DL in the same manner as the OCL AST was trans-
formed into the Imperative DL. However, in our example, Imperative DL con-
structs are already semantically and structurally close enough to Python for it
to be considered a valid Python DL. Therefore, we have obtained the most con-
crete definition language for Python and can apply printing rules to generate
the actual executable code (see bottom part of Fig. 8).

Printing rules for the target language are matched and applied to the obtained
DL top-down (Imperative DL in our case). An example of the printing process
is depicted in Fig. 8. The printing rule for if-block impIf is matched to the DL,
and its sub-expressions, if-expression and then-expression are matched to vari-
ables IFEXP and THENEXP respectively. The printing rule states that in Python
syntax if-block starts with "if (", followed by the if-expression, then the closing
bracket, a colon and then an indented then-expression. This reduction process is
then repeated for each sub-expression (impNot on the right hand side of Fig. 8),
until the whole DL is translated into Python code. For each target language
a printing module is declared, containing such printing rules for all syntactical
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concepts of the language. Common syntactical rules can be expressed at higher
levels of the hierarchy, for instance, the impIf rule in Fig. 8 is declared at the
imperative level and therefore need not be declared explicitly at the Python level.
Applying Python printing rules makes an executable Python code that can be
plugged into a class implementing the Company and used to check the original
OCL invariant.

Note that for defining an OCL translator for a new language using our ap-
proach, it is generally enough to define a set (or modify an existing set) of printing
rules to capture syntactical rules of that language, therefore understanding of
OCL will not be required. Modifications to output assertion code on syntactical
level will always be reflected though changes to the printing rules. On the other
hand, modifying structure will be done by changing rewriting rules higher up
in the hierarchy e.g., Imperative DL (Fig. 7). One could also, for example, eas-
ily inject a logging action for whenever a for-all evaluation is made by adding
log("message"); appropriately in the RHS of Fig. 7. This operation does not
require direct understanding of how each concrete language implementation per-
forms logging. If logging is not appropriate for some concrete language it can be
omitted during next transformation or printing stage.

4 Experimental Evaluation

To evaluate our approach, we carried out an experiment. The aim of the exper-
iment is to show that our approach gives us the ability to flexibly create OCL
assertion code generators for any language, gaining savings in manual efforts
required to implement each generator.

4.1 Procedure

For evaluation, we will implement four OCL translators for four different lan-
guages. Two languages from under the imperative languages hierarchy, Java
and Python; and two from under the functional languages hierarchy, Haskell
and O’Haskell. Then the efforts required to implement each one of those OCL
translators will be measured and compared to an estimated effort required to
create an OCL translator for the same language using a direct approach, i.e., the
development from scratch. The direct approach assumes an implementation of
OCL requiring minimum effort, realised by simply implementing a set of trans-
formation rules that directly translate each OCL expression (see Table 1) into
the target language, i.e., no printing rules and no intermediate definition lan-
guages are used. Finally, generated assertion code for each OCL translator will
be checked to make sure they exhibit desired behaviour.

We first build an OCL translator for Python, using the direct approach, and
use the resulting effort figure as a yardstick for estimating direct approach efforts
for other languages. Secondly, we pre-build the Imperative and the Functional
DLs, and then implement OCL translators for each one of the four languages
by extending the Imperative or the Functional DLs as appropriate, and measure
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Table 1. Evaluation targets

Logical Operators Iterator Expressions Collection Operations
xor iterate select includes isEmpty sum
implies forAll reject excludes notEmpty size

exists any includesAll union first
isUnique one excludesAll intersection last
collect sortedBy including flatten at

excluding

the efforts during each implementation. Lastly, the efforts that were required to
create each OCL translator as an extension in our approach, are compared to
the efforts for the direct approach.

To evaluate the effort at each step we need a comparable indicator that can
be used to measure and compare these efforts. Translation of OCL concepts
into concepts of other programming languages requires a description of their
structural transformation, for each concept. Regardless of which approach one
decides to undertake, to translate an OCL concept to the concept in the target
language, one will have to specify a transformation rule that would provide for
the translation of the concept. If one did not have to specify as many transfor-
mation rules to translate all of the OCL concepts into the target language, then
it would be valid to claim that one did not spend as much effort on specifying
the translation.

Based on this claim, we will be using the number of transformation rules as
an indicator of the amount of effort spent on translating a fixed set of OCL
concepts into the target language. However, the effort involved in creating a
transformation rule also has to be taken into account, thus to provide a fairer
view of complexity we need to consider the number of semantic units introduced
into the system. The larger the number of semantic units, the more difficult it
becomes to grasp all of the concepts used in a transformation rule, and thus we
could say that the complexity of the system also becomes greater. Therefore,
we will also count the number of additional semantic structures that had to
be defined in order to provide for creation of these rules. Semantic units are
specified as definitions in Maude.

In our approach, at the final stage of translation process we use printing rules
to produce executable code. These rules are also one kind of transformation
rules and are therefore taken into account as effort units as well. From the above
discussion, we can summarise the following evaluation parameters to be used to
evaluate the effort: 1) the number of rule definitions in the rewriting language
(RR), 2) the number of declarations in the data definition language (S), and
3) the number of definitions in the printing module (PR) in Maude, for each
generator. For evaluation the total of the above parameters will be compared
with the number of rewriting rules required to create an OCL assertion code
generator without the use of the intermediate definition languages i.e., the direct
approach.
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Fig. 9. Evaluation results

Note that the main feature of our approach is in the fact that creating an
OCL assertion code generator for a new language only requires the developer to
provide details specific to the language in its category. For example, creating a
generator for Java would require to provide structural description and syntax for
Java class cast expressions as they will be used in the for-each loops in Java but
not necessarily in other imperative languages, such as Python. For this reason,
the evaluation parameters described only need to be counted when creating the
final node (the leaf) in our hierarchy, since we can assume that parent nodes are
predefined.

The complete list of all implemented OCL features is given in Table 1. All
features are subdivided into three main groups: iterator expressions, collection
operations and logical operations .

4.2 Results

In order to clearly show the efforts saved using our approach compared to im-
plementing directly, we have summarised our results in Fig. 9. The numbers are
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given in format RR[S] showing the number of rewriting rules and number of
structures defined, subdivided according to groups in Table 1. In the example
of Java, the numbers of rewriting rules and of structures for iterative expres-
sions are 1 and 3 respectively. Note that O’Haskell is an extension of the Haskell
language comprising several behavioural and syntactical changes. However, im-
plementation of OCL assertion code generator only required a modification in
one syntactical rule in the printing module (see bottom right of Fig. 9).

For each target language, we have shown the estimated effort of direct im-
plementation (bar on the left) and actual effort by our approach (bar on the
right). In the example of Java, 36 and 85 rules were written in our approach and
direct one respectively. We have also shown the percentage of the effort saved
in case when our approach is undertaken. In Java, we could reduce 49 (85 − 36)
rules and as a result, 58% (49/85) of the effort could be reduced. Each bar-chart
assumes that the parent node in the graph is predefined.

4.3 Discussion

From Fig. 9 we can see that on average we are saving approximately 50% effort,
which clearly indicates that languages share a fair amount of structural and
semantic similarities and reusing those similarities is very efficient. The savings
in effort that can be seen from the results are a good indication that languages
in the same structural family can be related also on the semantic level and hence
can be effectively grouped for reuse. It was also shown that small changes in the
syntax of the language require proportionally small efforts of implementation.
Note that representativeness of evaluation results is not ideal as all evaluation
procedures were carried out by the same person. For a fairer result evaluation
with adding new languages by several persons should be considered.

Measuring effort involved in implementing an OCL translator in an unbiased
manner was a very difficult task. In our effort evaluation strategy we have tried
to cover most complexity aspects associated with implementation of OCL trans-
lators, by quantitatively measuring the number of rewriting rules, printing rules
and semantic structures. However, implementation of some rewriting rules was
more complex than others, and not because of their size, but because of their de-
pendency on other rewriting rules (i.e., application of such rule must be followed
by application of another rule). Even though we have tried to take into account
the complexity of rewriting rules by counting the number of structures defined
to support them, it was not always a complete indication of effort. On the other
hand, some rewriting rules were very easy to specify, because they were simply
representations of a concept in the target language, such as a for-loop, and were
not directly related to OCL.

In addition, as can be seen from Fig. 9, most of the complex OCL iterator ex-
pressions (Iter. Exp.) could be rewritten using non-OCL concepts, in other words
concepts from Imperative DL or Functional DL, which are independent of OCL.
This underlines the fact that our approach alleviates the need to understand
OCL completely.
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5 Related Work

Currently available approaches for evaluating OCL constraints can be split into
three main types: metamodel-based model validation, source code assertion and
translating OCL to another Design-by-Contract (DBC) language.

Metamodel-based model validation. Checking for correctness of OCL con-
straints for a model using its meta-model description can be advantageous since
such approach can take arbitrary data models as their input, and therefore in
theory it is possible to validate absolutely any type of data. Some researches that
use this approach include Kent OCL Tool [5], NAOMI [6], and ITP/OCL [7].
However, very few language platforms provide direct access to objects at run-
time which would be necessary for validation.

Checking constraints on the implementation level. Source code asser-
tion approaches usually use code instrumentation or aspect-oriented techniques
to achieve code checking at run-time. However, all such approaches, including
jContractor [8], Handshake [9], ocl2j [10], Jass [11], and iContract [12], are tailor-
made for a specific programming language.

Translating OCL to JML. Another approach is to translate OCL to another
OCL-like DBC language such as JML [13,14,15]. Hamie has proposed a set of
mappings from OCL to JML [16] to which we have previously contributed with
our own extensions [17]. However, the problem with such approaches is that there
is currently no other DBC language that can be applied to any programming
language.

6 Conclusion and Future Work

To conclude, we have first identified the possible reasons to why OCL finds it
difficult to dissolve into industry, and proposed our approach to remedy this
problem and also performed an experiment to confirm the claimed effort savings
when using our approach. We showed how new OCL translators can be added
without knowledge of OCL and how functionalities such as logging can be easily
injected into OCL translator implementations.

Some OCL functionality was not covered, such as history expressions, OCL
messages and the allInstances call, that we have not implemented and left
for future work. We have also realised of certain limitations of our approach,
such as difficulty in introducing DLs into the middle of the hierarchy because
this would cause change to propagate to all nodes below and would be difficult
to automate. Also, carrying out evaluation with several persons, on a greater
variety of target languages, possibly including languages that share similarities
in multiple language families will be considered for future work.

Confirming whether the generated assertion code exhibits consistency, accu-
racy and determinateness, as proposed by Gogollain et al. [18], is also important
and will be considered for future work.
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Abstract. The usage of the Unified Modeling Language in the indus-
trial context becomes increasingly popular. There is an agreement in
academia that the Object Constraint Language (OCL) is suitable for
defining model constraints and queries. However, it has not yet been
broadly adopted by practitioners because they find it difficult to define
OCL expressions. Thus, simplification is desirable to increase the use of
OCL in practice. We propose OCL libraries (OCLLib), which simplify
the development of OCL expressions and enable a high reuse factor, are
configurable, testable (OCLUnit) and documented (OCLDoc). In this
paper we present the underlying concepts related to OCL library devel-
opment we used in UML specific and domain specific projects conducted
in academic and industrial contexts, respectively.

Keywords: Systematic development of OCL, OCL libraries, OCL test-
ing, OCL documentation.

1 Introduction

The Unified Modeling Language (UML) is the well–supported, de–facto standard
for object–oriented design and analysis of software systems used to design large
scale models. The quality management of models can be supported by the use
of constraints and queries expressed in the Object Constraint Language (OCL).
The maturity of the OCL syntax and semantics caused its utilisation within
other Object Management Group (OMG) standards and extension of its scope
to any language based on Meta Object Facility (MOF). In our recent projects we
have successfully used OCL for model assessment and found that OCL is expres-
sive [1] and its interpretation is fast [2] enough for querying large scale models.
In contrast to the syntax and semantics, the pragmatics of OCL needs further
improvements. Despite the fact that the language became broadly supported by
modelling tools [3], practitioners still find OCL specifications difficult to under-
stand [4] and their development difficult, error–prone and time–consuming [5].
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The twofold characteristic of OCL (it was designed to be used at the modelling
level but has a textual notation closer to the programming level) causes that
model designers may find it too formal and programmers too abstract. The pos-
itive consequence of OCL being similar to programming languages is the fact
that some best practices known from the software development context can be
used for development of OCL expressions.

Before we introduce our solution we want to discuss selected challenges re-
lated to development of OCL specifications. (C1) Error–free OCL development
is hardly feasible. For the software development no error–detecting approach
will ever be able to produce error–free software [6]. For large and complex OCL
specifications the same problem is encountered, but it is possible to reduce the
number of syntax and semantic errors. As the syntactical correctness is crucial it
is already reflected at theoretical and technical levels, but not all issues related to
the semantical correctness are solved. (C2) Easy to understand OCL expressions.
Correct expressions (C1) should be understandable by developers and users [4].
In general, all techniques used in programming languages can be supportive for
this challenge, e.g. usage of simple algorithms and data structures, meaning-
ful names, following coding conventions, documentation, tracing and debugging.
(C3) Easy and efficient OCL development is an idealistic and subjective view.
The language itself can not be simplified but its complexity can be leveled by
providing learning (C2) and development support. Experience knowledge should
be stored and shared. If there are examples of correct OCL expressions (C1)
available (which can be customized, or even better, only parametrised) then the
development of OCL expressions should be easier and more efficient. For this
challenge technical support plays a huge role. (C4) Easy to evolve OCL expres-
sions. Similarly, as any piece of code OCL specifications are evolving [4]. There
are two critical dangers: the meaning of some parts of the specification can be
forgotten and as such hard to evolve or refactor to cover new requirements; and
introducing new parts or updating existing ones can have undesired impact of
other parts of a specification.

We propose to use the following established techniques: a systematic devel-
opment including usage of libraries, testing and in–code documentation. In the
remainder of the paper we present the extended development process (Section 2)
and discuss our results and future work in the context of the aforementioned
challenges (Section 3).

2 The Extended Development Process

In this section we present the idea of testable and documented libraries of OCL
expressions and their usage. Depending its purpose, a library can consist of differ-
ent components: definitions, constraints, queries, tests and their documentation.
A collection of libraries and test models forms an OCL library project. Such a
project can be used by another tool, e.g. constraints can be used in a modelling
tool and queries can be used in a model analysis tool. An overview of the OCL
library project development and usage process is illustrated in Fig. 1. The
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upper swimlane corresponds to the OCL library project development stage
(Fig. 1). It starts with a specification of OCL definitions and tests. We denoted
these activities as being parallel while different approaches can be used here.
One can traditionally start with the definition specification or can follow the
test driven approach [7] and define tests and test models first. This is up to the
developer. As soon as definitions, tests and test models are defined the tests can
be evaluated. If the tests return expected results (denoted as [pass] in the dia-
gram), and in the meantime the documentation was created, one can start using
the definitions. Otherwise (denoted as [fail]) the development process should
be continued. As already mentioned, we consider different usage scenarios of
OCL library project: tested and documented definitions can be used in other
definitions, constraints or queries. In Fig. 1 we present the latter case. At this
stage queries are designed and used in model querying on project models. The
difference between test and project models is that for the former the expected
results are known and test models should not change. If a test model changes
then the corresponding tests should be updated to reflect these modifications.
Due to the space limitations we give only an overview of the proposed extensions.
More details can be found at http://squam.info/ocleditor/

Documentation development

Definitions specification

Tests specification Tests execution

A

A

Documentation

Test models

Tests

Definitions

Project models

Queries specification Model queryingQueries

 [fail]

 [pass]

Fig. 1. The library development and usage process

OCLLib—Collection of OCL Expressions. The main goal of a library is to pro-
vide a set of useful and easily reusable OCL expressions (C3). If OCL expressions
are split into small chunks, following the modularity and separation of concerns
paradigms, then the probability of OCL expression reuse by parametrisation
but without adaptation is high. Additionally, as OCL expressions depend on
an underlying metamodel (MOF or MOF based) they have to be modularised
into libraries specific to this metamodel, which specifies the scope of applica-
tion of the library. Furthermore, modularisation based on particular parts of the
metamodel can be considered, e.g. libraries specific to UML class diagrams or

http://squam.info/ocleditor/
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activity diagrams. To increase and configure reuse, import and visibility concepts
are used. A library consists of definitions, constraints, queries and tests which are
grouped into blocks, which may be documented. Definition and constraints
are concepts adopted from the OCL/UML standard specifications. Definitions
enable better modularisation and higher reuse: defined methods can be used in
other libraries, whereas, defined attributes can be additionally used to configure
(the parametrisation principle) a library. For example, a collection of metrics
can be defined in a library and upper bounds for them in another one, then the
metric library can import the configuration library. Both, definitions and con-
straints can be used by other tools. A query is an enhanced concept from the
Query/Views/Transformations standard adding parts specific to model querying
and as such can be used in model design and analysis tools.

OCLUnit—Testing of OCL Expressions. Validation (C1) is required before OCL
definitions are used in other libraries or by other developers (C3). In program-
ming practice testing plays a manifold role during the lifetime of a piece of code.
Introducing testing to the OCL development practice addresses all challenges
discussed in Section 1. Testing reduces bugs (C1) and moreover, bugs need only
to be found once [8], if they are again introduced due to code changes (C4) they
can be automatically detected with prior defined tests. Moreover, a piece of code
is usable (C3) for anyone (else) only if it passes all available tests. Additionally,
a test case is a simple scenario with a known result, and can be used to un-
derstand (C2) code being tested. As pointed out in the problem statement the
perceived complexity of OCL is high and testing gives a developer a high degree
of confidence that a piece of code is correct. Thus, testing can increase the usage
of OCL by practitioners.

OCLDoc—Documentation of the OCL Expressions. Documentation of any
software artefact is important for many reasons. Among others as a mean to
knowledge transfer and communication. Moreover, high–quality software
documentation reduces the maintenance burden and improves productivity by
enhancing reusability. The programming practice [8] showed that the best way
to keep a technical documentation up–to–date is to generate it out of source
code comments, as it can be written simultaneously with coding and with the
same tool by a programmer. Based on documentation OCL developers can easier
search for similar expressions and reuse or refactor them, where are OCL users
can make a proper choice of needed expressions.

3 Discussion and Conclusion

In this paper we analysed challenges for a pragmatic OCL development. We
presented three extensions as a possible partial solution to these challenges. We
successfully used the described development process in a number of didactic
and research projects. The largest project, regarding the size of OCL libraries,
was conducted during the previous semester and had didactic purposes and
an evaluation aim. In a period of 2 weeks 10 students developed 50 libraries
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(4.5kLOC excluding comments) to implement a set of UML metrics [9] in OCL.
Even though students had low experience with OCL they found the assigned
task easy. The largest project regarding the size of models, was conducted this
year within an industrial context. The aim of the project was to document
and improve a business process and IT infrastructure. In this project model
queries were successfully used to improve the quality of process models (250
entity elements).

The solution we proposed address all challenges at the conceptual (introduced
extensions) and at the implementation level (the tool). To address the challenges
we currently implement tracing and debugging (C1–C2) and in the future we
want to integrate concepts of patterns and to collect and evaluate guidelines
for an efficient OCL library development (C3). Another open issues are impact
analysis, regression testing and refactoring support (C4).
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Maŕıa Victoria Cengarle1, Hans Grönniger2, and Bernhard Rumpe2
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Abstract. We present a taxonomy of the variability mechanisms of-
fered by modeling languages. The definition of a formal language en-
compasses a syntax and a semantic domain as well as the mapping that
relates them, thus language variabilities are classified according to which
of those three pillars they address. This work furthermore proposes a
framework to explicitly document and manage the variation points and
their corresponding variants of a variable modeling language. The frame-
work enables the systematic study of various kinds of variabilities and
their interdependencies. Moreover, it allows a methodical customization
of a language, for example, to a given application domain. The taxon-
omy of variability is explicitly of interest for the UML to provide a more
precise understanding of its variation points.

Keywords: Modeling languages, variability, formal semantics, UML.

1 Introduction

A complete definition of a formal modeling language consists of the descrip-
tion of its syntax and its semantics (meaning) [1]. It is widely accepted that a
commonly agreed formal definition (especially semantics) of a language helps to
avoid misunderstandings and lack of interoperability between tools.

In [2], we presented a tool-based approach to define textual modeling lan-
guages and to formalize their semantics in a flexible way using a theorem prover.
While one of our main targets is the formalization of the Unified Modeling Lan-
guage (UML 2) [3,4], the approach is more general and applies to any modeling
language based on objects.

In this paper, we investigate how variability in a language definition can be
formally specified. This work is inspired by the introduction of semantic vari-
ation points in UML where portions of the language have been deliberately
incompletely specified. The benefits of systematically describing UML’s vari-
ability have been noted early [5]. The treatment of semantic variation points in
the UML, however, is rather disappointing. It was not systematically carried out,
semantic variation points are dispersed across the documentation. Moreover, the
standard fails to tag them completely: it suffices to look for underspecified se-
mantic definitions in order to realize that there are far more semantic variation
points than those explicitly labeled as such.
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Beyond UML, we are interested in a general treatment of variability in model-
ing languages which may be of semantic and also of syntactic nature. Hence, one
goal of this work is to classify the kinds of variability that a modeling language
may offer and their interdependencies. Additionally, we extend our approach
from [2] and present a tool-based solution to define and configure variability
within a language definition.

A systematic approach to variability should make it possible to explicitly state
all (possibly implicit) assumptions and previously chosen variants. This allows a
systematic customization of a language for a given application domain. Further-
more, tool builders can refer to particular variants in order to document design
decisions. Variation points of modeling languages, unlike those of product lines,
are not associated with a binding time [6]. That is, tool builders may delay the
binding of a variation point to a variant and leave the decision to project man-
agers. Moreover, these may even forward the disambiguation to modelers. As for
UML, currently implementors may provide [...] informal feature support state-
ments [...] for less precisely defined dimensions such as presentation options and
semantic variation points” [3, Sect. 2.3]. We improve this situation by making
precise the definition of the variability mechanisms offered by a language.

The rest of this paper is organized as follows. Sect. 2 describes the constituents
of a modeling language definition. Sect. 3 presents our classification of variability
in a language definition. Sect. 4 introduces our tool-supported solution using
feature diagrams. The approach is illustrated with a simple example of UML-
like class diagrams. Sect. 5 discusses related work and Sect. 6 draws conclusions
and sketches future work.

2 Constituents of a Modeling Language Definition

As shown in Fig. 1, a complete definition of a modeling language consists of the
following basic parts:

– the concrete syntax of the language, which may be a graphical or textual
syntax or a combination of both,

– the abstract syntax to which the concrete syntax is mapped. For a textual
syntax this may be given as abstract syntax trees. In case of graphical mod-
eling, metamodels are typically used. Additionally, a set of well-formedness
rules or context conditions are defined,

– some minimal abstract syntax that can be derived from the abstract syntax
by expressing more complex constructs of the language by primitive ones.
Thereby the number of constructs but not the expressive power of the lan-
guage is reduced. This eases the definition of the semantics of the language.
This step may not be required for some languages,

– a semantic domain, a domain well-known and understood, typically based
on a well-defined mathematical theory, and

– the semantic mapping that relates elements of the (minimal) abstract syntax
to elements of the semantic domain.
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Fig. 1. Basic parts of a modeling language definition

Fig. 2. Theories that constitute the system model

Characteristic for our approach to define the semantics of a modeling language
is a set-valued or predicative semantic mapping of the form sem(.) : L → ℘(S).
The semantics of a model as an element of the (minimal) abstract syntax m ∈ L
is therefore the set sem(m) of elements in the semantic domain S.

We defined a single semantic domain S used as a target for the semantic
mapping of various kinds of object-oriented modeling languages [7]. This do-
main, called system model, captures and integrates all aspects of object-oriented
systems using basic mathematical theories. It is rather detailed as it defines var-
ious structural, behavioral, and interaction aspects, and is built in a modular
fashion as depicted in Fig. 2. Systems in the system model are state transition
systems (theory STS). They operate on a global system state which is com-
posed of object individual states (theory State). States constitute a data store
for attribute values of objects (theory Data), a control store (theory Control) for
active threads and computational states of methods, and an event store for un-
processed events (theory Events). States evolve dynamically. Static information
(e.g., which classes, methods, etc., exist) is defined through underspecified uni-
verses containing abstract identifiers only. For example, UTYPE is the universe of
type names (defined in theory Type). Classes are elements of the universe UCLASS

(theory Object) and are only described by functions that yield information about
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their attributes or methods, i.e., they are not constructed from records. Thus,
the definition of the system model is predicative and not constructive. For a
complete picture of the system model features, the reader is referred to [7].

The system model as a single semantic domain and the set-valued semantic
mapping enable a straightforward treatment of composition and refinement of
possibly incomplete and underspecified models of various modeling languages [8].
For example, the integrated semantics of models m1, . . . , mn from possibly dif-
ferent languages L1, . . . , Ln is given as semL1(m1) ∩ . . . ∩ semLn(mn). In the
same way, m′ ∈ L is a refinement of m ∈ L, exactly if sem(m′) ⊆ sem(m).

3 Classification of Variability

In this section, we develop a classification of variability that a modeling language
may offer. We do not restrict our attention to semantic variability (in UML
terms, semantic variation points) but also consider syntactic variability.

In a very abstract view, the syntax of a formal language is defined by a set
of words over some alphabet A, i.e., L ⊆ A∗. Syntactic variability allows for
defining more than one syntax, say L1 and L2, which normally contain many
common words but are different. That is, there is at least one model (i.e., word)
m ∈ (L1 ∪ L2)\(L1 ∩ L2) that is in one but not both languages. The semantics
of a syntax L over some semantic domain S can be defined as sem ⊆ L × S
(in a relational style). Semantic variability means more than one semantics,
say sem1 and sem2, for a given syntax L. These mappings may have different
codomains S1 �= S2 or not. As with the syntax, sem1 and sem2 are mostly the
same but there is at least one model m and an element s for which (m, s) ∈
(sem1 ∪ sem2)\(sem1 ∩ sem2). So the meaning of the model differs according to
which semantics is chosen.

There naturally may be languages containing both kinds of variability, and
relationships between both exist. In the following, we concretize this abstract
view by analyzing how variants and their interdependencies can be classified.

3.1 Syntactic Variability

Regarding concrete syntax (see Fig. 1), differences can be given by, e.g., alterna-
tive keywords such as “public” or “+” in case of modifiers, or the font size, line
thickness, and color of some graphical element. In UML, these are called pre-
sentation options and can be classified as presentation variability. They improve
the readability of models. Nevertheless, presentation options are so defined that
the abstract syntax of models remains the same even if the options are changed.1

1 This is an important assumption we make on presentation options, namely that
they do not alter abstract syntax and hence the intended semantics of the presented
model element. Font size, for instance, may have a meaning in cartography, where
cities with bigger labels have more inhabitants. In the case of cartography, therefore,
font size does matter and is not a presentation option.
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We do not classify presentation options as syntactic variability since they
do not make it possible to define different languages. Their effect exclusively
concerns the concrete syntax. They must, nevertheless, be registered and docu-
mented.

The syntax of a language may allow the use of stereotypes. The term stereo-
type, borrowed from UML, is used here to designate a general principle of ex-
tending the syntax of a language. The concrete set of defined stereotypes (e.g.,
as part of a profile in case of UML) is classified as syntactic variability.

Another kind of syntactic variability also found in the syntax is given by so-
called language parameters. Concerning for instance UML, the language of state
machines defines transition systems whose transitions are triggered by a stimulus
subject to a condition on the stimulus and/or the internal state of the object.
The language in which conditions (or guards) are expressed is not specified. This
constitutes a syntactic variability.

In the abstract syntax, optional context conditions may exist. Examples
thereof, for instance for a particular code generator to operate, are the enforce-
ment of types of attributes of a class to be defined, and the restriction to single
inheritance only. Context conditions rule out certain models based on syntactic
criteria. Only if the context conditions are met, the model is well-formed and it
makes sense to give the model a semantics.

The syntax also may offer constructs that enhance readability and are seman-
tically equivalent to other, usually more involved, expressions of the language.
Such constructs are often referred to as “syntactic sugar” and may be safely
omitted, since models of the language obtained by the use of those constructs
can be replaced by equivalent models that do not use the abbreviations. We clas-
sify this as presentation variability. In particular, the language can be reduced
to a minimal one, which not necessarily is unique. Note that a minimal language
derived this way may still allow synonyms, i.e., syntactically different models m1
and m2 that denote the same semantics sem(m1) = sem(m2).

Summarizing, we classify any variability as syntactic variability that still may
be present in the minimal abstract syntax of a modeling language and hence in-
teracts with the semantics. This variability originates from stereotypes, language
parameters, and optional context conditions.

3.2 Semantic Variability

While UML only uses the term semantic variation point, we further subdivide se-
mantic variability into semantic mapping variability and semantic domain vari-
ability; cf. Fig. 1. A helpful analogy might be to see the variability of the semantic
mapping similar to configuration options of a code generator while variability of
the semantic domain has its analogy with properties of an underlying run-time
system or target platform.

Regarding semantic domain variability, the system model defined in [7] already
contains explicit variability in form of extensions through optional definitions.
In general, semantic domain variants may provide alternative realizations of
functions, additional constraints to properties of existing definitions, or optional
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structures and definitions. Alternative realizations are, for example, different
notions of type-safe method overriding. Additional constraints are, for example,
the restriction to single inheritance only, or the requirement of certain predefined
types like, e.g., “String.”

Similarly, in the semantic mapping, the same mechanisms to introduce vari-
ants apply. Semantic mapping variability often manifests as alternative choices
for specific mapping functions while the target domain remains the same. For in-
stance, one mapping of super-classes of classes in a UML class diagram assumes
multiple inheritance in the semantic domain, while an alternative mapping uses
some delegation mechanism for a domain that may lack multiple inheritance.
As this example shows, there are also various relationships between variants on
the different levels which will be discussed in more detail in the following. As
another example, consider the representation of states of a state machine in an
implementation as, e.g., a simple enumeration or using the state pattern [9].

Note that semantic variability is transparent to the modeler. But it may be
necessary to allow the modeler to select one or the other interpretation of a con-
struct. We propose to model these interpretation choices as syntactic variability
by providing corresponding stereotypes. For instance, consider the example of
a semantic mapping for a class which states that only a single instance of that
class may exist at run-time. One possibility would be to encode this syntactically
as a stereotype “singleton” which can be used by the modeler and which is used
by the semantic mapping to associate exactly this meaning to the given class.

Table 1 provides a comprehensive summary of our modeling language vari-
ability classification.

Table 1. Variability classification summary

presentation variability variability not present in a minimal abstract syntax
presentation options affect concrete syntax only
abbreviations can be omitted without losing expressiveness

syntactic variability variability affecting a minimal abstract syntax
stereotypes syntactic encoding of semantic variability
language parameters usable with different independent languages
context conditions constrain the set of well-formed models

semantic variability variability in the semantics
semantic domain variability variability in the underlying target domain
semantic mapping variability different choices for mapping functions

3.3 Interdependency and Consistency

Dependencies between variants exist. These are characterized with the help of
examples. Consider the integration of multiple languages: One language might
be parameter to another, e.g., a constraint or action language. Additionally, lan-
guages may be mainly orthogonal and used to describe different views of the
same system such a class and state machine diagrams. In any of these cases, dif-
ferent assumption on the underlying domain may be made, i.e., different variants
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of the semantic domain may be assumed. Moreover, a language that is parameter
to another is equipped with a semantics that has to fit the assumptions made
by the parametric language.

Context conditions may influence the selection of a specific semantic map-
ping. For instance, if the context conditions for UML class diagrams guarantee
that multiple inheritance is syntactically excluded, then one can safely select a
semantic mapping that only handles single inheritance. Similarly, if a semantic
domain only allows for single inheritance, then a delegate mechanism must be
resorted to by the semantic mapping of UML class diagrams in case multiple
inheritance is allowed syntactically.

From these examples we conclude that it is important to capture all possible
variants and their interdependencies. We propose to model them using feature
diagrams including constraints that state inclusion or exclusion between vari-
ants [10].2 As a supplement, informal descriptions of the variabilities can be
given to explain their raison d’être. The proposed approach is completely sup-
ported by tools and will be described in the next section.

Unfortunately, capturing variants as feature diagrams and constraints does
not guarantee that a concrete configuration of variants that conforms to the
given feature diagrams is consistent. Since we have many configuration options,
we might have not captured all constraints to rule out inconsistent, unwanted,
or simply uninteresting configurations. Especially when integrating multiple lan-
guages, there is a possible risk of contradicting mapping functions. One way to
obtain a consistent set of theories is to actually prove consistency. That is, given
two languages L1 and L2 with semantic mappings sem1 and sem2, to show

sem1(m1) ∩ sem2(m2) �= ∅

for some witnesses m1 ∈ L1 and m2 ∈ L2.

4 Definition and Configuration of Variability

We now describe the actual definition and configuration of variability in a mod-
eling language with respect to the configurable semantic mapping and the like-
wise configurable semantic domain. Syntactic variability such as optional context
conditions and language parameters can be handled similarly and are therefore
omitted here. The presentation is accompanied by a simple running example.

The whole approach of defining a language and its variabilities is supported by
two tools. The basic tool-based approach (neglecting variability) has been pre-
sented in [2] and is summarized below. It features a complete, formal, flexible,
and machine-readable definition of modeling languages using the tools Monti-
Core and Isabelle/HOL.

2 There is an inclusion relation between two or more variants if the choice of one makes
it mandatory to choose the other(s). There is an exclusion relation between two or
more variants if the choice of one forbids the choice of the other(s).
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Fig. 3. Approach with tool support

4.1 Prerequisites

The basic approach is depicted in Fig. 3. MontiCore [11] is a framework for
the textual definition of languages based on an extended context-free grammar
format. We use MontiCore to define the concrete syntax of a language because
it provides enhanced modularity concepts like language inheritance and embed-
ding (not used in the simple running example, though). Sophisticated framework
functionality allows, for example, an easy development of generators. Note that
the general idea can similarly be implemented using, e.g., metamodeling.

To provide a semantics developer with maximum flexibility and also with some
machine checking (e.g., type checking) as well as the potential for verification
applications, we use the theorem prover Isabelle/HOL [12] for

– the formalization of the system model as a hierarchy of theories,
– the representation of the abstract syntax of the language as a deep embed-

ding [13], and
– the actual semantic mapping that uses the generated abstract syntax and

maps each language construct to predicates over systems of the formalized
system model.

Concrete Syntax. The example grammar CDSimp in Fig. 4 defines UML-like
class diagrams with classes that can have super-classes. MontiCore grammars

1 grammar CDSimp {

2 CDDefinition = "classdiagram" Name:IDENT "{" (CDClass)* "}";

3

4 CDClass =

5 "class" Name:IDENT ("extends" scl:IDENT ("," scl:IDENT)*)?";";

6 }

Fig. 4. MontiCore grammar of class diagrams

have terminal symbols enclosed in quotes (see, e.g., Fig. 4, line 2) and support
Kleene closure (*) and option (?), among other constructs. The two rules of
CDSimp use the built-in identifier rule IDENT. Nonterminals may be prefixed by
descriptive names followed by a colon (like IDENT, l. 2). According to Fig. 4, a
class diagram definition (l. 2) has a name and a set of classes. Classes (l. 4) have
a name and a comma separated list of names that refer to super-classes.
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Abstract Syntax. A MontiCore generator produces the Isabelle/HOL data
type definition in theory CDSimpAS (see Fig. 5) from the grammar in Fig. 4.

1 theory CDSimpAS imports GeneralAS

2 begin

3 datatype CDClass =

4 CDClass IDENT "IDENT list"

5

6 datatype CDDefinition =

7 CDDefinition IDENT "CDClass list"

8 end

Fig. 5. Generated abstract syntax data type in Isabelle/HOL

Isabelle/HOL data types have a name (e.g., CDClass in Fig. 5, l. 3), a construc-
tor (also CDClass, l. 4), and a list of arguments. Data type IDENT is defined in the
imported, re-usable theory GeneralAS and iteration in a grammar is translated
to the built-in data type list (e.g., l. 4). A complete account on the mapping
of MontiCore grammars to Isabelle/HOL can be found in [2].

System Model. We have formalized the system model, introduced in Sect. 2,
in Isabelle/HOL as a hierarchy of theories.

1 theory Object imports Type

2 begin

3 datatype iCLASS = Class "char list"

4

5 consts

6 UCLASS :: "SystemModel ⇒ iCLASS set"

7 sub :: "SystemModel ⇒ iCLASS ⇒ iCLASS ⇒ bool"

8

9 fun psubRefl :: "SystemModel ⇒ bool"

10 where "psubRefl sm = (∀ C ∈ UCLASS sm . sub sm C C)"

11 end

Fig. 6. Isabelle/HOL theory Object (excerpt)

Fig. 6 shows a small excerpt from the theory Object which introduces the
universe of classes UCLASS (line 6) as a function that yields a set of class names (of
type iCLASS). consts is Isabelle’s way of declaring a constant without defining
it. Additionally, a subclassing relation sub is declared. The boolean function
definition psubRefl is a simple example of a predicate that must hold in all
valid systems and requires reflexivity of the subclassing relation.

The top-level theory SystemModel-base (Fig. 7) imports all basic definitions
and defines a predicate valid-base. In our abbreviated example, only theory
Object is imported. The full theory would import all other theories from Fig. 2
and combine all predicates (like psubRefl) into valid-base, describing all prop-
erties of a valid system in the system model.
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1 theory SystemModel-base imports Object

2 begin

3 fun valid-base :: "SystemModel ⇒ bool"

4 where "valid-base sm = (psubRefl sm ∧ ... )"

5 end

Fig. 7. Isabelle/HOL theory SystemModel-base (excerpt)

Semantic Mapping. The semantic mapping of our simplified class diagrams is
likewise formalized in Isabelle/HOL. The theory in Fig. 8 imports the abstract
syntax and the system model theory and defines the mapping. We only state
the signatures of the mapping functions, which are built in a modular fashion
along the abstract syntax. Note that the mapping functions for classes and class
diagrams, mCDClass and mCDDefinition, are function definitions (using the key-
word fun) while the mapping of super-classes of a class, consts mSuperClasses,
again is just a function declaration whose body has not yet been defined.

1 theory CDSimpSem-base imports CDSimpAS SystemModel

2 begin

3 consts mSuperClasses :: "iCLASS ⇒ IDENT list ⇒ SystemModel ⇒ bool"

4

5 fun mCDClass :: "CDClass ⇒ SystemModel ⇒ bool"

6 where ...

7

8 fun mCDDefinition :: "CDDefinition ⇒ SystemModel set"

9 where ...

10 end

Fig. 8. Semantic mapping of the simplified class diagram in Isabelle/HOL

4.2 Definition of Variants

We start by introducing a variant for the system model. Fig. 9 contains a theory
with an additional constraint for the transitive subclassing relation, restricting
it to single inheritance. That is, for all classes C1, C2, C3, if C1 is a sub class of
C2 and C3, then C2 and C3 have to be in a subclass relationship (or equal due to
reflexivity of sub).

As explained before, we model variants of theories as feature diagrams like
the one in Fig. 103. Ignoring the check mark for a moment, the feature dia-
gram therein states that SingleInheritance is an optional feature of the the-
ory Object. Other variants may be associated with other theories as the other
variation point vType indicates.

3 In our tool suite, we use a textual version of feature diagrams and configuration files
but we stick to the standard graphical form for the sake of clarity of the presentation.
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1 theory SingleInheritance imports Object

2 begin

3 fun valid-SingleInheritance :: "SystemModel ⇒ bool"

4 where "valid-SingleInheritance sm = (∀ C1 C2 C3.

5 sub sm C1 C2 ∧ sub sm C1 C3 −→ (sub sm C2 C3 ∨ sub sm C3 C2))"

6 end

Fig. 9. Definition of an Isabelle/HOL predicate about single inheritance

Fig. 10. Semantic domain feature diagram (fragment)

Additionally, the feature diagram for the variants of the semantic mapping
can be found in Fig. 11. The class diagram semantics has two variants for the
mapping of super-classes. The variant mapSuperCDirect carries an additional
constraint which excludes the use of variant SingleInheritance for the system
model. The actual implementation of the theories has been omitted.

Fig. 11. Semantic mapping feature diagram (fragment)

4.3 Configuration

The configuration space of the simple class diagram language has been defined
above with the help of feature diagrams. A concrete configuration for a system
model is also given in Fig. 10, in which the single inheritance variant is selected
as indicated by the check mark. As a configuration for the class diagram semantic
mapping, we select variant mapSuperCDelegate (see Fig. 11); choosing the other
variant would violate the exclusion constraint.
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A generator written for MontiCore processes a set of configuration files (mul-
tiple configurations of, e.g., the system model may be defined). It first com-
bines configuration files that refer to the same feature diagram. Then, it checks
if the configurations conform to the feature diagrams and if the constraints
have been observed. Afterwards, the configured theories for the system model
and the semantic mapping are generated. In case of a system model configu-
ration, the generated theory (see Fig. 12) combines all predicates (line 4) from
the imported theories that constitute the configuration. This is done by name
convention: The theory SingleInheritance has to provide a predicate called
valid-SingleInheritance.

1 theory SystemModel imports SystemModel-base

2 "vObject/SingleInheritance"

3 begin

4 constdefs "valid sm == valid-base sm ∧ valid-SingleInheritance sm"

5 end

Fig. 12. Resulting generated system model theory in Isabelle/HOL

Fig. 13 shows the resulting (generated) class diagram semantic mapping. It
simply combines the chosen theories using the Isabelle/HOL import mechanism.
The loose end in Fig. 8, namely the declaration mSuperClasses, is automatically
bound to the definition provided in theory MapSuperCDelegate.

1 theory CDSimpSem imports CDSimpSem-base

2 "vMapSuperClasses/MapSuperCDelegate"

3 begin end

Fig. 13. Resulting generated class diagram semantics theory in Isabelle/HOL

Finally, the theory in Fig. 14 uses the generated semantic mapping theory. The
generated system model theory was already used in Fig. 8 by the base version of
the semantic mapping. Presenting a meaningful verification application is outside
the scope of this paper, a simple verification example has been given in [2]. The
scenario in Fig. 14, however, suffices to show, on the one hand, how variants in
a language definition can be systematically handled using feature diagrams. On
the other, it shows that the whole approach can be supported by tools. In this
scenario, property P (Fig. 14, l. 3) ranges over all class diagrams and all systems.
In [2], we also presented an additional generator that translates concrete textual
models to instances of the generated abstract syntax data type. This makes it
also possible to reason about properties of concrete models.

The instantiation of variants is done at the theory level. We could have made
all variation points type parameters, similar to [14]. A configuration would then
correspond to instantiating type parameters with concrete types. We refrained
from doing so because the readability of the theories would have been drastically
reduced and it would be no longer possible to leave variants underspecified.
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1 theory myVerifyApp imports CDSimpSem

2 begin

3 lemma "∀ cd sm . mCDDefinition cd sm ∧ valid sm −→ P cd sm"

4 ... done

5 end

Fig. 14. A possible verification scenario in Isabelle/HOL

5 Related Work

To the best of our knowledge, there is no previous work on a general classification
of variability mechanisms offered by modeling languages. [15] also suggests fea-
ture models to express language variabilities. The focus is on syntactic variability
and variable code generators, formal semantics is not addressed.

Regarding the presented tool support for formal language definitions, most re-
lated approaches do not consider variability. For example, a complete language
definition (including syntax, typing rules, and operational semantics) can be
expressed in Alloy [16], which has the advantage of immediate analyzability. Se-
mantic anchoring [17] is another approach to define semantics with tool support.
Operational semantics is given by generated abstract state machines.

Other works support semantic variability to a certain extent. Template seman-
tics [18] can be used to define the behavioral semantics of state-based modeling
notations. The execution semantics is based on parametric hierarchical transition
systems whose behavior can be configured with the help of predefined template
parameters. In [19], template semantics is employed to define the semantics of
UML state machines. The semantics explicitly models the variability found in the
UML standard. [20,21] describe semantically configurable Java code generation
and analyzable models using template semantics. Template semantics provides
a rich theory for state-based modeling notation variants but is restricted to be-
havioral semantics that furthermore fits the computational model. Templatable
metamodels, introduced in [22,23], is a similar approach presented for metamod-
eling the abstract syntax and operational semantics of a domain specific modeling
language. It uses the UML 2 profile and template mechanisms to define variation
points at the metamodel level and to bind the introduced generic types to con-
crete types at the metamodeling or modeling level. Like template semantics, the
approach is targeted towards behavioral semantics but its mechanisms are more
compliant with the UML standard. Quite differently, [24] proposes an approach
to model semantic variation points and implementation choices as class models
in their own right. These are transformed together with a source UML model
into a specific target UML model that reflects the chosen variants. The focus in
this work is also behavioral semantics in that variants correspond to operations
implemented in an action language. We are not aware of any other framework
that supports defining and configuring syntactic and semantic variability in a
formal language definition.
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6 Conclusion

The contribution of this work is twofold. First, we presented a taxonomy of
variability mechanisms that may be found in a modeling language definition.
Variability may be of presentation, syntactic or semantic nature. Opposed to
UML, which only talks about “semantic variation points” in general, we further
classify semantic variability according to semantic domain and semantic mapping
variability. Semantic domain variability can be thought of as variability in some
run-time system modeling the underlying platform assumptions, while semantic
mapping variability would correspond to configuration options in a generator
targeting a previously chosen (i.e., configured) run-time system.

Second, we extended our framework for defining the syntax and semantics of
an object-oriented modeling language by integrating the variability mechanisms
that we have identified. The tool suite built on MontiCore and Isabelle/HOL
uses feature diagrams with inclusion/exclusion constraints to model variants and
their interdependencies in the syntax, semantic domain, and semantic mapping.
Given a configuration of variants for possibly multiple modeling languages, the
framework generates a set of theories representing the integrated language defini-
tions. This set of theories can be used in several verification scenarios. Note that,
while the framework is tailored towards object-oriented modeling languages, the
taxonomy mentioned above applies to any kind of modeling language. Likewise,
the framework could be used for semantic domains other than the system model.

Future work will be concerned with elaborating variability for concrete mod-
eling languages; larger case studies will contribute to validate the proposal and,
in particular, the tool support. The long term goal, regarding one of our main
targets UML, is to provide a comprehensive feature model for UML variability
which ultimately could replace the currently used informal definitions and feature
support statements. Another line of work is verification within our framework.
Theorem proving is challenging. The effect of variability in concrete verification
scenarios is not very well discussed and may require substantial further research.
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Abstract. This paper summarizes our experience with introducing feature mod-
elling into several product lines within Siemens. Feature models are used for 
solving various tasks in the product line lifecycle, starting with scoping the re-
usable asset base up to support for actual product configuration. Using feature 
models as primary artefacts for managing variability early in the lifecycle, we 
could improve the efficiency and transparency of scoping activities considera-
bly and made the development efforts way easier to schedule. On the other end 
of the lifecycle, feature models lowered the engineering efforts in solution busi-
ness in supporting product configuration and instantiation.  

1   Introduction 

Product line engineering [1, 2] denotes a collection of engineering techniques sup-
porting the efficient reuse of a common set of core assets when developing similar 
products. There are three main measures to achieve this reuse: proper scoping of the 
domain and deriving platform scoping decisions from business considerations, man-
aging variability, and building up a reuse culture. Siemens business groups have a lot 
of domain knowledge and many success stories to tell; nevertheless staying competi-
tive requires constant improvement and a product line approach is very promising to 
decrease time-to-market for those business groups developing similar or successive 
products in the same domain. 

Feature modelling [3] was introduced as part of the domain analysis and domain 
modelling phase to systematically describe the common and variable features shared 
among the products of a product line. We found that feature modelling supports  
several areas of product line engineering very well, especially scoping [4] and the 
configuration and derivation [5] of products from the reuse infrastructure, but also 
activities like project planning and tracking, testing and customer negotiations.  

We introduced feature modelling as a concept together with appropriate tool sup-
port in several business groups within Siemens, mainly to support either scoping and 
project planning or (partly) automatic product configuration and derivation. In this 
                                                           
* Empirical results category paper. 
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experience paper, we will describe the introduction processes in two business groups 
together with the improvements achieved, and the lessons learned. 

2   Experiences with Feature Models for Scoping 

The first group we report on comprises one platform unit developing reusable core 
assets and several application engineering units. This distribution of responsibility 
requires considerable effort to communicate the platform scope and support for trans-
parent tracking of asset development. Application units add features to each product 
and want to know exactly what the platform will deliver when. Feature modelling 
supported all steps for setting up a product line approach described subsequently. 

2.1   Structure the Requirements and Build Up a Domain Vocabulary 

Why? The business group had structured their requirements mainly in use cases be-
fore. While this made the requirements easily understandable, it was hard to deter-
mine if they were complete and what the commonalities and variations were in the 
platform. Moreover, many of the 5000 requirements were not included in the use case 
descriptions because this was not really feasible for some parts of the overall domain, 
e.g. UI frameworks or frameworks for data management.  

How? The feature model was built in a top-down and a bottom-up manner. Top down 
a couple of sub-domains were identified with two of them being workflow-driven. 
These workflows are kind of standardized, so they can easily be utilized to check for 
the complete coverage of these sub-domains. In a bottom-up approach the existing 
requirements, which partly used to be assigned to use cases, were grouped underneath 
the top-down features. The feature model thus lead to a rearrangement of existing 
requirements, giving the opportunity to identify missing areas and to make the whole 
requirements base easier to understand through hierarchical decomposition. Overall, 
the user visible features became top level features, while internal features either ended 
up in the lower level of the feature model or in separate, more technical sub-domain 
feature models. Consequently, we classified the feature nodes into different types with 
a different set of attributes depending on their characteristics. The feature modelling 
tooling [6] is integrated with the requirements management tooling. The requirements 
meta model resembles most of the feature modelling meta model. This allows for 
importing the feature models into the requirements management tool and adding addi-
tional information and traces there. 

2.2   Use Feature Modelling for the Platform Scoping Negotiation Process  

Why? The business group is split into a domain engineering and several application 
engineering units. Requirements for the reusable asset base are not mined from cus-
tomer contracts, but come from application engineering. Negotiations about which 
functionality should be a commonality and should therefore be supported by the plat-
form had traditionally high conflict potential. Every application unit tried to get as 
much of their specific functionality into the platform as possible because platform 
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development was pre-funded by application units. The challenge was then to consis-
tently de-scope from all the requirements that had no or only low reuse potential. 

How? The use case structure of the requirements had made a commonality/variability 
analysis among all involved units very hard. With the feature model that consists of 
user visible features on the top level and getting more detailed with features that re-
flect functional specification decisions a good communication basis is set up for nego-
tiation. The application engineering units are interested in this detailed information 
about platform internals because they partially extend the platform features with 
product specific features or variants. The feature model is used as central repository 
for feature negotiation. First of all it makes it a lot easier to identify commonalities 
among applications because it forms a common vocabulary. Second, information 
about the value of a feature for each customer (i.e. how important is this feature to 
support a product and estimations how often this product will be sold) together with 
cost estimations of the platform development unit are the basis for prioritizing fea-
tures. The decisions on what should be part of the business group became more trans-
parent, decreasing the conflict potential considerably.  

2.3   Trace Features to the Architecture  

Why? For safety reasons, collecting tracing data is an important issue when develop-
ing medical software. Before the feature model was created, single requirements were 
traced from market requirements down to design specifications. However, this is very 
work-intensive, error-prone, and inefficient to maintain and even not required by 
regulation organizations. 

How? The detailed tracing is replaced by tracing of features, which are an order of 
magnitude less than requirements, to architectural entities. In parallel to feature mod-
els, an architectural entity model reflecting the static structure of the architecture is 
built. This model is hierarchical like the feature model, only with subsystems, compo-
nents and classes as the elements of this hierarchy. Features trace into the architec-
tural elements in a many-to-many relationship. From this model it is then possible to 
investigate the effect of requirements on single architectural building blocks either in 
design specifications attached to building blocks or in the code.  

2.4   Support Project and Iteration Planning and Project Controlling with 
Feature Modelling  

Why? After using the feature model for scoping, it is only consequent to use it for 
project planning and controlling as well. The development process is an agile, itera-
tive one, therefore features are ideal items to be put into backlogs and be planned in 
iterations.  

How? The features of the feature model are used as first class artefacts for project 
planning and controlling. They are augmented with attributes regarding the accep-
tance criteria for each feature, development status, and schedule. Therefore, the com-
mon vocabulary is not only present in product management and development but also 
in project planning and controlling. Furthermore, the linkage to the architecture mod-
els allows tracking the degree of completion of each feature. For iteration planning 
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the features are further decomposed into iteration features that can be implemented in 
a single iteration. The iteration features are the smallest units for planning, but they 
are always seen in the context of their parent feature and are planned in a way that 
iteration features belonging to one feature are assigned to consecutive iteration steps.  

2.5   The Feature Model as Product Derivation Support 

Using the feature model for platform configuration and derivation is a long term goal. 
To achieve this it is not sufficient to establish links form features to architectural 
building blocks. All variations have to be linked to the concrete variation implementa-
tions in solution space, e.g. to configuration parameters or removable application code 
building blocks. A derivation infrastructure has to be developed that evaluates the 
links and configures the application, e.g., by setting the parameters or by omitting 
building blocks according to the feature selection.  

3   Experience with Variability Modelling for Product Derivation 

Siemens VAI is the world’s leader in the domain of engineering and building plants 
for the iron, steel, and aluminium industry and uses variability modelling techniques 
for product derivation in its CC-L2 product line. The product line provides process 
automation to continuous casting plants in steel mills and consists of several applica-
tions on different technical platforms like C++, Java and .Net, at a total of about 2 
MLoC. Modelling techniques are used heavily in the server core, which consists of 
more than 800 components. To the average customer, about 600 selected components 
are delivered and custom extensions to the product line are made.  

With their academic partner, the Christian Doppler Laboratory for Automated Soft-
ware Engineering they developed the DOPLER approach [5]. Based on detailed sales 
support documents and the problem space knowledge of product management, the 
features and the variability of the product line were mined and consolidated into a 
model. This model has extended product derivation capabilities, as the features are 
attached with questions in natural language. During application engineering, answer-
ing the questions in close cooperation with the customer leads to decisions triggering 
the feature selection and therefore to a concrete product configuration. The resulting 
models are used as domain-specific language (DSL) to resolve the problem space 
variability together with the customer based on concrete product requirements.  

The solution space of the CC-L2 product line comprises a component-based archi-
tecture. Because of the clearly defined mapping between problem space and solution 
space variability it is possible to automatically select and configure the assets required 
to build the desired product.  

In the last years, the product line approach helped Siemens VAI to deliver more 
than 150 projects on schedule and on budget. Before, they had serious problems with 
code changes causing problems during start-up of plants. They were able to signifi-
cantly reduce project execution time and travel times. Through defining a PLE evolu-
tion and planning process, Siemens VAI was able to reduce their development efforts 
and increased the reuse of software components. 
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4   Lessons Learned and Conclusion 

Important lessons learned while using feature models for scoping are: 

─ Early involvement of solution space knowledge: It is necessary to consider solu-
tion space knowledge early when identifying features and variants of a product 
line. In our examples products or systems were already built before the migra-
tion to product line engineering was started. The structure of existing systems 
helps to identify meaningful sub-domains. Linking features to existing solution 
space assets, or at least to architectural entities that are under design, helps to es-
timate cost early and keeps the whole effort grounded. 

─ Co-development of feature model: Development should be integrated early in 
building the feature model. There is considerable knowledge about past products 
or systems in development that helps to establish parts of the feature model with 
its variability quickly. The communication between product management and 
development furthermore leads to a common understanding of the requirements 
on the one hand and of the cost to implement those requirements, especially 
variability, on the other. 

─ Sub-domain division: Covering the whole problem domain with one feature 
model is too complex, if the goal is to model not only variability but to cover the 
whole system including all commonalities. Therefore, domains should be di-
vided into sub-domains modelled in separate feature models. 

At the other end of the life cycle feature models are very well suited to build DSLs for 
supporting automatic product derivation. The vast majority of variability in our do-
mains is configurative variability. The hierarchical form of feature models makes 
them easy understandable by all stakeholders, not only the customer.  

We did not do a project yet that combined feature modelling at both ends of the 
product line lifecycle. However, within the first described business group, we want to 
augment the feature model built for scoping to support product derivation.  
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Abstract. Domain-Specific Modeling Languages (DSMLs) describe the
concepts of a particular domain and their relationships, in a metamodel.
From a given DSML, it is possible to describe a wide range of differ-
ent models. These models often share a common base and vary on some
parts. Current approaches tend to distinguish the variability language
from the DSMLs themselves, implying greater learning curve for DSMLs
stakeholders and a significant overhead in product line engineering of
DSMLs. We propose to consider variability as an independent aspect to
be woven into the DSML to introduce variability capabilities. In partic-
ular we detail how variability is woven and how to perform product line
derivation. We validate our approach through the weaving of variabil-
ity into two very different metamodels: Ecore and SmartAdapter, our
Aspect-Oriented modeling weaver, thus adding flexibility in the weaving
process itself. These results emphasize how new abilities of the language
can be provided by this means.

1 Introduction

In an always more competitive environment, the ability for a company to rapidly
propose new products or variations of existing products is the key to meet user
requirements. However, proposing a wide range of different products is risky:
products should be designed, validated, implemented rapidly, at a low cost. The
Software Product Line [1] (SPL) community proposes techniques and tools in
order to engineer families of related products. The main idea behind SPL is to
capture the commonalities of the different products as well as the specificities
(variability) of each particular product. In this paper, we focus on Model-Driven
SPL [2] where the product line itself and the derived products are models. The
models are derived using Model-Driven Engineering techniques, such as model
transformation, model composition or aspect model weaving.

Several approaches exist to describe SPLs : i) to use a general-purpose meta-
model like the UML [3] including the concepts allowing designers to describe
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the variability of a model, ii) to build a metamodel without variability and then
extend it in order to include the necessary variability. The first category allows
the domain stakeholder to directly design a family of products thanks to the ex-
pressiveness provided by the metamodel. The second category allows designers
to focus on the domain itself but not on its variability and then to update it in
order to include the needed variability. The main drawback of this approach is
that the variability should be included manually. For example, this is what we
have done when we included variability into our aspect model weaver “Smar-
tAdapters” [4], in order to be able to design more flexible and more reusable
aspect models.

In this paper, we propose a reusable variability aspect, defined at the meta-
model level, describing the variability concepts and their relationships indepen-
dently from any domain metamodel. Using Aspect-Oriented Modeling [5] (AOM)
techniques, this aspect can be woven into a given domain metamodel to include
variability. More precisely, we use our aspect model weaver, SmartAdapters, to
weave this variability aspect. This makes possible the integration of variability
in a semi-automatic way into a wide range of domain metamodels.

We demonstrate our approach by introducing the variability i) into EMF,
which is the de-facto standard integrated within Eclipse to define metamodels
(similar to class diagrams) and ii) into SmartAdapters itself. However, our ap-
proach is generic and can be applied to any metamodel conforming to Ecore/
EMOF, which includes the UML, to extend it with variability mechanisms.
This demonstrates that decoupling the description of variability from the do-
main allows addressing, with a minimal additional effort, the two categories we
mentioned.

This paper is organized as follows. In Section 2 we present a generic variability
metamodel. In Section 3, we illustrate how we can introduce variability by hand
into an excerpt of the EMF metamodel. In Section 4 we present our model
weaver SmartAdapters and give an overview of the variability aspect associated
to the variability metamodel presented in Section 2. Then we propose in Section
5 to apply the variability aspect to the SmartAdapters metamodel. Section 6
details how we can take advantage of SPL techniques in order to derive models
with respect to variability woven at the metamodel level. Section 7 outlines some
relevant research in the field and Section 8 wraps up with conclusions as well as
discusses some interesting future perspectives.

2 Variability

In this section, we present a generic variability metamodel inspired from [2].
It relies upon formal studies of variability management in SPL [6,7] and in
particular feature diagramming [8,9,10,11], which is a very popular notation
in this community. Despite their wide acceptation, many variants have been
proposed and there is no de-facto standard for feature diagrams. One interesting
result of these formal studies is that it is possible to extract a pivot abstract
syntax subsuming the expressiveness of these existing notations hence forming
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a universal basis independent of any peculiar notation. This abstract syntax is
the source of our metamodel (see [2] for details).

Our generic variability metamodel (See Figure 1) is a customization of the fea-
ture metamodel [2] tailored to describe variability amongst Ecore concepts. In
particular the notion of feature hierarchy, which is very specific to feature dia-
gram, has been omitted because this hierarchy is imposed by the targetmetamodel
(see Section 6). The main metaclass is PointOfV ariability which provides the
possibility to metamodel elements on which this class is woven to have variants.
PointOfV ariability has a concrete sub-class called V ariabilityOfElement al-
lowing a given domain concept to hold variability. Variability is described in terms
of boolean operators that describe the kind of variability relationships applies to
elements. And operator holds true iff all the elements to which it applies are cho-
sen (mandatory elements). Xor denotes an alternative (only one element have to
be chosen) and Or at least one. Opt denotes the optionality of presence. Finally
V p(i, j) [7] will return true iff at least i and at most j elements are chosen. This
operator can embed the semantics of all other operators [6] and could hence be
the unique operator provided. However, “classic” operators are more practical and
well-known; They are therefore left for usability matters.

In addition in this metamodel we make the distinction between homogeneous
and heterogenous operators. Homogeneous operators are associated to V aria-
bilityOfElement and apply only on element of the same type (EClass, etc.).
Heterogeneous operators are associated to PointOfV ariability and apply to el-
ements of different types. The “choice” semantics is the same for homogenous
and heterogeneous operators. However, we distinguish the hierarchy of operators
associated to homogeneousOperator and heterogenousOperator because we sup-
port the idea that the domain expert should be able to add to its metamodel,
only the expressiveness he needs. Thus he should be able to choose the suitable
homogeneous as well as heterogeneous operators.

PointOfVar iabi l i ty

+name: String

HomogeneousOpera tor

+name: String
+homogeneous

0,1+reference

1,1

Variabi l i tyConstraint

+sources

0, 1

+targets

0, 1

Xor

+pointOfVariabilities

1,*

Vp

+i: Integer

+j: Integer

And Or Opt ional

Constra int+constraintType

1,1

M u t e xRequire

var iableConcept

+derive(p:PointOfVariability)

Var iabi l i tyOfElement

ConceptElement

+variabilityOfElement

0,*

+fromVariableConcept

1,1

+toConceptElement

+variabilityOfElement

1,1

+constraints

0,*

HeteregeneousOpera tor

+name: String

+heterogeneous

0,1

+reference

1,1

+pointOfVariabilities

1,*

Constra intContainer

GenXor GenVp

+i: Integer

+j: Integer

GenAnd GenOr GenOpt ional

Fig. 1. The variability metamodel
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Additionally, it is possible to define constraints between points of variability,
whether there are targeted by the same operator or not. These constraints are
of two types: requires which implies that the required element have also to be
selected if the requiring element is selected, and mutex which excludes that both
referred elements are present in the same selection. There exists other kinds of
constraints [2,6,7] but as there mostly informal (expressed in natural language)
we decided to let the designer include them manually after weaving.

3 Patterns for Introducing Variability

As noted by Haugen et al. [12], there are two categories of techniques to intro-
duce variability into languages (represented as metamodels); amalgamated and
separated. The first one proposes to augment the metamodel with variability
constructs while the second one keeps them distinct and relates them via sim-
ple referencing. We chose the first kind of approach because we want to clearly
express variability among elements [12] and enable conformance checking in a
standard way.

For example in EMF, if it is required that i) some classes, operations, or at-
tributes are optional, and ii) some model elements are part of the same variant,
and iii) alternative and constraints may exist among variants, then this infor-
mation cannot be attached into the EMF metamodel and have to be put in a
feature diagram or in a DSL as proposed by Haugen et al.

In this paper, our aim is to describe models containing variability, based on
the concepts defined in the domain metamodel. In order to do that, we construct
on demand a new metamodel MM ′ that integrates concepts from product-lines
described in Section 2 and the domain-specific concepts of the MM . The main
idea is to introduce a new meta-class on each association to capture the fact that

Fig. 2. EMF meta-model with Variability
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Fig. 3. EMF model with Variability

a model element can be a variant as illustrated in Figure 2 for an excerpt of the
EMF metamodel. As an example, it allows to capture the fact that a method
m1 in a class A is optional and two methods m2 and m3 are alternatives as
described in Figure 3.

Implications of this approach are that the variability aspect can also be stan-
dardized, and that DSMLs (MM) can be designed without variability mecha-
nisms. These mechanisms are woven on demand to create MM ′.

We still want to keep the possibility to specify that a class A has a method m4
which is not a variable part of the model. Consequently, we do not remove exist-
ing associations, but extend the domain metamodel with new class-associations
(EClassV ariabilityForEOperation and EClassV ariabilityForESuperType
in Figure 2), which capture the variability.

The idea of the pattern to introduce variability is to match each association
and create new meta-classes for creating the connection between MM and the
variability aspect. This way, the former metamodel MM is simply extended.
Since all the existing meta-classes and their properties (from MM) are kept in
MM ′, all the pre-existing models conforming to MM can easily be converted
into models conforming to MM ′.

4 Using SmartAdapter to Weave Variability

In the previous section, we presented a metamodeling pattern that provides a
generic solution for extending a metamodel with variability. To ease the inclusion
of variability into a wide range ofmetamodels or several parts of one metamodel, we
propose to adopt an Aspect-Oriented Modeling approach. The main idea is to de-
scribe a variability aspect based on the previous pattern and weave this aspect into
any metamodel. The use of an AOM approach provides several benefits: first, it en-
ables decoupling the description of variability fromanyparticularmetamodelmak-
ing it reusable; it also enables integration of variability in a semi-automatic way;
lastly, it enables keeping the design of metamodel and variability separate, mak-
ing their evolution easier to manage.In the following we briefly describe our Smar-
tAdapters AOM approach [4] including a presentation of its metamodel, where we
will weavevariability (Section 5). Then wepresent its use to describe the variability
aspect and apply this aspect for introducing variability into Ecore.
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Fig. 4. The SmartAdapters metamodel

SmartAdapters is a generic AOM approach. It relies on four key concepts :
aspect model, graft model, target model and adaptations. An aspect model con-
sists of i) a graft model that encapsulates a given concern, and ii) an abstract
adapter that describes where (target model) and how (adaptations) the aspect
model will be woven into other base models.

The metamodel describing the concepts of SmartAdapters is shown at
Figure 4. This metamodel is not tied to a specific domain metamodel and can
be customized to weave aspects into different kinds of model (provided that as-
pect and base model rely on the same domain metamodel). Here, since we are
interested to weave aspects into any metamodel, we assume the customization
of SmartAdapter to MOF/Ecore metamodels.

The target model (TargetModel) is an abstract interface between the aspect
model (AspectModel) and any base models (Model). It is a model fragment that
identifies the hooks required on the base model. It contains roles (TargetMod-
elElement) that may be substituted, at binding time, by base model elements
and structural constraints that every binding (a set of elements substituting the
roles) should respect.

An abstract adapter (AbstractAdapter) is the composition protocol of an as-
pect model: it guides and controls the composition of the aspect, independently
from any base model. It contains Adaptations (AbstractAdaptation) which are
composition operations describing how to weave the aspect model into the target
model. In a composition protocol, the designer can refer to any role from the



696 B. Morin et al.

target model or model element from the graft model, within the adaptations of
the protocol.

The set of adaptations provides support for integrating graft models into any
base model, by: i) introducing model elements e.g. a class into a package,
ii) modifying properties (attributes and references) of a model element e.g.,
a method signature, and iii) merging model elements e.g. two classes into a
single one.

To actually weave an aspect model, an architect must design a concrete
adapter (ConcreteAdapter). It specifies bindings (join points) between the tar-
get model and a given base model. Each binding (Binding) associates a target
model element (TargetModelElement) to a matching base model element. Bind-
ings could be specified by hand or automatically identified by a join point de-
tection engine [13]. All the bindings contextualize the adaptations defined in the
abstract adapter with concrete elements. Additionally, during the binding stage,
the architect can specify some other concrete adaptations (ConcreteAdaptation)
to consider some properties specific to the base model.

Fig. 5. The Variability Aspect including Composition Protocol
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Figure 5 shows the variability aspect. Basically, the graft model of the aspect
contains the concepts from the feature metamodel presented in Section 2 and
those from the metamodeling pattern presented in Section 3.

The target model contains roles to specify that three classes and one rela-
tionship must be present in a base model to apply the aspect. ConstraintCon-
tainerRole identifies the class in a metamodel where constraints for controlling
variability must be attached. VariableConceptRole, ConceptElementrole and el-
ements relationship identify a couple of linked classes in a metamodel where
variability must be introduced.

The basic principle of the composition protocol is to: i) keep unchanged the
relationship between the two classes (VariableConceptRole and ConceptElemen-
trole) of the target model (to allow defining mandatory element), and ii) create a
new relationship between these two classes, controlled by a variability manager,
in order to allow defining variable elements.

More precisely the composition protocol mainly contains adaptations for in-
troducing model elements (insert) which allow to introduce a given element
(e.g. class VariabilityOfElement) with implicitly all elements that it references.
When an element already exists in the base model (for example when the aspect
is applied two times on the same model), it is not added a second time.

Another important remarks deals with the use of renaming (modify name).
One relationship (fromVariableConcept) and two classes (variabilityOfElement
and VariabilityOperator) are renamed. Main advantages in present situation is
that n applications of the aspect in the same base model will create n samples
of the same relationship or metaclass.

Finally for each application of the aspect we may choose the expressiveness of
the variability. We simply select the descendant classes of VariabilityOperator
after its renaming (the renamed class is accessible with the alias CVOFE).
The choice is made accordingly to the base model (at composition time), so
that the adaptation is abstract and will be defined in a concrete adapter (Con-
creteAdapter).We may choose the same approach for the different types of con-
straints. This would be particularly interesting if we propose a larger set of
constraint types. In order to reduce the complexity of the schema we decided to
provide all the types of constraints (Require and Mutex ) for each application of
the aspect. In order to provide a centralized access to all constraints in a given
element of the base model, we declare this element in the target model.

In our composition protocol we also propose to merge each of the three ele-
ments mentioned in the target model with one element of the graft model. This
way, base model elements bound to target model elements now include their
respective functionalities (e.g. the class(es) bound to VariableConceptRole will
include the derive method and the association-end variabilityOfElement).

Figure 6 shows the concrete adapter to apply the variability aspect to EMF
and introduce the ability for an Ecore package to support variability for the
Ecore classes. This concrete adapter achieves this ability by binding elements
from the target model (resp. VariableConceptRole, ConceptElementRole, ele-
ments and ConstraintContainerRole) to elements of the Ecore metamodel (resp.
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Fig. 6. The variability aspect

EPackage, EClassifier, eClassifiers and EPackage). As a result of these bindings,
EPackageVariableForEClass and EPackageVariabilityOperatorForEClass classes
are introduced with their dependent classes and relationships and EPackage is
extended with a new relationship to EPackageVariabilityForEClass (see left part
of the figure). Finally, the concrete adapter also contains redefined adaptations
(introduceDescendants1 and introducedDescendants2 ) to select the subset of op-
erators that are appropriate for classes variability.

5 Introducing Variability into SmartAdapters

In [4], we pointed out that aspect reusability is limited in AOM approaches be-
cause an aspect model must match exactly the structure of base models and is
always woven according to the same rules. To address this issue, we proposed
to extend AOM approaches with matching variability and composition variabil-
ity. This variability was introduced in an ad-hoc way. Supporting these two
dimensions of variability in our SmartAdapter approach have been achieved by
extending the notion of adapter with the following variability mechanisms:

– Optional targets: In order to specify that some elements from the target
model may be present or not in the base model where we want to weave the
aspect.

– Alternative adaptations: In order to specify that there exists several pos-
sible ways to compose the aspect. All the variants are exclusive i.e., we can
only choose exactly one variant per alternative.
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– Optional adaptations: In order to specify that some adaptations of the
composition protocol are not mandatory.

– Constraints between targets and/or adaptations: In order to specify
that some variants are dependent or in mutual exclusion. With these cons-
traints, we can ensure the consistency of the composition protocol, after
derivation.

Using these mechanisms, a designer can build an aspect model that is adaptable
to different contexts. Figure 7 illustrates an aspect model using these mechanisms
to integrate the well-know observer pattern into a base model. The target model
declares an option to deal with the presence or not of the association between
classes playing SubjectTargetClass and ObserverTargetClass. The composition
protocol includes two variants to integrate the classes and association of the
pattern into a base model, either by merging or by inheritance.

Observer <<GraftModel>>

observers

update()
Observerregister(Observer o)

unregister(Observer o)
changeValue()

Subject

0..
*

1

 target model:
ObserverAdapter <<AbstractAdapter>>

adaptations :
- extend method notifyingMethod( ... ) in SubjectTargetClass with after

                { changeValue(); } 
options :

...
alternatives :
        ...
SubjectObserverInsertion [VInheritanceSubObs] { 
        - insertSubject: inherit class Subject in TaskTargetClass
        - insertObserver : inherit class Observer in ObserverTargetClass
        - option insertAssoc : introduction association
                                  observers (Subject, Observer)
} or else [VMergingSubObs] { 
        - insertTask: merge class Subject in  SubjectTargetClass
        - insertObserver: merge class Observer in ObserverTargetClass
        - option insertAssoc: introduction association

observers (SubjectTargetClass, ObserverTargetClass)
  } 

constraints : 
option insertAssoc excluded bounded observersTargetAssociation

ObserverTargetClass
nofiyingMethod()

SubjectTargetClass observersTargetAssociation <<option>>

Fig. 7. Example of an aspect model with variability

All the mechanisms presented above can be added to our SmartAdapter ap-
proach by applying the previous variability aspect to its metamodel, using Smart-
Adapter itself. Figure 8 and 9 show the definition of two concrete adapters to
achieve this operation. They specialize and complete the abstract adapter of the
variability aspect described in Section 4.

The first concrete adapter (SmartAdapter1 ) handles the declaration of op-
tions and alternatives within a composition protocol. It binds elements from the
target model (resp. ConstraintContainerRole, VariableConceptRole, ConceptEle-
mentRole, elements) to elements of the SmartAdapters metamodel (resp. Model,
AbstractAdapter, AbstractAdaptation, compositionProtocol). This adapter causes
the contextualization of adaptations from the variability aspect with the follow-
ing results:

– the VariabilityOfElement class is inserted as a subclass of PointOfVariabil-
ity and this new class is renamed AAVariabilityForAAdaptation. This class
introduces variability capacities for the AbstractAdapter class.
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Fig. 8. Adapters for adding variability in SmartAdapters (1)

– the content of VariableConcept is merged into AbstractAdapter class. As
a result of this merging, the AbstractAdapter is extended with the derive
method and one aggregation relationship to hold AAVariabilityForAdapta-
tion elements.

– the insertion of classes required for describing constraints and operators as
well as their relationships.

– the insertion of AAVariabilityOperatorForAAdaptation as a superclass for
the set of operators (Xor, And, Optional) defined for AbstractAdapter.

The second concrete adapter (SmartAdapter2 ) handles the optionality of tar-
get elements. It applies the variability aspect to metaclasses of the metamodel
representing the target model and its content, by binding VariableConceptRole
to TargetModel, ConceptElementRole to TargetModelElement and elements to
targetElts. According to these bindings, the TargetModel class is extended with
the content of the VariableConceptRole and with a new relationship to TMVari-
abilityForTMElement that defines the variability for TargetModelElement. The
operator that can be used for this variability is defined by TMVariabilityOpera-
torForTMElement which is inserted as superclass of Optional. Note that classes
for describing constraints and operators are only inserted once, even when the
aspect is woven in several places.
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Fig. 9. Adapters for adding variability in SmartAdapters (2)

6 Towards Software Product Line

The previous sections explained how we can flexibly add variability concepts to
a domain metamodel, like Ecore or SmartAdapters, in order to be able to easily
design models containing variability. In this section, we describe how we de-
rive products (models with no variability, conforming to the former metamodel)
from a product line model (model with variability, conforming to the extended
metamodel, where the variability aspect has been woven).

As mentioned in Section 2, one of the most practical techniques is feature
modeling which aims at representing the common and variable features1 (or
concepts) of a product family. Feature modeling is not only relevant to require-
ment engineering but it can also be applied to design or code levels. Hence, every
stakeholder can manipulate features “as is”, independently of the kind of vari-
ability and the level of abstraction. Moreover, feature models (FMs) encourage
to define a standard vocabulary for a domain language and are ideal abstractions
that customers, experts, and developers can easily understand. FMs hierarchi-
cally structure domain concepts into multiple levels of increasing detail thus
proposing a taxonomy. When decomposing a feature into sub-features, the sub-
features may be optional or mandatory or may form Alternative, Or, or And
groups. FMs describe the variability and the commonality of features and repre-
sent a set of valid configurations. A valid configuration is obtained by selecting
features while respecting the parent-child and an intuitive decomposition seman-
tics. Feature models are represented as graph which have a tree-like structure as
shown on Figure 10.

1 According to [14] a feature is “an increment in product functionality”.
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In order to take advantage of existing feature-based modeling tools [15],
derivation approaches [2,16] or formal analysis techniques [17,18,6], we offer to
compute a feature diagram from a model with variability as shown in Section 3.
To do so, we use Kermeta [19] which is a metamodelling environment dedicated
to Ecore models manipulation. The initial step is to obtain the root feature
which corresponds to the root package of the EMF model. Then we traverse the
EMF model (which imposes its structure to the feature diagram) by navigating
the containment relationships. For each relationship, there are two options:

– Variability point: If this relationship contains a variability point (instance
of the woven V ariabilityOfElement metaclass), we create an operator of the
right type (or,xor,vp) according to the operator associated to this variability
point. We then retrieve all other instances of V ariabilityOfElement which
are referenced by the operator in the EMF model. The sub-features are then
obtained by forming the union of all ConceptElement instances referenced
by the collected V ariabilityOfElement instances.

– “Standard” relationship: If there is no variability point, we treat the
referenced element as a mandatory feature.

Fig. 10. Computed Feature Diagram for EMF Model with Variability

Figure 10 shows the feature diagram resulting from the application of the pro-
cedure on the EMF model shown Figure 3. Once the feature diagram is built,
we can perform product derivation [20,2,16]. When a set of features is selected
from the feature diagram, the last step consists in actually deriving the product
model. For all the selected features, we call the derive operation associated to
the model element (e.g. an instance of EPackage in Ecore metamodel or an in-
stance of AbstractAdapter in SmartAdapters). This operation is implemented
in Kermeta in a generic way, directly in the domain metamodel. It sets the
former references with the model elements contained by the point of variabil-
ity, which is removed. In a second pass, once all the points of variability have
been derived, we remove all the remaining points of variability, corresponding
to non-selected features. Finally, we can save the product model using the for-
mer domain metamodel. This derivation operator is built on top of the Kermeta
Model-Development Kit (MDK)2 for Feature Modeling [2]. We reuse some parts
2 http://www.kermeta.org
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of the Feature Diagram metamodel, some parts of its graphical editor and we
have extended the static checker. The derivation process has been designed from
scratch.

7 Related Work and Discussion

We do not address here the composition of models in general but the different
approaches to introduce variability into metamodels and models.

Feature modeling is very much adapted to the description of the variability but
the hierarchical approach does not provide the expressiveness that is needed and
that may be provided by OO modeling approaches. This is the reason why some
approaches like [2] use both UML and FMs for modeling a domain. Moreover on
the contrary of our approach, the formalism used to describe the domain model
contains already the expressiveness for the description of variability.

Other techniques like Ziadi et al. extend the UML metamodel in order to
include features for modeling variability [20]. Those approaches work at the
meta-meta level and extend an existing formalism in order to include variability
modeling capabilities. The variability is included in various UML diagrams like
class diagram or Sequence diagram. The capabilities introduced in those dia-
grams are very similar to the ones of our variability aspect which is applied here
to class diagram but which could be applied also to other diagrams like sequence
diagrams.

The software product line community recently investigated the use of variabil-
ity techniques to assist the engineering of DSMLs. In [12] the authors propose
a metamodel for describing variability which is independant from the models
needing variability. In this respect the approach is similar to ours but there are
several differences. First they do not aim to compose the two metamodels as we
do; on the contrary the metamodel describes only possible substitutions. Second
those substitutions are not defined according to the metamodel but to the mod-
els and these are the instances which are modified. They promote the idea that
variability should not be defined at the metamodel level but at the model level.

In [21] Voelter presents an approach that addresses variability implementa-
tion, management and tracing by integrating model-driven and aspect-oriented
software development. Features are separated in models and composed by aspect-
oriented composition techniques on model level. This approach differs signifi-
cantly from our approach: the variability is described at the model level with
feature models which are transformed in AspectJ source code. They use AOSD
as a techniques to compose variants, we use AOM to integrate the variability
mechanisms in a domain metamodel.

8 Conclusion and Future Work

Building families of models related to the same domain is a key issue. It is widely
addressed by the SPL community which propose the expressiveness needed by
the description of the commonalities and the specificities of each model of the
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family (i.e. the variability of the family). Variability is a possible orthogonal
concern of any domain metamodel and we propose an approach to compose
this concern with domain metamodels. The effort of the domain model designer
to introduce variability into its models must be reduced as much as possible.
We propose to use the SmartAdapters approach which allows i) to minimize
the information to be given at composition time and, ii) to guide and control
the reuse of the variability aspect in various contexts. A first contribution of
this paper is the specification of a variability aspect. We apply this aspect in
two different contexts: EMF and SmartAdapters itself. A second contribution
is the demonstration that AOM approaches could benefit from the concepts
found in SPL without extending their underlying mechanisms, but using only
the weaving techniques already present in AOM approaches. We use a version
of SmartAdapter without variability (Figure 5) to weave the variability aspect
into the SmartAdapter metamodel. We obtain the same expressiveness that the
SmartAdapters version with manually introduced variability [4].

This validation of the approach for enhancing domain metamodel (DSMLs)
with variability is a first step towards a better modularity in the metamodels. In
the short term we aim to reuse this approach in order to introduce other features
into DSML (e.g. model checking, editing facilities, etc.) making it more attractive
but not more cumbersome especially when these facilities are not needed.
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13. Ramos, R., Barais, O., Jézéquel, J.M.: Matching model-snippets. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
Springer, Heidelberg (2007)

14. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

15. PureSystems. Pure:: Variants Website (2006), http://www.pure-systems.com/
16. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach

based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

17. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortes, A.: FAMA: Tooling a frame-
work for the automated analysis of feature models. In: Proceeding of the First
International Workshop on Variability Modelling of Software-intensive Systems
(VAMOS), pp. 129–134 (2007)

18. Metzger, A., Pohl, K., Heymans, P., Schobbens, P.-Y., Saval, G.: Disambiguat-
ing the documentation of variability in software product lines: A separation of
concerns, formalization and automated analysis. In: IEEE Conference on Require-
ments Engineering, pp. 243–253. IEEE Computer Society, Los Alamitos (2007)
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Abstract. Metamodel evolution is a significant problem in domain spe-
cific software development for several reasons. Domain-specific modeling
languages (DSMLs) are likely to evolve much more frequently than pro-
gramming languages and commonly used software formalisms, often re-
sulting in a large number of valuable instance models that are no longer
compliant with the metamodel. In this paper, we present the Model
Change Language (MCL), aimed at satisfying these requirements.

1 The Model Change Language

The Model Change Language (MCL) defines a set of idioms and a composition
approach for the specification of the migration rules that describe how the mod-
els compliant with the old metamodel should be migrated into models compliant
with the new metamodel. The MCL also includes the UML class diagrams de-
scribing both the versions of the metamodel being evolved, and the migration
rules may directly include classes and relations in these metamodels. MCL was
defined using a MOF-compliant metamodel. For space reasons, we cannot show
the entire metamodel, rather we introduce the language through examples. Note
that MCL uses the metamodel of the base metamodeling language, and MCL
diagrams model relationships between metamodel elements.

The basic pattern that describes a metamodel change, and the required model
migration, consists of an LHS element from the old metamodel, an RHS element
from the new metamodel, and a MapsTo relation between them (stating that the
LHS type has “evolved” into the RHS type). The pattern may be extended by
including other node types and edges into the migration rule. The node at the
left of the MapsTo forms the context. The rest of the pattern is matched based on
this context. Another special link, called the WasMappedTo link, in the pattern is
used to match a node that was previously migrated, by an earlier migration rule.
For the sake of flexibility, it is possible to specify additional mapping conditions
or imperative commands along with the mapping. This basic pattern is extended
based on various evolution criteria, as explained below. Figure 1 shows a simple
migration rule with these rule elements. The main MapsTo portion is shown
darkened, and the rest of the rule is grayed out for clarity.

The MCL rules can be used to specify most of the common metamodel evo-
lution cases, and automate the migration of instance models necessitated by the
evolution of the metamodel. The core syntax and semantics is rather simple.

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 706–711, 2009.
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Fig. 1. MapsTo relation to specify mapping of classes

(a) Adding a new element (b) Deleting an element

Fig. 2. MCL rules for adding and deleting elements

A metamodel may be extended by adding a new concept into the language,
such as a new class, a new association, or a new attribute. In most cases, old
models are not affected by the new addition, and will continue to be conformant
to the new language, except in certain cases. If the newly added element holds
some model information some model information that was stored in a different
element in the old version of the metamodel, the information must be appropri-
ately preserved in the migrated models. In fact, this falls under the category of
“modification” of representation, and is described further below.

If the newly added element plays a role in the well-formedness requirements,
then the old models will no longer be well formed. The migration language must
allow the migration of such models to make them well formed in the new meta-
model. For instance, suppose that the domain designer adds a new model element
called Thread within a Component - and adds a constraint that every Compo-
nent must contain at least one Thread. The old models can then be migrated by
creating a new Thread within each Component, as shown in Fig. 2(a). The LHS
or ‘old’ portion of the MCL rule is shown in a greyed rectangle for clarity in this
and all subsequent figures.

Another change to a metamodel may be the removal of an element. If a type
is removed, and replaced by a different type, it implies a modification in the
representation of existing information, and is handled further below. On certain
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occasions, elements may be removed completely, if that information is no longer
relevant in the domain. In this case, their representations in the instance models
must be removed. The removal of an element is specified by using a “NULL-
Class” primitive in MCL, as shown in Fig. 2(b).

This implies that all instances of ClassA in the model are to be removed. Re-
moval of an object may result in the loss of some other associations or contained
objects.

The most common change to a metamodel is the modification of certain enti-
ties, such as the names of classes or their attributes. The basic MapsTo relation
shown in Fig. 1 suffices to specify this change. The mapping of related objects
is not affected by this rule. If other related items have also changed in the meta-
model, their migration must be specified using additional rules.

Another type of modification in the metamodel is adding new sub-types to a
class. In this case, we may want to migrate the class’ instances to an instance of
one of its sub-types. Fig. 3(a) shows an MCL rule that specifies this migration.
The subtype to be instantiated may depend on certain conditions, such as the
value of certain attributes in the instance (this is encoded within the migration
rule using a Boolean condition for each possible mapping). The rule in Fig. 3(a)
states that an instance of srcClass in the original model is replaced by an instance
of dstSubclass1 or dstSubclass2 in the migrated model, or deleted altogether.

Local structural modifications are key issues in MCL. Some more complex
evolution cases occur when changes in the metamodel require a change in the
structure of the old models to make them conformant to the new metamodel.
Consider a metamodel with a three level containment hierarchy, with a type
Class contained in Parent, and Parent contained in ParentParent. Suppose that
this metamodel is changed by moving Class to be directly contained under Par-
entParent. The intent of the migration may be to move all instances of Class
up the hierarchy. The MCL rule to accomplish this is shown in Fig. 3(b) (the
WasMappedTo link is used to identify a previously mapped parent instance).

Note that this rule only affects Class instances. The other entities remain
as they are in the model. Any Parent instances within ParentParent remain
unaffected. If Class contained other entities, they continue to remain within
Class, unless modified by other MCL rules.

(a) MCL rule for subclasses (b) Changing containment hierarchy

Fig. 3. MCL Rules
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The execution of MCL rules has two main notions. (i) The rules are executed
with depth first search. (ii) The execution of the rules that need previous results
is delayed until those results have been available.

2 Related Work

Our work on model-migration has its origins in techniques for database schema
evolution [1]. Drawing from experience in very large scale software evolution,
[2] uses several examples to draw analogies between tradition programming lan-
guage evolution and meta-model and model co-evolution. As opposed to pro-
viding a general transformation interface for the migrator[3], MCL provides a
DSML as the specification language.

Using two industrial meta-models to analyze the types of common changes
that occur during meta-model evolution, [4] gives a list of four major require-
ments that a model migration tool must fulfill in order to be considered ef-
fective. The first, reusing migration knowledge, is accomplished by the main
MCL algorithm: meta-model independent changes are automatically deduced
and migration code is automatically generated. Expressive, custom migrations
are accomplished in MCL by (1) using the meta-models directly to describe the
changes, and (2) allowing the user to write domain-specific code with a well-
defined API. Our MCL tool also meets the last two requirements of [4]: MCL is
modular in the sense that the specification of one migration rule does not affect
other migration rules, and the history of the meta-model changes in persistent
and available to migrate models at any point in time.

[5] performs model migration by first examining a difference model that records
the evolution of the meta-model, and then producing ATL code that performs the
model migration. Their tool uses the difference model to derive two model trans-
formations in ATL. [5] does not specify exactly how the difference models are cal-
culated, only that they can be obtained by using a tool such as EMFCompare or
SiDiff. MCL, on the other hand, uses a difference model explicitly defined by the
user, and uses its core algorithm to automatically deduce and resolve the break-
ing resolvable changes. Changes classified as breaking and unresolvable are also
specified directly in the difference model, which makes dealing with unresolvable
changes straightforward: the user defines a migration rule using a graphical no-
tation that incorporates the two versions of the meta-model and uses a domain-
specific C++ API for tasks such as querying and setting attribute values.

[6] describes the benefits of using a comparison algorithm for automatically
detecting the changes between two versions of a meta-model. Rather than have
the changes between meta-model versions defined explicitly by the user, they
slightly modify the ChangeRecorder facility in the EMF tool set and use this to
capture the changes as the user edits the meta-model. Their migration tool then
generates a model migration in the Epsilon Transformation Language (ETL). In
contrast to this, MCL allows the user to define complex migration rules with a
straightforward graphical syntax, and then generates migration code to handle
these rules and links it with the code produced by the main MCL algorithm.
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[7] presents a language called COPE that allows a model migration to be
decomposed into modular pieces. However, in [7], the meta-model changes must
be specified programmatically, as opposed to MCL, in which the meta-model
changes are defined using a straightforward graphical syntax.

Rather than manually changing meta-models, the work in [8] proposes the
use of QVT relations for evolving meta-models and raises the issue of combining
this with a method for co-adapting models. While this is an interesting idea, our
MCL language uses an explicit change language to describe meta-model changes
rather than model transformations.

3 Conclusions

The main contribution of MCL is a high-level visual language for describing
metamodel evolution that is both powerful and easy to use for domain designers.
It allows the domain designer to specify patterns that capture the intent of the
metamodel evolution, as opposed to a mere syntactical difference. Our approach
addresses the key requirements for a model evolution solution for DSMLs - we
require only the specification of the changes to the metamodel, and automatically
handle the portions that have not changed; we present a graphical language
that can be used to specify complex relations between meta entities, and can be
extended with imperative C++ conditions and commands for complex migration
tasks; we use a visual language that closely relates to UML, the industrial scale
language commonly used for specifying the metamodels, making the MCL easy
to learn for domain designers.
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Abstract. Model transformations provide a powerful capability to automate 
model refinements. However, the use of model transformation languages may 
present challenges to those who are unfamiliar with a specific transformation 
language. This paper presents an approach called model transformation by 
demonstration (MTBD), which allows an end-user to demonstrate the exact 
transformation desired by actually editing a source model and demonstrating 
the changes that evolve to a target model. An inference engine built into the un-
derlying modeling tool records all editing operations and infers a transformation 
pattern, which can be reused in other models. The paper motivates the need for 
the approach and discusses the technical contributions of MTBD. A case study 
with several sample inferred transformations serves as a concrete example of 
the benefits of MTBD. 

Keywords: Model transformation, Program inference, Refactoring. 

1   Introduction 

Model transformation is a core part of Domain-Specific Modeling (DSM) and plays 
an indispensible role in many applications of model engineering (e.g., code genera-
tion, model mapping and synchronization, model evolution, and reverse engineering 
[1]). The traditional way to implement model transformations is to use executable 
model transformation languages to specify the transformation rules and automate the 
transformation process [2]. However, the use of model transformation languages may 
present some challenges to users, particularly to those who are unfamiliar with a spe-
cific transformation language. Although declarative expressions are supported in most 
model transformation languages, the transformation rules are defined at the meta-
model level, which requires a clear and deep understanding about the abstract syntax 
and semantic interrelationships between the source and target models. In some cases, 
certain domain concepts are hidden in the metamodel and difficult to unveil [3, 4]. 
These implicit concepts make writing transformation rules challenging. Moreover, a 
model transformation language may not be at the proper level of abstraction for an 
end-user and could result in a steep learning curve. One advantage of DSM is that by 
raising the level of abstraction, domain experts and non-programmers can become 
participants in software development. However, the difficulty of specifying meta-
model-level rules and the associated learning curve may prevent domain experts from 
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contributing to certain model transformation tasks from which they have much do-
main experience. 

Model Transformation By Example (MTBE) is an innovative approach (first intro-
duced in [5]) to address the challenges inherent from using model transformation lan-
guages. Instead of writing transformation rules manually, MTBE enables users to  
define a prototypical set of interrelated mappings between the source and target model 
instances, and then the metamodel-level transformation rules can be inferred and gen-
erated semi-automatically. In this context, users work directly at the model instance 
level and configure the mappings without knowing any details about the metamodel 
definition or the hidden concepts. With the semi-automatically generated rules, the 
simplicity of specifying model transformations is greatly improved. 

The current state of MTBE research still has some limitations that may prevent it 
from being a widely used model transformation approach. The semi-automatic gen-
eration often leads to an iterative manual refinement of the generated rules; therefore, 
the model transformation designers may not be isolated completely from knowing the 
transformation languages and the metamodel definitions. In addition, the inference of 
transformation rules depends on the given sets of mapping examples. In order to get a 
complete and precise inference result, one or more representative examples must be 
available for users to setup the prototypical mappings, but seeding the process with 
such examples is not always an easy task in practice. Furthermore, current MTBE 
approaches focus on mapping the corresponding domain concepts between two dif-
ferent metamodels without handling complex attribute transformations. For instance, 
in practice, it is quite common to transform an attribute in the source model to another 
in the target model with some arithmetic or string operations, which is expressed by 
imperative transformation rules in some transformation languages. Unfortunately, 
these imperative expressions can only be added manually to the generated rules using 
current MTBE approaches. 

To further simplify the model transformation process, we propose a new approach 
– Model Transformation By Demonstration (MTBD). Instead of the MTBE idea of 
inferring the rules from a prototypical set of mappings, users are asked to demonstrate 
how the model transformation should be done by directly editing (e.g., add, delete, 
connect, update) the model instance to simulate the model transformation process step 
by step. A recording and inference engine has been developed, as part of a prototype 
called MT-Scribe, to capture all user operations and infer a user’s intention in a model 
transformation task. A transformation pattern is generated from the inference, specify-
ing the precondition of the transformation and the sequence of operations needed to 
realize the transformation. This pattern can be reused by automatically matching the 
precondition in a new model instance and replaying the necessary operations to simu-
late the model transformation process. 

We have successfully applied this approach to implement endogenous model trans-
formations, where both the source and target models conform to the same metamodel. 
Our initial experience in using MTBD suggests improvement in the efficiency and 
simplicity of specifying model transformations. The current contributions of MTBD 
include the following: 

− MTBD represents one of the first attempts to simplify the specification of 
endogenous model transformations (in contrast to the exogenous focus of 
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previous MTBE approaches), which offers improvement for automating model 
evolution activities (e.g., model refactoring, scaling, and aspect weaving). 

− MTBD can be used to specify model transformations without the need to use 
a model transformation language. Furthermore, an end-user can describe a 
desired transformation task without detailed understanding of a specific 
metamodel. 

− The current status of MT-Scribe includes: (1) a recording engine to com-
pletely capture all user operations and related context; (2) an algorithm to op-
timize the recorded operations, eliminating meaningless operations; (3) an 
algorithm to automatically match a transformation precondition in any model 
instance; (4) support to infer transformations with attribute operations; (5) a 
correctness checking and undo mechanism to guarantee the correctness of 
the transformation process; (6) fully automatic generation of a transformation 
pattern, without iterative manual refinement. 

The rest of this paper is organized as follows. A motivating example is first given in 
Section 2. The paper demonstrates the concept of MTBD through two endogenous 
model transformation examples. Section 3 presents the overview and main steps of 
our approach, followed by an explanation of the technical implementation and algo-
rithms through a running example in Section 4. An additional example is also given at 
the end of Section 4 to further illustrate the idea. Related transformation techniques 
are compared in Section 5, and Section 6 offers concluding remarks and summarizes 
future work. 

2   MazeGame – A Motivating Example 

This section introduces an endogenous transformation task in a simple modeling lan-
guage called MazeGame. For the purpose of introducing MTBD, the MazeGame ex-
amples presented in this paper are simple transformation cases in a small domain. 
From the metamodel definition in Figure 1, a maze consists of rooms, which can be 
connected to each other. Each room can contain gold, a weapon or a monster with the 
powerValue attribute to specify the power. This modeling language is used to gen-
erate a textual game in Java, enabling players to type textual commands to move in 
the maze and collect all the gold without being killed by monsters. A model instance 
describes a specific maze configuration. Collecting weapons during game-play in-
creases a player’s power, which can be used to kill monsters. We constructed this 
metamodel in GEMS (Generic Eclipse Modeling System) [6]. A model instance is 
shown in Figure 2. 

In the context of this domain, a transformation task can be specified as: for those 
rooms that contain gold and a weapon (the two unfolded rooms in Figure 2, Room2 and 
Room6), the transformation removes one gold piece, replaces the weapon with a mon-
ster, and sets the powerValue of the new monster to be half of the powerValue of 
the weapon being replaced. This transformation is used when the maze designer discov-
ers that the number of monsters is far less than that of weapons, making the game too 
easy.  
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Fig. 1. The MazeGame metamodel 

 

Fig. 2. Part of a MazeGame model instance 

Some model transformation languages supporting endogenous transformation (e.g., 
ATL [7] and C-SAW [8]) can be used to complete this task by specifying the trans-
formation rules. However, domain experts, or in this case, maze designers who have 
very little knowledge about computer science may find it challenging to learn a trans-
formation language and understand the metamodel definition. To use MTBE, the ap-
propriate source and target models are needed that fit the desired transformation task. 
Such examples may not be readily available and may require a large amount of time 
to create for large models. Also, the attribute modify operation (e.g., transforming the 
powerValue of the weapon) cannot be inferred and generated automatically by ex-
isting MTBE approaches. 

3   Overview of MTBD 

MTBD is motivated by the difficulties of learning new model transformation lan-
guages and understanding metamodel definitions, and the limitations of MTBE. By 
analyzing the recorded user operations, a transformation pattern can be inferred and 
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then reused by automatic pattern matching without the availability of model transfor-
mation language support in a modeling tool. The MTBD process (Figure 3) consists 
of five main steps. 

Step 1: User demonstration and operations recording. A user-recorded demonstra-
tion provides the base for transformation pattern analysis and inference, so accurately 
recording all user operations is the first step. The demonstration is given by directly 
editing a model instance (e.g., add a new model element or connection, modify the 
attribute of a model element) to simulate a transformation task. An event listener has 
been developed as part of MT-Scribe to monitor all the operations occurring in the 
model editor. For each operation that is captured, all the information about the opera-
tion is encapsulated into an object, similar to a Command pattern. Finally, the list of 
objects represents the sequence of operations needed to finish a transformation task. 

 

Fig. 3. MTBD overview 

Step 2: Optimize recorded operations. The sequence of operations recorded directs how 
a transformation should be performed. However, not all operations are meaningful. For 
instance, without a careful design of the demonstration, it is possible that a user first adds a 
new element and modifies its attributes, and then deletes it in another operation; the result 
being that all the operations regarding this element actually did not take effect in the trans-
formation process and therefore are meaningless. The presence of meaningless operations 
not only has the potential to make the inferred transformation preconditions inaccurate, but 
also exerts a negative influence on the efficiency of a transformation, especially when it 
executes on a large model instance. Thus, an optimization that eliminates all meaningless 
operations is automatically done after the recording. 

Step 3: Infer the transformation pattern. Because our approach does not rely on a 
model transformation language, it is not necessary to generate specific transformation 
rules; instead, a general transformation pattern is inferred. This pattern describes the 
precondition of a transformation (i.e., where the transformation should be performed) 
and the actions of a transformation (i.e., how the transformation should be realized). 
By analyzing the recorded operations, the related meta-information of model elements 
and connections is extracted to construct the precondition, while the actions are speci-
fied by the operation sequence. 
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Step 4: Precondition matching. After a pattern is summarized, it can be reused and 
applied to any model instance from the same metamodel. By selecting a pattern from 
the repository, the MT-Scribe engine automatically traverses the model instance to 
search all locations that match the selected pattern. A notification is given if no 
matching locations are found. In MTBD, a matching location contains the necessary 
model elements and connections on which the recorded operations could be executed 
correctly. 

Step 5: Replay operations and correctness checking. When a matching location is 
found, the recorded operations are replayed to transform the current model instance. 
The pattern matching step guarantees that operations can be executed with necessary 
operands. However, it does not ensure that executing them will not violate the meta-
model. Therefore, each applied operation is logged and model instance correctness 
checking is performed after every operation execution. If a certain operation violates 
the metamodel definition, all executed operations are undone and the whole transfor-
mation replay is cancelled. 

4   Technical Implementation and Algorithms Supporting MTBD 

An Eclipse plug-in has been implemented in GEMS to realize the MTBD approach. 
To illustrate the usage and implementation of each step from Section 3, the process of 
inferring a user-demonstrated transformation is presented using the motivating exam-
ple. A second MazeGame transformation is introduced to illustrate the idea further. 

4.1   Demonstration of MTBD Using the MazeGame 

GEMS provides an extension point to capture all events that occur during user interac-
tion on a model instance. To infer a transformation pattern, the model editing operations 
performed by the user must be recorded. In GEMS, user operations can be classified 
into six categories. By filtering out unrelated events, all operations are recorded in se-
quence and stored as operation objects, with the necessary information encapsulated as 
listed in Table 1. The final list of operation objects serves as the fundamental knowledge 
base for the pattern inference and summary in later steps. 

Table 1. Six types of recorded user operations 

Operation Type Information Recorded 
Add an Element Location of the parent element and its meta type 

The newly added element and its meta type 
Remove an Element Location of the element being removed and its meta type 
Modify an Element Location of the element being modified and its meta type 

The attribute name, the old value and the new value 
Add a Connection Location of the parent source and target elements and their meta types 

The newly added connection and its meta type 
Remove a Connection Location of the connection being modified and its meta type 
Modify a Connection Location of the connection being modified and its meta type 

The attribute name, the old value and the new value 
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To demonstrate the transformation in the motivating example from Section 2, a user 
must first find a room that contains a gold piece and a weapon. The four operations listed 
in Table 2 are performed during the user demonstration. The whole model changing 
process is shown in Figure 4. The remove and add operations in the first three steps are 
realized by the basic editing actions in the editor, and the fourth operation to modify the 
attribute is implemented by choosing the attribute from the attribute tree and specifying 
the arithmetic expression. When the powerValue of weapon1 is chosen, its value 
(80) is displayed. A user may type “ / 2” in the expression editor to identify the way that 
a numeric attribute is changed by a transformation. By clicking the evaluate button in the 
recording dialog, the final value for the attribute (40) is calculated and assigned to the 
current attribute being edited. As a result, the recording has defined this attribute opera-
tion as “monster1.powerValue = weapon1.powerValue / 2”. In this way, 
constant values and formulas are typed directly, while referenced attributes are selected 
from the attribute tree. Attribute computation is therefore enabled in the user demonstra-
tion process using a real model instance, rather than at the metamodel level. This is cur-
rently impossible in most MTBE implementations. 

Table 2. The sequence of operations demonstrated to realize motivating example 

No. Operation Information Recorded 
1 Remove Gold1 Location: Root1.MazeFolder1.Room2.Gold1  

Meta type: Root.MazeFoler.Room.Gold 
2 Remove Weapon1 Location: Root1.MazeFolder1.Room2.Weapon1 

Meta type: Root.MazeFoler.Room.Weapon 
3 Add a Monster Location: Root1.MazeFolder1.Room2 

Meta type: Root.MazeFoler.Room 
New element: Monster1  Meta Type: Monster 

4 Modify Monster1 Location: Root1.MazeFolder1.Room2.Monster1 
Meta type: Root.MazeFolder.Room.Monster 
Attribute: powerValue  Old value: 0  New value: Weapon1 / 2 

 

 

Fig. 4. Model changing process 
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Algorithm 1. Optimize Operation List 

  for each op in the input operation list 
    switch (op.type) 
        case ADD_ELEM:  
           for each op_temp after the current op in the list 
              if op_temp.type == REMOVE_ELEM and op_temp removes what op added  
                 then remove both op and op_temp from the list 
           end for 
        case MODIFY_ELEM: 
           traverse the final model instance and search the element being modified 
           if not found then remove op from the list 
           if found then compare the attribute value with the value stored in op 
               if different then remove op from the list 
        case ADD_CONN:  
           for each op_temp after the current op in the list 
              if op_temp.type == REMOVE_CONN and op_temp removes what op added  
                 then remove both op and op_temp from the list 
           end for 
        case MODIFY_CONN: 
           traverse the final model instance and search the connection being modified 
           if not found then remove op from opList 
           if found then compare its attribute value with the value stored in op 
               if different then remove op from opList 
  end for 

 
Given the final list of recorded operations and the final model instance after user 

demonstration, an optimization phase that removes meaningless operations is per-
formed by analyzing each operation in the list of recorded operations. The optimiza-
tion algorithm is given in Algorithm 1. Based on the optimized operation list, the 
transformation pattern is inferred. Because no transformation language is used in the 
inference, the result is called a transformation pattern rather than a transformation rule 
(Please note: we can also generate concrete transformation rules from the inferred 
pattern). A transformation pattern consists of a precondition and the transformation 
actions. 

Table 3. Model object list in precondition 

elem1.elem2.elem3.elem4 
elem1.elem2.elem3.elem5 
elem1.elem2.elem3 (elem6) 
elem1.elem2.elem3.elem6  

Table 4. Model objects type table 

Model Object Meta Type 
elem1 Root 
elem2 MazeFolder 
elem3 Room 
elem4 Gold 
elem5 Weapon 
elem6 Monster  

 
Table 3 and Table 4 together specify the precondition of the example inferred from 

the operation list, i.e., all the rooms that contain a gold piece and a weapon. The infer-
ence is accomplished by extracting the meta information of the recorded operations 
and generalizing them. In Table 3, elem6 in parenthesis denotes a newly added  
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element. Instead of the specific IDs in the recorded operations, generic names with a 
meta type mapping table are used to describe the precondition. This precondition 
guarantees that the operations could be executed correctly with sufficient operands. 
To implement more powerful transformations, more complex preconditions need to 
be enabled, which are mentioned in Section 6. Table 5 gives the actions as recorded 
operations with generic element names. The summarized transformation pattern is 
serialized and stored in a pattern repository. 

Table 5. Transformation actions with generic element names 

Remove elem4 from elem3 
Remove elem5 from elem3 
Add elem6 in elem3 
Modify elem6: elem6.powerValue = elem5.powerValue / 2 

 
To apply a reusable transformation to a model instance, a pattern is selected from 

the repository and applied to a portion of the model instance. The MTBD plug-in will 
traverse the model instance and find all locations that match the precondition in the 
pattern. The backtracking algorithm (Algorithm 2) is used in the matching process. To 
enable more flexible matching in the model instance, two matching modes are sup-
ported. The default mode traverses the whole model instance to search all locations 
that match the precondition. A customized mode assists users in selecting parts of the 
model instance to traverse. In either mode, the MTBD plug-in reports if no locations 
are matched on a specific model instance. 

After a precondition is matched to a location in the model instance, the transforma-
tion operations will be replayed automatically in sequence to realize the transforma-
tion process. Because an operation is implemented by low-level APIs provided by 
GEMS, an operation might be executed without consideration by the model correct-
ness checking mechanism in the model editor. The possible result is a metamodel 
violation (e.g., if an operation is to add a monster in a room, it can still be replayed in 
a room even if a monster already exists, but at most one monster is allowed to be in a 
room according to the metamodel). To ensure a correct transformation, the model 
correctness checking is done after replaying each operation by calling the GEMS 
model checking module. Each replay is also logged in a stack, so that if a violation 
occurs, the replayed operations can be undone and rolled back to restore the original 
model instance. 

Algorithm 2. Precondition Matching 
initialize a candidate object list of all the elements and connections in the selected model instance 
for each entry e in the model object list 

for each obj in the candidate object list 
   if obj matches e then assign obj to e and break 
   if obj does not match e then continue 
end for 
if e is assigned and is the last entry in the list then matching succeeds 
if e has not been assign then backtrack the previous e and try again 
if no further backtracking is allowed then matching fails 

end for 
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Fig. 5. Part of the model instance after the transformation 

Figure 5 shows part of the model instance after applying the transformation pattern 
example in a MazeGame model instance. The gold piece is removed and the weapon 
is replaced with a monster whose powerValue is half as before. The whole process 
with more detailed information can be viewed as a video on the project website [22]. 

4.2   Another Transformation Example: Balancing Game Play 

A perfect maze game has a balance of power between monsters and weapons, so win-
ning a game should be neither too easy nor too hard. To make the motivating example 
more difficult to play, a weapon is replaced with a monster if it is in a room together 
with a gold piece, so that getting a piece of gold first requires killing a monster. In 
some other cases, the game may accidentally become too difficult. For example, 
sometimes monsters appear in a sequence of rooms and the consequence is that a 
player will encounter several monsters in a row. Figure 6 (left) shows a part of a maze 
where three rooms connected with each other all contain a monster. To balance the 
power, it is necessary to replace the monster in the third room with a weapon, and the 
powerValue of the weapon defined as the sum of the monsters in the first two 
rooms. In addition, to avoid encountering three monsters in a row, it is necessary to 
reconnect the rooms so that the first monster room connects to the third weapon room, 
which then connects to the second monster room, as shown in Figure 6 (right). Table 
6 indicates the operations needed for this transformation. 

 

Fig. 6. Avoid encountering three monsters in a row 



722 Y. Sun, J. White, and J. Gray 

Table 6. The sequence of operations demonstrated to avoid three monsters in a row 

No. Operation 
1 Remove Monster1 in Room 9 
2 Add a new Weapon in Room 9 
3 Set the powerValue of the new weapon to be the sum of two monsters 

in Room1 and Room2 
4 Remove the connection from Room1 to Room2 
5 Remove the connection from Room2 to Room9 
6 Add a connection from Room1 to Room9 
7 Add a connection from Room9 to Room2 

The final generated transformation precondition is shown in Tables 7 and 8, repre-
senting all three rooms connected one-by-one with each containing a monster. The 
stored transformation actions are listed in Table 9. Even though this is a very simple 
case study, the transformation of powerValue in this example transformation can-
not be accomplished by MTBE, which mainly focuses on direct concept mappings. 
Our MTBD approach provides an opportunity to define a computation used within a 
transformation. 

Table 7. Model object list in precondition 

elem1.elem2.elem3.elem4 
elem1.elem2.elem3 (elem5) 
elem1.elem2.elem6.elem8  
elem1.elem2.elem7.elem9 
elem1.elem2.conn1:elem6->elem7 
elem1.elem2.conn2:elem7->elem3 
elem1.elem2(conn3:elem6->elem3) 
elem1.elem2(conn4:elem3->elem7)  

Table 8. Model objects type table 

Model Object Meta Type 
elem1 Root 
elem2 MazeFolder 
elem3 Room 
elem4 Monster 
elem5 Weapon 
elem6 Room 
elem7 Room 
elem8 Monster 
elem9 Monster 
conn1 RoomConnection 
conn2 RoomConnection 
conn3 RoomConnection 
conn4 RoomConnection  

 
Table 9. Transformation actions with generic element names 

Remove elem4 from elem3 
Add elem5 in elem3 
Modify elem5: elem5.powerValue = elem8.powerValue + elem9.powerValue 
Remove conn1 
Remove conn2 
Add conn3 from elem6 to elem3 
Add conn4 from elem3 to elem7 
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5   Related Work in Model Transformation Inference 

MTBD aims to simplify implementation of model transformation tasks, following the 
similar direction of MTBE approaches. Balogh and Varró introduced MTBE by using 
inductive logic programming [9, 10]. The idea is to generate graph transformation 
rules from a set of user-defined mappings between the source and target model in-
stances by applying an inductive logic engine. Similarly, Strommer and Wimmer im-
plemented an Eclipse prototype to enable generation of ATL rules from the semantic 
mappings between domain models [11, 12]. Both approaches provide semi-automatic 
generation of model transformation rules, which need further refinement by a user. 
Because both approaches are based on semantic mappings, they are more appropriate 
in the context of exogenous model transformations between two different metamod-
els. However, the generation of rules to transform attributes is not well supported in 
most MTBE implementations. 

MTBD and MTBE are actually extensions of the “by-example” concept. Query-by-
example [13] provides a graphical query interface to enable users to use visual tables 
to specify example query elements and conditions. A similar idea to our approach is 
called programming-by-example [14, 15], which is used to infer new behaviors by 
demonstrating the actions on concrete examples. In addition, the “by-example” idea 
has also been applied to XML document transformation [16]. XML schema trans-
formers can be derived from examples, which then generate XSLT code to transform 
XML documents. 

Although our contribution focuses on model transformations, a similar work has 
been done to carry out program transformations by demonstration [17]. To perform a 
program transformation, users first manually change a concrete program example, and 
all the changes will be recorded by the monitoring plug-in. Then, the recorded 
changes will be generalized in a transformation. After editing and specifying the gen-
erated transformation, it can be applied to other source code locations. Although it 
also supports the specification of how variable values are computed, it is in a separate 
step with much manual editing involved. MTBD automates this step in the demonstra-
tion process and is focused on demonstrating changes on model instances, not source 
code. 

6   Conclusion and Future Work 

This paper introduces a new approach to simplify model transformation tasks, which 
does not rely on any model transformation language or the understanding of a specific 
metamodel. To avoid iterative user refinements after the generation process, we made 
the process fully automated by enabling users to demonstrate not only the transforma-
tion precondition, but also the transformation actions, including attribute computa-
tions. The generated transformation patterns are stored in a repository, which can be 
applied to any model instance in the same metamodel from which the transformation 
was recorded. A complete Eclipse plug-in for GEMS, called MT-Scribe, has been 
developed to implement the MTDB approach. The examples presented in this paper  
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are simple transformation cases in a small domain, which are used to focus on the  
MTBD approach. The examples also illustrate the type of challenges that are encoun-
tered when using the direct mapping approach of most MTBE implementations. The 
current implementation can also carry out other complex transformations in practical 
domains, such as UML refactoring. More details and examples about MTBD, includ-
ing video demonstrations, are available at [22]. The MTBD idea can be applied to 
improve many model evolution tasks, such as: 

 
− Model refactoring. Like program refactoring, model refactoring improves the 

internal structure of a system model without changing its external behavior. The 
traditional approach is to use a model transformation engine with a refactoring 
language [18]. The current version of MTBD can be used to support model refac-
toring. MTBD allows end-users to build a set of reusable refactorings that are do-
main-specific. 

− Aspect-Oriented Modeling (AOM). AOM addresses crosscutting concerns in 
models by separating each concern and weaving it within a base model. Aspects 
can be defined by using either a textual constraint language [19] or graphical 
modeling language [20]. MTBD can also be applied to automate AOM, with pre-
conditions representing pointcuts and the transformation actions corresponding to 
advice. 

− Model scalability. A model transformation engine can be used to scale model 
instances, such as the replicators implemented in [21]. Instead of specifying scal-
ing rules, users can demonstrate the scaling process by using MTBD. 

We believe that MTBD can also be used in exogenous model transformations. In a 
modeling environment where editing two model instances from two different domains 
are allowed, users can edit the source model and change it to the desirable target 
model. Then the transformation pattern or rules could be inferred from the editing 
operations, which is our future main focus. 

In the current version of MT-Scribe, one limitation is that only the basic or the 
weakest precondition can be inferred. For instance, in the motivating example, the 
precondition is all the rooms that contain at least one gold piece and one weapon. 
However, it is impossible to further restrict it to only the rooms with more than two 
connections and the powerValue of the contained weapon is more than 100. This 
inflexibility of specifying preconditions exerts a negative influence on the power of 
MTBD. To enable more powerful precondition definitions, we will implement one 
more step to ask users to demonstrate the precondition as well. Users will be asked to 
select the model objects in the editor and setup the conditions that need to be satisfied. 

Furthermore, the attribute operations currently supported are only basic arithmetic 
operations and string concatenation. However, more powerful operations and func-
tions (e.g., max() and min()) are available in some model transformation lan-
guages. Hence, to make MTBD more practical, these additional attribute operations 
should be supported in the demonstration process. 

Acknowledgement. This work was supported by NSF CAREER award CCF-0643725. 
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Abstract. The standardized QVT Relations language, one cornerstone
of Model-Driven Architecture (MDA), has not yet gained widespread
use in practice, not least due to missing tool support in general and
inadequate debugging support in particular. Transformation engines in-
terpreting QVT Relations operate on a low level of abstraction, hide
the operational semantics of a transformation and scatter metamodels,
models, QVT code, and traces across different artifacts. We propose a
model-based debugger representing QVT Relations on bases of TROPIC,
a model transformation framework which utilizes a variant of Colored
Petri Nets (CPNs) providing an explicit runtime model and a homoge-
nous view on all artifacts of a transformation.

Keywords: QVT Relations, Debugging, Model Transformations, CPN.

1 Introduction

In the MDA paradigm, model transformation languages play a vital role, leading
already to the standardization of the Query/View/Transformation (QVT) lan-
guage [1]. Especially for declarative transformation languages, such as QVT Rela-
tions, appropriate debugging facilities are of outermost importance, as is also the
case for declarative languages in general, since the missing operational semantics
hampers observation, tracking and fixing of bugs [2]. Existing approaches for exe-
cuting and debugging QVT Relations (e.g., mediniQVT1) are still in its infancy [3]
and often provide only low-level debugging information such as logging messages
or variable values, hide the execution order of transformation rules and scatter
metamodels, models, rules and traces across different artifacts.

We propose a model-based debugger [4] representing QVT Relations on bases
of TROPIC (Transformations on Petri Nets in Color) [5,6], a model transforma-
tion framework based on Colored Petri Nets (CPNs) [7], adapted to the needs of

� This work has been partly funded by the Austrian Science Fund (FWF) under grant
P21374-N13.

1 http://projects.ikv.de/qvt
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transformation designers [8]. With this, firstly, an explicit runtime model is pro-
vided, which can be easily exploited for debugging purposes, e.g., by using OCL
queries, thus representing a white-box view on the transformation. Secondly, a
homogenous view on all transformation artifacts is ensured by representing them
in terms of the basic CPN concepts places, tokens and transitions.

The remainder of this paper is structured as follows. Section 2 introduces
the basics of QVT Relations and TROPIC as well as of the translation in be-
tween. Section 3 introduces an interactive debugging environment offering sev-
eral features for model-based debugging of transformations and finally, Section 4
provides an outlook on future work.

2 QVT Relations and TROPIC at a Glance
This section briefly illustrates the main language concepts of QVT Relations and
TROPIC for describing transformation logic, details their main differences on
the execution level and discusses the design rationale of the translation between
the language concepts.

QVT Relations. Using QVT Relations, transformation logic between two dif-
ferent metamodels is specified as a set of relations that must hold for the trans-
formation to be successful. Relations contain a set of so-called DomainPatterns
used to match for existing source model elements in order to instantiate new
target model elements or to modify existing ones. During execution of a trans-
formation by an engine (cf. left part of Fig. 1) trace information is available
in order to verify the transformation result, only, leaving the full operational
semantics within in a black box.

TROPICQVT Relationson TROPIC
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Fig. 1. Model Transformations in QVT Relations and TROPIC

TROPIC. TROPIC uses Colored Petri Net concepts [7], being mainly places,
tokens and transitions, for the specification and execution of model transforma-
tions. In particular, places are derived from elements of metamodels, tokens from
elements of models and transitions from the actual transformation logic (shown
in the right part of Fig. 1). The existence of certain model elements allows tran-
sitions to fire and thus stream tokens to the target places representing instances
of the target metamodel to be created and thereby establishing trace informa-
tion in terms of tokens in additional places. TROPIC, thus, provides a white-box
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view on model transformation execution, i.e., the specification does not need to
be translated into some low-level executable artifact, but can be executed right
away. Therefore, no impedance mismatch between specification and execution
occurs, allowing for enhanced debuggability of model transformations.

Translation between QVT Relations and TROPIC. The translation be-
tween the concepts of QVT Relations and TROPIC has been performed on basis
of their metamodels. We assume a syntactically correct QVT Relations specifica-
tion since only in this case we can guarantee a correct translation to TROPIC and
the propagation of changes in the transformation logic represented by TROPIC
back to QVT Relations. Whereas QVT Relations only references the metamodel
files, TROPIC explicitly represents each element of the metamodels as first class
concept in terms of places. Regarding models, QVT Relations provides no ex-
plicit representation mechanism, which is again in contrast to TROPIC, where
each model element is explicitly represented by tokens residing in correspond-
ing places. Finally, in the textual syntax of QVT Relations the correspondences
between source elements and target elements as well as the interplay among dif-
ferent relations are hard to grasp. TROPIC on the other hand visualizes these
correspondences as well as the interplay among the relations utilizing transitions
consisting of a LHS representing the pre-conditions of a certain transformation,
and a RHS depicting its post-condition by means of color patterns. For further
details on this translation it is referred to [9].

3 Debugging Environment for QVT Relations

Our debugging environment is based on Eclipse and includes two editors, one
that presents the QVT Relations in textual syntax (cf. Fig. 2a) and another one
that shows the graphical representation thereof in TROPIC (cf. Fig. 2b). The
TROPIC editor toolbar (cf. Fig. 2c) provides common debugging functionali-
ties to figure out the operational semantics such as stepwise debugging by firing
transitions including an undo/redo mechanism. Furthermore, functionalities are
provided to save the generated target model, i.e., to switch from the token rep-
resentation to a model representation, or to load a new source model into the
debugging environment.

OCL for Debugging. The utilization of a dedicated runtime model allows to
employ OCL for two different debugging purposes. Firstly, OCL can be used to
define conditional breakpoints at different levels of granularity, e.g., if a certain
token is streamed into a certain place, or if tokens occur in several different
places. Secondly, OCL can be used to tackle the well-known debugging problem
that programs execute forward in time whereas programmers must reason back-
wards in time to find the origin of a bug. For this, a dedicated debugging console
based on the Interactive OCL Console of Eclipse (cf. Fig. 2d) is supported,
providing several pre-defined debugging functions to explore and to understand
the history of a transformation by determining and tracking paths of produced
tokens (exemplarily shown in Table 1).
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Table 1. OCL operations for debugging

Context QCL Debugging Operation Description

Place getMatchingTokens:Set(Token) tokens that match a transition
getMismatchedTokens:Set(Token) tokens not matching a transition

Token getCreator:Transition transition that created a token
Transition getInputTokens(Token):Set(Token) source tokens of a transition

Debugging Phases. In the following a possible usage scenario of our debugging
environment is described according to the three debugging phases, observing
facts, tracking origins and fixing bugs (cf. Fig. 2).

Observing Facts. Observing facts during a certain transformation execution can
be done either by simulating the transformation and watch for unexpected be-
havior or by debugging the transformation step-by-step. In order to detect un-
expected behavior automatically, the resulting target model can be compared
to an expected target model to identify wrong or missing target tokens. If such
faulty parts of the target model are detected, the owning target places as well
as the transitions that produce tokens in these places are highlighted to ease
finding the reasons for the errors (cf. indicated by exclamation marks in Fig. 2).

Tracking Origins. The origin of an error has to be discovered by reasoning
backwards in time, questioning, e.g., why certain tokens have been created.

Interactive DebuggerInteractive Debugger

Interactive Debugger Console

QVT Relations

transformation umlToRdbms(uml:SimpleUML, 
rdbms:SimpleRDBMS){

top relation ClassToTable{
cn: String;
checkonly domain uml 
c:Class{ name=cn,
kind=’Persistent’};

enforce domain rdbms 
t:Table{name=cn};

where {
AttributeToColumn(c,t);

}
}
relation AttributeToColumn{

an, pn :String;
checkonly domain uml c:Class{

attribute=
a:Attribute {
name=an,
type=
p:PrimitiveDataType{
name=pn}}};

enforce domain rdbms 
t:Table{
column=
cl:Column {
name=an,
type=pn}};

where{
SuperAttributeToColumn(c,t);

}
}

relation SuperAttributeToColumn{
checkonly domain uml c:Class{

generalOpposite=
sc:Class {}};

enforce domain rdbms 
t:Table {};

where{
AttributeToColumn(sc, t);

}
}

a

c
TROPIC

selectedElement().getCreator()
result: Transition (d)
result.getInputTokens(selectedElement())
result: Sequence(Token) {t1, t2, ..., t7}
result -> first().getCreator()
result: Transition (e) 

d

b

Fig. 2. Debugging Environment showing parts of the UML2Relational Example [1]
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The graphical representation in Fig. 2 shows that the tokens in question have
been created by transition 4, the source tokens responsible for creating exactly
these tokens, however, are unknown. The paths of these produced tokens can be
tracked back by means of our predefined OCL functions.

Fixing Bugs. After finding the origins of a bug, it is possible to adapt the trans-
formation logic during debugging directly in TROPIC and propagate the changes
back to QVT Relations.

4 Further Work

Several issues for future work remain open. As stated in [10], the QVT standard
defines the operational semantics of QVT Relations twofold and only informally,
firstly in natural language and secondly by a translation to QVT Core, being
incompatible to each other. This situation led to different implementations of
the operational semantics in different tools. Currently, our translation is based
on the implementation of mediniQVT, but we are planning to investigate the
implementations of different tools. Additionally, as TROPIC is based on a variant
of CPNs we will explore if Petri Net properties such as persistence or liveness
can be used to check for potential shortcomings in QVT Relations specifications.
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Abstract. Model transformations are a key technique in model-driven engi-
neering. If several transformations are composed into a model transformation
chain, an approach is needed that allows software engineers to incrementally
improve the quality of the model transformation chain. In this paper, we propose
incremental development of model transformation chains based on automated
testing. We present four test design techniques and a test framework architecture
for testing transformation chains and report on the validation of our approach
when developing a transformation chain for model version management.

Keywords: Model transformation, automated testing.

1 Introduction

Model transformations are nowadays used in model-driven engineering for model re-
finement, model abstraction, and code generation. Model transformations can either
be implemented directly in a programming languages (such as JavaTM) or using one
of the available transformation languages that have been developed in recent years
(e.g. [1,2,3]). For complex transformation problems, several model transformations can
be composed into a model transformation chain [4] that enables reuse, distributed de-
velopment and isolated testing of individual model transformations.

Systematic development of high-quality model transformations becomes an impor-
tant issue for wide-spread adoption of solutions incorporating model transformations.
To ensure high quality of model transformations, existing software engineering tech-
niques for improving software quality [5], such as requirements analysis, modeling,
automated testing and formal verification, can be applied over the development life cy-
cle of model transformations. As model transformations are a relatively new paradigm
in software engineering, existing techniques must be adapted and possibly extended to
take into account characteristics of model transformations.

Existing work is primarily concerned with testing of model transformations (see [6]
for an overview), where one key challenge is the construction of ’interesting’ test cases
that show the presence of defects. For black-box testing of model transformations, the
meta model of the input language of the transformation can be used to systematically
generate a large set of test cases [7,8,9]. For gray-box testing, also transformation rules
can be taken into account [10]. With regards to model transformation chains, testing

� Empirical results category paper.
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each individual model transformation must be combined with testing of the model trans-
formation chain, and suitable test design techniques must be devised.

For obtaining high-quality model transformations and model transformation chains,
testing alone is not sufficient. In the software engineering community, it is well-accepted
that software quality is also influenced by the development process. Nowadays, it is
common practice to follow an iterative development process (e.g. the Rational Unified
Process [11]) or even an agile development process [12]. Similarly, when developing a
model transformation chain, several iterations are required and it must be ensured that
the solution gradually improves.

To ensure incremental improvement of the quality of a transformation chain, sev-
eral requirements must be addressed: Firstly, software engineers must be able to change
their transformation internally without breaking the overall transformation chain. Sec-
ondly, when adding new functionality, existing functionality must be preserved, and
thirdly, when fixing defects of a transformation chain, software engineers must be given
a means to ensure that no additional defects are being introduced.

In this paper, we present an approach for incremental development of model trans-
formation chains that is based on automated testing. To establish automated testing of
a model transformation chain, we propose four test design techniques and describe an
architecture for a fully automated test framework for a model transformation chain. Our
approach enables the software engineer to improve the quality of the model transforma-
tion chain systematically when adding new functionality, fixing defects or changing a
transformation of the overall chain: Automated testing techniques for the transformation
chain are used to validate all changes, following the established principle of test-driven
development. We validate our approach by developing a model transformation chain for
version management for the IBM R© WebSphere R© Business Modeler [13].

The paper is structured as follows: We first provide background on version manage-
ment of process models, which requires the development of a model transformation
chain. In Section 3, we present an overview of our approach for incremental devel-
opment and explain why it ensures gradual improvement of the model transformation
under development. We discuss requirements for testing transformation chains in Sec-
tion 4, present four test design techniques in Section 5, and explain an architecture for
a test framework in Section 6. In Section 7 we report on applying the approach when
developing a version management solution for process models. We conclude with a
discussion of related work, conclusions and future work.

2 Case Study: Version Management of Business Process Models

In business-driven development [14], process models are developed in a team environ-
ment and iteratively refined. To support business-driven development, a version man-
agement approach for process models is needed that allows a modeler to detect and
resolve differences between two process models V and V1. At some point in time, the
two versions need to be consolidated into a common version by inspecting all changes
and applying selected changes.

Figure 1 a) shows a first version V of a process model from the insurance domain
and a second version V1 that has been derived from V . Both models are expressed in the
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Fig. 1. Two process models and their Process Structure Trees

Business Process Modeling Notation (BPMN) [15]. In addition, Figure 1 a) also shows
a decomposition of the process models into fragments (e.g. fZ ,..). These fragments can
be arranged into a Process Structure Tree (PST) of a process model [16], as shown in
Figure 1 b).

To realize process model version management, we can distinguish a difference de-
tection phase and a difference resolution phase: In difference detection, a Difference
Model containing all change operations (shown in Figure 2) must be computed and
visualized such that the business user can inspect all changes. Then, in the difference
resolution phase, the business user can apply selected change operations to construct a
consolidated process model.

Δ(V, V1):
a) MoveAction(”Check Claim”, -, -, -, -)
b) InsertFragment(fD, -, -)
c) InsertAction(”Pay Out”, -, -)
d) InsertAction(”Send Confirmation”, -, -)
e) InsertFragment(fI, -, -)
f) InsertAction(”Calculate Loss Amount”, -, -)
g) InsertAction(”Recalc. Cust. Contribution”, -, -)
h) InsertAction(”Send Rej. Letter”, -, -)

Fig. 2. Difference Model for example (textual
form)

For difference detection if no change
log is available [17], several model trans-
formations are part of the solution, as il-
lustrated in Figure 3: First, a concrete
process model expressed in the language
BPMN is transformed into a Process
Graph by a BPMN to Process Graph
Transformation. Then, given a Process
Graph, a PST Computation creates the
PST [16]. Two PSTs and a set of correspondences between BPMN models are used
in the Correspondence Computation to establish a mapping between PSTs which we
call the Joint Process Structure Tree [17].

The Joint Process Structure Tree is then used in the Difference Computation to pro-
duce a Difference Model that represents the change operations between the first and
second version of the input models, see Figure 2. The Difference Model containing the
change operations is then further transformed. The Dependency Computation estab-
lishes dependencies between change operations [18]. Differences not applicable on the
concrete BPMN model are filtered using a Filtering transformation. Finally, Parameter
Computation establishes change operation parameters by selecting suitable predecessor
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Fig. 3. Model transformation chain for Difference Detection

and successors in the model. Each of the transformations previously introduced takes
one or more source models as input and produces a target model. Further details of the
foundations of these transformations can be found in [17,18].

As the transformation chain for Difference Detection is complex and requires de-
sign and implementation of several model transformations, a development approach is
needed that supports incremental development and improvement of the transformation
chain.

3 Incremental Development of Model Transformation Chains

Existing software development processes such as the Rational Unified Process [11] are
incremental and iterative. For model transformations, recent work by Siikarla et al. [19]
argues that model transformations must also be developed in several iterations. With
regards to a model transformation chain as the one above where input models are very
diverse and several different individual transformations are assembled into a chain, an
incremental and iterative approach is required to handle complexity and manage the
development process.

In the following, we present our approach for incremental and iterative develop-
ment of model transformations which focusses on design, implementation and testing
activities of model transformation development. Figure 4 provides an overview of our
approach:

– After requirements specification and analysis of the model transformation, devel-
opment starts with the design and implementation of a first version of the model
transformation. The details of the design and implementation activity depend on
the transformation language and environment used, but the goal of this activity is
in all cases a first running implementation of the transformation.

– An initial test case set is created for the model transformation. This initial test case
set can be based on the design step of the model transformation by extracting design
information and the required outcome of the transformation on a set of sample input
models. Optionally, it can even be created before designing and implementing a first
version of the transformation.

– The model transformation is tested using the test case set and possible defects may
occur. These defects can be categorized according to their severity and then treated
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in an improvement activity of the model transformation. These two activities (test-
ing and improvement) are repeated until the model transformation passes all test
cases. In the case of a model transformation chain, the model transformation caus-
ing the defect must be located and improved.

– Once a model transformation passes all test cases, several activities can be per-
formed: The test case set can be extended by additional tests, new functionality
can be designed and implemented if there are requirements that have not yet been
addressed in previous iterations, or refactoring techniques can be applied to im-
prove internal architecture and code quality. Each of these activities is followed by
the two activities of running all test cases and removing any defects that may have
surfaced.
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Fig. 4. Incremental development approach for model transformations

Currently, our approach does not include activities for requirements specification, anal-
ysis and detailed roles involved in the process. For these activities, we refer to the body
of existing work on model transformation design (e.g. [20,21]).

When following the incremental approach, the model transformation will always
pass all test cases in the test case set. As such, the quality of the model transforma-
tion will gradually increase over time if the activities (refactoring, increasing of test
cases, adding functionality) are aimed at increasing the quality of the model transfor-
mation under development. For example, test cases must be carefully chosen to ensure
necessary coverage of all input models for the transformation, and refactoring must be
applied to improve the internal architecture of the transformation.

If the approach is applied to the development of a model transformation chain, then
test design techniques must take into account the characteristics of a transformation
chain. For example, test cases must be designed that encompass the entire transforma-
tion chain and are not restricted to an individual transformation, to establish an end-
to-end testing of the transformation chain. With regards to established software testing,
this corresponds to testing of individual components and system testing [22]. In the
following section, we elaborate on the requirements for testing model transformation
chains.
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4 Requirements for Automated Testing of Model Transformation
Chains

Testing of model transformations is difficult and a topic of ongoing research [6]. In
the following, we discuss the background and derive requirements for testing model
transformations that are part of a transformation chain and for testing the model trans-
formation chain itself.

There are two main challenges in model transformation testing: the creation of a test
collection consisting of sample input models for the transformation under test and the
specification of test outcomes (test oracle) for the sample input models [6].

In general, sample input models can be created manually using the modeling envi-
ronment or automatically using a model generation approach. With regards to automatic
generation of input models, although first research results are available [8,9], the chal-
lenge of generating those input models that are meaningful remains. Manual creation of
input models can be difficult if a transformation takes as input model a model that is not
supported by the modeling tool. This is usually the case for model transformations ap-
plied within a transformation chain: For example, in our case the Process Structure Tree
is not supported by the modeling tool itself. Whether test cases are created manually or
automatically, the set of test cases must fulfill the meta model coverage requirement,
again a topic of ongoing research [23].

With regards to test outcomes, we are confronted with another challenge. One ap-
proach is to specify the desired test case outcome for each test case manually. In prac-
tice, this can be done by running the transformation on the test case and inspecting
the outcome. If it is correct, it is set as the desired test case outcome. With regards to
a model transformation applied within a transformation chain, a missing visualization
can make manual inspection of the outcome difficult.

For model transformation chains, in addition to testing each individual transforma-
tion the overall transformation chain must be tested. Additional challenges arise because
when developing a model transformation chain, test design techniques applied to each
individual transformation must be economical with regards to development resources
and test case data produced.

As several model transformations are composed into a transformation chain, addi-
tional tests are needed in order to detect whether changes in an individual transfor-
mation affect the overall transformation. These tests are important to allow internal
changes of a transformation, which are common in iterative development.

To summarize, there are several requirements for test design techniques of model
transformation chains: The first is that test design techniques are required that allow
the testing of the end-to-end model transformation chain. The second is that test design
techniques are required that allow the detection of functional changes of individual
transformations that are relevant to the overall transformation chain. The third is that
test design techniques for individual transformations should be economical with regards
to the amount of work needed to put them into place and the number of input models
created. Another important requirement for the feasibility of the incremental approach
is the ability to perform testing in a fully automatic manner.



Incremental Development of Model Transformation Chains Using Automated Testing 739

5 Test Design Techniques for Automated Testing

In the following, we describe four test design techniques for model transformations that
fulfill the requirements: integrity test of created model structures, inspected reference
outcomes, invariant validation, and deviation testing.

Integrity test of created model structures aims at automatically inspecting the cre-
ated model structures and determining whether they violate a correctness condition.
This means that for this test design technique, the test oracle is obtained from the spec-
ification of the model structure or modeling language in which a model is created. One
correctness condition consists of syntactic correctness of the created model structures
or of a property that must always be fulfilled. Another type of a correctness condition
consists of semantic correctness of the created model structures. A third type of correct-
ness condition can sometimes also be derived from a transformation contract if such a
means is applied in the design phase of the transformation. Correctness conditions can
be encoded as conditions to be checked after running the transformation.

For the PST Computation, a straightforward integrity test of created model structures
is obtained by checking that each fragment in the PST has a single entry and exit edge1.
Another correctness condition for the produced PST is that each edge is either an entry
or exit edge of a fragment or must connect two nodes within the same fragment. These
two correctness conditions can be encoded as conditions and can then be checked on
the result of the PST Computation.

For the Parameter Computation, an integrity test of created model structures can use
as a correctness condition that after parameter computation a change operation must
have computed parameters. In addition, computed parameters must also be meaningful.
Such a simple semantic correctness condition can be validated for, e.g., the InsertAction
change operation by ensuring that the parameters point to model elements in between
which the action is to be inserted. Note that integrity tests of created model structures
do not require the storing of additional test case data.

Inspected reference outcomes is a test design technique that produces a collection of
inspected reference outcomes for the model transformation. These inspected reference
outcomes can then be reused when testing a model transformation by automatically
comparing the result of the current model transformation with the previously inspected
result. If the two do not coincide, the test case fails. This technique involves model
comparison which can be realized in a text-based form or by using model comparison
techniques [24].

Because of the manual overhead involved in inspecting the outcome of a transfor-
mation for setting the reference outcome, the number of test cases for this approach is
limited and cannot be as high as the test cases used, e.g., within the integrity test of cre-
ated model structures. On the other hand, there has to be a certain number of test cases
following this approach to ensure the quality of the transformations. Figure 5 shows
an inspected reference outcome for the two process models introduced in Figure 1. It
shows the resulting BPMN Difference Model (in textual form) with the parameters of
those differences computed that are applicable.

1 The idea of the process structure tree is to decompose a process model into these single-entry
single-exit fragments [16]. The PST abstracts data flow edges of a process model into control
flow edges.
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MOVE (Check Claim,[Start Node,Record Claim],Record Claim,Decision)
INSERT (Parallel Fragment,Settle Claim,Merge)
INSERT (Send Rej. Letter,Reject Claim,Close Claim)
INSERT (Parallel Fragment,,)
INSERT (Pay Out,,)
INSERT (Send Confirmation,,)
INSERT (Calculate Loss Amount,,)
INSERT (Recalc. Cust. Contribution,,)

Fig. 5. Inspected reference outcome example

Invariant validation
can be applied if the
transformation is sup-
posed to conform to
certain invariants. These
invariants first have to be
identified and expressed
and then encoded such
that they can be checked after applying a transformation. Invariants can be formulated
about newly created model structures or about modified model structures. Moreover,
also constraints about the models may be used for invariant validation. Invariant
validation has similarities to the integrity test of model structures because in both
techniques the result of the transformation is automatically inspected based on a
correctness condition. For the integrity test of created model structures, a correctness
condition is needed that has to be derived from the modeling language. Invariant
validation allows one to verify arbitrary invariants on the result of the transformation.

In our case, the Correspondence Computation is a transformation that establishes
correspondences between the nodes of two PSTs. A straightforward invariant for this
transformation is that after its application, correspondences should have been estab-
lished for every PST node where the children nodes have correspondences. This in-
variant can be encoded and checked after applying the Correspondence Computation.
Another example in which invariant validation can be used is the creation of the Differ-
ence Model and the Dependency Computation. Here, one invariant is that there are no
cyclic dependencies. Again, this invariant can be encoded as a test and then checked.

Deviation testing is a test design technique that does not aim at testing complete
correctness but that is usually inexpensive to establish. For deviation testing, one deter-
mines data that is to be computed on the outcome of a model transformation. This data
is then automatically computed and stored each time the transformation is executed. If
the transformation is called again, then a new data collection is computed and compared
with the previous data collection. If the data collections are not equal, then a warning is
generated. Deviation testing generates outcomes of test cases by successful executions
of the system under test, i.e., as a test oracle an implementation is used that is consid-
ered to be correct. One strength of deviation testing is the detection of defects during
refactoring or error removal of model transformations. In addition, we can use deviation
testing for abstracting from irrelevant details of the outcome of a model transformation
that are not relevant to successor transformations. Due to its characteristics, deviation
testing should not be used in isolation, but must be combined with other test design
techniques.

We have applied deviation testing for the BPMN to Process Graph Transformation
and the PST Computation. The goal was to detect changes in the behavior of the two
transformations that are relevant to subsequent transformations. Figure 6 shows a (sim-
plified) meta model of the model generated from the PST Computation and illustrates
how to derive appropriate deviation test data. In the example, the number of nodes,
edges and fragments are chosen for the deviation test data because these are relevant for
subsequent transformations (e.g. the Difference Computation detects differences based
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Fig. 6. Deriving deviation test data from a model

on the fragments). More fine-grained test data such as the number of associations can
be integrated if they are important for subsequent transformations.

In addition to the techniques described above, we can also apply combinations
of these techniques. For example, one can combine the deviation technique with the
integrity test of created model structures to increase the reliability of the deviation tech-
nique. With regards to test automation, integrity tests of created model structures, in-
variant validation and deviation testing are fully automatic and can be applied on a large
number of possibly also automatically created test models.

6 Architecture of a Test Framework

The test design techniques described above require the execution of test cases, the com-
parison of outcomes of transformations with reference outcomes, and the evaluation of
invariants as well as other test data. Automatic execution of test cases is supported in
existing test frameworks such as JUnit [25]. For testing model transformation chains us-
ing the test design techniques, additional support (such as model comparison) is needed.
In this section, we propose a test framework, illustrated in Figure 7 for setting up such
an automated test environment for model transformations.
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Fig. 7. Architecture of a test framework for automated testing of model transformation chains
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The architecture consists of four main components and several repositories. The
Model Transformation Execution Component takes a model transformation chain and
a test case input model and applies the model transformations in the chain to the input
models to create output models. Here, the model transformation chain can either be en-
coded in Java or using one of the transformation languages. The Analysis Component
analyzes the result of the transformation by performing model comparison, invariant
validation, deviation analysis, or model integrity analysis. This component enables au-
tomatic test result evaluation. It makes use of relevant data, depending on the test case
(e.g. reference outcomes or deviation test data). Both the Analysis Component and the
Model Transformation Execution Component are used by the Manual Inspection Com-
ponent and the Test Case Execution Component. The latter automates the execution of
a larger number of test cases and in addition interprets the result of the Analysis Com-
ponent to produce an appropriate test result report. The Manual Inspection Component
allows the software engineer to create test case input models as well as inspected refer-
ence outcomes. Usually, it is integrated into the development environment of the model
transformation chain. The Manual Inspection Component can also be used to inspect
the outcome of a particular test case.

In addition, the test framework contains a set of test cases in which each test case
conforms to a test case specification obtained from applying a test design technique.
For setting up a test framework based on this architecture, we propose the following
procedure:

In the first step, the model transformations used in the transformation chain are enu-
merated, together with their source and target languages. Then, in the second step, for
each model transformation, one (or more) test design techniques for obtaining test case
specifications are chosen. Depending on the technique, the information required for the
test case specification is completed: If an integrity test of created model structures is
applied, then the correctness criterion has to be specified and the model elements have
to be specified for which the correctness criterion should hold. In the case of inspected
reference outcomes, the model that should be compared has to be identified and an ap-
proach for comparison (e.g. text-based or full model comparison) has to be chosen. For
invariant validation, the invariant and the models that should satisfy it have to be identi-
fied. If deviation testing is applied in the test case specification, then the data collection
needs to be determined.

In the third step, each test case specification has to be implemented in the test case
execution component to enable automatic execution of the test cases. In the fourth step,
test cases need to determined. A test case consists of a test case input model and, de-
pending on the technique used in the test case, possibly also test output data (in the case
of the inspected reference outcomes). Test case input models as well as inspected ref-
erence outcomes are stored in appropriate repositories for use by the other components
in the test framework.

7 Evaluation

The incremental development approach for model transformation chains using auto-
mated testing has been applied to develop the Difference Detection transformation chain
for version management.
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As the IBM WebSphere Business Modeler is built on top of Eclipse, we were able
to use the JUnit [25] functionality of Eclipse for the test case execution component and
start the runtime environment of Eclipse with a prepopulated workspace that contains
all test case input models. In our environment, all the transformations introduced are
implemented in Java.

For the transformation chain for Difference Detection, we developed several test case
specifications according to the test design techniques described previously. Figure 8
shows an overview of these test case specifications:
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Fig. 8. Test case specifications applied to each transformation

For the PST Computation,
the Dependency Computation
and the Parameter Compu-
tation, we applied an in-
tegrity test of created model
structures. For the Corre-
spondence Computation, we
applied an invariant test.

We applied the inspected
reference outcomes technique
for the testing of the com-
plete transformation chain,
involving all transformations.
To overcome the challenge
of model comparison, we
adopted a simple approach of saving models into text files which can then be easily
compared using string comparison.

For the BPMN to Process Graph Transformation, the PST Computation, and the
Difference Computation, we chose to apply a deviation test to detect changes.

Our test case input models consist of a first and a second version of a process model,
together with the correspondences between the model elements in the two versions.
These models are passed to the BPMN to Process Graph Transformation, which creates
two Process Graphs for each of the process models. Subsequent transformations then
use and create new models. As we do not use inspected reference outcomes for any of
the intermediate transformations, we do not need to create a separate set of test case
input models, but can use the ones created by the transformations. In addition to the test
cases, we also designed and implemented a test report for each test case which provides
a detailed overview of the test cases that passed and those that failed.

To ensure sufficient coverage of our tests case input models, we applied several tech-
niques. First, we have to ensure that meta models of the source and the target language
of the transformation chains are covered. As there are, to our knowledge, no tools avail-
able for measuring this, we manually designed test case input models without measuring
meta model coverage precisely. Second, we have to ensure code coverage of the trans-
formation code. Here, we applied code coverage analysis tools, such as [26], to identify
deficits. In addition, we also used code inspection of selected core classes to identify
deficits in coverage. We then manually added suitable test case input models to increase
coverage.
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The transformation chain for Difference Detection of process models was developed
over a period of several months, using the incremental development process. Overall,
we started with 80 test case input models for each of the test case specifications and
gradually increased this to over 200 test case input models (to be used by all 7 test case
specifications), giving rise to 200 ∗ 7 = 1400 test cases.

Figure 9 shows the number of test case input models and the relationship to defects
over an extended period of time. It shows how the number of test case input models
(and thereby the test cases) was incrementally increased and how after such an increase
the number of defects was gradually reduced again. At several dates, the number of
defects increased, although no new test cases were added. During that time, refactoring
of the model transformations was performed that could also lead to failures of test
cases: Although refactoring should theoretically not lead to a change of behavior, in
practice refactoring sometimes fails and leads to change of behavior which needs to be
detected and corrected. Another experience from the measurements is that sometimes
the number of defects increased sharply because several new test case input models
were added. This is because adding a new test case input model can lead to defects in
several of the test cases, such as the Deviation test as well as the Integrity test of Models
1, Integrity test of Models 2 and Integrity test of Models 3. As a consequence, fixing one
defect can also result in drastically reducing the number of defects reported.
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Fig. 9. Test case input models and defects over an extended period of time

In the following, we summarize the lessons learnt while developing the model trans-
formation chain:

– Incremental development for model transformation chains is required in practice;
iterative improvement of the transformations is the reality.

– Systematic quality improvement is not possible without automated testing.
– Code quality is an important issue when implementing model transformations in

Java. As model transformation code can be complex, established software quality
principles, such as readability and maintainability, become important issues.

– Versioning is required also for test cases. As the model transformation evolves over
time, also the test case input models evolve and it is important to be able to associate
them with the version of the model transformation.

– A major drawback is the lack of coverage analysis tools for test case input models.



Incremental Development of Model Transformation Chains Using Automated Testing 745

– One has to choose the accuracy of the inspected sample outcomes carefully. Our
textual comparison of test models could have been replaced with a model com-
parison. However, then this could lead to noise in the test case set, i.e., during
refactoring deviations and failed test cases could occur that are not relevant to the
outcome of the transformation.

8 Related Work

Concerning model transformation testing, recent work by Kolovos et al. [27] describes
a unit testing framework for model management operations which is integrated into the
Epsilon component for model management operations. The idea to use unit testing is
similar to our idea of automating testing of model transformations; however, we provide
detailed test design techniques for model transformation chains and evaluate their usage
in an industrial context.

Fleurey et al. [7] describe an approach to generate test models for model transfor-
mations. They first calculate the effective meta model for the transformation and then
determine a coverage criterion based on this effective meta model. The coverage cri-
terion is used for generating test models. Following this approach, Mottu et al. [28]
describe mutation analysis testing for model transformations using mutation operators.
A mutation operator for model creation is to replace a creation of an object with a par-
ent class. The mutation analysis can be used to ensure the quality of the test case set
and has therefore a different focus than our work. Earlier work by Andrews et al. [29]
presented several techniques for testing systems based on their UML design models.
Among them, they propose test criteria for class diagrams such as the creation of class
attributes from a representative attribute value set. These test criteria can be used as a
basis for defining coverage of a model transformation and could also be applied in our
scenario.

A development process for model transformations is described by Siikarla et al. [19].
They propose that first several example correspondence models are specified, then a
transformational pattern is designed, which is then later implemented. In contrast to
their approach, we focus on incremental development of transformation chains based
on automated testing. Our test design techniques are not limited to our specific scenario
because they can also be used if model transformations are defined using one of the
transformation authoring environments such as ATL [2].

9 Conclusion

If several model transformations are composed into a model transformation chain, a
development approach is needed that allows the quality of the model transformation
chain to be improved incrementally, and simultaneously allows a developer to change
an individual transformation without affecting the model transformation chain. In this
paper, we have presented an approach for incremental development of model transfor-
mation chains that is based on automated testing. We first established requirements for
automated testing of model transformation chains and then presented four test design
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techniques for testing model transformation chains. We have proposed a test frame-
work architecture that can be used for incremental development of model transforma-
tion chains. Our techniques have been validated with the incremental development of a
model transformation chain for version management of process models.

Future work will include the development of coverage criteria for transformation
chains. Another direction of future work is concerned with the early phases of transfor-
mation chain development and with leveraging the specification of model transforma-
tions for test case generation.

Acknowledgements. We thank Jana Koehler for her valuable feedback on an earlier
version of this paper and Christian Gerth for his work on the version management pro-
totype.
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Abstract. Model transformations enable the automated development
paradigm proposed by Model Driven Engineering. However, since the
requirements for building a model transformation are usually expressed
informally, requirements descriptions are difficult to keep updated and
synchronized with their corresponding implementations. Therefore, hu-
man effort is usually required for validating model transformations. The
present work defines a test-driven method for the development process of
model-to-model transformations. This method is focused on the capture
of requirements for transformations in such a way that guides the devel-
opment and the documentation of model transformations. Requirements
are expressed by means of test cases that can be automatically validated.
The proposal has been applied to the MOSKitt open source CASE tool
in an industrial scenario.

Keywords: Model-to-model transformations, test-driven development.

1 Introduction

Model-to-model transformations have a central role in Model Driven Engineer-
ing (MDE). Although many proposals exist for supporting the definition and
execution of model transformations [1,2,3,4], there is a lack in the methodolog-
ical support for capturing their requirements. Bézivin et al. indicate in [5] that
in early project development phases it might be advisable to concentrate on
transformation properties by expressing them in transformation models. The
transformation model idea promotes the description of transformations from an
abstract perspective regardless of its executability.

Model transformations are normally described in natural language1. From
these informal descriptions, transformation developers define the mappings in a
formal way. Once implemented, model transformations can be validated using
several techniques [6,7,8,9]. However, the consistency between the description of
the transformation and the current implementation requires manual effort for
keeping them synchronized.
� This work has been developed with the support of MEC under the project SESAMO

TIN2007-62894 and cofinanced by FEDER.
1 See some examples at http://www.eclipse.org/m2m/atl/atlTransformations/
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The main contribution of this work is a methodological approach for the
definition of transformation models that guides the development of the model
transformation and automates the consistency check between specification and
implementation. This is achieved following a test-driven approach [10]. The
proposal has been applied to different model transformations included in the
MOSKitt2 modeling tools.

The remainder of the paper is structured as follows. Section 2 defines how
requirements for a model transformation are captured. Section 3 indicates how
requirements and implementation of model transformations can be kept consis-
tent. Section 4 shows how the approach has been put into practice. Related work
is presented in Section 5. Finally, Section 6 concludes the paper.

2 Capturing Requirements for Model Transformations

Our approach makes use of transformation examples as test-cases to guide the
development of the corresponding transformation. Figure 1 shows a test case
illustrating a particular requirement for the UML2DB transformation included
in MOSKitt. The test case includes versioning and identification information,
and the formal definition of some example input data and the corresponding
expected result.

Fig. 1. Template for specifying test cases

Test data is defined using Human Usable Textual Notation (HUTN) [11].
HUTN is a specification by the OMG to define models in a textual form. HUTN
is generic, as it can be applied to any MOF-based metamodel; it is fully auto-
mated since the generation of models from HUTN definitions requires no human
intervention; and it has been designed to be human-usable. In the example of
Fig. 1, a class named “Class1” is defined with its isAbstract attribute set to false.

The expected result is expressed by means of result parts and assertions. Each
result part is formed by a model –specified using HUTN– and a comparison
2 http://www.moskitt.org/
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criterion. The comparison criteria can be inclusion, exclusion or exact. It repre-
sents the relation that the model part should have with respect to the result. In
the example, the inclusion criteria is used to indicate that the obtained result
must contain a Table named “Class1” with a Column named “PK Class1”.

For a more fine-grained control in the definition of the obtained result, Epsilon
Validation Language (EVL) [12] is used. In Fig. 1, two EVL assertions are defined
for checking that a primary key exists and that it corresponds to the column
defined.

In addition, test cases can be used to produce end-user documentation by
generating graphical representations of HUTN definitions. The MOSKitt docu-
mentation3 follows this approach.

3 Keeping the Consistency

The test-driven development approach proposed in this work is a cyclic process
–see Fig. 2. In each development cycle the implementation is extended to cover
a new test case. For each of these increments the implementation is validated
according to the specification and the documentation is created/updated. In this
way, implementation and specification are continuously synchronized.

Fig. 2. Method overview

The validation stage is the key step for ensuring the consistency between
implementation and specification. Different tools are coordinated for performing
the validation. First, the test data specified in HUTN is processed to generate the
input model. Then, the model transformation is applied to this model to obtain
the output model. Finally, the obtained result is compared to the expected result.
In order to perform the comparison model parts are converted into assertions,
and the model is checked against each assertion.

An Eclipse plug-in has been developed to extend the JUnit capabilities in
order to support the execution of model validations and model transformations
programmatically. The JUnit plug-in coordinates the execution of the different
plug-ins that support each part of the validation process. The edition and parsing
of HUTN and EVL definitions is based on the Epsilon4 project. The execution
of the transformation is done using the Transformation Manager (TM) API
3 http://www.moskitt.org/eng/manuales/
4 http://www.eclipse.org/gmt/epsilon/
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defined in MOSKitt. The TM provides a unified API for the execution of different
transformation engines.

4 Applying the Proposal

First, the proposal was applied for the validation of an existing transformation
between class diagrams and relational database models –namely UML2DB. Test
cases were used for validation purposes. Then, we realized the potential of using
test cases to guide the development of new functionality. So, a paradigm shift
was then produced and from that moment, test cases were used for specifying
the transformation requirements.

Test cases were defined following our proposal for guiding the implementation
of a parameterized version of the UML2DB transformation. Taking the original
test cases as a basis, new ones were defined to exemplify how the transformation
was affected by the configuration model. In this way, new test cases were used to
guide the implementation and to verify that the new requirements are fulfilled
and backward compatibility was preserved.

5 Related Work

The transformation model idea is illustrated in [5] by using UML/MOF class
diagram together with OCL constraints. Transformation models in that approach
are defined at metamodel level while our approach captures the requirements
for a model transformation by means of relevant examples based on HUTN. The
benefits of using HUTN for the definition of models were described in [13].

Some of the method steps presented can be addressed in different ways. Tech-
niques already exist for assessing the quality of test cases [14,15], for automating
result comparison [16,8], and even for automating the development of the trans-
formation from these test cases [17,18]. However, these aspects are not considered
in the present work since we are focused on how the requirements for a transfor-
mation can be captured in such a way that enables the application of test-driven
principles.

Several approaches [19,20] are focused on the generation of test cases from a
given transformation implementation. These approaches assume that the trans-
formation to be tested already exists. However our approach promotes the defi-
nition of test cases prior to the implementation of the transformation.

6 Conclusions

The present work introduces a method for a test-driven development of model-
to-model transformations. The method is focused on describing transformation
requirements in a way that is useful to developers and end-users. On the one
hand, since the used notations allow test cases to be expressed by including
only test-relevant data, the intent of the test can be easily determined –i.e.,
irrelevant attributes do not blur the specified requirement. On the other hand,
maintainability is improved since (1) changes in the metamodel only impact on
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tests for which the affected information is relevant and (2) the notations used
are formal-enough to allow automation in the validation.
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1 Context and Aim

The Educator’s Symposium at the MODELS conference, the premier conference
devoted to the topic of model-driven engineering of software-based systems, is
intended as a forum in which educators and trainers can meet to discuss peda-
gogy, use of technology in the classroom, and share their experience pertaining
to teaching modeling techniques and model-driven development.

Model-driven development approaches and technologies for software-based
systems, in which development is centered round the manipulation of models,
raise the level of abstraction and thus, improve our abilities to develop complex
systems. A number of languages (e.g., UML, Alloy), approaches (e.g., OMG’s
MDA, MIC, Multi-Modeling), and tools (e.g., Fujaba, GME, USE, OCLE) have
been proposed for the model-driven development (MDD) of software-based sys-
tems.

Putting the model-driven development vision into practice requires not only
sophisticated modeling approaches and tools, but also considerable training and
education effort. Practitioners in industry as well as education and training spe-
cialists need to understand the principles underlying MDD, and the strengths
and limitations of current MDD tools and techniques. Such understanding is
needed for proper selection and use of MDD technologies in industrial software
development projects.

Industry is striving to improve their practice of software development by
adopting MDD. The adoption, nevertheless, is determined by the availability
of skilled software engineers who have been educated and trained in modeling
and model-driven development. MDD educators and trainers can influence the
practices in industry by producing an increasing number of graduates with deep
understanding of MDD principles, technologies and challenges.

The Educators’ Symposium at MODELS 2009 will include paper presenta-
tions and discussions as well as panels and invited statements on the symposium
topics by teachers from acedemia and industry.

2 Themes

In this fifth version of the symposium we focus discussions on the resources
needed to effectively educate future MDD practitioners. In particular, we will

A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 753–754, 2009.
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hear about efforts on developing community-based MDD education resources,
that is, resources that allow educators in the MDD community to share, evaluate,
and evolve education artifacts. These artifacts should be based upon synergies
between industrial needs and academic education and research goals. Therefore
papers on the following topics were expected:

– Education artifacts that can be effectively shared through a community-
based MDD resource.

– Descriptions of existing community-based MDD education resources.
– Plans for developing and maintaining community-based education resources.

Also encouraged were contributions discussing general questions and topics of
more broader interest as for example:

– Designing university courses at various levels with industrial needs in mind.
– How to include industrial experiences into teaching modeling and MDD.
– How to ensure and assess industrial relevance of the contents of modeling

courses.
– How to assess industrial relevance of the teaching and learning process.
– How the teaching of modeling techniques influences industrial practices.
– Methodology issues (how to teach modeling or MDD) with industry in mind.
– Integrating modeling and MDD into the software engineering curriculum.
– Teaching modeling and MDD and associated tools (requirements, available

tools).
– Experience reports from designing university courses in modeling with in-

dustrial focus.
– Requirements from industry for university education in MDD.
– Experiences from industry about university education in MDD.
– Case studies on required skills for realizing the vision of MDD.

3 Program Committee

The paper selection was carried out by an international Program Committee.

– Jordi Cabot, University of Toronto, Canada
– Peter Clarke, Florida International University, USA
– Jeff Gray, University of Alabama at Birmingham
– Oystein Haugen, SINTEF and University of Oslo, Norway
– Ludwik Kuzniarz, Blekinge Institute of Technology, Sweden
– Timothy Lethbridge, University of Ottawa, Canada
– Michal Smialk, Warsaw University of Technology, Poland
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Horváth, Ákos 107
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