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Abstract. In this paper we define higher order multi-stack pushdown
systems. We show that parity games over bounded phase higher order
multi-stack pushdown systems are effectively solvable and winning strat-
egy in these games can be effectively synthesized.

1 Introduction

Higher order pushdown systems (hpds) are a generalization of pushdown systems
(pds) in that hpds can have nested stacks, such as stack of stacks. The order of
an hpds depends on the depth of nested stacks allowed by it. Higher order push
and pop operations are provided to push a copy of the topmost stack of any
order and to pop it. These models, in their automata form, were introduced in
[17] and were further studied in [16,15]. The hpds may be used to model higher
order recursion, [16,8,4]. In recent years there has been considerable interest in
model checking these systems and their variants [10,8,3,9].

Another generalization of pushdown systems is multi-stack pushdown systems
(mpds). An mpds has a finite set of control states and a fixed number, l (l > 1),
of independent stacks. The transition function of an mpds allows for a (nonde-
terministically chosen) push or a pop operation on any of its stack along with a
change in its control state. Multi-stack pushdown systems can be used to model a
class of programs with (order-1) recursion and threads. Each thread has its own
stack for its procedures calls and communication among threads is through the
common finite states of mpds. There has been quite some work in model checking
mpds and its variants in recent years, see [7,5,6,2], as part of model checking of
concurrent recursive programs. For effective model checking of mpds some re-
strictions however need to be imposed on mpds as even simple properties such as
reachability from one configuration to another are undecidable for unrestricted
mpds. One such restriction, called bounded context switching, was studied in [7].
This was generalized to bounded phases in [5]. The class of bounded phase mpds
strictly includes the class of bounded context switching mpds.

In this paper we define higher order multi-stack pushdown systems (hmpds).
An order-n hmpds (n-hmpds) has a fixed number (say, l) of order-n stacks. The
transition function of an n-hmpds takes as input its control state and topmost
symbols of a stack and may (nondeterministically) do a higher order push or
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a pop operation on the stack along with a change in its control state. These
systems can model a class of programs with higher order recursion and threads.
Such programs may naturally arise while considering functional programs with
threads as functional programs typically have some higher order operations. The
notion of bounded phase defined in [5] for multi-stack pushdown automata can
be lifted to hmpds as follows. In a k phase bounded hmpds only those runs of
hmpds are considered which can be divided into k parts where each part is a
consecutive sequence of moves from the run and is called a phase. In a single
phase, pop operations (of any order) are performed only in one stack while push
operations (of any order) can be performed on any stack.

Model checking of hmpds against a specification can also be formulated as
solving a game over configuration graph of the hmpds. We show that parity games
over bounded phase hmpds can be effectively solved. This implies decidability of
properties expressed in a rich specification logic, μ-calculus, over configuration
graphs of hmpds. Parity games over hpds were shown to be effectively solvable
in [10] and parity games over mpds were shown to be effectively solvable in [2].

We solve parity games over hmpds by extending the technique of [2]. In order
to explain our extension to the technique of [2], we briefly recall this technique.
The solution in [2] is based on a fundamental technique of Walukiewicz [12] which
shows how to reduce a parity game on a pushdown system to a parity game over
a finite state space. In [12] each time a symbol is pushed in the stack, a set of
states (along with priorities) is guessed by player 0, the game now divides into
two independent parts. In the first sub game player 1 verifies that if the symbol
is popped then it is in one of the guessed states, in the second sub game it is
verified that if the pushed symbol is popped satisfying the guessed conditions
then the game is winning for player 0. The key step in extending the technique
of Walukiewicz to the mpds case in [2] is to define finite sets Ni,h whose elements
code relevant information summarizing the play between a push in stack-i and its
matching pop operation in phase h. These sets also keep necessary information
about changes in stacks t, t �= i, between a push and a matching pop operation
of stack-i. Ni,h are defined using a careful induction on h.

We generalize the set of conditions Ni,h from [2] to Ni,j,h. Each element of
Ni,j,h codes relevant information for an order-j pop operation of stack-i in phase
h. This requires us to study evolution of a higher order stack under a sequence
of higher order operations. Unlike order-1 case, order-i push and order-i pop
operations need not match in a one to one fashion, for i > 1. We define a suit-
able matching which may associate an unbounded many order-i pop operations
with a single order-i push operation. We define sets Ni,j,h which may contain
pop scenarios for all such matching order-i pop operations associated to a single
order-i push operation. To take into account relevant differences in these pop
operations, though they match the same push operation, some additional infor-
mation is kept in each element of Ni,j,h. This requires induction on j, for each
fixed h in the definition of Ni,j,h.

Equipped with sets Ni,j,h we define a reduction from a k phase hmpds game to
a finite state game as in [12,11,2]. In this game with each pushi,j move o in phase
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p player 0 guesses a θ ⊆ ∪k
x=pNi,j,x. The guessed set θ needs to include conditions

for each popi,j operation that may match the pushi,j move o. The player 1 now
either continues the game after o till a matching popi,j move occurs or it chooses
a scenario in θ and sets the game to a configuration resulting after a pop in
this scenario. Solving the finite state game leads to deciding which player in the
original hmpds game has a winning strategy. As a byproduct of this method as in
[12,11,2], we also get that winning strategy in a bounded phase hmpds game can
be executed by a bounded phase higher order multi-stack pushdown automaton
(hmpda).

The complexity of our algorithm is a tower of exponential of height n · k
for solving a k phase n-hmpds parity game. We do not know if this is optimal,
however when specialized to the case of hpds (l = 1) it reduces to the optimal
bound and when specialized to the case of mpds (n = 1), it reduces to the best
known upper bound of [2]. Despite the high computational complexity, we think
that from mathematical view point it is interesting to find classes of infinite
graphs over which parity games can be solved effectively. Our technique gives a
unified proof of solving hpds and mpds parity games from basic principles.

Finally to relate this work to reachability problems, the title of this conference,
we note that solving reachability problem over hmpds is a special case of solving
parity games. In particular our results imply that there is an algorithm A which
takes a hmpds H a number k and two configurations u, v of H and answers yes
if in the configuration graph of H, v can be reached from u in at most k phases,
otherwise A answers no. Further, if the answer is yes then a k phase path from
u, v can also be produced by the algorithm. Similar result holds for two player
reachability between configurations of bounded phase hmpds.

2 Preliminaries

Definition 1. Let Γ be a finite stack alphabet and let ⊥ be a symbol s.t. ⊥ �∈ Γ .
The Set of order-i stacks over Γ , Si for i ≥ 0 is defined inductively as follows.

– S0 = Γ ∪ {⊥} (we consider an element of Γ as an order-0 stack).
– S1 = {[⊥, s1, . . . , sv] | s1. . . sv ∈ Γ, v ≥ 0}.
– Si+1 = {[s1, . . . , sv] | s1. . . sv ∈ Si, v ≥ 1}, for i ≥ 1.

We also define ⊥0 = ⊥ and for i ≥ 0, ⊥i+1 = [⊥i]. Note that ⊥i ∈ Si.
Stack ⊥i, for i > 0, is called the empty stack of order-i.
We use order(s) to denote the order of a stack s.

The symbol ⊥ is used to mark bottom of an order-1 stack.

Definition 2. Let s be an order-j stack for j ≥ 0. The topmost order-i element
(i ≤ j) of s is defined as

topi(s) =
{

s if order(s) = i
topi(su) if order(s) > i and s = [s1, . . . , su]
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Definition 3. Operations pushi, popi on stacks of order ≥ i are defined as fol-
lows. Let s = [s1, . . . ,su] and b ∈ Γ .

pushb
1(s) = [s1, . . . , su, b], if order(s) = 1.

pushb
1(s) = [s1, . . . , su−1, pushb

1(su)], if order(s) > 1.
For i > 1,
pushi(s) = [s1, . . . , su, su], if order(s) = i
pushi(s) = [s1, . . . , su−1, pushi(su)], if order(s) > i
For i ≥ 1,
popi(s) = [s1, . . . , su−1], if order(s) = i and u > 1.
popi(s) = [s1, . . . , su−1, popi(su)], if order(s) > i, popi(su) is defined.
In keeping with conventional notation, a pushi+1 operation pushes an element

of order-i and popi+1 operation pops an element of order-i. Note that popi(s) is
defined iff topi(s) has more than one element.

2.1 Order-n Multi-stack Pushdown Systems

A order-n multi-stack pushdown system is the same as a multi-stack pushdown
system except that each stack is a nested stack of order-n. On each stack the
push and pop operations of order-0 to order-(n− 1) can be performed. A formal
definition is given below.

Definition 4. An order-n multi-stack pushdown system (n-hmpds) is given as a
tuple (Q, Γ,⊥, l, δ, q0), where Q is a finite set of states, l is the number of stacks,
Γ is the stack alphabet with ⊥ as in definition 1 and q0 is the initial state. The
transition function δ is given as δ = (

⋃n
j=1 δins,j) ∪ (

⋃n
j=1 δrem,j), where

– δins,j ⊆ Q × (Γ ∪⊥) × Q × [1 . . . l] × Γ , 1 ≤ j ≤ n.
– δrem,j ⊆ Q × (Γ ∪ ⊥) × Q × [1 . . . l], 1 ≤ j ≤ n.

(q, γ, q′, i, γ′) ∈ δins,m denotes push transition of order-(m − 1) in stack num-
bered i and (q, γ, q′, i) ∈ δrem,m denotes pop transition of order-(m− 1) in stack
numbered i. These moves are also referred to as pushi,m and popi,m respectively.
Values q, γ are the state of hmpds and the topmost symbol of stack-i before the
transition, q′ is the state of hmpds after the transition. Symbol γ′ is the symbol
pushed when push transition is of order-0 (m = 1). For m > 1, in transition
(q, γ, q′, i, γ′) ∈ δins,m symbol γ′ plays no role. We keep this extra symbol to
avoid treating the case m = 1 separately. For notational convenience, we stipu-
late in the following that for m > 1, if (q, γ, q′, i, γ′) ∈ δins,m then γ′ = γ.

Formal definition of hmpds configurations and transitions on them is as follows.

Definition 5. A configuration of n−hmpds H = (Q, Γ, l, δ, q0) is a tuple
(q, s1, . . . , sl), where q ∈ Q and si ∈ Sn for 1 ≤ i ≤ l. One step transition
on configurations of H is defined as below.

– (q, s1, . . . , sl)
t→ (q′, s′1, . . . , s′l) if top0(si) = γ, t = (q, γ, q′, i, γ′) ∈ δins,m,

s′j = sj for j �= i, 1 ≤ j ≤ l and if m = 1 then s′i = pushγ′
1 (si) else

s′i = pushm(si).
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– (q, s1, . . . , sl)
t→ (q′, s′1, . . . , s

′
l) if top0(si) = γ, t = (q, γ, q′, i) ∈ δrem,m,

s′i = popm(si) and s′j = sj for j �= i, 1 ≤ j ≤ l.

The initial configuration of n−hmpds is defined as (q0,⊥n, . . . ,⊥n).

Following is the standard definition of the reflexive and transitive closure of
relation t→.

Definition 6. A multi-step transition between configurations of mpds, on say
sequence t1t2 . . . tn of hmpds moves, c

t1t2...tn−−−−−→ d is defined as follows. c
t1t2...tn−−−−−→

d iff either n = 0 and c = d or there is a c′ s.t. c
t1→ c′ and c′ t2...tn−−−−→ d. We write

c � d for a multi-step transition from c to d when the sequence of hmpds moves
is not relevant.

Following is a straightforward adaptation of the notion of phases for mpds [5] to
hmpds.

Definition 7. A phase is a sequence of hmpds transitions where pop moves (of
any order) are performed only on a single stack (though in a single phase push
moves may be performed on any stack). A k-phase bounded run of a n-hmpds is
one which can be partitioned into k contiguous segments such that each segment
is a single phase.

It is clear that phase change occurs when a pop operation is performed on a
stack other than the stack on which it was performed last. We extend the notion
of a configuration to (q, h, r, s1, . . . , sl) where (q, s1, . . . , sl) is a configuration as
before, h is a natural number recording the phase and r ∈ [1, l], is the stack num-
ber on which the last pop operation was performed. In the initial configuration
h = 1 and r = 0.

Definition 8. One step transition on extended configurations of H is defined as
(q, h, r, s1, . . . , sl)

t→ (q′, h′, r′, s′1, . . . , s
′
l) where (q, s1, . . . , sl)

t→ (q′, s′1, . . . , s
′
l)

and

– if t ∈ δins,m then h′ = h and r′ = r

– if t = (q,−, q′, i) ∈ δrem,m then r′ = i and

h′ = np(h, r, i) =
{

h if r = 0 or r = i
h + 1 if r �= i

.

The initial extended configuration of n−hmpds is defined as (q0, 0, 1,⊥n, . . . ,⊥n).
Function np(h, r, i) gives the new phase after the transition.

To consider only k-phase bounded runs of hmpds, we restrict ourselves to ex-
tended configuration graph where each vertex has phase less than or equal to k.
In the sequel we use the word configuration for the extended configuration de-
fined above. topi,j refers to topj of stack-i and pushi,j, popi,j refer to transitions
of the form (−,−,−, i,−) ∈ δins,j , (−,−,−, i) ∈ δrem,j respectively.



208 A. Seth

2.2 Parity Games

We assume the reader to be familiar with standard notions of two player par-
ity games, such as game graph, plays, a winning strategy and parity winning
condition, see [14].

A 2-player k-phase hmpds parity game is given as (H, Q0, Q1, M, Ω, k), where
H = (Q, Γ, l, δ, q0) is an hmpds, Q = Q0 ⊕ Q1 is a partition of states in player
0 and player 1, M is a finite set of priorities and Ω : Q → M is a priority
assignment to each state in Q.

Vertices of our game graph are configurations of the form (q, h, r, s1, . . . , sl),
where h ≤ k, of hmpds. Edge relation of this game graph is given by transition
relation ‘ →’ in definition 8. A vertex (q,−, . . . ,−) belongs to player i iff q ∈ Qi.
Priority of a vertex (q,−, . . . ,−) is defined as Ω(q). A player can move from c
to c′ only if c → c′. A play is a sequence of legal moves starting from the initial
configuration. By our choice of the vertex set all plays in this game are k−phase
bounded. That is a player can not make a move that takes the play into (k+1)th

phase.
Winning condition for a maximal play (play which can not be extended fur-

ther) ρ is defined as follows. If ρ is finite then the player whose turn it is to
move at the last vertex of ρ loses. If ρ is infinite then a priority i ∈ M is said to
be visited infinitely often iff there are infinitely many vertices with priority i in
ρ. ρ is winning for player 0 iff the minimum, among the set of priorities visited
infinitely often in ρ, is even.

Informally, having a winning strategy for player i, means that regardless of
player (1 − i)’s moves, player i can always play a move such that he wins the
resulting play. We will always consider games which start in a predefined initial
configuration. A game is called winning for player i if player i has a winning
strategy in it starting from the initial configuration.

Given a winning strategy τ for player 0, in game G, by a τ -play we mean a
play of G in which all moves of player 0 are according to τ . For vertices c, c′ of
G, c

τ→ c′ and c
τ� c′ mean that c′ is reachable from c in a τ -play in one move

or in an arbitrary number of moves respectively.

3 Main Ideas in Solving a HMPDS Game

In higher order stacks a sub-stack after being pushed can be copied implicitly
several times before being popped. As an example consider an order-2 stack r =
[[⊥a]]. Here a is a stack symbol which we consider as an order-0 stack. An order−1
push operation o1 pushing a symbol b, leads to r1 = [[⊥ab]]. Now consider an
order-2 push o2 which copies the topmost order-1 stack, this leads to
r2 = [[⊥ab][⊥ab]]. In r2 the topmost order-1 stack [⊥ab] is created by o2 by a
direct copy of the topmost order-1 stack below. The second occurrences of order-
0 stacks a, b however are not created by any order-1 push directly. These oc-
currences get created automatically from the occurrences in the sub-stack being
copied by o2. We call such an occurrence an auto copy of the corresponding oc-
currence below. A motivation for considering the auto copy relation is to associate



Games on Higher Order Multi-stack Pushdown Systems 209

with each sub-stack of a higher order stack a push operation. This is needed for
matching each pop operation with a push operation. If s is an auto copy of t then
we associate the same push operation with s as with t. So in our example we
associate with the second occurrence of b, operation o1. A pop operation which
pops a sub-stack z is said to match the push operation associated with z. This
results in matching several pop operations with a single push operation, unlike
in order-1 case. For example, if we do an order-1 pop o3 on r2, followed by an
order-2 pop o4, followed by an order-1 pop o5 then both o3 and o5 match o1.

As mentioned in the introduction, we generalize the set of conditions Ni,h from
[2] to Ni,j,h. Each element of Ni,j,h codes relevant information for an order-j pop
operation of stack-i in phase h. A set of such pop scenarios θ ⊆ ∪k

x=1Ni,j,x, where
k is the number of phases allowed, is associated with an order-j push operation
o. θ captures conditions for any pop operation o′ matching o. If s is a stack
created by o then a matching o′ may pop either s or a stack s′ which is obtained
by several steps of auto copying of s. For an order − (n − 1) sub-stack no auto
copy can be made. An order-j sub-stack s, j < n − 1, however may be auto
copied by pushing an order-x, x > j, stack t containing s. That is, s may be
auto copied by a pushi,m, m > j +1, note that in our notation a pushi,m pushes
a stack of order-(m − 1) in stack-i. Therefore, if s′ is an auto copy of s then s′

may be contained in different sub-stacks of order > j than s was. So popping
conditions for an auto copy of s may depend on popping conditions of sub-stacks
of order > j containing this auto copy of s. This is handled by induction on j
(from j = n−1 down to j = 0) while defining Ni,j,h for a fixed h. Therefore sets
Ni,j,h are defined by a nested induction. The outer induction on h, the phase
number, takes care of the contents of the other stacks in a popping scenario,
as in [2]. The inner induction on j, for a fixed h, handles popping conditions of
higher order sub-stacks containing an order-j stack.

4 Copying by Higher Order Push Operations

In this section we formally define some useful notions related to copying of higher
order stacks as they evolve under a sequence of hpds transitions. We begin by defin-
ing labeled stacks and extend hpds transitions to them. Labeled stacks are used as
a tool to define a copy relation on sub-stacks of a higher order stack and to define
matching between pushi and popi operations in a sequence of hpds transitions. A
sub-stack of a higher order stack s is a stack of any order contained in s.

Definition 9. A labeled order-n stack is an order-n stack s such that each sub-
stack of s (including s itself) is labeled by a non-negative integer. We show this
label as a superscript at the end of a stack. For example [[⊥0 a1]0 [⊥0 a1]2]0 is
a labeled order-2 stack.

Definition 10. We extend hpds transitions to labeled stacks as follows.
pushb

1([a
l1
1 , . . . , alu

u ]m) = [al1
1 , . . . , alu

u , bl]m, where l is a fresh label.
pushb

1([s
l1
1 , . . . , slu

u ]m) = [sl1
1 , . . . , s

lu−1
u−1 , pushb

1(slu
u )]m, if order(su) > 1.

For i > 0,
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pushi+1([sl1
1 , . . . , slu

u ]m) = [sl1
1 , . . . , slu

u , sl
u]m, if order(su) = i and l is a fresh

label.
pushi+1([sl1

1 , . . . , slu
u ]m) = [sl1

1 , . . . , s
lu−1
u−1 , pushi+1(slu

u )]m, if order(su) > i.
Here l1, . . . , lu, l, m are labels. A fresh label is a label not occurring in input

(including its sub-stacks) to the push operation.
The pop operations extend to a labeled stack in a straightforward way, where

a stack along with its label is popped. There is no change in the labels of the
remaining stacks.

Each pushi+1 move creates a stack of order-i with a unique label. It also copies
labeled stacks of order < i without changing their labels.

Example 1. Let t = [[⊥0]0]0 be an order-2 stack. In our examples, stacks grow
from left to right. After a pusha

1 operation on t we get the stack t1 = [[⊥0a1]0]0.
A push2 on t1 gives t2 = [[⊥0a1]0[⊥0a1]2]0. A further pushb

1 operation on t2
gives t3 = [[⊥0a1]0[⊥0a1b3]2]0.

We define below a simple ordering on sub-stacks s1, s2 of a given stack s based
on if s1 occurs below s2 in s. This is used in a later definition.

Definition 11. Given a stack s of order-j and its two sub-stacks t1 and t2 of
order-i (i < j), we define “t1 ≤ t2 in s” if either of the following holds.

– s = [s1, . . . , su], t1 = si and t2 = sj for 1 ≤ i ≤ j ≤ u.
– s = [s1, . . . , su], t1 is a sub-stack of si, t2 is a sub-stack of sj,

for 1 ≤ i ≤ j ≤ u.
– s = [s1, . . . , su], t1, t2 are sub-stacks of si for 1 ≤ i ≤ u and t1 ≤ t2 in si.

This definition is by induction on j − i.

Definition 12. The initial order-n stack [. . . [⊥] . . .] is labeled as [. . . [⊥0]0 . . .]0,
that is every sub-stack in it is labeled by 0. Let s be a labeled order-n stack
obtained by starting the labeled initial stack and applying some hpds moves. Let
s1, s2 be two order-i sub-stacks of s with same labels and let s1 ≤ s2 in s. Then
we say that s2 is an auto copy of s1 and denote it as s1 �i s2.

If a pop move pops a stack with label l then we say that it matches the push
move associated with l.

Example 2. If on order-3 stack [[[⊥0]0]0]0 the sequence of operations pusha
1 ,

pusha
1, push2, push3, pop1, pushb

1 is performed then we get
t = [[[⊥0a1a2]0[⊥0a1a2]3]0[[⊥0a1a2]0[⊥0a1b5]3]4]0. Here order-2 stack [⊥0a1b5]3

is a copy of the stack [⊥0a1a2]3. This shows that a stack can be an auto copy of
another stack even if their contents are not the same. The auto copy relation that
we have defined establishes a relation between ‘containers’ not their contents.

Example 3. In the example 1, in t3 = [[⊥0a1]0[⊥0a1b3]2]0 the ‘a’ (order-0 stack)
above is a copy of the ‘a’ below. If on t3 we perform the sequence pop1, pop1, pop2,
pop1 then both second and the last pop1 operations match the pusha

1 operation
performed on t. Both these operations pop ‘a’ associated with this pusha

1

operation.
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The auto copy relation that we have defined can be informally understood as
follows. A pushj for j > 1, on stack s creates a new instance of topj−1(s) and
pushes it on s. Creating a new instance of topj−1(s) automatically creates new
instances of all stacks (of lower order) contained in topj−1(s). We refer to these
new instances of order < j − 1 as auto copies of their corresponding stacks in
topj−1(s). However, we do not consider the new order j − 1 instance as an auto
copy of topj−1(s). The full auto copy relation is obtained by taking reflexive,
transitive closure of the basic auto copy step described above.

There can be many popj operations (for j < n) matching a single pushj

operation. This is a departure from order-1 case. This happens because a stack
of order-(j − 1) may be auto copied several times by pushr, r > j, operations.
A popj operation popping any of these auto copies is associated with the same
pushj.

5 Reducing n-HMPDS Game to Finite State Game

5.1 Popping Scenarios

Let H = (Q, Γ, l, δ, q0) be n-mpds and let G = (H, Q0, Q1, M, Ω : Q → M) be a
game structure on H, where Q = Q0 ⊕ Q1 and M = {0, . . . , max} is the set of
priorities assigned to vertices of the game graph.

We now define sets Ni,j,p. These sets are defined simultaneously for all i by a
nested induction on p, j. The outer induction is on p (starting with p = k down
to p = 1). For each fixed value of p, an induction on j (starting with j = n − 1
down to j = 0) is done. Intuitively Ni,j,p is the set of scenarios or constraints to
be met for doing a popi,j+1 when the configuration resulting after this pop is in
phase p. This scenario also keeps information about possible scenarios of future
pop operations. This leads to the induction definition.

Definition 13. In this definition we assume that q ∈ Q, γ ∈ (Γ ∪ {⊥})n and
m ∈ M l×n. Also, u ∈ [1, l], r ∈ (j, n) and h, p ∈ [1, k], where the intervals shown
are integer intervals.

Ni,n−1,p = {(a1, . . . , ai−1, (p, q, γ, m), ai+1, . . . , al) | au ∈ Au,p+1 for u �= i}
Ni,j,p = {(a1, . . . , ai−1, (p, q, γ, m, bi,j+1, . . . , bi,n−1), ai+1, . . . , al) |

au ∈ Au,p+1 for u �= i, bi,r ⊆ ∪k
x=pNi,r,x}

where Ai,h are auxiliary sets given as
Ai,k+1 = {∅} , Ai,h =

{
(T0, . . . , Tn−1) | Tj ⊆ ∪k

x=hNi,j,x

}

The auxiliary sets Ai,h in the above definition are used to keep the definition a
bit compact, Ai,h do not have any other role.

Each e = (a1, . . . , ai−1, (p, q, γ, m, bi,j+1, . . . , bi,n−1), ai+1, . . . , al) ∈ Ni,j,p rep-
resents a scenario for a popi,j+1 operation. Entries p, q, γ, m in e refer to a popi,j+1

transition from configuration c to c′ = (q, p, i, s1, . . . , sl), where γt = topt,0(c),
for 1 ≤ t ≤ l, t �= i (γi is not needed in e, we keep it for compact notation), mu,v

is the minimum priority visited since pushu,v+1 corresponding to topu,v(c). Data
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au, u �= i in e refer to scenarios for popu,x, 0 ≤ x < n, and bi,y refer to scenarios
for popi,y, j + 1 < y ≤ n after the popi,j+1 in scenario e.

The motivation for au, u �= i in e is similar to that in the definition of Ni,p

in [2], except that in stack u now not just popu,0 but popu,0,. . . , popu,n−1 moves
are possible. A tuple in set Au,h gives popping scenarios for popu,0, . . . , popu,n−1

when such a pop move results in a configuration of phase ≥ h. These are denoted
by T0, . . . , Tn−1 respectively. Any pop operation in stack-u, u �= i, subsequent
to popi,j+1 move in phase p, can only be made in a phase > p. Therefore the
entries au in e are taken from sets Au,p+1.

For each bi,r, j + 1 ≤ r < n, note that Ni,j,p contains scenarios about pop-
ping not just a single stack but also about all auto copies of it. This is be-
cause constraints for all matching popi,j+1 are to be guessed at the time of a
pushi,j+1. As discussed in section 3, if a sub-stack t is popped by a popi,j+1 then
order-(j +1),. . .,order-(n−1) stacks, tj+1, . . . , tn−1 containing t need not be the
same stacks in which push associated to t was done. Stack t may be an auto copy
of stack s, where s is the stack actually pushed by the push associated to t. Val-
ues q, γ, m allowed in a scenario which pops t also depend on popping scenarios
for tj+1, . . . , tn−1 containing t. Scenario e contains an allowable combination of
q, γ, m and popping scenarios for tj+1, . . . , tn−1 explicitly. These Scenarios are
bi,j+1, . . . , bi,n−1 in the definition above. In general these are some subsets of
∪k

x=pNi,j+1,x, . . . ,∪k
x=pNi,n−1,x respectively.

For the base case, e ∈ Ni,x,k and au = ∅ for u �= i as in this case k is the last
phase so a pop in any stack other than i will not occur after this pop.

Below, we use notation like B = (Bi,j |1 ≤ i ≤ l, 0 ≤ j < n), for double
indexed sets. We also use B[C/(i, j)] to mean the indexed set which is same as
B except at index (i, j) where it is C. For single indexed set we use sequence like
notation with T and T [C/i] as obvious counterparts of B, B[C/(i, j)]respectively.
For double indexed sets B as above we use Bi for Bi,0, . . . , Bi,n−1.

We follow [11] in presentation of our finite state game. Most important vertices
of the finite state game (FSG) are of the form Check(q, p, r, γ, B, m), where q ∈ Q,
p ∈ [1, k], r ∈ [0, l], γ = γ1 . . . γl with each γi ∈ Γ ∪ {⊥}. Finally B = (Bi,j |1 ≤
i ≤ l, 0 ≤ j < n) and m = (mi,j |1 ≤ i ≤ l, 0 ≤ j < n). Intuitively vertex
Check(q, p, r, γ, B, m) asserts the following about a hmpds configuration c.

– q is the state of the configuration.
– p is the current phase.
– r is the number of stack on which last pop operation was done (initially it

is set to 0).
– γi is the topmost symbol of stack i.
– Bi,j ⊆ ∪k

x=1Ni,j,x is a set of scenarios for popi,j move on c.
– mi,j records the minimum priority visited in the play (till the current instant)

since the pushi,j move associated to topi,j(c) was played.

Apart from Check vertices there are also some auxiliary vertices.
A bit more notation. We use E ↑ p for E ∩ (∪k

x=pNi,j,x). For a sequence
T = (Ti | 1 ≤ i ≤ m), T ↑ p stands for (Ti ↑ p | 1 ≤ i ≤ m). For a double index
T , T ↑ p is defined similarly.
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5.2 The Finite State Game (FSG)

Each hmpds transition gives rise to some FSG transitions. We group transitions
of FSG according to hmpds transitions (shown in bold).

1. (q, γi,q′, i, γ′) ∈ δins,j where 1 ≤ i ≤ l and 1 ≤ j ≤ n.

This gives rise to transitions:
(a) Check(q, p, r, γ, B, m) → Pushi,j(p, r, γ, B, m, q′, γ′)
(b) Pushi,j(p, r, γ, B, m, q′, γ′) → Claimi,j(p, r, γ, B, m, q′, γ′, C),

for C ⊆ ∪k
h=pNi,j−1,h

(c) Claimi,j(p, r, γ, B, m, q′, γ′, C) → Check(q′, p, r, γ[γ′/i], B[C/(i, j −
1)], m′),

where m′
x,y =

{
Ω(q′) if x = i and y = j − 1
min(mi,j, Ω(q′)) otherwise

(d) To check the game after a matching popi,j operation.

Claimi,j(p, r, γ, B, m, q′, γ′, C) → Jumpi,j(q′′, h, γ, γ′′, m′, B′, m)
for any (a1, . . . , ai−1, z, ai+1, . . . , al) ∈ C where
ar = (B′

r,0, . . . , B
′
r,n−1) for 1 ≤ r ≤ l, r �= i

z = (h, q′′, γ′′, m′, B′
i,j , . . . , B

′
i,n−1),

B′
i,t = Bi,t for 0 ≤ t < j.

(e) Jumpi,j(q′′, h, γ, γ′′, m′, B′, m) → Check(q′′, h, i, γ′′[γi/i], B′, m′′),

where m′′
x,y =

{
min(m′

x,y, Ω(q′′)) if x �= i or y ≥ j
min(mx,y, m

′
i,j−1, Ω(q′′)) if x = i and y < j

2. (q, γi,q′, i) ∈ δrem,j, 1 ≤ i ≤ l.
This gives rise to transitions:
(a) Check(q, p, r, γ, B, m) → Win0 if D ∈ Bi,j−1 and p′ ≤ k

(b) Check(q, p, r, γ, B, m) → Win1 if D �∈ Bi,j−1 and p′ ≤ k

where p′ = np(p, r, i) and if p′ ≤ k then
– D = (C1, . . . , Ci−1, z, Ci+1, . . . , Cl)
– z = (p′, q′, γ, m, B′

i,j , . . . , B
′
i,n−1)

– Cr = (B′
r,0, . . . , B

′
r,n−1) for 1 ≤ r ≤ l, r �= i

and B′
x,y =

{
Bx,y ↑ (p′ + 1) if x �= i
Bx,y ↑ p′ if x = i and y ≥ j

Priority of a vertex v in FSG, denoted by λ(v), is defined as follows.

– λ(Check(q, . . .)) = Ω(q), λ(Pushi,j(. . .)) = λ(Claimi,j(. . .)) = max.
– λ(Jumpi,j(q, h, γ, γ′, m′, B, m)) = m′

i,j−1,
where m′ = (m′

x,y | x ∈ [1, l], y ∈ [0, n)).
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Vertices of the form Check(q, . . .) belong to player-z, z ∈ {0, 1}, iff q ∈ Qz.
Vertices Pushi,j(...), belong to player-0 whereas vertices Claimi,j(...), belong
to player-1. Vertices Jumpi,j(...) belong to player 0. Vertices Win0 and Win1

belong to player 1 and player 0 respectively. As there are no transitions from
Win0 and Win1, by our convention Win0 and Win1 are winning for player 0
and player 1 respectively.

We explain the transition rules of FSG in some detail below.

– Rule (1.a) transfers the game to player-0’s vertex (Pushi,j vertex) regardless
of the player to whom Check vertex in belongs. This is because player 0 only
can make a claim about popping scenarios.

– In rule (1.b), C is the set of scenarios for all popi,j matching the pushi,j. The
same set of popping scenarios is maintained for any auto copy of this stack.

– In rule (1.c), player 1 sets the game to the configuration after the Pushi,j

move. Sub-stacks topx,y in the new configuration are auto copies of sub-
stacks topx,y, in configuration before, for x �= i or y �= j. Therefore Bx,y,
mx,y for x �= i or y �= j remain unchanged.

– In rule (1.d-e), the game is verified after a matching popi,j move with
popping scenario in C. We show the transitions for an arbitrary scenario
(a1, . . . , ai−1, z, ai+1, . . . , al) ∈ C. Let c′ be a configuration arising after a
pop in this scenario. The phase of c′ is h and m′

x,y are priorities correspond-
ing to topx,y(c′), for x �= i or y ≥ j.
Note that if a pushi,j is done in configuration c then for 0 ≤ t < j, topi,t(c′) is
an auto copy of topi,t(c). Therefore we have B′

i,t = Bi,t as the set of popping
scenarios remain same for the auto copies.
The value m′

i,j−1 gives the minimum priority visited between pushi,j and the
matching popi,j in the play. This explains the expression m′′

i,t, for priorities
corresponding to topi,t(c′) for 0 ≤ t < j.
The Jump vertex is to capture the min priority between pushi,j and the
matching popi,j (it is m′

i,j−1 in the present case) in FSG path (1.a-b-d-e).
– In rule (2), condition p′ ≤ k refers to the fact that a pop move is possible only

if the resulting phase is ≤ k. Given p′ ≤ k, the transition (2.a) represents
the case where pop move satisfies the popping condition, the transition (2.b)
represents complement of this case.
The main step is to define D ∈ Ni,j,p based on various popping conditions
in the current configuration of the play. In Bx,y there may be some popping
scenarios for phase < p′. We remove these scenarios by using operator ↑.
More specifically, we keep scenarios of phase ≥ p′ for popping in stack i and
scenarios of phase > p′ for popping in stacks other than i as after the present
pop, other pops can occur only in these phases. The B′

x,y defined in this way
form the desired components of D so that D ∈ Ni,j,p.

6 Relating Winning in n-HMPDS Game and the FSG

Our main theorem is the following.

Theorem 1. A hmpds game is winning for player 0 (from initial configura-
tion (q0,⊥n, . . . ,⊥n)) iff FSG is winning for player 0 (from initial configuration
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Check(q0, 1, 0,⊥, ∅, 0)). Further, if hmpds game is winning for player 0 then
player 0 has a winning strategy in hmpds game that is computable by an order-n
multi-stack automaton.

Proof. (FSG to hmpds game) Assuming that there is a winning strategy for
player-0 in FSG from Check(q0, 1, 0,⊥, ∅, 0), we design an l stack deterministic
n−hmpda S which executes a winning strategy τ of player 0 in hmpds game
starting from hmpds configuration (q0,⊥n, . . . ,⊥n). The automaton S is an l
stack deterministic hmpda with an input and an output tape. It reads moves of
player 1 from the input tape and outputs moves of player 0 on the output tape.
Detailed construction of S and the correctness proof of S is given in full version
of this paper [1].
(Hmpds game to FSG) Proof of this direction is given in [1].

Idea of the proofs in both directions is similar to that in [11,2], but we need
to deal with operations on higher order stacks. �

6.1 Complexity of Solving the Game

By the reduction in section 5, to solve a hmpds game it suffices to solve an
associated FSG. In this section we estimate size of the FSG and the complexity
of solving it. Let us define a class of functions expn(m) iteratively as follows.
exp1(m) = 2m and for n ≥ 1, expn+1(m) = 2expn(m). Roughly, expn(m) is a
tower of exponentials of height n. Let H be an hmpds and G be an hmpds game
on H as in section 5.1. For a set A, we let |A| denote its cardinality.

By a simple complexity analysis, whose details are omitted due to lack of
space, we get |Ni,0,k−1| ≤ expn−1(z) and the number of vertices in FSG is
expn·k(O(z)), where z = |Q| · |M |l×n · |Γ | and |M | > 1. It follows by [13] that
our FSG can be solved and the winning strategy can be constructed in time
bounded by expn·k(O(z)), with z as above.

We can code e ∈ Ni,j,k more economically by noting that we need to keep
only mi,j , . . . , mi,n−1 in it, in particular mu,x, u �= i need not be stored as there
is no pop in stack u after a pop corresponding to e. This leads to size of FSG
and the time to solve it as expn·k(O(|Q| · |M | · l · |Γ |)).

7 Conclusion

In this paper we have defined higher order multi-stack pushdown systems (hm-
pds). We have shown that parity games on bounded phase hmpds are effectively
solvable and a winning strategy executable by higher order multi-stack automata
can be synthesized effectively. It remains open if the complexity bound given in
the paper to solve these games can be improved. Recently we have also shown
that winning regions in parity games on bounded phase hmpds are regular.
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