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Preface

The Third International Workshop on Reachability Problems, RP 2009 was
held in Ecole Polytechnique, September 23-25, 2009, in Palaiseau, near to Paris,
France.

Reachability Problems 2009 was hosted as an edition of the annual LIX Fall
Colloquium. The LIX Fall Colloquium is the annual colloquium organized by
the computer science laboratory of Ecole Polytechnique. The topics of this col-
loquium change every year. Previous editions include Emerging Trends in Visual
Computing (ETVC 2008) in 2008, Complex Industrial Systems: Modeling, Veri-
fication and Optimization in 2007, and Emerging Trends in Concurrency Theory
in 2006.

The Reachability Problems workshops series aims at gathering together schol-
ars from diverse disciplines and backgrounds interested in reachability problems
that appear in algebraic structures, computational models, hybrid systems, veri-
fication, etc. Reachability is a fundamental problem in the context of many mod-
els and abstractions which describe various computational processes. Analysis
of the computational traces and predictability questions for such models can be
formalized as a set of different reachability problems. In general reachability can
be formulated as follows: Given a computational system with a set of allowed
transformations (functions), decide whether a certain state of a system is reach-
able from a given initial state by a set of allowed transformations. The same
questions can be asked not only about reachability of exact states of the system
but also about a set of states expressed in term of some property as a para-
meterized reachability problem. Another set of predictability questions can be
seen in terms of reachability of eligible traces of computations; unavoidability of
some dynamics and a possibility to avoid undesirable dynamics using a limited
control.

The purpose of the conference is to promote exploration of new approaches
for the predictability of computational processes by merging mathematical, al-
gorithmic and computational techniques. Topics of interest include (but are not
limited to): reachability problems in infinite state systems, rewriting systems,
dynamical and hybrid systems; reachability problems in logic and verification;
reachability analysis in different computational models, counter/ timed/ cellu-
lar/ communicating automata; Petri-Nets; computational aspects of algebraic
structures (semigroups, groups and rings); frontiers between decidable and un-
decidable reachability problems; predictability in iterative maps and new com-
putational paradigms.

The first venue of Reachability Problems was Turku, Finland in 2007, as a
satellite event of the Developments in Language Theory DLT 2007. The sec-
ond edition was held in Liverpool in 2008. The proceedings of the previous RP
workshops appeared as follows:
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– Mika Hirvensalo, Vesa Halava, Igor Potapov, Jarkko Kari: Proceedings of
the Satellite Workshops of DLT 2007. TUCS General Publication No 45,
June 2007. ISBN: 978-952-12-1921-4.

– V. Halava and I. Potapov: Proceedings of the Second Workshop on Reach-
ability Problems in Computational Models (RP 2008). Electronic Notes
in Theoretical Computer Science. Volume 223, Pages 1-264 (26 December
2008).

The five keynote speakers at the 2009 conference were:

– Ahmed Bouajjani, “On the Reachability Problem for Dynamic Networks of
Concurrent Pushdown Systems.”

– Thomas Henzinger, “Formalisms for Specifying Markovian Population Mod-
els.”

– Oded Maler, “Reachability for Continuous and Hybrid Systems.”
– Alexander Shen, “Algorithmic Information Theory and Foundations of Prob-

ability.”
– Moshe Vardi, “Model Checking as a Reachability Problem.”

Each of the submitted papers received at least three reviews by members
of the Program Committee, with the help of external reviewers. The full list
of the 20 members of the Program Committee can be found on page VII. The
list of external reviewers can be found on page VIII. The Program Committee
is grateful for the highly appreciated and high-quality work produced by these
external reviewers. Based on these reviews, the Program Committee decided to
accept 15 papers, in addition to the 5 invited talks.

Reachability Problems 2009 benefited from all the infrastructure and equip-
ment of Ecole Polytechnique, and received some direct financial support from
LIX and CNRS GdR Informatique Mathématiques. We extend to all of them
our deep gratitude.

We would also like to deeply thank Evelyne Rayssac for all the high-quality
work she did for this edition of the annual LIX Fall Colloquium. Her help and
expertise were deeply appreciated.

It is also a great pleasure to acknowledge the team of the EasyChair system,
and the fine cooperation with Lecture Notes in Computer Science of Springer,
which made possible the production of this volume in time for the conference.

Finally, we thank all the authors for the high quality of their contributions,
and the participants for making this edition of RP 2009 a success.

July 2009 Olivier Bournez
Igor Potapov
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On the Reachability Problem for Dynamic Networks
of Concurrent Pushdown Systems

Mohamed Faouzi Atig and Ahmed Bouajjani

LIAFA, CNRS & Univ. Paris Diderot (Paris 7)
{atig,abou}@liafa.jussieu.fr

We consider the problem of checking safety properties for concurrent programs. We
assume that programs may have (potentially recursive) procedure calls as well as (un-
bounded) dynamic creation of parallel threads. Each procedure can have a finite number
of local variables, and there is a finite number of global variables that can be accessed
by all parallel threads. We assume that these variables range over a finite data domain
(e.g., booleans).

We consider concurrent pushdown dynamic networks as a formal model for this
class of programs. In fact, sequential programs can naturally be modeled as pushdown
systems, and then, concurrent programs can be modeled as networks where each process
can behave as a pushdown systems (i.e., it can modify the global store and operate on the
stack representing its local context), and additionally it can create new processes in the
network. At each point in time, only one process is running (and can act on the global
store) and all the others are idle. A scheduling policy is used along the computations
to switch the contexts, i.e., to freeze the execution of some process at some point and
resume the execution of some idle one. The most liberal scheduling policy is the one
which may introduce context switches at any point in time and without any distinction
between processes. For this policy, a computation of the program may have an infinite
number of context switches, and the number of context switches in each of the potential
computations of the program is in general unbounded. It is easy to see that this model
is Turing powerful.

Other policies can be defined by imposing various conditions on the occurrences of
context switches. These conditions can concern, e.g., the size of the stacks (for instance
in asynchronous programs switches can occur only if the stack of the active thread
is empty), the classes of the processes (for instance priorities between threads may
be considered), the number of allowed context-switches globally, or per thread, or per
class of threads, etc. We show that by considering special scheduling policies, it is
possible to obtain models for significant classes of programs/applications for which the
reachability problem is decidable. The presented results cover recent work published
in [ABT08] and [ABQ09] showing that the considered reachability problems can be
reduced to reachability/coverability problems in some classes of Petri nets.

O. Bournez and I. Potapov (Eds.): RP 2009, LNCS 5797, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Formalisms for Specifying

Markovian Population Models�

Thomas A. Henzinger1,2, Barbara Jobstmann1, and Verena Wolf1,3

1 EPFL, Switzerland
2 IST Austria (Institute of Science and Technology Austria)

3 Saarland University, Germany

Abstract. We compare several languages for specifying Markovian pop-
ulation models such as queuing networks and chemical reaction networks.
These languages —matrix descriptions, stochastic Petri nets, stoichio-
metric equations, stochastic process algebras, and guarded command
models— all describe continuous-time Markov chains, but they differ
according to important properties, such as compositionality, expressive-
ness and succinctness, executability, ease of use, and the support they
provide for checking the well-formedness of a model and for analyzing a
model.

1 Introduction

Markov chains are an omnipresent modeling approach in the applied sciences.
Often, they describe population processes, that is, they operate on a multidi-
mensional discrete state space, where each dimension of a state represents the
number of individuals of a certain type. Depending on the application area, “in-
dividuals” may be customers in a queuing network, molecules in a chemically
reacting volume, servers in a computer network, etc.

Here, we are particularly interested in dynamical models of biochemical re-
action networks, such as signaling pathways, gene expression networks, and
metabolic networks. They are an important emerging application area of
continuous-time Markov chains and operate on an abstraction level where a state
of the system is given by an n-dimensional vector of chemical populations, that
is, the system involves n different types of molecules and the i-th coordinate rep-
resents the number of molecules of type i. Molecules collide randomly and may
undergo chemical reactions, which change the state of the system. Classical mod-
eling approaches in biochemistry are based on a system of ordinary differential
equations that assume a continuous deterministic change of chemical concentra-
tions. Over the last decade, however, various experimental results have shown
that the discreteness and randomness of the chemical reactions need to be taken
into account. Thus, discrete-state continuous-time Markov models have gained
in importance for describing the dynamics in the cell [31,35,32,42,44,45,39].

� This research was supported in part by the Excellence Cluster on Multimodal Com-
puting and Interaction and the Swiss National Science Foundation.

O. Bournez and I. Potapov (Eds.): RP 2009, LNCS 5797, pp. 3–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



4 T.A. Henzinger, B. Jobstmann, and V. Wolf

There are many different formalisms for the specification of Markovian pop-
ulation models. Most popular are matrix descriptions, stochastic Petri nets,
stochastic process algebras, and languages based on guarded commands. More-
over, Markov chains for biochemical reaction networks are often specified based
on rules for chemical reactions, called stoichiometric equations. While all of
these formalisms describe the same kind of system —a continuous-time Markov
chain— they vary considerably in their ease of use, support of analysis tech-
niques, and other properties. In this paper we give a brief survey of specification
formalisms for Markovian population models and discuss some properties of
these formalisms which are of particular importance in modeling. These proper-
ties include compositionality (how does the formalism support the construction
of complex models from simpler parts?), expressiveness and succinctness (which
systems can be specified in the formalism and how large are the specifications?),
executability (how easy is it to compute the possible direct successor states of
a given state?), and well-formedness (how easy is it to check if a model has a
unique solution?). We illustrate our remarks with examples of Markovian popu-
lation models.

The main message of this paper is that, even if one agrees on the underlying
mathematical model, the choice of language for specifying the model has signif-
icant implications on the modeling process itself, as well as on the possibilities
for subsequent analysis.

2 Continuous-Time Markov Chains

Let S be a countable set. We consider a (homogeneous) continuous-time Markov
chain (X(t))t≥0 on a probability space (Ω,F , Pr) with state space S and transi-
tion function

P
(t)
ij = Pr(X(t) = j | X(0) = i), i, j ∈ S, t ≥ 0.

If initial probabilities Pr(X(0) = i) are specified for each i ∈ S, the transient
state probabilities p

(t)
j := Pr(X(t) = j), are given by

p
(t)
j =

∑
i∈S

p
(0)
i · P (t)

ij .

The transition functions P
(t)
ij of a Markov chain are usually represented by their

derivatives qij = P ′
ij(0) at t = 0, called rates. Here, we focus on Markov chains

arising from population models. We therefore rule out “pathological cases” by
assuming that the rates are finite and that

∑
j∈S qij = 0 for all i ∈ S. Note that

this ensure that the sample paths X(t)(ω) are right-continuous step functions (at
least until a certain random point in time). Let Q be the matrix with compo-
nents qij . Note that the diagonal elements are nonpositive and the off-diagonal
elements are nonnegative. The matrix Q is called the (infinitesimal) generator
of X since, if supi∈S |qii| < ∞, the transition functions can be “generated” from
Q. They are the unique solution of the Kolmogorov backward equations

P ′(t) = Q · P (t), (1)
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0 1 2 · · ·
λ λ λ

Fig. 1. The intensity graph of a Poisson process with rate λ

where the components of P (t) are the values Pij(t). As a general solution, this
gives

P (t) = exp(Qt) =
∑∞

k=0
(Qt)k/k!.

Algorithms for the computation of the vector p(t) with entries p
(t)
j are usually

based on the numerical integration of the linear system of differential equations

p′(t) = Q · p(t), (2)

with initial condition p(0). Another approach is the approximation of the ma-
trix exponential exp(Qt), which gives an approximation of p(t) = p(0) · P (t) =
p(0) · exp(Qt). In the case of an infinite or very large state space, the com-
putation of p(t) is computationally very expensive or even infeasible. Accurate
approximations are, however, possible if the model is truncated appropriately.

For every i ∈ S, the limit probability πi = limt→∞ pi(t) exists, but πi may
be zero for all states i ∈ S. Under certain conditions, however,

∑
i∈S πi = 1 and

the vector π with entries πi is computed as the unique solution of the linear
equation system

0 = π ·Q,
∑

i∈S
πi = 1. (3)

The distribution π is then called steady-state distribution or stationary distribu-
tion. Note that in this case πi > 0 for all i ∈ S.

Each Markov chain has an associated state-transition graph, called intensity
graph. It is a directed graph whose node set corresponds to the state space of
the chain. It has an edge from state i to state j labeled by qij whenever qij > 0.
The Markov chain is uniquely determined by its intensity graph.

Example 1. Consider a Markov chain X that has the infinitesimal generator

Q =

⎛⎜⎜⎝
−λ λ 0 . . .

0 −λ λ 0 . . .

...
. . . . . . . . .

...

⎞⎟⎟⎠ ,

where λ > 0. The process X is called Poisson process and is often used to model
the number of arrivals of identical entities during a time interval [0, t), where
λ = k · t assuming an average of k arrivals per time unit. The intensity graph is
shown in Fig. 1. ��

3 Specifying Continuous-Time Markov Chains

In this section, we focus on the syntax of specification formalisms for large (or
infinite) Markov chains with continuous time that describe population models,
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that is, models with state space S = Z
n
+ = {0, 1, . . .}n, where the i-th state

variable represents the number of instances of the i-th species. Depending on
the application area, “species” stands for types of system components, molecules,
customers, etc. The application areas that we have in mind are chemical reaction
networks, performance evaluation of computer systems, logistics, epidemics, etc.

3.1 Matrix Descriptions

A Markov chain may be specified by defining the elements of its generator
matrix Q.

Example 2. Consider an epidemic process where individuals of a population are
infected by a certain communicable disease. A state of the system is a pair
(x, y) ∈ Z

2
+, where x is the number of infected individuals and y is the number

of individuals that are not infected [36]. Given positive rate constants a, b, c, d, e,
the positive elements of the (infinite) generator matrix Q are given by

q(x,y),(x+1,y) = a for x ≥ 0 and y ≥ 0,
q(x,y),(x−1,y) = b · x for x > 0 and y ≥ 0,
q(x,y),(x,y+1) = c for x ≥ 0 and y ≥ 0,
q(x,y),(x,y−1) = d · y for x ≥ 0 and y > 0,
q(x,y),(x−1,y+1) = e · x · y for x > 0 and y > 0.

All remaining off-diagonal entries are 0 and for each row the element on the
diagonal is the negative sum of the remaining row entries. ��
If the matrix exhibits a particular structure, it can also be described as the
Kronecker product of smaller matrices that describe parts of the system. A gen-
eral framework for descriptions based on the Kronecker product is provided by
stochastic automata networks (SANs) [33,14]. A stochastic automaton is equiv-
alent to a state-transition graph in which transitions are labeled by rates. Sev-
eral automata can interact with each other and the state-transition graph of
the global automaton determines the intensity graph of a Markov chain. The
generator matrix of the Markov chain is then the Kronecker product of the ma-
trices that represent the different automata and their interactions (compare also
Section 4.1).

3.2 Stochastic Petri Nets

Petri nets are a pictorial language for describing systems of concurrent activities.
A classical Petri net is a labeled directed bipartite graph whose node set is the
disjoint union of a set P of places and a set T of transitions. The directed edges,
called arcs, are given by a set A ⊆ (P × T ) ∪ (T × P ) and are labeled with a
multiplicity function l : A → N. Stochastic Petri nets (SPN) [20] are an extension
of classical Petri nets that associate a firing rate λτ with each transition τ ∈ T .

A Petri net represents an infinite state-transition system with a set of states
called markings. A marking is a function m : P → N that maps every place of
the Petri net to a nonnegative integer representing the number of tokens in that
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x

y

a

c

b · m(x)

d · m(y)

e · m(x) · m(y)

Fig. 2. Stochastic Petri net of the epidemic process in Example 2

place. Given a marking m, a transition τ ∈ T is enabled in m if all places p with
an arc a leading to τ have at least l(a) tokens in m, i.e., m(p) ≥ l(a). Note that
transitions with no incoming arcs are always enabled. A transition τ is fired by
removing l(a) tokens from every place with an arc a leading to t and adding
l(b) tokens to every place with an arc b coming from t. The firing of a transition
results in a new marking m′ and corresponds to a transition from m to m′ in the
underlying transition system. In an SPN the firing rate λτ > 0 of transition τ
determines the random delay during which τ has to be enabled before it can fire.
The underlying graph is the intensity graph of a Markov chain if the transitions
are labeled with their respective firing rates.

Example 2 (cont.). Fig. 2 shows a stochastic Petri net for the epidemic process.
The net has two places x and y depicted as circles, and five transitions depicted
as rectangles. (We omit the multiplicity labeling of the arcs because all arcs
have multiplicity 1.) The firing rate of each transition is given by the transition
label. Here, we use functions that depend on the current marking m. The initial
marking m0 is the empty marking, i.e., m0(x) = m0(y) = 0. ��

3.3 Stoichiometric Equations

Markov chain models for networks of biochemical reactions are usually specified
by means of stochiometric equations. A stochiometric equation describes a reac-
tion type. For instance, A + B → C means that if a molecule of type A hits a
molecules of type B, they may form a complex molecule C. We call the species
that are consumed by a reaction reactants ; in the above example, A and B are
reactants. Species that are produced by a reaction are called products.

Assume that the system involves n different chemical species S1, . . . , Sn. Con-
sider a set {R1, . . . , Rm} of chemical reactions, where the j-th reaction is given
by the stochiometric equation

Rj : lj,1S1 + · · ·+ lj,nSn → kj,1S1 + · · ·+ kj,nSn.

The stoichiometric coefficients lj,1, . . . , lj,n and kj,1, . . . , kj,n are nonnegative in-
tegers and describe how many molecules of each type are consumed and produced
by the reaction. In the equation, we may omit a species if its coefficient is 0, and
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we may omit coefficients that are 1. Assume that x = (x1, . . . , xn) is the current
state of the system, that is, we have xi molecules of species i in the system. If a
reaction of type Rj occurs, then the successor state is x + vj , where the change
vector vj is given by vj = (kj,1 − lj,1, . . . , kj,n − lj,n).

For a given state x, an instance of reaction Rj may occur whenever there
are enough reactants in the system, i.e., whenever all entries of the vector x −
(lj,1, . . . , lj,n) are nonnegative. In this case, there is a transition in the underlying
state-transition graph between state x and state x+vj .1 The rate of reaction Rj

in state x determines the corresponding transition label in the intensity graph.
Stochastic Chemical Kinetics. If the reaction Rj is an elementary reaction, mean-
ing that each instance corresponds to a single mechanistic step, then the transi-
tion rate αj(x) between state x and x + vj is given by

αj(x) = cj ·
∏n

i=1

(
xi

lj,i

)
, (4)

where cj > 0 is a constant. This definition reflects the law of mass action kinetics,
which states that the rate at which a chemical reaction occurs is proportional to
the product of the reactant concentrations. Stochastic chemical kinetics considers
populations of chemical species and replaces the product of reactant concentra-
tions by

∏n
i=1

(
xi

lj,i

)
, which is the number of distinct reactant combinations [17].

Usually, the constant cj appears above the reaction arrow in the stoichiometric
equation.

The following example shows that stoichiometric equations can be used to
describe population models from other application areas.
Example 2 (cont.). We describe the epidemic process as a network of the “reac-
tions”:

R1 : ∅ a→ Sx R2 : Sx
b→ ∅ R3 : ∅ c→ Sy

R4 : Sy
d→ ∅ R5 : Sx + Sy

e→ 2Sy

Here, the symbol ∅ means that all stoichiometric coefficients are zero. Note that
if the transition rates are defined as in Eq. (4), they agree with the rates of
Example 2. ��
Since stoichiometric equations are classically used to describe biochemical reac-
tions, we present an example from biology next.

Example 3. An enzyme-catalyzed substrate conversion is specified by the three
reactions R1 : E + S

c1−→ ES, R2 : ES
c2−→ E + S, R3 : ES

c3−→ E + P. This net-
work involves four chemical species, namely, enzyme (E), substrate (S), complex
(ES), and product (P ) molecules. The change vectors are v1 = (−1,−1, 1, 0),
v2 = (1, 1,−1, 0), and v3 = (1, 0,−1, 1). For (x1, x2, x3, x4) ∈ Z

4
+, the rate

functions are α1(x1, x2, x3, x4) = c1 · x1 · x2, α2(x1, x2, x3, x4) = c2 · x3, and
α3(x1, x2, x3, x4) = c3 · x3. ��
1 We assume for simplicity that each change vector vj has at least one nonzero entry,

and that all change vectors are distinct.
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Systems Biology Markup Language. For software tools in systems biology, a stan-
dard language for the specification of systems is the Systems Biology Markup
Language (SBML) [26]. It is an XML-based format that describes biochemical
reaction networks by a list of components. Each component may describe dy-
namic behaviors by reactions, events, and mathematical rules, or give details
about reacting species or compartments. SBML also offers several mechanisms
such as unit and parameter definitions to ensure the unambiguous understanding
of quantitative descriptions.

Example 3 (cont.). In Fig. 3, we show a part of an SBML description of the
enzyme-catalyzed substrate conversion. (The SBML description is taken from
the SBML homepage [26].) Lines 22–27 define the species ES, P , S, and E. In
lines 64–84, we can see the description of the reaction R3 : ES

c3→E+P . Note that
SBML uses an extended version of stoichiometric equations to describe reactions.
Like a stoichiometric equation, every reaction has a set of reactants and a set
of products. However, the rate function is defined independently (cf. Fig. 3,
lines 72–83) and need not follow Eq. (4). ��

3.4 Stochastic Process Algebras

Stochastic process algebras can be used to specify continuous-time Markov chains
based on a high-level description language that emphasizes the construction of
complex processes from simple processes [24,18,4,34]. They provide several types
of operators, such as prefix, choice, parallel composition, and recursion, in order
to support different ways to combine processes. Typically, these languages are
accompanied by structured operational semantics that define a state-transition
graph, whose states are process terms. The graph can then be transformed into
the intensity graph of a Markov chain.

Originally, stochastic process algebras were designed to explicitly model dif-
ferent molecules of the same species, that is, the model distinguishes instances
of components being in the same local state. Since for population models this
may lead to an enormous blow-up of the description, symmetry representations
have been developed [22]. They support the specification of the local state and
number of instances for a component type. In this way, as in the other lan-
guages, the separate spatial identity of each molecule is hidden on the syntactical
level.

Besides the symmetry representations, the recently developed process alge-
bra Bio-PEPA [9] can be used to specify population models. Bio-PEPA focuses
on applications in systems biology, however, it can be used to model arbitrary
Markovian population models.
Example 2 (cont.). In Bio-PEPA [9], the five reactions of the epidemic process
are modeled as five actions (r1 to r5). The two species are models as two
sequential processes (X and Y) that synchronize on action r5 in the model
component. Below we show an input file for the Bio-PEPA workbench of the
epidemic process.
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <sbml level="2" version="3" xmlns="http://www.sbml.org/sbml/level2/version3">

3 <model name="EnzymaticReaction">

4 <listOfUnitDefinitions>

5 <unitDefinition id="per_second">

6 <listOfUnits>

7 <unit kind="second" exponent="-1"/>

8 </listOfUnits>

.. ...

19 <listOfCompartments>

20 <compartment id="cytosol" size="1e-14"/>

21 </listOfCompartments>

22 <listOfSpecies>

23 <species compartment="cytosol" id="ES" initialAmount="0" name="ES"/>

24 <species compartment="cytosol" id="P" initialAmount="0" name="P"/>

25 <species compartment="cytosol" id="S" initialAmount="1e-20" name="S"/>

26 <species compartment="cytosol" id="E" initialAmount="5e-21" name="E"/>

27 </listOfSpecies>

28 <listOfReactions>

.. ...

64 <reaction id="R3" reversible="false">

65 <listOfReactants>

66 <speciesReference species="ES"/>

67 </listOfReactants>

68 <listOfProducts>

69 <speciesReference species="E"/>

70 <speciesReference species="P"/>

71 </listOfProducts>

72 <kineticLaw>

73 <math xmlns="http://www.w3.org/1998/Math/MathML">

74 <apply>

75 <times/>

76 <ci>cytosol</ci>

77 <ci>c3</ci>

77 <ci>ES</ci>

78 </apply>

79 </math>

80 <listOfParameters>

81 <parameter id="c3" value="0.1" units="per_second"/>

82 </listOfParameters>

83 </kineticLaw>

84 </reaction>

85 </listOfReactions>

86 </model>

87 </sbml>

Fig. 3. Part of the SBML description in XML syntax of an enzymatic reaction
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r1 = [ a ];
r2 = [ b * X ];
r3 = [ c ];
r4 = [ d * Y ];
r5 = [ e * X * Y ];
X = r1>> + r2<< + r5<<;
Y = r3>> + r4<< + r5>>;
(X <r5> Y)

The first five lines specify the actions and the corresponding rates. Line 6 and 7
specify in which reactions the components take part and what role they play
in the reaction. E.g., r1>>, which is a shortcut for (r1,1) >> X, means X is
an reactant in reaction r1 with stoichiometry coefficient 1 and r2<< means X is
a product in reaction r2. The plus operator (+) is the sequential composition
operator defining that the actions are sequentially interleaved. Finally, the last
line specifies that the model is the parallel composition of processes X and Y that
synchronize on reaction r5. ��

3.5 Guarded Commands

Similar to Petri nets, guarded-command models (GCM) describe the state tran-
sitions of the underlying process. However, unlike Petri nets, GCM are textual.
Often, the set of all transitions can be partitioned into classes of transitions.
Instead of listing all states, the modeler describes the possible classes of transi-
tions that may occur. As a representative for such transition class description,
we present a syntax that is inspired by Dijkstra’s guarded-command language
[13], which has subsequently been used by GCM such as Reactive Modules [1]
and by the language for specifying PRISM models [37]. We describe transition
classes by guarded commands that operate on the state variables of the system.
Recall that the state variables of the system are nonnegative integers repre-
senting numbers of molecules for each species. A guarded command takes the
form

[] guard |- rate -> update

where the guard is a Boolean predicate over the variables, which determines
in which states the corresponding transitions are enabled. The update is a rule
that describes the change of the system variables if a corresponding transition
is performed. Syntactically, update is a list of statements, each assigning to a
variable an expression over variables. Assume that x is a variable. If, for instance,
the update rule is that x is incremented by 1, we write x:=x+1. We assume that
variables that are not listed in the update rule do not change if the transition
is taken. Each guarded command also assigns a rate to the corresponding tran-
sitions, which is a function in the state variables. We do not fix an expression
language for the rate functions here.
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Example 2 (cont.). We define a GCM for the epidemic process.

variables x,y
[] true |- a -> x:=x+1
[] (x>0) |- b*x -> x:=x-1
[] true |- c -> y:=y+1
[] (y>0) |- d*y -> y:=y-1
[] (x>0)&(y>0) |- e*x*y -> x:=x-1; y:=y+1

��
Note that each guarded command specifies infinitely many transitions. For exam-
ples, the guarded command [] true |- a -> x:=x+1 specifies one transition
from each state, with constant rate a, to a successor state in which the number
of x molecules is incremented and the number of y molecules remains unchanged.

Example 3 (cont.). The enzyme reaction is specified by the guarded commands:

variables e,s,es,p
[] (e>0)&(s>0) |- c1*e*s -> e:=e-1; s:=s-1; es:=es+1
[] (es>0) |- c2*es -> es:=es-1; e:=e+1; s:=s+1
[] (es>0) |- c3*es -> es:=es-1; e:=e+1; p:=p+1

��
Now, we show how to derive the underlying generator matrix from a GCM. To
simplify the presentation, we assume that the updates of two commands differ
whenever there is a state in which both guards are true. Moreover, we do not
consider commands with empty updates, because “self-loops” do not alter the
dynamics of a Markov chain. Then, each guarded command determines an entry
in the row of a state s in the generator matrix whenever the guard is true in
s. Assume that the state space of the underlying Markov chain is S = Z

n
+, and

G ⊆ S is the subset where the guard is true. Furthermore, s = (s1, . . . , sn) and
the update is a function u : G → S. Then qs,u(s) = r(s), where r : G → R≥0 is
the rate function of the command. For instance, in Example 2, G = {(x, y) ∈
Z

2
+ | x > 0 and y > 0} is the guard set of the last command. The update function

is u(x, y) = (x− 1, y + 1), and the rate function is r(x, y) = e ·x · y, which yields
the matrix entries q(x,y),(x−1,y+1) = e · x · y for all x > 0 and y > 0.

4 Properties of Specification Languages

In this section, we discuss several properties of specification languages which are
important for the construction and the analysis of a model. We focus on the
languages mentioned in the previous section.

4.1 Compositionality

Compositionality facilitates the description of complex systems. A compositional
language allows the modular description of a system by combining submodels that
describe parts of the system. Moreover, amodular description can be advantageous
for the analysis of the model, e.g., for compositional aggregation techniques [5].
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M1

x

M2

y

M3

x y

a b · m(x) c d · m(y) e · m(x) · m(y)

Fig. 4. Composition of stochastic Petri nets

Matrix Descriptions. We can construct the generator matrix Q of the epidemic
process in Example 2 in a compositional way. We define the three matrices A =
diag([1 1 1 . . .], 1), B = diag([0 1 2 . . .], 1), C = diag([0 1 2 . . .],−1), where for
k ∈ Z the notation diag(v, k) refers to a matrix whose nonzero elements are the
elements of the vector v that appears on the k-th diagonal of the matrix (negative
values indicate that the vector appears below the main diagonal). Then the matrix

Q̂ = ((a ·A + b · C)⊕ (c · A + d · C)) + e · (C ⊗B)

agrees with Q except for the main diagonal. Thus, if 1 is the column vector with
all entries equal to 1, then Q = Q̂ − diag(Q̂ · 1, 0). The matrix Q̂ describes a
network of two stochastic automata. The first automaton represents the state
variable x, and (a ·A+ b ·C) defines its local transitions. The second automaton
represents the state variable y, and (c · A + d · C) defines its local transitions.
Finally, e · (C ⊗B) describes the synchronous transitions of the network.

Thus, the composition of models with matrix representation requires matrix
operations such as matrix sum, Kronecker product, and Kronecker sum.
Stochastic Petri Nets. In Fig. 4, we show the stochastic Petri nets of three sub-
systems of Example 2. Their combination yields the model shown in Fig. 2. The
composition of Petri nets hinges on the identity of the places, because places
with equal labels are collapsed. Thus, renaming of variables may be necessary.
In the composite model, the original models are often not clearly separable.
Stoichiometric Equations. As for Petri nets, sets of stoichiometric equations may
be joined, where the interfaces are specified by the names of the chemical species.
For instance, the composition of the three networks M1, M2, M3 of reactions
specified by

M1 M2 M3

R1 : ∅ a→ Sx R1 : ∅ c→ Sy R1 : Sx + Sy
e→ 2Sy

R2 : Sx
b→ ∅ R2 : Sy

d→ ∅
yields the description of the epidemic process in Example 2. Here, the composite
model is constructed simply by the union of reactions.
Stochastic Process Algebras. Compositionality is one of the most important as-
pect of process calculi. Process algebras are equipped with various operators that
can be used to combine process terms. This facilitates the description of different
forms of interaction between subsystems. For instance, a detailed discussion on
synchronous interaction, we refer to [23]. Note that in the Bio-PEPA example in
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the previous section, the epidemic process is the composition of the two process
terms X and Y.

Guarded Commands. Again, we consider Example 2. The GCM for the subsys-
tems we discussed above are

variables x
[] true |- a -> x:=x+1
[] (x>0) |- b*x -> x:=x-1

variables y
[] true |- c -> y:=y+1
[] (y>0) |- d*y -> y:=y-1

variables x,y
[] (x>0)*(y>0) |- e*x*y -> x:=x-1; y:=y+1

Similar as for stoichiometric equations, two GCM can be composed by a simple
union of the guarded commands, where variables may have to be renamed.

4.2 Expressiveness and Succinctness

Two important properties of a specification language are its expressive power
and its succinctness. For example, language A is as expressive as language B if
every model that can be specified in B can also be specified in A. Of two equally
expressive language, one may be more succinct than the other. For instance, if
for some models there are descriptions in A that are exponentially smaller than
all descriptions in B, then on these models, A is exponentially more succinct
than B. The expressiveness and succinctness of specification languages can be
compared by studying translations between languages and the cost of such trans-
lations. Other questions that fall under this topic concern the ease of extending a
language to gain expressive power, and an independent characterization of which
semantic objects (i.e., continuous-time Markov chains that arise from population
models) can be described by expressions within a given formal syntax.

To our knowledge, no systematic and complete comparison between the var-
ious languages for describing population models has been carried out, and we
make here only a few remarks.

Matrix Descriptions. The expressive power of a matrix description depends on
the exact syntax of expressions for describing matrix entries and, in the case of
infinite dimension, on the syntax for describing sets of entries. As first step in
an analysis procedure, many other languages for specifying population models
are translated into matrix descriptions. The translation from higher-level lan-
guages such as guarded commands often results in a blow-up of the size of the
description.

Stochastic Petri Nets. A stochastic Petri net can be transformed into a guarded
command model if we associate a variable with each place and a guarded com-
mand with each transition. Many extensions of stochastic Petri nets have been
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developed, such as generalized stochastic Petri nets [30], fluid stochastic Petri
nets [25], etc. They can be used to describe stochastic processes that are not
necessarily Markov chains. There is, however, we know of no extension of Petri
nets that can specify infinitely branching Markov chains, whose intensity graph
contains states with an infinite number of out-going transitions. Moreover, even
though firing rates may be marking dependent, the expression syntax may not
allow arbitrary rate functions.

Stoichiometric Equations. While stoichiometric equations are widely used to
model networks of biochemical reactions, some models —such as the bistable
toggle switch shown below— have rate functions that differ from Eq. (4). Thus,
they cannot be described in the classical stoichiometric style.

Example 4. The bistable toggle switch is a prototype of a genetic switch with two
competing repressor proteins and four reactions [16,43]. It involves two chemical
species, A and B, and four reactions. The reactions are ∅ → A, A → ∅, ∅ → B,
and B → ∅. Let x = (x1, x2) ∈ N

2
0. The rate functions are α1(x) = c1/(c2 + x2

2),
α2(x) = c3 · x1, α3(x) = c4/(c5 + x2

1), and α4(x) = c6 · x2. Here, the values c1,
c2, c4, and c5 are positive constants that determine the mutual repression of A
and B. The values c3 and c6 are positive constants that determine at which rate
degradation of molecules occurs. The toggle switch can be specified using SBML
syntax, as SBML provides more flexibility than stoichiometric equations. ��

A set of stoichiometric equations can always be transformed into a guarded
command model or a stochastic Petri net. The number of chemical species cor-
responds to the number of variables (or places), and each reaction induces a
guarded command (or transition).

Stochastic Process Algebras. Stochastic process algebras such as PEPA [24],
TIPP [18], EMPA [4] and the stochastic pi-calculus [34] consider constant tran-
sition rates, i.e., transition rates do not depend on the state variables. This is
because these languages originally were not designed for specifying population
models. The extension Bio-PEPA [9] addresses this shortcoming, as was shown
in the examples discussed in the previous section. Although most stochastic
process algebras provide limited support for rate functions, they have recursion
operators for specifying Markov chains for which no basic guarded command
model can be constructed. The usefulness of such operators, however, depends
on the application area.

Guarded Commands. A guarded command model can be transformed into a
stochastic Petri net, where each command corresponds to a transition and each
variable to a place. Note that this transformation is only possible if the guards
are lower bounds on the state variables. Guarded command models are similar
to stochastic Petri nets in that they allow rate functions that depend on the
state variables. For instance, we can describe Example 4 using the following
commands:
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variables x1,x2
[] true |- c1/(c2+x2^2) -> x1:=x1+1
[] x1>0 |- c3*x1 -> x1:=x1-1
[] true |- c4/(c5+x1^2) -> x2:=x2+1
[] x2>0 |- c6*x2 -> x2:=x2-1

The limitations of basic guarded command models are similar to those of stochas-
tic Petri nets; for example, infinitely branching Markov chains cannot be de-
scribed by specifications consisting of finitely many guarded commands.

4.3 Executability

For the analysis of a model it is important that we can easily compute the direct
transition successors of a given state from the model description. This allows us
to “execute” the model, by repeatedly applying the next-state function [15].
Stochastic Petri Nets and Stochastic Process Algebras. Petri net and process
algebra models provide a high-level description that is usually not directly exe-
cutable. For a given marking in a stochastic Petri net, we have to inspect each
place and each arc in order to determine the enabled transitions as well as their
firing rates. Similarly, for a given stochastic process term, we have to consider
each subterm and compute all possible transitions and their rates. Then, the
composition rules determine the possible global transitions of the system and
their rates. Therefore, most tools for the analysis of Markov chains with high-
level specification languages construct an intermediate low-level model, such as
a matrix representation [8,3,28,27].
Guarded Commands and Stoichiometric Equations. For languages based on tran-
sition classes, such as guarded commands, the construction of an intermediate
low-level model is not necessary. This is one of the main strengths of guarded
commands. For a given state, an on-the-fly calculation of all possible successor
states and transition rates can be performed by iterating over the set of guarded
commands and calling their update and rate functions [21]. Note that for stoi-
chiometric equations we have to store for each reaction Rj the change vector vj ,
the rate function αj , and the number of necessary reactant molecules. This is
essentially the representation provided by guarded commands.

4.4 Well-Formedness

In Section 3, we discussed different formalisms for the specification of a Markov
chain. In most languages, however, it is possible to specify models whose under-
lying intensity graph (or generator matrix) do not uniquely determine a Markov
chain. This is due to the fact that the Kolmogorov backward equations (see
Eq. (1)) may not have a unique solution. In Section 2, we used the following
sufficient but not necessary condition:

supi∈S |qii| < ∞ (5)

If the modeling formalism allows us to specify transition rates that are functions
in the state variables, then this condition may not be fulfilled. Note that this can
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only occur if the number of reachable states is infinite. For instance, the condition
in Eq. (5) is not satisfied in Example 2. In the sequel we discuss conditions that
are weaker than Eq. (5) but still ensure a unique solution to Eq. (1). We focus
on conditions on the matrix Q and refer to the entries of Q as qij . For the
nonpositive diagonal entries, we use the abbreviation qi = −qii.

A generator matrix Q is called stable if all entries are finite, and conservative,
if all rows sum up to zero [2]. Except for matrix descriptions, all specification lan-
guages discussed before, guarantee by construction that the underlying genera-
tor matrices are stable and conservative. Models specified by matrix descriptions
have to be checked for stability and conservation separately.

A conservative and stable generator matrix that has a unique solution to
the Kolmogorov backward equations is called regular. The following criterion is
sufficient and necessary for a generator matrix to be regular.

Theorem 1 (Reuter’s Criterion). A stable and conservative generator Q on
S is regular if and only if for any real λ > 0, the system of equations∑

j∈S,j 	=i
qijzj = (λ + qi)zi for all i ∈ S (6)

admits no nonnegative bounded solution other than the trivial one.

Example 5. Consider a model with the following guarded command.

x>0 |- 2^x -> x:=x+1

Recall that this model specifies a generator matrix Q with the following non-
zero entries: qi(i+1) = 2i and qii = −2i for all i > 0. Then, we obtain for Q the
following equations from (6):

2izi+1 = (λ + 2i)zi for all i > 0.

Applying simple transformations allows us to express the solutions for i > 1 in
terms of z1 by zi = Πi−1

k=1(
λ
2k + 1)z1. We choose λ = z1 = 1, then it remainds to

show that zi = Πi−1
k=1(

1
2k +1) is bounded for all i > 1. Since zi = eln(zi), it suffices

to show that ln(Πi−1
k=1(

1
2k + 1)) =

∑i−1
k=1 ln( 1

2k + 1) ≤
∑i−1

k=1
1
2k ≤ 1

1−1/2 − 1 = 1
is bounded for all i > 1. This shows that our model has a nontrivial bounded
solution and we can conclude that Q is not regular. ��

Since showing that Reuter’s criterion is true for a model is rather difficult, we
discuss another condition that is sufficient but not necessary. The idea is to ap-
proximate the infininte unbounded generator matrix Q by a sequence of bounded
submatrices.

Theorem 2 ([2] Corollary 2.16). Let Q be a stable and conservative generator
matrix over the state space S and let S1, S2, . . . be a sequence of subsets of S
such that S1 ⊆ S2 ⊆ . . . , ∪∞

r=1Sr = S, and supi∈Sr
qi < ∞. Suppose that zj ≥ 0,

j ∈ S are such that
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1. limr→∞ infj 	∈Sr zj = ∞, and
2. there λ ∈ R such that

∑
j 	=i qijzj ≤ (λ + qi)zi for all i ∈ S.

Then Q is regular.

Given a suitable sequence Sr and values zj , the sum and the number of conditions
we have to check for regularity are infinite. The chosen syntax for the model
description may facilitate the regularity check. For instance, in a GCM, it suffices
to let the sum range over the finite set of guarded commands. We can use the
guards to partition the state space into a finite number of sets such that we have
to check a single condition for each set.
Example 2 (cont.). Recall the GCM of the epidemic process.

variables x,y
[] true |- a -> x:=x+1
[] (x>0) |- b*x -> x:=x-1
[] true |- c -> y:=y+1
[] (y>0) |- d*y -> y:=y-1
[] (x>0)&(y>0) |- e*x*y -> x:=x-1; y:=y+1

We use the four guards to partition the state space into four sets P1, P2, P3, P4, as
shown in Fig. 5 by the dashed lines. Note that for suitable expression languages
for the guards, we can always find this partitioning automatically. Now, for each
set, we can check Theorem 2 using the corresponding guarded commands. For
instance, in P3 (right lower corner in Fig. 5), the first three guarded commands
are enabled, and the second condition in Theorem 2 rewrites to a · z(x+1,y) + b ·
x · z(x−1,y) + c · z(x,y+1) ≤ (λ + a + b · x + c) · z(x,y) for all x > 0 and y ≥ 0.
With z(x,y) = x + y + 1, (x, y) ∈ S and Sr = {(x, y) | z(x,y) ≤ r}, which satisfy
Condition 1 in Theorem 2, we obtain a ·(x+y+2)+b ·x ·(x+y)+c ·(x+y+2)≤
(λ + a + b · x + c) · (x + y + 1), which is the same as a− b · x + c ≤ λ · (x + y + 1)
and true for (x, y) ∈ P3 if λ = a + c. ��

x

y

. . .

. . .

. . .

P1

P2

P3

P4

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(1, 1)

Fig. 5. State space partitioning w.r.t. the guarded command model of the epidemic
process
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In a similar way, it is possible to exploit the chosen syntax in order to decide
whether the limit probabilities πi = limt→∞ pi(t) of the Markov chain form
a distribution. We refer to [2] for criteria that ensure the existence of a limit
distribution as well as that it can be calculated according to Eq. (3).

In summary, GCM offer an efficiently checkable sufficient condition for regu-
larity and the existence of the limit probabilities.

5 Analysis of Continuous-time Markov Chains

For the analysis of Markov chains we distinguish transient and steady-state anal-
ysis. The former refers to the computation of the vector p(t) which contains the
probabilities Pr(X(t) = x) for each state x reachable from a given initial distribu-
tion. Often, p(t) is computed at several time instances t of interest. Steady-state
analysis requires the computation of the limiting behaviour of the Markov chain,
i.e., of the probability vector limt→∞ p(t).

There are three different approaches to the analysis of continuous-time Markov
chains, namely, analytical solutions, numerical solutions, and simulation. Since
analytical solutions can only be obtained for Markov chains with a very sim-
ple structure, we concentrate on the latter two approaches. Numerical solutions
are based on an exploration of the state space which proceeds in a breadth-
first search manner, by moving the probability mass through the state space.
In contrast, simulation of Markov chains is a special case of the Monte Carlo
method, which relies on the repeated generation of random sample paths in the
underlying state-transition graph.

5.1 Simulation

Monte Carlo simulation of Markov chains is based on the idea of generating a
number of trajectories X(t)(ω) using pseudo-random numbers [29]. Then, prob-
abilities and expectations of certain random variables can be statistically esti-
mated. The main advantage of simulation is that the memory requirements are
low and therefore the analysis of systems of arbitrary size is possible. In order
to achieve a high accuracy, however, a large number of trajectories have to be
generated, which is very time consuming and often infeasible [12].

For the generation of trajectories, an executable model description is advan-
tageous, as this will speed up the time needed for computing the next jump time
and the successor state for given a trajectory prefix.

5.2 Numerical Solutions

Several tools exist that provide algorithms for the numerical solution of
continuous-time Markov chains [28,3,27,8]. They use a matrix description
which is obtained from high-level modeling formalisms such as stochastic Petri
nets [3,8], guarded command languages [28,27], or stochastic process alge-
bras [28,27]. The generator matrix of the Markov chain is stored either sym-
bolically using multi-terminal BDDs [10] or sparse matrix packages. Moreover,
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if the size of the generator matrix exceeds the available memory capacity the
matrix can be stored as a Kronecker product of smaller matrices.

The implemented algorithms for the computation of p(t) are either based on
the solution of Eq. (2) or a discretization of the Markov chain. In the former
case, numerical integration methods or methods based on a Krylov subspace
construction are applied [40]. They require the construction of the generator
matrix Q, which is often infeasible for large Markov chains. It is, however, pos-
sible to exploit the structure of the Markov chain and approximate the solution
by successively considering submatrices of Q [21].

During the discretization procedure, also called uniformization [19], a discrete-
time Markov chain is constructed which has essentially the same transition graph
structure as the original continuous-time Markov chain. The idea behind uni-
formization is that the maximal absolute value of the diagonal entries of the
generator matrix can be used to “normalize” the time that the process remains
in a state. Thus, an a-priori exploration of the state space is necessary to apply
uniformization. For large Markov chains the memory requirements can be pro-
hibitive, even if sparse matrix structures or symbolic representations are used.
Therefore variants of the uniformization method have been developed which
exploit a Kronecker representation of the matrix [7].

Most formalisms allow us to specify an infinite number of reachable states,
but are limited to finite models for their numerical analysis, because the analy-
sis requires the enumeration of all reachable states and the construction of the
generator matrix. An algorithm that completely avoids the construction of any
matrix and exploits a guarded command description has been proposed recently
in [12]. It can be used for the approximate analysis of infinite-state systems and
does not suffer from excessive memory requirements, at least for systems where
the significant part of the probability mass is concentrated on a manageable sub-
set of states. The proposed algorithm is enhanced by the executability properties
of the guarded command description.

For the computation of steady-state measures, most methods also require the
a-priori construction of the generator matrix from the Markov chain specifi-
cation. If the state space is large, direct methods for the solution of Eq. (3)
are inefficient, and iterative methods such as the Jacobi, Gauss-Seidel, or SOR
method must be applied [40]. Many iterative methods have been adapted such
that they exploit Kronecker representations of the generator matrix [41,6]. Other
approaches are based on on-the-fly techniques [11] or reduced state spaces that
are obtained by exploiting symmetries in the model structure and tailoring to
the variable in question [38].

6 Conclusions

There are many different languages for describing Markov chains with continu-
ous time. The choice of an appropriate syntax usually depends on the application
area. Guarded commands provide a natural language for the description of pop-
ulation models. They facilitate the specification of such models, because they
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are compositional, succinct, and provide sufficient expressive power. Moreover,
they support well-formedness checks and allow a direct execution of the model.
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Abstract. In this talk I present some past, present and future work
concerning reachability computation for continuous and hybrid systems.

The problem of what may happen in the future is very naturally phrased as a
reachability problem in a dynamical system. Starting from an initial state or a set
of states, following some dynamic rules, possibly with some dose of uncertainty,
we would like to know whether something will happen, whether a particular state
of affairs will occur. In the finite-state case the problem is trivially decidable by
graph search algorithms (but is intractable when you have a product of many
subsystems), while in the general discrete case it is undecidable as halting is just
reachability of a particular state.

In the “early” days of hybrid systems research (early 90s), after the the fact
that reachability is decidable for automata with real-valued clocks has been re-
formulated, there was some hope that similar things could be done for hybrid
systems having a more complex (but still piecewise-trivial) dynamics, that is,
automata where the continuous evolution is linear (the derivative is constant)
in each discrete location.1 But soon it was realized how easy it is to build TM,
counter machine or 2PDA gadgets when you have real-valued variables. Con-
sequently, finding the boundary of decidability became a sportive activity like
building a universal TM with 2 states, 3 symbols and 1.5 heads. Practically,
the best you could provably expect for even those very simple hybrid systems
is “semi-decidability”: running a verification tool (like the pioneering HyTech)
and hoping that the iteration terminates.

My conclusion from all these investigations was that in the context of con-
tinuous systems, solving the exact “reachability problem” does not make much
sense, except for mathematical amusement. Almost everything in the continuous
world is already approximate and the infinite precision used to simulate TMs is
unrealistic from the points of view of modeling, measurement and computation.
Thus the expectations were lowered once more, from exact semi-decidability to
approximate computation of reachable sets and then from unbounded time hori-
zon to a finite one. Approximating tubes of trajectories of continuous dynamical
systems turned out to be an interesting research domain involving graph algo-
rithms, computational geometry in high dimension, numerical analysis and other
1 Such systems are very attractive for computer scientists like us because they can

be studied with elementary linear algebra and there is no need to understand those
horrible differential equations.
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branches of mathematics and computer science. It has potential applications in
analog circuit verification, in the debugging of biochemical models, in the analy-
sis of control systems and in any other domain which uses differential equations
subject to some nondeterminism and in which we want more information than
we can get from running arbitrary simulations.

I will start my talk with some decidability and undecidability results for
piecewise-constant derivative systems. Then I will explain how reachable states
of linear systems are approximated by unions of convex geometric objects such
as polytopes, describe an algorithmic scheme that allows this computation to be
performed much more efficiently and conclude with two recent works, one that
takes us one step closer to simple numerical simulation and one which extends
reachability to systems with nonlinear dynamics.
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Abstract. The question how and why mathematical probability theory
can be applied to the “real world” has been debated for centuries. We
try to survey the role of algorithmic information theory (Kolmogorov
complexity) in this debate.

1 Probability Theory Paradox

One often describes the natural sciences framework as follows: a hypothesis is
used to predict something, and the prediction is then checked against the ob-
served actual behavior of the system; if there is a contradiction, the hypothesis
needs to be changed.

Can we include probability theory in this framework? A statistical hypothesis
(say, the assumption of a fair coin) should be then checked against the experi-
mental data (results of coin tossing) and rejected if some discrepancy is found.
However, there is an obvious problem: The fair coin assumption says that in a
series of, say, 1000 coin tossings all the 21000 possible outcomes (all 21000 bit
strings of length 1000) have the same probability 2−1000. How can we say that
some of them contradict the assumption while other do not?

The same paradox can be explained in a different way. Consider a casino that
wants to outsource the task of card shuffling to a special factory that produced
shrink-wrapped well shuffled decks of cards. This factory would need some qual-
ity control department. It looks at the deck before shipping it to the customer,
blocks some “badly shuffled” decks and approves some others as “well shuffled”.
But how is it possible if all n! orderings of n cards have the same probability?

2 Current Best Practice

Whatever the philosophers say, statisticians have to perform their duties. Let us
try to provide a description of their current “best practice” (see [7,8]).

A. How a statistical hypothesis is applied. First of all, we have to admit that
probability theory makes no predictions but only gives recommendations: if the
probability (computed on the basis of the statistical hypothesis) of an event A
is much smaller than the probability of an event B, then the possibility of the
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event B must be taken into consideration to a greater extent than the possibility
of the event A (assuming the consequences are equally grave). For example, if
the probability of A is smaller than the probability of being killed on the street
by a meteorite, we usually ignore A completely (since we have to ignore event
B anyway in our everyday life).

Borel [2] describes this principle as follows: “. . . Fewer than a million people
live in Paris. Newspapers daily inform us about the strange events or accidents
that happen to some of them. Our life would be impossible if we were afraid of
all adventures we read about. So one can say that from a practical viewpoint
we can ignore events with probability less that one millionth. . . Often trying
to avoid something bad we are confronted with even worse. . . To avoid this we
must know well the probabilities of different events” (Russian ed., pp. 159–160).

B. How a statistical hypothesis is tested. Here we cannot say näıvely that if we
observe some event that has negligible probability according to our hypothesis,
we reject this hypothesis. Indeed, this would mean that any 1000-bit sequence of
the outcomes would make the fair coin assumption rejected (since this specific
seqeunce has negligible probability 2−1000).

Here algorithmic information theory comes into play: We reject the hypothesis
if we observe a simple event that has negligible probability according to this
hypothesis. For example, if coin tossing produces thousand tails, this event is
simple and has negligible probability, so we don’t believe the coin is fair. Both
conditions (“simple” and “negligible probability”) are important: the event “the
first bit is a tail” is simple but has probability 1/2, so it does not discredit the
coin. On the other hand, every sequence of outcomes has negligible probability
2−1000, but if it is not simple, its appearance does not discredits the fair coin
assumption.

Often both parts of this scheme are united into a statement “events with small
probabilities do not happen”. For example, Borel writes: “One must not be afraid
to use the word “certainty” to designate a probability that is sufficiently close to
1” ([3], Russian translation, p. 7). Sometimes this statement is called “Cournot
principle”. But we prefer to distinguish between these two stages, because for
the hypothesis testing the existence of a simple description of an event with
negligible probability is important, and for application of the hypothesis it seems
unimportant. (We can expect, however, that events interesting to us have simple
descriptions because of their interest.)

3 Simple Events and Events Specified in Advance

Unfortunately, this scheme remains not very precise: the Kolmogorov complexity
of an object x (defined as the minimal length of the program that produces x)
depends on the choice of programming language; we need also to fix some way
to describe the events in question. Both choices lead only to an O(1) change
asymptotically; however, strictly speaking, due to this uncertainty we cannot say
that one event has smaller complexity than the other one. (The word “negligible”
is also not very precise.) On the other hand, the scheme described, while very
vague, seems to be the best approximation to the current practice.
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One of the possible ways to eliminate complexity in this picture is to say that a
hypothesis is discredited if we observe a very unprobable event that was specified
in advance (before the experiment). Here we come to the following question.
Imagine that you make some experiment and get a sequence of thousand bits that
looks random at first. Then somebody comes and says “Look, if we consider every
third bit in this sequence, the zeros and ones alternate”. Will you still believe in
the fair coin hypothesis? Probably not, even if you haven’t thought about this
event before looking at the sequence: the event is so simple that one could think
about it. In fact, one may consider the union of all simple events that have small
probability, and it still has small probability (if the bound for the complexity of
a simple event is small compared to the number of coin tossing involved, which
is a reasonable condition anyway). And this union can be considered as specified
before the experiment (e.g., in this paper).

On the other hand, if the sequence repeats some other sequence observed
earlier, we probably won’t believe it is obtained by coin tossing even if this earlier
sequence had high complexity. One may explain this opinion saying the the entire
sequence of observations is simple since it contains repetitions; however, the first
observation may be not covered by any probabilistic assumption. This could be
taked into account by considering the conditional complexity of the event (with
respect to all information available before the experiment).

The conclusion: we may remove one problematic requirement (being “simple”
in a not well specified sense) and replace it by another problematic one (being
specified before the observation).

4 Frequency Approach

The most natural and common explanation of the notion of probability says
that probability is the limit value of frequencies observed when the number of
repetitions tends to infinity. (This approach was advocated as the only possible
basis for probability theory by Richard von Mises.)

However, we cannot observe infinite sequences, so the actual application of
this definition should somehow deal with finite number of repetitions. And for
finite number of repetitions our claim is not so strong: we do not guarantee
that frequency of tails for a fair coin is exactly 1/2; we say only that it is
highly improbable that it deviates significantly from 1/2. Since the words “highly
improbably” need to be interpreted, this leads to some kind of logical circle that
makes the frequency approach much less convincing; to get out of this logical
circle we need some version of Cournot principle.

Technically, the frequency approach can be related to the principles explained
above. Indeed, the event “the number of tails in a 1 000 000 coin tossings deviates
from 500 000 more than by 100 000” has a simple description and very small
probability, so we reject the fair coin assumption if such an event happens (and
ignore the dangers related to this event if we accept the fair coin assumption). In
this way the belief that frequency should be close to probability (if the statistical
hypothesis is chosen correctly) can be treated as the consequence of the principles
explained above.
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5 Dynamical and Statistical Laws

We have described how the probability theory is usually applied. But the fun-
damental question remains: well, probability theory describes (to some extent)
the behavior of a symmetric coin or dice and turns out to be practically useful
in many cases. But is it a new law of nature or some consequence of the known
dynamical laws of classical mechanics? Can we somehow “prove” that a sym-
metric dice indeed has the same probabilities for all faces (if the starting point
is high enough and initial linear and rotation speeds are high enough)?

Since it is not clear what kind of “proof” we would like to have, let us put
the question in a more practical way. Assume that we have a dice that is not
symmetric and we know exactly the position of its center of gravity. Can we use
the laws of mechanics to find the probabilities of different outcomes?

It seems that this is possible, at least in principle. The laws of mechanics
determine the behavior of a dice (and therefore the outcome) if we know the
initial point in the phase space (initial position and velocity) precisely. The
phase space, therefore, is splitted into six parts that correspond to six outcomes.
In this sense there is no uncertainty or probabilities up to now. But these six
parts are well mixed since very small modifications affect the result, so if we
consider a small (but not very small) part of the phase space around the initial
conditions and any probability distribution on this part whose density does not
change drastically, the measures of the six parts will follow the same proportion.

The last sentence can be transformed into a rigorous mathematical statement
if we introduce specific assumptions about the size of the starting region in the
phase space and variations of the density of the probability distribution on it. It
then can be proved. Probably it is a rather difficult mathematical problem not
solved yet, but at least theoretically the laws of mechanics allow us to compute
the probabilities of different outcomes for a non-symmetic dice.

6 Are “Real” Sequences Complex?

The argument in the preceding section would not convince a philosophically
minded person. Well, we can (in principle) compute some numbers that can
be interpreted as probabilities of the outcomes for a dice, and we do not need
to fix the distribution on the initial conditions, it is enough to assume that this
distribution is smooth enough. But still we speak about probability distributions
that are somehow externally imposed in addition to dynamical laws.

Essentially the same question can be reformulated as follows. Make 106 coin
tosses and try to compress the resulting sequence of zeros and ones by a stan-
dard compression program, say, gzip. (Technically, you need first to convert bit
sequence into a byte sequence.) Repeat this experiment (coin tossing plus gzip-
ping) as many times as you want, and this will never give you more that 1%
compression. (Such a compression is possible for less than 2−10000-fraction of
all sequences.) This statement deserves to be called a law of nature: it can be
checked experimentally in the same way as other laws are. So the question is:
does this law of nature follows from dynamical laws we know?
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To see where the problem is, it is convenient to simplify the situation. Imagine
for a while that we have discrete time, phase space is [0, 1) and the dynamical
law is

x �→ T (x) = if 2x < 1 then 2x else 2x− 1.

So we get a sequence of states x0, x1 = T (x0), x2 = T (x1), . . .; at each step we
observe where the current state is — writing 0 if xn is in [0, 1/2) and 1 if xn is
in [1/2, 1).

This tranformation T has the mixing property we spoke about; however, look-
ing at it more closely, we see that a sequence of bits obtained is just the binary
representation of the initial condition. So our process just reveals the initial con-
dition bit by bit, and any statement about the resulting bit sequence (e.g., its
incompressibility) is just a statement about the initial condition.

So what? Do we need to add to the dynamical laws just one more metha-
physical law saying that world was created at the random (=incompressible)
state? Indeed, algorithmic transformations (including dynamical laws) cannot
increase significantly the Kolmogorov complexity of the state, so if objects of
high complexity exist in the (otherwise deterministic, as we assume for now)
real world now, they should be there at the very beginning. (Note that it is dif-
ficult to explain the randomness observed saying that we just observe the world
at random time or in a random place: the number of bits needed to encode the
time and place in the world is not enough to explain an incompressible string of
length, say 106, if we use currently popular estimates for the size and age of the
world: the logarithms of the ratios of the maximal and minimal lengths (or time
intervals) that exist in nature are negligible compared to 106 and therefore the
position in space-time cannot determine a string of this complexity.

Should we conclude then that instead of playing the dice (as Einstein could
put it), God provided concentrated randomness while creating the world?

7 Randomness as Ignorance: Blum – Micali – Yao

This discussion becomes too philosophical to continue it seriously. However,
there is an important mathematical result that could influence the opinion of
the philosophers discussing the notions of probability and randomness. (Unfor-
tunately, knowledge does not penetrate too fast, and I haven’t yet seen this
argument in traditional debates about the meaning of probability.)

This result is the existence of pseudorandom number generators (as defined by
Yao, Blum and Micali; they are standard tools in computational cryptography,
see, e.g., Goldreich textbook [4]). The existence is proved modulo some com-
plexity assumtions (the existence of one-way functions) that are widely believed
though not proven yet.

Let us explain what a pseudorandom number generator (in Yao – Blum –
Micali) sense is. Here we use rather vague terms and oversimplify the matter,
but there is a rigorious mathematics behind. So imagine a simple and fast al-
gorithmic procedure that gets a “seed”, which is a binary string of moderate
size, say, 1 000 bits, and produces a very long sequence of bits out of it, say,
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of length 1010. By necessity the output string has small complexity compared
to its length (complexity is bounded by the seed size plus the length of the
processing program, which we assume to be rather short). However, it may hap-
pen that the output sequences will be “indistinguishable” from truly random
sequences of length 1010, and in this case the transformation procedure is called
pseudorandom number generator.

It sounds as a contradiction: as we have said, output sequences have small
Kolmogorov complexity, and this property distinguishes them from most of the
sequences of length 1010. So how they can be indistinguishable? The explanation
is that the difference becomes obvious only when we know the seed used for
producing the sequence, but there is no way to find out this seed looking at the
sequence itself. The formal statement is quite technical, but its idea is simple.
Consider any simple test that looks at 1010-bit string and says ‘yes’ or ‘no’ (by
whatever reason; any simple and fast program could be a test). Then consider two
ratios: (1) the fraction of bit strings of length 1010 that pass the test (among all
bit strings of this length); (2) the fraction of seeds that lead to a 1010-bit string
that passes the test (among all seeds). The pseudorandom number generator
property guarantees that these two numbers are very close.

This implies that if some test rejects most of the pseudorandom strings (pro-
duced by the generator), then it would also reject most of the strings of the
same length, so there is no way to find out whether somebody gives us random
or pseudorandom strings.

In a more vague language, this example shows us that randomness may be
in the eye of the beholder, i.e., the randomness of an observed sequence could
be the consequence of our limited computational abilities which prevent us from
discovering non-randomness. (However, if somebody shows us the seed, our eyes
are immediately opened and we see that the sequence has very small complexity.)

In particular, trying gzip-compression on pseudorandom sequences, we rarely
would find them compressible (since gzip-compressibility is a simple test that
fails for most sequences of length 1010, it should also fail for most pseudorandom
sequences).

So we should not exclude the possibility that the world is governed by simple
dynamical laws and its initial state can be also described by several thousands
of bits. In this case “true” randomness does not exist in the world, and every
sequence of 106 coin tossing that happened or will happen in the foreseeable
future produces a string that has Kolmogorov complexity much smaller than its
length. However, a computationally limited observer (like ourselves) would never
discover this fact.

8 Digression: Thermodynamics

The connection between statistical and dynamical laws was discussed a lot in
the context of thermodynamics while discussing the second law. However, one
should be very careful with exact definition and statements. For example, it
is often said that the Second Law of thermodynamics cannot be derived from
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dynamical laws because they are time-reversible while the second law is not.
On the other hand, it is often said that the second law has many equivalent
formulations, and one of them claims that the perpetual motion machine of the
second kind is impossible, i.e., no device can operate on a cycle to receive heat
from a single reservoir and produce a net amount of work.

However, as Nikita Markaryan explained (personal communication), in this
formulation the second law of thermodynamics is a consequence of dynamic
laws. Here is a sketch of this argument. Imagine a perpetual motion machine
of a second kind exists. Assume this machine is attached to a long cylinder
that contains warm gaz. Fluctuations of gaz pressure provide a heat exchange
between gaz and machine. On the other side machine has rotating spindle and
a rope to lift some weight (due to rotation).

gaz machine

When the machine works, the gaz temperature (energy) goes down and the
weight goes up. This is not enough to call the machine a perpetual motion
machine of the second kind (indeed, it can contain some amount of cold substance
to cool the gaz and some spring to lift the weight). So we assume that the rotation
angle (and height change) can be made arbitrarily large by increasing the amount
of the gaz and the length of the cylinder. We also need to specify the initial
conditions of the gaz; here the natural requirement is that the machine works
(as described) for most initial conditions (according to the natural probability
distribibution in the gaz phase space).

Why is such a machine impossible? The phase space of the entire system can
be considered as a product of two components: the phase space of the machine
itself and the phase space of the gaz. The components interact, and the total
energy is constant. Since the machine itself has some fixed number of compo-
nents, the dimension of its component (or the number of degrees of freedom
in the machine) is negligible compared to the dimension of the gaz component
(resp. the number of degrees of freedom in the gaz). The phase space of the gaz
is splitted into layers corresponding to different level of energy; the higher the
energy is, the more volume is used, and this dependence overweights the similar
dependence for the machine since the gaz has much more degrees of freedom.
Since the transformation of the phase space of the entire system is measure-
preserving, it is impossible that a trajectory started from a large set with high
probability ends in a small set: the probability of this event does not exceed the
ratio of a measures of destination and source sets in the phase space.

This argument is quite informal and ignores many important points. For ex-
ample, the measure on the phase space of the entire system is not exactly a



Algorithmic Information Theory and Foundations of Probability 33

product of measures on the gaz and machine coordinates; the source set of the
trajectory can have small measure if the initial state of the machine is fixed
with very high precision, etc. (The latter case does not contradicts the laws of
thermodynamics: if the machine use a fixed amount of cooling substance of very
low temperature, the amount of work produced can be very large.) But at least
these informal arguments make plausible that dynamic laws make imposiible the
perpetual motion machine of the second kind (if the latter is defined properly).

9 Digression: Quantum Mechanics

Another physics topic often discussed is quantum mechanics as a source of ran-
domness. There were many philosophical debates around quantum mechanics;
however, it seems that the relation between quantum mechanical models and
observations resembles the situation with probability theory and statistical me-
chanics; in quantum mechanics the model assigns amplitudes (instead of proba-
bilities) to different outcomes (or events). The amplitudes are complex numbers
and “quantum Cournot principle” says that if the (absolute value) of the ampli-
tude of event A is smaller than for event B, then the possibility of the event B
must be taken into consideration to a greater extent than the possibility of the
event A (assuming the consequences are equally grave). Again this implies that
we can (practically) ignore events with very small amplitudes.

The interpretation of the square of amplitude as probability can be then de-
rived is the same way as in the case of the frequency approach. If a system is
made of N independent identical systems with two outcomes 0 and 1 and the
outcome 1 has amplutude z in each system, then for the entire system the ampli-
tude of the event “the number of 1’s among the outcomes deviates significantly
from N |z|2” is very small (it is just the classical law of large numbers in disguise).

One can then try to analyze measurement devices from the quantum mechan-
ical viewpoint and to “prove” (using the same quantum Cournot principle) that
the frequency of some outcome of measurement is close to the square of the
length of the projection of the initial state to corresponding subspace outside
some event of small amplitude, etc.
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with a Büchi automaton that accepts traces violating the specification. We then
use graph algorithms to search the product graph for a counterexample trace.
The basic theory of this approach was worked out in the 1980s, and the basic
algorithms were developed during the 1990s. Both explicit and symbolic imple-
mentations, such as SPIN and and SMV, are widely used. It turns out, however,
that there are still many gaps in our understanding of the algorithmic issues in-
volved in automata-theoretic model checking. This talk covers the fundamen-
tals of automata-theoretic model checking, reviews recent progress, and outlines
areas that require further research.

References

1. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F.,
Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Hei-
delberg (1996)

2. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

� Supported in part by NSF grants CCR-0124077, CCR-0311326, CCF-0613889, ANI-0216467,
and CCF-0728882, by BSF grant 9800096, and by gift from the Intel Corporation.

O. Bournez and I. Potapov (Eds.): RP 2009, LNCS 5797, p. 35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.cs.rice.edu/~vardi


Automatic Verification of Directory-Based

Consistency Protocols

Parosh Aziz Abdulla1, Giorgio Delzanno2, and Ahmed Rezine3

1 Uppsala University, Sweden
parosh@it.uu.se
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Abstract. We propose a symbolic verification method for directory-
based consistency protocols working for an arbitrary number of
controlled resources and competing processes. We use a graph-based lan-
guage to specify in a uniform way both client/server interaction schemes
and manipulation of directories that contain the access rights of indi-
vidual clients. Graph transformations model the dynamics of a given
protocol. Universally quantified conditions defined on the labels of edges
incident to a given node are used to model inspection of directories,
invalidation loops and integrity conditions. Our verification procedure
computes an approximated backward reachability analysis by using a
symbolic representation of sets of configurations. Termination is ensured
by using the theory of well-quasi orderings.

1 Introduction

Several implementations of consistency and integrity protocols used in file
systems, virtual memory, and shared memory multi-processors are based on
client-server architectures. Clients compete to access shared resources (cache
and memory lines, memory pages, open files). Each resource is controlled by
a server process. In order to get access to a resource, a client needs to start
a transaction with the corresponding server. Each server maintains a directory
that associates to each client the access rights for the corresponding resource. In
real implementations these information are stored into arrays, lists, or bitmaps
and are used by the server to take decisions in response to client requests, e.g., to
grant access, request invalidation, downgrade access mode or to check integrity
of meta-data as in programs like fsck used to check Unix-like file-systems. Typ-
ically, a server handles a set of resources, e.g. cache lines and directory entries,
whose cardinality depends on the underlying hardware/software platform. Con-
sistency protocols however are often designed to work well independently from
the number of resources to be controlled, i.e., independently from a given hard-
ware/software configuration.

The need of reasoning about systems with an arbitrary number of resources
makes verification of directory-based consistency protocols a quite challenging
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task in general. Abstraction techniques operating on the number of resources
and/or the number of clients are often applied to reduce the verification task to
decidable problems for finite-state (e.g. invisible and environment abstraction in
[9,13]) or Petri net-like models (e.g. counting abstraction used in [16,14,24,25]).

In this paper we propose a new approximated verification technique that oper-
ates on models in which both the number of controlled resources and of compet-
ing clients is not fixed a priori. Instead of requiring a preliminary abstraction of
the model, our method makes use of powerful symbolic representations of para-
metric system configurations and of dynamic approximation operators applied
during symbolic exploration of the state-space.

Our verification method is defined for a specification language in which system
configurations are modelled by using a special type of graphs in which vertexes
are partitioned into client and server nodes. Client and server nodes are labelled
with a set of ”states” that represent the current state of the corresponding
processes. Labelled edges are used both to define client/server transactions and
to describe the local information maintained by each server (e.g. a directory is
represented by the set of edges incident to a given server node).

Protocol rules are specified here by rewriting rules that update the state of a
node and of one of its incident edges. This very restricted form of graph rewriting
naturally models asynchronous communication mechanisms. Furthermore, we
admit here guards defined by means of universally quantified conditions on the
set of labels of edges of a given node. This kind of guards is important to model
operations like inspection of a directory or invalidation cycles without need of
abstracting them by means of atomic operations like broadcast in [16,14]. In
order to reason about parameterized formulations of consistency protocols we
consider here systems in which the size of graphs (number of nodes and edges)
is not bounded a priori.

The advantage of working with conditional graph rewriting is twofold. On
one side it gives us enough power to formally describe each step of consistency
protocols like the full-map coherence protocol [20] in a very detailed way. On
the other side it allows us to define (and implement) our verification method at
a very abstract level by using graph transformations.

Related Work. Parameterized verification methods based on finite-state abstrac-
tions have been applied to safety properties of consistency protocols and mutual
exclusion algorithms. Among these, we mention the invisible invariants method
[9,21] and the environment abstraction method [13]. Counting abstraction and
Petri net-like analysis techniques are considered, e.g., in [16,14,24,25].

Differently from all the previous works, our algorithm is based on graph con-
straints that allow us to symbolically represent infinite-sets of configurations
without need of preliminary finitization of parameters like number of clients,
servers, resources, and size of directories. We apply instead dynamic approxima-
tion techniques to deal with universally quantified global conditions. We recently
used a similar approach for systems with flat configurations (i.e. words) and with
a single global context [7]. The new graph-based algorithm is a generalization
of the approach in [7]. Indeed, the symbolic configurations we used in [7] can be
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viewed as graphs with a single server node and no edges, since global conditions
are tested directly on the current process states.

Furthermore, the approximation we propose in this paper is more precise than
the monotonic abstraction used to deal with global conditions in our previous
work [3,4,5,6,1] (i.e. deletion of processes that do not satisfy the condition).
Indeed, consistency property like reachability of a server in state bad in the
case study presented in Section 4 always return false positives using monotonic
abstraction (by deleting all edges that are not in Q we can always move to bad).
In synthesis the new approach can be viewed as an attempt of introducing more
precise approximated verification algorithms for parameterized systems while
retaining good features of approaches like counting and monotonic abstraction
in [16,3] like termination properties based on the theory of well-quasi orderings.

Concerning verification algorithms for graph rewriting systems, we are only
aware of the works in [18,22]. We use here different type of graph specifications
(e.g. we consider universal quantification on incoming edges) and a different no-
tion of graph-based symbolic representation (i.e. a different entailment relation)
with respect to those applied to leader election and routing protocols in [18,22].

2 A Client/Server Abstract Model

To represent configurations of client/server protocols, we define a special kind
of bipartite graphs. Let Λs be a finite set of server node labels, Λc a finite set of
client node labels, and Λe a finite set of edge labels. Furthermore, for n ∈ N let
n = {1, . . . , n}. A c/s-graph is a tuple G = (nc, ns, E, λc, λs, λe), where ns is the
set of server nodes, nc is the set of client nodes, E ⊆ ns × nc is a set of edges
connecting a server with a set of clients, and a client with at most one server
(i.e. for each j ∈ nc we require that there exists at most one edge incident in j
in E), and λc : nc → Λc, λs : ns → Λs, and λe : E → Λe are labelling functions.

In the rest of the paper we use the operations on c/s-graphs defined in Fig. 1.
A client/server system is a tuple S = (I, R) consisting of a (possibly infinite) set
I of c/s-graphs (initial configurations), and a finite set R of rules. We consider
here a restricted type of graph rewriting rules to model both the interaction
between clients and servers and the manipulation of directories viewed as the
set of incident edges in a given server nodes.

The rules have the general form l ⇒ r where l is a pattern that has to match
(the labels and structure) of a subgraph in the current configuration in order
for the rule to be fireable and r describes how the subgraph is rewritten as the
effect of the application of the rule. In this paper we are interested in modelling
asynchronous communication patterns. Thus, we consider the following patterns:
the empty graph · (it matches with any graph); 〈〈
〉〉 that denotes an isolated client
node with label 
; ((
)) that denotes a server node with label 
, [[
]] σ←→ that denotes
a client node with label 
 and incident edge with label σ; ((
)) σ←→ that denotes a
server node with label 
 and an incident edge with label σ.

Furthermore, we also admit a special type of rules in which the rewriting
step can be applied to a given server node if a universally quantified condition
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Given a graph G = (nc, ns, E, λc, λs, λe), we define:

– edges(G) = E, edgess(i, G) = {e | e = (i, j) ∈ E} for i ∈ ns, and edgesc(j, G) =
{e | e = (i, j) ∈ E} for j ∈ nc; labele(e,G) = λe(e) for e ∈ E and labele(i, G) =
{λe(e) | e ∈ edgess(i, G)} for i ∈ ns;

– adde(e, σ, G) = (nc, ns, E ∪ {e}, λc, λs, λ
′
e) where λ′

e(e) = σ, λ′
e(o) = λe(o) in all

other cases;
– updatee(e ← σ, G) = (nc, ns, E, λc, λs, λ

′
e) where λ′

e(e) = σ, and λ′
e(o) = λe(o) in

all other cases;
– dele(e,G) = (nc, ns, E

′, λc, λs, λ
′
e), where E′ = E \ {e}, λ′

e(o) = λe(o) for o ∈ E′.
– nsizec(G) = nc, and labelc(i, G) = λc(i) for i ∈ nc,
– addc(P, G) = (nc + 1, ns, E, λ′

c, λs, λe) where λ′
c(nc + 1) = P and λ′

c(o) = λc(o) in
all other cases;

– updatec(i1 ← P1, . . . , im ← Pm, G) = (nc, ns, E, λ′
c, λs, λe) where λ′

c(ik) = Pk for
k : 1, . . . , m, and λ′

c(o) = λc(o) in all other cases;
– delc(i, G) = (nc − 1, ns, E

′, λ′
c, λs, λ

′
e) where, given the mapping hi : nc → nc − 1

defined as hi(j) = j for j < i and hi(j) = j − 1 for j > i, E′ = {(k, hi(l)) | (k, l) ∈
E}, λ′

c(k) = λc(p) for each k ∈ nc − 1 such that k = hi(p) and p ∈ nc, λ′
e((k, l)) =

λe((k, q)) for (k, l) ∈ E′ such that l = hi(q) for q ∈ nc, λ′
x(o) = λx(o) in all other

cases for x ∈ {e, c};
– nsizes, labels, adds, updates, and dels are defined for server nodes in a way similar

to the client node operations.

Fig. 1. Definition of basic graph operations

on the labels of the corresponding incident edges is satisfied. Specifically, we
consider the rule schemes illustrated in Fig. 2, where 
 and 
′ are node labels of
appropriate type, σ and σ′ are edge labels, and ∀Q is a condition with Q ⊆ Λe.

With the first two types of rules, we can non-deterministically add a new
node to the current graph (e.g. to dynamically inject new servers and clients).
With rule start transaction, we non-deterministically select a server and a client
(not connected by an already existing edge) add a new edge between them in
the current graph (e.g. to dynamically establish a new communication). With
rules of types client/server steps, we update the labels of a node with label 

and one of its incident edges (non-deterministically chosen) with label σ (e.g. to
define asynchronous communication protocols). With rule test, we update the
node label of a server node i only if all edges incident to i have labels in the

· � 〈〈�〉〉 (new client node)
· � ((�)) (new server node)

〈〈�〉〉 � [[�′]] σ←→ (start transaction)

((�)) σ←→ � ((�′)) σ′←→ (server step)

[[�]] σ←→ � [[�′]] σ′←→ (client step)
((�)) � ((�′)) : ∀Q (test)

[[�]] σ←→ � 〈〈�′〉〉 (stop transaction)

Fig. 2. Rewriting rules with conditions on egdes
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set Q ⊆ Λe. With rule stop transaction, we non-deterministically select a client
node with label 
 and incident edge with label σ, and delete such an edge from
the current graph (e.g. to terminate a conversation).

It is important to remark that the a server has not direct access to the local
state of a client. Thus, it cannot check conditions on the global sets of its current
clients in an atomic way. For checking global conditions a server can however
check the set of it incident edges, i.e., a local snapshot of the current condition
of clients. A consistency protocol should guarantee that the information on the
edges (directory) is consistent with the current state of clients.

2.1 Transition Relation

Let G be a c/s-graph. The formula ∀Q is satisfied in server node i if labele(i, G) ⊆
Q. The operational semantics is defined via a binary relation ⇒r on c/s-graphs
such that G0 ⇒ G1 if and only if one of the following conditions hold:

– r is a new client node rule and G1 = addc(
, G0);
– r is a new server node rule and G1 = adds(
, G0);
– r is a server step rule and there exist nodes i and j in G0 with edge

e = (i, j) ∈ edges(G) such that labels(i, G0) = 
, labele(e, G0) = σ,
G1 = updatee(e ← σ′, updates(i ← 
′, G0));

– r is an client step rule and there exist nodes i and j in G0 with edge
e = (i, j) ∈ edges(G) such that labeln(j, G0) = 
, labele(e, G0) = σ,
G1 = updatee(e ← σ′, updatec(j ← 
′, G0));

– r is a start transaction rule, there exists in G0 a client node j
with no incident edges in E such that labelc(j, G0) = 
, and G1 =
adde((i, j), σ, updatec(j ← 
′, G0)) for a server node i;

– r is a stop transaction rule, there exist nodes i and j in G0 such that
labelc(j, G0) = 
, e = (i, j) ∈ edges(G0), labele(e, G0) = σ, and G1 =
dele(e, updatec(j ← 
′, G0)).

– r is a test rule, there exist node i in G0 such that labels(i, G0) = 
,
labele(i, G0) ⊆ Q, and G1 = updates(j ← 
′, G0).

Finally, we define ⇒ as
⋃

r∈R ⇒r.

Example 1. As an example, consider a set of labels Λn partitioned in the two
sets Λc = {idle, wait, use} and Λs = {ready, check, ack}, and a set of edge labels
Λe = {req, pend, inv, lock}. The following set R of rules models a client-server
protocol (with any number of clients and servers) in which a server grants the
use of a resource after invalidating the client that is currently using it.

(r1) 〈〈idle〉〉 � [[wait]]
req←→

(r2) ((ready))
req←→ � ((check))

pend←→
(r3) ((check)) lock←→ � ((check)) inv←→
(r4) ((check)) � ((ack)) : ∀{pend, req}
(r5) ((ack))

pend←→ � ((ready)) lock←→
(r6) [[use]] inv←→ � 〈〈idle〉〉
(r7) [[wait]] lock←→ � [[use]] lock←→
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With rule r1 a client non-deterministically creates a new edge connecting to
a server. With rule r2 a server processes a request by changing the edge to
pending, and then moves to state check. With rule r3 a server sends invalidation
messages to the client that is currently using the resource (marked with the
special edge lock). With rule r4 a server moves to the acknowledge step whenever
all incident edges have state different from lock and inv. With rule r5 a server
grants the pending request. With rule r6 a clients releases the resource upon
reception of an invalidation request. With rule r7 a waiting client moves to
state use.

Now, let us consider an initial graph G0 with one server node with label ready
and two client nodes with label idle. Then, the following sequence (of graphs)
represents an evolution of the graph system (G0, R):

G0 = 〈〈idle〉〉, 〈〈idle〉〉, ((ready)) ⇒ 〈〈idle〉〉, [[wait]]
req←→ ((ready)) ⇒

[[wait]]
req←→ ((ready))

req←→ [[wait]] ⇒ [[wait]]
pend←→ ((check))

req←→ [[wait]] ⇒
[[wait]]

pend←→ ((ack))
req←→ [[wait]] ⇒ [[wait]] lock←→ ((ready))

req←→ [[wait]] ⇒
[[use]] lock←→ ((ready))

req←→ [[wait]] ⇒ [[use]] lock←→ ((check))
pend←→ [[wait]] ⇒

[[use]] inv←→ ((check))
pend←→ [[wait]] ⇒ 〈〈inv〉〉, ((check))

pend←→ [[wait]] ⇒
〈〈inv〉〉, ((ack))

pend←→ [[wait]] ⇒ 〈〈inv〉〉, ((ready)) lock←→ [[wait]] ⇒
[[inv]], [[ready]] lock←→ [[use]]

2.2 Pattern Reachability

In this paper we are interested in studying reachability of graphs containing
specific patterns (subgraphs). Patterns can be used to represent bad config-
urations of a graph system. In Example 1 any graph containing the pattern
[[use]] σ←→ ((ready)) σ′

←→ [[use]], for σ, σ′ ∈ Λe, represents a violation to the exclu-
sive use of a resource controlled by a server node.

To formally define the notion of pattern, we introduce an ordering � on c/s-
graphs such that G � G′ iff nc = nsizec(G) ≤ mc = nsizec(G′), ns = nsizes(G) ≤
ms = nsizes(G′), and there exist injective mappings hc : nc → mc and hs : ns →
ms such that

– labelc(i, G) = labelc(hc(i), G′) for i : 1, . . . , nc,
– labels(i, G) = labels(hs(i), G′) for i : 1, . . . , ns,
– for each e = (i, j) ∈ edges(G), e′ = (hs(i), hc(j)) ∈ edges(G′) and

labele(e, G) = labele(e′, G′).

A set of c/s-graphs U ⊆ C is upward closed with respect to � if c ∈ U and
c � c′ implies c′ ∈ U . For a c/s-graph G, we use Ĝ to denote the upward
closure of G, i.e., the set {G′| G � G′}. For sets of c/s-graphs D, D′ ⊆ C we use
D ⇒ D′ to denote that there are G ∈ D and G′ ∈ D′ with G ⇒ G′.
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The Pattern Reachability Problem for graph systems is defined as follows:

Pattern Reachability Problem (PRP)
Instance
– A graph system P = (I, R).
– A finite set CF of c/s-graphs

Question G0 ⇒∗ ĈF for G0 ∈ I?

Typically, ĈF (which is an infinite set) is used to characterize sets of bad
configurations which we do not want to occur during the execution of the system.
In such a case, the system is safe iff ĈF is not reachable. Therefore, checking
safety properties amounts to solving PRP (i.e., to the reachability of upward
closed sets). In [7] we show that control state reachability for counter machines
can be reduced to PRP. From this property, it follows that PRP is undecidable.

3 Approximated Verification Algorithm

In this section we propose an approximated verification algorithm based on the
notion of graph constraints, a special symbolic representation of an infinite sets
of c/s-graphs.

A graph constraint (gc) is a graph Ψ = (nc, ns, E, ρc, ρs, ρe), with client nodes
{1, . . . , nc}, server nodes {1, . . . , ns}, edges in E ⊆ ns × nc, and labels defined
by maps ρc : nc → Λc, ρs : ns → (Λs × 2Λe), and ρe : E → Λe.

Notice that, in a graph constraint Ψ , the label of a server node is a pair (
, Q)
where 
 is a node label and Q ⊆ Λe is a subset of edge labels, called padding
set. In this section we adapt the operations on c/s-graphs to graph constraints.
Specifically, given Ψ = (nc, ns, E, ρc, ρs, ρe), i ∈ ns, j ∈ nc, ρs(i) = (
, Q),
ρc(j) = 
′, and e ∈ E, then labels(i, Ψ) = 
, labelp(i, Ψ) = Q, labelc(j, Ψ) = 
′,
and labele(e, Ψ) = ρe(e). The other operations are defined as for c/s-graphs.

For a graph constraint Ψ to be well-formed (wfgc), we require that labele(i, Ψ) ⊆
labelp(i, Ψ) for each i ∈ ns.

Let Ψ be a wfgc, and G be a c/s-graph. In order to define the denotation of a
wfgc Ψ we introduce the relation � such that, given a c/s-graph G, Ψ � G iff
nc = nsizec(Ψ) ≤ mc = nsizec(G), ns = nsizes(Ψ) ≤ ms = nsizes(G), and there
exist injective mappings hc : nc → mc and hs : ns → ms such that

– labelc(i, Ψ) = labelc(hc(i), G) for i : 1, . . . , nc,
– labels(i, Ψ) = labels(hs(i), G) and labele(hs(i), G′) ⊆ labelp(i, Ψ) = Q for

i : 1, . . . , ns;
– for each e = (i, j) ∈ edges(Ψ), e′ = (hs(i), hc(j)) ∈ edges(G) and

labele(e, Ψ) = labele(e′, G).

The denotation of a graph constraint Ψ is then defined as [[Ψ ]] = {G | G is a c/s−
graph, Ψ � G}.
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Approximated Predecessor Relation The set of predecessors of a set S of c/s-
graphs computed with respect to a rule r is defined as

prer(S) = {G | G ⇒r S}

Given a wfgc Ψ we now define a relation �r working on wfgc’s that we use to
overapproximate the set [[Ψ ]]∪prer([[Ψ ]]). We consider here the union of these two
sets in order to be able to discard graph constraints that denote graphs already
contained in [[Ψ ]]. For brevity, we describe here the computation of predecessors
for rules of the form server-step, client-step, and test. The complete definition
is given in [26]. Specifically, for graph constraints Ψ , with ns = nsizes(Ψ) and
nc = nsizec(Ψ), and Ψ ′, and a rule r ∈ R, the relation Ψ �r Ψ ′ is defined as
follows:
server-step: r is the rule ((
)) σ←→ � ((
′)) σ′

←→ and one of the following
conditions hold

– i ∈ ns, j ∈ nc, e = (i, j) ∈ edges(Ψ), labels(i, Ψ) = 
′, labele(e) = σ′, and

Ψ ′ = updatee(e, σ, updates(i ← (
, Q), Ψ))

where Q = labelp(i) ∪ {σ}.
In this case we update the label of an existing edge (i, j) and of the node

i with the labels σ and 
, respectively. They represent the preconditions for
firing the rule. Furthermore, we augment the padding set of i with label σ.
Notice that here we apply an approximation, i.e., as soon as we add σ we
allow any number of occurrences of edges with label σ but we do not count
them. The label of client node j is not modified.

– i ∈ ns, j ∈ nc, edges(j, Ψ) = ∅ (j has no incident edges), labels(i, Ψ) = 
′,
σ′ ∈ labelp(i, Ψ), and

Ψ ′ = adde((i, j), σ, updates(i ← (
, Q), Ψ))

where Q = labelp(i, Ψ) ∪ {σ}.
Although not explicitly present, we assume here that the edge (i, j) with

label σ′ is in the upward closure of Ψ (this can happen only if j is not involved
in other explicit edges). We add the edge (i, j) with label σ since its presence
is a precondition for the firing the rule. Furthermore, we update the label of
i as in the first case.

– i ∈ ns, labels(i, Ψ) = 
′, σ′ ∈ labelp(i, Ψ), and

Ψ ′ = adde((i, nc + 1), σ, addc(
′′, updates(i ← (
, Q), Ψ)))

where Q = labelp(i, Ψ)∪{σ}, and 
′′ is non-deterministically chosen from Λc.
Although not explicitly present, we assume here that both the client node
nc + 1 (with some label taken from Λc) and the edge (i, nc + 1) with label
σ are in the upward closure of Ψ . We add them to Ψ since their presence is
a precondition for the firing of r. We update the label of i as in the other
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two cases. Notice that the dimension of the graph constraint is increased by
one, since we insert the new node nc + 1.

For this kind of rules, there are two remaining cases to consider (the edge
and the server node, or the edge and both server and client nodes are not
explicitly present in Ψ). However these cases give rise to graph constraints
that are redundant with respect to Ψ . Thus, we can discard them without
loss of precision (we recall that our aim is to symbolically represent [[Ψ ]] ∪
prer([[Ψ ]])).

client-step: r is the rule [[
]] σ←→ � [[
′]] σ′
←→ and one of the following conditions

hold

– i ∈ ns, j ∈ nc, e = (i, j) ∈ edges(Ψ), labelc(j, Ψ) = 
′, labele(e) = σ′, and

Ψ ′ = updatee(e, σ, updates(i ← (labels(i, Ψ), Q), updatec(j ← 
, Ψ)))

where Q = labelp(i, Ψ) ∪ {σ}.
In this case we update the label of an existing edge (i, j) and of the node

j with the labels σ and 
 as a precondition for the firing of the rule r.
Furthermore, we add σ to the set of admitted edge labels of server node i.

– i ∈ ns, j ∈ nc, edges(j, Ψ) = ∅ (j has no incident edges), labelc(j, Ψ) = 
′,
σ′ ∈ labelp(i, Ψ), and

Ψ ′ = adde((i, j), σ, updates(i ← (labels(i, Ψ), Q), updatec(j ← 
, Ψ)))

where Q = p(i, Ψ) ∪ {σ}.
Although not explicitly present, we assume here that the edge (i, j) is in

the upward closure of Ψ . We add the edge (i, j) with label σ since its presence
is a precondition for the firing of the rule. Furthermore, we update the label
of i and j as in the first case.

– j ∈ nc, edges(j, Ψ) = ∅ (j has no incident edges), labelc(j, Ψ) = 
′, and

Ψ ′ = adde((ns + 1, j), σ, adds((
′′, Λe), updatec(j ← 
, Ψ)))

where 
′′ ∈ Λs. Although not explicitly present, we assume here that the
edge (ns + 1, j), for a new server node ns + 1 with a label in Λs, is in the
upward closure of Ψ . We add the node and the edge with label σ since its
presence is a precondition for firing the rule. Furthermore, we update the
label of j as in the first case.

– i ∈ ns, σ′ ∈ labelp(i, Ψ), and

Ψ ′ = adde((i, nc + 1), σ, addc(
, updates(i ← (labels(i, Ψ), Q), Ψ)))

where Q = labelp(i, Ψ) ∪ {σ}.
Although not explicitly present, we assume here that both the node nc +1

and the edge (i, nc+1) are in the upward closure of Ψ . We add it with label σ
to the set of edges and update the label of i including σ in the set of admitted
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edges. Notice that there are remaining cases (client, server, and edge are not
explicitly present in Ψ). However these cases give rise to a graph constraint
that is redundant with respect to Ψ . Thus, we can discard it without loss of
precision (we recall that our aim is to symbolically represent [[Ψ ]]∪prer([[Ψ ]])).

Test: r is the rule ((
)) � ((
′)) : ∀Q and one of the following conditions hold

– i ∈ ns, labels(i, Ψ) = 
′, R = labelp(i, Ψ) ∩ Q, labele(e) ∈ R for each e ∈
edges(i, Ψ), and

Ψ ′ = updates(i ← (
, R), Ψ)

In this rule the padding labelp(i, Ψ) associated to a node i with label 
′ plays
a crucial role. We first check that the current set of labels of edges incident to
i is contained into the intersection R of labelp(i, Ψ) and Q. If this condition
is satisfied, we restrict the padding of node i to be the set R (precondition
for firing the rule) and update the label of i to 
. This rule cannot be applied
whenever there are edges in edges(i, Ψ) with labels not in R. If R is the
empty set, then the node i must be isolated.

Given a wfgc Ψ , we define Ψ � as the set {Ψ ′ | Ψ r
� Ψ ′, r ∈ R}. The following

property then holds.

Lemma 1. ([[Ψ ]] ∪ pre([[Ψ ]])) ⊆ ([[Ψ ]] ∪ [[Ψ �]]).

Entailment Test We now define an entailment relation � used to compare deno-
tations of graph constraints. Let Ψ and Ψ ′ be two wfgc such that nsizec(Ψ) = nc,
nsizes(Ψ) = ns, nsizec(Ψ ′) = mc, and nsizes(Ψ ′) = ms. The relation Ψ � Ψ ′

holds iff nc ≤ mc, ns ≤ ms, and there exist injective mappings hc : nc → mc

hs : ns → ms such that

– labels(i, Ψ) = labels(hs(i), Ψ ′) for i ∈ ns,
– labelc(j, Ψ) = labelc(hc(j), Ψ ′) for j ∈ nc,
– labelp(hs(i), Ψ ′) ⊆ labelp(i, Ψ) for i ∈ ns,
– for each e = (i, j) ∈ E, e′ = (hs(i), hc(j)) ∈ E′ and labele(e, Ψ) =

labele(e′, Ψ ′).

The following property then holds.

Lemma 2. Given Ψ and Ψ ′, Ψ � Ψ ′ implies [[Ψ ′]] ⊆ [[Ψ ]].

We naturally extend the entailment relation to finite sets of constraints as follows.
Given two sets of graph constraints Φ, Φ′, Φ � Φ′ iff for each Ψ ′ ∈ Φ′ there exists
Ψ ∈ Φ such that Ψ � Ψ ′.

3.1 Backward Reachability

We use the relation � to define a symbolic backward reachability algorithm
for approximating solutions to PRP. We start with a finite set ΦF of graph
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constraints denoting an infinite set of bad graph configurations. We generate
a sequence Φ0, Φ1, Φ2, · · · of finite sets of constraints such that Φ0 = ΦF , and
Φj+1 = Φj ∪ (Φj �). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure ter-
minates when we reach a point j where Φj � Φj+1. Notice that the termina-
tion condition implies that [[Φj ]] = (

⋃
0≤i≤j [[Φi]]). By Lemma 1, Φj denotes an

over-approximation of the set of all predecessors of [[ΦF ]]. This means that if
(I
⋂

[[Φj ]]) = ∅, then there exists no G ∈ [[ΦF ]] with G0 ⇒∗ G for G0 ∈ I. Thus,
the procedure can be used as a semi-test for checking PRP.

According to the general results in [2], the termination of our (approximated)
symbolic backward reachability procedure can be ensured by proving that the
entailment relation of graph constraints is a well-quasi ordering (wqo). The latter
property follows from the fact that a c/s-graph with ns server nodes and nc client
nodes can be given an alternative representation as a bag of tuples of a special
form. A wfgc can be represented as a bag (multiset) containing the (multiset)
of isolated client nodes in G together with tuples of the form (si, Qi, Mi) for
i ∈ {1, . . . , ns}, where

– si ∈ Λs is the label of the server node i,
– Qi ∈ 2Λe is the padding associated to i,
– if i has client nodes j1, . . . , jki connected to it Mi is a bag {p1, . . . , pki} such

that pl = (σl, cl), where σl is the label of the edge incident to node jl and cl

is the label of node jl.

Given bags m1 and m2 associated resp. to wfgc’s G1 and G2, m1 ≤ m2 holds if:
each isolated client node in m1 can be injected into an isolated client node in m2;
each tuple (s, Q, M) in m1 can be injected into a tuple (s′, Q′, M ′) in m2 such
that s = s′, Q′ ⊆ Q and M is contained into M ′ (multiset containment). From
closure properties of wqo’s under bag and tuple composition operators, we have
that ≤ is a wqo. Furthermore, we have that m1 ≤ m2 implies G1 � G2. Thus,
the entailment relation of graph constraints is a well-quasi ordering (wqo).

4 A Case Study

We have implemented a prototype version, symgraph [26], of our approximated
verification algorithm and tested on a model of the full-map cache coherence pro-
tocol described in [20]. This protocol is defined for a multiprocessor with shared
memory and local caches in which the memory controller maintains a directory
for each memory line with information about its use, i.e., the line is shared
between different caches or used in exclusive mode by a given cache. The direc-
tory is used to optimize the invalidation and downgrade phase required when a
processor sends a new request for exclusive or shared use. Memory controllers
associate a special flag mode ex to each line to remember when the line is in
exclusive use (i.e. without need to inspect the full-map).

For reason of space, we only give the key ideas behind our model of this
protocol. The initial graph configurations consist of any number of isolated client
nodes with label inv (cache controller for a given line in state invalid) and server
nodes in state idle (memory controller for a given line in state idle).
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During its life cycle the same cache line can be associated to different memory
lines. However, at any given instant a cache line is either invalid or contains a
copy of a given memory block. A memory line however can be copied into several
cache lines. A cache controller in invalid state sends a request for exclusive or
shared access using one of the two following rules

〈〈inv〉〉 � [[wait]]
req ex←→ 〈〈inv〉〉 � [[wait]]

req sh←→

A cache controller in wait state moves to exclusive (shared) state upon reception
of message ex (sh) along the edge that connects it to the memory controller as
specified by the rules

[[wait]] ex←→ � [[exclusive]] ex←→ [[wait]] sh←→ � [[shared]] sh←→

A cache controller moves to invalid state upon reception of a req inv message
as specified by the rules

[[shared]]
req inv←→ � 〈〈inv〉〉 [[exclusive]]

req inv←→ � 〈〈inv〉〉

A cache controller in exclusive state moves to shared state upon reception of a
req dg message as specified by the rule

[[exclusive]]
req dg←→ � [[shared]] sh←→

A memory controller that receives a req ex message from a channel (edge) up-
dates the label on the corresponding egde to pend and then moves to state
inv loop as specified by the rule

((idle))
req ex←→ � ((inv loop))

pend←→

While in the inv loop state, the memory controller sends an invalidation request
req inv to all caches connected to it with edges marked sh or ex as specified by
rules

((inv loop)) ex←→ � ((inv loop))
req inv←→ ((inv loop)) sh←→ � ((inv loop))

req inv←→

The memory controller moves to state ack inv after testing that all requests
have been processed by the cache controllers connected to it as specified by the
rule

((inv loop)) � ((ack inv)) : ∀{pend, req sh, req ex}
In state ack inv the memory controller grants the access to the waiting cache
controller connected to it with an edge labelled pend by using the rule

((ack inv))
pend←→ � ((idleex)) ex←→

The state idleex is used here to remember that a cache is using the line in
exclusive state (the mode ex flag in [20] is set to 1).
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Request for shared access are treated in a similar way. However a downgrade
request req dg instead of an invalidation message is sent to all caches connected
with an edge to the memory controller. The invalidation/downgrade loop can be
avoided when the request is processed in the special state idleex. The complete
client/server model for this protocol is given in [26].

For this case study we consider the following pattern reachability problems
(PRP) that represent violation to mutual exclusion and consistency properties.
For proving mutual exclusion, we consider a number of PRPs defined by taking
as target set of configurations the denotations of a graph with a memory node
m and two cache nodes c, c′ both linked to m (to model the fact that the cache
lines stored in c, c′ correspond to that controlled by m) and such that c, c′ and
the corresponding incident edges have a conflicting state. Formally, we consider
graph constraints defined as follows G = {1, 2, {e = (1, 1), e′ = (1, 2)}, ρc, ρs, ρe}
where ρs(1) = (
, Λe), 
 ∈ {idle, idleex}, ρc(1) = ex, ρe(e) = ex, and either
(ρc(2) = ex and ρe(e′) = ex) or (ρc(2) = sh and ρe(e′) = sh).

We can also formulate other types of consistency properties as PRP. For
instance, to check that idleex corresponds to a memory (line) state in which one
cache controller has exclusive access we can first add the following rule:

((idleex)) � ((bad)) : ∀Q

where bad is a new memory label and Q is an appropriate set of edge labels (see
[26]). The graph G = {1, 0, ∅, ρs, ∅, ∅} with ρs(1) = (bad, Λe) represents the set
of violations to the consistency of the mode ex flag with respect to the current
state of the fullmap. Our prototype implementation of the symbolic backward
procedure with graph constraints verifies the above mentioned properties auto-
matically [26].

5 Conclusions and Related Work

We have presented a new algorithm for parameterized verification of directory-
based consistency protocols based on a graph representation (graph constraints)
of infinite collections of configurations. The algorithm computes an overapprox-
imation of the set of backward reachable configurations denoted by an initial set
of graph constraints. We apply the new algorithm to different versions of a non-
trivial case-study discussed in [20]. We plan to investigate how to extend this
approach to deal with parameterized systems in which some of the nodes play
both the role of server and client in different instances of a given communication
protocol.
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Abstract. In [13], Yen defines a class of formulas for paths in Petri nets and
claims that its satisfiability problem is EXPSPACE-complete. In this paper, we
show that in fact the satisfiability problem for this class of formulas is as hard as
the reachability problem for Petri nets. Moreover, we salvage almost all of Yen’s
results by defining a fragment of this class of formulas for which the satisfiability
problem is EXPSPACE-complete by adapting his proof.

1 Introduction

Petri nets (or equivalently, vector addition systems) are one of the most popular
mathematical model for the representation and analysis of parallel processes [2]. The
reachability problem for Petri nets is one of the key problems in the area of automatic
verification since many other problems (e.g. the liveness problem) were shown to be
recursively equivalent to the reachability problem (see [4,6]). It is well known that the
reachability problem for Petri nets is decidable [11,10,7,8]. However, the precise com-
plexity of the reachability problem for Petri nets remains open (all known algorithms re-
quire non-primitive recursive space). The best known lower bound is exponential space
given by Lipton in [9].

On the other hand, to obtain a uniform approach for deciding and studying the com-
plexity of many Petri nets problems, Yen has defined in [13] a class of formulas for
paths in Petri nets, each of them is of the form:

∃µ1, . . . ,µn∃σ1, . . . ,σn
(
(µ0

σ1−−→µ1
σ2−−→·· ·µn−1

σn−−→µn) ∧ φ(µ1, . . . ,µn,σ1, . . . ,σn)
)

where φ belongs to a certain set of predicates (constraining the markings and transitions
sequence occurring in the formula) and µ0 is the initial marking of the given Petri net.
The above formula means that any marking µi can be reached from µi−1 (1 ≤ i ≤ n) in
the Petri net through the firing sequence of transitions σi and such that the predicate
φ(µ1, . . . ,µn,σ1, . . . ,σn) holds. In [13], Yen claims that the satisfiability problem for
such class of formulas (i.e., the problem of, given a Petri net and a formula, determining
whether there exists a path in the Petri net satisfying the given formula) is complete for
exponential space. This class of formulas is a useful and an interesting one since it is
powerful enough to express many Petri nets properties. In particular, Petri nets problems
such as boundedness, coverability, fair-nontermination, and regularity detection are
reducible to the satisfiability problem for this class of formulas [13]. Moreover, Yen’s
result has been cited and used in several papers [1,15,14,5,3].

O. Bournez and I. Potapov (Eds.): RP 2009, LNCS 5797, pp. 51–63, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we prove that the reachability problem for Petri nets is in fact as hard as
the satisfiability problem for this class of formulas. However, we can salvage almost all
of Yen’s results by defining an interesting and useful fragment of this class of formulas
of paths in Petri nets for which the satisfiability problem is EXPSPACE-complete. In
proving the upper bound for this fragment, we correct an error in the proof given in
[13]. Essentially, the fragment requires the marking µn to be bigger than µ1 allowing the
path satisfying the formula to be repeated.

The regularity detection problem can not be expressed using our fragment and there-
fore to the best of our knowledge it’s complexity (given as EXPSPACE in [13]) remains
unclear.

2 Preliminaries

Let Z (resp. N) denote the set of ( resp. nonnegative) integers, and Z
k (resp. N

k) the set
of vectors of k (resp. nonnegative) integers.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all finite (resp. non
empty) words over Σ and by ε the empty word. We use |Σ| to denote the number of
symbols in Σ. We denote by N

Σ (resp. Z
Σ) the set of all mappings from Σ to N (resp. to

Z) and by 0 the mapping that maps every symbol in Σ to 0. (Notice that N
Σ ⊆ Z

Σ.)
Let Σ and Σ′ be two finite alphabets such that Σ⊆ Σ′. Given a mapping µ in Z

Σ′ , we
write µ|Σ to denote the mapping that maps every a ∈ Σ to µ(a).

Let Σ be a finite alphabet and µ1 and µ2 two mappings from Σ to Z, we denote by
µ1�µ2 the inner product of µ1 and µ2 (i.e., µ1�µ2 = ∑a∈Σ µ1(a)µ2(a)).

The Parikh image � : Σ∗ �→ N
Σ maps a word w to a mapping �(w) from Σ to N such

that �(w)(a) is the number of occurrences of a in w.
A Petri net N = (P,T,F,µ0) consists of a finite set P of places, a finite set T of

transitions disjoint from P, a weight function F : (P×T )∪ (T ×P) �→N, and an initial
marking µ0 ∈ N

P. A marking is a map from P to N. For a marking µ of N and a place
p ∈ P, we say that, in µ, the place p contains µ(p) tokens. For markings µ, µ′, we write
µ+µ′ for the marking obtained by point wise addition of place contents. We write µ≤ µ′

if µ(p)≤ µ′(p) for all p ∈ P, and we write µ < µ′ if µ≤ µ′ and µ(p′) �= µ′(p′) for some
place p′ ∈ P. The marking 0 maps every p ∈ P to 0.

A transition t ∈ T is enabled at a marking µ if and only if F(p, t) ≤ µ(p) for all
p ∈ P. If a transition t is enabled at a marking µ, then t may be fired yielding to a new
marking µ′ defined as follows: µ′(p) = µ(p)−F(p, t)+ F(t, p) for all p ∈ P. We then
write µ t−→µ′ to denote that the marking µ′ is reached from µ by firing the transition
t. A sequence of transitions σ = t1 · · ·tn is a firing sequence from µ0 if and only if
µ0

t1−→µ1
t2−→·· · tn−→µn for some sequence of markings µ1, . . . ,µn. Furthermore, we call

µ0
σ−→µn a computation of N .

A marking µ is said to be reachable in N if and only if µ = µ0 or there is some
σ ∈ T + such that µ0

σ−→µ. The reachability problem for a Petri net N is, for a given
marking µ, to determine whether µ is reachable in N .

We define the size s(N ) of a Petri Net N as in [13], i.e. numbers are encoded in
binary and the size of a Petri Net is then �logk�+ �logr� (where k is the number of
places and r is the number of transitions) + the sum of the sizes of the elements of F +
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the size of µ0. The firing of a transition may result in removing (or adding) 2s(N ) tokens
from (to) a place.

Finally, we recall that the reachability problem for Petri nets is decidable.

Theorem 1 ([11,9]). The reachability problem for Petri nets is EXPSPACE-hard.

3 Yen’s Path Logic for Petri Nets

In this section we define the class of path formulas for Petri nets considered by Yen in
[13]. We essentially follow his definitions. Let N = (P,T,F,µ0) be a Petri net. Each
path formula consists of the following elements:

1. Variables: There are two types of variables, namely, marking variables µ1,µ2, . . .
and variables for transition sequences σ1,σ2, . . ., where each µi denotes a marking
of N and each σi denotes a finite sequence of transition rules.

2. Terms: Terms are defined recursively as follows:
– For every mapping c ∈ N

P, c is a term.
– For all j > i, µ j−µi is a term, where µi and µ j are marking variables.
– T1 + T2 and T1 − T2 are terms if T1 and T2 are terms. (Consequently, every

mapping c ∈ Z
P is also a term.)

3. Atomic predicates: There are two types of atomic predicates, namely, transition
predicates and marking predicates.
(a) Transition predicates:

– z� �(σi) ≥ c and z� �(σi) > c are predicates, where i > 1, c ∈ N is a
constant, and z is a mapping from T to Z.

– �(σ1)(t)≥ c and �(σ1)(t)≤ c are predicates, where c ∈N is a constant and
t ∈ T is a transition rule of N .

(b) Marking predicates:
– µ(p)≥ z and µ(p) > z are predicates, where µ is a marking variable, p ∈ P

is a place of N , and z ∈ Z is an integer.
– T1(p1) = T2(p2), T1(p1) < T2(p2), and T1(p1) > T1(p2) are predicates,

where T1 and T2 are terms and p1, p2 ∈ P are two places of N .

A predicate is either a marking predicate, a transition predicate, or of the form∨
1≤i≤k

∧
1≤ j≤mi

ϕ j
i (i.e., in the disjunctive normal form1) where each ϕ j

i is a marking or
transition predicate. A Path formula f is a formula of the form:

∃µ1, . . . ,µn∃σ1, . . . ,σn
(
(µ0

σ1−−→µ1
σ2−−→·· ·µn−1

σn−−→µn) ∧ φ(µ1, . . . ,µn,σ1, . . . ,σn)
)

where φ is a predicate.

Given a Petri net N and a path formula f , we use N |= f to denote that f is true in
N . The satisfiability problem for such a path formula f asks if there exists an execution
of N of the form µ0

σ1−−→µ1
σ2−−→·· ·µn−1

σn−−→µn such that φ(µ1, . . . ,µn,σ1, . . . ,σn) holds.
In this case, we say N satisfies the path formula f (i.e., N |= f ).

The following result can be shown following [13].

1 In [13], a predicate can be any positive boolean combination of predicates. In fact, we can
show that our results (in particular Theorem 3) still hold even if we consider this general case.
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Lemma 1. Given a Petri net N = (P,T,F,µ0) and a formula f , we can construct in
polynomial time, a Petri net N ′ = (P′,T ′,F ′,µ′0) and a formula f ′ containing no tran-
sition predicates such that N |= f if and only if N ′ |= f ′.

Therefore, it is sufficient to consider formulas containing only marking predicates in
order to decide satisfiability.

4 From the Reachability Problem to the Satisfiability Problem

In the following, we prove that the reachability problem for Petri nets is polynomially
reducible to the satisfiability problem for path formulas.

Theorem 2. Given a Petri net N = (P,T,F,µ0) and a marking µ ∈ N
P, we can con-

struct, in polynomial time, a Petri net N ′ = (P′,T ′,F ′,µ′0) and a path formula f such
that the marking µ is reachable by N if and only if N ′ |= f .

The rest of this section is devoted to the proof of Theorem 2. We first construct a Petri
net N ′ = (P′,T ′,F ′,µ′0) with P⊆ P′ such that a marking µ∈N

P is reachable in N if and
only if there is a marking µ′ ∈ N

P′ such that µ′|P = µ and µ′ is reachable in N ′. Then,
we construct a path formula f for the Petri net N ′ such that N ′ satisfies the formula f if
and only if there is a marking µ′ ∈N

P′ such that µ′|P = µ and µ′ is reachable in N ′. This
implies that the marking µ is reachable in N if and only if N ′ satisfies the formula f .

4.1 Constructing the Petri Net N ′

The Petri net N ′ = (P′,T ′,F ′,µ′0) is built up from N in a way described in Fig. 1.
Formally, N ′ contains all transitions and places of N . In addition, three new places
q0,q1,q2 and two new transitions r1 and r2 are added to N ′. Initially, N ′ has just one
token in the place q0 and µ0(p) tokens in each place p ∈ P (i.e., µ′0(q0) = 1, µ′0(q1) =
µ′0(q2) = 0, and µ′0|P = µ0). The transition r1 (resp. r2) consumes exactly one token
from the place q0 (resp. q1) and produces only one token in the place q1 (resp. q2),
i.e., F ′(q0,r1) = F ′(r1,q1) = 1 (resp. F ′(q1,r2) = F ′(r2,q2) = 1) and 0 otherwise. A
transition t ∈ T of N ′ consumes exactly one token from the place q2 and F(p, t) tokens
from each place p ∈ P, and produces one token in the place q2 and F(t, p) token in
each place p ∈ P. Formally, we have that for every i ∈ {0,1}, F ′(qi, t) = F ′(t,qi) = 0,
F ′(q2,t) = F(t,q2) = 1 and for every p ∈ P, F ′(p, t) = F(p, t) and F ′(t, p) = F(t, p).

Then, the relation between N and N ′ is giving by the following lemma.

Lemma 2. Let µ ∈ N
P be a marking and σ ∈ T+ be a sequence of transitions of N .

µ0
σ−→µ is a computation of N if and only if µ′0

r1−−→µ′1
r2σ−−→µ′ is a computation of N ′

where:

– µ′1(q0) = µ′1(q2) = 0, µ′1(q1) = 1, and µ′1|P = µ0.

– µ′(q0) = µ′(q1) = 0, µ′(q2) = 1, and µ′|P = µ.

As an immediate consequence of Lemma 2, we get the following result.

Corollary 1. A marking µ ∈ N
P is reachable by N if and only if there is a sequence

of transitions σ ∈ T ∗ such that µ′0
r1−−→µ′1

r2σ−−→µ′ is a computation of N ′ with µ′(q0) =
µ′(q1) = 0, µ′(q2) = 1, and µ′|P = µ.
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q0 r1 q1 r2 q2

t
N

Fig. 1. The Petri net N ′

4.2 Constructing the Path Formula f for the Petri Net N ′

In the following, we construct a path formula f such that N ′ satisfies f if and only if
the marking µ is reachable by N . The path formula f is of the following form:

∃µ1,µ2∃σ1,σ2
(
(µ′0

σ1−−→µ1
σ2−−→µ2) ∧ φ1(µ1)∧φ2(µ1,µ2)

)
where φ1 and φ2 are two predicates.

The predicate φ1(µ1) = µ1(q1)≥ 1 says that only the transition rule r1 is fired during
the sequence of transitions σ1 (i.e., σ1 = r1). This implies that the marking µ1 is defined
as follows: µ1(q0) = µ1(q2) = 0, µ1(q1) = 1, and µ1|P = µ0.

φ2(µ1,µ2) = (µ2(q2)≥ 1) ∧
∧
p∈P

(
µ2(p)−µ1(p) = µ(p)−µ0(p)

)
Fig. 2. The predicate φ2(µ1,µ2)

The predicate φ2 (given by Fig. 2) says that for each place p ∈ P, the difference
between the number of tokens added to p and the number of tokens taken from p,
during firing the sequence of transitions σ2, is equal to µ(p)−µ0(p). This implies that
µ2(q0) = µ2(q1) = 0, µ2(q2) = 1, and µ2|P = µ.

Lemma 3. The Petri net N ′ satisfies the path formula f if and only if µ′0
r1−−→µ1

r2σ−−→µ2

is a computation of N ′ where σ ∈ T ∗, and µ1 and µ2 are two markings defined as
follows:

– µ1(q0) = µ1(q2) = 0, µ1(q1) = 1, and µ1|P = µ0.

– µ2(q0) = µ2(q1) = 0, µ2(q2) = 1, and µ2|P = µ.

As an immediate consequence of Lemma 3 and Corollary 1, we have that:

Corollary 2. The marking µ is reachable by N if and only if N ′ |= f .

Hence, the reachability problem for Petri nets is polynomially reducible to the satisfia-
bility problem for the class of path formulas.

Remark 1. It is also possible to reduce the reachability problem for Petri nets to the
satisfiability problem for a path formula that contains only transition predicates.
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5 From the Satisfiability Problem to the Reachability Problem

In this section, we show that the satisfiability problem for path formulas is polynomially
reducible to the reachability problem for Petri nets.

Theorem 3. Given a Petri net N = (P,T,F,µ0) and a path formula f , we can construct,
in polynomial time, a Petri net N ′ = (P′,T ′,F ′,µ′0) such that N |= f iff the empty
marking 0 is reachable by N ′.

The rest of this section is devoted to the proof of Theorem 3. Let us suppose that the
path formula f is of the form:

∃µ1, . . . ,µn∃σ1, . . . ,σn
(
(µ0

σ1−−→µ1
σ2−−→µ2 · · ·µn−1

σn−−→µn) ∧ φ(µ1, . . . ,µn)
)

We assume, without loss of generality, that φ contains only marking predicates (see
Lemma 1). Furthermore, because φ1 ∨φ2 is satisfiable if and only if φ1 is satisfiable or
φ2 is satisfiable, we can assume that φ is of the form φ = ϕ1∧·· · ∧ϕm where for every
i ∈ {1, . . . ,m}, ϕi is a marking predicate of the form2:

yi
0 +

n

∑
j=1

(yi
j�µ j)≤ zi

0 +
n

∑
j=1

(zi
j�µ j)

where yi
j and zi

j are two mappings from P to N and yi
0 and zi

0 are two nonnegative
integers.

For every i ∈ {1, . . . ,m}, let ρ−i and ρ+
i be two mappings from (NP)n to N such that:

for every given sequence of markings µ1, . . . ,µn of N , we have that ρ−i (µ1, . . . ,µn) =
yi

0 + ∑n
j=1(y

i
j�µ j) and ρ+

i (µ1, . . . ,µn) = zi
0 + ∑n

j=1(z
i
j�µ j).

In the following, we compute a Petri net N ′ = (P′,T ′,F ′,µ′0) such that N |= f if
and only if the empty marking 0 is reachable by N ′. A computation of N ′ can be
divided in two phases: First, N ′ guesses a sequence of markings µ1, . . . ,µn of N such
that: µ0

σ1−−→µ1
σ2−−→µ2 · · ·µn−1

σn−−→µn is a computation of N for some σ1, . . . ,σn ∈ T +.
Then, in the second phase, N ′ checks for every i ∈ {1, . . . ,m}, if ρ−i (µ1, . . . ,µn) ≤
ρ+

i (µ1, . . . ,µn) (i.e., the predicate φ(µ1, . . . ,µn) is true).
The Petri net N ′ contains all places of N . In addition, the new places q1, . . . ,qn

and q̄ are added to N ′ such that the total number of token in all these places is always
less or equal to one. The sequence of places q1, . . . ,qn is used during the first phase to
guess the sequence of markings µ1, . . . ,µn of N , while, the place q̄ is used during the
second phase to check if the predicate φ(µ1, . . . ,µn) is true for the guessed sequence of
markings. Moreover, for every i∈ {1, . . . ,m}, the Petri net N ′ has two places s−i and s+

i
to keep track (in some increasing way with respect to the sequence of guessed markings)
of the value of ρ−i and ρ+

i , respectively, such that a marking µ∈N
P′ is reachable by N ′,

if and only if one of the two following cases holds:

2 According to [13] (Lemma 3.4, page 130) any marking predicate can be represented as a
predicate of this form. Moreover, it is easy to see that the set of predicates of this form is
slightly more general than the set of marking predicates defined in section 3.
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– During the first phase: If µ(q j) = 1 for some j ∈ {1, . . . ,n} (only one token in the
place q j and, consequently, the places q1, . . . ,q j−1,q j+1, . . . ,qn, and q̄ are empty),
then there is a sequence of markings µ1, . . . ,µ j−1 ∈ N

P of N such that:

1. µ0
σ1−−→µ1

σ2−−→µ2 · · ·µ j−1
σ j−−→µ|P is a computation of N , and

2. for every i ∈ {1, . . . ,m}, the number of tokens in the places s−i and s+
i is

ρ−i (µ1, . . . ,µ j−1,µ|P, . . . ,µ|P) and ρ+
i (µ1, . . . ,µ j−1,µ|P, . . . ,µ|P), respectively.

– During the second phase: If µ(q̄) = 1 (only one token in the place q̄ and, con-
sequently, the places q1, . . . ,qn are empty), then there is a sequence of markings
µ1, . . . ,µn ∈ N

P of N such that:

1. µ0
σ1−−→µ1

σ2−−→µ2 · · ·µn−1
σn−−→µn is a computation of N ,

2. for every place p ∈ P, the number of tokens in the place p is less or equal to
µn(p), and

3. for every i ∈ {1, . . . ,m}, there is a nonnegative number ci such that the number
of tokens in s−i (resp. s+

i ) is equal to ρ−i (µ1, . . . ,µn)− ci (resp. less or equal to
ρ+

i (µ1, . . . ,µn)− ci).

Initially, the Petri net N ′ has µ0(p) tokens in each place p ∈ P, one token in the place
q1, 0 token in the set of places q2, . . . ,qn, q̄, and for every i ∈ {1, . . . ,m}, the places s−i
and s+

i have yi
0 and zi

0 tokens, respectively.
The set of transitions of N ′ is defined in such a way that the above invariant is always

preserved. Formally, the set of transitions of N ′ is defined as the smallest set satisfying
the following conditions:

– The simulation of the first phase:

• Simulation of a computation of N from µ j−1 to µ j: For every natural number
j ∈ {1, . . . ,n} and for every transition t ∈ T , N ′ has a transition t j such that:

1. F ′(q j,t j) = F ′(t j,q j) = 1, F ′(q̄, t j) = F ′(t j, q̄) = 0, and F ′(ql,t j) =
F ′(t j,ql) = 0 for all l ∈ {1, . . . ,n} and l �= j. This means that in order
to fire the transition t j, the place q j must contain one token.

2. For every place p ∈ P, F ′(p,t j) = F(p,t) and F ′(t j, p) = F(t, p). This
means that the transition t j of N ′ has the same effect over the set of places
P as the transition t of N .

3. For every i ∈ {1, . . . ,m}, F ′(s−i , t j) = ∑p∈P F(p, t)∑k≥ j (yi
k(p)) and

F ′(t j,s
−
i ) = ∑p∈P F(t, p)∑k≥ j(yi

k(p)). Hence, the invariant between the
place s−i and the mapping ρ−i is preserved.

4. For every i ∈ {1, . . . ,m}, F ′(s+
i ,t j) = ∑p∈P F(p, t)∑k≥ j (zi

k(p)) and
F ′(t j,s

+
i ) = ∑p∈P F(t, p)∑k≥ j(zi

k(p)). Hence, the invariant between the
place s+

i and the mapping ρ+
i is preserved.

• Guessing the marking µ j: For every natural number j ∈ {1, . . . ,n− 1} and

for every transition t ∈ T , N ′ has a transition t j+1
j such that:
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1. F ′(q j,t
j+1
j ) = F ′(t j+1

j ,q j+1) = 1, F ′(q̄, t j+1
j ) = F ′(t j+1

j , q̄) = 0, and

F ′(ql,t
j+1
j ) = F ′(t j+1

j ,ql′) = 0 for any l, l′ ∈ {1, . . . ,n}, l �= j and l′ �= j+1.
This corresponds to moving the token from the place q j to the place q j+1.

2. For every place p∈ P, F ′(p,t j+1
j ) = F(p,t) and F ′(t j+1

j , p) = F(t, p). This

means that the transition t j+1
j of N ′ has the same effect over the set of

places P as the transition t of N .
3. For every i ∈ {1, . . . ,m}, F ′(s−i ,t j+1

j ) = ∑p∈P F(p, t)∑k≥ j (yi
k(p)) and

F ′(t j+1
j ,s−i ) = ∑p∈P F(t, p)∑k≥ j(yi

k(p)). Hence, the invariant between the
place s−i and the mapping ρ−i is preserved.

4. For every i ∈ {1, . . . ,m}, F ′(s+
i , t j+1

j ) = ∑p∈P F(p, t)∑k≥ j (zi
k(p)) and

F ′(t j+1
j ,s+

i ) = ∑p∈P F(t, p)∑k≥ j(zi
k(p)). Hence, the invariant between the

place s+
i and the mapping ρ+

i is preserved.

Notice that firing the transition rule t j+1
j in N ′ simulates the firing of the tran-

sition rule t in N over the set of places P. This guarantees that the guessed
sequence of transitions σ j contains at least one transition.

• Guessing the marking µn: For every transition t ∈ T , N ′ has a transition tn+1
n

such that:
1. F ′(qn,tn+1

n ) = F ′(tn+1
n , q̄) = 1, F ′(tn+1

n ,qn) = 0, and F ′(ql, tn+1
n ) =

F ′(tn+1
n ,ql) = 0 for all 1 ≤ l < n. This corresponds to moving the token

from the place qn to the place q̄.
2. For every place p∈P, F ′(p, tn+1

n ) = F(p, t) and F ′(tn+1
n , p) = F(t, p). This

means that the transition tn+1
n of N ′ has the same effect over the set of

places P as the transition t of N .

3. For every i ∈ {1, . . . ,m}, F ′(s−i , tn+1
n ) = ∑p∈P F(p, t)∑k≥ j (yi

k(p)) and
F ′(tn+1

n ,s−i ) = ∑p∈P F(t, p)∑k≥ j(yi
k(p)). Hence, the invariant between the

place s−i and the mapping ρ−i is preserved.

4. For every i ∈ {1, . . . ,m}, F ′(s+
i ,tn+1

n ) = ∑p∈P F(p,t)∑k≥ j (zi
k(p)) and

F ′(tn+1
n ,s+

i ) = ∑p∈P F(t, p)∑k≥ j(zi
k(p)). Hence, the invariant between the

place s+
i and the mapping ρ+

i is preserved.

– Simulation of the second phase:

• Decreasing the number of tokens in each place of P: For every p∈P, N ′ has
a transition tp such that F ′(q̄,tp) = F ′(tp, q̄) = F ′(p, tp) = 1 and 0 otherwise.

• Decreasing the number of tokens in each place s+
i : For every i ∈ {1, . . . ,m},

N ′ has a transition t+i such that F ′(q̄, t+i ) = F ′(t+i , q̄) = 1, F ′(s+
i , t+i ) = 1, and

0 otherwise.
• Decreasing the number of tokens in each place s−i : For every i ∈ {1, . . . ,m},

N ′ has a special transition t−i such that F ′(q̄,t−i ) = F ′(t−i , q̄) = 1, F ′(s−i , t−i ) =
F ′(s+

i , t̄−i ) = 1, and 0 otherwise. Notice that, while decrementing the number
of tokens in s−i , we decrease also the number of tokens in s+

i by one.
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• The end of the second phase: N ′ has a transition tend such that F ′(q̄, tend) = 1
and 0 otherwise.

Then, Theorem 3 is an immediate consequence of the following lemma:

Lemma 4. The marking 0 is reachable in N ′ if and only if N satisfies f .

Hence, the satisfiability problem for the class of path formulas is polynomially reducible
to the reachability problem for Petri nets. As an immediate consequence of Theorem 2
and 3, we get the following result:

Corollary 3. The satisfiability problem for the class of path formulas is as hard as the
reachability problem for Petri nets.

6 An EXPSPACE-Complete Fragment

In this section we consider a fragment of Yen’s path logic for which we can show that
its satisfiability problem is EXPSPACE-complete. The proof follows very closely Yen’s
proof [13] which is a generalization of Rackoff’s proof [12] for the complexity of the
boundedness problem. The basic idea is to show that if a path satisfying a formula
exists, then there is a short one. This is done by induction on the number of places of
the Petri Net. However we have to modify one crucial lemma whose proof in the paper
of Yen [13] contains an error. To correct the lemma, Yen’s logic has to be restricted.
The restriction makes sure that if there is a path showing that a formula is satisfiable,
then there is also a path starting at each intermediate marking of the path which satisfies
the formula. This is achieved by requiring the last designated marking of the path to be
bigger than the first designated marking. Formally,

Definition 1. A path formula f of the form

∃µ1, . . . ,µn∃σ1, . . . ,σn
(
(µ0

σ1−−→µ1
σ2−−→·· ·µn−1

σn−−→µn) ∧ φ(µ1, . . . ,µn,σ1, . . . ,σn)
)

is called increasing if φ(µ1, . . . ,µn,σ1, . . . ,σn) does not contain transition predicates
and implies µn ≥ µ1.

Notice that for n = 1, µn ≥ µ1 is always true and that an increasing path formula can also
be written as ∃µ1, . . . ,µn∃σ1, . . . ,σn

(
(µ0

σ1−−→µ1
σ2−−→·· ·µn−1

σn−−→µn) ∧ φ(µ1, . . . ,µn)
)
.

For the rest of the section we consider increasing path formulas. We can suppose
furthermore that the formulas φ are conjunctions of marking predicates, since disjunc-
tions can be considered separately. We first give some additional definitions. Given a
predicate φ and a set of positive integers D we define φ[D] to be the predicate resulting
from removing all marking predicates of the form µi(p) ≥ c and µi(p) > c from φ for
all i �∈D. Let (P,T,F,µ0) be a Petri Net with k places. We suppose an ordering on P and
T and can then suppose that markings are vectors of INk.

The transition vector of a transition t, denoted by t̂ is a k-dimensional vector with
t̂(i) = F(t, pi)−F(pi,t) for all i with 1 ≤ i ≤ k. The set of transition vectors, denoted
by T̂ is {t̂ | t ∈ T}. A generalized marking is a mapping from P to Z (i.e. a vector of Z

k.



60 M.F. Atig and P. Habermehl

A generalized firing sequence is any sequence of transitions of T . A finite sequence of
vectors w1, . . . ,wm ∈ Z

k is said to be a path (of length m−1) if w1 = µ0 and wi+1−wi ∈
T̂ for all i with 1 ≤ i < m. A path w1, . . . ,wm corresponds to at least one generalized
firing sequence t1, . . . ,tm−1 such that wi+1−wi = t̂i for all i with 1≤ i < m. Let w ∈ Z

k.
The vector w is i bounded if w( j)≥ 0 for 1≤ j ≤ i. If r ∈ IN+ is such that 0≤ w( j) < r
for 1 ≤ j ≤ i, then w is called i-r bounded. A path p = w1, . . . ,wm ∈ Z

k is called i
bounded (i-r bounded) if each wj in p is i bounded (i-r bounded). Given a predicate
φ(µ1, . . . ,µn), an i bounded (i-r bounded) path w1, . . . ,wm is called an i bounded φ path
if ∃1≤ j1 ≤ j2 ≤ . . .≤ jn = m such that φ[{1,...,i}](wj1 ,wj2 , . . . ,wjn) is true. Let m′(i,µ,φ)
be either the length of the shortest i bounded φ path whose initial generalized marking
is µ, or 0 if it does not exist. Let g(i,φ) = max{m′(i,µ,φ) | µ ∈ Z

k}. We have g(i,φ) ∈ IN
(see [13]).

The following two lemmas are from [13].

Lemma 5. If there is an i-r bounded φ-path in the Petri Net (P,T,F,µ0) , then there
is an i-r bounded φ-path of length ≤ r(s(N ))c

, for some constant independent of r and
s(N ).

We derive g(i,φ) recursively.

Lemma 6. g(0,φ)≤ 2(s(N ))c
, for some constant c independent of s(N ).

Lemma 7. g(i+1,φ)≤ (2(s(N ))(g(i,φ)+1))(s(N ))c
for all i < k, where c is a constant

independent of s(N ).

Proof:

– Case 1. If there is an (i+1)-2(s(N ))(g(i,φ)+1) bounded φ path, then using Lemma
5, there exists a short one with length ≤ (2(s(N ))(g(i,φ)+ 1))(s(N ))c

.
– Case 2. Otherwise, let v1, . . . ,vm0 ,vm0+1, . . . ,vm be an (i+ 1) bounded φ path such

that vm0 is the first vector not (i+1)−2(s(N ))(g(i,φ)+1) bounded. Without loss of
generality, we assume that vm0(i+1)> 2(s(N ))(g(i,φ)+1). Furthermore we assume
that no two of v1, . . . ,vm0 can agree on the first i + 1 positions, otherwise the path
could be made shorter. Therefore m0 ≤ (2(s(N ))(g(i,φ)+1))i+1. Now we show that
if we take as initial marking vm0 , there is an i bounded φ path in the Petri Net3.
There are two cases depending on φ.
1. φ is of the form φ(µ1). In this case, since v1, . . . ,vm is an i+ 1 bounded φ path

and φ is just a predicate on the marking µ1, vm0 ,vm0+1, . . . ,vm is clearly an i
bounded φ path.

2. φ is of the form φ(µ1, . . . ,µn) and it implies µn ≥ µ1. Since v1, . . . ,vm0 ,
vm0+1, . . . ,vm is an (i + 1) bounded φ path it is an i bounded φ path as well.
Therefore ∃1 ≤ j1 ≤ j2 ≤ . . . ≤ jn = m such that φ[{1,...,i}](v j1 ,v j2 , . . . ,v jn) is
true. Furthermore v jn ≥ v j1 . Let s′ = t ′1, . . . ,t

′
o be a sequence of transitions cor-

responding to the path v j1 ,v j1+1, . . . ,v jn . Let s = tm0 , . . . ,tm−1 be a sequence

3 At this point, there is a mistake in the proof of [13] (Lemma 3.7, page 130), as it assumes that
this path always exists and takes the shortest one. However no i bounded φ path might exist
starting from vm0 .
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of transitions corresponding to the path vm0 ,vm0+1, . . . ,vm. Then ss′ is a se-
quence of transitions corresponding to a path vm0 , . . . ,vm,v′j1+1, . . . ,v

′
jn where

v′i = vi + v jn − v j1 for all i such that j1 + 1 ≤ i ≤ jn. Clearly the path is an i
bounded φ path starting from vm0 (since φ[{1,...,i}](vm,v′j2 , . . . ,v

′
jn) is true, be-

cause all predicates stay true when adding to all markings the same positive
vector).

Now, we can take the shortest i bounded φ path p in (P,T,F,vm0). It’s length
is ≤ g(i,φ). As vm0(i + 1) > 2(s(N ))(g(i,φ) + 1) and each place of each transi-
tion vector in the Petri Net is at most 2(s(N )) in absolute value, p is also i + 1
bounded and the (i + 1) position will never fall below 2(s(N )) in p (so that mark-
ing predicates of the form µi(p′) ≥ c and µi(p′) > c will still hold in p). Therefore
v1, . . . ,vm0−1, p is an (i + 1) bounded φ path of length (2(s(N ))(g(i,φ) + 1))i+1 +
g(i,φ) < (2(s(N ))(g(i,φ)+ 1))(s(N ))c

.

�

The following theorem now follows easily [13] from the bound on g.

Theorem 4. The satisfiability problem for increasing path formulas can be decided in
O(2d∗s(N )∗log(s(N ))) space, for some constant d independent of s(N ).

Since unboundedness can be expressed in the logic and boundedness is EXPSPACE-hard
[9] we have the following:

Theorem 5. The satisfiability problem for increasing path formulas is EXPSPACE-
complete.

6.1 Some Applications

In the following we consider the applications given in [13] and discuss if they are in the
increasing fragment. The following six problems are all in the fragment and therefore
in EXPSPACE. They have already been shown to be in EXPSPACE before Yen’s paper.

1. Boundedness problem. Unboundedness of a Petri Net can be formulated as
∃µ1,µ2∃σ1,σ2

(
(µ0

σ1−−→µ1
σ2−−→µ2) ∧ (µ2 > µ1)

)
which is clearly an increasing path

formula.
2. Coverability. It can be formulated as ∃µ1,∃σ1

(
(µ0

σ1−−→µ1) ∧ (µ1 ≥ v)
)

which is an
increasing path formula.

3. (Strict) Self-Coverability Problem. It can be solved by considering formulas of the
form ∃µ1,µ2∃σ1,σ2

(
(µ0

σ1−−→µ1
σ2−−→µ2) ∧

(
(
∧

s∈I µ2(s) ≥ µ1(s))∧ (
∧

s′ �∈I µ2(s′) =
µ1(s′)))

)
where I is a set of places (For strict self-coverability, replace ≥ by >).

The formulas are clearly increasing path formulas.
4. u-Self-Coverability Problem. This can be solved by considering formulas of the

form ∃µ1,µ2∃σ1,σ2
(
(µ0

σ1−−→µ1
σ2−−→µ2) ∧ (µ2−µ1 = u)

)
where u∈ INk. These for-

mulas are increasing.
5. Final-State Self-Coverability Problem. This can be solved by considering for-

mulas of the form ∃µ1,µ2,µ3∃σ1,σ2,σ3
(
(µ0

σ1−−→µ1
σ2−−→µ2

σ3−−→µ3) ∧ (µ3 ≥ µ1)∧
(
∨

s∈F µ2(s) > 0)
)

for some set F of places. This formula is increasing.
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6. Fair Nontermination Problems. All the formulas considered for these problems
are of the form ∃µ1,µ2∃σ1,σ2

(
(µ0

σ1−−→µ1
σ2−−→µ2) ∧ (µ2 ≥ µ1)∧ϕ(σ1,σ2)

)
where

ϕ(σ1,σ2) is a formula containing only transition predicates. By carefully inspect-
ing this transition predicates one can easily see that eliminating them with Lemma
1 yields increasing formulas.

The following problems were claimed to be in EXPSPACE in [13].

1. Regularity Detection Problem. Nonregularity of a Petri Net is equivalent to the
satisfiability of the following path formula:

∃µ1,µ2,µ3,µ4∃σ1,σ2,σ3,σ4
(
(µ0

σ1−−→µ1
σ2−−→µ2

σ3−−→µ3
σ4−−→µ4) ∧ ϕ(µ1,µ2,µ3,µ4)

)
where ϕ(µ1,µ2,µ3,µ4) is (µ2 ≥ µ1)∧ (

∨k
i=1 µ2(i) > µ1(i))∧ (

∧k
i=1(µ1(i) < µ2(i))∨

(µ3(i)≤ µ4(i)))∧ (
∨k

i=1 µ3(i) > µ4(i))
)
. Unfortunately, this formula is not increas-

ing and we can not apply our complexity result. To the best of our knowledge the
complexity of regularity is therefore still unknown.

2. (Potential) Determinism Detection Problem. Nondeterminism of a Petri Net can be
expressed using the formula ∃µ1,∃σ1

(
(µ0

σ1−−→µ1) ∧ ((
∨

t,t′ ,t �=t′(µ1 ≥ vt)∧ (µ1 ≥
vt′))

)
where the vt are the minimal vectors for which t is enabled. Clearly,

the formula is increasing. Non potential determinism can then be expressed
as ∃µ1,µ2,∃σ1,σ2

(
(µ0

σ1−−→µ1
σ2−−→µ2) ∧ ((

∨
t,t′ ,t �=t′(µ1 ≥ vt)∧ (µ1 ≥ vt′))∧ (µ2 ≥

µ1))
)
. This formula is increasing and therefore the problem is in EXPSPACE.

3. Frozen Token Detection Problem. To decide if a Petri Net has a frozen token it
is sufficient to check the formula ∃µ1,µ2,∃σ1,σ2

(
(µ0

σ1−−→µ1
σ2−−→µ2) ∧ (µ1(p) >

0)∧ (µ2 ≥ µ1)∧ (σ2 �= Λ)
)

where p is a designated place and σ2 �= Λ denotes∨
t∈T �σ2(t) > 0. Eliminating with Lemma 1 the transition predicates yields an in-

creasing path formula and therefore the problem is in EXPSPACE.
4. (Strong) Promptness Detection. A Petri Net is not (strongly) prompt if and only if
∃µ1,µ2,∃σ1,σ2

(
(µ0

σ1−−→µ1
σ2−−→µ2) ∧ ((

∧
t∈T1

�σ2(t)≤ 0)∧(µ2 ≥ µ1)∧(σ2 �= Λ))
)

is true. Again eliminating with Lemma 1 the transition predicates yields an increas-
ing path formula and therefore the problem is in EXPSPACE.

5. y-Synchronization Problem. Given a map y from the transitions T to Z, a Petri
net is not y-synchronized iff ∃µ1,µ2,∃σ1,σ2

(
(µ0

σ1−−→µ1
σ2−−→µ2) ∧ ((

∧
t∈T1

�σ1(t)≤
0) ∧ (((∑t∈T y(t)�(σ2)(t) > 0) ∨ (∑t∈T y(t)�(σ2)(t) < 0)) ∧ (µ2 ≥ µ1))

)
is true.

While eliminating with Lemma 1 the transition predicates we notice that the newly
added places are always increasing. Thus this yields an increasing path formula and
therefore the problem is in EXPSPACE.

7 Conclusion

In this paper, we have shown that the satisfiability problem for the class of path formulas
considered by Yen [13] is as hard as the reachability problem for Petri nets. However
for an important fragment we have shown that its satisfiability problem is EXPSPACE-
complete. By doing this, we have corrected the proof given in [13]. Furthermore we
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show that almost all applications considered by Yen can be solved using our fragment.
However, the exact complexity of the regularity detection problem remains open. It
would be interesting to obtain a bigger fragment which is in EXPSPACE allowing to
show the EXPSPACE complexity of the regularity detection problem.

Acknowledgement. The authors would like to thank Ahmed Bouajjani and Javier Es-
parza for very helpful discussions on this topic as well as Stéphane Demri who inde-
pendently found the error in Yen’s proof.
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Abstract. We present an abstraction of the probabilistic semantics
of Multiset Rewriting to formally express systems of reactions with
uncertain kinetic rates. This allows biological systems modelling when
the exact rates are not known, but are supposed to lie in some intervals.
On these (abstract) models we perform probabilistic model checking
obtaining lower and upper bounds for the probabilities of reaching
states satisfying given properties. These bounds are under- and over-
approximations, respectively, of the probabilities one would obtain by
verifying the models with exact kinetic rates belonging to the intervals.

Keywords: probabilistic model checking, systems biology, uncertain
kinetic rates, abstract interpretation, interval Markov chains.

1 Introduction

When modelling biological systems, the rates of the reactions involved in the
evolution of the systems are often not precisely known. Thus, it is necessary to
model such systems with some level of approximation. However, approximations
should be significant, namely they should preserve, although not precisely, the
overall behaviour of the systems.

In this paper we present a formalisation of biological systems based on
Multiset Rewriting (MSR) [1], and we investigate the use of abstract inter-
pretation [2] on its probabilistic semantics. In particular, we use an Interval
Markov Chain (IMC) [3,4] to abstract the Discrete Time Markov Chain (DTMC)
probabilistic semantics of a set of MSR models. The abstraction is able to model
the semantics of a biological system for which the exact kinetic rates are not
precisely known, but are supposed to lie in some intervals.

We start defining MSR as the formalism used to construct concrete models,
namely models with exact kinetic rates (Section 2). We give a Labelled Transition
System (LTS) semantics to MSR and show how to derive, in standard way, a
probabilistic semantics from it, in terms of a DTMC. On the DTMC it is possible
to perform probabilistic model checking.

In order to deal with uncertainty we define abstract models in which the kinetic
rates are given as intervals (Section 3). We give an abstract LTS semantics and
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C ⊂ P(M)
LTS−−−−−→ LT S H−−−−−→ MC⏐⏐�α

⏐⏐�αLT S

⏐⏐�αMC

M◦ LTS◦−−−−−→ LT S◦ H◦−−−−−→ MC◦

Fig. 1. Schematics of the the defined theory; with ◦ we indicate abstract structures,
with α abstraction functions

a method to derive an abstract probabilistic semantics from it, in terms of IMC.
On the IMC it is possible to perform probabilistic model checking (that gives
lower and upper bounds for the probability of reaching states satisfying given
properties) by following the approach of [5].

We relate the concrete probabilistic semantics with the abstract one by means
of concepts of abstract interpretation (see Figure 1). We prove the soundness of
the abstract semantics with respect to the concrete one. This implies that the
lower and upper bounds obtained by model checking an abstract model are valid
for all the models with exact kinetic rates belonging to the specified intervals.

In Section 4, we apply probabilistic model checking to verify reachability
properties in an abstract model of tumor growth [6]. We review related work
in Section 5 and we conclude with a summary and further research ideas with
Section 6.

2 Probabilistic Model Checking of Biological Systems

To model biological systems we adopt Multiset Rewriting (MSR) where the
rewriting rules are enriched with non negative real kinetic constants. Multisets
are states of computation and transitions between states are performed by ap-
plying rewriting rules with a probability proportional to their kinetic constants.

Let Σ be a finite set of species names with cardinality n. A multiset is a
function s : Σ → IN and S(Σ) is the universe of multisets over Σ. We assume
multiset sum ⊕ and difference !, to be defined as follows: given s′, s′′ ∈ S(Σ)
we have s′ ⊕ s′′(x) = s′(x) + s′′(x) and s′ ! s′′(x) = max(s′(x) − s′′(x), 0). In
what follows we shall often assume Σ to be given.

A multiset represents the configuration of a biological system model, whereas
the description of the possible events is given by rewriting rules. A rewriting rule
is a pair (l, r) where l and r, called reactants and products, are multisets. Each
rule is associated with a kinetic constant that is, roughly, an indication of the
likelihood of the represented event.

Definition 1 (Concrete Model). A concrete model M is a triple (R,K, s0):

– R = {R1, . . . , Rm}, with Ri ∈ S(Σ)× S(Σ), is a set of rewriting rules;
– K = {k1, . . . , km}, with ki ∈ IR�0, is a set of kinetic constants;
– s0 ∈ S(Σ) is the starting state.
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We denote the universe of concrete models as M. When the model M =
(R,K, s0) is clear, for i ∈ [1, m], we use li and ri to denote the multisets of
rule Ri and K[i] for ki. We use the notation (l k−→ r) for (l, r) ∈ R and k ∈ K.
Finally we use R(M), K(M), S0(M) to denote R,K, s0 respectively.

Two concrete models Mi, i ∈ {1, 2}, are isomorphic (M1 ∼ M2) if and only if
R(M1) = R(M2) ∧ S0(M1) = S0(M2).

2.1 Labelled Transition System Semantics

To describe the semantics of a concrete model we adopt a Labelled Transition
System (LTS) with a transition relation of the form s′

η , β−−→ s′′ where η is the
number of the applied rule, and β ∈ IR�0 is the transition rate.

The application of a rule Rη to a state s′ is modelled by the inference rule

(lη
kη−→ rη) l ⊆ s′ β = rate(lη, s′, kη) s′′ = ((s′ ! lη)⊕ rη)

s′
η , β−−→ s′′

(1)

where rate(lη, s′, kη) = kin(lη, s′) × kη and kin(lη, s′) =
∏

x∈Σ

(
s′(x)
lη(x)

)
.

To compute kin(lη, s′) we take into account the number of possible distinct
applications of the rule Rη to the state s′. Actually, this requires to compute
the number of distinct combinations of the reactants lη into the multiset s′.
To compute rate(lη, s′, kη) we multiply the value of kin(lη, s′) by the kinetic
constant associated with Rη, namely kη.

Given a concrete model M = (R,K, s0) ∈ M, we define the function
LTS : M �→ LT S, such that LTS(M) = (S,→, s0) is the LTS, obtained
as usual by transitive closure of (1) starting from s0. In the following, we use
LT S to denote the universe of LTSs. Moreover, we use Next(s) for the set of

transitions from the state s; in addition, we use TS(s′, s′′) = {s′ η , β−−→ s′′ for
some η , β} for describing the set of transitions from s′ to s′′. Given a transition

t = s′
η , β−−→ s′′, we also use rate(t) = β. Note that, ∀s ∈ S, Rη ∈ R, there is at

most one transition s
η , β−−→ s′ ∈ Next(s) corresponding to Rη.

2.2 Derivation of Probabilistic Semantics

We present the probabilistic semantics of a concrete model by means of a
translation from LTS into Discrete Time Markov Chain (DTMC).

Given a countable set S we denote with Distr(S) = { ρ | ρ : S → [0, 1] ∧∑
s∈S ρ(s) = 1} the set of probability distributions and with PDistr(S) = { ρ | ρ :

S → [0, 1]} the set of probability pseudo–distributions. Given a finite set S, a
function P : S × S �→ IR and s ∈ S, we denote with P (s, S) =

∑
s′∈S P (s, s′).

Definition 2 (Discrete Time Markov Chain). A DTMC is a tuple (S, P, s0),
where: S is the set of states, s0 ∈ S is the starting state and P : S �→ Distr(S) is
the transition probability function.
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In the following, we restrict our attention to finitely branching DTMC, meaning
that for each s ∈ S, the set {s′ |P (s)(s′′) > 0} is finite. Since our models have m–
sized set of rules from each state we have at most m exit transitions. Moreover,
we use MC to denote the universe of (finitely branching) DTMCs.

To derive a DTMC from the LTS, we have to calculate, for each multiset s′

and s′′, the probability of moving from s′ to s′′, by exploiting transition rates.
Thus, we introduce two functions R : S × S �→ IR�0 and E : S �→ IR�0, such
that R(s′, s′′) =

∑
t∈TS(s′,s′′) rate(t) and E(s′) =

∑
s′′∈S R(s′, s′′). Intuitively

R(s′, s′′) gives the rate of the transition from s′ to s′′, while E(s′) computes the
exit rate of the state. The probability of moving from s′ to s′′ is derived from
R(s′, s′′) and E(s′) in standard way.

Definition 3 (Probabilistic Translation Function). We define H : LT S →
MC as H((S,→, s0)) = (S, P, s0), where P : S → Distr(S) is the probability
transition function, s.t. , ∀s′, s′′ �= s′ ∈ S : if E(s′) = 0, then P (s′)(s′′) = 0, and
P (s′)(s′) = 1; P (s′)(s′′) = R(s′, s′′)/E(s′) otherwise.

2.3 Probabilistic Model Checking

In the context of probabilistic model checking [7,8] we focus our attention on
a fragment of the Probabilistic CTL (PCTL) [9] able to express reachability
properties. Formally, we have to evaluate the probability of a set of paths.

Let (S, P, s0) be a DTMC. A path π is a non–empty (finite or infinite) ordered
succession of states s0, s1, . . . of S. We denote the ith state of the path π by π[i],
starting from 1, and the length of π by |π|, where |π| = ∞ if π is infinite. The set
of paths over S is denoted by Paths(S) and its subset of finite paths is denoted
as FPaths(S). The cylinder corresponding to a path π is the set of all paths
prefixed by π. Formally, for π ∈ Paths(s), C(π) = {ππ′ |π′ ∈ Paths(S)} and
C(s) denotes the set of paths starting from the state s.

Definition 4 (Probability of Paths). Let (S, P, s0) be a DTMC. Let Π =⋃
π∈FPaths(s) C(π) be the set of all cylinder, B be the smallest σ–algebra

containing Π, and s ∈ S a state. The tuple (Paths(S),B, Ps) is a probability
space, where Ps is the unique measure satisfying, for all path s0 . . . sn,

Ps(C(s0 . . . sn)) =

⎧⎪⎨⎪⎩
1 if s0 = s ∧ n = 0
P (s0, s1)× . . .× P (sn−1, sn) if s0 = s ∧ n > 0
0 otherwise.

Our reachability properties are parametric w.r.t. a set AP of propositional
symbols (ranged over by {A, B, . . .}). A symbol A ∈ AP denotes a set
of conditions on multisets that are evaluated by a corresponding notion of
satisfaction � : S(Σ) × AP �→ {true , false}. As usual, given s ∈ S(Σ) and
A ∈ AP , s � A says that s satisfies A.
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Definition 5 (Reachability Probability). Let mc = (S, P, s0) be a DTMC.
The probability of reaching a state satisfying A ∈ AP , starting from s ∈ S, is
ReachA,mc(s) = Ps({π ∈ C(s) |π[i] � A for some i ≥ 0}) .

We use Reach(A) to denote ReachA,mc(s0) where mc = H(LTS(M)), for a
model M clear from the context.

Example 1. We consider a chemical reactions system where molecules X and Y
may bind to form complex XY and molecule X may be degraded by molecule W .
With Σ = {X, Y, W, XY }, the system is modelled by s0 = {(X, 2), (Y, 2), (W, 10)},
R = {(R1 = {X, Y } k1−→ {XY }), (R2 = {X, W} k2−→ {W})} and K = {k1 = 3, k2 = 1}.
Notice that we assume that the complexation is three times faster than the
degradation. Figure 1 shows the derived LTS(M) and H(LTS(M)) where

S = { s0 = {(X, 2), (Y, 2), (W, 10), (XY, 0)} s1 = {(X, 1), (Y, 1), (W, 10), (XY, 1)}
s2 = {(X, 1), (Y, 2), (W, 10), (XY, 0)} s3 = {(X, 0), (Y, 0), (W, 10), (XY, 2)}
s4 = {(X, 0), (Y, 1), (W, 10), (XY, 1)} s5 = {(X, 0), (Y, 2), (W, 10), (XY, 0)} }.

Fig. 2. LTS(M), and H(LTS(M))

The probability of obtaining at least two complexes XY is given by the
probability to reach s3. Therefore we obtain 3/8 × 3/13 = 9/104. This shows
that, even if the rate of the complexation is (three times) greater that the one
of the degradation, the concentration of reagent W makes the degradation more
likely to happen than the binding of reagent X and Y .

3 Abstract Modelling and Model Checking

In order to approximate the information related to the kinetic rates of the
reaction rules we adopt the domain of intervals of (non negative) reals I (the
real valued version of intervals of integers [2,10,11]).

Definition 6 (Intervals). I = { [m, n] |m ∈ R≥0, n ∈ R≥0 ∪ {∞} ∧m ≤ n}.
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Over intervals of reals I we use the operations and the order defined as follows.

∀ I,J ∈ I, I = [a , b], J = [c , d] :

I ×I J = [ a× c , b× d ] , I ∪I J = [ min(a , c) , max(b , d) ] ,

I +I J = [ a + c , b + d ] , I �I J iff (I ∪I J = J ) .

We consider both ∪I and �I extended component-wise to m–sized vectors of
intervals, and we use the same symbols. For x ∈ IR�0 we use x• = [x, x] ∈ I for
its best abstraction as interval, and we consider • extended to vector of reals.

In abstract models each reaction rule does not have associated a precise kinetic
constant (∈ R) but instead an interval of reals (∈ I).

Definition 7 (Abstract Model). An abstract model M is a triple (R,K◦, s0)
with R and s0 as in the concrete case, while K◦ = {k◦

1 , . . . , k
◦
m}, k◦

i ∈ I, is a set
of interval values.

We denote the universe of abstract models as M◦. We assume the notation used
for concrete models extended in the oblivious way to concrete models. The order
�I over intervals introduces a corresponding order �M◦ over abstract models.

Definition 8 (Order on Abstract Models). Given M◦
i , i ∈ {1, 2} :

M◦
1 �M◦ M◦

2 iff M◦
1 ∼ M◦

2 ∧ K(M◦
1 ) �I K(M◦

2 ).

3.1 Abstraction and Concretization

To formalise the relation between concrete and abstract models we introduce
the concepts of abstraction function and concretization function [2].

Let C = {X ∈ P(M) | ∀Mi, Mj ∈ X , Mi ∼ Mj} the domain of isomorphic
concrete models. Given X ∈ C we denote with R(X) and S0(X) the shared rule
set and the shared starting state respectively.

Definition 9 (Order on Set of Isomorphic Concrete Models)
Given two set of isomorphic concrete models Xi ∈ C, i ∈ {1, 2} :
X1 �C X2 iff K1 �I K2 where Ki = ∪I

M∈Xi
(K(M))•.

Definition 10 (Abstraction and Concretization Functions)
We define α : C �→ M◦ and γ : M◦ �→ C s.t. ∀X ∈ C , ∀M◦ ∈M◦ :

– α(X) = (R(X) , K◦ , S0(X) ) where K◦ ≡
⋃

I

M∈X(K(M))• ;
– γ(M◦) = {M |α(M) �M◦ M◦} .

Theorem 1
The pair (α, γ) is a Galois connection between (C,�C) and (M◦,�M◦).

This formalisation shows that an abstract model M◦ represents a (infinite) set
of concrete models with the same set of rules (same multiset of reactants and
products) with kinetic rates in the specified interval.
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3.2 Abstract LTS Semantics

We introduce the LTS semantics associated with abstract models, adopting an

abstract transition relation s′
η,β◦

−−−→◦ s′′, where η is as in the concrete case, while
β◦ ∈ I. The application of a rule Rη to a state s′ is modelled by the rule

(lη
k◦

η−→ rη) lη ⊆ s′ β◦ = rate◦(lη, s′, k◦
η, ) s′′ = ((s′ ! lη)⊕ rη)

s′
η , β◦
−−−→◦ s′′

(2)

where rate◦(lη, s′, k◦
η) = kin(lη, s′)×I k◦

η.
We define the function LTS◦ : M◦ �→ LTS◦ such that LTS◦((R,K◦, s0)) =

(S,→◦, s0) is obtained by transitive closure of (2) starting from s0. As in the
concrete case the outgoing transitions from a state have distinct labels. In the
following we use LT S◦ to denote the universe of abstract LTSs and we assume
the notation defined for LTSs adapted in the obvious way to the abstract case.

To relate an LTS to its abstract counterpart we introduce the concept of best
abstraction of an LTS. The most precise abstract LTS can be obviously obtained
by replacing the rate β of each transition with β• = [β, β].

Definition 11 (Best Abstraction of LTS). We define αLT S : LT S �→ LT S◦

s.t. αLT S((S,→, s0)) = ((S,→α, s0)) with →α= {s′ η , β•

−−−→◦ s′′|s′ η , β−−→ s′′ ∈→}.

Notice that αLTS does not effectively introduce any approximation. For express-
ing the correctness of an abstract LTS with respect to a concrete one, we need
an approximation order �LT S◦ . In this way, we can say that lts◦ ∈ LT S◦ is a
sound approximation of lts ∈ LT S provided that αLT S◦(lts) �LT S◦ lts◦.

Definition 12 (Abstract LTS Order). Let lts◦i = (Si,→i
◦, s0,i), i ∈ {1, 2},

two abstract LTS. For s1 ∈ S1 and s2 ∈ S2, s1 �LT S◦ s2 (s2 simulates s1) iff

1. s1 = s2 ;

2. ∀t◦1 = (s1
η , β◦

1−−−→◦ s′) ∈→1
◦, ∃ t◦2 = (s2

η , β◦
2−−−→◦ s′) ∈→2

◦ such that β◦
1 �I β◦

2 .

We say that lts◦1 �LT S◦ lts◦2 iff s0,1 �LT S◦ s0,2.

The definition of order for abstract LTS is based on a notion of simulation
between states. Intuitively, a state s′ simulates another state s′′ if they represents
the same system configuration and if each outcoming transition from s′ is
matched by a transition from s′′ to the same arrival configuration, with a coarser
transition rate interval.

The following theorem states that the abstract LTS of an abstract model is a
correct approximation of the LTS, of all the corresponding concrete models.

Theorem 2. ∀M◦ ∈M◦, ∀M ∈ γ(M◦) : αLT S(LTS(M)) �LT S◦ LTS◦(M◦) .
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3.3 Abstract Probabilistic Semantics

We use the Interval Discrete-Time Markov Chain [3,4] to define the probabilistic
semantics of an abstract model.

Definition 13 (IMC). An IMC is a tuple (S, P−, P+, s), where: S ⊆ S(Σ)
and s ∈ S are a countable set of states and the initial state; P−, P+ : S →
PDistr(S) are the lower and upper probability transition function s.t. ∀s′, s′′ ∈
S, P−(s′)(s′′) ≤ P+(s′)(s′′) and P−(s, S) ≤ 1 ≤ P+(s, S) .

Here, P (s′)(s′′) and P+(s′)(s′′) define intervals of probabilities, that represent
lower and upper bounds for the transition probabilities of moving from s′ to s′′.
In the following we use MC◦ to denote the universe of IMCs.

On a IMC, for any state s, there is a choice for an admissible distribution
yielding the probabilities to reach successor states. A distribution is admissible
for an IMC mc◦ = (S, P−, P+, s0) and a state s ∈ S, iff, ∀ s′ ∈ S :
P−(s)(s′) ≤ ρ(s′) ≤ P+(s)(s′). We use ADistrmc◦(s) for the admissible
distributions for s and mc◦.

The notion of path for IMC is analogous to that presented for DTMC and we
use therefore the same notation.

Definition 14 (Scheduler). Let mc◦ = (S, P−, P+, s0) be an IMC. A sched-
uler is a function S : FPaths(S) �→ ADistrmc◦(πlast) for each path π ∈
FPaths(S). We use Adv(mc◦) for the set of schedulers on mc◦.

Given a scheduler S ∈ Adv(mc◦) the probability space over paths can be defined
analogously as for DTMC (see Definition 4). Thus, P S

s stands for the probability
on an IMC starting from the state s w.r.t. the scheduler S.

To relate a DTMC to its abstract counterpart IMC we introduce the concept
of best abstraction of a DTMC. As for LTS, the derived probabilities are exact.

Definition 15 (Best Abstraction of DTMC)
Let αMC : MC �→ MC◦ s.t. αMC((S, P, s0)) = ((S, P−

α , P+
α , s0)) where,

∀ s′, s′′ ∈ S, P−
α (s′, s′′) = P+

α (s′, s′′) = P (s′, s′′).

In the style of [12,13], we introduce an approximation order �MC◦ .

Definition 16 (Order on IMC). Let mc◦i = (Si, P
−
i , P+

i s0,i), i ∈ {1, 2}, two
IMC. Given two states si ∈ Si, i ∈ {1, 2}, s1 �MC◦ s2 (s2 simulates s1) iff
(i) s1 = s2 and (ii) ADistrmc◦1

(s1) ⊆ ADistrmc◦2
(s2).

We say that mc◦1 �MC◦ mc◦2 iff s0,1 �MC◦ s0,2.

3.4 Derivation of Abstract Markov Chain Semantics

We define the abstract probabilistic translation function H◦ : LT S◦ → MC◦.
The abstract LTS reports on transitions the number of the rule which is applied
and the interval representing a possible range for its rate. From this kind of
information, both lower and upper bounds for the probabilities of moving from
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a state to another can be calculated. Following the guidelines of the derivation of
the DTMC from the concrete LTS, we introduce R◦ : S×S �→ I, and E◦ : S �→ I

s.t. R◦(s′, s′′) =
∑

I

t∈TS(s′,s′′) rate◦(t) and E◦(s′) =
∑

I

s′′∈S R◦(s′, s′′).
Intuitively, R◦(s′)(s′′) reports the interval of rates corresponding to the move

from s′ to s′′, while E◦(s′) is the abstract exit rate. Both lower and upper bounds
of the probability of moving from s′ to s′′ can be determined by R◦(s′)(s′′) and
by E◦(s′). For these purposes we need to consider the worst case and best case
scenario, respectively. That is, the transition to be maximised (minimised) takes
as rate value its upper (lower) bound and all the others take their lower (upper)
bound. This reasoning has to be properly combined with the special cases when
max(E◦(s′)) = 0 (the state s′ is stable) or min(E◦(s′)) = 0 (the state s′ is
stable for some values of kinetic constant of some rules).

Definition 17 (Abstract Probabilistic Translation Function). We define
H◦ : LT S◦ → MC◦ such that H◦((S,→◦, s0)) = (S, P−, P+, s0), where
P−, P+ : S → PDistr(S) are computed, for each s′ ∈ S, as follows:

– if max(E◦(s′)) = 0, then P+(s′)(s′′) = P−(s′)(s′′) = 0, for each s′ �= s′′

and P+(s′)(s′) = P−(s′)(s′) = 1;
– if max(E◦(s′)) > 0, then

(a) if min(E◦(s′)) = 0, then P+(s′)(s′) = 1 and P−(s′)(s′) = 0
(b) for each s′′, if min(R◦(s′, s′′)) = 0, then P−(s′)(s′′) = 0 else

P−(s′)(s′′) = min(R◦(s′, s′′))/max(E◦(s′)) − max(R◦(s′, s′′)) +
min(R◦(s′, s′′))

(c) for each s′′, if max(R◦(s′, s′′)) = 0, then P+(s′)(s′′) = 0 else
P+(s′)(s′′) = max(R◦(s′, s′′))/min(E◦(s′)) − min(R◦(s′, s′′)) +
max(R◦(s′, s′′)).

The following theorems states the soundness of H◦ w.r.t. the approximation
order �MC◦ , and that αMC ◦ H = H◦ ◦ αLT S .

Theorem 3. Let lts◦i = (Si,→◦
i, s0,i), i ∈ {1, 2}, two abstract LTS.

If lts◦1 �LT S◦ lts◦2 then H◦(lts◦1) �MC◦ H◦(lts◦2).

Theorem 4. Let M ∈M , αMC(H(LTS(M))) = H◦(αLT S(LTS(M))) .

3.5 Probabilistic Model Checking of Interval Markov Chains

By realizing probabilistic model checking on an abstract model we compute lower
and upper bounds for the concrete reachability probability of all the abstracted
models. On IMCs the computation of reachability probabilities considers the
minimum and maximum probabilities w.r.t. all the schedulers, giving under and
over approximations (for details see [5]).

Definition 18 (Reachability Probability). Let mc◦ = (S, P−, P+, s0) be an
IMC. The lower and upper bound of the probability of reaching a state satisfying
a propositional symbol A ∈ AP , starting from s ∈ S, are defined as follows:
Reach−

A,mc◦(s) = inf S∈Adv(mc◦)P
S
s ({π ∈ C(s) |π[i] � A for some i ≥ 0}) ;

Reach+
A,mc◦(s) = supS∈Adv(mc◦) P S

s ({π ∈ C(s) |π[i] � A for some i ≥ 0}) .
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Theorem 5. Let mc◦i = (Si, P
−
i , P+

i , s0,i), i ∈ {1, 2}, two IMC and si ∈ Si,
i ∈ {1, 2}, two states. If s1 �MC◦ s2 then ∀A ∈ AP :

Reach−
A,mc◦2

(s2) ≤ Reach−
A,mc◦1

(s1) ≤ Reach+
A,mc◦1

(s1) ≤ Reach+
A,mc◦2

(s2).

The Theorems 3, 4 and 5 show that the IMC, derived from the abstract LTS,
gives conservative bounds for probabilistic reachability properties.

Example 2. We consider the model of Example 1 but, in this case, we assume
that we are not sure about the kinetic rate of each rule, but we only estimate the
interval in which they lie in. For instance, we consider M◦ = (R,K◦, s0) where
R and s0 are the same of Example 1, while K◦ = {k◦

1 = [1, 5], k◦
2 = [1, 5]}.

Figure 2 shows the derived LTS◦(M◦) and H◦(LTS◦(M◦)), where the state
space S is the same of Example 1. By computing the probability of obtaining at
least two complexes XY , we obtain [4/104, 1/2]×I [1/51, 1/3] = [1/1326, 1/6].
This result shows that, even if the rates of the reactions are not precise, we have
the same behaviour of Example 1. The concentration of reagent W makes the
degradation more likely to happen than the binding of reagent X and Y .

Fig. 3. LTS◦(M◦) and H◦(LTS◦(M◦))

4 Case Study

We briefly present the application of the proposed approach to a model of
tumor growth proposed by Villasana and Radunskaya and studied with Delay
Differential Equations (DDEs) in [6].

Tumor growth is based on cell divisions (or mitosis). The cell cycle is the
process between two mitosis, and it consists of four phases: the G1 phase (a
resting phase or gap period) called pre-synthetic phase, the S phase where the
replication of DNA occurs, the G2 gap period, called the post-synthetic phase,
and the mitosis phase M in which the cells segregate the duplicated sets of
chromosomes between daughter cells. The three phases G1, S, and G2 constitute
the pre-mitotic phase, also called interphase.

The simplest model proposed in [6] considers two populations of tumor cells:
the population of tumor cells during cell cycle interphase, and the population of
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tumor cells during mitosis. Such a model can be expressed as the following set
of reactions:

R = {R1 : TI
a1−→ TM , R2 : TM

a4−→ 2TI , R3 : TI
d2−→ , R4 : TM

d3−→ }

where TI and TM are tumor cells in interphase and in mitosis, respectively.
Reaction R1 represents the passage of a tumor cell from the interphase to the
mitosis phase, reaction R2 represents the mitosis, and reactions R3 and R4

represent tumor cell death.
Let d be the rate at which mitotic cells disappear, namely d = d3 + a4.

Figure 4 shows the results of the analytical study of the DDEs model, by setting
the parameters a4 and d2 to 0.5 and 0.3, respectively, and by varying a1 and
d. There are two regions. The region in which the tumor grows is R-I, while
in R-II both kinds of tumor cells disappear. A concrete probabilistic model of
tumor growth could be trivially obtained from reactions R. We have constructed
three abstract models of tumor growth M◦

1 , M◦
2 and M◦

3 by replacing rates in
the reactions with intervals. Actually, in all the three models we have replaced
a1 with [0.8, 0.9], a4 with 0.5•, d2 with 0.3•. As regards d3, we have replaced
it with [0.05, 0.1], [1, 1.4] and [0.005, 2] in M◦

1 , M◦
2 and M◦

3 , respectively. This
corresponds to consider a region in R-I, a region in R-II and a region across the
line separating R-I and R-II (see Figure 4). Moreover, we have considered an
initial population consisting of 10 tumor cells in interphase and 10 tumor cells
in mitosis.

Formally, M◦
i =(R,K◦

i , s0), with i ∈ {1, 2, 3}, where s0 = {(TI , 10), (TM , 10)},

K◦
i =[[0.8, 0.9]; 0, 5•; 0, 3•; di

3], where d1
3 =[0.05, 0.1], d2

3 = [1, 1.4], d3
3 = [0.005, 2].

In order to perform model checking on the abstract model we have developed
a translator [14] of abstract MSR models into equivalent MDP models (by
following the extreme distribution approach of [5]) that invokes PRISM [15]

Fig. 4. The regions which describe the different behaviours of the DDEs model by
varying parameters a1 and d
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Fig. 5. Model checking results of Reach(TM = x) in, from left to right, M◦
1 , M◦

2 , M◦
3

for the verification of the properties of interest on the MDP model. Moreover,
to obtain a finite MDP, we have limited the number of states of the model to
104 by applying standard abstraction techniques.

In Figure 5 we show the results of model checking of property Reach(TM = x)
in M◦

1 , M◦
2 and M◦

3 by varying x. In M◦
1 both the minimum and the maximum

probabilities tend to zero for small values of x while they are both equal to 1
for values greater or equal to 10 (the initial value of TM ). In M◦

2 it holds the
opposite. In M◦

3 we have that both probabilities are equal to 1 when x is 10, but
they tend to the interval [0, 1], namely to complete uncertainty, both for greater
and smaller values of x.

The obtained results agree with the analytic ones. In fact, the results on M◦
1

suggest tumor growth, those on M◦
2 suggest tumor decay while those on M◦

3

leave uncertainty.
Our approach is more precise with respect to analytic studies as it looks

at all possible behaviours of the modeled system, rather than a single average
behaviour. Moreover, a discrete probabilistic semantics is considered, instead of
a continuous deterministic one.

5 Related Work

The abstraction of DTMC probabilistic semantics in terms of IMC is presented
in [5,16,17,18,19]. In the context of formal studies of biological systems, in [20,21]
abstract interpretation techniques are used to coarse-grain a system model and
to perform static analyses, respectively.

Most of the above techniques differ substantially from our application. In
particular, their goal is to address the state-explosion problem, e.g. to obtain a
smaller abstract model by collapsing sets of concrete states into abstract states.
An abstract model is thus derived from a single concrete model. Instead, we
use abstraction to formalize uncertainty, representing with an abstract model an
infinite set of concrete models.

Different kinds of abstraction of probabilistic semantics are proposed
in [22,23], where abstract interpretation is applied to probabilistic programs
and concurrent constraint programs, respectively.
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Many approaches to uncertain parameter tuning and parameters synthesis
are present in the literature. The problem is examined in [24,25] and [26] for
deterministic, continuous-state and discrete-state respectively, semantics. In [27]
the problem is approached by statistical model checking, while both, simulation
traces based, parameter tuning and model revision are considered in [28].

The closest approach to ours is presented in [12], where a systematic technique
for abstracting a set of DTMC, each representing a concrete experiment, is
proposed. Their abstraction approximates the information about the multiplicity
of reagents present in a solution by means of intervals of integers.

6 Conclusion

In the paper we consider models of biological systems defined by Multiset
Rewriting where rewriting rules, corresponding to reactions, are enriched by
real valued kinetic constraints. Our framework allows probabilistic systems
with uncertain kinetics to be exhaustively model checked without any artificial
assumption, obtaining conservative probabilistic bounds as result.

The computational complexity of the proposed approach is exponential in the
number of uncertain parameters. The cause of this is the translation of IMC to
MDP that requires for each state the computation of all the extreme distributions
that grow exponentially with the number of uncertain parameters.

We plan to investigate the application of parametric DTMC [29,30] to perform
parameters tuning, and the extension of our approach to CTMC, by using the
theory presented in [31] where uniform CTMC [32] is used.
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Abstract. This paper is dedicated to candidate abstractions to cap-
ture relevant aspects of the integer weighted automata. The expected
effect of applying these abstractions is studied to build the deterministic
reachability graphs allowing us to semi-decide the positivity problem on
these automata. Moreover, the papers reports on the implementations
and experimental results, and discusses other encodings.

1 Introduction

Weighted automata is a formalism widely used in computer science for applica-
tions in images compression [27,28], speech-to-text processing [36,13] or discrete
event systems [19]. These large application areas make them intensively studied
from the theoretical point of view [31,38,25,30,15,29]. The expressive power of
these automata is high enough so that many natural questions are not decidable.
Among them the problem to know whether for a given max/+-automaton A,
every word has a positive cost, called the positivity problem, was shown to be
undecidable [31]. This problem is of special interest because systems/components
comparisons modelled by max/+-automata can be based on or reduced to it.

The question we are interested in is whether the automatic verification of
certain properties taking costs into account is possible on max/+-automata. As
the semantics of max/+-automata model is described by an infinite structure,
there is a need of finite abstractions of this semantics to perform analysis fully
automatically. Here the problem of handling costs becomes apparent. Obviously,
this kind of finite abstractions does not exist for max/+-automata, at least not
for the cost-based verification problem investigated. Given a max/+-automaton,
our research focuses on methods for semi-deciding whether in the infinite struc-
ture there are a word and a reachable configuration containing some final state
reachable from an initial state of the max/+-automaton, with cost −1 at most.

After introducing preliminary notions and recalling useful results on max/+-
automata (Section 2), we briefly explain how the positivity problem can be
encoded into a reachability problem (Sect. 3). Next we explain how to tackle
this reachability problem using two semi-decision approaches. The first one (de-
veloped in Sect. 4) is based on a configuration space exploration using a pruning
property to reduce the search. The second one (exposed in Sect. 5) uses a rewrit-
ing encoding of the problem and applies approximation techniques developed in

O. Bournez and I. Potapov (Eds.): RP 2009, LNCS 5797, pp. 79–92, 2009.
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the rewriting theoretical framework. We report on experiments with the two
semi-algorithms that were implemented (Sect. 6), in particular when bounding
the depth of search. Section 7 contains a discussion on possible ways to tackle
remaining unsolved instances and gives some perspectives before concluding in
Sect. 8.

Well-structured transition systems, or WSTSs, are a general family of transi-
tion systems where general decidability results exist [17,1]. It turns out that it is
possible to give to many classes of models a structure of WSTSs [18]. We want
to emphasise the fact that it is not the case for max/+-automata. Consequently,
thanks to the expressivity results in [7], the determinisation reachability graphs
corresponding to max/+-automata do not give rise to systems sitting inside some
level of the symbolic transition systems (STS) hierarchy in [26].

In a verification context, weighted (priced) systems have been studied in many
recent works (see e.g.,[3,12,32,2]). The central underlying problem of these works
is to compute the optimal weight of a path to reach a given configuration (from an
initial configuration); the difficulties are due to timed constraints (for locations
and/or transitions). In this paper, the main difficulty lies in the quantification
for all words u.

2 Preliminaries

In this paper, Σ denotes a finite alphabet, i.e. a finite set of symbols whose
elements are called letters. We assume that the reader is familiar with basic
language theory notions as word, language, etc. In the paper, the words weight
and cost are indistinctly used.

We denote by Z the set Z∪{−∞}. Addition and max-function are classically
extended to Z by: for every x ∈ Z, −∞+x = x+−∞ = −∞ and max(x,−∞) =
max(−∞, x) = x.

Definition 1. A max/+-automaton A over Σ is a quintuplet A=(Q, Σ, E, I, F )
where Q is the finite set of states, E ⊆ Q×Σ × Z×Q is the set of transitions,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. Moreover,
A satisfies the following condition: if (p, a, c, q) and (p, a, d, q) are in E, then
c = d.

Figure 1 gives two examples of max/+-automata. Initial states are represented
with an input arrow, and final states with a double circle.

A path π of a max/+-automatonA is a finite sequence π = (p0, a0, c0, q0), (p1,
a1, c1, q1), . . . , (pn, an, cn, qn) of transitions of A such that for every 0 ≤ i < n,
qi = pi+1. If we add the conditions: p0 is an initial state, qn is a final state, then
we call π a successful path. The label lab(π) of the path π is the word a0a1 . . . an,
and the cost of the path π is the sum of the ci’s: costA(π) =

∑n
i=0 ci. The cost

of a word u, denoted A(u), is the maximum of all costs of successful paths of
label u: A(u) = max{costA(π) | lab(π) = u}.

Example 1. For instance, for the max/+-automaton Aexe1 in Fig. 1, the word
baaab labels the successful paths (q1, b, 1, q2), (q2, a, 2, q1), (q1, a, 0, q1), (q1, a, 0, q1),
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q1start q2

b, 1

a, 2

a, 1a, 0

q3start q5

q4start

a, 1

b, 3

b, 3

a, 1

a, 1

Fig. 1. max/+-automata Aexe1 and Aexe2

(q1, b, 1, q2), (q1, b, 1, q2), (q2, a, 1, q2), (q2, a, 2, q1), (q1, a, 0, q1), (q1, b, 1, q2) and
(q1, b, 1, q2), (q2, a, 1, q2), (q2, a, 1, q2), (q2, a, 2, q1)(q1, b, 1, q2). Therefore Aexe1

(baaab) = 6.

Notice that since u is finite, there are finitely many successful paths of label
u. A max/+-automaton is finitely ambiguous if there exists an integer k such
that every word accepted by the automaton is the label of k successful paths, at
most. In Fig. 1, Aexe2 is finitely ambiguous, whereas Aexe1 is not: the word banb
is accepted by n− 1 different successful paths. We end this section by recalling
some useful results on decision procedures for finite (integer weighted) automata
exploited in this paper.

Theorem 1. Given a max/+-automaton A, it is undecidable to test whether
for every u ∈ L(A), A(u) ≥ 0 [31], and polynomial time decidable whether for
every u ∈ L(A), A(u) ≥ 0 if A is finitely ambiguous [25,38].

3 Reachability Encoding

Given an max/+-automaton A, while it is undecidable to test whether for every
u ∈ L(A), A(u) ≥ 0 [31], we define a determinisation-based abstraction of
the model, leading to graphs for which reachability can be semi-decided. More
precisely, in this section, the operational semantics of a max/+-automaton A
over Σ is given as a determinisation reachability graph where for a given word
in Σ∗, the corresponding configuration contains the information on maximal
costs for reaching states of A.

Let A = (Q, Σ, E, I, F ) be a max/+-automaton. The determinisation graph
G(A) = (V, δ, s0, K) of A is defined by

– V = Z
Q

, s0 ∈ V and s0(p) = 0 if p ∈ I, and s0(p) = −∞, otherwise;
– δ ⊂ (V ×Σ)×V is the function defined δ(s, a) = s′ iff s′(p) = max{s(q)+ c |

(q, a, c, p) ∈ E}, with the convention that max ∅ = −∞;
– K = {s ∈ V | ∃q ∈ F, s(q) �= −∞ and ∀p ∈ F, s(p) < 0} ⊆ V .
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1start 3 2
b, 1 b, 1

b,−1 a, 1

b, 1

b,−1

Fig. 2. max/+-automata Aexe3

Example 2. Let us consider for instance the automaton Aexe3 depicted in Fig. 2.
An element s of Z

{1,2,3}
is denoted (x, y, z) if s(1) = x, s(2) = y and s(3) = z.

G(Aexe3) = (Z
{1,2,3}

, δexe3, (0,−∞,−∞), Kexe3) with Kexe3 = {(x, y, z) | z <
0 and z �= −∞}. A part of δexe3 is depicted in Fig. 3 (at this stage, we are not
concerned with dashed arrows).

(0,−∞,−∞)

(−∞,−∞,−∞)

(−∞,−1, 1)

(−∞, 0,−∞)

(−∞, 0, 0)

(−∞, 1,−∞)

(−∞, 1, 1)

b

b

a

b

a

b

a

a

�
a, b

�
Fig. 3. A part of G(Aexe3)

The automaton A is said to be non-positive if in G(A) there exists a path
from s0 to an element of K.

Proposition 1. Let A = (Q, Σ, E, I, F ) be a max/+-automaton. There exists
u ∈ L(A) such that A(u) < 0 if and only if A is non-positive.

Proposition 1 is a direct consequence of the following lemma. The reader familiar
with max/+-automata may notice that this lemma is a direct consequence of
matricial presentation of max/+-automata.

Lemma 1. Let u ∈ Σ+, A = (Q, Σ, E, I, F ) be a max/+-automaton and G(A) =
(V, δ, s0, K) its determinisation graph. There is a path in G(A) from s0 to s la-
belled by u if and only if for every p ∈ Q,

s(p) = max{costA(π) | π is a path in A from an initial state to p}.

Proof. We will prove the lemma by induction on the length of u.
Assume that u ∈ Σ and that δ(s0, u) = s. By definition of δ, for every state

p, s(p) = max{s0(q)+ c | (q, a, c, p) ∈ E}. Therefore and by definition of s0, s(p)
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is exactly the maximal value of all transition weights from an initial state to p,
proving the lemma for u’s in Σ.

Assume now that the lemma is true for all words of length k ≥ 1. Let u ∈
Σk+1. There exists v ∈ Σk and a ∈ Σ such that u = va. Let s1 = δ(s0, v). Each
path π in A from an initial state to p can be decomposed into π = π1, (q, a, c, p)
where π1 is labelled by v and (q, a, c, p) ∈ E. Since costA(π) = costA(π1) + c,
one has

s(p) = max{s1(q) + c | (q, a, c, p) ∈ E}
= max{max{cost(π1) | π1 from an initial state to q}+ c | (q, a, c, p) ∈ E}
= max{max{cost(π1) + c | π1 from an initial state to q} | (q, a, c, p) ∈ E}
= max{cost(π1) + c | π1 from an initial state to q and (q, a, c, p) ∈ E}
= max{costA(π) | π is a path in A from an initial state to p}.

Consequently, the lemma is true for words of Σk+1, concluding the proof.

4 State Space Exploration

We are interested in semi-deciding whether a max/+-automaton A is non-
positive. Clearly, this is a matter of walking – by classical algorithms like depth-
first search, random-walk, etc. – the determinisation graph G(A) defined above,
until either a configuration in K is reached or there is an argument to prove
such a configuration can no longer be found. Unfortunately, the determinisation
reachability graph is generally infinite, and it is not easy to determine when it
is safe to stop. Consequently, these algorithms may not terminate and can only
conclude that A is non-positive but, when G(A) has infinitely many reachable
configurations, they cannot conclude that A is not non-positive.

While reachability seems to a be a good tool to find configurations in K, for
practical problems the determinisation graph usually has far too many configu-
rations to calculate. To alleviate this problem, we exploit a pruning configuration
approach. For that there is a need to introduce the relation � over configura-
tions of a determinisation graph G(A) of an max/+-automaton A. We define
this relation by: s1 � s2 iff for every state p in A, s1(p) = −∞ iff s2(p) = −∞
and s1(p) ≤ s2(p) otherwise. The pruning is based on the following property.

Proposition 2. Let A = (Q, Σ, E, I, F ) be a max/+-automaton and G(A) =
(V, δ, s0, K) its determinisation graph. Let s1, s2 ∈ Z

Q
such that s1 � s2. Then

if a configuration s′2 in K is reachable in G(A) from s2, then there also is a
configuration s′1 in K reachable from s1.

Proposition 2 can be proved by a direct induction using the following lemma.

Lemma 2. Let A = (Q, Σ, E, I, F ) be a max/+-automaton and G(A) = (V, δ,

s0, K) its determinisation graph. Let s1, s2 ∈ Z
Q

such that s1 � s2. Then for
every letter a ∈ Σ, δ(s1, a) � δ(s2, a).
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Proof. Notice first that δ is a function defined on V ×Σ, thus δ(s1, a) and δ(s2, a)
both exist.

Now δ(s1, a)(p) = −∞ iff {q | s1(q) �= −∞}∩ {q | ∃(q, a, c, p) ∈ E} = ∅. Since
s1 � s2, {q | s1(q) �= −∞} = {q | s2(q) �= −∞}. Therefore, δ(s1, a)(p) = −∞ iff
δ(s2, a)(p) = −∞. Moreover, for every state p,

δ(s1, a)(p) = max{s1(q) + c | (q, a, c, p) ∈ E}
≤ max{s2(q) + c | (q, a, c, p) ∈ E}
= δ(s2, a)(p),

proving the lemma.

While bounding the depth, Proposition 2 leads to the search based algorithm
depicted in Fig. 4. In this algorithm, δ and K are related to the determinisation
graph of A. Notice too that a Return instruction ends the execution of the
algorithm. Integer k is the bound of the number of computed configurations of
the determinisation graph of A. Set C is the set of computed accessible con-
figurations. Set L encodes configurations to explore. Line 08, the function Get
takes an element of L: the way this function is implemented may lead to different
search approaches (depth first search, breadth first search, etc.). Next the graph
is classically computed but only for configurations s such that there is no s′ ∈ C
such that s′ � s (notice that � is reflexive). The procedure ends at Line 06
if there is no more configuration to visit: K is not reachable. The algorithm
then returns 1, indicating that for all u ∈ Σ+, A(u) ≥ 0. The procedure ends
at Line 10 if a configuration of K is reachable. Then the algorithm returns −1
indicating there exists u such that A(u) < 0. At Line 18, the algorithm returns
0, indicating that it cannot conclude whether A is non-positive or not.

For instance, let consider the max/+-automaton depicted in Fig. 2. The ex-
ploration algorithm computes the graph depicted in Fig. 3 where dashed arrows
represent the � relation. On this example, the algorithm stops after a few steps
and returns 1.

Algorithm Name: Explore
Input: A, k ∈ N

Local Variables: L, C finite sets,
Begin
01. Compute C := ∅ 10. Return −1
02. Compute s0 11. EndIf
03. Compute L := {s0} 12. If not exists s′ ∈ C s.t. s′ � s
04. While (k ≥ 0) 13. C := C ∪ {s}
05. If C ∩ K = ∅ and L = ∅ 14. L := L ∪ {δ(s, a) | a ∈ Σ}
06. Return 1 15. EndIf
07. EndIf 16. k := k − 1
08. Get s ∈ L 17. EndWhile
09 . If C ∩ K �= ∅ 18. Return 0
End

Fig. 4. Exploration algorithm
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5 Rewriting Techniques Approach

Rewriting techniques are also well-suited for performing reachability analysis.
In particular, reachability analysis allows verifying safety properties on critical
systems: Java programs [35,16], cryptographic protocols [20] or Java Bytecode
programs [9].

For the use of such techniques, rewriting semantics are defined for a given
reachability problem, and the reachability analysis is performed from a rewriting
point of view. Section 5.1 describes the rewriting model we use for determinisa-
tion graphs, and Section 5.2 explains how to show that an max/+-automaton is
positive.

5.1 Rewriting Model for Determinisation Graphs

Focusing on the abstraction chosen in this paper, we specify the determinisation
graph G(A) of a given automaton A as follows: its states are represented by
terms and its transition relation is then compiled into rewrite rules. Integers are
manipulated in their peano representations, i.e., using the constructors s (for
successor), p (for predecessor) and 0. For example, 1 is represented by the term
s(0) and −2 by p(p(0)).

Thus, a configuration of a determinisation graph G(A) is specified by a term
of the form run(w1, . . . , wn) where n is the number of states of A, wi is either a
peano integer or −∞. Considering this representation, the initial configuration
(0,−∞,−∞) of the determinisation graph in Fig. 3 is specified by the term
run(0,−∞,−∞).

The transition relation of a determinisation graph G(A) is then specified by a
term rewriting system (TRS), i.e., a set of rewrite rules. The algorithm for gener-
ating such a TRS is simple. For a given max/+−automaton A = (Q, Σ, E, I, F ),
we generate a set of rules per symbol of Σ by anticipating every possible scenario.

For instance, concerning Aexe3 of Fig. 2 and the letter b, b can be read from
the states 1, 2 and 3. So, a configuration of the determinisation graph when
b is reading is a term of the form run(t1, t2, t3) where xi’s are variables, t1 ∈
{−∞, s(x1), p(x1)}, t2 ∈ {−∞, s(x2), p(x2)} and t3 ∈ {−∞, s(x3), p(x3)}. For
each of these terms, according to the transition relation of G(Aexe3), a successor
term can be defined.

Example 3. For example, let run(s(x1),−∞, p(x3)) be one of the forms men-
tioned right above. According to the G(Aexe3) transition relation, the following
successor term can be set: run(−∞, +(s(x1), p(0)), max(+(s(x1), s(0)), +(p(x3),
p(0)))). Consequently, one can define the rewrite rule

run(s(x1),−∞, p(x3)) → run(−∞, +(s(x1), p(0)), max(+(s(x1), s(0)), +(p(x3), p(0)))).

Doing so for each letter of Σ and for each form of terms, the whole transition
relation can be defined as a TRS R. In addition to these rules, those concerning
the function max and the addition + between two peano integers complete the
set of rewrite rules.
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5.2 Reachability Analysis

The rewriting model is now defined. Since we face systems whose number of
states is potentially infinite, a complete and exact rewriting analysis is in general
impossible. A well-suited approach as proposed in [22] is to compute an over-
approximation of the reachable terms by rewriting – with a given set of rewrite
rules R – from an initial set of terms E.

Initially, terms and subterms of terms in E are split into equivalence classes.
For example, one can use tree automata to define equivalence classes where
classes are actually the states of these automata. We refer the interested reader
to [14,23] for more detail on tree automata and theoretical results on this topic.
The technique in [22] enhances and creates new equivalence classes of terms and
subterms by rewriting. If a term t is in an equivalence class C and t′ is reachable
by rewriting from t, then t′ is added into the equivalence class C. Moreover, new
equivalence classes may be added if there are subterms of t′ which are not in
existing equivalence classes. One proceeds in this way for all equivalence classes
defined.

Approximations are done by manipulating equivalence classes of terms. In [21],
Genet uses equations for merging equivalence classes. Let c = c′ be an equation
where c and c′ are two patterns, i.e., two terms that may contain variables.
Let also C and C′ be two equivalence classes of terms built with the technique
described in [22]. If there exists a solution of c in C (resp. C′) and a solution of
c′ in C′ (resp. C), then the two equivalence classes are merged.

Example 4. For example, let consider the equation s(x) = s(s(x)) and the equiv-
alence classes C0, C1, C2, C3 and C4 such that Ci = {s(i)(0)}. Since s(0) is in
C1 and s(s(0)) is in C2, using the equation we obtain that s(0) = s(s(0)). Con-
sequently, C1 and C2 are merged into C1,2. The same process can be applied for
C3 and C4. Thus, the merging of C3 and C4 results in the equivalence class C3,4.
Once again, s(s(0)) and s(s(s(0))) are respectively in C1,2 and C3,4. Using the
given equation, the process results in a single equivalence class denoted C1to4.
Finally, using the given equation over the five equivalence classes gives rise to
only two equivalence classes: C0 and C1to4.

As soon as the set of equivalence classes is stable by equation, rewriting is per-
formed anew, and so on. The computation stops when all equivalence classes are
closed by rewriting, i.e., when a fix-point set of terms is computed. Thus, the
final set of terms is an over-approximation of the set of reachable terms.

For performing a reachability analysis, we can check on the fix-point set of
terms if a pattern has a solution. If no solution exists then we can conclude that
no term matching such a pattern is reachable from an initial set of terms E by
rewriting with the given TRS R.

Example 5. For example, in Fig. 2, the state 3 is the final state of Aexe3. From
the rewriting model, if we obtain a fix-point set of terms E′, we have to check
whether the patter run(x, y, p(z)) has a solution. In the negative case, we can
conclude that no path in the determinisation graph has a negative cost. And,
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consequently, we also conclude that for every u ∈ L(Aexe3), Aexe3(u) ≥ 0.
Whereas in the positive case, no conclusion can be raised. Indeed, the solution
of the pattern may come from a side-effect of the approximation.

Section 6 reports on the implementation and experimental results for the pro-
posed rewriting model. Notice that the rewriting-based encoding and analysis
are used when the exploration algorithm in Fig. 4 returns 0. Obviously, other
rewriting models and other rewriting approximations can be defined.

6 Experiments

In order to evaluate our approaches, we randomly generate non-deterministic fi-
nite max/+-automata using the following method: given a set of states {1, . . . , n},
for each letter a and each i, j, there is a fixed probability ptransition to have a transi-
tion of the form (i, a, c, j). If such a transition exists, its weight is uniformly picked
up between −cmax and cmax. Moreover, 1 is the unique initial state, n is always a
final state, and there is a fixed probability pfinal for each other state to be final. If
a generated automaton accepts the empty language, it is rejected. We have done
several tests with different values of cmax, ptransition and pfinal. Table 1 reports on
results obtained with cmax = 3, ptransition = 0.3 and pfinal = 0.1. For each value
of n from 2 to 20, we randomly generate 1000 automata. Line n is the number of
states of the automata. We first run the Explore algorithm developed in Sec. 4
with k = 10n. Line pos. (resp. neg.) reports on the proportion of inputs when the
algorithm returns 1 (resp. −1). Line ?? indicates the number of automata (out
of 1000 automata generated for each n) for which the algorithm returns 0. Line
depth reports on the average number of computed reachable configurations in the
Explore algorithm (when it returns 1 or −1).

When the first algorithm gives the inconclusive results, we apply the second
rewriting approximation approach to them. Experiments have been led for n =
2, 3, 4 and 5 using equations allowing to split integers into 13 equivalence classes:
< −5, = −5, = −4, = −3, = −2, = −1, = 0, = 1, = 2, = 3, = 4, = 5
and > 5. For example, the equivalence class < −5 is defined by the equation
p(p(p(p(p(p(x)))))) = p(p(p(p(p(p(p(x))))))).

Table 1 reports at line inc. on the number of automata that are not shown
to be positive using the rewriting approximation technique among inconclusive

Table 1. Experimental results

n 2 3 4 5 6 7 8 9 10 12 14 16 18 20
pos. 0.34 0.23 0.15 0.1 0.1 0.12 0.13 0.16 0.21 0.27 0.33 0.40 0.42 0.6
neg. 0.65 0.74 0.82 0.86 0.87 0.85 0.83 0.81 0.77 0.71 0.66 0.59 0.57 0.54
depth 2.45 3.83 4.66 5.92 6.68 6.88 7.14 7.10 7.40 7.35 7.46 7.64 7.47 7.37
?? 4 21 25 39 27 28 27 22 21 23 8 8 5 4
TRS 36 43 58 79 125 296 554 1068 2094 8242 32822 131130 524350 ≈221

inc. 0 4 6 10 6 T T T T T T T T T
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analyses from the pruning approach. The result T points out that the implemen-
tation of the rewriting approach fails to answer because of a stack overflow. This
table also gives details (line TRS) about the average number of rewrite rules
generated for the rewriting specifications.

7 Discussions and Perspectives

Let consider the max/+-automaton Aexe4 depicted in Fig. 5. Notice that Aexe4

is not non-positive.

1start 2
b, 2

a, 1

a, 3

b,−1

a,−1

b, 2

Fig. 5. max/+-automaton Aexe3

For this automaton, the exploration will never end since G(Aexe4) has in-
finitely many configurations of the form (−n, 2n), which are pairwise incompa-
rable by �. For more difficult reasons, similar to those given in [10], the approx-
imation technique can not conclude either.

We discuss and propose several ways to handle remaining intractable cases.

7.1 Counter Systems Encoding

Presburger logic is the first order logic over (Z, +, =). A n-counter-system C is
a tuple (Q, T, P ) where Q is a finite set of states, P is a finite set of Presburger
formulas with 2n free variables, and T is a finite set of elements of the form
(p, ϕ, q) where ϕ ∈ P . For every ϕ(x1, . . . , xn, y1, . . . , yn) ∈ P we define the rela-
tion →ϕ on Z

n × Z
n by: (a1, . . . , an) →ϕ (b1, . . . , bn) iff ϕ(a1, . . . , an, b1, . . . , bn)

is true. Finally, given the set S0 ⊆ Z
n, the set Post∗C(S0) (resp. Pre∗C(S0))

is the set of s ∈ Z
n such that there exist w = w1 . . . wk ∈ P ∗ (wi ∈ P ),

s0 ∈ S0 and s1, . . . , sk ∈ Z
n, where sk = s and for every i, si →wi+1 si+1 (resp.

si+1 →wi+1 si).
It is known [24] that subsets of Z

n that are definable by a Presburger formula
with n free variables are exactly regular subsets of (Zn, +). This nice property,
associated with nice connections to Petri nets, has lean to many works to com-
pute sets of the form Post∗C(S0) or Pre∗C(S0) (see [33] for a recent work with
references), supported by tools as FAST [6], LASH [11] or TReX [4].

We now illustrate how to encode our problem into this model. Let A =
(Q, Σ, E, I, F ) be a max/+-automaton. Without loss of generality we may as-
sume that Q = {1, . . . , n}. We consider the function ψ from Z

Q
into Z

2n defined
as follows: for every s ∈ Z

Q
, ψ(s) is the vector (s1, . . . , s2n) where for every
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ϕb(x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6) :=

y1 = 0 ∧ y4 = 1

∧ ((x4 = 0 ∧ x5 = 0 ∧ x6 = 0) ⇒ (y2 = 0 ∧ y3 = 0 ∧ y5 = 1 ∧ y6 = 1))

∧ ((x4 = 0 ∧ x5 = 0 ∧ x6 = 1) ⇒ (y2 = 0 ∧ y3 = x3 − 1 ∧ y5 = 0 ∧ y6 = 1))

∧ ((x4 = 0 ∧ x5 = 1 ∧ x6 = 0) ⇒ (y2 = x2 + 1 ∧ y3 = x2 + 1 ∧ y5 = 0 ∧ y6 = 0))

∧ ((x4 = 0 ∧ x5 = 1 ∧ x6 = 1) ⇒ (y2 = x2 + 1 ∧ ϕmax(y3, x2 + 1, x3 − 1) ∧ y5 = 0

∧y6 = 0))

∧ ((x4 = 1 ∧ x5 = 0 ∧ x6 = 0) ⇒ (y2 = x1 − 1 ∧ y3 = x1 + 1 ∧ y5 = 0 ∧ y6 = 0))

∧ ((x4 = 1 ∧ x5 = 0 ∧ x6 = 1) ⇒ (y2 = x1 − 1 ∧ ϕmax(y3, x1 + 1, x3 − 1) ∧ y5 = 0

∧y6 = 0))

∧((x4 = 1 ∧ x5 = 1 ∧ x6 = 0) ⇒ (ϕmax(y2, x1 − 1, x2 + 1)

∧ ϕmax(y3, x1 + 1, x2 + 1) ∧ y5 = 0 ∧ y6 = 0))

∧((x4 = 1 ∧ x5 = 1 ∧ x6 = 1) ⇒ ϕmax(y2, x1 − 1, x2 + 1)

∧ ∃z (ϕmax(y3, x1 + 1, z) ∧ (ϕmax(z, x2 + 1, x3 − 1)) ∧ y5 = 0 ∧ y6 = 0))

Fig. 6. Presburger formula

1 ≤ i ≤ n, si = s(i) and sn+i = 0 if si ∈ Z, and si = 0 and sn+i = 1 oth-
erwise. For instance if Q = {1, 2, 3} and s(1) = −1, s(2) = 3 and s(3) = −∞,
then ψ(s) = (−1, 3, 0, 0, 0, 1). Notice first that the max-function is Presburger
definable: z = max(x, y) iff x, y, z satisfy the formula

ϕmax(z, x, y) := ((z = x ∨ z = y) ∧ ((x ≤ y) ⇒ z = y))

Writing exact formulas encoding a generic A is quite long. Since we do not
use this approach and since our goal is just to show how to use it, we provide the
encoding for the automaton Aexe3. One has δexe3(s, b) = s′ iff ϕb(ψ(s), ψ(s′)) is
satisfied, where ϕb is depicted in Fig. 6.

In this context, the non-positivity problem is reduced either to Pre∗C({ψ(s0))}∩
ψ(K) = ∅? or, equivalently, to ψ(s0) ∈ Post∗C({ψ(K))}? where C is the counter
system encoding A. One can also easily verify that ψ(K) is Presburger definable.

7.2 Using max/+ Theory

Another way to improve the approach consists in using theoretical results on
max/+-automata. For instance, a recent work [29] points out new subclasses of
max/+-automata for which the positivity problem is decidable. However, the
proposed constructive proof is far from being effective, and an algorithmic re-
search has still to be done.

Another very interesting direction may be to use results of [34]: for a one-
letter alphabet, many problems becomes decidable. In particular, such results
can be used during the exploration of a determinisation graph. When visiting
a configuration s, for each letter a, one can test with one step whether there
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exists n ≥ 0 such that δ(s, an)∩K �= ∅. It may deeply reduce the exploration for
non-positive max/+-automata. Moreover, we think this approach can be used to
perform a symbolic exploration of the determinisation graph: rather than visiting
each accessible configuration, we would work on infinite sets of configurations
similarly to the counter system encoding presented below.

8 Conclusion

We proposed to exploit abstractions and approximations to semi-decide the posi-
tivity problem over max/+-automata whose determinisation reachability graphs
are infinite state systems. The positivity problem is then reduced to a reacha-
bility problem on these graphs. We developed two semi-decision procedures and
explained how to conclude more often and how to do it efficiently.

The first kind of determinisation-based reachability graphs abstractions to-
gether with pruning technique gives rise to a semi-decision procedure. The ex-
perimental results on thousands of automatically generated max/+-automata
show that when bounding the depth of search in the determinisation graphs, the
algorithm seems to be efficient enough.

The second kind of abstractions is based on the reachability analysis through
rewriting approximations as well as tree automata. The rewriting-based reach-
ability encoding has been applied to the inconclusive cases previously obtained
with the exploration algorithm.

Rewriting approximation techniques were already implemented in [5]. In the
future we plan to integrate integer weighted automata based algorithms into this
tool in order to treat practical applications. Obviously, other rewriting models
and other rewriting approximations can be defined. Moreover, one can propose
an abstraction refinement for rewriting approximations guided by the property
to be verified, as in [8].

Finally, we plan to experiment with other random generators of non-determini-
stic finite automata, for instance using the technique developed in [37].
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Abstract. We consider the verification of algorithms expressed in the
Heard-Of Model, a round-based computational model for fault-tolerant
distributed computing. Rounds in this model are communication-closed,
and we show that every execution recording individual events corre-
sponds to a coarser-grained execution based on global rounds such that
the local views of all processes are identical in the two executions. This
result helps us to substantially mitigate state-space explosion and verify
Consensus algorithms using standard model checking techniques.

1 Introduction

Distributed algorithms are often quite subtle, both in the way they operate and in
the assumptions they make. Formal verification is therefore crucial in distributed
computing. Unfortunately, due to their asynchronous nature, distributed algo-
rithms almost invariably give rise to state-space explosion, severely limiting the
applicability of model checking techniques. This is particularly true for fault-
tolerant algorithms whose correctness relies on elaborate failure hypotheses.

The key to overcome this problem is to make use of the inherently non-
sequential nature of distributed executions and to exploit the causality rela-
tion [4] between events of the execution in order to reduce the number of
executions that have to be analyzed. In this paper we study reductions that
hold for distributed algorithms that are structured in rounds : each process first
sends messages and receives messages sent for the round, and finally makes a
local state transition. More specifically, Charron-Bost and Schiper [1] recently
proposed the Heard-Of (HO) model, a round-based model for fault-tolerant dis-
tributed computing. We formally prove that for verifying interesting properties
for algorithms in this model, it suffices to model executions as infinite sequences
of global rounds. Moreover, rounds in the HO model are communication closed,
hence the medium of communication can be considered as empty at the end
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of each round, and the overall state can be represented just by the collection
of local states for each process. These two observations induce reductions that
go beyond well-known techniques of partial-order reduction [3,11], and that can
indeed justify reductions from infinite-state to finite-state models. We validate
our approach by verifying finite instances of some of the Consensus algorithms
proposed in [1], using a standard explicit-state model checker.

The paper is organised as follows: Section 2 provides a short introduction to
the HO model and defines executions. Section 3 proves the reduction theorem
that establishes a close correspondence between the two representations of exe-
cutions. We present in Section 4 some experiments on model checking Consensus
algorithms in the HO model. Section 5 discusses related work and concludes.

2 The Heard-of Model for Distributed Algorithms

Computations in the HO model are organized in rounds, in which each pro-
cess exchanges messages, takes a step, and then proceeds to the next round.
Without any specific synchronization assumptions, processes execute rounds at
their own pace. In particular, the difference between the numbers of rounds that
two different processes are executing at any given moment may be arbitrar-
ily large. Rounds are communication-closed layers in the terminology of Elrad
and Francez [2]: messages are valid only for the round they were sent in. Thus
the model generalizes the classical notion of synchronized rounds developed for
synchronous systems [7].1

2.1 A Round-Based Computational Model

We suppose that we have a finite, non-empty set Π of process identifiers2 and a
set of messages M . By including a designated empty message in M that processes
use to indicate absence of useful information, we may assume w.l.o.g. that each
process sends some message to every process in Π , in each round. We denote
the cardinality of Π by N > 0, let ⊥ /∈ M be a placeholder indicating that no
message has (yet) been received, and write M⊥ = M ∪ {⊥}. To each p in Π ,
we associate a process specification Procp = (Σp , s0,p ,Sp ,Tp) whose components
are the following:

– Σp is the set of p’s states, and s0,p ∈ Σp is the initial state of process p,
– Sp : N×Σp ×Π → M is the message sending function such that Sp(r , s , q)

denotes the message that p sends to q at round r , given the state s of p, and
– Tp : N × Σp × M Π

⊥ → Σp is the next-state function: Tp(r , s , μ) yields the
successor state of process p at round r , given its current state s and the
partial vector μ = (μq)q∈Π of messages where μq indicates the message that
p received from q at round r , or ⊥ if no message was received.

The collection of process specifications Procp is called an algorithm on Π .
1 Communication-closedness can be ensured in asynchronous settings by buffering

messages which are early, and by discarding messages which are late.
2 When there is no risk of confusion, we simply speak of processes in Π .
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2.2 Executions of HO Algorithms

Each process of an HO algorithm executes an infinite sequence of rounds, which
are numbered consecutively, starting with round 0. At the beginning of each
round r , process p first emits messages to all processes, computed according to
the message sending function Sp . It then waits for messages to arrive for round
r before it executes a state transition according to the next-state function Tp ,
based on its current state and the vector of messages received, and starts a new
round. The heard-of set HO(p, r) for p at round r is the set of processes from
which p receives a message at round r .

Formally, we define executions with respect to a given HO collection

HO : Π × N → 2Π

that specifies, for each p ∈ Π and round r ∈ N, the heard-of set HO(p, r). Pro-
cess p proceeds to round r+1 when it has received messages from the processes in
HO(p, r). We make HO collections an explicit parameter of the definition of exe-
cutions because algorithms are unlikely to work under completely arbitrary HO
collections. Assumptions on the underlying system model and communication
network, such as the degree of synchronism and the failure model, are formally
expressed by communication predicates P ⊆ (Π ×N → 2Π), and the correctness
of an algorithm is asserted relative to a certain communication predicate P . As
discussed in [1], standard failure models with various degrees of synchronism
can be represented in this way. The weaker the communication predicate is, the
more freedom the system has to provide heard-of sets, and the harder it will be
to achieve coordination among processes in the corresponding failure model.

Fine-grained executions. We define two models of execution, whose relation-
ship will be explored in Section 3. The fine-grained model represents events of
individual processes and the way they interleave, and so faithfully models the
asynchronous execution of distributed algorithms. A configuration of an algo-
rithm is a tuple (rd , st , sent , rcv ,msgs):

– rd , st , sent and rcv are arrays indexed by processes where rd(p) ∈ N, st(p) ∈
Σp , sent ⊆ Π , and rcv(p) ∈ M Π

⊥ denote, for process p, its current round, its
local state, the set of processes to which p has sent messages in the current
round, and the partial vector of messages received;

– msgs ⊆ Π×N×Π×M represents the messages in transit: (p, r , q,m) ∈ msgs
if p sent message m at round r to q, but q has not yet received m.

The algorithm starts in the initial configuration c where c.rd(p) = 0, c.st(p) =
s0,p , sent(p) = ∅, and c.rcv(p) = (q ∈ Π �→ ⊥) for all p ∈ Π , and where no
messages are in transit, i.e. c.msgs = ∅.

Configuration c′ is a successor configuration of c if one of the following cases
holds:
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– Transition (c, c′) represents process p sending a message to process q:

q ∈ Π \ c.sent(p), c′.sent = c.sent
(
p := c.sent(p) ∪ {q}

)
,

c′.rd = c.rd , c′.st = c.st , c′.rcv = c.rcv ,

c′.msgs = c.msgs ∪
{(

p, c.rd(p), q,Sp (c.rd(p), c.st(p), q)
)}

The transition is enabled if p has not yet sent a message to q during its
current round. The effect of the transition is to add the message (computed
according to function Sp) to the set of messages in transit and to record the
fact that the message has been sent in the sent field of configuration c′ for
process p.

– Transition (c, c′) represents a message reception: there exist p, q ∈ Π and
m ∈ M such that

q ∈ HO(p, c.rd(p)), (q, c.rd(p), p,m) ∈ c.msgs ,
c′.msgs = c.msgs \ {(q, c.rd(p), p,m)}, c′.rd = c.rd , c′.st = c.st ,
c′.rcv = c.rcv

(
p := c.rcv(p)(q := m)

)
, c′.sent = c.sent .

The transition is enabled if q is a member of p’s heard-of set for p’s current
round and message m is in transit from q to p for that round. The effect of
the transition is to transfer the message from the set of messages in transit
to the vector of messages received by p, while the rounds, process states,
and sent fields remain unchanged.

– Transition (c, c′) is a local transition of some process p ∈ Π :

c.sent(p) = Π, dom c.rcv(p) = HO(p, c.rd(p)),
c′.rd = c.rd

(
p := c.rd(p) + 1

)
,

c′.st = c.st
(
p := Tp(c.rd(p), c.st(p), c.rcv(p))

)
,

c′.sent = c.sent(p := ∅), c′.rcv = c.rcv
(
p := (q ∈ Π �→ ⊥)

)
,

c′.msgs = c.msgs

where dom c.rcv(p) denotes the set {q ∈ Π : c.rcv(p, q) �= ⊥}.3 A local
transition of p is enabled when p has sent messages for the current round to
all processes and has received messages from precisely the processes specified
by the HO collection for its current round. The configuration c′ is obtained
by incrementing the round number of process p, updating its local state
according to the next-state function Tp , and resetting the sent and rcv
fields for process p.

A fine-grained execution is an ω-sequence c0c1 . . . of configurations such that c0

is the initial configuration, ci+1 is a successor configuration of ci for all i ∈ N,
and for each p ∈ Π there are infinitely many i ∈ N such that (ci , ci+1) is a local
transition of p. The last condition specifies a condition of (local) progress for
each process; since p can execute a local transition ending round r only if it has
sent messages to all processes and has received messages from all q ∈ HO(p, r),
this condition also implies the existence of sufficiently many transitions of type
message sending and reception.
3 We identify a function f : A × B → C and its “curried” version fc : A → (B → C ).
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Coarse-grained executions. We now define an execution model of HO algorithms
that is based on the much coarser abstraction where entire rounds are the unit
of atomicity. Thus, a coarse-grained execution is an ω-sequence σ0σ1 . . . where
each σi is an array of local states σi(p) ∈ Σp indexed by p ∈ Π , such that

– σ0(p) = s0,p is the initial state of p, for all p ∈ Π , and
– at every step, all processes make a transition according to their next-state

function and the HO collection: for all p ∈ Π and all r ∈ N,

σr+1(p) = Tp

(
r , σr (p), rcvd(p, r)

)
where rcvd(p, r) =

(
q ∈ Π �→

{
Sq(r , σr (q), p) if q ∈ HO(p, r)
⊥ otherwise

})
.

In words, the state σr+1(p) is computed according to the next-state function
Tp (at the current round r) from the state σr (p), and the vector of messages
that p receives at round r according to the HO collection. A step of a coarse-
grained execution encapsulates a move by each process; because messages can
be received only in the rounds for which they have been sent, there is no
need to represent messages in transit.

Variations. We made some choices in the above definitions. For example, all
message sending transitions for a process in a given round could be grouped
into a single transition, and possibly even combined with the local transitions,
yielding an intermediate granularity of executions. Another alternative would be
to define executions without fixing the HO collection in advance. Instead, a local
transition in the fine-grained model could occur at any point after the process
has sent all messages for the current round. In the coarse-grained model, the HO
sets HO(p, r) would be chosen non-deterministically. Indeed, the representation
of HO algorithms in TLA+ presented in Section 4 is defined in such a way.

Charron-Bost and Schiper [1] define a variant of HO algorithms called co-
ordinated HO algorithms, whose message-sending functions Sp and transition
relations Tp depend on an additional parameter indicating the process that p
believes to be the coordinator of the current round. Correspondingly, execu-
tions are defined in this variant with respect to a HO collection as well as an
assignment of coordinators Coord(p, r) ∈ Π per process and round.

The reduction theorem presented in the following section can be adapted to
any of these alternative definitions. It also extends to non-deterministic settings
where each process has a set of possible initial states and a next-state relation
instead of a next-state function. The only essential requirement is that processes
react only to messages intended for the round they are currently executing.

3 A Reduction Theorem for HO Algorithms

We now present our main theorem, which asserts, informally, that in the HO
model, the fine-grained and coarse-grained execution semantics are indistinguish-
able from the point of view of any process.
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3.1 Relating the Two Models of Execution

Given a (fine-grained or coarse-grained) execution ρ and a process q ∈ Π , we
define the q-view ρq of ρ for process q as the sequence of local states that q
assumes in ρ. More precisely, for a fine-grained execution ξ = c0c1 . . ., we define

ξq = c0.st(q) c1.st(q) . . . .

For a coarse-grained execution σ = σ0σ1 . . ., the q-view is simply

σq = σ0(q) σ1(q) . . .

Any two executions ρ1 and ρ2 can be compared with respect to the views that
they generate for the processes in Π . We say that two executions ρ1 and ρ2 are
q-equivalent (for q ∈ Π) if ρq

1 ' ρq
2 where ' denotes stuttering equivalence [5],

i.e. if their q-views agree up to finite repetitions of states. We call ρ1 and ρ2

locally equivalent, written ρ1 ≈ ρ2, if they are q-equivalent for all q ∈ Π .
The following theorem asserts that fine-grained executions do not generate

any more local views of an algorithm than coarse-grained ones.

Theorem 1. For any fine-grained execution ξ = c0c1 . . . of an HO algorithm for
some HO collection

(
HO(p, r)

)
p∈Π,r∈N

, there exists a coarse-grained execution
σ of the same algorithm for the same HO collection such that σ ≈ ξ.

Proof (sketch). Given execution ξ = c0c1 . . . and some process p ∈ Π , let 
p0 = 0
and for n > 0, 
pn = k + 1 if (ck , ck+1) is the n-th local transition of p in
ξ; remember that every process p performs infinitely many local transitions
in a fine-grained execution. By the definition of fine-grained executions, round
numbers and local states of p change only during local transitions. It follows
that ci .rd(p) = c�p

n
.rd(p) = n and ci .st(p) = c�p

n
.st(p) for all n ∈ N and all


pn ≤ i < 
pn+1.
We will now show that the sequence σ = σ0σ1 . . . defined by

σn =
(
p ∈ Π �→ c�p

n
.st(p)

)
is a coarse-grained execution of the same algorithm for the given HO collection
HO . By the observations above, this definition of σ ensures that σp ' ξp for all
p ∈ Π , and therefore σ ≈ ξ.

To show the initialization condition, it suffices to observe that

σ0(p) = c�p
0
.st(p) = c0.st(p) = s0,p

is the initial state for all p ∈ Π . It remains to show that for all p ∈ Π and n ∈ N,
we have σn+1(p) = Tp

(
n, σn(p), rcvd(p,n)

)
.

By induction on the definition of fine-grained executions, it is easy to verify
the following invariants, for all n, r ∈ N, m ∈ M , and p, q ∈ Π :

– If (p, r , q,m) ∈ cn .msgs then m = Sp(r , c�p
r
.st(p), q): any message for round

r in transit from p to q was computed according to p’s send function for
round r , based on p’s local state at (the beginning of) round r .
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– If r = cn .rd(q) and ⊥ �= m = cn .rcv(q, p) then m = Sp(r , c�p
r
.st(p), q): any

message received by q from p for round r was computed according to p’s
send function for round r , based on p’s local state at (the beginning of)
round r .

For n ∈ N, consider now the transition of process p from round n to round n +1
in execution ξ, i.e. the transition (c�p

n+1−1, c�p
n+1

). For simplicity of notation, we
write c = c�p

n+1−1 and c′ = c�p
n+1

. From the observations about round numbers
and local states we know that c.rd(p) = n, c.st(p) = c�p

n
.st(p), and c′.rd(p) =

n + 1. Since (c, c′) is a local transition of p, we have dom c.rcv(p) = HO(p,n),
and in particular c.rcv(p, q) = ⊥ iff q ∈ Π \ HO(p,n). Moreover, the second
invariant above implies that

c.rcv(p, q) = Sq(n, c�q
n
.st(q), p)

for all q ∈ HO(p,n). Altogether this means c.rcv(p) = rcvd(p,n).
Using the fact that c′.st(p) = Tp

(
c.rd(p), c.st(p), c.rcv(p)

)
and rewriting

with the above equalities, we obtain that

σn+1(p) = c′.st(p) = Tp

(
n, σn(p), rcvd(p,n)

)
,

which completes the proof. ��

We note in passing that the converse of Theorem 1 is true almost trivially.

Theorem 2. For any coarse-grained execution σ of an HO algorithm for some
HO collection

(
HO(p, r)

)
p∈Π,r∈N

, there exists a fine-grained execution ξ of the
same algorithm for the same HO collection such that ξ ≈ σ.

Proof (sketch). Given a coarse-grained execution σ, it is easy to construct a
corresponding fine-grained execution where processes execute rounds in lock-
step, first sending all messages, then receiving the messages according to the
HO sets HO(p, r) and finally performing their respective local transitions. ��

3.2 Application: Verification of Local Properties

Theorem 1 can be used to verify linear-time properties of HO algorithms that
are expressed in terms of local views of processes, and that are insensitive to
specific interleavings. More formally, we say that a property P is local if for any
(coarse- or fine-grained) executions ρ1 and ρ2 such that ρ1 ≈ ρ2 we have ρ1 |= P
iff ρ2 |= P .4

Corollary 3. If P is a local property and σ |= P holds for all coarse-grained ex-
ecutions σ of an algorithm, then ξ |= P also holds for all fine-grained executions
ξ of the same algorithm.

4 As usual, ρ |= P means that P is satisfied by execution ρ.
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Proof. Let ξ be some fine-grained execution (over some HO collection), then
Theorem 1 yields a coarse-grained execution σ (over the same HO collection)
such that σ ≈ ξ. By assumption, we must have σ |= P , and since P is local, this
implies ξ |= P . ��

Having to verify a given property just for all coarse-grained executions repre-
sents a significant reduction because coarse-grained executions afford a simpler
representation of the system state, and because fewer (types of) transitions must
be considered.

Corollary 3 is useful in practice if typical correctness properties are indeed
local. Observe that local properties must be stuttering invariant [8], by the def-
inition of local equivalence ≈ of executions. Moreover, their satisfaction should
not depend on the specific interleaving of process transitions. As a trivial ex-
ample for a non-local property, suppose that each process p ∈ Π maintains
a counter of its current round in the variable rndp . Then any coarse-grained
execution by definition satisfies the LTL formula∧

p,q∈Π

�(rndp = rndq) (1)

asserting that all processes execute the same round at any moment; this formula
obviously does not hold for fine-grained executions.

In the following we indicate a sufficient syntactic criterion for determining
when a formula of LTL-X, i.e. linear-time temporal logic without the next-time
operator expresses a local property.5 We assume that the set of (flexible) state
variables that appear in formulas is of the form V =

⋃
p∈Π Vp where Vp ∩Vq = ∅

for different processes p �= q, and such that any state s ∈ Σp of a process p ∈ Π
uniquely determines the values of Vp .

We say that a formula ϕ is a p-formula, for p ∈ Π , if it contains only state
variables from Vp . It is easy to see that p-formulas are local properties, as are
first-order combinations of p-formulas, for possibly different processes p ∈ Π .
However, temporal combinations of p-formulas are in general not local because
they can express the simulaneity of local states of different processes, or assert
temporal relations between states of processes, and the formula (1) is a typical
example since variables of different processes appear in the scope of a temporal
operator.

3.3 Consensus as a Local Property

We argue that local properties express many interesting correctness properties
of distributed algorithms. As a concrete and important example, consider the
specification of the Consensus problem [7]. We assume that the state variables
Vp include variables xp and decidep . The intuitive idea is that at the beginning
of an execution the variable xp holds the initial value of process p. Variable

5 LTL-X formulas are stuttering invariant [8]; our criterion carries over to the logic
TLA considered in Section 4 because LTL-X is a sublogic of TLA.
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decidep , initially null , represents the decision taken by process p in the sense
that decidep is updated to the value v �= null when process p decides value v .

The Consensus problem is specified by the conjunction of the following for-
mulas of LTL-X, which are all local according to the criterion introduced in
Section 3.2.

Integrity. The integrity property asserts that decision values must be among
the initial values (possibly of some other process). This property is expressed
by the following first-order combination of p-formulas:

∀v : v �= null ∧
( ∨

p∈Π

♦(decidep = v)
)
⇒

∨
q∈Π

xq = v .

Irrevocability. A process that has decided must never change its decision value.
This property is expressed by the following p-formula, for all p ∈ Π :

∀v : v �= null ⇒ �
(
decidep = v ⇒ �(decidep = v)

)
Agreement. The core correctness property of Consensus algorithms requires

that if any two processes decide, they decide on the same value. Again, this
can be expressed as a first-order combination of p-formulas:

∀v ,w : v �= null ∧ w �= null
∧

∨
p,q∈Π

(
♦(decidep = v) ∧ ♦(decideq = w)

)
⇒ v = w .

Termination. The preceding properties are all safety properties. The final
property required by Consensus is that all (non-faulty) processes eventually
decide. Because the HO model does not flag processes as being faulty [1],
this property is simply expressed by the following p-formula, for all p ∈ Π :

♦(decidep �= null).

4 Model Checking HO Algorithms

We validate the effectiveness of our reduction-based approach to verification by
verifying finite instances of Consensus algorithms in the HO model.

Exploiting Corollary 3, we model coarse-grained executions of HO algorithms
in TLA+ [6]. We instantiate this generic model for some of the Consensus algo-
rithms that are discussed in [1], and use the TLA+ model checker tlc [12] for
verification. In this work, we do not aim at utmost efficiency, but prefer the high
level of abstraction offered by TLA+ that lets us obtain readable models, close
to the mathematical description of HO algorithms in Section 2.

However, model checking even finite instances of these algorithms would be
impossible in the fine-grained execution model: the model would have to include
round numbers and therefore be infinite-state. Even if we artificially imposed
bounds on round numbers (abandoning the verification of liveness properties),
state explosion would make verification impractical.
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module HeardOf

extends Naturals
constants Proc,State,Msg , roundsPerPhase,Start( ),Send( , , , ),Trans( , , , )
variables round, state, heardof

Init
�
= ∧ round = 0

∧ state = [p ∈ Proc �→ Start(p)]
∧ heardof = [p ∈ Proc �→ {}]

Step(HO)
�
= let rcvd(p)

�
= {〈q ,Send(q , round , state[q ], p)〉 : q ∈ HO [p]}

in ∧ round ′ = (round + 1)%roundsPerPhase
∧ state ′ = [p ∈ Proc �→ Trans(p, round , state[p], rcvd(p))]
∧ heardof ′ = HO

Next
�
= ∃HO ∈ [Proc → subset Proc] : Step(HO)

vars
�
= 〈round , state, heardof 〉

NoSplit(HO)
�
= ∀p, q ∈ Proc : HO [p] ∩ HO [q ] �= {}

NextNoSplit
�
= ∃HO ∈ [Proc → subset Proc] : NoSplit(HO) ∧ Step(HO)

Uniform(HO)
�
= ∃S ∈ subset Proc : S �= {} ∧ HO = [q ∈ Proc �→ S ]

Fig. 1. Generic TLA+ module for HO algorithms

4.1 A Generic TLA+ Model for HO Algorithms

We begin by introducing a generic representation of coarse-grained executions
of HO algorithms in TLA+. It is similar to the semantic presentation in Sec-
tion 2.2, except for two differences that help us obtain finite-state models. The
first difference concerns round numbers, which are formally a parameter of the
functions Sp and Tp . Many actual algorithms do not refer to the absolute round
number, but are organized in phases, where a phase consists of a fixed finite
number of rounds. Therefore, the functions Sp and Tp only depend on the cur-
rent round number relative to the phase number, and it suffices to count rounds
modulo the number of rounds per phase. The second difference, already indi-
cated at the end of Section 2.2, is to choose assignments of HO sets to processes
non-deterministically for each step of the algorithm instead of fixing them in
advance.

A generic TLA+ module that represents HO algorithms appears in Fig. 1.
It begins by importing the standard TLA+ module for arithmetic over natural
numbers and then declares the constant and variable parameters of the mod-
ule: the sets Proc, State and Msg represent processes, process states, and mes-
sages. Parameter roundsPerPhase indicates the number of rounds per phase.
The parameters Start , Send , and Trans will be instantianted to specify the
behavior of concrete algorithms: for each p ∈ Proc, the predicate Start(p) char-
acterizes the initial state of p, Send(p, r , s , q) yields the message that process
p sends to process q at round r of a phase, given p’s current local state s , and
Trans(p, r , s , rcvd) computes the next state of p at round r , given p’s local state
s and the partial vector rcvd of messages received, which we represent as a set
of pairs 〈q,m〉 indicating that m was received from q.
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A round of the system is represented by three variables: round indicates the
number of the current step modulo roundsPerPhase, state is an array6 of local
states per process, and heardof records the HO assignment of the preceding
transition (its initial value is chosen arbitrarily). This auxiliary variable serves
to express communication predicates.

With this understanding, the initialization and next-state predicates closely
follow the definition of coarse-grained executions in Section 2.2. The predicates
NoSplit and Uniform are two examples of formulas serving to express communi-
cation predicates. Action NextNoSplit defines a variant of the next-state relation
that enforces non-split rounds. The remaining communication predicates appear-
ing in [1] can be defined in a similar way.

4.2 Modeling and Verifying Concrete HO Algorithms in TLA+

Charron-Bost and Schiper [1] propose several Consensus algorithms in the HO
model. As an example of how these can be encoded in our TLA+ framework,
a specification of their OneThirdRule algorithm appears in Fig. 2. The module
declares the constant parameter N (the number of processes) and defines the sets
Proc and Msg: we arbitrarily specify that each process p ∈ 1..N proposes 10 ∗ p
as its initial value. Next, the module defines the remaining constant parameters
of module HeardOf . Phases of OneThirdRule consist of only one round. Process
states are represented as records with two fields x and decide, whose initialization
is obvious. At each round, each process sends its current x field to all processes.
The next-state function is defined as follows: if a process has received messages
from more than 2/3 of all processes, it updates its x field to the smallest most
frequently received value (cf. definition of min). If it has received some value v
from more than 2/3 of all processes, then it also updates its decide field to v .

Charron-Bost and Schiper show that the algorithm OneThirdRule always
achieves the integrity, irrevocability, and agreement properties, and that it guar-
antees termination for runs that eventually execute some uniform round for
“sufficiently large” heard-of sets. We express these properties in TLA and use
tlc to verify these theorems. Observe that we have expressed the correctness
properties in module OneThirdRule using different, but equivalent formulas than
those given in Section 3.3. In particular, tlc checks Validity, Agreement , and
Irrevocability as state and transition invariants while computing the state space,
which is more efficient than verifying arbitrary temporal formulas. Because the
concept of local properties is a semantic one, it is independent of the particular
syntactic formulation of the property, and we can apply Corollary 3 to deduce
that the formulas are also satisfied by fine-grained executions.

Figure 3 gives the number of generated and distinct states and the running
time of tlc for verifying these properties, as well as for the somewhat more
complicated UniformVoting algorithm that is encoded in TLA+ in a similar
way. Measurements were taken on an Intel R© 2.16GHz Core Duo R© laptop with
2GB RAM running Mac OSX 10.5. It is apparent that the non-deterministic

6 TLA+ uses square brackets to denote functions.
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module OneThirdRule

extends Naturals, FiniteSet
constants N
variables round, state, heardof

roundsPerPhase
�
= 1

Proc
�
= 1 .. N

InitValue(p)
�
= 10 ∗ p

Value
�
= {InitValue(p) : p ∈ Proc}

Msg
�
= Value

null
�
= 0

ValueOrNull
�
= Value ∪ {null}

State
�
= [x : Value, decide : ValueOrNull ]

Init(p)
�
= [x �→ InitValue(p), decide �→ null ]

Send(p, r , s, q)
�
= s.x

Trans(p, r , s, rcvd)
�
=

if Cardinality(rcvd) > (2 ∗ N ) ÷ 3

then let Freq(v)
�
= Cardinality({q ∈ Proc : 〈q , v〉 ∈ rcvd})

MFR(v)
�
= ∀w ∈ Value : Freq(w) ≤ Freq(v)

min
�
= choose v ∈ Value : MFR(v) ∧ (∀w ∈ Value : MFR(w) ⇒ v ≤ w)

willDecide
�
= ∃v ∈ Value : Freq(v) > (2 ∗ N ) ÷ 3

in [x �→ min,

decide �→ if willDecide then choose v ∈ Value : Freq(v) > (2 ∗ N ) ÷ 3

else s.decide]

else s

instance HeardOf

Safety
�
= Init ∧ �[Next ]vars

Liveness
�
= ♦(Uniform(heardof ) ∧ Cardinality(heardof ) > (2 ∗ N ) ÷ 3)

Integrity
�
= ∀p ∈ Proc : �

`
state[p].decide ∈ {null} ∪ {InitValue(p) : p ∈ Proc}´

Irrevocability
�
= ∀p ∈ Proc : �[state[p].decide = null ]state[p].decide

Agreement
�
= ∀p, q ∈ Proc : �(state[p].decide �= null ∧ state[q ].decide �= null

⇒ state[p].decide = state[q ].decide)

Termination
�
= ∀p ∈ Proc : ♦(state[p].decide �= null)

theorem Safety ⇒ Integrity ∧ Irrevocability ∧ Agreement

theorem Safety ∧ Liveness ⇒ Termination

Fig. 2. TLA+ specification of the algorithm OneThirdRule

choice of a collection of heard-of sets at every transition induces a combinatorial
explosion in the number of successor states that are generated, although many of
them are identical (cf. the low number of distinct states generated by the model
checker). As mentioned above, we regard these results just as an indication of the
feasibility of the approach; there is ample room for improvement using standard
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OneThirdRule UniformVoting

N = 3 N = 4 N = 3 N = 4

states 5633 9,830,401 21351 15,865,770

distinct 11 150 122 887

time (s) 2.26 1546 13.8 1330

Fig. 3. Results of verification with tlc

optimization techniques or symbolic model checking. In particular, we did not
apply symmetry reduction, except for identifying states that differ only in the
value of the auxiliary variable heardof .

5 Conclusion

The main contribution of this paper is the precise statement and the proof of
a reduction theorem for algorithms expressed in the HO model. The key ingre-
dient for obtaining the reduction theorem is the fact that the HO model relies
on communication-closed rounds. For this reason, the local transition (of a fine-
grained execution) in which process p passes from round r to round r + 1 is
causally independent of all transitions of processes at rounds r ′ > r . Hence, exe-
cutions can be rearranged into coarse-grained executions whose unit of atomicity
is that of global rounds of all processes, without changing the local observations
of any process.

As a corollary to the reduction theorem, we obtain a method for applying
standard model checking algorithms for the verification of local properties of
distributed algorithms, that is, properties whose satisfaction only depends on
local views of processes. We have shown that this class of properties contains the
correctness properties of Consensus algorithms. Specifically, we have been able
to verify (finite instance of) some Consensus algorithms proposed in [1], which
would be impossible in a standard, fine-grained representation of executions.

Tsuchiya and Schiper [9,10] applied symbolic and bounded model checkers to
verify Consensus algorithms in the HO model over coarse-grained runs. However,
they do not explain why the verification of coarse-grained models is sufficient.
Our contribution can be understood as a formal justification of their models; we
also delimit the applicability of the approach by introducing the notion of local
properties.

In future work, we intend to further validate this approach by verifying more
distributed algorithms. We are also interested in syntactic criteria (beyond the
basic one presented in Section 3.3) for determining if a temporal formula ex-
presses a local property. A longer-term goal would be to have model checkers
apply this kind of reduction automatically whenever the user attempts to verify
a local property of a distributed algorithm.
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Abstract. The CTL∗ model-checking problem is thoroughly studied
and is fully understood for finite and countable state spaces. Yet, in
most models arising in the sciences and engineering the system’s sate
space is uncountable. Then, the standard computability and complex-
ity theory is inapplicable but the semantics of CTL∗ has to be in some
sense computable to allow for model-checking algorithms that are im-
plementable on digital computers. To tackle this problem, we consider
discrete-time continuous-space dynamic systems for which we study the
computability of the standard semantics of CTL∗ and provide a variant
thereof computable in the sense of Type-2 Theory of Effectivity.

Keywords: Computability, Model Checking, CTL∗, Dynamic Systems.

1 Introduction

Dynamic systems are widely applied for modelling and analysis in physiology,
biology, chemistry and engineering. The high-profile and safety-critical nature of
such applications has resulted in a large amount of work on formal methods for
dynamic systems: mathematical logics, computational methods, formal verifica-
tion, and etc. In our work, we focus on the verification approach called model
checking, and its computability aspects.

In general, given a formal model M of a system design, along with a specifi-
cation formula φ that represents a desired system property, model checking uses
exhaustive state-space exploration to answer the question: “Does the model M
satisfy the property φ?”. This question is typically put as a formula M |= φ,
that uses a satisfiability relation |=.

Model checking is expected to be fully automated, i. e. implementable using
digital computers. Yet, the semantics of the formula φ verified on the model
M does not always lead to a computable (decidable) model-checking algorithm.
Therefore, it is not only important to realise which system properties are practi-
cally verifiable, but also to provide a semantics for logical formalisms that ensures
computability (semi-decidability) of the induced model-checking procedures.
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For dynamic systems, the system model M can be described using various
formalisms, such as time-automaton, hybrid automaton, differential equation,
differential inclusion and others. The system property φ is typically described
using a logical formalism, some sort of temporal or modal logic, such as LTL [16],
CTL [4], CTL∗ [10], or propositional modal/temporal μ-calculus [11]. Typical
system properties, that need to be verified, are reachability – “Does the system
reach the certain set of goal states?” – and repeated reachability – “Does the
system return to the set of goal states infinitely often?”.

The state-spaces of dynamic systems are typically not only infinite, but also
continuous (e. g. R

n) or hybrid (e. g. a product of R
n and Z). The model-checking

algorithms, require computation of system’s reachable states (images or pre-
images of sets of states under the system’s evolution function), as well as com-
putation of union, intersection of sets, and testing them for inclusions. This is
the key place where the computability aspect comes into play, because for hav-
ing effective model-checking procedures these sets and operations have to be in
some sense computable, i. e. effectively implementable on digital computers.

The ordinary computability and complexity theory is not powerful enough
to express the computability of real-valued functions and therefore sets of any
continuous or hybrid domain. Thus, to decide on whether this or that model-
checking algorithm is computable, we have to use a more powerful approach. Our
choice is Type-2 Theory of Effectivity (TTE) [20] which defines computability
based on Turing machines with finite and infinite input/output sequences. This
theory has been already applied to analysis of computability of reachable sets of
control systems in [6], and was used for providing computable semantics of CSL
for discrete-time continuous-space dynamic systems (DTCSDSs) in [8,9].

In this paper, we devise a computable semantics for model checking CTL∗ on
DTCSDSs. This work is motivated by the fact that CTL∗ is a strict super set of
CTL and LTL, which allows it to express more interesting reachability properties
by combining linear- and branching-time semantics. Our computable semantics
for CTL∗ is topological, for other topological logics see, e. g., [12,1]. Similar
to [1], we require state and paths formulae to result in (respectively) open sets
of states and paths. To achieve this, unlike [1], we do not use Alexandrov spaces,
which are quite restrictive, but rather provide computable and open (under)
approximations for the sets satisfying the formulae. Due to (necessary) choices,
our computable semantics does not preserve the Law of Excluded Middle. In
particular, the formulae containing negation, henceforth or release operators
can be true (on the given model) but not computably verifiable. Yet, we argue
that the provided computable semantics is optimal. Note that, the results of this
paper are another step towards providing a computable logic for hybrid systems.

This paper is organised as follows: Section 2 contains the preliminary mate-
rial. Section 3 outlines the computable semantics of CTL. In Section 4, we dis-
cuss computability of CTL∗ in its original semantics and devise a computable
one. This sketches the approximate model-checking algorithms that can be im-
plemented on digital computers. Section 5 provides a theorem that allows to
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propagate quantifiers inside CTL∗ formulae. This can be used for optimising
model-checking procedures. Section 6 concludes.

2 Preliminaries

TTE relies on topological spaces and thus we begin with Section 2.1 that recalls
some of the important aspects thereof. Since DTCSDS models are typically ex-
pressed by multivalued maps, in Section 2.2 we discuss continuity aspects of the
latter ones and provide some of their properties. Further, in Section 2.3, we talk
about TTE and computability of various sets/functions. After, in Section 2.4,
we recall the standard semantics of CTL and CTL∗ on Kripke structures.

2.1 Topological Spaces

A topological space is a pair T = (X, τ) where X is an arbitrary set and τ ⊆ 2X

is such that: ∅, X ∈ τ , ∀U1, U2 ∈ τ ⇒ U1 ∩ U2 ∈ τ , and ∀U ⊆ τ ⇒
⋃

U∈U
U ∈ τ .

For a topological space T , elements of τ are called open and their complements
in X are called closed. Let x ∈ X and B ⊆ X then B is a neighbourhood of
point x if there exists an open set U ∈ τ such that x ∈ U ⊆ B. Let B ⊆ X
and U ⊆ τ then U is an open cover of B if B ⊆

⋃
U∈U

U . Let S ⊆ X , then
the set Int (S) = ∪{U |U ⊆ S ∧ U ∈ τ} is called the interior of S and Cl (S) =
∩{A|S ⊆ A ∧A is closed} is called the closure of S. A set C ⊆ X is compact iff
every open cover of C has a finite sub cover. A subset of X is pre-compact iff its
closure is compact. For a topological space we have O – a set of open, A – a set
of closed, and K – a set of compact sets.

Let T = (X, τ) be a topological space. Then β ⊆ τ is a base of the topology
τ if every element of τ can be represented as a union of elements from β. A
topological space is called second countable if its topology has a countable base.
A Hausdorff space (T2 space) is a topological space such that ∀x, y ∈ X where
x �= y there exist Ux, Uy ∈ τ such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅.

A path space is a topological space (Xω, τω) where Xω is the countable Carte-
sian product of X . Let σ ∈ Xω and σ = s0s1s2 . . . then ∀i ∈ N we define the
canonical projection pi : Xω → X such that pi (σ) = si. Let τ be a topology on
X , and any Uω ∈ τω be a countable (or finite) union of finite intersection of sets
from Bω := {Bω

U ⊆ Xω|∃n ∈ N : ((∀i < n : pi (Bω
U ) ∈ τ ) ∧ (∀i ≥ n : pi (Bω

U ) = X))}.
Then, τω is called a product topology on Xω (induced by τ). The product topol-
ogy is the coarsest topology for which all the projections pi are continuous,
and in addition every pi is an open-valued map. Note that, if (X, τ) is second-
countable Hausdorff space then (Xω, τω) with the product topology τω is also
second-countable and Hausdorff.

2.2 DTCSDSs and Multivalued Maps

We consider discrete-time continuous-space dynamic systems (DTCSDSs) for
which the state-space is continuous and the time domain is discrete (the system
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state changes at discrete time points). In system theory, dynamic systems are
given by functions f : X×U → X , where X is the state space, and U can either
represent control or system noise. These functions are typically converted into
multivalued maps F : X ⇒ X such that F (x) = f (x, U).

A multivalued map F : X ⇒ Y , also known as multivalued function or multi-
function, is a total relation on X×Y . If we define F (S) = {F (x) |x ∈ S} for S ⊆
X then F can be seen as a function F : X → 2Y . This last definition is more con-
venient when we want to talk about function composition. For example, for two
multivalued maps F : X ⇒ Y , G : Y ⇒ Z and their composition G ◦ F we have
G◦F : X ⇒ Z and thus for any x ∈ X we can simply write G◦F (x) = G (F (x)).
A weak preimage of F on B ⊆ Y is F−1(B) = {x ∈ X : F (x) ∩B �= ∅} and
a strong preimage is F⇐(B) = {x ∈ X : F (x) ⊆ B} . The notion of continuity
for multivalued maps is an extension of continuity for the regular functions. Let
us only note that, for a continuous multivalued map F and an open set U ⊆ Y
the pre-images F−1(U) and F⇐(U) are open sets.

2.3 Type-2 Theory of Effectivity (TTE)

TTE [20], as well are regular computability theory, is based on Turing machines.
The difference is that TTE (type-2) machines allow for infinite computations. In
particular they can accept infinite inputs and produce infinite outputs. The com-
putability is first defined on type-2 machines and then is extended to arbitrary
functions, sets and their elements by means of notations and representations.

Let M be a type-2 machine with a fixed finite alphabet Σ, k ≥ 0 input tapes,
one output tape and Yi ∈ {Σ∗, Σω} where i ∈ 0, . . . , k. Then, a (partial) string
function fM : Y1×. . .×Yk → Y0 is computable iff it is realised by a type-2 machine
M . The latter means that for yi ∈ Yi we have fM (y1, . . . , yk) = y0 ∈ Σ∗ iff M
halts on input (y1, . . . , yk) with y0 on the output tape and fM (y1, . . . , yk) = y0 ∈
Σω iff M computes forever on input (y1, . . . , yk) and writes y0 to the output.

The computability on Σ∗ and Σω is generalised by means of notations and
representations. A notation of set X is a partial surjective function ν : Σ∗ → X
and a representation is a partial surjective function δ : Σω → X . These functions
encode elements of the domain X into strings and sequences.

A computable Hausdorff space is a tuple (X, τ, β, ν) such that (X, τ) is a
second-countable Hausdorff (T2) space; β is a countable base of τ consisting
of pre-compact open sets; ν is a notation of β; we take effectivity properties
in [3] (Lemma 2.3) as axioms; and assume that Cl : β → K is computable. Let
us have a computable Hausdorff space, the Sierpinski space S and a continuous
function F : X → X . Then the following operations are computable (continuous):
countable union as O × O → O, complement as O → A, subset operation as
K × O → S, the F−1(.) and F⇐(.) as O → O. The following operations are
known to be uncomputable: closure as O → A, interior as A → O.

2.4 Standard Semantics of CTL and CTL∗

CTL and CTL∗ are typically interpreted over Kripke structures. A Kripke struc-
ture M is a tuple (S, I, R, L) where S is a countable set of states; I ⊆ S is a



Computable CTL∗ for Discrete-Time and Continuous-Space 111

set of initial states; R ⊆ S × S is a transition relation such that ∀s ∈ S, ∃s′ ∈
S : (s, s′) ∈ R; AP is a finite set of atomic propositions; and L : S → 2AP is
an labelling function. A path in M is an infinite sequence of states s0s1s2 . . .
such that ∀i ≥ 0 : (si, si+1) ∈ R. A set of paths starting in state s is denoted as
PathsM (s). For a path σ ∈ PathsM (s), where σ = s0s1s2 . . ., for any j ≥ 0 we
denote σj := sjsj+1sj+2 . . ., and σ [j] := sj .

Computational Tree Logic (CTL) [4] is divided into state formulae: Φ ::=
p | ¬Φ | Φ ∧ Φ | ∀φ | ∃φ, and path formulae: φ ::= X Φ | Φ U Φ | Φ R Φ. The
state formulae have the following semantics: s |= p iff p ∈ L (s); s |= ¬Φ iff
¬ (s |= Φ); s |= Φ ∧ Ψ iff (s |= Φ) ∧ (s |= Ψ); s |= ∃φ iff ∃σ ∈ PathsM (s) : σ |= φ;
s |= ∀φ iff ∀σ ∈ PathsM (s) : σ |= φ. The semantics of path formulae is as follows:
σ |= X Φ iff σ [1] |= Φ; σ |= Φ U Ψ iff ∃j ≥ 0 : (σ [j] |= Ψ ∧ ∀0 ≤ i < j : σ [i] |= Φ);
σ |= Ψ R Φ iff (∀i ≥ 0 : σ [i] |= Φ)∨(∃j ≥ 0 : (σ [j] |= Ψ ∧ ∀0 ≤ i ≤ j : σ [i] |= Φ)).

Branching Temporal Logic (CTL∗) [10] is a combination of LTL [16] and
CTL, it’s syntax is defined by state formulae: Φ ::= p | ¬Φ | Φ ∧ Φ | ∀φ | ∃φ
and path formulae: φ ::= Φ | ¬φ | φ ∧ φ | X φ | φ U φ | ψ R φ. The semantics of
the state formulae is the same as for CTL, the semantics of path formulae is as
follows: σ |= Φ iff σ [0] |= Φ; σ |= ¬φ iff ¬ (σ |= φ); σ |= φ∧ψ iff (σ |= φ)∧(σ |= ψ);
σ |= X φ iff σ1 |= φ; σ |= φ U ψ iff ∃j ≥ 0 : (σj |= ψ ∧ ∀0 ≤ i < j : σi |= φ);
σ |= ψ R φ iff (∀i ≥ 0 : σi |= φ) ∨ (∃j ≥ 0 : (σj |= ψ ∧ ∀0 ≤ i ≤ j : σi |= φ)).

Remarks: In CTL and CTL∗, path formulae can only be used as sub formulae.
For a state formula Φ, we denote Sat (Φ) := {s ∈ S|s |= Φ}. In the following, we
often identify Φ with the set UΦ := Sat (Φ), and use the following (standard)
abbreviations: (i) ∀i ∈ N we define X iφ := X . . .X︸ ︷︷ ︸

i times

φ and X 0φ := φ; (ii) Eψ :=

true U ψ; (ii) Gφ := false R φ. The temporal operators have the following names:
X – next, E – eventually, U – until, G – henceforth, and R – release.

3 Computable Semantics for CTL

In this section, we briefly outline and motivate the computable semantics of
CTL, cf. [8,9], for the (extended) DTCSDS model given below.

Definition 1. A discrete-time continuous-space control system (DTCSDS) is
a tuple M = (T, F, L) where: T = (X, τ, β, ν) is a computable Hausdorff
space; F ∈ C (X, X) is a multivalued map which defines the system’s evolution;
and L : X → 2AP is a labelling function where AP is a finite set of atomic
propositions. For any p ∈ AP and x ∈ X we have that (respectively) Sat (p) ∈ τ
and L (x) = {p ∈ AP|x ∈ Sat (p)}.
Notice that, elements of AP identify trivial properties of system states, and
each property is represented by an open set. This is necessary for reflecting the
topological aspects of the: (i) computability theory, cf. Section 2.3; (ii) hybrid
systems, cf. Section 5 of [15]; and (iii) logics for hybrid systems, cf. [12,1].

According to Section 2.4, for a model M , a set of initial states I ⊆ X , and
a CTL formula Φ, proving M, I |= Φ is equivalent to showing that I ⊆ Sat (Φ).
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In our case, M is a DTCSDS and if Φ := p ∈ AP then we need to check that
I is a subset of an open set Sat (p). The latter, cf. Section 2.3, is known to
be computably verifiable only if I is compact. Thus, to make requirements on
I uniform, and M, I |= Φ computable for any Φ ∈ CTL: (i) we should only
consider sets I that are compact; and (ii) we expect Sat (Φ) to be open.

The last condition of the previous paragraph turns out to be problematic.
If Sat (Φ) is open then Sat (¬Φ) is closed1 and thus I ⊆ Sat (¬Φ) is uncom-
putable. Defining Sat (¬Φ) := Int (X \ Sat (Φ)), as in [1], results in Sat (¬Φ) be-
ing open, but, cf. Section 2.3, uncomputable. Therefore, we suggest to transform
every CTL formula into an equivalent CTL formula in the negation normal form
(NNF). The latter is always possible, see e. g. [17]. In NNF, negations can only
prefix atomic propositions and thus one can make sure that the representations
of their open sets are good enough to make negations computable.

To summarize, for M, I |= Φ to be computably verifiable we require that:
(i) I is compact; (ii) Φ is in NNF; (iii) any p ∈ AP , such that ¬p occurs in
Φ, has a representation of Sat (p) such that Int (X \ Sat (p)) is computable; and
(iv) F is such that F−1(U) and F⇐(U) for U ∈ τ are computable. Under these
conditions, Eq. 1 to 9 provide the computable semantics for CTL. Here, we only
consider the universal quantifier because accounting for the existential one boils
down to using the weak preimage F−1 in place of the strong preimage F⇐. In the
following, Sat′ (Φ) is either the open set of states satisfying the formula Φ, i. e.
Sat′ (Φ) = Sat (Φ), or it is its open under approximation, i. e. Sat′ (Φ) ⊂ Sat (Φ).

Sat′ (p) := Up then I ⊆ Sat′ (p) ⇔ I |= p (1)

Sat′ (¬p) := Int (X \ Up) , I ⊆ Sat′ (¬p) ⇒ I |= ¬p (2)

Sat′ (Φ ∨ Ψ) := UΦ ∪ Uψ, I ⊆ Sat′ (Φ ∨ Ψ) ⇔ I |= Φ ∨ Ψ (3)

Sat′ (Φ ∧ Ψ) := UΦ ∩ Uψ, I ⊆ Sat′ (Φ ∧ Ψ) ⇔ I |= Φ ∧ Ψ (4)

Sat′ (∀ (XΦ)) := F⇐(UΦ), I ⊆ Sat′ (∀ (XΦ)) ⇔ I |= ∀ (XΦ) (5)

Sat′ (∀ (EΨ)) :=
∞⋃

n=0

Sn, S0 = UΨ ,

∀n ≥ 1 : Sn = F⇐(

n−1⋃
i=0

Si), I ⊆ Sat′ (∀ (EΨ)) ⇔ I |= ∀ (EΨ) (6)

Sat′ (∀ (Φ U Ψ)) :=
∞⋃

n=0

S′
n, S′

0 = UΨ ,

∀n ≥ 1 : S′
n = F⇐(

n−1⋃
i=0

S′
i) ∩ UΦ, I ⊆ Sat′ (∀ (Φ U Ψ)) ⇔ I |= ∀ (Φ U Ψ) (7)

Sat′ (∀ (GΦ)) :=
⋃

{Br ∈ τ |Cl (Br) ⊆ UΦ∧
Cl (Br) ⊆ F⇐(Br)} , I ⊆ Sat′ (∀ (GΦ)) ⇒ I |= ∀ (GΦ) (8)

Sat′ (∀ (Ψ R Φ)) :=
⋃

{Br ∈ τ |Cl (Br) ⊆ UΦ ∧ (Cl (Br) ⊆ UΨ

∨Cl (Br) ⊆ F⇐(Br ∪ (UΨ ∩ UΦ)))} , I ⊆ Sat′ (∀ (Ψ R Φ)) ⇒ I |= ∀ (Ψ R Φ)(9)

1 Note that, if Φ ∈ CTL then ¬Φ is a valid CTL formula too.



Computable CTL∗ for Discrete-Time and Continuous-Space 113

In most cases the standard semantics of CTL results in an open and computable
set of states that satisfy the formula. The exceptions are the negation (Eq. 2),
henceforth (Eq. 8), and release (Eq. 9) operators for which the resulting sets
of states are closed. Thus, we had to alter their semantics by using open and
computable under approximations for the sets of states satisfying the formulae.
Note that, in Eq. 8 to 9, each Br ∈ τ is a finite union of open rational boxes in
X and so Cl (Br) is compact and computable.

A consequence of the (necessary) choice of semantics of the negation, hence-
forth and release operators is that there can be no proof by contradiction (the
Law of Excluded Middle does not hold). In other words, if Φ contains at least
one of these operators, the fact that Φ does not hold (on M, I) does not imply
that the negation of Φ holds. Moreover, such a Φ can be true but not computably
verifiable. It only remains to note that our choice for the computable semantics
is optimal with respect to the considered DTCSDS model. The case of the nega-
tion operator was discussed earlier, for the henceforth operator the optimality
was shown in [7], and the semantics for the release operator is the combination
of the semantics of the henceforth and until operators.

4 Computable Semantics for CTL∗

Since CTL∗ extends CTL, we use the same DTCSDS model as before and derive
the conditions on the set of initial states I, the evolution function F , and the
logical formula. Let us have a DTCSDS model M with a continuous evolution
function F , such that F−1(U) with F⇐(U) are computable for any U ∈ τ , and
a compact initial set of states I ⊆ X . Then, any CTL∗ formula (in NNF) that
we might need to verify is given by the syntax Φ ::= ¬p | Φ∧Φ | Φ∨Φ | ∀φ | ∃φ,
where φ is an arbitrary path formula. Here, ¬p, Φ ∧ Φ, and Φ ∨ Φ inherit the
computable semantics of CTL, but for ∀φ and ∃φ we need another approach.
This is because, φ can be a conjunction or disjunction of other path formulae,
or an until (release) formula acting on other path formulae, and etc. The latter
implies that we need to work with the set of paths satisfying the formula φ.

Let PathsM : X → Xω be the multivalued map that maps the set of initial
states I into the set of system paths starting in I; and Paths (φ) ⊆ Xω be the
set of all paths satisfying the path formula φ (regardless to the system-evolution
function F ). Then, if Paths (φ) is an open set of paths in Xω equipped with the
product topology τω , we can define the computable semantics for ∀φ and ∃φ as
follows:

Sat′ (∃φ) := Paths−1
M (Paths (φ)) , I ⊆ Sat′ (∀φ) ⇔ M, I |= ∃φ, (10)

Sat′ (∀φ) := Paths⇐M (Paths (φ)) , I ⊆ Sat′ (∀φ) ⇔ M, I |= ∀φ. (11)

Notice that, since F is continuous and F−1(U) with F⇐(U) are computable for
any U ∈ τ , it follows from [6,19] that PathsM is continuous and Paths−1

M (Uω)
with Paths⇐M (Uω) are computable for any Uω ∈ τω . Also, by the definition of
DTCSDS and the results of Section 2.1, (Xω, τω) is a computable Hausdorff
space and thus we can use the computability results of Section 2.3.
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Now, to complete the computable semantics for CTL∗, it suffices to consider
each possible path formula φ ∈ CTL∗ and to either show that it results in an
open and computable set of paths Paths (φ), or to provide its open approximation
Paths′ (φ) such that:

Paths−1
M (Paths′ (φ)) ⊂ Paths−1

M (Paths (φ)) and
Paths⇐M (Paths′ (φ)) ⊂ Paths⇐M (Paths (φ)) . (12)

In the latter case, Eq. 10 to 11 will turn into implications (from left to right), the
same as it was for CTL, e. g., cf. Eq. 8. Further, we assume that ψ, ψ1, and ψ2

are such that Paths (ψ), Paths (ψ1), and Paths (ψ2) are open and computable.
Paths of φ := Φ: Since Φ is a state formula, from Section 3 we know that we

can compute an open set Sat′ (Φ) ⊆ Sat (Φ). Then, we define:

Paths′ (Φ) := (Sat′ (Φ) , X, . . . , X . . .) , (13)

which is open in Xω, is trivially computable, and Paths′ (Φ) ⊆ Paths (Φ).
Paths of φ := ψ1 ∨ ψ2: Since Paths (ψ1), and Paths (ψ2) are open, we get:

Paths (ψ1 ∨ ψ2) := Paths (ψ1) ∪ Paths (ψ2) , (14)

which is open and computable.
Paths of φ := ψ1 ∧ ψ2: Similar to the previous case,

Paths (ψ1 ∧ ψ2) := Paths (ψ1) ∩ Paths (ψ2) , (15)

is open and computable.
Paths of φ := Xψ: In this case we get:

Paths (X ψ) := X × Paths (ψ) , (16)

i. e. the Cartesian product of X and an open set Paths (ψ). Clearly, Paths (Xψ)
is open and computable.

Paths of φ := Eψ: Remember that, by the standard semantics, for any path
σ, we have that σ |= Eψ is equivalent to σ |=

∨
i∈N

X iψ. Therefore, we obtain:

Paths (Eψ) :=
⋃
i∈N

Uψ
i , where Uψ

i := (X, . . . , X︸ ︷︷ ︸
i times

)× Paths (ψ) . (17)

Clearly, ∀i ∈ N the set Uψ
i is open and computable, and thus Paths (Eψ) is open

and computable (as a countable union of open sets).
Paths of φ := ψ1 U ψ2: Remember that, for any path σ, σ |= ψ1 U ψ2 is

equivalent to σ |=
∨

i∈N,i>0

(∧
j∈N,j<i X jψ1 ∧ X iψ2

)
∨ ψ2. This implies:

Paths (ψ1 U ψ2) :=
⋃

i∈N,i>0

⎛⎝ ⋂
j∈N,j<i

Uψ1
j ∩ Uψ2

i

⎞⎠ ∪ Paths (ψ2) . (18)
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Clearly, ∀i ∈ N the set
⋂

j∈N,j<i Uψ1
j ∩ Uψ2

i is open and computable as a finite
intersection of open sets. Thus, Paths (ψ1 U ψ2) is open and computable as a
countable union of open sets.

Paths of φ := Gψ: As before, following the standard semantics we get that
Paths (Gψ) :=

⋂
i∈N

Uψ
i . Being a countable intersection of open sets, Paths (Gψ)

is neither open nor computable. Moreover, constructing an open under approx-
imation of Paths (Gψ) is generally impossible. Consider p ∈ AP and Up :=
Sat (p) �= X , then Paths (Gp) := (Up, . . . , Up, . . .). Since ∀i ∈ N we have that
pi (Paths (Gp)) = Up �= X , we deduce that Int (Paths (Gp)) = ∅.

From the above, to construct an open set Paths′ (Gψ), we can only restrict
finite prefixes of the considered paths. We also need to ensure that any extension
of the path prefix does satisfy Gψ. Formally, we should consider paths σ such
that ∃i ∈ N for which σ [i] |= ∀Gψ and ∀j < i : σj |= ψ. This is only possible if
we account for the system model. As a conservative approximation, we suggest:

Paths′ (Gψ) :=
⋃
{Bω

r ∈ Bω|∃i ∈ N : Cl (pi (Bω
r )) ⊆ Sat (∀G∀ψ)∧

∀j < i : Cl (Shj (Bω
r )) ⊆ Paths (ψ)} . (19)

In Eq. 19, we substitute ∀Gψ with the equivalent formula ∀G∀ψ, cf. Eq. 26 of
Th. 1 in Section 5; and use Shj : Xω → Xω – the shift map that removes the first
j components of its argument. Shj is computable and open-valued. Bω

r is a finite
union of open rational balls in (Xω, τω). Note that, Cl (Shj (Bω

r )) is computed
componentwise, and since Shj (Bω

r ) is open in Xω, we only need to compute
the closure of finitely many components. Moreover, there are only finitely many
i such that pi (Shj (Bω

r )) �= X . For such i we have that pi (Cl (Shj (Bω
r ))) is

compact. The latter ensures computability of Cl (Shj (Bω
r )) ⊆ Paths (ψ).

Clearly, Paths′ (Gψ) is open and computable, but it is restrictive because it
excludes the paths σ such that σ |= Gψ and ¬∃i ∈ N : σ [i] |= ∀Gψ. Still, we
conjecture that the given choice for Paths′ (Gψ) is optimal for any approach that
propagates the sets of paths through the formulae. This is because Paths′ (Gψ)
has to contain only paths satisfying Gψ and to be an open set, i. e. we can not
put conditions on any but finite path prefixes. Also, this semantics is optimal
for verifying ∀Gψ because the latter is equivalent to ∀G∀ψ.

For specific formulae, there can be approximations that are better than the
one given by Eq. 19. For example, in case of ∃Gψ we suggest to use:

Paths′ (Gψ) :=
⋃
{Bω

r ∈ Bω|∃n ∈ N : ∀i ≤ n : Cl (Shi (Bω
r )) ⊆ Paths (ψ)∧

Cl (pi (Bω
r )) ⊆ F−1(

⋃
j≤n pj (Bω

r ))
}

, (20)

where ∀σ ∈ Paths′ (Gψ) there exists n ∈ N for which ∀i ≤ n : σi |= ψ and
∃σ′ ∈ Paths (σ [n]) : σ′ |= Gψ. Since Paths′ (Gψ) contains paths with suffixes
violating Gψ, it can only be used for verifying ∃Gψ. Note that, the set given by
Eq. 19 satisfies Eq. 12 but the set given by Eq. 20 only satisfies its first part.

Paths of φ := ψ2 R ψ1: Remember that, for any path σ we have that σ |=
ψ2 R ψ1 is equivalent to σ |= Gψ1 ∨ (ψ1 U (ψ1 ∧ ψ2)). This, by Eq. 14, Eq. 15,
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Eq. 18, and Eq. 19 gives us a computable and open approximation:

Paths′ (ψ2 R ψ1) := Paths′ (Gψ1) ∪ Paths (ψ1 U (ψ1 ∧ ψ2)) (21)

5 Equivalences and Implications for CTL∗

It is a well known fact, see e. g. [18], that in traditional setting the complexity
of CTL and CTL∗ (LTL) model checking are (respectively) P-complete and
PSPACE-complete. Also on DTCSDSs, when model checking CTL we need to
work with the open sets of system states, whereas for CTL∗ we have to (also)
operate with the open sets of paths. The latter are harder to represent and
certainly require a significant storage space. This is why, in our opinion, it can
be beneficial to be able to, when possible, substitute path formulae with state
formulae that are either equivalent to or imply the former ones. This subject is
related to the formulae-equivalence problems for CTL, LTL and CTL∗ studied
in, e. g., [10,14,5,13]. In order to avoid complications, in the following we restrict
to a simple propagation of universal and existential quantifiers inside the CTL∗

formulae. To our knowledge, the following results are not explicitly present in
the current literature on CTL∗.

Below, we assume the standard semantics of CTL∗ on Kripke structures, as
outlined in Section 2.4. Before we present Th. 1 that summarises our results, let
us define what it means for one CTL∗ to imply another or to be equivalent.

Definition 2. Let Φ and Ψ be two state formulae, then Φ implies Ψ (Φ ⇒ Ψ)
iff for any M and I: M, I |= Φ ⇒ M, I |= Ψ ; Φ and Ψ are equivalent (Φ ≡ Ψ)
iff Φ ⇒ Ψ and Ψ ⇒ Φ.

Theorem 1. Let φ, ψ ∈ CTL∗ be path formulae then the diagrams commute:

∀ (φ ∨ ψ)
	⇒⇐ ∀φ ∨ ∀ψ

⇓�⇑ ⇓�⇑
∃ (φ ∨ ψ) ≡ ∃φ ∨ ∃ψ (22)

∀ (φ ∧ ψ) ≡ ∀φ ∧ ∀ψ
⇓�⇑ ⇓�⇑

∃ (φ ∧ ψ)
	⇐⇒ ∃φ ∧ ∃ψ (23)

∀X φ ≡ ∀X ∀φ
⇓�⇑ ⇓�⇑
∃X φ ≡ ∃X ∃φ (24)

∀Eφ
	⇒⇐ ∀E∀φ

⇓�⇑ ⇓�⇑
∃Eφ ≡ ∃E∃φ (25)

∀Gφ ≡ ∀G∀φ
⇓�⇑ ⇓�⇑

∃Gφ
	⇐⇒ ∃G∃φ (26)

∀ (φ U ψ)
	⇒⇐ ∀ (∀φ U ∀ψ)

⇓�⇑ ⇓�⇑

∃ (φ U ψ)
	⇐⇒ ∃ (∃φ U ∃ψ) (27)

∀ (ψ R φ)
	⇒⇐ ∀ (∀ψ R ∀φ)

⇓�⇑ ⇓�⇑

∃ (ψ R φ)
	⇐⇒ ∃ (∃ψ R ∃φ) (28)

Proof (Sketch). First we prove Eq. 22 to 24, and then Eq. 25 to 28 follow as
simple consequences. Note that, for each equation, implications from the row
with the universal quantifiers to the row with the existential ones are trivial.
Without loss of generality, we will assume that the set of initial states I := {s}.
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– Eq. 22:
• ∀ (φ ∨ ψ) �⇒ ∀φ∨∀ψ: Clearly, there exists a model M and an initial state

s such that PathsM (s) = {σ′, σ′′} where σ′ |= φ and σ′′ |= ψ. Then it is
easy to see that M, s |= ∀ (φ ∨ ψ) but M, s �|= ∀φ ∨ ∀ψ.

• ∀ (φ ∨ ψ) ⇐ ∀φ ∨ ∀ψ: M, s |= ∀φ ∨ ∀ψ ⇔ (∃σ′ ∈ PathsM (s) : σ′ |= ψ) ∨
(∃σ′′ ∈ PathsM (s) : σ′′ |= φ) =⇒ (∃σ′ ∈ PathsM (s) : σ′ |= φ ∨ ψ) ∨
(∃σ′′ ∈ PathsM (s) : σ′′ |= φ ∨ ψ) ⇔ M, s |= ∀ (φ ∨ ψ).

• ∃ (φ ∨ ψ) ≡ ∃φ∨∃ψ: M, s |= ∃ (φ ∨ ψ) ⇔ ∃σ ∈ PathsM (s) : σ |= φ∨ψ ⇔
∃σ ∈ PathsM (s) : σ |= φ∨σ |= ψ ⇔ (∃σ′ ∈ PathsM (s) : σ′ |= φ ∨ σ′ |= ψ)∨
(∃σ′′ ∈ PathsM (s) : σ′′ |= φ ∨ σ′′ |= ψ) ⇔ (∃σ′ ∈ PathsM (s) : σ′ |= φ)∨
(∃σ′′ ∈ PathsM (s) : σ′′ |= ψ) ⇔ M, s |= ∃φ ∨ ∃ψ.

– Eq. 23: Follows from Eq. 22 by negating the diagram and taking into account
that: ¬ (∀ (φ ∨ ψ)) ≡ ∃ (¬φ ∧ ¬ψ), ¬ (∀φ ∨ ∀ψ) ≡ ∃¬φ∧∃¬ψ, ¬ (∃ (φ ∨ ψ)) ≡
∀ (¬φ ∧ ¬ψ), ¬ (∃φ ∨ ∃ψ) ≡ ∀¬φ ∧ ∀¬ψ.

– Eq. 24: For an arbitrary model M and I := {s}:
• ∀X φ ≡ ∀X ∀φ: Notice that M, s |= ∀X ∀φ ⇔ ∀σ ∈ PathsM (s) : σ [1] |=
∀φ ⇔ ∀σ ∈ PathsM (s)∀σ′ ∈ PathsM (σ [1]) : σ′ |= φ and M, s |=
∀X φ ⇔ ∀σ′′ ∈ PathsM (s) : σ′′ |= X φ ⇔ ∀σ′′ ∈ PathsM (s) : σ′′

1 |= φ.
Clearly, ∀X ∀φ ⇒ ∀X φ because if M, s |= ∀X ∀φ then for any σ′′ ∈
PathsM (s) we have that σ′′

1 ∈ PathsM (σ [1]) for some σ ∈ PathsM (s).
At the same time ∀σ ∈ PathsM (s)∀σ′ ∈ PathsM (σ [1]) : σ′ |= φ and
thus σ′′

1 |= φ.
Clearly, ∀X φ ⇒ ∀X∀φ. Let M, s |=∀X φ and we chose any σ ∈ PathsM (s)
and consider the set {σ′′

1 |σ′′ [1] = σ [1] , and σ′′ ∈ PathsM (s)}. Notice
that this set equals to PathsM (σ [1]) and for any σ′ from the set we have
that σ′ |= φ, because for any σ′′ ∈ PathsM (s) we have that σ′′

1 |= φ.
• ∃X φ ≡ ∃X ∃φ: Follows from ∀X φ ≡ ∀X ∀φ by the fact that ¬∀X φ ≡
∃X¬φ and ¬∀X ∀φ ≡ ∃X ∃¬φ.

Before we proceed, let us notice that Eq. 22 (Eq. 23) holds for any countable
disjunction (conjunction) of formulae.

– Eq. 25: Follows from Eq. 22 and Eq. 24 by the fact that for any model path
σ we have σ |= Eφ iff σ |=

∨
i∈N

X iφ.
– Eq. 26: Follows from Eq. 23 and Eq. 24 by the fact that for any model path

σ we have σ |= Gφ iff σ |=
∧

i∈N
X iφ.

– Eq. 27: Follows from Eq. 22 to 24 by the fact that for any model path σ we
have σ |= φ U ψ iff σ |=

∨
i∈N

(∧
j∈N,j<i X iφ ∧ X iψ

)
.

– Eq. 28: Follows from Eq. 22 to 24 by the fact that for any model path σ we
have σ |= ψ R φ iff σ |=

(∧
i∈N

X iφ
)
∨
∨

j∈N

(∧
k∈N,k≤j X kφ ∧ X jψ

)
.

Remarks: (i) In some cases implications of Th. 1 can turn into equivalences.
E. g., in Eq. 22 we get ∀ (φ ∨ ψ) ≡ ∀φ ∨ ∀ψ in case φ or ψ are state formulae.
Remember that, in CTL∗ a state formula can be also seen as a path formula,
cf. Section 2.4. (ii) Th. 1 assumes the standard semantics of CTL∗ on Kripke
structures which are defined for countable state spaces. In our case, the state
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space (X) can be uncountable, but this does not restrict the applicability of
Th. 1, because the standard semantics, cf. Section 2.4, does not account for the
cardinality of X .

6 Concluding Remarks

CTL∗ is a well known temporal logics that combines the power of linear-time
(LTL) and branching-time (CTL) semantics. In this work we focused on model
checking CTL∗ on discrete-time continuous-space control systems (DTCSDSs)
and in particular on computability aspects thereof. Due to continuity of the
state space, regular computability and complexity theory is not applicable and
therefore we resort to the (more powerful) Type Two Effectivity theory (TTE).

Here, we extended the work on computable semantics for CTL, cf. [8,9], by
providing a computable semantics for CTL∗ on DTCSDS models. For the latter,
the main computability requirements stays intact. I. e., we assume a compact
set of initial states I, a CTL∗ formula Φ in its negation normal form, and a
system model M = (T, F, L), where T is a computable Hausdorff space and a
continuous map F is such that F−1(U) and F⇐(U) are computable for any open
U . Also, the atomic propositions of Φ that are prefixed with negations, must have
representations that allow for computing interiors of their complements.

Similar to CTL, the linear-time semantics of the formulae including negation,
henceforth or release operators required changes in their interpretation. The
biggest challenge there was to provide computable and open approximation for
the sets of paths satisfying the formula. In the constructed computable semantics
of CTL∗, if Φ contains the aforementioned operators then Φ can be true (on M, I)
but not computably verifiable. Note that, if the formula holds in the computable
semantics, then it also holds in the original one. Since, in the traditional setting,
the complexity of CTL and CTL∗ (LTL) model checking are (respectively) P-
complete and PSPACE-complete, we have also provided a set of implication that
allow to propagate quantifies inside the CTL∗ formulae.

In the future, we plan to tackle the computability of the automata-based
model checking of CTL∗ on DTCSDSs, and to extend the present approach
towards computable model checking of CTL∗ on systems with hybrid time and
space domains. Also, we intend to implement these model checking algorithms
in a framework for reachability analysis of hybrid systems called Ariadne [2].
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Abstract. In this paper, an undecidability result concerning a permu-
tation of natural numbers is presented. More precisely, it is shown that
for a certain piecewise defined permutation, which consists of five affine
transformations, it is undecidable whether a given number belongs to a
finite cycle or not.

Keywords: Permutation, Undecidability.

1 Introduction

The aim of this paper is to present an undecidability result concerning the cycle
structure of a permutation of natural numbers, and to introduce a method to
easily obtain such results. This work continues that of [1], where the main moti-
vation was to study the undecidability of generalized Collatz-like problems (after
Lothar Collatz, cf. [2]) such as the 3n + 1 problem and the one more carefully
investigated in this paper, the Collatz’s original problem [2]. The first undecid-
ability result concerning the generalized 3n+1 problem was proven in [3], where
it was shown that one can simulate the computation of a Minsky machine by
a set of periodically piecewise linear functions. In contrast to [3], in [1] and the
current paper, a different coding is used and the functions to be iterated are
given in an explicit form.

To avoid ambiguity in notations we define the natural numbers to be the set
N = {1, 2, 3 . . .}.

Problem 1 (Collatz’s original problem). Let a permutation f : N → N be defined
as

f(n) =

⎧⎪⎨⎪⎩
(4/3)n− (1/3), if n ∈ 3N− 2
(4/3)n + (1/3), if n ∈ 3N− 1
(2/3)n + 0, if n ∈ 3N.

(1)

Is the cycle of this permutation containing n = 8 finite?

As a generalization of this problem we give
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Problem 2. Let f : N → N be a given permutation of the form

f(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1n + b1, if n ∈ A1

a2n + b2, if n ∈ A2

...
aνn + bν , if n ∈ Aν

(2)

where all ai, bi are rational numbers and the sets Ai are recursive, i.e., the relation
n ∈ Ai is effectively decidable for all i.

For a given n ∈ N, decide whether or not there exists a k ∈ N such that

f (k)(n) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

(n) = n. (3)

In other words, decide whether or not n belongs to a finite cycle of f .

Remark 1. Problem 2 is a reachability problem: For a given permutation f and
a natural number n it is asked, whether or not a finite cycle is reached when
iterating f on n.

We shall now, using a variation of the coding introduced in [1], try to find
a permutation f with minimal possible number of affine transformations (and
hence, recursive sets Ai) for which Problem 2 is undecidable. The main result of
this paper is

Theorem 1. There are recursive sets A1, A2, . . . , A5 forming a partition of N

such that

f(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1/2)n− (1/2), if n ∈ A1

(1/2)n + 0, if n ∈ A2

(1/2)n + (1/2), if n ∈ A3

2n + 0, if n ∈ A4

2n + 1 if n ∈ A5

(4)

is a permutation for which Problem 2 is undecidable.

Proof (Sketch). We define the recursive sets Ai such that for natural numbers
n of specific type, iterating f on n corresponds to a computation of a Turing
machine M on a specific input. This is called ascending computation. At the
same time we define descending computation (iterating f−1 on n) which collides
with the ascending one if and only if M halts on the given input. If M does not
halt,

lim
k→∞

f (k)(n) = lim
k→∞

(f−1)(k)(n) = ∞.

Finally, for numbers n which do not correspond to a description of a Turing
machine and its input, we define f(n) such that f is a permutation of natural
numbers. The claim follows from undecidability of the halting problem [4]. ��
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2 Encoding a Turing Machine’s Computation

We assume familiarity with Turing Machines and their configurations and com-
putations as in [5]. Let us assume that the input and tape alphabets coincide,
hence Σ = Γ = {a1, . . . , ak}. The set of states is denoted by Q = {q1, . . . , qm}
and it is assumed that q1 and q2 are the initial and final state, correspond-
ingly (q1 �= q2). The list of transition rules of a Turing machine is Δ = [u1 -
v1, . . . , un - vn]. Now, such a Turing machine can be given as a triplet

M = [[a1, . . . , ak], [q1, q2, . . . , qm], [u1 - v1, . . . , un - vn]] (5)

Definition 1. Define a coding C′ to the binary alphabet {0, 1} as follows:

C′(ai) = 05+i1 for i = 1, . . . , k and C′(qi) = 05+k+i1 for i = 1, . . . , m,

where the codewords are regarded as words in {0, 1}∗. We also need codings for
the special letters:

C′( [ ) = 01 C′( ] ) = 001 C′( , ) = 031

C′( - ) = 041 C′( # ) = 051

For words w = w1w2 · · ·wl whose length is greater than one, define

C′(w) = C′(w1)C′(w2) · · · C′(wl).

Note, that this applies to the elements of the list Δ. In the same way we now
know how to encode the description (5) of a Turing machine.

Finally, for any word w whose encoding has been defined, let

C(w) = 1 C′(w). (6)

Notice that the codewords C′(x), for a Turing machine given in the form (5),
form a prefix code. Moreover, there is a bijective correspondence between the
codewords C(w) and the natural numbers. In the following we write n = C(w),
where n ∈ N is the natural number corresponding to the binary representation
C(w).

3 Defining the Computing Part of the Permutation

Consider natural numbers n of the form

n = C(M#w0#w1# · · ·#wl#α), (7)

where M is any Turing machine given in the form (5), w0 is a legal initial ID
of M, w0 - w1 - · · · - wl, α does not contain the special letter #, and n (as a
word) is a prefix of C(M#w0#w1# · · ·#wl#wl+1#), where wl - wl+1.
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In the form (7) we allow l = 0 and α to be the empty word. Notice that
w0 -∗ wl is not a halting computation in (7). We define the set of ascending
computations SA to be

SA = {n ∈ N | n is of the form (7)}. (8)

Next, let n ∈ SA and define f(n) to be the unique number whose binary repre-
sentation is one bit longer than that of the number n and for which

f(n) is a prefix of C(M#w0#w1# · · ·#wl#wl+1#).

Thus, f(n) continues the encoding of the computation by one bit and f(n) =
2n + 0 or f(n) = 2n + 1.

Next we define the set of descending computations SD. In the following n = w1
means that the binary representation of n is of the form w1 where w ∈ {0, 1}∗.
Let

SD = {n = w1 | w0 ∈ SA} ∪ {n = w10 | w01 ∈ SA, w01 �= C(M#w0#)}, (9)

Notice, that there is an obvious injection from SD to SA and that SA ∩SD = ∅.
Let n ∈ SD be of the form n = w1.
Suppose first that

w = C(M#w0#),

where w0 is an initial ID of a Turing machine M. Define then

f(n) = (1/2)(n− 1) = (1/2)n− 1/2,

i.e., f(n) = w ∈ SA. Suppose then that

C(M#w0#) is a proper prefix of w.

For this case we define f(n) = (1/2)(n + 1) = (1/2)n + 1/2. Now the binary
representation of f(n) is one bit shorter than that of n and it is either of the
form f(n) = w1 or f(n) = w10, where w0 ∈ SA or w01 ∈ SA, correspondingly.
In both cases, f(n) ∈ SD.

Let then n ∈ SD be of the form n = w10. Define f(n) = (1/2)n + 0, i.e.
f(n) = w1. Since w01 ∈ SA it follows that w0 ∈ SA and thus f(n) = w1 ∈ SD.

Finally we define the set of halted computations SH in the obvious way:

SH = {n = C(M#w0# · · ·#wh#) | w0 -∗ wh is a halting computation of M}.
(10)

If n ∈ SH , define f(n) = (1/2)(n + 1) = (1/2)n + (1/2). Then f(n) is of the
form f(n) = w1 where w0 ∈ SA and therefore f(n) ∈ SD.

Now we are ready to present two Lemmata. For them, denote

S = SA ∪ SD ∪ SH . (11)
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Lemma 1. Let wx ∈ S, where w ∈ {0, 1}∗ and x ∈ {0, 1}. Then exactly one of
the following is true:

(i) wx = C(M#w0#) for some M and its initial ID w0

(ii) w ∈ S

Proof. If wx = C(M#w0#) it follows from the unique decodability of C that
w /∈ S.

Suppose then that wx is not of the form (i) and let wx ∈ SA ∪ SH . Then wx
is a possibly incomplete encoding of a computation of Turing machine and also
w ∈ SA ⊂ S.

Suppose that wx ∈ SD. If x = 1 it follows that w0 ∈ SA and by the same
argumentation as above w ∈ SA ⊂ S. If x = 0 we can write wx = u10 where
u01 ∈ SA, and thus u0 ∈ SA from which it follows that w = u1 ∈ SD ⊂ S. ��

Lemma 2. The function f : S → S is bijective.

Proof. Let n = C(M#w0#) for some M and its initial ID w0. We defined
f(n) to be the number whose binary representation extends the encoding of the
computation of M on w0 by one bit. In the same way f (i)(n) ∈ SA, for i ≥ 2,
until possibly for some k ∈ N

f (k)(n) = C(M#w0# · · ·#wh#) ∈ SH ,

where w0 -∗ wh is a halting computation of M.
On the other hand, the preimage of f on n is uniquely determined as

f−1(n) = C(M#w0#)1 ∈ SD.

Iterating f−1 on n results in (f−1)(i)(n) ∈ SD until possibly for some k ∈ N

(f−1)(k)(n) = C(M#w0# · · ·#wh#) ∈ SH .

Thus, for fixed n, iterating f and f−1 results in a finite or infinite cycle.
Since a computation of a Turing machine is deterministic, cycles with different

initial IDs do not intersect. ��

Notice that in the definition of f : S → S we used all the affine transformations
(1/2)n±(1/2), (1/2)n+0, 2n+0 and 2n+1 and that each of these transformations
corresponds to a recursive set Ai.

4 Extending f

We could extend f to a permutation of natural numbers by defining f(n) = n
whenever n /∈ S. However, as our motivation was to find a permutation f with
as few affine transformations as possible, we reuse these transformations when
extending f .

Extending f is done by iterating the following procedure:
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Algorithm 1

1. Let I = ∅
2. Let n ∈ N be the smallest integer for which f(n) has not been defined. Set

I = I ∪ {n}.
3. Let the binary representation of n be w
4. Define Tn = w1∗ ∪ w0+

5. If m ∈ w1∗, define f(m) = w1 (i.e. f(m) = 2m + 1)
6. If m ∈ w0+, define f(m) = w (i.e. f(m) = (1/2)m + 0)
7. Go to 2.

Let us denote T = N \ S. To show that Algorithm 1 truly extends f : S → S to
a bijection f : N → N, we must prove that

(i) T =
⋃

i∈I Ti

(ii) f(T ) = T and
(iii) f : T → T is bijective.

The following auxiliary result is clear by the definition of the Algorithm 1.

Lemma 3. Let i ∈ I and wx ∈ Ti. Then either w ∈ Ti or i = wx.

As corollary we obtain

Corollary 1. Let i, j ∈ I be different. Then Ti ∩ Tj = ∅.
Proof. Suppose Ti ∩ Tj �= ∅. By Lemma 3, i ∈ Tj or j ∈ Ti, which is impossible.

��
Lemma 4. The sets Ti form a partition of T .

Proof. From Algorithm 1 it directly follows that

T ⊂
⋃
i∈I

Ti.

Suppose there is a v ∈ Ti ∩ S for some i ∈ I. Then by Lemmata 1 and 3 there
must exist w ∈ Ti and x ∈ {0, 1} such that

wx = C(M#w0#) ∈ Ti ∩ S. (12)

From the definition of the coding C we see that wx ends to bits 0001 (i.e. x = 1)
and thus the three final bits of w are 000. Let us write w = w′00. Clearly
w′0 /∈ S, and thus w′0 and w belong both in the same set Ti. But then w1 /∈ Ti,
a contradiction.

Therefore T =
⋃

Ti and by Corollary 1 the sets Ti are disjoint. ��
Now we are ready to present the final Lemma needed for the proof of Theorem
1.

Lemma 5. Let f : N → N be the extension of f : S → S as described in
Algorithm 1. Then f(T ) = T and f : T → T is bijective.

Proof. By Algorithm 1, each set Ti corresponds to iterations of f and f−1 on
i /∈ S. Thus f is bijective on each Ti. From Lemma 4 it follows that f is bijective
on T . ��
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5 Proof of the Main Theorem

Finally, we are ready to present the proof of the Theorem 1.

Proof (Theorem 1). By Lemmata 2 and 5 we have constructed a recursive per-
mutation f : N → N of the form

f(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1/2)n− (1/2), if n ∈ A1

(1/2)n + 0, if n ∈ A2

(1/2)n + (1/2), if n ∈ A3

2n + 0, if n ∈ A4

2n + 1 if n ∈ A5

(13)

where the sets Ai are recursive.
If n ∈ N is of the form

n = C(M#w0#) (14)

for some Turing machine M and its initial ID w0, the following is true:

There exists a k > 1 for which f (k)(n) = n ⇐⇒ M halts
on its initial ID w0.

The claim follows from the undecidability of the halting problem [4]. ��

6 Conclusion

In this paper, a coding of a Turing machine’s computation introduced in [1] was
used to derive an undecidability result concerning the cycle structure of a certain
explicitly defined permutation. The main motivation was to present an effective
way to attain such results, but also to find an undecidable permutation with as
few affine transformations as possible. A future task is to further investigate the
number of affine transformations for which the general cycle structure problem
remains undecidable. Such an analysis may prove to be valuable when analyzing
the decidability of such iterative permutation problems as the Collatz’s original
problem.
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Abstract. Dynamic networks of Pushdown Systems (PDN in short)
have been introduced to perform static analysis of concurrent programs
that may spawn threads dynamically. In this model the set of succes-
sors of a regular set of configurations can be non-regular, making for-
ward analysis of these models difficult. We refine the model by adding
the associative-commutative properties of parallel composition, and we
define Presburger weighted tree automata, an extension of weighted au-
tomata and tree automata, that accept the set of successors of a reg-
ular set of configurations. This allows forward analysis of PDN since
these automata have a decidable emptiness problem and are closed under
intersection.

Introduction

Dynamic networks of Pushdown Systems is a model of concurrent programs that
models thread generation and it has been introduced for performing the static
analysis of these programs [BMOT05]. This model follows from a stream of works
that have advocated the use of automata techniques for the static analysis of
programs for more and more complex problems (from intraprocedural analy-
sis to interprocedural concurrent analysis [EP00]) and more and more complex
models, from Pushdown system [AB97, RSJ03] to Process Algebra [LS98] and
networks of Pushdown systems [BMOT05], possibly involving data structure or
synchronization [KG07, LMOW09]. In [BMOT05], the authors consider push-
down processes that can generate new processes yielding configurations that are
sets of ordered unranked trees and they prove that the set of predecessors of a
regular set of configurations is regular where regularity refers to hedge automata,
the standard extension of tree automata to unranked trees. However, the set of
successors can be non-regular making forward analysis of such systems difficult.
In this paper we enrich this model by assuming that parallel composition is an
associative-commutative operation therefore the execution of threads generated
by some pushdown system is independent of their order. This amounts to con-
sidering configurations that are unranked unordered trees and using the notion of
regularity relying on Presburger automata [ZL06]. The main result of the paper
is to prove that the set of successors of a regular set of configurations can be non-
regular but is accepted by a Presburger weighted tree automaton, an extension
of Presburger automata which enjoy properties that allow to perform forward
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analysis. The regularity of the set of predecessors of a regular set is derived from
the results of [BMOT05].

Section 1 presents the basic definitions while section 2 introduces pushdown
systems and dynamic networks of pushdown systems. Regular sets are defined
in section 4. Weighted word and tree automata are defined in section 5 and the
computation of the set of successors is explained in section 6. Section 7 shows
how to derive the computation of the set of predecessors using known results.

1 Analysis of Transition Systems

A system S is given by an (infinite) set of configurations C̄ and a transition
relation →S between configurations. Configurations are formal objects (words,
trees,. . . ) that describe the current state of the system, and the dynamic behavior
of the systems is given by the relation →S which is usually defined by a finite set
of transition rules R. The reflexive transitive closure of →S is denoted as ∗→S .

The set of successors of a configuration c is the set Post∗S(c) = {c′ ∈ C̄ | c ∗→S

c′} and for L ⊆ C̄, Post∗S(L) =
⋃

c∈L Post∗S(c).
The set of predecessors of a configuration c is the set Pred∗S(c) = {c′ ∈

C̄ | c′
∗→S c} and for L ⊆ C̄, Pred∗S(L) =

⋃
c∈L Pred∗S(c).

The set of all possible initial configurations Init and the set of all bad con-
figurations Bad can be infinite and are usually defined as regular language for
some appropriate notion of regularity. Backward analysis tests the emptiness of
the set Init ∩ Pred∗S(Bad) when Forward analysis test the emptiness of the set
Post∗S(Init) ∩ Bad. These analyzes allow to detect statically if the execution
of the system S can lead to an error state. When the languages Init and Bad
are regular for a good notion of regularity (that enjoys closure under boolean
operations and decision of emptiness) the feasibility of these analysis boils down
to proving that Pred∗S(L) and Post∗S(L) are regular when L is regular and pro-
viding effective constructions of devices accepting these sets. Forward analysis is
more difficult than backward analysis, since regularity is easier to preserve under
inverse image that under direct image, see [CDJ+99] for regular tree languages.

In the following, we drop the subscript S of →S , . . . when S is clear from the
context.

2 Pushdown Systems

A pushdown system (PDS in short, see [AB97] for details) P is a triple (Q, Σ, R)
where Q is a finite set of states, Σ is a finite stack alphabet and R is a finite set
of transition rules qa → q′γ with q, q′ ∈ Q, a ∈ Σ, γ ∈ Σ∗ (also called rewrite
rules in the following). The set C̄ of configurations is the set of words qw with
q ∈ Q (the state), w ∈ Σ∗ (the content of the stack). The transition relation →
between configurations is the relation defined by qw → q′w′ iff w = aw′′ and
w′ = γ.w′′ and there is a rule qa → q′γ ∈ R. The relation ∗→ is exactly the prefix
rewriting relation defined by the set of rewrite rules R.
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Let P be a pushdown system, let L ⊆ C̄ be a regular language. Then Pred∗(L)
and Post∗(L) are regular languages, see [Buc64, AB97]. Actually the relation R

on pairs of configurations defined by qw R q′w′ iff qw
∗→ q′w′ is a rational

relation (see [Cau00] for extensions).
The following proposition states that the successors of a regular set of con-

figurations L is the set of successors of a unique configuration, provided that (i)
we extend the initial PDS with new states and new rules (ii) that we keep only
the configurations that corresponds to the initial alphabet.

Proposition 1. Let P = (Q, Σ, R) be a PDS and L ⊆ C̄ be a regular language.
There exists P ′ = (Q∪Q′, Σ∪{$}, R∪R′) such that Post∗P (L) = Post∗P ′(q0$)∩C̄
where q0 ∈ Q′.

3 Dynamic Network of Pushdown Systems

Dynamic networks of pushdown processes [BMOT05] generalize PDS since (i) a
configuration may have several PDS running in parallel, (ii)a transition rule of
a PDS not only changes the state and stack of the PDS, but may also spawn
one (or more) new PDS which is a son of the process. There is no limitation
in the creation of processes (a process has an arbitrary number of sons) and in
the recursion depth for process creation (each process may create sons that can
create sons, . . . ). Therefore configurations are isomorphic to unranked tree-like
structures. In this work, we enrich the original model by assuming that parallel
composition is associative-commutative, hence trees are also unordered.

3.1 Configurations

The set PDN of configurations and the set PDN‖ of parallel configurations are
defined by:

PDN . c ::= qw | qw(c‖) q ∈ Q, w ∈ Σ∗

PDN‖ . c‖ ::= c1 ‖ . . . ‖ cn n ≥ 1, ∀i = 1, . . . , n ci ∈ PDN

The parallel composition is independent of the order of its arguments and the
equality ≡ between configurations is defined by:
qw ≡ q′w′ iff q = q′ and w = w′

qw(c1 ‖ . . . ‖ cn) ≡ q′w′(c′1 ‖ . . . ‖ c′m) iff q = q′, w = w′, n = m and ∃σ
permutation of {1, . . . , n}
such that ci ≡ c′σ(i)

The set Sub(t) of process subterms of a configuration t is defined by:
Sub(qw) = {qw}
Sub(qw(t1 ‖ . . . ‖ tn)) = {qw(t1 ‖ . . . ‖ tn)} ∪ {qw} ∪

⋃
i=1,...,n Sub(ti)

A context C[�] is a configuration t where some process subterm is replaced by
the symbol �. The notation C[s] denotes the configuration obtained by replacing
� by s ∈ PDN .
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Example 1. Let c = qa(qaa ‖ q′b ‖ q(qa ‖ q′b)). We can draw this configuration
as sets of vertical lines (each one being a PDS) combined in a tree-like structure:

q

a

q ‖ q′ ‖ q

a b q ‖ q′

a a b

We have Sub(c) = {q, qa, qaa, q′b, qb} and c ≡ qa(q′b ‖ q(q′b ‖ qa) ‖ qaa).

3.2 PDN and Their Transition Relation

A dynamic network of pushdown systems (PDN in short) P is a triple (Q, Σ, R)
where Q is a finite set of states, Σ is a finite alphabet and R is a finite set of
rules of the form qa → q′γ or qa → q′γ(q1γ1 ‖ . . . ‖ qnγn) where w, γ, γi for
i = 1, . . . , n belong to Σ∗, q, q′, qi for i = 1, . . . , n belong to Q.

The relation → induced by a PDN P on pairs of configurations is defined by:

– if qa → q′γ ∈ R then qaw → q′γw
– if qa → q′γ(q1γ1 ‖ . . . ‖ qnγn) ∈ R then

• qaw → qγw(q1γ1 ‖ . . . ‖ qnγn)
• qaw(s1 ‖ . . . ‖ sm) → qγw(q1γ1 ‖ . . . ‖ qnγn ‖ s1 . . . ‖ sm)

– if c → c′ and c ∈ Sub(t), then t = C[c] → t′ = C[c′],
– if c → c′ and c̄ ≡ c, c̄′ ≡ c′ then c̄ → c̄′.

Example 2. Let P = ({q, q′}, {a, b}, {qa → q′bb, q′b → qab(qa ‖ qa)}) be a
PDN . A sequence of transition of P is:

qa → q′bb→ qabb(qa ‖ qa) → qabb(qa ‖ q′bb) → q′bbb(qa ‖ q′bb)
→ qabbb(qa ‖ qa ‖ qa ‖ q′bb) → qabbb(qa ‖ qa ‖ qa ‖ qabb(qa ‖ qa))

The next proposition states that a transition sequence can be done by applying
transition rules to the top PDS first and then on the arguments of parallel
compositions.

Proposition 2. qw(t1 ‖ . . . ‖ tn) ∗→ q′w′(u1 ‖ . . . ‖ um) iff qw(t1 ‖ . . . ‖ tn) ∗→
q′w′(t1 ‖ . . . ‖ tn ‖ sn+1 ‖ . . . ‖ sm) ∗→ q′w′(u1 ‖ . . . ‖ um)

4 Regular Sets of PDN Configurations

Configurations as Unranked-Unordered Trees. A configuration is isomor-
phic to a unranked-unordered tree on the signature {#} ∪Q∪Σ ∪ {‖} where #
is a constant, each symbol in Q or Σ is now a monadic symbol. The symbol ‖
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is a permutative variadic symbol. The operations c2t and t2c that transform a
configuration c into a tree t and conversely are defined as follows:

c2t(qa1 . . . an) = q(a1(. . . (an(#))))
c2t(qa1 . . . an(c1 ‖ . . . ‖ cn)) = q(a1(. . . (an(‖ (c2t(c1), . . . , c2t(cn))))))
t2c(q(a1(. . . (an(#))))) = qa1 . . . an

t2c(q(a1(. . . (an(‖ (c1, . . . , cn)))))) = qa1 . . . an(t2c(c1) ‖ . . . ‖ t2c(cn)))

Since the transformation is one-to-one, results and definitions stated for config-
urations are valid for trees. The set of nodes of a tree t is denoted by Nodes(t).
A symbol of {#} ∪Q ∪Σ ∪ {‖} is attached to each node N of t.

Top-down Presburger Automata. Presburger arithmetic is the first-order
theory of N, +, = and a Presburger formula is a formula of this theory. For
instance ∃z x = y +2z+1 is a Presburger formula in the free variables x, y. This
theory is decidable [Pre29].

Word regular languages and tree regular languages have been generalized for
unranked-unordered trees using Presburger automata [ZL06]. To fit the frame-
work of PDN, we slightly change the definitions and we use top-down automata
instead of bottom-up automata.

Definition 1. A top-down Presburger automaton is a tuple A = (S, SI , R ∪R′)
where:

• S = {s1, . . . , sp} is a finite ordered set of states,
• SI ⊆ S is a set of initial states,
• R is a set of rules of the form s→# or s

a→s′ where s, s′ ∈ S, a ∈ Q ∪Σ,

• R′ is a set of rules s
‖→φ(x1, . . . , xp) where φ(x1, . . . , xp) is a Presburger

formula.

A run of the automaton A on a tree t is a labelling r : Nodes(t) → S of the
nodes of t by the states of S such that:

• if # is the symbol of a node N of t, the node N is labelled by r(N) = s such
that the rule s → # belongs to R,

• if a ∈ Q ∪Σ is the symbol of a node N of t, and N is labelled by r(N) = s,
then the unique son of N is labelled by s′ such that the rule s

a→s′ belongs
to R,

• if ‖ is the symbol of a node N of t and N is labelled by r(N) = s, if
N1, . . . , Nm are the sons of N , then

– (i) there are n1 sons of N labelled by s1, . . . , np sons of N labelled by
sp,

– (ii) there is a rule s
‖→φ(x1, . . . , xp) ∈ R′, such that φ(n1, . . . , np) is true.

A tree t is accepted by A is there is a run of A on t such that the root of t is
labelled by a state s ∈ SI . L(A) is the set of trees accepted by A and a language
L is a Presburger regular language iff L = L(A). When there is no ambiguity, we
say regular language. By construction t ∈ L(A) and s ≡ t implies s ∈ L(A).
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Example 3. Let q(a∗(. . .)) denote any q(an(. . .)) for n ≥ 0. The set of trees of
the form q(a∗(‖ (q(b∗(#)), . . . , q(b∗(#)), q(c∗(#)), . . . , q(c∗(#)))) where the par-
allel operator ‖ has as many arguments qb∗# as arguments qc∗# is a Presburger
regular language since it is accepted by the automaton A = (S = {sa, sb, sc},
SI = {sa}, R = {sa

q→sa; sa
a→sa; sb

q→sb; sb
b→sb; sc

q→sc; sc
c→sc; sb→#; sc→#},

R′ = {sa
‖→xa = 0∧ xb = xc}) with xa the variable for sa, xb the variable for sb,

xc the variable for sc.

The usual constructions on tree automata can be adapted to Presburger au-
tomata which yields the decidability of the emptiness of L(A) and the closure of
regular languages under boolean operations, see [ZL06].

5 Weighted Automata for PDN

5.1 Semilinear Sets

Let b ∈ N
m, let P = {p1, . . . , pn} be a finite subset of N

m. The linear set L(b, P )
of N

m is the set {b + Σi=n
i=1 λipi | λi ∈ N}. A semilinear set is a finite union of

linear sets. The + operation on subsets of N
m is defined by L+M = {x+y | x ∈

L, y ∈ M}. The ∗ operation is defined by L∗ = ∪n≥0L
n where L0 = {(0, . . . , 0)},

and Ln = L + . . . + L︸ ︷︷ ︸
n

.

The set of rational expressions of semilinear sets is defined by

Rat ::= L | Rat + Rat | Rat ∪Rat | Rat∗

where L denotes any semilinear set. A rational expression R ∈ Rat denotes a set
[R] inductively defined by

[L] = L [R + R′] = [R] + [R′] [R ∪R′] = [R] ∪ [R′] [R∗] = [R]∗

Proposition 3. Let R ∈ Rat. Then there exists a effectively constructible semi-
linear set L such that L = [R].

Semilinear sets and Presburger arithmetic are closely related since the set of
valuations such that a formula φ(x1, . . . , xp) is true is an effectively constructible
semilinear set [GS66]. From now on, for the sake of simplicity, a semilinear set
which contains only one element c will be written c (instead of {c}).

5.2 Presburger Weighted Word Automata

A semiring is a structure (K,⊕,⊗, 0, 1) such that (i) K,⊕ is a commutative
monoid with 0 as neutral element, (ii)K,⊗ is a monoid with 1 as neutral element,
(iii) x⊗ (y⊕z) = (y⊕z)⊗x = x⊗y⊕x⊗z (iv) for all x ∈ K, 0⊗x = x⊗0 = 0.
Let SLm be the set of semilinear sets of N

m. Then Sm = (SLm,∪, +, ∅, (0, . . . , 0))
is a semiring. Weighted automata are word automata where the transitions are
labelled by element of a semiring K. Weighted automata have already used
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for PDS analysis provided that K satisfies additional properties [RSJ03]. Pres-
burger weighted automata have a similar definition, but the semiring for labels
is Sp and the definition of the transition relation is slightly distinct from the
standard one. Furthermore, these automata enjoy particular properties used in
the reachability analysis of PDN .

Definition 2. A Presburger weighted word automaton is an automaton A =
(S, s0, SF , Sm, Δ) where SF is a set of pairs (s, φs) with s ∈ S, φs ∈ Sm, Δ ⊆
S ×Σ ∪ {ε} × Sm × S. A transition rule of Δ is denoted s

a,C→ s′.
The transition relation ∗→A⊆ Σ∗ × N

m × S is inductively defined by:

• ε, (0, . . . , 0) ∗→A s0

• if w, c
∗→A s then wa, c + c′

∗→A s′ if there is a rule s
a,C′

→ s′ with c′ ∈ C′,

• if w, c
∗→A s then w, c + c′

∗→A s′ if there is a rule s
ε,C′

→ s′ with c′ ∈ C′

A pair w, c is accepted iff w, c
∗→A s and c ∈ φs for (s, φs) ∈ SF . The language

accepted by A is the set L(A) of pairs accepted by A.

Proposition 4. For each s ∈ S, the set L(s0, s) = {c ∈ SLm | ∃w ∈ Σ∗ w, c
∗→A

s} is an effectively computable semilinear set.

Proof. By proposition 3, and the property that the set of words reaching a state
of a (usual) word automaton can be described by a rational expression, we get
that for each state s of a Presburger weighted word automaton, we can compute
the semilinear set L(s0, s) = {c ∈ SLm | ∃w ∈ Σ∗ w, c

∗→A s}.

Presburger weighted word automaton enjoy other properties that they share with
Presburger weighted tree automaton and they are given in the next section.

5.3 Presburger Weighted Tree Automata

Presburger weighted tree automata are designed to accept set of trees corre-
sponding to configurations of PDN .

Definition 3. A top-down Presburger weighted tree automaton is a tuple A =
(S, SI , Sm, R ∪R′) where:

• S = {s1, . . . , sp} is a finite set of states,
• SI ⊆ S is a set of initial states,
• Sm is the semiring (SLm,∪, +, ∅, (0, . . . , 0)),

• R is a set of rules of the form s
(0,...,0)→ # or s

a,C→ s′ where s, s′ ∈ S, a ∈ Q ∪
Σ ∪ {ε}, C ∈ Sn

• R′ is a set of rules s
‖→φ(x1, . . . , xp, y1, . . . , ym) where φ(x1, . . . , xp, y1, . . . , ym)

is a Presburger formula.

A run of the automaton A on a tree t is a labelling r : Nodes(t) × N
m → S of

the nodes of t by the states of S and weights of N
m such that:
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• if # is the symbol of a node N of t, the node N is labelled by r(N) =

(s, (0, . . . , 0)) such that the rule s
(0,...,0)→ # belongs to R.

• if a ∈ Q∪Σ is the symbol of a node N of t, and N is labelled by r(N) = (s, c),
then the unique son of N is labelled by (s′, c + c′) s.t. there is a sequence of
rules

s̄1
ε,C̄1→ s̄2, . . . , s̄i−1

ε,C̄i−1→ s̄i, s̄i
a,C̄i+1→ s̄i+1, s̄i+2

ε,C̄i+2→ s̄i+3, . . . , s̄l
ε,C̄l→ s̄l+1

where s̄1 = s, s̄l+1 = s′ and c′ = c1 + . . . + cl with ci ∈ C̄i for i = 1, . . . , l.
• if ‖ is the symbol of a node N of t and N is labelled by r(N)=(s, (c1, . . . , cm)),

if N1, . . . , Nn are the sons of N , then
– (i) there are n1 sons of N labelled by (s1, (0, . . . , 0)), . . . , np sons of N

labelled by (sp, (0, . . . , 0)),

– (ii) there is a rule s
‖→φ(x1, . . . , xp, y1, . . . , ym) ∈ R′, such that

φ(n1, . . . , np, c1, . . . , cm) is true.

L(A) denotes the set of trees accepted by A.

Example 4. Let q(b+(#)) denote q(bn(#)) with n > 0. The (non-regular) lan-
guage L1

{q(an+1(‖ (q(b+(#)), . . . , q(b+(#))︸ ︷︷ ︸
n

, q(c+(#)), . . . q(c+(#))︸ ︷︷ ︸
n

))) | n ≥ 1}

is accepted by the Presburger weighted tree automaton A = (S, SI , S2, R ∪R′)
S = {s0, sqa, sqb, sqc, sa, sb, sc, sq}, SI = {s0},
R = {s0

q,(0,0)→ sq, sq
a,(0,0)→ sa, sa

a,(1,1)→ sa, sqb
q,(0,0)→ sb, sb

b,(0,0)→ sb,

sb
(0,0)→ #, sqc

q,(0,0)→ sc, sc
q,(0,0)→ sc, sc

(0,0)→ #, },
R′ = {sa → xsqb

= y1 ∧ xsqc = y2 ∧
∧

s	=sqb,sqc
xs = 0

The tree q(a(a(‖ (q(b(#)), q(c(c(#))))))) is accepted by a run that labels the
node ‖ by (sa, (1, 1)), the first son of this node by sqb, the second son by sqc.
The tree q(a(a(a(‖ (q(b(#)), q(c(#))))))) is not accepted since the node ‖ can
be labelled only by (sa, (2, 2)) and this node has only two sons (when two nodes
labelled by sqb and two nodes labelled by sqc are required).

A main feature of these automata is that the non-regular behavior is generated
by weight computations. The Presburger formula of rules of R′ can only be used
to add additional regular constraints. For instance, we can build an automaton
accepting the subset of L corresponding to even values of n by replacing in A
the rule sa → xsqb

= y1 ∧ xsqc = y2 ∧
∧

s	=sqb,sqc
xs = 0 by the rule sa → xsqb

=
y1 ∧ xsqc = y2 ∧ xsqb

%2 = 0 ∧ xsqc%2 = 0 ∧
∧

s	=sqb,sqc
xs = 0.

Proposition 5. Let A be a Presburger weighted tree automaton.

1 non-regularity follows from a straightforward pumping argument.
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• There is a Presburger weighted tree automaton B without ε-rules such that
L(B) = L(A).

• It is decidable if L(A) is empty.
• Let B be a Presburger weighted tree automaton. Then there is a effectively

computable Presburger weighted tree automaton C̄ s.t. L(C̄) = L(A) ∩L(B).

Since a Presburger tree automaton can be seen as a Presburger weighted tree
automaton by taking Sp = N and replacing rules s

a→s′ by s
a,0→s′, we can build a

Presburger weighted tree automaton that accepts L(A)∩L(B) for B a Presburger
tree automaton.

6 Forward Analysis of PDN

In this section we consider a PDN P = (Q, Σ, R). From now on, we say that a
subset L ⊆ C̄ is a regular language iff the set c2t(L) = {t | t = c2t(c), c ∈ L} is
a regular tree language.

Example 5. Let P = ({q}, {a, b, c}, {qa → qaa ‖ (qb, qc), qb → qbb, qc → qcc}).
The automaton of example 4 accepts Post∗(qa).

Since this example has a non-regular set of successors, we get:

Proposition 6. Post∗(L) can be a non-regular language.

Our goal is to show that Presburger weighted tree automata can be used to
perform the forward analysis of PDN .

6.1 Preliminary Computations

The two following propositions are used to simplify the computation of Post∗(L)
since it reduces the computation of the successors of a regular language to the
computation of the successor of a single configuration.

Proposition 7. Let L ⊆ C̄ be a regular language. There exists P ′ = (Q∪Q′, Σ∪
{$}, R ∪R′) such that Post∗P (L) = Post∗P ′(q0$) ∩ C̄ where q0 ∈ Q′.

Proof. Let A = (S, SI , R ∪R ′) be a top-down Presburger weighted tree automa-

ton accepting L′ = c2t(L). For each rule s
‖→φ(x1, . . . , xp) ∈ R ′ we compute the

semilinear set Ls,φ of N
m equivalent to φ(x1, . . . , xp). This set a finite union of

linear sets SLi
s,φ = L(bi, Pi).

The PDN P ′ performs transitions that generates L and then performs the
transitions of P . In the first computations, the new symbol $ is used to prevent
the application of rules of P .

• The set Q′ is defined as follows:
– Q′ contains a starting state q0,
– Q′ contains states q0(s) for each s ∈ S,
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– if s, s′ ∈ S then Q′ contains q(s, s′),
– if SLs′,φ = L(b, P ) is a semilinear set corresponding to a rule

s′
‖→φ(x1, . . . , xp), then Q′ contains q(s, s′, ‖, φ) and q(s, s′, ‖, L(b, P )).

• The set of rules R′ is defined by:

– P ′ chooses non-deterministically to generate a configuration qw or a
configuration qw(. . . ‖ . . . ‖ . . .). Furthermore a run of A labels the root
of c2t(qw) by s and the last node of qw by s′. The corresponding rules
are:
∗ q0$ → q(s, s′)$, meaning: generate qw such that a run of A labels

the root of q(w(#) by s,
∗ q0$ → q(s, s′, ‖, φ)$, meaning: generate qw(t1 ‖ . . . ‖ tm) such that a

run of A labels the root of q(w(‖ (c2t(t1), . . . , c2t(tm)) by s,
– P ′ performs the same choice as above, but from q0(s) instead of q0 (q0$

occurs at the root of the initial configuration, when q0(s)$ is an initial
configuration of an argument of a parallel composition)
∗ q0(s)$ → q(s, s′)$,
∗ q0(s)$ → q(s, s′, ‖, φ)$,

– q(s, s′)$ → q(s, s′′)$a if s′′
a→s′ ∈ R . This rule simulates the automaton

rule s′′
a→s′ in a backward way (which amounts to using a left-linear

grammar as in the proof of proposition 1).
– q(s, s′)$ → q if A contains a rule s

q→s′.

– if there is an automaton rule s′
‖→φ(x1, . . . , xp) and L(b, P ) is a linear

set associated to φ, the PDN P simulates the generation of the parallel
composition with the rules:
∗ q(s, s′, ‖, φ)$ → q(s, s′, ‖, L(b, P ))$(q0(S)b)
∗ q(s, s′, ‖, L(b, P ))$ → q(s, s′, ‖, L(b, P ))$(q0(S)p) for any p ∈ P ,

where q0(S)b for b = (b1, . . . , bp) (resp. q0(S)p for p = (p1, . . . , pp))
denotes q0(s1)$b1 ‖ . . . ‖ q0(sp)$bp (resp. q0(s1)$p1 ‖ . . . ‖ q(sp)$pp)
where (i) q(si)$l is a parallel composition of l instances q(si)$, (ii)S =
{s1, . . . , sp}.

• q(s, s′, ‖, L(b, P ))$ → q(s, s′)$. This rules stops the generation of arguments
of ‖ and starts the generation of the PDS string like part qw.

If a transition of R is applied to a configuration c and a rule of R′ is applied later,
we can exchange the order of application and get the same result. Therefore the
transition relation ∗→P ′ can be defined as ∗→ P◦ ∗→R′ since the rules of R and
R′ are independent.

A routine structural induction on c proves that c ∈ Post∗R′(q0$) ∩ C̄ iff c ∈ L
��

Proposition 8. There exists a PDN P ′ such that (i) Post∗P (qa)=Post∗P ′(qa)∩
C̄ (ii) the rules of P ′ have the form qa → q′ or qa → q′bc or qa → q′(q1a1 ‖
. . . ‖ qmam) or qa → q′bc(q1a1 ‖ . . . ‖ qmam)
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Proof. (Sketch) A rule qa → q′a1 . . . an is replaced by rules qa → q̄n−1#an,
q̄n−1# → q̄n−2an−1,. . . , q̄1# → q′a1 where the q̄i and # are new symbols. This
can be done for all rules and yields a new PDN P ′ of size linear in the size of
the initial PDN P . By construction Post∗P (L) = Post∗P ′(L) ∩ C̄. ��

From now on, we assume that the rules of P = (Q, Σ, R) have the required
form. Let m = |Q||Σ| and let us define an ordering of the set {qa | q ∈ Q, a ∈
Σ}. The ith element qa in this ordering is identified with the tuple C(qa) =
(0, . . . , 0, 1, 0, . . . , 0). Therefore a parallel composition c‖ = qi1aj1 ‖ . . . ‖ qik

ajk

can be identified with a tuple C(c‖) of N
m.

Example 6. For the PDN of example 2, m = 4 and assuming the ordering
qa, qb, q′a, q′b, if c‖ = qa ‖ qb ‖ q′b then C(c‖) = (1, 1, 0, 1) and if c′‖ = qa ‖ qb ‖
qb then C(c′‖) = (1, 2, 0, 0).

The transition relation � is the head-rewriting relation generated by R, i.e.
it is the restriction of → to the initial PDS of a configuration qw(c‖) (i.e. no
transition is applied to any element of c‖). The reflexive transitive closure of �
is denoted by ∗�.

The next construction is inspired by [BMOT05] and computes, for each q, a, q′,
a context-free grammar G such that the Parikh mapping of L(G) is the set
{C(c‖) | qa

∗� q′(c‖)}, i.e. it describes all possible parallel compositions generated
by transitions qa

∗� q′(. . .). In the following, we shall identify the ith element
qa to the letter li of a alphabet {l1, . . . , lm}. We recall that the Parikh mapping
#P (w) of a word w is the tuple (n1, . . . , nm) ∈ N

m such that the letter l1 has
n1 occurrences in w,. . . , the letter lm has nm occurrences in w.

• The set of terminals is {l1, . . . , lm}. In the following, w(c‖) denotes the word
ln1
1 · . . . · lnm

m where (n1, . . . , nm) = C(c‖) (with notation l0i = ε).
• The set of non-terminals is {Xq,a,q′ | q, q′ ∈ Q, a ∈ Σ}. They generate the

words c such that #P (c) = C(c‖) iff qa
∗→ q′(c‖).

• The set Δ of production rules is defined by
– if qa → q′(c‖) belongs to R, then Xq,a,q′ → w(c‖) ∈ Δ,
– if qa → q̄bc(c‖) belongs to R , then Xq,a,q′ → Xq̄,b,q̃Xq̃,c,q′w(c‖) ∈ Δ,

Proposition 9. For all q, q′′ ∈ Q, a ∈ Σ, Xq,a,q′
∗→G w iff qa

∗� q′(c‖) and
C(c‖) = #P (w)

Parikh’s theorem and the results of [VSS05] yield that:

Proposition 10. The set C(q, a, q′) = {C(c‖) | qa
∗� q′(c‖)} is a semilinear

set and an existential Presburger arithmetic formula defining C(q, a, q′) can be
computed in polynomial time.
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6.2 A Presburger Weighted Tree Automaton Accepting Post∗(qa)

Firstly, we construct a Presburger weighted word automaton A=(S, s0, SF , Sm, Δ)
such that qa

∗� q′w(c‖) iff A accepts q′w, C(c‖).

• S = {s0} ∪ {sq | q ∈ Q} ∪ {sqa | s ∈ Q, a ∈ Σ}, SF = {(sqa, Nm)}. States sq

are reached by the unique word q, and the state sqa is reached by all pairs
q′w, c such that qa

∗� q′w(c‖) and c = C(c‖).
• Δ is defined by:

– s0
q,(0,...,0)→ sq ∈ Δ and sq

a,(0,...,0)→ sqa ∈ Δ

– if R contains the rule qa → q′(c‖) then sq′
ε,C(c‖)
→ sqa ∈ Δ

– if R contains the rule qa → q′bc(c‖) then

∗ sq′b
c,C(c‖)→ sqa ∈ Δ

∗ sq′′c
ε,C(q′,b,q′′)+C(c‖)

→ sqa ∈ Δ

Proposition 11. q̄w, c
∗→A sqa iff qa

∗� q̄w(c‖) and c = C(c‖).

The previous Presburger weighted word automaton A = (S, s0, SF , Sm, R) is
extended into a Presburger weighted tree automaton B = (SB , SI , Sm, RB) that
accepts Post∗(q0a0), where m = |{sqa

0 | q ∈ Q, a ∈ Σ}| and:

• SB = {sqa | s ∈ S, qa ∈ Q×Σ} and SI = {sq0a0
0 }.

The states of SB are ordered s1, . . . , sm where si = sqa
0 iff i is the ith com-

ponent of Sp (i.e. corresponds to the ordering of qa defined for the word
automaton A).

• The set of rules contains
– sqaa,C→ s

′qa if A contains the rule s
a,C→ s′.

– sqa
qa

(0,...,0)→ #, this rule is needed since A deals with words and B deals with
trees,

– sqa
qa

‖→
∧i=m

i=1 xi = yi ∧
∧

i>m xi = 0

The last rule states that the arguments of a parallel composition are exactly the
processes generated by the q(w((. . .) part above this parallel composition.

Proposition 12. L(B) = c2t(Post∗(qa)).

Proof. The proof is by structural induction on the tree structure. We prove that
for any q, a, t ∈ c2t(Post∗(qa)) iff t is accepted by A with a run labelling the
root of t by sqa

0 .
Base case. t = q(w(#)). By definition of the rules of B and adapting the proof

of proposition 11, we have q(w(#) ∈ Post∗(qa) iff a run of B labels q(w(#)) by
(sqa

0 , (0, . . . , 0)) at the root and qqa
qa at the leaf.

Induction step. t = q(w(‖ (t1, . . . , tn))). We assume that there is a run of
B labelling each ti by (sqa

0 , (0, . . . , 0)) iff ti ∈ Post∗(qa). By definition of the
rules of B and adapting the proof of proposition 11, qa

∗� t2c(t) there is a rule
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labelling the node ‖ by (sqa
qa, (n1, . . . , nm)) such that n1 trees ti are labelled by

(s(qa)1
0 , (0, . . . , 0)),. . . , nm trees ti are labelled by (s(qa)m

0 , (0, . . . , 0)) and no ti is
labelled by another state (where (qa)i denotes the ith element in the sequence
of qa’s. By induction hypothesis, there is a run of B accepting t iff t2c(t) ∈
Post∗(qa). ��

This proposition and the properties of Presburger weighted trees automata yield
that forward analysis of PDN is decidable.

7 Backward Analysis of PDN

To perform backward analysis, we can rely on the results of [BMOT05] that
state that Pred∗(L) is accepted by a hedge automaton and the fact that the
closure of a regular hedge language under commutativity is a Presburger regular
language. Therefore we get:

Proposition 13. The set Pred∗(L) is accepted by a Presburger tree automaton.

Conclusion

We have enriched the model of dynamic networks of pushdown systems by tak-
ing parallel composition as an associative-commutative operator. Using a new
class of tree automata we have been able to do forward and backward analy-
sis. Forward analysis involves an exponential blowup in the construction of the
PDN of proposition 7 since a semilinear set equivalent to a Presburger formula
can be exponentially larger. This problem occurs usually when switching from
a word framework to a natural number framework. Some interesting questions
remain and will be further investigating. The first one is to extend our result
using constrained rules as in [BMOT05] or regular tree language constraints
[LMOW09] that could allow to extend the model with synchronization via nested
locks. These extensions can be easily done for arithmetic constraints (in rules
or in Presburger tree automata rules) which are combinations of inequalities
xi > ci, xi < ci or moduli equations xi ≡ ci(ki) but allowing any Presburger
arithmetic constraint makes the analysis much more difficult and it is nt clear
if the reachability problem is still decidable. Another one is to consider a flat
model where all parallel compositions are at the same level and a configuration
is now a set of PDS instead of a tree.
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Abstract. In the theory of automata over infinite alphabets, a central
difficulty is that of finding a suitable compromise between expressiveness
and algorithmic complexity. We propose an automaton model where we
count the multiplicity of data values on an input word. This is partic-
ularly useful when such languages represent behaviour of systems with
unboundedly many processes, where system states carry such counts as
summaries. A typical recognizable language is: “every process does at
most k actions labelled a”. We show that emptiness is elementarily de-
cidable, by reduction to the covering problem on Petri nets.

1 Summary

Consider a system of concurrently running sequential processes. When there is
no a priori bound on the number of processes, though at any point of time
only finitely many are active, the necessity of the system to distinguish one
process from another involves potentially unbounded data. Typically, system
states carry summary information about processes that are known to be active,
and hence the set of system configurations is infinite. Such systems arise in
the study of web services, communication protocols and software systems with
recursive concurrent threads of execution.

Infinite state systems are not unfamiliar in theory of computation; a rich body
of results exists on counter systems, pushdown systems and Petri nets. Most
reachability properties of such infinite state systems are either undecidable or
have such high complexity that algorithmic verification is impractical. On the
other hand, if we restrict ourselves to only finite state systems, we can reason
only about systems where the set of processes is fixed and known a priori, and
we do not (as yet) have clear abstractions that allow us to transfer the results of
such reasoning to systems of unbounded processes. Hence there is a clear need for
formal models that work with unbounded systems but yet restrict expressiveness
to allow decidable verification.

Notice that interesting properties of such systems do not involve process names
(or identifiers) explicitly. A specification that restricts attention only to processes
P1, P2 and P3 can be implemented by a finite state system. On the other hand,
consider a specification such as: “at least k processes get to perform an a ac-
tion”: this necessitates remembering potentially unboundedly many values, thus
leading to infinite state systems.
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This paper is situated in such a context and while we have no definitive an-
swers, we consider ”state summaries” that allow elementary decidability. The
model we use is that of finite automata over infinite alphabets and we use coun-
ters to record the intended ”summaries”. The main result is that emptiness if
Expspace-complete for such a class of automata. Unfortunately, the automata
are not closed under complementation, and even the word problem is intractable,
suggesting that we have more work to be done to further restrict expressiveness.

The study of automaton mechanisms over infinite alphabets has gained in-
terest in recent years, especially from the viewpoint of database theory. In this
approach, data values are modelled using a countably infinite domain, and struc-
tures are finite words labelled by this infinite alphabet. Typically the alphabet
is presented as a product (Σ×D), where Σ is finite and D is countable. For our
purposes, we can think of D as process names and Σ as the finite set of events
they participate in, or conditions that hold.

The study of languages over infinite alphabets were initiated in [ABB80] and
[Ott85], where the approach was to define the notion of regularity for lan-
guages over infinite alphabets in terms of morphisms to languages over finite
alphabets. There are many automaton mechanisms for studying word languages
over infinite alphabets: register automata ([KF94]), pebble automata ([NSV01],
[NSV04]), data automata ([BMS+06]), nested words ([AM06]), class memory
automata ([BS07]) and automata on Gauss words ([LPS09]), with different ex-
pressive power and complexity. Logic based approaches include monadic second
order logics ([Bou02], [Bac03]), two variable first order logics ([BMS+06]) and
temporal logics with special “freeze” quantifiers ([DL06]) or predicate abstrac-
tion ([LP05], [LP09]). Algebraic approaches involve quasi-regular expressions
([KT06]), or register monoid mechanisms ([BPT01]). All these involve interest-
ing tradeoffs between expressiveness and complexity of decision procedures. A
unifying framework placing all these models in perspective is as yet awaited (see
[Seg06] for an excellent survey).

While register automata have polynomial complexity, they are effectively finite
state; data automata are more expressive, but emptiness is not known to be
elementary. What we present here is a restriction of class memory automata:
these automata that can not only test for existence of data values, but can also
count the multiplicity of occurrences of data values, subject to constraints on
such counts. However, these counters are monotone, and hence the constraints
are limited in expressive power: we can compare counts against constants, but not
much more. We show that such a model of Class counting automata (CCA)
is interesting, for several reasons; specifically, we get elementary decidability. We
see this as “populating the landscape” of classes of data languages, in the sense
of [BS07].

From the viewpoint of reasoning about unbounded systems of processes, it
is unclear what exactly is the expressiveness needed. For instance, consider the
specification: “No two successive positions carry the same data value”; this is
naturally implemented using a register mechanism. But this is a “hard” global
scheduling constraint: after any process event is scheduled, the succeeding event
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must necessarily be from a different process; it is hardly clear that such a con-
straint is important for loosely coupled systems of processes. This indicates that
while we do want to specify combinations of global and local properties, we need
to nonetheless allow for sufficient flexibility.

2 Class Counting Automata

Let k > 0; we use [k] to denote the set {1, 2, . . . k}. When we say [k]0, we mean
the set {0} ∪ [k]. By N we mean the set of natural numbers {0, 1, . . .}. When
f : A → B, (a, b) ∈ (A × B), by f ⊕ (a, b), we mean the function f ′ : A → B,
where f ′(a′) = f(a′) for all a′ ∈ A, a′ �= a, and f ′(a) = b.

Customarily, the infinite alphabet is split into two parts: it is of the form
Σ ×D, where Σ is a finite set, and D is a countably infinite set. Usually, Σ is
called the letter alphabet and D is called the data alphabet. Elements of D are
referred to as data values. We use letters a, b etc to denote elements of Σ and
use d, d′ to denote elements of D.

A data word w is an element of (Σ ×D)∗. A collection of data words L ⊆
(Σ ×D)∗ is called a data language. In this article, by default, we refer to data
words simply as words and data languages as languages. As usual, by |w| we
denote the length of w.

Let w = (a1, d1)(a2, d2) . . . (an, dn) be a data word. The string projection of
w, denoted as str(w) = a1a2 . . . an, the projection of w to its Σ components. Let
i ∈ [n] = |w|. The data class of di in w is the set {j ∈ [n] | di = dj}. A subset of
[n] is called a data class of w if it is the data class of some di, i ∈ [n]. Note that
the set of data classes of w form a partition of [|w|].

The automaton we present below includes a bag of infinitely many monotone
counters, one for each possible data value. When it encounters a letter - data
pair, say (a, d), the multiplicity of d is checked against a given constraint, and
accordingly updated, the transition causing a change of state, as well as possible
updates for other data as well. We can think of the bag as a hash table, with
elements of D as keys, and counters as hash values. Transitions depend only on
hash values (subject to constraints) and not keys.

A constraint is a pair c = (op, e), where op ∈ {<, =, �=, >} and e ∈ N. When
v ∈ N, we say v |= c if v op e holds. Let C denote the set of all constraints.
Define a bag to be a finite set h ⊆ (D × N) such that whenever (d, n1) ∈ h and
(d, n2) ∈ h, we have: n1 = n2. Thus h defines a partial function from D to N

which is defined on a finite subset of D. By convention, we implicitly extend it
to a total function on D by considering h to represent the set h′ = h ∪ {(d, 0) |
there is no n ∈ N such that (d, n) ∈ h}. Hence we (ab)use the notation h(d) = n
for a bag h. Let B denote the set of bags. Note that the notation h⊕ (d, n) now
stands for the bag h′ = (h− ({d} × N)) ∪ {(d, n)}.

Below, let Inst = {↑+, ↓} stand for the set of instructions: ↑+ tells the au-
tomaton to increment the counter, whereas ↓ asks for a reset. Note that the
instruction (↑+, 0) says that we do not wish to make any update, and (↑+, 1)
causes a unit increment; we use the notation [0] and [+1] for these instructions
below.
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Definition 1. A class counting automaton, abbreviated as CCA, is a tuple
CCA = (Q, Δ, I, F ), where Q is a finite set of states, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states. The transition relation is given by:
Δ ⊆ (Q×Σ × C × Inst× U ×Q), where C is a finite subset of C and U is a
finite subset of N.

Let A be a CCA. A configuration of A is a pair (q, h), where q ∈ Q and h ∈ B.
The initial configuration of A is given by (q0, h0), where h0 is the empty bag;
that is, ∀d ∈ D, h0(d) = 0 and q0 ∈ I.

Given a data word w = (a1, d1), . . . (an, dn), a run of A on w is a sequence
γ = (q0, h0)(q1, h1) . . . (qn, hn) such that q0 ∈ I and for all i, 0 ≤ i < n, there
exists a transition ti = (q, a, c, π, m, q′) ∈ Δ such that q = qi, q′ = qi+1, a = ai+1

and:

– hi(di+1) |= c.
– hi+1 is given by:

hi+1 =
{

hi ⊕ (di+1, m
′) if π =↑+, m′ = hi(di+1) + m

hi ⊕ (di+1, m) if π =↓

γ is an accepting run above if qn ∈ F . The language accepted by A is given by
L(A) = {w ∈ (Σ × D)∗ | A has an accepting run on w}. L ⊆ ((Σ × D))∗ is said
to be recognizable if there exists a CCA A such that L = L(A). Note that the
counters are either incremented or reset to fixed values.

We first observe that CCA runs have some useful properties. To see this, con-
sider a bag h and d1, d2 ∈ D, d1 �= d2 such that at a confguration (q, h), we have
two transitions enabled on inputs (a1, d1) and (a2, d2) leading to configurations
(q1, h1) and (q2, h2) respectively. Notice that for any condition c, if h(d2) |= c
then so also h1(d2) |= c. Similarly, for any condition c′, if h(d1) |= c′ then so
also h2(d1) |= c′. Thus when we have distinct data values, tests on them do not
“interfere” with each other. We can extend this observation further: given data
words u and v such that the data values in u are pairwise disjoint from those in
v, if we have a run from (q, h) on u to (q, h1) and on v from (q, h1) to (q′, h2),
then there is a configuration (q′, h′) and a run from (q, h) on v to (q′, h′). This
will be useful in the following.

Example 1. The language Lfd(a) = “Data values under a are all distinct” is
accepted by a CCA. The CCA accepting this language is the automaton A =
(Q, Δ, q0, F ) where Q = {q0, q1}, q0 is the only initial state and F = {q0}. Δ
consists of:

– (q0, a, (=, 0), q0, [+1]); (q0, a, (=, 1), q1, [0]);
– (q0, b, (≥, 0), q0, [0]); (q1, Σ, (≥, 0), q1, [0]).

Since the automaton above is deterministic, by complementing it, that is, setting
F = {q1}, we can accept the language Lfd(a) = “There exists a data value
appearing at least twice under a”. On the other hand, since every data word
can mention only finitely many data values, trivially every word has a value
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q0 q1

a, (=, 0), [+1]
b, (≥, 0), [0] Σ, (≥, 0), [0]

a, (=, 1), [0]

Fig. 1. Automaton in the Example 1

that appears less than twice under a (namely zero times). Hence the statement
above can be strengthened to saying that the language L∃a, �= n = “ There exists
a data value whose multiplicity under a is not 2” is recognizable. But as we
show below, its complement language, L∀,= n = “All data values under a occur
exactly twice” is not recognizable. Thus, CCA- recognizable data languages are
not closed under complementation.

Proposition 1. The language Lforall,= n = “All data values under a occur ex-
actly twice” is not recognizable.

Proof. Suppose there is a CCA A with m states accepting this language. Con-
sider the data word

w = (a, d1)(a, d2)!... (a, dm+1)(a, d1)(a, d2).. (a, dm+1)

Clearly, winL∀,= n. Therefore, there is a successful run of A on w. Then there
is a state q repeating in the suffix of length m + 1. Let us say this splits w as
u·v ·v′, where the configurations at the repeating state after u with configuration
(q, h) to (q, h1) on v and to (q′, h2) on v′. Then by the remarks we made earlier,
we can find a run from (q, h) to a configuration (q′, h′) on v′ as well. Thus we
have “chopped” off a part of the run so that we have an accepting run on a word
u · v′. But then u · v′ is not in Lforall,= n. �

The following statement is easily proved:

Proposition 2. CCA-recognizable data languages are closed under union and
intersection but not under complementation.

The following observation will be useful for decision questions that follow. Given
a CCA A = (Q, Δ, q0, F ) let m be the maximum constant used in Δ. We define
the following equivalence relation on N, c �m+1 c′ iff c < (m+1)∨c′ < (m+1) ⇒
c = c′. Note that if c �m+1 c′ then a transition is enabled at c if and only if it is
enabled at c′. We can extend this equivalence to configurations of the CCA as
follows. Let (q1, h1) �m+1 (q2, h2) iff q1 = q2 and ∀d ∈ D, h1(d) �m+1 h2(d).

Lemma 1. If C1, C2 are two configurations of the CCA such that C1 �m+1 C2,
then ∀w ∈ ((Σ × D))∗, C1 �∗w C′

1 =⇒ ∃C′
2, C2 �∗w C′

2 and C′
1 �m+1 C′

2.
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Proof. Proof by induction on the length of w. For the base case observe that
any transition enabled at C1 is enabled at C2 and the counter updates respects
the equivalence. For the inductive case consider the word w.a. By induction
hypothesis C1 �∗w C′

1 =⇒ ∃C′
2, C2 �∗w C′

2 and C′
1 �m+1 C′

2. If C′
1 �a C′′

1 then
using the above argument there exists C′′

2 such that C′
2 �a C′′

2 and C′′
1 �m+1 C′′

2 .

In fact the lemma holds for any N ≥ m + 1, where m is the maximum constant
used in Δ. This observation paves the way for proving the decidability of the
emptiness problem (in the next section).

3 Decision Problems

Since the space of configurations of a CCA is infinite, reachability is in general
non-trivial to decide. We now show that the emptiness problem is elementarily
decidable.

Theorem 1. The non-emptiness problem for CCA is expspace-complete.

3.1 Upper Bound

We reduce the emptiness problem of CCA to the covering problem on Petri nets.
For checking emptiness, we can omit the Σ × D labels from the configuration
graph; we are then left with counter behaviour. However since we have unbound-
edly many counters, we are led to the realm of vector addition systems.

Definition 2. An ω-counter machine B is a tuple (Q, Δ, q0) where Q is a finite
set of states, q0 ∈ Q is the initial state and Δ ⊆ (Q× C × Inst× U ×Q), where
C is a finite subset of C and U is a finite subset of N.

A configuration of B is a pair (q, h), where q ∈ Q and h : N → N. The initial
configuration of B is (q0, h0) where h0(i) = 0 for all i in N. A run of B is a
sequence γ = (q0, h0)(q1, h1) . . . (qn, hn) such that for all i such that 0 ≤ i < n,
there exists a transition ti = (p, c, π, m, q) ∈ Δ such that p = qi, q = qi+1 and
there exists j such that h(j) |= c, and the counters are updated in a similar
fashion to that of CCA.

The reachability problem for B asks, given q ∈ Q, whether there exists a run
of B from (q0, h0) ending in (q, h) for some h (“Can B reach q?”).

Lemma 2. Checking emptiness for CCA can be reduced to checking reachability
for ω-counter machines.

Proof. It suffices to show, given a CCA, A = (Q, Δ, q0, F ), where F = {q}, that
there exists a counter machine BA = (Q, Δ′, q0) such that A has an accepting
run on some data word exactly when BA can reach q. (When F is not a singleton,
we simply repeat the construction.) Δ′ is obtained from Δ by converting every
transition (p, a, c, π, m, q) to (p, c, π, m, q). Now, let L(A) �= ∅. Then there exists
a data word w and an accepting run γ = (q0, h0)(q1, h1) . . . (qn, hn) of A on w,
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with qn = q. Let g : N → D be an enumeration of data values. It is easy to see
that γ′ = (q1, h0 ◦ g)(q1, h1 ◦ g) . . . (qn, hn ◦ g) is a run of BA reaching q.

(⇐) Suppose that BA has a run η = (q0, h0)(q1, h1) . . . (qn, hn), qn = q. It can
be seen that η′ = (q0, h0 ◦ g−1)(q1, h1 ◦ g−1) . . . (qn, hn ◦ g−1) is an accepting run
of A on w = (a1, d1) . . . (an, dn) where w satisfies the following. Let (p, c, π, m, q)
be the transition of BA taken in the configuration (qi, hi), and dk such that
hi(dk) |= c. Then by the definition of BA there exists a transition (p, a, c, π, m, q)
in Δ. Then it should be the case that ai+1 = a and di+1 = g(dk).

Proposition 3. Checking non-emptiness of ω-counter machines is decidable.

Let s ⊆ N, and c a constraint. We say s |= c, if for all n ∈ s, n |= c.
We define the following partial function Bnd on all finite and cofinite subsets

of N. Given s ⊆fin N, Bnd(s) is defined to be the least number greater than all the
elements in s. Given s ⊆cofinite N, Bnd(s) is defined to be Bnd(N\s). Given an ω-
counter machine B = (Q, Δ, q0) let mB = max{Bnd(s) | s |= c, c is used in Δ}.

We construct a Petri net NB = (S, T, F, M0) where,

– S = Q ∪ {i | i ∈ N, 1 ≤ i ≤ mB}.
– T is defined according to Δ as follows. Let (p, c, π, n, q) ∈ Δ and let i be such

that 0 ≤ i ≤ mB and i |= c. Then we add a transition t such that •t = {p, i}
and t• = {q, i′}, where (i) if π is ↑+ then i′ = min{mB, i + n}, and (ii) if π
is ↓ then i′ = n.

– The flow relation F is defined according to •t and t• for each t ∈ T .
– The initial marking is defined as follows. M0(q0) = 1 and for all p in S, if

p �= q0 then M0(p) = 0.

The construction above glosses over some detail: Note that elements of these sets
can be zero, in which case we add edges only for the places in [mB] and ignore
the elements which are zero.

Let M be any marking of NB. We say that M is a state marking if there exists
q ∈ Q such that M(q) = 1 and ∀p ∈ Q such that p �= q, M(p) = 0. When M is
a state marking, and M(q) = 1, we speak of q as the state marked by M . For
q ∈ Q, define Mf (q) to be set of state markings that mark q. It can be shown,
from the construction of NB, that in any reachable marking M of NB, if there
exists q ∈ Q such that M(q) > 0, then M is a state marking, and q is the state
marked by M .

We now show that the counter machine B can reach a state q iff NB has a
reachable marking which covers a marking in Mf (q). We define the following
equivalence relation on N, m �mB n iff (m < mB) ∨ (n < mB) ⇒ m = n. We
can lift this to the hash functions (in ω-counters) in the natural way: h �mB

h′ iff ∀i (h(i) < mB) ∨ (h′(i) < mB)⇒ h(i) = h′(i). It can be easily shown that
if h �mB h′ then a transition is enabled at h if and only if it is enabled at h′.

Let μ be a mapping B-configurations to NB-configurations as follows: given
χ = (q, h), define μ(χ) = Mχ, where

Mχ(p) =

⎧⎨⎩1 iff p = q
0 iff p ∈ Q\{q}
|[p]| iff p ∈ P\Q, p �= 0

⎫⎬⎭
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Above [p] denotes the equivalence class of p under �mB on N in h. Now
suppose that B reaches q. Let the resulting configuration be χ = (q, h). We
claim that the marking μ(χ) of NB is reachable (from M0) and covers Mf (q).
Conversely if a reachable marking M of NB covers Mf(q), for some q ∈ Q, then
there exists a reachable configuration χ = (q, h) of B such that μ(χ) = M . This
is proved by a simple induction on the length of the run.

Since the covering problem for Petri nets is decidable, so is reachability for
ω-counter machines and hence emptiness checking for CCA is decidable.

3.2 Lower Bound

The decision procedure above runs in expspace, and thus we have elementary
decidability. We now show that the emptiness problem is also expspace-hard.
Effectively this is a reduction of the covering problem again, but for technical
convenience, we use multi-counter automata.

A k multi-counter automaton with weak acceptance is a tuple A =
(Q, Σ, Δ, q0, F ) where Q is a finite set of states, q0 ∈ Q is the initial state
and F ⊆ Q is a set of final states. The transition relation is of the form
Δ ⊆fin (Q × Σ × N

k × N
k × Q). The two vectors in the transition specify

decrements and increments of the counters.
The automaton works as follows: it has k-counters, denoted by v̄ = (v1, . . . vk)

which hold non-negative counter values. A configuration of the machine is of the
form (q, v̄) where q ∈ Q and v̄ ∈ N

k. The initial configuration is (q0, 0̄). Given a
configuration (q, v̄) the automaton can go to a configuration (q′, v̄′) on letter a
if there is a transition (q, a, ¯vdec, ¯vinc , q

′) such that v̄ − ¯vdec ≥ 0̄ (pointwise) and
v̄′ = v̄ − ¯vdec + ¯vinc . A final configuration is one in which the state is final.

The problem of checking non-emptiness of a multicounter automaton with
weak acceptance is known to be (at least) Expspace-hard ([Lip76]).

Any multicounter automaton M = (Q, Σ, Δ, q0, F ) can be converted to an-
other (in a “normal form”): M ′ = (Q′, Σ, Δ′, q0, F ) such that L(M) is non-empty
if and only if L(M ′) is non-empty and M ′ uses only unit vectors or zero vectors
in its transitions. A unit vector is of the form (b1, b2, . . . , bk) where there is a
unique i ∈ [k] such that bi = 1 and for j �= ik, bj = 0. That is M ′ decrements or
increments at most one counter in each transition.

Δ′ is obtained as follows. Let t = (q, a, ¯vdec, ¯vinc , q
′). Let ū1, ū2, . . . , ūn be a

sequence of unit vectors such that ¯vdec = Σiūi and ū1
′, ū2

′, . . . , ūm
′ be a sequence

of unit vectors such that ¯vinc = Σiūi
′. We add intermediate states to rewrite t

by the following sequence of transitions,

(q, a, ū1, 0̄, q(t,ū1)), (q(t,ū1), a, ū2, 0̄, q(t,ū2)), . . . ,

(q(t,ūn), a, 0̄, ū1
′, q(t,ū1′)), (q(t,ū1′), a, 0̄, ū2

′, q(t,ū2′)), . . . ,

(q(t, ¯um−1′), a, 0̄, ūm
′, q′)

Lemma 3. L(M) is non-empty if and only if L(M ′) is non-empty.
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Proof. By an easy induction on the length of the run. It is easy to see that for
every accepting run ρ of M we have an accepting run ρ′ of M ′, this is achieved
by replacing every transition t in the run ρ by the corresponding sequence of
transitions. For the reverse direction, we need to show that every run accepting
run ρ′ of M ′ can be translated to an accepting run ρ of M . This is possible since
the intermediate states added to obtain the transitions in M ′ are unique for each
transition t in M . Hence for every sequence of transitions taking M ′ from q1 to
q2 where q1, q2 ∈ Q there is a unique transition t which takes M from q1 to q2.
By doing an induction on the number of states occuring in ρ′ which are from Q
we can show that there is a valid run ρ which is accepting.

Next we convert M ′ to a CCA thus establishing a lowerbound of Expspace for
the emptiness problem. Let M ′ = (Q, Σ, Δ, q0, F ) be a k-multicounter automa-
ton in normal form. We construct the automaton A = (Q, Σ, ΔA, q0, F ). Let
t = (q, a, ū, ū′, q′) where ū, ū′ are either unit or zero vectors. If ū is a i-th unit
vector and ū′ is a zero vector, we add a transition tA = (q, a, (x = i), (↓, 0), q′)
to ΔA. If ū is a i-th unit vector and ū′ is j-th unit vector, we add a transition
tA = (q, a, (x = i), (↓, j), q′) to ΔA. If ū is a zero vector and ū′ is a j-th unit
vector, we add a transition tA = (q, a, (x = 0), (↓, j), q′) to ΔA.

Lemma 4. L(M ′) is non-empty if and only if L(A) is non-empty.

Proof. The proof is by induction on the length of the run. First we define a
mapping from configurations of A to configurations of M ′ in the following man-
ner, μ((q, h̄)) = (q, v̄) where vi = |{j | h̄(j) = i}|. We show, by induction on
the length of the run, that for every configuration χ reachable by A there is a
configuration ψ of M ′ such that μ(χ) = ψ and conversely for every configuration
ψ reachable by M ′ there is a configuration χ reachable by A such that μ(χ) = ψ.

For the base case, it is evident that μ((q0, h̄0)) = (q0, 0̄).
Suppose that χ = (q, h̄) is a configuration reachable in l steps, and that the

transition t = (q, a, x = j, (↓, i), q′) is enabled at χ. Therefore there is a counter
holding the value j. By induction hypothesis there exists a configuration ψ such
that μ(χ) = ψ = (q, v̄) such that vj > 0. After the transition t, the number
of counters holding the value j decreases by one and the number of counters
holding the value i increases by one(if i �= 0). This is achieved by the transition
(q, a, ūj, ūi, q

′) in Δ′, preserving the map μ.
Conversely, suppose a configuration ψ = (q, v̄) is reachable by M ′ in l steps.

Then by induction hypothesis we have a configuration χ reachable by the au-
tomaton A such that μ(χ) = ψ. Suppose a transition t′ = (q, a, ūi, ūj, q

′) is
enabled in ψ resulting in ψ′.

Consider the case where ūi �= 0̄ and ūj �= 0̄. By construction t′ is obtained from
a transition t = (q, a, (x = i), ↓, j, q′). We choose the smallest counter holding
the value zero and apply the transition t, resulting in ξ′ such that μ(ξ′) = ψ′.
The remaining cases are similar.
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3.3 Inclusion and Word Problem

The next interesting algorithmic question is that of checking inclusion among
accepted languages. It turns out that this problem is undecidable, which can be
shown by reduction from the Post Correspondence Problem. We postpone the
discussion on this until we discuss alternation later.

Since emptiness checking is of such high complexity, one may wonder whether
the model is complex enough to render even the word problem to be hard: the
simplest algorithmic question of how one can check whether a given word is
accepted or not. The important thing to note is that during a run, the size of
the configuration is bounded by the length of the input data word. Therefore
a nondeterministic Turing machine can easily guess a path in polynomial time
and check for acceptance. Hence the word problem is easily seen to be in NP.
Interestingly, it turns out to be NP -hard as well.

Theorem 2. The word problem for CCA is NP -complete.

The proof is by reduction of the satisfiability problem for 3-CNF formulas to the
word problem for CCAs. Given the 3-CNF formula, we code it up as a data word,
where data values are used to remember the identity of literals in clauses. We
use a two letter alphabet with +,− indicating whether a propositional variable
occurs positively or negatively. Data values stand for the propositional variables
themselves. Thus a pair ((+, d1) asserts that the first boolean variable occurs
positively.

We show the coding by an example, let ϕ ≡ (p1 ∨¬p3 ∨ p4) ∧ (¬p2 ∨ p5 ∨ p1) ∧
(¬p3 ∨¬p4 ∨ p5), we construct the corresponding word w = (+, d1)(−, d3)(+, d4)
(#, d) (−, d2)(+, d5)(+, d1) (#, d) (−, d3)(−, d4)(+, d5)(#, d) ∈ ({+,−, #}×D)∗.

The nondeterministic automaton checks satisfiability in the following way.
Every time the automaton encounters a new data value (representing a proposi-
tional variable), the automaton nondeterministically assigns a boolean value and
stores it in the counter (1 for ⊥ and 2 for �) corresponding to the data value,
in the future whenever the same data value occurs the counter is consulted to
obtain the assigned value to the propositional variable. The automaton evaluates
each clause and carries the partial evaluation in its state. Finally the automaton
accepts the word if the formula evaluates to �.

4 Discussion

We first observe that the model admits many extensions, without substantially
affecting the main decidability result.

4.1 Extensions

1. Instead of working with one bag of counters, the automaton can use sev-
eral bags of counters, much as multiple registers are used in the register
automaton. It is easy to formally define CCA with k-bags, using k-tuples of
constraints on guards.
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2. Another strengthening involves checking for the presence of any counter
satisfying a given constraint and updating it.

3. The language of constraints can be strengthened: any syntax that can specify
a finite or co-finite subset of N will do. Indeed, we can work with constraints
specifying semilinear sets without affecting the technical results, and the
syntax can be any formula in Presburger arithmetic.

On the other hand, some natural extensions of the model do affect the decid-
ability of non-emptiness problem. One such is alternation. However, we then
find that the non-emptiness problem for the class of alternating class counting
automata is undecidable. The proof of this proceeds by reduction of the Post Cor-
respondence Problem to this one in a manner similar to the one in [BMS+06].
From this, we can show that the inclusion problem for CCAs is undecidable
as well.

Other interesting extensions relate to the kind of updates allowed and to
acceptance conditions. While adding decrements to counters in CCA leads to
undecidability of the emptiness problem, we can add resets to counters preserving
decidability. A reset operation sets the corresponding counter value to zero.
The acceptance condition we have in CCA is global in the sense that it relates
only to the global control state rather than multiplicities encountered. We can
strengthen the acceptance condition as follows: A = (Q, Δ, q0, F, C) where (Q,
q0, Δ, F are as before, and C ⊂f in N . We say a final configuration (q, h) is
accepting if q ∈ F and ∀d ∈ D, h(d) ∈ C or h(d) = 0.

We then find that the non-emptiness problem (for CCAs with reset and
counter conditions) continues to be decidable but becomes as hard as Petri net
reachability, which is not even known to be elementarily decidable.

4.2 Other Automata Models

CCA are situated among a family of automata models that have been proposed
for data languages. The simplest form of memory is a finite random access read-
write storage device, traditionally called register. In finite memory automata
[KF94], the machine is equipped with finitely many registers, each of which can
be used to store one data value. Every automaton transition includes access
to the registers, reading them before the transition and writing to them after
the transition. The new state after the transition depends on the current state,
the input letter and whether or not the input data value is already stored in
any of the registers. If the data value is not stored in any of the registers, the
automaton can choose to write it in a register. The transition may also depend
on which register contains the encountered data value. Because of finiteness
of the number of registers, in a sufficiently long word the automaton cannot
distinguish between all data values. On the other hand, register automata have
the capability of keeping the “latest information”, a capability that deterministic
CCA do not have.

In class memory automata (CMA, [BS07]), a function assigns to every data
value d the state of the automaton that was assumed after reading the previous
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position with value d. We can think of this as using hash tables, with values
coming from a finite set. On reading a (a, d), the automaton reads the table
entry corresponding to d and makes a transition dependent on the table entry,
the input letter a and the current state. The transition causes a change of state
as well as updating of the table entry.

We can show that the class of CCA-recognizable languages is strictly con-
tained in the class of CMA-recognizable languages, but when we add resets and
counter acceptance conditions as above, the class becomes exactly as expres-
sive as CMAs. Indeed, we see CCA as a natural restriction of CMAs yielding
elementary decidability of the non-emptiness problem.

Another simple computational model, based on transducers is the data au-
tomaton model introduced in [BMS+06], and [BS07] shows that this model is
exactly as expressive as CMA.

4.3 Restrictions

With an NP -hard word problem, Expspace-hard non-emptiness question and un-
decidable language inclusion, working with data languages does seem daunting.
However, given the need for verifying properties of systems with unboundedly
many processes, the abstraction of infinite alphabets is yet worth preserving.
What we need to look at are restrictions that are meaningful for systems of
unbounded processes, and we are studying some proposals in this regard.
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Abstract. In this paper, we consider the periodic tiling problem which
was proved undecidable in the Euclidean plane by Yu. Gurevich and I.
Koriakov, see [3]. Here, we prove that the same problem for the hyper-
bolic plane is also undecidable.

Keywords: undecidability, hyperbolic plane, tilings, periodic tiling
problem.

1 Introduction

A lot of problems deal with tilings. Most of them are considered in the setting
of the Euclidean plane. A certain number of these problems turn out to be
undecidable in this frame, thanks to the facility to simulate the computation of
a Turing machine in this setting. The most famous case of such a problem is the
general tiling problem proved to be undecidable by Berger in 1966, see [1]. In
1971, R. Robinson gave a simplified proof of the same result, see [12]. Sometimes,
the general problem is simply called the tiling problem. The reason of these
different names lies in the fact that several conditions were put on the problem,
leading to different settings, and a dedicated proof was required each time when
the problem turned out to be undecidable. Among these variations, the most
well-known is the origin-constrained problem, proved to be undecidable by
Wang in 1958, see [14].

The general tiling problem consists in the following. Given a finite set of
tiles T , is there an algorithm which says whether it is possible to tile the plane
with copies of the tiles of T or not? The origin-constrained problem consists in
the same question to which a condition is appended: given a finite set of tiles T
and a tile T0 ∈ T , is there an algorithm which says whether i is possible or not
to tile the plane with copies of the tiles of T or not, the first tile being T0? In
the general problem there is no condition on the first tile: it can be a copy of
any tile of T .

There are a lot of variants of these problems and the reader is referred to [12],
where an account is given on several such conditions.

O. Bournez and I. Potapov (Eds.): RP 2009, LNCS 5797, pp. 154–165, 2009.
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The periodic tiling problem is a bit different question. Given a finite set of
tiles T , is there a way to tile the plane with copies of T in a periodic way? The
problem was proved undecidable for the Euclidean plane by Yu. Gurevich and I.
Koriakov in 1972. Now, it turns out that the notion of period is well defined in
the Euclidean plane, but it is not clear how to define it in the hyperbolic plane.
As many authors do, we shall consider that a tiling of the hyperbolic plane is
periodic if it is unchanged under a non trivial shift.

The general tiling problem for the hyperbolic plane was raised by R. Robin-
son in his 1971 paper, see [12]. In 1978, R. Robinson proved that the origin-
constrained problem is undecidable in the hyperbolic plane, see [13]. The gen-
eral tiling problem for the hyperbolic plane remained pending a long time. The
problem was solved in 2007 by the present author, see [10]. At the same time, J.
Kari established the same result, using a completely different approach, see [4].
Note that the proof of [10] is fully constructive as it has the following additional
property: the proof constructs a family {TM} of tilings which are indexed by the
members M of a set of Turing machines; now, if we are given a 1-bit oracle that
there is a solution to tile the hyperbolic plane with copies of TM for a given M ,
then the algorithm of the proof of [10] constructs such a solution, of course in
infinite time.

In this paper, we prove that:

Theorem 1. The periodic domino problem is undecidable in the hyperbolic plane.

The solution combines the construction given in [9,10] with an argument of [8,11]
and a construction given in [6].

In the next section, section 2, we very sketchily remind the solution to the
tiling problem of [10] in a simplified setting. In section 3, we prove the theorem.

2 The Interwoven Triangles

The solution of the domino problem which we now consider takes place in the
tiling {7, 3} of the hyperbolic plane. It consists in delimiting infinitely many re-
gions of infinitely many sizes in which the simulation of the same Turing machine
is performed.

The construction takes place in the tiling {7, 3} of the hyperbolic plane, in
which we construct a grid thanks to a particular tiling, the background. In this
tiling, we implement a construction which is based on what we call the abstract
brackets, which is a construction on the line. We lift the intervals which are
defined by the construction up to triangles in the Euclidean plane, with parallel
legs whose heights lie on the same line. In this way, we can see the previous
intervals as a projection of the triangles on the line of their heights. Then, we
implement these triangles in the background.

First, we sketchily describe the tiling {7, 3} of the hyperbolic plane and the
background.
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Fig. 1. The heptagrid: the tiling {7, 3} of the hyperbolic plane in the Poincaré’s disc
model

2.1 The Tiling {7, 3} of the Hyperbolic Plane

The tiling {7, 3} is obtained from the regular heptagon with an interior angle

of
2π

3
by reflection in its edges and, recursively, by reflection of the images in

their edges. The existence of the tiling is a corollary of Poincaré’s theorem on a
sufficient condition for tiling the hyperbolic plane by triangles. It is enough to
consider the rectangular triangle of the hyperbolic plane with the acute angles
π

7
and

π

3
. Below, figure 1 illustrates the tiling {7, 3} which we later call the

heptagrid.
In [2], we introduced a way to exhibit a generating tree of the tiling which

is basically the same as the generating tree of the pentagrid, the tiling {5, 4} of
the hyperbolic plane. This tiling is constructed by a process, similar to the one
used for constructing the heptagrid, but it is used with the regular rectangular
pentagon. This tree is called the standard Fibonacci tree, simply Fibonacci
tree in the sequel, see [5] for more details on this tree.

The way to exhibit the Fibonacci tree is based on the mid-point lines, which
we introduced in [2]. As suggested by their name, these lines join the mid-points
of two consecutive edges of a heptagon, see figure 2. It turns out that the angular
sector determined by two rays obtained by two mid-point lines meeting at a mid-
point C, joining the two mid-points of the two other edges which meet at C,
exactly contains a set of tiles spanned by a Fibonacci tree. This structure will
play an important rôle in what follows.
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Fig. 2. Left-hand side: the standard Fibonacci trees which span the heptagrid. Middle:
the mid-point lines. Right-hand side: the background of the constructions.

The correspondence of the black and white hue of the tiles with the letters is given
as follows:

G: , Y : , B: , O:

2.2 The Background: Constructing a Grid in the Heptagrid

In the Euclidean plane the square grid is defined by horizontals and verticals
which are regularly spaced, with the same distance between horizontals and
between verticals. If we look at the simulation which is performed in [3] as well
as the construction in [1] and [12], we can notice that the metric constraints of
the square grid are not relevant to the problem. As an example, it is possible to
define the distance of a tile A to a tile B by the smallest number of tiles which
have to be crossed to go from A to B. Reflection in a horizontal and in a vertical
can be defined in this terms and not in those of the usual Euclidean metric.
Now, in this case, the metric distance between the horizontals and the verticals
can change from one line to another. Also, horizontals and verticals need not be
straight lines.

We shall see that even verticals are not fully needed: it is enough to have
half-verticals at our disposal.

This can rather easily be implemented as follows in the heptagrid, see [7].
We define four colours, green, G, blue, B, orange, O and yellow, Y and we

assign to each tile of the heptagrid one of these colours in such a way that the
following rules are observed:

G→ Y BG, Y → Y BG, O → Y BO, B → BO

There are infinitely many such tilings and in fact there are uncountably many
of them, see the right-hand side picture of Figure 2.

In such tilings, we can implement two different kinds of Fibonacci trees at the
same time. If we consider B as a black node and G, Y and O as white ones, we
get a central Fibonacci tree, see [5]. Now, if we consider B and O as white
nodes and G with Y as black nodes, we get standard Fibonacci trees with the
rules

G→ Y B, Y → Y B, O → Y BO, B → GBO
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Fig. 3. The construction of the grid in the heptagrid. From left to right: definition
of the horizontals, of the half-verticals and of the seeds. The seeds are black on the
right-hand side picture.

The structure of the standard Fibonacci trees of this new setting allows us
to define the horizontals as follows: say that G- and Y -tiles have a convex arc
joining the mid-points of the sides shared with their O-neighbour and with their
B-one while B- and O-tiles have a concave arc joining the mid-pints of the sides
shared with their Y -neighbour and with their G-one or to their G-neighbour
with their O-one. A tile has exactly two neighbours which abut one of its sides:
the sides to which abut its arc. So that the arc of a tile can be continued by
those of its two neighbours abutting its arc. This defines curves which we call
isoclines. They are the horizontals of our construction, see the left-hand side
picture of Figure 3.

The half-verticals start from a G or a Y -tile, go to the B-son of the tile and
next, endlessly repeat the same pattern: go to the O-son of the B-tile and then
to the B-son of the O-tile.

We number the isoclines from 0 to 7, repeating this numbering periodically,
downwards and upwards. By definition, the sons of a tile are on the next isocline
of the tile, where 0 is the successor of 7 in this order.

Now, we can define an important notion: say that a G-node is a seed if it is on
an even isocline, if its father is a Y -node and if its grand-father is a G-node. Now,
consider a seed S. Let A be the mid-point of the edge shared by the Y -father
of S and the B-neighbour of this Y -node. Then, the rays issued from S which
are supported by the mid-point lines passing through S which also intersect S
define a sector spanned by a Fibonacci tree. By definition, this tree is a tree of
the grid which we constructed. The set of tiles which are included in the sector
determined by the rays is called the area of the tree, and the rays are called its
borders. We shall also call border the set of tiles which are in contact with the
rays. The trees of the grid have a very important property, see [10]:

Lemma 1. Consider two trees of the grid. Their borders never meet. Either
their areas are disjoint or the area of one contains the area of the other.

Now, half-verticals also have an important property, see [10]:
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Fig. 4. The silent and active intervals with respect to mid-point lines. The light green
vertical signals send the mid-point of the concerned interval to the next generation.
The colours are chosen to be easily replaced by red or blue in an opposite way. The
ends X and Y indicate that the figure can be used to study both active and silent
intervals.

Lemma 2. Consider a tree of the grid T . Let v be a vertical which starts from
a G-node of its right-hand side border or a Y -node of its left-hand side border
or from its root. Then, for any tree of the grid whose area A is contained in that
of T , v does not meet A.

2.3 The Abstract Brackets

By this name, we call the following process of construction of intervals on the
line, illustrated by figure 4 which is performed by successive generations.

Generation 0 consists of points on a line which are regularly spaced. The
points are labelled R, M , B, M , in this order, and the labelling is periodically
repeated. An interval defined by an R and the next B, on its right-hand side, is
called active and an interval defined by a B and the next R on its right-hand
side is called silent. Generation 0 is said to be blue.

Blue and red are said opposite. Assume that the generation n is defined.
For the generation n+1, the points which we take into consideration are the
points which are still labelled M when the generation n is completed. Then,
we take at random an M which is the mid-point of an active interval of the
generation n, and we label it, either R or B. Next, we define the active and silent
intervals in the same way as for generation 0. The active and silent intervals of
the generation n+1 have a colour, opposite to that of the generation n.

When the process is achieved, we get an infinite model. The model has
interesting properties, see [10].

In an interval of the generation n, consider that a letter of a generation m,
m ≤ n, which is inside an active interval is hidden for the generations k, k ≥ n+1.
Also, a letter has the colour of its generation. Now, we can prove that in the
blue active intervals, we can see only one red letter, which is the mid-point of
the interval. However, in a red active interval of the generation 2n+1, we can
see 2n+1+1 blue letters.
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Fig. 5. An illustration for the interwoven triangles

Cut an infinite model at some letter and remove all active intervals which
contain this letter. What remains on the right-hand side of the letter is called a
semi-infinite model which is also called a cut of an infinite model.

It can be proved that in a semi-infinite model, any letter y is contained in at
most finitely many active intervals, see [10].

2.4 The Interwoven Triangles in the Euclidean Plane

As indicated in the introduction, we lift up the active intervals as triangles in
the Euclidean plane. The triangles are isosceles and their heights are supported
by the same line, called the axis, see figure 5.

We also lift up silent intervals of the infinite model up to again isosceles
triangles with their heights on the axis. To distinguish them from the others,
we call them phantoms. We shall speak of trilaterals for properties shared by
both triangles and phantoms.

We have very interesting properties for our purpose.

Lemma 3. Triangles of the same colour do not meet nor overlap: they are dis-
joint or embedded. Phantoms can be split into towers of embedded phantoms
with the same mid-point and alternating colours. Trilaterals can meet by a basis
cutting the half of leg which contains the vertex.

From these properties, we prove in [10] that:

Lemma 4. There is a set of 190 tiles which force the construction of a tiling of
the Euclidean plane which implements the interwoven trilaterals.

3 The Tiling Problem in the Hyperbolic Plane

We sketchily remember the implementation of the interwoven triangles in the
hyperbolic plane.
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To this purpose, note that the inclusion between areas of trees of the grid
defines a partial order. We call threads the maximal sequences of totally ordered
trees of the grid. Threads are indexed by IN or by ZZ. When it is indexed by ZZ,
the thread is called an ultra-thread. From [10], we know that two ultra-thread
coincide, starting from a certain index. We also noticed in [10] that there can be
realizations of the grid with ultra-threads as well as without them.

Now, in the hyperbolic plane, we implement different cuts of the same infinite
model of the abstract brackets, taking a thread as the guideline for the realization
of interwoven triangles.

The idea is that the triangles will be defined by the borders of trees of the
grid as legs and by a piece of an isocline as the basis. Now, the isoclines will play
the rôles of the letters in the abstract brackets.

From Section 2, we know that if the isocline which passes through a seed S
is numbered 0, the closest seed inside the area of the tree defined by S is on
isocline 0. We select isoclines 0, 2, 4 and 6 to play the rôles of the letters. These
isocline are needed for the construction of the generations. Once generation 0
is installed, the further generations are obtained by the algorithm suggested by
the figures 4 and 5, see [10] for a precise description. Sketchily, the seeds grow
legs until a green line is met. The green line is stopped by a triangle but not by
a phantom. Afterwards, the leg go on growing until they meet the basis of their
colour. For red triangles, we proceed, at the same time, to the detection of the
free rows which are the isoclines corresponding to a free letter in a red active
interval. For this process, the legs of the triangle diffuse a horizontal red signal
outside the triangle and this, already from generation 1. Accordingly, a row is
free in a given red triangle T if and only if there is no horizontal red signal on
the considered isocline inside T .

Due to the presence of several trilaterals on the same interval of isoclines
inside a given trilateral in the hyperbolic plane, it is needed to synchronize the
processes which occur along different threads. In particular, when the threads
merge, the processes may also merge, as they implement the same cut of the
same infinite model.

To do this, we decide that triangles and phantoms of a given generation will
have their basis and their roots on the same isoclines. Note that this is already
the case of generation 0. We simply extend this property to all the generations.
To obtain this result, we decide that all bases of a given isocline merge into
a unique basis signal which runs over the whole isocline. Now, the difference
will be made by the presence of a horizontal upper signal of the colour of the
trilateral, above the basis signal, on the same isocline. It may be realized as
another channel on the same tiles, at a higher level than the channel used by
the basis signal. Now, for coherence with the detection of the free rows in a
red triangle, the vertices of the trilaterals also emit a horizontal signal of their
colour but, this time, in a lower position: below the basis signal, again on the
same isocline. The signals emitted by the legs of triangles at points which are
neither the vertex nor the corner, are also of the colour of the triangle, but they
are upper horizontal signals.
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Moreover, the signals have a laterality given by the leg which they cross when
they are of the same colour. Also, we allow signals of opposite lateralities to
meet when they come from directions which are opposite to their lateralities.
The other case of meeting is ruled out, except for the lower signals, where such
a meeting is realized by the vertex itself. With these indications, a leg always
know to which kind of basis it has to deal when it meets one of them.

Now, we select the red triangles and forget the others as well as the phantoms.
The free rows and the verticals inside the triangle will be used to implement the
space-time diagram of a Turing machine. As in Berger’s and Robinson’s proof, we
consider the same Turing machine starting from an empty tape, whose simulation
is performed in each computing area.

When the Turing machine does not stop, the computation is stopped by the
basis of the concerned triangle, as its area is finite. As we have areas of infinitely
many sizes, this allows to tile the plane. If the Turing machine halts, in one of
the areas, the halting state will be called by the Turing machine. It is easy to
associate to this state a tile which blocks the continuation of the tiling.

4 The Periodic Tiling Problem

In [8,11], we proved that the finite tiling problem is undecidable. In fact, we shall
use similar tiles to construct a periodic tiling of the hyperbolic plane when the
simulated Turing machine halts. What is performed in [11] is that we have tiles
which adapts to the halting tiles in order to encapsulate the computing area in
a closed signal which runs along the legs and the basis of the concerned triangle.

However, this is not enough to prove the undecidability of the periodic tiling
problem. We need another important ingredient coming from [7].

Before going on, we shall remark an important property. Consider again a
seed. Then, replace the right-hand side ray by another one which delimits what
we shall call a black tree. Such a tree is obtained by the same rules as for a
standard Fibonacci tree, but its root is a black node. Technically, the root of
a tree of the grid is also a black node, but everything happens as if we apply
a white-node rule to the root and we change all white nodes which are on the
right-hand side border into black nodes. In fact, a tree of the grid can be realized
as a stack of black trees and standard Fibonacci trees which we shall call white
trees to simplify the denotation. Now, with black trees we have the same prop-
erties as for the white ones: for any black trees of the grid, either their areas are
disjoint or the area of one contains the area of the other. Accordingly, we can
repeat the same construction process by replacing all trees of the grid by black
trees. We refer the reader to [8,11] for a figure representing the tiles of such a
border.

Accordingly, when the simulated Turing machine halts, we may construct
two encapsulated areas B and W where the whole computation of the machine
takes place. The area W will be called white and the area B will be called black.
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Moreover, from what we have noticed, both areas have the same height. Now,
we shall make four super-prototiles with such computing areas. The border of
an area has an interior side and an exterior one. It is not difficult to see that
the difference can be noticed by the orientation of the tiles with respect to their
father: number the edges of a tile counter-clockwise from 1 to 7, giving the
number 1 to the edge which is shared by the father. Then the left-hand side
border always go from the edge 1 to the edge 4 and the right-hand side border
always go from the edge 1 to the edge 5. The difference between a black and a
white tree is performed by the root. If the left-hand side border is also defined
from the edge 1 to the edge 4 in the root, then the right-hand side border goes
from the edge 2 to the edge 6 for a white tree and it goes from the edge 7 to the
edge 4 for a black tree.

This distinction will allow us to look at the border as two-sided: one side is
interior and the other is exterior. Now we shall consider that the left- and right-
hand side borders of B are black inside and white outside. Now, from W , we
shall make three copies, W1, W2 and W3. For W1, W2 and W3, the inside of the
borders is always white. For W1, the outside of the left-hand and right-hand side
borders is black. For W2, the outside of the left-hand side border is black and
that of the right-hand side border is white. For W3, the outside of the left-hand
side border is white and that of the right-hand side border is black.

Now, we consider B, W1, W2 and W3 as super-prototiles with which we shall
construct a periodic tiling. In [6], we have considered sets of tiles which we
called quarters and bars. A quarter of size n, denoted by Qn, is the set of tiles
spanned by a standard Fibonacci tree restricted to its first n levels. A bar of
size n, denoted by Rn, is defined in the same way as a quarter but with a black
Fibonacci tree. In [6], we proved that Qn+m can be split into Qn and f2n copies
of Qm and f2n−1 copies of Rm. Note that f2n is the number of white nodes on
the level n of a standard Fibonacci tree and that f2n−1 is the number of black
nodes. In fact, the property comes from the fact that the trees rooted at two
consecutive nodes of the same level of a Fibonacci trees are disjoint and that
there is no node in between. Now, we can take m = n and repeat the process as
long as we wish. Using the property also proved in [6] that the hyperbolic plane
can be viewed as the union of a growing sequence of quarters, we can construct
the periodic tiling as follows.

Initial step:
Take a tile of the tiling {7, 3} which will be called the origin. Take a copy
of W2, and place it in such a way that the root of the copy of W2 coincides
with the origin. Call this just defined region of the tiling T0. The root of this
copy of W2 is also called the top of T0 and its bottom border is called the
bottom border of T0. Now, we define copies of B and Wi, with i ∈ {1, 2, 3}
which we call R0 and Qi

0 respectively. We define the roots and the bottom
borders of these regions as we did for T0.

Now, in what follows, a particular role will be played by the node of the
last level of W2 whose coordinate is a term of the Fibonacci sequence. Call
it the junction point. Now, on the tiling {7, 3}, draw the line which passes
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through the mid point of the origin and through the junction point of T0.
Call it the axis. This line is simply an auxiliary tool in our construction.
Induction step:
Assume that Tn is constructed, as well as regions Rn and Qi

n, which have
the following particularity: the left- and right-hand side borders of Qi

n also
have an outside and an inside parts and the outside and inside part of
the left- and right-hand side borders of Qi

n have the same colour as the
corresponding elements of Wi, for each i ∈ {1, 2, 3}.

Then, take a copy of W2 and put it above Tn in such a way that the top
of Tn is the middle son of the junction point of W2. Now, on the bottom
border of W2, proceed as follows, starting from the leftmost node: if we have
a black node, place a copy of Rn, then a copy of Q1

n; if we have a white
node, place copies of Rn, Q2

n and Q3
n, in this order. This is the first step:

we get a set of tiles which is alike a copy of Qm for an appropriate m. Now,
consider the bottom border of this region, and proceed as follows, starting
from the leftmost node: if we have a black node, place a copy of B, then
a copy of W1; if we have a white node, place copies of B, W2 and W3, in
this order. Now, we get a new region Tn+1 which strictly contains Tn: the
tiles which belong to the border of Tn do not meet the tiles which belong
to the border of Tn+1. Now, we construct Rn+1 and Qi

n+1 in a similar way,
starting from, respectively Rn and Qi

n and completing them by two rows
of copies of B and Wi’s which are placed as above indicated.

Now, it is plain that ∪
n∈IN

Tn is the hyperbolic plane. Also, from the construc-

tion, it is plain that this tiling is invariant under the shift along the axis which
transforms the origin in the middle son of the junction point of T0.

To complete the proof, assume that the simulated Turing machine does not
halt.

If there is a solution, the tiles for the border of the super-tiles always admit
near them a seed S which is of generation 0: hence, it does not bear the root of
a copy of a super-tile. Next, we know that the computation goes on endlessly,
thanks to the construction of [10]: as the halting state cannot be met, the oc-
currence of tiles of the border of super-tiles cannot be triggered inside the tree
of the grid rooted at S. If the tiling would be periodic, then from the invariance
under a shift, we would easily get that as S does not contain tiles of the border
of a super-tile, this is also the case for the whole plane. Now, this means that
we have a solution of the tiling constructed in [10] and, as we know, such a
solution cannot be periodic. Indeed, a shift should keep the isoclines globally
invariant and then, there is no shift which would match the triangles of a certain
generation and those which are of a higher generation. But this contradicts the
assumption of a periodic solution. Accordingly, if the Turing machine does not
halt, there is no periodic solution. The just produced argument indicates that
in this case there are solutions, but they are not periodic.

This completes the proof of theorem 1.
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Games with Opacity Condition

Bastien Maubert and Sophie Pinchinat

IRISA, France

Abstract. We describe the class of games with opacity condition, as
an adequate model for security aspects of computing systems. We study
their theoretical properties, relate them to reachability perfect informa-
tion games and exploit this relation to discuss a search approach with
heuristics, based on the directing-word problem in automata theory.

1 Introduction

We describe a class of two-player imperfect information games that we call games
with opacity condition. In these games, the players are Robert (for “robber”)
and Gerald (for “guardian”). Imperfect information is asymmetric between the
players: Robert has imperfect information as opposed to Gerald who has perfect
information. The model we used for games with opacity condition uses the classic
imperfect information arenas, as defined in [12,4,1], but it differs in the nature of
the winning objectives: in games with opacity, Gerald aims at maintaining the
uncertainty of Robert regarding the actual position in the game along the play.

Games with opacity conditions easily relate to computer systems security
issues, since in practice interactive systems are expected to have a policy against
intruders that attempt to reach a secret, modelled e.g as perfect information in
the model.

Our claim that games with opacity condition are natural and adequate models
for practical applications is all the more sustained by very recent contributions of
the literature [13,5]. These results mainly arise from the analysis of discrete-event
systems and their theory of control. We believe that the abstract setting provided
by the game-theoretical paradigm enables to focus on essential aspects such as
circumventing the complexity of the problems and synthesizing strategies.

In this contribution, we first establish that deciding the opacity-guarantee
problem translates into the problem of solving a perfect information safety game
– which, according to determinacy in the perfect information setting, is dual to
a perfect information reachability game. This is a key point of our approach: al-
though standard bottom-up techniques to solve safety perfect information games
are intractable in this case, due to a blow-up in the translation, top-down meth-
ods may be worth considering. Moreover, these methods may be enriched with
heuristics, preventing the search from a useless exhaustive exploration of the
entire state space.

We therefore discuss a search-based approach in an AND/OR graph (the
perfect information arena of a reachability game). The search is sustained by

O. Bournez and I. Potapov (Eds.): RP 2009, LNCS 5797, pp. 166–175, 2009.
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heuristics arising from a standard problem in automata theory: the directing-
word problem [3,10], which addresses the existence of a finite word that leads
every state of a non-deterministic automaton to a unique single state; the liter-
ature also refers to the synchronizing word or the reset problem.

The paper is organized as follows. In Section 2 we introduce the model and the
notion of opacity, and we define the opacity–guarantee and opacity–violate prob-
lems. Theoretical analysis of games with opacity condition is done in Section 3,
where their non–determinacy is proved, and the equivalence of the opacity–
guarantee and opacity–violate problems with a safety, respectively reachability
perfect information game is established as well as their connection with the
directing-word problem. Finally, we end by Section 4 where we discuss a search
approach with heuristics based on directing-word techniques.

2 Games with Opacity Condition

2.1 Arena, Strategies

An imperfect-information arena over the alphabet Σ and the set of observations
Γ is a structure A = (V, Δ, obs, act) where V is a finite set of positions, Δ :
V × Σ → 2V is a transition function, obs : V → Γ is an observation function
and act : Γ → 2Σ\∅ assigns to each observation the non–empty set of available
actions. The fact that act is defined on Γ reflects the fact that available actions
must be identical for observationally equivalent positions.

We sometimes write γ instead of obs−1(γ) to denote the set of positions v ∈ V
whose observation is γ.

In an arena A = (V, Δ, obs, act), the players Robert and Gerald play as follows.
First, before the game starts, Gerald chooses an initial position v0. We refer to

the game A just after v0 has been chosen in the first round by Av0 . Then Robert
chooses an action a1 ∈ act(v0), and Gerald chooses a position v1 ∈ Δ(v0, a1). In
the next round, we process similarly but from position v1 where Robert is given
the information obs(v1) to choose a suitable action a2 ∈ Σ. A concrete play in
Av0 is an infinite sequence ρ = v0a1v1a2v2a3... ∈ v0(ΣV )ω that results from an
interaction of Robert and Gerald in this game.

We now extend obs as a morphism obs : (V ∪ Σ)∗ → (Γ ∪ Σ)∗, by letting
obs(a) = a, for all a ∈ Σ. The imperfect information setting leads Robert to
partially observe a concrete play ρ as the abstract play obs(ρ) ∈ γ0(ΣΓ )ω, where
γ0 := obs(v0).

Since Gerald has perfect information on how the play progresses, a strategy
of Gerald in Av0 is a mapping of the form

β : v0(ΣV )∗Σ → V

On the contrary, because the information revealed to Robert is based on
observations, a strategy of Robert in Av0 is a mapping of the form

α : γ0(ΣΓ )∗ → Σ
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For every natural number k ∈ IN, we denote by πk ∈ γ0(ΣΓ )k the k-th prefix
of π, defined by πk := γ0a1γ1a2γ2 . . . akγk, with the convention that π0 = γ0.
We denote by π+ an arbitrary prefix of π, and we may use analogous notations
for concrete plays.

Given strategies α and β of Robert and of Gerald respectively, we say that a
play ρ = v0a1v1 . . . is induced by α if ∀i ≥ 1, ai = α(obs(ρi−1)), and ρ is induced
by β if ∀i ≥ 1, vi = β(ρi−1ai).

2.2 Opacity Condition

Let us fix an abstract play π = γ0a1γ1a2γ2 . . .. Note that every k-th prefix
of π characterizes a unique information set I(πk) ⊆ V consisting of the set
of plausible actual concrete positions of Robert in the game after k rounds.
Formally, I(π0) := γ0, and I(πk+1) := Δ(I(πk), ak+1) ∩ γk+1, for k ∈ IN. For a
concrete play ρ we define I(ρk) := I(obs(ρk)).

A (concrete) play ρ satisfies the opacity property, or is opaque, if for every
natural number k, I(ρk) is not a singleton, that is |I(ρk)|1 is strictly greater
than 1.

Informally, the opacity condition means that the actual position along the
play is never revealed to Robert.

We investigate effective methods to solve games with opacity condition, that is to
answer the following opacity-guarantee problem: Given an imperfect-information
arena A = (V, Δ, obs, act) and an initial position v0, does Gerald have a strategy β
in Av0 such that any play induced by β is opaque?

Actually, driven by the natural application domains underlying this game-
theoretic problem, we also expect to compute a winning strategy for Gerald, when
it exists. We also define the opacity–violate problem, dual to the opacity–guarantee
problem, that consists in deciding the existence of a strategy α for Robert such
that no play induced by α is opaque. If the answer to the opacity-guarantee prob-
lem is positive, v0 is a winning position for Gerald. Similarly, if the answer to
opacity–violate problem is positive, then v0 is a winning position for Robert.

3 Results on Games with Opacity Condition

We first establish the non–determinacy of games with opacity condition. We
next show how the opacity-guarantee and the opacity–violate problems can be
rephrased in terms of solving a safety perfect information game and a reachability
perfect information game respectively. Finally we introduce the directing-word
problem and show a polynomial time reduction to the opacity–violate problem.
From the above, we end the section by inferring complexity results.

3.1 Non–determinacy

We recall that a game is determined if each position is winning for one player or
the other. It is well known that perfect–information games are determined [9],
1 the cardinal of I(ρk).
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and that imperfect–information games are not determined in general. We prove
the following:

Theorem 1. Games with opacity condition are not determined in general.

Proof. Consider the game on Figure 1. Note that the dashed sets represent
observation classes. We first prove that Robert does not have a winning strategy
in the initial position v0.

Robert has information set I, and he must play a. Next Gerald chooses one
of the two reachable positions v and v′ and Robert now knows the information
set I ′. There are two possibilities: Robert can either play a or b. If he plays
a, then if the actual position is v, Robert wins (he reaches v′′ that is alone in
its observation class). But if the actual position is v′, then Gerald can whether
choose to loop, whether move to v. Notice that in both cases, Robert still knows
information set I ′: he never gains information, thus can never know if he should
play a or b. Then the strategy of playing a at the second round is not winning.
Reversing the roles of a and b in this reasoning yields the result that playing
b at the second round is not winning neither. Robert does not have a winning
strategy.

We now prove that Gerald does not have a winning strategy either. As we
said, at first Robert can only choose a. If Gerald chooses v, then Robert can win
by playing a, and if he chooses v′, Robert can win by playing b. So there is no
winning strategy for Gerald neither. �

v0

v v′

v”

I

I ′

a a

a b

b

a

a

aa

b a

Fig. 1. A game with opacity condition
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3.2 Reductions to Perfect Information Games

We informally describe a powerset construction that leads to solve an alternating
reachability problem in a perfect information game. This construction is strongly
inspired from the one of [12].

Let A = (V, Δ, obs, act) be an imperfect-information arena, and v0 be the
initial position chosen by Gerald. We define a two-player perfect information
arena Ãv0 , where the players are Roberta and SuperGeraldine2.

A position of Ãv0 is either I where I is a reachable information set in the game
Av0 – it is a position of Roberta –, or (I, a) where I is a reachable information
set in Av0 , and a ∈ act(I) – it is a position of SuperGeraldine.

The game is played as follows. It starts in the initial position I0 := obs(v0)
of Roberta. In a position I, Roberta chooses a ∈ act(I) and moves to position
(I, a). Next, define O the set of reachable observations from I by a: let ΠI

denote the set of prefix plays ρ+ in Av0 such that I(ρ+) = I. Now pose O :=
{obs(v′) | v′ ∈ Δ(v, a), v = last(ρ+), ρ+ ∈ ΠI}. SuperGeraldine chooses a
non empty information set Δ(I, a) ∩ γ, where γ ranges over O. In Ãv0 , a play
I0(I0, a1)I1(I1, a2) . . . is winning for Roberta if it reaches a position of the form
{v}, otherwise it is winning for SuperGeraldine.

Theorem 2. Robert has a winning strategy in Av0 , if and only if, Roberta has
a winning strategy in the perfect information game Ãv0 .

Theorem 2 has been proved by Reif in [12]. He establishes a 1–1 correspondence
between winning strategies in Av0 and winning memoryless strategies in Ãv0 .
However since our model, though equivalent to his, looks different, we explicate
the correspondence between strategies in our model, but do not provide its proof
of correctness as it exactly matches the one in [12, page 288]:

– Let α be a winning strategy of Robert. Define the memoryless strategy α̃ of
Roberta by α̃(I) := (I, α(obs(ρ+)), for some prefix concrete play ρ+ in the
game Av0 such that I(ρ+) = I.

– Let α̃ be a memoryless winning strategy of Roberta in Ãv0 . Define the
strategy α of Robert in Av0 by: for any prefix abstract play π+, α(π+) :=
a, with (I(π+), a) = α̃(I(π+)).

We now establish Theorem 3 demonstrating a powerset construction for Gerald,
leading to a safety perfect information game Âv0 . In this game, we maintain
an extra information on how Gerald is playing in Av0 . The players in Âv0 are
SuperRoberta3 and Geraldine. A position in Âv0 is either of the form (I, v)
where I is a reachable information set in Av0 , and v ∈ I – it is a position of

2 We use the superlative “Super” here because in general the winning strategies of
SuperGeraldine do not reflect any winning strategy of Gerald in Av0 . She has “more
power” than Gerald.

3 We use the superlative “Super” as, contrary to what Roberta could do in the game
Ãv0 , SuperRoberta can take advantage of the extra information.
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SuperRoberta –, or of the form (I, v, a) where I is a reachable information set
in Av0 , v ∈ I, and a ∈ act(v) – it is a position of Geraldine. The initial position
is (obs(v0), v0). In position (I, v), SuperRoberta chooses a ∈ act(v), and moves
to (I, v, a). In position (I, v, a), Geraldine chooses v′ ∈ Δ(v, a) and moves to
(I ′, v′) where I ′ = Δ(I, a)∩obs(v′). In Âv0 , a play (I0, v0)(I0, v0, a1)(I1, v1) . . . is
winning for SuperRoberta if it reaches a position (I, v) or (I, v, a) where |I| = 1,
otherwise it is winning for Geraldine.

Theorem 3. Gerald has a winning strategy in Av0 , if and only if, Geraldine has
a winning strategy in the perfect information game Âv0 .

Proof. We establish a 1–1 correspondence between winning strategies in Av0 and
winning memoryless strategies in Âv0 .

– Let β be a winning strategy of Gerald. Define the strategy β̂ of Geraldine
by

β̂((I0, v0)(I0, v0, a1)(I1, v1) . . . (In, vn, an+1)) := (In+1, vn+1)

with vn+1 = β(v0a1v1 . . . vnan+1) and In+1 = Δ(In, an+1) ∩ obs(vn+1).
We prove by contradiction that β̂ is winning for Geraldine in Âv0 . Assume β̂
is not winning, we show that β is not winning for Gerald in Av0 . There exists
ρ̂n = (I0, v0)(I0, v0, a1) . . . (In, vn) a prefix of a play ρ̂ in Âv0 induced by β̂

such that |In| = 1. From the definition of β̂ we have that ρn = v0a1v1 . . . vn

is a prefix of a play in Av0 induced by β. We show that this prefix is losing
for Gerald by proving that ∀i ≤ n, I(ρi) = Ii. We proceed by induction over
i: clearly I(ρ0) = obs(v0) = I0. Suppose I(ρi) = Ii, for 0 ≤ i < n.

I(ρi+1) = Δ(I(ρi), ai+1) ∩ obs(vi+1)
= Δ(Ii, ai+1) ∩ obs(vi+1)
= Ii+1

So |I(ρn)| = |In| = 1, and β is not winning. By contradiction, β̂ is winning.
– Let β̂ be a winning strategy of Geraldine.

For a prefix ρn = v0a1v1 . . . vn and an action an+1 ∈ act(vn), we de-
fine the strategy β of Gerald by β(ρnan+1) := vn+1 with (In+1, vn+1) =
β̂((I(ρ0), v0)(I(ρ0), v0, a1) . . . (I(ρn), vn, an+1)). We prove again by contra-
diction that β is winning for Gerald in Âv0 . Assume β is not winning.
There exists a prefix ρn = v0a1v1 . . . vn of a play ρ induced by β such that
|I(ρn)| = 1.
Let ρ̂ = (I(ρ0), v0)(I(ρ0), v0, a1) . . . (I(ρn), vn). It is a prefix of a play in
Âv0 that is losing for Gerald. We need to prove that it is induced by β̂. For
i < n, let Ii+1 be the information set such that β̂((I(ρ0), v0)(I(ρ0), v0, a1) . . .
(I(ρi), vi)) = (Ii+1, vi+1).

Ii+1 = Δ(I(ρi), ai+1) ∩ obs(vi+1) from the construction of Âv0

= I(ρi+1) by definition of I

ρ̂n is induced by β̂ and is losing for Gerald, so β̂ is losing. Contradiction. �
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3.3 The Directing-Word Problem

We define the directing-word problem, a classic problem in automata theory
originally considered in [11,3].

Given a non-deterministic complete finite-state automaton A = (Q, X, δ) over
alphabet X , a directing word in A is some w ∈ X∗ such that |δ(Q, w)| = 1.

The directing-word problem is a decision problem: Given a non-deterministic
complete finite-state automaton A, does there exist a directing-word in A?

Proposition 1. The directing-word problem is in PSPACE.

Proof. Not surprisingly, a powerset construction and a guess on how a subset of
the form {q} is reachable from the full subset Q, shows a solution of the problem
in NPSPACE, which equals PSPACE by the Theorem of Savitch [14]. �

However, we are not aware whether the directing-word problem is PSPACE-hard
or not. Under the hypothesis that the automata are deterministic, the problem,
known as the synchronizing word problem [2] has been extensively studied. It
particular, it is NP-complete to decide whether there exists a synchronizing
word of length ≤ k, and the Cerny conjecture states that if a synchronizing word
exists, then so does a synchronizing word of length at most (n−1)2 [10,2]. In the
general case, the powerset construction in Proposition 1 shows an exponential
bound on the length of a minimal directing word [6].

We establish a polynomial reduction of the directing-word problem into the
opacity-violate problem. Let A = (Q, X, δ) be a non-deterministic complete
finite-state automaton. We construct the arena AA = (Q, δ, obs, act) over X and
{γ} (a fresh symbol), such that Proposition 2 holds. Let act(v) = X , for every
v, since A is complete, and obs be the constant mapping sending any position
to the unique observation γ; notice that Robert is consequently blindfold – in
the sense of [12]. Let v0 be any position in Q.

Proposition 2. Robert wins the game AA
v0

if, and only if, there exists a directing
word in A.

Proof. Assume there exists a directing word w = x1x2 . . . x� in A of length �,
which leads any state of A to the state qw. We use w to define the winning
strategy αw of Robert in the game AA

v0
as:{

αw(γx1γx2 . . . γxiγ) := xi+1, for all 0 ≤ i < �,
αw(γx1γx2 . . . (x�γ)k) := x�, for all k > 0.

Reciprocally, assume there exists a winning strategy α for Robert in AA
v0

. Since
there is only one observation, the only possible abstract play induced by this
strategy is π = γα(γ)γα(γα(γ)γ) . . . Projecting the least prefix π+ of π such
that |I(π+)| = 1 on X gives a directing word for A. �
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3.4 On the Complexity of Opacity Problems

We let the size of a game be the size of its arena, that is the number of positions.
We study the complexity of the opacity problems.

First, note that Theorem 3 gives an EXPTIME upper bound to the opacity–
guarantee problem: For an instance A = (V, Δ, obs, act) and initial position v0

of this problem, the safety game Âv0 of Theorem 3 can be solved in polynomial
time. Indeed, as Âv0 is a perfect information game, it is determined, and the
existence of a winning strategy for Geraldine can be decided by verifying whether
her opponent, SuperRoberta, has a winning strategy. This amounts to solving a
perfect information reachability game, and can be done in polynomial time [12],
for example by a backward iteration from the target positions. Now, because the
game Âv0 arises from a powerset construction, its size is exponential in the size
of A. For the same reasons, thanks to Theorem 2, the opacity–violate problem
also has an EXPTIME upper bound.

Still considering the opacity–violate problem, Proposition 2 provides a poly-
nomial reduction of the D1–directing word problem, but cannot bring any tight
lower bound, even if the D1–directing word problem would be proved PSPACE-
complete.

To our knowledge, the exact complexity of the opacity-guarantee and opacity–
violate problems are an open question.

However, in our attempt to develop efficient algorithms for the opacity-
guarantee problem, we somehow rely on Theorem 3 and promote a top-down
approach in the graph Âv0 . This approach should compete with the straight-
forward intractable bottom-up method to solve alternating reachability in Âv0 ,
that leads to the EXPTIME algorithm.

4 Towards a Search-Based Algorithm

In this section we present the idea of an algorithm that, given a game with
opacity-condition A = (V, Δ, obs, act) over Σ and Γ , with v0 as initial position,
decides the existence of a winning strategy for Gerald and returns one if it exists.

The algorithm is based on a search approach in the graph of the perfect-
information game Âv0 from Theorem 3. We distinguish between nodes in which it
is SuperRoberta’s turn to play and those in which it is Geraldine’s. The first ones
correspond to positions of the form (I, v) in Âv0 , the second ones to positions of
the form (I, v, a). Since we want the computed strategy to be winning whatever
SuperRoberta does, we have to provide a solution in all sons of SuperRoberta’s
nodes, entailing an AND-node interpretation of SuperRoberta’s nodes. Dually
in a Geraldine’s node, it is sufficient to provide a solution for one of its sons to
have a winning strategy, hence the OR-node interpretation of Geraldine’s nodes.
General search algorithms with heuristics on AND-OR graphs have already been
studied [7,8], but our setting is more involved. The halting condition of the search
is subtle because we consider safety conditions in graphs that may contain cycles.
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Halting conditions: There are only three ways to stop the exploration of a branch.
The current node is:

– A losing position, thus this branch is cut.
– An OR-node (a Geraldine position) for which a safe strategy has already

been found.
– An OR-node whose associated position is also associated to an ancestor.

The third point needs some justification. Assume we find an OR-node n′ with an
ancestor n both associated to position (I, v, a). Two cases can be distinguished.

– The choice made at node n is not part of a winning strategy. If we expand
the node n′, we have to be coherent with the strategy currently being con-
structed, thus the subtree rooted at n′ is the same as the one rooted at n. It
implies that the choice made at n can be proved wrong without expanding
n′.

– The choice made at node n is part of a winning strategy. In this case n′

doesn’t need to be expanded neither since a solution has already been defined
for the corresponding position, and exploring the rest of the subtree rooted
at n will prove this choice correct.

Pruning: In this section we describe how we prune some branches during the
search.

In an OR–node n, before expanding a son n′ associated to position (I ′, v′),
we check a sufficient condition for n′ to be a position from which there is no
winning strategy for Geraldine. This condition is that there exists a sequence of
actions a1 . . . an that, if played by SuperRoberta from n′, will lead to a losing
position whatever Geraldine does. This can be rephrased as a generalized D1–
directing word problem in the non-deterministic automaton AA = (V, Σ, Δ′),
where transitions are added in order to obtain a complete automaton:

Δ′(v, a) =

{
Δ(v, a) if non–empty,

{⊥} else.

The problem becomes: does there exist a directing word w to a singleton
different from {⊥}? Depth-first search techniques seem appropriate, and due
to efficiency purposes, we may limit the length of the directing word by some
parameter k1.

Heuristics: In OR-nodes, we use heuristics to order the expansion of unpruned
sons. To compute the values assigned to these sons, we seek synchronizing words
of minimal length in a deterministic automaton that, unlike AA, does not ab-
stract Geraldine’s moves. A synchronizing word w of length at most k2 (a param-
eter) in this automaton reveals a winning play for SuperRoberta. The heuristics
is that the longer the minimal synchronizing word, the more chances to avoid
the singleton position. We can use breadth-first search techniques to compute
minimal length directing words, no longer than k2.
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5 Conclusion and Perspectives

We have defined and studied in detail games with opacity condition, which ad-
dress theoretical questions related to security aspects of computer systems. In
order to bypass the intractable powerset–based procedure, we have proposed to
exploit synchronizing words techniques from automata theory as heuristics for a
top–down search algorithm.

We are currently developing this algorithm, with the pruning condition. Also,
the proposed heuristics arises from an intuitive argument that deserves being
validated in practice (by tuning parameters k1 and k2), and next theoretically
justified.

Acknowledgement. We are very grateful to Dietmar Berwanger for initial
discussions on this topic.
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fyz. čas SAV 14, 208–215 (1964)
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Abstract. Counterexample-guided abstraction refinement (CEGAR) is
an important method for tuning abstractions to properties to be verified.
The method is commonly used, for example in selecting predicates for
predicate abstraction. To date, however, it has been applied primarily to
powerset abstractions, which allow one to speak of an abstract transition
system and abstract states. Here, we describe a general framework for
CEGAR in non-disjunctive abstractions by introducing a generalized no-
tion of abstract counterexample, and methods for computing such coun-
terexamples. We apply this framework to Indexed Predicate Abstraction
(IPA), a promising technique for synthesizing quantified inductive in-
variants of infinite-state systems. In principle, it can be applied to other
non-disjunctive abstractions occurring in program analysis.

1 Introduction

Effective application of abstract interpretation depends on choosing the right ab-
stract domain. This domain must be rich enough to contain an inductive invari-
ant that proves a given property, but not so rich as to make analysis intractable.
One very fruitful approach to choosing abstractions has been abstraction refine-
ment. That is, when our abstract domain fails to prove a given property, we
analyze this failure, producing a refined abstract domain that rules out some
class of failures. This process repeats until either the property is proved, or anal-
ysis reveals that the property is false, or computational resources are exhausted.
A particularly successful form of abstraction refinement is counterexample-guided
abstraction refinement, or CEGAR [10,2]. In this approach, when the abstract
domain fails to prove the property, we produce an abstract counterexample. This
is a sequence of abstract states in which every transition is allowed by the ab-
stract transformer, and the property is violated. An abstract state is, in effect, an
atom of the abstract lattice. We refine the abstract domain so as to rule out the
abstract counterexample. Abstract counterexamples both focus and simplify the
refinement process, since they allow us to consider a limited class of behaviors.
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CEGAR has been applied effectively to a variety of domains, including local-
ization abstractions [10] and predicate abstraction [18]. Its use is limited, how-
ever, by the fact that it applies only to abstract domains that are disjunctive
(i.e., closed under union). It is this condition that allows us to construct abstract
counterexamples. For example, CEGAR cannot be applied directly to indexed
predicate abstraction [11] (IPA) because this abstraction is not disjunctive.

In this work, we generalize the notion of abstract counterexample to a con-
struct we call a minimal sufficient explanation (MSE). An MSE is a sequence
of elements of the abstract domain that may not be atoms. In the case of an
abstract lattice that is atomistic and disjunctive, however, it reduces to the
standard notion of abstract counterexample. An MSE may be used to focus ab-
straction refinement in much the same way as an abstract counterexample, for
example, using the interpolation approach [7]. Our primary motivation in this
work is to be able to effectively refine indexed predicate abstractions, and we
will use this method as an example application.

Related Work. Existing work on refinement of non-disjunctive abstractions is
not based on abstract counterexamples. Typically, the weakest liberal precondi-
tion operator is iterated. This allows us to find the first point in the abstract fixed
point series in which lost information resulted in inclusion of a bad concrete state
(one reaching a state violating the property). The abstraction is refined at this
point. For example, Gulavani and Rajamani do this by eliminating widenings at
specific points in the fixed point series [6].

In the terminology of this paper, the sequence of (negations of) the weakest
preconditions of the property is a sufficient explanation for the failure to prove
the property. However, it is not minimal with respect to the given abstract
domain, nor is it generally even expressible in that domain. Using a minimal
sufficient explanation allows us to focus on a restricted set of concrete behav-
iors. In this way, we hope to gain both efficiency and better focus on relevant
refinements, as in CEGAR. Moreover, this avoids having to deal with the series
of weakest preconditions, which may have deeply nested quantifiers in the case
of programs with input or non-deterministic choice.

Since one of the goals of this work is to produce quantified inductive invariants,
we mention some other work in this area. Lahiri presents a collection of heuristics
based on the weakest precondition operator for guessing indexed predicates [11],
but leaves open the question of how to apply CEGAR. Henzinger, et al., use inter-
polants for predicate refinement [7], but without index variables. The method of
invisible invariants [16] can effectively synthesize quantified invariants, but only
for families of finite-state systems. IPA can also handle infinite-state systems.

Outline. The paper is organized as follows. Section 2 introduces the notion
of MSE, or generalized abstract counterexample. Section 3 then reviews the
method of indexed predicate abstraction, and shows how to compute MSE’s for
this application. In section 4, we show how indexed predicates can be derived
from interpolants, and how, in principle, MSE’s can be used to drive this process
in a CEGAR loop.
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2 Generalized Abstract Counterexamples

In this section, we generalize the concept of abstract counterexample. The idea is
to view an abstract counterexample not as a run of an abstract transition system,
but rather as a minimal sufficient explanation of the failure of the abstraction
to prove a given property. We will see that in the case of powerset abstractions,
these two notions coincide.

Abstract Interpretation. First we review some concepts from abstract inter-
pretation [3]. Consider a concrete transition system with set of states S, initial
states I ⊆ S, and transition relation T ⊆ S×S. We can define a concrete trans-
former τ(s) = I∪T (s), where T (s) is the image of s with respect to T . The least
fixed point of τ is the set of concrete reachable states of the system.

An abstraction of the system is defined by an abstract lattice L and a mono-
tone concretization function γ : L → S. The abstract lattice is ordered by �,
with least upper bound operator � and greatest lower bound operator , usu-
ally referred to as “join” and “meet” respectively. If we think of L as a logical
language, then γ defines the semantics of the language, with γ(p) giving the
extension of predicate p ∈ L.

We will assume that L is finite and intersection-closed, that is, for any p, q ∈ L,
there exists r ∈ L such that γ(r) = γ(p)∩γ(q). In this case, γ is the upper adjoint
of a Galois connection, whose lower adjoint is:

α(s) = {p | s ⊆ γ(p)}

The abstraction function α gives the best abstract approximation of a set of
states s, which can be thought of as the conjunction of all the predicates in L
that are valid over s.

This in turn gives us a best abstract transformer, τ � = α ◦ τ ◦ γ. For any
predicate p ∈ L, this function yields the best abstract approximation of the set
of successors of states in p. The fixed points of τ � are all the inductive invariants
in L, and the least fixed-point is the strongest of these. Thus, to prove that
a given set F ⊆ S is unreachable, we compute the least fixed point of τ �, as
the stable limit of the series (τ �)i(⊥). Then, if lfp(τ �)  α(F ) = ⊥ we say the
abstraction proves F unreachable. On the other hand, if (τ �)i(⊥)  α(F ) �= ⊥
for any i > 0, then the abstraction fails to prove unreachability of F .

Explanation of Failures. What then would constitute a minimal sufficient
explanation for such a failure? Consider first the case of a single transition. Given
two predicates p, q ∈ L, we will say that p is a minimal sufficient precondition
(MSP) of q when τ �(p) � q and there is no ṗ � p such that τ �(ṗ) � q. That is,
p is a minimal element of the abstract lattice sufficient to guarantee at least q
at the next time. Put another way, p is an explanation of why the abstraction
produced q at the next time.

Now we extend this notion to a reachability computation. We will say that a
sequence x0, . . . xk ∈ L∗ is a minimal sufficient explanation (MSE) for failure to
prove unreachability of F , when it is pointwise minimal such that:
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– x0 = ⊥ and
– for all 0 ≤ i < k, τ �(xi) � xi+1, and
– xk  α(F ) �= ⊥

That is, each element of the sequence is a MSP of its successor, and the last
element fails to rule out F .

The notion of MSE corresponds precisely to the notion of “abstract coun-
terexample” in the traditional CEGAR framework. This framework applies only
to powerset abstractions. This means that γ is disjunctive (join-preserving) in
the sense that γ(p�q) = γ(p)∪γ(q). Moreover, it requires that L be atomistic, in
that every element is the join of some set of atoms (elements that cover ⊥). For
example, in predicate abstraction, the join operation is logical disjunction (i.e.,
union over sets of states) and the atoms are the minterms over the abstraction
predicates P (a minterm over P is a conjunction of literals over P in which each
predicate in P occurs once).

In this case, we can think of the atoms of L as “states” of an abstract transition
system. That is, because of the disjunctive join and atomicity, τ � is point-wise
over atoms:

τ �(p) = �{τ �(a) | a ∈ atoms(p)} � τ �(⊥)

It follows that an MSP of any atom is an atom or ⊥. That is, if τ �(p) � q and
p �= ⊥, then p contains some atom a such that τ �(a) � q. Thus, in a disjunctive,
atomistic abstraction such as predicate abstraction, MSE’s contain only atoms,
and we can think of them as sequences of abstract “states”.

This is not true in the general case, however. For example, indexed predicate
abstraction is atomistic but not disjunctive. As a result, an MSE is a sequence
of sets of atoms. One way to view the occurrence of multiple atoms at some
point in the MSE is that the abstract interpretation has lost information in
merging multiple execution paths. Thus, no one path is sufficient to “explain”
the successor state.

Computing Generalized Counterexamples. Now we consider the problem
of computing an MSE for failure to prove unreachability of F . Suppose that
we have computed a sequence of fixed point approximations xi = (τ �)i(⊥) for
i = 0 . . . k such that xk  α(F ) �= ⊥. There is a simple but inefficient backward
approach to computing an MSE. We start by setting xk to any atom in xkα(F ).
Then for i = k − 1 down to 1, we greedily reduce xi in the lattice order so long
as τ �(xi) � xi+1. If L is atomistic, this means greedily removing atoms from xi.
When xi cannot be further reduced, it is an MSP for xi+1, and we move on to
xi−1. At the end of this process, we have an MSE for the failure.

This simple approach could be computationally costly, because the height of
the abstract lattice is typically exponential in some parameter of the abstraction
(for example, in predicate abstraction it is exponential in the number of abstrac-
tion predicates). Thus, the number of reduction steps can also be exponential.
To avoid this, we need some way of putting an upper on the MSP so that the
number of reduction steps necessary to reach the MSP is also bounded. We will
show how to do this in some special cases of practical interest.
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Our basic problem is to compute a MSP for predicate q that is dominated
by some predicate p. For any monotone transformer τ , we will write the set of
sufficient preconditions of q dominated by p as:

SP(p, τ, q) = {p̂ | p̂ � p and τ(p̂) � q}

The set of minima of this set will be denoted MSP(p, τ, q). Our general approach
will be to compute a SP, then iteratively remove atoms until it becomes a MSP.

To do this, we can rely on several useful properties of SP. First, SP is join-
preserving, that is, if p̂i ∈ SP(p, τ, qi) then �ip̂i ∈ SP (p, τ,�iqi). This is due
simply to monotonicity of τ . It means that to compute a SP for q, we can simply
take the join of SP’s for the individual atoms of q. As we observed above, when
τ is join-preserving, we need only consider SP’s for atoms that are atoms. In
addition, we can make use of the following results:

Theorem 1. If τ is meet-preserving, then SP(p, τ, q) is closed under meets.
Moreover, if SP(p, τ, q) is non-empty, the unique element of MSP(p, τ, q) is
SP(p, τ, q).

Theorem 2 (Meet rule). Let τ(s) = iτi(s), and suppose p̂i ∈ MSP(p, τi, q).
Then �p̂i ∈ MSP(p, τ, q).

Theorem 3 (Chain rule). If τ = τ2◦τ1 and p̂ ∈ MSP(p, τ, r), then there exists
q̂ such that p̂ ∈ MSP(p, τ1, q̂) and q̂ ∈ MSP(τ1(p), τ2, r).

The chain rule allows us to compute MSP’s for a composition of transformers
by working backward. We can think of the MSE computation as being one long
application of this rule.

3 Indexed Predicate Abstraction

We now apply the notion of MSE to the problem of abstraction refinement for
indexed predicate abstraction. We will apply IPA to transition systems repre-
sented symbolically using first-order logic. We break the abstract transformer
for IPA into a composition of a join-preserving and a meet-preserving trans-
former. Then we use the chain rule and the meet rule to compute MSP’s. By
this means, we use a number of decision procedure calls which is quadratic in
the final number of atoms in the MSE.

Symbolic Transition Systems. Let Σ be a first-order signature consisting of
individual variables and uninterpreted n-ary functional and propositional con-
stants. A state formula is a first-order formula over Σ, (which may include
various interpreted symbols, such as = and +). We can think of a state formula
φ as representing a set of states, namely, the set of first-order models of φ. We
will express the proposition that an interpretation σ over Σ models φ by φ[σ],
or σ |= φ. If s is a set of interpretations, we will write s |= φ to mean that every
element of s models φ.
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We also assume a first-order signature Σ′, disjoint from Σ, and containing
for every symbol v ∈ Σ, a unique symbol v′ of the same type. For any formula
or term φ over Σ, we write φ′ for the result of replacing every occurrence of a
symbol v in φ with v′. Similarly, for any interpretation σ over Σ, we will denote
by σ′ the interpretation over Σ′ such that σ′v′ = σv. A transition formula is a
first-order formula over Σ∪Σ′. We think of a transition formula T as representing
a set of state pairs, namely the set of pairs (σ1, σ2), such that σ1 ∪σ′

2 models T .
We will express the proposition that σ1 ∪ σ′

2 models T by T [σ1, σ2].
A symbolic transition system is a pair (I, T ), where I is a state formula and

T is a transition formula. We interpret this as a transition system whose initial
states are represented by I and whose transition relation is represented by T .

Indexed Predicate Abstraction. Indexed predicate abstraction [11] is sim-
ilar to predicate abstraction, except that the predicates contain free variables
that are implicitly universally quantified. We start with a distinguished set
J = {i, j, k, . . .} of individual variables called the index variables, not occur-
ring in I or T , and a finite set P of atomic formulas (possibly containing index
variables). Our abstract lattice is the lattice LP of Boolean combinations over P .
In this lattice, the atoms are the minterms over P , which we can think of as either
truth assignments to P , or conjunctions of literals over P . To avoid confusion
between an atom of the abstract lattice and an atomic predicate, from here on
we will refer to the lattice atoms as minterms.

Each element in LP is a set of minterms. The lattice order � is set inclusion,
and the meet and join are intersection and union, respectively. Alternately, we
can think of meet and join as propositional conjunction and disjunction, and the
lattice order as propositional implication (i.e., where the propositions in P are
uninterpreted). The concretization function is defined by:

γ(p) = {σ | σ |= ∀J. p}

That is, p represents the set of concrete states that model p for all valuations
of the index variables. Because universal quantification distributes over conjunc-
tion, γ is meet-preserving. Thus the corresponding abstraction function is, by
definition:

α(s) = {p | s |= ∀J. p}

which is equivalent to:

α(s) = {m ∈ minterms(P ) | σ |= ∃J. m for some σ ∈ s}

This identity allows us to write the best abstract transformer as

τ �(p) = {m ∈ minterms(P ) | σ |= (∃J. m) for some σ ∈ τ(γ(p))}
= {m ∈ minterms(P ) | (∀J. p) ∧ T ∧m′ is sat.} � α(I)

That is, computing τ �(p) amounts to deciding 2|P | satisfiability problems in
first-order logic, one for each minterm over P . However, since first-order logic is
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undecidable, we make a further over-approximation by heuristically choosing a
finite set of instantiations for the quantifiers.1

A substitution ρ for a set W of individual variables is a function that maps
each variable in W to a first-order term. We will write ρ(φ) for the application
of substitution ρ to formula φ (i.e., the simultaneous replacement of each occur-
rence of variable w ∈ W by ρ(w)). Given a set of substitutions I, we write I(φ)
to denote

∧
{ρ(φ) | ρ ∈ I}. Note that if I is a set of substitutions for J , then

∀J : φ implies I(φ).
Now we choose a finite set of substitutions I for the index variables and a

suitable instantiation Ṫ of transition formula T . We might use, for example, the
quantifier instantiation heuristics used in provers such as Simplify [5] for this
purpose. The problem of instantiation is inherent in IPA, and not specifically
related to abstraction refinement. The incompleteness of instantiation heuristics
results in over-approximation. We can express the over-approximation of the
best transformer as:

τ̇ �(p) = {m ∈ minterms(P ) | I(p) ∧ Ṫ ∧m′ is sat.} � α(I)

After instantiation, the satisfiability problems are quantifier-free, which means
we can use an appropriate decision procedure, or reduce the problem to Boolean
satisfiability. In [11], ALL-SAT methods are used to efficiently compute all the
satisfying minterms. Even with these methods, τ̇ � may still be costly to compute
in practice, so a weaker approximation may be called for.

Abstract Counterexamples for IPA. Notice that indexed predicate abstrac-
tion is not disjunctive. This is because universal quantification does not distribute
over disjunction. In general, if p and q are two predicates in the abstract lattice,
the concretization of their disjunction ∀J.(p ∨ q) is not equivalent to the disjunc-
tion of their concretizations (∀J. p)∨ (∀J. q). As an example of this, suppose that
a system chooses arbitrarily two process indices x and y, and transitions to a par-
ticular control state s when process x is in state p, but process y is not in state p. If
we start from the minterm p(i)∧¬s, then clearly we cannot transition to state s,
since this represents ∀i : p(i) ∧ ¬s, states in which all processes are in state p.
Similarly, if we start from the minterm ¬p(i)∧¬s, we also cannot transition to s.
However, if we start from disjunction (p(i)∧¬s)∨ (¬p(i)∧¬s), then we can tran-
sition to s. The abstract transformer is not point-wise over minterms, in the sense
that a pair of minterms can have a successor that neither individual minterm has.
For this reason, IPA does not yield abstract counterexamples.

However, we can compute MSE’s and use these as an aid in refining the
abstraction. We first observe that the computation of τ̇ �(p) can be broken into a
sequence of two transformers: the instantiation of the index variables, followed
by a forward image operation. The first transformer is function η : LP → LṖ ,
where Ṗ = {ρ(φ) | φ ∈ P, ρ ∈ I}, such that η(p) = I(p).
1 We could, of course, restrict ourselves to a decidable fragment, such as Presburger

arithmetic, but this would not allow us to model, for example, parametrized proto-
cols, or programs with unbounded arrays.
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As an example, suppose that J = {i}, P = {s, p(i)} and I = {ρ1, ρ2}, where
ρ1(i) = x and ρ2(i) = y. Then Ṗ = {s, p(x), p(y)}, and η(p(i) ∧ ¬s) = p(x) ∧
p(y) ∧ ¬s.

The second transformer is function δ : LṖ → LP that computes the predicate
image with respect to Ṫ . That is, let

δ(p) = {q ∈ minterms(P ) | p ∧ Ṫ ∧ q′ is sat.}

This gives us τ̇ �(p) = δ(η(p)) �α(I). We show how to compute MSP’s for δ and
η, then combine these steps using the chain rule to compute MSP’s for τ̇ �.

Since δ is pointwise, the MSP’s for a minterm q with respect to δ are also
minterms. We can write the set of MSP’s of minterm q as:

MSP(p, δ, q) = {m ∈ minterms(Ṗ ) | m � p and δ(m) � q}
= {m ∈ minterms(Ṗ ) | m ∧ p ∧ Ṫ ∧ q′ is sat.}

Thus, finding one MSP for a minterm is a satisfiability problem. Because SP is
join-preserving, we can compute a SP for any predicate q as the join of MSP’s
for the minterms of q. This SP can then be reduced to a MSP. Testing whether
one minterm can be removed from the SP requires |q| satisfiability tests (the
number of minterms in q). Thus, in the worst case, the number of tests needed
to compute an MSP is quadratic in |q|.

The transformer η is a meet over a finite set of transformers, that is, the
individual substitutions:

η(p) = {ρ(p) | ρ ∈ I}

Thus, we can apply the meet rule, computing a MSP of η as a join over MPS’s of
the individual substitutions. Moreover, since substitutions are meet preserving,
their MSP’s are unique. Given a substitution ρ and a minterm m ∈ LṖ , there
is a unique minterm n ∈ LP such that ρ(n) � m. This is the one minterm such
that for every literal l occurring in n, ρ(l) occurs in m. Put another way, if we
think of a minterm over P as a truth assignment to the predicates in P , then
for all predicates φ ∈ P , n(φ) = m(ρ(φ)).

Continuing the previous example, suppose that m is the minterm s ∧ p(x) ∧
¬p(y). Then the unique MSP of m with respect to ρ1 is the minterm s ∧ p(i).
This is because m contains ρ1(s) = s and ρ1(p(i)) = p(x). In general, if m is a
minterm in LṖ , we have:

MSP(p, η, m) = {λφ. m(ρ(φ))}

By the meet rule and the join-preserving property, the unique MSP for a predi-
cate q with respect to η is:

MSP(p, η, q) = {� ∪ {MSP(p, ρ, m) | ρ ∈ I, m ∈ minterms(q)}}

Continuing our previous example, if m = s ∧ p(x) ∧ ¬p(y) and p = �, then
MSP(p, η, m) = (s∧p(i))∨(s∧¬p(i)) = s. The first disjunct derives from ρ1 and
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Algorithm 1
Input: A pair p, q ∈ LP

Output: An MSP p̂ of q, such that p̂ � p
1) Let M = ∅
2) For each minterm m in q \ α(I):

3) let m̂ be a minterm over Ṗ s.t. I(p) ∧ m̂ ∧ Ṫ ∧ m′ is sat.
4) add m̂ to M
5) Greedily remove minterms from M , while δ(M) � q
6) For each minterm mi ∈ M :
7) let ni = �{{λφ. mi(ρ(φ)} | ρ ∈ I}
8) Return �ini

Fig. 1. MSP computation for IPA

the second from ρ2. This is a case where no single minterm serves as an MSP
for a minterm.

With this result, we can now compute an MSP for the composition δ ◦ η
using the chain rule. To find an element of MSP(p, δ ◦ η, r), we first compute
q = η(p). Then let q̂ be an element of MSP(q, δ, r), and finally find an element of
MSP(p, η, q̂). The resulting algorithm for computing a MSP in indexed predicate
abstraction is shown in Figure 1.

In lines 1–4, we compute a SP of q with respect to δ, restricted to η(p). At
line 5, this is reduced to an MSP. In lines 6–8, we then compute the unique MSP
with respect to η.

Notice that the number of satisfiability tests at line 3 is just |q|, the number
of minterms in q. Each test of δ(M) � q at line 5 could cost |q| satisfiability
tests, making the total number of tests quadratic in |q|. Alternatively, the test of
δ(M) � q might be done with a BDD image computation. The total number of
decision problems we encounter is quadratic in the largest element of the MSE
and linear in its length. Of course, this does not mean the number of minterms
in the MSE cannot be exponential in |P |. For example, the number of minterms
might double at each backward step.

4 Indexed Predicates from Interpolants

Interpolation has been used to derive relevant predicates for ordinary predicate
abstraction from the refutation of counterexamples [7,8]. This is one possible
approach to counterexample-guided abstraction refinement. In this section, we
extend this CEGAR technique to indexed predicate abstraction, using the notion
of MSE introduced above. In effect, we make use of MSE’s as constraints to
simplify and focus the interpolant computation process.

Bounded Model Checking. For any symbol s, and natural number i, we will
use the notation s〈i〉 to represent the symbol s with i primes added. Thus, s〈3〉

is s′′′. A symbol with i primes will be used to represent the value of that symbol
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at time i. We also extend this notation to formulas. Thus, the formula φ〈i〉 is
the result of adding i primes to every uninterpreted symbol in φ.

Now, given a system (I, T ), we define a symbolic transformer formula T =
T ∨ I ′. This is defined so that the image of a set of states s with respect to T
is exactly τ(s). The following formula is satisfiable exactly when τk(⊥)∩F �= ∅,
that is, when a state in F is reachable in k − 1 steps or fewer from a state in I:

I〈1〉 ∧ T 〈1〉 ∧ · · · T 〈k−1〉 ∧ F 〈k〉

We will refer to this as a bounded model checking formula [1], since by test-
ing satisfiability of such formulas, we can determine the reachability of a given
condition within a bounded number of steps.

Interpolants from Proofs. Given a pair of formulas (A, B), such that A ∧
B is inconsistent, an interpolant for (A, B) is a formula Â with the following
properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â refers only to the common symbols of A and B.

Here, “symbols” excludes symbols such as ∧ and = that are part of the logic
itself. Craig showed that for first-order formulas, an interpolant always exists
for inconsistent formulas [4]. Of more practical interest is that, for certain proof
systems, an interpolant can be derived from a refutation of A∧B in linear time.
For example, a purely propositional refutation of A∧B using the resolution rule
can be translated to an interpolant in the form of a Boolean circuit having the
same structure as the proof [9,17].

In [13] it is shown that linear-size interpolants can be derived from refutations
in a first-order theory with uninterpreted function symbols and linear arithmetic.
This translation has the property that whenever A and B are quantifier-free, the
derived interpolant Â is also quantifier-free. In [14], a method is described for
computing universally quantified interpolants in first-order logic with equality,
when such interpolants exist. In the sequel, we will assume that interpolants
are universally quantified, and that the quantified variables are always drawn
from J , the index set.

Heuristically, the chief advantage of interpolants derived from refutations is
that they capture the facts that the prover derived about A in showing that A is
inconsistent with B. Thus, if the prover tends to ignore irrelevant facts and focus
on relevant ones, we can think of interpolation as a way of filtering out irrelevant
information from A. Thus, atomic predicates occurring in the interpolant may
be considered “relevant” to the refutation.

We can generalize the notion of interpolant to sequences of formulas. That
is, given a sequence of formulas Γ = Γ1, . . . , Γn, we say that A0, . . . An is an
interpolant for Γ when

– A0 = True and An = False and,
– for all 1 ≤ i ≤ n, Ai−1 ∧ Γi implies Ai and
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– for all 1 ≤ i < n, Ai refers only to common symbols between the prefix
Γ1 . . . Γi and the suffix Γi+1 . . . Γn.

An interpolant for a sequence can also be derived from a refutation of its con-
stituent formulas.

We can use this concept to derive new indexed predicates sufficient to rule
out a given abstract counterexample. In what follows, we will use a subscript
to indicate the predicate set used to obtain a given quantity. Thus τ �

P is the
abstract transformer obtained with predicate set P and so on. Now, suppose
that using indexed predicate abstraction with predicates P , we obtain an MSE
XP = x0, . . . , xn. The concretizations of XP are all the sequences of concrete
states s1, . . . , sn such that each si models γ(xi). If any such concretization is
actually a failing run of (I, T ), then the property is false. Otherwise, we would
like to refine P by adding a set of predicates β sufficient to rule out XP .

To this end, let Γ , the concretization sequence, be the following sequence of
formulas:

I<1>, (T ∧ γ(x1))<1>, (T ∧ γ(x2))<2>, . . . , (T ∧ γ(xn−1))<n−1>, (F ∧ xn)<n>

The conjunction of these formulas, ∧Γ is just a bounded model checking formula
for (I, T ) with the added constraint γ(xi) at each time i. The models of this
conjunction are precisely the concretizations of XP that are failing runs of (I, T ).
If we can prove ∧Γ unsatisfiable, then XP is a false counterexample. We can then
extract from the proof an interpolant as a sequence of quantified formulas for the
form True, A<1>

1 , . . . , A<n>
n ,False. We assume these are universal formulas,

such that each Ai = ∀J.φAi . We now let β be the set of atomic predicates
occurring in φAi for any i. These are the predicates we will add to P in the next
iteration of the refinement loop.

We can show that these predicates rule out future abstract counterexamples
consistent with XP . This is because the interpolant properties guarantee that
τ �
β(Ai ∧ xi) ⇒ Ai+1. Thus, if XP were a sufficient explanation for τ �

β , then by
induction we could show xi ⇒ Ai, which implies that the interpolant sequence
cannot end in False. This also implies that we cannot have β ⊆ P , since in this
case Xp must also be a sufficient explanation for τ �

β . Thus, the refinement step
is guaranteed to add at least one new predicate. The practical function of the
abstract counterexample is to act as a constraint on the bounded model checking
problem, thus helping to make the refutation tractable.

We should note that using the method of [14] to generate interpolants has some
limitations. The logic supported in that work is first order logic with equality. If
other theories are needed, such as the theory of arrays or arithmetic, these must
be axiomatized. This is necessarily incomplete for theories that have no finite
axiomatization and can also be inefficient. In [14], however, it is shown that inter-
polation can successfully find invariants for simple heap manipulating programs,
using simple arithmetic and an array theory with reachability predicates. Thus,
there is some reason to think it may be effective for the more restricted task of
abstraction refinement. The method described here can benefit from any future
advances in interpolation methods. Moreover, the use of MSE’s in abstraction
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refinement is not limited to interpolation methods, or for that matter to IPA. It
might be applied to a variety of program analyses with non-disjunctive joins.

5 Conclusion

We have defined a notion of abstract counterexample for non-disjunctive abstract
domains, called a minimal sufficient explanation. The notion of MSE reduces to
the traditional notion of abstract counterexample for powerset abstractions. We
showed how to compute MSE’s for a particular example of a non-disjunctive
abstraction, indexed predicate abstraction. The purpose of an abstract coun-
terexample in the CEGAR framework is to simplify and focus the abstraction
refinement process. We showed how this could be done with MSE’s, using an
interpolant-based refinement approach. In particular, we saw that universally
quantified interpolants can provide the indexed predicates needed to rule out a
given MSE, thus guaranteeing refinement progress.

The hope is that, by restricting the analysis to a smaller set of concrete
behaviors, the MSE approach may significantly lessen the burden on the first-
order prover used for interpolant generation. Of course, it remains to be seen
whether in practice the use of abstract counterexamples in IPA is more efficient
than the alternatives, such as proof-based abstraction [15] or similar approaches
based on weakest preconditions [6].

We also think it is possible that MSE’s can be applied to refinement of other
non-disjunctive abstractions, such as the partially-disjunctive shape abstractions
of [12].
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Abstract. State space explosion causes most relevant behavioral ques-
tions for component-based systems to be PSPACE-hard. Here, we exploit
the structure of component-based systems to obtain a first approximation
of the reachable global state space. In order to improve this approxima-
tion we introduce a new technique we call cross-checking. The resulting
approximation can be used to study global properties of component-
based systems, which we demonstrate here for local deadlock-freedom.

1 Introduction

In this paper we deal with reachability in the global state space of a component-
based system with n components. We present a technique that builds on the anal-
yses of certain subsystems generated by d << n components, where d is fixed.
We explain our approach using the model of interaction systems introduced in
[GS03] by Gössler and Sifakis as a model for component-based systems. As typ-
ical for component-based systems, the description of interaction systems strictly
separates the description of the components from the way they are put together,
i.e. the glue code. I/O-Automata [LT89] and interface automata [dAH01], e.g.
can be considered as a subclass of interaction systems, for the latter feature a
more general notion of communication. More details about interaction systems
and their properties can be found in [Sif04, Sif05, GGM+07b, GGM+07a, GS05,
BBS06, MMM07a]. A framework for component-based modeling using interac-
tion systems has been implemented in [BBS06, Goe06]. Please note that the
ideas presented in this paper do not rely heavily on the model but can be trans-
ferred to other models as long as cooperation of systems forms the top level of
system description.

For interaction systems the size of the global state space of a component
based system may be exponential in the number n of components and it has
been shown that deciding most important behavioral properties is PSPACE-
complete [MM08b]. There are various ways to deal with this problem, e.g. par-
tial order reduction or abstraction. Another approach is to establish conditions
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that use compositionality and can be tested in polynomial time to ensure the
desired properties, see e.g. [AC05, MMM07a, MMM07b]. Moreover one may im-
pose architectural constraints concerning the communication structure of the
component system [AG97, BCD02, MM08a].

In this paper we first exploit the structure of the component system to obtain
(in polynomial time) a first over-approximation of the global state space. For this,
we consider subsystems built from a fixed number d of components (which can be
considered a parameter) and perform reachability analyses there. Restricting our
view to sets of subsystems can be considered a form of locality-based abstraction.
Different related techniques have been studied in [BPR01, ASCN99, Kov]. A
general and abstract treatment of locality-based abstraction can be found in
[EGS05].

The contribution of this paper basically consists of the following two steps.
First the straight-forwardly computed subsystem approximations are enhanced
by a technique called cross-checking. Second, the resulting approximations can
be used to derive conditions on the subsystems that guarantee global properties.

We demonstrate this for local deadlock-freedom. Deadlock-freedom is an im-
portant property in itself and moreover, establishing safety properties can be
reduced to establishing deadlock-freedom.

The paper is structured as follows. Section 2 presents the model and an exam-
ple that will be used throughout the paper. In Section 3 we explain the general
approach of investigating subsytems in order to prove properties on the reach-
able global state space. Section 4 introduces and analyzes cross-checking. As an
application we establish in Section 5 a polynomial time checkable condition for
deadlock-freedom that is tested in subsystems and makes use of our approxima-
tion. Section 6 discusses related work. Section 7 depicts our (partially still in
progress) implementations. Finally, we give a short conclusion in Section 8.

2 Interaction Systems

We consider here interaction systems, a model for component-based systems that
was proposed and discussed in [GS03].

2.1 Syntax and Semantics

Definition 1. Interaction Systems
An interaction system is a tuple Sys = (K, {Ai}i∈K , Int, {Ti}i∈K), where K
is the set of components. W.l.o.g. we assume K = {1, . . . , n}. Each component
i ∈ K offers a finite set of ports (resp. actions) Ai for cooperation with other
components. The port sets Ai are pairwise disjoint. Cooperation is described by
the interaction set Int. Each component i is provided with a local behavior Ti.

An interaction is a finite, non-empty set of actions α ⊆
⋃

i∈K Ai. An inter-
action α = {ai1 , . . . , aik

} with aij ∈ Aij describes that the components i1, . . . , ij
cooperate via these ports. Interactions α are subject to the constraint that for
each component i at most one action ai ∈ Ai is in α. An interaction set Int
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is a finite set of interactions, s.t. every action of every component occurs in at
least one interaction of Int.

The local behavior of each component i is described by a labeled transition
system Ti = (Qi, Ai,→i, q

0
i ), where Qi is the finite set of local states, →i⊆

Qi × Ai × Qi is the local transition relation and q0
i ∈ Qi is the local starting

state.

Definition 2. Participation and Enabled Actions
Given an interaction α ∈ Int and a component i ∈ K we denote by i(α) := Ai∩α
the participation of i in α.
For qi ∈ Qi we define the set of enabled actions ea(qi) := {ai ∈ Ai | ∃q′i ∈ Qi,
s.t. qi

ai→i q′i}. We assume that the Ti’s are non-terminating, i.e. ∀i ∈ K ∀qi ∈
Qi ea(qi) �= ∅.

Definition 3. Semantics
The global behavior TSys = (Q, Int,→Sys, q

0) of Sys (henceforth also referred
to as global transition system) is obtained from the behaviors of the individual
components, given by the transition systems Ti, and the interaction set Int in a
straightforward manner:

– Q =
∏

i∈K Qi, the Cartesian product of the Qi, which we consider to be
order independent. We denote states by tuples (q1, . . . , qn) and call them
global states.

– The relation →Sys ⊆ Q× Int×Q, defined by
∀α ∈ Int ∀q, q′ ∈ Q q = (q1, . . . , qn) α→Sys q′ = (q′1, . . . , q

′
n) iff

∀i ∈ K (qi
i(α)→i q′i if i(α) �= ∅ and q′i = qi otherwise).

– q0 = (q0
1 , . . . , q0

n) is the global starting state for Sys.

Less formally, a transition labeled by α may take place in the global transition
system when each component i participating in α is ready to perform its part
i(α).

Example 1. In the following we consider an interaction system that models Tanen-
baum’s solution [Tan08] to Dijkstra’s Dining Philosophers problem. Tanenbaum
suggests that each of the philosophers is provided with a separate semaphore that
she has to set in order to leave her thinking state. A semaphore however can only
be set if its “neighbour” semaphores are unset. Once a philosopher has eaten, she
puts back the forks and resets her semaphore. This can be considered an elegant
solution as it is symmetric and allows for maximum efficiency (meaning that it still
allows for a global state where every second philosopher is in her eating state). On
the other hand this is a deadlock-free system with a natural interaction structure
whose reachable global state space is exponential in p. This solution can be mod-
eled as an interaction system as follows, where p is the number of philosophers:
DP (p) = (K(p), {Ai}i∈K(p), Int(p), {Ti}i∈K(p)), where
K(p) = {Phil0,. . .,Philp−1,Fork0,. . .,Forkp−1,Sem0,. . .,Semp−1,},
Int(p)=

⋃
0≤i≤p−1{{pickleftPhili , occupyForki},{pickrightPhili , occupyForki−1},

{priorityPhili , downSemi , allowSemi−1 , allowSemi+1},
{dropPhili , upSemi , vacateForki−1 , vacateForki}},



192 M. Majster-Cederbaum and C. Minnameier

TPhili :

think

wantsboth

wantsright wantsleft

eat

priorityPhili

pickleftPhili
pickrightPhili

pickleftPhilipickrightPhili

dropPhili

TF orki :

vacant

occupied

occupyF orki vacateF orki

TSemi :

up

down

downSemi
upSemi

allowSemi

Fig. 1. Tanenbaum’s Dining Philosophers - Local Transition Systems

where calculation is modulo p, and the local behaviors Ti and (implicitly the)
port sets Ai are given in Figure 1.

2.2 Reachability

For most properties of interaction systems we must determine which states in Q
are reachable from the global starting state. Here we propose to first investigate
reachability in subsystems which is defined as follows.

Definition 4. Reach(Sys) := {q ∈ Q | q0 →∗
Sys q}, where →∗

Sys denotes the
reflexive and transitive closure of →Sys.

Definition 5. Substates
Let K ′ ⊆ K and q be a global state. Then q ↓ K ′ denotes the projection of
q to the components in K ′ and we call q′ = q ↓ K ′ a substate. We refer to
the components K ′ that occur in q′ by K(q′). We also use the ↓-operator to
denote projections of substates. Finally, let QK′ =

∏
i∈K′ Qi and Subs(K) =⋃

K′⊆K QK′ .

Definition 6. Subsystems
Let K ′ ⊆ K. The subsystem SysK′ is given by (K ′, {Ai}i∈K′ , IntK′ , {Ti}i∈K′),
where IntK′ := {αK′ = α∩(

⋃
i∈K′ Ai) | α ∈ Int}\{∅}. Note that SysK′ accords to

our definition of an interaction system, so all definitions for interaction systems
apply.

Definition 7. Extensions
Let q′ be a substate. Then Ext(q′, K ′) for K ′ ⊆ K denotes the set of extensions
of q′ in K ′ and is defined by Ext(q′, K ′) = q′ ×

∏
i∈K′\K(q′) Qi. If K ′ = K(q′)

let Ext(q′, K ′) = {q′}. We say that a substate q̂′ is an extension of a substate q′

if K(q′) ⊆ K(q̂′) and q̂′ ↓ K(q′) = q′.

The definition of a subsystem implies that if a state q is reachable in the global
transition system, then for every K ′ ⊆ K the state q ↓ K ′ is reachable in the
corresponding subsystem. We formalize this observation in the following lemma.
Lemma 1. Let Sys = (K, {Ai}i∈K , Int, {Ti}i∈K)
q ∈ Reach(Sys) ⇒ ∀K ′ ⊆ K, (q ↓ K ′) ∈ Reach(SysK′).
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Corollary 1. Let f(Reach(SysK′)) :=
⋃

q′∈Reach(SysK′ ) Ext(q′, K). Then
Reach(Sys) ⊆

⋂
K′⊆K, with |K′|=d f(Reach(SysK′))

Remark 1. Each Reach(SysK′) is a compact representation of f(Reach(SysK′))
which is in turn a very coarse over-approxmation of Reach(Sys).

3 Proving Properties on Overapproximations

Let us assume we want to check a property P on each state of the reachable
global state space of Sys. In a first approach we might proceed as follows.

– We choose a parameter d << n and calculate the reachable states for each
subsystem with d components. Each reachable substate q′ = (qi1 , . . . , qid

) is
a compact representation of Ext(q′, K).

– We formulate a predicate P ′ such that the validity of P on a global state q
is implied by the validity of P ′ on the projections of q,
[∀K ′ ⊆ K, |K ′| = d P ′(q ↓ K ′)]⇒ P (q), hence
[∀K ′⊆K, |K ′|=d ∀q∈Reach(Sys) P ′(q↓K ′)]⇒P (Reach(Sys))

Clearly, we do not want to handle explicitly global states at all. Instead we pro-
pose to use the implication
[∀K ′⊆K, |K ′|=d∀q′∈Reach(SysK′) P ′(q′)]⇒P (Reach(Sys))

The advantage of this approach is immense: Instead of a complexity that is
exponential in |K| = n, we have a complexity that is polynomial (with degree
d) in n and m. This is because for K ′ ⊆ K with |K ′| = d, Reach(SysK′) can be
computed in O(md), where m = maxi∈K′ |Qi| thus we may compute resp. store
the reachable state spaces of all subsystems with d components in time resp.
space O(

(
n
d

)
·md).

Example 2. For the dining philosophers example with p = 6 (i.e. |K| = 18) and
d = 4 the sum of the sizes of the investigated substate spaces is 229.095 compared
to 64.000.000 global states in the original system. Obviously the advantage is
much greater for a larger parameter p.

However, there is an obvious drawback to our present approach:

Considering subsystems with d << n components neglects much information.
Indeed there will be many reachable substates that do not originate from a
projection of a global reachable state but are “artefacts”. If we check condition
P ′ on many such artefacts we run the risk that P ′ is violated and we can not
conclude P .

Example 3. For the dining philosophers example with p = 6 (i.e. |K| = 18) and
d = 4, only 43212 of the 229.095 states in the state spaces of the subsystems are
unreachable. This corresponds to 18,85%.
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4 Cross-Checking

In this section, we introduce cross-checking as a technique to eliminate artefacts.
In a first step, we consider the unreachable states.

Lemma 2. Let Reach(SysK′) = QK′ \ Reach(SysK′) be the set of states that
can not be reached in SysK′ , Refuted =

⋃
K′′⊆K,|K′′|=d f(Reach(SysK′′)) and

XK′ := f(Reach(SysK′)) \Refuted.
Then i) Refuted ⊆ Reach(Sys) and

ii) Reach(Sys) ⊆ XK′

As we noted before, the sets Reach(SysK′) may contain many artefacts. We
want to use Refuted to reduce the number of artefacts. However we can not
use Lemma 2 directly as it involves the evaluation of the function f . Therefore
we define Ref(SysK′) := {q′ ∈ Subs(QK′) | Ext(q′, K ′) ∩ Reach(SysK′) = ∅}
and compute (in polynomial time) a Reach′(SysK′) with f(Reach(SysK′)) ⊇
f(Reach′(SysK′)) ⊇ XK′ as follows.

Theorem 1. Let
Reach′(SysK′) :=Reach(SysK′) \ Ext(

⋃
K′′⊆K,|K′′|=d Ref(SysK′′) ∩ Subs(K ′), K ′).

Then XK′ ⊆ f(Reach′(SysK′)).

By cross-checking we refer to the computation of the various sets Reach′(SysK′)
by removing the elements in Ext(

⋃
K′′⊆K,|K′′|=d Ref(SysK′′) ∩ Subs(K ′), K ′)

from Reach(SysK′) as described in Algorithm 1. For reasons of efficiency Algo-
rithm 1 represents each set Reach(SysK′) by an array reach(SysK′) (that we
refer to as “table”) of booleans for all states in QK′ . In such a table we have
“reach(SysK′)[q′] = true” iff q′ ∈ Reach(SysK′). Also for reasons of efficieny
Algorithm 1 does not loop over the various sets Reach(SysK′) and the therein
reachable substates but rather over all states in {q′′ ∈ Subs(K) | |q′′| < d}. For
a state q′′ we decide (by looking up the reachability flags of its extensions in the
various tables reach(SysK′)) whether it belongs to

⋃
K′⊆K,|K′|=d Ref(SysK′). If

this is the case, we set all reachability flags of all extensions of q′′ to false. If this
is not the case, we add q′′ to an initially empty list “list-of-possible-substates”
that will be needed in Section 5.1.

Example 4. Let K ′
1 = {Phil1, Phil2, Fork1, Fork2}. In SysK′

1
we are able (by

performing the connectors {priority1} and {priority2}) to reach the substate
q′ = (priorityPhil1 , priorityPhil2 , vacantFork1 , vacantFork2). However if we con-
sider the substate q′′ = (priorityPhil1 , priorityPhil2) of q′ and its occurrence in
the subsystem that is implied by K ′

2 = {Phil1, Phil2, Sem1, Sem2} we learn
that no extension of q′′ is in Reach(SysK′′). Thus q′′ ∈ Ref(Sys′′K)∩Subs(K ′),
so we have q′ �∈ Reach′(SysK′).

After the first application of cross-checking for the subsystem reachabilites, we
will have marked 147561 of the 229095 substates unreachable. This corresponds
to 64,41%.

Lemma 3. The sets Reach′(SysK′) for all subsystems SysK′ with d compo-
nents can be computed in an overall amount of time that is in O(d · nd ·md).
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Proof: In the following we present Algorithm 1 Cross-Checking that computes
the sets Reach′(SysK′) within the specified time bounds.

Remark 2. Apart from the factor d (which can be considered a constant), our
cross-checking algorithm remains within the asymptotic time bounds already
given by the first step of performing the reachability analyses of the subsystems.
We consider this to be an important property, as any refinement approach
that attempts to increase the number d of considered components would instead
result in a complexity in Ω(nd+1).

Remark 3. Note that Algorithm 1 may be applied iteratively to the result of the
previous application thus further reducing the number of states that are marked
reachable until we reach a fixpoint. It is an open question how many iterations
will be needed.

Algorithm 1 Cross-Checking
1: PROCEDURE Cross-Checking
2: for x := 1 to (d − 1) do
3: for all subsets K′′ = {i1, . . . , ix} of K do
4: for all q′′ = (qi1 , . . . , qix ) ∈ QK′′ do
5: reachable := true;
6: for all subsystems SysK′ with K′′ ⊆ K′ (and |K′| = d) do
7: occurrence := false;
8: for all q′ ∈ Ext(q′′, K′) do
9: occurrence := occurrence OR reach(SysK′)[q′];

10: end for
11: reachable := reachable AND occurrence;
12: end for
13: if reachable = false then
14: for all subsystems SysK′ with K′′ ⊆ K′ (and |K′| = d) do
15: for all q′ ∈ Ext(q′′, K′) do
16: reach(SysK′)[q′)] := false;
17: end for
18: end for
19: else add q′′ to list-of-possible-substates;
20: end if
21: end for
22: end for
23: end for
24: END Cross-Checking

5 Detecting Deadlocks

Deadlock-freedom is an important property in itself and in addition establish-
ing safety properties can be reduced to establishing deadlock-freedom. In this
section, we present a definition of some locally checkable predicate P ′ that im-
plies (in the sense that was described in Section 3) local deadlock-freedom for
interaction systems.
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Definition 8. (Minimal) local Deadlock
Given an interaction system Sys and a global state q we say that a set of com-
ponents D ⊆ K is a local deadlock in q if every interaction in which any of
the components in D could (in its present local state) participate is blocked by
another component in D. More formally:
∀i ∈ D ∀α ∈ Int : (ea(qi) ∩ α �= ∅)⇒ (∃j ∈ D j(α) �⊆ ea(qj)).
Obviously if we reach a global state q such that some set D ⊆ K is a local dead-
lock in q no component in D can ever again participate in any interaction.
D ⊆ K is a minimal local deadlock in q if no proper subset of D is a local dead-
lock in q. A system Sys is locally deadlock-free if no state q is reachable such
that there is a local deadlock in q.

Example 5. Let us consider a global state q, where
q ↓ {Phil1, Fork1, Phil2, Fork2, Phil3} =
(wantsleftPhil1 , occupiedFork1

,wantsbothPhil2 , occupiedFork2
,wantsrightPhil3). In

this case, D = {Phil1, Fork1, Phil2, Fork2, Phil3} is a minimal local deadlock
in q. (However, no such q is reachable in any of the systems DP (p).)

Definition 9. Small vs. Large Deadlocks
When we compute the subsystem reachabilities as described in Section 3 we
choose a value for the parameter d. Henceforth we will call local deadlocks D
with |D| ≤ d small local deadlocks and local deadlocks D with |D| > d large
local deadlocks.

In order to prove for a system Sys the predicate P = “Local Deadlock-Freedom”
it is sufficient to prove for some fixed d << n that there are neither small nor
minimal large local deadlocks reachable in Sys. When we traverse the reachable
substates in the various Reach′(SysK′) we will be able to identify deadlocks of
size |D| ≤ d directly, whereas the existence of deadlocks of size |D| > d will have
to be excluded by a sufficient condition. In the following subsections, we describe
a locally checkable (i.e. checkable in the subsystems) P ′ that - when true on all
substates in all Reach′(SysK′) - ensures the validity of P .

5.1 Defining and Checking a Condition for Small Deadlocks

To deal with the question of small local deadlocks it is sufficient to prove that
there are no deadlocks of size ≤ d in the substates that are marked reachable
in the reachability tables of the investigated subsystems. Again, it is infeasible
to check all 2d subsets of every substate of every subsystem, because this would
yield up to 2d ·

(
n
d

)
·md loop cycles in the first place. Instead, we will directly check

the substates of size 1 to d− 1 that have been added to list-of-possible-substates
in Algorithm 1.

5.2 Defining a Condition for Large Deadlocks

Obviously, we can not directly identify a large local deadlock in a subsystem
with d components. Instead we are going to check a condition which is sufficient
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for deadlock-freedom. In order to formulate this condition we first introduce the
following relation between the local states of the components’ transition systems.

Definition 10. “qi waits for qj”, (qi ∈ Qi, qj ∈ Qj)
We say qi waits for qj if ∃α ∈ Int, s.t. α ∩ ea(qi) �= ∅ ∧ j(α) �⊆ ea(qj).

I.e. qi waits for qj if j might prevent i from participating in an interaction in
a corresponding global state q. If components prevent each other from partici-
pating in interactions then they might be in deadlock. The following definition
assigns to a global state q (resp. a substate q′) a directed graph based on the
relation introduced in Definition 10.

Definition 11. Wait-for-graph
For a system Sys and a global state q we define the wait-for-graph WFG(q) =
(V, E) by:
V = {qi | 1 ≤ i ≤ n} and E = {(qi, qj) ∈ V × V | qi waits for qj}.
For K ′ ⊆ K and a corresponding substate q′ = q ↓ K ′ we denote by WFG(q′)
the subgraph of WFG(q) generated by V ′ = {qi ∈ V | i ∈ K ′}.
Given a large deadlock D ⊆ K in a reachable global state q we will be able to
detect (in at least one subsystem) the following pattern.

Theorem 2. If Sys has a large minimal deadlock D in a global state q, then
there is a subset K ′ ⊆ D with |K ′| = d and a linear order (i1, . . . , id) of the
components in K ′ such that
k < l ⇒ qil

is reachable from qik
in WFG(q ↓ K ′).

Example 6. When we apply P ′ (for DP (6) with d = 4) to the reachable state
spaces Reach(SysK′) that we computed in the first place, we will detect 1584
(of reachable 185883) substates for which P ′ is not valid.

ApplyingP ′ (forDP (6)withd = 4) to the reachable state spacesReach′(SysK′)
that we gain after applying cross-checking, the number of substates for which P ′

is not valid decreases to 432 (of reachable 81534).
These numbers induce that among the substates whose reachability was re-

futed via cross-checking there are indeed critical ones. Even more the percentage
of reachable substates that are critical has decreased. This is due to a tendency
in our approach to leave uncritical substates marked reachable.

5.3 Complexity of Checking Our Condition for Large Deadlocks

According to Section 3 and Theorem 2 we may prove that a system Sys does
not contain any reachable minimal large deadlocks by proving that for neither
of the subsystems SysK′ (with K ′ ⊆ K and |K ′| = d) and their substates q′ in
Reach′(SysK′) there is a linear order as described above for the nodes in WFG(q′).

To do so, we first construct, for every subsystem with d components and
every therein reachable substate q′, the graph WFG(q′). Then we could apply the
following procedure Order which finds a linear order as described in Theorem 2,
if there is any.
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Preprocessing: Constructing the wait-for-relations
As a preprocessing we can (in O((n·m)2)) compute a (n·m×n·m)-matrix W with
W (qi, qj) = 1 if qi waits for qj , W (qi, qj) = 0 otherwise. This matrix includes
for every substate q′ the information about WFG(q′). Thus for a substate q′, we
simply create the d × d-matrix for WFG(q′) and fill it by copying the relevant
information from our matrix W . This can be done in O(d2).
Procedure Order:
Perform breadth-first search for every local state in WFG(q′). If there is one
state qj from which all other states can be reached make i1 := j. Now find a
state from which all remaining (not yet ordered) states are reachable and so
on. Whenever such a state cannot be found, abort. Return the order when all
components are ordered.
Proof of Correctness:
It is obvious that if the Procedure Order is not aborted then a returned order
suffices our requirements. We show that if there is a linear order as described in
Theorem 2, then Procedure Order will find one.

Note that if there is a linear order of the components in K ′ as described in The-
orem 2 then this also holds for every subset of K ′ (w.r.t. the graph WFG(q′)).
This means in every step of Procedure Order we can choose the next component
for the linear order and it is always guaranteed that the linear order so far can
be enhanced (by a linear order of the remaining components) to a correct linear
order for all d components.
Actual Implementation and Complexity:
The description of Procedure Order above will not be implemented directly
but rather acts as a makeshift for ease of understanding and for our proof of
correctness. For our implementation, we first compute the transitive closure of
WFG(q′). This is possible in O(d3). Thus, instead of performing up to d breadth-
first-searches we can simply determine the next component in our linear order
(d times) by examining for each of the d components, if the remaining (not yet
ordered) components are reachable from it (a comparison which can be done in
O(d) using the transitive closure).

So the Procedure Order can be performed in an overall time in O(d3).
The overall complexity of our check for large deadlocks is thus bounded by

O(md · nd · d3).

5.4 Connected Subsystems

Definition 12. Interaction Graph & Connected Systems
For an interaction system Sys we define the interaction graph IG = (V, E)
by: V = K and E = {{i, j} | ∃α ∈ Int (α ∩Ai �= ∅ ∧ α ∩Aj �= ∅)}
We call an interaction system connected if its interaction graph is connected.

Note that for the purpose of deadlock detection we may restrict our attention
to connected systems Sys (as for an unconnected system it is equivalent to
prove its interaction graph’s connected components deadlock-free). However if
the original interaction system is connected, we may restrict all our observations
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(i.e. reachability analyses, cross-checking and the checks for small resp. large
deadlocks) - without loss of correctness or even loss of information - to connected
subsystems.

Example 7. For Tanenbaum’s dining philosphers as modelled here, the maximum
degree of a node in the interaction graph is 9. This makes it easy to derive that
the maximum number of connected subsystems is bounded by n · 9d−1 = O(n)
for a fixed choice of d.

6 Related Work

Many important approaches have been developed in the past to tackle the prob-
lem of state space explosion. A wide spectrum of methods for approximation
and/or reduction of the state space, ranging from partial order reduction, ex-
ploiting equivalences to abstraction/refinement techniques have been investi-
gated and e.g. incorporated in model checking tools and abstract interpretation
approaches. Our approach to establish properties of component based systems
is in a certain sense complementary but can nevertheless be put into compari-
son with some existing techniques. The basic principles of our approach can be
summarized as follows.

1) We exploit the knowledge about the interaction structure of the system, i.e.
the interaction graph. For this we determine the connected subgraphs with d
nodes in this graph (d << n a constant).
2) Then we calculate the reachable state spaces for the subsystems belonging to
these subgraphs.
3) We apply cross-checking to delete “artefacts” within these subsystems.
4) We establish a condition that is to be checked on the subsystems and when
satisfied guarantees a global property.
5) All steps can be performed in polynomial time (bounded by a polynomial
with degree d).

Step 2) can be seen as a locality based abstraction in the sense of [EGS05] which
is the most general paper on locality-based abstraction we know of. When we con-
sider a subsystem with d components then this corresponds to an observer that has
access to these d components of the system. (If each observer has access to exactly
one component, the special case of Cartesian abstraction [BPR01, Arn94] arises.)
However a closer look to the notion of partial transition relation in locality based
abstractions of [EGS05] and hence the notion of local reachability, shows that our
approach has to be distinguished from theirs. In [EGS05] one condition for a par-
tial state p1 to evolve to state p2, i.e. t(p1, p2), is that p1 matches some state p with
respect to the kernel of the transition t.(Please note that each transition relation
t of [EGS05] corresponds to an interaction α of our model.)

In one of our local systems given by the components {i1, ...id} a local transition
can take place in a sub-state if all partners of an interaction α that are part of the
subsystem offer their part of the interaction, i.e. we then perform α∩

⋃
1≤i≤d Aid

.
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As we may obtain artefacts by proceeding in such a way, called loss of in-
formation in [EGS05], we then apply cross-checking in step 3) to eliminate as
many artefacts as possible by comparing the subsystems. To the best of our
knowledge this technique has not been applied in the context of state space in-
vestigations. Cartesian abstraction [BPR01, Arn94] which involves finding the
smallest Cartesian product that contains a given set has a similar purpose for
the case d = 1. Cross-checking is however closely related to techniques em-
ployed in the relational model of data bases. Speaking in data base terminology
we decompose an initial data base scheme into sub-schemes (corresponding to
our subsystems). Applying the join operation �� to all these subsystems, i.e.
Reach(SysK′

1
) �� Reach(SysK′

2
) �� ... �� Reach(SysK′

k
) (where k =

(
n
d

)
) would

yield the best over-approximation one can get when using locality based abstrac-
tion if no further knowledge is available. However calculating these joins leaves
us with the same complexity issue as calculating the reachable global state space.
So we avoid evaluating this sequence of joins and perform instead the comparison
of pairs of subsystems.

Concerning step 4), the conditions on subsystems that guarantee global prop-
erties, the closest work to ours is by [AC05] on deadlock-freedom who base their
work on concurrent programs but employ a similar notion of subsystems and lo-
cal transition relation. They consider subsystems of size 3 but apply no technique
comparable no cross checking.

7 Implementation

All presented techniques have been implemented in our tool “PrInSESSA” [MS08]
where in addition we also apply a variant of cross-checking to the detection of
minimal large deadlocks.

In order to allow for a quantitative comparison with other tools, a BDD-
based framework is presently being implemented. First benchmarks show that
the BDD-based variant can prove instances as large as DP (500) deadlock-free
within minutes.

8 Conclusion and Further Work

We presented a method to obtain an enhanced over-approximation of the global
state space of a component-based system with n components in polynomial time.
The method consists of choosing a value for d, investigating subsystems consist-
ing of d components in a first step (in O(nd · md)) and then improving this
approximation by cross-checking (in O(d · nd · md)). The computation of the
first step can be improved in various respects. Firstly, for the purpose of proving
deadlock-freedom we do not have to consider all

(
n
d

)
subsystems but only such

that are connected. Secondly, the computation of the various sets Reach(SysK′)
can be performed in parallel. Our approximation can be used to investigate
global properties by considering subsystems and checking conditions on them
which requires only polynomial cost. We showed how this can be achieved for
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the property of local deadlock-freedom. Interesting open theoretical questions
are e.g. how many iterations are needed at most until the iterative application
of cross-checking reaches a fixpoint and in which complexity class the exact
computation of the set XK′ defined in Section 4 lies.
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Abstract. In this paper we define higher order multi-stack pushdown
systems. We show that parity games over bounded phase higher order
multi-stack pushdown systems are effectively solvable and winning strat-
egy in these games can be effectively synthesized.

1 Introduction

Higher order pushdown systems (hpds) are a generalization of pushdown systems
(pds) in that hpds can have nested stacks, such as stack of stacks. The order of
an hpds depends on the depth of nested stacks allowed by it. Higher order push
and pop operations are provided to push a copy of the topmost stack of any
order and to pop it. These models, in their automata form, were introduced in
[17] and were further studied in [16,15]. The hpds may be used to model higher
order recursion, [16,8,4]. In recent years there has been considerable interest in
model checking these systems and their variants [10,8,3,9].

Another generalization of pushdown systems is multi-stack pushdown systems
(mpds). An mpds has a finite set of control states and a fixed number, l (l > 1),
of independent stacks. The transition function of an mpds allows for a (nonde-
terministically chosen) push or a pop operation on any of its stack along with a
change in its control state. Multi-stack pushdown systems can be used to model a
class of programs with (order-1) recursion and threads. Each thread has its own
stack for its procedures calls and communication among threads is through the
common finite states of mpds. There has been quite some work in model checking
mpds and its variants in recent years, see [7,5,6,2], as part of model checking of
concurrent recursive programs. For effective model checking of mpds some re-
strictions however need to be imposed on mpds as even simple properties such as
reachability from one configuration to another are undecidable for unrestricted
mpds. One such restriction, called bounded context switching, was studied in [7].
This was generalized to bounded phases in [5]. The class of bounded phase mpds
strictly includes the class of bounded context switching mpds.

In this paper we define higher order multi-stack pushdown systems (hmpds).
An order-n hmpds (n-hmpds) has a fixed number (say, l) of order-n stacks. The
transition function of an n-hmpds takes as input its control state and topmost
symbols of a stack and may (nondeterministically) do a higher order push or
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a pop operation on the stack along with a change in its control state. These
systems can model a class of programs with higher order recursion and threads.
Such programs may naturally arise while considering functional programs with
threads as functional programs typically have some higher order operations. The
notion of bounded phase defined in [5] for multi-stack pushdown automata can
be lifted to hmpds as follows. In a k phase bounded hmpds only those runs of
hmpds are considered which can be divided into k parts where each part is a
consecutive sequence of moves from the run and is called a phase. In a single
phase, pop operations (of any order) are performed only in one stack while push
operations (of any order) can be performed on any stack.

Model checking of hmpds against a specification can also be formulated as
solving a game over configuration graph of the hmpds. We show that parity games
over bounded phase hmpds can be effectively solved. This implies decidability of
properties expressed in a rich specification logic, μ-calculus, over configuration
graphs of hmpds. Parity games over hpds were shown to be effectively solvable
in [10] and parity games over mpds were shown to be effectively solvable in [2].

We solve parity games over hmpds by extending the technique of [2]. In order
to explain our extension to the technique of [2], we briefly recall this technique.
The solution in [2] is based on a fundamental technique of Walukiewicz [12] which
shows how to reduce a parity game on a pushdown system to a parity game over
a finite state space. In [12] each time a symbol is pushed in the stack, a set of
states (along with priorities) is guessed by player 0, the game now divides into
two independent parts. In the first sub game player 1 verifies that if the symbol
is popped then it is in one of the guessed states, in the second sub game it is
verified that if the pushed symbol is popped satisfying the guessed conditions
then the game is winning for player 0. The key step in extending the technique
of Walukiewicz to the mpds case in [2] is to define finite sets Ni,h whose elements
code relevant information summarizing the play between a push in stack-i and its
matching pop operation in phase h. These sets also keep necessary information
about changes in stacks t, t �= i, between a push and a matching pop operation
of stack-i. Ni,h are defined using a careful induction on h.

We generalize the set of conditions Ni,h from [2] to Ni,j,h. Each element of
Ni,j,h codes relevant information for an order-j pop operation of stack-i in phase
h. This requires us to study evolution of a higher order stack under a sequence
of higher order operations. Unlike order-1 case, order-i push and order-i pop
operations need not match in a one to one fashion, for i > 1. We define a suit-
able matching which may associate an unbounded many order-i pop operations
with a single order-i push operation. We define sets Ni,j,h which may contain
pop scenarios for all such matching order-i pop operations associated to a single
order-i push operation. To take into account relevant differences in these pop
operations, though they match the same push operation, some additional infor-
mation is kept in each element of Ni,j,h. This requires induction on j, for each
fixed h in the definition of Ni,j,h.

Equipped with sets Ni,j,h we define a reduction from a k phase hmpds game to
a finite state game as in [12,11,2]. In this game with each pushi,j move o in phase
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p player 0 guesses a θ ⊆ ∪k
x=pNi,j,x. The guessed set θ needs to include conditions

for each popi,j operation that may match the pushi,j move o. The player 1 now
either continues the game after o till a matching popi,j move occurs or it chooses
a scenario in θ and sets the game to a configuration resulting after a pop in
this scenario. Solving the finite state game leads to deciding which player in the
original hmpds game has a winning strategy. As a byproduct of this method as in
[12,11,2], we also get that winning strategy in a bounded phase hmpds game can
be executed by a bounded phase higher order multi-stack pushdown automaton
(hmpda).

The complexity of our algorithm is a tower of exponential of height n · k
for solving a k phase n-hmpds parity game. We do not know if this is optimal,
however when specialized to the case of hpds (l = 1) it reduces to the optimal
bound and when specialized to the case of mpds (n = 1), it reduces to the best
known upper bound of [2]. Despite the high computational complexity, we think
that from mathematical view point it is interesting to find classes of infinite
graphs over which parity games can be solved effectively. Our technique gives a
unified proof of solving hpds and mpds parity games from basic principles.

Finally to relate this work to reachability problems, the title of this conference,
we note that solving reachability problem over hmpds is a special case of solving
parity games. In particular our results imply that there is an algorithm A which
takes a hmpds H a number k and two configurations u, v of H and answers yes
if in the configuration graph of H, v can be reached from u in at most k phases,
otherwise A answers no. Further, if the answer is yes then a k phase path from
u, v can also be produced by the algorithm. Similar result holds for two player
reachability between configurations of bounded phase hmpds.

2 Preliminaries

Definition 1. Let Γ be a finite stack alphabet and let ⊥ be a symbol s.t. ⊥ �∈ Γ .
The Set of order-i stacks over Γ , Si for i ≥ 0 is defined inductively as follows.

– S0 = Γ ∪ {⊥} (we consider an element of Γ as an order-0 stack).
– S1 = {[⊥, s1, . . . , sv] | s1. . . sv ∈ Γ, v ≥ 0}.
– Si+1 = {[s1, . . . , sv] | s1. . . sv ∈ Si, v ≥ 1}, for i ≥ 1.

We also define ⊥0 = ⊥ and for i ≥ 0, ⊥i+1 = [⊥i]. Note that ⊥i ∈ Si.
Stack ⊥i, for i > 0, is called the empty stack of order-i.
We use order(s) to denote the order of a stack s.

The symbol ⊥ is used to mark bottom of an order-1 stack.

Definition 2. Let s be an order-j stack for j ≥ 0. The topmost order-i element
(i ≤ j) of s is defined as

topi(s) =
{

s if order(s) = i
topi(su) if order(s) > i and s = [s1, . . . , su]



206 A. Seth

Definition 3. Operations pushi, popi on stacks of order ≥ i are defined as fol-
lows. Let s = [s1, . . . ,su] and b ∈ Γ .

pushb
1(s) = [s1, . . . , su, b], if order(s) = 1.

pushb
1(s) = [s1, . . . , su−1, pushb

1(su)], if order(s) > 1.
For i > 1,
pushi(s) = [s1, . . . , su, su], if order(s) = i
pushi(s) = [s1, . . . , su−1, pushi(su)], if order(s) > i
For i ≥ 1,
popi(s) = [s1, . . . , su−1], if order(s) = i and u > 1.
popi(s) = [s1, . . . , su−1, popi(su)], if order(s) > i, popi(su) is defined.
In keeping with conventional notation, a pushi+1 operation pushes an element

of order-i and popi+1 operation pops an element of order-i. Note that popi(s) is
defined iff topi(s) has more than one element.

2.1 Order-n Multi-stack Pushdown Systems

A order-n multi-stack pushdown system is the same as a multi-stack pushdown
system except that each stack is a nested stack of order-n. On each stack the
push and pop operations of order-0 to order-(n− 1) can be performed. A formal
definition is given below.

Definition 4. An order-n multi-stack pushdown system (n-hmpds) is given as a
tuple (Q, Γ,⊥, l, δ, q0), where Q is a finite set of states, l is the number of stacks,
Γ is the stack alphabet with ⊥ as in definition 1 and q0 is the initial state. The
transition function δ is given as δ = (

⋃n
j=1 δins,j) ∪ (

⋃n
j=1 δrem,j), where

– δins,j ⊆ Q× (Γ ∪⊥)×Q× [1 . . . l]× Γ , 1 ≤ j ≤ n.
– δrem,j ⊆ Q× (Γ ∪ ⊥)×Q× [1 . . . l], 1 ≤ j ≤ n.

(q, γ, q′, i, γ′) ∈ δins,m denotes push transition of order-(m − 1) in stack num-
bered i and (q, γ, q′, i) ∈ δrem,m denotes pop transition of order-(m− 1) in stack
numbered i. These moves are also referred to as pushi,m and popi,m respectively.
Values q, γ are the state of hmpds and the topmost symbol of stack-i before the
transition, q′ is the state of hmpds after the transition. Symbol γ′ is the symbol
pushed when push transition is of order-0 (m = 1). For m > 1, in transition
(q, γ, q′, i, γ′) ∈ δins,m symbol γ′ plays no role. We keep this extra symbol to
avoid treating the case m = 1 separately. For notational convenience, we stipu-
late in the following that for m > 1, if (q, γ, q′, i, γ′) ∈ δins,m then γ′ = γ.

Formal definition of hmpds configurations and transitions on them is as follows.

Definition 5. A configuration of n−hmpds H = (Q, Γ, l, δ, q0) is a tuple
(q, s1, . . . , sl), where q ∈ Q and si ∈ Sn for 1 ≤ i ≤ l. One step transition
on configurations of H is defined as below.

– (q, s1, . . . , sl)
t→ (q′, s′1, . . . , s′l) if top0(si) = γ, t = (q, γ, q′, i, γ′) ∈ δins,m,

s′j = sj for j �= i, 1 ≤ j ≤ l and if m = 1 then s′i = pushγ′

1 (si) else
s′i = pushm(si).
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– (q, s1, . . . , sl)
t→ (q′, s′1, . . . , s

′
l) if top0(si) = γ, t = (q, γ, q′, i) ∈ δrem,m,

s′i = popm(si) and s′j = sj for j �= i, 1 ≤ j ≤ l.

The initial configuration of n−hmpds is defined as (q0,⊥n, . . . ,⊥n).

Following is the standard definition of the reflexive and transitive closure of
relation t→.

Definition 6. A multi-step transition between configurations of mpds, on say
sequence t1t2 . . . tn of hmpds moves, c

t1t2...tn−−−−−→ d is defined as follows. c
t1t2...tn−−−−−→

d iff either n = 0 and c = d or there is a c′ s.t. c
t1→ c′ and c′

t2...tn−−−−→ d. We write
c � d for a multi-step transition from c to d when the sequence of hmpds moves
is not relevant.

Following is a straightforward adaptation of the notion of phases for mpds [5] to
hmpds.

Definition 7. A phase is a sequence of hmpds transitions where pop moves (of
any order) are performed only on a single stack (though in a single phase push
moves may be performed on any stack). A k-phase bounded run of a n-hmpds is
one which can be partitioned into k contiguous segments such that each segment
is a single phase.

It is clear that phase change occurs when a pop operation is performed on a
stack other than the stack on which it was performed last. We extend the notion
of a configuration to (q, h, r, s1, . . . , sl) where (q, s1, . . . , sl) is a configuration as
before, h is a natural number recording the phase and r ∈ [1, l], is the stack num-
ber on which the last pop operation was performed. In the initial configuration
h = 1 and r = 0.

Definition 8. One step transition on extended configurations of H is defined as
(q, h, r, s1, . . . , sl)

t→ (q′, h′, r′, s′1, . . . , s
′
l) where (q, s1, . . . , sl)

t→ (q′, s′1, . . . , s
′
l)

and

– if t ∈ δins,m then h′ = h and r′ = r

– if t = (q,−, q′, i) ∈ δrem,m then r′ = i and

h′ = np(h, r, i) =
{

h if r = 0 or r = i
h + 1 if r �= i

.

The initial extended configuration of n−hmpds is defined as (q0, 0, 1,⊥n, . . . ,⊥n).
Function np(h, r, i) gives the new phase after the transition.

To consider only k-phase bounded runs of hmpds, we restrict ourselves to ex-
tended configuration graph where each vertex has phase less than or equal to k.
In the sequel we use the word configuration for the extended configuration de-
fined above. topi,j refers to topj of stack-i and pushi,j, popi,j refer to transitions
of the form (−,−,−, i,−) ∈ δins,j , (−,−,−, i) ∈ δrem,j respectively.
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2.2 Parity Games

We assume the reader to be familiar with standard notions of two player par-
ity games, such as game graph, plays, a winning strategy and parity winning
condition, see [14].

A 2-player k-phase hmpds parity game is given as (H, Q0, Q1, M, Ω, k), where
H = (Q, Γ, l, δ, q0) is an hmpds, Q = Q0 ⊕ Q1 is a partition of states in player
0 and player 1, M is a finite set of priorities and Ω : Q → M is a priority
assignment to each state in Q.

Vertices of our game graph are configurations of the form (q, h, r, s1, . . . , sl),
where h ≤ k, of hmpds. Edge relation of this game graph is given by transition
relation ‘→’ in definition 8. A vertex (q,−, . . . ,−) belongs to player i iff q ∈ Qi.
Priority of a vertex (q,−, . . . ,−) is defined as Ω(q). A player can move from c
to c′ only if c → c′. A play is a sequence of legal moves starting from the initial
configuration. By our choice of the vertex set all plays in this game are k−phase
bounded. That is a player can not make a move that takes the play into (k+1)th

phase.
Winning condition for a maximal play (play which can not be extended fur-

ther) ρ is defined as follows. If ρ is finite then the player whose turn it is to
move at the last vertex of ρ loses. If ρ is infinite then a priority i ∈ M is said to
be visited infinitely often iff there are infinitely many vertices with priority i in
ρ. ρ is winning for player 0 iff the minimum, among the set of priorities visited
infinitely often in ρ, is even.

Informally, having a winning strategy for player i, means that regardless of
player (1 − i)’s moves, player i can always play a move such that he wins the
resulting play. We will always consider games which start in a predefined initial
configuration. A game is called winning for player i if player i has a winning
strategy in it starting from the initial configuration.

Given a winning strategy τ for player 0, in game G, by a τ -play we mean a
play of G in which all moves of player 0 are according to τ . For vertices c, c′ of
G, c

τ→ c′ and c
τ� c′ mean that c′ is reachable from c in a τ -play in one move

or in an arbitrary number of moves respectively.

3 Main Ideas in Solving a HMPDS Game

In higher order stacks a sub-stack after being pushed can be copied implicitly
several times before being popped. As an example consider an order-2 stack r =
[[⊥a]]. Here a is a stack symbol which we consider as an order-0 stack. An order−1
push operation o1 pushing a symbol b, leads to r1 = [[⊥ab]]. Now consider an
order-2 push o2 which copies the topmost order-1 stack, this leads to
r2 = [[⊥ab][⊥ab]]. In r2 the topmost order-1 stack [⊥ab] is created by o2 by a
direct copy of the topmost order-1 stack below. The second occurrences of order-
0 stacks a, b however are not created by any order-1 push directly. These oc-
currences get created automatically from the occurrences in the sub-stack being
copied by o2. We call such an occurrence an auto copy of the corresponding oc-
currence below. A motivation for considering the auto copy relation is to associate
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with each sub-stack of a higher order stack a push operation. This is needed for
matching each pop operation with a push operation. If s is an auto copy of t then
we associate the same push operation with s as with t. So in our example we
associate with the second occurrence of b, operation o1. A pop operation which
pops a sub-stack z is said to match the push operation associated with z. This
results in matching several pop operations with a single push operation, unlike
in order-1 case. For example, if we do an order-1 pop o3 on r2, followed by an
order-2 pop o4, followed by an order-1 pop o5 then both o3 and o5 match o1.

As mentioned in the introduction, we generalize the set of conditions Ni,h from
[2] to Ni,j,h. Each element of Ni,j,h codes relevant information for an order-j pop
operation of stack-i in phase h. A set of such pop scenarios θ ⊆ ∪k

x=1Ni,j,x, where
k is the number of phases allowed, is associated with an order-j push operation
o. θ captures conditions for any pop operation o′ matching o. If s is a stack
created by o then a matching o′ may pop either s or a stack s′ which is obtained
by several steps of auto copying of s. For an order − (n − 1) sub-stack no auto
copy can be made. An order-j sub-stack s, j < n − 1, however may be auto
copied by pushing an order-x, x > j, stack t containing s. That is, s may be
auto copied by a pushi,m, m > j +1, note that in our notation a pushi,m pushes
a stack of order-(m− 1) in stack-i. Therefore, if s′ is an auto copy of s then s′

may be contained in different sub-stacks of order > j than s was. So popping
conditions for an auto copy of s may depend on popping conditions of sub-stacks
of order > j containing this auto copy of s. This is handled by induction on j
(from j = n−1 down to j = 0) while defining Ni,j,h for a fixed h. Therefore sets
Ni,j,h are defined by a nested induction. The outer induction on h, the phase
number, takes care of the contents of the other stacks in a popping scenario,
as in [2]. The inner induction on j, for a fixed h, handles popping conditions of
higher order sub-stacks containing an order-j stack.

4 Copying by Higher Order Push Operations

In this section we formally define some useful notions related to copying of higher
order stacks as they evolve under a sequence of hpds transitions. We begin by defin-
ing labeled stacks and extend hpds transitions to them. Labeled stacks are used as
a tool to define a copy relation on sub-stacks of a higher order stack and to define
matching between pushi and popi operations in a sequence of hpds transitions. A
sub-stack of a higher order stack s is a stack of any order contained in s.

Definition 9. A labeled order-n stack is an order-n stack s such that each sub-
stack of s (including s itself) is labeled by a non-negative integer. We show this
label as a superscript at the end of a stack. For example [[⊥0 a1]0 [⊥0 a1]2]0 is
a labeled order-2 stack.

Definition 10. We extend hpds transitions to labeled stacks as follows.
pushb

1([a
l1
1 , . . . , alu

u ]m) = [al1
1 , . . . , alu

u , bl]m, where l is a fresh label.
pushb

1([s
l1
1 , . . . , slu

u ]m) = [sl1
1 , . . . , s

lu−1
u−1 , pushb

1(slu
u )]m, if order(su) > 1.

For i > 0,



210 A. Seth

pushi+1([sl1
1 , . . . , slu

u ]m) = [sl1
1 , . . . , slu

u , sl
u]m, if order(su) = i and l is a fresh

label.
pushi+1([sl1

1 , . . . , slu
u ]m) = [sl1

1 , . . . , s
lu−1
u−1 , pushi+1(slu

u )]m, if order(su) > i.
Here l1, . . . , lu, l, m are labels. A fresh label is a label not occurring in input

(including its sub-stacks) to the push operation.
The pop operations extend to a labeled stack in a straightforward way, where

a stack along with its label is popped. There is no change in the labels of the
remaining stacks.

Each pushi+1 move creates a stack of order-i with a unique label. It also copies
labeled stacks of order < i without changing their labels.

Example 1. Let t = [[⊥0]0]0 be an order-2 stack. In our examples, stacks grow
from left to right. After a pusha

1 operation on t we get the stack t1 = [[⊥0a1]0]0.
A push2 on t1 gives t2 = [[⊥0a1]0[⊥0a1]2]0. A further pushb

1 operation on t2
gives t3 = [[⊥0a1]0[⊥0a1b3]2]0.

We define below a simple ordering on sub-stacks s1, s2 of a given stack s based
on if s1 occurs below s2 in s. This is used in a later definition.

Definition 11. Given a stack s of order-j and its two sub-stacks t1 and t2 of
order-i (i < j), we define “t1 ≤ t2 in s” if either of the following holds.

– s = [s1, . . . , su], t1 = si and t2 = sj for 1 ≤ i ≤ j ≤ u.
– s = [s1, . . . , su], t1 is a sub-stack of si, t2 is a sub-stack of sj,

for 1 ≤ i ≤ j ≤ u.
– s = [s1, . . . , su], t1, t2 are sub-stacks of si for 1 ≤ i ≤ u and t1 ≤ t2 in si.

This definition is by induction on j − i.

Definition 12. The initial order-n stack [. . . [⊥] . . .] is labeled as [. . . [⊥0]0 . . .]0,
that is every sub-stack in it is labeled by 0. Let s be a labeled order-n stack
obtained by starting the labeled initial stack and applying some hpds moves. Let
s1, s2 be two order-i sub-stacks of s with same labels and let s1 ≤ s2 in s. Then
we say that s2 is an auto copy of s1 and denote it as s1  i s2.

If a pop move pops a stack with label l then we say that it matches the push
move associated with l.

Example 2. If on order-3 stack [[[⊥0]0]0]0 the sequence of operations pusha
1 ,

pusha
1, push2, push3, pop1, pushb

1 is performed then we get
t = [[[⊥0a1a2]0[⊥0a1a2]3]0[[⊥0a1a2]0[⊥0a1b5]3]4]0. Here order-2 stack [⊥0a1b5]3

is a copy of the stack [⊥0a1a2]3. This shows that a stack can be an auto copy of
another stack even if their contents are not the same. The auto copy relation that
we have defined establishes a relation between ‘containers’ not their contents.

Example 3. In the example 1, in t3 = [[⊥0a1]0[⊥0a1b3]2]0 the ‘a’ (order-0 stack)
above is a copy of the ‘a’ below. If on t3 we perform the sequence pop1, pop1, pop2,
pop1 then both second and the last pop1 operations match the pusha

1 operation
performed on t. Both these operations pop ‘a’ associated with this pusha

1

operation.
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The auto copy relation that we have defined can be informally understood as
follows. A pushj for j > 1, on stack s creates a new instance of topj−1(s) and
pushes it on s. Creating a new instance of topj−1(s) automatically creates new
instances of all stacks (of lower order) contained in topj−1(s). We refer to these
new instances of order < j − 1 as auto copies of their corresponding stacks in
topj−1(s). However, we do not consider the new order j − 1 instance as an auto
copy of topj−1(s). The full auto copy relation is obtained by taking reflexive,
transitive closure of the basic auto copy step described above.

There can be many popj operations (for j < n) matching a single pushj

operation. This is a departure from order-1 case. This happens because a stack
of order-(j − 1) may be auto copied several times by pushr, r > j, operations.
A popj operation popping any of these auto copies is associated with the same
pushj.

5 Reducing n-HMPDS Game to Finite State Game

5.1 Popping Scenarios

Let H = (Q, Γ, l, δ, q0) be n-mpds and let G = (H, Q0, Q1, M, Ω : Q → M) be a
game structure on H, where Q = Q0 ⊕Q1 and M = {0, . . . , max} is the set of
priorities assigned to vertices of the game graph.

We now define sets Ni,j,p. These sets are defined simultaneously for all i by a
nested induction on p, j. The outer induction is on p (starting with p = k down
to p = 1). For each fixed value of p, an induction on j (starting with j = n− 1
down to j = 0) is done. Intuitively Ni,j,p is the set of scenarios or constraints to
be met for doing a popi,j+1 when the configuration resulting after this pop is in
phase p. This scenario also keeps information about possible scenarios of future
pop operations. This leads to the induction definition.

Definition 13. In this definition we assume that q ∈ Q, γ ∈ (Γ ∪ {⊥})n and
m ∈M l×n. Also, u ∈ [1, l], r ∈ (j, n) and h, p ∈ [1, k], where the intervals shown
are integer intervals.

Ni,n−1,p = {(a1, . . . , ai−1, (p, q, γ, m), ai+1, . . . , al) | au ∈ Au,p+1 for u �= i}
Ni,j,p = {(a1, . . . , ai−1, (p, q, γ, m, bi,j+1, . . . , bi,n−1), ai+1, . . . , al) |

au ∈ Au,p+1 for u �= i, bi,r ⊆ ∪k
x=pNi,r,x}

where Ai,h are auxiliary sets given as
Ai,k+1 = {∅} , Ai,h =

{
(T0, . . . , Tn−1) | Tj ⊆ ∪k

x=hNi,j,x

}
The auxiliary sets Ai,h in the above definition are used to keep the definition a
bit compact, Ai,h do not have any other role.

Each e = (a1, . . . , ai−1, (p, q, γ, m, bi,j+1, . . . , bi,n−1), ai+1, . . . , al) ∈ Ni,j,p rep-
resents a scenario for a popi,j+1 operation. Entries p, q, γ, m in e refer to a popi,j+1

transition from configuration c to c′ = (q, p, i, s1, . . . , sl), where γt = topt,0(c),
for 1 ≤ t ≤ l, t �= i (γi is not needed in e, we keep it for compact notation), mu,v

is the minimum priority visited since pushu,v+1 corresponding to topu,v(c). Data
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au, u �= i in e refer to scenarios for popu,x, 0 ≤ x < n, and bi,y refer to scenarios
for popi,y, j + 1 < y ≤ n after the popi,j+1 in scenario e.

The motivation for au, u �= i in e is similar to that in the definition of Ni,p

in [2], except that in stack u now not just popu,0 but popu,0,. . . , popu,n−1 moves
are possible. A tuple in set Au,h gives popping scenarios for popu,0, . . . , popu,n−1

when such a pop move results in a configuration of phase ≥ h. These are denoted
by T0, . . . , Tn−1 respectively. Any pop operation in stack-u, u �= i, subsequent
to popi,j+1 move in phase p, can only be made in a phase > p. Therefore the
entries au in e are taken from sets Au,p+1.

For each bi,r, j + 1 ≤ r < n, note that Ni,j,p contains scenarios about pop-
ping not just a single stack but also about all auto copies of it. This is be-
cause constraints for all matching popi,j+1 are to be guessed at the time of a
pushi,j+1. As discussed in section 3, if a sub-stack t is popped by a popi,j+1 then
order-(j +1),. . .,order-(n−1) stacks, tj+1, . . . , tn−1 containing t need not be the
same stacks in which push associated to t was done. Stack t may be an auto copy
of stack s, where s is the stack actually pushed by the push associated to t. Val-
ues q, γ, m allowed in a scenario which pops t also depend on popping scenarios
for tj+1, . . . , tn−1 containing t. Scenario e contains an allowable combination of
q, γ, m and popping scenarios for tj+1, . . . , tn−1 explicitly. These Scenarios are
bi,j+1, . . . , bi,n−1 in the definition above. In general these are some subsets of
∪k

x=pNi,j+1,x, . . . ,∪k
x=pNi,n−1,x respectively.

For the base case, e ∈ Ni,x,k and au = ∅ for u �= i as in this case k is the last
phase so a pop in any stack other than i will not occur after this pop.

Below, we use notation like B = (Bi,j |1 ≤ i ≤ l, 0 ≤ j < n), for double
indexed sets. We also use B[C/(i, j)] to mean the indexed set which is same as
B except at index (i, j) where it is C. For single indexed set we use sequence like
notation with T and T [C/i] as obvious counterparts of B, B[C/(i, j)]respectively.
For double indexed sets B as above we use Bi for Bi,0, . . . , Bi,n−1.

We follow [11] in presentation of our finite state game. Most important vertices
of the finite state game (FSG) are of the form Check(q, p, r, γ, B, m), where q ∈ Q,
p ∈ [1, k], r ∈ [0, l], γ = γ1 . . . γl with each γi ∈ Γ ∪ {⊥}. Finally B = (Bi,j |1 ≤
i ≤ l, 0 ≤ j < n) and m = (mi,j |1 ≤ i ≤ l, 0 ≤ j < n). Intuitively vertex
Check(q, p, r, γ, B, m) asserts the following about a hmpds configuration c.

– q is the state of the configuration.
– p is the current phase.
– r is the number of stack on which last pop operation was done (initially it

is set to 0).
– γi is the topmost symbol of stack i.
– Bi,j ⊆ ∪k

x=1Ni,j,x is a set of scenarios for popi,j move on c.
– mi,j records the minimum priority visited in the play (till the current instant)

since the pushi,j move associated to topi,j(c) was played.

Apart from Check vertices there are also some auxiliary vertices.
A bit more notation. We use E ↑ p for E ∩ (∪k

x=pNi,j,x). For a sequence
T = (Ti | 1 ≤ i ≤ m), T ↑ p stands for (Ti ↑ p | 1 ≤ i ≤ m). For a double index
T , T ↑ p is defined similarly.
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5.2 The Finite State Game (FSG)

Each hmpds transition gives rise to some FSG transitions. We group transitions
of FSG according to hmpds transitions (shown in bold).

1. (q, γi,q′, i, γ′) ∈ δins,j where 1 ≤ i ≤ l and 1 ≤ j ≤ n.

This gives rise to transitions:
(a) Check(q, p, r, γ, B, m)→ Pushi,j(p, r, γ, B, m, q′, γ′)
(b) Pushi,j(p, r, γ, B, m, q′, γ′)→ Claimi,j(p, r, γ, B, m, q′, γ′, C),

for C ⊆ ∪k
h=pNi,j−1,h

(c) Claimi,j(p, r, γ, B, m, q′, γ′, C) → Check(q′, p, r, γ[γ′/i], B[C/(i, j −
1)], m′),

where m′
x,y =

{
Ω(q′) if x = i and y = j − 1
min(mi,j, Ω(q′)) otherwise

(d) To check the game after a matching popi,j operation.

Claimi,j(p, r, γ, B, m, q′, γ′, C)→ Jumpi,j(q′′, h, γ, γ′′, m′, B′, m)
for any (a1, . . . , ai−1, z, ai+1, . . . , al) ∈ C where
ar = (B′

r,0, . . . , B
′
r,n−1) for 1 ≤ r ≤ l, r �= i

z = (h, q′′, γ′′, m′, B′
i,j , . . . , B

′
i,n−1),

B′
i,t = Bi,t for 0 ≤ t < j.

(e) Jumpi,j(q′′, h, γ, γ′′, m′, B′, m)→ Check(q′′, h, i, γ′′[γi/i], B′, m′′),

where m′′
x,y =

{
min(m′

x,y, Ω(q′′)) if x �= i or y ≥ j
min(mx,y, m

′
i,j−1, Ω(q′′)) if x = i and y < j

2. (q, γi,q′, i) ∈ δrem,j, 1 ≤ i ≤ l.
This gives rise to transitions:
(a) Check(q, p, r, γ, B, m)→Win0 if D ∈ Bi,j−1 and p′ ≤ k

(b) Check(q, p, r, γ, B, m)→Win1 if D �∈ Bi,j−1 and p′ ≤ k

where p′ = np(p, r, i) and if p′ ≤ k then
– D = (C1, . . . , Ci−1, z, Ci+1, . . . , Cl)
– z = (p′, q′, γ, m, B′

i,j , . . . , B
′
i,n−1)

– Cr = (B′
r,0, . . . , B

′
r,n−1) for 1 ≤ r ≤ l, r �= i

and B′
x,y =

{
Bx,y ↑ (p′ + 1) if x �= i
Bx,y ↑ p′ if x = i and y ≥ j

Priority of a vertex v in FSG, denoted by λ(v), is defined as follows.

– λ(Check(q, . . .)) = Ω(q), λ(Pushi,j(. . .)) = λ(Claimi,j(. . .)) = max.
– λ(Jumpi,j(q, h, γ, γ′, m′, B, m)) = m′

i,j−1,
where m′ = (m′

x,y | x ∈ [1, l], y ∈ [0, n)).
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Vertices of the form Check(q, . . .) belong to player-z, z ∈ {0, 1}, iff q ∈ Qz.
Vertices Pushi,j(...), belong to player-0 whereas vertices Claimi,j(...), belong
to player-1. Vertices Jumpi,j(...) belong to player 0. Vertices Win0 and Win1

belong to player 1 and player 0 respectively. As there are no transitions from
Win0 and Win1, by our convention Win0 and Win1 are winning for player 0
and player 1 respectively.

We explain the transition rules of FSG in some detail below.

– Rule (1.a) transfers the game to player-0’s vertex (Pushi,j vertex) regardless
of the player to whom Check vertex in belongs. This is because player 0 only
can make a claim about popping scenarios.

– In rule (1.b), C is the set of scenarios for all popi,j matching the pushi,j. The
same set of popping scenarios is maintained for any auto copy of this stack.

– In rule (1.c), player 1 sets the game to the configuration after the Pushi,j

move. Sub-stacks topx,y in the new configuration are auto copies of sub-
stacks topx,y, in configuration before, for x �= i or y �= j. Therefore Bx,y,
mx,y for x �= i or y �= j remain unchanged.

– In rule (1.d-e), the game is verified after a matching popi,j move with
popping scenario in C. We show the transitions for an arbitrary scenario
(a1, . . . , ai−1, z, ai+1, . . . , al) ∈ C. Let c′ be a configuration arising after a
pop in this scenario. The phase of c′ is h and m′

x,y are priorities correspond-
ing to topx,y(c′), for x �= i or y ≥ j.
Note that if a pushi,j is done in configuration c then for 0 ≤ t < j, topi,t(c′) is
an auto copy of topi,t(c). Therefore we have B′

i,t = Bi,t as the set of popping
scenarios remain same for the auto copies.
The value m′

i,j−1 gives the minimum priority visited between pushi,j and the
matching popi,j in the play. This explains the expression m′′

i,t, for priorities
corresponding to topi,t(c′) for 0 ≤ t < j.
The Jump vertex is to capture the min priority between pushi,j and the
matching popi,j (it is m′

i,j−1 in the present case) in FSG path (1.a-b-d-e).
– In rule (2), condition p′ ≤ k refers to the fact that a pop move is possible only

if the resulting phase is ≤ k. Given p′ ≤ k, the transition (2.a) represents
the case where pop move satisfies the popping condition, the transition (2.b)
represents complement of this case.
The main step is to define D ∈ Ni,j,p based on various popping conditions
in the current configuration of the play. In Bx,y there may be some popping
scenarios for phase < p′. We remove these scenarios by using operator ↑.
More specifically, we keep scenarios of phase ≥ p′ for popping in stack i and
scenarios of phase > p′ for popping in stacks other than i as after the present
pop, other pops can occur only in these phases. The B′

x,y defined in this way
form the desired components of D so that D ∈ Ni,j,p.

6 Relating Winning in n-HMPDS Game and the FSG

Our main theorem is the following.

Theorem 1. A hmpds game is winning for player 0 (from initial configura-
tion (q0,⊥n, . . . ,⊥n)) iff FSG is winning for player 0 (from initial configuration
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Check(q0, 1, 0,⊥, ∅, 0)). Further, if hmpds game is winning for player 0 then
player 0 has a winning strategy in hmpds game that is computable by an order-n
multi-stack automaton.

Proof. (FSG to hmpds game) Assuming that there is a winning strategy for
player-0 in FSG from Check(q0, 1, 0,⊥, ∅, 0), we design an l stack deterministic
n−hmpda S which executes a winning strategy τ of player 0 in hmpds game
starting from hmpds configuration (q0,⊥n, . . . ,⊥n). The automaton S is an l
stack deterministic hmpda with an input and an output tape. It reads moves of
player 1 from the input tape and outputs moves of player 0 on the output tape.
Detailed construction of S and the correctness proof of S is given in full version
of this paper [1].
(Hmpds game to FSG) Proof of this direction is given in [1].

Idea of the proofs in both directions is similar to that in [11,2], but we need
to deal with operations on higher order stacks. �

6.1 Complexity of Solving the Game

By the reduction in section 5, to solve a hmpds game it suffices to solve an
associated FSG. In this section we estimate size of the FSG and the complexity
of solving it. Let us define a class of functions expn(m) iteratively as follows.
exp1(m) = 2m and for n ≥ 1, expn+1(m) = 2expn(m). Roughly, expn(m) is a
tower of exponentials of height n. Let H be an hmpds and G be an hmpds game
on H as in section 5.1. For a set A, we let |A| denote its cardinality.

By a simple complexity analysis, whose details are omitted due to lack of
space, we get |Ni,0,k−1| ≤ expn−1(z) and the number of vertices in FSG is
expn·k(O(z)), where z = |Q| · |M |l×n · |Γ | and |M | > 1. It follows by [13] that
our FSG can be solved and the winning strategy can be constructed in time
bounded by expn·k(O(z)), with z as above.

We can code e ∈ Ni,j,k more economically by noting that we need to keep
only mi,j , . . . , mi,n−1 in it, in particular mu,x, u �= i need not be stored as there
is no pop in stack u after a pop corresponding to e. This leads to size of FSG
and the time to solve it as expn·k(O(|Q| · |M | · l · |Γ |)).

7 Conclusion

In this paper we have defined higher order multi-stack pushdown systems (hm-
pds). We have shown that parity games on bounded phase hmpds are effectively
solvable and a winning strategy executable by higher order multi-stack automata
can be synthesized effectively. It remains open if the complexity bound given in
the paper to solve these games can be improved. Recently we have also shown
that winning regions in parity games on bounded phase hmpds are regular.

Acknowledgments. Financial support for this work is provided by Research I
Foundation.
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Abstract. Using the framework of sequential dynamical systems
(SDSs), a class of asynchronous graph dynamical systems, we show how
the notions of reachability and stability can be negatively correlated.
Specifically, we show that certain threshold SDSs exhibit update sequence
instability: Over certain graph classes, there exist initial configurations
from where exponentially many fixed points are reachable under different
update sequences, i.e., the ω-limit set has size Θ(2|V |). We establish this
first for treewidth bounded graphs and then for random graphs in the
G(n, p) model of Erdős-Rényi for a large range of p. We also show that
this update sequence instability is not present in dense graphs, suggest-
ing that sparsity and tree-like structure plays an important role in the
stability of the system. These dynamical systems arise in applications
such as functional gene annotation, where threshold SDSs are employed
to predict gene functions through a fixed point computation, based on
an initial state (prediction) and a nongeneric choice of update sequence.
The results in this paper should be viewed as cautionary advice in the
construction and application of such algorithms. This paper also provides
a starting point for a study of update sequence stochastic SDSs.

1 Introduction

Complex unstructured networks and dynamics on such networks arise in a num-
ber of applications involving natural and man-made physical and infrastructure
systems, such as the Internet, the power grid and biological networks [1]. Graph
dynamical systems (GDSs), which generalize the concept of finite cellular au-
tomata (CAs) (see e.g. [2]), are useful in understanding such systems. Graph
dynamical systems are defined with respect to a finite set of vertices (also called
cells or nodes) v[Y ] = {1, . . . , n} where each vertex i has a state yi taken from
a finite set K. Moreover, each vertex has a vertex function fi that governs the
transition from yi(t) to yi(t + 1), taking as arguments the states associated to
the neighborhood of vertex i. The application of fi is called the update of vertex
i. For CAs, the vertex functions are applied synchronously to generate the dy-
namical system map. In this paper, we focus on an important sub-class of GDSs,
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called sequential dynamical systems (SDSs) whose dynamical system map is con-
structed as the sequential application of the vertex functions according to some
fixed sequence w. These finite dynamical systems were introduced and studied
in [5,4,3]; see [6] and the references therein for more details. Whereas finite CAs
typically are defined over a regular graphs (often called a lattice) and are re-
stricted to have a single common vertex function, GDSs and SDSs are defined
over arbitrary finite graphs with no restrictions on the vertex functions.

The class of SDSs can be used to model and characterize a broad class of
applications, algorithms and processes over graphs. Indeed, SDSs and their con-
stituents (graph, vertex functions, update sequence) were originally designed
as a dynamical system model of distributed systems where the notion of eval-
uation/update sequence is important. Examples of such applications include
concurrent processes, distributed protocols, approximate discrete event simula-
tions [7], image reconstruction [8], and functional gene annotation [9]. This last
application directly motivates our paper, and is briefly described here.

Informally, a functional linkage network is a graph Y in which the set v[Y ] of
vertices represents a set of genes, with an edge {i, j} ∈ e[Y ] if there is evidence in
experiments and/or databases that the corresponding genes co-express biological
functions. The level of co-expression is measured by an edge weight wij . Given
a new biological function and partial information about which genes express it,
the goal is to estimate which remaining genes also express this function. Karaoz
et al. [9] developed an algorithm for this problem based on an SDS framework
with threshold functions (formally described in Section 2), which starts with an
initial state vector y ∈ {1,−1, 0}|V | (with the state yi encoding “express”/“do
not express”/“unknown” for gene i), and iteratively updates the vertex states
by applying the vertex functions in an order specified by a randomly chosen
permutation. It is shown that this process always ends at a fixed point, and the
gene annotations are inferred from the vertex states at this fixed point. One
important issue for the robustness of this method is how the choice of update
sequence affects the fixed point (gene prediction) reached from a given initial
state. This is related to the fundamental notion of dynamical stability of the
system. In this paper, we explore the sensitivity of SDS dynamics to changes in
the update sequence, and find that many classes of threshold SDSs are not stable
in this sense. Even though we only consider the case where all edge weights are 1,
similar instability results should hold for functional gene prediction and related
algorithms. The results of this paper may thus be viewed as cautionary advice
for the use and validity of sequential algorithms over graphs. Our work provides
a nice example of how one can relate the structure of the GDS graph and the
resulting dynamics. This line of work relating local structure and dynamics is
valuable both from the point of view of theory and applications. We remark
that our study of the dynamics as a function of the update sequence forms a
natural path to the analysis of update sequence stochastic SDSs, a class of systems
underlying many applications as well as computational paradigms such as the
Gillespie algorithm [10]. We remark that other reachability problems for SDSs
have been studied in [3].
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Our Results. In this paper, we show that the class of threshold sequential dy-
namical systems exhibit update sequence instability for large classes of graphs
relevant to many applications. Here, update sequence instability of SDSs over a
given graph Y means (i) the number of fixed points of such SDSs is exponen-
tial or sub-exponential in n, the number of vertices of Y , and (ii) there exists
states y ∈ Kn such that the collection of ω-limit states of y under the possi-
ble update sequences, denoted ∪π∈SY ωπ(y), has exponential size in n. We show
that update sequence instability is present in any 2-threshold SDS on trees, and
more generally in graphs with bounded treewidth (a parameter that quantifies
how “tree-like” the graph is, defined formally in Section 2). We also show that
the G(n, p) random graph class of Erdős-Rényi [11] exhibits sub-exponential in-
stability for a range of p values; for p = o(nε/n), there are states for which
∪π∈SY ωπ(y) = Ω(2n1−ε

), where ε ∈ (0, 1). When p is constant, G(n, p) does
not exhibit exponential instability, and we show that this is generally true for
dense graphs in which all vertices have degree Ω(n). In summary, sparse and
tree-like graphs seem to be more likely to exhibit such instability, and this has
important implications because a number of threshold systems, including bio-
logical networks [12] and power grids [13], involve sparse graphs, often with low
treewidth.

Paper Outline. We describe the relevant definitions and notation in Section
2. In Section 4, we discuss instability in dense graphs, trees, and graphs of
bounded treewidth, and in Sections 3 we extend this to the G(n, p) family of
random graphs. Due to space limitations, we have omitted several proofs.

2 Background and Definitions

Let Y be a finite, simple, undirected graph (henceforth just a graph) with vertex
set v[Y ] = {1, 2, . . . , n} and edge set e[Y ]. For v ∈ v[Y ], let n[v] denote the
sequence of vertices in increasing order contained in the 1-neighborhood of v,
and denote the degree of vertex v by d(v).

Let K be a finite set of states. Each vertex v ∈ v[Y ] has a vertex state yi ∈ K.
An n-tuple

y = (y1, . . . , yn) ∈ Kn

is a system state, and the restriction of y to the vertices in n[v] is written y[v].
Each vertex v has a vertex function fv,Y : Kd(v)+1 −→ K, which alternatively
can be encoded as a Y -local function Fv,Y : Kn −→ Kn, by

Fv,Y (y1, . . . , yn) = (y1, . . . , yv−1, fv,Y (y[v]), yv+1, . . . , yn) . (1)

We frequently omit the subscript Y if the underlying graph is clear from the
context. We write a sequence of vertex functions as Y by fY , and the corre-
sponding Y -local functions as FY . Finally, let WY be the set of words over v[Y ]
(the Kleene closure of v[Y ]) and SY ⊂WY the set of permutations of v[Y ].
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Definition 1 (Sequential Dynamical System). A sequential dynamical sys-
tem is a triple (Y, FY , w) where Y is a graph, fY is a sequence of Y -local functions
and w = (w(1), . . . , w(m)) ∈ WY is the update sequence. The associated SDS
map [FY , w] : Kn −→ Kn is defined by

[FY , w] = Fw(m) ◦ Fw(m−1) ◦ · · · ◦ Fw(1) . (2)

In contrast, if the Y -local maps are applied synchronously, we obtain a general-
ized cellular automaton. An SDS for which w ∈ SY is called a permutation SDS.
The phase space of a finite dynamical system φ : Kn −→ Kn is the directed
graph Γ (φ) with vertex set Kn and edge set

e[Γ (φ)] = {(y, φ(y)) | y ∈ Kn} .

A key goal of graph dynamical system research is to unravel the properties of
Γ (φ) from the defining constituents of the system, rather than from exhaustive
computation. An invariant set of a map φ : Kn −→ Kn is a set M such that
φ(M) ⊂ M . The ω-limit set of y ∈ Kn is the set of periodic points z ∈ Kn

such that φm(y) = z for some m ≥ 0. The basin of attraction of an invariant
set M ⊂ Kn, written B(M), is the collection of points in Kn whose ω-limit set
is contained in M . Let Y be a graph, FY be a sequence of Y -local functions,
and let P ⊂ SY be a collection of permutation update sequences. For π ∈ P , we
write ωπ(y) for the ω-limit set of y under the SDS map [FY , π]. The ω-limit set
of y with respect to P is

ωP(y) =
⋃

π∈P
ωπ(y) .

The goal of this paper is to explore “update sequence instability,” i.e., for a given
state vector y, how does changing the update sequence π effect the resulting limit
set of y? We restrict our attention to threshold functions (defined in Section
3), in which case the limit sets are fixed points. Our main observation is that
the structure of the underlying graph has a significant impact on this form
of stability. Central to our approach is the graph Starn which has vertex set
{0, 1, . . . , n} and edges {0, k} for 1 ≤ k ≤ n. The Boolean majority function
majk : F

k
2 −→ F2 is a threshold function that returns 1 if the input vector has

at least as many 1s as 0s, and returns 0 otherwise. Let Maji denote the Y -local
majority function at vertex i with the corresponding vertex function majd(i)+1,
and let MajY = (Maji)

n
i=0 denote the sequence of Y -local functions. The following

example illustrates the concept of limit set instability of an SDS.

Example 1. Consider a permutation SDS over Y = Star4 with vertex func-
tions induced by the Boolean majority function. Using update sequence π1 =
(1, 0, 2, 3, 4), the state y = y0y1y2y3y4 = 10000 is mapped to 01000 which is a
fixed point. On the other hand, for π0 = (0, 1, 2, 3, 4), the state 10000 is mapped
to 00000. It is straightforward to show that by suitably choosing the permuta-
tion update sequence, the initial state 10000 can reach six different fixed points,
and ωP(10000) = {00000, 01000, 00100, 00010, 00001, 11111}. This is illustrated
in Figure 1 .
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(10000)

(00001)

(00010)

(00100)(01000)
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(11111)

π0
π3

π4
π5

π1 π2

Fig. 1. The six fixed points reachable from the state 10000 in Example 1

A large part of the discussion in this paper is related to trees and graphs which
are “tree-like” – this is captured formally by a measure called treewidth [14]. A
tree-decomposition of a graph G(V, E) is a pair ({Xi|i ∈ I}, T = (I, F )) with
{Xi : i ∈ I} a family of subsets of V , one for each node of T , and a tree T such
that

∪i∈IXi = V ;
For each edge (v, w) ∈ E, there exists an i ∈ I with v, w ∈ Xi;
For all i, j, k, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The treewidth of a tree-decomposition ({Xi : i ∈ I}, T = (I, F )) is defined as
maxi∈I |Xi| − 1. The treewidth of a graph G is the minimum treewidth over
all possible tree-decompositions of G. The smaller the treewidth, the closer the
graph is to a tree – indeed a graph is a tree if and only if its treewidth is 1.
Computing the exact treewidth is NP-complete in general [14], but many graphs
that arise in practice have low treewidth [14].

3 Update Sequence Instability of Threshold SDSs

Threshold SDSs constitute a natural starting point when considering update se-
quence instability since (i) these SDSs only have fixed points as periodic points
(see [4]), (ii) fixed points are independent of update sequence, and (iii) thresh-
old systems are frequently used in modeling and applications. We remark that
even though the set of fixed points is independent of the update sequence for a
threshold SDS, the basins of attraction are generally not.

Let σ : F
m
2 −→ N be defined by σ(y) =

∑m
i=1 yi, using the convention of 0 ∈ N.

A function f : F
m
2 −→ F2 is a k-threshold function if there exists k ∈ N such that

f(y) = 1 if σ(y) ≥ k, and f(y) = 0 otherwise. An SDS is a threshold SDS if
all vertex functions are threshold functions. Let tki : F

d(i)+1
2 −→ F2 denote the

k-threshold vertex function at vertex i, and let Tk
i denote the associated Y -local

function. For a graph Y , denote the sequence of Y -local k-threshold functions by

Tk
Y =

(
Tk

i

)
1≤i≤n

.

Since all limit sets ωπ(y) of threshold SDSs consist of a single fixed point, the
size of the limit set ωP(y) is a natural measure for update sequence stability in
this case.
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The following results are concerned with update sequence instability for
threshold SDSs over star graphs, and are central to the remainder of this paper.
The fact that many graphs have a large collection of star subgraphs allows us
to take advantage of these results later. We only state the result for 2-threshold
SDSs, but analogous bounds hold for other threshold functions, such as the ma-
jority function.

Proposition 1. Let Y = Starn, let π ∈ SY and let ψ : F
n+1
2 −→ F

n+1
2 be the

threshold SDS map [T2
Y , π]. Then |Fix(ψ)| = 2n, and there exists y ∈ F

n+1
2 with

|ωSY (y)| = 2n − n. The set A1 of points y ∈ F
n+1
2 with |ωSY (y)| = 1 satisfies

|A1| = 2n+n+1. Let A>1 be the complement of A1. Then lim
n→∞

|A>1| /2n+1 = 1/2

and there exists states y for which lim
n→∞

|ωSY (y)| / |Fix(ψ))| = 1.

We note that Starn is a sparse graph. For threshold SDSs it turns out that the
update sequence instability observed in Proposition 1 does not arise in dense
graph, as shown by the following results. Throughout, 0 and 1 denote the con-
stant states (0, 0, . . . , 0) and (1, 1, . . . , 1), respectively.

Proposition 2. A permutation threshold SDS over Kn has at most n + 1 fixed
points. This bound is sharp.

Proposition 3. Let Y be a connected graph on n vertices with minimal degree
d > (1− 1

k )n for k > 0. A threshold SDS over Y induced by Tk
Y has fixed points

contained in T = {0,1}.

As a special case, a threshold SDS induced by T2
Y only has 0 and 1 as fixed

points if the minimum degree d satisfies d > n
2 .

We remark that bounds for the maximal transient length in threshold SDSs
have been studied in [15].

4 Instability of 2-Threshold SDSs over Trees
and Treewidth Bounded Graphs

Many graphs that occur in applications have a tree-like structure, or low
treewidth. In this section, we show that 2-threshold SDSs over trees or treewidth
bounded graphs exhibit exponential update sequence instability. The idea of the
proof is to construct a collection S of “well-separated” Stark subgraphs (hence-
forth referred to as a k-star) from the entire tree. The construction will be carried
out in such a manner that Proposition 1 can be applied to each k-star in S in-
dependently. The result will follow once we demonstrate that |S| is sufficiently
large (linear in n). The instability for the individual star subgraphs leads to
exponential instability for the tree Y , and shows how dynamics over subgraphs
can influence the global dynamics. We first describe the details for the case of a
tree, and then discuss how the proof can be extended to the case of treewidth
bounded graphs.

In the following, Y denotes a tree with n vertices rooted at some arbitrary
but fixed vertex r. Having a root allows us to partially order v[Y ] (with r as
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the maximum element). For simplicity, we assume that n is larger than some
constant and Y is a connected graph. Also, we assume that Y is not a line –
it can be verified easily that a line graph can be decomposed into Θ(n) well
separated stars, and has exponential instability. Each vertex v �= r has a unique
covering element pY (v) called the parent of v. We refer to the set CY (v) =
{v′ ∈ v[Y ] | pY (v′) = v} as the children of v. Moreover, the elements of the set
L(Y ) = {v ∈ Y | CY (v) = ∅} are the leaves of Y , and vertices contained in
I(Y ) := v[Y ]\L(Y ) are internal vertices. Writing �(Y ) and i(Y ) for the number
of leaf and internal vertices, respectively, we clearly have n = i(Y ) + �(Y ). A k-
chain is a sequence of vertices (v1, . . . , vk) such that C(vi) = {vi+1} for 1 ≤ i < k
and |C(vk)| = 1. A k-chain is maximal if it is not contained in a (k + 1)-chain.
The graph subscript will be omitted if it is clear from the context.

We first outline our construction of the set S, making the convention that each
element Si ∈ S has center vertex vi0 and edges {vi0 , vij} for 1 ≤ j ≤ k where
k ≥ 2. When establishing the set S we will construct a set Π(Si) of permutations
for each Si ∈ S. These sets of permutations, along with a suitably defined initial
state vector X ∈ F

n
2 , will be used to construct a set P ⊂ SY such that ωP(X)

has size that is exponential in n. The set S will be a collection of “sufficiently”
disjoint k-stars with |S| = Θ(n).

The construction proceeds through iteration of two steps. The first step con-
sists of removing from Y each leaf vertex whose parent has at least one non-leaf
child and at most two leaf children. We refer to the vertices removed in this
process as “lonely hanging vertices.” In the second step, all vertices contained
in maximal chains of length ≥ 2, with the exception of the maximal vertex of
the chain, are removed from Y . Clearly, these chains are pairwise disjoint. For
these chains, we extract disjoint 2-star subgraphs and add them to the set S.
The removal of chains may re-introduce lonely hanging vertices, so the two steps
are repeated until no lonely hanging vertices remain. At this point, the graph
that results from Y is a collection of connected components, and for every leaf
vertex in this graph there is at least one other leaf vertex with the same parent.
For every parent of a leaf vertex, we add to S the star consisting of that parent
and all of its children that are leaf vertices. This completes the construction of
S. Vertices not in S are assigned to the set B.

The next step is to construct a set P of permutations and initial state y ∈ F
n
2 .

For every Si ∈ S, assign state 1 to leaf vertices, and state 0 to the center vertex.
For every 2-star Si ∈ S, let P (Si) = {(si0 , si1 , si2), (si1 , si2 , si0)}. For every k-
star Si ∈ S with k > 2, let P (Si) be the set of permutations of v[Si] where si0

appears in the middle position, i.e., with precisely !k/2" vertices preceding it.
These steps are described in detail below.

Part I: Vertex removal. The following two steps are repeated as long as
possible, i.e., until lonely hanging vertices or maximal chains (defined below) no
longer exist.

1. (Removal of “lonely hanging vertices”) For each vertex v such that C(v) ∩
I(Y ) �= ∅ and 1 ≤ |C(v) ∩ L(Y )| ≤ 2, remove all the vertices in C(v)∩L(Y ).
Denote the (cumulative) set of vertices deleted in Step 1 by B1.
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Fig. 2. Step 1: Removal of “lonely hanging vertices”

2. (Removal of maximal chains). For any maximal chain C = (v1, . . . , vk) in Y
with k ≥ 2, delete the vertices from the sub-chain C′ = (v2, . . . , vk).

Fig. 3. Step 2: Removal of maximal chains

As mentioned above, when there are no more lonely hanging vertices or max-
imal chains, Part I is complete. At this point, let C = {C′

1, C
′
2, . . . , C

′
m} be the

set of deleted chains, and let Y = {Y1, Y2, . . . , Yk} be the set of connected com-
ponents of Y that results from the deletion of the chains in C and the lonely
hanging vertices.

Part II: Construction of k-stars, of sub-configurations and of sub-
permutations

3. (Extraction of 2-stars from chains). For each chain C′
i ∈ C where ki := |C′

i| <
7, add the vertices of C′

i to the set BS
3 . For the remaining chains (k ≥ 7),

perform the following steps to assign subsets of vertices to the set BL
3 :

(a) Renumber the vertices in each chain, so C′
i = {vi1 , . . . , vik

} while pre-
serving the relation pY (vij ) = vij−1.

(b) For each j ≤ ik − 3 such that j ≡ 4, 9 (mod 10), form the 2-star S =
{vj−1, vj , vj+1} and add it to S.

(c) For each such 2-star S = {vj−1, vj , vj+1}, let P (S) = {(vj , vj−1, vj+1),
(vj−1, vj+1, vj)}, and set yvj−1 = yvj+1 = 1 and yvj = 0.

(d) Add all vertices in C′
i that are not included in any 2-star to BL

3 , and set
B3 = BS

3 ∪BL
3 .

4. (Extraction of k-stars from remaining components). For each component
Yi ∈ Y, perform the following steps:
(a) Let D = {v ∈ Yi : C(v) ∩ L(Yi) �= ∅}. Note that by Steps 1 and 2,

|C(v) ∩ L(Yi)| �= 1 for all v ∈ Yi.
(b) For each vertex v ∈ D add the star S = {v} ∪ (C(v) ∩ L(Yi)) to S. Set

yv = 0 and set yu = 1 for all other vertices u in S.
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Fig. 4. Step 3: Extraction of 2-stars from chains

(c) Number the leaves in S by {w1, . . . , wk}. If k = 2, define P (S) =
{(v, w1, w2), (w1, w2, v)}. If k > 2, define P (S) to be the set of per-
mutations of the form

(wπ(1), . . . , wπ(�k/2�), v, wπ(�k/2�+1), . . . , wπ(k)),

where π is a permutation of the vertices contained in C(v) ∩ L(Yi).
(d) Add all vertices u not contained in any star in S to the set B4.

Fig. 5. Step 4: Extraction of k-stars from remaining components

Part III: Construction of the set P of permutations

5. (Construction of permutations of Y ). Let B = B1 ∪ B3 ∪ B4. Define P (S)
to be the set of all permutations π such that (i) π[S] ∈ P (S), for all S ∈ S,
where π[S] is the restriction of π to S, and (ii) all vertices not in B appear
before those in B, i.e., for all vertices u, v ∈ v[Y ], if u �∈ B and v ∈ B, then
π(u) < π(v).

We first discuss several useful lemmas below before proving our main result
in Theorem 1.

Lemma 1. Let C′ ∈ C and let S be a star constructed from vertices in C. Then
for any vertex v ∈ S the inequality d(v, B4) ≥ 3 holds.

Proof. Let C′ = {v1, . . . , vk}. By construction, the 2-stars formed from vertices
in C′ only involve vertices v3 through vk−2, and the distance of both v3 or vk−2

to the closest vertex in B4 is at least 3.

Lemma 2. Let Yi ∈ Y and let S be a star constructed from vertices in Yi. Then
d(v, B4 \ Yi) ≥ 2 for any leaf vertex v ∈ S.

Proof. Since v is a leaf in S it only has one other neighbor in Yi, namely its
parent, which is not in B4 because it is also in S.
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Lemma 3. Let T be a tree such that for each vertex v ∈ T , either |C(v)| = 0
or |C(v)| ≥ 2. Then i(T ) ≤ �(T )− 1.

Proof. The proof is by induction on i(T ). Let v denote the root of T . The lemma
is clearly true when i(T ) = 1, since in this case �(T ) = |C(v)| ≥ 2.

For the inductive step, assume that C(v) = {w1, . . . , wk}. We may assume
that C(v) ∩ L(T ) = ∅, because if the result holds in this case, it clearly holds
in the case where there are additional edges of the form {v, w} where w ∈ L(T ).
Let Tj denote the subtree rooted at vertex wj . By induction, i(Tj) ≤ �(Tj)− 1.
We have, i(T ) =

∑
j i(Tj) + 1 ≤

∑
j �(Tj) − k + 1 ≤ �(T ) − 1, since k ≥ 2, by

assumption.

Lemma 4. For each component Yi ∈ Y, the total number of vertices from Yi

added to stars in S is at least |Yi|/4.

Proof. By construction, there are no k-chains in Yi of length 3 or more. We first
contract all k-chains of length k ≤ 2:

1. Let v1 be a maximal 1-chain, with p(v1) = v0 and C(v1) = {v2}. Identify
the vertices v1 and v2, and replace them by a new vertex v′1, with p(v′1) = v0

and C(v′1) = C(v2).
2. Let v1, v2 be a maximal 2-chain, with v0 = p(v1) and C(v2) = {v3}. Identify

the vertices v1, v2 and v3, and replace them by a new vertex v′1, with p(v′1) =
v0 and C(v′1) = C(v3).

Let Y ′
i be the resulting tree after all possible contractions above. Because of the

above contractions, for any vertex v ∈ Y ′
i , either |C(v)| = 0 or |C(v)| ≥ 2. By

Lemma 3, i(Y ′
i ) ≤ �(Y ′

i ) = �(Yi). Also, the contraction step identifies at most
three vertices into one. Therefore, i(Yi) ≤ 3i(Y ′

i ) ≤ 3�(Yi). Since all leaves in Yi

are part of stars, the lemma follows.

Lemma 5.
∑
S∈S

|S| = Θ(n).

Proof. We will show that the vertices in B = B1 ∪ B3 ∪ B4 can be charged to
the vertices in S, with a constant charge per vertex. We begin with the vertices
in B4. By Lemma 4, |Yj ∩ S| ≥ |Yj |/4. Therefore, each vertex in Yj ∩ S gets a
charge of at most 3 from the vertices in B4.

Next, consider the vertices in BS
3 , and let C′

i ∈ C of length k < 7. Since Ci

(the chain C′
i plus one parent vertex v0) was a maximal chain in Y , either p(v0) or

C(vk) is a vertex with degree at least 3 and therefore, at least one of these vertices
lies in some Yj ∈ Y. We will charge all vertices in C′

i to the vertices in one such
Yj . A given vertex in Yj ∩ S now can have a charge of at most 3 from vertices in
B4, and at most 6 from vertices in B3

S , for a total charge of at most 9.
Moving on to the vertices in BL

3 , consider a k-chain C′
i ∈ C where k ≥ 7,

which we know contains
⌊

k−6
5

⌋
2-stars from S. The quantity |C′

i ∩BL
3 |/|C′

i ∩ S|
converges to 2/5 as k → ∞, but is never larger than 8/3 (which occurs when
k = 11). Therefore, the vertices in BL

3 can be accounted for by a charging at
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most 3 such vertices to a distinct vertex in Ci∩S, and these vertices are disjoint
from each Yj .

Thus far, every vertex in S has a charge of at most 9. Finally, we have to
account for B1 – the lonely hanging vertices. The parents of these vertices can
be in either B3 ∪ B4 or some Si ∈ S, and each such parent can only have
two children from B1. Therefore, vertices in B1 can be assigned to vertices in
B3 ∪ B4 ∪ S with a constant charge of 20/9 per vertex, which as we’ve argued
can be charged to the vertices in S with a constant charge of 9. Together, we
conclude the vertices in B1 can be charged to vertices in S with a constant
charge of 20. Since the vertices in B3 ∪ B4 can be charged to vertices S with
a constant charge of 9, we now charge the vertices in B to those in S with a
constant charge of 29. Therefore,

∑
S∈S |S| ≥ n/29.

Lemma 6. |P (S)| = 2Ω(n).

Proof. By construction, for each star Si ∈ S, we have |P (S)| ≥ 2. Also by
construction, for any transversal {πi[Si] | Si ∈ S}, there is an update sequence
π ∈ P (S) with that π[Si] = πi[Si]. Together, we conclude that

|P (S)| ≥
∏
S∈S

|P (S)| ≥
∏
S∈S

2 ≥
n/29∏
i=1

2 = 2Θ(n) ,

and hence |P (S)| = 2Ω(n).

Lemma 7. Starting at the configuration X, the states of all vertices in B1 ∪B3

remain forever 0, for all update sequences π ∈ P (S).

Proof. Any vertex added to B1 or B3 initially has state 0, and it can have at
most one neighbor with initial state 1. The remaining neighbors have state 0,
and are updated later. Therefore, such a vertex remains in state 0.

Theorem 1. If Y is a tree, the 2-threshold SDS on Y exhibits exponential update
sequence instability, i.e., ∣∣∣ ⋃

π∈SY

ωπ(X)
∣∣∣ = Θ(2n) .

Proof. We will show that starting with the initial configuration y, a distinct
fixed point is reached for each permutation π ∈ P (S). The theorem then follows
from Lemma 6. The specific structure of the clusters in S and the construction
of the set P (S) is crucial in the proof.

Fix any permutation π ∈ P (S). Let y′ = ωπ(y), the fixed point reachable
from y. By Lemma 7, all vertices in B1 or B3 have state 0 in y′. Pick any star
S ∈ S, and .set S = {v, w1, . . . , wk}, with vertex v being the center of S. There
are three cases to consider.

1. S is a 2-star in some C′
i ∈ C. In this case, vertices w1, w2 each have one

neighbor that is not in S, and (yv, yw1 , yw2) = (0, 1, 1). If π[S] = (v, w1, w2),
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then all vertices in S turn to state 1 and remain there. If π[S] = (w1w2, v),
these vertices turn to state 0. Since w1 and w2 each have at most one other
neighbor, which might be in state 1, these vertices remain in state 0 for all
subsequent updates. Therefore, both choices of π[S] lead to fixed points that
differ on the states of vertices in S.

2. S is a 2-star in some Yi ∈ Y. Because of Step 1 in Part I of the algorithm,
C(v) �⊂ L(Y ). In this case, all neighbors of w1 and w2 not in S are in B1∪B3

by construction, which are guaranteed to remain in state 0 by Lemma 7, and
thus (yv, yw1 , yw2) = (0, 1, 1). If π[S] = (v, w1, w2), the vertices in S all turn
to state 1, and remain in that state in y′. If π[S] = (w1, v, w2), these vertices
all turn to state 0. Since all neighbors of w1, and w2 not in S are in B1∪B3,
which are always in state 0, and there is at most one neighbor of v that
is not in state 0 (possibly p(v)), the states of vertices in S do not change.
Therefore, the two choices π[S] lead to fixed points that differ on the states
of vertices in S.

3. S is a k-star in some Yi ∈ Y. Note that in this case, S can only be part of
some Yi. We have yv = 0 and ywj = 1 for j = 1, . . . , k. By construction, π[S]
must be of the form

(wi1 , . . . , wi�k/2� , v, wi�k/2�+1 , . . . , wik
),

Also by construction, all neighbors of the wjs not in S are in B1∪B3, which
remain in state 0, by Lemma 7. Therefore, after one full update per π, the
vertices wi1 , . . . , wi�k/2� turn to state 0, and remain there forever. Vertex v
and the vertices wi�k/2�+1 , . . . , wik

turn to state 1, and remain in this state.
Note that it is possible that v has neighbor not in s that could be in state
1, but this does not affect its state. Therefore, each choice of π[S] leads to a
different fixed point.

Next, consider two permutations π, π′ ∈ P (S). It is easy to choose S ∈ S such
that π[S] �= π′[S]. By the above discussion, the vertices in S end up in different
states under these two update sequences. Therefore, each permutation in P (S)
leads to a different fixed point, and the theorem follows from Lemma 6.

Extension to Treewidth bounded graphs. The exponential instability for
trees (Theorem 1) also holds for treewidth bounded graphs, and we sketch the
main differences below. Our proof relies not on the basic definition of treewidth
from Section 2, but an equivalent characterization in terms of graph separa-
tors [14]: A graph with constant treewidth has recursive separators of constant
size. In other words, there is a constant sized subset S of nodes so that the graph
Y \ S gets partitioned into graphs Y1 and Y2, each with Θ(n) nodes, and both
satisfying this property recursively. Thus, the recursive separators form a tree
in which each node corresponds to subset of k nodes in the original graph Y ,
where k (the treewidth) is a constant. Our construction for such a graph is also
similar – we partition it into a large number of “well-separated stars”, each of
which exhibits exponential instability.



Limit Set Reachability in Asynchronous Graph Dynamical Systems 229

5 Instability of 2-Threshold SDSs over G(n, p)

5.1 A Motivating Example

We now consider threshold SDSs induced by T2
Y on G(n, p), that is, when the

graph Y is chosen from the Erdős-Rényi random graph model G(n, p). We show
that this class of SDSs also exhibits the same update sequence instability as
shown for Starn. As a motivating example, let Y be any graph containing disjoint
sets S1, . . . , S� ⊂ v[Y ] such that each induced subgraph Y [Si] is isomorphic to
Star3. Let v[Si] = {wi, vi,1, vi,2, vi,3}, where wi is the center vertex, and let P be
a set of update sequences over Y satisfying the following conditions.

For all π ∈ P , the vertices in Si appear before those in Sj for i < j.
π restricted to Si is either (wi, vi,1, vi,2, vi,3) or (vi,1, vi,2, vi,2, wi).
The elements of V0 = v[Y ] \ ∪iSi have an arbitrary but fixed sequence for
all π ∈ P .

Clearly, we can construct P to have size 2�. Let VS = ∪iSi, and let y ∈ F
n
2 be

the state where each leaf vertex vi,j ∈ Si has state 1, and all other vertices have
state 0. Let FY be the sequence of local functions with 2-threshold functions
at all vertices in VS , and constant 0 functions (i.e., n-threshold functions) at
all vertices in V0. For any star Si, if the center vertex is updated before any
leaves of Si, all vertices in Si end up at state 0. However, if the center vertex is
updated after all three leaves, all vertices in Si end up at state 1. Moreover, these
vertex-states can never change again, so we can make the following conclusion.

Proposition 4. If FY is the sequence described above, then

ωSY (y) ≥ ωP(y) = 2� , (3)

i.e., any SDS over FY exhibits exponential update sequence instability.

We next will extend this to the G(n, p) random graph model where p > c/n
for some constant c > 0, by showing that there always exists � = O(n) disjoint
Star3-subgraphs (albeit slightly different requirements then above).

5.2 Update Sequence Instability in G(n, p)

Following the earlier discussion, we show that there are many disjoint stars in
G(n, p). We do this in two steps. First, we show that with high probability, a
Star3 exists, along with the extra properties we need, and second, we iteratively
(O(n) times) choose such a subgraph, and remove it and its neighbors.

First, we show that a Star3 with extra properties exists with high probability.
Let Y < Kn be a random graph, and set V = v[Y ]. For V ′ ⊂ V , let

degY (V ′) =
∣∣{v ∈ V \ V ′ | ∃u ∈ V ′, {u, v} ∈ e[Y ]}

∣∣ ,
and let degY (v, V ′) = |N(v) ∩ V ′|, the number of neighbors of v ∈ V contained
in V ′. We will drop the subscript Y whenever it is clear from the context. Let p
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be a fixed probability, and c any constant. For any subgraph A of Y , define the
function

δY (A) =

{
1 ∀v ∈ v[A], degY (v, Y \A) ≤ cnp,

0 otherwise.

This function is 1 if each vertex in A is adjacent to no more than cnp vertices
not in A. Define the indicator functions

xA : G(n, p) −→ {0, 1}, xA(Y ) =

{
1 Y [v[A]] = A

0 otherwise,

XA : G(n, p) −→ {0, 1}, XA(Y ) =

{
1 Y [v[A]] = A and δY (A) = 1
0 otherwise.

We are now ready to define Graph Property 1.

Definition 2 (Graph Property 1). A graph Y has Property 1 if XA(Y ) = 1
for some Star3 subgraph A.

We will show that with high probability, a random graph Y satisfies Property
1. Let A be the set of all Star3 subgraphs of Kn. Define the function

X : G(n, p) −→ N ∪ {0}, X(Y ) =
∑
A∈A

XA(Y ).

Observe that Y satisfies Property 1 if X(Y ) > 0. From the definition of XA and
δY , if A is a Star3 subgraph, then

E[XA] = Pr[XA(Y ) = 1] = p3(1− p)3 Pr[δY (A) = 1] . (4)

The following theorem shows that a random graph Y ∈ G(n, p) satisfies Property
1 with high probability by showing that Pr[X(Y ) = 0] = O(n−1), using the
Second Moment method [11].

Theorem 2. Pr[X = 0] = O(n−1).

Theorem 2 implies that for Y ∈ G(n, p), there exists with high probability a
Star3 graph with the extra properties we require. We now extend this to show
that there exists many Star3 subgraphs in Y with these properties.

Lemma 8. If p = o(nε

n ) for some constant ε ∈ (0, 1), then a random graph from
G(n, p) contains � = n1−ε disjoint sets S1, . . . , S� such that

(i) G[Si] is a Star3, for each i;
(ii) N(Si) ∩N(Sj) = ∅, for i �= j, with probability at least 1− o

(
1
nε

)
.

Proof. Repeatedly apply Theorem 2, i.e., for i = 1, . . . , �,
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1. Choose a set Si such that G[Si] is a Star4, and deg(Si) = O(np);
2. Remove Si ∪N(Si) from the current graph.

By Theorem 2, after S1, . . . , Si have been chosen, n − Θ(npi) vertices remain.
Since p = o(nε

n ) and i ≤ � = n1−ε, we have npi = o(n) for each i. Therefore, the
probability that the above iterative procedure fails (i.e., set Si does not exist) is
at most

O

(∑
i

1
(n− npi)2p

)
= O

(
�

n2p

)
= O

(
n1−ε

n

)
= o

(
1
nε

)
.

Therefore, the iterative procedure succeeds with probability at least 1− o
(

1
nε

)
.

Corollary 1. Threshold systems in G(n, p) contain initial configurations from
which Ω(2n1−ε

) different fixed points can be reached by changing the update se-
quence, with high probability, for p = o(nε

n ).

6 Summary

In this paper, we have demonstrated how update sequence instability is present
in threshold SDSs for broad classes of graphs, and have outlined the potential
consequences this may have for robustness and validity of algorithms based on
such systems. Of course, the presence of instability implies that there are initial
configurations for which the reachability question has an affirmative answer for
many final configurations.

Our study of dynamics and long-term behavior under multiple update se-
quences also provides insight into update sequence stochastic sequential dynam-
ical systems, a theory of stochastic SDSs that is currently being developed. In
this setting, one studies the probability space of SDS maps induced by a set
Ω = {(π1, p1), . . . , (πk, pk)} of update sequences with matching probabilities
such that

∑
i pi = 1. This is naturally captured through Markov chains, and the

current work provides insight into their structure.
From a mathematical point of view, a key step in our work is connecting the

existence of sufficiently many subgraphs of given types to the global dynamics of
the system. Results and theory relating subgraph structure and global dynamics
for graph dynamical systems in a rigorous manner are highly desirable. We hope
this paper can motivate further research along these lines.
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