
Keys in XML:

Capturing Identification and Uniqueness

Michael Karlinger1, Millist Vincent2, and Michael Schrefl1

1 Johannes Kepler University, Linz, Austria
{karlinger,schrefl}@dke.uni-linz.ac.at

2 University of South Australia, Adelaide, Australia
millist.vincent@unisa.edu.au

Abstract. In this article a new type of key constraint in XML, called an
XKey, is proposed. The motivation for an XKey is based on the obser-
vation that existing approaches do not always capture the fundamental
properties of a key, namely identification and uniqueness, and it is shown
that an XKey always has these properties. It is also shown that an XKey
has the desirable property of extending the notion of a relational key.

Keywords: XML, Integrity Constraints, Keys.

1 Introduction

Integrity constraints are one of the oldest and most important topics in database
research, and they find application in a variety of areas such as database design,
data translation and data storage [1]. With the adoption of XML [2] as the
industry standard for data interchange over the internet, and the increasing usage
of XML as a format for the permanent storage of data in database systems [3],
the study of integrity constraints in XML has increased in importance in recent
years (cf. [4] for a recent survey of the topic).

While many different types of integrity constraints have been proposed and
studied, the most important type of integrity constraint is probably a key con-
straint, irrespective of the data model used, since it is the fundamental means
by which entities in a database can be identified. A very simple type of a key
constraint for XML is offered by DTDs [2] in the form of an Id constraint. More
sophisticated key frameworks have recently been proposed in [5], and in the key
and the uniqueness constraints of XML Schema [2]. In these approaches, a key
is syntactically defined by a statement of the form (T, (P1, . . . , Pn)), where T is
a path referred to as the selector and P1, . . . , Pn are paths called fields, and the
semantics of a key then requires that T nodes in the XML tree (document) are
identified by the combination of P1, . . . , Pn nodes.

While these approaches have made an important contribution to the specifi-
cation and study of XML keys, they have several important limitations that
we now highlight in the following example. Suppose that we wish to store
information about customers of a phone company. Two sample XML docu-
ments are shown in Fig. 1. Suppose also that the application specifies the con-
straint that customers are identified by the code and number of their phones,

G. Vossen, D.D.E. Long, and J.X. Yu (Eds.): WISE 2009, LNCS 5802, pp. 563–571, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

564 M. Karlinger, M. Vincent, and M. Schrefl

(a) (b)
<Customers> <Customers>

<Customer name="Jones"> <Customer name="Miller">

<Phone code="0660" number="44444"/> <Phone code="0880" number="33333"/>

</Customer> <Phone code="0880" number="33333"/>

<Customer name="Smith"> </Customer>

<Phone code="0660" number="11111"/> </Customers>

<Phone code="0990" number="44444"/>

</Customer>

</Customers>

Fig. 1. Example XML Documents Representing Customers and their Phones

i.e. the key is κ = (Customers.Customer, (Phone.code, Phone.number)), where
Customers.Customer is the selector and Phone.code and Phone.number are the
fields.

In reference to the approach of [5], its first limitation is that while it is intended
to capture the identification property of a key, it does not always do this, as
we now explain. From an intuitive view point, the XML document in Fig. 1a
satisfies κ since the combination of code plus number of each phone is unique for
the two customers. However, according to the semantics of [5], when there are
multiple fields and there is more than one field node per field then all possible
combinations of field nodes are required to identify the selector node. Hence κ is
violated in Fig. 1a according to the semantics in [5], since both customer nodes
have the field node combination of 0660 and 44444.

The second limitation of the approach in [5] is that it does not capture, nor was
intended to capture, the uniqueness property of a key, which we now illustrate.
In the XML document in Fig. 1b, key κ is satisfied according to the semantics
in [5], which is however not desirable since the phone 0880/33333 is stored
twice. This is a disadvantage, since having a key that is not unique results in
redundancy and update problems similar to what occurs in relational databases.
For example, if the code or number of one of the phones of Miller is modified
but not the other, then the document becomes inconsistent.

XML Schema provides two types of identification constraints, a key constraint
and a unique constraint, with the intention that a key constraint correspond
to a primary key and a unique constraint correspond to a candidate key. The
two constraints are both specified using the same syntax (given earlier), but
have slightly different semantics. While a key constraint specifies that there
must be at least one field node per field, a unique constraint allows the field
nodes to be empty. Both constraints however require that, for each selector node
and each field, there is at most one field node. So, for example, in Fig. 1a this
would require that a customer can only have at most one phone, and so κ would
be violated even though the combination of code plus number of each phone
is unique and effectively identifies the customer it belongs to. We regard this
approach as being too strict and not essential for capturing the identification

Keys in XML: Capturing Identification and Uniqueness 565

(a) (b) (c)
<Customers>

cno code number cno {code number} <Customer cno="C1">

C1 0660 44444 C1 0660 44444 <Phone code="0660" number="44444"/>

C2 0660 11111 0770 22222 <Phone code="0770" number="22222"/>

C1 0770 22222 </Customer>

C2 0990 44444 <Customer cno="C2">

C2 0660 11111 <Phone code="0660" number="11111"/>

0990 44444 <Phone code="0990" number="44444"/>

</Customer>

</Customer>

Fig. 2. Relation Phones (a) flat, (b) nested, and (c) mapped to XML

and uniqueness property of a key, and so we will later define a key constraint
differently so that κ is satisfied in Fig. 1a (but not in Fig. 1b).

The second limitation of the work in [5], and the XML Schema constraints
is that they do not extend the semantics of a relational key. To illustrate this,
consider the following example, closely related to the one given earlier.

The relation shown in Fig. 2a stores details of phones and the customers that
they belong to. The key for relation Phones is (code, number), and so code plus
number identifies the number of a customer (cno), but cno does not identify
code and number since a customer may have more than one phone.

We now map relation Phones to an XML document by first nesting on {code,
number}, and then directly to an XML document as shown in Fig. 2. This
mapping is an instance of a general method of mapping a relation to an XML
document, which was originally presented in [6]. We also name the XML doc-
ument as Customers, rather than Phones, to reflect the fact that the details
of phones are now nested under cno as a result of the mapping. As a result of
the nesting, cno is now unique in Customers and so, as one would expect, the
key (Customers.Customer, (cno)) holds in Customers. However, since (code,
number) is a key in Phones one would also expect that (code, number) iden-
tifies customers in Customers, and hence that the key (Customers.Customer,
(Phone.code,Phone.number)) would hold. However, this is not the case under
either the semantics of [5] or XML Schema, for the same reasons that the XML
document in Fig. 1a violates κ.

Having an XML key constraint that extends the semantics of a relational
key is important in several areas. Firstly, in the area of XML publishing [7],
where a source relational database has to be mapped to a single predefined
XML schema, knowing how relational integrity constraints map to XML integrity
constraints allows the XML document to preserve more of the original semantics.
This argument also applies to ‘data-centric’ XML [8], where XML databases (not
necessarily with predefined schemas) are generated from relational databases.

The first contribution of our paper is to propose a new key constraint for
XML, called an XKey. An XKey specifies that field nodes related by a semantic

566 M. Karlinger, M. Vincent, and M. Schrefl

property called closest are required to be unique, thus obviously capturing the
uniqueness property and eliminating the redundancy problems discussed earlier.
However, we also show that a consequence of the uniqueness property of an XKey
is that selector nodes are identified by field nodes, and so an XKey simultaneously
captures both the uniqueness and identification properties of a key.

Our second contribution is to show that an XKey extends the semantics of a
relational key, thus eliminating the third limitation of the existing approaches
discussed earlier. We do this by showing that in the special case where the XML
tree is derived from a flat relation by first mapping it to a nested relation by an
arbitrary sequence of nest operations, then the XML tree satisfies an XKey if
the flat relation satisfies the corresponding relational key.

The rest of the paper is organized as follows. Section 2 contains preliminary
definitions, and Sect. 3 contains the definition of our XKey. Finally, Sect. 4 gives
an overview over related work.

2 XML Trees, Paths and Reachable Nodes

In this section we present some preliminary definitions. First, following the
model adopted by XPath and DOM [2], we model an XML document as a
tree as follows. We assume countably infinite, disjoint sets E and A of element
and attribute labels respectively, and the symbol S indicating text. Thereby,
the set of labels that can occur in the XML tree, L, is defined by L =
E ∪ A ∪ {S}.
Definition 1. An XML tree T is defined by T = (L,V, E, lab, val, vρ), where

– V is a finite, non-empty set of nodes;
– the function lab : V → L assigns a label to every node in V. A node v is

called an element node if lab(v) ∈ E, an attribute node if lab(v) ∈ A, and
a text node if lab(v) = S;

– vρ∈ V is a distinguished element node, called the root node, and lab(vρ) =ρ;
– the parent-child relation E ⊂ V × V defines the directed edges connecting

the nodes in V and is required to form a tree structure rooted at node vρ.
Thereby, for every edge (v, v̄) ∈ E,
1. v is an element node and is said to be the parent of v̄. Conversely, v̄ is

said to be a child of v;
2. if v̄ is an attribute node, then there does not exist a node ṽ ∈ V and an

edge (v, ṽ) ∈ E such that lab(ṽ) = lab(v̄) and ṽ �= v̄;
– the partial function val : V → string assigns a string value to every attribute

and text node in V.

We also denote the parent of node v in a tree by parent(v), and the set of
ancestor nodes of v by ancestor(v). An example of an XML tree is presented in
Fig. 3, which is the tree representation of the XML document in Fig. 2, where
E = {ρ, Customer, Phone} and A = {cno, code, number}.

Keys in XML: Capturing Identification and Uniqueness 567

ρ vρ

v9

v13

Customer

cno

C2

v14

v15 v16

Phone

number

44444

code

0990

v10

v11 v12

Phone

number

11111

code

0660

v1

Customer

v4

v2

v3

Phone

number

44444

code

0660

v6

v7 v8

Phone

number

22222

code

0770

v5

cno

C1

Fig. 3. Tree Representation of the XML Document in Fig. 1c

The notion of a path, which we now present together with some frequently
required operators on paths, is central to all work on XML integrity constraints.

Definition 2. A path P = l1. · · · .ln is a non-empty sequence of labels (possibly
with duplicates) from L. Given paths P = l1. · · · .ln and P̄ = l̄1. · · · .l̄m we define

– P to be a legal path, if l1 = ρ and li ∈ E ∀i ∈ [1, n−1]1.
– P to be a prefix of P̄, denoted by P ⊆ P̄, if n ≤ m and li = l̄i ∀i ∈ [1, n].
– the concatenation of P and P̄, denoted by P.P̄, to be l1. · · · .ln.l̄1. · · · .l̄m.
– the intersection of P and P̄ if both are legal paths, denoted by P ∩ P̄, to be

the longest path that is a prefix of both P and P̄ .
– parent(P) = l1. · · · .ln−1, if n > 1, to denote the parent path of P .
– last(P) = ln to denote the final label in P .

For example, if E = {ρ, Phone} and A = {code, number} then code.Phone is a
path but not a legal one, whereas ρ.Phone.code is a legal path. Also, ρ.Phone ⊆
ρ.Phone.code and if P = ρ.Phone.code and P ′ = ρ.Phone.number, then P ∩P ′ =
ρ.Phone.

We now define a path instance, which is essentially a downward sequence of
nodes in an XML tree emanating from the root node.

Definition 3. A path instance p = v1. · · · .vn is a non-empty sequence of nodes
such that v1 = vρ and ∀i ∈ [2, n], vi−1 = parent(vi). The path instance p is said
to be defined over a path P = l1. · · · .ln, if lab(vi) = li ∀i ∈ [1, n].

For example, referring to Fig. 3, vρ.v1.v2 is a path instance and it is defined over
the path ρ.Customer.Phone.

The next definition specifies the set of nodes reachable in a tree from the root
node by following a path.

Definition 4. Given a tree T = (L,V, E, lab, val, vρ) and a path P, the function
N(P) returns the set of nodes defined by N(P) = {v ∈ V | v is the final node in
path instance p and p is defined over P}.
1 [1, n] denotes the set {1, . . . , n}.

568 M. Karlinger, M. Vincent, and M. Schrefl

For instance, referring to Fig. 3, if P = ρ.Customer.cno, then N(P) = {v5, v13}.
We note that it follows from our tree model that for every node v in a tree
T there is exactly one path instance p such that v is the final node in p and
therefore N(P) ∩ N(P̄) = ∅ if P �= P̄ . We therefore say that P is the path such
that v ∈ N(P).

3 Defining an XML Key

In this section we present the syntax and semantics of our definition of an XKey,
starting with the syntax. As noted previously, our syntactic framework is the
same as that used in specifying key and unique constraints in XML Schema,
and the framework used in [5] for specifying XML keys.

Definition 5. An XKey is a statement of the form (T, (P1, . . . , Pn)), where T
is a path called the selector, and P1, . . . , Pn are paths called fields, such that for
all i ∈ [1, n], T.Pi is a legal path that ends in an attribute or text label.

We now compare this definition to the key constraint in XML Schema, which
is the basis for the syntax of an XKey. (i) We only consider simple paths in
the selectors and fields, whereas XML Schema allows for a restricted form of
XPath expressions. (ii) In contrast to an XKey, an XML Schema key also allows
for relative constraints, whereby the key constraint is only evaluated in part
of the XML tree. (iii) The restrictions on fields means that we only consider
the identification of selector nodes by text/attribute nodes, whereas the key
constraint in XML Schema also allows for field nodes being element nodes.

We should mention that restrictions (i) - (iii) are not intrinsic to our approach,
and Definition 5 can easily be extended to handle these extension. Our reason
for not considering these extensions here is so that we can concentrate on the
main contribution of our paper, which is to apply different semantics to an XKey
so as to capture the identification and uniqueness property of a key.

To define the semantics of an XKey, we present first a definition, originally
presented in [6], which is central to our approach and is what distinguishes it
from other approaches. The intuition behind it is as follows. In defining relational
integrity constraints, it is implicit that the relevant data values belong to the
same tuple. The following closest definition extends this property of two data
values belonging to the same tuple to XML, that is if two nodes in the tree
satisfy the closest property, then ’they belong to the same tuple’.

Definition 6. Given nodes v1 and v2 in an XML tree T, the boolean function
closest(v1, v2) is defined to return true, iff there exists a node v1

2 such that (i)
v1
2 ∈ aancestor(v1), and (ii) v1

2 ∈ aancestor(v2), and (iii) v1
2 ∈ N(P1∩P2), where

P1 and P2 are the paths such that v1 ∈ N(P1) and v2 ∈ N(P2) and the aancestor
function is defined by aancestor(v) = ancestor(v) ∪ {v}.
For instance in the tree in Fig. 3, closest(v2, v5) is true since v2 ∈ N(ρ.Customer.
Phone), v5 ∈ N(ρ.Customer.cno) and v1 ∈ N(ρ.Customer) is an aancestor

Keys in XML: Capturing Identification and Uniqueness 569

of both v2 and v5, where ρ.Customer = ρ.Customer.Phone ∩ ρ.Customer.cno.
Also, closest(v1, v5) is true since v1 is an aancestor of both v1 and v5 and
ρ.Customer = ρ.Customer ∩ ρ.Customer.cno. However, closest(v1, v13) is false
since v13 ∈ N(ρ.Customer.cno), but v1 and v13 have no common aancestor node
in N(ρ.Customer).

This leads to the definition of the semantics of an XKey.

Definition 7. An XML tree T satisfies an XKey σ = (T, (P1, . . . , Pn)), denoted
by T � σ, iff whenever there exist selector nodes {v, v′} ⊆ N(T) and sets of field
nodes v1, . . . , vn and v′1, . . . , v

′
n such that

i) ∀i ∈ [1, n], {vi, v
′
i} ⊆ N(T.Pi) and vi ∈ ancestor(v) and v′i ∈ ancestor(v′);

ii) ∀i, j ∈ [1, n], closest(vi, vj) = closest(v′i, v
′
j) = true;

iii) ∀i ∈ [1, n], val(vi)=val(v′i),
then ∀i ∈ [1, n], vi = v′i.

Clearly, our definition of an XKey captures the uniqueness property of the sets
of field nodes in a key σ, since if T � σ then there cannot exist two distinct
sets of field nodes for σ that are value equal. Also, our definition captures the
identification of selector nodes by the combination of field nodes. That is, if T � σ
and v, v′ are selector nodes for σ, then v = v′ if there exist field nodes v1, . . . , vn

for v and v′1, . . . , v′n for v′ such that val(vi) = val(v′i) for all i ∈ [1, n]. This is
because if v �= v′, then since T is a tree a field node cannot be a descendant of
both v and v′ and hence the sets of field nodes v1, . . . , vn and v′1, . . . , v

′
n must be

distinct, which is a contradiction and so v = v′.
For instance, if T̄ is the tree in Fig. 3, then nodes v1 and v9 are the selector

nodes for the XKey κ′ = (ρ.Customer, (Phone.code, Phone.number)) in tree T̄,
and the only sets of field nodes that pairwise satisfy the closest property are
{{v3, v4}, {v7, v8}} for v1 and {{v11, v12}, {v15, v16}} for v9. These sets of field
nodes are obviously unique, since none of them are value equal, and therefore tree
T̄ satisfies κ′. Note that the selector nodes v1 and v9 are indeed identified by each
of the sets of field nodes {v3, v4}, {v7, v8} and {v11, v12}, {v15, v16}, respectively.

Now, recall from the introductory example that T̄ is the tree obtained from re-
lation Phones (cf. Fig. 2a) according to the general mapping procedure originally
presented in [6], whereby flat relation Phones is first nested on {code, number}
and then mapped directly to XML. In this example (code, number) is the key
for Phones, and its semantics is preserved by the XKey κ′ in the obtained tree
T̄ since T̄ � κ′ as shown above. Hence κ′ exemplifies the property of an XKey
to preserve the semantics of a relational key in case that the XML document is
obtained from a complete relation by the mapping procedure in [6]. We omit a
formal analysis of this property of an XKey here for reasons of space require-
ments and refer the reader to [9] instead.

We note finally that κ′ is violated in tree T̄ according to both the semantics
of [5] and XML Schema, which shows that these approaches do not have the
desirable property of preserving the semantics of a relational key.

570 M. Karlinger, M. Vincent, and M. Schrefl

4 Related Work and Discussion

In recent years, several types of XML Integrity Constraints (XICs) have been
studied. We focus here on key and related types of constraints and refer the
reader to [4] for a survey of other types of XICs.

Related to keys in XML are functional dependencies in XML (XFDs), which
have been proposed using a ‘tree tuple’ approach [10] and a ‘closest node’ ap-
proach [6]2. Tailored to the selector/field framework, an XFD achieves the iden-
tification of selector nodes in the same, sophisticated way an XKey does. It
however does not account for the uniqueness of field nodes. This together with
the limitations of the well recognized proposals towards XML keys in [5] and the
XML Schema specification, which we have illustrated throughout the paper, in
fact motivated the definition and study of an XKey.

The XML key presented in [11] does not use the selector/field framework, but
instead identifies element nodes by a subset of their attributes. The targeted
element nodes are thereby designated by either a type in a DTD or by a path
expression. This approach is less expressive than an XKey since it does not allow
for the identification of element nodes by descending field nodes.

In future work we will investigate the consistency and implication prob-
lems for XKeys, which are fundamental to any type of integrity constraint.
These problems are formulated as the questions of whether there exists at
least one XML document that satisfies a given set of XKeys, and whether a
single XKey must hold in an XML document given that a set of XKeys holds,
respectively.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Möller, A., Schwartzbach, M.: An Introduction to XML and Web Technologies.
Addison Wesley, Reading (2006)

3. Beyer, K.S., Cochrane, R., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G.M.,
Lyle, R., Özcan, F., Pirahesh, H., Seemann, N., Truong, T.C., der Linden, B.V.,
Vickery, B., Zhang, C.: System RX: One Part Relational, One Part XML. In:
SIGMOD, pp. 347–358. ACM, New York (2005)

4. Fan, W.: XML Constraints: Specification, Analysis, and Applications. In: DEXA
Workshops, pp. 805–809. IEEE Computer Society Press, Los Alamitos (2005)

5. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Reasoning about
keys for XML. Information Systems 28(8), 1037–1063 (2003)

6. Vincent, M.W., Liu, J., Mohania, M.: On the Equivalence between FDs in XML
and FDs in Relations. Acta Informatica 44(3-4), 207–247 (2007)

7. Fan, W.: XML Publishing: Bridging Theory and Practice. In: Arenas, M.,
Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797, pp. 1–16. Springer, Hei-
delberg (2007)

8. Vakali, A., Catania, B., Maddalena, A.: XML Data Stores: Emerging Practices.
IEEE Internet Computing 9(2), 62–69 (2005)

2 These two approaches have been shown to be equivalent in complete XML trees [6].

Keys in XML: Capturing Identification and Uniqueness 571

9. Karlinger, M., Vincent, M., Schrefl, M.: Keys for XML. Technical Report 09.03,
Dept. of Business Informatics - DKE, JKU Linz (2009)

10. Arenas, M., Libkin, L.: An information-theoretic approach to normal forms for
relational and XML data. J. ACM 52(2), 246–283 (2005)

11. Arenas, M., Fan, W., Libkin, L.: On the Complexity of Verifying Consistency of
XML Specifications. SIAM J. Comput. 38(3), 841–880 (2008)

	Keys in XML:Capturing Identification and Uniqueness
	Introduction
	XML Trees, Paths and Reachable Nodes
	Defining an XML Key
	Related Work and Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

