
Entry Pairing in Inverted File

Hoang Thanh Lam1, Raffaele Perego2,
Nguyen Thoi Minh Quan3, and Fabrizio Silvestri2

1 Dip. di Informatica, Università di Pisa, Italy
lam@di.unipi.it

2 ISTI-CNR, Pisa, Italy
{r.perego,f.silvestri}@isti.cnr.it

3 Lomonosov Moscow State University, Russia
ntmquan@yahoo.com

Abstract. This paper proposes to exploit content and usage informa-
tion to rearrange an inverted index for a full-text IR system. The idea
is to merge the entries of two frequently co-occurring terms, either in
the collection or in the answered queries, to form a single, paired, entry.
Since postings common to paired terms are not replicated, the resulting
index is more compact. In addition, queries containing terms that have
been paired are answered faster since we can exploit the pre-computed
posting intersection. In order to choose which terms have to be paired,
we formulate the term pairing problem as a Maximum-Weight Matching
Graph problem, and we evaluate in our scenario efficiency and efficacy
of both an exact and a heuristic solution. We apply our technique: (i) to
compact a compressed inverted file built on an actual Web collection of
documents, and (ii) to increase capacity of an in-memory posting list.
Experiments showed that in the first case our approach can improve the
compression ratio of up to 7.7%, while we measured a saving from 12%
up to 18% in the size of the posting cache.

1 Introduction

Compression plays an important role in modern information retrieval systems,
particularly in large-scale Web Search Engines (WSEs), which crawl and in-
dex tens of billions of pages, thus managing an extremely huge inverted index
and document repository. The benefits of effective compression techniques are
twofold. First, they allow cost savings for storage. Second, the memory hierarchy
is better utilized thus resulting in a lower query processing time [1]. It is well
known that fetching compressed data from disk and then decompressing them in
memory, is generally faster than fetching from disk the same data stored uncom-
pressed. Thus, in the case of a disk-resident inverted index, compressing posting
lists decreases the time required to fetch them from secondary storage. On the
other hand, posting list compression remains valuable even for in-memory in-
dex settings, since it remarkably increases the portion of the index that can fit
the available memory at the cost of a negligible decompression overhead [2–4].
Previous work has focused on devising effective and efficient coding methods to

G. Vossen, D.D.E. Long, and J.X. Yu (Eds.): WISE 2009, LNCS 5802, pp. 511–522, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

512 H.T. Lam et al.

compress the posting lists of inverted indexes [4–7], or to reduce their size by
an ad-hoc assignment of document identifiers [8–12]. Differently from previous
works on index compression, this paper proposes a new technique for the loss-
less compression of an inverted index by directly reducing the number of entries
stored as well as the number of postings coded. Based on the observation that
many terms are highly correlated, i.e. co-occur frequently in the same docu-
ment, and/or in the same query, we propose an algorithm to code only once the
postings that are shared by different, correlated terms. In principle, coding only
once the postings of two frequently co-occurring terms results in a reduction of
space occupancy proportional to the number of postings saved. In addition, the
pairing can be exploited to speed-up query processing time, when these highly
related terms occur in the same query. Indeed, choosing the terms to pair is a
complex task since the number of terms in the lexicon is huge. In fact, typical
candidate terms are likely to be globally frequent and highly correlated in the
indexed collection and/or in the queries submitted to the information retrieval
system. We formulate the pairing decision problem as an optimization problem
in graph theory known as the Maximum Weight Matching Problem (MWMP)
[13]. MWMP is a classical graph theory problem, which can be exactly solved in
time proportional to the cube of the number of vertices. Alternative linear-time
approximation algorithms are also known.

Two different series of experiments are conducted on an inverted index built
on a large Web Collection. First, we apply our technique to compress the whole
inverted file index, obtaining up to 7.7% better compression ratio. Second, we
apply the same technique to store in an in-memory posting cache the most
frequently accessed posting lists and their intersections [14]. With this sort of
static cache, a 12%-18% reduction in size was measured on the given test set.

Note that multi-term indexing is not novel. In particular in [15], an inverted
index with multi-term entries was proposed to boost query processing. Beside
the traditional, single-term index, the authors built an additional inverted index
with frequent multi-keyword entries. The main drawback of their solution is the
extra amount of memory needed to store the multi-term entries. On the other
hand, our solution actually reduces the memory needed thus leaving free space
for other important in-memory structures such as the cache.

In summary, our main contributions are:

– a novel inverted index compression technique based on pairing posting lists
of frequently co-occurring terms.

– two types of representations for paired posting lists. The two representations
have different pros and cons, which are discussed and evaluated.

– the demonstration on real data of the advantages of using our technique on
two different scenarios: (i) inverted file compression, and (ii), static index
caching.

The rest of the paper is organized as follows. The related work is presented
in the next Section. Preliminaries and background information about inverted
index representation and compression techniques are introduced in Section 3.

Entry Pairing in Inverted File 513

Section 4 describes the basic idea of terms pairing and the two different repre-
sentation methods proposed. The problem formulation and the proposed algo-
rithms are discussed in Section 4.1, while the experimental results are reported
in Section 5. Finally, Section 6 discusses future work and draws our conclusions.

2 Related Work

As above mentioned, several papers focused on devising effective and efficient
methods to encode the document identifiers (DocIDs) contained in the posting
lists of Inverted File (IF) indexes, which allows efficient retrieval of documents
containing the set of terms specified in a query. Since posting lists are ordered
sequences of integer DocID values, and are usually accessed by scanning them
from the beginning, these lists are stored as sequences of d-gaps, i.e. differ-
ences between successive DocID values. d-gap lists are then compressed by using
variable-length encodings, which represent small integers in less space than large
ones. Basic d-gaps coding methods are Variable Byte, which does not give the
best compression performance, but it has a very short decompression time, and
Gamma, which works best for encoding very small values [4]. More complex en-
coding techniques are Golomb [5], Rice [6], Simple9, Simple16, and PForDelta
[7]. By following a radically different approach, Blandford et. al. [8], and Shieh
et. al. [9], proposed methods to improve the IF compression performance by
globally re-ordering document identifiers. Their approach aimed to reduce the
average values of d-gaps by cleverly re-assigning document identifiers. Smaller
the d-gaps are, shorter their representation with any variable length encoding
method. On the same direction, Silvestri et. al. [10, 11], Blanco et. al. [12] studied
efficient approaches to reduce the complexity of re-ordering document identifiers
while maintaining a similar compression performance. As previously said, multi-
terms indexing is not novel. For example, it was proposed in [15] for supporting
efficiently phrase searches. The most frequent phrases mined from query logs
were indexed as unique index entries, thus allowing the fast resolution of queries
asking for such subset of supported phrases. Such multi-term entries were cho-
sen on the basis of actual frequency of occurrence extracted from query logs.
As the distribution of query terms is highly skewed, their experiments showed
that the additional multi-terms inverted index could remarkably speed up query
processing at the cost of an increase in the size of the whole index. This work
is highly related to ours, and their accurate experiments strongly reinforce the
validity of our assertion regarding the performance improvement in the query
processing process resulting also from our technique. The main difference with
respect to the work in [15] is that our proposal does not require extra storage
space for storing paired entries, but instead allows the size of the index to be
reduced without incurring in any information loss.

3 Preliminaries

Let D = {d1, d2, . . . , dN} be a collection of N documents, each one identified by
a distinct DocID, and T ={t1, t2, . . . , tT } the set of T distinct terms appearing

514 H.T. Lam et al.

in the documents of D. Based on D and T , an IF is constructed by listing, on
a term basis, the sequences of documents of D containing occurrences of terms
of T . A DocID list associated with a term of T , is called posting list. Generally,
each posting is annotated with additional information regarding the frequency of
the term in the document, and the position of each occurrence. This information
is however generally stored in different streams of the IF posting list, and the
following discussion does not affect such meta-information. Thus, without loss
of generality, hereinafter, with the term posting list we will refer to a simple
sequence containing the (encoding of) the integer identifiers of the documents
in the associated IF entry.

As an example, let us consider two terms t1, t2 ∈ T such that t1 and t2 appear
in documents of D having identifiers 10, 15, 80, 1070, 2000, 2008, and 6, 15,
1070, 1090, 2000, respectively. From the previous assumption, the above ordered
sequences of DocIDs constitute the posting lists for terms t1 and t2. It is worth
noting that each posting list is generally transformed into a sequence of d-gaps
before its encoding, i.e., a sequence of differences between consecutive DocIDs
appearing in the posting list. Obviously, resulting d-gap values are smaller than
original DocIDs, and, they can be more compactly represented by means of
variable length encodings. Decoding d-gap values requires extra computation to
obtain valid DocIDs. However, this computational load is negligible, as it requires
to perform only fast addition operations on data with high spatial locality. In the
following, we will briefly recall two of the most commonly used variable length
d-gap encoding techniques.

– Variable Byte (VB) Coding. According to this scheme, a d-gap x is
encoded with a sequence of consecutive bytes, the number of which depends
on the value of x. The first bit of each byte indicates wether the byte is
the last of the sequence (it is set if that byte is the last one), while the
other 7 bits are used to actually encode the d-gap. For example, the codes
of the two integer values 2 and 129 are 00000010 and 0000000110000001,
respectively.

– Gamma Coding (GC). The previous encoding scheme is not particularly
efficient to code very small d-gaps, as may happen for very frequent terms of
the collection. Gamma uses instead a variable number of bits. A gamma code
has two parts: The first, unary part contains a sequence of 1’s followed by one
0, where the number of 1’s defines the length of the binary representation of
the d-gap value that is stored in the second part. With gamma, the codes of
the above two integer values 2 and 129 are 110.10 and 111111110.10000001,
respectively.

Gamma coding uses single bits to encode integers, while variable byte coding is
byte aligned. In the context of very small integral values, gamma code is more
effective than variable byte, but decoding is more expensive. In other condi-
tions, variable byte behaves better. As we will see in Section 5, the character-
istics of each coding technique affect also the performance of our term-pairing
approach.

Entry Pairing in Inverted File 515

4 Representing IF Paired Terms

We base our study on the reasonable assumption that: terms appearing frequently
together within the same documents share a lot of common postings. For example,
terms like FIFA and Football, Windows and Microsoft, Linux and GNU, etc, are
very likely to co-occur. The union of two posting lists has a number of postings
equal to the sum of the postings of the single posting lists, minus the number of
common postings appearing in both the paired lists. When the merged posting
lists are highly correlated, their union could be remarkably shorter than the sum
of the single lists. Let us consider again the above toy example: t1 and t2 have
the following posting lists associated with: 10, 15, 80, 1070, 2000, 2008, and 6, 15,
1070, 1090, 2000. Pairing t1∪t2 will result in a list made up of 8 postings instead
of 11 (the sum of the cardinality of the two single lists). Pairing must preserve
the ability of answering queries in which terms are not paired. Therefore, some
extra bits are needed to code such information that is necessary for supporting
a correct query answering.

We propose two different approaches to encode such paired posting lists. The
first representation provides that two extra bits per posting are used to indicate
the source of a given posting, e.g., 10 for the first term, 01 for the second, 11
for both. Apart from these extra information, the postings of the merged lists
can be coded with any technique. We called this type of representation Mixed
Union (MU). In the second type of representation the postings of the paired
terms are split into 3 partitions. The first partition contains postings common
to both terms, the second partition postings for the first term only, and, finally,
the last partition belongs to the second term. The DocIDs of each partition can

Fig. 1. A simple example of pairing two correlated posting lists: the paired posting list
t1|t2 has 8 postings instead of 11

516 H.T. Lam et al.

be ordered and represented with difference coding with the preferred technique.
Some extra space is needed also in this case to store the offsets marking the
starting points of the second and the third region. Normally, 8 bytes are sufficient
for representing the two offsets in each paired list. We called this second kind
of representation Separated Union (SU). The example in Figure 1 shows two
entries paired and encoded with SU. SU has many advantages compared to MU.
First, the number of extra space required is fixed (8 bytes) regardless posting
list length, while in MU, the number of extra bits required is proportional to
posting list length. In the case of a long posting list, MU is not likely to be a
good choice. Second, decompression in SU involves each partition separately. In
contrast, in MU we have to decompress the whole paired posting lists at a time
to filter out the posting list of a single term or of the intersection. On the other
hand, the disadvantage of SU is that the d-gap values must be computed locally
for each partition, so that their average values are larger than in MU. Choosing
which type of representation is the best may depend also on the compression
technique adopted for coding the postings.

Paired entries speed-up processing of every kind of query. Conjunctive ones
benefit from the intersection portion, to resolve disjunctive we just need to scan
the paired posting list, to resolve set-difference (e.g. t1 and not t2) we just need to
scan the appropriate portion of the paired posting list. Note that lexicon needs
not only a slight change. Paired terms will point to two lists the intersection
portion and the list of posting for the term not contained within the intersection.
Suppose t1 and t2 have been paired up. When user requires a query containing
both t1 and t2, the system will retrieve the relative list pointers. They have been
paired up, thus, pointers are found to be the same, and the system will read
only the intersection portion; otherwise from the lexicon we can obtain what is
the relative portion to scan. For instance Figure 1 shows the case for SU. If we
want to read the whole posting list for t1 we have to scan the two lists pointed
by the lexicon structure.

4.1 Problem Formulation

The compression benefits deriving from our technique clearly depend from the
frequency and correlation degree of the paired terms. The choice of which terms
to pair is thus crucial. We formulate the pairing decision problem as an opti-
mization problem, and reduce it to a classical graph theory problem known as
the Maximum Weight Matching Problem (MWMP) [13]. The MWMP can be
solved with an exact algorithm in polynomial time, or with an approximation
algorithm in linear time. In this section, we formalize our term-pairing problem.

Let G(V, E) be a graph with a set of vertexes V , and a set of edges E. Suppose
that each vertex vi ∈ V corresponds to a term ti of T , and that an edge eij exists
between each couple of vertexes vi and vj . Moreover, let us assume that each
edge eij ∈ E is weighted with the value returned by the following function:

w(eij) =
{

0 iff Btech(ti, tj) ≤ 0
Btech(ti, tj) otherwise.

Entry Pairing in Inverted File 517

Fig. 2. An example of compression benefit graph. The Maximum Weight Matching for
this graph is shown on the right hand side.

where Btech(ti, tj) measures (in number of bits) the benefit of pairing terms ti
and tj according to the technique tech adopted, i.e. according to the type of
representation for paired entries (MU or SU), and the encoding method used for
representing d-gaps (e.g., VB, GC, etc.).

For the above graph G, a set M ⊆ E of edges is a matching if no pair of edges of
M has a common vertex. Given our benefit weight function w(eij), which assigns
weights to the edges of G, a matching M is a Maximum Weight Matching, if M is
a matching, and

∑
e∈M w(e) is maximal. It is straightforward to derive from the

Maximum Weight Matching of G the optimal pairing. It suffices to pair together
the terms corresponding to nodes at both ends of edges in the matching. Figure 2
shows a simple example of graph with compression benefit weights. The rightmost
graph in Figure 2 represents the associated Maximum Weight Matching.

Several exact algorithms for solving the MWMP in polynomial time were pro-
posed such as the Blossom algorithm by J. Edmonds [16], or the one by Gabow
[17]. Approximated methods can compute good quality solutions to the MWMP in
linear time. In this paper, we use the Preis’s linear time half-approximation algo-
rithm [18]. We also experiment the exact algorithm by Gabow [17] with
complexity O(|E|3).

5 Experimental Results

Our terms pairing technique was tested on an IF obtained fromWBR99, a realWeb
collection consisting of 5,939,061documents, occupying about 22GB, and contain-
ing about 2,700,000 different terms [10, 11]. WBR99 is a snapshot of the Brazilian
Web as crawled by TodoBr, a Brazilian search engine (www.todobr.com.br). The
lexicon and the uncompressed postings of WBR99 occupy a space of about 3.6 GB.
For experimenting the posting cache case we used also a query log of 51 millions
queries collected by the same search engine. Two different series of experiments
were conducted on the data above. In the first series of tests we evaluate the effi-
cacy of our method in compressing the posting lists. We measure the compression

www.todobr.com.br

518 H.T. Lam et al.

ratio with respect to the size of a traditional, single-term IF adopting the same
encoding technique (VB or GC), and containing exactly the same information.
The second series of experiments evaluate the applicability of the same idea to the
representation of postings within a static posting list cache.

In each experiment conducted, both the exact and approximate algorithms
for the MWMP, as well as the Separated and Mixed Union representations for
the paired posting lists, were tested. The results of the experiments are reported
and discussed in the following subsections.

5.1 Term Pairing for IF Compression

During the analysis of the IF built on the WBR99 collection, we observed that
the distribution of term occurrences is highly skewed. Indeed, the posting lists of
the 10, 000 most frequent terms account for more than 75% the size of the whole
IF! For this reason, in order to prevent our MWMP exact solver from performing
exhaustive searching over a very large graph without significant improvement in
compression performance, we restricted the size of the problem, and considered
the graph of the k = 10, 000 most frequent terms only. This simple pruning
technique makes our problem instance tractable also with the Gabow’s exact
algorithm with cubic complexity.

To justify our pruning technique, the leftmost plots of Figure 3 reports the
compression improvement (in number of bytes) resulting from applying our tech-
nique (with VB encoding and SU representation) on the basis of the results of
Preis’s approximate algorithm for different values of k. As we can see, the im-
provement increases rapidly when k grows up to 500, but tends to converge for
higher values. The rightmost plot of Figure 3 shows instead the ratio between
compression improvement and the number of paired terms. As expected, the
benefit of our technique is very high when the first most frequent tterms are
paired but tends to decrease as the length of posting lists of the paired terms
decreases. In the following experiments we thus fixed k = 10, 000, and considered
the MWMP for our benefit graph with 10, 000 most frequent terms.

Fig. 3. Compression performance for values of the pruning factor k increasing up to
10, 000. Leftmost plot shows compression improvement, while the plot on the right
hand shows the ratio between compression improvement and the number of paired
terms.

Entry Pairing in Inverted File 519

Fig. 4. Compression ratios achieved for VB-SU, VB-MU, GG-SU, and GC-MU, the four
possible different combinations of Variable Byte and Gamma Coding, with Separated
and Mixed Union representations. The two bars in each case refer to the compression
ratios obtained with Gabow and Preis algorithms. The compression improvement is
compared with the baseline VB code and Gamma code.

Figure 4 plots the results of the experiment conducted to evaluate the com-
pression improvement resulting from different settings of our term pairing tech-
nique. In particular, Variable Byte (VB), and Gamma Code (GC) were combined
with either Separated Union or Mixed Union, thus obtaining four different cases
denoted with VB-SU, VB-MU, GC-SU, and GC-MU. Moreover, each case cor-
responds to two bars in the plot: one for the exact Gabow’s algorithm, and
one for the Preis’ approximate one. We can see from the figure that the term
pairing approach VB-SU is the most effective with a gain of 7.73% in the com-
pression ratio. SU representation is remarkably better than mixed union with
VB encoding. However, with Gamma encoding the opposite holds. This is very
likely due to SU increasing the average values of d-gaps. We deserve to a future
work to better investigate this fact. We can also observe that the exact algo-
rithm is only slightly better than the approximate algorithm. For example, in
the case of VB-SU, the Gabow’s exact algorithm gives the a solution resulting in
7.73% better compression ratio, while the Preis’s approximate solution reaches
an improvement of 7.58%.

5.2 Pairing Cached Posting Lists

In this section, we consider another possible application of our term pairing
approach: the representation of posting lists cached in main memory for faster
query processing. Previous work [7, 14] has shown that posting list caching in
memory is an effective technique to speed up query response time because it save
up the cost of expensive disk accesses. Currently, commercial memory devices can
be thousands time faster than hard disk, thus, by keeping the most frequently
accessed posting lists inside memory, we can reduce the number of expensive

520 H.T. Lam et al.

Fig. 5. Term pairing applied to the cache of posting lists: compression ratio improve-
ment for different sizes of the cache (varying from 5, 000 to 1, 000), and different set-
tings of the term pairing technique. The compression improvement is compared with
the baseline VB code.

disk accesses. However, due to limit size of memory devices, cached posting
lists must be compressed as much as possible. The more compacted the cached
posting lists are the more posting lists can be resident inside memory, thus,
reduce the number of disk accesses. In this section, we show empirically that our
approach can reduce the cached posting lists size from 12−18% compared to the
other types of compression techniques. The cache into which the posting lists
are kept can be managed with a static or dynamic policy. We will consider here
only static posting list caching, since the choice of the best replacement policy
to adopt in this case is out of the scope of this paper.

For testing the term pairing technique on cached posting lists we use a query
log of 51 millions queries collected in 2003 by the Brazilian search engine TodoBr
(the same source of the WBR99 collection). Frequency of terms appearing in the
user queries were counted, and these terms then sorted by the ratio of frequency
and posting list length [19]. Then, different instances of the associated MWMP
were solved by considering the top 1, 000, 2, 000, 3, 000, 4, 000, 5, 000 terms sorted
by frequency and posting list length. Finally, we compute the space saving in the
occupancy of a VB-encoded posting list cache of the same dimension by either ap-
plying or not the term pairing technique. We consider only SU since it better pairs
up with the VB encoding. Moreover, we test also the behavior of our term pairing
technique in the case uncompressed DocID-based postings. Recently, Baeza-Yates
et. al. [19] showed that compression is advantageous also applied to cached posting
lists. In fact, fixed the amount of available memory, compression allows a larger
number of posting lists to be cached, and thus the cache hit ratio to be improved.
However, our term pairing technique is itself a compression method, and it is in-
teresting to evaluate its efficacy alone on uncompressed list of DocIDs.

Figure 5 reports the results of our tests. On the horizontal axis we report the
size of cache in terms of number of cached posting lists, while on the vertical
axis we plot the improvement in the actual size of the cache obtained applying
our term pairing approach. We can see from the figure that term pairing is very

Entry Pairing in Inverted File 521

effective in this case, allowing improvements ranging from 12% to 18%. We thus
obtained better results from our technique when applied to posting list caching
than to the whole IF. The reason for this behavior is that the cache is much
smaller than the whole IF, and that it is filled with terms which frequently
occur in queries. Even if the distribution of terms in queries and collections is
not the same, these terms resulted to be frequent also in the collection, and as
shown in the plot on the right of Figure 3, the larger the length of to-be-paired
posting lists, the more the compression improvement obtained by pairing them.

6 Conclusions and Future Work

In this paper, we proposed a novel inverted index compression technique based on
pairing the posting lists of highly correlated terms. We formulated term pairing
as an optimization problem, and reduced it to the Maximum Weight Matching
Problem that can be solved with exact polynomial algorithms, or approximated
in linear time.

We demonstrated on real data the validity of our proposal by applying it to
two different scenarios: the compression of the whole inverted file index, and of
the posting lists cached in memory to fasten query processing. In both cases, the
experiments conducted obtained very good results. In the case of IF compression
we measured an improvement in terms of compression ratio up to 7.7 %. An im-
pressive improvement (up to 18%) was measured for the case of static caching of
index entries. Moreover, our technique is very efficient and can be applied even
to huge IFs such as those managed by large-scale Web search engines. In fact,
we showed that the size of the optimization problem can be strongly reduced to
consider a few thousands of most frequent terms only, since the distribution of
posting list length is highly skewed and our pairing technique works effectively
for long, correlated posting lists. Moreover, results obtained by exploiting the
(linear-time) approximated solution for the (reduced) Maximum Weight Match-
ing Problem, were very similar to the one derived from the optimal solution
obtained with a solver having cubic complexity. We plan to investigate in the fu-
ture several important issue. First of all we will verify in which measure, our term
pairing approach can speed up query processing. We based our assumptions on
query processing speed-up on the results reported in [15]. We are confident our
method will allow to obtain, at least, the same speed-up figures as their. More-
over, we will investigate the combination of pairing and index pruning techniques
[20] for both cached posting lists and IF compression.

References

1. Roy, S., Kumar, R., Prvulovic, M.: Improving system performance with compressed
memory. In: IPDPS 2001: Proceedings of the 15th International Parallel & Dis-
tributed Processing Symposium, p. 66. IEEE Computer Society, Washington (2001)

2. Turpin, A., Tsegay, Y., Hawking, D., Williams, H.E.: Fast generation of result
snippets in web search. In: Kraaij, W., de Vries, A.P., Clarke, C.L.A., Fuhr, N.,
Kando, N. (eds.) SIGIR, pp. 127–134. ACM, New York (2007)

522 H.T. Lam et al.

3. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput.
Surv. 38(2), 6 (2006)

4. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes – Compressing and Index-
ing Documents and Images, 2nd edn. Morgan Kaufmann Publishing, San Francisco
(1999)

5. Golomb, S.: Run-length encodings. IEEE Transactions on Information The-
ory 12(3), 399–401 (1966)

6. Rice, R.F., Plaunt, J.R.: Adaptive variable-length coding for efficient compression
of spacecraft television data. IEEE Trans. Commun. COM-19, 889–897 (1971)

7. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: WWW 2008: Proceeding of the 17th international conference
on World Wide Web, pp. 387–396. ACM, New York (2008)

8. Blandford, D., Blelloch, G.: Index compression through document reordering. In:
DCC 2002: Proceedings of the Data Compression Conference (DCC 2002), p. 342.
IEEE Computer Society, Washington (2002)

9. Shieh, W.Y., Chen, T.F., Shann, J.J.J., Chung, C.P.: Inverted file compression
through document identifier reassignment. Inf. Process. Manage. 39(1), 117–131
(2003)

10. Silvestri, F., Orlando, S., Perego, R.: Assigning identifiers to documents to enhance
the clustering property of fulltext indexes. In: SIGIR 2004: Proceedings of the
27th annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 305–312. ACM, New York (2004)

11. Silvestri, F.: Sorting out the document identifier assignment problem. In: Amati,
G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 101–112.
Springer, Heidelberg (2007)

12. Blanco, R., Barreiro, A.: Tsp and cluster-based solutions to the reassignment of
document identifiers. Inf. Retr. 9(4), 499–517 (2006)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

14. Long, X., Suel, T.: Three-level caching for efficient query processing in large web
search engines. In: WWW 2005: Proceedings of the 14th international conference
on World Wide Web, pp. 257–266. ACM, New York (2005)

15. Chaudhuri, S., Church, K.W., Knig, A.C., Sui, L.: Heavy-tailed distributions and
multi-keyword queries. In: Kraaij, W., de Vries, A.P., Clarke, C.L.A., Fuhr, N.,
Kando, N. (eds.) SIGIR, pp. 663–670. ACM, New York (2007)

16. Edmonds, J., Johnson, E.L., Lockhart, S.C.: Blossom i: a computer code for the
matching problem. Unpublished report, IBM T. J. Watson Research Center (1969)

17. Gabow, H.N.: An efficient implementation of edmonds’ algorithm for maximum
matching on graphs. J. ACM 23(2), 221–234 (1976)

18. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted match-
ing in general graphs. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563,
pp. 259–269. Springer, Heidelberg (1999)

19. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri,
F.: The impact of caching on search engines. In: SIGIR 2007: Proceedings of the
30th annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 183–190. ACM, New York (2007)

20. Blanco, R., Barreiro, A.: Static pruning of terms in inverted files. In: Amati, G.,
Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 64–75. Springer,
Heidelberg (2007)

	Entry Pairing in Inverted File
	Introduction
	Related Work
	Preliminaries
	Representing IF Paired Terms
	Problem Formulation

	Experimental Results
	Term Pairing for IF Compression
	Pairing Cached Posting Lists

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

