
G. Vossen, D.D.E. Long, and J.X. Yu (Eds.): WISE 2009, LNCS 5802, pp. 261–273, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Formal Identification of Right-Grained Services for
Service-Oriented Modeling∗

Yukyong Kim and Kyung-Goo Doh**

Dept. of Computer Science & Engineering, Hanyang University, Ansan, 426791,
South Korea

{yukyong,doh}@hanyang.ac.kr

Abstract. Identifying the right-grained services is important to lead the
successful service orientation because it has a direct impact on two major goals:
the composability of loosely-coupled services, and the reusability of individual
services in different contexts. Although the concept of service orientation has
been intensively debated in recent years, a unified methodic approach for
identifying services has not yet been reached. In this paper, we suggest a formal
approach to identify services at the right level of granularity from the business
process model. Our approach uses the concept of graph clustering and provides
a systematical approach by defining the cost metric as a measure of the
interaction costs. To effectively extract service information from the business
model, we take activities as the smallest units in service identification and
cluster activities with high interaction cost into a task through hierarchical
clustering algorithm, so as to reduce the coupling of remote tasks and to
increase local task cohesion.

Keywords: Service identification, service granularity, business process model,
UML activity diagram, graph clustering.

1 Introduction

The basic idea of Service-Oriented Architecture (SOA) is the restructuring of the
information technology (IT) systems or IT landscapes into loosely coupled,
independent services. These services should allow the reuse of existing IT
functionality in order to shorten the time between design and implementation when
business requirements change [1]. The key challenges in developing the service-
oriented systems are the refinement and eventually the mapping of business processes
to the existing service infrastructure. However, the existing services do not
immediately fit the requirements elicited during business process modeling. We
consider this problem as the identification of reusable services at the right level of
granularity that can bring on a mismatch between the business process models and the

∗ This work is supported by the Engineering Research Center of Excellence Program of Korea

Ministry of Education, Science and Technology (MEST)/Korea Science and Engineering
Foundation (KOSEF), grant number R11-2008-007-01003-0.

** Corresponding author.

262 Y. Kim and K.-G. Doh

available services. In this paper, we focus on how the right level of service abstraction
and granularity could be provided based on business process models specifying the
business requirements.

A business process is a collection of business functions required to achieve its
ultimate business goals or objectives. In practice, the business functions are connected
with each other to represent the execution sequence or execution pattern with various
control constructors, such as serial, parallel, alternative, and so on, which are used in
modeling a business process. A business function, also called a business activity, has
its corresponding participant which completely supports its task and is ultimately
materialized as a service. Thus a service is essentially a business component, which
implements an autonomous business concept or business process.

Note that the coverage of a service depends on the system implementation policy.
That is, a single service can support the role of a single business activity, several
business activities or even a whole business process. This is the problem of service
granularity. Because a business process is composed of a set of business activities
realized by a set of services, service granularity is related with determining both the
number of services required to fulfill a business process and the coverage of a service.
Hence, identifying the right-grained services is to discover and determine needed
services to achieve the business processes designed from the business requirements.
The problem of identifying appropriate services has not been addressed in the
literature. No formal methodology and tools that allow the designer to generate and
evaluate alternative designs based on a set of managerial design goals exist [2]. This
paper describes a formal approach to identify services of right granularity.

Our goal is to determine the service coverage to fit the business processes and then
expose a reasonable number of services. We solve the problem of determining the
right coverage of service using the cost metric of interactions between business
activities. Suggested cost metric is to evaluate amount of interactions and to
determine which activities are covered by a service. Several researches have
suggested as the service modeling approach that can identify and specify service
components [3–5]. However, because they provide only descriptive guidelines to
define services, it is less obvious and objective to apply those approaches, and then it
much relies on experience and intuition. The major contribution of our work is a
formal and systematical approach using metrics which are expected to be clear,
objective and efficient for identifying services of the right abstraction level. This
article is organized as follows: First, we briefly mention the related work in Section 2.
Section 3 describes terms and basic principles used in our paper. Section 4 presents
our service identification method along with a running example. After analyzing and
discussing the results of validation in Section 5, we summarize and conclude the
paper including some future works in Section 6.

2 Related Works

The development and integration of services resemble Component Based Software
Development (CBSD), where pre-built parts, known as business components, are
assembled into larger scale applications [6, 7]. In 2005, T. Erl introduced a service
modeling process to produce service and operation candidates. This process provides

 Formal Identification of Right-Grained Services for Service-Oriented Modeling 263

steps and guidelines for the modeling of a SOA consisting of application, business,
and orchestration service layers [3]. IBM introduced Service-Oriented Modeling and
Architecture (SOMA) [4]. SOMA illustrates the activities for service modeling and
the importance of activities from service consumer and provider perspectives. It is an
enhanced, interdisciplinary service modeling approach that extends existing
development processes and notations such as object-oriented analysis and design,
Enterprise Architecture (EA) frameworks, and Business Process Modeling (BPM). In
[5], Web Services Modeling Framework (WSMF) was defined to provide a rich
conceptual model for the development and the description of Web services. The
philosophy of WSMF is based on the maximal de-coupling principle. A model in
WSMF consists of four main elements: ontology that provide the terminology used by
other elements; goal repositories that define the problems that should be solved by
web services; web services descriptions that define various aspects of a web service;
and mediators which bypass interoperability problems.

In [2], H. Jain et al. described a formal approach to web services identification,
which takes an analysis level object model, representing a business domain, as input
and generates potential web service designs, in which the classes in the object model
are grouped into appropriate web services based on static and dynamic relationships
between classes. An initial hierarchical grouping of classes is derived using a
maximum spanning tree algorithm. In [8], M. Bell suggested the conceptual service
identification process based on six best practices that can assist with identifying
organizational concepts, establishing conceptual services, founding service
associations, and forming service structures. Those six best practices are concept
attribution, concept classification, concept association, concept aggregation, concept
generalization, and concept specification. To discover abstractions and derive
conceptual services, he used the decision tree. The attribution analysis process yields
sets of recommended attributes that are essential inputs into most categorization
activities. Conceptual services are derived from those attributes by applying their
corresponding business rules.

These approaches have key limitations: One is that they lack details about how to
identify and define services from the business domain. Even though the decision tree
is used in [8], they provide only descriptive guidelines instead of using a formal
approach to modeling services. The other is that they are based on object models or
component models. To remedy these limitations, they usually employ classes and
component grouping techniques to identify services. To resolve these limitations in
this paper, we formalize the service identification problem on the graph, and directly
derive services from the business requirements rather than object or component
models.

3 Preliminaries

As shown in Figure 1, the service model in between business model and
implementation model is a key factor that can help achieve the service orientation.
The service model provides a logical place to define the contracts that ensure that the
business side of the organization is aligned with the IT side from a requirement

264 Y. Kim and K.-G. Doh

Fig. 1. Three part model of service orientation

perspective [9]. Service models play an important role during service-oriented
analysis and service-oriented design phases. We aim at identifying services from the
business model at the proper abstraction level. The identified services are the base
for building a service model written in WSDL.

Once the business process is defined and modeled, and the business functionality is
understood, then the service identification step starts. As previously stated, a business
process is a sequence of activities that are ordered according to a set of procedural
rules. Activity diagrams of UML (Unified Modeling Language) have been widely
adopted into the business process modeling [10]. Based on activity diagrams, the
modeling for communication specification and process logic of inter-organizational
processes can be unified to the same modeling language. An activity diagram is used
to define the execution logic of business process. Difference roles in business process
and their communication structures can be defined based on the swim-lane notation.

Definition 1. An activity diagram G is a tuple (A, D, S, R, F, AS, AF, SL), where

1. A is a finite set of activity nodes.
2. D is a finite set of decision nodes. Db is the set of branch nodes and Dm is the

set of merge nodes. Db and Dm is a partition of D, i.e., Db ∩ Dm =∅ and
Db∪ Dm = D.

3. S is a finite set of synchronization nodes. Sf is the set of fork nodes and Sj is the
set of join nodes. Sf and Sj is a partition of S, i.e., Sf∩ Sj =∅ and Sf∪ Sj = S.

4. AS is the set of start nodes of G and AF is the set of end nodes of G.
5. R is the set of business entities or organizational units of G.
6. SL: A∪ D∪ S → R is the mapping function from diagram elements to business

entities or organizational units.
7. F ⊆ (AS×A) ∪ ((A ∪ D ∪ S)×(A ∪ D ∪ S)) ∪ (A×AF) is a set of edges. F is

partitioned into two subsets FL and FR. FL is the set of intra-flow edges
connecting nodes within the same business entity, i.e., FL= {(v1, v2) | (v1, v2)∈F
∧ SL(v1) = SL(v2)}. FR is the set of inter-flow edges interconnecting different
business entities, i.e., FR= {(v1, v2) | (v1, v2)∈F ∧ SL(v1) ≠ SL(v2)}.

Activity diagrams for business process must be prescribed under the following three
constraints:

C1. There are only one start node denoted by a solid circle and one or more end nodes
shown by bull’s eye symbols in an activity diagram. The start node has only one post-
activity node and the end node has one pre-activity node.

 Formal Identification of Right-Grained Services for Service-Oriented Modeling 265

(a) An original activity diagram (b) An activity diagram for business process

Fig. 2. Example: activity diagram for business process

C2. Every node connected to inter-flow edges must be either an activity node or a
synchronization node. For example, the activity a1 in the Buyer swim-lane in Figure 2
(b) is a newly introduced activity node to fulfill this constraint.

C3. No edge is allowed between non-activity nodes. For example, the activity a2 in
the Seller swim-lane in Figure 2 (b) is introduced to satisfy this constraint.

The execution of business process is modeled by the behaviors of its activity
diagrams. The behaviors are described in terms of the set of all execution paths from
start node to end node.

Definition 2. Let G = (A, D, S, R, F, AS, AF, SL) be an activity diagram for business
process. An execution path in G is the sequence of a start node, followed by one or
more nodes, and followed by an end node. ai ≤p ak denotes that an activity ai occurs
before an activity ak in a path p.

For example, Figure 3 shows a path, <AS, a1, a2, db1, a5, Sj1, a10, db3, a11, a12, a13, a17, Sj2,
a18, a16, AF2> is an execution path in Figure 2.

Generally, a task and an activity can be treated with no difference in the business
process. In this paper, however, we discriminate a task from an activity. To identify a
service, we may attempt to map an activity to a service because service orientation
treats the activities performed by the business process as services. According to the
concept of SOA, however, a service must describe a business workflow. Because an
activity is the smallest unit of work that makes sense to a user, it might not describe a
complete business flow. Thus we might have to consider the case of a service
consisting of several activities. To express the related activities in activity diagrams,
we need a logical unit that eventually corresponds to a service.

266 Y. Kim and K.-G. Doh

Fig. 3. A path p1 of Fig. 2–(b)

Definition 3. For G = (A, D, S, R, F, AS, AF, SL), an activity is the smallest unit of
work in the business process and is represented by a node in A∪ D∪ S. Especially,
every activity node in A is given a weight which is the number of paths the activity
state belongs to.

Definition 4. For G = (A, D, S, R, F, AS, AF, SL), a task is a logical group of related
activities in A∪ D∪ S, being clustered together in G.

A service includes a sequence of business workflow, and services are executed across
a network. However, operations internal to the service communicate directly with
each other within a single machine, not across a network connection. Thus a service
cannot be located across several roles. From these points of view, defining a task as to
minimize the amount of interactions between activities has an effect on identifying a
service of the right granularity. Thus we establish the task clustering principle as
follows: for every activity in A∪ S∪ D in G, activities are clustered into a task where
they are all connected with intra-flow edges.

 Formal Identification of Right-Grained Services for Service-Oriented Modeling 267

A service itself can be coarse-grained or fine-grained. The level of granularity for
services tends to be coarser than the level of granularity for objects or components. A
service typically exposes a single, discrete business process [11]. Coarse-grained
services require less network roundtrips as the execution state is contained in the
message. Consequently service granularity refers to how much functionality the
service covers. In our view, defining right-grained services is determining a task so as
to include an adequate number of activities. There are three possible ways for
determining a task:

1. One-to-One: One activity could be directly mapped to only one task.
2. All-to-One: Activities in a role becomes a cluster in its entirety.
3. Many-to-Many: Activities in the same role are decomposed into several

clusters, each of which could be mapped to a task.

In One-to-One mapping, each activity would only model a single task. For example,
we can recognize 17 tasks from 17 activity nodes in Figure 2-(b). However, as
previously mentioned, a task may have to comprise a sequence of activities.
Moreover, even if an activity can conceptually be an atomic service fully describing a
business workflow, too many fine-grained services may lead to heavy traffic between
the service providers and consumers. In All-to-One mapping, the number of tasks is
equivalent to the number of roles. In the example of Figure 2-(b), we can identify 3
tasks from 3 roles. In this case, services are coarse-grained, giving benefits of
decreasing network overhead. However, services may not be flexible enough so that
reuse may be very hard or not even be possible at all. It is easy to see that the smaller
the size of a service is, the higher the chance for its reuse becomes. Hence, it is
desirable to decompose tasks properly in order to maximize the reusability and the
composability of service components. Therefore, Many-to-Many mapping is the best
candidate that provides the opportunities to decompose tasks in proper granularity.
Because the number of services directly affects the performance and network
overheads, we present in the next section the mechanical way of decomposing tasks
based on a cost metric that assesses the amount of interactions between tasks.

4 Service Identification

In this section, we present how to identify tasks on G to define services at the right
level of abstraction. We formalize the identification problem and define the cost
metric.

4.1 Problem Definition

The approach we propose for identifying services uses an activity diagram G as input.
Because services are defined from tasks in our method, we mainly focus on the
approach of task identification on G. We formalize the task identification as
the activity allocation problem on the graph under the task clustering principle of the
previous section. We consider G as a weighted graph in which each branch and node
is given a numerical weight by Definition 5.

268 Y. Kim and K.-G. Doh

Definition 5. Given an activity diagram G = (A, D, S, R, F, AS, AF, SL), each activity
node a in A has a weight value freq(a) representing how many paths a belongs to.
Each arc (ai, aj) in F also has a weight value cost(ai, aj) which is the interaction cost
overhead between nodes ai and aj. The interaction cost is usually determined by the
system environment.

Our goal is to cluster activities and determine a task to minimize the cost of
interactions. Then the task identification can be concretely seen as the minimal
activity distribution (MAD) problem on a weighted directed graph G that represents
business processes. The MAD problem is to allocate activities to tasks such that the
total cost of remote interactions is minimized. The followings are assumptions made
for the MAD problem.

Assumption 1 For each activity, the cost of executing its own set of operations is
constant regardless of the number of operations.
Assumption 2 The remote interactions cost more than the local ones.

Definition 6. For G, each activity or task ai has a weight freq(ai) as an initial value.
Each edge e = (ai, aj) ∈ F has a weight cost(ai, aj) as an initial value. Then the
interaction cost of a pair of tasks ai and aj, cost(ai, aj), is calculated iteratively as
follows:

()),(*)(),(min),(jijiji aacostafreqafreqaacost =

Here, we define the total interaction cost Tcost(G) of G is the sum of cost of all tasks.

()∑ ≠=
=

n

jiji ji aacostGTcost
,1,

),()(

4.2 Service Identification

The problem of service identification from an activity diagram of business workflow
is formalized as the MAD problem determining tasks in the activity diagram in
Section 4.1. In this subsection, we present the way to identify tasks at the right level
of abstraction. The identification process consists of two steps: activity clustering and
activity allocation. Activities are clustered in such a way that the total cost of
communications is minimized. Each cluster is then mapped to a task. The next step is
to organize tasks into the initial set of services by allocating activities to the
corresponding task and defining operations for each task. Then each task becomes a
service that can be described in Web Services Description Language (WSDL).

(1) Clustering activities into tasks

In graph clustering, when an edge e is joined to vi and vj, and two vertices vi and vj are
merged into a new cluster vk, every edges incident to vi or vj except e is incident to the
vertex vk. Activity clustering is similar to the graph clustering and starts by placing
each activity in a task by its own, creating |A| tasks in G. Tasks are then repeatedly
combined in such a way that the total cost of communications is minimized. The
following shows how to calculate the weight for a new task:

 Formal Identification of Right-Grained Services for Service-Oriented Modeling 269

Rule 1. When adjacent two tasks are merged, one of their incident edges having the
largest weight is selected first.
Rule 2. Once an edge is selected, the edge cannot be selected again in each repetition.
Rule 3. When tasks are merged, a new edge is created and its weight is calculated.
Rule 4. When adjacent two tasks are combined into a new task, the weight of the new
task is the maximum weights of two tasks.

Based on rules Rule 1 and Rule 2, we determine which tasks are merged. The graph G
is reconstructed by adjusting edges on Rule 3 and assigning the weight newly to each
task on Rule 4. The following Figure 4 shows activity clustering steps for Figure 2-(b)
using above rules.

270 Y. Kim and K.-G. Doh

Fig. 4. Clustering steps for Fig. 2-(b)

(2) Organizing tasks into initial set of services

The ideal scenario is one in which the cohesion within a service is maximized and the
coupling between services is minimized. Finding a service design that maximizes
intra-service cohesion and minimizes inter-service coupling is formalized as the MAD
problem in this paper. Now we organize identified tasks into services to derive the
service specification. Graph clustering provides a good way for grouping the vertices
in a graph according to their connections. We then generate a structure of the tasks.
Activities in a task are suggested to be included in a service. This method provides
potential designs with different levels of inter-service coupling where activities are
organized into services, and smaller services are successively integrated into bigger
ones. This leads the initial solution based on the preferred size of services and
reasonable number of services desired for the business domain. The initial set can be
further refined based on heuristics.

(3) Service description

For identified services, a set of attributes to describe and document the capability of
each service is defined. Some of the key attributes include: Who owns it? Who is its

 Formal Identification of Right-Grained Services for Service-Oriented Modeling 271

customer? What are the inputs and outputs? This rich description of the capabilities
can be passed to development teams who can use the information to help select the
appropriate implementation technologies, hosts, and deployment topologies. The
service description is easily derived from tasks and activity descriptions provided by
the business model. A WSDL document defines services as collections of network
endpoints, or ports. In WSDL, the abstract definition of endpoints and messages is
separated from their concrete network deployment or data format bindings. This
allows the reuse of abstract definitions: messages, which are abstract descriptions of
the data being exchanged, and port types which are abstract collections of operations
[12]. We can gain <data type> from activities and their interaction scheme and <port
type> from operations included in the activity.

5 Evaluation

Comparison of approaches: A variety of heterogeneous approaches have been
proposed as shown in Table 2. Approaches especially vary in terms of service
hierarchies and analysis objectives. Thus, methods are proposed to identify services
by utilizing the information systems in place in a bottom-up approach or follow a

Table 1. Comparison of approaches regarding service identification

Approach (Year)

Criteria

Jain et al.
(2004)

T. Erl
(2006)

M. Bell
(2008)

Proposed
approach

(2009)

Background &
starting point

Bottom-up.
Analysis of

current IS and
their

functionality

Meet-in-the-
middle. Parallel

analysis of
business

processes and IS

Bottom-up.
Analysis of
current IS

Top-down.
Business

processes are
decomposed

Service
classification

scheme

Implicit
distinction of
elemental and

composed
services

11 service types
are proposed

(partially
orthogonal)

6 categories for
conceptual

services

3 service
hierarchies:

service, task,
activity

Covering of SOA
design phases

Focus on service
development,

service
identification is a

minor stage

All SOA phases
Service

categorization
and specification

Service
identification and

specification

Characteristics
7 phases, short
documentation

Exhaustive
documentation,

case studies,
guidelines

Decision tree
Formal criteria,

WSDL
description

Application of
process models

for service
identification

Functional areas
only to enable

code
reengineering

Initially
decomposed into

service
candidates

−

Process model
divided into

service
candidates

272 Y. Kim and K.-G. Doh

procedure of analyzing business requirements in a top-down approach. Other
approaches integrate both perspectives into a hybrid strategy, referred to as ‘meet-in-
the-middle’ approach. Compared to those approaches, the procedure presented in this
paper introduces a strong business perspective into the derivation of service
candidates. This is done by integrating business partners as important participants
when deriving services from business process models.

Analysis of the clustering algorithm: We first analyze the time complexity of
clustering algorithm. Suppose n activities are obtained from the business model, then
there are n2 pairs of activities or cluster candidates. Select the pair with greatest cost
from n2 pair of activities, with time complexity of O(n2). The time complexity
processing all possible activity pairs is O(n2) and suppose the average time
complexity to compute the interaction cost of a activity pair is O(m), then the time
complexity for the whole process is approximately O(m*n2). To compute cost
between two activities, suppose the number of activities in every tasks is T/n and
suppose every activity contains L operations in average and then the time complexity
to compute cost() between tasks is 2*(T/n)*L, i.e. O(L*T/n). Therefore, the number n
of activities has great influence on the clustering algorithm.

Case study: The results of this work are currently being validated at a simplified
version of the actual procedure that deals with requests for student grants in a LMS
(Learning Management System). To have control over granularity is one of the major
concerns in their migration to SOA. The validation of this work is that the presented
identification process is adopted by the LMS. This means that the impact of each
service under development is verified with respect to each type of granularity, One-to-
One, All-to-One, and Many-to-Many. For each type of the granularity, we evaluate the
total interaction cost between activities. Although the simplified use on the LMS,
Many-to-Many mapping is appropriate in the given context.

6 Conclusion and Future Work

Although the concept of SOA has been intensively debated in recent years, a unified
methodical approach for identifying services has not yet been reached. Service
granularity, the scope of functionality that is exposed by a service, is a crucial issue in
designing SOA. Every SOA needs to have well designed services in order to gain the
predicted benefits, such as flexible business processes and low development costs.
However, while many literature sources suggest architects to choose the right level of
granularity of services, none of these studies goes into detail about how to do this.

In this paper, we attempted to discuss service granularity. Although the importance
of coarse-grained services is stated, the enterprise architecture nowadays has to deal
with a broad spectrum of possible service granularity levels. From this perspective,
we defined a formal method of right-grained service identification based on the
business model, using the graph clustering technique. To effectively extract service
information from the business model, we proposed an activity clustering approach
based on cost metrics. This approach takes activities as the smallest units in service
identification, takes the cost metric as a measure of connectivity between activities,

 Formal Identification of Right-Grained Services for Service-Oriented Modeling 273

and clusters activities with high interaction cost into a task through hierarchical
clustering algorithm, so as to reduce the coupling of remote tasks and to increase local
task cohesion.

This approach still needs further improvement. Such as, it does not take into
account the concept of service category which is based on the nature of the logic they
encapsulate and the manner in which they are typically utilized within SOA.
Moreover, certain thresholds in the identification process shall be given by
experienced engineers to have expected effect which may be in the selection of center
points during the process of clustering is not ideal. As part of further research, we will
propose concrete metrics and rules to determine which granularity levels are
appropriate in a particular context. Now we are developing a tool for service design
based on business modeling.

References

1. Adam, S., Doerr, J.: How to better align BPM & SOA. LNCS, vol. 5074, pp. 49–55.
Springer, Heidelberg (2008)

2. Jain, H., Zhao, H., Chinta, N.: A Spanning Tree Based Approach to Identifying Web
Services. International Journal of Web Services Research 1(1), 1–20 (2004)

3. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice-Hall,
New York (2005)

4. Arsanjani, A.: Service-Oriented Modeling and Architecture (SOMA), IBM white paper
(2005)

5. Fensel, D., Bussler, D., Ding, Y., Omelayenko, B.: The Web Service Modeling
Framework WSMF. In: Electronic Commerce Research and Applications, vol. 1(2), pp.
113–137. Elsevier B.V., Amsterdam (2002)

6. Herzum, P., Sims, O.: Business Component Factory: A Comprehensive Overview of
Component-Based Development for the Enterprise. John Wiley & Sons Inc., Chichester
(2000)

7. Vitharana, P., Zahedi, F., Jain, H.: Component-based Software Development: Design,
Retrieval, and Assembly. Communications of the ACM 46(11), 97–102 (2003)

8. Bell, M.: Service-Oriented Modeling: Service Analysis, Design, and Architecture. John
Wiley & Sons Inc., Chichester (2008)

9. Sehmi, A., Schwegler, B.: Service Oriented Modeling for Connected Systems (Part 1).
Microsoft Architect Journal (7) (2006)

10. Zhijun, Y.: Consistency Analysis of Interorganizational Processes Based on Activity
Diagrams. In: Proceedings of the IEEE International Conference on e-Business
Engineering (ICEBE 2005), pp. 187–190. IEEE Computer society, Los Alamitos (2005)

11. Hanson, J.: Coarse-grained Interfaces Enable Service Composition in SOA. JavaOne
article (2003)

12. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description
Language (WSDL) 1.1, W2C Note (2001)

	Formal Identification of Right-Grained Services for Service-Oriented Modeling
	Introduction
	Related Works
	Preliminaries
	Service Identification
	Problem Definition
	Service Identification

	Evaluation
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

