
G. Vossen, D.D.E. Long, and J.X. Yu (Eds.): WISE 2009, LNCS 5802, pp. 131–144, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Facing the Technological Challenges of Web 2.0: A RIA
Model-Driven Engineering Approach

Francisco Valverde and Oscar Pastor

Centro de Investigación en Métodos de Producción de Software, Universidad Politécnica de
Valencia, Spain

{fvalverde,opastor}@pros.upv.es

Abstract. One of the main reasons for the success of Web 2.0 is the
improvement in user experience. This improvement is a consequence of the
evolution from HTML User Interfaces (UI) to more usable and richer UI. The
most popular Web 2.0 applications have selected the Rich Internet Application
(RIA) paradigm to achieve this goal. However, the current Web Engineering
methods do not provide the expressivity required to produce RIA interfaces.
This work presents a RIA Metamodel to deal with the new technological
challenges that have arisen with Web 2.0 development. This metamodel
supports two main perspectives: 1) the definition of the UI as a combination of
widgets from a selected RIA technology; and 2) the specification of the UI
interaction as a consequence of the events produced by the user. In order to
illustrate how this RIA Metamodel can be used in a Model-driven Engineering
(MDE) method, this work also presents the integration of the RIA Metamodel
with the OOWS method.

Keywords: Rich Internet Applications, Model-driven Development, Web User
Interfaces.

1 Introduction

Nowadays, Web 2.0 is a topic that has significant influence in the Web Development
community. However, Web 2.0 is still an imprecise concept because it has been
defined [18] in comparison with the common practices of “Web 1.0” that were
unsuccessful. From the authors’ point of view, Web 2.0 can be defined from two
complementary perspectives: a social one and a technological one.

From the social perspective, in “Web 1.0” websites, the end-user was a passive
consumer of information that had been defined by the Webmaster. This situation has
changed considerably with the arrival of Web 2.0. Today end-users not only define
the website content (news, reviews, images, etc.), but they also decide which content
is the most interesting. The first consequence of this role reversal has been an
exponential growth of the content created by end-users on the Web.

From the technological perspective, the evolution of Web development
technologies has been decisive in encouraging the end-user involvement. When the
UI from the most popular Web 2.0 sites are analyzed, a high level of usability is

132 F. Valverde and O. Pastor

detected. To achieve this improvement in usability, the evolution of Web technologies
has played an essential role. This technological evolution has defined a new
application paradigm called Rich Internet Applications (RIA) [5]: a Web application
in which the UI is processed on the client side and the Business logic is defined by a
services backend. Examples of technologies for developing RIA are Javascript
frameworks, which use AJAX calls to perform functionality requests on-demand; and
specific RIA platforms such as Microsoft Silverlight or Adobe Flex [1], which
introduce their own languages to define complex UI. This new application paradigm
has also led to new research discussions. One of the most interesting topics that have
been raised is the possibility of developing RIA from a Model-driven Engineering
(MDE) approach. Since several Web 2.0 applications are currently being developed
using RIA technologies, providing methods, models and tools to deal with these
complex technologies has become an attractive research area.

In recent years, the Web Engineering community has defined several methods with
the goal of improving the development of Web applications. These methods have
mainly focused on the most common domains from the early part of this decade: e-
commerce and data-intensive applications. To develop “Web 1.0” interfaces, several
Web Engineering methods such as WebML [5], OOHDM [23], WSDM [26], OOWS
[12], and others [22] have proposed conceptual models to deal with the Web UI
specification. These models have provided interesting results for defining traditional
HTML interfaces in which navigation and data retrieval are the main interactions
between the user and the system. However as some authors have already addressed,
these methods must be extended in order to provide the new required expressivity in
the RIA domain [21][7].

Even though the models proposed by these methods are essential, UI models that
address more complex UI are still required. First, RIA technologies provide a wide
array of UI components to define complex interaction. Also, current UI models are
limited to defining the static view (layout and aesthetic properties), while Web 2.0
also requires the specification of the reactions to user events, i.e. the dynamic view.
Another issue to address is the technological heterogeneity that surrounds Web 2.0
because of the different RIA technologies that are currently available. For these
reasons is not a viable task to defining an all-encompassing model that covers all the
available technologies.

The main contribution of this paper is to establish the foundations for supporting
the UI technological perspective of the Web 2.0 in a MDE scenario. Applying the
MDE principles, the technological complexity of RIA development is abstracted to
the analysts. To achieve this goal the first step is the definition of a RIA Metamodel to
support the new expressivity required: 1) the definition of a UI as the composition of
richer widgets; and 2) the definition of the reactions of the UI as a consequence of the
events triggered by end-users. The strategy for defining this metamodel is based on
the analysis of different Web 2.0 applications. The most frequently used widgets and
interactions (those cannot be defined using the traditional methods) have been
selected. The metamodel that has been defined is generic enough to be extended and
related to different MDE methods. Furthermore, it can be used as a basis to define
concrete UI metamodels to address the UI modeling for different RIA technologies.
To illustrate how this RIA metamodel can be applied, the integration with the OOWS
Web Engineering method is also discussed.

 Facing the Technological Challenges of Web 2.0 133

The paper is organized as follows: Section 2 introduces the RIA Metamodel by
presenting both the static view, which specifies the UI layout and composition, and
the dynamic view, which defines the UI interaction. Section 3 explains the integration
of the RIA Metamodel with the OOWS Web Engineering method. Section 4 presents
several related works that also deal with the Model-driven development of RIA.
Finally, section 5 presents conclusions and future work.

2 Defining a RIA Metamodel for Supporting Web 2.0 Applications

As stated in the introduction, there is a close relationship between Web 2.0 and the
RIA domain. RIA technologies have mainly introduced changes to develop richer UI.
Since the usability of the UI is a key requirement, many Web 2.0 applications have
used RIA technologies to improve it. RIA technologies have introduced two main
concerns that must be supported at the UI modeling level:

1. Richer UI widgets: The main difference between the UI produced using HTML
and RIA technologies is the set of available UI widgets. Traditionally, the HTML
language is constrained to a small set of elements that can be used to build an UI.
This is because HTML was designed to show and to hyperlink documents rather
than as an UI language. Due to the evolution of Web interfaces, HTML has
become obsolete for designing UI. RIA technologies have solved this issue by
migrating a lot of UI widgets (such as Datagrids or Menu Controls) from Desktop
environments. RIA technologies also include specific UI widgets for multimedia
visualization (images and videos) and rich editors to create the content for Web 2.0
applications.

2. Event-driven interaction: RIA technologies provide highly interactive UI in order to
improve user experience. This interaction is triggered by the events that are
performed by the end-user over the UI widgets (for instance, a mouse click). The
possible responses or reactions to these events range from a change in the UI to the
request for data from the Business Logic. This event-driven paradigm is not
completely original because it has already been widely applied in Desktop
environments. However, it has not been adopted on the Web due to the small number
of events that are supported by the HTML language. RIA technologies can provide a
wide set of UI events and specific programming languages to solve this issue.

Following sections present, a RIA Metamodel to support the above-mentioned
concerns: the modeling of the UI as a composition of richer widgets, and the
definition of the response to the UI events.

2.1 Modeling the RIA Interface

A common agreement is to define a UI as a composition of widgets: visual
components of the UI to provide the data and to hold the interaction with the user
[15][30]. From the analysis of several Web 2.0 applications that use RIA
technologies, widgets can be categorized into five non-excluding groups according to
their interactive function:

134 F. Valverde and O. Pastor

1. Dataview widgets: these widgets are used to show a set of structured data
retrieved from the system. The Table widget is the most common widget used
for this task. In the RIA domain, widgets of this kind of widgets have evolved
considerably to show multimedia data and to provide advanced data
manipulation or retrieval.

2. Input widgets: these widgets handle the input of the data. Depending on the
analysis performed, there is a strong relationship between the type of the data
and the input widget. For instance, string values are input using the Text Input
widget, while boolean values are introduced using the Checkbox widget. In Web
2.0 applications like wikis or blogs, the Rich Text Editor widget is widely used
to introduce formatted text.

3. Navigation widgets: these widgets are used to change the point from which the
UI is perceived. The Link is the most common navigation widget on the Web,
but RIA has introduced alternatives such as Tab Navigations.

4. Service widgets: these widgets start the execution of a service from the Business
Logic. The Button is the default widget of this category. RIA technologies have
introduced several widgets for this task such as Icons or Contextual Menus.

5. Layout widgets: these widgets are useful for arranging other widgets, even
though they do not provide any direct interaction with the user. Layout widgets
are also required to group ‘child’ widgets in order to perform interaction over the
whole group (e.g. to hide the widgets at the same time). Examples of these
widgets are Form, Panel or Vertical Box.

These are the most common functions but there are also widgets that match two or
more categories. One example is the Editable Datagrid, which can be used for
visualization, input of data and invocation of an update service. From the analysis
performed in this study, two main ideas are pointed out for the definition of a UI
using a RIA technology:

• The UI has been extended mainly by using widgets that are common in desktop
environments. However, specific RIA widgets have also been provided to
visualize multimedia data and to simplify the creation of content.

• The UI is highly coupled to the target RIA technology. For instance, JavaScript
frameworks do not provide the same set of widgets as Adobe Flex.

The first idea implies the extension of the Web Engineering method models, using the
set of widgets that is required. However, that extension should not be defined in the
models that address the navigation of the Web application in order not to mix
different concerns. In recent years, the HCI community has addressed UI modeling
defining two levels of abstraction [4]: an Abstract level, in which the UI is defined
without taking into account any technological details; and a Concrete level, in which
the Abstract level is extended using the information related to the target technology.
This approach can be applied in current Web Engineering methods. As a matter of
fact, the navigation and presentation models proposed by the Web Engineering
methods can be reused to define some of the expressivity of the Abstract UI level.
This can be mainly justified since these models are not tightly coupled to a specific
technology even though they are Web-oriented. Thus by including a Concrete UI
level, the new technological requirements can be addressed and these models can be
preserved without mixing different concerns.

 Facing the Technological Challenges of Web 2.0 135

Fig. 1. The RIA Metamodel: UI view

The second idea implies the definition of a Concrete UI metamodel for each RIA
technology. This set of technological-specific metamodels will define the Concrete UI
models, so the advanced UI features of each technology can be introduced into the
development process. Summarizing, a suitable solution requires: 1) the definition of
the UI modeling at two levels of abstraction (Abstract and Concrete); and 2) the
definition of one metamodel for each technology introduced into the code generation
process.

Our approach proposes a RIA Metamodel to define the models of the Concrete UI
level and their relationships with the models of the Abstract level (see Fig. 1). This
metamodel is made up of a set of abstract modeling entities (depicted in white) from
which the technological modeling entities (depicted in gray) can be defined by means
of specialization relationships. This approach resembles how the UI frameworks have
traditionally been developed. These abstract modeling entities are the parent entities
used to create a metamodel for each specific RIA technology. Afterwards, these
technology-specific metamodels are used to model the UI of the Web application for a
specific RIA technology, so he analyst can define models to address all the features
that a specific RIA technology can provide.

The main advantage of this approach is that the link between the Abstract level,
which is made up of the Navigational Models, and Concrete level is performed using
those abstract modeling entities that are common to all the technological metamodels.
A suitable relationship is created between each modeling entity, which is used for
defining the UI, from the Abstract level, and an abstract modeling entity from the RIA
metamodel. Therefore the links between the Abstract and the Concrete levels can be
reused among different technologies.

The main entity of the RIA Metamodel is a UI Model that is made up of Widgets
that abstract a specific UI component. A Widget is defined by a set of Properties,

136 F. Valverde and O. Pastor

which are specified in the metamodel as meta-attributes. For instance, two properties
that are common to any Widget are visible (to show or hide a specific widget in the
UI) and enabled (to allow or disable the interaction with the user). The interactions
that users can perform over a widget are described as Events. Widgets are divided into
two types depending on whether or not they can receive Events: Layout Widgets
(WLayout entity), which are used to arrange and to contain other widgets; and
Control Widgets (WControl entity), which can be associated to Events in order to
define reactions to the user interaction. The entity WControl is also specialized into
four abstract modeling entities: WDataview, WInput, WService, and WNavigation.
Each entity represents the widgets that can perform one of the specific interactive
functions described above. Events are related to the UI Model entity because they are
reused among the different control widgets by means of association relationships.

A technology-specific metamodel must be defined using these abstract modeling
entities. For instance, if the Adobe Flex platform [1] is selected as RIA technology, a
Flex UI metamodel must be defined. In order to create this new metamodel, each
widget provided by Flex is defined as a child entity from one or more entities of the
RIA Metamodel. Flex provides a rich UI framework that enables the implementation
of complex RIA. Since this framework is built around two main concepts very close
to the RIA Metamodel (interface components and containers), the specialization
relationships are straightforward. The different containers are defined as
specializations from the WLayout entity whereas the interface components are
specialized from a suitable WControl entity depending on their function.

For example, Figure 1 (bottom) shows a brief view of the Flex UI metamodel. The
Accordion widget is a child entity of WLayout, and TileList or Hslider are child
entities of WDataview and WInput, respectively. Another example is the LinkButton
that can be used for both navigation and service execution purposes. From these
technological widget entities the Events and the Properties are created. For example,
in the Hslider widget, the property snapInterval defines the increment of the slider
bar, whereas the thumbDrag event is triggered when the user moves the slider to a
new position. The final result of this process is a metamodel from which a UI for the
Flex platform can be modeled.

2.2 Modeling the Event-Driven Interaction

In section 2.1, a metamodel to specify the static view of a UI has been defined.
However, the UI is not only a static entity because it reacts according to the
interaction with the user. This interaction is perceived as events that occur over a
specific widget. This dynamic view must also be included in order to develop
interactive Web 2.0 applications. To define this dynamic view, several Web 2.0
applications have been analyzed by the authors, in order to select the most common
reactions to events. The selected reactions are classified as follows:

1. Changes to the UI: a common reaction to events is a change of the UI properties
perceived by the user. For example, when the user clicks on tab a new group of
widgets is shown.

2. Request for data on-demand: the result of this reaction is a request for
information from the server. Usually, only the data that has not been previously
retrieved and stored is requested.

 Facing the Technological Challenges of Web 2.0 137

3. Functionality execution: this reaction implies a request-response communication
with the Business Logic. When the response is received, a feedback message is
presented to the user to inform about the result.

4. Input Validation: this reaction informs the user about mistakes and suggests a
solution. When the end-user introduces a value, mistakes are common: from
syntactic errors (e.g. a date with an incorrect format), to more complex ones that
involves the Business Logic (e.g. to check whether or not the login provided has
already been created).

5. Navigation: A navigation changes the current point from which the application
UI is perceived by the user and the interactions available. RIA has included
animation effects to highlight this reaction.

The event rule concept is introduced to describe this dynamic view made up of
reactions. An event rule is defined by an Event from a source widget that triggers a
Reaction associated with a target widget. This approach resembles the definition of
Event-Condition-Action (ECA) rules proposed by the HCI community to perform the
same goal [14]. The modeling entities to define the event rules are defined in the RIA
Metamodel as Figure 2 illustrates.

Fig. 2. The RIA Metamodel: Dynamic View

Event rules are defined over the widgets from a technological UI model specialized
from the RIA Metamodel. The scope of the event rules is the layout container where
are defined the widget that triggers the event and the widget that receives the reaction.
Hence, an event rule can generate a reaction to several widgets as long as they are
defined in the same parent layout. Additionally, the widget that produces the event
and the target widget that performs the reaction can be the same. Optionally, events

138 F. Valverde and O. Pastor

can include parameters with additional information to configure the reaction. Each
event rule is also associated to at least one reaction of the five described above. Each
reaction is represented by a modeling entity in the RIA metamodel, and it is also
linked to the specific type of widget that supports the expected behavior. These five
reaction entities are described below:

• Property change: this entity represents a change of the current value of any
property of the target widget. By applying this reaction the state of a widget can
be controlled according to the triggered events. Since all widgets are described
using properties, this reaction can be associated to any widget.

• Data Request: this entity represent a request of data from the Business Logic in
order to populate a Dataview widget. This reaction can be parameterized by
means of the following attributes: the cacheable attribute, which provides a
mechanism to avoid having to request previously retrieved data; the max
instances attribute, which defines the maximum number of instances to be
retrieved; and the filter condition attribute, which selects the data depending on
a logic formula.

• Invocation: this entity represents an asynchronous service execution from the
Business Logic. The user can interact with the rest of the UI while the service is
being executed. This reaction is always linked to a Service widget. Moreover,
this reaction triggers by default an event to inform whether or not the service has
been successfully executed. That event can be used to trigger new event rules
that take into account the service results.

• Validation: this reaction verifies whether or not the data introduced by the user
is correct. The validation can be defined using a regular expression to be
satisfied by the input or a Boolean service that receives the input as an
argument. If the regular expression or the service result is evaluated as false, an
error message is shown to the user.

• UI Transition: this reaction represents a transition that is associated with a
Navigation widget. Additionally, a visual effect to highlight the transition can be
defined.

As an example to illustrate how an event rule can be defined the suggestion pattern is
used: when inputting new data, (event) the client-side automatically retrieves (without
refreshing the UI) the values that match the input text. In this pattern, two Flex
widgets are required to define the UI: a Text Input, and a List widget to show the
suggestions. A Data request entity is associated to the List widget and the filter
condition of this entity is changed as the user inputs a new text value. This event rule
is defined below using a textual notation (for exemplification purposes) that conforms
to the metamodel entities presented:

SET RequestReacton TO List:
RequestReaction.cacheable = true;

ON:
 TextInput.dataChange(newValue)
DO:
 RequestReaction.filterCondition = “LIKE ” + newValue;

List.Request();

 Facing the Technological Challenges of Web 2.0 139

3 RIA Modeling in the OOWS Web Engineering Method

The RIA metamodel proposed in Section 2 has been defined without taking into
account a specific method. Therefore, the main issue is how the new RIA models are
introduced and linked with the previous models of the method. This section presents a
strategy to deal with this integration. As a proof of concept, this strategy has been
applied to the OOWS Web Engineering method [12].

OO-Method [19] is an automatic code generation method that produces an
equivalent software product from a system conceptual specification. OOWS was
defined to extend OO-Method with the principles proposed by the Web Engineering
community. To achieve this goal, OOWS introduces a new set of models for
supporting the interaction concern between the user and a Web application (See
Figure 3). These models are:

• User Model: This model is a user diagram to specify the types of users that can
interact with the system.

• Navigational Model: This model defines the system navigational structure for
each type of user by means of a Navigational Map. This map is depicted by
means of a directed graph whose nodes represent Navigational Contexts and
whose arcs represent navigational links that define the valid navigational paths.
The different Navigational Contexts are described as an aggregation of one or
more Abstract Interaction Patterns (AIP). An AIP defines the interaction in
terms of two main communication flows between the user and the system: a) a
population retrieval flow, which provides information from the system to the
user; and b) a service execution flow started by the user, which performs a
change of the state of the Information System. Two main AIP, Population and
Service, are defined. These AIP are linked to the data and functionality
represented by the OO-Method models. In order to constrain the behavior and/or
to refine these two main interactions more accurately, auxiliary interaction
mechanisms are also introduced.

Currently OOWS generates the Web Application code from these abstract models
Further details about the OOWS models and the code generation process can be
consulted in [28] and [29] respectively. In order to extend OOWS with the RIA
Metamodel, the modeling phase is divided in two levels: an Abstract level made up of
the current OOWS models and a new Concrete UI level. This new level adds a new
methodological step that is highlighted in Fig. 3. In this new step (Concrete UI
modeling), the analyst can choose between the modeling of a traditional HTML
interface or a Flex UI. The following subsection explains how the link between the
models of the two levels is established.

3.1 Integrating the RIA Metamodel with the OOWS Method

Current abstract models proposed by Web Engineering methods provide information
that must be taken into account when the final UI code is generated. For instance,
these models provide the data structures that must be shown using a Dataview widget.
Since in the approach presented, the UI is defined using the RIA Metamodel, the
integration with the previous OOWS models must also be addressed.

140 F. Valverde and O. Pastor

Fig. 3. The extended OOWS MDE development process

A common strategy in a MDE environment is to define a model-to-model (M2M)
transformation from an abstract model to a more technological one. Hence, the
technological model replaces the previous one and provides the additional
expressivity required. However, the use of M2M transformations has two main
disadvantages: 1) since the technological models must include all the expressivity
from the abstract model they are complex to define; and, 2) since in practice, each
abstract modeling entity can be represented in the UI using different RIA widgets, the
number of M2M transformations to be defined is high.

To overcome these issues, the solution proposed in this work is to create
relationships instead of transformations between the method metamodel and the RIA
metamodel. To capture relationships of this type, weaving models have been applied
in other works [6]. A weaving model [11] establishes the relationship between the
modeling entities of two models that are not directly related. Weaving models are
defined conforming to a weaving metamodel that defines the two metamodels to be
connected and the set of relationships between the modeling entities. Therefore,
neither of the two metamodels is modified because all the knowledge about the
relationships between them is defined in the weaving metamodel.

For this work, a weaving metamodel has been defined between the RIA metamodel
and the OOWS method metamodel. First the two metamodels were defined using the
Eclipse Modelling Framework [3] because Eclipse tools such as the Atlas Model
Weaver [8] and the Epsilon plug-in [10] can be used to implement the weaving
metamodel. Figure 4 shows a set of relationships defined in the OOWS weaving
metamodel. The main function of these relationships is to establish which widget type
is going to represent an OOWS modeling entity. For instance, in OOWS the
Population AIP defines the set of data to be shown to the user in a web page. Each
Population AIP defined in an OOWS model must be related to a Dataview widget.
When the analyst creates the weaving model, a Flex widget, which is specialized from

 Facing the Technological Challenges of Web 2.0 141

Fig. 4. Weaving relationships between the OOWS Metamodel and the RIA Metamodel

the DataView entity, must be selected for each Population AIP. The same line of
reasoning is applied to the rest of the OOWS modeling entities that must be reflected
in the UI.

The main advantage of this approach is that the weaving metamodel is defined
between the specific method and the abstract entities of the RIA metamodel.
Therefore, if another RIA technology is selected, the weaving metamodel does not
need to be modified because the relationships are established with the abstract entities
instead of the Flex technological entities. Furthermore, it is easier to create and
maintain several weaving models than different sets of M2M transformation rules.

Once the analyst has defined the RIA model, event rules are specified using the
dynamic view of the metamodel presented in section 2. In order to support the
definition of these rules in the OOWS method, the XText framework has been used
[17]. This framework creates an Eclipse metamodel to support the definition of a
given textual grammar. Therefore, that metamodel has been included in the RIA
Metamodel and related with the correspondent Event and Reaction entities.

Finally, the OOWS model compiler must be redefined because the new input
models are: 1) an OOWS model that describes the interaction of the user with the
system; 2) a RIA model that specifies the UI and the event rules; and, 3) a weaving
model that establishes the relationships between these two models. Taking these three
models as input, the final code (for instance, a Flex UI) is generated by means of
model-to-code transformations. The specification of this code generation process is
out of the scope of this paper.

4 Related Work

Several works in the Web Engineering field have proposed methodological extensions
to support RIA development. First, Bozzon and Comai [5] have extended the WebML
method to support RIA modeling. The proposed extension determines the definition at
the modeling level which data, operations, hypertext links, and page contents must be
processed by the client side. Additionally, this work proposes a code generation
process to obtain the final application using a RIA technology. In the context of the
OOHDM method, Urbieta et al. [27] propose an approach for designing RIA

142 F. Valverde and O. Pastor

interfaces, taking into account the separation of the interface structure from the
behavior. That work proposes an aspect-oriented perspective to combine different
concerns related to the UI composition. Hence, the UI is defined as a composition of
several interface atoms. They also propose [24] a set of refactorings to transform
conventional Web interfaces to RIAs.

The OOH method has also been extended defining the OOH4RIA approach [15] in
which two models are defined: a Presentation Model and an Orchestration Model. The
Presentation Model has been defined using the Google Web Toolkit (GWT) as the
technological framework to define the metamodel entities. The Orchestration Model
[20] defines the interaction dependencies between widgets and how these widgets
should be grouped to improve the requests to the server. The need for better
interaction models has also been pointed out by Dolog and Stage [9]. They propose
the use of UML statechart diagrams to support the synchronization between the client
side and the server side of a RIA as well as between widgets.

The common agreement in the works mentioned above is that the current Web
Engineering methods must be extended at the conceptual level in order to deal with Web
2.0 development. Our work proposes a generic RIA metamodel that has been specifically
defined to be method-independent. This metamodel combines both the static and
dynamic view of the RIA UI that previous works have addressed using different method-
specific models. Furthermore, the previous works have mainly focus on how to model
the logic and data persistence on the client side of a RIA application. Even though this
issue is relevant, in our view the main advantage of RIA is the improvement in the UI
usability. Our approach also considers that the methodological extension required cannot
be achieved only by extending the current method models. A new methodological phase
must be included in order to deal with the Concrete UI specification.

Furthermore, several works have addressed the RIA development from a HCI
perspective. A metamodel is proposed by Ruiz [25] for defining a RIA UI from an
Abstract Interface Model. In that work, a clear relationship is established between the
abstract and the concrete UI that represents the interaction. Another interesting
approach is the RUX-method [13]. This method proposes how to define at the
concrete level the time-related behaviors (Temporal Presentation) and the event-
response actions (Interaction Presentation) in order to define RIA interface
components. The main difference between our proposal and these works is the
expressivity provided by the concrete UI level. Their concrete models are defined
with a set of widgets that are common to different RIA technologies. As a
consequence, is not possible to take full advantage of the advanced features of a
specific RIA technology.

5 Concluding Remarks

In this paper, a model-driven UI development approach for Web 2.0 has been
presented. Because RIA technologies are very common in the Web 2.0 development,
a metamodel for dealing with the UI of this application paradigm has been proposed.
Several lessons have been learned during the development of this approach: The first
lesson is that Web Engineering methods provide suitable models that can also be
reused for Web 2.0 development. However, problems arise when specific
technological details must be introduced. Therefore, a UI model-driven development

 Facing the Technological Challenges of Web 2.0 143

process for Web 2.0 must consider the target technology. The second lesson is that the
clear separation of abstraction levels proposed by HCI approaches can be easily
adopted. Finally, the third lesson is that defining a single UI model to support every
technology in Web 2.0 is an unfeasible task. The approaches to support RIA
development must be flexible enough to be easily adapted to different technologies.

It should be pointed out that the manual definition of the weaving model might be
a tedious and error-prone task, if the number of entities in the model is very large. A
potential solution to this issue is the use of patterns. These patterns can abstract
several best practices in an understandable way and be reused to avoid the full
definition of the weaving model.

Further work will address full tool support of the Web 2.0 development process
presented in this work. Currently, the RIA Metamodel and several model-to-code
transformation rules for the Adobe Flex platform have been defined for validation
purposes. A Web 2.0 application for research management is being developed using
the ideas presented in this paper. However, the final goal is to apply these ideas in an
industrial tool. Finally, integration with other Web Engineering methods besides
OOWS must be analyzed in order to validate the flexibility of the RIA Metamodel.

Acknowledgments. This research work has been developed with the Spanish
MEC support under the project SESAMO TIN2007-62894 and the FPU grant
AP2005-1590.

References

1. Adobe Flex Developer Center, http://www.adobe.com/devnet/flex/ (accessed
April 2009)

2. Bozzon, A., Comai, S.: Conceptual Modeling and Code Generation for Rich Internet
Applications. In: 6th International Conference on Web Engineering (ICWE), California,
United States (2006)

3. Budinsky, F., Merks, E., Steinberg, D., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison-Wesley Professional, Reading (2003)

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for multi-target user interfaces. Interacting with
Computers 15, 289–308 (2003)

5. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann, San Francisco (2003)

6. Cetina, C., Fons, J., Pelechano, V.: Applying Software Product Lines to Build Autonomic
Pervasive Systems. In: Proceedings of the 2008 12th International Software Product Line
Conference. IEEE Computer Society, Los Alamitos (2008)

7. Comai, S., Carughi, G.T.: A Behavioral Model for Rich Internet Applications. In: 7th
International Conference in Web Engineering, Como, Italy (2007)

8. Del Fabro, M., Bézivin, J., Valduriez, P.: Weaving Models with the Eclipse AMW plugin.
In: Eclipse Summit Europe, Esslingen, Germany (2006)

9. Dolog, P., Stage, J.: Designing Interaction Spaces for Rich Internet Applications with
UML. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp.
358–363. Springer, Heidelberg (2007)

10. Epsilon, http://www.eclipse.org/gmt/epsilon/ (accessed May 2009)
11. Fabro, M.D.D., Valduriez, P.: Semi-automatic model integration using matching

transformations and weaving models. In: Proceedings of the 2007 ACM symposium on
Applied computing. ACM, Seoul (2007)

144 F. Valverde and O. Pastor

12. Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of Web Applications from Web
Enhanced Conceptual Schemas. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P.
(eds.) ER 2003. LNCS, vol. 2813, pp. 232–245. Springer, Heidelberg (2003)

13. Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.: Engineering Rich Internet Application
User Interfaces over Legacy Web Models. IEEE Internet Computing, 53–59 (2007)

14. Mbaki, E., Vanderdonckt, J., Guerrero, J., Winckler, M.: Multi-level Dialog Modeling in
Highly Interactive Web Interfaces. In: 7th International Workshop on Web-Oriented
Software Technologies, vol. 445, pp. 38–43. WS-CEUR, New York (2008)

15. Meliá, S., Gómez, J., Pérez, S., Díaz, O.: A Model-Driven Development for GWT-Based
Rich Internet Applications with OOH4RIA. In: Eight International Conference on Web
Engineering. IEEE Computer Society, New York (2008)

16. Noda, T., Helwig, S.: Rich Internet Applications - Technical Comparison and Case Studies
of AJAX, Flash, and Java based RIA. In: Best Practice Reports University of Wisconsin-
Madison, vol. 2008 (2005)

17. OpenArchitectureWare. Xtext Reference Documentation,
http://wiki.eclipse.org/Xtext/Documentation (accessed April 2009)

18. Oreilly, T.: What is Web 2.0? Design Patterns and Business Models for the Next Generation
of Software (2005), http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html (accessed April 2009)

19. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. In: A Software
Production Environment Based on Conceptual Modelling. Springer, Heidelberg (2007)

20. Pérez, S., Díaz, O., Meliá, S., Gómez, J.: Facing Interaction-Rich RIAs: the Orchestration
Model. In: Eight International Conference on Web Engineering, pp. 24–37. IEEE
Computer Society, New York (2008)

21. Preciado, J.C., Linaje, M., Sánchez, F., Comai, S.: Necessity of methodologies to model
Rich Internet Applications. In: 7th IEEE International Symposium on Web Site Evolution,
pp. 7–13. IEEE, Budapest (2005)

22. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.): Web Engineering: Modelling and
Implementing Web Applications. Springer, Heidelberg (2008)

23. Rossi, G., Schwabe, D., Lyardet, F.: User interface patterns for hypermedia applications.
In: Proceedings of the working conference on Advanced visual interfaces, pp. 136–142.
ACM Press, Palermo (2000)

24. Rossi, G., Urbieta, M., Ginzburg, J., Distante, D., Garrido, A.: Refactoring to Rich Internet
Applications: A Model-Driven Approach. In: Eight International Conference on Web
Engineering, pp. 1–12. IEEE Computer Society, New York (2008)

25. Ruiz, F.J.M.: A Development Method for User Interfaces of Rich Internet Applications.
DEA Thesis. Université catholique de Louvain, Louvain, Belgium (2007)

26. Troyer, O., Casteleyn, S., Plessers, P.: WSDM: Web Semantics Design Method. In: Web
Engineering: Modelling and Implementing Web Applications, pp. 303–352. Springer,
Heidelberg (2008)

27. Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich Internet
Applications. In: Fifth Latin American Web Congress (LA-WEB), Santiago de Chile (2007)

28. Valverde, F., Panach, I., Aquino, N., Pastor, O.: Dealing with Abstract Interaction
Modelling in an MDE Development Process: a Pattern-based Approach. In: New Trends
on Human-Computer Interaction, pp. 119–128. Springer, London (2009)

29. Valverde, F., Valderas, P., Fons, J., Pastor, O.: A MDA-Based Environment for Web
Applications Development: From Conceptual Models to Code. In: 6th International
Workshop on Web-Oriented Software Technologies, Como, Italy, pp. 164–178 (2007)

30. Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins, M.:
USIXML: a User Interface Description Language for Specifying Multimodal User
Interfaces. In: WMI 2004, Sophia Antipolis, Greece (2004)

	Facing the Technological Challenges of Web 2.0: A RIA Model-Driven Engineering Approach
	Introduction
	Defining a RIA Metamodel for Supporting Web 2.0 Applications
	Modeling the RIA Interface
	Modeling the Event-Driven Interaction

	RIA Modeling in the OOWS Web Engineering Method
	Integrating the RIA Metamodel with the OOWS Method

	Related Work
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

