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Abstract. Social tagging is an increasingly popular phenomenon with
substantial impact on the way we perceive and understand the Web. For
the many Web resources that are not self-descriptive, such as images,
tagging is the sole way of associating them with concepts explicitly ex-
pressed in text. Consequently, users are encouraged to assign tags to Web
resources, and tag recommenders are being developed to stimulate the
re-use of existing tags in a consistent way. However, a tag still and in-
evitably expresses the personal perspective of each user upon the tagged
resource. This personal perspective should be taken into account when
assessing the similarity of resources with help of tags. In this paper, we
focus on similarity-based clustering of tagged items, which can support
several applications in social-tagging systems, like information retrieval,
providing recommendations, or the establishment of user profiles and the
discovery of topics. We show that it is necessary to capture and exploit
the multiple values of similarity reflected in the tags assigned to the
same item by different users. We model the items, the tags on them and
the users who assigned the tags in a multigraph structure. To discover
clusters of similar items, we extend spectral clustering, an approach suc-
cessfully used for the clustering of complex data, into a method that
captures multiple values of similarity between any two items. Our exper-
iments with two real social-tagging data sets show that our new method
is superior to conventional spectral clustering that ignores the existence
of multiple values of similarity among the items.

1 Introduction

Social tagging is the process of saving bookmarks to a public Web site and tag-
ging them with free-text keywords. With social tagging, a user expresses the own
perspective on items, i.e. Web resources like images, videos, scientific papers, thus
allowing other like-minded users to find the same information. The success of
social tagging resulted to the proliferation of sites like Delicious, Citeulike, Digg,
or Flickr. Such sites contain large amounts of tagged data that can be clustered
on similarity and then used in information retrieval in social-tagging systems,
for the formulation of recommendations in them [8,11], or for the establishment
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of user profiles and the discovery of topics, among other applications. However,
similarity-based clustering of socially tagged items calls for methods that take
account of the personalized perspectives posed by the users upon the items they
tag. In this study, we deal with this challenge by proposing an innovative model
for socially tagged items, in which we allow for multiple similarities per item.
For this model, we use spectral clustering with tensor factorization. The clus-
ters consist of items that are deemed similar by multiple users, even if each one
considers them similar for different reasons!

The need for a new model emerges from the very nature of social tagging: data
in a social-tagging system have three dimensions - the items, the users annotating
them and the tags used for annotations. There is a 3-way relationship among
these three dimensions; in classic database terminology, this means that the
data cannot be brought into third normal form. Since conventional clustering
algorithms model data in two-dimensional arrays (the rows are the items, the
columns stand for the features), the 3-way relationship is solved by projecting
away the third dimension: clustering is performed over items-users or items-tags
arrays. Obviously, this incurs the loss of valuable information contained in the
3-way relationships.

Nevertheless, even when projecting one dimension away, the clustering of so-
cially tagged items is challenging. The main reasons are the size of the feature
space (large number of users or tags) and the complex cluster shapes. Spectral
clustering algorithms lend themselves for such data. They capture similarity by
spanning a graph structure, in which each item is connected to the k items most
similar to it. By concentrating on the k nearest neighbors of each item, spec-
tral clustering methods effectively project the data into a smaller, transformed
feature space, in which they can detect complex clusters and suppress noise
[13]. We exploit these properties by extending, however, spectral clustering to
deal with all three dimensions of socially-tagged data without projecting any
dimension.

In particular, we propose the computation of multiple similarity values for
each pair of items to account for the fact that when all three dimensions are
considered, the similarity between two items depends both on the users who
tagged them and on the tags they used. To perform spectral clustering with
multiple similarity values, we generalize the idea of a similarity graph into a
similarity multigraph that has multiple edges between any two nodes. Similarity
values on a graph would have been recorded on a conventional similarity matrix;
for a multigraph, we must use a tensor, i.e. a multi-dimensional matrix. Spectral
clustering on a matrix corresponds to matrix factorization with Singular Value
Decomposition (SVD); accordingly, we perform tensor factorization.

The rest of the paper is organized as follows. Section 2 reviews related work.
In Section 3 we give an overview of the proposed approach. Then, in Section 4
we describe our data model in detail and in Section 5 we present our clustering
algorithm. In Section 6 we report on our comparison against a conventional
spectral clustering method that only captures two-way relationships between
items and users and between items and tags. We conclude in Section 7.
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2 Related Work

The problem of clustering social data has recently started to attract attention.
Giannakidou et al. [3] propose a co-clustering scheme that exploits joint groups
of related tags and social data sources, in which both social and semantic aspects
of tags are considered simultaneously. Their objective is to improve the retrieval
of resources by exploiting their relation to tags. We also exploit the relation of
items to tags, but not only: we capture also the relation of tags to users. Instead
of co-clustering items with tags, we build solely clusters of items. For building
these clusters, both the relation of items to tags and of tags to users are exploited
to induce multiple similarities between items.

The need to cluster data with multiple similarity measures has been recog-
nized only recently, as applications with very complex data structures started to
proliferate. Seele et al have studied the problem of clustering bibliographic data
with multiple similarity values [9]. They examined six different similarities on a
collection of journal articles by considering, among others, similarities between
words in abstracts, between names of authors co-citations etc. These similarities
are predefined. In contrast, we induce multiple similarities from the tags, i.e.
make no a priori assumptions as to their nature and number.

Shashua et al. [10] proposed the use of tensor factorization to cluster data that
exhibit n-wise similarities, i.e. the definition of similarity involves more than two
objects. Our problem specification is different: we consider pairwise similarity
between objects, i.e. n = 2, but we take account of many pairwise similarities
between any two objects.

Banerjee et al. [1] propose a method for multi-way clustering on tensors, thus
extending co-clustering from matrices to tensors. However, their objective is to
cluster different types of entities that are connected with relation graphs, rather
than clustering items with multiple similarities.

3 Overview of Proposed Approach

Existing spectral clustering algorithms [13] first compute the k-NN similarity
graph, which connects every item with its k-NN. Next, the Laplacian graph of
the k-NN similarity graph is used instead, because of the benefits it offers, i.e.,
it is always positive-semidefinite (allowing its eigenvector decomposition) and
the number of times 0 appears as its eigenvalue is the number of connected
components in the k-NN similarity graph. Due to these convenient properties,
if c clusters are required to be found, spectral clustering algorithms proceed by
computing the c eigenvectors that correspond to the c smallest eigenvalues, and
represent each original item with as a c-dimensional vector whose coordinates
are the corresponding values within the c eigenvectors. With this representation,
they can finally cluster the c-dimensional vectors using simple algorithms, like
k-means or hierarchical agglomerative.

As described in Introduction, differently from conventional spectral clustering
algorithms, our proposed approach considers multiple similarity values between
each pair of items. In particular, let U be the set of all users. For a given tag t,
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let U1 ⊆ U be the set of users that tagged an item i1 with t, whereas U2 ⊆ U
be the set of users that tagged an item i2 with t too. We can define a similarity
value between i1 and i2 as follows. We form two vectors v1 and v2, both with |U |
elements that are set to 1 at positions that correspond to the users contained
U1 and U2, respectively, whereas all rest positions are set to 0. Therefore, the
similarity between i1 and i2 is given by the cosine measure between the two
vectors v1 and v2. Since the above process can be repeated for all tags, the
result is several similarity values between each pair of items i1 and i2. The set
of all multiple similarity values are tag-aware and reflect the personalized aspect
of similarity perceived by the users (e.g., two users may tag the same item but
using entirely different tags).

To account for the various similarity values between each pair of items, we
extend (Section 4) the k-NN similarity graph to a k-NN multidigraph that is the
union of multiple simple k-NN graphs, one for each distinct tag. The adjacency
matrix of a k-NN multidigraph forms a tensor, i.e., a multidimensional array.
In order to attain the aforementioned advantages of the Laplacian, we propose
a method (Section 5.1) to extend towards the construction of the Laplacian
multidigraph, whose adjacency matrix is again represented as a tensor. To map
each item to a feature space comprised from spectral information extracted from
the Laplacian tensor, we describe (Section 5.2) how to use tensor factorization
that extends SVD to multidimensional arrays. Finally, based on the computed
features, we describe (Section 5.3) how the clustering is performed. To help
comprehension, throughout the rest of the article we use a running example
with the following data.

Example 1 (Data representation). We assume 3 users, U1, U2, and U3, who assign
tags to 4 items (henceforth ‘items’ for simplicity), I1, . . . , I4, from a tag-set with
3 tags, T1, . . . , T3. Each assignment comprises a triple of the form (user, item,
tag). The 9 triples of the example are given in Figure 1a, whereas we additionally
denote (in the first column) the ID of the triple. The corresponding view of the
data as tripartite graph is depicted in Figure 1b. In this figure, the numbered
labels on the edges correspond to the triple IDs in Figure 1a. For instance, the
first triple (ID = 1) is: U1 tagged I1 with T1. In Figure 1b this corresponds
to the path consisting of all edges labelled as 1. To avoid cluttering the figure,
parallel edges (i.e., edges between the same two nodes) with different labels are
depicted as one with different labels separated by comma. In this example, we
assume that items I1 and I2 form one cluster, whereas items I3 and I4 form a
second cluster. This follows by observing in Figure 1b that, although users tag
items from both clusters, they assign different tags to the first cluster than the
second. Therefore, the relationships between items-users alone are not able to
determine a clustering structure among the items. In contrast, when considering
the 3-way relationships between items-users-tags, we are able to better detect
the clustering of items.1 �
1 Although this example focuses on the comparison between items-users-tags and

items-users relationships, we have to note that we have also verified experimentally
that the former are preferable against items-tags relationships, as well.
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ID User Item Tag

1 U1 I1 T1

2 U2 I2 T1

3 U2 I1 T1

4 U2 I3 T2

5 U3 I3 T2

6 U3 I4 T2

7 U1 I3 T3

8 U3 I3 T3

9 U3 I4 T3

(a)
(b)

Fig. 1. Running example: (a)Input data. (b) Illustration of the tripartite graph.

4 Modelling the Multiple Similarity Values

In this section, we describe the modelling of multiple similarity values with a
k-nearest-neighbor multidigraph. A multidigraph is a directed graph permitted
to have multiple directed edges (henceforth, simply called edges), i.e., edges with
the same source and target nodes.

The input tripartite graph (like in the example of Figure 1b) can be parti-
tioned according to the tags. For each tag t, we get the corresponding underlying
subgraph Bt, by keeping users and items that participate in triples with this
tag.

Example 2 (Partitioning of tripartite graph). For the example of Figure 1, the
partitioning results to 3 (due to the existence of 3 tags) bipartite subgraphs,
which are depicted in Figure 2: Figures 2a, b, and c correspond to the subgraphs
BT1 , BT2 , BT3 , for the tags T1, T2, and T3, respectively. �

Each bipartite subgraph is represented with its adjacency matrix Bt (1 ≤ t ≤
|T |), whose size is |I|× |U |; that is, its rows correspond to items and its columns
to users. (Henceforth, wherever there is no ambiguity, we use interchangeably
the same symbol for a graph and its adjacency matrix.) Each element Bt(i, u)
is equal to 1, if there is an edge between the item i and user u, or 0 other-
wise. Therefore, from each adjacency matrix Bt we can compute between every
pair of items i, j (1 ≤ i, j ≤ |I|), a similarity measure according to the values
in their corresponding rows Bt(i, :) and Bt(j, :). Following the widely used ap-
proach for 2 dimensional matrices (like document-term in information retrieval
or user-item in CF), we consider the cosine similarity measure between every pair
of items.
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Fig. 2. Partitioning of the tripartite graph of the running example

Having defined a similarity measure, from each subgraph Bt (1 ≤ t ≤ |T |), we
can compute the corresponding k-nearest neighbor (k-NN) graph, Nt, which is
a labelled and directed graph (digraph). The node set of each Nt corresponds to
the set of items (i.e., each item has a corresponding node). The edge set consists
of ordered pair of nodes. There is an edge between items i and j (1 ≤ i, j ≤
|I|), if j is among the k nearest neighbors of i. Each edge is labelled with the
corresponding similarity value.

By considering all k-NN digraphs together, we form the k-NN labelled mul-
tidigraph, N . The node set of N corresponds to the set of items (i.e., each item
has a corresponding node). The labelled edges of N is a multiset resulting from
the union of the labelled edges of all Nt for 1 ≤ t ≤ |T |. N summarizes the
information about multiple similarities, according to the different tags between
all items.

Example 3 (k-NN multidigraph). For the 3 subgraphs in Figure 2, the resulting
k-NN multidigraph N , for k = 1, is depicted in Figure 3a. The multiple edges
between the nodes of N denote the different similarities between the items, ac-
cording to the different tags. In Figure 3a, the edges representing similarities
according to tag Ti (1 ≤ i ≤ 3) are annotated with Ti and then follows the
corresponding similarity value.2 Notice that N correctly captures the clustering
structure: edges exist only between items of the same cluster, i.e., between I1, I2

for the first cluster and between I3, I4 for the second. Conversely, in Figure 3b,
which depicts the k-NN digraph (not a multidigraph) when only user-item rela-
tionships are considered, the separation of clusters is not clear. �

2 In this small example, to avoid numerical problems, we assign similarity equal to
0 when at least one item has no edge at all in the corresponding bipartite graphs.
Moreover, to avoid cluttering the graph, only the non-zero similarities are depicted.
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Fig. 3. The k-NN multidigraph for the running example

5 The Proposed Clustering Algorithm

5.1 Constructing the Laplacian Tensor

For each k-NN digraph Nt (1 ≤ t ≤ |T |) of N , compute Dt as a diagonal matrix
whose diagonal elements are defined as follows:

Dt(i, i) =
|I|∑

j=1

Nt(i, j) (1)

The Laplacian matrix, Lt, of each Nt is computed as follows [7]:

Lt = 1I − D
−1/2
t NtD

−1/2
t (2)

where 1I is the identity matrix.
The Laplacian tensor of N is, therefore defined as L ∈ R

|I|×|I|×|T |, whose
elements are given as follows:

L(i, j, t) = Lt(i, j) (3)

Thus, each matrix Lt, for 1 ≤ t ≤ |T |, comprises a frontal slice in L.

Example 4 (Laplacian tensor). For the k-NN multidigraph of Figure 3, the re-
sulting 3-mode Laplacian tensor is depicted in Figure 4, having as frontal slices
the 3 Lt matrices (1 ≤ t ≤ 3). �

The Laplacian tensor L has 3 modes (illustrated with red arrows in Figure 4):
the first mode corresponds to the items, the second mode to the neighboring
items, and the third mode to the tags. To perform spectral clustering, we are
interested in extracting the spectrum of L for the first mode. This procecure is
explained in the following.
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Fig. 4. The Laplacian tensor of the running example

5.2 Factorizing the Laplacian Tensor

In this subsection, we summarize the factorization of the Laplacian tensor using
Tucker decomposition [5], which is the high-order analogue of the Singular Value
Decomposition (SVD) for tensors. The factorization of the Laplacian tensor will
produce the required spectrum of its first (corresponding to items) mode.

First, we have to define the n-mode product T ×n M between a general N -
order tensor T ∈ R

I1×...×IN and a matrix M ∈ R
Jn×In . The result is an (I1 ×

I2× . . .×In−1×Jn×In+1× . . .×IN)-tensor, whose entries are defined as follows
(elements are denoted through their subscript indexes):

(T ×n M)i1i2...in−1jnin+1...iN =
∑

in

Ti1i2...in−1inin+1...iN Mjnin (4)

Since L is a 3-order tensor, we henceforth focus only on 1-mode, 2-mode, and
3-mode products.

The Tucker decomposition of the 3-order tensor L can be written as follows [6]:

L ≈ C ×1 P1 ×2 P2 ×3 P3 (5)

The P1 ∈ R
|I|×|I|, P2 ∈ R

|I|×|I|, P3 ∈ R
|T |×|T | are called the mode-1 (items),

mode-2 (neighboring items), and mode-3 (tags) projection matrices, respectively.
The 3 projection matrices contain the orthonormal vectors for each mode, called
the mode-1, mode-2 and mode-3 singular vectors, respectively. C is called the
core tensor and has the property of all orthogonality. Nevertheless, unlike SVD
for matrices, C is not diagonal. Recently, several algorithms have been proposed
to efficiently compute the components of the Tucker decomposition. Due to lack
of space, more details about the algorithms and their complexity can be found
in a recent survey on tensor factorization [5].
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Having performed the Tucker decomposition of the Laplacian tensor L, we
are interested in the mode-1 singular vectors that are stored in P1. A frequently
followed approach in spectral clustering, when c clusters are required, is to select
the c eigenvectors associated to the c smallest eigenvalues [13]. Similarly, we
select the c mode-1 singular vectors in P1 associated to the smallest singular
values in the core tensor C.

Example 5 (Selection of the mode-1 singular vectors). By performing the Tucker
decomposition of the Laplacian tensor of the running example (Figure 4), the
two selected mode-1 singular vectors from P1 (recall that in the running example
we have two clusters of items) are the following:

[0, 0, 0.71, 0.71]T and [0.71, 0.71, 0, 0]T �

5.3 Performing the Spectral Clustering

To find c clusters of items using the c mode-1 singular vectors that where com-
puted and selected during the factorization of the Laplacian tensor, we apply
the following steps: (1) Normalize the c selected mode-1 singular vectors to have
norm equal to 1. (2) Form a matrix X ∈ R

|I|×k, whose columns are the normal-
ized c selected mode-1 singular vectors. (3) Associate each item i to a point xi

whose coordinates are the contents of the i-th row of X . (4) Choose a distance
metric for the (xi)i=1,...,|I| points. (5) Cluster the points (xi)i=1,...,|I| into c clus-
ters using a clustering algorithm, according to the chosen distance metric. (6)
Assign each item to the cluster of its associated point.

Due to the properties of the Laplacian tensor, in practice (and similarly to
conventional spectral clustering on Laplacian graphs), the points in X can be
easily clustered (Step 5) using simple and well known algorithms. In the se-
quel we consider hierarchical agglomerative algorithms for this purpose based
on Euclidean distance (Step 4).

Example 6 (Clustering of items). After normalizing the vectors selected in Ex-
ample 5, we get the X matrix depicted in Figure 5a. A simple hierarchical
clustering algorithm, based on Euclidean distance, can easily detect two clus-
ters, the first consisting of the first two points, whereas the second of the latter
two points. This result is in accordance to the clusters assumed in the running
example, i.e., the first one with the items I1, I2 and the second with the items
I3, I4. To exemplify the effectiveness of the proposed representation, we can con-
trast the aforementioned result with the one obtained when performing spectral
clustering without taking into account the information of tags. In this case, the
corresponding X matrix is computed by taking the Laplacian matrix based only
on items-users relationships, that is, originally we have a matrix where a user-
item combination is set to 1 when the user tagged at least once the item. In
this case, the resulting X matrix is depicted in Figure 5b. Evidently, in the lat-
ter case a clustering algorithm is not able to correctly detect the two clusters,
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X =

⎛

⎜⎜⎝

0 1
0 1
1 0
1 0

⎞

⎟⎟⎠

(a)

X =

⎛

⎜⎜⎝

0 0
1 0
0 0
0 1

⎞

⎟⎟⎠

(b)

Fig. 5. The mapping when considering (a) items-users-tags (b) items-users

because items I1 and I4 will be incorrectly assigned to the same cluster (due to
their identical coordinates), whereas either I2 or I3 will join the cluster of I1, I4,
as their distance from each other is higher than their distance from I1, I4. �

Therefore, the proposed approach can better detect the clustering, because it
fully exploits all items-users-tags relationships. This is verified with the experi-
mental results in the following section.

6 Experimental Evaluation

6.1 Experimental Configuration

We experimentally tested the proposed method, denoted as Tensor-based Spec-
tral Clustering (TSC). The baseline method is the Spectral Clustering (denoted
as SC), which applies spectral clustering on the item-user 2 dimensional matrix
with elements set to 1 when the corresponding item has been tagged at least
once (no matter the tag) by the corresponding user.3 Both TSC and SC have
been implemented in Matlab using the same components. Tensor factorization
was computed using the Tensor toolbox4.

We consider two real social-tagging data sets. The first one is Movielens
(downloaded from www.grouplens.org/node/73), which contains tags provided
by users on movies. Associated information is available for movies. In our ex-
periments we selected the genre (e.g., comedy, drama, etc.), where notice that
each movie can belong to more than 1 out of 18 total genres. The second data
set is Bibsonomy (provided by the authors of the paper [4]), which contains tags
provided by users on Web resources (we excluded the tags of this data set that
were given to scientific articles).

Social-tagging data present problems like tag polysemy and sparsity. To ad-
dress them, we applied the widely used technique of Latent Semantic Indexing
(LSI) [2] and reduced the number of dimensions in the modes of users and tags,
by maintaining a percentage of them. This reduction was performed by modelling
the original triples as a 3-mode tensor and applying Tucker decomposition [5].

3 We have to note that we performed the same comparison against spectral clustering
on a item-tag 2 dimensional matrix and found that it is outperformed by TSC as
well. We omit the presentation of these results due to lack of space.

4 http://csmr.ca.sandia.gov/∼tgkolda/TensorToolbox/
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The item mode is left unchanged, whereas the number of maintained users and
tags after this process is expressed as a percentage (default value 30%) of the
original number of users and tags (for simplicity we use the same percentage
for both). SC also utilize this technique by maintaining the same percentage for
users or tags.

For the fifth step of the spectral clustering algorithm, we examined the Un-
weighted Pair Group Method with Arithmetic mean (UPGMA) hierarchical al-
gorithm that defines the distance between two clusters as the average of the
distances of all object pairs, selecting one object per cluster. We considered
further hierarchical algorithms, but found that UPGMA performed best.

To measure the quality of the clustering results, we have used the measures of
entropy (the lower the better) and Jaccard coefficient (the higher the better) to
evaluate a clustering against the explicit class labels of Movielens. To measure the
quality of one clustering (both Movielens and Bibsonomy) we used the silhouette
coefficient (the higher the better). These measures are defined as follows [12].

Let ζ be a clustering and ξ be the set of classes. JaccardCoeff(ζ, ξ) =
f11

f11+f01+f10 , where f11 is the number of records of the same class that were
put in the same cluster of ζ, f10 is the number of records that were put in the
same cluster of ζ but belong to distinct classes, and f01 is the number of records
that belong to the same class but appear in different clusters. The entropy mea-
sures the degree to which a cluster contains tuples belonging to a single class:
entropy(ζ, ξ) =

∑
Cu∈ζ |Cu|e(Cu)

|∪Cv∈ζCv| , where the probability that a tuple in C belongs

to Lv is puv = |Cu∩Lv|
|Cu| and The entropy of Cu is e(Cu, ξ) =

∑
Lv∈ξ puvlog2puv.

To compute the silhouette coefficient of a tuple x in cluster C ∈ ζ, we calculate
its average distance ax from all other tuples in C and from the t uples in the
clusters of ζ \ {C}, say bx. Then s(x) = (bx−ax)

max(ax,bx) . The silhouette of C is the
average silhouette of its members. The silhouette for the clustering silhouette(ζ)
is the average over the cluster silhouettes, weighted with cluster cardinalities.

6.2 Experimental Results

We experimentally compare TSC and SC and examine sensitivity against the
following parameters: the number of neighbors, k (default value 10) and the per-
centage of maintained users/items (default value 10%). We examine a varying
number of clusters c that, following the approach of conventional spectral clus-
tering algorithms [13], we considered it as a user-defined parameter. Therefore,
the number of clusters vary up to 18 for Movielens (which is the number of
distinct genres) and up to 20 for Bibsonomy.

Figures 6a–c present the results for the Movielens data set against varying
number of clusters. The measures are Jaccard coefficient, Entropy, and Silhou-
ette coefficient. In all cases, TSC performs favorably against SC. Analogous
conclusion is drawn for the Bibsonomy data set, the results for which (only Sil-
houette coefficient is applicable) are presented in Figures 6d.
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Fig. 6. Experimental results for Movielens and Bibsonomy data set

We tested the sensitivity against the number of nearest neighbors, k, that is
used during the creation of the k-NN multidigraph. Figures 7a and b present the
results for Movielens and Bibsonomy, respectively. In both cases we require the
maximum number of clusters that were examined in the previous experiments
(for brevity, for Movielens we present only Silhouette coefficient). When k is very
low, the performance of TSC can be negatively affected, because not enough sim-
ilarity information is captured. For k values in the range between 10 and 20, best
performance is attained. Then, as k increases, performance deteriorates, because
noise incurs (TSC considers items that are not truly neighbors). Analogous re-
sults hold for SC, although deterioration is less pronounced. Nevertheless, in all
cases TSC is superior to SC.

Next, we measured the impact of the percentage of maintained users/tags.
Figures 8 a and b present the results for Movielens and Bibsonomy, respectively.
Again, we required the maximum number of clusters, whereas k is set to 10.
As expected, for both TSC and SC, as the percentage of maintained users/tags
increases, performance is reduced due to the problems described in Section 6.1.
However, TSC is able to attain much better performance than SC even for
higher percentage of maintained users/tags, which means that TSC can better
cope with these problems.
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Fig. 7. Experimental results on sensitivity to the number of nearest neighbors, k
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Fig. 8. Experimental results on sensitivity to the percentage of maintained users/tags

7 Conclusions

We have considered the data mining task of clustering items (e.g., Web resources,
images, scientific papers, etc.) stored in social-tagging systems. To overcome the
problems of existing approaches and avoid breaking the original 3-way relation-
ships that are present in social-tagged data, we proposed the extension of the
popular spectral clustering algorithms to directly handle all dimensions without
suppressing them with 2-way relationships. The proposed approach consists of
the following contributions: (i) We provided the insight that it is necessary to
capture and exploit the multiple similarity values reflected in the tags assigned
to the same item by different users. (ii) To support multiple similarity values, we
extended the modeling based on k-NN similarity graphs by using k-NN similarity
multigraphs, which allow the existence of multiple edges between two nodes. (iii)
We modeled the multigraph structures as tensors (i.e., multidimensional arrays)
and extended the popular spectral-clustering algorithms by developing a method
to construct their corresponding Laplacian tensors. (iv) We described the use of
tensor factorization, which extends the Singular Value Decomposition (SVD)
to multi-dimensional arrays, to extract spectral features from the Laplacian
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tensors. (v) Our experimental results with real data indicate the clear advan-
tage, in terms of quality of the final clustering, of the proposed method against
conventional spectral clustering that suppresses the original data by considering
only 2-way relationships.

As future work, we will extend the proposed clustering method in other kind
of data, like documents. Also, we plan to develop model-based CF algorithms
that will exploit the proposed clustering method.
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