
Explaining Inconsistencies in OWL Ontologies

Matthew Horridge, Bijan Parsia, and Ulrike Sattler

The University of Manchester
Oxford Road, Manchester, M13 9PL

{matthew.horridge,bparsia,sattler}@cs.man.ac.uk

Abstract. Justifications play a central role as the basis for explaining
entailments in OWL ontologies. While techniques for computing justi-
fications for entailments in consistent ontologies are theoretically and
practically well-understood, little is known about the practicalities of
computing justifications for inconsistent ontologies. This is despite the
fact that justifications are important for repairing inconsistent ontolo-
gies, and can be used as a basis for paraconsistent reasoning. This paper
presents algorithms, optimisations, and experiments in this area. Sur-
prisingly, it turns out that justifications for inconsistent ontologies are
more “difficult” to compute and are often more “numerous” than jus-
tifications for entailments in consistent ontologies: whereas it is always
possible to compute some justifications, it is often not possible to com-
pute all justifications for real world inconsistent ontologies.

1 Introduction

An ontology is a machine processable artefact that captures the relationships
between concepts and objects in some domain of interest. A logic based ontology
language allows ontologies to be specified as logical theories, meaning that is it
possible to reason about the relationships between concepts and objects that are
expressed in such an ontology. A widely used logic based ontology language is the
the Web Ontology Language, OWL [1], the latest version of which is underpinned
by a highly expressive Description Logic1 called SROIQ [3].

An inconsistent ontology, is an ontology that, by virtue of what has been
stated in the ontology, cannot have any models, and entails everything. The
effect of this is that, using standard classic semantics, no meaningful conclusions
can be drawn from an inconsistent ontology. All Description Logic based OWL
reasoners merely report “ontology inconsistent” when fed such ontologies.

In practice, inconsistent ontologies can arise due to a number of reasons. For
example, an ontology may become inconsistent during the editing process after
the addition of some axioms. While the last set of axioms that were added may
play a part in making the ontology inconsistent, it may be the case that they
were the correct axioms to add from a modelling point of view, but it is the
interplay of the newly added axioms with axioms already in the ontology that

1 Description Logics [2] may be regarded as decidable fragments of First Order Logic.

L. Godo and A. Pugliese (Eds.): SUM 2009, LNAI 5785, pp. 124–137, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Explaining Inconsistencies in OWL Ontologies 125

triggers the inconsistency. Inconsistencies can also be the result of automated on-
tology construction techniques. For example, in [4], ontologies are automatically
constructed as an output from text mining, and it is possible for the resulting
ontologies can be inconsistent.

There are a number of different ways of dealing with an inconsistent ontology.
Broadly speaking, either some form of paraconsistent reasoning can be used to
draw “meaningful” conclusions from the ontology, as in [5], or the ontology can
be repaired so that it becomes consistent, thus meaningful conclusions can be
drawn from the repaired ontology using standard semantics. The work presented
in this paper focuses on this latter “repair strategy”, with an assumed scenario
that ontologies may become inconsistent during their construction process, but
not wanting to publish such ontologies, their authors would repair the ontologies
before publication.

Given the assumed “repair and publish” scenario, it is necessary for ontol-
ogy authors to pin point the reasons for an inconsistent ontology. These reasons
may be highly non-obvious, and manually browsing an ontology to determine
the causes of inconsistency, if not impossible, can be a wretched, tedious and
error prone task. In practice it is therefore necessary for people to have access
to some form of automated explanation generation service that, given an incon-
sistent ontology, can identify minimal subsets of the ontology that cause it to
be inconsistent. These minimal subsets are known as justifications [6,7,8], and
a procedure for finding and exposing justifications for inconsistent ontologies is
the subject of this paper.

In what follows, an algorithm for computing all justifications for inconsistent
ontologies is presented. An investigation on real world, hand-crafted, ontologies
is carried out to evaluate the effectiveness of the algorithm for computing jus-
tifications. Finally, the problems and challenges of computing justifications for
inconsistent ontologies, along with the utility of these justifications, is discussed.

2 Preliminaries: OWL and Justifications

The work presented here focuses OWL 2 ontologies which correspond to SROIQ
knowledge bases. SROIQ [3] is a highly expressive description logic and can be
viewed as a decidable and 2NExpTime-complete [9] fragment of First Order
Logic, a close relative of the 2-variable fragment with counting and modal log-
ics [2]. In what follows,

– A and B are used as class names–they correspond in FOL to unary predicates,
– R and S are properties, i.e., property names or inverse properties (written

R− for R a property name)–they correspond to binary predicates,
– C and D are (possibly complex) class expressions that can be built us-

ing Boolean operators on classes (�, �, and ¬), value restrictions ((∃R.C),
(∀R.C)), number restrictions ((≥ nR.C), (≤ nR.C) for n a non-negative
integer), and enumerations ({a})–they correspond to formulae in one free
variable,

– a and b are individual names–they correspond to constants.

126 M. Horridge, B. Parsia, and U. Sattler

A SROIQ ontology is a finite set of SROIQ axioms, which take the form of
subsumptions between (possibly complex) class expressions C � D or properties
R � S, or the form of assertions C(a) or R(a, b).

A definition of the syntax and semantics of SROIQ can be found in [3]. In
what follows a sketch is provided by a translation of the main class, property and
axiom forming constructors into FOL. The translation of classes and properties
is parametrised by two variables, x and y, and uses counting quantifiers.

π(O) :=
∧

α∈O
π(α),

π(C � D) := ∀x.πx(C) ⇒ πx(D), π(R � S) := ∀x, y.πx,y(R) ⇒ πx,y(S),
π(C(a)) := πa(C), π(R(a, b)) := πa,b(R),

πx,y(R) := R(x, y), πx,y(R−) := R(y, x),

πx(A) := A(x), πx(
) := true, πx(⊥) := false, πx({a}) := (x = a),
πx(C � D) := πx(C) ∧ πx(D), πx(C � D) := πx(C) ∨ πx(D),

πx(¬C) := ¬πx(C),
πx(∃R.C) := ∃y.πx,y(R) ∧ πy(C), πx(∀R.C) := ∀y.πx,y(R) ⇒ πy(C),

πx(≤ nR.C) := ∃≤ny.πx,y(R) ∧ πy(C), πx(≥ nR.C) := ∃≥ny.πx,y(R) ∧ πy(C)

Interpretations, models, and entailments are defined as usual in FOL. In partic-
ular, an interpretation I is said to be a model of an ontology O (written I |= O)
iff I |= π(α) for every axiom α ∈ O. A class expression C is satisfiable with
respect to an ontology O if there exists a model I of O with I |= ∃x.πx(C). An
ontology is inconsistent if there does not exist a model of O, i.e., if O |= false(a).
Given an ontology O and an axiom η, O entails η, written O |= η if, for every
model I of O, we have that I |= π(η).

Definition 1 (Justification). Let O be an ontology such that O |= η. J is a
justification for η in O if J ⊆ O, and J |= η, and for all J ′ � J J ′ �|= η.

Intuitively, a justification for an entailment in an ontology is a minimal subset of
the ontology that entails the entailment in question. A justification is a minimal
subset in the sense that any proper subset of the justification does not entail
the entailment in question. It is important to note that there may be multiple,
potentially overlapping, justifications for any given entailment. Note that in
the logics considered here, the number of justifications for an entailment in an
ontology may be exponential in the size of the ontology [10].

Example: Let O = {A � B, B � D, A � ∃R.C, ∃R.
 � D, A � E} so that
O |= A � D. There are two justifications for O |= A � D, J1 = {A � B, B � D}
and J2 = {A � ∃R.C, ∃R.
 � D}.
Definition 2 (Simple Repair). S is a simple repair for O |= η if S ⊆ O and,
for every justification J for O |= η, S ∩ J �= ∅, and for all S′ � S (O \ S′) |= η

Explaining Inconsistencies in OWL Ontologies 127

Hence, in order to construct a repair for an entailment η in an ontology O, it
is necessary to choose one axiom from each justification for η in O and remove
this axiom from O. This implies that, in the general sense, all justifications for
η in O are needed in order to construct a simple repair for O |= η. The process
of finding the justifications for entailments and repairing ontologies is frequently
referred to as ontology debugging.

3 Related Work and Background

In recent years there has been a significant amount of effort and research into
the explanation of entailments that arise in consistent ontologies. In a seminal
paper in the area of debugging ontologies, Schlobach and Cornet [7] presented
minimal unsatisfiable preserving sub-tboxes (MUPS) as a specific kind of justi-
fication for unsatisfiable classes in ontologies. Kalyanpur et al. coined the term
justification as a form of explanation for any arbitrary entailment that holds
in an ontology. In [11] it was shown that it is practical to compute all justifi-
cations for any given entailment in real, published (consistent) ontologies. The
Propositional Logic reasoning community have long used the notion of minimal
conflict sets for determining the minimal unsatisfiable subsets of a set of clauses
for example in [12]. These conflict sets are used to gain insight into why a set of
clauses is unsatisfiable. In essence minimal conflict sets are akin to justifications.
On a practical level, justifications are used by many ontology development and
debugging environments such as Protégé-4 [13], Swoop [14], and RaDON [15],
as a popular form of explanation for entailments in ontologies.

3.1 Model Based Diagnosis and Techniques for Computing All
Justifications

Techniques for computing all justifications for an entailment, and for computing
all minimal conflict sets for a set of unsatisfiable clauses, borrow from techniques
used in the field of Model Based Diagnosis. Model Based Diagnosis is the over-
arching name for the process of computing diagnoses for a faulty system. Briefly,
a diagnosis is a subset minimal set of components from a faulty system, that
if replaced would repair the system so that it functions as intended. The term
model refers to the fact that a model is used to obtain the predicted behaviour of
of a system, which is then compared the observed behaviour of the system. Any
discrepancy between the predicted and observed behaviours indicates a fault
in the system. Model based diagnosis techniques have a wide variety of appli-
cations, and for example, are typically used for diagnosing sets of faulty gates
and connections in circuits. There is a direct correspondence between the ideas
behind model based diagnosis, and the ideas behind justification based ontol-
ogy debugging. Essentially, a diagnosis is the same as a repair (Definition 2),
and Minimal Conflict Sets, which are subsets of the faulty system, are equiva-
lent to justifications which are subsets of an ontology. A particularly pertinent

128 M. Horridge, B. Parsia, and U. Sattler

algorithm that is borrowed from the area of Model Based Diagnosis is “Reiter’s
Hitting Set Tree (HST) Algorithm” [16]. This algorithm essentially constructs
a finite tree whose nodes are labelled with minimal conflict sets (justifications),
and whose edges are labelled with components (axioms) from the system. In
doing this the algorithm finds all minimal hitting sets for the conflict sets in a
system. Since a minimal hitting set corresponds to a repair, and a conflict set
corresponds to a justification, it is possible to use Reiter’s algorithm to find all
repairs, and in doing this find all justifications for an entailment in an ontology
(proof in [11]).

Continuing with the previous example from Section 2, the hitting set tree
algorithm is used to compute all justifications for O |= A � D as follows. A sub-
procedure, computeJustification(η, O), is used, which computes a single justifica-
tion for the entailment η in an ontology O. Suppose that J1 = {A � B, B � D}
is computed by computeJustification(A � D, O). This justification is set as the
label of the root of the tree. Next, one of the axioms from J1, say A � B is
selected and removed from O to give O′. This essentially repairs J1 and allows
another justification (if one exists) to be computed for the entailment with re-
spect to the modified ontology O′. In this case, computeJustification(A � D, O′)
computes J2 = {A � ∃R.C, ∃R.
 � D} as a justification. The hitting set tree
is extended with an edge from the root, to a node labelled with J2 (the upper
left most edge in Figure 3.1), and the edge is labelled with the axiom that was
removed. Next, an axiom from J2, say A � ∃R.C is selected and removed from
O′ to give O′′, and computeJustification(A � D, O′′) is called to compute further
justifications with respect to O′′. This time, no further justifications are found
since the entailment does not hold in O′′, and the hitting set tree is extended
with an edge from the node labelled with J2 to a node with an empty label
which marks this branch as complete. The algorithm then backtracks up a level
to remove a different axiom from J2 and the process continues. The algorithm
terminates when all branches are marked as complete. It is noticeable, that the
axioms labelling the edges in a complete branch form a repair, or a superset
of a repair, since removing them from O results in O′′ such that O′′ �|= η. A
more formal description of this algorithm (with optimisations) is given later
in Function-1R in Algorithm 1 (where the entailment that O is inconsistent
is implicit) and is used in the computation of all justifications for inconsistent
ontologies.

One of the issues with computing all justifications for an entailment is that
the size of the hitting set tree can, in the worst case, be exponential in the size
of the set of justifications. However, a suite of optimisations, detailed in [11]
and presented in Algorithm 1, can be applied to prune the hitting set tree and
minimise its size, so that for practical purposes this is rarely a problem. For
example, in [11] it was shown that for real, published ontologies, the number of
justifications per entailment is usually small—for the ontologies sampled in [11],
the average number of justifications per entailment was two, with one ontology
containing a maximum of twenty six justifications for an entailment.

Explaining Inconsistencies in OWL Ontologies 129

J1 = {A � B, B � D}

A � B

A � ∃R.C

{}

B � D

{}

A � ∃R.C

{} {}

J2 = {A � ∃R.C,∃R.� � D}

∃R.� � D∃R.� � D

J ′
2 = {A � ∃R.C,∃R.� � D}

Fig. 1. An example of a hitting set tree (HST) that is constructed by Reiter’s HST
algorithm

3.2 Computing Single Justifications

The technique described in the previous section for computing all justifications
for an entailment, uses a sub-procedure computeJustification(η, O) that computes
a justification for an entailment η in an ontology O. In this work, a black-box
technique, which is not specific to a particular reasoner or proof strategy is used.
Black-box techniques typically use an “expand-contract” strategy in combination
with calls to an external reasoner. In order to compute a justification for an
entailment η in an ontology O, an initial, and small, subset S of axioms from O
is selected based on the signature of η. The axioms in S are typically the axioms
whose signature has a non-empty intersection with the signature of η, or axioms
that “define”2 terms in the signature of η. A reasoner is then used to check if
S |= η, if not, S is expanded by adding a few more axioms from O. This process
continues until S is large enough so that it entails η (this is the expansion phase).
When a subset S of O that entails η is found, this subset is pruned until it is
a minimal set of axioms that entails η i.e. until it is a justification (this is the
contraction phase). Through careful selection of axioms in the expansion phase,
which minimises the maximum size of S, and various pruning techniques in the
contraction phase, it has been found that this algorithm works well in practice
for entailments in consistent ontologies [11].

4 A Black-Box Algorithm for Computing Justifications
for Inconsistent Ontologies

As described in Section 3.2, the general approach taken by black-box justification
finding algorithms is to use a two phase expand-contract procedure. The “seed”
for selecting the initial small set axioms for the expansion phase is usually the
signature of the entailment in question (the class, property, individual names

2 For example, the axiom A � B defines the class name A.

130 M. Horridge, B. Parsia, and U. Sattler

appearing in the entailment). However, an issue when generating justifications
for inconsistent ontologies using black-box techniques is “where to start”. How
should the initial set of axioms be selected? With inconsistent ontologies there
is no seed signature that can be used as an input to start the expansion process.
This is due to the fact that current OWL reasoners typically do not provide
any information or clues as the possible causes of an inconsistent ontology—
they just output that the ontology is inconsistent.3 Therefore, the black-box
algorithm that is presented here, consists of a very simple expansion phase, which
immediately causes the expansion to contain all of the axioms in an ontology,
followed by a “divide and conquer” contraction phase, which contracts the set
of axioms in the ontology down to a justification. The algorithm for computing
all justifications is a hybrid of the algorithm for computing single justifications
taken from [17] and combined with the algorithm for computing all justifications
(the HST algorithm) taken from [11]. Proof that the Hitting Set Tree algorithm
finds all justifications is given in [11]. Algorithm 1 is the algorithm based on
Reiter’s Hitting Set Tree Algorithm and is used to compute all justifications for
an inconsistent ontology. Algorithm 2 is used as a sub-procedure for Algorithm
1 for computing a justification for the inconsistent ontology.

Algorithm 1. ComputeAllJustifications
Function-1: ComputeAllJustifications(O)

1: S, curpath, allpaths← ∅
2: ComputeAllJustificationsHST(O, S, curpath, allpaths)
3: return S

Function-1R: ComputeAllJustificationsHST(O, S, curpath, allpaths)

1: for path ∈ allpaths do
2: if curpath ⊇ path then
3: return //Path termination without consistency check
4: if IsConsistent(O) then
5: allpaths← allpath ∪ {curpath}
6: return
7: J ← ∅
8: for s ∈ S do
9: if s ∩ path = ∅ then

10: J ← s //Justification reuse (saves recomputing a justification)
11: if J = ∅ then
12: J ← ComputeSingleJustification(O)
13: S ← S ∪ {J}
14: for ax ∈ J do
15: curpath← curpaths ∪ {ax}
16: ComputeAllJustificationsHST(O \ {ax}, S, curpath, allpaths)

3 The exception to this is the Pellet reasoner, which is able to output clash
information—while this is a potential optimisation, it is not supported by all rea-
soners and is therefore not used here.

Explaining Inconsistencies in OWL Ontologies 131

Algorithm 2. ComputeSingleJustification
Function-2: ComputeSingleJustification(O)

1: return ComputeSingleJustification(∅, O)

Function-2R: ComputeSingleJustification(S, F)

1: if |F | = 1 then
2: return
3: SL, SR ← split(F)
4: if IsInconsistent(S ∪ SL) then
5: return ComputeSingleJustification(S, SL)
6: if IsInconsistent(S ∪ SR) then
7: return ComputeSingleJustification(S, SR)
8: S′

L ← ComputeSingleJustification(S ∪ SR, SL)
9: S′

R ← ComputeSingleJustification(S ∪ S′
L, SR)

10: return S′
L ∪ S′

R

5 Implementation and Evaluation

Algorithm 1, and its sub-routine Algorithm 2, were implemented in Java using
the latest version of the OWL API [18]. The OWL API has excellent support for
manipulating ontologies as sets of axioms and provides a common interface to
various OWL reasoners. The algorithm was run on the set of ontologies shown in
Table 1 using the FaCT++ [19], Pellet [20] and HermiT [21] reasoners. For each
ontology, the time to perform a consistency check of the complete ontology was
recorded. Then the time to compute a single justification for the inconsistency,
and the time to compute as many justifications as possible within a time of 30
minutes was recorded.

5.1 Results Analysis

The ontologies shown in Table 1 are real ontologies in the sense that they were
developed by end users using editing tools such as Protégé-4. Since it is rarely

Table 1. Inconsistent Ontologies Used In Experiments

ID Ontology Expressivity Axioms Cons. Cons. Cons.
HermiT Pellet FaCT++

(ms) (ms) (ms)

1 Assignment4 ALCIQ 88 - 1301 40
2 Boat ALCIF(D) 22 34 11 2
3 ComparaGrid ALCHIQ(D) 409 192 175 -
4 Country SROIQ(D) 5921 539 1454 333
5 Fish ALCH 49 36 78 13
6 IedbExport SHOIN (D) 2417 141 1117 67
7 Micro SROIQ(D) 1458 - 556 48
8 Spectro ALCON (D) 26612 1841 1763 378
9 Pizza SHOIQ(D) 179 25 45 5

10 ClassesAsValues ALCO 13 3 2 1
11 Travel SROIQ(D) 6437 443 701 135
12 Units ALCOIF(D) 2254 217 435 72

132 M. Horridge, B. Parsia, and U. Sattler

the case that inconsistent ontologies are published, all of the ontologies in the
sample were obtained either from public mailing lists, where the ontologies had
been posted to the mailing list with a request for help in debugging the ontology,
or from ontologies that were directly received via email from colleagues and users
of Protégé-4 and Swoop.

The rightmost three columns of Table 1 shows the time to load, and check
the consistency of the ontologies using HermiT, Pellet and FaCT++. Even for
the largest ontology, 8, that contains over twenty six thousand axioms, the con-
sistency check is performed within two seconds using HermiT or Pellet and less
that half a second using FaCT++. Note that FaCT++ failed to terminate on
the ComparaGrid ontology, where it entered an infinite loop during preprocess-
ing. HermiT incorrectly found Assignment4 consistent, and crashed on the Micro
ontology. On the surface, it would appear that even for very large ontologies,
the efficiency and speed at which ontologies can be loaded and checked for con-
sistency seems to indicate the feasibility of using a reasoner as an oracle in a
black-box based debugging algorithm.

Table 2 shows the performance results for computing justifications for incon-
sistent ontologies. Showing by ontology and reasoner, the time (ms) to compute
one justification, the number of justifications found within 30 minutes, the time
(ms) to compute all justifications if less than 30 minutes. A dash indicates that
no justifications could be computed. A � indicates that the algorithm did not
terminate within 30 minutes.

It should be noted that for all sampled ontologies, it was possible to com-
pute at least one justification for the ontology being inconsistent using at least
one of the three reasoners. With the exception of the Spectro ontology, it was
possible to compute at least one justification within ten seconds. This is clearly
acceptable performance in the context of generating on demand explanations
in an ontology development environment such as Protégé-4. In the case of the
Spectro ontology, Pellet was able to compute at least one justification within 11
seconds and HermiT within 31 seconds. Considering that this ontology contains
over 26500 axioms, it is arguable that this is acceptable, and even impressive,
performance for the purposes of interactive debugging and explanation in an
ontology development environment.

It can be seen that for the Assignment4, Fish, Spectro, Travel, and Units on-
tologies, it was not possible to compute all justifications with any of the tested
reasoners. However, for these ontologies, with the exception of Assignment4, a
sizeable number of justifications could be computed. In all cases, the availability
of one or more justifications can provide a vital insight into why an ontology is
inconsistent, and allow a person to begin to repair the ontology. Not all justifica-
tions could be computed for all ontologies within 30 minutes. Broadly speaking,
there are two reasons for this: (1) The reasoner being used found it much harder
to check if some subset of an ontology was consistent, compared to checking
if the whole ontology was consistent (in all cases, consistency checking perfor-
mance for whole ontologies was good e.g. less than 2 seconds), and the running
algorithm therefore “ground to a halt” during entailment checking. An exam-

Explaining Inconsistencies in OWL Ontologies 133

Table 2. Times for computing single and all justifications

Ontology Reasoner Time for One Number found Time for all
(ms) in 30 mins. (ms)

Assignment4 HermiT - - �
Pellet - - �
FaCT++ 5711 1 �

Boat HermiT 129 1 193
Pellet 73 1 93
FaCT++ 11 1 41

ComparaGrid HermiT 2252 9 15901
Pellet 1515 9 13164
FaCT++ - - �

Country HermiT 4177 4 383963
Pellet 4564 4 137348
FaCT++ 1726 4 78547

Fish HermiT 134 162 �
Pellet - - �
FaCT++ 115 162 �

IedbExport HermiT 855 2 2415
Pellet 1257 2 3860
FaCT++ 765 2 2255

Micro HermiT 4538 1 �
Pellet 2326 1 59090
FaCT++ 809 1 1574

Spectro HermiT 30930 76 �
Pellet 10768 76 �
FaCT++ - - �

Pizza HermiT 114 3 592
Pellet 7491 3 �
FaCT++ 37 3 329

ClassesAsValues HermiT 21 1 23
Pellet 4 2 15
FaCT++ 5 2 13

Travel HermiT 7873 7 �
Pellet 884 492 �
FaCT++ 521 163 �

Units HermiT 3023 54 �
Pellet 473 287 �
FaCT++ 285 287 �

Travel-semi-rep HermiT 8309 6 �
(semi repaired Pellet 3975 6 25722
Travel ont.) FaCT++ 1331 6 19280

ple of this is the Travel ontology, where using HermiT the procedure was only
able to compute 7 justifications, but using Pellet, the procedure was able to
compute nearly 500 justifications. (2) The number of justifications for the in-
consistent ontology was very large. The runtime performance of the algorithm
for computing justifications is in the worst case exponential with the number of
justifications—computing all justifications is an inherently difficult problem.

6 Discussion

The usefulness of justifications as explanations for inconsistent on-
tologies. Despite the fact that, in some cases, it is not feasible to compute all
justifications for real inconsistent ontologies, the ability to obtain just one or
two justifications can lend a vital insight into why the ontology is inconsistent.

134 M. Horridge, B. Parsia, and U. Sattler

Some ontologies are inconsistent due to highly non-obvious reasons, and it is
arguable that without automated explanation support, ontology authors would
face a hopeless task of trying to figure out the reasons for an ontology being
inconsistent in order to arrive at a manual repair. An example of a justification
from the Country ontology is shown in Figure 2. The ontology authors, who
made a request for help in trying to track down the reasons for the inconsis-
tency, indicated that it was highly unlikely that they would have discovered the
reason, without considerable difficulty, using manual debugging techniques.

Using justifications for inconsistent ontologies for repair. Even though
it may not be possible in practice to compute all justifications for a given on-
tology, with the availability of at least one justification, it is still possible to
carry out a manual interactive repair. For example, on closer inspection of the
justifications for the travel ontology it was observed that many of them had the
form {R(a, l),
 � ∀R.C}, where l is a data value not in the value space of C4.
In fact, structural inspection revealed that there were over 550 of these kinds
of justifications for the travel ontology and over 12000 for the Spectro ontol-
ogy. In order to test the hypothesis that even seeing a handful of justifications
is helpful for interactive debugging and can support repair, the travel ontology
was modified to produce a new version where all literals in property assertions
were typed with the appropriate data type5. This new version of the ontology
(Travel-semi-rep in Table 2) was still inconsistent, but had just six justifications
for it being inconsistent. Thus, even though it may not be possible to compute
all justifications is one go, being able to compute some justifications can pro-
vide enough insight in order to understand the reasons for an ontology being
inconsistent so that is is possible to perform a manual repair.

The difficulty of finding all justifications for an inconsistent ontology
compared to finding justifications for entailments in consistent on-
tologies. In other work [6,11] it has been shown that it is practical to compute
all justifications for entailments in consistent ontologies using similar blackbox
algorithms as the one presented here. However, the experiments carried out
as part of this research clearly indicate that it is not possible to compute all
justifications for some of the sampled inconsistent ontologies. As a means to
understanding why this could be the case, consider the following consistent on-
tology O = {B � A, C � A, D � A, . . . } such that B, C and D are entailed
to be unsatisfiable. Suppose that there are ten justifications for each unsatis-
fiable class, meaning that there is a total of thirty justifications for the three
unsatisfiable classes. In this case, each entailment can be examined separately,
one after the other, so that the justifications for each entailment are computed
separately. In other words, although the total number of justifications for all
unsatisfiable classes is thirty, they are computed in batches of ten. Now consider
O′ = O∪{B(a), C(b), D(c)}. Since B, C and D are unsatisfiable, O′ is entailed to

4 OWL 2 supports datatypes.
5 Upon seeing the justifications for this ontology it was deemed that this was a natural

repair.

Explaining Inconsistencies in OWL Ontologies 135

Island(ireland) (1)

Island � LandMass (2)

LandMass � GeographicalFeature� ∃hasCoastline.Coastline (3)

GeographicalFeature � NaturalPhysicalThing (4)

NaturalPhysicalThing � NaturalEntity (5)

NaturalEntity � PhysicalEntity (6)

landBoundaryOf(unitedKingdomIrelandBorder, ireland) (7)

landBoundaryOf � hasLandBoundary− (8)

∃hasLandBoundary.
 � Country (9)

Country � AdministrativeDivision (10)

AdministrativeDivision � PoliticalEntity � ∃directPartOf.PoliticalDiv (11)

PoliticalEntity � ¬PhysicalEntity (12)

Fig. 2. An (small) example justification from the (large) country ontology. The indi-
vidual ireland is entailed to be a PhysicalEntity (by axioms (1)(6)) and is also entailed
to be a PoliticalEntity (by axioms (7)-(11)), PhysicalEntity and PoliticalEntity are
disjoint with each other (axiom (12)).

be inconsistent, and there are thirty justifications for this entailment. Although
the total number of justifications for the entailment of interest in O′ is the same
as the total number of justifications for the entailments of interest in O, and the
justifications are almost structurally the same, the key difference is that there
are now thirty justifications for one entailment in O′, compared to thirty justifi-
cations spread over three entailments in O. Since the algorithm for computing all
justifications for an entailment in an ontology is, in the worst case, exponential
in the number of justifications for the entailment, it is clear to see that it can
be much more time consuming to compute all justifications for an inconsistent
ontology compared to computing all justifications for all entailments of interest
in a consistent ontology. In essence, one of the factors that makes it practical
to compute all justifications for entailments in consistent ontologies, is that for
real ontologies, the average number of justifications per entailment tends to be
fairly low. In the case of inconsistent ontologies, it is not possible, using classi-
cal reasoning, to take a more fine-grained approach, because it is not possible
to recognise entailments other than the single entailment that the ontology is
inconsistent.

7 Summary and Future Work

Computing a single justification, as a form of explanation, for real world incon-
sistent ontologies is possible in practice. However, computing all justifications is
not possible in practice for some real world ontologies. This is primarily due to
the fact that there can be a very large number of justifications for an ontology
being inconsistent. Despite this, it is expected that having the ability to compute

136 M. Horridge, B. Parsia, and U. Sattler

just one or two justifications for an inconsistent ontology will be of enormous
benefit to people trying to understand why the ontology is inconsistent. As future
work, we plan to investigate the possibility of using clash information for further
optimisation the current black-box algorithm. We also plan to investigate the use
of paraconsistent reasoning as means for exploring justifications for meaningful
entailments in inconsistent ontologies with a view to repairing these ontologies.

References

1. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics (2003)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation and Applications (2003)

3. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR
2006 (2006)

4. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In:
AAAI, pp. 299–304 (2007)

5. Ma, Y., Hitzler, P., Lin, Z.: Algorithms for paraconsistent reasoning with OWL. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 399–413.
Springer, Heidelberg (2007)

6. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, The Grad-
uate School of the University of Maryland (2006)

7. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI (2003)

8. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. Journal of Automated Reasoning (1995)

9. Kazakov, Y.: SRIQ and SROIQ are harder than SHOIQ. Description Logics
(2008)

10. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL. In: KI (2007)

11. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: ISWC (2007)

12. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

13. Horridge, M., Tsarkov, D., Redmond, T.: Supporting early adoption of owl 1.1 with
protégé-owl and fact++. In: OWL: Experiences and Directions, OWLED (2006)

14. Kalyanpur, A., Parsia, B., Hendler, J.: A tool for working with web ontologies.
International Journal on Semantic Web and Information Systems 1 (January -
March 2005)

15. Ji, Q., Haase, P., Qu, G., Hitzler, P., Stadtmoeller, S.: RaDON – repair and diag-
nosis in ontology networks. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P.,
Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simper, L.E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 863–867. Springer, Heidelberg (2009)

16. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32,
57–95 (1987)

17. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: KR-MED (2008)

Explaining Inconsistencies in OWL Ontologies 137

18. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 touch paper: The
OWL API. In: OWLED (2007)

19. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System descrip-
tion. In: IJCAR (2006)

20. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Journal of Web Semantics 5(2) (2007)

21. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using
hypertableaux. In: CADE 21 (2007)

	Explaining Inconsistencies in OWL Ontologies
	Introduction
	Preliminaries: OWL and Justifications
	Related Work and Background
	Model Based Diagnosis and Techniques for Computing All Justifications
	Computing Single Justifications

	A Black-Box Algorithm for Computing Justifications for Inconsistent Ontologies
	Implementation and Evaluation
	Results Analysis

	Discussion
	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

