
WASP: An Enhanced Indoor Locationing

Algorithm for a Congested Wi-Fi Environment

Hsiuping Lin, Ying Zhang, Martin Griss, and Ilya Landa

Carnegie Mellon Silicon Valley,
NASA Research Park Building 23, Moffett Field, CA 95035, USA
{tony.lin,joy.zhang,martin.griss,ilya.landa}@sv.cmu.edu

Abstract. Accurate and reliable location information is important to
many context-aware mobile applications. While the Global Positioning
System (GPS) works quite well outside, it is quite problematic for in-
door locationing. In this paper, we introduce WASP, an enhanced indoor
locationing algorithm. WASP is based on the Redpin algorithm which
matches the received Wi-Fi signal with the signals in the training data
and uses the position of the closest training data as the user’s current
location. However, in a congested Wi-Fi environment the Redpin algo-
rithm gets confused because of the unstable radio signals received from
too many APs. WASP addresses this issue by voting the right location
from more neighboring training examples, weighting Access Points (AP)
based on their correlation with a certain location, and automatic filtering
of noisy APs. WASP significantly outperform the-state-of-the-art Redpin
algorithm. In addition, this paper also reports our findings on how the
size of the training data, the physical size of the room and the number
of APs affect the accuracy of indoor locationing.

1 Introduction

Location is crucial information to many context-aware mobile applications. Per-
sonal navigation, asset tracking, local information search and friend finder all
require accurate and reliable location information from mobile devices. While
the Global Positioning System (GPS) works quite well outside, it does not work
well inside buildings because GPS signals can not penetrate most buildings. In-
door locationing plays an important role in ubiquitous computing and attracts
considerable interest in both industry and research. Some systems are designed
specifically for indoor locationing but require special infrastructure [1], [8]. With
the growth of Wi-Fi networks due to declining prices, increased ubiquity of
devices (laptops, cell phones, and other devices using Wi-Fi) and simplified in-
stallation of Wi-Fi access points (AP), indoor locationing using wireless LAN
(WLAN) is becoming more promising.

There are two major types of WLAN-based indoor locationing approaches: sig-
nal propagation model and fingerprinting. In the signal propagation approach,
we have to know physical locations of all APs in advance. The received signal
strength (RSS) on the mobile device can then be used to estimate the distance
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from AP to the mobile device. One can use a multi-lateration algorithm to
calculate the the physical location of the mobile device. To reflect the real en-
vironment, some signal propagation methods even include wall-attenuation and
reflections into the model. In general, the signal propagation approach does not
always provide satisfying results because of the Wi-Fi signal fluctuation caused
by environmental variations [9].

The fingerprinting approach requires a training database of RSS fingerprints
and their corresponding locations. The location of the mobile device is deter-
mined by the location of similar fingerprints in the database [2] or from the
statistical model derived from the training data [4].

There are many location fingerprinting algorithms. The simplest one is based
on the K-nearest neighbor algorithm (KNN). It converts fingerprints into vectors
and chooses the K historical fingerprints that are most similar to the testing
fingerprint. The location of the testing fingerprint is determined by the majority
of its K nearest neighbors. Extending the KNN algorithm, [3] measures not
only the contribution of RSSes but also the number of common access points
and not-common access points. Another fingerprinting approach is to model the
distribution of RSSes at various locations and tries to handle the uncertainty
and errors of signal strength measurements .

In this paper, we describe the WASP algorithm, an enhanced indoor loca-
tioning algorithm for congested Wi-Fi environments. WASP is a fingerprinting
approach and it significantly improves the state-of-the-art indoor locationing
algorithm in our experiments.

The rest of this paper is organized as follows. Section 2 reports related work.
Section 3 introduces the WASP algorithm and other statistical methods evalu-
ated in this paper. Section 4 describes the dataset, our experimental environment
and key results and we conclude the paper with discussion and plans for future
work in section 5.

2 Related Work

A reliable and stable interior positioning system (IPS) would be of great benefit
to many applications. Considerable research has been performed to determine
the indoor location of a mobile user or a mobile device. RADAR, developed
by Bahl et al., is an IPS based on Wi-Fi technology [1]. It uses signal strength
information gathered at multiple receiver locations by the PC based stations to
triangulate the user’s coordinates. Paschalidis et al. presents an approach that
allows a wireless sensor network to determine the physical locations of its nodes
by partitioning the wireless sensor network into regions and the localization
algorithm identifies the region where a given sensor resides [11].

Most recent research collects RSSes directly on the mobile devices, avoiding
the need for extra hardware elements. Li et al. compares the trilateration and
fingerprinting approaches, including both deterministic methods and probabilis-
tic methods [10]. Brunato et al. provide a general comparison of SVM, KNN,
Bayesian modeling and multi-layer perceptrons for locationing [4]. Carlotto et
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al. evaluate the proximity of two mobile devices by classifying the degree of sim-
ilarity of the Wi-Fi scanned data using a statistical Gaussian Mixture Model [5].
Correa et al. report experiences using an existing Wi-Fi infrastructure without
specialized hardware added to support room-level Wi-Fi location tracking by
signature matching, as well as the use of a specialized AP controller [6]. Bolliger
proposes the Redpin system, a novel approach that does not require an explicit
offline phase but allows users to create and manage the location fingerprints
collaboratively [3]. In our work, we started from the open source Redpin system
and made substantial enhancements for the congested Wi-Fi environment.

3 Indoor Locationing Algorithms

Our location fingerprinting is based on the assumption that a mobile device will
experience a different RSS fingerprint at different locations in the building, and
that the variation of the fingerprints seen over time in one location does not
vary too much1. We collect training data using handsets from several locations
in our building. Each training point is a tuple (L,t) of a location label L and the
detected RSSes fingerprint t = (t1, t2, ..., tN ) where ti is the RSS received from
APi. In this section, we first describe several statistical learning algorithms used
in our experiments.

3.1 Naive Bayes Classifier

In Naive Bayes approach, we predict a user’s location to be L∗ if P (L∗|t) is the
highest probability of all possible locations:

L∗ = argmax
L

P (L|t). (1)

By Bayesian theorem, we have

L∗ = argmax
L

P (t|L)P (L)
P (t)

= argmax
L

P (t|L)P (L) (2)

P (t) is dropped because it does not depend on L. The conditional probability
P (t|L) can be estimated by

P (t|L) = P (t1, . . . , tN |L) = P (t1|L)P (t2|L, t1) . . . (tN |L, t1, ...tN−1) (3)

With a naive independence assumption that each ti is conditionally independent
of every other tj for ti �= tj , we have

P (t|L) = P (t1|L)P (t2|L)...P (tN |L) =
N∏

i=1

P (ti|L) (4)

1 Of course, the usefulness of this location-based difference and relatively stable fin-
gerprint depends on the placement of the access points, the shape and construction
of the building and the sources of noise and fluctuation.
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P (ti|L) can be derived from the historical fingerprints by maximum likelihood
estimation (MLE). Thus, the location L can be derived by

L∗ = argmax
L

P (L|t) = argmax
L

P (L)
N∏

i=1

P (ti|L) (5)

The problem of the naive Bayes method is that the values of the signal strength
are not taken into consideration. In other words, P (t|L) is estimated by counting
the frequency where si is non-zero at location L and only the existence of a set of
APs decides the location. To address this issue, Seshadri et al. use Bayesian fil-
tering on a sample set derived by Monte-Carlo sampling to compute the location
and orientation estimates [12].

3.2 Support Vector Machine (SVM)

The Support Vector Machine is a useful technique for data classification and some
research has applied SVM to the indoor locationing problem [4], [7]. A classifica-
tion task usually involves training and testing data which consist of many data
instances. Each instance in the training set contains one target value (class labels)
and several attributes (features). The goal of SVM is to produce a model which
predicts the target value of data instances in the testing set when given only the
attributes. Although SVM is a powerful classification technique, the fluctuations
of signals may cause data instance pollution and affect the accuracy.

3.3 K-Nearest Neighbor (KNN)

The K-nearest neighbor algorithm is a method for classifying objects. Given a
training data set with labels, KNN classifies a new data point based on the
majority of its k-nearest neighbors. For different applications, different distance
functions are defined to quantify the “similarity” between the training and test-
ing points. In the simplest case (K=1), the algorithm finds the single closest
match and use that fingerprint’s location as prediction.

3.3.1 Distance Function
For a testing fingerprint t , the standard KNN algorithm goes through each point
(L, s) in the training data and calculates the distance between t and s . The
generalized distance is

Dq(t, s) = (
N∑

i=1

|ti − si|q) 1
q (6)

Manhattan distance and Euclidean distance are D1 and D2 respectively. The
unknown location for t is decided by a majority vote from the K shortest distance
fingerprints.

KNN is simple to implement and it provides reasonable accuracy. However,
one drawback of the standard KNN is that RSSes detected in the same location
vary from time to time. The fluctuations likely to cause errors in predicting
locations. This can be partially overcome by having multiple fingerprint sets for
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a given location, taken at different times, assuming that one or other finger print
may cover that fluctuation.

3.3.2 Redpin Algorithm - AP Similarity
The Redpin2 algorithm is a variation of the standard KNN algorithm where the
Euclidean distance is augmented with a bonus factor to reward training and
testing fingerprints to have common APs and a penalty factor for not-common
APs in two fingerprints. Thus, in addition to the signal strength, the number
of common access points (NCAP) and the number of not-common access points
(NNAP) also contribute to identifying the similarity of two fingerprints. The
Redpin algorithm chooses K=1 to decide the best match and works as follows.
We define a mapping function δ(s) as

δ(s) =
{

0, if s = 0
1, if s �= 0 (7)

NCAP of two fingerprints, t and s , can be expressed as

NCAP =
N∑

i=1

δ(ti)δ(si) (8)

NNAP of t and s can be expressed as

NNAP =
N∑

i=1

δ(ti) ⊕ δ(si) (9)

where ⊕ represents the exclusive disjunction. The generalized similarity value of
t and s is

D(t, s) = α

N∑

i=1

δ(ti)δ(si) − β

N∑

i=1

δ(ti) ⊕ δ(si) + γΛ(ti, si) (10)

Λ is a heuristic function defined in the Redpin algorithm which calculates the
similarity of t and s based on the signal strengths. The factors α and γ are
the bonus-weights for the common APs while β is the penalty-weight for the
not-common APs. The key idea behind Redpin is using NCAP and NNAP as
bonus-penalty adjustments which reduces the impact of signal fluctuations.

3.3.3 Weighted AP Similarity
To further reduce the impact of signal fluctuations, we observe that the visibility
of the APs at one location is not always the same because the environmental
variations cause significant Wi-Fi signal fluctuations in the same location over
time, especially inside a large building with sparse APs. Intuitively, APs with
higher visibility at a location L should be weighted more in determining whether

2 The open source Redpin can be found at http://www.redpin.org

http://www.redpin.org
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a fingerprint is located at L . In this paper, we use the correlation between
APs and locations as the weight for each AP. We use the Point-wise Mutual
Information (PMI) as the correlation measurement. PMI is defined as

I(L; AP ) = log
P (L, AP )

P (L)P (AP )
(11)

The higher the I(L; AP ) value, the more likely L is associated with AP . From
the historical fingerprints in the database, we can calculate the I(L; AP ) value
of each location L and AP pairs. We normalize the PMI value to be between 0
(least correlated) and 1 (most correlated). PMI values are applied as weighting
modifiers to the bonus of each common AP (CAP) and the penalty of each not-
common AP (NAP). The weighted similarity value of the measured fingerprint
t and a historical fingerprint s located at L is

D(t, s) = α
N∑

i=1

δ(ti)δ(si)I(L; APi)−β
N∑

i=1

δ(ti)⊕δ(si)I(L; APi)+γΛ(ti, si) (12)

3.3.4 Noise Filter (NF)
Extending the idea of weighting APs based on their visibility at each location, we
can filter out some APs from one location if they are irrelevant to this location
since not all APs have the same contribution to one location. We treat those APs
that occur less than the average frequency as irrelevant APs. The remaining APs
of the fingerprints are considered as ”relevant APs”. The average frequency of
APs to a location is calculated as

C̄(L, AP ) =
1
N

N∑

i=1

C(L, APi) (13)

where C(L, APi) is the frequency of APi visible from the location L in the
training data. NF is then a mapping function which maps the fingerprint s to
s′ , where

s′
i =

{
0, if C(L, APi) < C̄(L, AP )

si, if C(L, APi) ≥ C̄(L, AP ) (14)

4 Experiment

We test and compare different indoor locationing algorithms in a two-floor cam-
pus building with a congested Wi-Fi environment. The WLAN in this building is
composed of 16 APs, including seven 3-COM APs, six Motorola APs and three
external APs. The fingerprints are collected from the second floor, an area of
60mx15m with a 15mx12m lounge. The floor plans and the locations of APs are
shown in Fig. 1.
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Fig. 1. The floor plans. (The dots are the locations of APs).

4.1 Data Collecting

We selected nine public rooms from the second floor and collected 1,002 unique
fingerprints3 from these locations over a period of seven days using Nokia N95
smart phones. For each room, we collected at least 100 fingerprints to ensure
that every location has enough training data (Table 1). Although the size of the
rooms is different, instead of measuring the mobile users by physical distance, we
find that room-level location information is useful enough for most applications.
Therefore, the following experiments are based on room-level location detection.

Table 1. The fingerprint distribution for each room

Rm211 Rm212 W. Lounge W. Hallway Cafe Lounge E. Hallway E. Lounge Rm213

150 100 125 101 101 100 100 124 101

4.2 Experiment Setup and Evaluation

We use stratified 10-fold cross-validation to evaluate the accuracies of different
indoor locationing algorithms. To measure the confidence interval of the accu-
racy, we use the repeated random sub-sampling validation where we repeat the
process, randomly choosing 90% of all fingerprints as training data and the re-
maining 10% as testing data for 100 times. The algorithms we evaluate include:

– Naive Bayes Classifier (NBC)
– Support Vector Machine (SVM)

We use LIBSVM4 to infer the locations of the measured fingerprints [13].
– K-Nearest Neighbor (KNN)

We choose K=5 in our KNN implementation.

3 A text file containing all fingerprints can be found at
http://mlt.sv.cmu.edu/WASP/data.csv

4 LIBSVM software is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://mlt.sv.cmu.edu/WASP/data.csv
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


190 H. Lin et al.

– Redpin
We use the original Redpin algorithm with α = 1, β= 0.4, γ = 0.2 and
K=1. We also extend the original Redpin by choosing K=5 and name this
variation ”Redpin5”.

– Weighted AP Similarity Positioning (WASP)
We apply NF to the historical fingerprints and extend the Redpin algorithm
by choosing K=5 and adding PMI to weight different APs.

4.3 Result

The accuracies of different algorithms are shown in Table 2. NBC has the lowest
accuracy because NBC only calculates the existence of a particular set of APs
without considering the signal strengths. When two rooms are quite close to each
other, the detected fingerprints are too similar to accurately discriminate two
separate rooms. SVM and KNN have similar accuracy because they both use
the signal strength information to separate fingerprints from different locations.
The Redpin algorithm has better performance than KNN because it reduces the
signal fluctuations by using NCAP and NNAP as bonus-penalty adjustments.
The WASP algorithm we propose in this paper outperforms the original Redpin
by 9% and the 95% confidence interval of the improvement is [0%, 17%], which
is statistically significant.

Table 2. Accuracy of each algorithm

NBC SVM KNN Redpin Redpin5 WASP

Accuracy 61% 80% 79% 81% 86% 87%

Confidence interval(95%) 54%-68% 75%-86% 71%-85% 76%-88% 80%-92% 86%-96%

Since KNN, Redpin and WASP are all instance-based learning algorithms,
we compare their accuracy using different numbers of nearest neighbors (K).
The result is shown in Table 3. Increasing the number of nearest neighbors
leads to higher accuracy. However, we do not see any major improvement after
K reaches 5. Redpin+PMI consistently improves over the original Redpin by
around 1%. Though not obvious, the correlation between locations and APs does
contribute to the accuracy. More research on alternative statistical methods for
the correlation is planned for the future.

To see if NF can successfully reduce the impact of signal noise in the congested
Wi-Fi environment for all algorithms, we apply NF to the training dataset and

Table 3. Accuracy of KNN, Redpin and WASP (K from 1 to 10)

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

KNN 78% 78% 79% 80% 79% 79% 78% 79% 78% 78%

Redpin 81% 81% 83% 85% 86% 86% 85% 86% 86% 85%

Redpin(PMI) 82% 82% 84% 85% 87% 87% 87% 87% 86% 86%

WASP 88% 88% 90% 90% 90% 90% 90% 91% 90% 90%
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Table 4. Accuracy of each algorithm without and with NF

Accuracy NBC SVM KNN Redpin WASP

W/O NF 61% 80% 79% 81% 87%

With NF 64% 86% 88% 88% 90%

Table 5. The maximum number of original APs and relevant APs from each location

Rm Rm W. W. E. E. Rm
211 212 Lounge Hallway Cafe Lounge Hallway Lounge 213

Original APs 11 12 14 13 15 12 14 14 6

Relevant APs 6 7 7 8 5 5 9 5 6

Invisible APs 5 4 2 3 1 4 2 2 10

run the same experiment. The result is shown in Table 4. All algorithms benefit
from NF and the accuracies are improved by 3% to 9%. To better understand
the relevant APs, we list the maximum number of the original APs, the relevant
APs and the invisible APs in the fingerprints of each location in Table 5 and the
visibility of APs from each location in Table 6.

Table 6. The visibility of APs from each room (The relevant APs of each room are
bold)

Rm Rm W W E E Rm
211 212 Lounge Hallway Cafe Lounge Hallway Lounge 213

AP1 0% 1% 5% 26% 52% 61% 52% 3% 0%

AP2 16% 1% 42% 69% 99% 100% 79% 18% 0%

AP3 0% 0% 1% 34% 95% 100% 50% 2% 0%

AP4 65% 98% 99% 100% 99% 95% 100% 84% 61%

AP5 8% 0% 1% 0% 0% 18% 4% 12% 0%

AP6 43% 62% 82% 71% 83% 44% 66% 15% 0%

AP7 57% 94% 89% 77% 78% 8% 62% 44% 38%

AP8 1% 23% 13% 46% 39% 1% 49% 85% 96%

AP9 5% 39% 34% 60% 58% 6% 62% 94% 81%

AP10 66% 98% 100% 87% 36% 10% 34% 2% 0%

AP11 65% 97% 99% 85% 37% 0% 40% 15% 0%

AP12 1% 6% 2% 18% 23% 0% 17% 28% 34%

AP13 0% 1% 1% 28% 26% 0% 78% 97% 98%

AP14 65% 95% 97% 78% 10% 0% 19% 1% 0%

AP15 0% 0% 0% 0% 1% 2% 0% 0% 0%

AP16 0% 0% 0% 0% 8% 3% 0% 0% 0%

4.4 Granularity of Rooms

In addition to the overall accuracy, we also want to know the room-level accuracy.
The room-level accuracy is shown in Fig. 2. Surprisingly even though NBC has
overall the worst accuracy, it has the highest accuracy in Room213. The most
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Fig. 2. Room-level accuracy

plausible explanation is that there are ten invisible APs in Room213 which is
the highest value among all rooms (see Tables 5, 6). This makes the fingerprint
in Room213 the most distinguishable AP set from which NBC can identify its
location easily. Another interesting finding is that all algorithms have very high
accuracy for the Lounge. Our hypothesis is that the Lounge is the largest room
so the estimate error is less significant.

To prove this hypothesis, we create a virtual floor plan by combining adjacent
rooms into a larger virtual room. For example, we merge Room211, Room212
into one virtual room (Room 211-212) and a testing fingerprint from Room211
is treated the same as Room212. The accuracy of each virtual room is shown in
Fig. 3. For finer-grained locations, the WASP algorithm is the most accurate.

Fig. 3. Accuracy of each virtual room
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Fig. 4. Accuracy of different training data size

When one adjacent room is added, the accuracy of all algorithms can be en-
hanced to over 80%. When four adjacent rooms are combined, the accuracy
can even be better than 90%. Therefore all algorithms are more accurate when
estimating a coarse-grained location.

4.5 Impact of Training Data Size

Fingerprint approach requires labeled data collection in advance. It is not a trivia
task to collect hundreds or thousands of data points. To see the precision of the
five algorithms for different training size, we run an ablation study by increasing
the training data size from 50 to 900 and evaluate the accuracy on the same
testing data (Fig. 4). We choose the training data to ensure that each room has
enough coverage. When the data size is 50, the accuracies of all algorithms are
not very good. When the data size is 150, the WASP algorithm can give over
80% of the total accuracy, which is better than other alternatives. However, when
the number of historical fingerprints is increased, the accuracy improvement is
less apparent. One plausible reason is that while more fingerprints provide more
matching samples, they also provide more polluted data which confuses the
algorithms and reducing the accuracy. Since collecting training data with labels
requires non-trivial human efforts, this result shows that even a small amount
of training data (e.g. 150) can already provide reasonable indoor locationing
accuracy.

4.6 Number of APs

When irrelevant APs are removed for a location, we observe that the indoor loca-
tioning accuracy improves. Currently NF chooses these APs occurring more than
the average frequency as “relevant APs”. We want to see how many relevant APs
for one room are needed for acceptable accuracy. We sort the APs based on their
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Fig. 5. Locationing accuracy based on different number of relevant APs

relevance for each room. We first choose the most relevant APs and estimate the
accuracy by adding the APs one by one. In this experiment we do not include SVM
because the probabilities of different training models calculated by LibSVM were
not correlated. The accuracies of different numbers of APs for the other four al-
gorithms are shown in Fig. 5. With small numbers of APs (from two to four), the
Redpin algorithm has much better accuracy than KNN and WASP. One plausible
explanation is that the bonus-penalty adjustment of Redpin makes the discrep-
ancy of two fingerprints more obvious but the PMI cannot provide any additional
benefit because the filtered APs are already highly relevant to the locations.

To understand how many APs are needed for reasonable indoor locationing
accuracy, we sort APs according their visibility from the highest frequency to the
lowest. For each run, we increase the number of APs from 1 to 16 to calculate the

Fig. 6. Accuracy of a different number of APs



WASP: An Enhanced Indoor Locationing Algorithm 195

accuracy. The result is shown in Fig. 6. We see that SVM has better accuracy
when the number of APs is fewer than ten because the primary APs can provide
enough information for the SVM classification. However, when the number is
more than ten, the SVM classification is affected by fingerprint pollution and the
result is worse. On the other hand, the Redpin algorithm performs better than
WASP when the number is fewer than three. However, when the number is more
than seven, WASP outperforms Redpin by around 10%. Another interesting
observation is that the improvement in accuracy slows after nine APs. It seems
that these less visible APs do not provide essential information for location
detection. Instead, they may even cause confusion when matching fingerprints
and lower the accuracy.

5 Conclusion and Future Work

In this paper, we propose WASP, an enhanced indoor locationing algorithm
for a congested Wi-Fi environment. Our approach takes signal strengths, AP
visibility and statistical fingerprint history into consideration to enhance the
Redpin algorithm in a congested Wi-Fi environment. This approach obtains the
best accuracy and also works well even with the small training data set in the
experiments. Even though WASP may not work well with a small number of
APs, most office buildings and homes are covered by more than three APs and
the fluctuations and congested signals are likely to be more serious in a real world
than in the laboratory. We believe WASP can provide an overall satisfying indoor
locationing prediction.

In this paper, we only chose nine public rooms on the second floors. We plan
to extend the collection to more private and wall-bounded rooms over two floors.
Multiple RF fingerprints5, such as Bluetooth, might also improve the accuracy.
In addition, we will explore the use of accelerometer data to determine if a user
is moving or not and thereby enable time-averaging or tracking to improve accu-
racy. Another interesting issue is to study the optimal number of APs and their
positions in the building for the best indoor locationing accuracy. Finally, we plan
to apply the WASP algorithm to several mobile health and mobile professional
applications. We will also design more incentive and intuitive ways to collect the
fingerprints through users’ collaboration.
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