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Preface

This volume contains the proceedings of the Second International Workshop
on Mobile Entity Localization and Tracking in GPS-less Environments (MELT
2009), held in Orlando, Florida on September 30, 2009 in conjunction with
the 11th International Conference on Ubiquitous Computing (Ubicomp 2009).
MELT provides a forum for the presentation of state-of-the-art technologies in
mobile localization and tracking and novel applications of location-based ser-
vices. MELT 2009 continued the success of the first workshop in the series
(MELT 2008), which was held is San Francisco, California on September 19,
2008 in conjunction with Mobicom.

Location-awareness is a key component for achieving context-awareness. Re-
cent years have witnessed an increasing trend towards location-based services
and applications. In most cases, however, location information is limited by
the accessibility to GPS, which is unavailable for indoor or underground facil-
ities and unreliable in urban environments. Much research has been done, in
both the sensor network community and the ubiquitous computing community,
to provide techniques for localization and tracking in GPS-less environments.
Novel applications based on ad-hoc localization and real-time tracking of mo-
bile entities are growing as a result of these technologies. MELT brings together
leaders from both the academic and industrial research communities to discuss
challenging and open problems, to evaluate pros and cons of various approaches,
to bridge the gap between theory and applications, and to envision new research
opportunities.

The research contributions in these proceedings cover significant aspects of
localization and tracking of mobile devices that include techniques suitable for
smart phones and mobile sensor networks in both outdoor and indoor environ-
ments using diverse sensors and radio signals. Novel theoretical methods, algo-
rithmic design and analysis, application development, and experimental studies
are presented in 14 papers that were reviewed carefully by the program com-
mittee. In addition, three invited papers, with topics on location determination
using RF systems, Cramér-Rao-Bound analysis for indoor localization, and ap-
proaches targeting mobile sensor networks, are also included in the proceedings.

We would like to thank the authors of the submitted papers, the Program
Committee members, the additional reviewers, and the workshop organizers for
their help in composing a strong technical program. We also thank the Ubicomp
2009 organizing committee for providing a premier outlet for the workshop.
Finally, we would like to thank Springer for having agreed to publish these
proceedings as a volume in the Lecture Notes in Computer Science series.

July 2009 Richard Fuller
Xenofon Koutsoukos

Ying Zhang
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Milan Bjelica

Discovering Significant Places from Mobile Phones – A Mass Market
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Guang Yang

Adaptive Motion Model for a Smart Phone Based Opportunistic
Localization System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Maarten Weyn, Martin Klepal, and Widyawan

Localization Using RSSI

Model-Free Probabilistic Localization of Wireless Sensor Network
Nodes in Indoor Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Ioannis C. Paschalidis, Keyong Li, and Dong Guo

A Calibration-Free Localization Solution for Handling Signal Strength
Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Fangfang Dong, Yiqiang Chen, Junfa Liu, Qiong Ning, and
Songmei Piao

Indoor Location and Orientation Determination for Wireless Personal
Area Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Zekeng Liang, Ioannis Barakos, and Stefan Poslad

Localization with Novel Sensors

Localize Vehicles Using Wireless Traffic Sensors . . . . . . . . . . . . . . . . . . . . . . 106
Peng Zhuang and Yi Shang

On the Feasibility of Determining Angular Separation in Mobile
Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Isaac Amundson, Manish Kushwaha, and Xenofon D. Koutsoukos



VIII Table of Contents

Controlling Error Propagation in Mobile-Infrastructure Based
Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Ying Zhang and Juan Liu

Estimation of Indoor Physical Activity Level Based on Footstep
Vibration Signal Measured by MEMS Accelerometer in Smart Home
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Heyoung Lee, Jung Wook Park, and Abdelsalam(Sumi) Helal

Localization by Experiments

Inferring Motion and Location Using WLAN RSSI . . . . . . . . . . . . . . . . . . . 163
Kavitha Muthukrishnan, Berend Jan van der Zwaag, and
Paul Havinga

WASP: An Enhanced Indoor Locationing Algorithm for a Congested
Wi-Fi Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Hsiuping Lin, Ying Zhang, Martin Griss, and Ilya Landa

A Long-Duration Study of User-Trained 802.11 Localization . . . . . . . . . . . 197
Andrew Barry, Benjamin Fisher, and Mark L. Chang

Invited Papers

Tutorial on Location Determination by RF Means . . . . . . . . . . . . . . . . . . . . 213
Richard Fuller

A Survey on Localization for Mobile Wireless Sensor Networks . . . . . . . . . 235
Isaac Amundson and Xenofon D. Koutsoukos

Performance of TOA- and RSS-Based Indoor Geolocation for
Cooperative Robotic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Nader Bargshady, Nayef A. Alsindi, and Kaveh Pahlavan

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267



MGALE: A Modified Geometry-Assisted

Location Estimation Algorithm Reducing
Location Estimation Error in 2D Case under

NLOS Environments

Pampa Sadhukhan1 and Pradip K. Das2

1 School of Mobile Computing & Communication,
Jadavpur University, India 700032

pampa.sadhukhan@gmail.com
2 Faculty of Engineering & Technology,

Mody Institute of Technology & Science, India 332311
pkdas@ieee.org

Abstract. Positioning of a Mobile Station (MS) is mandatory for im-
plementing emergency call services and providing location-based ser-
vices. The major problems facing accurate location estimation of the MS
are Non-Line-of-Sight (NLOS) propagation and hearability. Thus several
location algorithms focusing on NLOS mitigation and addressing heara-
bility problem have been studied. Among these, Geometry-Assisted Lo-
cation Estimation (GALE) algorithm based on three TOA measurements
can estimate the 2D location of the MS with reasonable precision. How-
ever 2D GALE scheme fails to meet Federal Communication commission
(FCC) requirement for phase 2. Thus, in this paper, we have proposed
a modification over 2D GALE algorithm with three TOA measurements
to meet the FCC target while preserving the computational efficiency of
GALE scheme. Our proposed algorithm considers the geometry of the
TOA measurement circles rather than the standard deviation of the TOA
measurements. Simulation results show that our algorithm provides bet-
ter location accuracy compared to 2D GALE algorithm.

Keywords: Location Estimation, Base Station (BS), Mobile Station
(MS), Geometry-Assisted Location Estimation Algorithm (GALE), Time-
of-Arrival (TOA), Non-Line-Of-Sight (NLOS).

1 Introduction

Wireless location estimation has drawn a considerable attention from the
.. researchers over the past few decades. Positioning Technologies that help to
estimate the position of a Mobile Station (MS) are not only mandatory for Emer-
gency 911 (E-911) call services [1], but also applicable for providing location-
based services, route guidance, vehicle tracking. Global Positioning System (GPS)
is the most accurate and viable solution to providing the aforementioned services.
However, the high expenses of GPS receiver and technical challenges associated

R. Fuller and X.D. Koutsoukos (Eds.): MELT 2009, LNCS 5801, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 P. Sadhukhan and P.K. Das

with replacing all existing cellular handsets with GPS-equipped handsets have
motivated researchers to work with radio location systems.

Several location estimation techniques widely employed in radio location sys-
tems are based on Received Signal Strength (RSS), Time-Of-Arrival (TOA),
Time-Difference-Of-Arrival (TDOA) and Angle-Of-Arrival (AOA). The rapidly
changing signal propagation condition between the BS and the MS makes RSS-
based location technique obsolete in the outdoor environment. Among the
network-based localization techniques, TDOA and TOA based location tech-
nique require at least three properly located Base Stations (BSs), whereas AOA
based technique requires only two BSs at minimum to determine 2D location of
a MS [2].

A major issue in providing accurate location estimation of the MS is that the
signal measurement generally includes error due to Non-Line-Of-Sight (NLOS)
propagation in the urban and metropolitan area and also the error due to sys-
tem measurement noises. However, existence of NLOS errors dominates the er-
rors due to system measurement noises. Thus traditional algorithms based on
TDOA, TOA and hybrid TDOA/AOA technique proposed in [3]-[6], would fail
to obtain the MS′s location estimate with desired accuracy as these algorithms
have been designed to work under Line-of-Sight (LOS) environment including
small measurement errors. A considerable amount of research has been done in
the field of identifying and mitigating the NLOS error based on the assumption
that presence of NLOS error makes the range measurement greater than LOS
measurement.

The approach for alleviating NLOS error proposed in [7] requires a time-series
of range measurements from each BS involved over a time span of few seconds.
It can identify the presence of NLOS error in a range measurement only if the
set of range measurements used for location purposes include at least one LOS
range measurement. Moreover, it depends on the prior knowledge of standard
deviation of measurement noise to reconstruct the LOS measurement value from
NLOS corrupted range measurement. There are several approaches [8]-[10] that
can mitigate the effect of NLOS errors by considering the range residual between
the measured range and estimated range while using only a single measurement
at each BS. These approaches fail to provide desired location accuracy in case
only the NLOS propagation exists between the MS and the BSs.

Another issue in network-based location estimation scheme is the computa-
tional complexity incurred by solving the nonlinear equations associated with
the MS′s location estimate. The two-step Least Square (LS) method that can
provide the Maximum-Likelihood estimate of the MS′s position by using only
two computing iterations has been adopted in several location estimation algo-
rithms [3], [6], [11]. In [11], authors have shown that TOA-based algorithm can
provide better accuracy in the location estimation than that of TDOA-based
algorithm [3] even under the presence of NLOS errors. So we limit our discus-
sion to TOA-based location techniques. However, the algorithm considered in
[11] performs well in case of more than five receivers are available for location
purposes.
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Some statistical algorithms based on channel-scattering model such as Ring/
Disk of Scatterers and Gaussian Distributed Scatterer in [12], [17], require only
three BSs to estimate the LOS measurements from NLOS corrupted measure-
ments by comparing measured statistics of the TOAs of several multipath signals
to the statistics generated from well-known scattering models. However, these
methods can be applied in an area if the prior knowledge of the scattering model
for that area is available.

Hybrid technique based on TOA/AOA is useful in situations where heara-
bility problem exists and it can perform well when at least the serving BS is
at LOS with the MS. The location scheme based on hybrid TOA/AOA tech-
nique [14] has adopted a non-linear constrained optimization procedure with
bounds on errors incorporated in range and angle measurement inferred from
geometry (HTA) and also a least-square solution of lines of position derived
from both range measurement and angle measurement equations (HLOP). The
Range Scaling Algorithm (RSA) [13] based on three TOA measurements also
adopts a constrained nonlinear optimization procedure for estimating the true
ranges between the BSs and the MS by defining the true ranges as the scaled
version of the measured ranges and utilizes the LLOP algorithm outlined in [5]
to obtain the MS′s position from the estimated LOS ranges. This approach uti-
lizes the bound on the NLOS error and the geometry of cell layout to compute
the value of the scale factors. However, this scheme incurs heavy computational
complexity by solving the constrained nonlinear optimization problem and it is
actually viable for smaller cells.

In [15], authors have proposed a Kalman-based Interacting Multiple Model
(IMM) smoother working with three TOA measurements for efficiently mitigat-
ing the NLOS errors under uncertain environmental conditions where the trans-
mission channel between the MS and the BS transits between LOS and NLOS
condition. However, location accuracy provided by this approach depends on
the values assigned to the two-state transition probability matrix to define the
transition of transmission channel between LOS and NLOS mode.

Geometry-Assisted Location Estimation (GALE) algorithm proposed in [16],
can estimate the 2D location of the MS with tolerable precision in NLOS environ-
ments by adopting the geometric constraints between the MS and the BS within
the formulation of two-step LS method. The authors in [16] have shown that
the GALE scheme can achieve better precision in 2D location estimation com-
pared to the two-step LS algorithm [11], LLOP scheme [5], and RSA scheme [13]
while retaining computational efficiency of two-step LS scheme. It attempts to
confine the MS′s position within the overlap region between the range measure-
ment circles by considering the standard deviations of the TOA measurements,
which generally do not always measure the amount of NLOS errors incorpo-
rated into those TOA measurements. GALE scheme fails to acquire reasonable
location accuracy in case some TOA measurement taken from a BS with low
jitter includes large NLOS error. Moreover, location estimation errors provided
by GALE scheme are far above the Federal Communication Commission(FCC)
target (for 67% location error at 100m and 95% location error at 300m).
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In this paper, we have proposed a modification over 2D GALE algorithm
with three TOA measurements to obtain a substantially improved accuracy in
2D location estimation of the MS. Our proposed scheme considers the intersect-
ing point of the common chords among the range measurement circles and the
geometric constraints between the position of the MS and the BSs to confine
the MS′s position within the overlap region between those range circles rather
than taking into account the standard deviation of the range measurements. Nu-
merical results demonstrate that our scheme can achieve the required location
accuracy defined by FCC for phase 2 and acquires better precision in location
estimation compared to GALE algorithm in NLOS environment. The remain-
ing part of this paper is organized as follows. Section 2 describes the GALE
algorithm for 2D location estimation in brief. In section 3, we present our algo-
rithm Modified Geometry-Assisted Location Estimation Algorithm (MGALE).
Section 4 evaluates the performance of the proposed scheme to show its effective-
ness and to compare it with 2D GALE scheme. Section 5 draws the conclusion
and presents our future goal.

2 2D GALE Algorithm with Three TOA Measurements

2D GALE scheme is based on the proposition that the position of MS should al-
ways fall inside the overlap region between the circles drawn from TOA measure-
ments r1, r2 and r3 as shown in fig.1. To confine the MS′s expected

Fig. 1. The schematic diagram of the 2D TOA-based location estimation for NLOS
environments
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position within the area of �ABC (fig.1), GALE scheme introduces the following
constraints.

The virtual distance γ between the MS′s position and the three intersecting
points A, B, C (fig.1) is defined as

γ =

[
m∑

k=1

1
m

‖P − Pk‖
] 1

2

, (1)

where P = (x, y) represents the MS′s position and Pk represents the intersecting
points around the overlap region that is points A, B, C and m denotes the
number of intersecting points around overlap region.

Similarly the expected virtual distance is defined as

γe =

[
m∑

k=1

1
m

‖Pe − Pk‖
] 1

2

= γ + nγ , (2)

where Pe denotes the expected position of the MS that is determined by consider-
ing the standard deviations from three TOA measurements. The major objective
of the GALE scheme is to minimize the deviation between the virtual distance
γ and the expected virtual distance γe that is the absolute value of nγ . The
detailed description of the GALE algorithm for 2D location estimation can be
found in [16].

3 Proposed MGALE Algorithm for 2D Location
Estimation

The proposed MGALE scheme based on only three TOA measurements for 2D
location estimation of the MS is presented in this section. Our proposed algo-
rithm takes into account the fact that the presence of NLOS error makes the
measured ranges larger than the true ranges.The position of the MS lies within
the overlap region among the range circles as shown in fig.1 under the condition
that NLOS error is always positive and larger than the measurement noise. It can
be observed from fig.2 that the intersecting point of the common chords of the
range circles meet at some point within the overlap region among the range cir-
cles and it divides that overlap region into three sub-regions. The MS should be
located within only one of these sub-regions. The main objective of the proposed
MGALE scheme is to find out the sub-region confined by the intersecting point
of the common chords of the range circles and another two points among the
intersecting points around the overlap region within those circles where the MS
should be located. Then it estimates the MS′s position taking into consideration
the geometry of the range circles rather than the standard deviations of the TOA
measurements.
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Fig. 2. The schematic diagram of MS′s actual position and movement of the inter-
secting point of three common chords with respect to variation in TOA measurement
under NLOS environments

3.1 Determining the Subset of Overlap Region among the Range
Circles Where the MS Should Be Located

The proposed MGALE Scheme utilizes the following proposition and several
observations from fig. 2 to find out the sub region confined by the intersecting
point of the common chords of the range circles and another two points among
the intersecting points around the overlap region where the position of the MS
should lie.

Proposition 1. The common chord between the two range circles moves toward
the centre of that range circle associated with TOA measurement incorporating
least NLOS error away from the MS′s position.

Proof. Fig. 3 shows the movement of the common chord between the two range
circles with respect to the position of the MS while varying the NLOS errors
incorporated into TOA measurements. Suppose l1 and l2 are the true range
measurements from the BSs located at points Ca and Cb respectively and the
MS is located at point A as shown in fig.3. Now, considering the common chord
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Fig. 3. Geometry of two range circles drawn from TOA measurements and MS′s actual
position with respect to the common chord between the range circles

between the two circles drawn from range measurements l1 and l2 intersects the
line adjoining the points Ca and Cb at point W as shown in fig.3, we get,

CaW + CbW = L
(
∵ CaCb = L

)
.

AW
2

= l21 − CaW
2

= l22 − CbW
2 (∵ AA′ ⊥ CaCb

)
.

Rearranging the above formulae and normalizing by CaW + CbW , we get

CaW =
L2 − (l22 − l21

)
2L

, CbW =
L2 +

(
l22 − l21

)
2L

(3)

Let us consider, due to the existence of NLOS error, measured ranges are r1 and
r2 and the NLOS error incorporated into those range measurements are e1 and
e2 respectively as shown in fig. 3. Considering the common chord between the
two circles drawn from range measurements r1 and r2, would intersect the line
CaCb at point Z and following above equation (3), we get

CaZ =
L2 − (r2

2 − r2
1
)

2L
, CbZ =

L2 +
(
r2
2 − r2

1
)

2L
(4)
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Now considering e1 < e2, we get the following constraint

r1 − l1 < r2 − l2

⇒ r2 − r1 > l2 − l1

→ (
r2
2 − r2

1
)

>
(
l22 − l21

)
[∵ r2 + r1 > l2 + l1]

If the above constraint is satisfied the following relations hold.

CaZ < CaW and CbZ > CbW , which means that the common chord moves
toward the centre of the range circle drawn from range measurement r1 away
from the position of the MS, if r1 contains smaller NLOS error than r2.

Based on the above proposition and several observations from fig. 2, it can be
shown that the location of the MS can be found out within the region bounded
by the intersecting point of the common chords among the circles and another
two vertices of �ABC that lie on the boundary of the circle drawn from range
measurement incorporating least amount of NLOS error.

It is observed from fig.2 that if three TOA measurements were free from NLOS
errors and measurement noises, the three circles drawn using those three TOA
measurements would meet at a single point that is the position of the MS (point
D in fig.2). In that case the common chords among those circles would also meet
at that point. Here we have assumed (as shown in fig.2) rt1, rt2 and rt3 are the
true distances between the MS and BS1 (Home BS), BS2 and BS3 respectively.
On the other hand, r1, r2 and r3 are considered, as the measured distances
between the MS and BS1, BS2 and BS3 respectively and the intersecting point
of the common chords between the range circles would meet at point A1 in that
case as shown in fig.2.

For TOA measurement r1, the MS should be located on the boundary of circle
with radius r1 in case r1 is free from any kind of noises. As r1 incorporates some
amount of noise, the MS′s position moves toward the centre of the circle with
radius r1. Therefore, it can be inferred that the MS should be located nearest
to the boundary of the circle drawn from TOA measurement including smallest
amount of NLOS error.

The above inference together with the proposition that the common chord
between the two range circles moves toward the centre of range circle having
smaller NLOS error away from the MS′s position, implies the following fact.

The intersecting point of the three chords AA′, BB′ and CC′ moves toward
the centre of the circle drawn from the TOA measurement incorporating small-
est NLOS error whereas the MS falls very nearer to the boundary of that circle.
Thus, the MS′s position lies between the intersecting point of the common chords
and the boundary of that range circle corresponding to the least NLOS error.
The range measurement r1 includes least amount of NLOS error among the
three range measurements as shown in fig.2 and thus the position of MS lies
between the intersecting point of the common chords and the boundary of circle
associated with r1 as depicted in fig.2. Hence the MS′s position falls within the
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region confined by points A1, B and C instead of the region confined by points
A, B and C.

Similarly, if TOA measurement r3 is reduced to rt3, the common chords be-
tween the circles would meet at point C1. In that case, the MS lies between the
point C1 and the boundary of the circle drawn from the range measurement rt3
that incorporates least amount of NLOS error as shown in fig. 2.

The above observations lead to the conclusion that the MS should always
fall within the sub region confined by the intersecting point between the common
chords among the range circles and another two vertices of �ABC that lie on the
boundary of the range circle associated with TOA measurement having smallest
amount of NLOS error.

3.2 Relationship between NLOS Error and BS-MS Range

The estimated TOA value τ can be represented as follows.

τ = τ0 + τe, (5)

where τ0 is the true TOA value and τe includes NLOS error and system measure-
ment error. In [19] authors have proposed the following method for calibrating
NLOS error.

The TOA measurement τ estimated from the first moment of multipath power
delay profile can be represented by the following equation.

τ = τ0 +
∑

i τi · Pi∑
i Pi

= τ0 + τm, (6)

where τi is the delay relative to a direct wave, Pi is the corresponding power and
τm is defined as mean excess delay. Thus, the positive NLOS bias is approximated
by the mean excess delay τm.

In [18], authors have presented the evidence to the conjecture that the median
of the Root-Mean-Square delay spread (τrms) grows mildly with the distance be-
tween the MS and the BS. Moreover, authors in [19], have presented a relation-
ship between τm and τrms of the form τm ≈ kτrms, where k is proportionality
constant based on measurement results from Motorola and Ericsson. Thus, re-
sults from those papers imply that larger range measurement may contain higher
NLOS error compared to some smaller range measurement.

However the NLOS error included in a range measurement, also depends on
the environment, that means, more obstacles between the BS and the MS results
in higher NLOS error in the TOA measurement. Thus, it is required to identify
the TOA measurement that incorporates least amount of NLOS error as it may
happen that the smallest TOA measurement includes larger NLOS error than
any other TOA measurement. Our proposed scheme provides a method to select
the TOA measurement incorporating the least amount of NLOS error in the
following subsection.
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3.3 Identification of the TOA Measurement Having Least Amount
of NLOS Error

Our proposed scheme provides the following method to select the TOA measure-
ment incorporating the least amount of NLOS error.

The parameter XCi is introduced to denote the distance between the position
of ith BS and the intersecting point between the common chords among the
range measurement circles. If three TOA measurements are free from any kind
of noises, the circles drawn using those three TOA measurements would meet at
a single point (the point D as shown in fig. 2) and the common chords among
those circles would also meet at that same point. In that case, the distance
between the centre of the range circle and the intersecting point of the common
chords among the range circles is equal to the radius of that range circle, that
is, the following relation holds.

XCi

XCj
=

ri

rj
, where 1 ≤ i, j ≤ 3 and i 	= j

Now, the intersecting point between the common chords moves toward the centre
of the range circle drawn from the TOA measurement ri away from the MS′s
position and also the boundary of that range circle if ri contains smaller NLOS
error compared to the other TOA measurements. It implies that if ri contains
smaller NLOS error compared to some other TOA measurement rj then the
following relation holds.

ri − XCi > rj − XCj

Now rearranging the above constraint and normalizing it by XCj , we get

XCj − XCi

XCj
>

rj − ri

XCj
>

rj − ri

rj
(∵ rj > XCj) , where 1 ≤ i, j ≤ 3 and i 	= j

Again rearranging the above constraint and subtracting 1 from both sides, we
get

XCi

XCj
<

ri

rj

⇒ XCi

ri
<

XCj

rj

Therefore, TOA measurement ri incorporates least amount of NLOS error, if
the value of corresponding XCi/ri is least.

3.4 Formulation of MGALE Scheme for Estimating the Position of
the MS

The objective of the proposed MGALE algorithm is to confine the MS′s loca-
tion estimate within the region bounded by the intersecting point of the com-
mon chords among the range circles and two vertices of �ABC that lie on the



MGALE: A Modified Geometry-Assisted Location Estimation Algorithm 11

boundary of the range circle associated with TOA measurement having small-
est amount of NLOS error by adopting the geometric constraints between the
position of BSs and the MS into the formulation of the 2D GALE scheme.

The following mathematical formulae are used to determine the intersecting
point of the common chords among the circles associated with TOA measure-
ments, values of two parameters γ, γe and the expected position of the MS.

The equation of the circle with radius ri and centered at the position of ith

BS (αi, βi) is given by

(x − αi)
2 + (y − βi)

2 = r2
i (7)

The intersecting point Pint of the common chords among the circles centered at
(α1, β1) , (α2, β2) , (α3, β3) and with radius r1, r2, r3 respectively can be obtained
by the following equation.

Pint = A−1B, (8)

where

A =
[
2α2 − 2α1 2β2 − 2β1
2α1 − 2α3 2β1 − 2β3

]
, B =

[
r2
1 − r2

2 − K1 + K2
r2
3 − r2

1 − K3 + K1

]
and Ki = α2

i + β2
i , for i = 1, 2, 3.

The virtual distance γ and expected virtual distance γe are obtained from
equations (1) and (2) respectively by redefining Pk as the intersecting point
around the subset of the overlap region among the circles. Here, Pk = P1 (x1, y1) ,
P2 (x2, y2) and P3 (x3, y3) and these are denoted by points A1, B and C respec-
tively when TOA measurements from three BSs are r1, r2 and r3 as shown in
fig. 2. To confine the expected position of the MS within the sub region bounded
by the intersecting point of the common chords among the range circles and
two vertices of �ABC that lie on the boundary of the range circle correspond-
ing to least amount of NLOS error, the proposed MGALE algorithm selects the
proper value for the weighting coefficient wk with respect to point Pk around
that bounded region, where k = 1, 2, 3. The selection of values for weighting co-
efficients w1, w2 and w3 considers the geometry of the range circles rather than
taking into account the standard deviation of the TOA measurements and these
are computed based on the following argument.

If rj contains larger NLOS error compared to some other TOA measurement
ri, the MS′s position should be nearer to the intersecting point around the
overlap region that lies inside the range circle associated with rj . It is away
from the boundary of the circle with radius rj and also the intersecting point
that lies within the circle associated with ri ( where 1 ≤ i, j ≤ 3 and i 	= j).
Based on the above argument the weighting coefficient wj is defined as

wj =
XCj/rj∑m

i=1 (XCi/ri)
(9)

The coordinates of expected position of the MS, denoted by Pe = (xe, ye), are
obtained by the following equation.
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xe =
m∑

k=1

wkxk, ye =
m∑

k=1

wkyk (10)

To confine the estimeted MS′s position within the sub region �A1BC when three
TOA measurements are r1, r2 and r3 respectively, a new parameter
virtual noise (nrk

) is introduced.

Definition 1 (Virtual Noise)
The parameter nrk

represents the amount of virtual noise incorporated into TOA
measurement rk with respect to the MS′s expected position where k = 1, 2, 3
and it is computed by the following equation.

nrk
=

rk −
√

(αk − xe)
2 + (βk − ye)

2

c
, (11)

where (αk, βk) is the positional coordinates of the kth BS and c is the speed of
light.

Based on the 2D GALE algorithm associated with three TOA measurements[16],
the MS′s position can be estimated within two computing iterations. The inter-
mediate location estimate z′ after the first step of the 2D GALE scheme is
obtained as follows.

z′ =
[
x′

i y′
i R′ ]T =

(
GT Ψ−1G

)−1
GT Ψ−1F, (12)

where (x′
i, y

′
i) represent the intermediate location estimation of the MS and

R′ = x′2
i + y′2

i . The matrices G, F and Ψ are obtained as follows.

G =

⎡⎢⎢⎣
−2α1 −2β1 1
−2α2 −2β2 1
−2α3 −2β3 1
−2αγ −2βγ 1

⎤⎥⎥⎦ , F =

⎡⎢⎢⎣
r2
1 − K1

r2
2 − K2

r2
3 − K3

γ2
e − Kγ

⎤⎥⎥⎦ , Ψ = 4c2BQB,

where Kj = α2
j + β2

j αγ = 1
3 (x1 + x2 + x3) , βγ = 1

3 (y1 + y2 + y3) ,

kγ = 1
3

(
x2

1 + x2
2 + x2

3 + y2
1 + y2

2 + y2
3
)
, B = diag {r1, r2, r3, γe} ,

Q = diag
{
n2

r1
, n2

r2
, n2

r3
, σ2

γe
/c2
}

.
Here nri denotes the virtual noise incorporated into range measurement ri for
i = 1, 2, 3 and σγe corresponds to the standard deviation of γe.

The final location of the MS after the second step of 2D GALE scheme is
obtained as follows

p′ = [x′ y′]T =
[(

G′T Ψ ′−1G′)−1
G′T Ψ ′−1F ′

] 1
2

, (13)

where G′ =
[
1 0 1
0 1 1

]T

, F ′ =
[
x′2

i y′2
i R′]T , Ψ ′ = 4B′ (GT Ψ−1G

)−1
B′,

B′ = diag
{
x′2

i , y′2
i , 1/2

}
.
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3.5 Overview of MGALE Algorithm

The block diagram describing the different steps of the proposed MGALE algo-
rithm for estimating the 2D location of the MS is given below.

Fig. 4. Block diagram of proposed MGALE algorithm for estimating the 2D location
of the MS
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4 Performance Evaluations

Simulations were performed to corroborate our proposed location estimation
algorithm and to compare the 2D localization accuracy provided by our pro-
posed scheme to that provided by GALE scheme. We have considered the
same noise models described in [16] based on extensive field experiments and
observations. The measurement noise of TOA signal is assumed to be Gaus-
sian Random variable with zero mean and standard deviation σm = 10m,
whereas NLOS error incorporated into TOA measurement is assumed to be
non-negative random variable. Three BSs are assumed 2400 meters apart. The
home BS is located at (0, 0) in meters, whereas the other two BSs are located
at
(
1200, 1200

√
3
)

and
(−1200, 1200

√
3
)

respectively. The MS is assumed to be
located at

(
800 · ε − 400, 400

√
3
)

in meters, where ε represents a uniformly dis-
tributed random number in the range [0, 1], to make the MS moving around the
home BS along the line y = 400

√
3.

Table 1 shows the location estimation error acquired by GALE scheme and
MGALE scheme under different percentage of position error with τm = 0.3μs.
The estimation error of MS′s position is determined by Δp′ = ‖p′ − p0‖, where
p0 is position of the MS and p′ is the final location estimate from the location
estimation algorithm. Table 1 show that our proposed MGALE scheme achieves
far better location estimation accuracy compared to GALE scheme in the pres-
ence of NLOS errors. This can be explained as follows. MGALE scheme tries

Table 1. Performance Comparison between the Location Estimation Algorithms for
the 2D Case with Three TOA Measurements (Estimation Error (m))

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
GALE 29.5 71.3 88.4 113.2 143.6 164.4 188.4 275 313.6 482.1
MGALE 14 9 21.9 42.9 71.3 92 116.8 210.9 254.3 445.1

Fig. 5. GALE vs MGALE with 50% of position error under different values of τm
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Fig. 6. GALE vs MGALE with 67% of position error under different values of τm

Fig. 7. GALE vs MGALE with 95% of position error under different values of τm

to confine the MS′s expected position within a smaller region compared to that
used by GALE scheme.

Then it attempts to estimate the MS′s position by considering the difference
between the distance of the MS′s expected position from a BS and the TOA
measurement corresponding to that BS as the incorporated noise into that TOA
measurement rather than the standard deviation of that TOA measurement.
We have demonstrated the comparison between the GALE and MGALE scheme
under the existence of different values of NLOS noises with 50%, 67% and 95%
of position error by fig. 5, 6 and 7 respectively. The different values of NLOS
noises are generated by varying the values of τm in the range 0.1 ≤ τm ≤ 0.5μs.
Fig. 5, 6 and 7 shows that MGALE scheme achieves better accuracy in location
estimation compared to GALE scheme. Fig. 6 and 7 also shows that MGALE
scheme meets the required location accuracy defined by FCC for 67% of position
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Fig. 8. Performance comparison between GALE and MGALE scheme under 50% of
position error: MSE versus median value of NLOS noise

error and 95% of position error respectively with τm ≤ 0.3μs. Fig. 8 shows
the Mean Square Error (MSE) of the location estimation using GALE scheme
and MGALE scheme with variation in τm values. The MSE in decibel (dB) is
estimated by the following equation.

MSE =

[
10.log

1
N

N∑
1

∥∥p′ − p0
∥∥2] ,

where N represents the number of independent runs in the simulations. Fig.
8 also shows that MGALE scheme produces smaller MSE compared to GALE
scheme in presence of NLOS errors.

5 Conclusion and Future Work

A modification over existing 2D GALE algorithm with three TOA measurements
is proposed in this paper. The proposed MGALE scheme adopts a geometric
constraint on the set of possible locations within which the MS can be located
into the formulation of 2D GALE scheme to acquire computational efficiency.
Moreover, it considers the intersecting point of the common chords of the range
circles and also the geometry of those range circles without relying on the stan-
dard deviation of TOA measurement to estimate the location of the MS. As
the MGALE scheme reduces the area of the region within which MS should be
located, it provides better location accuracy compared the GALE scheme under
the presence of NLOS error and it can achieve the location accuracy defined
by FCC for phase 2. It is possible to utilize the proposed modification for the
2D GALE scheme over the existing 3D GALE scheme to obtain more accurate
results for 3D location estimation also. We intend to take this up in the near
future.
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Abstract. We consider the problem of predicting user location in the
form of user-cell association in a cellular wireless network. This is moti-
vated by resource optimization, for example switching base transceiver
stations on or off to save on network energy consumption. We use GSM
traces obtained from an operator, and compare several prediction meth-
ods. First, we find that, on our trace data, user cell sector association
can be correctly predicted in ca. 80% of the cases. Second, we propose
a new method, called “MARPL”, which uses Market Basket Analysis to
separate patterns where prediction by partial match (PPM) works well
from those where repetition of the last known location (LAST) is best.
Third, we propose that for network resource optimization, predicting the
aggregate location of a user ensemble may be of more interest than sepa-
rate predictions for all users; this motivates us to develop soft prediction
methods, where the prediction is a spatial probability distribution rather
than the most likely location. Last, we compare soft predictions meth-
ods to a classical time and space analysis (ISTAR). In terms of relative
mean square error, MARPL with soft prediction and ISTAR perform
better than all other methods, with a slight advantage to MARPL (but
the numerical complexity of MARPL is much less than ISTAR).

1 Introduction

Prediction of future user location is useful to a number of applications, including
home automation, road traffic management, wearable computers and context
aware applications [1,2,3,4]. We are interested in applying location prediction
to wireless cellular networks (GSM networks). We seek to estimate the future
number of users in different parts of the network, with granularity of a Base
Transceiver Station (BTS).

This may have many applications, such as economizing the rental cost of
virtual networks, crowd management, provision of real-time network services, or

R. Fuller and X.D. Koutsoukos (Eds.): MELT 2009, LNCS 5801, pp. 19–33, 2009.
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reduction of energy consumption. For example, it is shown in [5,6] that turning
off some of the BTSs when there are few users to serve, and associating these
users to neighbouring cells, leads to significant energy savings while maintaining
quality of service. Indeed, telephony network operators identify scaling of energy
needs with traffic through sleep mechanisms as one of the research challenges of
interest for them [7].

As a first step, we would like to evaluate whether it is possible to make some
predictions of user association with BTSs, and which prediction methods can
be of help. The time scale is 2min, motivated by typical deployment times for
near real time network management. Our approach is based on mining the User-
Cell association records obtained by active tracking [8]. We evaluate several
prediction methods, such as Prediction by Partial Match (PPM), which was
successfully used in [1] for location prediction of single users and LAST, which
takes as prediction the last visited location. The results motivate us to propose a
new method, called “MARPL”, which uses Market Basket Analysis to separate
patterns where PPM works well from those where LAST is best.

Next, we argue that, in our context, one should make a distinction between
hard and soft prediction. The former predicts the most likely location, whereas
the latter gives a spatial distribution. We show how one can transform the hard
prediction methods of interest into soft prediction methods. We find that soft
predictions are more accurate on our data when tracking an ensemble of users.
As a benchmark, we also compare to a classical time and space analysis (ISTAR).
The main contributions of the paper are:

– description of a hard prediction method that builds on PPM and Market
Basket Analysis to improve prediction;

– transformation of a hard prediction method into a soft prediction method,
better suited to the prediction of total number of users at a location;

– comparison, using operator data, of PPM, MARPL, LAST and ISTAR;
– conclusion that user cell sector association can be correctly predicted in ca.

80% of the cases. In term of relative mean square error of user ensemble
location estimation, soft methods are better than hard ones, and MARPL
with soft prediction and ISTAR perform better than PPM or LAST, with
a slight advantage to MARPL (with the added benefit of lower numerical
complexity).

The rest of the paper is organized as follows. Section 2 describes the state of
the art. Section 3 describes our experimental data. In Section 4 we describe the
prediction methods we use. Section 5 presents experimental results and Section 6
concludes the paper.

2 Related Work

Location is an important feature for many applications, and wireless networks
can better serve their clients by anticipating client mobility.

González et al. in [9] study the trajectories of 100000 mobile phone users over
a six-month period. They conclude that the individual travel patterns collapse
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into a single spatial probability distribution, indicating that it is possible to
obtain the likelihood of finding a user in a given location. This further implies
that it is possible to quantify the general phenomena driven by human mobility.

Some authors investigate how to obtain datasets which could reliably repre-
sent the user’s mobility patterns. Sohn et al. in [10] showed how coarse-grained
GSM data from mobile phones (e.g. readings like signal strength, cell IDs and
channel numbers of nearby base station towers) could be used to recognize high-
level properties of user mobility. Ashbrook and Starner showed how locations
of significance could be automatically learned from GPS data at multiple scales
[3]. They describe a system that clusters these data and incorporates them into
a predictive Markov model of user’s movements. The potential applications of
such models would include both single and multi user scenarios. Zang and Bolot
in [11] mine more than 300 million call records from a large cellular network
operator to characterize user mobility and create mobility profiles. They use
passive network monitoring namely in the form of Per Call Measurement Data
(PCMD) analysis. PCMD records contain data about voice, SMS and data calls
performed in the network together with the initial and final cell that served the
call. The authors focus mainly on cells where users make call, while we focus
purely on user mobility (our data set does not even contain information about
calls). Contrary to all these approaches, we use a data set obtained by active
tracking of selected users’ cell associations, without any further “external” loca-
tion indicators (such as GPS).

Another group of papers investigates methods for predicting user’s location.
Song et al. in [12] present extensive evaluation of location predictors, using a
two-year trace of over 6000 users of a Wi-Fi campus network. Even the simplest
classical predictors could obtain median prediction accuracy of about 72% over
all users with sufficiently long location histories, although accuracy varied widely
from user to user. The simple Markov predictors performed comparably or better
than the more complicated LZ predictors, with smaller data structures.

There exists a close relation between prediction of discrete sequences and
lossless compression algorithms. Begleiter et al. in [13] studied the performance
of a number of prominent algorithms for prediction of discrete sequences over
a finite alphabet, using variable order Markov models. The results show that
Prediction-by-Partial-Match (PPM) algorithm performed the best. In this paper,
we use their implementation of the so-called PPM–C method.

In [1], Burbey and Martin applied the PPM algorithm to data including both
temporal and location information. Tests on data traces from IEEE 802.11 wire-
less network showed that a first-order PPM model had 90% success rate in
predicting the user’s location, while the third order model was correct 92% of
the time. However the studies [12,13,1] were performed on data with different
attributes, and an order-of-magnitude lower number of distinct locations, or
general states, than in our study.

In this work, we discuss using probabilistic (soft) and aggregate predictions
for tracking an ensemble of users. When forecasting the aggregate of variables
measured over time and in different regions, it is plausible to assume that the
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individual components will be spatially correlated. Giacomini and Granger in-
vestigate forecasting of a Space-Time Autoregressive model aggregate [14]. Min
et al. further exploit spatio-temporal correlations to road traffic prediction [4].
Their approach inspired us to formulate the Integrated Space-Time Auto Regres-
sive prediction model (ISTAR) (see Section 4.3).

Amongst other papers, Hightower and Borriello used a probabilistic approx-
imation algorithm implementing a Bayes filter, known as particle filter, to esti-
mate location [15]. Like us, they also use spatial probability distributions, but
they focus rather on indoor localization with an order of magnitude higher preci-
sion. Thus, their work is not directly applicable to our dataset. Bauer and Deru
notice that relevance of some piece of information is connected to the places a
user is likely to visit [16]. They used a variety of machine-learning techniques
to derive motion profiles of WLAN users. Their primary goal was not location
prediction; instead, they use these profiles to recommend the information which
might become useful to the observed user in the foreseeable future.

We end this section with a brief overview of traffic prediction models for
wireless networks. Shu et al. used seasonal autoregressive integrated moving
average (ARIMA) model to capture the behavior of a GSM network traffic stream
[17]. Tikunov and Nishimura use a technique known as Holt-Winter’s exponential
smoothing [18], while Hu and Wu use chaos theory [19].

3 Experimental Data

Mobile cellular networks contain various user data that can be used for location
estimation. In the spatial domain, typically the granularity is the user-cell as-
sociation. Finer precision may be gained using triangulation from multiple base
stations, but this requires additional sophistication (such as location services
platforms), either on the user terminal or on the network side.

Call Detail Records (CDRs) are stored by the telephony network operators.
They contain traffic data, including cell association, but only of active users.
Mobile terminals themselves may also report their GPS coordinates or currently
visible cells (e.g. Google Latitude [20]) over the network, but this requires user
cooperation. Cell association of passive, non-communicating users, is beyond
the reach of majority of methods, as those users are reporting their location
only sporadically using a procedure called location update. A location update is
done when a user crosses boundaries of the so called “location areas” (those are
geographically large, consisting of hundreds of cells) or after a significant time
(order of hours for the network studied in this work). Thus passive users must
be tracked actively — the user-cell association observations have to be polled or
user-reported.

Data used in this work were obtained by active tracking of a group of mobile
phone users (unlike in [9]), using the platform from [8]. The platform allows to
periodically poll and store cell association of a set of users in a real-time manner
and without user cooperation. The users were selected from a list of users who
did a location update in the studied network recently, the focus group being
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foreign roamers. The polling interval was set to 2 minutes, and the association
was recorded for all selected users, including passive. The trace contains 72 hours
of tracking in December 2008, with 2731 distinct real users moving around in
an existing country-wide GSM network. The total number of cells visited by the
users was 7332 (not all cells of the network were visited).

For each user, we obtain a sequence of his/her associations, each being ei-
ther a Cell identification, or one of the special states: Offline, for users having
switched their mobile phones off; Rival, for users having left the network to a
rival national mobile operator; and Abroad, for users having left the network to
a foreign operator. The state space thus contains 7335 states.

The trace of user-cell associations represents a sequence of regular location
observations [12], the spatial dimension of user mobility. Although previous
work has experimented with incorporating both time and space into a single
sequence [1], due to the high number of distinct states and amount of data avail-
able we chose to deal just with the spatial dimension. Thus, we have removed
the Offline state from the data, as it seems to depend rather on time of day
heavily. We split the user traces around the Offline state.

When analyzing user mobility, we observe that the probability of staying at
the same location (i.e. being associated with the same cell) is very high and
only slowly decreasing over time (see Fig. 1, left), in harmony with [9]. The
fashion of selecting users for the tracking implies their higher mobility at the
beginning of tracking, as majority of the users are put into the tracking when
they are moving, the typical case being a roamer entering country (and the
studied network) traveling to a particular destination (see Fig. 1, right).

Fig. 1. Left: Probability of a user being associated with the same cell, for different
time intervals, mean values over whole tracking. Right: 2-minutes mobility of users
as function of time interval from the start of the tracking. Due to specific focus on
roamers, mobility is higher at the start of the tracking.



24 K. Dufková et al.

Fig. 2. Example of a cellular network with BTS sites hosting multiple cells with dif-
ferent transceiver directions. A road is recognizable from the higher numbers of users.

4 Predicting Location

Assume we have a finite set of users I = {1, 2, ..., I} and a finite set of cells (base
stations, access points, etc.) J = {1, 2, ..., J} of a cellular network. Assume we
can observe the cell association ai(t) ∈ J for any user i ∈ I and any time t ∈ N.
Let Ai = {ai(t)}, t ∈ N be a sequence of observations of cell association for a
user i ∈ I over discrete equidistant time slots. Let Yj(t) be the number of users
associated with cell j ∈ J in a time slot t ∈ N.

4.1 Hard vs. Soft Decisions

Assume Hi is a sequence of previous associations of a user i. We define the hard
decision location prediction problem as the task of finding a single location j ∈ J

with the highest Prob(j|Hi), where the user i will most likely be at the next
time slot. We define the soft decision location prediction problem as the task of
constructing a vector U i = [ui

j ], ui
j = Prob(j|Hi) of probabilities for a user i ∈ I

to be at any possible location j ∈ J.
While the predictors that provide a hard decision on the next location of the

user are useful in many applications, the “winner takes all” strategy does not
have to be optimal for all applications. One of them is the application we study
in this paper, where aggregation is used to obtain network-wide statistics about
numbers of users associated with individual cells (see Figure 2).

We formalize the task as follows: Knowing ai(s), i ∈ I, s ∈ {1, 2, ..., t−1} and
Yj(s), j ∈ J, s ∈ {1, 2, ..., t− 1} we want to predict Yj(t). For practical reasons,
as we do not want to store much historical data, we want to base the prediction
just on the last r values, i. e. on the values related to s ∈ {t−r, t−r+1, ..., t−1}.

4.2 Individual Hard Decision Methods

LAST predictor. The simplest possible predictor, which always uses the last
known value as the prediction, will be used as a reference for proposed methods.
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PPM predictor. The well-known Prediction-by-Partial-Match (PPM) algo-
rithm that uses variable order Markov models. We use implementation of the
so-called PPM–C method provided by [13].

MARPL predictor. We propose a method called MARPL (MARket basket
analysis + Ppm + Last), which combines PPM and LAST predictors, after
splitting the problem into subproblems according to the last few associations of
the user, and choosing the best strategy for every subproblem independently.

The splitting is loosely inspired by the Market Basket Analysis method [21]
and its way of discovering hidden rules in the data, with the difference that the
original method was intended for unordered sets of elements instead of ordered
sequences. We construct set of all possible rules of order r, each rule being of
the form H1H2...Hr → P , where Hs ∈ {A, B, C...} represents the history of the
last r associations of a user and P ∈ {A, B, C...} represents the predicted asso-
ciation. The A, B, C, ... symbols are wildcards as we are interested in generally
applicable rules. For example rule AABB → B represents the situations where,
after observing a cell A twice and then another cell B twice, the next cell is B.

We define applicability and reliability of a rule as follows (L(rule) denotes the
left side of a rule, R(rule) the right side of a rule):

Applicability(rule) = # possible usages
# all predictions = Prob (L(rule)) , (1)

Reliability(rule) = # successful usages
# possible usages = Prob (R(rule)|L(rule)) . (2)

We split the problem as follows:

1. Use the LAST predictor on subproblems, where the rule corresponding to
the LAST predictor has strictly higher reliability than the PPM predictor
success rate (54,5%, see Section 5). See Table 1.

2. Otherwise use the PPM predictor with a fallback to the LAST predictor
on cases where the PPM is “not sure”. The level of certainty of the PPM
prediction can be obtained as the likelihood Prob(Predicted symbol|Hi); we
accept the PPM prediction only if its likelihood is above certain threshold.

Table 1 summarizes results of the analysis for our data and r = 4, which proved
best in the experiments. The thresholds were set according to the reliability of
the LAST predictor on the subproblem (see Table 1). The lower the percentage
of good predictions that LAST predictor would make, the lower the threshold
and, consequently, the lower the number of fallbacks to the LAST predictor.

The reason we chose to use directly the LAST predictor on some subproblems
(instead of using high threshold) is performance. The subproblems where we
use LAST predictor together make 77% of the cases, so the MARPL achieves
remarkable speedup of the prediction process, compared to the PPM predictor.

Finally, selection of the training data needs care. The staying pattern (rule
AAAA → A) is dominant in the dataset, but useless for the PPM predictor, as
it will never be used on this kind of data. We considered three training phase
strategies — using all available data, using selected overlapping subsequences of
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length r + 1, and using selected non-overlapping subsequences of variable length.
The overlapping sequences strategy omitted the sequences that contained just
one symbol, the non-overlapping sequences strategy continued to grow the cur-
rent subsequence until the staying pattern was recognized, and then started a
new sequence, omitting the repeating symbols. The selected non-overlapping
subsequences proved best in the experiments and will be used further.

4.3 Aggregated Soft Decision Methods

In this section we transform MARPL and PPM predictors to provide soft de-
cisions. Then we propose another approach, that does not take into account
individual users and predicts the number of users directly.

MARPL soft predictor. The MARPL predictor provided just the single most
likely next location. Instead of it a vector U i = [ui

j], ui
j = Prob(j|Hi), j ∈

{1, 2, ..., J} of probabilities for a user i to be at all the possible locations j ∈
{1, 2, ..., J} is now needed. We construct the vector as follows.

• For the subproblems where PPM is used, ui
j = Prob(j|Hi) where Hi is the

association history of user i.
• For the subproblems where LAST is used, ui

j = 1 if j is the prediction
obtained by LAST, ui

j = 0 otherwise.

Table 1. Market Basket Analysis for sequences of associations Ai for rules of order 4.
Each row represents all rules with the same left side. The rules can be classified into two
user behaviour patterns — stay and move. Staying (represented by the AAAA → A
rule) prevails greatly, the rest of the rules relate to moving users. The star marks
the subproblems where the threshold chosen according to the reliability of the LAST
predictor did not perform well, and was changed to more appropriate value.

Rules
Applicability Reliability (%) LAST

Algorithm
Threshold (%,

(%) A B C D E reliability rounded up)

A, A,A, A →? 66.8 96 4 - - - 96 LAST -
A,B, C, D →? 8.7 0 1 2 18 79 18 PPM 18
A,A, A, B →? 4.0 29 45 26 - - 45 PPM 46
A,B, B, B →? 4.0 12 70 18 - - 70 LAST -
A,A, B, B →? 3.0 17 60 23 - - 60 LAST -
A, B, C, C →? 2.7 3 4 40 53 - 40 PPM 40
A, A, B, C →? 2.6 4 6 31 59 - 31 PPM 41*
A, B, B, C →? 2.3 4 8 30 58 - 30 PPM 31
A,A, B, A →? 1.6 67 21 12 - - 67 LAST -
A,B, A, A →? 1.6 72 16 12 - - 72 LAST -
A,B, B, A →? 0.9 55 31 14 - - 55 PPM 45*
A,B, A, B →? 0.7 41 48 10 - - 48 PPM 49
A, B, C, B →? 0.5 8 43 16 32 - 43 PPM 43
A, B, A, C →? 0.4 16 8 37 39 - 37 PPM 37
A,B, C, A →? 0.3 46 12 17 25 - 46 PPM 46
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• By aggregating the vectors U i for all the users i = {1, 2, ..., I} we obtain the
prediction Ŷj(t) =

∑
i={1,2,...,I} ui

j .

PPM soft predictor. Created from the PPM predictor by the same procedure
as MARPL soft predictor (the second branch is never used).

Integrated Space-Time Auto Regressive model (ISTAR). The proposed
method is a time series analysis method inspired by [4] on road traffic prediction.
Assume we have an adjacency matrix Ai,j such that Ai,j = 1 if a user can move
from location i to location j within one time step (at the highest possible speed).
Otherwise Ai,j = 0. The matrix A is static, derived by comparing the distances
between all pairs of BTS with a fixed distance threshold D. Recall that Yj(t) is
the number of users at location j at time t. We apply differencing, as is common
in time series analysis, and define Xj(t) = Yj(t) − Yj(t − 1). The model is:

Xj(t) =
∑

i:Ai,j=1

αi,jXi(t − 1) + βjXj(t − 1) + ε(t) (3)

where ε(t) is Gaussian white noise. The parameters to be estimated are the
matrix α (J ×J), the vector β (J ×1) and the noise variance (J is the number of
locations). At time t, the prediction for Xj(t+1) is X̂j(t) =

∑
i:Ai,j=1 αi,jXi(t)+

βjXj(t). The parameters α and β are estimated by minimizing

σ̂2
t :=

1
tJ

∑
j

t∑
s=2

wt−s
(
Xj(s) − X̂j(s − 1)

)2
(4)

where w is a “forgetting” factor, close to 1 and less than 1. Finally, the one-step-
ahead prediction for Yj(t + 1) is Ŷj(t) = X̂j(t) + Yj(t).

4.4 Algorithm Complexity

The complexity of predicting the next state of the whole network is considered.

PPM & MARPL. Given the implementation we use, the complexity of PPM
prediction for I users and histories of r associations is O(I ·J · r2). For MARPL,
the complexity of predicting is O(r) for the decision between the PPM and
LAST plus O(1) for the 77% of cases where the LAST predictor is used, or PPM
prediction complexity for the rest of the cases. For both, the time complexity of
learning one sequence of length n is O(n) and the space required for the worst
case is O(r · n), where r is the order of the model [13].

ISTAR. Theoretically, the complexity of predicting the next value for all J
locations is O(J2). The complexity of estimating the α and β parameters is
determined by the complexity of computing Equation 4 (O(t · J2) where t is
number of time slots) and complexity of minimization. As minimization algo-
rithm we use Matlab function lsqnonlin with default Trust-Region-Reflective
algorithm (whose complexity is O(iterations ·parameters)) on O(J2) parameters
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corresponding to the fraction of ones in adjacency matrix A. Thus the overall pa-
rameter estimation worst case complexity is O(t ·J4 · iterations) and O(J2) space
is required. Practically, on large networks the matrix A will become sparse and
the J2 factor can be replaced with Ja, a ∈ [1, 2), leading to O(t ·J2a · iterations)
complexity.

For our data (I = 2731, J = 7335, r = 4, t = 60, n = ca. 170000) the
complexity (in terms of both space and time) of soft PPM and soft MARPL is
one order of magnitude lower than that of ISTAR.

5 Experimental Results

5.1 Individual Hard Decision Methods

Data. To use the PPM predictor the data need to be divided to training and test
groups. The original data of 2731 users were pseudo-randomly split to 20 groups
and experiments were repeated 20 times, each time with one group as test data
and the rest of groups used as training data. Each test group contained 96681
subsequences of length 4 with correct next association for evaluation purposes.

Comparing MARPL, PPM and LAST predictors. Figure 3 compares the
hard predictors by means of both percentage of correct predictions and distri-
bution of distances between the real and predicted cell. Note that 0m distance
between the real and predicted cell occurs in two cases — when correct sector
on correct base station is predicted (denoted as OK BTS+sector), and when
another sector on correct base station is predicted (denoted as OK BTS ). The
difference stems from the cellular network architecture, where a base station of-
ten holds more transceivers, serving different sectors and cells, most commonly
three.

The MARPL predictor performs best, achieving 79.3% success rate when the
exact prediction of BTS and sector is required, and 84.4% success rate when
the prediction of BTS suffices. From the perspective of predicting user location
to switch off under-utilized hardware, the above results are encouraging, as the
lower distance errors prevail markedly. We can conclude that the MARPL is
able to predict correctly 94% associations with error up to 2500 metres, which
is acceptable given the typical cell overlays in cellular networks.

Surprisingly the PPM predictor performs worse than the LAST predictor.
The reason is that the LAST predictor builds on the low mobility of users (see
Figure 1), while PPM has to deal with problems related to the character of
our data — the high number of distinct cells to associate with, the consequent
training data shortage and finally the PPM predictor behavior when “not sure”.
Here PPM predicts the most frequent symbol of the training data (universal
Rival state for our data), while having in mind the Figure 1, the best strategy is
to predict the last known value. The MARPL predictor overcomes these problems
by using PPM on the subset of data coming from moving users, and LAST on
the data from staying users.
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Fig. 3. Comparison of hard predictors, cumulative distribution function of distances
between the real and predicted cell. Inset are pie charts showing overall success rate wrt.
exact next cell-ID prediction. For both PPM and MARPL only the results of the best
performing model are shown for brevity (order 2 for PPM, order 4 for MARPL). PPM
is markedly the worst of the predictors, LAST and MARPL provide similar results,
with slight advantage of MAPRL. However both PPM and MARPL can be improved
by introducing soft decisions, while LAST has no soft decision variant.

5.2 Aggregated Soft Decision Methods

Data. The splitting to training and test data was the same as in previous
section. From the test data, just the users with associations history long enough
to predict 60 consecutive time slots were selected, which makes 1296 users and
total of 77760 predictions in all 60 time slots.

Comparing soft and hard predictors. Fig. 4 compares the aggregated pre-
dictions from soft and hard versions of MARPL and PPM predictors by means
of mean squared error (MSE) between the vectors [Ŷj(T )], j ∈ J obtained using
the predictors, and the real vector [Yj(T )], j ∈ J. MARPL consistently achieves
lower MSE than the PPM predictor, and soft predictors consistently achieve
lower MSE than the hard predictors, both for single group of test users and for
all groups. The mean MSE for MARPL soft predictor is 0.070, which is just
66.4 % of the mean MSE of LAST (0.106) and 69.8 % of the mean MSE of PPM
soft (0.101).

On our dataset, the growing size of population does not affect the results.
While the absolute MSE grows with the number of users in the population, the
MSE relative to the number of users remains approximately the same, making
the order of the methods stable for all population sizes we considered.

Optimal parameters of the ISTAR model. The parameters of the model are
the “forgetting” factor w and distance threshold D, which determines the number
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Fig. 4. Comparison of aggregated soft and hard predictors over 60 consecutive time
slots, MSE. Top graphs show values for a single group of test data (96 users), bottom
graphs for all test groups (1296 users). The left graphs show variants of the MARPL
predictor, the right graphs of the PPM predictor. The reason why the MSEs are gen-
erally low, especially for single group of test data, is that we have only 96 (or 1296)
users moving around 7332 cells, which implies large number of empty cells (where all
predictors succeed), pushing the MSE down. Perhaps also surprising is that all predic-
tors improve over time, even though the LAST predictor obviously does not learn from
past data. This is due to the diminishing mobility of users over time (see Fig. 1).

of ones in adjacency matrix and thus the computation complexity. Figure 5
concludes that ISTAR improves with higher D and works best for w = 0.95.

Comparing aggregated location predictors and ISTAR model. Finally
we compare the aggregated results of the location predictors and of ISTAR
with optimal parameters. Due to the computational requirements of ISTAR (see
Section 4.4), the comparison was feasible on only a subset of 59 cells in one geo-
graphical district. The results of location predictors were obtained by restricting
the results from the experiment over the entire dataset to the selected cells.
This raises the question if it is fair to compare models trained on larger data
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Fig. 5. The ISTAR model performance given by means of MSE for different combina-
tions of parameters. The model improves with higher D and works best for w = 0.95.

to ISTAR, but why ignore MARPL’s and PPM’s capability to train on larger
datasets. Regarding test data, the neighborhood errors at the region’s borders
may influence ISTAR, but not enough users associated to the selected cells for
60 consecutive time slots were available to fairly scale down the location predic-
tors tests. The results (see Table 2) conclude that the MARPL soft predictor
performs best out of the studied methods.

Table 2. The overall MSE achieved by the studied methods (ordered from best to
worst). We specify the type of results for each method, for real number predictors (soft
predictors and ISTAR) rounding is considered.

Method MARPL ISTAR MARPL ISTAR MARPL PPM LAST PPM PPM
Decisions Soft - Soft - Hard Soft Hard Soft Hard
Result R R R → N R → N N R N R → N N

MSE 0.0715 0.0750 0.0864 0.0890 0.0949 0.1228 0.1263 0.1537 0.2144

6 Conclusions

We show that predicting user location within a cellular network in the next
time interval, with the granularity of the associated BTS, is a feasible task with
acceptable performance. On our experimental data, best results are achieved
using a novel prediction method, MARPL, which combines Prediction by partial
match (PPM) and LAST location predictor, using Market Basket Analysis. This
is an initial result on a limited (size) and specific (roaming clients) data set —
general applicability to arbitrary cellular network mobility data will need to be
verified in the future.

Further, we argue that the soft, probabilistic prediction methods are more
useful in predicting the aggregate location of a user ensemble, as shown using
mean square error comparison. Predicting location as a probabilistic vector, or
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aggregate location of an ensemble of users, makes sense due to a number of po-
tential applications focusing on network resource optimization. We show that the
soft methods in general outperform the hard ones, with MARPL requiring fewer
resources. In our future work, we intend to focus on practical applications of the
predictions for tasks such as economizing cellular network energy consumption.
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vol. 3538, pp. 271–276. Springer, Heidelberg (2005)

17. Shu, Y., Yu, M., Liu, J., Yang, O.: Wireless traffic modeling and prediction using
seasonal ARIMA models. In: Proceedings of the IEEE International Conference
on Communications, 2003 (ICC 2003), Anchorage, Alaska, USA, May 2003, vol. 3,
pp. 1675–1679 (2003)

18. Tikunov, D., Nishimura, T.: Traffic prediction for mobile network using Holt-
Winter’s exponential smoothing. In: Proceedings of the 15th International Confer-
ence on Software, Telecommunications and Computer Networks (SoftCOM 2007),
Portsmouth, UK, September 2007, pp. 1–5 (2007)

19. Hu, X., Wu, J.: Traffic forecasting based on chaos analysis in GSM communica-
tion network. In: Proceedings of the International Conference on Computational
Intelligence and Security Workshops (CISW 2007), Harbin, Heilongjiang, China,
December 2007, pp. 829–833 (2007)

20. Google: Latitude project, http://www.google.com/latitude/
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Abstract. In this paper we propose a mass market solution on mobile
phones to discover a user’s significant places solely from observed cell
IDs. It does not require either cell-ID-to-physical-location mapping or
the capability of obtaining multiple cell IDs on the phone simultaneously,
and is able to run on virtually any mobile phone today. Our solution is
centered around a cell ID clustering algorithm based on temporal correla-
tions. It is able to prevent over-clustering and handles missing data well.
We evaluate the solution with real-life data that the author has collected
over a period of eight weeks. Results show that we are able to discover
not only places of utter importance, but also certain less frequently re-
curring places and one-time travel destinations that bear significance in
one’s life.

1 Introduction

Location-based services are among the hottest and fastest-growing mobile ap-
plications today. Many such services aim to utilize a user’s physical location
by mashing it up with local search, advertising or social network services, etc.
The user’s location is usually obtained from GPS, cell location databases [14] or
Wi-Fi hotspot location databases [16], or a combination.

GPS is the dominant localization technology nowadays, but has several draw-
backs that make alternative methods also appealing. GPS needs a clear view of
the sky and has poor reception inside buildings or in other obstructed environ-
ments. It consumes much energy if used continuously, or suffers prolonged lock-on
periods if used on demand. GPS also increases the manufacturing cost and is
only available in middle-tier to high-end mobile phones today. Assisted-GPS (A-
GPS) [3] has partially solved these problems, but needs additional chipset and
network support, and the cost issues remain.

In this paper we argue that for some use cases, a cheaper localization solution
may also be a better one. One such use case is location-aware user interface. For
instance, application shortcuts may be selected and ordered based on the user’s
particular usage pattern at a specific locale. Another potential use case is contex-
tual content management. An example is for the mobile phone to automatically
tag with location information user-generated content including photographs and

R. Fuller and X.D. Koutsoukos (Eds.): MELT 2009, LNCS 5801, pp. 34–49, 2009.
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video clips. In either case, absolute and/or high-resolution physical location in-
formation (e.g. geo-coordinates) may not be necessary as long as the locale is
meaningful and distinguishable to the user herself.

Virtually all mobile phones today, as popularly called cell phones, rely on
the cellular network infrastructure for communications. They must be able to
identify and connect to a cell, and remain connected in operation. The biggest
advantages of cell-ID-based localization are the universal availability – in terms of
both the device base and network coverage, and near-zero added costs – in terms
of both manufacturing and energy consumption. Even with the downsides such
as coarse accuracy and lack of easy cell-ID-to-physical-location mapping – a GSM
cell may span well over several km2, and today’s cell location databases are far
from open/adequate – we will show in this paper that if handled appropriately,
cell IDs alone may still reveal plenty of a user’s location patterns. Better yet,
it requires no Internet connections; all data collection and computation may be
performed on the phone in a privacy-preserving way.

The rest of the paper is organized as follows. Section 2 gives an overview of
related mechanisms and their respective difficulties in our target mass market
scenario. Section 3 describes two key assumptions that we take in this paper,
defines formally the problem to be solved, and lists three types of significant
places of our interest. Section 4 presents a naive cell ID clustering algorithm as
the very basic foundation of our solution, followed by algorithmic improvements
in Section 5 to address several shortcomings. In Section 6 we evaluate our work
with eight weeks of real-life data collected on the author’s primary cell phone,
and finally Section 7 discusses future work and concludes the paper.

2 Related Work

Discovering significant places using GPS is a well explored area in the litera-
ture. [1] proposes to cluster GPS coordinates into meaningful locales based on
geo-distances. It looks at both spatial and temporal correlations among GPS
coordinates in the trace, tuning threshold parameters to find the desirable clus-
tering results. The solution is flexible and may recursively find places at multiple
hierarchical levels; its geo-distance-based clustering method, however, cannot be
easily generalized to non-GPS technologies, as we will see in Section 3. [11]
extracts a user’s activities and significant places from GPS traces using hier-
archical conditional random fields. Its primary novelties are to take high-level
context into consideration when detecting significant places, and the ability to
train and apply models across users. The main difficulties of applying it in our
scenario are the dependency on maps and fairly intense computation.

Among the GPS-less localization methods, many focus on measuring the re-
ceived signal strengths from Wi-Fi base stations and/or GSM cell towers to
pinpoint a user’s physical location [8][10]. These methods typically rely on map-
ping databases to convert Wi-Fi base station MAC addresses and/or GSM cell
IDs to their geo-coordinates. In this paper we do not assume availability of such
mapping databases. Additionally, Wi-Fi-based localization has disadvantages
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in network coverage and device penetration compared to GSM-based methods.
GSM-based methods have their own limitations – as we will elaborate later, it
is practically difficult to obtain information from multiple GSM cells simultane-
ously on mainstream mobile phones, due to lack of such support in today’s mass
market implementations.

Several other interesting projects in GPS-less localization are [2][4][6]. [2]
compares Wi-Fi scanning data, including MAC addresses and received signal
strengths, on two mobile devices and determines whether they are in proximity
according to a Gaussian Mixture Model. It does not require knowledge on the
physical locations of scanned Wi-Fi devices. [4] presents a pure cell-ID-based so-
lution for user tracking. It requires support from the network infrastructure and
knowledge on the physical locations of cell towers. BeaconPrint [6] moves away
from received signal strengths and uses beacons to characterize places. It works
well with Wi-Fi in which it is easy to obtain information from multiple base
stations at the same time; with GSM the aforementioned difficulty in obtaining
information from multiple cells remains.

It is worth pointing out that [7], built on top of Place Lab [10], introduces a
time-based clustering algorithm that has in part inspired our work in this paper.
Unlike standard clustering algorithms, the proposed method does not specify
the number of clusters to be created as a parameter, and its light computation
favors resource-limited mobile devices. Like other projects based on Place Lab,
however, it too relies on a mapping database to obtain geo-distances between
data points, and thus does not apply directly to our target problem.

The most directly related work to our paper is perhaps [9], which also proposes
to use solely a timestamped sequence of cell IDs to discover a user’s significant
places. There exist two distinctions in our solution, though. First, the cell ID
clustering algorithm is different – [9] is based on length of stay, i.e. statistics,
while ours is based on temporal correlation in the input sequence; our cluster-
merging algorithm is also more restrictive to prevent over-clustering along roads.
Second, [9] applies an aging algorithm to gradually purge non-recurring places,
while we see such places as potentially special to the user. We explicitly address
non-recurring significant places in this paper. We do not address routes in this
paper but plan to investigate this problem in detail in the near future.

3 Assumptions and Problem Definition

3.1 Assumptions

We make two key assumptions to the problem to be solved in this paper:

1. There are no cell-ID-to-physical-location mapping databases available.
2. Mobile phones can only obtain information about the cell that it is currently

connected to.

Removal of either assumption would certainly make the problem easier to tackle,
but the state-of-the-art in the mobile phone industry warrants both when our
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target is the global mass market. Exact locations of cell towers are well-guarded
secrets by mobile carriers and generally unavailable to the public. Commercial
location-based services often rely on proprietary databases [12][13], or crowd-
sourcing initiatives [14] that are far from being complete. Obtaining more than
one cell ID simultaneously is feasible in theory, but few mobile phones support
it in practice. In fact, even getting one cell ID involves completely different APIs
across manufacturers because programming languages such as Java ME do not
provide such a standard API. It is likely that both assumptions will hold in the
foreseeable future.

3.2 Problem Definition

The input to our problem is a sequence of N observed cell IDs along with times-
tamps. Denote cell IDs as Ci and corresponding timestamps as Ti, i = 0, 1, . . .,
N − 1, the input is in the form of {(Ci, Ti)} where (Ti) is a strictly ascending
sequence. Our goal is to find significant places {Pj | j = 0, 1, . . ., M − 1} from
the input. Similar to [7], the term place refers to a user-specific, semantically
meaningful locale. It is worth pointing out that our goal here is merely to find
places that bear certain degrees of importance to the user; we do not intend to
label these places, as labeling is a different (and difficult) problem that deserves
its own full attention.

3.3 Defining Significance

We are interested in two dimensions of significance – length of stay and re-
currence. To qualify as “significant”, a place must score high on at least one
dimension; places that neither have a long time of stay nor demonstrate a strong
recurring pattern are not of our interest in this paper.

Places that score high on both dimensions are the places of utter importance
to the user, e.g. “Home” or “Work”. We expect a user to have just a handful of
such places, and they may be quite obvious to identify.

Non-recurring places that show a relatively long time of stay in a limited time
frame are often business trip or vacation destinations. Over a longer period (such
as several months) these places may not seem as important in terms of absolute
length of stay, but since they are out of one’s daily routine and thus “abnormal”
rather than “normal”, the user often remembers them as “special occasions”
that bear certain significance in life.

The third type, i.e. recurring places without a long time of stay, is more subtle.
“Starbucks” and “Child’s School” are examples here, where a user may spend
only a few minutes on any given day. Recurrence along does not necessarily
lead to significance, e.g. a commuter may pass the same on-ramp meter at the
freeway entrance every morning, but the ramp barely has any semantic meaning
to the user. Later in the paper we will address this with real-life data; however
whether/how we can tell “Child’s School” from “On-ramp of I-280 at De Anza
Blvd” remains a research problem to be further investigated.
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4 Clustering Cell IDs into Places

Given the input format in Section 3, a place is represented as a set of IDs of geo-
graphically co-located or nearby cells. It is a set rather than a single ID because
cells are often deployed with overlapping to enhance connectivity robustness.
Even stationary, a mobile phone may dynamically hand off to a different cell if
the new cell is considered “better” than the current one. Observed “raw” cell
IDs must be clustered first before further steps are taken.

We want to find cells that are co-located or close to each other. Without cell-
ID-to-physical-location mapping databases, a clustering algorithm solely on the
input is needed. The basic idea is to find minimum circular subsequences of cell
IDs in the input. A circular subsequence is defined as a subsequence starting
and ending with the same cell ID and contains at least two different cell IDs.
A minimum circular subsequence is a circular subsequence that consists of no
circular subsequences in itself.

A minimum circular subsequence indicates that the mobile phone has “re-
turned” to where it was at the beginning. This return may or may not have
involved physical movement of the phone. To exclude from the clustering pro-
cess those cases in which the phone has indeed traveled long distances physically
before coming back, we limit our interest in minimum circular subsequences of
low cardinalities. The cardinality of a sequence is defined as the number of dif-
ferent symbols in it. For example, in “. . .XABBBCCAY . . .”, “ABBBCCA”
is a minimum circular subsequence with a cardinality of three. When several cell
IDs appear in a minimum circular subsequence of low cardinality, chances are
that they are co-located or close to each other, and therefore may be put in the
same cluster.

4.1 Naive Clustering Algorithm

A naive clustering algorithm is presented in Algorithm 1. The inputs are the cell
ID sequence {(Ci, Ti)} and a minimum circular subsequence cardinality threshold
S. The output is a set of cell ID clusters {CLi}1. w is a sliding window of cell
IDs, CL holds the final output, CL′ is an intermediate variable, and z holds all
the cell IDs that have been clustered so far.

The for loop in lines 2 – 11 scans in time-ascending order the input sequence
and identify minimum circular subsequences which, after duplicate elements are
removed, are stored temporarily in CL′. We adopt notations for list indexing
similar to the Python language, where positive indices are from left to right and
negative indices are from right to left. The while loop in lines 12 – 20 then
iterates through CL′ to merge together clusters that share common cell IDs.
Finally the for loop in lines 21 – 25 generates solo-clusters for cell IDs that
do not belong to any existing clusters, i.e. creating a new cluster for each such
cell ID.
1 Cell ID clusters {CLi} are technically different from places {Pj}. Places are selected

cell ID clusters that meet certain criteria described in Section 3.3.
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Algorithm 1. NaiveCluster(): Cluster cell IDs based on cardinality threshold.
Require: {(Ci, Ti) | i = 0, 1, . . . , N − 1; Tj < Tj+1 for j = 0, 1, . . . , N − 2}, S ≥ 2
Ensure: {CLi | i = 0, 1, . . . , N ′ − 1; CLi �= Φ; all CLi form a partition of set {Ci}}
1: w ← [], CL ← Φ, CL′ ← Φ, z ← Φ
2: for i = 0 to N − 1 do
3: if Ci not in w then
4: w.append(Ci)
5: else if w[−1] = Ci then
6: continue
7: else
8: j ← w.index(Ci), CL′.add(set(w[j :])), w ← w[0 : j], w.append(Ci)
9: end if

10: w ← w[−S :]
11: end for
12: while CL′ not empty do
13: a ← randomly selected element from CL′, CL′.remove(a), z ← z ∪ a
14: for all b in CL′ do
15: if a ∩ b �= Φ then
16: a ← a ∪ b, CL′.remove(b)
17: end if
18: end for
19: CL.add(a)
20: end while
21: for all Ci do
22: if Ci �∈ z then
23: CL.add(set([Ci]))
24: end if
25: end for
26: return CL

Table 1. An example of the naive clustering algorithm

Cell ID sequence w CL′ CL

ˇAAABBCCCBDCD [] {} {}
ǍAABBCCCBDCD [A] {} {}
AAAB̌BCCCBDCD [AB] {} {}
AAABBČCCBDCD [BC] {} {}
AAABBCCCB̌DCD [B] {{B, C}} {}
AAABBCCCBĎCD [BD] {{B, C}} {}
AAABBCCCBDČD [DC] {{B, C}} {}
AAABBCCCBDCĎ [D] {{B, C}, {C, D}} {}
AAABBCCCBDCDˇ [] {} {{B, C, D}, {A}}
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4.2 An Example

Table 1 gives an example on Algorithm 1. Input cell IDs are lined up in time-
ascending order2. The cardinality threshold S = 2. The check mark (̌ ) indicates
the current cell ID being looked at3. w, CL′ and CL are shown as the algorithm
progresses. Eventually B, C and D are clustered together; A forms a solo-cluster.

5 Algorithmic Improvements

5.1 Avoiding Over-Clustering

One problem with Algorithm 1 is the lack of resistance to the “ripple effect”
introduced in the cluster-merging code in lines 15–17. To better understand it
we refer to an example in Figure 1, in which a number of cell locations from
the Open Cell ID project are mapped on Google Earth. Many cell towers are
deployed along freeways and major roads; under circumstances such as stop-and-
go traffic, it is not rare to see a mobile phone bouncing between cell IDs. Let us
assume hypothetically that along a road there are a series of cells A, B, C, D
and E. Since the input cell ID sequence to Algorithm 1 is from a long period of
time, chances of seeing {A, B}, {B, C}, {C, D} and {D, E} in CL′ may become
non-negligible, eventually generating {A, B, C, D, E} in CL. Consequently all
five cell IDs are seen to represent the same place, which is a mistake.

Algorithm 2. QualifiedSet(): Compute cell IDs that can be clustered around.
Require: {(Ci, Ti) | i = 0, 1, . . . , N − 1; Tj < Tj+1 for j = 0, 1, . . . , N − 2}, Q
Ensure: {C′

i} where C′
i appears at least Q times for at least one day.

# Implementation omitted

The improvement is to allow clustering only around “qualified” cell IDs. For
this purpose we introduce a function QualifiedSet() in Algorithm 2. It counts
how many times each cell ID appears, on a daily basis, and returns those of which
the number is above a given threshold Q for at least one day in the data set.
Cell IDs returned from QualifiedSet() have demonstrated sufficient exposure
to be considered for clustering. Algorithm 1 is then amended as in Algorithm 3.

5.2 Handling Missing Data

A second problem with the naive algorithm is its way of handling missing data.
An implicit assumption in Algorithm 1 is that cell IDs are observed periodically,
i.e. Ti+1 − Ti ≈ τ where 1/τ is the sampling frequency. However there is no

2 Throughout the paper we often use this abbreviated form of Ci in lieu of (Ci, Ti),
and assume cell IDs to be in time-ascending order from left to right.

3 Some intermediate steps are omitted for conciseness.
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Fig. 1. Cell locations from the Open Cell ID project

Algorithm 3. Amendment to Algorithm 1.
# The following line replaces the Require line.

Require: {(Ci, Ti) | i = 0, 1, . . . , N − 1; Tj < Tj+1 for j = 0, 1, . . . , N − 2}, S ≥ 2, Q

# The following line replaces line 1.
w ← [], CL ← Φ, CL′ ← Φ, z ← Φ, QC ← QualifiedSet({(Ci, Ti)}, Q)

# The following lines replace line 8.
j ← w.index(Ci)
if set(w[j :]) ∩ QC �= Φ then

CL′.add(set(w[j :]))
end if
w ← w[0 : j], w.append(Ci)

guarantee that a valid cell ID can always be observed steadily at this pace, e.g.
the mobile phone may temporarily lose the signal or be turned off. Algorithm 1
must be further amended to accommodate such exceptions.

. . . A????BA . . . (1a)

. . . A????B????A . . . (1b)
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Algorithm 4. Amendment to Algorithm 1, containing changes in Algorithm 3.
# The following line replaces the Require line.

Require: {(Ci, Ti) | i = 0, 1, . . . , N − 1; Tj < Tj+1 for j = 0, 1, . . . , N − 2}, S ≥ 2, Q, τ

# The following line replaces line 1.
w ← [], w′ ← [], CL ← Φ, CL′ ← Φ, z ← Φ, QC ← QualifiedSet({(Ci, Ti)}, Q)

# The following lines replace lines 3–9.
if Ci not in w then

w.append(Ci), w′.append(Ti)
else if w[−1] = Ci then

w′[−1] ← Ti

continue
else

c ← 0
for all (w′

j , w
′
j+1) in w′ do

if w′
j+1 − w′

j > 2τ then
c ← c + 1

end if
end for
if c > 1 then

w ← [Ci], w′ ← [Ti]
else

j ← w.index(Ci)
if set(w[j :]) ∩ QC �= Φ then

CL′.add(set(w[j :]))
end if
w ← w[0 : j], w.append(Ci), w′ ← w′[0 : j], w′.append(Ti)

end if
end if

With extreme conservativeness we would tolerate no missing data, and any
such event would cause the sliding window w to be reset; with extreme aggressive-
ness we would ignore the fact of missing data, and w would remain unchanged.
To explain that neither case is desirable we refer to the examples in (1), in which
a question mark is inserted into the cell ID sequence where an observation should
have been recorded but is missing. (1a) has one chunk of missing data while (1b)
has two. Since in (1a) there is evidence that B and A are adjacent, we argue that
it is reasonable to cluster them together, if other conditions are met, even there
is missing data between the first appearance of A and B. In contrast, we cannot
rule out the possibility that B and A are distant from each other in (1b) because
the observations are missing both before and after B, therefore we should reset
w upon seeing the second missing data chunk.

We further amend Algorithm 1 to handle missing data as in Algorithm 4,
which contains cumulatively all changes made in Algorithm 3. In a nutshell, a
new list w′ is added to track the timestamps in parallel to cell IDs. Before adding
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a cluster candidate to CL′, the algorithm checks if there are two or more chunks
of missing data in it, and drops the candidate if so.

6 Evaluation

6.1 Data Collection

We use the Nokia Simple Context [15] tool for data collection. The author has
installed the Nokia Simple Context client on his primary mobile phone, a Nokia
E71, and collected data for eight consecutive weeks. The phone was turned on
most of the time during the day and turned off normally at night. In addition to
the GSM cell information, Nokia Simple Context also collects a variety of data
on GPS, Bluetooth, Wireless LANs, etc.; however we only focus on GSM data
in this paper and leave study of multimodal localization for future work.

At the sampling rate of one per minute, a total of 54,842 GSM cell data points
were recorded during the period, giving a coverage of about 914 hours4. Each
data point consists of a Unix timestamp and time zone information, an ID that
uniquely identifies the cell globally, the received signal strength and the number
of signal bars. Figure 2 shows such a GSM cell data point in the JSON format.
The author did not keep a diary on the ground truth, but most of it can be
recovered easily from the author’s calendar, email history, working notes and
other sources.

{"tz": 28800, "user_id": xxxx, "type": "gsm", "source": "35292502072xxxx",

"db_key": 4390xxxx, "time": 123991xxxx.0, "ver": "0.10",

"data": {"cell_id": 16xxxx, "network_code": 410, "area_code": 56998,

"signal_dbm": 95, "country_code": 310, "signal": 7}}

Fig. 2. A sample GSM cell data point (certain fields masked)

6.2 Distribution of Cell IDs

There are a total of 596 unique cell IDs observed in the data set. We plot the
distribution of their appearances as the purple line in Figure 3. Cell IDs are
sorted on the number of appearances and re-numbered before being plotted.
Not to our surprise, it approximately follows the power law distribution [5]. The
top two cell IDs apparently correspond to “Home” and “Work”, respectively,
given the author’s lifestyle.

We then cluster the cell IDs according to Algorithms 1 – 4. We choose to
set parameters S = 2, Q = 10 and τ = 5 min. From experiments we find out
that S = 2 is effective while larger values tend to over-cluster. Q = 105 has

4 GSM cell information may occasionally be unavailable in Nokia Simple Context, in
which case no data are recorded.

5 Given the sampling rate of one per minute, it corresponds to 10 minutes.
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Fig. 3. Distributions of Cell ID appearances – before vs. after clustering

been shown [1][7] to be an empirically good value in location clustering. τ = 5
min is chosen based on our observation that most temporary losses of cell ID
information in the data set are less than 5 minutes.

Distribution of cell ID appearances after clustering is also plotted in Figure 3
as the blue line. The number of unique clusters is reduced to 472, but the line
still resembles the power law distribution. All results hereafter in the paper are
based on cell ID clusters rather than observed raw cell IDs.

Figure 4 plots the cell ID cluster sizes; clusters are first sorted in size-descending
order before being plotted. The largest cluster consists of 21 cell IDs. There are
a total of 30 clusters that consist of two or more cell IDs each; the rest are
solo-clusters. We will revisit the cluster sizes shortly.

6.3 Significant Places – Overall

As we have pointed out, not every cell ID cluster represents a significant place.
A cell ID cluster may potentially represent a significant place if it has been ob-
served at least Q times on one or more days. We plot all such clusters in Figure
5, in which a pair of coordinates (x, y) means the cluster has been observed at
least Q times on y days, while the daily average observation time is x. Gener-
ally speaking, a larger y suggests a stronger recurring pattern, while a larger x
indicates more importance on certain days.

While sophisticated machine learning could be applied to Figure 5, it is simple
to just identify points with a large x or y, or both. They correspond to the three
types of significant places discussed in Section 3.3. We pick eight clusters, labeled
A to H , and check against the author’s calendar history to verify that they are
indeed significant places. The result is shown in Table 2. The table is not meant
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Fig. 4. Cell ID cluster sizes

to be exhaustive – there may exist other significant places unlabeled in Figure 5
and need more sophisticated algorithms to discover. In other words, the precision
is high but the recall may be low. We leave a complete solution of the issue for
future work.

Fig. 5. Cell ID clusters that potentially represent significant places to the user
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Table 2. Ground truth of eight cell ID clusters selected from Figure 5 and their
corresponding places and visit patterns

Label Cluster Size Place Normal Visit Pattern
A 21 Home Daily unless out of town
B 20 Work Daily on weekdays unless out of office
C 5 Grocery Store Once per week unless out of town
D 3 Gymnasium Occasionally, approx. once per week
E 4 UCLA Business trip, long distance
F 10 Stanford Univ. Business trip, local
G 6 Hotel in Southern Calif. Business trip, long distance
H 20 Monterey, Calif. Vacation, long distance

Fig. 6. Cell locations where available in the Open Cell ID database for “Work”

Among the eight significant places in Table 2, A and B are utterly important
places to the user, while C and D are less frequently visited but still demonstrate
a fairly clear recurring pattern. E through H , in contrast, are one-time trip
destinations. It is interesting to compare Table 2 to Figure 4 and see that all
eight significant places correspond to relatively-large cell ID clusters. It proves
the relevance and efficacy of our clustering algorithms in identifying significant
places.

We now refer to the Open Cell ID project to see how many cell IDs in our
data set are in their database and where they are. As of June 2, 2009, the
Open Cell ID database has information on 131 cell IDs out of a total of 596, a
mere coverage of 22%. It shows that crowd-sourced cell-ID-to-physical-location
mapping databases are still in an early stage. Among the eight significant places
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Fig. 7. Number of significant places – daily statistics

Fig. 8. A typical weekday (left)/weekend (right) with places and transit

in Table 2, “Work” has the best coverage with six cell IDs, plotted on the map
in Figure 6. These cells span an area of approximately one mile in diameter, in
line with our expectation on accuracy.

6.4 Significant Places – Daily Statistics

A basic unit of time in human life is day. In Figure 7 we show 1) how many
significant places the author has for each day (brown bars), and 2) how much
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time the author spends in these places combined (purple line). The figure shows
that for the vast majority of days, there are only 2 – 5 significant places. Day 2
is an exception on which the author was out of town and visited several venues.
It was indeed a special day.

Finally Figure 8 shows how a typical day during the week (left) or weekend
(right) looks like. Thick solid lines represent places; dotted lines mean “in tran-
sit”. Both days share one and only one common place – “Home”. The weekday
is simply “Home → Work → Lunch → Work → Home”; the weekend is more
diversified with short visits to several shopping, dining and entertainment places.

7 Discussion and Conclusion

In this paper we have proposed a mass market solution on mobile phones to
discover a user’s significant places. Our solution is solely based on periodically
sampled, timestamped cell IDs – available on virtually all mobile phones today.
We have evaluated the solution with data collected by the author over eight
weeks. Results show that we are able to identify all three types of significant
places of our interest: utterly important places such as “Home” and “Work”,
less frequently visited but recurring places such as “Grocery Store” and “Gym-
nasium”, and one-time travel destinations.

All clustering algorithms and data analysis programs are currently imple-
mented in Python on a laptop computer. In the immediate future they may be
ported with minimum efforts to mobile phone operating systems in which the
Python language is supported, i.e. Nokia S60, and also in other languages such
as Symbian C++. We are interested in investigating advanced machine learning
and data mining methods to discover more location patterns on different time
scales, e.g. morning vs. evening, or summer vs. winter, and to improve the recall
rate of significant places. We plan to expand evaluation to multiple people as
well, once such data sets become available, and to compare results across users.
Transit routes between places are also a natural next step. Multimodal localiza-
tion is another direction we plan to look into, i.e. combining cell ID with GPS,
Wi-Fi and Bluetooth in a way to improve localization results without sacrificing
the merits. Finally we are interested in automated labeling of places – a difficult
but intriguing problem.
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Abstract. Localization systems will evolve towards autonomous system
which will use any useful information provided by mobile devices taking
the hardware specification and environmental limitations into account.
This paper demonstrates the concept of opportunistic localization using
a smart phone with the following sensor technologies: Wi-Fi, GSM, GPS
and two embedded accelerometers. A particle filter based estimator with
an adaptive motion model is used to seamlessly fuse the different sensory
readings. Real experiments in multi-floor, indoor-outdoor environments
were conducted to analyze the performance of the proposed system. The
achieved results using various sensor combinations are presented.

1 Introduction

The future of localization systems most likely will evolve towards systems which
can adapt and cope with any available information provided by mobile clients.
However, one of the common disadvantages of many existing localization systems
is the need for dedicated devices and proprietary infrastructure in the operation
area of the indoor localization system.

The increasing proliferation of mobile devices, such as PDA’s and smart
phones, has fostered growing interest in location based applications which can
take advantage of available information in the environment that can be extracted
by the mobile device. This type of localization is called opportunistic localiza-
tion. For example, most mobile devices can provide GSM related data like the
connected cell tower identification and signal strength, whereas more advanced
devices are equipped with Wi-Fi, GPS or a combination of the previous. More
recent mobile devices also have inertial sensors build in (mostly accelerome-
ters) which can be used as extra localization information using the Pedestrian
Dead Reckoning (PDR) [1] principle, where the internal accelerations are used to
estimate the displacement of the person.

The purpose of this paper is to present the Opportunistic Seamless Local-
ization System (OSL), a smart phone based opportunistic localization system

R. Fuller and X.D. Koutsoukos (Eds.): MELT 2009, LNCS 5801, pp. 50–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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which combines sensor data available from mobile devices. An adaptive motion
model for the particle filter is proposed to seamlessly fuse different technologies
based on the availability of accelerometer and GPS data from the smart phone.

1.1 Related Works and Contribution

As shown in [2] a lot of techniques can be used for localization. GSM is a widely
used technology for the localization of handheld devices. PlaceLab [3], probably
the most know system which combines different technologies, combines GPS, Wi-
Fi and GSM beacons. Systems using Wi-Fi alone like [4] have already proven
themselves, but are very depended on the Wi-Fi access point placement and RF-
fingerprint, since they only use Wi-Fi and do not integrate any other sensors.

In OSL, GSM is not used for cell ID localization as in PlaceLab, but the
signal strength measurements are directly used in the measurement model of the
particle filter, similar to our Wi-Fi implementation, to be compared to the RF-
fingerprint database. Accelerometers are already used in other projects like [1],
but all other research on PDR mostly uses dedicated accelerometers, where OSL
uses the internal sensors of the smart phone. This also means that the algorithm
should cope with the placement of the smart phone, which is for example in
a trousers pocket in an unknown orientation, where most other research used
accelerometers place on a special part of the body (foot, chest ...).

In this paper we want to focus on the novel implementation of the adaptive mo-
tion model, which will dynamically use the available opportunistic sensor data.

The remainder of the paper is organized as follows. In Section 2, the archi-
tecture of the OSL system is introduced. The fusion algorithm and the adaptive
motion model will be proposed in the Section 3. Section 4 will describe the
experiment and results. Finally, section 5 concludes the paper.

2 Architecture

The current version of OSL has an event-driven client-server based architecture,
where the client consists of different sensor services dependent on the hardware
capabilities. These sensors send events to a central client component which will
handle all events and initiate the communication with the server. The server,
besides the data fusion, also handles the preprocessing of this data for the fusion
engine and the post-processing for the visualization and logging.

2.1 The Mobile Devices

In the current prototype, the client is an Openmoko Neo Freerunner PDA. The
PDA is able to provide the following data:

– GPS data
– GSM Cell readings (serving and up to 8 neighboring cells)
– Wi-Fi RSSI measurements
– Step detection data and stride estimation based on 2 accelerometers
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Fig. 1. The Client Architecture

The client can work in 2 different modes: an online mode and a logging mode.
In the online mode, there is a connection between the client and the server. The
client sends all required data to the server. Which data is required, is determined
in collaboration with the server. In a later phase, the server tells the client which
data to send in order to optimize performance and minimize the data throughput.
In the logging mode, the client is not connected to the server and saves all data
which will be send during the next connection to the server.

As shown in Figure 1 the client consists of different components: the sensors,
the communication, the controller, the logging component and the graphical
user interface (GUI), the first three are described below. The client is running
QtExtended 4.4.3 on Linux and all components are written for this system, which
makes its more portable to other platforms.

2.2 The Mobile Device Sensors

The number of sensors is dependent on the client’s hardware specifications; in
our system, the PDA has the following sensors GPS, Wi-Fi, GSM and 2 ac-
celerometers:

GPS. The software daemon parses the data coming from the GPS [5] chip,
and sends the useful data to the OSLClient Controller. Currently the following
NMEA (National Marine Electronics Association) messages are used and parsed:

– $GPGSA: the GPS Dilution of Precision DOP (Horizontal HDOP, 3D PDOP
and Vertical VDOP) and information about the active satellites. The DOP
is an indicator of the geometric configuration of the active satellites, which
influences the GPS accuracy.

– $GPGGA: the position, HDOP, number of satellites, the fix quality and the
altitude.

– $GPZDA: the date and time, this is used to synchronize the PDA’s time.
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– $GPRMC: the required minimum specific GPS data, which is the position
and speed, the speed is received in knots but is converted to km/h.

The combination of these messages gives the position, speed and altitude, to-
gether with quality information like the different dilution of precisions and the
number of active satellites.

Assisted-GPS. The issue, which had to be overcome when using the GPS chip
used in Neo Freerunner (u-blox ANTARIS 4) is that it has no internal memory
to store known almanac data and the latest known position and time, which
causes a long Time To First Fix (TTFF) for every new cold start. Currently the
Assisted-GPS (AGPS) module is used every time to speed up the start up time.

The position used to get the AGPS data from the u-blox AGPS server can be
a rough estimate from the last known location or the position calculated from
Wi-Fi or GSM, similar to [6].

Wi-Fi. Localization using Wi-Fi, is probably the most commonly used technol-
ogy for indoor localization as it benefits of the omnipresence of Wi-Fi networks.
Nearest access point (AP), multi-lateration[7] and fingerprinting[8] can be used
to determine a position. Since the idea of OSL is to create sensors which can
be re-used as much as possible, multi-lateration using timing is quite difficult to
achieve since it is not feasible to get precise timing information using standard
devices in a generic way. This makes time dependent localization techniques like
TDOA and TOA not possible to use for generic PDA’s. In OSL fingerprinting
using signal strength is implemented, this requires a fingerprint database for Wi-
Fi, which in the latest version should be self adopting using a self-calibration
algorithm.

GSM. Every mobile phone has the identification and signal strength of the
cell tower to which it is connected (serving cell). A broadcast message of this
tower informs all connected cell phones about eight neighboring cell towers which
can be used in case a handover is needed. The measured GSM/UMTS signals
strengths from this serving and up to eight neighboring cells are treated sim-
ilarly to Wi-Fi signal strength discussed above. Cell-ID localization is used in
different case studies[9,10] and applications already. In Cell-ID localization the
mobile phone is located in the area covered by the connected cell tower. The im-
plementation of Cell-ID localization adds straightforward coarse-grained indoor
and outdoor location information to OSL, but the location of all cell towers is
needed. However, the main benefit of GSM is in urban (near-) indoor environ-
ments where the pattern, created from the GSM field strengths of all cell towers,
can provide localization where GPS fails due to the blockage of the satellite sig-
nals (shadowing), similar to [11]. Thanks to the influence of for example walls
on the GSM field strength the fingerprint build with the field strengths of the
different cell towers differs significantly in different locations of a building. These
differences are used in localization using fingerprinting or pattern matching like
in [4]. The difference in OSL towards other research on indoor GSM localization
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like [11], is that a standard PDA does not allow getting system information of
all surrounding cell towers. Since we try to built OSL as generic as possible we
can only use the information which is standard available in most mobile phone.
Therefore, OSL uses a standard GSM fingerprinting to cover areas with poor
GPS and Wi-Fi coverage where the main power lies in the algorithm using the
different field strength measurements.

Mobile Client Motion Detection. The accelerometers are used to process
step-detection using the algorithm described in [12]; the number of steps will
be send to the server if they can be calculated, together with an estimated dis-
tance. This sensor gives us not only possible extra knowledge about the traveled
distance, which is used for PDR, but as well if the person, using the device,
is moving or not. This information will be used in the motion model described
below.

2.3 The OSL Client Controller

The controller is responsible to collect all events coming from the sensors and
sent them to the communication module, which sends it to the server. This
controller is adapted according to the devices hardware specification to allow all
possible sensory data to be used. The controller also interacts with the GUI and
the logging component.

2.4 The Communication

In a system which should support all kinds of devices, a standardized way to
transfer the data from the client to the server is needed. That is why an open
localization data stream binary protocol called LocON has been adopted. The
LocON protocol was developed within the research conducted in the EC FP7
LocON project [13] for the transparent localization data streaming within local-
ization system components. Security and encryption is also supported by this
protocol. The communication component is responsible for queuing all data com-
ing from the sensor, building the LocON compliant message and sending them
to the sever.

3 Seamless Sensor Fusion

3.1 Sequential Non-linear Bayesian Filtering

A particle filter [14], a technique which implements the recursive Bayesian fil-
tering using the sequential Monte Carlo method, is currently one of the most
advanced techniques for sensor data fusion. A particle filter allows to model the
physical characteristics of the movement of an object (motion model) and gives
a weight (corresponding to the believe) to the particle using the noisy obser-
vations, the measurements (measurement model), of for example Wi-Fi, GSM
and GPS. After each update step the particles are resampled according to their
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weight. The main advantage of particle filters against Kalman Filters, for exam-
ple, is that it can deal with non-linear and non-Gaussian estimation problems.
Additional information like map filtering, where environmental knowledge like
the location of walls is incorporated in the motion model to remove impossible
trajectories [4], is easily implemented using particle filters.

The particle filter directly estimates the posterior probability of the state xt,
which is expressed with the following equation [15]:

p(xt|zt) ≈
N∑

i=1

wi
tδ(xt − xi

t) (1)

where xi
t is the i-th sampling point or particle of the posterior probability with 1

< i < N and wi
t is the weight of the particle. N represent the number of particles

in the particle set and zt represents the measurement.
Algorithm 1 describes the generic algorithm of a particle filter. The input of

the algorithm is the previous set of the particles Xt−1, and the current measure-
ment zt, whereas the output is the new particle set Xt.

In our OSL system, the state x of a particle represents the position (xi
t, yi

t,
zi

t), its velocity vi
t, bearing βi

t and validity validi
t (for example to identify if a

particle has crossed a wall).

Algorithm 1. Particle Filter (Xt−1,zt )
1: X̄t = Xt = ∅
2: for i = 1 to N do
3: sample xi

t ∼ p(xt|xi
t−1)

4: assign particle weight wi
t = p(zt|xi

t)
5: end for
6: calculate total weight k =

∑N
i=1 wi

t

7: for i = 1 to N do
8: normalize wi

t = k−1wi
t

9: X̄t = X̄t + {xi
t, w

i
t}

10: end for
11: Xt = Resample (X̄t)
12: return Xt

The algorithm will process every particle xi
t−1 from the input particle set

Xt−1 as follows:

1. Line 3 shows the prediction stage of the filter. The particle xi
t is sampled from

the transition distribution p(xt|xt−1). The set of particles resulting from this
step has a distribution according to (denoted by ∼) the prior probability
p(xt|xt−1). This distribution is represented by the motion model.

2. Line 4 describes the incorporation of the measurement zt into the particle.
It calculates for each particle xi

t the importance factor or weight wi
t. The

weight is the probability of the received measurement zt for particle xi
t or

p(zt|xt). This is represented by the measurement model.
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Fig. 2. An example of the fusion flow

3. Line 7 until 10 are the steps to normalize the weight of the particles. The
result is the set of particles X̄t, which is an approximation of posterior dis-
tribution p(xt|zt).

4. Line 11 describes the step which is known as resampling or importance re-
sampling. After the resampling step, the particle set which is previously dis-
tributed equivalent to the prior distribution p(xt|xt−1, zt−1) will be changed
to the particle set Xt which is distributed in proportion to p(xt|xt−1, zt).

3.2 Fusion Flow

Figure 2 shows an example on how data is handled when it arrives at the fusion
engine. From left to right the data arriving at different time stamps are shown.
The way how this data is handled, according to the different steps of a particle
filter, is described below:

1. Knowledge about moving or standing still is saved to be used during later
decisions.

2. Data from GPS can be used for the motion model (since we have an idea of
the approximate speed and bearing), and afterwards in the GPS measure-
ment model. After the measurement model, the particles are resampled.

3. If the PDR tells the engine that there was movement for a certain time, but
is unable to estimate the traveled distance, the standard motion model will
be used.

4. The Wi-Fi data can be used directly in the Wi-Fi measurement model, which
is followed by the resampling.

5. If we get the estimated distance from the PDR, this is used in the PDR
motion model.
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6. If Wi-Fi and GPS data are arriving at the same time interval, the measure-
ment models will be used directly after each other, which will multiply the
two likelihood functions. After processing both, the resampling will select
the samples with the best probability.

7. If PDR and GSM data is arriving together, the PDR motion model will use
the GPS bearing as well. After which the GPS measurement model and the
resampling is done.

3.3 Motion Model

The motion model incorporating the input from PDR, GPS and the map filtering
is shown in Algorithm 2, where xi

t−1 is the previous state of the particle, ut is
the control or action (PDR, GPS or unknown) and Δt is the time difference
between the two update steps.

Algorithm 2 describes the dynamic motion model, which will use different
equations to determine the next position depending on the control data. The
motion models currently integrated in the adaptive motion model are a default
motion model, a GPS motion model and a PDR motion model.

– The algorithm will try maximum maxRetries times (in our implementation
5) to calculate a new possible location for the particle, taking into account
all the control data and the environment (walls).

– First the new speed will be calculated. If we know that the object is mov-
ing (we assume it is always moving if we have no information coming from
the PDR) and there is speed information coming from PDR, a speed will
be randomly chosen from the Gaussian distribution specified by mean vpdr

and standard deviation σv, 1
20 is related to the accuracy of the PDR algo-

rithm [12]. If there is no information from PDR, but there is information
coming from GPS, we will similarly get a speed from the GPS sensor.
If we have no information at all about the real speed, a new speed will be
chosen dependent on the previous speed of the particle. Thanks to the resam-
pling depending on the measurement model only particles with a realistic
position, hence a corresponding speed will be chosen.
If we have information coming from the PDR that the object is not moving,
the speed will be chosen to be 0m/s.
The resulting speed is limited to vmax, in our case 10m/s for people.

– In the current OSL implementation we can only get direction information
from the GPS sensor. If we have this information we will randomly choose
the bearing from the Gaussian distribution specified by a mean being the
average between the bearing coming from GPS and the previous bearing
and the standard deviation dependent on the speed. The reason is that the
deviation by the object will be very small if it is moving fast, and can be
bigger if the object is moving very slow.
If no information from GPS is available the mean of the Gaussian distribution
will only depend on the previous bearing of the particle.
The angle depicting the bearing is limited between −pi and pi.
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Algorithm 2. Motion Model ( xi
t−1, ut, Δt )

1: for i = 1 to maxRetries do
2: Speed
3: if pdrmoving then
4: if pdrspeedknown then
5: vt = N(vpdr, σv) , where σv = 1

20
.
√

Δt

6: else
7: if gpsspeedknown then
8: vt = N(vgps, σv) , where σv = 1

5
.
√

Δt

9: else
10: vt = N(vt−1, σv) , where σv = 1.

√
Δt

11: end if
12: end if
13: else
14: vt = 0
15: end if

16: with { vt = |vt|, if vt < 0
vt = 2.vmax − vt, if vt > vmax

17: Bearing
18: if gpsbearingknown then

19: βt = N(
√

βgps.βt−1, 0.5π − arctan(
√

vgps

2
)

20: else
21: βt = N(βt−1, 0.5π − arctan(

√
vgps

2
)

22: end if

23: with { βt = β + 2π, if βt < −π
βt = βt − 2π, if βt > π

24: Position
25: σp = 0.5m

26: Xt = [ xt

yt
] = [ xt−1 + vt. cos(βt).Δt + n

yt−1 + vt. sin(βt).Δt + n
] , where n = N(0, σp)

27: Floor Change
28: if ParticleCrossedFloorChangeArea then
29: Change zt

30: end if
31: Map Filtering
32: valid =checkIfPartcleIsCrossingAWall
33: if valid then
34: return xi

t

35: end if
36: end for
37: return xi

t

– Finally the new position (xt and yt coordinate) is calculated using the pre-
vious position and the speed and bearing discussed above. Gaussian noise n
is added.

– If the environment specifies transition areas between floors, we can calculate
if the new particle position is located in an area where a transition to another
floor is possible (for example stairs or elevators).
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– With the new position known, we now check if the particle made a valid
move from the former position to the new position (if it didn’t cross a wall).
If it was a valid transition, the new particle position is returned, otherwise
a new position is being calculated. If after maxRetries still no valid position
can be found, the particle’s validity will be set to zero so the weight of the
particle can be set to zero in the measurement model.
The process of removing incorrect particles is called map filtering, since the
map is known to visualize the object afterwards, wall information can in
most cases be extracted.

3.4 Measurement Model

The Wi-Fi and GSM measurement model algorithm returns for each particle a
weight corresponding to the likelihood function, which is build using the finger-
prints. The weight represents the correspondence between the measurement and
the fingerprint at the location of the particle, similar to [16]. The GPS mea-
surement model returns a weight corresponding to the difference between the
particle position and the GPS position taking the GPS internal error and the
delusion of precision into account.

4 Experiment and Result

Figure 3 shows a part of the CIT buildings where all test runs where done. Every
floor is 3.65m high, the corridors are 2.45m width and the part of the floors which
is used is 44m wide and 110m long. A ’quick-and-dirty’ fingerprint was made for
Wi-Fi and GSM, in the corridor and the rooms which where accessible. The
fingerprinting was done 2 months before the actual test measurement which
is described in this paper, to include the influence of signal changes due to
environmental changes. The Wi-Fi access points which were used, were placed
there for a data network, not for localization, which has the effect that in most
places only 2, sometimes 3 access points are visible, with a non-ideal geometric
configuration. The placement of the access points are shown in Figure 3 with a
triangle. If the localization accuracy of Wi-Fi should be improved, extra access
points could be added, taking into account the geometric diversity of the access
point locations. The locations of the GSM cell towers are unknown since we do
not want to make the system dependent on this information.

The fingerprinting of Wi-Fi and GSM was done while holding the Neo PDA,
to be able to insert reference points by touching on the screen the current place
on a detailed map. This fingerprinting could be improved by taking more mea-
surements to collect more data to incorporate for example all different antenna
orientations of the PDA. But the main goal is to test the opportunistic local-
ization by using ’non ideal data’. The measurement was done with another Neo
PDA having the PDA in the trousers pocket, which influences the signal strength
heavily, again to stress the ’non ideal’, opportunistic concept.

Different test runs with other trajectories where made which all had compa-
rable results. The trajectory discussed in this paper can be seen in Figure 3.
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Fig. 3. The part of 2 floors of the CIT building with the track of the test run, described
in this paper

This trajectory is chosen because it demonstrates the outdoor-indoor seamless
transitions and the transition between floors. The test person came from out-
door, walked into the corridor of the ground floor, took the stairs to the first
floor, walked using the corridor to an office, turned there and walked using the
same corridor to another office. The person was constantly in movement, which
will make it harder for the fusion engine to estimate the location.

4.1 Results

Figure 4 and 6 and Table 3 give an overview of the mean estimation error,
split up in the different areas (outdoor, first floor and second floor). All systems
use map filtering. As expected is the fusion using all possible information (Wi-
Fi+GSM+GPS+PDR) giving the best results. The improvement using PDR
towards the fusion without PDR (Wi-Fi+GSM+GPS ) is mostly visible in the
indoor part, since in outdoor, the speed and bearing of GPS is used in the motion
model.

Wi-Fi performs best inside, while GPS only works outside and in the first
few meters while walking inside. Since the Neo PDA does not contain an ultra
sensitive GPS receiver and the GPS signals are not able to penetrate the roof and
walls enough to be received by the PDA, GPS cannot be used on any other indoor
location in this test. Furthermore the PDA is located in the trousers pocket of
the test person, which makes it even harder to receive any GPS signals. GSM
localization using fingerprinting (pattern matching) will work best indoors, but
is most powerful in combination with Wi-Fi since their likelihood functions will
mostly complement each other.
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Fig. 4. Results of location estimation using different technologies

Table 1. Example GSM Measurement

Cell Tower ID Field Strength
5-37231-789 -90 dB
24-25025-17 -100 dB
3-27642-799 -106 dB
3-2764-20 -100 dB

Table 2. Example Wi-Fi Measurement

Wi-Fi Access Point Signal Strength
00:20:A6:62:87:1B -61 dB
00:20:A6:63:1D:4F -93 dB

Figure 5 shows two consecutive measurements, the left one a PDR+GSM
measurement and the right one PDR+Wi-Fi. The cross depicts the real position,
the black dot the estimated position. The dark grey cloud are the particles,
the light grey dots represent the likelihood observation function (LOF) of the
measurement (more dense = more likely). The ground floor is not shown in the
Wi-Fi figure since the LOF is equal to zero for all places on the ground floor.

The particles distribution at the left side (PDR+GSM) is the result of the
position of the particles in the previous particle set, the motion model defined
by PDR (moving = true, speed = 1.7m / 1.47s) and the measurement model
defined by the GSM measurement (shown in Table 1) and the resampling step.

The particle distribution at the right side is formed starting from the particle
distribution after the step described above, the motion model defined by PDR
(moving = true, speed = 1.6m / 1.37s) and the measurement model defined by
the Wi-Fi measurement (shown in Table 2) and the resampling step.
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Fig. 5. Particle Filter of PDR+Wi-Fi and PDR+GSM measurement

It is also visible that GSM has more problems detecting on which floor the
object is located then Wi-Fi. This is because the signal strengths of GSM on
two floors directly under each other, does not differ very significantly if the
floor construction is comparable with each other. Again the combination of both
Wi-Fi and GSM gives an improvement.

The results also show that the addition of PDR give a slight improvement
since the motion model guides the particles better towards the real position of
the object, for example around the staircase where the particles can go from
the ground to the first floor. The occurrence of estimating the wrong floor,
only happens around the time where the object moves from one floor to the
other. During normal movement of the object, the motion model does not allow
switching floors if the particles are not in the neighborhood of a transition area
(stairs or elevator).
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Table 3. Results of location estimation using different technologies. (in meter)

Technology Mean Error Std. Dev. Outdoor Floor 0 Floor 1 Correct Floor
GPS 3.08 1.31 2.65 4.69 N/A N/A
GSM 6.18 2.36 7.24 5.39 5.82 70%
Wi-Fi 3.90 1.88 4.32 4.27 3.70 88%
Wi-Fi+GSM+GPS 3.05 1.49 2.02 4.14 3.51 91%
Wi-Fi+GSM+GPS+PDR 2.73 1.28 2.01 3.10 3.12 93%

Fig. 6. CDF Error of location estimation using different technologies

The accuracy of the Wi-Fi and therefore also of the fusion using Wi-Fi to-
gether with another technology, can be greatly improved by adding extra access
points, since in most of the locations only 2 access points are visible. The accu-
racy improves to about a meter if the person is standing still for a while, which
gives the particles the opportunity to converge around the real location.

5 Conclusion

In this paper we have demonstrated the concept of opportunistic localization
where the location estimation is done only with the available opportunistic data,
depending on the environment and the client’s hardware capabilities. A particle
filter with an adaptive motion model is used to fuse the different sensor data. We
have shown the resulting localization using a device which is only able to use a
separate technology and the results if a device is able to collect more technologies
so the fusion engine can combine them.
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We have focused on the opportunistic concept, where the data measure-
ment, fingerprinting and used hardware should represent realistic non-ideal data.
Where the user is not interested in installing any extra hardware to be able to
have a localization service, but where the service will adapt to the environmental
opportunities. The tests in Cork Institute of Technology, Ireland, show localiza-
tion using GSM with a mean error of 6.18m using standard known signals of
up to 8 surrounding cell towers, for Wi-Fi around 3.90m where in most cases
only 2 access points where visible. The fusion of GSM, Wi-Fi, GPS, PDR and
map filtering, gives an improvement, which results in a mean error of 2.73m and
a correct floor detection of 93%. In most application which can benefit from
opportunistic localization and where the installation of dedicated localization
hardware is not needed to improve the localization accuracy and a mean error
around 3m will allow sufficed data to build application using the opportunistic
data.

5.1 Further Work

OSL can be improved by adding sensor possibilities like Bluetooth which makes
the detection of the proximity of other devices possible in order to implement
mutual device aided localization. A the moment a fingerprint is still needed in
order to do any Wi-Fi or GSM localization, an automatic fingerprint prediction
method is being developed by CIT which should ease the initial installation.
Another possibility is to create an automatic fingerprinting, where the fingerprint
is continually updated when more useful information is coming to the server, this
is currently developed by Artesis.
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Abstract. We present a technique that makes up a practical probabilis-
tic approach for locating wireless sensor network devices using the com-
monly available signal strength measurements (RSSI). From the RSSI
measurements between transmitters and receivers situated on a set of
landmarks, we construct appropriate probabilistic descriptors associated
with a device’s position in the contiguous space using a pdf interpolation
technique. We then develop a localization system that relies on these de-
scriptors and the measurements made by a set of clusterheads positioned
at some of the landmarks. The localization problem is formulated as a
composite hypothesis testing problem. We develop the requisite theory,
characterize the probability of error, and address the problem of opti-
mally placing clusterheads. Experimental results show that our system
achieves an accuracy equivalent to 95% < 5 meters and 87% < 3 meters.

1 Introduction

A reliable indoor positioning service gives rise to a plethora of important appli-
cations ranging from asset tracking to disaster response. The GPS technology is
hardly operational for indoor use. Many other ideas have been investigated, some
of which may require special hardware/infrastructure. Our primary interest is
in methods that allow us to add the positioning service to an existing wireless
sensor network (WSNET), using only the basic measurements of the radio fre-
quency (RF) communications in the WSNET — specifically, the measurements
of the received signal strength indication (RSSI).

For a brief (hence, incomplete) review of the RF-based positioning literature,
the systems proposed by [1, 2, 3, 4] compare mean RSSI measurements to a pre-
computed signal-strength map. These systems succeeded in demonstrating the
feasibility of providing meaningful positioning services using WSNETs and in-
jected enthusiasm into the field. However, their performances leave room for
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improvement. Many other works followed. [5] improved upon [1] by taking the
probabilistic nature of the problem into account. Another class of systems such
as [6,7] use stochastic triangulation techniques relying on some path loss model,
in which the modeling error can lead to inaccuracy. In contrast, our approach is
model-free and based solely on actual measurements. Our earlier related work
has been shown to reduce the mean error distance by a factor of 3.5 compared to
stochastic triangulation; see [8]. References to many other systems can be found
in [9].

Despite the rich literature, some fundamental questions remain. The present
paper not only describes a successful positioning system, but also suggests a set
of formal techniques that proved to work well in the real setting. Our approach
is stochastic in nature. Localization is done relative to a landmark graph, whose
nodes are a chosen set of landmarks, and whose edges exist between any two
nodes if the corresponding landmarks are in contiguous geographical areas. The
device’s position is mapped either to a node of the landmark graph if the device
is in its vicinity, or to an edge if the device is in the area between two landmarks.

Choosing not to assume any model that describes signal propagation and
postulates a way in which signal strength decreases with distance, our system
is solely based on the measurements obtained at the landmarks. Naturally, we
would want to use as few measurements as possible to achieve a desirable level
of accuracy. In essence, our work suggests that the accuracy achieved is on the
order of the landmark density and this provides a rule-of-thumb for designing
a localization system. The interpolation technique between probability distri-
butions we use in constructing location profiles is aimed at “generalizing” the
discrete measurements at our disposal into descriptors that can cover a broader
area and are not so sensitive to the exact position at which the measurements
are taken.

As mentioned, the accuracy we achieve substantially outperforms stochastic
triangulation approaches. It should be judged bearing in mind the density of the
clusterheads used by our system. We note that the ratio of (possible discrete)
locations to clusterheads is relatively high in our system compared to alternative
approaches, implying that the deployment cost is low. Proximity-based systems,
for instance, require many more clusterheads to achieve the level of accuracy we
report.

Notation. We use bold lower case letters for vectors, bold upper case letters for
matrices, and T denotes transpose. Our discussions will involve both probability
density functions (pdfs) and probability mass functions (pmfs). With a slight
abuse of terminology, we will use the term pdf throughout.

2 Problem Formulation

Consider the problem of locating a wireless sensor network device in a contiguous
space X , which typically corresponds to some indoor environment. First, we
map this space with landmarks and areas connecting the landmarks — in other
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words, a landmark graph. Denote the set of landmarks (nodes of the graph)
by V = {Vi |i = 1, . . . , M}, and the areas between landmarks (the edges) by
E = {Eij |i = 1, . . . , M, j > i, Vj ∈ Ni}, where Ni is the set of neighboring
landmarks of Vi. With a slight abuse of notation, we sometimes also write j ∈ Ni

if Vj ∈ Ni and (i, j) ∈ E when Eij ∈ E . In what follows, a location refers to
either a node or an edge. The set of all locations will be denoted by L = {Ll |l =
1 . . . , N}, where N = M + |E |.

The next step is profiling, i.e., to associate to various locations appropriate
probabilistic descriptors of some features of the wireless signal. Here we use the
RSSI, which is measured between all pairs of landmarks. (Additional RF features
may also be used if available.) Let Y (k) ∈ {η1, . . . , ηH} be the RSSI received at
landmark k. We then have a collection of empirical distributions:

q
(k)
i (y) = Freq(Y (k) = y|Vi), i, k = 1, . . . , M, (1)

where k is the index of the receiving landmark and i is the index of the trans-
mitting landmark. Using these empirical distributions, we build the probabilistic
descriptors of all locations using methods introduced in the sections that follow.
As the result of profiling, we obtain a pdf of RSSI that characterizes the signals
transmitted from each location and received at each landmark. In fact, for im-
proved robustness we associate with each location a family of pdfs parametrized
by vectors θi and θij , respectively. These are the location descriptors or profiles:

p
(k)
i (·|θi), i = 1, . . . , M, k = 1, . . . , M ; (2)

p
(k)
ij (·|θij), (i, j) ∈ E , k = 1, . . . , M. (3)

In the above, the pdf families listed correspond to the nodes (cf. (2)) and the
edges (cf. (3)) of the landmark graph, respectively. Equivalently, we may list the
pdf families in terms of the locations, with the notation

pY (k)|θl
(·), l = 1, . . . , N, k = 1, . . . , M, (4)

where l corresponds to a location — either a node or an edge. The former
notation will be used when we discuss profiling, while the latter will be used
in localization. Clusterhead placement will place K ≤ M clusterheads (one can
think of a limited clusterhead “budget”) at some of the landmarks, which will
listen to the signals transmitted by the wireless device. Localization is done by
“comparing” the clusterheads’ RSSI measurements with the location profiles.

3 Profiling

This section focuses on how to generate the location profiles (2), (3) using the
empirical RSSI distributions (1). The key technique is the interpolation of pdfs.
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3.1 Interpolation of PDFs

A naive way of interpolating pdfs is to calculate a simple weighted average. How-
ever, one may quickly find that the naive way can produce unnatural results. For
example, given two Gaussian pdfs with different means, their naive interpolation
always has two peaks.

A more sophisticated approach has appeared in the statistical physics lit-
erature [10], which we adopt with some generalizations. Given K pdfs, p1(x),
p2(x), . . . , pK(x), let μ1, μ2, . . . , μK and σ2

1 , σ2
2 , . . . , σ2

K be their means and vari-
ances, respectively. Let ρ ∈ R

K with elements ρ1, ρ2, . . . , ρK ∈ [0, 1] satisfying∑K
i=1 ρi = 1. We are now seeking an interpolation pρ(x), whose mean and vari-

ance are μρ =
∑K

i=1 ρiμi and σ2
ρ =

∑K
i=1 ρiσi

2. Let

ξi(x) =
σi

σρ
(x − μρ) + μi, i = 1, . . . , l.

When the random variable takes discrete values, an issue is that the trans-
formation ξ(x) may produce a value for which probability is not defined. An
approximate formula that solves this issue is also provided as follows. Assume
that the probabilities are defined for values −∞, . . . ,−1, 0, 1, . . . ,∞. For integers
j and l, and for i = 1, . . . , K, let

γijl = max

⎧⎨⎩
0,

min
{

ξi(j + 0.5)
l + 0.5

}
− max

{
ξi(j − 0.5)
l − 0.5

}⎫⎬⎭ , (5)

The interpolation formula is then

pρ(j) =
K∑

i=1

ρi

∑
l

γijl · pi(l). (6)

We call this formula the linear interpolation. Similarly to [10], one can prove
that μρ and σ2

ρ are indeed the mean and variance corresponding to pρ(x). From
here on, we denote the linear interpolation of the K pdfs with the coefficient
vector ρ ∈ R

K by Interpol(ρ, p1, p2, . . . , pK).

3.2 Associating PDF Families to Locations

It suffices to consider the RSSI profile of all locations observed by a clusterhead
placed at one of the landmarks. The index of the clusterhead is thus suppressed
in all formulae of this subsection.

First, we “regularize” the empirical pdfs to get rid of zero elements. This is
necessary because the size of our sample during profiling is finite. As a result,
some RSSI value ηh that is possible but rare for a location Li might not be
observed during profiling, leaving the hth element of the empirical pdf equal to
zero. If we use the empirical pdf directly as the probabilistic descriptor of the
location, then when ηh appears, we would rule out Li immediately, regardless
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of how many total observations are made and how the rest of the observations
resemble the profile of location Li. This is clearly undesirable. To solve this
problem, we mix the empirical pdf with a discretized Gaussian-like pdf of the
same mean and variance. Namely, let q be an empirical pdf with mean μ and
variance σ2. Let φ(μ, σ2) be a Gaussian-like pdf whose domain is discretized to
the set {η1, . . . , ηH}. Let γ ∈ (0, 1) be a chosen mixing factor — typically we
set γ to a small value such as 0.1 or 0.2. Then the pdf after regularization is
q̃ = (1 − γ)q + γφ(μ, σ2).

Second, the landmarks are characterized by pdf-families constructed using
interpolation. See [11] for more discussion on the robustness of the pdf-family
framework. However, [11] did not provide a formal technique for constructing
the pdf-families. Specifically, suppose Vi has I neighbors — Ni = {Vj1 , . . . , VjI}.
Let ρθi

= (1−∑I
j=1 θ

(j)
i , θ

(1)
i , . . . , θ

(I)
i )T , where θi ∈ R

I , θi ≥ 0 elementwise,

and
∑I

j=1 θ
(j)
i < 1. Then the pdf family associated with Vi can be defined as an

interpolation of I + 1 empirical pdfs:

pi(·|θi)
�
= Interpol

(
ρθi

, q̃i(·), q̃j1 (·), . . . , q̃jI (·)) .

Last, consider the edges of the landmark graph. As will be justified by the exper-
iments, we associate with the edge (i, j) a pdf family defined as the interpolation
of the pdf families for landmarks i and j. Let ϑij ∈ (0, 1) and θij be a vector
concatenating θi, θj , and ϑij . The pdf family associated with edge (i, j) is

pij(·|θij)
�
= Interpol

([
ϑij

1 − ϑij

]
, pi(·|θi), pj(·|θj)

)
.

3.3 An Alternative Gaussian Model

In the above, we focused on associating a family of generally shaped pdfs to each
location. If a Gaussian model of the RSSI is used instead, this task can be greatly
simplified. One may then ask whether using generally shaped pdfs is worth the
effort. The answer to this question may depend on circumstances. However, our
experiments show that significant information regarding the signals transmitted
from a location is captured by our approach, but would be neglected if we assume
the Gaussian model.

4 Localization System Design

4.1 Binary Composite Hypothesis Testing

We start our analysis by considering the simpler problem of using a single clus-
terhead at landmark Vk to localize a device whose location is either Li or Lj . The
pdf families associated with the two locations are pY(k)|θi

(y) and pY(k)|θj
(y), re-

spectively. The clusterhead makes n i.i.d. observations y(k),n = (y(k)
1 , . . . ,y(k)

n ).
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The likelihood of obtaining these measurements if Li is the true location is
pY(k)|θi

(y(k),n) =
∏n

l=1 pY(k)|θi
(y(k)

l ).
The problem at hand is a binary composite hypothesis testing problem for

which the Generalized Likelihood Ratio Test (GLRT) is commonly used. The
GLRT compares the normalized generalized log-likelihood ratio

Xijk(y(k),n) =
1
n

log
supθi∈Ωi

pY(k)|θi
(y(k),n)

supθj∈Ωj
pY(k)|θj

(y(k),n)

to a threshold λ, and declares Li whenever

y(k),n ∈ S GLRT
ijk,n

�
= {yn | Xijk(yn) ≥ λ},

and Lj otherwise. There are two types of error (referred to as type I and type
II, respectively) with probabilities

αGLRT
ijk,n (θj) = Pθj

[y(k),n ∈ S GLRT
ijk,n ],

βGLRT
ijk,n (θi) = Pθi

[y(k),n 	∈ S GLRT
ijk,n ],

where Pθj
[·] (resp. Pθi

[·]) is a probability evaluated assuming that Lj (resp.
Li) is the true location. We will use the term exponent to refer to the quan-
tity limn→∞ 1

n logP[·] for some probability P[·]; if the exponent is d then the
probabilities approaches zero as e−nd.

For any sequence of observations yn = (y1, . . . ,yn), the empirical measure
(or type) is given by Lyn = (Lyn(σ1), . . . , Lyn(σ|Σ|)), where

Lyn(σi) =
1
n

n∑
j=1

1{yj = σi}, i = 1, . . . , |Σ|,

and 1{·} denotes the indicator function. We will denote the set of all possible
types of sequences of length n by Ln = {ν | ν = Lyn for some yn} and the type
class of a probability law ν by Tn(ν) = {yn ∈ Σn | Lyn = ν}. Last, recall that
the Kullback-Leibler (KL) distance of ν from another pdf μ is

D(ν‖μ) =
|Σ|∑
i=1

ν(σi) log
ν(σi)
μ(σi)

. (7)

In our previous work [8] we derived bounds on the type I and type II error
probability exponents:

lim sup
n→∞

1
n

log αGLRT
ijk,n (θj) ≤ −λ, (8)

lim sup
n→∞

1
n

log βGLRT
ijk,n (θi) ≤ − inf

Q∈Dijk

D(Q‖Pθi), (9)

for all θj ∈ Ωj and θi ∈ Ωi, where

Dijk = {Q| inf
θj

D(Q‖Pθj ) − inf
θi

D(Q‖Pθi) < λ}.
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4.2 Determining the Optimal Threshold

It can be seen from (8) and (9) that the exponent of the type I error probability
is increasing with λ but the exponent of the type II error probability is nonin-
creasing with λ. We have no preference between the two types of error, thus, we
wish to balance the two exponents and determine the value of λ at which they
become equal.

The exponent of the type I error is simply obtained from (8). The type II
error exponent from (9) is equivalent to

Zijk(λ, θi) = minQ D(Q‖Pθi
)

s.t. minθj
D(Q‖Pθj

) − D(Q‖Pθi
) ≤ λ, ∀θi.

(10)

The worst case exponent over θi ∈ Ωi is given by

Zijk(λ) = min
θi

Zijk(λ, θi).

Problem (10) is nonconvex; we use dual relaxation to obtain a quantity that is
easier to compute. Let Z̄ijk(λ, θi) be the optimal value of the dual of (10); by
weak duality it follows Zijk(λ, θi) ≥ Z̄ijk(λ, θi). It can be verified that there
exists a λ∗

ijk > 0 such that Z̄ijk(λ∗
ijk) = λ∗

ijk . Furthermore, both error exponents
in (8) and (9) are no smaller than λ∗

ijk .
Now suppose the clusterhead at Vk has obtained the measurements y(k),n and

seeks to decide the device location between Li and Lj. The clusterhead has the
option of using the GLRT by comparing Xijk(y(k),n) to the threshold λ∗

ijk , or
comparing Xjik(y(k),n) to a threshold λ∗

jik that can be obtained in exactly the
same way as λ∗

ijk . We thus let

dijk = max{λ∗
ijk, λ∗

jik}, (11)

and set (̄i, j̄) = (i, j) if λ∗
ijk is the maximizer above; otherwise set (̄i, j̄) = (j, i).

Define the maximum probability of error as

P
(e)
ijk,n

�
= max{max

θj̄

αGLRT
īj̄k,n (θj̄), max

θī

βGLRT
īj̄k,n (θī)}.

The following result provides a performance guarantee.

Proposition 1. Suppose that the clusterhead at Vk uses the GLRT and com-
pares Xīj̄k(y(k),n) to dijk . Then, the maximum probability of error satisfies

lim sup
n→∞

1
n

log P
(e)
ijk,n ≤ −dijk.

4.3 Multiple Composite Hypothesis Testing

We assume without loss of generality that the clusterheads 1, 2, . . . , K are placed
at positions V1, V2, . . . , VK . Let dijk be the GLRT threshold obtained in Sec. 4.2
for each location pair (i, j), i < j, and clusterhead k.
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We make N−1 binary decisions with the GLRT. Specifically, we first compare
L1 with L2 to accept one hypothesis, then compare the accepted hypothesis with
L3, so on and so forth. For each one of these Li vs. Lj decisions we use a single
clusterhead k as detailed in Sec. 4.1, hence the exponent of error probability is
bounded by dijk. All in all we make N−1 binary hypothesis tests, each involving
a single (potentially different) clusterhead. These clusterheads can collaborate
in a distributed fashion as we have shown in [11] to make the final decision.

4.4 Clusterhead Placement

Being able to optimize clusterhead placement is one important benefit of our
hypothesis testing approach, which produced error bounds that can serve as the
criterion. Consider an arbitrary placement of K clusterheads. More specifically,
let Y be any subset of the set of potential clusterhead positions B with cardinal-
ity K. Let x(Y ) = (x1(Y ), . . . , xM (Y )) where xk(Y ) is the indicator function
of Bk being in Y . The objective of clusterhead placement problem is to minimize
the worst case probability of localization error, that is, to find ε∗ as

ε∗ = max
Y

min
i,j=1,...,N

i<j

max
k:xk(Y )=1

dijk . (12)

This combinatorial optimization problem can be rewritten as a mixed integer
linear programming problem (MILP). Although it is NP-hard, it can be solved
efficiently by using a special purpose algorithm from [12].

We will use the decision rule outlined in Section 4.3 and for every region pair
(i, j) we will rely on the clusterhead at Bk∗

ij
to make the corresponding decision.

The following theorem establishes a performance guarantee.

Proposition 2. Place clusterheads according Y ∗ � {Bk|x∗
k = 1} and for every

(i, j) select one clusterhead with index k∗
ij so that dijk∗

ij
= maxk:xk(Y )=1 dijk.

Then, the worst case probability of error for the decision rule described in Sec-
tion 4.3, P

(e),opt
n , satisfies

lim sup
n→∞

1
n

log P (e),opt
n ≤ −ε∗. (13)

5 Experiments

Our testbed is set up on the first floor of a Boston University building (see
Fig. 4), and uses MPR2400 (MICAz) motes from Crossbow Technology Inc.

5.1 Testing PDF Interpolations

We have proposed a rather sophisticated interpolation technique for generating
location profiles. One concern is: if the interpolated pdfs were merely low-quality
approximations of the actual pdfs, then we might be better off using a Gaussian
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approximation, which is computationally cheaper. In our experiments however,
the interpolated pdfs did a very good job preserving the information that resides
in the shapes of the empirical pdfs. As will be shown, the decision accuracy using
the interpolated pdfs dominates that of the Gaussian approximation by a sig-
nificant margin. Another question that we attempt to answer is: At what length
scale does pdf interpolation make sense? It turns out that the interpolation is
very meaningful when the two end points are about 30 feet (or 9 meters) apart,
but not when they are 75 feet apart.

Ideally, and in order to improve accuracy, one would like to place landmarks
as close as possible implying that we would need to interpolate between points
that are 30 feet (or less) apart. However, it turns out that interpolations over
points that are less than 30 feet apart may not be worth the effort. This is con-
sistent with results reported in [2], which have shown that when the spacing of
“reference signatures” goes below roughly 10 meters, the improvement in per-
formance diminishes. (The spacing of the “reference signatures” is analogous to
the distance between the two end-point locations in our pdf interpolation.) This
result reinforces that of [2], as both indicate that taking empirical measurements
at a spacial density of less than 9 or 10 meters apart, or roughly 1 per 25 sq.
meters, carries diminishing benefit.

This experiment is conducted in a corridor of roughly 75 feet long, mapped
to 6 locations roughly 15 feet apart. A clusterhead (the receiver) is placed at
location 1. To measure the signals transmitted from each location, one of the
coauthors stood at that location holding a transmitting mote, which sends a
packet every 5 seconds. We chose to have a person hold the mote because this
is close to an actual application scenario. The clusterhead received the packets
and recorded the RSSI values. During the experiment, a total of 150 packets
were sent from each location. Due to packet loss, the number of actual samples
taken by the clusterhead is less, but we still obtained more than 100 samples for
each location. Then, we mix a Gaussian component into each of the six empirical
distributions as described earlier with a mixing factor of 0.2, i.e., regularized em-
pirical distribution = 0.8 measured + 0.2 Gaussian. The empirical distributions
for the six locations after regularization are denoted by q1, q2, . . . , q6.

We compare three interpolation methods. First, in what is labeled “short
interpolation”, the interpolated pdf of location i is generated using qi+1 and
qi−1:

pi,short = Interpol
([

0.5
0.5

]
, qi−1, qi+1

)
, i = 2, 3, 4, 5.

Second, in what is labeled “long interpolation”, the interpolated pdfs are gener-
ated using q1 and q6:

pi,long = Interpol
([ 6−i

5
i−1
5

]
, q1, q6

)
, i = 2, 3, 4, 5.
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Fig. 1. Visual comparison of interpolated pdfs for location 2. From left to right: em-
pirical pdf, short (linear) interpolation, and Gaussian approximation.

Third, we adopt the Gaussian model instead and interpolate the pdf of each
location with adjacent locations:

pi,gaussian = Interpol
([

0.5
0.5

]
, φ(μi−1, σ

2
i−1), φ(μi+1, σ

2
i+1)
)

= φ
(

μi−1+μi+1
2 ,

σ2
i−1+σ2

i+1
2

)
, i = 2, 3, 4, 5.

Qualitative Study. In the interest of space, we only visually compare the short
interpolation and the Gaussian approximation for location 2 in Fig. 1.

The short interpolation seems to capture some shape information of the actual
pdf that is missed by the Gaussian model. For example, the empirical pdf is
skewed to the left. The interpolated pdf also exhibits the skewness, while the
Gaussian pdf is always symmetrical.

Quantitative Study. First, it is of interest to compare the qualities of the
different interpolations using the Kullback-Leibler (K-L) distance (cf. Eq. (7))
as a metric of distance between pdfs. This information theoretic distance is
closely related to statistics, including the results derived in the present paper;
see Section 4.

The comparison is plotted in Fig. 2. It is very interesting to see that the quality
of short interpolation dominates that of the Gaussian model. For example, the
K-L distance of short-interpolation-to-empirical for location 4 is only a little over
one third of that of the Gaussian model. For locations 2 and 3, the difference is
roughly a factor of 1.5, which is still significant. The long interpolation on the
other hand clearly departs significantly from the actual distribution.

5.2 Testing the Complete System

Our localization system covers 10 rooms and the corridors, which are mapped to
30 landmarks, marked by either a green circle or a red square on the floor plan
(Fig. 4). The landmark graph is then constructed resulting in 39 edges, or a total
of 69 locations. Hence N = 69, M = 30 and 1 ≤ K ≤ 30 in this experiment. A
mote is placed at the center of each landmark location, but only some of them
will serve as clusterheads. All 30 motes are connected to a base MICAz through
a mesh network. The base mote is docked on a Stargate node which forwards
the beacon message back to server.
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Fig. 4. Floor plan with the landmarks for the testbed

The experimental validation of our localization approach can be divided into
the five phases:

Phase 1. We obtained the empirical pdfs for the landmarks corresponding
to Eq. (1). With 30 motes placed at each landmark location, we scheduled
them such that the motes took turns to broadcast packets, and when one
was transmitting the others would listen and record the RSSI. A total of 200
packets were transmitted by each mote. The data collection was repeated
for the combinations of two frequencies and two power levels; details will be
given below.

Phase 2. We used the methods in Section 3 to construct the pdf families
corresponding to Eqs. (2), (3) which are the descriptors of all 69 locations
— both the landmarks and the edges of the landmark graph. Note that
the interpolation technique allowed us to construct high quality descriptors
without densely covering the area while collecting empirical measurements.

Phase 3. We obtained dijk as described in Sec. 4.
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Phase 4. We solved the MILP to optimize clusterhead placement and simulta-
neously obtained the performance guarantee (Prop. 2). In the MILP formu-
lation, we needed to input K, the total number of clusterheads. By varying
K from 1 to 30, we discovered that the performance guarantee reached a
satisfactory level after K = 7, and somewhat flattens afterward. Thus, we
assigned 7 of the 30 motes as clusterheads. (Note the low clusterhead density
needed by our system). The optimal placement is marked in Fig. 4 by the
red squares.

Phase 5. We placed motes in the coverage area, let them broadcast messages,
then possibly move some of them and let them broadcast again, and finally let
the clusterheads report their localization and movement detection decisions.

We let Phase 1 (a completely automated procedure) stretch over 24 hours to
acquire data under diverse conditions of the surrounding environment. Phase
2 takes virtually no time. Phase 3 is the most time-consuming part and takes
another 24 hours on our computer, although further optimization of our code
may reduce the computation time significantly. Phase 4 only takes about half
an hour. All these steps only need to be done once.

We know from previous experiences that frequency and power diversity pro-
vide better performance [8]. We made 56 localization tests in random positions
throughout the covered area. The mote to be located broadcasted 20 packets
over the combination of 2 frequencies (2.410 GHz and 2.460 GHz) and 2 power
levels (0 dBm and −10 dBm), with 5 packets for each combination. We achieved
a mean error distance of 87.32 inches, which is better than our earlier result of
96.08 inches [8] based on techniques that do not use a formal method of pdf in-
terpolation. The percentile of errors< 3 meters (118 inches) also improved from
80% to 87%. One may also count from Fig. 3 that the percentile of errors< 5
meters (197 inches) is 95%.

The total coverage area (we have excluded the rooms that are in the floor plan
but to which we do not have access thus have not placed a mote) was 1827 feet2,
that is, about 61 feet2 per landmark. With a mean error distance of D̄e = 7.3 feet
the mean area of “confusion” was 7.32 = 53 feet2. It is evident that we were able
to achieve accuracy on the same order of magnitude as the area “covered” by a
landmark; this is the best possible outcome with a “discretized” system such as
ours. That is, the system was identifying the correct location or a neighboring
location most of the time. We used a clusterhead density of 1 clusterhead per
1827/7 = 261 feet2. Note that our system is not based on the “proximity” to a
clusterhead; the ratio of locations to clusterheads is 69/7, or about 10.

6 Conclusion

The paper reports a landmark-based localization system where each hypothesis
is associated with a family of pdfs constructed by a pdf linear interpolation
technique. Both theoretical and experimental justifications are provided.
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Abstract. In RSS-based indoor localization techniques, signal strength
variance between diverse devices can significantly degrade the positional
accuracy when using the radio map derived by train device to other test
device. Current solutions employ extra calibration data from test device
to solve this problem. In this paper, we present a calibration-free solu-
tion for handling the signal strength variance between diverse devices.
The key idea is to generate radio map using signal strength differences
between pairs of APs instead of absolute signal strength values. The pro-
posed solution has been evaluated by extending with two well-known lo-
calization technologies. We evaluate our solution in a real-world indoor
wireless environment and the results show that the proposed solution
solves the signal strength variance problem without extra calibration on
test device and performs equally to that of existing calibration-based
method.

Keywords: Calibration-Free Localization, Signal Strength Variance,
Wireless Local-Area Network.

1 Introduction

Location estimation is an important prerequisite for many awareness applications
in ubiquitous computing. In an indoor environment, increasing attention is paid
to localization using the popular and inexpensive 802.11 Wireless Local-Area
Network (WLAN) as the fundamental infrastructure. In general, WLAN based
localization methods work in two phases: an off-line training phase and an online
localization phase. In the off-line phase, human carrying a mobile device needs
to walk around the interest area and collect signal strength values received from
various access points (APs). These values comprise a radio map of the physical
region, which is compiled into a deterministic or statistical prediction model for
the online phase. In the online phase, the real-time signal strength samples are
used to lookup in the radio map to estimate the current location based on the
learned model.

A fundamental problem cannot be ignored is the signal strength variance
between diverse devices. Due to lack of standardization and inequalities in hard-
ware and software, various mobile devices have apparently distinct capacities of
sensing wireless signals. Therefore, the distributions of received signal strength
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Fig. 1. Signal strength detected by an IBM laptop and an O2 smartphone at a fixed
location

(RSS) values collected by different devices also vary with each other. Figure 1
shows the discrepancy of signal distribution caused by different devices. Here
we use an IBM R60 laptop and an O2 Xda Atom Life smartphone to collect
RSS for several seconds at a fixed location separately. Then we average those
measurements on each device to get the results.

From Figure 1 we can inference that if the radio map derived by train device
is directly used on other test device, the localization accuracy will drop down
greatly. As reported in [1], the room-size localization accuracy drops to unusable
10% under this kind of situation. Current solutions mainly employ some extra
manual measurements on test device to find mappings between train and test
devices [2] [3] [4] [5]. However, these methods are very limited because it’s a
time consuming work to collect measurements on test devices. Furthermore,
considering the huge number of different IEEE 802.11 clients on the market, it’s
unpractical to do this work for each kind of devices.

In this paper, we propose a calibration-free solution to solve the signal strength
variance problem between diverse devices, which we called DIFF. The key idea
of DIFF is to use signal strength differences between pairs of APs instead of
absolute signal strength values. In the off-line phase, the radio map is built by
signal strength differences between pairs of APs extracted from RSS collections
on train device. In the online phase, test device’s location can be estimated by
comparing the signal strength differences between pairs of APs extracted from
real-time collections with entries of radio map. The truth behind DIFF is that
although different devices receive apparently distinct signal strength values in
the same location, they reflect the same relationship indicating the distance to
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APs: strongest RSS from the nearest AP and weakest RSS from the farthest AP.
We can observe that the signal strength patterns are almost the same for different
devices at a fixed location. The pattern can be expressed by the signal strength
differences between pairs of APs. The advantage of DIFF is that it could make
the radio map capable for diverse devices with no extra calibration effort. [1]
proposes a similar method named HLF, which uses signal strength ratios between
pairs of APs instead of absolute signal strength values. However, after analysis
of the RSS data we find difference feature of DIFF is more reasonable than
ratio feature used in HLF. We have evaluated DIFF by combining with two
well-known localization technologies: Nearest Neighbor and Bayesian Inference.
They have been tested on data set collected with two different mobile devices
in a real-world environment. The results show that DIFF performs better than
HLF and is equal to calibration-based methods.

The contributions of our work are as follows: We analyse RSS values of diverse
devices and show that signal strength difference feature is more reliable than ratio
feature or RSS value. We extend DIFF with two typical localization technologies
and show that they perform better than HLF and are equal to calibration-based
methods.

The rest of this paper is organized as follows. In Section 2, we survey related
works of dealing with diverse devices. We present our methodology in detail
in Section 3. The experiment results and discussion are reported in Section 4.
Finally, we present our conclusions and future works in Section 5.

2 Related Work

Most machine-learning based indoor localization methods are based on the ra-
dio map techniques, which can be classified into two categories: deterministic
techniques and probabilistic techniques. Deterministic techniques [6] [7] [8] use
deterministic inference methods to estimate a user’s location, such as Triangu-
lation and K Nearest Neighbor (KNN) used in RADAR system [6]. Probabilistic
techniques [9] [10] [11] [12] [13] construct the signal strength distributions over
different locations in the radio map and use probabilistic inference methods for
localization, such as Horus system [9]. These traditional techniques are only
limited to single device and do not address the problem of diverse devices.

[2] treats signal variation as a Gaussian mean-value shift and uses a liner
model to fit the RSS values on train and test devices. [4] shows that the simple
adaptation method does not work well in a complex indoor environment. In-
stead, it considers the transfer learning problem over devices and treats multiple
devices as multiple learning tasks. Then it learns the classifier in a latent feature
space. [5] utilizes train device’s data and test device’s partial data as benchmarks
to learn a corresponding relationship in a low-dimensional space using Manifold
Alignment. Then the relationship is used to transfer knowledge from train do-
main to help the classification in test domain. However, both of these solutions
are based on manual measurements on test device to find mappings between
train and test devices. Considering the huge amount of different IEEE 802.11
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clients on the market, these methods are unpractical to use. [2] [3] and [14] also
propose solutions that avoid manual measurement collection by learning from
online-collected measurements. However, both of these solutions require a learn-
ing period and they perform considerably worse in terms of accuracy than the
manual solutions.

[1] proposes a calibration-free solution for handling signal strength variance,
which records fingerprints as signal strength ratios between pairs of APs instead
of absolute signal strength values. While their work and ours are similar in some
ways, they also differ in significant ways: (1) they use signal strength ratios
between pairs of APs while we observe that signal strength differences between
pairs of APs are more reliable feature. (2) the experiment results show that our
method performs better than HLF used in [1]. (3) computing cost of extracting
difference features are lower than that of ratio features.

3 Methodology

In this section, we first introduce the basic idea of using signal strength differ-
ences between pairs of APs. Then extend it with two typical machine-learning
based localization methods.

3.1 Signal Strength Differences

Due to lack of standardization and inequalities in hardware and software, various
mobile devices have apparently distinct capacities of sensing wireless signals.
Therefore, the RSS values collected by different devices vary a lot with each
other. Viewing Figure 1 in another way, we can get Figure 2.

We can observe from Figure 2 that although the RSS values of the two devices
have about 20dB difference, the signal patterns composed by RSS values are
very similar. In other words, the shapes of these two curves are almost the same.
This is because at a fixed location, different RSS values of diverse devices reflect
the same relationship indicating their distance to APs: in simple environment,
strongest RSS from the nearest AP and weakest RSS from the farthest AP. The
curve’s shape can be expressed by the signal strength differences between pairs
of APs. Therefore, we can extract pairwise differences of RSS values to replace
raw RSS values.

In the off-line phase, the radio map is derived by difference features extracted
from train device’s RSS. In the online phase, test device’s location can be esti-
mated by comparing the signal strength difference features extracted from real-
time RSS collections with entries of radio map. The advantage of this method is
that it could make the radio map capable for diverse devices without any extra
calibration effort.

Let’s define the problem formally. Suppose there are totally m APs B =
{b1, b2, ...bm} deployed in a two-dimensional wireless environment C ∈ R

2. We
model the physical area of interest as a finite location-state space L = {l1, l2, ...ln}.
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Fig. 2. Signal strength detected by an IBM laptop and an O2 smartphone at a fixed
location

The state space L is denoted as a set of physical locations with x- and y- coor-
dinates:

L = {l1 = (x1, y1), l2 = (x2, y2), ..., ln = (xn, yn)} (1)

As an example, each location l represents a grid cell in the environment. A
mobile device taken by a user can receive wireless signals from APs periodically.
The RSS values can be defined as a row vector s = (s1, s2, ..., sm) ∈ R

m, where
si stands for the RSS value received from bi. All possible signal strength values
are modeled as a finite observation space O = {o1, o2, ..., or}. An observation o
in the observation space O consists of a set of m signal strength measurements
received from m APs. Thus, each observation o is represented as a vector of m
pairs as follows:

o = {(b1, s1), (b2, s2), ..., (bm, sm)} (2)

where bk represents the kth AP scanned and sk is the signal strength received
from bk.

The signal strength difference d is defined for a unique AP pair bi×bj ∈ B × B
with the constrain i < j for uniqueness. The signal strength difference d can
be computed from two observations oi = (bi, si) ∈ O and oj = (bj, sj) ∈ O as
follows:

d(bi, bj) = si − sj 1 ≤ i < j ≤ m (3)

Thus, the signal strength difference feature vector D extracted from s can be
expressed as follows:

D = (d(b1, b2), d(b1, b3), ..., d(bm−1, bm)) (4)
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Fig. 3. Signal strength difference extracted from RSS

where the length of D is t and t = C2
m.

For example, in figure 1,

slaptop = (−61,−56,−35,−56,−62,−74,−62)

ssmartphone = (−81,−76,−47,−77,−83,−92,−88)

then

Dlaptop = (−5,−26,−5, 1, 13, 1,−21, 0, 6, 18, 6, 21, 27, 39, 27, 6, 18, 6, 12, 0,−12)

Dsmartphone = (−5,−34,−4, 2, 11, 7,−29, 1, 7, 16, 12, 30, 36, 45, 41, 6, 15, 11, 9, 5,−4)

as shown in figure3. We can observe from figure 3 that the extracted difference
features of two diverse devices are much more similar than RSS values.

3.2 Extended Localization Methods

In this section we present the extension of DIFF with two typical localization
methods: Nearest Neighbor (NN) and Bayesian Inference (BI). The main change
is replacement of absolute signal strength values with signal strength difference
features.

Nearest Neighbor. As a deterministic technique to estimate a user’s location,
NN is first used in RADAR. It maintains a radio map from off-line RSS col-
lections, then with which each online signal strength measurement is compared.
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The coordinates of the best match location are used to give estimation. Tra-
ditional NN technique computes Euclidean distance in RSS space to find the
nearest neighbor, while our method DIFF-NN needs to compute Euclidean dis-
tance in difference feature space. The Euclidean distance between feature vector
D1 and D2 is computed as follows:

ED(D1, D2) =
√ ∑

bi,bj∈B,i<j

(d1(bi, bj) − d2(bi, bj))2 (5)

Bayesian Inference. In contrast to deterministic technique, probabilistic tech-
nique forms the second category. The core is the use of Bayesian inference to
compute the posterior probabilities over locations. In general, an estimation is
represented as a probability distribution over all the locations in the area of
interest. The Bayesian inference method is used to compute a distribution con-
ditioning on the observed signal strength. Finally, the estimated location is the
one with the maximum probability in the resulting distribution.

To extend this technique with difference feature, both the representation
and the Bayesian inference calculation have to be changed. All possible signal
strength differences extracted from RSS are modeled as a finite observation space
O

′
= {o′

1, o
′
2, ..., o

′
r}. An observation o

′
in the observation space O

′
consists of a

set of signal strength differences computed from RSS. Thus, each observation o
′

is represented as a vector of t pairs as follows:

o
′
= {(b1 × b2, d(b1, b2)), ..., (bm−1 × bm, d(bm−1, bm))} (6)

where bi×bj represents the AP pair and d(b1, b2) is the signal strength differences
computed from RSS of the AP pair.

In the off-line training phase, labeled RSS data are collected at each location
lk. Signal strength difference features are extracted from these RSS and recorded
at each location as observations o

′
. Then we build a histogram of observation

for each AP pair bi × bj at each location lk. This is done by constructing the
conditional probability Pr(d(bi, bj)|bi × bj, lk), which is the probability that AP
pair bi × bj has the signal strength difference d(bi, bj) at location lk. By making
an independence assumption among signal strength differences from different AP
pairs, we multiply all these probabilities to obtain the conditional probability of
receiving a particular observation o

′
at location lk as follows:

Pr(o
′ |lk) =

∏
1≤i<j≤m

Pr(d(bi, bj)|bi × bj , lk) (7)

which is exactly the content of a radio map introduced before.
In the online phase, a posterior distribution over all the locations is computed

using Bayesian rule:

Pr(lk|o′∗) =
Pr(o

′∗|lk)Pr(lk)∑n
k=1 Pr(o′∗|lk)Pr(lk)

(8)
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where o
′∗ is a new observation obtained from currently measured RSS. Pr(lk)

encodes the prior knowledge about where a user may probably be. Pr(lk) can
be set as the uniform distribution, assuming every position is equally likely.
The estimated location l∗ is the one which obtains the maximum value of the
posterior probability:

l∗ = argmax
lk

Pr(lk|o′∗) (9)

4 Experiment

4.1 System Setup

In order to evaluate the performance of DIFF, we establish our own wireless
network environment. Our experimental test-bed is deployed on the 3rd floor
of our academic building with an area of about 30m × 17m, covering a hallway
and five rooms. We deploy 7 TENDA APs around the area to set up an IEEE
802.11b wireless network infrastructure. These APs are denoted by red stars in
Figure 4 and the whole area is divided into 161 grids for signal collection, each
with a size of 1m × 1m.

Fig. 4. The layout of the experimental test-bed in our building

We employ two types of mobile devices: an IBM R60 laptop equipped with an
Intel cPro/2200GB internal wireless card and an O2 Xda Atom Life smartphone.
We carry them walking around the area and stay by each grid for several seconds
to collect RSS data and record the physical locations. First we carry the laptop
with sample rate 5Hz and stay 40 seconds by each grid to collect a data set with
32200 samples. Then we carry the smartphone with sample rate 2Hz and stay
50 seconds by each grid to get a data set with 16100 samples. We averaged both
data sets per 20 samples to reduce the effect of noise in NN algorithms.
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4.2 Performance Evaluation

To test the difference feature performance over diverse devices, we use the lap-
top as train device and the smartphone as test device. We build the radio map
based on train device’s RSS values, which is used to predict test device’s loca-
tion with each RSS vector. The error distance is calculated by the Euclidean
distance between a predicted location and its ground truth value which recorded
during data collection phase. Then the evaluation results are given in term of
Cumulative Probability Distribution of error distance.

Our evaluation includes the techniques of Nearest Neighbor (NN) [6] and
Bayesian Inference (BI) implemented in four setups: a DIFF version (imple-
mented as presented in Section 3), a RSS version, a RATIO version [1], and
a LINEAR version extended with extra calibration effort on test device. The
LINEAR version handles signal strength variance between diverse devices using
linear mapping, as described in [2] [3]. The linear mapping transforms test de-
vice’s RSS to match train device’s RSS. The parameters for the linear mapping
are found by comparing RSS collected at some locations with both devices using
least squares estimation. The linear mapping is then applied to all test sam-
ples before they are forwarded to a RSS technique. Considering it’s not easy to
collect many measurements on test devices in practise, we use RSS collections
from both devices over 10% grids in all 161 grids to calculate the linear mapping
parameters. To sum up, DIFF, RSS and RATIO versions only need data of train
device while LINEAR version needs extra data of test device to get the linear
mapping parameters.

Figure 5 shows the experimental result of these four NN based methods. We
can observe that the RSS-NN gets the worst result, indicating that variance
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handling is necessary between diverse devices. Actually, the conclusions of our
method and [1] is consistent with [2] [3]: it’s a linear mapping between signal
strength difference of diverse devices. [1] considers only the ratio term of the
linear transformation function while our analysis and evaluation show the offset
term is a more significant part. Therefore, as shown in Figure 5, DIFF-NN
performs better than RATIO-NN and is equal to LINEAR-NN. Contrast to
RATIO-NN, it improves NN accuracy with nearly 20% within an error distance
of 3m. Besides, DIFF-NN can achieve equal accuracy with LINEAR-NN without
calibration effort on test device, which indicates again that the offset term has
an strong impact on linear transformation function.

Figure 6 shows the experimental result of these four BI based methods. We
can get similar conclusion from Figure 6 as that above. However, compared with
Figure 5, it can be observed that the BI accuracy is lower than NN accuracy
in RSS cases. For example, within error distance of 3m, the accuracies of RSS-
NN and RSS-BI are 20% and 12% separately. This differs from former works of
single device [10] [15] [16], which reach the same conclusion that probabilistic
techniques can reach better accuracy than deterministic techniques. The reason
is that due to apparently signal strength variance, the posterior probability over
locations may all be equal to zero. In this kind of situation, the first grid’s
location is treated as the predicted location. However, NN could always find a
nearest neighbor and return its location as estimation. Therefore, NN performs
better than BI for different devices. This is also consistent with conclusions in [1].

Therefore, once we have collected a complete set of RSS data from train
device, the signal strength variance problem between diverse devices can be
solved by using signal strength difference feature extracted from RSS without
extra calibration effort on test device.
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5 Conclusion and Future Work

In this paper, we present a calibration-free localization algorithm for handling
signal strength variance between diverse devices, which we call it DIFF. The key
idea is to use signal strength differences between pairs of APs instead of abso-
lute signal strength values. We extend DIFF with two well-known localization
methods: Nearest Neighbor and Bayesian Inference to evaluate the performance.
Using collected data from real-world environment, we compare DIFF with other
3 methods: traditional RSS version, RATIO version and a manual LINEAR ver-
sion. The results show that our method outcomes RSS and RATIO and is equal
to LINEAR version.

Our work can be extended in several directions. First, we will consider to
evaluate other localization techniques with DIFF and other technologies such as
GSM where signal strength variance are also present. Second, we wish to reduce
the computing cost of DIFF: now the dimension of difference feature is C2

m.
When the AP number m is large, selecting a subset from all APs to calculate
the difference features for localization is an option. In addition, we also wish to
test the validity of our proposed algorithms in a larger-scale environment.
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Abstract. This paper presents a Wireless Personal Area Network (WPAN) in-
door location determination system that adapts to both dynamic physical envi-
ronmental conditions and human movement changes in order to find estimated 
user locations and their orientation. This system has been realized using the Sun 
SPOT sensor platform. This research identifies the challenges when deploying 
indoor location determination systems based upon a combination of radio signal 
strength indication (RSSI) and accelerometer measurements of users’ mobile 
terminals. The experimental results show that users’ indoor locations can be es-
timated more precisely and with greater computational efficiency compared to 
current systems. 

Keywords: indoor location determination, user positioning, radio map, RSSI, 
accelerometer values, adaptive. 

1   Introduction 

Indoor location determination technologies have many useful pervasive computing 
application areas. Our main focus is towards Wireless Personal Area Networks 
(WPANs) applications, such as smart home service management related to users’ loca-
tions, hands free local device activation, gesture based control and monitoring and 
assisting the elderly and disable people [1]. The most commonly used position deter-
mination method, Global Positioning System (GPS), does not work indoors because it 
usually requires a line-of-sight between the receiver and the transmission satellites used 
for positioning. Three distinguishing requirements for indoor location determination 
systems are the location determination accuracy (represented using the error distance 
between the estimated location and the actual location), the location determination pre-
cision (the repeatability of location determination) and the processing time [2], [5], [6]. 

The granularity for location information can vary across various applications. For 
instance, locating a person in a room needs more fine-grained location information 
whereas locating a person in a building, i.e., which room a person is in, requires more 
coarse-grained location information. Real-time location tracking systems require a real 
time response and a fixed processing time in order to locate fast moving humans or 
objects or to track more slowly moving objects and elderly humans. Various methods 
have been proposed for indoor location determination such as received signal strength 
indication (RSSI), time-of-arrival (TOA), time-difference-of-arrival (TDoA) and 
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angle-of-arrival (AOA) that can be used with different types of wireless network, in-
cluding WLAN, ultrasound, infrared, and Bluetooth. Techniques based upon RSSI use 
in WPANs are relatively simple and more robust in multipath conditions than other 
methods. WPAN location determination systems conventionally work in both an off-
line phase to build up radio maps for a regular rectangular grid area, and an online 
location determination phase to receive a set of radio signal strength samples from 
multiple base stations positioned in different locations of a testing area to compute 
estimated locations based on pre-constructed radio maps.  

The environment for radio-frequency (RF) based indoor location determination sys-
tems is often complex and can be affected by several static and dynamic factors. For 
example, static factors include the building material, the shape of the building, and items 
located in the building such as furniture and home and office equipment. Non-static 
factors represent humans and their dynamic movement in buildings as well as envi-
ronmental factors such as room temperature, humidity, and pressure conditions. As a 
result, the calculation of the RSSI vector directly from a mobile user based on a static, 
previously built radio maps, will likely be affected by such static and non-static factors. 

Whilst a large numbers of research applications have focused on detecting location 
in a rather large sized indoor environments, e.g., a size of 20 by 40 meters floor plan 
and with relatively coarse-grained location information results, less attention has been 
paid to the more challenging problem of tracking moving humans’ or objects’ locations 
within a small area that typically characterizes WPAN applications and which requires 
more fine-grained location information. This paper focuses on using RSSI values re-
ceived from base stations located in different areas of a room to determine user location 
for indoor environments, while using the three axes acceleration values collected si-
multaneously with the RSSI values to reduce a possible location search space. The 
novelty of this research proposes that the location estimation accuracy and precision 
can be improved by the three methods based upon RSSI and three axes acceleration 
measurements for indoor environment. Firstly, reference points are used within the test 
area to adapt the current received signal strength vector to previously built radio maps 
in order to avoid various environmental and other conditions changes that affect the 
received RSSI readings. Secondly, we propose two search methods, Maximum Search 
and Minimum Search methods, to improve the location accuracy, location precision and 
in order to reduce the amount of processing time. Finally, acceleration values are used 
to reduce the possible search space. The system is implemented based upon multiple 
Sun SPOT platforms. 

The rest of the paper is structured as follows. In the next section, we discuss related 
work. In Section 3 we present our system framework and detailed methods including 
data collection and results calculations. The experimental results are shown in Section 
4. Finally, Section 5 discusses the results and proposes the direction of future work in 
order to improve the location precision and reduce the error distance. 

2   Related Work 

RADAR [8] is an early WLAN-based positioning system that uses a nearest neighbor 
algorithm and signal space method to triangulate a user’s location. The system esti-
mates the user’s location by averaging the multiple nearest neighbors. The accuracy of 
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this system is about two meters with a twenty-five percent probability, three meters 
with a fifty percent probability and about five meters with seventy-five percent prob-
ability. Similarly, Placelab [4] utilizes the Access Point’s coordinate information in a 
database to predict nearby user location. The Horus [5] is an indoor WLAN location 
determination system that uses multiple signal strength samples from many access 
points allocated within a building floor to calculate a mobile device’s location. The 
Horus system like many other WLAN location determination systems works in two 
phases. An offline phase builds a radio map and an online phase estimates users’ lo-
cations based on the received signal strength from multiple access points and from the 
radio map built in advance. When searching through the radio map, the Horus system 
will rank the measured signal strength vector in a descending order before searching in 
order to find out the possibly nearest location from the particular base station. By 
comparing the probability the highest two estimated locations, a stopping threshold is 
used to determine when the system should stop searching and home in on the final 
estimated location.  

The Adaptive Temporal Radio Maps for Indoor Location Estimation project [2] is an 
indoor WLAN location determination system that uses the IEEE 802.11b infrastruc-
ture. One key improvement of this system, compared to the Horus system, is that it 
deploys reference points for the mobile device to receive signal strength samples from 
the access points within the environment. This enables it to capture the dynamic rela-
tionship between signal strength values received by the reference points and the values 
received by the mobile device. In this approach, the system does not need to rebuild the 
radio map in a small place even if some of the environments have changed. Cricket [6], 
[7] calculates the distance between two points using TDoA from ultrasound and RF 
receivers. Although the accuracy can be up to the centimeter level, numerous receivers 
need to be deployed in the system and it is a lengthy process to instrument a physical 
environment to support this. 

Ladd, A.M. [9] developed another indoor location determination system which is 
also based on IEEE 802.11b wireless Ethernet standard. The processing of the system 
contains the typical two working phrases, offline training and online phrase to deter-
mine the user location based on the received signal strength and on the training data set. 
The system achieves the accuracy of within one meter with a probability 0.64 without 
indicating the user orientation.   

In the Smart Floor [10] system, users are identified based upon their footstep force 
profiles. This uses a biometric user identification system collecting information from 
floor tiles that are fitted with force measuring sensors. Its biometric identification 
system is based upon the uniqueness of each person’s footstep, i.e., individual humans 
walk in a different way. The Geta Sandals [11] project, which is similar to Smart Floor, 
identifies users based upon their footsteps. RFID tags and accelerometer sensors are 
attached to people’s sandals and this transmits their data to a central computer that 
extracts the footstep biometric information based upon the accelerometer values. These 
two systems have the similarity of identifying users’ steps to understand their move-
ments. However, they mainly focus on identifying who the users are based upon their 
individual uniqueness of footstep and do not focus on their movement, location and 
orientation.  

The received signal strength can vary with respect to different receiving angles or 
different sending angles [12]. However, few projects consider this issue or provide user 
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orientation information along with the location coordinate. Some projects do consider 
the user orientation in their radio maps, but the results are usually worse than those 
which do not consider user orientation in terms of location accuracy. The reason could 
be that those systems cannot identify the difference between some locations with dif-
ferent orientations that have a similar RSSI vector. The last two surveyed systems did 
use accelerometer sensors to detect and identity individual user footsteps. Their focus is 
not on detecting user movement and orientation. Furthermore, most of the projects do 
not consider the time needed for processing to get user location. They assume users will 
move slowly enough for them to finish the data processing before a user moves again.   

All of the surveyed methodologies can be applied in static environments to achieve a 
defined level of accuracy. RSSI is affected by not only environmental variations such 
as temperature, humidity, the building construction material, but also by furniture, 
other things and by humans within it. Apart from the systems in [2] and [9], most of the 
existing frameworks assume that their radio maps are static and are created during an 
offline phase. They then assume that they will be used to estimate users’ locations 
without any adaptation. This assumption is not practical because the values of RSSI can 
vary at a fixed location during different times of day and can differ from day by day 
using the same measure equipment - imprecision. Consequently, location estimation 
that relies only on a previous radio map could be imprecise. Furthermore, none of the 
surveyed projects use accelerometer values along with RSSI values to improve the 
estimated location accuracy and precision, and to provide orientation information. A 
solution is proposed to solve this problem by adapting the current user RSSI vector to 
update previous built radio maps online, as well as using both RSSI and accelerometer 
values for higher accuracy and precision.  

3   Methodology 

3.1   System Framework 

The main system components and data processing flows are shown in Fig. 1. There are 
four main components in the framework; Radio Map Manager, Radio Maps, User RSSI 
Converter and Location Estimator. The Radio Map Manager manages the modification 
and access controls of radio maps and acts as a portal for other components to access 
the radio maps. For instance, by giving a request with parameters of one RSSI value 
and the base station ID, the Radio Map Manager can return a list of locations with 
orientations and their probabilities. The structure of a radio map and its data samples is 
shown in Table 1. The spotID stores the identity of a Sun SPOT device that receives the 
RSSI data from a mobile user. The RssiReading stores the actual RSSI value. The 
timeStamp column keeps the time to generate RSSI record and the LocID and Orien-
tation columns record the corresponding location and direction respectively. 

The processes of our framework are described as follows. Firstly, the Radio Map 
Manager works in both offline and online phases. In the offline phase, it collects the 
user mobile RSSI value vector along with users’ actual locations and adds them into a 
Radio Maps database. The Preference Point RSSI Vectors data is stored simultaneously 
in the Radio Maps. In the online phase, depending on whether user feedback is avail-
able or not, it will update the Radio Maps accordingly, to improve the estimation ac-
curacy. Secondly, the User RSSI Vector Converter converts the current received user 
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Fig. 1. System components: the arrows show the information flow in the system 

RSSI vector data based on the current and existing Preference Point RSSI Vector 
data stored in database, so that the current user RSSI data can be adapted and matched 
to the radio maps which are built in an offline phase. Location Estimator searches 
through the radio maps to estimate the user location based upon the converted user 
RSSI vector. Two search methods are considered, Maximum Search and Minimum 
Search Methods. The details of these search methods will be given in later in this paper. 

Table 1. Structure of a radio map and its data samples 

spotID Rssi 
Reading 

timeStamp LocID Orientation 

0014.4F01.0000.4A9E -20 2009-03-18  
12:02:26 

L(2,7) E 

0014.4F01.0000.4A9E -25 2009-03-18 
12:04:36 

L(1,5) N 

0014.4F01.0000.4A9E -30 2009-03-18 
12:07:49 

L(3,3) W 

3.2   RSSI Data Acquisition 

During the offline training phase, RSSI data is needed in order to build the radio maps 
in addition to its used for the online location determination. As shown in Fig. 2, during 
the offline training phase two different types of RSSI data, mobile user data and ref-
erence point RSSI data are used. User signal broadcaster and Reference point broad-
caster data packets are transmitted. Wireless Base Stations that are located in different 
areas, e.g., corners of a room of a room, will collect the broadcast packets and extract 
the RSSI values along with the packet id and the time the packet was generated from the 
User signal broadcaster. This information is then sent back to the RSSI Receiver. User 
signal broadcasters will move from one location to another whereas the Reference 
Point broadcasters are static at the same locations. Only one Reference point broad-
caster is showed in Fig. 2, but several of these can be installed in different places in an 
area to broadcast packets in order to understand the environment conditions in terms of 
the relationship between RSSI values and the distance between two locations.  
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Fig. 2. RSSI vector acquisition data flow for mobile users and reference points 

3.3   Adapting User RSSI Vector for Temporal Radio Maps 

Environmental conditions and other changes might affect the RSSI read from different 
locations in a room at different times. This will lead to a variable location estimation 
based upon radio maps built within different time periods. There are two solutions to 
this problem. One is to update the whole radio map periodically to adapt to the envi-
ronmental condition changes and other changes. The second solution is to adapt the 
user RSSI vector read during the current time period in relation to an earlier one read 
when the radio maps were built. 

In terms of the computational processing time, updating or modifying the complete 
radio maps will take longer than just updating the user RSSI data vector especially 
when the radio map database grows larger. The computational complexity when up-
dating radio maps is based upon regression analysis [2] and is shown in Equation (1). 

( , ) * *f n m n m r=  (1)

where n is the number of base stations to receive the mobile user RSSI values, m is the 
number of preference points to broadcast packets and r is the number of records in each 
radio map.  

The computational complexity for updating the user RSSI data vector is shown in 
Equation (2). The computational complexity will not be affected by the number of 
RSSI records stored in the radio maps. 
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( , ) *R n m n m=
 

(2)

Equations (1) and (2) show that the computational complexity of updating the radio 
maps can increase rapidly affected by the record number r, while the computational 
complexity remains the same when updating the user RSSI vector data, no matter how 
the history record number changes. As a result, the radio map might not be able to be 
updated frequently enough to reflect the environmental and other conditions changes. 
Hence, updates can occur daily, every several hours or every minute when significant 
environment changes occur. Newly observed reference RSSI values are used to com-
pare with previous ones, in order to calculate a threshold value for updating the radio 
maps and the received user RSSI values.  

The conversion of the user RSSI value to adapt to the temporal radio maps is shown 
in Fig. 3 assuming the radio maps have been built at time t0 when both the reference 
points and user RSSI values were recorded separately. At time t1, both the user and 
reference points’ RSSI values are collected. These two sets of data along with the 
reference points’ RSSI values collected at time t0 will be used to calculate the 
equivalent user RSSI vector that would have been collected having the same envi-
ronmental and other conditions at time t0 marked as t1` for use with radio maps built at 
t0. The same processes can be used to calculate the equivalent user RSSI values at a 
later time in order to make use of the previous built radio maps. A similar approach can 
be applied to update the radio maps that have been built at an earlier time. 

 

Fig. 3. Converting a user RSSI vector to adapt to temporal radio maps 

3.4    Maximum and Minimum Search Methods 

There are two proposed search methods used in this paper, the Maximum Search 
Method and Minimum Search Method. The main difference between these two methods 
is the search space size which will lead to a different computing complexity that affects 
the processing time to calculate user locations.  
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The Maximum Search Method will find out all of the corresponding locations that 
match a given RSSI values at different base stations. Next, it will try to match the 
locations from different base stations and choose the location that has the highest 
combined probability. So the search space complexity for the Maximum Search Method 

should be nLS , where LS  is the total locations in the room and n is the number of 
base stations. The computational complexity for matching all the locations from dif-

ferent base stations to find out the location that has the highest probability is 
1

'
n

i
i

LS
=

∏ , 

where 'iLS  is the matched location number in base station i and n is the total number 

of base stations. 
The Minimum Search Method will first sort the user RSSI vector by descending 

order because the higher the RSSI value, the higher chance the base station will be 
nearer to the mobile user, and the more likely the RSSI values match the locations 
stored in the pre-built radio maps. The next step is to find out all the corresponding 
locations that match a given RSSI value, the highest value amongst a vector, in the base 
station. The second base station has the second highest RSSI value that will be used to 
search and find out the matched locations but the search space is based upon the search 
results of the first base station. The same search method is used until the last base 
station is used. The final results will be the estimated locations with a combined 

probability. The search space complexity is
1

n

i
i

LS
=

∏ , where iLS  is the search space 

for base station i, n is the total number of base station, with condition 0LS > 1LS >…> 

nLS . Fig. 4 shows the different search spaces and processing complexity to estimate 

the user location for these two search methods. 
Equation 3 is used to calculate the overall probability that a location i exist in all R 

base stations where iss  is single strength of base station i. The final estimated location 

will be the one that has the highest overall probability. 

 
1

_ ( , , )
R

i
i

P all P ss i l
=

= ∏  (3)

For each base station, all the locations il  are determined along with the possibilities 

that their RSSI values match the received RSSI value with a certain level of precision 
adjusted by the precision adjustment parameter ∂ : 

| ( ) |a i aRssi l Rr− ∂ ≤  (4)

Where ( )a iRssi l  is the RSSI value of location i in base station a, ∂  is used to control 

how well the returned location’s RSSI value match the received RSSI value aRr .   
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( )
( )

( )
i

i
j

j K

Total l
P l

Total l
∈

=
∑

 
(5)

Where ( )iP l  is the possibility of location i,  ( )iTotal l  is the total record number 

of il , K is the returned locations’ indexes aggregation.  

 

Fig. 4. Two search methods that estimate users’ locations 

A schematic of the use of the maximum and minimum search methods to estimate a 
user location amongst individual findings from base stations is shown in Fig. 4. Each 
trapezium represents a radio map for each base station. Small circles with arrows in a 
radio map represent possible locations with orientations that are matched to the re-
ceived user RSSI data. For instance, in BS1, base station 1, the radio map could contain 
several locations with orientations that match a received RSSI value. Links between 
each map indicate the same locations with the same orientations that exist in both maps. 
The weight of a line represents the possibility of the computed location with orienta-
tion. If the probabilities of a location are higher among two or more adjacent maps, the 
line weight will be heavier. In contrast, a thinner line represents a lower possibility of 
the estimated location between two or more radio maps. The solid line that goes 
through all the radio maps represents the same location with the same orientation that 
exists in all the radio maps. A line that goes through all the radio maps means that the 
same predicted location and orientation exists in all the radio maps. Alternatively, a line 
that does not go through all maps represents only some of the radio maps having the 
same computed location and orientation among all of the stacked radio maps. Based on 
the received user RSSI values from the set of base stations, a set of locations that  
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matches the RSSI values will be returned from these two search methods. The Maxi-
mum Search Method’s result shown in Fig. 4 contains two lines that go through all 
radio maps and six shorter lines that go through part of the radio maps. The estimated 
location and orientation from the Maximum Search Method is a thicker line that covers 
all maps. The Minimum Search Method’s result shown in Fig. 4 and includes two lines 
that link all maps and two other lines that connect parts of the maps. The difference 
between the numbers of possible results in these two methods is large, eight in the 
Maximum Search and four in the Minimum Search. 

3.5   Improving Location Search Results Based on Received Acceleration Values 

Estimated user locations using the Maximum and Minimum Search Methods, section 
3.4, can be improved based upon a consideration of the received acceleration values 
and RSSI values. By taking the acceleration values into account that are generated 
when user moves, it is possible to calculate how many steps the user has walked. That 
means that if the current user location is known by the system, it is possible to estimate 
how the user has been moved based upon the observed acceleration values, in order to 
calculate how many steps they move and in which direction. This will require a high 
precision for the actual user acceleration values with a high sampling rate. The re-
quirement will be lower when gathering user acceleration values that are only used to 
detect the number of steps the user moves. This reduces the search space for user lo-
cations through knowing previous user locations. For example, if the previous user 
location was L(5,6), shown in black in Fig. 5, and if the system detects a user’s 
movement, e.g., a one step walk that depends on a user’s step length, the next user 
location is most possibly in one of the locations shown in the thick border area which 
are the 8 locations around location L(5,6). The locations within an indoor area are 
modelled in such a way that the distance between two locations can be calculated based 
upon their identifier in Fig. 5. For example, the distance between location L(3,5) and 
L(5,6) can be calculated using one of the following formulas shown in Equation 6: 

( ( , ), ( , ))i i j j i j i jD L x y L x y x x y y= − + −  (6a)

( ) ( )2 2
( ( , ), ( , ))i i j j i j i jD L x y L x y x x y y= − + −  (6b)

The results from both formulas will be similar when the values of parameters i and j are 
close, e.g., 2 and 3. The reason for this is that when a user has one or two steps, the 
system can detect it straightaway and estimates the user location before they will walk 
further away from the first location. However, the computation complexity of formula 
6b is much higher than formula 6a, so that the first one is preferred. The experiment lab 
or test environment has been divided into several location points as shown in Fig. 5 and 
grouped into three types. The squares in the black cross net pattern represent the loca-
tions that have been used for the radio map construction and location testing. The grey 
squares indicate the areas that are not accessible by users, e.g., they might be occupied 
by different furniture such as a meeting table. The squares in white refer to the areas are 
accessible by user but have not been used when building the radio map.   
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Fig. 5. Location modeling in the test environment 

When users walk, related accelerometer values will change in such a way that their 
steps can be identified. Fig. 6 shows how user accelerometer value changes with in-
termittent walking, e.g., for twelve seconds. Every step can be detected when a G-force 
surge of over 0.5 G appears. Before collecting the data, the accelerometer sensors need 
to be calibrated to have the initial value of 0G. Only one step will be counted when 
more than one surge above 0.5 G has been detected within a time limit of 0.5 second.  

 

 

Fig. 6. Using accelerometer values to identify user’s steps 
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The user walks four steps between the first, second and a fourth second, and then stops 
between the fourth and seventh second. The user starts to move again from the seventh 
to the twelfth second for six steps. By knowing the original location and how many 
steps the user has been moved, the next user location can be estimated with respect to 
the limited choices surrounding the original location. Therefore the location informa-
tion accuracy and precision can be improved further, even after deploying the Mini-
mum Search and the Maximum Search methods. 

4   Test Results 

Experiments have been carried out in the Body-Centric Wireless Sensor Lab at Queen 
Mary University of London as shown in Fig. 7. The test environment is an “L” shaped 
room with size of 8.66 meters by 7.89 meters containing typical office furniture such as 
a meeting table, chairs, workstation, shelves, drawers, etc and some body test equip-
ment e.g., hospital bed and treadmill machine. Fifty four locations, shown as black 
circles, have been selected within the walking area of the lab in order to carry out the 
test. Seven base stations have been deployed to collected RSSI values from a mobile 
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Fig. 7. Floor plan of the experiment lab with test locations 
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user and two RSSI reference points that broadcast packages periodically and continu-
ally during the test. The wireless base stations are installed in different corners of the 
room as shown in the floor plan. The two RSSI reference points are hung from the 
ceiling with the distance of about 30 cm in the middle of the room. This is because they 
need to be seen by all of the wireless base stations for reference RSSI collection. As 
discussed earlier, the signal strength measured from a fixed location can vary during 
different times of the day. These can be different even at the same time on different 
days. Fig. 8 shows the received signal strength variations from a fixed location during 
different times of a day. 

Experiments have been performed during different times in a week in order to get 
the average result values as the result might vary and can be affected by the static and 
non-static factors given in the beginning of this paper.  

Table 2 shows the location precision and error distance comparison for the two 
search methods based on some sample locations during a user walk test. The results 
show that the Maximum Search Method provides a better location precision by 11 
percent and smaller error distance by 0.13 meter but the computational processing 
complexity is higher. The Minimum Search Method gathers a lower location precision 
and a higher error distance compared to the first search method. The results are still 
promising and have a much lower computational processing complexity as described in 
section 3.4. For this instance, if there are 10 locations with orientations in each of seven 
base station radio maps that match the given RSSI value and 70 present of the locations 
will be matched between two radio maps, then the Maximum Search Method’s com-

putational complexity will be 710  and less than a quarter of 510  for the Minimum 
Search Method. By deploying the accelerometer values to calculate the user movement 
steps, the error distance and location searching space can be reduced to improve the two 
search methods. Both search methods have an overall of about 8 percent improvement 
in terms of the error distance after deploying the use of the user accelerometer values. 
However, it will introduce some errors in the estimated user location when the two 
groups of estimated locations from the search using signal strength and user acceler-
ometer values do not match at all. The later search result has to be dropped in that 
situation. 
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Table 2. Location precision and error distance comparison for two search methods based on 
some sample locations from a user walk test 

5   Conclusions and Future Work 

Results from the two methods show that the Maximum Search Method searches a larger 
space and calculates all the possible estimated locations with orientations’ possibilities 
to find out the most probable location and direction. The difference in computational 
complexity between the two search methods is significant. The Minimum Search 
Method searches a smaller space with a shorter processing time, but with a larger error 
distance and a lower success rate in finding the test locations. By using the user ac-
celerometer values, both search methods have a better performance in terms of the error 
distance and processing time. However, they may introduce some problems when the 
two groups of estimated locations from the searches using the signal strength and user 
accelerometer values do not match at all.  

Future improvement of the location determination accuracy, precision and proc-
essing time could be achieved by improving the two search methods discussed in this 
paper. For the Maximum Search Method, an improvement can be achieved by avoiding 
finding out all the possible locations’ possibilities to reduce the processing complexity. 
Finding out the most suitable radio maps for the first search in the Minimum Search 
Method can also improve the search performance. Further experiments need to be 
carried out for user steps calculated based on accelerometer values in order to avoid the 
zero matching problem between two search methods using the signal strength and user 
accelerometer values. 
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Maximum Search Method Minimum Search Method 
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Location Estimated 
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L(5,4,w) L(5,4,n) 0 L(5,4,n) 0

L(6,3,n) L(5,3,n) 0.5 L(5,3,n) 0.5

L(7,2,e) L(6,5,w) 1.5 L(6,6,e) 2.5

L(9,2,n) L(8,2,s) 0.5 L(8,2,s) 0.5

L(11,2,w) L(11,2,s) 0 L(11,2,s) 0

L(13,3,e) L(13,4,w) 0.5 L(12,4,n) 0.707

  

Location 
Precision 

within 0.5 m : 
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Location 
Precision  

within 0.5 m : 
66.7% Avg: 0.6889
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Localize Vehicles Using Wireless Traffic Sensors
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Abstract. Recently, wireless traffic sensors present themselves as a low
cost and non-intrusive alternative to wired traffic sensors. We propose a
vehicle localization method that utilizes the signals of the wireless sen-
sors. A vehicle is equipped with a receiver and overhears the geo-tagged
packets transmitted by wireless traffic sensors. An onboard computer
then computes the distribution of possible vehicle locations using an al-
gorithm based on the principles of particle filtering. In our simulation,
the proposed method outperforms the proximity centroid method by an
average of 79%.

1 Introduction

Vehicle localization and tracking have many applications, including vehicle navi-
gation, theft detection, roadside assistance, etc. Most vehicle localization systems
are based on GPS with map matching, which is accurate only up to about 10
meters. This is particularly a problem when the vehicle is at dense road net-
works, such as highway junctions. GPS units also suffer from the problem of
”lose of signals” such as when the vehicles are in tunnels or under trees. Dead
reckoning is commonly used when GPS signals are lost where a vehicle locates
itself based on its last known GPS location and the speed it travels afterwards.
Dead reckoning has even higher location errors and the errors are cumulative.

In most US cities, traffic sensors are used to monitor traffic, measure pavement
wearing, and provide information for adaptive traffic signal control systems. Re-
cently, wireless sensors have emerged as a low cost and non-intrusive alternative
to wired sensors [5] [6]. Comparing to traditional sensors such as the embedded
loops, they are small in size, operate on batteries, and can last up to 10 years.
The wireless signal transmitted by the sensor devices provides a new way of
vehicle localization.

In this paper, we present a system that achieves vehicle localization and track-
ing by combining the geo-tagged sensor information and vehicle’s own speedome-
ter readings. The algorithm is based on the principle of particle filtering. It is
shown to achieve an accuracy of 1 2 meters. When compared to the algorithm
of proximity centroid, its achieves 79% higher accuracy.

The rest of the paper is organized as follows. In section 2, we survey related
works. In section 3, we present the system design and the algorithm. In section
4, we discuss the simulation results and in section 5 we reach our final remarks.
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2 Related Works

The problem of tracking mobile targets using sensor networks has been exten-
sively studied in the literature. Our proposed method is inspired by the study
of Monte Carlo based localization [1] [3] [4]. Hu et. al. have proposed a method
called MCL that improves localization accuracy by utilizing the mobility infor-
mation (maximum speed) [4]. Rudafshani et. al. have proposed two methods
called MSL and MSL* that outperform MCL [3]. The improvements include
faster convergence and more robust against the decrease of location beacon
(seed) density. The improvements of MSL and MSL* are mainly contributed
by the use of neighbors’ localization estimates. Klingbeil et. al. has proposed a
method that utilizes more detailed mobility information, including speed, head-
ing, and map to achieve higher accuracy [1]. Another class of methods is based
on the Kalman filter. A Kalman filter uses the exactly same process as the se-
quential Monte Carlo filter but provides analytical results instead of simulation
results. To use a Kalman filter to localize a mobile target, the mobility model
has to be confined to a linear model. It is not suitable when the target changes
its speed and/or direction. Kusy et. al. have proposed a least-squares optimiza-
tion based improvements to traditional Kalman filter that achieves almost 50%
higher accuracy [2].

3 System Design

3.1 System Setup

The SenSys vehicle detection sensor mote is used as an example for this study [7].
The sensors are embedded under pavements. They can detect vehicle passing by
and communicate only to above ground receivers. Two sensors are needed per
lane for vehicle speed detection. The communication range of a sensor varies
according to the height of the receiver. An access point is mounted on a roadside
pole that receives packets from embedded sensors. When the height of an access
point is 2.4 meters, the maximal communication range is about 23 meters. For
simplicity, we assume an access point can cover a road segment of length D (e.g.,
46 meters in a typical setup). An embedded sensor can talk to passing vehicles
with a radius r. Since the receivers on the vehicle will be on a lower height than
the access point, r is assumed to be smaller than D/2. We assume a vehicle
knows r or the distribution of r. Such information can either be pre-installed or
be included in each packet broadcasted by a sensor.

The time is divided in discrete time steps. Each sensor knows its exact ge-
ographic coordinates and periodically broadcast a location beacon packet con-
taining the coordinates. The coordinates can be loaded when they are installed.
Each vehicle has a receiver and is constantly listening to the location beacon
packet. For simplicity, each vehicle’s coordinates are represented by the coor-
dinates of its receiver. We assume all receivers can only be in the center line
of any lanes except when the vehicle is switching lanes. Note that our method
can be easily adopted in situations with different receiver placements. A vehicle
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Fig. 1. Vehicle localization system setup

can hear a location beacon packet only if its receiver’s distance to the sensor
is less than or equal to r (the packet may still be missed according to certain
probability distribution).

It is critical to reduce the communication cost of the sensor device. It is
achieved by the following means:

– Since the vehicles’ batteries have more power and are charged when the
vehicles are moving, vehicles’ receivers are set to be constantly listening and
the sensors only periodically broadcast short location beacons.

– The location information is embedded in ordinary traffic reporting data pack-
ets, which reduces the overhead of the localization system.

3.2 Available Information

The in-vehicle localization system may use the following information:

1. Location beacon: the vehicle timestamps each received location beacon
packet. A record of location beacon is given by

(time step, x coordinate, y coordinate). (1)

Fig. 2. Communication between a vehicle and a wireless sensor node
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2. Map information: the vehicle knows the accurate road map, including the
number of lanes and the width of each lane.

3. Vehicle speed: the in-vehicle localization system acquires the speed infor-
mation from the vehicle’s speedometer. A record of speed is given by

(time step, distance moved in this time step). (2)

Note if a vehicle switches lanes in this time step (we assume all lane switching
can be finished within one time step), a speed record contains the distance
moved due to lane switching. US regulations require the error of a speedome-
ter is at most 5%. Depending on various factors (mostly the tire diameter),
the error can actually be larger. We assume the error of the speedometer
is drawn from a zero mean Gaussian distribution. Since the tire diameter
is mostly unchanged during a localization process, we assume the error is
persistent.

4. Vehicle heading: the localization system acquires the moving direction of
the vehicle.

5. Radio signal strength (RSS): RSS is not reliable in urban traffic envi-
ronment due to the absorbing, blocking, and reflecting effects caused by the
surrounding vehicle bodies. However, to some extent RSS can be combined
with other information to improve the localization accuracy.

6. GPS signal: the in-vehicle localization system may carry a GPS receiver.
In open space the GPS coordinate is accurate to about 10 meters. When
combined with other information, the accuracy can be improved.

In this paper, we discuss a localization algorithm that utilized information 1 3
and leave the rest for future works.

3.3 Vehicle Localization Algorithm

Vehicle state : A vehicle state St at time step t consists of

(xt, yt, ε(v), θ), (3)

where
xt, yt: vehicle’s coordinates at time t,
ε(v): a persistent speedometer error,
θ : a vehicle’s heading along the road.
We also add a random noise εt(v) as the vehicle’s x coordinate estimation

error at time t since sometimes the filtering condition in the correction step
leaves no valid samples

Initialization: The system initializes when a vehicle hears the first location
beacon z0. It estimates its location distribution p((x0, y0)|z0), which can simply
be a circle of radius r surrounding the corresponding sensor. It can also be refined
using the map information.

In the sequential Monte Carlo filter, N equally weighted samples (S[i]
0 , w

[i]
0 )

are created as:
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x
[i]
0 , y

[i]
0 : drawn from p((x0, y0)|z0)

ε[i](v) and ε
[i]
0 (x): drawn from two zero mean Gaussian distributions

θ[i] : randomly chosen from 1 or -1.
The weight of all samples sums up to unity. We have

N∑
i=1

w
[i]
0 = 1. (4)

Localization: After the time step of initialization, in each time step the lo-
calization method is carried out. Each localization step k contains the following
two sub-steps:

1. Prediction: Every previous sample (S[i]
k−1, w

[i]
k−1) is replaced by a new sam-

ple (S̃[i]
k , w̃

[i]
k ) according to one of the following two mobility process models:

A. A model that assumes the vehicle does not switch lanes

(x
y)[i]k = (x

y)[i]k−1 + θ[i] • [ṽ[i]
k − ε[i](v)] • (10) − ε

[i]
k (x) • (10), (5)

where
ε
[i]
k (x) is drawn from a zero mean Gaussian distribution,

ṽ
[i]
k is the measured speed from the speedometer.

B. A model that assumes the vehicle switches lanes

(x
y)[i]k = (x

y)[i]k−1 + (θ[i]

φ̃
[i]
k

) • (ṽ
[i]
k (x)

ṽ
[i]
k (y)

) − ε
[i]
k (x) • (10), (6)

where
φ̃

[i]
k is the lane switching direction randomly chosen between 1 or -1,

ṽ
[i]
k (x), ṽ[i]

k (y) are the vehicle speed along the road and perpendicular to the
road, respectively. They satisfy

[ṽ[i]
k (x)]2 + [ṽ[i]

k (y)]2 = [ṽ[i]
k − ε[i](v)]2. (7)

For simplicity, we assume ṽ
[i]
k (y) is the width of one drive lane.

During the prediction step, the method randomly chooses between the two
models by an arbitrary probability.

2. Correction: The weights are updated as

w
[i]
k = w̃

[i]
k • p(zk|x̃[i]

k ),
∑

i

w
[i]
k = 1. (8)

zk is the set of observations. We have

p(zk|S̃[i]
k ) ∝ h(S̃[i]

k ), (9)

where
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Fig. 3. 3 group of traffic sensors (represented by ”o” with a circle denoting the com-
munication range) are deployed in a road segment of 300 meters. The dots are the
vehicle’s trajectory, the ”x” marks are the tracking results. A line between a dot and
a ”x” shows the localization error.

Fig. 4. The localization error of the test case shown in figure 3, shows estimation error
along the road

h(S̃[i]
k ) =

∏
m

f(Pm − (x̃
ỹ)[i]k )

∏
n

g(Pn − (x̃
ỹ)[i]k ) (10)

where
m is the sensors that the vehicle has heard in step k,
n is the sensors that the vehicle has not heard in step k, but has heard in
step k − 1 or before,
Pm is the position of sensor m. We also have

f(d) =
{

1, d ≤ r,
0, d > r, and

g(d) =
{

0, d ≤ r,
1, d > r.

3. Re-sampling: This step removes samples with lower weights. A new set of
N samples are drawn from all samples S̃

[i]
k with a probability w

[i]
k .

4 Simulation Results

The simulation is conducted in MATLAB with setups similar to figure 3. The
communication range from sensor to vehicle is 5 meters (since the sensor is
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Fig. 5. The localization error of the test case shown in figure 3, shows estimation error
at the direction perpendicular to the road direction

Fig. 6. The estimation error on the speedometer bias of the test case shown in figure 3

embedded and low power). The vehicle has 10% probability of switching lanes.
Vehicle’s initial speed is 30mph. Vehicle’s acceleration is randomly drawn from a
zero mean Gaussian distribution whose standard deviation is 10% of the initial
speed. Speedometer’s error is also drawn from a zero mean Gaussian distribution
whose standard deviation is 10% of the initial speed. Sensor’s packet broadcast
frequency is 2Hz. Particle filtering uses 400 particles. ε(v) is drawn from the
same distribution as the speedometer error distribution. εt(x) is drawn from a
zero mean Gaussian distribution whose standard deviation is 0.5 (meter).

Figure 4 shows localization error along the road. When the vehicle is close to a
sensor, the localization error drop to below 2 meters. In comparison, the impact
of sensors on the direction perpendicular to the road (estimate which lane the
vehicle is traveling in) is less significant (shown in figure 5). Figure 6 shows the
estimation error on the speedometer bias. The estimates converge after 20 steps
and are reduced from 10% to about 1%.
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Fig. 7. From 30 runs from random maps, compared with a simple proximity beacon
method

Fig. 8. Localization error when the vehicle knows the exact communication range

Next, we compare the proposed method to the proximity centroid method. In
the proximity centroid, a simple dead reckoning algorithm is performed when the
vehicles are outside the range of any sensors. Figure 7 illustrate the improvements
achieved by the proposed methods. In all 30 test cases, the proposed method
outperforms the proximity centroid method with an average improvement of
61% (1.1 meters to 2.8 meters).

In the last set of experiments, we introduce a random error to the commu-
nication radius estimation. It is reasonable since sensors’ exact communication
ranges are often influenced by unpredictable environmental factors. The com-
munication range of each sensor is drawn from a Gaussian distribution N(10, 2).
Figure 4 8 shows the results where the vehicle knows the exact communication
ranges. In the experiment corresponding to figure 9, the vehicle only knows the
distribution of the communication ranges and the communication ranges are
treated as a variable and are sampled in the Monte Carlo simulation. Although
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Fig. 9. Localization error when the vehicle knows only the communication range
distribution

the proposed method yields more errors when more uncertainties are introduced,
it still outperforms the proximity centroid method by an average of 73%.

5 Conclusion

In this paper, we propose a vehicle localization method based on Monte Carlo
simulation. The method utilizes signals from wireless traffic sensors and has
minimal communication overhead. In our simulation it achieves higher accuracy
than both the GPS and the proximity centroid. The deployment of the wireless
sensors, and the uncertainty of the communication range may limit its usage. We
recommend to incorporate this method as an additional means to GPS based
localization to provide higher accuracy when possible.

References

1. Klingbeil, L., Wark, T.: A wireless sensor network for real-time indoor localization
and motion monitoring. In: Proc. International Conference on Information Process-
ing in Sensor Networks (IPSN), pp. 39–50 (2008)

2. Kusy, B., Ledeczi, A., Koutsoukos, X.: Tracking mobile nodes using RF Doppler
shifts. In: Proc. Conference On Embedded Networked Sensor Systems (SenSys),
pp. 29–42 (2007)

3. Rudafshani, M., Datta, S.: Localization in wireless sensor networks. In: Proc.
International Conference on Information Processing in Sensor Networks (IPSN),
pp. 51–60 (2007)

4. Hu, L., Evans, D.: Localisation for mobile sensor networks. In: Proc. International
Conference on Mobile Computing and Networking (MobiCom), pp. 45–57 (2004)

5. http://www.sensysnetworks.com/
6. Cheung, S.-Y., Coleri Ergen, S., Varaiya, P.: Traffic surveillance with wireless mag-

netic sensors. In: Proc. 12th Intelligent Transportation System World Congress, San
Francisco, California (November 2005)

7. Sensys System Overview, http://www.sensysnetworks.com/system.html

http://www.sensysnetworks.com/
http://www.sensysnetworks.com/system.html


On the Feasibility of Determining Angular

Separation in Mobile Wireless Sensor Networks

Isaac Amundson, Manish Kushwaha, and Xenofon D. Koutsoukos

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN 37235, USA

isaac.amundson@vanderbilt.edu

Abstract. Mobile sensors require periodic position measurements for
navigation around the sensing region. Such information is often obtained
using GPS or onboard sensors such as optical encoders. However, GPS is
not reliable in all environments, and odometry accrues error over time.
Although several localization techniques exist for wireless sensor net-
works, they are typically time consuming, resource intensive, and/or re-
quire expensive hardware, all of which are undesirable for lightweight
mobile nodes. We propose a technique for obtaining angle-of-arrival in-
formation that uses the wheel encoder data from the mobile sensor, and
the RF Doppler-shift observed by stationary nodes. These sensor data
are used to determine the angular separation between stationary beacons,
which can be used for navigation. Our experimental results demonstrate
that using this technique, a robot is able to determine angular separation
between four pairs of sensors in a 40 x 40 meter sensing region with an
average error of 0.28 radian.

1 Introduction

Until recently, mobile wireless sensors had little control over their own movement,
and were typically mounted on mobile objects for purposes of identification,
tracking, and monitoring. This is now no longer the case; with the emergence
of small-footprint wireless sensors such as [1] and [2], nodes are able to traverse
the sensing region under their own control. This has numerous advantages, such
as enabling targeted coverage [3] and connecting disjoint sensor networks [4].

Arguably one of the biggest challenges for mobile sensors is navigation, where
the mobile node must reach point B from point A. For the most basic wheeled
mobile robots (WMRs), navigation is typically solved using odometry, whereby
the robot monitors the angular velocity of each wheel to approximate the dis-
tance traveled over a given time period. The angular velocity is often determined
from feedback from optical encoders mounted on each wheel. The advantage of
optical encoders is that they are small and can be mounted on almost any type
of WMR. Most other sensors used for navigation (e.g., GPS, laser rangefinders,
sonar, etc.) are either too large, heavy, expensive, or require too much power to
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operate over extended periods of time. When operating on a clean, level surface,
optical encoders can be quite accurate. However, most environments contain dust
that can interfere with the encoder readings. Additionally, odometry rapidly ac-
crues error on uneven terrain due to wheel slippage and low tire pressure.

Recent work [5] has shown that navigation is possible without knowing the
current position of the mobile sensor. In fact, all points in a plane are reachable
if the angular separation between two pairs of beacons can be determined. In
many situations, navigating without having to determine position is advanta-
geous because most localization methods require extensive PC processing, have
high localization latency, and require the positions of infrastructure nodes to be
known. In previous work [6], we used the Doppler shift in radio transmission
frequency as control feedback to drive a robot. Although the robot was able to
accurately navigate the sensing region, the localization algorithm relied on the
use of an extended Kalman filter (EKF) for noisy frequency measurements. The
EKF was run in realtime on the robot, but its large size required execution on
a separate mote, which communicated with the robot controller over a wireless
interface.

In this paper, we present a method for determining angular separation that
only requires the sensor radio and wheel encoders, both of which are common
to robotic wireless sensors, and hence no additional hardware is required. Our
method uses the Doppler shift in radio frequency and the instantaneous velocity
of a mobile node transmitting a pure sinusoidal signal to derive the angular
separation between infrastructure nodes surrounding the sensing region. Our
method does not require the positions of the infrastructure nodes, or the initial
position of the mobile node, to be known. Because this method is intended for
use with resource-constrained mobile sensors, it is rapid and “mote-able” (i.e.,
the algorithm runs entirely on the mote; no offline or PC-based processing is
involved). We show using real-world experimental results and in simulation that
this method is accurate with an average angular separation error of 0.28 radian.

The remainder of this paper is organized as follows. In Section 2, we describe
our problem statement, followed by our method for angular separation estima-
tion in Section 3. Our implementation on a mobile wireless sensor platform is
described in Section 4. Experimental results are then presented in Section 5.
Section 6 concludes.

2 Problem Formulation

Consider a sensing region that contains multiple infrastructure nodes, as well as
a mobile sensor that needs to travel from point A to point B. This scenario is
illustrated in Figure 1.

In order to navigate toward point B, we need to know which direction to
drive in, and for that we need to have some idea of where we are. Localization
in wireless sensor networks is a well-studied problem, and several different ap-
proaches have been developed [7], [8]. Typically, localization is accomplished by
using a set of coordinated nodes, whereby one or more nodes emit a signal, such
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Fig. 1. A mobile sensor moves through the sensing region. The mobile node navigates
based on angular separation of beacons (numbered 1 through 4).

as radio, ultrasound, infrared, or acoustic. Node position is then computed based
on properties of signal arrival, such as time-of-arrival, time-difference-of arrival,
received signal strength, angle-of-arrival, or by other methods.

However, localization is not necessary for navigation. In [5], a navigation
method is presented that enables mobile entities to reach any position on a
plane based on the angular separation between two pairs of beacons. Figure 2
illustrates the setup, simplified for clarity. In the actual setup, at least three bea-
cons are required for navigation. In the figure, the current position of the mobile
node is denoted by C, and the destination position by D. We do not know these
actual positions, nor do we know the positions of nodes Ri and Rj . The only
information we have is the angle ∠RiCRj at our present position, denoted by
αij , as well as the angle ∠RiDRj at our destination, denoted by α′

ij . What we
require is a control law that takes these angles as input and provides us with the
necessary motion vector to reach our destination.

With current and destination angle information, the objective is to minimize
the difference, Δαij = α′

ij − αij , between the two. When Δαij = 0, the mobile
node will have reached its destination. For example, if Δαij > 0, this means that
∠RiDRj > ∠RiCRj . Therefore, the mobile node should move along a vector that
increases αij . The unit length bisector vector δij is one such vector. Based on this
reasoning, the complete motion vector developed in [5] takes the form

C

D

αij

α’ij

δij
Ri

Rj

C

D

αij

α’ij

δij
Ri

Rj

Fig. 2. Navigation without localization based on beacon angular separation
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Mij =

⎧⎨⎩
Δαij · δij, −π ≤ Δαij ≤ π
(2π − Δαij) · δij, Δαij > π
(−2π − Δαij) · δij, Δαij < −π

As the mobile node moves along the bisector δij, it is actually following a segment
of a hyperbolic curve, defined by the two foci Ri and Rj . By following such a
curve, the mobile node is guaranteed to reach the arc RiDRj . With only two
beacons, position D cannot be identified on this arc because for every point, M
becomes 0. However, with three beacons, D is constrained to lie on two or more
arcs. In other words, M = Mij + Mjk + Mki, and the destination D is reached
when ∀ij : Δαij = 0.

Often, angle information is determined using cameras, microphone arrays,
or light pulses, all of which are not ideal for lightweight mobile sensors. We
would like to estimate angular separation using only hardware that is widely
available on sensor nodes. Specifically, we would like to be able to obtain this
angle information using the sensor node radio and the optical encoders on the
wheels. Although we have not implemented the above navigation method for
our current work, we refer to it here as motivation for our angular separation
estimation technique, and have plans to integrate it in the near future.

3 Estimation of Angular Separation

In this section, we describe the design of our angular separation estimation
method for mobile sensors.

A mobile node, T , moving through the sensing region with velocity v and
heading ϕ, collects angular velocity data from its wheel encoders. For WMRs
with 2-wheel differential steering, the relationship between the robot speed and
the wheel angular velocities is

|v| =
r(ωr + ωl)

2
(1)

where the speed |v| is the magnitude of the velocity v, r is the wheel radius, and
ωr and ωl are the right and left wheel angular velocities, respectively.

As the mobile node moves, it transmits an RF sinusoidal signal, which is
observed by the receiver nodes. Because the mobile node is moving with respect
to the stationary receivers, the RF signal will be Doppler-shifted. The amount
of Doppler shift depends on the relative speed of the mobile and anchor nodes,
as well as the wavelength and carrier frequency of the signal. This relationship
is formalized as

fi = fcarrier − vi

λ
(2)

where fi is the observed Doppler-shifted frequency at receiver Ri, fcarrier is the
transmission frequency of the carrier signal with wavelength λ, and vi is the
relative speed of mobile node T with respect to receiver Ri.
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Fig. 3. Geometry of simplified setup for determining angular separation between two
receivers

Figure 3 illustrates the geometry of a simplified setup. For now we will only
consider two receiver nodes, Ri and Rj . The problem is to estimate the angular
separation αij between the two receiver nodes based on the measured quantities
of ωr, ωl, fi, and fj , and known values fcarrier and λ.

The relative speed, vi, between the mobile node and receiver Ri is the scalar
value resulting from the projection of v onto the position vector

−−→
TRi, as

vi = |v|cosβi (3)

where the speed of the mobile node, |v|, has a negative sign if T is moving toward
Ri and positive otherwise, and βi is the angle between the velocity vector v and
the position vector

−−→
TRi.

The relative speed is related to the received Doppler-shifted signal. By rear-
ranging Equation (2), we have

vi = λ(fcarrier − fi) (4)

Combining Equations (3) and (4), and rearranging, we can calculate βi by

βi = cos−1
(

λ(fcarrier − fi)
|v|

)
(5)

Angular separation between two receiver nodes Ri and Rj can then be computed
by subtracting one bearing from the other, as

αij = βj − βi (6)

The error in computing the bearing β will vary due to the nonlinearity of Equa-
tion (5). Figure 4a shows the structure of the inverse cosine function (y =
cos−1(x)), and its derivative is pictured in Figure 4b. We can see that at the
limits (−0.8 ≥ x ≥ 0.8), a small error in x will result in a large error in cos−1(x).
To avoid this problem, we examine the argument to the inverse cosine, and if
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Fig. 4. (a) The inverse cosine function and (b) its derivative

too large or small, discard the sensor data for the current measurement round.
In practice, we found this gives us a marginal error reduction of approximately
2◦, or 11%.

3.1 Frequency Estimation Using Resource-Constrained Hardware

Typical low-cost sensor hardware supports radios that transmit in the 400 MHz
— 2.6 GHz range. These radios have a received signal strength indicator (RSSI)
pin which can be accessed from software, however, we cannot sample the RSSI
fast enough to determine the carrier frequency, fcarrier, of the signal. Instead,
we use radio interferometry [9], in which a second node transmits a signal at a
slightly lower frequency such that the two transmitted signals interfere, creating
a low-frequency beat signal, fbeat. The assistant transmitter can be positioned
anywhere in or near the sensing region, as long as it is stationary, and its signal
can reach all receiver nodes. The beat signal, which can be as low as a few
hundred Hertz (350 Hz in our case), can be sampled by making successive reads
of the RSSI.

Another issue with the inexpensive radio chip is that the transmission fre-
quency can vary from the desired frequency by up to 65 Hz. For this reason, we
treat the transmission frequency as a random variable, which results in the beat
frequency, fbeat, being a random variable as well. This poses a challenge, because
we require knowledge of the beat frequency to compute the receiver bearings. In
order to solve Equation (5), we use maximum likelihood (ML) estimation [10].

For ML estimation, we rewrite Equation (5) as

fi = F (βi, fbeat) + εi

= fbeat − |v|
λ

cosβi + εi

where εi ∼ N (0, σf ) is the Gaussian noise in the observed Doppler-shifted fre-
quency. The negative log-likelihood for fi is given by

�i(fbeat, βi) = − ln p(fi|fbeat, βi) =
‖ fi − F (βi, fbeat) ‖2

σ2
f
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Assuming N receivers, the combined negative log-likelihood for fi, i = 1, · · · , N
is given by

�(fbeat, β1, · · · , βN) = − ln p(f1, · · · , fN |fbeat, β1, · · · , βN )

= − ln
N∏

i=1

p(fi|fbeat, βi)

=
N∑

i=1

�i(fbeat, βi)

=
N∑

i=1

‖ fi − F (βi, fbeat) ‖2

σ2
f

The ML estimate can be obtained by minimizing the negative log-likelihood
using the following

∂�(fbeat, β1, · · · , βN )
∂fbeat

= 0

The partial derivative leads to the following result for the ML estimate for the
beat frequency

f̂beat =
1
N

N∑
i=1

fi +
|v|
λN

N∑
i=1

cosβi

Note that the ML estimate, f̂beat is in terms of βi, i = 1, · · · , N . To solve for
the angles, we iteratively compute the ML estimate and the angles. The two
iterative steps are given below.

1. Computing the angles:

βi,k = cos−1

(
λ(f̂beatk−1 − fi)

|v|

)

2. Computing the ML estimate for the beat frequency:

f̂beatk
=

1
N

N∑
i=1

fi +
|v|
λN

N∑
i=1

cosβi,k

where k = 1, · · · , 20 is the iteration index, and the ML estimate is initialized with
the average of the observed Doppler-shifted frequencies, f̂beat0 = 1

N

∑N
i=1 fi.

We show the convergence results for the beat frequency in Figure 5. We ob-
served that the beat frequency estimate converges within a couple of iterations,
hence we conservatively chose 20 iterations for the iterative algorithm. A the-
oretical analysis of convergence of the algorithm is beyond the scope of this
paper.
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Fig. 5. Convergence results for beat frequency estimate with the maximum likelihood
estimation algorithm

4 Implementation

Our wireless sensor platform consists of ExScal motes (XSMs) [11] and a Mobile-
Robots Pioneer 3DX [12] robot. All code was written in nesC [13] for the TinyOS
operating system [14]. The XSMs use the Texas Instruments CC1000 radio
chip [15], and transmit in the 433 MHz band. Note that although the Pioneer
comes equipped with an onboard embedded PC, as well as a wide variety of
sensors, only the instantaneous velocity, obtained from encoder data, is used,
and all computation is performed on the attached mote.

4.1 Implementation Benchmarking

Mobile sensors require a rapid positioning algorithm, otherwise by the time the
algorithm completes, the mobile node may be in a completely different loca-
tion. We therefore provide a timing analysis of our algorithm implementation
to demonstrate that its latency is acceptable for mobile sensor navigation. Our
method for determining angular separation involves three major steps: (1) signal
transmission/reception, (2) sending observed frequencies from the infrastructure
nodes to the mobile node, and (3) running the angular separation estimation al-
gorithm. We list the average and maximum latencies for these steps in Table 1.
The most unpredictable of these steps is the time it takes the infrastructure
nodes to send their observed frequencies to the mobile node. This latency can
grow relatively large because the nodes are all attempting to send messages at
roughly the same time, resulting in back-off delays. However, even with this un-
predictability, we can, on average, obtain angular separation information at a
rate of 1.46 Hz, which is sufficient for mobile sensor navigation.

Because we are using resource-constrained sensor nodes, we are also inter-
ested in minimizing the memory required to run the algorithm. Our previous
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Table 1. Execution time for each step

Step Average (ms) Maximum (ms)
Signal transmission 415 417
Routing 242 561
Angular separation algorithm 28 46
Total 685 1024

approach [6] required the use of two motes on the mobile platform, one hosting
the controller, and the other hosting the EKF, leaving little space for the user
application. Our current approach requires significantly less memory, using 2.9
kB of RAM and 49.6 kB of program memory (ROM).

5 Evaluation

5.1 Experimental Setup

Our setup consists of 6 XSM nodes, four of which act as stationary receivers
and surround the sensing region. Another stationary node is designated the
assistant transmitter, and is placed just outside the sensing region. The final
mote is attached to the robot. The robot moves around an uneven paved surface
in an outdoor environment, mostly free of trees, buildings, and other obstacles.
Figure 6 illustrates the experimental setup.

We direct the mobile node to move through the sensing region while trans-
mitting a pure sinusoidal signal. The infrastructure nodes measure the frequency
of the signal and report their observations back to the mobile node. At the be-
ginning of each measurement round, the mobile node records its instantaneous
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Fig. 6. Experimental setup. Four infrastructure nodes (R1 . . . R4) and the assistant
transmitter (A) surround the sensing region. Triangles show the direction of travel of
the mobile node at each timestep.
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Fig. 7. Actual versus estimated angular separation between receiver nodes (a) R1 and
R2, (b) R2 and R3, (c) R3 and R4, and (d) R4 and R1, for each measurement as the
mobile node traverses the sensing region

velocity, obtained from the wheel encoders. This information is then used to de-
rive the angular separation of the infrastructure nodes. Ground truth is manually
measured at each timestep (the time at the beginning of each measurement).

5.2 Experimental Results

As the mobile node makes its way through the sensing region, it periodically
computes the angular separation between pairs of infrastructure nodes using the
technique presented in Section 3. Figure 7 shows the estimated versus actual
angular separations for all pairs of adjacent beacons over the entire course. The
average error is 0.28 radian.

5.3 Discussion

The error in our estimation method comes from three main sources: (1) noisy
encoder readings, (2) noisy frequency measurements, and (3) the unknown beat
frequency. For all receivers, the error due to encoder noise and the unknown beat
frequency will be the same, introducing a systematic bias. Only the error due to
the frequency measurements will be different between receivers. Further study
is needed to determine whether the overall error can be reduced by taking the
systematic bias into consideration.

An average angular separation error of 0.28 radian will result in course-grained
navigation. Because a significant part of this error comes from the estimation
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Fig. 8. Error distribution for all adjacent pairs of receivers for each robot position
using (a) maximum likelihood estimation, and (b) simulating a known beat frequency

of the beat frequency, we would like to know how this system would respond if
we were using radio hardware that transmitted exactly at the desired frequency.
With such a system we will still expect measurement noise, whose standard
deviation was previously reported to be 0.21 Hz [16], and so we account for this.
For the simulation, we use the same infrastructure and mobile node positions
as our robot experiment. The average error for this simulation is much lower
at 0.14 radian. The error distributions for all pairs of receivers for each robot
position are shown in Figure 8.

6 Conclusion

In this paper we presented a feasibility study for determining angular separation
using RF Doppler shifts and wheel encoder data in mobile sensor networks.
Angular separation between multiple pairs of beacons can be used for navigation,
without the need for localization.

Several implementation challenges were encountered while designing this sys-
tem. Measuring Doppler-shifted frequencies required the use of radio interfer-
ometry. Radio hardware limitations caused the actual transmission frequency to
be unknown. Because knowledge of the beat frequency was necessary for our al-
gorithm, we used maximum likelihood estimation, however, the accuracy of the
results was lower. Experimental results obtained using our method had an aver-
age error of 0.28 radian, which will provide course-grained navigation. However,
in situations where such navigation is acceptable, our approach is faster, and
requires less memory than other RF-based methods (e.g., [16], [17], [6]). This is
because our algorithm is distributed, and therefore we expend no time routing
data to a base station for analysis. In addition, determining angular separation
from Doppler shifts and instantaneous velocity does not require complex statis-
tical tools, such as a Kalman filter, reducing the overall memory footprint of the
application.
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The goal of our research is to enable mobile sensor navigation using methods
that are distributed, require no additional hardware, have low computational
complexity, and do not rely on GPS. For future work, we intend to continue this
pursuit by examining how we can reduce the angular error for better navigation.
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Abstract. Iterative localization is one of the common schemes for ob-
taining locations of unknown sensor nodes when anchor nodes are rel-
atively sparse in the network. The key idea is for a node to localize
itself using its anchor neighbors, and then become an anchor for other
unknown neighbors. The process continues until all nodes are localized
or no nodes left can be localized. The major problem of the iterative
localization scheme is that it suffers from the negative effect of error
propagation, where sensor noise results in estimation errors which then
get accumulated and amplified over localization iterations. This paper
proposes a computationally efficient error control mechanism to mitigate
the error propagation effect for mobile-infrastructure based localization.
In particular, we show how the error can be characterized and controlled
in a mobile-assistant localization framework with angle-of-arrival type of
sensing modality. Both simulation on a large scale and real experiments
on a small scale have been conducted. Results have shown that our er-
ror control mechanism achieves comparable location accuracy as global
optimization-based localization methods and has the advantage of being
much more computationally efficient.

Keywords: Detection and Tracking, Localization, Error Control.

1 Introduction and Motivation

It is important to have the capability to localize objects when a Global Position-
ing System (GPS) is unavailable (e.g., in an indoor environment) or inaccurate
(e.g., in a city center surrounded by high-rise buildings). Much research has been
done in localization [1,2,3,4,5,6,7,8,9,10,11,12,13], focusing on developing algo-
rithms to estimate location information based on sensor measurements. Many
algorithms are iterative bootstrapping in nature: given nodes with known loca-
tions, called anchors, estimate the location for a set of unknown (free) nodes;
the estimated nodes are then used to localize others. While this approach is
computationally efficient and can easily be distributed, it often suffers from the
negative effect of error propagation. Noise in sensor measurements can get am-
plified due to sensing geometry, and the estimation error can propagate and
accumulate during the iterations. This results in poor localization accuracy.
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The problem of error propagation and accumulation has been noted in lo-
calization literature [14] [15] [16]. Unlike most existing approaches which use
certain geometry-related heuristics, our prior work [17] introduces a novel sys-
tematic approach, which formalizes the heuristics and performs a quantitative
analysis of error characteristics. The basic idea is to document each location
estimate with a quality measure and be discretional on which data measurement
to use in localization. Recently, similar ideas have been applied to localize mo-
bile nodes [18], where mobile nodes fuse their location estimates based on their
relative error estimation. In this paper, we extend the error control mechanism
in [17] to mobile-infrastructure based localization [19]. We will investigate where
localization error comes from, and how it propagates from nodes to nodes. We
will explain in detail how the error control mechanism is devised to manage in-
formation with various degrees of reliability. Simulation results show that the
error control mechanism significantly improves localization quality, reducing av-
erage localization error by a factor of 3 or more, yet it is still computationally
efficient, requiring much less computation than optimization-based refinements
developed in [19]. Real experiments on a small scale have also been conducted,
which verified some of the results obtained from the simulations.

Another body of related work is mobile-assisted localization (MAL). The basic
idea is to allow the nodes to move to cover space so that a single node can act like
a set of “virtual nodes” to provide more constraints to localization. Most existing
MAL-like work [20,21,22,23,24] assumes homogeneous installation, where the
mobile nodes are identical to static nodes, and all nodes can both transmit and
receive. The mobile-infrastructure-based localization in [19] is different in the
sense that the mobile nodes are receivers, powerful in computation capability,
while the static nodes are transmitters and do not require any computation.

The contribution of this paper is two-fold. First, it analyzes the source of
error propagation for mobile-assistant localization with angle-of-arrival sensing
modality, and develops an error estimation mechanism for such a scheme. Sec-
ond, it verifies that, through both simulation and real experiments, the use of
this error control is effective in terms of localization accuracy and computation
efficiency.

This paper is organized as follows. Section 2 presents an overview of mobile-
infrastructure-based localization developed in [19]. Section 3 analyzes errors
from the mobile-infrastructure based localization and describes the error con-
trol method which selects neighbors based on location uncertainty. Section 4
evaluates the algorithms given different configuration and noise parameters in
simulation and Section 5 presented the results of some small scale experiments
in hardware. Section 6 concludes the paper and suggests future directions.

2 Localization with Mobile Infrastructure

In our prior work [19], we have proposed the use of “mobile infrastructure”, which
uses angle-of-arrival sensors from Ubisense [25]. Two types of nodes are used:
ultra-wide band (UWB) transmitters (known as “Ubitags”) and UWB receivers



130 Y. Zhang and J. Liu

(known as “Ubisensors”). Ubisensors determine the angle-of-arrival (AOA) of
UWB signals emitted from the Ubitags. Inherently the Ubisensors are more
complex than the Ubitags and far more expensive (approximately 40 times in
price). The Ubisense system is designed to be a general-purpose location in-
frastructure. In its intended use, the Ubisensors are permanently installed in
a room, and their relative positions are carefully measured and manually in-
put by a skilled technician. Ubitags can be static or moving. The problem with
this intended use is the fact that Ubisensor’s high price prohibits large scale
deployment. To solve this problem, we have proposed the framework of “mobile
infrastructure” to make the system more cost effective by taking advantage of
the cost asymmetry between Ubisensors and Ubitags. The mobile infrastructure
(Fig. 1(a)) consists of a pair of Ubisensors mounted on a mobile cart. In this
case, the Ubisensors are considered as infrastructure nodes, moving from place
to place, hence the name “mobile infrastructure”. In contrast, the Ubitags are
deployed in larger quantity, and are considered as ad hoc nodes. Note that the
roles of Ubisensors and Ubitags are reversed from the original intended use: mo-
bile sensors are used to localize static tags. This role reversal is cost effective if
the unknown locations are widely spread out, spanning multiple sensing ranges,
or if the number of mobile objects is much smaller than the number of static
objects with unknown locations. The idea of cheap static infrastructure with
expensive mobile localizers is applicable to other sensing modalities, such as lo-
calizing static RFID tags using a mobile RFID reader, or, localizing visual tags
in the environment using a moving camera. In both cases, RFID tags and visual
tags are a lot cheaper than RFID readers and cameras, respectively.

The mobile infrastructure constitutes a sensor frame with the two AOA sen-
sors in a fixed distance (Fig. 1(b)). Although AOA sensors have six degrees
of freedom in general, two of them are fixed in this frame (the pitch and roll
angles are fixed to 0). The sensor frame has four degrees of freedom in space:
(xs, ys, zs, as), where xs, ys, zs are 3D coordinates and as is the yaw angle. The
sensor frame is mounted vertical, and the roll and pitch angles are both 0. The
location of the sensor frame is defined to be the center between two sensors.
Without loss of generality, we assume initially the sensor frame is at (0,0,0) and
facing as = 0. The localization problem in this case is to estimate tag locations
and the locations (center and yaw) of all subsequent sensor frames based on
the AOA measurements. In particular, the measurements are the yaw and pitch
angles: {α(i, j, l), β(i, j, l)}, where the index set (i, j, l) denotes the measurement
from sensor j to tag i at the l-th sensor frame location. In the absence of noise,
the measurement satisfies the following geometry:{

(xi − xj) sin(aj + αij) = (yi − yj) cos(aj + αij)
(xi − xj) sin βij = (zi − zj) cos βij cos(aj + αij)

(1)

where (xi, yi, zi) is tag location, (xj , yj , zj, aj) is sensor location and αij , βij are
AOA readings.

For this platform, we have developed a leapfrog procedure [19]. It is an iter-
ative procedure. Starting from the initial sensor frame at (0,0,0), it alternates
between computation of tag locations and sensor frame locations; from sensors
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(a)

(b)

Fig. 1. (a) Mobile platform and its (b) two-sensor frame

with known location, it estimates tags with unknown locations; and from known
tags, it estimates sensor frames with unknown locations. This alternation con-
tinues until all the tag locations and frame locations are obtained. In particular,
after locating the tags using the current sensor frame, it then selects as the next
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frame the sensor frame connected to the maximum number of known tags. It
computes the location of this new frame, and proceeds iteratively. In the rest of
this paper, we call a frame or a tag known, if its location is obtained already,
and free if its location is to be computed. Here we describe the localization
computation briefly. Interested readers may refer to [19] for details.

From Sensors to Tags. Given the location of a sensor frame, x, y, z, a, we
would like to estimate the tag locations (xt, yt, zt) from the angle measurements
{αk, βk}k=1,2.

For a tag seen by a sensor frame, let λ1 and λ2 be the distances from the
tag to the two sensors in the XY plane. From Fig. 1(b), we have the following
geometry: [− sin(α1) sin(α2)

cos(α1) − cos(α2)

] [
λ1
λ2

]
=
[

d
0

]
. (2)

Here d is the distance between the two sensors in the sensor frame, which is fixed
and known a priori. We solve for λ1 and λ2. The tag locations are estimated as:[

xt

yt

]
=
[

x
y

]
+

1
2

[
cos(a + α1) cos(a + α2)
sin(a + α1) sin(a + α2)

] [
λ1
λ2

]
. (3)

zt = z +
1
2
(λ1 tan(β1) + λ2 tan(β2)). (4)

From Tags to Sensors. If a sensor frame sees multiple known tags, the location
of the sensor frame x, y, z, a can be obtained. Let αik and βik be yaw and pitch
angles from sensor k (k = 1 or 2) to tag i, respectively, and let λik be the
projected distance between tag i and sensor k on the XY plane, which can be
computed by (2). It is easy to verify

(xi − xj) cos(a) + (yi − yj) sin(a) = λik cos(αik) − λjk cos(αjk)
(xi − xj) sin(a) − (yi − yj) cos(a) = −λik sin(αik) + λjk sin(αjk)

All the λ’s are known from Eq.(2). We use an approximate method to solve for a
by treating the above as two linear equations of the variables cos(a) and sin(a),
solving for cos(a) and sin(a). Therefore a = arctan( sin(a)

cos(a) ).
The sensor frame location, i.e., the midpoint between two sensors, computed

using tag i is estimated as:[
xi

s

yi
s

]
=
[

xi

yi

]
− 1

2

[
cos(αi1 + a) cos(αi2 + a)
sin(αi1 + a) sin(αi2 + a)

] [
λi1
λi2

]
. (5)

zi
s = zi − 1

2
(λi1 tan(βi1) + λi2 tan(βi2)). (6)

For n known tags seen by the frame, the result is the mean of all estimates.
One serious problem of this algorithm is that errors in localization of the pre-

vious tags (or frames) will propagate into the localization of the future frames (or
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tags), accumulating over time. The problem of error propagation and accumula-
tion can be controlled to some degree by optimization-based refinements during
or after the leapfrog procedure. It has been shown in [19] that the refinements im-
prove the location accuracy significantly. The problem with optimization-based
methods, however, is the computational complexity. It loses the effectiveness for
large scale problems, or when the number of variables becomes large. In the rest
of this paper, we will focus on how to efficiently mitigate the error propagation
and improve localization accuracy.

3 Error Analysis and Error Control

Due to perturbation in sensor observations, localization error may occur. Mea-
surement noise can have an effect on the localization accuracy, and the severity
is decided by geometry. For example, if a free node is localized using AOA mea-
surements from known nodes that are far away, then error in angle measurements
results in large offset in space. Another pathological case is that the unknown
node is localized with a set of nodes that are all collinear with itself. In this case,
the location estimate has unbounded error. If this localized node is then used as
a known node to localize other nodes, the location error will further affect the
accuracy of other nodes. The error could accumulate over localization iterations,
and the localization performance can be bad especially in large scale networks.

Our prior work [17] advocates the discrimination of nodes based on a quanti-
tative characterization of their uncertainty. The basic idea is as follows: when a
node is localized with respect to its connected known nodes, not all these nodes
are equal; certain node may have more reliable location information than others.
It is hence preferable to use only reliable known nodes to avoid error propagation.
This can be done by keeping track of uncertainty in every step of localization.
Any time a location estimate is obtained, the companion estimation for the un-
certainty of the location is performed, which formally analyzes how much error
is generated in this localization step. This is known as error characterization.

In the rest of this section, we extend this framework to the Leapfrog lo-
calization procedure and show how uncertainties are characterized and used to
mitigate error propagation.

3.1 Leapfrog with Error Control

We defer the problem of error estimation to the next section (Sec. 3.2) and
start with a brief overview of the general structure of our error control mech-
anism. The main idea is to rank nodes (sensor frames and tags) based on the
uncertainty of their location information, denoted as ei for each node i. Only
nodes with low uncertainty are used to localize others. This prevents error from
propagating. Furthermore, the location update is conditional: a newly estimated
location is used to update an old estimate only when the former is believed to
have lower uncertainty. This conditional update criterion prevents error from
accumulating.



134 Y. Zhang and J. Liu

Leapfrog with error control LeapErrCon consists of the following components:
(i) First frame selection: The first frame serves as reference frame; its loca-

tion and direction defines the coordinate system. It is also the starting point of
the Leapfrog procedure. In this first frame, we hope to initialize a substantial
number of tags so that later iterations can be “jump-started”. Hence we favor
choosing a sensor frame with a large amount of connections to tags.

(ii) Node selection for localization: For Leapfrog, only one frame (the cur-
rent one) is used for tag localization and all connected tags are used for frame
localization. LeapErrCon selects a subset of connected known nodes for localiza-
tion in both cases. The selection is based on predicted errors {ei}. LeapErrCon
ranks nodes with increasing uncertainty ei and selects the first k, where 3 ∗
mean({ei|i ≤ k}) < ek+1. This is an empirical criterion which seems to work
well.

(iii) Node update: In LeapErrCon, a tag is localized every time a connected
frame is localized. For an unknown tag, both the location and its uncertainty
are registered. For a known tag, replace the old registration if the new estima-
tion error is smaller. We further use a forgetting factor update criterion, i.e,
xt = (x, y), xt = γxnew

t + (1 − γ)xold
t . This partial update ensures that a noisy

measurement will not cause big drift in the location estimate.
(iv) Next frame selection: In general, we prefer to first localize tags and sensors

with moderate estimation error, and defer noisier estimation problem to later
iterations. LeapErrCon estimates the total location error for all candidates of
the next frame, and selects the one with minimum error.

The pseudo-code is shown in Table 1. Unlike Leapfrog, more than one sensor
frames may be used to localize a tag and a tag may be localized many times, as
long as its location uncertainty decreases.

3.2 Error Estimation for the Leapfrog Procedure

The localization task is to obtain an estimate (x̂, ŷ, ẑ) for any free node (tag
or sensor) as a function of other known node locations {(xi, yi, zi)} and mea-
surements {αi, βi}. Localization error hence comes from two sources: the uncer-
tainty in neighbor positions {(xi, yi, zi)} and the uncertainty in each measure-
ment {αi, βi}. Assuming we know all the statistics of {(xi, yi, zi)} and {αi, βi},
can we derive a statistical characterization of the estimate (x̂, ŷ, ẑ)? Error char-
acterization attempts to answer this question. In the Leapfrog process, error
characterization is recursive: the free node derives error characteristics based on
neighboring locations and measurement noise. In the next round, this node is
used to localize others, hence its error becomes one of the uncertainty sources
for the other nodes. Despite the simple formulation, exact error characterization
is difficult. We use the same grossly simplifying assumptions as in [17], assuming
all noises are Gaussian and the computations are approximately linear. Under
these assumptions, error characterization becomes feasible for practical use.

In this section, we analyze error generated from the Leapfrog procedure: (a)
localizing a tag using known sensor frames (Eq.(3)), and (b) localizing a sensor
frame using known tag locations (Eq.(5)). The mobile-infrastructure cart moves
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Table 1. Leapfrog with error control LeapErrCon; error control parts are in italic

Inputs:
αijl, βijl: angles from tag i to sensor j at frame l

Outputs:
xi, yi, zi: locations for all tags;
xl, yl, zl, al: locations of sensor frames;

Notations:
kTs: the set of tags with known locations
cTs: the set of tags connected to the current known sensor frame

Initialization:
l ← the first sensor frame selected using step (i),
kTs ← ∅: no known tags

0. while there is a new known sensor frame l:
1. Let cTs be the set of tags connected to frame l;
2. For each tag in cTs:
2.a select connected known frames using step (ii)
2.b compute the location of the tag
2.c compute error estimation of the tag using Eq. (7)
2.d update both tag location and uncertainty using step (iii)
3. kTs ← kTs ∪ cTs
4. Let l be the next free sensor frame selected by step (iv)
5.a select connected known tags using step (ii)
5.b compute the location of the frame
5.c compute error estimation of the frame using Eq. (7)
5.d update both frame location and uncertainty using step (iii)
6. end while

in a horizontal plane. The z-dimension is estimated after (x̂, ŷ) are obtained.
Hence from the error-propagation perspective, the error in ẑ will not affect error
in (x̂, ŷ). For simplicity, we only characterize error in 2D rather than in 3D.
Likewise, the pitch angle β is only used to estimate ẑ. Hence we ignore this error
and only model the error in the yaw angles {α}.

First, the measurement angle uncertainty in α results in uncertainties in
(λ1, λ2) (Eq.(2)). Note that λ1 and λ2 are the distance from a tag to a pair
of sensors, and the solution to Eq.(2) is[

λ1
λ2

]
=

d

sin(α2 − α1)

[
cos(α2)
cos(α1)

]
.

The uncertainty due to α1 and α2 can be characterized using Taylor expansion,
e.g., cos(α1 + Δα1) = cos(α1) − sin(α1)Δα1. Assuming that α1 and α2 has
roughly the same amount of noise, and ignoring error in α1 − α2, we have the
following:

cov(λ1, λ2) =
d2σ2

sin2(α2 − α1)

[
sin2(α2) 0

0 sin2(α1)

]
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where σ2 is measurement variance of α1 and α2. It gives the quantitative clas-
sification of the error propagation due to the geometry of the sensor frame and
the tag. It is clear that if α1 − α2 is close to 0, uncertainty from measurements
of α to λ is amplified. Intuitively the location estimate error will be big when
the two sensors and the tag are collinear, or if the tag is very far away from the
sensor frame.

Secondly, the distance pair (λ1, λ2) is then used to estimate the tag or sensor
position (Eq.(3) or Eq. (5)) via a linear transform B. To characterize the contri-
bution of this term to the overall localization uncertainty, we use the covariance:

Ωλ = B · cov(λ1, λ2) · B′

where

B =
1
2

[
cos(α1 + a) cos(α2 + a)
sin(α1 + a) sin(α2 + a)

]
.

This is assuming that the linear transform B is error-free, hence only the con-
tribution from the distance pair needs to be counted. However, the uncertainty
in α1 and α2 also directly contributes to B. To take that into account, we now
assume that the distance pair (λ1, λ2) is error-free and only count the con-
tribution of α1 and α2. Note that from Eq.(3) and Eq.(5), we have the lo-
cation estimate being the sum of three terms: 1. (x, y)′, 2. α1’s contribution
λ1
2 (cos(α1+a), sin(α1+a))′, and 3. α2’s contribution λ2

2 (cos(α2+a), sin(α2+a))′.
To compute the contribution of these individual terms, we again use Taylor ex-
pansion and compute the respective covariance:

ΩB1 =
λ2

1σ
2

4

[
sin2(α1 + a) 0

0 cos2(α1 + a)

]
,

ΩB2 =
λ2

2σ
2

4

[
sin2(α2 + a) 0

0 cos2(α2 + a)

]
.

where ΩB1 and ΩB2 are the contribution from α1 and α2 respectively. Let Ωv

be the location uncertainty of the known node v used in location computation,
the location uncertainty due to both location and measurement errors from the
known node is estimated by

Ω = Ωv + Ωλ + ΩB1 + ΩB2 . (7)

For a set of known nodes used for this computation, the uncertainty is set to be
the average of the uncertainty computed from each participated node.

Every time a node location is estimated or refined, this error characterization
step is performed. The covariance matrix Ω is computed and stored in the node
registry of the newly localized node. It is compact, only of size 2 × 2, and is up-
dated via light-weight computation. When examining nodes in the neighborhood,
we use the trace ω = trace(Ω) as the quality measure, or the error estimate ei for
the localization of node i. Larger ei means weaker confidence in the node i’s loca-
tion, and hence the node should be used more discretionally. Although this error
estimate is only an approximation to real error, it does give quantitative informa-
tion that can guide the use of information.ith X and Y axes as unit scales
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4 Simulation Experiments

In this section, we study the effectiveness of the error control method with respect
to optimization-based refinements, using three simulated scenarios.

4.1 Simulation Scenarios

We study three scenarios that are most common in indoor localization:

1. Long Hall (Fig. 2(a)): tags are distributed on two sides of a long hallway.
The mobile platform is moving from one end to the other end, always facing
center of the hallway.

2. Long Walls (Fig. 2(b)): tags are distributed along two neighboring walls of
a room. The mobile platform is moving from one wall to the other, always
facing the wall.

3. High Ceiling (Fig. 2(c)): tags are distributed on a ceiling. The mobile plat-
form is moving under the ceiling, parallel to the x-axis and facing the center.

The only input scale of the system is the distance d between the two sensors,
which is set to 1 without loss of generality1.

Other constants for simulation are defined as follows. The width of the hall-
way is 3. The horizontal distances between the neighboring tags or frames are
random with standard deviation 0.2. The orientation of the frame has a stan-
dard deviation of 0.1 radians. In all cases except the ceiling case, heights of tags
are random with zero mean and standard deviation 1, and the height of the
frame is fixed to be zero2. AOA data are modeled according to the Ubisense sys-
tem [25]: angle errors are zero mean, with ranges of yaw (α) and pitch (β) angles
in [−1.2, 1.2] and [−1.0, 1.0] radians, respectively. Since Ubisensors can see up
to 100 meters in line of sight, we assume no distance constraints for sensing.

4.2 Performance Metrics

One of the performance metrics for localization is location accuracy. Location
accuracy for tag localization is the displacement or error between the actual
and estimated tag locations. The error from one tag is the distance between the
actual and estimated tag ρ

�
= |x−x̂|. For n tags with errors {ρi}i=1,··· ,n, there are

various ways to aggregate the errors, for example, using mean ( 1
nΣiρi), mean

square ( 1
n

√
Σiρ2

i ), or maximum (maxi ρi) values. All of these metrics ignore
error distributions which are important for many applications. In this paper, we
advocate accuracy with 90% confidence, i.e., sorting {ρi}i=1,··· ,n in ascending
order, and use the k = �0.9n� entry value as the accuracy metric.
1 Note that we don’t have any unit for distances here since it is all relative to what

unit we use for the distance between the two sensors. For example, if the distance
between the two sensors are d units, all the results will be scaled by d units.

2 Note that although the algorithm works for varying frame heights, we only simulate
frames with fixed height since the mobile platform we have (Fig. 1(a)) can only move
on a plane.
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(a) Hallway: tags are on walls, cart moves along hallway, facing center

(b) Walls: tags are on walls, cart moves along walls, facing walls

(c) Ceiling: tags are on ceiling, cart moves on floor, facing center of the room

Fig. 2. Three test scenarios: tags are circles and sensors are squares. Each sensor frame
is shown by two squares connected by a dotted line, with the left sensor bold.
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For each scenario, we generate a total of N random cases, N = 30, and again
use the accuracy of 90% confidence for representing the accuracy of localization
in that scenario. In the rest of this paper, location accuracy or error means
location accuracy with 90% confidence.

Another important performance metric is the computation time of obtaining
the tag locations. Localization with error control takes more time, but it is a lot
more efficient than optimization-based methods.

4.3 Algorithms for Comparisons

There are four variations of the Leapfrog procedure, defined by two flags: (1)
error control flag (EC), and (2) refinement flag (RF). When EC is off, Leapfrog
with no error control is used, and when EC is on, LeapErrCon (Table 1) is used.
When RF is on, optimization-based refinements [19] are applied:

– Leapfrog: The Leapfrog procedure [19] without refinements.
– LeapErrCon: The Leapfrog procedure applying the error control mechanism

(Table 1).
– Leapfrog-RF: Leapfrog with refinement, but no error control.
– LeapErrCon-RF: LeapErrCon with refinement.

4.4 Simulation Results

In this section, we show some simulation results using the four variations of the
leapfrog algorithm on the two indoor scenarios. In particular, we are interested in
comparing error control mechanisms with optimization-based refinements, from
small to large number of nodes, and at different density of tag/cart distributions.
In all cases, we generate 30 random data sets and compare location accuracy
and localization time using the four variations of the leapfrog procedure. All
simulations were run on a PC laptop (Dell Latitude D400, Intel(R) Pentium(R),
1.7GHz, and 1GB RAM) with code written in Matlab.

Hallway. We tested the hallway case using six sets of data with the hallway
length scales from 10, 20 to 30, and standard deviations of the AOA noise (σ)
of 0.01 or 0.02 radians. Tags were placed liberally on the wall, with an average
spacing of 1 (i.e. the same distance as the spacing between the two sensors). The
mobile platform (equivalently the sensor frame) was moved along the hallway,
stopped randomly with a mean distance of 1 as well, to make measurements.

For 30 random data sets of each case, we also study the error distributions
among different variations of the leapfrog algorithm. Fig. 4.4 shows the cumula-
tive error distribution of the hallway case with hallway length 20 for measurement
noise σ of (a) 0.01 and (b) 0.02 radians. We see that in both cases, Leapfrog does
not work well. When the measurement noise is small, all variations except the ba-
sic Leapfrog work well, when the noise increases, LeapErrCon-RFworks the best.
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(a) σ = 0.01

(b) σ = 0.02

Fig. 3. Cumulative error distribution of the 30 random cases, with hallway length 20,
noise 0.01 and 0.02 radians, respectively

Fig. 4(a) shows both the localization time and accuracy for the hallway sce-
nario for measurement noise 0.02 radians. From the result, we can make con-
clusions that (1) the basic Leapfrog procedure does not work well in this case,
(2) LeapErrCon improves the accuracy significantly, with much less computation
time than refinements, (3) LeapErrCon works better than refinements for large
scales, and (4) LeapErrCon-RF has the best accuracy as expected, however, it
takes much longer to obtain a result, and the improvement is only marginal.
These results clearly demonstrate the effectiveness of LeapErrCon.
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(a) Hallway

(b) Wall

(c) Ceiling

Fig. 4. Performance comparisons (location accuracy and computation time). Note that
time is in log scale.
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(a) Leapfrog: ρ = 6.32; t = 0.10s

(b) LeapErrCon: ρ = 0.51; t = 0.46s best case

(c) Leapfrog-RF: ρ = 3.20; t = 5.27s

Fig. 5. Walls tag localization shown in 2D plane with X and Y axes in unit scales.
Wall length 10 and AOA variance 0.02. Location accuracy and localization time are
shown in ρ and t, respectively for each case. Circles are ground truth and diamonds
are estimated locations. Best localization accuracy is shown in bold, which is the case
when error control is applied.
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Leapfrog: ρ = 0.85; t = 0.30s

LeapErrCon: ρ = 0.54; t = 2.43s

Leapfrog-RF: ρ = 0.18; t = 12.18s

Fig. 6. Ceiling tag localization shown in 2D with X and Y axes in unit scales. Ceiling
height is 2 and σ = 0.02. Location accuracy and localization time are shown in ρ and
t, respectively. Circles are ground truth and diamonds are estimated locations. Best
localization accuracy is shown in bold.
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Walls. For this case, we study the effect of the density of tag distributions. Like
in the hallway case, the tags and sensor frames were spaced with an average
distance of 1, 2 or 3. The sensor frames (i.e., the mobile platform) are slightly
far away from the wall, with a distance to the wall set to 1.5 times of the distance
of the mean spacing between tags, so that the frame at any point can see enough
overlapping tags. The location error due to measurement noise would be larger
as the tag distances increase. In simulation, we set measurement noise σ to 0.02,
and wall length being 10, 20, and 30, for tag spacing 1, 2, and 3, respectively.

Fig. 5 shows one test case for the wall scenario, using three variations of the
algorithms: Leapfrog, LeapErrCon and Leapfrog-RF. We see that LeapErrCon
works better. Fig. 4(b) shows both the localization time and accuracy for the
wall scenario, when the mean distances between the tags increase from 1 to 3.
From the result, we have the observations that (1) Leapfrog-RF is worse than
LeapErrCon, and takes more time, and (2) LeapErrCon-RF has the best accuracy
but takes much more computation time.

Ceiling. For this case, we studied the effect of ceiling heights to localization
accuracy when tags are distributed on the ceiling of a room. Assuming the frame
is at height 0, and we increase the ceiling height from 1 to 4, and σ = 0.02.

Fig. 6 shows one test case for the ceiling scenario with H = 2, using three
variations of the algorithms: Leapfrog, LeapErrCon and Leapfrog-RF. We see
that (1) LeapErrCon reduces location errors, and (2) Leapfrog-RF results in
best accuracy but takes much more time.

Fig. 4(c) shows both the localization time and accuracy for the ceiling scenario.
From the result, we have the observations that (1) LeapErrCon decreases the
localization error of Leapfrog by almost half, with less computation time than
refinements, (2) when heights are large, the error control mechanism works better
than refinements.

5 Real Experiments

We tested our algorithms using the prototype system described in [19]. Figure
1(a) shows the prototype of the system: two Ubisensors are mounted vertically on
the poles with distance 40 inches. The simulated and real experiments differed
in their source of input data. For simulated cases, data were generated given
the tag sensor locations and the noise model. For real experiments, data were
generated from continuous AOA sensor readings during operation. In order to
get a set of good data inputs corresponding to a set of cart positions, we moved
the cart to multiple locations and stopped at each location for 5 to 10 seconds
to get stable angle readings.

In this test, we put seven tags on two walls (Fig. 7), and get 3 sets of data.
Figure 8 shows the result from the best algorithm using test data 1. To get a
sense of the error in these experiments, we use the mean square error (MSE) of
the model fitting error. Let eijα = 0 and eijβ = 0 be the two equations from one

tag/sensor pair (i, j) in Eq. 1. We use
√

1
2n (Σi,je2

ijα + Σi,je2
ijβ), where n is the
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Fig. 7. Experiment setting: tags on two walls

Fig. 8. Result of tag localization: tags on two walls

Table 2. Experimental results: each entry is Mean Square Error for a test using a
variation of the algorithm. The best results are shown in bold.

tests Leapfrog LeapERCon Leapfrog-RF LeapERCon-RF

1 5.57 3.38 2.43 2.01

2 4.65 4.42 2.39 2.43
3 11.44 9.11 3.67 3.32
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number of equations, for error estimates. Table 2 shows the results of the 3 sets
of data using 4 variations of the algorithm. The best result from each data set is
shown in bold. We see that global refinements reduce most of the error, which is
consistent with our simulation of small size problems. Also, for two out of three
cases, the combinations of error control with global refinements have the best
accuracy.

6 Conclusion and Future Work

We have presented an error control mechanism for the leapfrog procedure to lo-
calize tags using mobile infrastructure. Simulation showed that the error control
scheme significantly improves the localization accuracy and achieves compara-
ble performance as global optimization-based method at only a fraction of the
computation cost. Although our real experiments are only in a small scale, we
verified that error control would still improve the performance, despite in these
cases refinements would work better as we have seen in simulations.

One way to extend this work is to incorporate other kinds of motion data,
using inertial sensors or odometry. A wheel-mounted odometric distance mea-
surement could also be combined with the Ubisensor readings to improve the
overall system accuracy. Such a system could be smaller with only one sensor.
Error control would be even more important in these cases for fusing from dif-
ferent data sources, so as to use the data resulting small error propagation.
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Abstract. A smart home environment equipped with pervasive net-
worked-sensors enables us to measure and analyze various vital signals
related to personal health. For example, foot stepping, gait pattern, and
posture can be used for assessing the level of activities and health state
among the elderly and disabled people. In this paper, we sense and use
footstep vibration signals measured by floor-mounted, MEMS accelerom-
eters deployed tangent to wall sides, for estimating the level of indoor
physical activity. With growing concern towards obesity in older adults
and disabled people, this paper deals primarily with the estimation of
energy expenditure in human body. It also supports the localization of
footstep sources, extraction of statistical parameters on daily living pat-
tern, and identification of pathological gait pattern. Unlike other sen-
sors such as cameras or microphones, MEMS accelerometer sensor can
measure many biomedical signatures without invoking personal privacy
concerns.

Keywords: Caloric energy expenditure estimation, Indoor activity de-
tection, Localization of footstep source, MEMS accelerometer, Personal
health care, Sensor networks, Smart homes.

1 Introduction

To promote personal health for the elderly and disabled, and to support indepen-
dent living at reasonable cost, it is agreeable that a home based sensor network

R. Fuller and X.D. Koutsoukos (Eds.): MELT 2009, LNCS 5801, pp. 148–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.icta.ufl.edu


Estimation of Indoor Physical Activity Level 149

environment that collects various data and vital signs of the residents is a promis-
ing approach. In a smart home environment with pervasive intelligence, various
vital signals can be measured by sensors such as vision sensor, microphone, elec-
trode, pressure sensor and accelerometer, and can be processed to extract some
information on mental and physical states of the resident. Then, the processed
data and information can be used to diagnose their health conditions by medical
doctors and caregivers.

Chronic diseases, such as diabetes, cardiovascular disease, respiratory disease,
obesity, cancer and Alzheimer’s disease, are currently leading causes of severe
damage among the elderly and disabled people as well as the normal people in
the United States. Table 1 shows leading causes of death due to chronic disease.
Research on chronic diseases reports that the most common chronic conditions
are high blood pressure, high cholesterol, arthritis and respiratory diseases like
emphysema [13]. In addition, research on personal healthcare supports that in-
creasing the level of physical activity decreases the risk of onset and developing
the chronic illnesses [6][11].

A well-established smart home environment enables us to develop a sensor
network-based chronic care management model, which makes it possible to pre-
vent, delay, detect and control chronic diseases. This could be achieved by con-
tinuously measuring chronic-related outcomes and by periodically prescribing
exercises to control the level of physical activity.

The pattern on the level of outdoor activity fluctuates with environmental
changes on temperature, humidity, rainfall, and daylight length since the amount
of time spent on outdoor leisure depends on the weather conditions [6][8][12].
The seasonal fluctuation of the outdoor physical activity affects health-related
outcomes of the elderly and disabled people [6][8][9]. For example, the studies
in [6][8][9][12] on the seasonal variation of blood cholesterol show that the sea-
sonal variation of total physical activity levels in metabolic equivalent (MET)-
hour/day is the range of 2.0-2.4 MET · h · d−1 in men and women ages 20-70
year [8]. In the northern regions of USA, average total cholesterol peaks in men
during the month of December and in women during the month of January
when physical activity levels are lower [9]. This suggests that fluctuations on
levels of physical activity across seasons may influence health-related outcomes
positively or negatively [6][8]. Since the health-related outcomes fluctuates with
environmental variations on seasons, controlling level of indoor physical activity

Table 1. Leading causes of death in chronic disease in the Unite States, 2005 [7][10]

Chronic Disease Number of Deaths Percentage(%)
Diseases of the heart 652,000 40

Cancer 559,000 34
Stroke 144,000 9

Chronic respiratory disease 131,000 8
Diabetes mellitus 75,000 5
Alzheimer’s diseas 72,000 4
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adapting to conditions such as weather is conducive to maintaining better health
state of the elderly and disable people.

For estimating levels of the indoor physical activity, the vital signs of walk-
ing (footsteps), gait pattern and posture are frequently measured via a sensor
network-based environment. However, some sensors such as vision sensor and
microphone may entail privacy problem despite high security levels of the sensor
network itself.

For sensing user location in a smart home environment, we have adapted an
unencumbered approach we refer to as smart floor localization and tracking [24].
This approach requires raised flooring (residential grade raised floor) and uses a
grid of pressure sensors conditioned for use with psi of human body weight. The
smart floor has been deployed at the Gator Tech Smart House (GTSH) [22][23],
a real world house that is an assistive environment for R&D in use of pervasive
technology for successful aging. The smart floor approach has several drawbacks
including high deployment cost (due to required labor for wiring and connecting
the sensors), and high complexity of the wiring and connections. The smart floor
is also incapable of locating or discerning the locations of more than one user in
the house.

In this paper, MEMS accelerometer sensors are considered as a superior tech-
nology for location sensing and estimation of indoor physical activities. The
MEMS accelerometers are mounted on the floor along side the walls - a con-
straint that simplifies deployment and that requires no home modifications. The
MEMS accelerometers are networked and connected to the smart home com-
puter using the Atlas sensor platform technology [20][21]. The sensors measure
vibrations induced by physical activities such as walking, opening and closing
doors, washing, eating a meal, cooking, sleeping and watching TV, among other
activities. The output of the accelerometers includes various noises caused by
not only home appliances such as washing machine and refrigerator with rotator
but also vehicles passing by the house. Also, TV and radio may produce induced
noise by loud sound pressure. Table 2 shows some noise sources and spectral
bands in a smart home environment.

The level of human activity can be manifested by the level of energy expen-
diture. That is, high level of human activity means that the energy expenditure
should be large. For example, a brisk exercise generates forceful large swing
motions in the legs, which results in footstep vibration with large magnitude.
Therefore, levels of human activity can be estimated from the footstep vibration
signal. Table 4 shows energy expenditure for some activities of daily living.

Table 2. Noise source and spectral bands

Source Spectral Band [Hz]
Vibration by sound pressure from TV and radio 10-22000

Vibration by home appliances with rotator 10-500
Road noise by vehicle 30-60

Impulsive noise induced by closing doors Larger than 10
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With the purpose of developing a smart home-based healthcare system for
the elderly and disabled people, this paper deals with the estimation of energy
expenditure, localization of footstep sources, extraction of statistical parameters
on daily living pattern, and identification of pathological gait pattern, based on
connected MEMS sensors, which measures floor vibration induced by footstep
on human activity. The purpose of this study is to use a MEMS sensor for
localizing footstep source and computing correlation between the level of energy
expenditure and the level of floor vibration. In this paper, a footstep vibration is
modeled as a seismic signal composed of P-wave and S-wave, and mathematical
analysis for localization is conducted based on a least square error method that
fits a line of direction, in which 3 projected signals on acceleration to the x-axis,
the y-axis and the z-axis are used for line fitting.

Table 5 shows some health-related information and outcomes easily obtainable
from footstep localization and tracking. For example, a continuous monitoring
based on tracking makes it possible to promptly detect a fall of a frail elderly
person.

2 Footstep Signature and Gait Pattern

A person walking on a floor generates a train of impulsive impacts, as the foot
hits the floor, which propagates through the floor and produces a footstep vibra-
tion as shown in Fig. 1(a), which depends on structural dynamics and material
characteristics of the floor in the house [1][2][3]. As shown in Fig. 1(b), a footstep
movement is divided into two motion phases, which result in two characteris-
tic spectral bands in the vibration responses of footstep as shown in Fig. 1(c).
The footstep force normal to the supporting surface produces a low-banded sig-
nal below 500 [Hz] [1][2][3]. On the other hand, the tangential friction force
generated by dragging the foot produces a high-banded signal above 1 [kHz]
up to ultrasonic spectral range [1][2][3][4][5]. Rhythmic human activities, such
as walking, dancing and aerobic introduce a distinct harmonic structure with
quasi-periodicity to the resulting vibration responses of footstep. The harmonic
structure includes valuable information for studying gait pattern.

The time-frequency representation of footstep vibration signal reveals some
information on temporal and spectral variations of footstep and gait pattern.
In general, a measured footstep vibration is contaminated by various noises.
To clean the measured noisy signal, we can use the variable bandwidth filter,
which suppresses noise between peaks without damaging peaks and introducing
spurious signal in time-frequency domain. Since walking is one of the most im-
portant human activities, studying gait pattern is critical to the monitoring of
ambulatory events in the elderly and disabled people [15][17]. Assessing different
walking patterns can provide valuable information regarding an individual’s mo-
bility, energy expenditure and stability during locomotion [15][[17]. Classification
on different walking patterns provides useful information leading to further un-
derstanding of both gait pattern and an individual’s energy expenditure during
daily living [15][17].
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Fig. 1. Human footstep signal. (a) Time-history of vertical acceleration. (b) Two phase
motions and corresponding footstep signal. (c) Fourier spectrum.

Patients with diabetes and peripheral neuropathy exhibit gait instability
[15][16][17]. Gait unsteadiness has a strong association with depressive symptoms
[15][16][17]. Abnormal walkers try to adapt a slower walking speed, shorter stride
length, and longer double support time than normal walkers. Similar gait pat-
terns are observed in patients with diabetes and peripheral neuropathy [15][17].
While patients with diabetes adapt a more conservative gait pattern to make
them feel more stable, they remain at high risk of falls and injuries during daily
activities [15][17].
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3 Footstep Source Localization

In health monitoring in smart homes, it is important to obtain information on
indoor location of a resident. For example, tracking indoor location is conducive
to discriminating a fall of the elderly and disabled if positions of furniture such
as couch and bed are known. Also by locating the user, the smart house can
better support the user needs by activating certain monitoring and assistive
applications that are location and area specific. Table 3 shows some available
tools for localizing indoor positions of a subject. In this paper, we consider
MEMS accelerometer to localize footstep source.

Table 3. Comparison of indoor localization tools

Source Information to be Extracted Difficulty
Speech and sound 2D position Shade, reverberation, privacy

Active sonar 2D position, orientation Shade, reverberation
IR LED 3D position, orientation Shade, cost
UWB 3D position, orientation Shade, harmfulness

Vision, constellation 3D position, orientation Complexity, illumination, privacy
Footstep vibration 2D position Weak signal, space variance

Table 4. Energy expenditure in activity, 160 lbs body mass [14]

Activity Energy Expenditure [kcal/hr]
Sleeping 70

Lying quietly 80
Sitting 100

Standing at ease 110
Watching TV 110
Conversation 110
Eating meal 110

Strolling 140
Playing violin or piano 140

Housekeeping 150
Walking dog 316
Walking brisk 422

On a floor, vibration signature of human footstep is a kind of seismic wave,
which is induced by walking motions. An impact on a floor generates a vibration,
which propagates like seismic wave as shown in Fig. 2. Generally, the footstep vi-
bration is composed of two kinds of waves. One is P-wave whose particle motion
is parallel to the propagation direction of wave. The other is S-wave whose par-
ticle motion is perpendicular to the propagation direction of the wave. A tri-axis
MEMS accelerometer can measure projected versions in terms of acceleration
on the P-wave and the S-wave with respect to the x-axis, the y-axis and the
z-axis respectively. For localization of footstep source, we can use three kinds
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Sensor1

Sensor2 Sensor3

Fig. 2. Propagation of footstep vibration wave

of physical quantities on amplitudes, arrival time differences and directions of
particle motion on vibration as follows:

– Based on amplitude
- Using triangulation

– Based on arrival time difference
- Using cross correlation between amplitude signals

– Based on direction of particle motion
- Using P-wave and S-wave vectors

When the decay characteristic on the wave amplitude is known, the trigonomet-
ric measure produces estimation on the position of footstep source if we use 3
amplitudes that are measured simultaneously at different places. Also, if we know
the propagation speed of the wave, cross correlation of two measured signals at
different places produces estimation on the position. Generally, the propagation
speed of footstep vibration is larger than 1500 [m/sec]. If the speed of the wave
does not depend on the amplitude of the wave, the wave equation that describes
the vibration is linear. Therefore, at angular frequency ω = 2πf , a zero-state
response vector A(r, t; ω) = [Ax(r, t; ω) Ay(r, t; ω) Az(r, t; ω)]T for a footstep is
represented by

A(r, t; ω) =
∫ r

rs

H(r, σ, t; ω)F(σ, t; ω)dσ, (1)

where r = (x, y, z) is a position on the space domain and F(r, t; ω) is a 3x1
footstep force vector as

F(r, t; ω) = [Fx(r, t; ω) Fy(r, t; ω) Fz(r, t; ω)]T (2)

and H(r, t; ω) is a 3x3 transition matrix that describes the propagation charac-
teristics of the floor vibration as

H(r, t; ω) =

⎡⎣H11(r, t; ω) H12(r, t; ω) H13(r, t; ω)
H21(r, t; ω) H22(r, t; ω) H23(r, t; ω)
H31(r, t; ω) H32(r, t; ω) H33(r, t; ω)

⎤⎦ . (3)
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Table 5. Information obtainable from localization

Information and Outcome Type Observing Interval
Fall Strength, tracking Less than a half hour

Variation on living pattern Tracking More than one month
Variation on gait pattern Strength, tracking More than one month

Indoor activity level Strength, tracking One day
Personal hygiene Tracking One day

Habit on eating meals Tracking Less than three hours

In general, a house floor is a non-isotropic inhomogeneous elastic medium of
seismic waves. For example, a floor is a space-variant dynamic system when
some furniture and facilities are on the floor. If a floor has a space-invariant
property, that is, a floor is an isotropic homogeneous elastic medium, the matrix
H(r, t; ω)becomes diagonal. An inverse Fourier transform of A(r, t; ω) on the
frequency domain produces therefore a time-history of 3x1 vector signals on
acceleration.

Figure 3(a) shows a MEMS accelerometer located at r = (0, 0, 0) and a foot-
step source at rs = (xs, ys, zs) on the x-y plane, that is, on the floor. A vibration
signature of footstep is composed of P-wave and S-wave. A particle subjected
to P-wave moves in the direction that the wave is propagating. P-wave does not
generate the vertical acceleration, that is, the z-axis component of acceleration.
S-wave moves a particle up and down, or side-to-side, perpendicular to the di-
rection that the wave is propagating. As shown in Fig. 3(b), the footstep source
position ra = (xs, ys, 0) can be estimated from the horizontal accelerations, that
is, the x-axis and the y-axis components of acceleration, induced by P-wave and
S-wave in which directions of particle motion are parallel to the x-y plane.

Let a(t) be the measured output from a tri-axis MEMS accelerometer as
follows:

a(t) = [ax(t) ay(t) az(t)]T

= a(t) + n(t), (4)

where a(t) is a signal on acceleration induced by human activities and n(t) is a
white noise. In general, the P-wave is leading than the S-wave. Also, the P-wave
and the S-wave are perpendicular each other.

As shown in Fig. 3, at a time instance t, for the P-wave, we obtain two
equations as follows:

y = (py1(t)/px1(t))x
= k1x,

(5)

and

y = (py2(t)/px2(t))x − (py2(t)/px2(t))d
= k2x − k2d.

(6)

Then, the footstep position rs is represented as follows:
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Fig. 3. Configurations for footstep localization. (a) P-wave and S-wave, and corre-
sponding particle motion directions. (b) Localization of footstep source.

rs = (k2d/(k1 − k2), k1k2d/(k1 − k2), 0). (7)

Using the measured time series on the P-wave, the slopes k1 and k2 are estimated
by the least square approximation on line fitting. That is,

k1 =
E[px1(t)py1(t)] − E[px1(t)]E[px1(t)]

E[p2
x1(t)] − (E[px1(t)])2

(8)

and

k2 =
E[px2(t)py2(t)] − E[px2(t)]E[px2(t)]

E[p2
x2(t)] − (E[px2(t)])2

, (9)

where E means the expectation operation on the measured time series of the
P-wave. Also, for the S-wave, we obtain two equations as follows:

y = (sy1(t)/sx1(t))x (10)

and
y = (sy2(t)/sx2(t))x − (sy2(t)/sx2(t))d. (11)

As shown in Fig. 3, the S-wave is perpendicular to the P-wave. Using the rotated
version of (10) and (11), respectively π/2[rad] clockwise and π/2[rad] counter-
clockwise, we can obtain a representation on the footstep position rs from the
S-wave.
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4 Estimation of Energy Expenditure Level

The quantities a(t) and n(t) in (4) are random variables. Therefore, we obtain
that

E[a(t)a(t)] = E[a(t)a(t)] + E[n(t)n(t)] + 2E[a(t)n(t)], (12)

where E means the expectation operation for a random variable. We assume that
a(t) and n(t) are uncorrelated each other and whose expectation values are equal
to zero. Also, we assume that an individual’s energy expenditure is proportional
to the energy of vibration signal measured by a MEMS accelerometer sensor.
Then, from the first assumption, we obtain that

E[a(t)n(t)] = 0.

Therefore, (12) is represented by

E[a(t)a(t)] = E[a(t)a(t)] + E[n(t)n(t)]. (13)

Let LA denote an individual’s energy expenditure by activities. In general, the
quantity E[a(t)a(t)] is a function of the energy expenditure LA by human ac-
tivity, that is,

E[a(t)a(t)] = f(LA). (14)

Then, from the second assumption, we obtain a linear relation as follow:

E[a(t)a(t)] = αLA, (15)

where α is a constant. Combining (13) and (15), we obtain that

E[a(t)a(t)] = αLA + E[n(t)n(t)]. (16)

As another form, we obtain that

αLA =
1
α

E[a(t)a(t)] − 1
α

E[n(t)n(t)]. (17)

In (16) and (17), N0 = E[n(t)n(t)] represents noise power. If we know the
constant α and the noise power E[n(t)n(t)], then the energy expenditure LA

can be computed from (17) since E[a(t)a(t)] is known. The constant N0 =
E[n(t)n(t)] can be estimated from a(t) = a(t) + n(t) if a(t) is equal to zero.

5 Variation of Gait Pattern

Negative correlations between age and walking speed, and between age and stride
length are observed in the elderly people [18][19]. The relative stance phase
duration is correlated positively with age within the elderly people [18][19]. Slow
speed is related to low daily activity, reduced muscle power, and diminished
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Fig. 4. Human footstep signature. (a) Vertical footstep force. (b) Parameters on one
cycle footstep signal.

Table 6. Parameters on gait pattern

Parameter Description
Duration of stance in sec SR, SL

Cycle duration in sec CD = TR + SR + TL + SL

Cycle duty CR = (TR + SR)/(TL + SL)
Normalized stride interval NSR = TR/CD, NSL = TL/CD)
Energy of footstep signal ER, EL, ET = ER + EL

Normalized energy NER = ER/ET , NEL = EL/ET

Velocity, footstep/sec VR = 1/(TR + SR), VL = 1/(TL + SL)

balance ability [18][19]. Long stance phase duration and slow speed in the elderly
could be an adaptive characteristic in response to impaired balance [18][19].

Figure 4 shows human footstep signature on footstep force and some parame-
ters. As shown in Fig. 1(b), the two phase motions produces two distinct vibra-
tion, one is generated by the heel motion normal to the ground and the other
is generated by dragging motion tangential to the ground. Parameters, such
as duration of stance, footstep cycle and footstep energy, are used for observing
variation of gait pattern. From footstep signal (4), we compute an analytic signal
to obtain amplitude of (4) as follows:

q(t) = a(t) + iH [a(t)], (18)

where H is the Hilbert transform and q(t) = [qx(t) qy(t) qz(t)]T . Then, we
compute amplitude |qz(t)|, as shown in Fig. 4(b). Table 6 shows parameters,
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ZigBee Communication Device

Electric Power Outlet

ATLAS-Based Interface
Vibration Sensing & Communication(a)

ADC
10 kHz, 10bits

ATLAS Processing 
Module

ATLAS ZigBee
Communication 

Module

ATLAS

ZigBee-to-USB 

Gateway

ATLAS

ZigBee

Router

Computer

SPI
Interface

MEMS Accelerometer

3.6 V
Analog Tri-axis

3.6 V
Digital USB Interface

Wireless Connection
140 kbps

(b)

(c)

Fig. 5. Experimental setup. (a) A networked MEMS accelerometer attached on the
bottom of the wall. (b) Block diagram of the networked MEMS accelerometer. (c)
A smart house with network-based MEMS accelerometers connected using the Atlas
sensor platform [20][21].
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which are used for identifying variation of gait pattern in this paper. Duration
of stance, stride interval and energy on right and left foot motion are considered.
It can be seen in the amplitude in Fig. 4(b) that the number of walking steps
can be easily calculated by using thresholds. The threshold value is chosen as
one third of the maximum peak within that frame.

6 Statistics on Daily Living Pattern

Figure 5 shows experimental setup for extraction of statistical parameters on
daily living pattern. The relation (17) between energy expenditure and indoor
activity level enables us to extract parameters for daily, weekly and monthly
charts describing an individual’s activities. Based on 24-hour continuous mon-
itoring, generation of statistics on temporal and spatial activity level helps a
medical doctor to write exercise prescription of weakness and strength on ac-
tivities to promote personal health concerns. The difference between exercise
prescription recommended by a medical doctor and actual activity level can be
estimated based on energy expenditure level and staying time in each space such
as bedroom, living room, toilet and kitchen, and on statistics of onset and end
of staying interval. Two-dimensional activity map of density on staying time in
each living space with temporal information can be constructed for identifying
some variation on living pattern.

7 Conclusions and Further Studies

In this paper, a mathematical formulation on localizing footstep source is con-
ducted in which footstep vibration signal is modeled as a seismic wave composed
of P-wave and S-wave, where footstep vibration is measured by tri-axis MEMS
accelerometers. Since particle motions on P-wave and S-wave include some in-
formation of propagation direction, the mathematical formulation enables us to
estimate position of footstep source if the number of MEMS sensors for mea-
surement is more than two. To reduce estimation error, the least square error
method is used for fitting directional line from footstep source to MEMS sensor
location.

Based on MEMS accelerometer, also, we analyze a relation between energy
expenditure level and indoor activity level, with the purpose of maintaining
personal health conditions among the elderly and disabled people regardless of
seasonal variations on weather that affects on personal health-related outcomes
such as blood pressure and cholesterol levels.

The long-lasting illness and disability caused by chronic disease decreases
quality of life and restricts activities in the elderly and disabled people. The
number of steps taken per day is correlated negatively with age in the elderly.
Although the elderly are very active, their daily activity is appeared to reduce
with age. Slow walking speed is related to daily activity. Long stride length and
high speed may be related to muscle power. The main purpose of the system
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under considering is on estimation of energy expenditure level to promote per-
sonal health condition with the help of some networked sensor environments. In
the system, the variations on living pattern are measured for on time detection
of ambulatory health conditions, based on the statistical parameters extracted
from footstep signature and tracking footstep source. Another purpose of the sys-
tem is to collect continuously some basic bio-signals for transferring to medical
doctor.
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Abstract. We present novel algorithms to infer movement by making use of
inherent fluctuations in the received signal strengths from existing WLAN in-
frastructure. We evaluate the performance of the presented algorithms based on
classification metrics such as recall and precision using annotated traces obtained
over twelve hours effectively from different types of environment and with dif-
ferent access point densities. We show how common deterministic localisation
algorithms such as centroid and weighted centroid can improve when a motion
model is included. To our knowledge, motion models are normally used only in
probabilistic algorithms and such simple deterministic algorithms have not used a
motion model in a principled manner. We evaluate the performance of these algo-
rithms also against traces of RSSI data, with and without adding inferred mobility
information.

Keywords: Motion inference, Localisation, WLAN, RSSI.

1 Introduction

Ubiquitous computing is emerging as an exciting new paradigm with a goal to provide
services anytime anywhere. Context is a critical parameter of ubiquitous computing.
Ubiquitous computing applications make use of several technologies to infer different
types of user context. The context cue that we are interested in is users’ motion being
either “moving” or “still” and location. The desire of using WLAN infrastructure par-
ticularly to derive context is very strong, both from the perspective of the availability of
the clients device and that of the infrastructure – nearly all smart phones, PDAs, laptops
and many other personal electronic devices have a built-in wireless interface.

Looking at the applicability and usefulness of motion detection, WLAN radio by
itself can sense motion, and it can potentially be also part of the sensor ensemble to im-
prove recognition performance. Apart from inferencing activity of the user itself, it has
been showcased that such motion inference is useful for efficient radio fingerprinting
solutions [2]. Recently movement detection was shown to adaptively switch between
passive sniffing and active scanning to allow positioning and to minimise the impact
on communications [3]. In this paper, we show yet another use of how it can improve
localisation accuracy. The applications that are described above do not necessarily ben-
efit from accurate and complete information about the mobility status. For the purposes
described above it is sufficient to know whether the user is moving or not.

R. Fuller and X.D. Koutsoukos (Eds.): MELT 2009, LNCS 5801, pp. 163–182, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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This paper examines the results of several motion and location sensing algorithms
that operate on RSSI data gathered from existing WLAN infrastructure. The main ad-
vantages of the proposed algorithms are: (i) deducing user’s context without a need
for additional hardware, and (ii) preserving user privacy, as context inference can be
performed locally at the client device.

Contributions: The key contributions of this paper are as follows:

– A detailed characterisation of WLAN RSSI data, exposing a rich set of features
both in time and frequency domain to gather mobility information. Our analysis in
both temporal and spectral domain, results in a conclusion that “when a device is
moving, signal strengths of all heard access points vary much greater compared to
when a device is still and the number of detectable samples from access points vary
considerably when the device is moving”.

– We present novel algorithms to infer movement that makes use of inherent fluctu-
ations in the signal strength. We evaluate the performance of the presented algo-
rithms thoroughly based on classification metrics such as recall and precision from
annotated traces (typically groundtruth recorded for every second) obtained over
twelve hours effectively from different types of environment and with different ac-
cess point densities.

– We show how a common deterministic location algorithm such as centroid and its
variant can improve its accuracy when a motion model is included. To our knowl-
edge, a motion model is normally used only in probabilistic algorithms and such
simple deterministic algorithms have not used a motion model in a principled man-
ner. We evaluate the performance of algorithms against traces of RSSI data col-
lected from different environments, with and without adding mobility information
inferred from the mobility detection algorithm.

2 Related Work on Motion Sensing

Randell et al. [9] demonstrated the possibility of distinguishing various states of move-
ment such as walking, climbing and running using a 2D accelerometer. Patterson et al.
[6] take the velocity readings from GPS measurements and infer the transportation
mode of the user, for instance walking, driving, or taking a bus using a learning model.
The model learns the traveller’s current mode of transportation as well as his most likely
route, in an unsupervised manner. It is implemented using particle filters and is learned
using Expectation-Maximisation. The learned model can predict mode transitions, such
as boarding a bus at one location and disembarking at another.

Krumm et al. [4] classified a user as either moving or still based on the variance of
a temporally short history of signal strength from currently the strongest access point.
This classification had many transitions, hence it was smoothened over time with a
two-state hidden Markov model resulting in an overall accuracy of 87%.

Anderson et al. [1] use GSM cellular signal strength levels and neighbouring cell
information to distinguish movement status. The classification of the signal patterns is
performed using a neural network model resulting in an average classification accuracy
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of 80%. The authors trained the neural network initially and demonstrated a proof of
concept by implementing it at run time on a cell phone. However, the initial training
did not work in all the environments as signal strength fluctuations were different in
different environments. Sohn et al. [10] published a similar technique for detecting the
users’ motion using signal traces from GSM network. Their motion detection system
yields an overall accuracy of 85%. They extracted a set of 7 features to classify the user
state as either still, walking, or driving.

Our work on motion detection algorithm is similar to the work on Anderson et al.
[1] and Sohn et al. [10], but we look into variation in the WLAN RSSI observed across
several access points as opposed to GSM signals.

3 Temporal and Spectral Characterisation of Received Signal
Strength (RSSI)

In this section we investigate some of the properties showcased by RSSI, particularly
how it changes over time when the user is still and moving, both in static and dynamic
environments. By static environment, we mean when the device is placed in a relatively
quiet environment (e.g., by logging measurements at off-peak hours) and dynamic en-
vironment refers to an area affected by people moving about (e.g., canteen during lunch
hours).

Figure 1 shows an example of temporal characteristics – each of the lines represent
signal strength received from a specific access point. We can observe from the figure,
only some of the access points show a clear distinction between the “still” and “mov-
ing” periods – specifically the weaker signals (RSSI <−75 dBm) do not convey any
significant difference for both still and moving, hence we have used only the stronger
access points for the analysis presented below.

As for whether the variation in the signal strength is influenced more by the changing
environment around a static device or by movement of the device itself, Fig. 1 clearly
shows that the signal variation is much more prevalent due to the device movement
rather than to the dynamics of its environment.

Apart from signal strength fluctuations, we do observe a lot of variations in the num-
ber of samples received within a particular observational window (e.g., window of 8

Fig. 1. This figure illustrates two minutes of “still-moving-still” as measured in a static environ-
ment and two minutes of “moving-still” measured in a dynamic environment
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(a) Still

(b) Moving

Fig. 2. Variations in the number of samples received when (a) Still and (b) Moving. Each log
(with an average duration of 7–8 minutes) is split into windows of 8 samples and the results are
averaged together.

samples) as shown in Figure 2. It is particularly interesting to note that, at a fixed loca-
tion the number of signal strength samples received from the same access point over a
window of reading fairly remains closer to 85% on an average. This is reasonable, as
in one scan we typically do not hear all the access points, so one or two missing signal
values is still relatively acceptable when the device is still. As opposed to this, in the
case of moving, the number of signal strength samples received from the access point
varies as the number of access points detectable at a place varies greatly as the user
moves. Each of the bins in the Figure 2 represents the average result of the number of
samples seen from all the detected access points over all windows of 8 samples from
one distinct log. In total for still and moving, we collected over 90 different logs with
average duration of log spanning for about 7–8 minutes.

Looking at the spectral characteristics (Figure 3(a)) reveals that as a rule of thumb,
the more concentrated the time domain, the more spread out the frequency domain. In
particular, if we “squeeze” a function in time, it spreads out in frequency and vice-versa.
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Fig. 3. (a). Schematic representation of a rectangular pulse in time and frequency domain, short
duration pulses produces a large bandwidth (b). Full Width Half Maximum, corresponding to
peak width at 50% peak height. tp is the pulse period, and fmax is the peak at maximum. X1 and
X2 are used for calculating FWHM (explained later in Section 4.2).

(a) Temporal variations of 8 samples over a window, when the device is still

(b) Spectral variations of 8 samples over a window, with a 512-point FFT when the device
is still

Fig. 4. Temporal and Spectral characteristics of a window of 8 samples of the strongest 7 access
points for the case of “still”. (a) The signal taken is a subset of the signals that are represented in
still phase in Figure 1 for time varying between 12–32 seconds, and corresponding FFTs in (b).
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(a) Temporal variations of 8 samples over a window, when the device is moving

(b) Spectral variations of 8 samples over a window, with a 512-point FFT when the
device is moving

Fig. 5. Temporal and Spectral characteristics of a window of 8 samples of the strongest 7 access
points for the case of “moving”. (a) The signal taken is a subset of the signals that are represented
in moving phase in Figure 1 for time varying between 66–86 seconds, and their corresponding
FFTs in (b).

Also Figure 3(b) illustrates Full Width at Half Maximum (FWHM) that corresponds to
peak width of the FFT signal at 50% peak height.

Figures 4(a) and 5(a) present temporal variations in the signal strength observed over
a short window of 8 samples (approximately 20 seconds duration) from the strongest
seven heard access points when the device is still and moving and the corresponding
frequency domain representation is shown in Figures 4(b) and 5(b). It is evident that al-
though signal strength varies even while the user is still, this variation is reflected in all
the heard access points uniformly as there is a well defined peak with a narrow spectral
width in the frequency domain from all the access points, despite the fact that there is
difference in the Fourier amplitude from each of the heard access point. But when the
user is moving, there is no well defined peak from all the access points in the frequency
domain indicating that variation in the signal strength happens more often and not in
all the heard access points in the same manner. Specifically, we observe the effect of
spectral broadening from a significant number of access points when the user is moving,
resulting in a wider full width at half maximum. This phenomenon happens mainly due
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to two reasons: (i) the variation in the signal strength is large in case of a moving user
and (ii) the number of access points detectable varies with distance resulting in too few
received samples from the access points. This confirms that both the temporal and spec-
tral analysis lead to the similar conclusions but give a different view of representation.
More detailed background information can be found in our earlier work [7].

4 Algorithms for Sensing Motion

In this section we present algorithms for sensing motion. We base the algorithms on the
observations presented in the previous section and categorise them into time domain
and frequency domain. All presented algorithms are based on “thresholding” applied to
a certain metric. We explain in Sec. 4.3 how these thresholds are obtained automatically.

4.1 Time Domain Algorithms

We evaluate four different metrics that we observe in the temporal domain to infer user
movement. As opposed to looking at one RSSI value, all the algorithms presented here
use RSSI observed over a window of readings (window size typically 8 samples).

AP Visibility. This is the simplest algorithm as it just uses the proportion of the time
that RSSI of a particular access point is observed within the observation window. For
classifying “moving” or “still” the observed proportion is calculated for each access
point and then averaged together. Depending on a (learned) threshold the algorithm de-
tects the state as either moving or still.

Spearman’s Rank Correlation Coefficient. We estimate the correlation coefficient
using Spearman’s Rank Correlation Coefficient (ρ) [11]. The rank correlation coeffi-
cient between any two measurements represents how closely the signals are ranked. It
takes values between −1 and 1. Values closer to 1 indicate that the measurements are
similar and hence the user is still and when the user is moving the values are lower.
The algorithm tracks Spearman’s ρ between the first and the last measurement in an
observation window as a metric to distinguish between moving and still states. Figure 6
presents how the rank correlation coefficient varies when the device is still and moving.

Standard Deviation. This algorithm uses mean standard deviation (SD) over all the
heard access points as a metric to distinguish between still and moving states. Within
the observation window we measure the SD between the measurements for each de-
tected access point, and use the average SD over all heard access points for inferring
the motion status. Figure 7 presents how the average SD varies when the device is still
and moving.

Euclidean Distance. This algorithm determines the Euclidean distance between the
first and last measurements within an observation window. It is based on the expecta-
tion that the average Euclidean distance between WLAN measurements is proportional
to the state of the movement. Figure 8 illustrates the average Euclidean distance be-
tween WLAN measurements and shows that the average Euclidean distance between
WLAN measurements are proportional to the state of the movement.
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Fig. 6. Spearman’s rank correlation coefficient when still and moving, for outdoor (left) and in-
door (right) environments. The difference in the rank correlation coefficient remains the same for
both outdoor and indoor.

Fig. 7. Mean standard deviation when still and moving, for outdoor (left) and indoor (right) envi-
ronments. Here we can observe a considerable difference in the SD values between the measure-
ments logged from an outdoor and indoor environment.

4.2 Frequency Domain Algorithms

We now present three novel motion detection algorithms which are inspired by our ob-
servations [7] in the frequency spectrum of the RSSI.
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Fig. 8. Euclidean distance when still and moving, for outdoor (left) and indoor (right) environ-
ments. Here we can observe a considerable difference in the ED values between the measurements
logged from an outdoor and indoor environment.

Full Width at Half Height (FWHM). The RSSI in time series is converted into the
frequency domain using Fast Fourier Transformation (FFT). For calculating the FWHM
we let the algorithm find the width of the main peak in the FFT signal at 50% of the
maximum amplitude, for each of the observed access points. Typically, there is no value
at exactly this amplitude, hence we linearly interpolate between the two points nearest
to it on either side. For classification, this algorithm uses the FWHM of the main peak
of the FFT for a given window of samples and takes the median over all the access
points observed in that window.

FWHM Count. This algorithm is very similar to the previous algorithm. It essentially
tracks how many access points have a spectral width (i.e., FWHM) that is exceeding a
certain threshold within the window of readings. The FWHM is calculated as explained
above. Whenever an entry (access point) exceeds the FWHM threshold, the algorithm
treats this as an outlier and increments a counter. If the counter exceeds a certain thresh-
old relative to the total number of heard access points within the observation window,
the algorithm returns the user state as moving, otherwise it returns still.

Low-Amplitude-Frequency Count (LAFC). A signal that is not varying much in the
time domain has a frequency spectrum with a narrow peak around 0 and very low am-
plitudes at higher frequencies. In contrast, a signal that significantly varies in the time
domain has a broader frequency spectrum, i.e., the peak around 0 is wider and ampli-
tudes at higher frequencies are not as low as for less varying signals.

Based on this observation we use a novel metric, (low-amplitude-frequency count or
LAFC) that distinguishes between “still” and “moving”. The algorithm operates on the
FFT signal and effectively counts the number of frequencies that have low amplitude
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Fig. 9. Distribution of low-amplitude-frequency count (LAFC) for “still” and “moving” classes
for a typical training data set (containing more than 12,000 samples in total)

(based on earlier experiments we define “ low amplitude” as less than 10% of the maxi-
mum amplitude in the FFT to achieve the best results). If this number exceeds a certain
threshold, the motion status is set as “moving”, otherwise as “still”. The LAFC is de-
termined for each heard access point within the observation window and then averaged
over all heard access points.

4.3 Threshold Learning

Each of the algorithms described above uses a certain threshold to decide whether the
user’s device is still or moving. As these thresholds are sensitive to several factors (e.g.,
environment, hardware, operating system), we use part of our data set for learning the
respective thresholds and the remaining part of our data set for determining the classi-
fication accuracy using the learned threshold. We use five-fold cross validation, where
a data set is partitioned into five folds, and five training and testing iterations are per-
formed. On each iteration, four folds form a training set and one fold is used as a testing
set. To illustrate our threshold scheme, let us consider finding the right threshold for the
LAFC metric described in Sec. 4.2. The threshold is derived automatically from a train-
ing data set (containing more than 12,000 samples in total) using the following method.

1. For each observation window in the training set, the LAFC is calculated.
2. Then, the distributions for both classes (“still” and “moving”) are determined. See

Figure 9 for an example distribution histogram. If a threshold is applied anywhere
on the LAFC axis, typically some of the “moving” observations will lie on the
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Fig. 10. The amount of false positives (“still” classified as “moving”) and false negatives (“mov-
ing” classified as “still”) as well as their weighted sum as a function of the threshold for the LAFC
metric

“still” side (in this case the right hand side) and some of the “still” observations
will lie on the “moving” side (in this case the left hand side); these are the false
negatives and false positives.

3. Our method now places the threshold at a position where the weighted sum of
false positives and false negatives is minimal. Figure 10 shows the amount of false
positives (“still” classified as “moving”) and false negatives (“moving” classified as
“still”) as well as their weighted sum as a function of the threshold. For the LAFC
metric, values below (i.e., to the left of) the threshold are classified as “moving”
and values above (i.e., to the right of) the threshold as “still”.
We can see that for this particular part of the data set the best threshold is 1.14
yielding a total classification error of about 9% for the training set.

4. We then use this learned threshold to calculate the classification accuracy for the
remaining part of the data set (i.e., for the test set). Classification accuracies for all
algorithms are reported in the next section.

5 Motion Inference Performance Evaluation

5.1 Data Collection

Two members of our research team collected WLAN network traces, each data collector
carried an HP IPAQ pocket PC running a spotter application for recording readings from
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Measurment Fri May 25 12:14:44 CEST 2007

25-05-2007 12:14:45 149 Start Sequence:Waaier
25-05-2007 12:14:45 149 Motion:Moving
000136079de0,-90
000cf6164f6c,-90
00116b267fd8,-73
0001e3d43a8d,-53
0001e3da0a55,-90
00147f54a4ff,-74

Fig. 11. Snapshot of (left) custom diary application and (right) logged ground truth with measured
RSSI readings

nearby access points and logging them. Data collectors recorded their mobility activi-
ties using a custom diary application running on the PDA that allowed them to indicate
whether they were walking, driving, cycling or staying still (refer Figure 11). Data col-
lection was performed at common places such as city centre, parking lot, university
campus and indoor at the office, canteen and home. In all, the spotter logs contained
WLAN traces of about 12 hours duration with annotated ground truth. The unlabeled
part of the logs were filtered out in order to measure the accuracies of the presented al-
gorithms accurately. Approximately 50% of the logs collected correspond to stationary
phase and the remaining 50% correspond to activities performed on the move. Sam-
pling the radio environment at approximately 0.4 Hz, the 12 hours of logs correspond
to roughly 16,000 samples. The logs also include different access point densities (the
least number of access points in the data collected was 0; this happens when no access
point is heard during a particular scan, in this case all our algorithms maintain the last
inferred motion status until one or more access points are heard again).

5.2 Results and Discussion

We evaluate how accurately the presented time domain and frequency domain algo-
rithms can differentiate between moving and still states. Figure 12 shows a one-to-one
comparison of the results obtained from both time and frequency domain algorithms
tested against the same data sets.

In order to thoroughly characterise the classification performance, we use the met-
rics precision and recall. Precision for a class is the number of true positives (i.e., the
number of items correctly labelled as belonging to the class) divided by the total num-
ber of elements labelled as belonging to the class (i.e., the sum of true positives and
false positives, which are items incorrectly labelled as belonging to the class). Recall
in this context is defined as the number of true positives divided by the total number
of elements that actually belong to the class (i.e., the sum of true positives and false
negatives, which are items which were not labelled as belonging to that class but should
have been). Figure 12 shows the precision and recall of all the 7 algorithms that we
discussed in section 4, using five-fold cross validation for the selection of training and
test data. The classification results are averaged together for getting the final result.
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(a) Comparison of the overall precision and recall

(b) Comparison of the precision and recall for still

(c) Comparison of the precision and recall for moving

Fig. 12. Performance of motion detection algorithms achieved by 3 frequency domain and 4 time
domain algorithms: FWHM, FWHM-count, Low FFT, AP seen, Std dev, Rank, Euc. dist. over 12
hours of WLAN traces collected. The error bars indicate the variations in the accuracy depending
on which training and test sets were used in each iteration.

The error bars in Figure 12 indicate the variations in the accuracy depending on
which training and test sets were used in each iteration. Further analysis (not reported
here) shows that the sensitivity of a particular algorithm does not only depend on the
variations in the learned thresholds observed among different folds, but also on the
underlying data itself.
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Looking at the results in general leads to the following conclusions – the perfor-
mance of the frequency domain algorithms show a better precision and recall than the
time domain algorithms. Nevertheless, it is interesting to note that simple count of the
number of observed access points achieves an overall accuracy of 86%. This accuracy
is similar to the one reported by Krumm et al. [4] using an algorithm based on the tem-
poral variation of RSSI. Of course it is hard to make one-to-one comparison among
algorithms when the data used for testing is different in both cases. But since we have
performed the evaluation for data collected from different environments and settings,
we do not expect any drastic difference in the performance, when testing on other data.

Comparing the different frequency domain algorithms, all the three algorithms –
FWHM, FWHM-count and LAFC results are comparable (91%–92%). Another impor-
tant aspect we observed is that generally the thresholds for the frequency domain met-
rics are not as sensitive to external influences as the ones for the time domain metrics
and some of the time domain metrics are particularly more sensitive.

The overall classification accuracies obtained with most time domain algorithms
(81%–86%) are comparable to the one reported by Sohn et al. [10] (85%). Although
Sohn et al. achieved this accuracy for a three state classification scheme and our results
are for two state classification, it is interesting to note that all our presented algorithms
use a single feature as opposed to Sohn’s work where 7 different features were used
in combination to train and test data. We expect that combining features will result in
better accuracy, at the cost of higher complexity. This is yet to be investigated.

It typically takes half an observation window for any metric to cross its threshold
during transitions between states. This is of course not surprising, because halfway the
window half of the samples will have a ground truth of “still” and the other half will be
“moving”. We can therefore interpret a classification at time t as the estimated motion
status for time t − 1

2Tw, where Tw is the length of the observation window.
Our frequency domain algorithms perform very well for all experimental settings by

achieving an overall classification accuracy of 92%, clearly outperforming all the other
motion inference algorithms. Fine tuning the threshold learning and/or incorporating
more features together might even further increase the accuracy. The results show that
we are able to distinguish between still and moving states with a high accuracy without
having to instrument a person with any additional sensors.

6 Localisation

In this section, we outline the localisation algorithms that operate on RSSI data. The
goal of our work is to demonstrate that algorithms which rely on only the location of ac-
cess points and a coarse estimate of the relative distance to the access points can benefit
from adding motion information that we presented above in a principled manner. Many
of the probabilistic approaches like particle or Kalman filtering use an inherent mo-
tion model to enable localisation and tracking. These algorithms work in a “predictor-
corrector” fashion, by weighing the filter model more heavily when the errors in the
raw measurement increase, thereby making the final estimates quite accurate. We have
used a similar approach but coupled to a simpler centroid algorithm and its variant. This
work is an extension of our earlier work [8], which also includes more background and
an overview of other related work on WLAN localisation.
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Our localisation algorithms are implemented using filter chains, which represent a
sequence of calculations performed on the RSSI measurements. We rely on the known
locations of the access points and other information such as their MAC addresses and
their transmit power settings. These access point data could either be managed as a
database residing in the network, or it could be a local configuration file in order to
minimise the network dependencies and also keeping in view of privacy. Obtaining this
information is easier when an accurate database of network access points is already
available. In literature, there exist many other ways such as war driving, stumbling to
obtain the neighbouring access point coordinates [5].

We use an exponential moving-average filter to reduce the effect caused due to the
noise and smoothen the received signal strength for the analysis presented here.

RSSIcurrent = α × RSSIprev + (1 − α) × RSSIcurrent (1)

Equation 1 states that the current RSSI value is a linear aggregate of the previous RSSI
value and an independent weighting factor α (0 ≤ α ≤ 1). The weighting for each older
observation decreases exponentially, giving much more priority to recent observations
while still not discarding the older observations entirely. We use α = 0.2. Automatically
determining the optimal α is part of our future work.

The core positioning algorithm is based on a weighted centroid approach. The dif-
ference between the normal centroid and weighted centroid is that it introduces vari-
able weights for each access point. Weighted Centroid uses the distance estimates to the
strongest access points in relation to each other. This is performed by assigning the loca-
tion of each of the few strongest access point a weight in the position calculation based on
the relative distance between those estimates. Obtaining absolute distances precisely be-
tween the access points and the mobile device to be located is harder due to the multi-path
reflections that are predominant to indoor environments. Hence algorithms that make use
of absolute distances retrieved from WLAN RSSI, such as based on trilateration perform
poor, especially when the access points are arranged in a collinear fashion.

We estimate the relative distances based on the transmit power of the access points
that are available and the RSSI values which typically correspond to the power at the
receiving end. Although the distance estimates are not accurate, it will give a cue on
which access points are relatively closer and hence to be used in the position estimation.
From the RSSI we use motion inference as explained earlier to detect the state of the
device as either still or moving. Depending on the state, we use two filter chains:

1. When the motion detection algorithm returns the state of the user as moving, we
employ a motion model which smoothens the final location estimates, by preventing
any large movements between two different time steps. The motion model filter
uses a maximum allowable distance, depending on the users walking speed (say
1.4 m/s) within a stipulated time frame. If the estimated travelled distance exceeds
the limit, the location is updated solely based on the motion model.

2. When the user is still, ideally the user’s estimated position must remain still at the
same point. But since the signal strength varies even at static location, the estimated
location often jumps even when the device is still. We therefore use a smaller value
for the maximum allowable distance (say 0.2 m) for the static cases and use a his-
tory of measurements to average the results together.
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Fig. 13. Cumulative distribution comparing the accuracy of four presented algorithms tested with
20 minutes trace of RSSI measurements

7 Experimental Evaluation

We compare the accuracy of the presented Weighted Centroid with the motion model
described above to that of other simple position estimation algorithms with and without
adding motion information. In total we have four algorithms to compare: (1) Weighted
Centroid with motion model (2) Centroid with motion model (3) Weighted centroid
without motion model and (4) Centroid without motion model.

The Centroid algorithm places the user on the geometric centroid of the strongest ac-
cess points that appeared on the current scan. Weighted centroid as we explained before
assigns specific weights to the access points based on the estimated relative distances.
Centroid with motion model essentially uses the same principle, but with movement
limits depending on the inferred motion status. The metrics we use for the evaluation
are the median accuracy, which indicates the accuracy reported by 50% of the readings
and the mean horizontal and vertical errors.

7.1 Data Collection

The experiments to assess localisation accuracy were performed in a five-storied univer-
sity building. Floors 2–5 have a dimension of 106 m × 14.5 m and have a similar layout
with a long corridor and many rooms and have four access points per floor that are
mounted on the ceiling and are placed in a straight line. The ground floor (refer Fig. 14)
has a different layout with a few additional access points covering the northern exten-
sion of the building and no access points covering the southern extensions. The transmit
powers of the access points are either 50 mW or 30 mW. The measurements were taken
from walking along all floors (some twice) from one end to the other, including the
stair cases at both ends. Data was recorded as one trace lasting approximately twenty
minutes, resulting in about 350 RSSI readings at 0.4 Hz. Since the same data was to be
tested with different algorithms, we logged the measurements and all the analyses were
done offline.
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Table 1. Tracking performance summary. All values shown pertain to the location results of the
“walking” data traces collected for about 20 minutes in a five-storied building, covering all the
five floors during the measurement period.

Mean Mean 50% conf. level (m) 75% conf. level (m)
Algorithm hor. error vert. error Horizontal Vertical Horizontal Vertical

Centroid 10.77 1.73 8.41 1.30 13.48 2.43
Weighted Centroid 8.53 1.51 6.87 1.34 9.74 1.84

Centroid (with motion) 9.01 1.84 7.49 1.47 12.47 2.42
Weighted Centroid (+ motion) 6.68 1.53 5.14 1.32 8.57 1.98

Ground Truth
Normal map clicking applications are error-prone when used on a small-screen device
such as a PDA. Hence, we followed a slightly different approach for registering the
ground truth locations. Measurements were logged using the same diary application as
used for recording the motion status. At crucial points in the path, such as corners and
stairs, the motion status was recorded explicitly so as to log insertion points where we
could manually insert the corresponding positions and we used an interpolation script to
obtain a ground truth location for each time stamp in the actual measurement log. This
worked well and essentially made the comparison easier as we could make a point-to-
point comparison between the location estimates and the ground truth.

7.2 Results and Discussion

We evaluate the four algorithms by computing the median accuracy (accuracy reported
by 50% of the readings). Table 1 summarises the overall results of the algorithms. With-
out adding motion, Centroid and Weighted Centroid report median accuracies of 8.41 m
and 6.87 m respectively. Adding motion improves these to 7.49 m and 5.14 m respec-
tively. This is because the motion model filter utilises its predicted estimate for the
position of the device, in addition to estimates calculated using current RSSI observa-
tions, to produce the new estimate (similar to that of a Kalman filter). The cumulative
distribution shows even the 75th percentile error reports less than 9 m error for weighted
centroid with motion incorporated, given the fact that we have completely avoided the
intensive radio-mapping process which is typically used in fingerprinting algorithms.
Figure 14 reveals that a considerable portion of the error occurs when the user is at the
extreme end of the corridor, as typically the extreme ends have much less access point
densities. It is to note that the building has no nearby neighbouring buildings and hence
the access points are solely used by the installations in the same building. Figure 14
also shows that the ground floor measurements do not report any location estimates in
the southern extension of the floor. This is again due to the unavailability of the access
points in that region. Considering the fact that 15% of the readings constitute either stair
cases or the southern extension on the ground floor, the reported mean accuracy of the
weighted centroid with motion, 6.68 m, is reasonable for a calibration-free approach.
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Fig. 14. Access point locations and estimated path overlaid on a floor plan (pertaining to ground
floor measurements only). Comparing the trajectory of the ground truth and estimated location,
emphasises the error mostly happens on the stairs and towards the extreme end of the corridor.

Table 2. Accuracy of floor estimation, represented on a per-floor basis (percentages)

All Floors Accuracy per floor
Algorithm floors 2–5 Floor 1 Floor 2 Floor 3 Floor 4 Floor 5

Centroid 70.9 79.4 45.2 72.5 80.3 84.4 83.3
Weighted Centroid 70.0 78.3 45.2 77.5 81.8 75.3 80.0

Centroid (with motion) 72.7 79.5 53.6 71.3 89.4 75.3 86.7
Weighted Centroid (+ motion) 75.1 82.2 53.6 80.0 90.0 75.0 86.0

Floor Identification. This subsection reports how the presented algorithms detects
correct floor information. This is very important for many of the applications to iden-
tify at which floor a user is present. Table 2 gives the percentage of the measurement
time, each algorithm reporting that the user is in the correct floor. For most of the mea-
surements, the algorithm reports that the user is in the correct floor. It is particularly
interesting to note that for the measurements in the southern extension on the ground
floor the floor error increases. Here we did not have any access points mapped, hence
any access points heard at that point were from higher floors, thereby pulling the floor
estimates higher by two floors. Table 2 summarises the error in floor estimates reported
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by all the four algorithms on a per-floor basis. It is clear that the error in the first floor
contributes to the maximum error, as all the algorithms consistently show an average
of only 50% correct classification. Excluding the first floor measurements show that in
principle we are able to identify the correct floor around 82% of the time. The table
also shows that there is a modest improvement between the algorithms that use motion
information over the ones without a motion model.

8 Conclusions

This paper addresses how to sense motion and location leveraging the existing infras-
tructure. Based on the thorough characterisation of RSSI measurements we developed
a range of motion detection algorithms. We identified a rich set of features that could
be gathered based on either temporal or spectral characterisation. Our motion detection
algorithms exploiting the frequency domain characteristics report a precision and recall
over 90%. It will be interesting to consider the complexity of each of the algorithms
to analyse the tradeoff between accuracy and complexity of the presented algorithms.
One possibility of extending this work is to use a combined set of features in a ma-
chine learning algorithm, to obtain finer accuracy and also explore the possibility of
identifying more states like “cycling” or “driving”.

We have shown the benefit of combining motion information with location algo-
rithms. A median error of approximately 5 m can be achieved without the use of cal-
ibration. We have validated our analysis by testing the algorithms in a typical setup
used in many office environments, where access points are arranged linearly. However,
these results cannot easily be generalised, as the results are very much dependent on the
density and topology of the access points in the test area.

The improvements in the algorithms with motion incorporated, suggest that many of
the calibration-intensive fingerprinting algorithms could use such a simple scheme for
detecting users in the hallways, and restrict the fingerprints to the rooms, as we envis-
age that our method might not work as well there. This depends on the access point
configuration; if there are access points also distributed along spatially separated axis it
will result in considerable improvement because it will allow for better trilateration. In
general, if the access points are deployed not only to provide good coverage for com-
munication purposes, but if they are deployed keeping in mind that such infrastructures
can be used for positioning purposes, we can expect much more improvement.

When incorporating the motion information we assumed the walking speed of the
user is known, usage of other sensors which can actually give us the speed and direction,
for instance by using a combination of accelerometers, gyroscopes and magnetometer
and incorporating map-matching methods and in combination with probabilistic meth-
ods like particle or Kalman filtering might be an suitable venue of future research.

As a general note, we expect that motion information we inferred can also give a
cue of what degree of history size must be used for temporal smoothing of the location
estimates (i.e., adaptive windowing) – for instance, when the device is moving history
size can be set to a smaller value and when the device is still it can be set larger.
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Abstract. Accurate and reliable location information is important to
many context-aware mobile applications. While the Global Positioning
System (GPS) works quite well outside, it is quite problematic for in-
door locationing. In this paper, we introduce WASP, an enhanced indoor
locationing algorithm. WASP is based on the Redpin algorithm which
matches the received Wi-Fi signal with the signals in the training data
and uses the position of the closest training data as the user’s current
location. However, in a congested Wi-Fi environment the Redpin algo-
rithm gets confused because of the unstable radio signals received from
too many APs. WASP addresses this issue by voting the right location
from more neighboring training examples, weighting Access Points (AP)
based on their correlation with a certain location, and automatic filtering
of noisy APs. WASP significantly outperform the-state-of-the-art Redpin
algorithm. In addition, this paper also reports our findings on how the
size of the training data, the physical size of the room and the number
of APs affect the accuracy of indoor locationing.

1 Introduction

Location is crucial information to many context-aware mobile applications. Per-
sonal navigation, asset tracking, local information search and friend finder all
require accurate and reliable location information from mobile devices. While
the Global Positioning System (GPS) works quite well outside, it does not work
well inside buildings because GPS signals can not penetrate most buildings. In-
door locationing plays an important role in ubiquitous computing and attracts
considerable interest in both industry and research. Some systems are designed
specifically for indoor locationing but require special infrastructure [1], [8]. With
the growth of Wi-Fi networks due to declining prices, increased ubiquity of
devices (laptops, cell phones, and other devices using Wi-Fi) and simplified in-
stallation of Wi-Fi access points (AP), indoor locationing using wireless LAN
(WLAN) is becoming more promising.

There are two major types of WLAN-based indoor locationing approaches: sig-
nal propagation model and fingerprinting. In the signal propagation approach,
we have to know physical locations of all APs in advance. The received signal
strength (RSS) on the mobile device can then be used to estimate the distance
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from AP to the mobile device. One can use a multi-lateration algorithm to
calculate the the physical location of the mobile device. To reflect the real en-
vironment, some signal propagation methods even include wall-attenuation and
reflections into the model. In general, the signal propagation approach does not
always provide satisfying results because of the Wi-Fi signal fluctuation caused
by environmental variations [9].

The fingerprinting approach requires a training database of RSS fingerprints
and their corresponding locations. The location of the mobile device is deter-
mined by the location of similar fingerprints in the database [2] or from the
statistical model derived from the training data [4].

There are many location fingerprinting algorithms. The simplest one is based
on the K-nearest neighbor algorithm (KNN). It converts fingerprints into vectors
and chooses the K historical fingerprints that are most similar to the testing
fingerprint. The location of the testing fingerprint is determined by the majority
of its K nearest neighbors. Extending the KNN algorithm, [3] measures not
only the contribution of RSSes but also the number of common access points
and not-common access points. Another fingerprinting approach is to model the
distribution of RSSes at various locations and tries to handle the uncertainty
and errors of signal strength measurements .

In this paper, we describe the WASP algorithm, an enhanced indoor loca-
tioning algorithm for congested Wi-Fi environments. WASP is a fingerprinting
approach and it significantly improves the state-of-the-art indoor locationing
algorithm in our experiments.

The rest of this paper is organized as follows. Section 2 reports related work.
Section 3 introduces the WASP algorithm and other statistical methods evalu-
ated in this paper. Section 4 describes the dataset, our experimental environment
and key results and we conclude the paper with discussion and plans for future
work in section 5.

2 Related Work

A reliable and stable interior positioning system (IPS) would be of great benefit
to many applications. Considerable research has been performed to determine
the indoor location of a mobile user or a mobile device. RADAR, developed
by Bahl et al., is an IPS based on Wi-Fi technology [1]. It uses signal strength
information gathered at multiple receiver locations by the PC based stations to
triangulate the user’s coordinates. Paschalidis et al. presents an approach that
allows a wireless sensor network to determine the physical locations of its nodes
by partitioning the wireless sensor network into regions and the localization
algorithm identifies the region where a given sensor resides [11].

Most recent research collects RSSes directly on the mobile devices, avoiding
the need for extra hardware elements. Li et al. compares the trilateration and
fingerprinting approaches, including both deterministic methods and probabilis-
tic methods [10]. Brunato et al. provide a general comparison of SVM, KNN,
Bayesian modeling and multi-layer perceptrons for locationing [4]. Carlotto et
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al. evaluate the proximity of two mobile devices by classifying the degree of sim-
ilarity of the Wi-Fi scanned data using a statistical Gaussian Mixture Model [5].
Correa et al. report experiences using an existing Wi-Fi infrastructure without
specialized hardware added to support room-level Wi-Fi location tracking by
signature matching, as well as the use of a specialized AP controller [6]. Bolliger
proposes the Redpin system, a novel approach that does not require an explicit
offline phase but allows users to create and manage the location fingerprints
collaboratively [3]. In our work, we started from the open source Redpin system
and made substantial enhancements for the congested Wi-Fi environment.

3 Indoor Locationing Algorithms

Our location fingerprinting is based on the assumption that a mobile device will
experience a different RSS fingerprint at different locations in the building, and
that the variation of the fingerprints seen over time in one location does not
vary too much1. We collect training data using handsets from several locations
in our building. Each training point is a tuple (L,t) of a location label L and the
detected RSSes fingerprint t = (t1, t2, ..., tN ) where ti is the RSS received from
APi. In this section, we first describe several statistical learning algorithms used
in our experiments.

3.1 Naive Bayes Classifier

In Naive Bayes approach, we predict a user’s location to be L∗ if P (L∗|t) is the
highest probability of all possible locations:

L∗ = argmax
L

P (L|t). (1)

By Bayesian theorem, we have

L∗ = argmax
L

P (t|L)P (L)
P (t)

= argmax
L

P (t|L)P (L) (2)

P (t) is dropped because it does not depend on L. The conditional probability
P (t|L) can be estimated by

P (t|L) = P (t1, . . . , tN |L) = P (t1|L)P (t2|L, t1) . . . (tN |L, t1, ...tN−1) (3)

With a naive independence assumption that each ti is conditionally independent
of every other tj for ti 	= tj , we have

P (t|L) = P (t1|L)P (t2|L)...P (tN |L) =
N∏

i=1

P (ti|L) (4)

1 Of course, the usefulness of this location-based difference and relatively stable fin-
gerprint depends on the placement of the access points, the shape and construction
of the building and the sources of noise and fluctuation.
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P (ti|L) can be derived from the historical fingerprints by maximum likelihood
estimation (MLE). Thus, the location L can be derived by

L∗ = argmax
L

P (L|t) = argmax
L

P (L)
N∏

i=1

P (ti|L) (5)

The problem of the naive Bayes method is that the values of the signal strength
are not taken into consideration. In other words, P (t|L) is estimated by counting
the frequency where si is non-zero at location L and only the existence of a set of
APs decides the location. To address this issue, Seshadri et al. use Bayesian fil-
tering on a sample set derived by Monte-Carlo sampling to compute the location
and orientation estimates [12].

3.2 Support Vector Machine (SVM)

The Support Vector Machine is a useful technique for data classification and some
research has applied SVM to the indoor locationing problem [4], [7]. A classifica-
tion task usually involves training and testing data which consist of many data
instances. Each instance in the training set contains one target value (class labels)
and several attributes (features). The goal of SVM is to produce a model which
predicts the target value of data instances in the testing set when given only the
attributes. Although SVM is a powerful classification technique, the fluctuations
of signals may cause data instance pollution and affect the accuracy.

3.3 K-Nearest Neighbor (KNN)

The K-nearest neighbor algorithm is a method for classifying objects. Given a
training data set with labels, KNN classifies a new data point based on the
majority of its k-nearest neighbors. For different applications, different distance
functions are defined to quantify the “similarity” between the training and test-
ing points. In the simplest case (K=1), the algorithm finds the single closest
match and use that fingerprint’s location as prediction.

3.3.1 Distance Function
For a testing fingerprint t , the standard KNN algorithm goes through each point
(L, s) in the training data and calculates the distance between t and s . The
generalized distance is

Dq(t, s) = (
N∑

i=1

|ti − si|q) 1
q (6)

Manhattan distance and Euclidean distance are D1 and D2 respectively. The
unknown location for t is decided by a majority vote from the K shortest distance
fingerprints.

KNN is simple to implement and it provides reasonable accuracy. However,
one drawback of the standard KNN is that RSSes detected in the same location
vary from time to time. The fluctuations likely to cause errors in predicting
locations. This can be partially overcome by having multiple fingerprint sets for
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a given location, taken at different times, assuming that one or other finger print
may cover that fluctuation.

3.3.2 Redpin Algorithm - AP Similarity
The Redpin2 algorithm is a variation of the standard KNN algorithm where the
Euclidean distance is augmented with a bonus factor to reward training and
testing fingerprints to have common APs and a penalty factor for not-common
APs in two fingerprints. Thus, in addition to the signal strength, the number
of common access points (NCAP) and the number of not-common access points
(NNAP) also contribute to identifying the similarity of two fingerprints. The
Redpin algorithm chooses K=1 to decide the best match and works as follows.
We define a mapping function δ(s) as

δ(s) =
{

0, if s = 0
1, if s 	= 0 (7)

NCAP of two fingerprints, t and s , can be expressed as

NCAP =
N∑

i=1

δ(ti)δ(si) (8)

NNAP of t and s can be expressed as

NNAP =
N∑

i=1

δ(ti) ⊕ δ(si) (9)

where ⊕ represents the exclusive disjunction. The generalized similarity value of
t and s is

D(t, s) = α

N∑
i=1

δ(ti)δ(si) − β

N∑
i=1

δ(ti) ⊕ δ(si) + γΛ(ti, si) (10)

Λ is a heuristic function defined in the Redpin algorithm which calculates the
similarity of t and s based on the signal strengths. The factors α and γ are
the bonus-weights for the common APs while β is the penalty-weight for the
not-common APs. The key idea behind Redpin is using NCAP and NNAP as
bonus-penalty adjustments which reduces the impact of signal fluctuations.

3.3.3 Weighted AP Similarity
To further reduce the impact of signal fluctuations, we observe that the visibility
of the APs at one location is not always the same because the environmental
variations cause significant Wi-Fi signal fluctuations in the same location over
time, especially inside a large building with sparse APs. Intuitively, APs with
higher visibility at a location L should be weighted more in determining whether

2 The open source Redpin can be found at http://www.redpin.org

http://www.redpin.org
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a fingerprint is located at L . In this paper, we use the correlation between
APs and locations as the weight for each AP. We use the Point-wise Mutual
Information (PMI) as the correlation measurement. PMI is defined as

I(L; AP ) = log
P (L, AP )

P (L)P (AP )
(11)

The higher the I(L; AP ) value, the more likely L is associated with AP . From
the historical fingerprints in the database, we can calculate the I(L; AP ) value
of each location L and AP pairs. We normalize the PMI value to be between 0
(least correlated) and 1 (most correlated). PMI values are applied as weighting
modifiers to the bonus of each common AP (CAP) and the penalty of each not-
common AP (NAP). The weighted similarity value of the measured fingerprint
t and a historical fingerprint s located at L is

D(t, s) = α
N∑

i=1

δ(ti)δ(si)I(L; APi)−β
N∑

i=1

δ(ti)⊕δ(si)I(L; APi)+γΛ(ti, si) (12)

3.3.4 Noise Filter (NF)
Extending the idea of weighting APs based on their visibility at each location, we
can filter out some APs from one location if they are irrelevant to this location
since not all APs have the same contribution to one location. We treat those APs
that occur less than the average frequency as irrelevant APs. The remaining APs
of the fingerprints are considered as ”relevant APs”. The average frequency of
APs to a location is calculated as

C̄(L, AP ) =
1
N

N∑
i=1

C(L, APi) (13)

where C(L, APi) is the frequency of APi visible from the location L in the
training data. NF is then a mapping function which maps the fingerprint s to
s′ , where

s′
i =
{

0, if C(L, APi) < C̄(L, AP )
si, if C(L, APi) ≥ C̄(L, AP ) (14)

4 Experiment

We test and compare different indoor locationing algorithms in a two-floor cam-
pus building with a congested Wi-Fi environment. The WLAN in this building is
composed of 16 APs, including seven 3-COM APs, six Motorola APs and three
external APs. The fingerprints are collected from the second floor, an area of
60mx15m with a 15mx12m lounge. The floor plans and the locations of APs are
shown in Fig. 1.
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Fig. 1. The floor plans. (The dots are the locations of APs).

4.1 Data Collecting

We selected nine public rooms from the second floor and collected 1,002 unique
fingerprints3 from these locations over a period of seven days using Nokia N95
smart phones. For each room, we collected at least 100 fingerprints to ensure
that every location has enough training data (Table 1). Although the size of the
rooms is different, instead of measuring the mobile users by physical distance, we
find that room-level location information is useful enough for most applications.
Therefore, the following experiments are based on room-level location detection.

Table 1. The fingerprint distribution for each room

Rm211 Rm212 W. Lounge W. Hallway Cafe Lounge E. Hallway E. Lounge Rm213
150 100 125 101 101 100 100 124 101

4.2 Experiment Setup and Evaluation

We use stratified 10-fold cross-validation to evaluate the accuracies of different
indoor locationing algorithms. To measure the confidence interval of the accu-
racy, we use the repeated random sub-sampling validation where we repeat the
process, randomly choosing 90% of all fingerprints as training data and the re-
maining 10% as testing data for 100 times. The algorithms we evaluate include:

– Naive Bayes Classifier (NBC)
– Support Vector Machine (SVM)

We use LIBSVM4 to infer the locations of the measured fingerprints [13].
– K-Nearest Neighbor (KNN)

We choose K=5 in our KNN implementation.

3 A text file containing all fingerprints can be found at
http://mlt.sv.cmu.edu/WASP/data.csv

4 LIBSVM software is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://mlt.sv.cmu.edu/WASP/data.csv
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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– Redpin
We use the original Redpin algorithm with α = 1, β= 0.4, γ = 0.2 and
K=1. We also extend the original Redpin by choosing K=5 and name this
variation ”Redpin5”.

– Weighted AP Similarity Positioning (WASP)
We apply NF to the historical fingerprints and extend the Redpin algorithm
by choosing K=5 and adding PMI to weight different APs.

4.3 Result

The accuracies of different algorithms are shown in Table 2. NBC has the lowest
accuracy because NBC only calculates the existence of a particular set of APs
without considering the signal strengths. When two rooms are quite close to each
other, the detected fingerprints are too similar to accurately discriminate two
separate rooms. SVM and KNN have similar accuracy because they both use
the signal strength information to separate fingerprints from different locations.
The Redpin algorithm has better performance than KNN because it reduces the
signal fluctuations by using NCAP and NNAP as bonus-penalty adjustments.
The WASP algorithm we propose in this paper outperforms the original Redpin
by 9% and the 95% confidence interval of the improvement is [0%, 17%], which
is statistically significant.

Table 2. Accuracy of each algorithm

NBC SVM KNN Redpin Redpin5 WASP

Accuracy 61% 80% 79% 81% 86% 87%

Confidence interval(95%) 54%-68% 75%-86% 71%-85% 76%-88% 80%-92% 86%-96%

Since KNN, Redpin and WASP are all instance-based learning algorithms,
we compare their accuracy using different numbers of nearest neighbors (K).
The result is shown in Table 3. Increasing the number of nearest neighbors
leads to higher accuracy. However, we do not see any major improvement after
K reaches 5. Redpin+PMI consistently improves over the original Redpin by
around 1%. Though not obvious, the correlation between locations and APs does
contribute to the accuracy. More research on alternative statistical methods for
the correlation is planned for the future.

To see if NF can successfully reduce the impact of signal noise in the congested
Wi-Fi environment for all algorithms, we apply NF to the training dataset and

Table 3. Accuracy of KNN, Redpin and WASP (K from 1 to 10)

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
KNN 78% 78% 79% 80% 79% 79% 78% 79% 78% 78%

Redpin 81% 81% 83% 85% 86% 86% 85% 86% 86% 85%
Redpin(PMI) 82% 82% 84% 85% 87% 87% 87% 87% 86% 86%

WASP 88% 88% 90% 90% 90% 90% 90% 91% 90% 90%
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Table 4. Accuracy of each algorithm without and with NF

Accuracy NBC SVM KNN Redpin WASP
W/O NF 61% 80% 79% 81% 87%
With NF 64% 86% 88% 88% 90%

Table 5. The maximum number of original APs and relevant APs from each location

Rm Rm W. W. E. E. Rm
211 212 Lounge Hallway Cafe Lounge Hallway Lounge 213

Original APs 11 12 14 13 15 12 14 14 6
Relevant APs 6 7 7 8 5 5 9 5 6

Invisible APs 5 4 2 3 1 4 2 2 10

run the same experiment. The result is shown in Table 4. All algorithms benefit
from NF and the accuracies are improved by 3% to 9%. To better understand
the relevant APs, we list the maximum number of the original APs, the relevant
APs and the invisible APs in the fingerprints of each location in Table 5 and the
visibility of APs from each location in Table 6.

Table 6. The visibility of APs from each room (The relevant APs of each room are
bold)

Rm Rm W W E E Rm
211 212 Lounge Hallway Cafe Lounge Hallway Lounge 213

AP1 0% 1% 5% 26% 52% 61% 52% 3% 0%
AP2 16% 1% 42% 69% 99% 100% 79% 18% 0%
AP3 0% 0% 1% 34% 95% 100% 50% 2% 0%
AP4 65% 98% 99% 100% 99% 95% 100% 84% 61%

AP5 8% 0% 1% 0% 0% 18% 4% 12% 0%
AP6 43% 62% 82% 71% 83% 44% 66% 15% 0%
AP7 57% 94% 89% 77% 78% 8% 62% 44% 38%

AP8 1% 23% 13% 46% 39% 1% 49% 85% 96%

AP9 5% 39% 34% 60% 58% 6% 62% 94% 81%

AP10 66% 98% 100% 87% 36% 10% 34% 2% 0%
AP11 65% 97% 99% 85% 37% 0% 40% 15% 0%
AP12 1% 6% 2% 18% 23% 0% 17% 28% 34%

AP13 0% 1% 1% 28% 26% 0% 78% 97% 98%

AP14 65% 95% 97% 78% 10% 0% 19% 1% 0%
AP15 0% 0% 0% 0% 1% 2% 0% 0% 0%
AP16 0% 0% 0% 0% 8% 3% 0% 0% 0%

4.4 Granularity of Rooms

In addition to the overall accuracy, we also want to know the room-level accuracy.
The room-level accuracy is shown in Fig. 2. Surprisingly even though NBC has
overall the worst accuracy, it has the highest accuracy in Room213. The most
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Fig. 2. Room-level accuracy

plausible explanation is that there are ten invisible APs in Room213 which is
the highest value among all rooms (see Tables 5, 6). This makes the fingerprint
in Room213 the most distinguishable AP set from which NBC can identify its
location easily. Another interesting finding is that all algorithms have very high
accuracy for the Lounge. Our hypothesis is that the Lounge is the largest room
so the estimate error is less significant.

To prove this hypothesis, we create a virtual floor plan by combining adjacent
rooms into a larger virtual room. For example, we merge Room211, Room212
into one virtual room (Room 211-212) and a testing fingerprint from Room211
is treated the same as Room212. The accuracy of each virtual room is shown in
Fig. 3. For finer-grained locations, the WASP algorithm is the most accurate.

Fig. 3. Accuracy of each virtual room
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Fig. 4. Accuracy of different training data size

When one adjacent room is added, the accuracy of all algorithms can be en-
hanced to over 80%. When four adjacent rooms are combined, the accuracy
can even be better than 90%. Therefore all algorithms are more accurate when
estimating a coarse-grained location.

4.5 Impact of Training Data Size

Fingerprint approach requires labeled data collection in advance. It is not a trivia
task to collect hundreds or thousands of data points. To see the precision of the
five algorithms for different training size, we run an ablation study by increasing
the training data size from 50 to 900 and evaluate the accuracy on the same
testing data (Fig. 4). We choose the training data to ensure that each room has
enough coverage. When the data size is 50, the accuracies of all algorithms are
not very good. When the data size is 150, the WASP algorithm can give over
80% of the total accuracy, which is better than other alternatives. However, when
the number of historical fingerprints is increased, the accuracy improvement is
less apparent. One plausible reason is that while more fingerprints provide more
matching samples, they also provide more polluted data which confuses the
algorithms and reducing the accuracy. Since collecting training data with labels
requires non-trivial human efforts, this result shows that even a small amount
of training data (e.g. 150) can already provide reasonable indoor locationing
accuracy.

4.6 Number of APs

When irrelevant APs are removed for a location, we observe that the indoor loca-
tioning accuracy improves. Currently NF chooses these APs occurring more than
the average frequency as “relevant APs”. We want to see how many relevant APs
for one room are needed for acceptable accuracy. We sort the APs based on their
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Fig. 5. Locationing accuracy based on different number of relevant APs

relevance for each room. We first choose the most relevant APs and estimate the
accuracy by adding the APs one by one. In this experiment we do not include SVM
because the probabilities of different training models calculated by LibSVM were
not correlated. The accuracies of different numbers of APs for the other four al-
gorithms are shown in Fig. 5. With small numbers of APs (from two to four), the
Redpin algorithm has much better accuracy than KNN and WASP. One plausible
explanation is that the bonus-penalty adjustment of Redpin makes the discrep-
ancy of two fingerprints more obvious but the PMI cannot provide any additional
benefit because the filtered APs are already highly relevant to the locations.

To understand how many APs are needed for reasonable indoor locationing
accuracy, we sort APs according their visibility from the highest frequency to the
lowest. For each run, we increase the number of APs from 1 to 16 to calculate the

Fig. 6. Accuracy of a different number of APs
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accuracy. The result is shown in Fig. 6. We see that SVM has better accuracy
when the number of APs is fewer than ten because the primary APs can provide
enough information for the SVM classification. However, when the number is
more than ten, the SVM classification is affected by fingerprint pollution and the
result is worse. On the other hand, the Redpin algorithm performs better than
WASP when the number is fewer than three. However, when the number is more
than seven, WASP outperforms Redpin by around 10%. Another interesting
observation is that the improvement in accuracy slows after nine APs. It seems
that these less visible APs do not provide essential information for location
detection. Instead, they may even cause confusion when matching fingerprints
and lower the accuracy.

5 Conclusion and Future Work

In this paper, we propose WASP, an enhanced indoor locationing algorithm
for a congested Wi-Fi environment. Our approach takes signal strengths, AP
visibility and statistical fingerprint history into consideration to enhance the
Redpin algorithm in a congested Wi-Fi environment. This approach obtains the
best accuracy and also works well even with the small training data set in the
experiments. Even though WASP may not work well with a small number of
APs, most office buildings and homes are covered by more than three APs and
the fluctuations and congested signals are likely to be more serious in a real world
than in the laboratory. We believe WASP can provide an overall satisfying indoor
locationing prediction.

In this paper, we only chose nine public rooms on the second floors. We plan
to extend the collection to more private and wall-bounded rooms over two floors.
Multiple RF fingerprints5, such as Bluetooth, might also improve the accuracy.
In addition, we will explore the use of accelerometer data to determine if a user
is moving or not and thereby enable time-averaging or tracking to improve accu-
racy. Another interesting issue is to study the optimal number of APs and their
positions in the building for the best indoor locationing accuracy. Finally, we plan
to apply the WASP algorithm to several mobile health and mobile professional
applications. We will also design more incentive and intuitive ways to collect the
fingerprints through users’ collaboration.
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Abstract. We present an indoor wireless localization system that is capable of
room-level localization based solely on 802.11 network signal strengths and user-
supplied training data. Our system naturally gathers dense data in places that users
frequent while ignoring unvisited areas. By utilizing users, we create a compre-
hensive localization system that requires little off-line operation and no access
to private locations to train. We have operated the system for over a year with
more than 200 users working on a variety of laptops. To encourage use, we have
implemented a live map that shows user locations in real-time, allowing for quick
and easy friend-finding and lost-laptop recovery abilities. Through the system’s
life we have collected over 8,700 training points and performed over 1,000,000
localizations. We find that the system can localize to within 10 meters in 94% of
cases.

1 Introduction

Computerized localization, the automatic determination of position, will augment ex-
isting applications and provide opportunities for new growth. One can easily imagine a
phone, computer, or other device changing behavior based on location. A phone might
disable its ringer when in a conference or classroom. Calendar reminders would only
appear if a user was not already in the event’s location. A laptop could automatically se-
lect the closest printer when printing. Finding a colleague would be as simple as looking
up a phone number.

Localization abilities have spawned a number of companies including GPS naviga-
tion [5][16], asset tracking [4][17][20], and E911 systems [6]. The most common form,
GPS, performs well in many instances, but it cannot achieve good accuracy indoors.
To provide indoor localization, researchers have examined the use of dedicated hard-
ware including ultrasound, IR, and RF beacons. Most of these platforms provide good
resolution, but often have high installation, maintenance, and usage costs. With the ad-
vent of 802.11 wireless networking, researchers have turned to utilizing wireless access
points as fixed RF beacons. This method mitigates the high hardware and installation
costs of earlier systems, but often requires a substantial amount of off-line training,
or the collection signal strength samples in many locations. Here we describe a large
scale deployment of a system that uses 802.11 access points to localize, but transfers
the training burden to the system’s users, providing a cheap, fast, accurate, and low
maintenance method for automated indoor localization.

R. Fuller and X.D. Koutsoukos (Eds.): MELT 2009, LNCS 5801, pp. 197–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We use the following terminology to describe our system: a wireless fingerprint de-
notes the signal strengths of surrounding access points at a given location. A bind is
the act of associating a fingerprint with a location. An update is a location scan and
localization calculation. Fingerprints are collected automatically, binds are performed
by users, and updates are performed automatically or by user request.

2 Related Work

Location-aware computing is not new. Perhaps the best-known location-discovery plat-
form is GPS, which uses U.S. government satellites to compute latitude and longitude
[8]. While the high costs associated with GPS systems have disappeared, a receiver can
only obtain a location with a clear sky-view. Moreover, GPS experiences substantial
drift and is often not accurate enough to obtain room-level localization. Another set of
commonly available localization systems serve the FCC’s E911 initiatives [6]. These
systems focus on approximately 100 meter accuracy and thus, like GPS, are of limited
utility in indoor, room-level environments.

The first indoor location-aware systems, such as Active Badge and MIT’s Cricket,
succeed with specialized hardware [13][18]. Active Badge uses wearable transmitters
and a network of sensors to gather location information and report it back to a server.
The Cricket system uses a combination of RF and ultrasound to provide accurate and
private location data. These systems avoid training, but instead require a substantial
hardware installation phase. Both Active Badge and Cricket require location-bound
hardware that necessitates prior access by trained personnel to each desired localization
area. This installation and the associated time and hardware costs limit these systems’
wide-scale use.

As 802.11 networks became common, researchers began utilizing existing hardware
to compute location. Microsoft’s RADAR and later Haeberlen et al. show success in us-
ing the signal strength of 802.11 nodes to determine fine-grained indoor location [1][7].
These and similar systems [11][14] require specialized training to create a database of
location–signal strength tuples. Training demands a substantial upfront effort and phys-
ical access to all of the desired areas. Moreover, after some time, the training data needs
to be refreshed to account for changes in the environment and access point locations.

To reduce the expense of training, Intel Research demonstrates an algorithm that can
estimate location with only minimal data by expanding its known area with continued
use [10]. While the self-mapping algorithm costs little to implement, it requires a signif-
icant period of time to gain acceptable localization accuracy and coverage. Moreover,
multiple radio configurations complicate the implementation of a shared-training sys-
tem. Wardriving can be used to seed the algorithm, but those data are often not dense
enough for accurate indoor localization.

Both Bolliger and Teller et al. introduce crowdsourcing methods that allow users
to train and correct the system [2][15]. Teller’s work, conducted in parallel with our
own, is similar to the system described here although on a smaller scale in time, space,
and number of users. They studied 16 trained users limited to a single building with
a specialized platform for only 20 days. Here we present a year-long deployment of a
similar crowdsourcing method with over 200 untrained users spanning five buildings
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operating on personal laptops. Bolliger’s system engineering is also similar to our own,
but, again, he does not present results from a significant deployment.

In the commercial space, Ubisense has deployed accurate localization based on UWB
signals in industrial environments [17]. Ekahau has been working on 802.11 localiza-
tion for a number of years [4]. Skyhook Wireless has combined crowdsourced data with
a substantial set of training data to improve their worldwide 802.11 localization system
[14]. Navizon uses exclusively user-produced data, but like Skyhook, their system fo-
cuses on outdoor localization [12].

3 Architecture

3.1 Overview

Like [2] and [15], we use a client-server architecture to enable fast, accurate localization
and provide a mechanism for feedback. To localize, clients perform an update in which
they collect wireless 802.11 signal strength information (a fingerprint) to send to a
server. The server computes the client’s location and sends the estimate back to the
client for optional user review. The server also updates the friend-finding interface with
the client’s new location in case another user wants to locate the first. When the client
receives the location estimate, it offers the user an opportunity to confirm or correct it
(Figure 1). If the user chooses to take this opportunity (binding a fingerprint), the client
sends the new ground-truth data back to the server, which stores the record for use in
all future localization computations.

Our system architecture is similar to MIT’s Organic Indoor Location system (OIL)
[15] with a server-based localizer and without client-side caching. For brevity, we will
examine only the novel aspects of our system in depth and direct the reader to the OIL
implementation for other details. To compute locations, we use a Euclidean distance
algorithm, comparable to RADAR’s Nearest Neighbor in Signal Space (NNSS) [1]. We
have implemented the algorithm in SQL, interfacing PHP and wxPython clients that run
on Windows, Linux, and Mac operating systems. We are planning to implement clients
for smartphones and PDAs in the near future.

3.2 Deployment Site

A number of our design decisions were driven by the context in which our system was
deployed. We developed and continue to run our localizer at Olin College, a small res-
idential engineering school near Boston. Olin houses its entire 300-student population
on campus with five buildings in total, encompassing more than 300,000 square feet.
Our primary user base is students, with faculty and staff comprising less than 3% of
users. Each student owns an institution-issued laptop although some use their own sys-
tems. Since each entering class has a slightly newer laptop model, we find a variety of
similar but distinct radio/antenna combinations on campus.

In asset tracking, medical, or warehouse situations, one might choose to localize
every few seconds, but students remain in the same place, be it a classroom, library, or
residence hall, for extended periods of time. Thus, we chose to localize once every five
minutes, an unscientifically chosen but reasonable interval, in order to preserve system
resources. Finally, we note that with the system providing a useful service, users have
an incentive to provide accurate data and very little impetus to falsify locations.
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Fig. 1. Typical interface. The client has local-
ized and asks the user to confirm its estimate.
The upper left displays a username and the up-
per right contains a humorous checkbox.

Fig. 2. Training interface. The user has clicked
“No” in Figure 1 and is now prompted with
nearby locations. Clicking “Other” allows the
user to create a new location point.

3.3 Client Interface

The user interface is designed to be as non-invasive as possible. Since the system runs
on personal laptops, it must have a small resource footprint minimizing CPU, memory,
and power consumption. The client autostarts minimized in the system task tray and,
to encourage use, never prompts the user without request, even when the location esti-
mate is known to be poor. We found that we could collect enough training data without
interrupting users and annoyed far fewer people in the process. If users want to train
the system or access others’ locations, double-clicking the task-tray icon brings up our
deliberately simplistic interface (Figure 1). When an update is performed, the client dis-
plays its location estimation in question form, prompting a training response. The user
can then accept the given location, choose from a list of likely locations, or create a new
point. Figures 1–3 show typical GUI screens.

Should the user determine that the localization is not correct, he or she can cre-
ate a new location point. The client prompts for the building, floor, and a text name,

Fig. 3. New location creation interface. The user has
clicked “Other” in Figure 2 and is now prompted to en-
ter the details of his or her location. After clicking “OK,”
the user will be prompted to select the location on a map
of the local area.

Fig. 4. Floor interface. Darker
edges indicate a lower floor. In
this case, two people are located
on the ground floor and two more
are located on the first floor.
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suggesting a room number or descriptive phrase for the text entry (Figure 3). Once a
user has entered those data, a labeled map appears allowing the user to select where the
new location will appear visually. We found that making this process intuitive is key to
ensuring the success of a crowdsourced data collection application.

New point creation is challenging for both the user and GUI designer. Most users are
unable to correctly identify their location on an unlabeled blueprint, so the user inter-
face must be copiously labeled to prevent errors. We chose to allow users to customize
location names, making their descriptions much more useful to others. For example,
instead of calling a room “335,” users labeled it “3rd floor lounge.”

Allowing for free-form input, however, provided substantial possibilities for error.
Although “lounge” is a natural input, it is not useful without context. To obtain both
flexibility and accuracy, we constrain building and floor choices while allowing for a
textual description. Thus, points have reliable context information and custom labels.

Finally, we note that custom naming lowers the entry barrier for new localization
systems. Where we need only rough building diagrams, other systems require fully
digitized blueprints or CAD models to generate an initial map.

3.4 Friend-Finding Service

To motivate users to train the system, we implemented a friend-finding service that
publishes user locations on a map-like interface. The goals of the service are threefold:
allow users to quickly and easily locate specific people, display all users’ locations on
one screen, and act as an advertisement for the project.

Fig. 5. Friend-finding webpage frontend. The interface is themed like an old magical map. The
user has moved the mouse over a cluster of people, prompting a drop-down list of location, names,
and update times.
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To satisfy our goals, the interface must allow for both searching and browsing while
maintaining an attractive look and feel (Figure 5). To encourage use and help explain
the concept, we themed the project as the “Marauder’s Map at Olin,” a reference to a
magic map that displays people’s locations in the popular Harry Potter series. While this
theming might seem trivial, we found that it was critical to building and maintaining
a user base. The map theme helped people understand why the service is useful and
encouraged them to share with their friends.

Displaying hundreds of users on multiple floors proved to be a challenge. Early tests
showed that users clustered near the edges of buildings, so we expanded our building
representations to show the edges repeatedly, utilizing the new space to indicate vertical
displacement and avoid icon overlap (Figure 4). This is not a perfect solution, as some
buildings have popular locations in their centers, but we found these overlaps to be
relatively minor.

3.5 Privacy

Privacy is a concern in any localization system. Given that the primary application of
our implementation is a friend-finding service, we found that concerned users were
aware of the implications and simply chose not to participate. Some users requested the
ability to remove their location report at any time, a feature we implemented. All of the
system’s services reside only on internal servers to ensure that location information is
not published outside of our institution.

4 Approach to Crowdsourcing

4.1 Motivation

The primary motivation for crowdsourced data is the reduction in time required to train
the localizer. Moreover, with crowdsourcing, users provide most of the data while the
system is already localizing, reducing the time before the localizer can be used. When
training, researchers found that gaining access to private and semi-private spaces (of-
fices, residence hall rooms, etc.) was difficult and awkward, a problem that user-trained
systems avoid [7].

A pre-trained system requires retraining to account for changes in the environment,
but a user-trained system is continuously updated with no overhead. In addition, crowd-
sourced training naturally produces data that are dense in places that are commonly
visited. Users tend to bind in places they frequent, causing common locations to have
dense data. Because our localizer treats each bind separately, it weights common loca-
tions more heavily, resulting in a natural location-frequency dependency.

Finally, traditionally trained systems suffer from a conflict between coverage, the
number of distinct locations with data, and accuracy, the measure of how often the lo-
calizer chooses the correct location. If the system is aware of many often unoccupied
locations, it will suffer from a decrease in accuracy. Crowdsourcing helps mitigate the
problem by naturally ignoring rooms that users do not frequent. For example, there are
small, narrow trash rooms in each wing of the residence halls that were never bound in
our system (Figure 6). A traditionally trained system might incorrectly place a user in
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(a) Initial training set. (b) Conclusion of the short beta test.

(c) 30 days after launch. (d) One year after launch.

Fig. 6. Map of training density in one of the five deployment buildings. Gray indicates no training
data. Light to dark red indicates progressively more fingerprints for that space. Note that common
areas (center of the building) have far more data than individual’s rooms.

one of these rooms, even though the probability of a user being located there is very
small. Our system will always avoid these areas because no users have bothered to train
them.

4.2 Initial Training

While almost all of our data are provided by users, we found that a minimally trained
system was important to convince users that the software was compelling. Typically,



204 A. Barry, B. Fisher, and M.L. Chang

this type of initial training takes about 1-3 minutes per location [7]. At this rate, a system
covering over 350 spaces would take approximately 16 person-hours to train manually,
but we can train the system to a minimally usable state, in about 1.5 hours. With that
training, we create a sparse map including hallways and common areas, allowing for
reasonable (within 10-20 meters) estimates that support further training by users. This
training is easy to perform because all fingerprints can be collected in public areas and
with relative infrequency. To train our system we simply walked down most hallways
and bound one or two points per hall.

5 Results

After a short beta test, we deployed our system campus-wide at Olin College in April
2008 and have continued operations for over a year. We announced the project with
an email to a common list in which we explained the concept and encouraged users to
download and run the client. To date, we have had more than 200 unique users, 8,700
binds (95% of users contributing), and over 1,000,000 location updates.

5.1 System Accuracy

A localization system’s performance is determined by both coverage and accuracy.
Coverage measures how much of the deployment area has associated fingerprints while
accuracy measures of how often the localizer reports the correct location. We first dis-
cuss coverage and then proceed to examine our localizer’s accuracy.

At the beginning of deployment, only our initial survey supplied data, so we started
with poor coverage, especially in private rooms (Figure 6(a)). We found that within 30
days of launch, our coverage stabilized at a reasonably complete level, with over 75% of
all known locations at the year’s end having already been bound. Coverage progression
for one building can be see in Figure 6. Other buildings show similar patterns, although
places students are unlikely to spend time, such as faculty offices, never achieve good
coverage.

Our second metric is system accuracy. Accuracy starts poor and improves with the
number of binds. To measure accuracy, we note that we should not simply test the
system at random locations. Real accuracy is determined by how often the localizer
correctly estimates users’ locations. To use the aforementioned example, the localizer’s
performance in a small trash room is of little importance to true accuracy.

To test our system in this manner, we chose to survey our users during deployment.
After the system had reached a steady state, we emailed our users asking them to report
the localizer’s accuracy at that moment. Thus, users opened the client, checked its current
estimate against their real location, and reported performance in meter ranges (ie within
0-5 meters, 5-10 meters, etc.). We received 57 reports representing more than half of all
online users within 8 hours. While these reports were self-selected based on which users
chose to respond, we do not believe this bias has skewed our data measurably.

Figure 7 shows localization errors. We find that we localize to within 5 meters in
69.9% of attempts and to within 10 meters in 94.9% of cases. This accuracy is approx-
imately equal to other published systems, although it does not achieve the performance
of Haeberlen et al.’s calibrated or King et al.’s dense data techniques [7][9][15].
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Fig. 7. Localization error. We determined error by
asking users to perform spot checks in their current
location. We find that we localize correctly in 69.9%
of attempts and are within 10 meters in 94.9% of
cases. We localize to to the wrong floor only 1.8%
of the time.

Fig. 8. Combined density of location
reports for one year in one residence
hall. Clearly, common areas are visited
far more often than individuals’ rooms.
No students live on the first floor so we
are not surprised to see few reports in
that location.

5.2 System Vulnerabilities

We note a number of conditions that degrade our performance. First, during our deploy-
ment, a large fraction of the campus’s access points received firmware modifications
that resulted in a change in MAC address. The system does not recognize the new con-
figurations and assumes that none of the old access points exist. While our architecture
is designed to easily adapt to new access points with a single dictionary replacement,
we found that losing these access points did not significantly degrade performance, so
we allowed the system to operate without intervention.

In addition to changing MAC addresses, network administrators moved a small frac-
tion of access points to improve wireless performance. While users have retrained the
system, this movement continues to degrade our performance. To mitigate this issue,
we are considering a weighting system that favors new fingerprints, marginalizing old
and possibly outdated data. The design of the weighting system requires further study
to determine if it should universally downgrade old data or only ignore old fingerprints
when newer ones are available for a location. The first implementation would cause
the localizer to favor newly bound points while ignoring old fingerprints, effectively
reducing coverage over time. The second implementation retains coverage, but might
not reflect newer user-movement patterns.

A third potential degradation of performance is the automatic and manual gain con-
trol on access points. During our deployment both automatic and manual power ad-
justments were made, but the system showed no noticeable decrease in performance.
Without a clear indication that this was causing degradation of localizations, we have
not spent the engineering resources to study this effect further. It is worth noting, how-
ever, that these power changes affect only the local area around the modified access
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points and simply shift the localizer’s tendency closer or further from the respective
wireless node.

A fourth potential degradation of performance is our support of a wide range of
laptops, including Mac hardware and at least four models of the Dell Latitude D-series.
We do not currently account for radio/antenna configurations, although the system has
a natural correction based on user binding patterns, as described below.

In the user space, we note that user-generated data are not as reliable as profes-
sionally generated scans. It is difficult to determine how often localization errors are
due to user error when training the system or from signal strength variations resulting
from dynamic objects, antenna orientation, radio chipset, access point power fluctua-
tions, or a host of other phenomenon. General accuracy statistics provide some insight
for an upper bound on errors, but we have not yet developed a metric to study these
errors explicitly. A time-based weighting on data, as examined above, would provide
some mitigation for mistaken inputs, allowing them to be corrected as new, better data
become available.

Finally, our system does not address the possibility of malicious users, beyond mark-
ing each bind with an identifier that allows the elimination of all binds by a particular
user. While this is a concern, we are not aware of a single instance of such activity.
Moreover, to be effective, malicious users would need to create a substantial number
of false data points in many locations to overwhelm the existing fingerprint set. Many
binds in one location would overwhelm that particular location, but the damage would
be confined to the local area. To be truly successful, a malicious user would need to
bind incorrect data throughout the system’s coverage, a far more difficult task.

In the event that malicious activity becomes an issue, we have discussed the imple-
mentation of weights based on how similar new data are to existing fingerprints. In this
way, outliers are rendered harmless automatically. If a significant number of outliers
were added to the system by different users, the weights would begin to skew towards
those new fingerprints, accounting for dramatic environment changes such as access
point relocation.

5.3 User Behavior

After release, we collected about 71 binds per day and within 2 months our data set had
grown to 27 times the initial training, a collective effort of approximately 25 person-
hours in ideal conditions. While training rates decreased as accuracy increased, users
still train the system over one year later. Figure 9 shows these trends in database size
over time.

As expected, we collected more fingerprints in common and public locations than
in private rooms. The median number of binds per room is 7 and the maximum is 305,
which occurs in a residence hall lounge (a common socializing space with couches and
a TV.) 17% of known locations have only one bind and 53% have 10 or fewer. As the
system’s coverage grew, the number of new locations bound quickly decreased. Our
initial survey bound 16% of total locations, beta testers bound 48%, and our general
user base bound the remaining 36%. Thus, we find that users are far more likely to pick
an existing location than they are to bind a new one.
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In addition, we find that the user contribution profile is similar to other mass-
interaction applications [15][19]. A few enthusiastic users bind an inordinate number
of times. Interestingly, these users do not update their location as often as we might
expect, with very little correlation between bind and update frequencies.

We hypothesized that our data collection method would result in dense data in
frequented places, and our expectations are confirmed. We see this in the similarity
between Figures 8 and 6(d) which show where locations are reported and bound, re-
spectively. These data confirm our second hypothesis, that users bind in places that
they, individually, frequent. 51.2% of all location updates occur in places that users had
bound themselves. In other words, half the time a user is in a place where he or she has
contributed data. Thus, we confirm that one of the primary advantages of crowdsourced
data collection is that users are willing to train where they frequent and that they tend
to reside places where their own data are best.

5.4 Application Use

While we have not yet performed a formal study, we feel that users are satisfied with the
localization application. In one year we logged over 14,000 friend-finding page loads,
averaging well above 50 hits per day during both fall and spring terms. We note that not
only did users utilize the system at launch, they continue to use the service throughout
its deployment. We also note that with 100 active users, we are localizing about 1/3 of
the student population’s systems.

Our last method of evaluating user satisfaction is purely anecdotal. Users tell us that
they enjoy using the system and have only rarely contacted us with complaints, despite
our contact information being readily available. Perhaps our favorite example of users’
creativity is using the system in a scavenger hunt. An on-campus business group was
running a promotion in which they planted clues advertising the whereabouts of free
product samples. To create one of the clues, the group, unbeknown to us, managed to
emulate a client and change the reported name and user icon to their name and logo,
respectively. They then used the reported location to advertise where free samples could
be found. Months later, when performing data analysis, a developer found the odd entry
and finally traced it to the group who reported that it was the most popular clue in their
entire game.

6 Detailed Analysis

We now discuss the system’s usage in detail. We examine trends in both when and which
users train the system and the profile of where users localize. We find that new users
are the primary providers of ground-truth data and that, despite our high participation
rate, a small set of users provide most of the system’s data. These often-training users,
however, are neither more or less likely to localize than their non-binding peers.

6.1 Training Rates

Users tend to bind data in their first few days of use and rapidly stop providing ground-
truth information thereafter. Throughout the system’s life, 43% of all binds occur within
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Fig. 9. Fingerprint database size over time.
Training rates were steady after release and
have reduced as the system became more accu-
rate. We are not surprised to see little data added
during the summer term when students are not
on campus.
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Fig. 10. All binds sorted by days since the
binding user first localized. Clearly, users bind
a significant amount in their first day and
steadily less throughout their usage. We find
that 11.5% of all binds occur on a user’s first
day.

10 days of the binding user’s first application use. We offer two explanations for this
phenomenon. First, users may train the system because of the novelty of providing
data. Once that novelty fades, users become less interested and only localize. Second,
student movement patterns do not change substantially from one day to the next. Once
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(a) Quantity of binds for each user. Users are
sorted and assigned an ID by decreasing num-
ber of binds.

0 50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

4

User Rank

N
um

be
r 

of
 L

oc
at

io
n 

U
pd

at
es

(b) Number of updates per user. Users have the
same ID as in (a).

Fig. 11. Number of binds and updates for each user. Users are sorted by decreasing number of
binds. In (a) we see that 20% of users bind 66% of the ground-truth data. In (b) we find that those
often-binding users are not significantly more likely to update their location often, showing that
the primary producers of data are not necessarily the primary consumers.
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(b) Residence hall.

Fig. 12. Percentage of localizations per hour in both an academic building and a residence hall.
As expected, we find that users occupy academic buildings during daylight hours (excluding
lunch) and residence halls at night. We also note that while users arrive to classes in large groups,
they tend to leave in a more gradual manner.
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Fig. 13. Number of new users per day. Our
campus-wide release occurred in April and a
new academic year started in September.
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Fig. 14. Binds per day. Given that new users
bind data often, we are not surprised to see
a significant correlation to Figure 13. One in-
teresting case is the system’s second January,
where we see no new users but a significant
number of binds. In this period, students return
to campus after intersession and appear again
interested in binding data.

a user has trained his or her habitual places, the system may not require further training
for accurate use and thus exclusively localizing is acceptable. Figure 10 shows bind
occurrences sorted by days since adoption.

While new users train the system more often than longtime users, we find that some
provide a disproportionate amount of data. Figure 11(a) shows a sorted profile of users
based on number of binds. In our system, 20% of users provide 66% of the data. As
mentioned above, we notice that there is little correlation between users who provide
data and those who localize often. This is manifested in the difference between 11(a)
and 11(b).



210 A. Barry, B. Fisher, and M.L. Chang

6.2 Application Usage Patterns

We find cyclic patterns in usage, both throughout each day and throughout the year. As
expected, we find that users cluster in academic buildings during the day while returning
to residence halls at night. Figure 12(a) shows localizations on an hourly basis in an
academic building while 12(b) displays a similar plot for a residence hall.

We find that long-term training patterns are driven by new users. It appears that while
localizing holds longevity as a useful service, the novelty of binding data fades, causing
users to stop binding. This trend might also be influenced by an increase in accuracy in
the places that users individually frequent, requiring less training as the system learns
from the user. In addition to Figure 10, we see this pattern in the similarity between
Figures 13 and 14, displaying when users join and when users bind, respectively.

7 Future Work

This paper presents an implementation of a user-trained localization service covering
an entire college campus. To utilize this framework in other scenarios, we consider
a number of additions including new applications and novel ways to collect training
fingerprints.

To augment our user base, we are considering implementing additional localization-
based services. For example, we might create a tagging system for files that records
location information on creation and modification. With this information, a user could
search for all files created in a particular room. Users tend to create different types of
files in different places, such as minutes in a meeting room and source code in a lab, so
searching based on location might be helpful. Other potential services include location-
based printer selection and an API to support new developers and new deployments.

Porting our code to hand-held and smart-phone devices would provide interesting
new data sources and challenges. Compared to laptops, these platforms are more ubiq-
uitous and would provide more continuous and varied data with their constantly active
radios. This more diverse set of hardware might require a platform identification mech-
anism and conversion functions between device fingerprints, like Haeberlen’s imple-
mentation across different radio platforms [7].

To gather more binds, we are considering automatic calendar integration. Many cal-
endar appointments are tagged with a location which we could extract and utilize to
automatically train the system. When a user’s calendar indicates that he or she is in a
specific place, the system could automatically collect fingerprints and bind them to that
location. Obviously, users and/or their wireless devices are not always located where
their calendar indicates, but with intelligent use of idle-times, a limited fingerprint set,
and perhaps a movement detector like [3], this type of training could be made reliable.
In more extreme cases, we might consider using calendar integration to train an entire
system without any user interaction, although the accuracy of these fingerprints would
require careful study.

Finally, we are continuing analysis of our data and are planning more formal user
surveys to better characterize the system’s strengths and weaknesses. Moreover, we
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are planning more expansive accuracy experiments that will inform the distinction be-
tween random-location accuracy and the common-area accuracy that a normal user
experiences.

8 Conclusion

We have described a long-running test of a user-trained system that performs accurate
indoor wireless localization in areas with existing 802.11 networks. The system can
be deployed in any location that has a pervasive network and a group of users willing
to train it. By utilizing personal laptops and existing access points, we do not need to
build or buy any additional hardware. The system’s interfaces are simple and intuitive,
allowing users to localize, find others, and contribute training data with no instruction.

After more than one year, our system continues to operate and has accumulated more
than 200 users, 8,700 binds, and over 1,000,000 location updates. Usage patterns pro-
vide natural guidance for the localizer, improving accuracy by accumulating dense data
in common areas. These methods result in successful localization to within ten meters
in over 94% of cases, providing convincing evidence that crowdsourcing is a practical
method for cheap, pervasive wireless localization.
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Abstract. This paper focuses on radio-frequency (RF) location determination 
characteristics and implementations.  A presentation of RF transmission, propa-
gation and reception characteristics is provided and a summary of some the 
major developments of RF-based location systems is also discussed. RF deter-
mination capabilities are typed and classified and outlined.  Finally, examples 
of RF-based location systems are given. 

1   Introduction 

Location determination has a long a storied history.  From the first navigators guided 
by the stars and Sun to the electronic systems of today; finding one's place continues 
to be amongst the most crucial elements in life.  The term “location awareness” has 
sprung into the popular vernacular in recent years in response to the desire for appli-
cations and services to provide greater availability and accuracy of location determi-
nation at all times.  Location awareness helps provide context for feature rich applica-
tions and services; making them feel far more personal and interactive.  While the 
relative importance of location awareness may not have increased in the past few 
decades, the proliferation of location determination technology for assets and persons 
has increased remarkably.  Many of the location determination technologies we take 
for granted today such as GPS (Global Positioning System), and its international 
Global Navigation Satellite System, or GNSS, counterparts such as GLONASS, Gali-
leo, Compass/Beidou, etc., were not available 20 years ago.  The introduction of 
global navigation systems has produced a paradigm shift in location awareness that 
expects high-availability, always-on location determination capabilities.  This expec-
tation has, in turn, led to substantial innovation and development in the location algo-
rithms and technology that today provide a myriad of options for various applications.   

This paper provides a tutorial on Radio Frequency (RF) of location determination 
technology.  It starts by looking at RF system characteristics versus other options, 
such as inertial and vision systems.  The review of RF location determination systems 
will begins with RF bands and their properties.  It briefly discusses the impact of 
bandwidth on location determination accuracy.  The paper then discusses the different 
RF location approaches followed by methods employed in RF location determination.  

1.1   Frequency Bands and Usable RF Spectrum 

When considering the alternatives for location determination systems, one primary 
question that must be answered is: "Why use RF systems versus other non-RF 
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approaches?" First, RF represents some of the most flexible kinds of equipment that 
can be deployed versus the alternates. For example, ultrasound-based systems can 
have a very fine precision but are strictly limited to Line-Of-Sight (LOS) operation 
and highly subject to environmental noise [1]. Table 1 shows the performance of 
different non-RF systems deployed today. 

In most cases the most limiting factor is range. Since RF propagation can be used 
for close-in applications as well as those applied over hundreds of kilometers, it is the 
most flexible method for use in applications. However, in many cases where RF has 
superior range it does so at the expense of precision, which is why alternative means 
of precise location determination will always be sought after. One such example in 
wide use today is the compliment of inertial sensors and GNSS. This combination can 
offer very precise location capability without the need for installed infrastructure. 
This is only limited by the precision of the GNSS system it is paired with as well as 
the availability of those precise signals to calibrate the inertial sensors. This type of 
combination continues to be of great interest in development of commercial and con-
sumer systems. 

Table 1. Comparison of Different Location Technologies [1] 

Technology Pros Cons 
Inertial -Precise with expensive sensors 

-Works in a variety of environments  
(underwater, indoor, etc.) 
 

-Unusable without frequent  
corrections from external reference 
(often GNSS-based) 
 

Vision -High precision 
-Works where instrumented 

-Limited range, LOS 
-Extensive instrumentation 

Ultrasound -Very inexpensive emitters and sensors 
-High precision 

-Limited range, LOS 
-Very sensitive to ambient noise 

Infrared -Inexpensive emitters and sensors 
-High precision 

-Limited range, LOS 
-Very sensitive to ambient noise 

Smart/Active 
Floors [2] 

-Works without instrumenting subject  
-High precision 

-Works only where floor (or  
furniture) is instrumented 
-Difficult to distinguish individuals 
(i.e., track a specific person) 

GNSS -Worldwide coverage 
-Free to use 

-Precision 10m unaided 
-Limited indoor use 

Table 2. Classification of radio frequencies [3] 

Band Frequency Wavelength 
Very Low Frequency (VLF) < 30 kHz > 10 km 
Low Frequency (LF) 30-300 kHz 1-10 km 
Medium Frequency (MF) 300 kHz-3 MHz 100 m-1 km 
High Frequency (HF) 3-30 MHz 10-100 m 
Very High Frequency 30-300 MHz 1-10 m 
Ultra High Frequency 300 MHz - 3 GHz 10 cm - 1 m 
Super High Frequency (SHF) 3-30 GHz 1 - 10 cm 
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Radio propagation is classified as electromagnetic waves between the frequencies 
of 10 kHz and 300 GHz. Table 2 shows the classification of RF bands into groups. 
The relationship between frequency, ƒ, and wavelength, λ, is given by λ=c/ƒ, where c 
is the speed of light in a vacuum (2.99792x108  m/sec). The term "microwave" indi-
cates wavelength between 1 m and 1mm. 

One of the most critical aspects of RF location systems is the range in which they 
can be deployed.  Systems that use frequencies at and below HF can transmit over the 
horizon using a surface wave (follows the surface of the Earth). An issue with using 
the surface wave is that multipath (more than one version of the same signal arriving 
at the receiver with different delays or angle-of-arrivals). Multipath affects location 
systems in three distinct ways: 1) it can produce signal fade due to cancelation of 
waves at the receiver; 2) it can cause multiple versions of the same signal at the re-
ceiver that can alter timing; and finally; 3) for direction-finding systems signals can 
be received from various directions simultaneously. Other issues in systems employ-
ing frequencies at HF and below are antenna size, near-far effects, and interference.  
Antenna size generally scales with wavelength. The simplest designs of dipole or slot 
antennas are generally λ/2 in length with short-dipole or loop antennas are as small as 
λ/10 [4]. At this size, simple antennas would be 1 m or longer which may be an issue 
for some portable location applications. The fields around the antenna can be classi-
fied by two different regions, near-field (or the Fresnel zone) and the far-field (or the 
Fraunhofer zone). In the far-field the energy flow is directed radially (field shape is 
invariant by distance). As shown in Fig. 1, in the near-field the electric field may be 
significant and the shape of the field will depend on distance from the antenna. 

 

Fig. 1. Near-Field Pattern showing the difference in energy pattern near the element in contrast 
to the far field which is primarily radial 

The near-field radius may be roughly approximated by [4] 

  22R L λ=      (m)                                                       (1) 

where 
maximum dimension of the antenna, m

 wavelength, m

L

λ
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=
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In free-space RF propagation the loss is simply proportional to distance for a given 
frequency ƒ:  
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where Pr is the received power level, and Pt is the transmitted power level. The dif-
ference between received power at two distances d1 and d2 is given by:  
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which represents a 6 dB decrease in power for each doubling of distance and a factor 
of 20 dB with every ten-times increase in distance (i.e., 20 dB/decade). However, due 
to interference and interaction between the signal and obstacles between the transmit-
ter and receiver along the propagation path, modeling signal loss based only on  
distance is almost never possible in real-world scenarios. As discussed previously, 
models of the signal are dramatically impacted by the chosen frequency, the distance 
between the transmitter and receiver as well as other characteristics. These lead to 
fading between the transmitter and receiver which have both long-term and short-term 
components [9]. Long term fading is characterized by terrain variations between the 
transmitter and receiver, for example is the area flat or hilly. In contrast, short term 
fading is due to local effects such as reflection and refraction around objects that are 
on the scale of buildings or a forest. Fading can also be a temporal function based 
motion of the receiver, or for a stationary receiver, motion of the surrounding objects 
creating the fading signals. As computed in [5], path loss due to terrain can be an 
additional 20 dB/decade due to terrain. From foliage, path loss can be roughly 
20dB/decade extra as well. Additional path loss can be attributed to buildings and 
other structures. As reported in [6], and as shown in Fig. 2, structural path loss at 1-2 
GHz and 2-4 GHz can be as high as 50 dB for certain structures. Fig. 3 has the mean 
 

 

Fig. 2. Attenuation of L-Band and S-Band Signals in a range of indoor settings 
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attenuation by frequency from 500 MHz to 3 GHz through a farmhouse ranging from 
15 dB to 27 dB of loss respectively. It can be seen that frequencies at or above the 
VHF band, attenuation inside of building can easily exceed 10 dB or more. An advan-
tage to frequencies below VHF is that building attenuation is generally less of an 
issue. One important note for all frequencies is the so-called near-far problem which 
is the problem that short distances between a transmitter and receiver can have a huge 
dynamic range. RF receiver designs usually have a limited dynamic signal bandwidth 
which is designed for an expected range of received signal powers. This fixes the 
viable receiver ranges for a given a transmit power and radio-link properties between 
the transmitter and receiver. 

As shown in Table 3, frequencies at MF and below have beneficial signal propaga-
tion performance, including good building penetration. However, since efficient an-
tennas at these frequencies are impossible to achieve, high transmit power is required 
to attain the required signal level at the receiver [4]. For the Loran system which op-
erates in the LF band at 90-110 kHz the transmit power at the stations are 1 MW [1]. 
While this high power is necessary to operate over long distances (typically 900-1500 
km over land, 1500-2000 km over sea [7]) it is also to compensate for antenna losses 
that could easily exceed 60 dB for a handheld device (<10cm) or 30 dB for a fixed 1 
m receiver [4]. While at lower frequencies, efficient antennas are key; at higher fre-
quencies, the local environment becomes the driving factor in location determination. 
Above 100 MHz, LOS signals become the dominant propagation type but also build-
ings, vehicles and natural obstructions like trees begin to have greater effect [3]. Mul-
tipath becomes a major concern as reflections from these obstacles arrive both 
in-phase and out of phase at the receiver. Above 3 GHz there is only direct LOS prop-
agation available since obstacles highly attenuate the signal. Multipath is also of sub-
stantial concern. 

 

Fig. 3. Dependence on Frequency of attenuation in a farmhouse 
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Table 3. Characterization of frequency bands 

Band Frequency Propagation Antenna 
Size (half-
wave di-
pole) 

Multipath Structure 
Penetration 

VLF < 30 kHz LOS,  
Surface,Sky 

5 km Ground, Sky Good 

LF 30-300 kHz LOS,  
Surface,Sky 

0.5-5 km Ground, Sky Good 

MF 300 kHz- 
3 MHz 

LOS,  
Surface,Sky 

50-500 m Ground, Sky Good 

HF 3-30 MHz LOS, Surface 5-50 m Ground, 
Artifacts 

Poor 

VHF 30-300 MHz LOS 0.5-5 m Artifacts Poor 
UHF 300 MHz -  

3 GHz 
LOS 5-50 cm Artifacts Very Poor 

SHF 3-30 GHz LOS 0.5-5 cm Artifacts Low/None 

A great deal of emphasis has been placed in the location determination literature 
over the past decade using unlicensed-band, short and medium-range communication 
devices.  These devices are generally classified by the terms Bluetooth, ZigBee, 
802.11b/g/n (or WiFi), and RFID [1,8].  These devices are generally designed to oper-
ate in one or more of the ISM bands (or Industrial, Scientific and Medical as defined 
by the ITU-R [9]); and must accept any interference from ISM devices (and in turn not 
interfere with ISM signals).  These restrictions make these devices very low power and 
limited in range. The most popular frequency band in-use today is 2.45 GHz which is 
used for a broad array of short range communication devices including WiFi, Blu-
etooth, ZigBee and even some RFID. Also popular is a band at 900 MHz in ITU Re-
gion 2 (comprising North and South America, Greenland and eastern pacific islands) 
and 433 MHz in ITU Region 1 (Europe, Africa, the Middle East west of the Persian 
Gulf including Iraq, the former Soviet Union and Mongolia).  Recently the use of 5.8 
GHz has become increasing popular for certain devices.  As indicated by 
Table 3, all of these frequencies perform best under LOS conditions, although some 
structure penetration (walls and furniture) is assumed, these obstacles can have signifi-
cant impacts on signal strengths (attenuation) and phase (multipath).  Many approaches 
in the literature either implicitly or explicitly try to take advantage of these propagation 
characteristics [10]. One problem of the pathloss and multipath issues of these frequen-
cies is that local environmental conditions (placement of furniture, number of people in 
a room, relative location of receiver/transmitter to a person as well as a host of other 
variables) can have a strong impact on measurements used in localization.  A great deal 
of effort has been paid recently in the literature on devising algorithms that are more 
tolerant to these fluctuations [11,12,13]. This will be discussed in greater detail in 
Section 2.4 of this paper.  Another major trend in RF location determination is Ultra-
Wide-Band systems or UWB.  UWB is defined as a signal with a bandwidth greater 
than 500 MHz or 20% of the carrier frequency.  The benefits of UWB signals for rejec-
tion of multipath will be discussed in the next section but the use UWB has its impact.  
Since UWB signals share the same signal space as licensed and unlicensed bands, they 
can have an impact on the noise floor for other applications in those bands. In some 
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countries, UWB cannot be used until these issues are addressed [8] and it received 
limited approval by the FCC in 2002 [33] for data communications, radar and safety 
applications across a band from 3.1 GHz to 10.6 GHz.  The power limits on the FCC 
order relegates current UWB applications in these bands to indoor and short-range 
applications. Commercial systems based on UWB are beginning to be introduced [14] 
and are definitely worth continued consideration. 

1.2   Bandwidth Impact on Received Signals 

One approach to describe the signal propagation between as transmitter and receiver 
is using an impulse response [15]. Modeling the signal from the transmitter to receiv-
er separated by a distance, d, as a impulse response, we have: 
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signal based on the additive components at the receiver input. Fig. 4 is a representa-
tion of the received signal pattern. 

 

Fig. 4. Multipath profile for an impulse-response channel model 

The bandwidth associated with an impulse response is infinite so this channel 
model has  infinite bandwidth. Realizable channels, both because of physical and 
regulatory limitations, have finite bandwidth (W ) and if we represent this signal as 

( )
W

x t , the received signal ( )W

d
r t  is given by the convolution of the limited bandwidth 

signal and the impulse response [16]:  
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Fig. 5 shows a sample channel profile generated by transmitting a raised cosine pulse 
in a system with 200 MHz of bandwidth. This figure shows how ranging error is ob-
served in the finite bandwidth case versus the unlimited bandwidth case. 

 

Fig. 5. Distance measurement error due to finite bandwidth signal 

2   RF Location Types and Classification 

Numerous types of RF location technologies have been implemented over the years. 
These primarily break down into five major types: 1) Proximity; 2) Direction Finding 
(DF) or Angle of Arrival (AOA); 3) Doppler; 4) Signal Strength; and 5) Timing or 
Phase as shown in Fig. 6.   

Proximity-based approaches include contact and near-contact sensors such as in RF-
ID (which stands for RF IDentification). In the case of RFID, these systems establish 
location based purely by presence. These systems usually operate in the near-field with-
in a few wavelengths. If the tracked transmitter object is close enough for a receiver to 
get a signal, then the receiver and transmitter are clearly close to one another. 

Direction Finding (DF) and Angle-of-Arrival systems provide a means for deter-
mining the bearing of a RF transmitter from a receiver. Two or more receivers can be 
used to triangulate on the 2D horizontal location of the transmitter (altitude could be 
determined by a third, vertically-oriented receiver).  

Location by Doppler uses the phenomenon that when a transmitter and receiver are 
travelling towards one another the received frequency is higher than transmitted and 
when they are travelling away from each other the received frequency is lower. By 
combining multiple measurements of frequency shifts it is possible to ascertain the 
location and velocity simultaneously.  
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Fig. 6. Types of RF location technologies 

Signal strength uses signal power (or other signal-based metrics like Bit Error 
Rate, or Carrier-to-Noise Ratio) to form an estimate of range or in reference to pre-
viously stored location information in a database, otherwise known as "RF finger-
printing." In the ranging case, multiple range estimates can be combined via lateration 
from multiple reference positions. In the case of RF fingerprinting, previously col-
lected reference values are compared to one or more current measurements to match 
the current location to the stored data. 

Timing and Phase location systems use measurements of the received phase of an 
RF signal or synchronization with a timing modulation on the signal to estimate the 
range between a transmitter and receiver. Lateration is used to combine multiple 
range estimates to form a location estimate. This timing information can be employed 
directly as in Time of Arrival (TOA) systems, or in Round-Trip-Delay (RTD) mea-
surement, or alternatively in Time-Difference of Arrival (TDOA) systems.  

The following five sections will discuss in further detail how these different ap-
proaches work and look at them in light of various performance characteristics. 

2.1   RF Location by Proximity 

One of the simplest approaches to RF location is simply by sensing a RF beacon 
transmitter that is at a known location. In the simplest case, the location precision of 
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the receiver is the coverage area of the beacon transmitter.  In other words, the range 
of the signal represents the uncertainty of your location estimate. Depending on the 
propagation characteristic of the frequency, channel characteristics, directionality of 
the transmitter/receiver pair, as well as the effective aperture of the transmitting and 
receiving antenna, the range may be a few meters to hundreds of kilometers. 

 

Fig. 7. RFID Operation 

The type of device most widely in use today representing proximity-based location 
is RFID.  As depicted in Fig. 7, an RFID system is comprised of at least one "reader" 
which operates both as a power transmitter and receiver and one or more passive 
"tags" which are used as transmitters [1]. The system takes advantage of the previous-
ly described attributes of near-field RF patterns that allow for electrical and magnetic 
coupling of the transmitter and receiver. The RFID tags are not usually powered by 
battery or other power source but derived their power from the reader RF signal. This 
allows the tag to power a small microchip-based circuit capable of modulating a 
unique ID code or some other stored information about the tag. Depending on the 
power transmission of the reader the range to activate the tag can be as little as a cen-
timeter or as large as 30 meters or more [7]. An alternative to passive tags where the 
reader provides the power for the tag are active RFID tags that have their own power 
and broadcast information at periodic intervals or when polled by the reader. This 
approximates a more traditional telemetry system except in this case the tags are de-
signed for minimal complexity, storage and data bandwidth in order to keep their 
production costs down. RFID operates in different frequency bands.  In low-
frequency operations it is employed at 30-500kHz and is used mainly for short-range 
reads (less than 1 meter). Higher frequency system can operate in the range of 850-
950 MHz and 2.4-2.5GHz and are designed for longer read ranges. 

A novel application that uses a combination of GPS and RFID is the YARD 
HOUNDTM by PINC Solutions [17] which is in commercial use today for manage-
ment of tractor trailers at distribution centers. This system places passive RFID tags 
on tractor trailers either permanently or when they enter the yard of a distribution 
center. A reader is placed on each of the yard trucks that move the trailers between 
storage bays and the distribution warehouse as well as the exit and entrance to the 
yard (for ingress and egress records). The yard trucks also have precise GPS location 
so that when the reader records contact with a particular tag, it can estimate the 
location of a trailer to roughly one storage bay thus creating a record of the current 
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location of each trailer that they pass. These records are transmitted via 802.11b/g/n 
wireless link from the yard trucks to a monitoring computer running in the distribu-
tion warehouse which hosts a web-based interface that allows both managers inside 
the warehouse sitting at computer terminals well as workers with mobile devices get 
instant access to the location of the trailers they need to either fill or empty. This dra-
matically decreases the time and effort of personnel to survey the yard to map the 
location of trailers at a given epoch. 

Bluetooth (IEEE 802.15) is another wireless technology for short-range communi-
cations. It uses a frequency hopping scheme which makes timing/phase measurements 
very difficult but it is well suited for proximity-based sensing since its range is depen-
dent on its power class (optionally 1, 10 or 100 meters)  [18,19]. Bluetooth operates in 
the ISM band between 2.400 GHz and 2.485 GHz so it has substantial, but not com-
plete, degradation by structures. Each Bluetooth device is identified by a unique Media 
Access Control (MAC) address. The advantage of Bluetooth is that it is a pervasive 
technology in consumer and commercial applications. Many of today's cell phones, 
computers, printers, and other electronic devices come pre-equipped with Bluetooth.  

Similar to Bluetooth, WiFi (802.11b/g/n) and ZigBee (802.15.4) RF signals also 
operate in the ISM band of 2.400-2.485 GHz and can also be used as proximity sen-
sors as well and could be combined with GNSS in a simple either-or scenario for 
different applications [20].  Further applications for all three of these RF radio  
systems will be discussed in the sections dealing with Signal Strength for location 
determination. 

 

Fig. 8. Elements of the YARD HOUNDTM System 

In general, proximity-based location can be classified as a ultra-local or local area 
system where the range generally would not exceed 100 meters. Precision of the loca-
tion estimate would be inversely proportional to range. Consideration of bandwidth, 
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signal attenuation in the atmosphere or through structures are generally not important 
because the devices are often operating in the near-field of the RF bands and so far-
field effects are inconsequential. Since the relative distance of the receiver and trans-
mitter is so small, antenna gain is usually not a substantial issue so antennas can be 
small and power requirement generally low. Of particular note, relative to GNSS 
systems is that these systems always put a constraint on the maximum  number of 
simultaneous users for a fixed infrastructure. Since they all depend on some external 
reader or basestation which has a limited number of channels these systems will need 
to increase in size and complexity with an increase in simultaneous users. 

2.2   Radio Direction Finding (DF) and Angle of Arrival (AOA) 

The basis of radio Direction Finding (DF) and Angle-of-Arrival (AOA) position de-
termination is the use of angular measurements for triangulation as shown in Fig. 9. 
Triangulation uses the bearings from two or more DF receivers to obtain an estimate 
of the transmitter's location. Principally these systems operate in the RF far-field of 
the transmitter and receiver pair with a planar wave incident on the receiver. In prac-
tice, multiple signal distortions keep this from being ideal. Work in radio DF dates 
back over 100 years. The earliest recorded systematic experiments date back to 1899 
with the first demonstration of tracking a steamship in 1906 by Marconi using a radial 
system of horizontal antennas about λ/5 long. In 1907, work by Pickard and DeForest 
showed the benefits of loop antenna direction finders which would prove to be the 
format of choice for many small aperture DF systems (antenna sizes up to about λ/2).  
In 1926, the Watson-Watt DF was introduced with used two crossed, quadrature loops 
that have their output signal directly measured by a cathode-ray oscillograph provid-
ing an instantaneous estimate of AOA [21].  

In the 1930s leading up to World War II, medium and high frequency radio bea-
cons served guidance and rough navigation functions aircraft. By tracking a single 
beacon (usually collocated with an airport for aircraft) a relative angular fix can be 
 

 

Fig. 9. DF and AOA Principles 
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made between the axis of the aircraft and the beacon. By tracking two or more 
beacons, a crude position could be determined through triangulation. “Positive” navi-
gation points were provided at some airports with vertical marker beacons. These 
vertical beacons were similar to the standard radio beacon except that their signals 
were directed upward. Tracking this beacon indicates to the pilot that they are directly 
above it giving them ‘positive’ feedback on their location. As more flights were made 
on a greater number of routes, the use of airport locations as beacons became unde-
sired. Over time, directional beacons were set up along air travel routes around the 
world. These routes could take advantage of the lessons learned during World War II. 
During the war, it was shown that routes directed along prevailing winds (referred to 
as cyclonic) could cut travel time over the shortest distant method (great circle), thus 
saving fuel. After World War II, VOR (VHF Omnidirectional Range) stations were 
developed and put into place.  According to [22], outside of the developed world 
VOR support is provided with the exceptions of the Polar Regions, the South Atlantic 
Ocean, and much of the Pacific and Indian oceans.   

VOR broadcasts in a band between 108 and 118 MHz with channels 50 kHz apart 
(switched to 50kHz from 100kHz in the 1960s to gain additional channels). The 
ground broadcasts two signals modulated with a 30-Hz tone. The first is a fixed refer-
ence tone with an omnidirectional radiation pattern. The second signal is radiated with 
a cardioid pattern that rotates 30 rotations per second. The receiver uses the relative 
phase of these two 30-Hz signals to determine bearing to the VOR (which is at a 
known location). Fig. 10 shows a diagram of a VOR receiver.  In addition to the 30-
Hz modulation there is an audio channel broadcast modulated at 9660 Hz as well as 
Morse code identifier of the VOR with a 1020 Hz modulation. The voice signal can 
be used as a repeating station identifier or as a ground-to-air communications channel 
[23]. This system design was a U.S. standard by 1946 with later adoption by the In-
ternational Civil Aviation Organization (ICAO). The performance of this system is 
only limited by propagation effects and user equipment errors.  High-end user equip-
ment can usually achieve 0.1°-10° of angular resolution.  This system only works well 
when the VOR and receiver are line of sight visible [22].   

 

Fig. 10. VOR Receiver Diagram 

2.3   Doppler 

Another method that can be used to locate a RF device utilizes the well known phe-
nomenon called the Doppler effect. The Doppler effect states that when an object 
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emits a frequency and moves relative to an observer, the frequency of the observed 
signal will be shifted up or down.  The magnitude and sign of the shift depends on the 
frequency of the signal and the velocity of the transmitter and observer relative to 
each other. The Doppler shift is given by: 
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As illustrated in Fig. 11, the current velocity of a transmitter is mapped onto the 
LOS to a receiver that produces a measured Doppler shift. As the location and veloci-
ty of the transmitter and the Doppler shift is known, the only unknown is the location 
of the fixed receiver. At a later time another Doppler shift is made from a different 
transmitter location and these two observations can be used to resolve a 2D location 
(assuming: perfect frequency references on both the transmitter and receiver, statio-
nary receiver, and no frequency distortion between transmitter and receiver). It should 
be noted that when dealing with a transmitter and receiver at large distance from one 
another (as in GNSS) the LOS is not very sensitive to the location of the receiver so 
precise position is hard to estimate from a single epoch of Doppler data [3]. For short-
range Doppler system, where the distance between receivers and transmitters is within 
an order of magnitude of the desired location precision, Doppler location is far more 
precise. 

 

Fig. 11. Doppler velocity location 

One interesting approach using Doppler location determination as presented in [24] 
utilizes a mobile node that transmits a signal at a known frequency and the Doppler 
shifted signal is measured by fixed "infrastructure" nodes. The speed of the tracked 
node relative to all infrastructure nodes can be calculated and used to determine both 
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the velocity and the location of the node. The desired hardware in this approach had 
low computational power (8 MHz, 8-bit microprocessor) and no specialized Doppler 
measurement capability. They presented an approach, shown in Fig. 12, that had the 
tracked node transmit at a frequency ƒt and one of the infrastructure nodes generates a 
signal ƒa such that ƒt > ƒa and when the two signals interfere with one another they 
produce a signal with an envelope frequency of  ƒt - ƒa. This frequency difference can 
be measured with very fine precision using simple direct sampling. They employed a 
frequency difference of 300-400 Hz to enable tracking with computationally-
constrained hardware. The processor sampled the radio RSSI (Received Signal 
Strength Indicator) which allows the measurement of the interference envelope at 
8.9kHz. They used an observation window of 450 samples or approximately 18 pe-
riods of the interference envelope of 300-400 Hz which was a tradeoff between 
smoothing measurement noise and capturing the dynamic motion of the tracked mo-
bile node. Results of simulation and experiment showed results of 1.3-2.2m and 0.1-
0.4m/s in an operational area of 1500m2. The limitation of this approach is that each 
tracked node needs to use a specific frequency (or share it in a synchronized time-
sliced method) and thus cannot support an unlimited number of nodes. 

 

Fig. 12. Interference-based Doppler velocity and location 

The advantage of the Doppler systems is that they are relatively simple in overall 
design.  LOS requirements are the same as for any RF-based system, the frequency 
choice is fairly wide since it is not limited to a particular modulation or bandwidth 
however, processing of higher frequencies can require specialized hardware unless 
approaches such as the interference-based model are used. 

2.4   Signal Strength 

A substantial body of work has been produced examining position determination 
techniques based on signal strength and other signal-related properties such as signal-
to-noise ratio (SNR), bit error rate (BER), Link Quality Indicator (LQI), Response 
Rate (RR), or carrier-to-noise ratio (C/N0). The two most prevalent RF sources used 
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in the studies are WiFi access points (IEEE 802.11) and cellular towers (both GSM 
and CDMA).   

There are basically two general classes that signal strength solutions break down 
into: distance estimation (leading to lateration) and pattern recognition (also known as 
fingerprinting). 

 

Fig. 13. Propagation Path Loss with multipath 

2.4.1   Distance Estimation 
As the distance between the transmitter and the receiver increases, the RSS decreases 
according to as discussed in Section 1.2 and provided in detail from [5,15]. In this 
way RSS can be equivocated to distance measurements as described in TOA and 
TDOA in the following section. In cellular and WiFi systems the RSS is used for 
handoff and traffic processing and is accessible without changing system architecture. 
Operating on RSS is subject to severe local fading in urban areas and is usually unre-
liable in many instances [15]. As depicted in Fig. 13, the path loss of the signal 
strength is dominated by free-space path loss over large distance (generally hundreds 
of signal wavelengths) but can observe large variations in 10s of dB in shorter lengths 
(typically less than a few wavelengths) due to short-term fading. Long-term fading 
(from a few wavelengths to a hundred or so) can see fading due to reflections in the 
local environment such as buildings and refraction of indirect paths in the atmosphere 
[5]. As a specific example of a system developed using signal strength is the RADAR 
system developed by Microsoft Research that used 802.11 Access Points (APs) to 
estimate the location of a mobile transmitters within an office environment [25]. They 
implemented this system in two phases, first, they collected signal strength measure-
ment data as a function of location throughout one floor of an office building to build a 
model (the "training phase"). They then used this model to compute location (the "test 
phase"). When discussing indoor location systems, it is necessary to model the trans-
mission properties through walls and other obstructions [28]. Also relevant is the rela-
tive orientation of the receiving antenna and transmitter can greatly affect the received 
signal strength [25]. For near-body applications, the torso and to a lesser extent the  
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head can impact signal strength due to absorption of certain RF frequencies especially 
prevalent in the microwave frequencies (1-3 GHz). The effects of the body absorption 
are mostly systematic and result in biases in either test or training data as compared to 
multipath and other scattering which have less tendency to bias. For this reason the 
Microsoft team collected not only location data during the training phase but orienta-
tion as well. They were able to show location errors around 2 to 3 meters for the of-
fice environment, in many cases good enough to isolate the mobile transmitter to a 
room however the drawback to their approach are the training phase (also requiring 
re-training if the physical layout should change) and also subject to environmental 
factors such as the number of people in the office building at a given time [25]. Re-
cent work in ray tracing techniques have shown some promise to lower (or eliminate) 
the need for training in signal strength approaches providing adequate data is availa-
ble on the target operational area, but the overall accuracy compared to timing-based 
approaches is generally lower [26]. Once the range is estimated, the range can be used 
in the same fashion as the timing-based methods discussed in the next section. Not 
only signal strength can be used for range estimation, but also Bit Error Rate (BER), 
Link Quality (LQ) or Response Rate (RR). For example [18] discusses a method 
where the RR (the percentage of times that a given transmitter was heard in all of the 
receiver scans at a specific distance from that transmitter) is used to estimate range for 
isolation of a Bluetooth device to a particular room on an office floor. 

 

Fig. 14. Location From Signal Strength from multiple basestations 
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2.4.2   Pattern Recognition 
In contrast to approaches that seek to map signal strength into range, pattern recogni-
tion techniques have been applied to signal metrics to form location estimates. This 
type of approach is often referred to as "fingerprinting" and uses previously stored 
measurements or calculations to map locations for later matching versus measure-
ments. This approach takes advantage of the local-area fading characteristics by using 
these features from multiple transmitters to uniquely identify a location and, generally 
speaking, the finer the training grid the better the resultant accuracy  [26,31]. Ob-
viously the first crucial step is formation of the radio map (or training) where they can 
be formed by either empirical or model-based approach as shown in Fig. 14. As de-
scribed in [10], in the empirical approach the data can be collected as single values at 
a given location or as a probability distribution. Alternatively, model-based methods 
can be categorized based on parameters, signal propagation and in terms of represen-
tation. In a parameter-based approach parameters can either be provided a-priori as in 
[25] or estimated from a small set of estimation fingerprints as in [28]. The propaga-
tion model can either be a direct-path only approach [25] or where multiple paths are 
used such as in ray tracing [26]. Finally the representation can be single values [29] or 
in terms of probability distributions [30]. 

Pattern-matching solutions have been employed on a variety of scales, on the me-
ter-level within a building [27] to city or larger range at lower overall accuracies 
[31](again, mostly limited to the training set resolution). An important factor about 
path-loss and pattern-matching in signal strength approaches is that they are not par-
ticularly sensitive to the frequency employed. Of course the previous restrictions 
apply as far as attenuation and LOS issues with different frequencies but if the signal 
can be measured at the receiver, it can be used in signal strength approach. Another 
strong suit of this approach is it is not restrictive on the number receivers that can 
make use of the signal measurements which allows for a large number of users for a 
given infrastructure. 

2.5   Time, Phase and Differential Timing (TOA, POA and TDOA) 

GNSS systems use timing measurements collected at a receiver, which is referred to 
as pseudorange or the time of signal flight between the satellite transmitter and re-
ceiver corrupted by atmospheric distortion, multipath and uncertainties of the receiver 
clock. Precision GNSS instruments actually report the carrier phase of the signal 
(which have similar distortions to pseudorange). These represent Time-of-Arrival 
(TOA) and Phase-of-Arrival (POA) systems respectively and are not exclusively 
limited to satellite-based navigation systems. Typically multiple TOA ranges are 
combined via multi-lateration1. The range measurement are represented by [36]: 

 ( ) ( ) ( )i i i
r t t cb tρ= +                                                 (7) 

                                                           
1 Multi-lateration is sometimes referred to as trilateration or tri-lateration to indicate that three 

range measurements at a minimum are required to determine a 2D position without ambigui-
ty. Multi-lateration is chosen to indicate using as many ranges or pseudoranges as required. 
Many times this is referred to as triangulation which also describes angulation (AOA and DF) 
in addition to lateration [34]. 
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In GNSS systems this is well-known as a pseudorange of ( )
i

r t  between the re-

ceiver and the i-th transmitter. The geometric distance between the transmitter and 

receiver is given by ( )
i

tρ , c is the speed of light and ( )
i

b t  is the combined clock 

offset between the receiver and transmitter from a reference time (such as GPS time), 
often referred to as the clock bias. When examining the three-dimensional (3D) loca-
tion the receiver the geometric range is: 

  ( ) ( )( ) ( )( ) ( )( )2 2 2

i i p i p i p
t X t X Y t Y Z t Zρ = − + − + −  (8) 

where ( ) ( ) ( ), , and 
i i i

X t Y t Z t  are the 3D location coordinates of the i-th transmitter 

and , , and 
p p p

X Y Z  is the receiver location at time t. The clock bias is a combination 

of the receiver clock offset from a reference time as well as the i-th transmitter's clock 
offset. For GNSS where the satellites are the transmitters, the satellites transmit clock 
parameters that allow for the correction of the satellite clock (within a small residual 
error) at the receiver leaving only the receiver clock offset to compute along with the 
position. For POA systems (Fig. 16), the same formulations as for TOA apply, how-
ever, there are usually carrier-cycle ambiguity resolution issues and if these cannot be 
resolved then phase measurements are used to smooth TOA measurements [25,32]. 
One of the best advantages of POA systems is the precision of the carrier phase. In 
GPS for example the codephase cycle length is 299.7 km (293 m per C/A code chip) 
in range where the carrier cycle length is 19 cm. This enables far more precision in 
 

 
Fig. 15. Location From TOA/POA ranges 
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ranging measurements at the expense of difficultly in resolving integer ambiguities 
[3,32]. For example, if there is an uncertainty of 1 m of the initial position estimate 
there could be as much as 10 integers for a given satellite and 10n combinations for n 
satellites which could easily lead to millions of possible combinations. 

 

Fig. 16. Carrier Phase Ambiguity 

In contrast to TOA, time-difference systems use arrival times from two transmitters 
at a receiver. Fig. 17 shows that the time differences in the TDOA system represent 
Line-of-Position hyperbolic curves along which the receiver lies. By using a second 
difference measurement the two-dimensional position can be determined; as shown in 
Fig. 17, Point B. In the case of points A and A', a single set of differences may not be 
able to resolve the ambiguity regarding another difference measurement [23]. A sig-
nificant advantage of TDOA over TOA is that the receiver clock bias is not an impor-
tant factor in location determination. 

 

Fig. 17. Location From TDOA hyperbolic traces 



 Tutorial on Location Determination by RF Means 233 

3   Conclusion 

The level of interest in ubiquitous location determination capability continues to in-
crease for a variety of applications.  This paper gave an overview of RF-based ap-
proaches that form the basis for all the systems employed today.  These systems will 
continue to be key components in location solutions for years to come.   
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Abstract. Over the past decade we have witnessed the evolution of
wireless sensor networks, with advancements in hardware design, com-
munication protocols, resource efficiency, and other aspects. Recently,
there has been much focus on mobile sensor networks, and we have even
seen the development of small-profile sensing devices that are able to
control their own movement. Although it has been shown that mobility
alleviates several issues relating to sensor network coverage and connec-
tivity, many challenges remain. Among these, the need for position esti-
mation is perhaps the most important. Not only is localization required
to understand sensor data in a spatial context, but also for navigation,
a key feature of mobile sensors. In this paper, we present a survey on
localization methods for mobile wireless sensor networks. We provide
taxonomies for mobile wireless sensors and localization, including com-
mon architectures, measurement techniques, and localization algorithms.
We conclude with a description of real-world mobile sensor applications
that require position estimation.

1 Introduction

Wireless sensor network (WSN) applications typically involve the observation of
some physical phenomenon through sampling of the environment. Mobile wire-
less sensor networks (MWSNs) are a particular class of WSN in which mobility
plays a key role in the execution of the application. In recent years, mobility
has become an important area of research for the WSN community. Although
WSN deployments were never envisioned to be fully static, mobility was initially
regarded as having several challenges that needed to be overcome, including
connectivity, coverage, and energy consumption, among others. However, recent
studies have been showing mobility in a more favorable light [1]. Rather than
complicating these issues, it has been demonstrated that the introduction of mo-
bile entities can resolve some of these problems [2]. In addition, mobility enables
sensor nodes to target and track moving phenomena such as chemical clouds,
vehicles, and packages [3].

One of the most significant challenges for MWSNs is the need for localization.
In order to understand sensor data in a spatial context, or for proper navigation
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throughout a sensing region, sensor position must be known. Because sensor
nodes may be deployed dynamically (i.e., dropped from an aircraft), or may
change position during run-time (i.e., when attached to a shipping container),
there may be no way of knowing the location of each node at any given time. For
static WSNs, this is not as much of a problem because once node positions have
been determined, they are unlikely to change. On the other hand, mobile sen-
sors must frequently estimate their position, which takes time and energy, and
consumes other resources needed by the sensing application. Furthermore, lo-
calization schemes that provide high-accuracy positioning information in WSNs
cannot be employed by mobile sensors, because they typically require centralized
processing, take too long to run, or make assumptions about the environment
or network topology that do not apply to dynamic networks.

This paper presents a survey and taxonomy of localization methods for mobile
wireless sensor networks. Localization is a well-studied problem in several areas
including robotics, mobile ad hoc and vehicular networks, and wireless sensor
networks. Here, we focus solely on those methodologies that relate directly to
MWSNs. In order to understand localization in the context of mobility, we begin
with an overview on mobile wireless sensor networks. The overview includes
common MWSN architectures, discusses the advantages of adding mobility, and
describes differences with WSNs. We then provide a taxonomy of localization
methods in MWSNs. In addition, we discuss the impact centralized processing
and the environment have on MWSN localization. Finally, we describe real-world
MWSN applications that require position estimation.

At present, the most widely used method for localization is the NAVSTAR
Global Positioning System (GPS) [4]. The system consists of approximately 24
satellites that orbit the planet, of which four are required to obtain location
information (3 to determine 3D position, and 1 to resolve local clock uncer-
tainty). The satellites continuously transmit messages that contain ephemeris
data, transmission time, and vital statistics. Mobile receivers are then able to
compute their location using lateration based on signal time of flight and orbital
position data. Commercial-use GPS is accurate to within 10 meters, is free to
use anywhere on the planet and, for many mobile applications, is an ideal local-
ization technology that should be taken advantage of. However, there are also
several situations in which it will not work reliably. Because GPS requires line
of sight to multiple satellites, mobile sensor networks that are deployed in ur-
ban environments, indoors, underground, or off-planet will not be able to use it.
Furthermore, although GPS receivers are available for mote-scale devices, they
are still relatively expensive, and therefore undesirable for many deployments.
Therefore, in this survey, localization is presented from a GPS-less perspective
(i.e., one that does not rely solely on GPS technology).

The survey is organized as follows. In Section 2, we provide a description
of the key features of mobile wireless sensor networks. Section 3 then focuses
specifically on localization in MWSNs, and includes a taxonomy of localization
methods. Section 4 continues with a description of MWSN applications that
require localization. Section 5 concludes.
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2 Mobile Wireless Sensor Networks

In this section, we provide a brief taxonomy of MWSNs, including the differences
between MWSNs and WSNs, and the advantages of adding mobility.

2.1 MWSN Architectures

Mobile sensor networks can be categorized by flat, 2-tier, or 3-tier hierarchical
architectures [5], as illustrated in Figure 1, and described below.

(a) (b) (c)(a) (b) (c)

Fig. 1. (a) Flat, (b) 2-Tier, and (c) 3-Tier MWSN architectures

A flat, or planar, network architecture comprises a set of heterogeneous devices
that communicate in an ad hoc manner. The devices can be mobile or stationary,
but all communicate over the same network. Basic navigation systems such as [6]
have a flat architecture, as pictured in Figure 1a.

The two-tier architecture consists of a set of stationary nodes, and a set of
mobile nodes. The mobile nodes form an overlay network or act as data mules
to help move data through the network. The overlay network can include mobile
devices that have greater processing capability, longer communication range, and
higher bandwidth. Furthermore, the overlay network density may be such that
all nodes are always connected, or the network can become disjoint. When the
latter is the case, mobile entities can position themselves in order to re-establish
connectivity, ensuring network packets reach their intended destination. The
NavMote system [7] takes this approach. The 2-tier architecture is pictured in
Figure 1b.

In the three-tier architecture, a set of stationary sensor nodes pass data to
a set of mobile devices, which then forward that data to a set of access points.
This heterogeneous network is designed to cover wide areas and be compatible
with several applications simultaneously. For example, consider a sensor network
application that monitors a parking garage for parking space availability. The
sensor network (first tier) broadcasts availability updates to compatible mobile
devices (second tier), such as cell phones or PDAs, that are passing by. In turn,
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the cell phones forward this availability data to access points (third tier), such as
cell towers, and the data are uploaded into a centralized database server. Users
wishing to locate an available parking space can then access the database. The
3-tier architecture is pictured in Figure 1c.

At the node level, mobile wireless sensors can be categorized based on their
role within the network:

Mobile Embedded Sensor. Mobile embedded nodes do not control their
own movement; rather, their motion is directed by some external force, such as
when tethered to an animal [8] or attached to a shipping container [9]. Typical
embedded sensors include [10], [11], and [12].

Mobile Actuated Sensor. Sensor nodes can also have locomotion capability
(for example, [13], [14], [15]), which enables them to move throughout a sensing
region [6]. With this type of controlled mobility, the deployment specification
can be more exact, coverage can be maximized, and specific phenomena can be
targeted and followed.

Data Mule. Oftentimes, the sensors need not be mobile, but they may require
a mobile device to collect their data and deliver it to a base station. These types
of mobile entities are referred to as data mules [16]. It is generally assumed that
data mules can recharge their power source automatically.

Access Point. In sparse networks, or when a node drops off the network,
mobile nodes can position themselves to maintain network connectivity [16],
[17]. In this case, they behave as network access points.

2.2 Advantages of Adding Mobility

Sensor network deployments are often determined by the application. Nodes can
be placed in a grid, randomly, surrounding an object of interest, or in countless
other arrangements. In many situations, an optimal deployment is unknown
until the sensor nodes start collecting and processing data. For deployments in
remote or wide areas, rearranging node positions is generally infeasible. However,
when nodes are mobile, redeployment is possible. In fact, it has been shown [17],
[18] that the integration of mobile entities into WSNs improves coverage, and
hence, utility of the sensor network deployment. This enables more versatile
sensing applications as well [1]. For example, Figure 2 illustrates a mobile sensor
network that monitors wildfires. The mobile sensors are able to maintain a safe
distance from the fire perimeter, as well as provide updates to fire fighters that
indicate where that perimeter currently is.

In networks that are sparse or disjoint, or when stationary nodes die, mobile
nodes can maneuver to connect the lost or weak communication pathways. This
is not possible with static WSNs, in which the data from dead or disconnected
nodes would simply be lost. Similarly, when network sinks are stationary, nodes
closer to the base station will die sooner, because they must forward more data
messages than those nodes further away. By using mobile base stations, this
problem is eliminated, and the lifetime of the network is extended [19].
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Fig. 2. A MWSN that monitors wildfires. As the fire spreads, the mobile sensors can
track it, as well as stay out of its way.

Mobility also enables greater channel capacity and maintains data integrity
by creating multiple communication pathways, and reducing the number of hops
messages must travel before reaching their destination [20].

2.3 Differences between WSNs and MWSNs

In order to focus on the mobility aspect of wireless sensor networks, it is im-
portant to first understand how the common assumptions regarding statically-
deployed WSNs change when mobile entities are introduced.

Localization. In statically deployednetworks, node position canbe determined
once during initialization. However, those nodes that aremobile must continuously
obtain their position as they traverse the sensing region. This requires additional
time and energy, as well as the availability of a rapid localization service.

Dynamic Network Topology. Traditional WSN routing protocols [21],
which describe how to pass messages through the network so they will most
likely reach their destination, typically rely on routing tables or recent route
histories. In dynamic topologies, table data become outdated quickly, and route
discovery must repeatedly be performed at a substantial cost in terms of power,
time, and bandwidth. Fortunately, there is an active area of research dedicated
to routing in mobile ad hoc networks (MANETs), and MWSNs can borrow from
this work [22].

Power Consumption. Power consumption models [23] differ greatly between
WSNs and MWSNs. For both types of networks, wireless communication incurs
a significant energy cost and must be used efficiently. However, mobile entities
require additional power for mobility, and are often equipped with a much larger
energy reserve, or have self-charging capability that enables them to plug into
the power grid to recharge their batteries.

Network Sink. In centralized WSN applications, sensor data is forwarded
to a base station, where it can be processed using resource-intensive methods.
Data routing and aggregation can incur significant overhead. Some MWSNs use
mobile base stations [19], which traverse the sensing region to collect data, or
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(a) (b) (c)(a) (b) (c)

Fig. 3. Localization phases: (a) coordination, (b) measurement, and (c) position
estimation

position themselves so that the number of transmission hops is minimized for
the sensor nodes.

3 Localization in MWSNs

In this section, we provide a taxonomy of localization methods for MWSNs, as
well as survey selected works representative of common MWSN localization. An
extensive library of WSN localization research has been published within the
past decade [24], [25], and many of these techniques can be applied to MWSNs.
The localization techniques use diverse hardware, algorithms and signal modal-
ities, which can be categorized along several different dimensions. We start by
describing the three phases typically used in localization ([26], [27], [28]): (1) co-
ordination, (2) measurement, and (3) position estimation. We then focus on other
aspects of MWSN-based localization, such as the effects of mobility, centralized
versus distributed processing, and the environment.

MWSN localization is typically performed as illustrated in Figure 3. A group
of nodes coordinate to initiate localization. One or more nodes then emit a signal,
and some property of the signal (e.g. arrival time, phase, signal strength, etc.) is
observed by one or more receivers. Node position is then determined by trans-
forming signal measurements into position estimates by means of a localization
algorithm. In order to determine position, it is often necessary to enlist the help
of cooperating sensor nodes that have been deployed into the environment at
known positions a priori. These devices are referred to as anchor, infrastructure,
or seed nodes. For example, in GPS, the infrastructure nodes are the satellites
that orbit the planet. The position estimate may be relative to a set of station-
ary anchor nodes at known positions in a local coordinate system, or absolute
coordinates may be obtained if the positions of the anchor nodes are known with
respect to some global coordinate system (i.e., using GPS).

3.1 Coordination Phase

Prior to signal transmission, nodes participating in the localization typically co-
ordinate with one another. Such coordination can include notification that the
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localization process is about to begin, and clock synchronization, which enables
received signal data to be analyzed within a common timeframe. Coordination
techniques such as reference broadcast synchronization (RBS) [29] and elapsed
time on arrival (ETA) [30] exist that encapsulate both notification and synchro-
nization into a single message. These coordination methods have microsecond
accuracy and require transmission of only a single message. For example, the
SyncEvent, one of the ETA primitives, declares a time in the future to begin the
localization process. Encoded in the message is the timestamp of the message
sender (typically the localization coordinator), which is inserted into the message
immediately before transmission, thus reducing the amount of non-deterministic
latency involved in the synchronization. All nodes within broadcast range will
receive the message at approximately the same time instant, and assuming a
negligible transit time of the radio signal through air, will be able to transform
the sender timestamp into their local timescale. This technique is used in several
localization schemes, including [31], [32], [9], and [6].

3.2 Measurement Phase

The measurement phase typically involves the transmission of a signal by at
least one node, followed by signal processing on the other participating nodes.

Signal Modalities. The choice of signal modality used by sensor nodes is im-
portant for accurate localization, and depends on node hardware, the environ-
ment, and the application. Because WSNs are developed to provide inexpensive
wide-area observation capability, it is generally undesirable to add additional
hardware to the sensor board, because this increases cost and power consump-
tion. Localization schemes will also perform differently in different environments.
In humid environments, for example, radio signals perform worse than acoustic
signals because moisture in the air absorbs and reflects the high frequency radio
waves but does little to affect the vibrational sound waves. Finally, the applica-
tion itself places some constraints on signal modality. A military application, for
example, in which nodes must localize under stealth conditions, would be much
better off using a silent modality such as radio frequency, rather than an audible
one such as acoustic.

The acoustic modality typically employs either ultrasound or audible wave
propagation. Several techniques have been published for each. Two early and
commonly cited ultrasound localization techniques are Active Bats [33] and
Cricket [34]. A more recent ultrasound approach, which includes a survey on ul-
trasonic positioning systems and challenges can be found in [35]. In the audible
acoustic band, several novel localization systems have been developed, including
beamforming [36], a sniper detection system [37], and generalized sound source
localization [38].

Infrared (IR) signal attenuation is relatively high, requiring close proximity
between transmitter and receiver. This is acceptable for most indoor localization
schemes, however, outdoor localization becomes difficult, not only due to prox-
imity issues, but also because the IR signal is difficult to read in the presence
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Fig. 4. Radio interferometry. Two nodes transmit a sinusoidal signal at slightly dif-
ferent frequencies, which interfere to create a low-frequency beat signal that can be
measured using resource-constrained sensor nodes.

of sunlight. One of the earliest mobile localization systems is the Active Badge
system [39], whereby a small electronic device (badge), carried by a user, emits a
periodic identification signal. The signal is received by infrastructure nodes and
centrally processed, allowing position information to be accessed by authorized
users. Other IR localization methods can be found in [40] and [41].

Because all wireless sensor nodes have onboard radio hardware, radio fre-
quency (RF) propagation has become a popular signal modality for localization.
Signal properties such as strength, phase, or frequency are analyzed to derive
range data for position estimation. One benefit of using RF is that it has been
shown to achieve localization accuracy on the order of centimeters, even in sparse
networks [42]. On the other hand, because typical sensor node radios transmit
at frequencies between 400 MHz to 2.6 GHz, sampling the raw signal for phase
or frequency cannot be done with resource-constrained hardware. Instead, meth-
ods such as radio interferometry [31] must be used to generate a low frequency
beat signal, as shown in Figure 4. The frequency and phase of the beat signal
can then be measured by observing the received signal strength indicator on the
radio chip.

The Lighthouse [43] and Spotlight [44] localization techniques use a light
beacon to determine node position. Although both methods claim high accuracy,
they require line of sight, a powerful light source that will perform well in lighted
areas, and customized hardware for the light source.

Measurement Techniques. Several techniques exist for obtaining bearing,
range, or proximity information based on signal measurement.

The angle-of-arrival (AOA) method [45], [46], [47], [36] involves determining
the angular separation between two beacons, or a single beacon and a fixed axis.
By determining the AOA at a certain number of sensor nodes, position can be
determined by angulation methods, as outlined in Section 3.3.

Localization by time-of-arrival (TOA) [48], [49], [50] measures the time a
signal takes to arrive at some number of sensors. This requires knowing the time
the signal was transmitted, and assumes tight time synchronization between
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sender and receiver. The signal will have known propagation properties, such as
speed through air at sea level. The main drawback of this approach is that it
is difficult to precisely record the arrival time of radio signals, since they travel
close to the speed of light. Therefore, it works best with an acoustic source. In
addition, after transmitting the signal, the source must also make its transmit
time known, incurring additional communication overhead. This can be avoided
by employing a round-trip TOA method [51], whereby Node A transmits a signal
to Node B. Upon signal reception, Node B transmits a signal back, and Node
A observes the round-trip time, accounting for deterministic delay during the
communication process.

Time-difference-of-arrival (TDOA) localization [32], [38] improves upon the
TOA approach by eliminating the need to know when the signal was transmitted.
Several time-synchronized nodes receive a signal, and look at the difference in
arrival times (or difference in signal phase) at a specific time instant. Because the
signal travels at a constant speed, the source position can easily be determined
if there are a sufficient number of participating nodes.

Another localization method examines the received signal strength (RSS) of
a message broadcast from a known location [52], [53]. Since the free-space signal
strength model is governed by the inverse-square law, accurate localization is
possible. Furthermore, this typically does not involve any hardware modifications
because most chips (e.g. RF, IR, etc.) provide software access to the amplitude
of the received signal. Another use for RSS is profiling [54], [55], in which a
map of RSS values is constructed during an initial training phase. Sensors then
estimate their position by matching observed RSS values with the training data.

Recently, there have been several published techniques that determine the posi-
tion of a node based on the observed frequency of a signal [9], [6], [56], [57]. Signal
frequency will undergo Doppler-shift when the transmitter and receiver are mov-
ing relative to one another. The observed Doppler-shift at multiple infrastructure
nodes can be used to derive the position and velocity of the mobile node.

The above techniques provide the most accurate position estimates, however,
it is oftentimes sufficient to only localize to a region. Such a region might be
a room in a house, a floor in an office building, or a city block. This type of
localization can be proximity-based, such as a node is located in Region A if
an anchor in Region A detects it there. Another technique to localize using
hop count [58]. Because the approximate transmission range of the node radio
is known, observing the number of message hops to a set of anchor nodes will
constrain the target node to a specific region.

3.3 Localization Phase

The signal data obtained the measurement phase can be used to determine the
approximate position of the target node. Common localization techniques for
MWSNs are based on ranging, whereby distance or angle approximations are
obtained. Because range data are often corrupted by noisy signal measurements,
optimization methods are employed to filter the noise and arrive at a more
accurate position estimate.
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Fig. 5. The position of a target node (T ) is estimated based on the known positions
of beacons (Bi) using (a) lateration or (b) angulation

Lateration. When ranges between landmarks and the mobile node can be
determined, lateration is used to estimate position [59]. Figure 5a illustrates
the method. For two-dimensional localization, three range measurements from
known positions are required. Each range can be represented as the radius of a
circle, with the anchor node situated at the center. Without measurement noise,
the three circles would intersect at exactly one point, the location of the target
node. However, in the presence of noise, the three circles will overlap, and the
target node will likely (but not necessarily) be contained within that region.

Angulation. When anchor bearings or angular separation between anchors
and the mobile node can be obtained, angulation can be used to determine the
position of the mobile node [60], [61], [46], [62]. This is pictured in Figure 5b. For
tri-angulation, when two anchors are used, the target position will be identified
as the third point in a triangle of two known angles (the bearings from each
anchor), and the length of one side (the distance between anchor nodes). Often
more than two anchor bearings are used, and target position is determined by
the intersection of all bearings, as illustrated in the figure. In the presence of
measurement noise, the bearings will not all intersect at the exact same point,
but will instead define a region where the target node is likely to be.

Cellular Proximity. An alternative approach is the range-free method ([39],
[63], [58]), whereby a node is localized to the region in which it is detected. This
method generally provides a more course-grained position estimate, and depends
on the density of infrastructure nodes.

Dead Reckoning. A widely used localization technique for mobile robots is
dead reckoning [3], [64], [65], [7]. Robots obtain their current velocity from
wheel encoders or other means, and use this information in conjunction with
the amount of time that has elapsed since the last update to derive current po-
sition and heading. The major drawback of this approach is that the position
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estimation accrues error over time, primarily because of noisy encoder data due
to uneven surfaces, wheel slippage, dust, and other factors.

Estimation Methods. When measurement data is noisy, or the system is
underdefined, state estimation methods can be used. There exist a number of
estimation methods, but the two main approaches are: (1) maximum likelihood
estimation (MLE) [66], which estimates the values of the state based on mea-
sured data only, and no prior information about the state is used, and (2) se-
quential Bayesian estimation (SBE) [67], which estimates state values based on
measurements, as well as prior information.

MLE methods such as [68] and [69] find the estimates for the system state
by maximizing the likelihood of the measured data. In other words, MLE picks
the values of the system parameters that make the observed data “more likely”
than any other values for the parameters. The data likelihood is computed using
a measurement model that relates the measured data to the system state.

In SBE, the system state is iteratively estimated using the recursive Bayes rule
which states that the posterior is proportional to the product of the data likelihood
and the predicted prior. Such methods are used in [55], [53], and [70]. Like MLE,
the data likelihood is computed using a measurement model. The solution to SBE
is generally intractable and cannot be determined analytically. Optimal solutions
do exist in a restrictive set of cases, such as the Kalman Filter (KF) [71] and grid-
based filters. More general suboptimal solutions exist, such as Extended Kalman
Filter (EKF) [72] and Particle Filters (PF) that approximate the optimal Bayesian
estimation. The sequential Monte Carlo (SMC) [64] method is a PF that provides
a suboptimal solution by approximating the posterior density by a set of random
samples (also called particles) with associated weights. As the number of particles
becomes very large, the particle filter approaches an optimal solution.

3.4 The Effect of Mobility on Localization

Typically, localization of mobile sensors is performed in order to track them,
or for navigational purposes. However, when sensors are mobile, we encounter
additional challenges and must develop methods to address them.

One of these challenges is localization latency. If the time to perform the lo-
calization takes too long, the sensor will have significantly changed its position
since the measurement took place. For example, robot navigation requires peri-
odic position estimates in order to derive the proper control outputs for wheel
angular velocity. If the robot is traveling at 1 m/s and the localization algorithm
takes 5 seconds to complete from the time the ranging measurements were taken,
the robot might be 5 meters off from its intended position.

Mobility may also impact the localization signal itself. For example, the fre-
quency of the signal may undergo a Doppler shift, introducing error into the mea-
surement. Doppler shifts occur when the transmitter of a signal is moving relative
to the receiver, as illustrated in Figure 6. The resulting shift in frequency is re-
lated to the positions and relative speed of the two nodes. mTrack [32] takes this
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Fig. 6. (a) The frequency of a signal does not change when the transmitter and receiver
are moving at the same relative speed. (b) However, when the transmitter and receiver
are moving relative to one another, the signal will undergo a Doppler shift.

Doppler effect into account and uses it to refine its position estimate. Other ap-
proaches [9], [6] use the Doppler effect to directly solve for position and velocity.

If the localization technique requires line of sight (LOS), there is the possibility
that the mobile sensor will move from a position with good LOS, to a position
with poor LOS. When this is the case, a dense network of nodes is required to
ensure there is always LOS to the mobile node, wherever it may move.

3.5 Centralized vs. Distributed Algorithms

The resource constraints inherent in WSNs pose a challenge when it comes to
executing certain localization algorithms, because they require extensive mem-
ory and processor bandwidth, especially when dealing with a large number of
sensors, or when using complex statistical methods to estimate range or posi-
tion [25]. A centralized localization algorithm runs on a base station, and all
participating nodes must forward their measurement data to the base station.
The advantage of the centralized approach is an algorithm can be designed that
has more accuracy, precision, and can process greater amounts of data. On the
other hand, base station processing suffers from the common pitfalls of central-
ization, such as poor scalability, single point of failure, data routing complexity,
and greater power consumption (especially for nodes closer to the base station).

When nodes are mobile, the decision to use centralized or distributed pro-
cessing becomes even more important. Mobility requires continuous and rapid
localization. Although centralized localization techniques exist for mobile sen-
sors [32], [9], they are usually not fast enough for certain applications, such as
navigation. For example, mTrack [32] reports a latency of approximately 5 sec-
onds. dNav [6], on the other hand, is distributed, and takes less than 1 second
on average to return position and velocity estimates.

3.6 The Impact of Environment on Localization

The environment plays a significant role in the effectiveness of a localization
method. As a result, there is no one localization method that will be accurate



A Survey on Localization for Mobile Wireless Sensor Networks 247

for all situations. Different environmental factors are listed below, as well as the
effect they have on the aforementioned localization methods.

Ambient temperature, pressure, and humidity can affect localization accu-
racy, because these directly impact the crystal oscillator in the transceiver. Fur-
thermore, it has been well established that radio wave propagation is affected
by precipitation, including moisture in the air, therefore localization techniques
that use RF measurements can be impaired under these conditions [73]. One of
the biggest problems with GPS is that it does not work reliably under water,
indoors, or even when it is cloudy. This is because the GPS receiver requires line
of sight to up to four satellites orbiting the planet [4].

At present there is a major effort underway to develop accurate localization
methods in indoor environments. Indoor applications that require node position
estimation are challenging because most propagation methods and measurement
techniques suffer from multipath effects [74], where obstacles (e.g. walls, furni-
ture, people, etc.) cause signal reflections that interfere with each other. In ad-
dition, many of the existing localization techniques that provide good accuracy
outdoors, will not work indoors.

4 MWSN Applications with Localization Requirements

Although MWSNs are still in their infancy, several types of applications have
already been developed in which localization plays an integral part. The ap-
plications fall under four main categories, (a) commercial, (b) environmental,
(c) civil, and (d) military, however, most span more than just one of these.

4.1 Commercial

As MWSNs grow in popularity, we expect to see a burst of applications in the
commercial sector that require some kind of position data.

– Service Industry. One such area is the service industry. Companies such
as Skilligent [75] are developing software protocols for service robots that
perform tasks such as basic patient care in nursing homes, maintenance and
security in office buildings, and food and concierge service in restaurants and
hotels. All of these applications require a mechanism for position estimation.
Skilligent uses a visual localization system based on pattern matching. Ob-
jects are used as landmarks, and are loaded into the system a priori, or
dynamically at runtime. The robot learns its position by matching video
images with landmark information.

– Housekeeping. The iRobot Roomba [76] is an automated vacuum cleaning
robot for domestic use. The Roomba creates a map of the room as it moves by
using feedback from a variety of bumper and optical sensors. Wheel encoders
provide run-time position information that enable it to cover the entire room.
The Roomba also uses a self-docking station to automatically recharge its
batteries.
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4.2 Environmental

MWSNs have become a valuable asset for environmental monitoring. This is
thanks in part to their ability to be deployed in remote areas and for their
ability to gather data of wide areas of interest.

– Wildlife Tracking. ZebraNet [8] is an early MWSN, in which mote-scale
wireless devices were fitted to zebras for the purpose of tracking their move-
ment. Due to the remote region, there was no cellphone coverage, so data
was routed through the peer-to-peer network to mobile base stations. The
zebras were not constrained to certain areas, and other than the small de-
vices attached to their bodies, left undisturbed. To accomplish this level of
tracking without the use of MWSNs would not be possible.

– Pollution Monitoring. A mobile air quality monitoring system is pre-
sented in [77]. Sensor nodes that measure specific pollutants in the air are
mounted on vehicles. As the vehicles move along the roadways, the sensors
sample the air, and record the concentration of various pollutants along with
location and time. When the sensors are in the proximity of access points,
the data are uploaded to a server and published on the web.

4.3 Civil

One of the areas that has great potential for MWSN utility is that of civil ser-
vices. This includes those non-military municipal applications that keep society
running efficiently and safely.

– Pothole Detection. In [78], a system is developed to detect potholes on city
streets. Deployed on taxi cabs, the sensor nodes contain an accelerometer,
and can communicate using either opportunistic WiFi or cellular networks.

– Wireless E-911. In North America, the Enhanced 911 emergency telecom-
munications service, orE911 [79],was established to connect callerswith emer-
gency services in a manner that would associate a physical location with the
phone number of the caller. Wireless E-911 is the second phase of the E911
service mandated by the FCC, which requires wireless cellular devices to au-
tomatically provide user location when the service is invoked. This is an im-
portant requirement, however, its implementation is non-trivial, and different
carriers choose to use different methods, including embedded GPS chips, and
multilateration and angulation based on the known locations of cell towers.

4.4 Military / Aerospace

One of the biggest promoters, as well as one of the biggest funders, of wireless
sensor technology is the military. There is a clear interest in localization services,
tracking friendly and hostile entities, and navigation of autonomous robots, and
intensive research is carried out in this area.

– Shooter Detection / Weapon Classification. In [80], a soldier-wearable
sensor system is developed that not only identifies the location of an enemy
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sniper, but also identifies the weapon being fired. Each sensor consists of
an array of microphones mounted on the helmet of a soldier. The sensor
observes both the shock wave of the projectile, as well as the muzzle blast
from the weapon, and based on TDOA, as well as properties of the acoustic
signal, is able to triangulate the enemy position and classify the weapon
type.

– Autonomous Deployment. In [81] an unattended aerial vehicle is used for
sensor network deployment and repair. Such deployments aid the military in
battlefield surveillance and command and control field operations.

5 Conclusion

In this paper, we presented a survey and taxonomy on localization for mobile
wireless sensor networks. Localization in MWSNs entails new challenges that
result from integrating resource-constrained wireless sensors on a mobile plat-
form. The localization methods and algorithms that provide greater accuracy on
larger-footprint mobile entities with fewer resource restrictions are no longer ap-
plicable. Similarly, centralized and high-latency localization techniques for static
WSNs are undesirable for the majority of MWSN applications.

There are several directions for future work in MWSN localization. Reduc-
ing localization latency is one of the most important benchmarks for MWSNs.
Currently, a tradeoff exists between the rapid execution of an algorithm and its
accuracy. Additional work is needed that focused on reducing run-time latency,
while maintaining positioning accuracy. In addition, the majority of localization
algorithms to date are centralized. For mobile sensor localization, this is often
a poor design choice, due to the additional latency and energy costs incurred.
The development of more distributed localization techniques would be a welcome
addition to MWSN localization. There is much interest in localization in urban
and indoor areas where obstacles such as vehicles, walls, people, and furniture
cause multipath propagation and loss of line of sight. Most current methods use
some variation of RSS profiling, in conjunction with optimization techniques.
However, new methods are required as we expand mobile sensing to areas where
training data cannot safely be obtained, such as urban war zones or burning
buildings. Lastly, mobile actuated sensors are now being developed with mote-
sized form factors. Like embedded sensor nodes, these devices also have resource
constraints, which limit their ability to navigate a sensing region in the same way
a robot with a full array of sensors and powerful processing capability might. We
can expect to see many advances in mobile sensor navigation in the near future.
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Abstract. Recently, cooperative robotic applications have attracted
considerable attention. Cooperative assignments for robots demand ac-
curate localization. Since in an indoor environment localization using
GPS does not render a satisfactory result, we need to resort to differ-
ent approaches for indoor geolocation. Precise localization information
means better coordination that enables us to manipulate robots more
effectively for variety of tasks. In this paper, the cooperative localiza-
tion performance accuracy for a multi-robot operation is examined using
empirical models for ranging estimates in an indoor environment sce-
nario at the third floor of the Atwater Kent Laboratory (AKL) in the
Worcester Polytechnic Institute. The two widely used ranging techniques
are Time Of Arrival (TOA) using Ultra-wideband (UWB) and Received
Signal Strength (RSS) using WiFi signals. We use empirical statistical
models for UWB TOA-based and WiFi RSS-based operations in order to
determine the Cramér-Rao-Lower-Bound (CRLB) on the performance
of localization techniques in our multi-robot operation scenarios. We de-
termine the performance of the localization of robots when they are
localized individually versus when they are benefited from cooperative
localization.

1 Introduction

The emergence of cooperative robotic applications calls for variety of tasks that
require more precise coordination in order to effectively manipulate the robots for
either a single or joint task operation. In robotic applications, vision modality is
used for finding the coordinate information[1],[2]. The vision modality requires
a Line-Of-Sight (LOS) condition and in most indoor environments there are
walls, partitions and furniture that block the view and create a Non-Line-Of-
Sight (NLOS) situation. A loss of visual data results in severe degradations in
localization precision. Using the radio propagation signals and models we can
potentially overcome this problem and achieve better localization in the absence
of visual data. The traditional RF localization is performed by GPS signals,
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which does not work properly in indoor environment. As a result, recently non-
GPS localization using other opportunistic signals have attracted considerable
attention[3],[4]. The most popular RF indoor geolocation systems use Time Of
Arrival (TOA) of the UWB signals and Received Signal Strength (RSS) of WiFi
signals[5]. The TOA-based UWB signals provide for more precise localization
but the coverage is limited and the design needs new hardware infrastructure.
The RSS-based WiFi localization can be implemented in software and on the
existing wide spread WiFi infrastructure with a significantly wider coverage than
UWB systems. As a result, UWB localization has found its way in wireless sen-
sor networks[6] and the WiFi localization is used for both indoor and outdoor
applications[5]. The results of quantitatively comparative performance evalua-
tion of UWB and WiFi localization in [7] reveals that RSS WiFi localization
provides a statistically smooth but less reliable localization while the UWB’s
localization in most occasions provides more precise localization than the RSS
localization. To resolve these difficulties in precise RF localization techniques,
cooperative localization has offered itself as a solution for applications in wireless
sensor networks[5],[6],[7].

In this paper, we analyze the merits of RF cooperative localization using
TOA-based UWB and RSS-based WiFi technologies for cooperative robotic ap-
plications in our modeling and simulation environment. In our simulation en-
vironment we take advantage of empirical results obtained from third floor of
AKL for portion of our modeling (TOA) to be described in Section 2. We de-
fine a movement scenario for multi-robot operation based on the layout of the
third floor of AKL (Fig. 2) with respect to four static reference points. With the
use of our mix-mode (empirical and theoretical) modeling we derive Cramér-
Rao-Lower-Bound (CRLB) for calculation of the localization error for individ-
ual robot and when they operate in a cooperative manner both for UWB and
WiFi systems. We assume the robots to be equipped with UWB or WiFi in our
simulation environment.

Localization error consists of ranging error and positioning error. For UWB
systems we use empirical ranging error models for TOA-based systems reported
in [8],[9]. For WiFi ranging error we use the IEEE 802.11 channel model for
calculation of the RSS and the CRLB for RSS links presented in [10]. For per-
formance evaluation, we examine the relative performance of the two approaches
by applying the CRLB for cooperative localization presented in [8],[11].

Section 2 describes our models for ranging error in each link. Section 3 presents
the CRLB for localization used in this paper. Section 4 describes the multi-
robot operation scenario. In Section 5 we provide the comparative performance
evaluation results and in Section 6 we conclude this paper.

2 Models for Link Errors for TOA and RSS

In this section we describe the two TOA- and RSS-based models that provide us
with variance of the link’s ranging error as a function of distance between two
RF radiating sources.
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Remark 1. A source is defined as a reference point (UWB or WiFi) or a robot
(equipped with UWB or WiFi). In our simulation, we use four static reference
points to localize (trilateration) the robots. We further simulate the result of
cooperation among robots by calculating the distance between the robots to
achieve more accuracy in localization.

The variance of TOA- or RSS-based model is used to calculate Cramér-Rao-
Lower-Bound (CRLB) for our localization performance bound in Section 3.

For calculation of variance of the ranging error for RSS-based WiFi localiza-
tion we use the result of derivation of CRLB for the ranging error in RSS systems
from [10]:

σ2
R = var(d̂) ≥

(
ln 10
10

)2

· η2

α2 · d2 . (1)

Where d is the distance between two sources, η2 is the variance of the log-normal
N (0, η2) shadow fading of the environment, and α is the so-called distance-power
gradient of the environment. Using IEEE 802.11 path-loss model[12] for our sim-
ulations, η = 8 and α takes on a value of 2 for LOS situations and 3.5 for NLOS
conditions. The distance d between two sources Si(xi, yi) and Sj(xj , yj) is:

d =
√

(xj − xi)2 + (yj − yi)2 . (2)

For TOA based systems in the absence of multi-path the CRLB is given by[13]:

σ2
D ≥ 1

8π2 · 1
SNR

· 1
T · W · 1

f2
0
· 1
1 + W 2

12f2
0

. (3)

Where T is the observation time, SNR is the Signal-To-Noise-Ratio, f0 is the
center frequency of operation and W is the bandwidth of the system. This bound
is valid for GPS applications in the open areas and provides very small errors
regardless of the distance. However, in multi-Path rich indoor environments,
where direct paths between the sources are blocked, this bound is loose and
researchers resort to empirical modeling of the ranging error[12]. Hence, we also
resort to empirical models presented in [8],[9]. In our simulations we have used
the specific model for ranging error in UWB systems presented in [8]. In this
empirical model the ranging error is assumed to be a Guassian random variable
whose mean and variance are functions of two power thresholds:

σ2
T =

⎧⎨⎩
N (μ1, σ

2
1) RSS(d) ≤ Th1

N (μ2, σ
2
2) Th1 < RSS(d) ≤ Th2

N (μ3, σ
2
3) Th2 < RSS(d)

. (4)

Where RSS(d) is the received power at a robot in a distance d from a reference
point, Th1,2 are the power thresholds, and μi and σ2

i are mean and variance of
the ranging error which are also a function of existence of the direct paths. The



258 N. Bargshady, N.A. Alsindi, and K. Pahlavan

thresholds used in the model are Th1 = -80dBm and Th2 = -100dBm and the
corresponding σ2

i are:

σ2
i =

⎧⎨⎩
(0.12)2 RSS(d) ≤ −80
(0.3)2 −80 < RSS(d) ≤ −100
(1.4)2 −100 < RSS(d)

. (5)

The mean and variance for calculation of the error for different channel condi-
tions are given in [8]. The model used for calculation of the RSS is given by:

RSS(d) = RSS(1) − 10 · α · log d − χ . (6)

in which RSS(1) is the received signal strength at 1 meter distance from a ref-
erence point, d is a distance, and χ is the lognormal shadow fading.

In our simulation[8], RSS(1) = -42 (dBm) and (χ, α) take on the set values of
(χ = 6.8dB, α = 2.0) when in Line-Of-Sight (LOS) and (χ = 8.5dB, α = 5.6)
when in Non-Line-Of-Site (NLOS).

3 CRLB for Cooperative Localization

In this section we do not discuss higher level protocols or implementation issues.
We merely derive the performance bound based on Cramér-Rao-Lower-Bound
(CRLB). The CRLB provides a lower bound on the variance achievable by any
unbiased location estimator. The bound is useful as a guideline: knowing the
best an estimator (TOA- or RSS-based) can possibly do that can help us judge
our approach in this section.

The derived values for distance d and variance (σ2
R or σ2

T ) in Section 2 are
used in this section to calculate CRLB that allow us to assess the performance
of our estimate. We describe our derivation for CRLB from papers [8],[11].

Remark 1. For further simplification we assume the the LOS and NLOS variances
can coexist as part of the same diagonal matrix Λλ:

Λλ =

⎛⎜⎝λ1 . . . 0
...

. . .
...

0 . . . λM

⎞⎟⎠ . (7)

Where M refers to number of “reference points” (UWB or WiFi), for minimum of
3 where in our case we use 4 reference points. The element λ1:M is the inverse of
σ2

R or σ2
T for the corresponding d1:M for every robot location. The corresponding

distance d from Eq. 2 is used to assemble our geometry vector with respect to
our reference points:

Δvec =
(

Δx1 . . . ΔxM

Δy1 . . . ΔyM

)
. (8)
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Where Δx and Δy are partial derivatives of calculated distance, d with reference
to x and y coordinates respectively:

Δx =
(xi − xj)

dij
Δy =

(yi − yj)
dij

. (9)

The Fisher Information Matrix, FIM is calculated as:

FIM = Δvec · Λλ · ΔT
vec . (10)

Remark 1. FIM matrix is always full rank and its inverse always exists in the
cases we investigated.

The Cramér-Rao-Lower-Bound(CRLB) for each individual link dij is derived by
the inverse of FIM matrix:

CRLB =
[
Δvec · Λλ · ΔT

vec

]−1

. (11)

Fig. 1. ATWATER KENT LABS 3rd Floor, Worcester Polytechnic Institute the corri-
dor chosen for the movement of robots is identified by dark solid blue rectangle. More
details are shown in (Fig. 2).
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Finally, evaluating the Root-Mean-Square-Error, RMSE for each individual link,
dij :

RMSE1 =

√
trace

([
Δvec · Λλ · ΔT

vec

]−1)
. (12)

In Section 4, we analyze the CRLB results for our smulation scenario.

4 Performance Evaluation Scenario

For our performance evaluation, we define a scenario in the third floor of the
AKL in Worcester Polytechnic Institute, shown in Fig. 1. In this scenario we
assume the three robots are moving in the connected corridors in the central
part of the third floor. This route is shown by solid blue line in the center of
the building layout. Fig. 2 shows a closeup route for the robots, location of the

Fig. 2. Tracks for movement of robots: Four reference points (RP1, RP2, RP3, RP4)
and three robots (R1, R2, R3). Each move about its respective (dotted rectangles) with
0.4 meter separation among them. The three arrows point in the direction of each
robot’s movement.

1 “trace” stands for the trace of matrix.



Performance of TOA- and RSS-Based Indoor Geolocation 261

reference points and the track for each robot. There are four reference points
(RP1, RP2, RP3, RP4) and three robots (R1, R2, R3). The dotted lines in
Fig. 2 shows the route taken by individual robot that are 0.4 meters apart to
avoid collision. The arrows in Fig. 2 show the direction and the starting point
of each robot’s movement. The first two robots move clockwise and the third,
counterclockwise. We assume all robots start at the same time and move at the
same speed. The reference points are located in the center of each side of the
Route 2.6 meters away from the central track of the robot number one (R1).
In our performance evaluation scenarios we assume the reference points to be
either an UWB transmitter or a WiFi access point.

For each sample of time we use the location of each robot to determine its
distance from other reference points and robots when in cooperating mode. The
distances are used in the equations provided in Section 2 to determine the vari-
ance of the localization error, σ2

R or σ2
T , associated with UWB or WiFi links,

respectfully. The variances of ranging errors obtained for appropriate links are
then used for calculation of the CRLB for positioning, described in Section 3.

5 Results and Discussion

In this section we discuss the results of our simulation runs presented in figures
3,4,5 and 6. We compare the performance of cooperative and non-cooperative
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operations for UWB and WiFi localization. Fig. 3 shows the performance of
cooperative versus non-cooperative operation in sixty four equally distanced lo-
cations across the route when sources are using UWB signals. The lower curve
shows the RMSE for variance of positioning error of all robots when they cooper-
ate for localization. The three top plots show the RMSE of localization for each
individual robot when they obtain their location from reference points only (no
cooperation). As expected, in the vicinity of reference points we notice better
performance, the few undershoots as shown in Fig. 3. On average, cooperation
among the robots show improvement in the RMSE of localization by a factor of
5. Fig. 4 shows the commulative distribution function of the RMSE across the
route. As shown on the left of Fig. 4, the RMSE is nicely confined in a narrow
range � 0.03 whereas in the individual cases we notice RMSE as high as 0.16.

In Fig. 5, shows the performance of cooperative versus non-cooperative oper-
ation in sixty four equally distanced locations across the route when sources are
using WiFi signals. The lower curve shows the RMSE for variance of position-
ing error of all robots when they cooperate for localization. The three top plots
show the RMSE of localization for each individual robot when they obtain their
location from reference points in lieu of cooperation. On average cooperation
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among the robots show improvement in the RMSE of localization by a factor of
15. Fig. 6 shows the commulative distribution function of the RMSE across the
route. As shown in Fig. 6, the RMSE for cooperative localization is confined in a
narrow range of approximately � 0.5 whereas in the individual cases, we notice
an error as high as 8.5.

The factors of improvement are significantly higher in WiFi, 15 times on average
as compared with UWB, 5 times. The range of error in WiFi localization, shown
in Fig. 5, is between 6.5 to 8.5 while in UWB, as shown in Fig. 3, this range is
restricted between 0.125 to 0.16. Fig. 7, shows the overall performance of UWB
and WiFi in cooperative and non-Cooperative for our scenario side-by-side.

As shown in far left, UWB with cooperation is the best performer with the
rate of error of 0.03 meters and on the far right, WiFi without cooperation is
the worst performer with the rate of error of 6.5 to 8.5 meters.

6 Conclusions

With recent proliferation of wireless devices in robotic applications, support for
localization services using radio signals has attracted tremendous attention in
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research community. In this paper we simulated our models and analyzed the
quantitative performance of two widely used localization techniques based on
TOA and RSS using UWB and WiFi transmission medium, respectively. Our
results of modeling and simulation for our scenario at the third floor of the
AKL showed that UWB-based localization provides error in the range of 0.125
to 0.16 meters for non-cooperative and 0.025 to 0.029 meters For cooperative
localization. The WiFi localization range for non-cooperative localization was
6.5 to 8.5 meters and for cooperative 0.47 and 0.64 meters. These quantitative
results provides an insight to the common believe that UWB is more accurate
than WiFi both in cooperative and non-Cooperative mode. In both cases of
UWB and WiFi gained significant improvement by cooperative localization using
robots. However, WiFi localization benefits much higher rate of improvement
through cooperation (15 times) as compared with UWB localization (5 times).
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