
From Almost Everywhere to Everywhere:

Byzantine Agreement with Õ(n3/2) Bits

Valerie King1,� and Jared Saia2,��

1 Dept. of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

val@uvic.ca
2 Department of Computer Science, University of New Mexico

Albuquerque, NM 87131-1386
saia@cs.unm.edu

Abstract. We address the problem of designing distributed algorithms
for large scale networks that are robust to Byzantine faults. We consider
a message passing, full information synchronous model: the adversary is
malicious, controls a constant fraction of processors, and can view all
messages in a round before sending out its own messages for that round.
Furthermore, each corrupt processor may send an unlimited number of
messages. The only constraint on the adversary is that it must choose
its corrupt processors at the start, without knowledge of the processors’
private random bits. To the authors’ best knowledge, there have been no
protocols for such a model that compute Byzantine agreement without
all-to-all communication, even if private channels or cryptography are
assumed, unless corrupt processors’ messages are limited.

In this paper, we give a polylogarithmic time algorithm to agree on
a small representative committee of processors using only Õ(n3/2) total
bits which succeeds with high probability. This representative set can
then be used to efficiently solve Byzantine agreement, leader election, or
other problems. This work extends the authors’ work on scalable almost
everywhere agreement.

1 Introduction

Increases in frequency, speed and severity of attacks on the Internet have led to
a resurgence of interest in the Byzantine fault model for very large networks, see
for example [3,14]. The goal of this work is to address the problem of designing
distributed algorithms for large scale networks that are robust to Byzantine faults.

Our paper concerns the well-studied message-passing model: n processors are
in a fully connected network and a malicious adversary with full information
controls less than a 1/3 − ε fraction of these processors, where ε is any positive
constant. Our main contribution is to show that randomization can be used to
� This research was supported by NSERC.

�� This research was partially supported by NSF CAREER Award 0644058 and NSF
CCR-0313160 Award.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 464–478, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Byzantine Agreement with Õ(n3/2) Bits 465

break the 1985 Ω(n2) barrier [4] for message and bit complexity for Byzantine
agreement in the deterministic synchronous model, if we assume the adversary’s
choice of bad processors is made at the start of the protocol, i.e., independent of
processors’ private coinflips. Our techniques lead to solutions with Õ(n3/2) bit
complexity for leader election and universe reduction. Our protocols are polylog-
arithmic in time and, except for leader election, succeed with high probability.

We overcome the lower bound of [4] by allowing for a small probability of
error. In particular, the lower Ω(n2) lower bound on the number of messages
to compute Byzantine agreement deterministically implies that any randomized
protocol which computes Byzantine agreement with o(n2) messages must err
with some probability ρ > 0, since with probability ρ > 0, an adversary can guess
the random coinflips and cause the protocol to fail when those coinflips occur.
Thus, any randomized algorithm achieving o(n2) messages must necessarily be
a Monte Carlo algorithm.

In 2006, the authors [12] showed that almost everywhere Byzantine agreement,
where (1−1/ logn) fraction of the good processors come to agreement on a good
processor’s input bit, could be computed with high probability in polylogarithmic
time with a polylogarithmic number of bits of communication per processor. It
is easy to see that one round suffices to go from almost everywhere agreement
to everywhere agreement with n(n − 1) additional bits of communication. Each
processor sends every other processor its bit, and each processor decides on the
majority. Is there a way to avoid this last high cost round?

The difficulty of achieving o(n2) messages is illustrated by showing what goes
wrong with the obvious approach: each processor randomly selects O(log n) pro-
cessors to poll and decides a value equal to the majority of their responses. The
problem with this protocol is flooding. That is, bad processors may all bombard
every processor for requests and no processor will be able to respond to all the
requests without incurring a cost of Θ(n2) messages. Previous to this paper we
did not know of any technique of flood avoidance other than to design a protocol
in which each processor predetermines (perhaps using private random bits) at
the start of each round the list of processors it is willing to listen to. That is, this
list does not depend on the list of processors who actually send. This paper uses
a novel technique to deal with flooding that may be of independent interest.

1.1 Model

We assume a fully connected network of n processors, whose IDs are common
knowledge. Each processor has a private coin. Communication channels are au-
thenticated, in the sense that whenever a processor sends a message directly
to another, the identity of the sender is known to the recipient, but we other-
wise make no cryptographic assumptions. We assume a nonadaptive (sometimes
called static) adversary. That is, the adversary chooses the set of t bad processors
at the start of the protocol, where t is a constant fraction, namely, 1/3−ε for any
positive constant ε of the number of processors n. The adversary is malicious: it
chooses the input bits of every processor, bad processors can engage in any kind
of deviations from the protocol, including false messages and collusion, or crash

466 V. King and J. Saia

failures, while the remaining processors are good and follow the protocol. Bad
processors can send any number of messages.

We consider both synchronous and asynchronous models of communication. In
the synchronous model, communication proceeds in rounds; messages are all sent
out at the same time at the start of the round, and then received at the same time
at the end of the same round; all processors have synchronized clocks. The time
complexity is given by the number of rounds. In the asynchronous model, each
communication can take an arbitrary and unknown amount of time, and there is
no assumption of a joint clock as in the synchronous model. The adversary can
determine the delay of each message and the order in which they are received.
We follow [1] in defining the running time of an asynchronous protocol as the
time of execution, assuming the maximum delay of a message between the time
it is sent and the time it is processed is assumed to be one unit.

We assume full information: in the synchronous model, the adversary is rush-
ing, that is, it can view all messages sent by the good processors in a round before
the bad processors send their messages in the same round. In the asynchronous
model, the adversary can view any sent message before its delay is determined.

1.2 Problems

One of the most well studied problems in distributed computing is the Byzantine
agreement problem. In this problem, each processor begins with either a 0 or 1.
An execution of a protocol is successful if all processors terminate and, upon
termination, agree on a bit held by at least one good processor at the start.
The leader election problem is the problem of all processors agreeing on a good
processor [12]. The universe reduction problem [9] is to bring processors to
agreement on a small subset of processors with a fraction of bad processors
close to the fraction for the whole set. I.e., the protocol terminates and each
good processor outputs the same set of processor ID’s such that this property
holds. For each of these problems, we say the protocol solves the problem with
probability ρ if, given any worst case adversary behavior, including choice of
initial inputs, the probability of success of any execution over the distribution
of private random coin tosses is at least ρ.

Almost everywhere Byzantine agreement, universe reduction, and leader elec-
tion is the modified version of each problem where instead of bringing all good
processors to agreement, a large majority, but not necessarily all, good processors
are brought to agreement.

1.3 Results

We use the phrase with high probability (w.h.p.) to mean that an event happens
with probability at least 1 − 1/nc for every constant c and sufficiently large n.
For readability, we treat log n as an integer throughout. We show:

Theorem 1. [Byzantine agreement] Let n be the number of processors in a
synchronous full information message passing model with a nonadaptive, rushing

Byzantine Agreement with Õ(n3/2) Bits 467

adversary that controls less than 1/3 − ε fraction of processors, for any positive
constant ε. Then, there exists a protocol which w.h.p. computes Byzantine agree-
ment, runs in polylogarithmic time, and uses Õ(n3/2) bits of communication.

This result follows easily from the solution to the universe reduction problem
(see the next section) which we present here:

Theorem 2. [Universe reduction] Let ε be any positive constant and let n
be the number of processors in a synchronous fully connected message passing
network with a nonadaptive malicious rushing adversary in the full information
model which controls less than 1/3 − ε fraction of processors. For any positive
constant ε′ < ε, there exists a protocol which uses Õ(n3/2) number of bits of
communication per processor and polylogarithmic number of rounds, such that
w.h.p., all good processors output the same subset of processors, the “represen-
tative set” of size polylogarithmic in n such that 2/3+ ε′ fraction of its elements
are good.

1.4 Techniques

Our results build on the almost everywhere universe reduction protocol of [12]:

Theorem 3. [12] [Almost everywhere universe reduction] Let ε be any
positive constant and let n be the number of processors in a synchronous fully
connected message passing network with a nonadaptive, rushing adversary in the
full information model which controls less than 1/3−ε fraction of processors. For
any positive constant ε′ < ε, there exists a protocol which uses polylogarithmic
number of bits of communication per processor and polylogarithmic number of
rounds, such that w.h.p. 1 − O(1/ log n) fraction of good processors output a
subset of processors of size polylogarithmic in n such that 2/3+ ε′ fraction of its
elements are good.

Our protocol first runs the protocol for almost everywhere universe reduction in
[12] to achieve w.h.p. almost everywhere universe reduction. The technical chal-
lenge is to go from almost everywhere universe reduction to everywhere universe
reduction in o(n2) bits. It is straightforward to go from everywhere universe re-
duction to everywhere agreement for Byzantine agreement and leader election (see
[12]). The idea is to notice that any “representative” subset of processors can run
a standard Byzantine agreement protocol or leader election protocol (using their
own input bits, in the case of Byzantine agreement) and the outcome for the repre-
sentative subset is a solution to the problem for the whole set. The representative
set need only communicate its results to the other processors, which determine
the correct answer by taking the message sent by the majority.

We actually prove a stronger result than necessary to prove Theorems 1 and 2
from Theorem 3. That is, we can go from almost everywhere universe reduction
to everywhere universe reduction even in the case where (1) only 1/2+ ε fraction
of good processors are in agreement on the representative subset; (2) up to
a 1/2 − ε fraction of the processors are controlled by the adversary; and (3)
communication is in the asynchronous model. Specifically, we show:

468 V. King and J. Saia

Theorem 4. [Almost everywhere to everywhere universe reduction]
Let ε be any positive constant and assume n processors are connected in the full
information, asynchronous, message passing communication model, with a non-
adaptive adversary. Further, suppose there are (1/2+ε)n good processors that agree
on a subset C of processors containing a majority of good processors. Then there is
a O(n3/2 log3 n|C|) bit protocol which runs in O(log n/ log log n) time steps after
which w.h.p. all good processors agree on C.

We give the Almost Everywhere to Everywhere Universe Reduction Protocol
in Section 3; its proof of correctness in Section 4; and include a sketch of the
Almost Everywhere Universe Reduction Protocol in the Appendix.

2 Related Work

In a 2006 paper, the authors (and collaborators) present a polylogarithmic time
protocol with polylogarithmic bits of communication per processor for almost ev-
erywhere Byzantine agreement, leader election, and universe reduction in the syn-
chronous full information message passing model with a nonadaptive rushing ad-
versary [12]. Also in 2006, [8,2] give logarithmic time protocols which use Ω(n2)
bits of communication for Byzantine agreement in the same model with different
techniques. The algorithm in [2] also solves universe reduction and leader election.

In the asynchronous version of the same model, in a 2008 paper [11], the au-
thors give a polynomial time protocol for Byzantine agreement, leader election,
and universe reduction. While this protocol uses Θ̃(n2) messages (and polyno-
mial time), its structure is very similar to the almost everywhere agreement
protocols [12,13], and we believe it can be implemented as an almost everywhere
agreement protocol with polylogarithmic bits of communication.

In the gossip problem each process starts with an initial value called a rumor and
attempts to learn all the other rumors. In this literature, one concern is the num-
ber of messages sent between processors. A 2008 paper [7] presents a protocol to
solve the gossip problem in the asynchronousmodel with crash failures rather than
Byzantine failures, with an oblivious adversary which sets the timing and crashes
in advance and an assumption of private channels. The protocol in [7] was adapted
to solve the consensus problem using O(n7/4 log2 n) messages. The adversary in [7]
is weaker than ours in several respects, though it is stronger in the sense that the
adversary can set delays in communication, so our results seem incomparable.

Almost everywhere agreement in sparse networks has been studied since 1986.
See [12,13] for references. The problem of almost everywhere agreement for secure
multiparty computation on a partially connected network was defined and solved
in 2008 in [6].

In a 2006 paper [13], the authors give a sparse network implementation of their
protocols from [12]. It is easy to see that everywhere agreement is impossible in a
sparse network where the number of faulty processors t is sufficient to surround
a good processor. To see this, one can use an observation from [10]. Let t be the
number of bad processors. Then any Byzantine agreement protocol where all
n − t good processors have their input bits set to 1 must result in an output of

Byzantine Agreement with Õ(n3/2) Bits 469

1. And this must be true even if the bad processors act like good processors that
have a 0. Moreover, it must be the case that when bad processors act like good
processors that have a 1 and t or fewer good processors have a 0, the output
must be a 1 as well. If a processor is surrounded by bad processors, then all
communication with the processor can be made to simulate any execution of the
protocol consistent with that processor’s input bit. Hence if a single processor
has an input bit of 0, and it is surrounded by bad processors, it will be unable to
distinguish between the case where it must output a 0 because all good processors
have a 0, or a 1 because fewer than t processors have a 0.

A protocol in which processors use o(n) bits may seem as vulnerable to being
isolated as in a sparse network, but the difference is that without access to private
random bits, the adversary can’t anticipate at the start of the protocol where
communication will occur. In [10], it is shown that even with private channels,
if a processor must pre-specify the set of processors it is willing to listen to at
the start of a round, where its choice in each round can depend on the outcome
of its random coin tosses, at least one processor must send Ω(n1/3) messages
to compute Byzantine agreement with probability at least 1/2 + 1/ logn. Hence
the only hope for a protocol where every processor sends o(n1/3) messages is
to design outside this constraint. Note that the protocol here does NOT fall
within this restrictive model, only because of line 8 in our Almost Everywhere
to Everywhere protocol, where the decision of whether a message is listened to
(or acted upon) depends on how many messages are received so far.

3 The Almost Everywhere to Everywhere Universe
Reduction Protocol

In this section, we describe the algorithm that satisfies Theorem 4 by going from
almost everywhere committee election to everywhere committee election.

Precondition: Each processor p starts with an hypothesis of the membership
of C, Cp; this hypothesis may or may not be equal to C or may be empty.
However, the following two assumptions are critical. First, there exists a subset
of the processors, C, of polylogarithmic size, with a majority of good processors.
Second, there is a set S of at least (1/2 + ε)n good processors, such that for all
p ∈ S, Cp = C.

Overview of Algorithm: The main idea of this protocol is for each proces-
sor p to randomly select c log n processors to poll as to the membership of C.
Unfortunately, if these requests are made directly from p, the adversary can
flood the network with “fake” requests so that the good processors are forced
to send too many responses. Thus, the polling request are made through the set
C, which counts the messages received from each processor to enforce that that
total number of polling requests sent out is not too large.

Unfortunately, this approach introduces a new problem: processor p may have
an incorrect guess about the membership of C. We solve this by having p send

470 V. King and J. Saia

a (type 1) message containing its poll-list (Pollp) to Listp, a set of c log n
√

n
randomly sampled processors. Processor p hopes that at least one processor in
the set Listp will have a correct guess about C and will thus be able to forward
a (type 2) message containing Pollp to C. To prevent these processors q ∈ Listp
from being flooded, each such processor q only forwards a type 2 message from
a processor p if p appears in the set Forwardq , which is a set of

√
n processors

that are randomly sampled in advance. Upon receiving a < Pollp, p > (type 2)
message from any processor q, a processor in C then sends a (type 3) request
with p’s ID to each member s ∈ Pollp. More precisely, a processor in C only
processes the first

√
n such type 2 messages that it receives from any given

processor q: this is the crucial filtering that ensures that the total number of
requests answered is not too large. Upon receiving a type 3 request, < p, 3 >
from a majority of C, s sends Cs to p, a (type 4) message.

There are two remaining technical problems. First, since a confused processor,
p, can have a Cp equal to a mostly corrupt set C′, C′ can overload every confused
processor. Hence we require that any processor, p, who receives an overload
(more than

√
n log2 n) of type 3 requests wait until their own Cp is verified

before responding. Second, the processors in C handle many more requests than
the other processors. The adversary can conceivably exploit this by bombarding
confused processors which think they are in C with type 2 requests. Thus, the
algorithm begins with a verification of membership in C. Each processor p sends
a request message to a randomly selected sample (Pollp) which is responded to
by a polled processor q if and only if p ∈ Cq.

Example: An example run of our algorithm is shown in Figure 1. This figure
follows the technically challenging part of our protocol, steps 6-10, which are

p
q p

Cq

< C ><
Po

ll p
, p

, 1
>

Listp

< Pollp, p,
2 >

< p, 3 >

Pollpp p

Fig. 1. Steps 6-10 of Our Protocol

Byzantine Agreement with Õ(n3/2) Bits 471

described in detail in Algorithm 1 listed below. In Figure 1, time increases in the
horizontal direction. This figure concerns a fixed processor p that concludes p �∈ C
in the earlier parts of the algorithm (steps 2-5). For clarity, in this example, only
messages that are sent on behalf of p that eventually help p to determine C are
shown. Moreover, again for clarity, we show a best case scenario where all nodes
in Pollp are assumed to have received no more than

√
n log2 n type 3 requests.

In the first step of this example, p sends the message < Pollp, p, 1 > to all nodes
in Listp. The node q is the only node in this set such that p ∈ Forwardq , so
q forwards a type 2 message of the form < Pollp, p, 2 > to all the nodes in Cq.
In this example, Cq = C. Next all nodes in Cq send the message < p, 3 > to all
nodes in Pollp. In this example, all nodes in Pollp know the set C, so they all
send the message < C > to p in the final step.

Algorithm 1. Almost Everywhere to Everywhere
Each processor executes the following steps in any order:

1. Each processor p selects uniformly at random, independently, and with replace-
ment three subsets, Listp, Forwardp, and Pollp of processor ID’s where: |Listp| =
c
√

n log n; |Forwardp| = √n; |Pollp| = c log n;

Verifying Membership in C:

2. memberp ← FALSE
3. If p ∈ Cp, then p sends a message < Am I in C? > to the members of Pollp;
4. If q receives a message < Am I in C? > from a processor p ∈ Cq, q sends < Y es >

back to the p;
5. If p receives a message < Yes > from a majority of members of Pollp then p sets

memberp ← TRUE;

Determing C:

6. p sends a message < Pollp, p, 1 > (type 1 message) to each processor in Listp;
7. For each q: if < Pollp, p, 1 > is the first type 1 message received from processor

p and p ∈ Forwardq, then q sends < Pollp, p, 2 > (a type 2 message) to every
processor in Cq;

8. For each r: if memberr = TRUE then for every processor q, for the first
√

n type
2 messages of the form < Pollp, p, 2 > which are received from q, send < p, 3 >
(type 3 message) to every processor in Pollp;

9. For each s: for the first
√

n log2 n different type 3 messages of the form
< p, 3 > which are each sent by a majority of processors in Cs, send < Cs, 4 >
(type 4 message) to p;

10. If s receives the same type 4 message < C′, 4 > from a majority of processors in
Polls then

(a) s sets Cs ← C′; and
(b) s answers any remaining type 3 requests that have come from a majority of

the current Cs, i.e. for each such request < p, 3 > s sends < Cs, 4 > to p;

472 V. King and J. Saia

4 Proof of Correctness

First, we point out that the asynchronicity of the model is not a real problem
here because of the following observation:

Observation 1. In the asynchronous model, if p is waiting to hear from a set
of processors such that a majority of processors in the set are good and agree
on the same value, and if each sends that value to p, then the adversary cannot
prevent p from receiving this value in one timestep.

In what follows, we show that with high probability, all transmissions which
processors need to respond to are sent by a majority of good processors which
agree on the same value. We say that a processor is knowledgeable if it is good
and Cp = C.

Lemma 1. W.h.p., more than a 1/2+ε/2 fraction of processors of every poll-list
are knowledgeable at the start of the protocol and these remain knowledgeable.

Proof. Let c′ be any positive constant and c be the constant in the protocol.
Let X be the number of processors which are initially knowledgeable in a fixed
poll-list. Then E[X] = (1/2 + ε)c log n. The probability that the number of
initially knowledgeable processors on the poll-list is not a majority is less than
the probability that X ≤ (1−δ)E[X] for δ = (ε/2)/(1/2+ε). Using the Chernoff
bound, this probability is ≤ e(−δ2E[X]/2) ≤ n−c′−1 for c = 8(c′ + 1)(1/2 + ε)/ε2,
i.e., for c a constant, this is 1/nc′+1.

There are no more than n poll-lists for good processors. Thus, the probability
that any poll-list fails to have at least a 1/2 + ε/2 fraction of initially knowl-
edgeable processors is no greater than the sum of the n individual probabilities
of failure or 1/nc′ for any constant c′.

Next, we prove by contradiction that no knowledgeable processor becomes not
knowledgeable. Let p be the first processor which becomes not knowledgeable.
This implies that p resets Cp �= C, which implies that Pollp contains less than a
majority of knowledgeable processors. By assumption, the initially knowledge-
able processors in Pollp are still knowledgeable, which implies there must have
been less than a majority of initially knowledgeable processors in Pollp. But we
have shown this event does not occur w.h.p. for any poll-list.

Lemma 2. W.h.p., if every type 3 message received by every knowledgeable pro-
cessor p is responded to by p within O(log n/ log log n) steps then Theorem 4
holds. Moreover, a total of O(n3/2 log3 n|C|) bits are sent.

Proof. We fix a good processor p and first bound the probability that Pollp
is forwarded to C. The probability that a knowledgeable processor q forwards
a type 1 message sent to it by a good processor p is the probability that
p ∈ Forwardq = 1/

√
n. Since each processor p sends out c

√
n log n type 1

messages, the probability that all fail to be forwarded is the probability that for
every message, the processor q receiving it is either not knowledgeable or q is

Byzantine Agreement with Õ(n3/2) Bits 473

knowledgeable but p /∈ Forwardq . Recall that by assumption, initially no more
than 1/2 − ε fraction of processors are not knowledgeable and by the previous
lemma, this number does not grow. The probability that Pollp is not forwarded
to C by a particular processor q which receives it is therefore bounded above by
(1/2 − ε) + (1/2 + ε)(1 − 1/

√
n) = 1 − 1/2+ε√

n
. The probability that all requests

to forward fail is (1 − (1/2 + ε)/
√

n)c
√

n log n ≤ 1/nc/2.
If Pollp is forwarded by a knowledgeable processor then it is sent to every

processor in C, by the definition of knowledgeable. From the previous lemma,
and a simple Chernoff and union bound, each processor in C verifies it is in C
with high probability. Thus, since a good processor never forwards more than√

n messages, with high probability all good processors in C will send a message
of the form < p, 3 > to each processor in Pollp. In particular, a majority of
processors in C will do so. With high probability (from the previous lemma)
a majority of processors in Pollp are knowledgeable and hence upon receiving
messages from processors in C will send p the correct message which p receives
and decides correctly. Taking the union over all processors p, for any constant c′,
there is a constant c for the algorithm such that the probability of any processor
failing is no greater than 1/nc′.

The number of bits transmitted by good processors can be calculated as fol-
lows. First we consider bits sent by processors that are knowledgeable. For the
verification phase, the total number of bits is Õ(n log n). For the next phase, each
poll-list contains O(log n) ID’s of O(log n) length for a total of O(log2 n) bits.
Each good processor forwards no more than

√
n poll-lists to the members of C for

a total of O(n3/2|C| log2 n) bits transmitted. With high probability, each mem-
ber of C transmits O(n3/2∗|poll−list|) messages each with at most O(log n) bits
per message to each member of each poll-list in the form of type 3 messages, for
O(n3/2|C| log2 n) bits in total. The knowledgeable processors which receive type
3 messages respond to them all, for a total of O(n3/2|C| log2 n) bits. The total
number of bits transmitted by knowledgable processors is thus O(n3/2|C| log2 n).
In addition, no more than n(

√
n log2 n) type-4 messages are sent by processors

while they are not knowledgeable, for a total of n(
√

n log3 n|C|) bits.

It remains to show:

Lemma 3. W.h.p., every type 3 message received by every knowledgeable pro-
cessor p is responded to by p within O(log n/ log log n) steps.

Proof. A knowledgeable processor is overloaded if there are more than
√

n log2 n
poll-lists received by C which contain it. As there are no more than n3/2 type
2 messages processed by C and each poll-list has size c log n, there can be no
more than cn/ logn processors which receive more than

√
n log2 n type 3 requests

from C.
The adversary can choose its poll lists after seeing the poll lists from all the

good processors. We will denote time step i of our algorithm to begin when i
units of time have elapsed and end just before i + 1 units have elapsed, where
a unit of time is defined to be the maximum delay of a message. We will say

474 V. King and J. Saia

Knowp = FALSE at time i if p has not yet received the same type 4 message
from a majority of processors in Pollp, i.e. the condition for the if statement in
step 10 of our algorithm has not been satisfied, by time i. Otherwise, we will say
Knowp = TRUE. A processor p is blocked at time i if Knowp = FALSE and p
is overloaded.

Claim: With high probability, for any time step j ≥ 6, if there is a
processor with Knowp = FALSE at time step i + j, then there must
be ((εc log n)/4)i(log log n)i−1 distinct blocked processors at time j, for i =
1, ..., O(log n/ log log n).

Proof of Claim: Let L = |poll − list| = c logn. We note that since j ≥ 6,
by time step j, w.h.p., all type 1, 2 and 3 messages have been sent out and
received. Moreover, the first set of type 4 messages have been sent and received.
This proof is by induction on i.

Fix a processor p. Then we can view p as a root of a tree. Each node is a
processor; the children of each node q are the processors in Pollq. Note that
some processors may appear more than once in the tree. The degree of each
node is L.

Base Case: For i = 1. Suppose there are fewer than (ε/4)L blocked processors in
time step j. Then from Lemma 1, w.h.p., there are (1/2+ε/2)Lprocessors on every
poll-list which are knowledgeable. Then there remain (1/2+ ε/4)L knowledgeable
processors on Pollp who are not blocked and will send type 4 messages to p in the
next timestep. In time j + 1, p will hear from them and decide.

Induction Step: Let xi = (εL/4)i(log log n)i−1. Assume the induction hypothesis
holds for i− 1. Then if there is a processor with Knowp = FALSE at time i + j,
then there must be a set S of size xi−1 of blocked processors at time step j + 1.
Then it must be the case that at time j, reasoning as in the base case, each element
of S must have at least x1 blocked children (i.e., elements of its poll-list). We show
that w.h.p. there is no set S′ of size less than xi which satisfies this condition.

Fix a set S, a set of x1 children for each element of S, and a set S′. Since
the children are picked randomly and independently, the probability of having
x1 children for each element of S coming from S′ is

(xi/n)x1xi−1 ≤ (xi/n)xi log log n.

The number of ways to choose these sets is no more than
(

n

xi−1

)
Lx1xi−1

(
n

xi

)
= (ne/xi−1)xi−1Lx1xi−1(ne/xi)xi ≤ (ne/xi)cxi ;

where the last inequality holds since we can assume that xi ≤ n/2. Taking the
union bound over all possible such sets, we find that the probability of there
existing a set S′ is less than

(xi/n)(log log n−O(1))((εL/4)/ log log n)i

< 1/nc′

Byzantine Agreement with Õ(n3/2) Bits 475

for any constant c′ and xi/n ≤ n/ logn. Taking the union bound over all i yields
the claim.

Remaining Proof of Lemma: For i = O(log n/ log log n), the required number
of blocked processors exceeds cn/ logn, the maximum number the adversary is
able to block. Hence, every processor decides by time O(log n/ log log n).

5 Conclusion and Open Problems

We have shown that classical problems in distributed computing, like Byzan-
tine agreement, universe reduction, and leader election, can be solved with high
probability using only Õ(n3/2) bits of communication, even if the adversary has
unlimited resources.

Several open problems remain including the following. First, we believe that
the protocol from [12] for electing a committee that contains a 2/3+ε fraction of
good processors using polylogarithmic bits per processor can be made to work
in the asynchronous model. This would imply, together with the results in this
paper that universe reduction, Byzantine agreement, and leader election could
all be performed with Õ(n3/2) bits in the asynchronous model.

Second, we conjecture that the number of bits required for Byzantine agree-
ment in the full information model with a nonadaptive adversary is Ω(n3/2) in
both the synchronous and asynchronous models unless a superpolylogarithmic
time is incurred. Third, we ask: Is there is a load-balanced version of the protocol
presented here in which each processor needs to send only Õ(

√
n) bits? Fourth,

we ask: Can this bound be beaten if cryptographic assumptions are incorporated
into the model? Finally, can other problems like secure mulitparty computation
be solved with o(n2) bits of communication?

Acknowledgements

The authors would like to thank the program committee for a careful, extensive
review.

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics, 2nd edn. John Wiley Interscience, Chichester (2004)

2. Ben-Or, M., Pavlov, E., Vaikuntanathan, V.: Byzantine agreement in the full-
information model in o(log n) rounds. In: STOC, pp. 179–186 (2006)

3. Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., Shraer, A.: Brahms: Byzantine
resilient random membership sampling. In: PODC 2008: Proceedings of the twenty-
seventh ACM symposium on Principles of distributed computing, Toronto, Canada,
pp. 145–154. ACM, New York (2008)

476 V. King and J. Saia

4. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement.
J. ACM 32(1), 191–204 (1985)

5. Feige, U.: Noncryptographic selection protocols. In: FOCS 1999: Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, p. 142. IEEE
Computer Society, Washington (1999)

6. Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg
(2008)

7. Georgiou, C., Gilbert, S., Guerraoui, R., Kowalski, D.R.: On the complexity of
asynchronous gossip. In: Proceedings of the ACM symposium on Principles of
distributed computing (PODC), pp. 135–144 (2008)

8. Goldwasser, S., Pavlov, E., Vaikuntanathan, V.: Fault-tolerant distributed com-
puting in full-information networks. In: FOCS, pp. 15–26 (2006)

9. Gradwohl, R., Vadhan, S.P., Zuckerman, D.: Random selection with an adversar-
ial majority. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 409–426.
Springer, Heidelberg (2006)

10. Holtby, D., Kapron, B.M., King, V.: Lower bound for scalable byzantine agreement.
Distributed Computing 21(4), 239–248 (2008)

11. Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast asynchronous
byzantine agreement and leader election with full information. In: SODA, pp. 1038–
1047 (2008)

12. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: SODA 2006:
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algo-
rithm, pp. 990–999. ACM Press, New York (2006)

13. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation
in peer-to-peer networks. In: FOCS 2006: Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2006), pp. 87–98. IEEE
Computer Society, Washington (2006)

14. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. SIGOPS Oper. Syst. Rev. 41(6), 45–58 (2007)

Appendix: Sketch of Almost Everywhere Universe
Reduction

Here, we include a sketch of the protocol to compute almost everywhere uni-
verse reduction, excerpted from [12]. The processors are assigned to groups of
polylogarithmic size; each processor is assigned to multiple groups. In parallel,
each group then elects a small number of processors from within their group to
move on. We then recursively repeat this step on the set of elected processors
until the number of processors left is polylogarithmic.

The method used to run elections is a simple adaptation from the atomic
broadcast model to the synchronous distributed model of a subroutine in [5]:

Elect-Subcommittee: Input is processors p1, . . . , pk

with k = Ω(ln8 n).
1 For i = 1 to k,
2 Processor pi randomly selects one of k/(c1 ln3 n)

Byzantine Agreement with Õ(n3/2) Bits 477

“bins” and tells the other processors in its
committee which bin it has selected.

3 The other processors in the committee run
Byzantine Agreement to come to a consensus on
which bin pi has selected.

4 Let B be the bin with the least number of processors
in it, and let SB be the set of processors in that bin.
Arbitrarily add enough processors to SB to ensure
|SB | = c1 ln3 n.

5 Return SB as the elected subcommittee.

Although this approach is intuitively simple, there are several complications
that must be addressed.

(1) The groups must be determined in such a way that the election mechanism
cannot be sabotaged by the bad processors.

(2) After each step, each elected processor must determine the identities of cer-
tain other elected processors, in order to hold the next election.

(3) Election results must be communicated to the processors.
(4) To ensure load balancing, a processor which wins too many elections in

one round cannot be allowed to participate in too many groups in the next
round.

Item (1): we use a layered network with extractor-like properties. Every pro-
cessor is assigned to a specific set of nodes on layer 0 of the network. In order to
assign processors to a node A on layer � > 0, the set of processors assigned to
nodes on layer �−1 that are connected to A hold an election. In other words, the
topology of the network determines how the processors are assigned to groups.
By choosing the network to have certain desired properties, we can ensure that
the election mechanism is robust against malicious adversaries.

To accomplish item (2), we use monitoring sets. Each node A of the layered
network is assigned a set of nodes from layer 0, which we denote m(A). The job
of the processors from m(A) is simply to know which processors are assigned
to node A. Since the processors of m(A) are fixed in advance and known to all
processors, any processor that needs to know which processors are assigned to A
can simply ask the processors from m(A). (In fact, the querying processor only
needs to randomly select a polylogarithmic subset of processors from m(A) in
order to learn the identities of the processors in A with high probability. This
random sampling will be used to ensure load balancing.)

Since the number of processors that need to know the identities of processors
in node A is polylogarithmic, the processors of m(A) will not need to send too
many messages, but they need to know which processors need to know so they
do not respond to too many bad processors’ queries. Hence the monitoring sets
need to inform relevant other monitoring sets of this information.

478 V. King and J. Saia

Item (3): We use a communication tree connecting monitoring sets of children
in the layered networks with monitoring sets of parents to inform the monitoring
sets which processors won each of their respective elections and otherwise pass
information to and from the individual processors on layer 0.

Item (4) is addressed by having such processors refrain from further
participation.

The protocol results in almost everywhere agreement rather than everywhere
agreement, because the adversary can control a small fraction of the monitoring
sets by corrupting their nodes. Thus communication paths to some of the nodes
are controlled by the adversary.

	From Almost Everywhere to Everywhere: Byzantine Agreement with $\tilde{O}(n^{3/2})$ Bits
	Introduction
	Model
	Problems
	Results
	Techniques

	Related Work
	The Almost Everywhere to Everywhere Universe Reduction Protocol
	Proof of Correctness
	Conclusion and Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

