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Abstract. We present efficient distributed é-approximation algorithms
for FRACTIONAL PACKING and MAXIMUM WEIGHTED b-MATCHING in hy-
pergraphs, where 6 is the maximum number of packing constraints in
which a variable appears (for MAXIMUM WEIGHTED b-MATCHING § is the
maximum edge degree — for graphs 6 = 2). (a) For § = 2 the algorithm
runs in O(logm) rounds in expectation and with high probability. (b)
For general 8, the algorithm runs in O(log? m) rounds in expectation and
with high probability.

1 Background and Results

Given a weight vector w € R"", a coefficient matrix A € R?*"™ and a vector b €
R, the FRACTIONAL PACKING problem is to compute a vector 2 € R to maximize
Z;":l w;x; and at the same time meet all the constraints 2721 Ay < by (Vi=
1...n). We use ¢ to denote the maximum number of packing constraints in
which a variable appears, that is, § = max; [{i| 4i;; # 0}|. In the centralized
setting, FRACTIONAL PACKING can be solved optimally in polynomial time using
linear programming. Alternatively, one can use a faster approximation algorithm
(i.e. [I1).

MAXIMUM WEIGHTED b-MATCHING on a (hyper)graph is the variant where each
A;; € {0,1} and the solution = must take integer values (without loss of gen-
erality each vertex capacity is also integer). An instance is defined by a given
hypergraph H(V, E) and b € ZL‘/'; a solution is given by a vector x € Z|+E I maxi-
mizing ) . p weze and meeting all the vertex capacity constraints ZeeE(u) Te <
b, (Yu € V), where E(u) is the set of edges incident to vertex u. For this prob-
lem, n = |V|, m = |E| and 6 is the maximum (hyper)edge degree (for graphs
6=2).

MAXIMUM WEIGHTED b-MATCHING iS a cornerstone optimization problem in
graph theory and Computer Science. As a special case it includes the ordinary
MAXIMUM WEIGHTED MATCHING problem (b, = 1 for all u € V). In the centralized
setting, MAXIMUM WEIGHTED b-MATCHING on graphs belongs to the “well-solved
class of integer linear programs” in the sense that it can be solved in polyno-
mial time [5I6/T9]. Moreover, getting a 2-approximatd] solution for MaxIMUM
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WEIGHTED MATCHING is relatively easy, since the obvious greedy algorithm, which
selects the heaviest edge that is not conflicting with already selected edges, gives
a 2-approximation. For hypergraphs the problem is NP-hard, since it generalizes
SET PACKING, one of Karp’s 21 NP-complete problems [10].

Our results. In this work we present efficient distributed é-approximation algo-
rithms for the above problems. If the input is a MAXIMUM WEIGHTED b-MATCHING
instance, the algorithms produce integral solutions. The method we use is of
particular interest in the distributed setting, where it is the first primal-dual
extension of a non-standard local-ratio technique [I32].

— For FRACTIONAL PACKING where each variable appears in at most two con-
straints (6 = 2), we show a distributed 2-approximation algorithm running
in O(log m) rounds in expectation and with high probability. This is the first
2-approximation algorithm requiring only O(logm) rounds. This improves
the approximation ratio over the previously best known algorithm [I4]. (For
a summary of known results see Figure[Il)

— For FRACTIONAL PACKING where each variable appears in at most 6 constraints,
we give a distributed §-approximation algorithm running in O(log® m) rounds
in expectation and with high probability, where m is the number of variables.
For small 8, this improves over the best previously known constant factor
approximation [I4], but the running time is slower by a logarithmic-factor.

— For MAXIMUM WEIGHTED b-MATCHING on graphs we give a distributed
2-approximation algorithm running in O(logn) rounds in expectation and
with high probability. MAXIMUM WEIGHTED b-MATCHING generalizes the well
studied MAXIMUM WEIGHTED MATCHING problem. For a 2-approximation, our
algorithm is faster by at least a logarithmic factor than any previous algo-
rithm. Specifically, in O(logn) rounds, our algorithm gives the best known
approximation ratio. The best previously known algorithms compute a (1 +
¢)-approximation in O(e~*log?n) rounds [I7] or in O(e~2 4 ¢ log(e~'n)
logn) rounds [20]. For a 2-approximation both these algorithms need
O(log? n) rounds.

— For MAXIMUM WEIGHTED b-MATCHING on hypergraphs with maximum hyper-
edge degree 6 we give a distributed §-approximation algorithm running in
O(log® m) rounds in expectation and with high probability, where m is the
number of hyperedges. Our result improves over the best previously known
O(é)-approximation ratio by [I4], but it is slower by a logarithmic factor.

Related work for Maximum Weighted Matching. There are several
works considering distributed MAXIMUM WEIGHTED MATCHING on edge-weighted
graphs. Uehara and Chen present a constant time O(A)-approximation algo-
rithm [22], where A is the maximum vertex degree. Wattenhofer and Wat-
tenhofer improve this result, showing a randomized 5-approximation algorithm
taking O(log2 n) rounds [23]. Hoepman shows a deterministic 2-approximation
algorithm taking O(m) rounds [7]. Lotker, Patt-Shamir and Rosén give a ran-
domized (4 + ¢)-approximation algorithm running in O(¢~!loge ™! log n) rounds
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Fig. 1. Distributed algorithms for FRACTIONAL PACKING and MAXIMUM WEIGHTED
MATCHING

[18]. Lotker, Patt-Shamir and Pettie improve this result to a randomized (2 +¢)-
approximation algorithm taking O(loge~!logn) rounds [I7]. Their algorithm
uses as a black box any distributed constant-factor approximation algorithm for
maximum weighted matching which takes O(log n) rounds (i.e. [I8]). Moreover,
they mention (without details) that there is a distributed (1 + ¢)-approximation
algorithm taking O(e~* log? n) rounds, based on the parallel algorithm by
Hougardy and Vinkemeier [§]. Nieberg presents a (1 + €)-approximation algo-
rithm in O(e=2 + e~ tlog(s7'n)logn) rounds [20]. The latter two results give
randomized 2-approximation algorithms for MAXIMUM WEIGHTED MATCHING in
O(log® n) rounds.

Related work for Fractional Packing. Kuhn, Moscibroda and Wattenhofer
show efficient distributed approximation algorithms for FRACTIONAL PACKING [14].
They first show a (1 4 ¢)-approximation algorithm for FRACTIONAL PACKING with
logarithmic message size, but the running time depends on the input coefhi-
cients. For unbounded message size they show a constant-factor approximation
algorithm for FRACTIONAL PACKING which takes O(logm) rounds. If an integer
solution is desired, then distributed randomized rounding ([I5]) can be used.
This gives an O(8)-approximation for MAXIMUM WEIGHTED b-MATCHING on (hy-
per)graphs with high probability in O(logm) rounds, where ¢ is the maximum
hyperedge degree (for graphs 6 = 2). (The hidden constant factor in the big-O
notation of the approximation ratio can be relative large compared to a small 8,
say 6 = 2).

Lower bounds. The best lower bounds known for distributed packing and
matching are given by Kuhn, Moscibroda and Wattenhofer [14]. They prove that
to achieve a constant or even a poly-logarithmic approximation ratio for frac-
tional maximum matching, any algorithms requires at least (2(\/ logn/loglogn)
rounds and 2(log A/loglog A), where A is the maximum vertex degree.
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Other related work. For UNWEIGHTED MAXIMUM MATCHING on graphs, Israeli and
Ttai give a randomized distributed 2-approximation algorithm running in O(logn)
rounds [9]. Lotker, Patt-Shamir and Pettie improve this result giving a random-
ized (1 + ¢€)-approximation algorithm taking O(¢ =3 log n) rounds [I7]. Czygrinow,
Hari¢kowiak, and Szymanska show a deterministic 3/2-approximation algorithm
which takes O(log* n) rounds [4]. A (1 + )-approximation for MAXIMUM WEIGHTED
MATCHING on graphs is in NC [§].

The rest of the paper is organized as follows. In Section [2] we describe a non-
standard primal-dual technique to get a é-approximation algorithm for Frac-
TIONAL PACKING and MAXIMUM WEIGHTED b-MATCHING. In Section [3] we present
the distributed implementation for § = 2. Then in Section @] we show the
distributed é-approximation algorithm for general §. We conclude in Section

2 Covering and Packing

Koufogiannakis and Young show sequential and distributed §-approximation al-
gorithms for general covering problems [I3I12], where § is the maximum num-
ber of covering variables on which a covering constraint depends. As a special
case their algorithms compute 6-approximate solutions for FRACTIONAL COVERING
problems of the form min{}"}" ; biy; : > i, Aijys > w; (Vj =1.m), y € R}}.
The linear programming dual of such a problem is the following FRACTIONAL
PACKING problem: max {7, wjz; : 37" Ajjz; <b; (Vi=1...n), z € R['}.
For packing, § is the maximum number of packing constraints in which a packing
variable appears, 6 = max; [{i| A;; # 0}|.

Here we extend the distributed approximation algorithm for FRACTIONAL cov-
ERING by [12] to compute §-approximate solutions for FRACTIONAL PACKING using
a non-standard primal-dual approach.

Notation. Let C; denote the j-th covering constraint (3" ; A;;y; > w;) and
P; denote the i-th packing constraint (Zgnzl Ajjx; < b;). Let Vars(S) denote the
set of (covering or packing) variable indexes that appear in (covering or packing)
constraint S. Let Cons(z) denote the set of (covering or packing) constraint in-
dexes in which (covering or packing) variable z appears. Let N (z,) denote the set
of packing variables that appear in the packing constraints in which x, appears,
that is, N(zs) = {z;|j € Vars(P;) for some i € Cons(x,)} = Vars(Cons(zs)).

Fractional Covering. First we give a brief description of the §-approximation
algorithm for fractional covering by [13,12]. The algorithm performs steps to
cover non-yet-satisfied covering constraints. Let /' be the solution after the first ¢
steps have been performed. (Initially y° = 0.) Given y*, let w§ =w;—> o Ayt
be the slack of C; after the first ¢ steps. (Initially w® = w.) The algorithm is
given by

% The algorithm is equivalent to local-ratio when A € {0,1}"*™ and y € {0, 1}" [12].
See [13] for a more general algorithm and a discussion on the relation between this
algorithm and local ratio.
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There may be covering constraints for which the algorithm never performs a
step because they are covered by steps done for other constraints with which
they share variables. Also note that increasing y; for all ¢ € Vars(Cy), decreases
the slacks of all constraints which depend on y;.

Our general approach. [I3]showsthattheabovealgorithmisa é-approximation
for covering, but they don’t show any result for matching or other packing problems.
Our general approach is to recast their analysis as a primal-dual analysis, showing
that the algorithm (Alg. 1)) implicitly computes a solution to the dual packing prob-
lem of interest here. To do this we use the tail-recursive approach implicit in previous
local-ratio analyses [3].

greedy é-approximation algorithm for fractional covering [13/12] alg. 1
1. Initialize y° — 0, w° — w, t < 0.
2. While there exist an unsatisfied covering constraint Cs do a step for Cs:
3. Set t=1t+ 1.
4. Let Bs —wi™?t - MiN;evars(cy) bi/Ais. ... OPT cost to satisfy Cs given the
current solution

5. For each i € Vars(Cs):

6. Set yf = yffl + Bs/b;. ... increase y; inversely proportional to its cost
7. For each j € Cons(y;) update wj- = wj-_l — Ai;Bs/b;. ... new slacks

8. Return y = y’.

After the t-th step of the algorithm, define the residual covering problem to
be min{} " byi : Yoy Ajyi > wh (V) = 1.m), y € R} and the resid-
ual packing problem to be its dual, max{) 7" whz; : 320, Ajjay; < b (Vi =
1...n), z € RT"}. The algorithm will compute é-approximate primal and dual
pairs (2!, yT 1) for the residual problem for each ¢. As shown in what follows, the
algorithm increments the covering solution z in a forward way, and the packing
solution y in a “tail-recursive” manner.

Standard Primal-Dual approach does not work. For even simple in-
stances, generating a d-approximate primal-dual pair for the above greedy algo-
rithm requires a non-standard approach. For example, consider min{y; +y2+ys :
y1+y2 > 1, y1 +y3 > 5, y1,y2 > 0}. If the greedy algorithm does the
constraints in either order and chooses  maximally, it gives a solution of cost 10.
In the dual max{xi2 + 5213 : 12 + 213 < 1, x12,213 > 0}, the only way to gen-
erate a solution of cost 5 is to set z13 = 1 and z12 = 0. A standard primal-dual
approach would raise the dual variable for each covering constraint when that
constraint is processed (essentially allowing a dual solution to be generated in
an online fashion, constraint by constraint). That can’t work here. For example,
if the constraint y; + y2 > 1 is covered first by setting y; = yo2 = 1, then the
dual variable x12 would be increased, thus preventing x,3 from reaching 1.
Instead, assuming the step to cover y; + y2 > 1 is done first, the algorithm
should not increase any packing variable until a solution to the residual dual
problem is computed. After this step the residual primal problem is min{y] +
yh+uh Yyl Fuh > =1, yi + s >4, yi,yh > 0}, and the residual dual problem
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is max{—a}, + 423 : zly + xiy < 1, @)y, 213 > 0}. Once a solution 2’ to the
residual dual problem is computed (either recursively or as shown later in this
section) then the dual variable x5 for the current covering constraint should
be raised maximally, giving the dual solution z for the current problem. In
detail, the residual dual solution 2’ is 2}, = 0 and z}5 = 1 and the cost of the
residual dual solution is 4. Then the variable z, is raised maximally to give x1a.
However, since x5 = 1, )5 cannot be increased, thus « = /. Although neither
dual coordinate is increased at this step, the dual cost is increased from 4 to 5,
because the weight of x13 is increased from wi; = 4 to w1z = 5. (See Figure
in the appendix.) In what follows we present this formally.

Fractional Packing. We show that the greedy algorithm for covering creates
an ordering of the covering constraints for which it performs steps, which we can
then use to raise the corresponding packing variables. Let ¢; denote the timd? at
which a step to cover C; was performed. Let ¢; = 0 if no step was performed for
C;. We define the relation “Cy < C;” on two covering constraints Cj» and C}
which share a variable and for which the algorithm performed steps to indicate
that constraint C;; was done first by the algorithm.

Definition 1. Let Cjy < C; if Vars(Cj ) NVars(Cj) #0 and 0 < t; <t;.

Note that the relation is not defined for covering constraints for which a step
was never performed by the algorithm. Then let D be the partially ordered set
(poset) of all covering constraints for which the algorithm performed a step,
ordered according to “<”. D is partially ordered because “<” is not defined
for covering constraints that do not share a variable. In addition, since for each
covering constraint C; we have a corresponding dual packing variable z;, abusing
notation we write x; < x; if C'yy < Cj. Therefore, D is also a poset of packing
variables.

Definition 2. A reverse order of poset D is an order C;,,Cj,, ..., Cj, (or equiv-
alently xj,,2j,, ..., 25, ) such that for I > i either we have Cj, < Cj, or the re-
lation “<” is not defined for constraints C;, and Cj, (because they do not share
a variable).

Then the following figure shows the sequential §-approximation algo-
rithm for FRACTIONAL PACKING.

The algorithm simply considers the packing variables corresponding to cov-
ering constraints that did steps for, and raises each variable maximally
without violating the packing constraints. The order in which the variables are
considered matters: the variables should be considered in the reverse of the order
in which steps were done for the corresponding constraints, or an order which
is “equivalent” (see Lemmal[d). (This flexibility is necessary for the distributed
setting.)

3 In general by “time” we mean some reasonable way to distinguish in which order
steps were performed to satisfy covering constraints. For now, the time at which a
step was performed can be thought as the step number (line [ at . It will be
slightly different in the distributed setting.
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greedy 6-approximation algorithm for fractional packing alg. 2
1. Run [Alg. 1] recording the poset D.
2. Let T be the number of steps performed by

3. Initialize 7 « 0, t — T. ... note that t will be decreasing from T to 0

4. Let IT be some reverse order of D. ... any reverse order of D works, see
Lemma[dl

5. For each variable z; € D in the order given by II do:

6. Set z'! =z

7. Raise /7! until a packing constraint that depends on z ™! is tight, that is,

set ¢t = Max;econs(a ;) (bi = D710y Ay .
8. Sett=t—1.

9. Return z = z°.

The solution z is feasible at all times since a packing variable is increased only
until a packing constraint gets tight.

Lemma 1. [Alg. 3 returns the same solution x using (at line [) any reverse
order of D.

Proof. Let II = zj,,xj,,...,x;, and II' = z;,,x;,,...,x; be two different
reverse orders of D. Let 2!/ be the solution computed so far by after
raising the first m packing variables of order IT. We prove that z/51+* = gII"1-k
Assume that IT and II’ have the same order for their first ¢ variables, that
is j; = j; for all i < ¢. Then, 14 = z™'1--4_ The first variable in which the
two orders disagree is the (¢ + 1)-th one, that is, jo41 # Jjy 1. Let s = jgq1.
Then zs should appear in some position [ in IT’ such that ¢ +1 < I < k. The
value of zs depends only on the values of variables in N(z;) at the time when
x is set. We prove that for each z; € N(z,) we have xfl 4= Hl’l"'l , thus
gla = g 11 Noreover since the algorithm considers each packmg varlable
only once this implies 211k = pIlla = mg Lol = 5’ Lok,
(a) For each z; € N(ms) with z, < z;, the variable z; should have already
been set in the first ¢ steps, otherwise II would not be a valid reverse order of
D. Moreover each packing variable can be increased only once, so once it is set

it maintains the same value till the end. Thus, for each z; such that =, < =,

we have 219 = Hl A gL
i .

(b)Foreachz; € N(acs) withz; < 2, j cannot be in the interval [, 1, ..., 5;_;)
of IT’, otherwise IT’ would not be a valid reverse order of D. Thus, for each z; such
that z; < x5, we have mJH Lea — mJH Led — mJH Lt

So in any case, for each z; € N(x,), we have xnl = xf 1l and thus
gl — I 1

The lemma follows by induction on the number of edges. O

The following lemma and weak duality prove that the solution x returned by
[Alg. 2]is 6-approximate.

Lemma 2. For the solutions y and x returned by|Alg. 1| and|Alg. 2 respectively,
iy wiwg > 1/6 370 biys
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Proof. Lemma/[Il shows that any reverse order of D produces the same solution,
so w.l.o.g. here we assume that the reverse order IT used by [Alg. 2]is the reverse
of the order in which steps to satisfy covering constraints were performed by
[Alg. 1}

When does a step to satisfy the covering constraint Cs (by increasing y;
by Bs/b; for all i € Vars(Cy)), the cost of the covering solution ), b;y; increases
by at most 83, since Cs depends on at most § variables (|Vars(Cy)| < §). Thus
the final cost of the cover y is at most Y 5 03s.

Define ¥t = Z w . to be the cost of the packing z!. Recall that 27 = 0 so
wT =0, and that the ﬁnal packing solution is given by vector x°, so the the cost
of the final packing solution is ¥°. To prove the theorem we have to show that
WO > S o Be. We have that W0 = w0 — w7 = "7 w!=1 @t 50 it is enough
to show that Wi~1 — w* > B, where C; is the covering constraint done at the
t-th step of [Alg. 1]

Then, Ui~1 — & is

t—1_t—1 ot
ij T, — wiT; (1)
J
= wtg_l Itg_l + Z(w§_1 — w;)x§_1 (2)
J#s

ST D DD SR T 0

i€Cons(x,) je{Vars(P;)—s}

:ﬁsmfl max Ais + Z Z Aijlijm;_l (4)

i€Cons(zs) bi i€Cons(zs) je{Vars(P;)—s}

> O Z A” ] (for i s.t. constraint P; becomes tight after raising )
(5)
=0Bs (6)

In equation () we use the fact that 2 = 0 and :r;_l =z} for all j # s. For
equation (B]), we use the fact that the residual weights of packing variables in
N(z,) are increased. If z; > 0 for j # s, then x; was increased before z, (x5 <
x;) so at the current step w} ' > w} > 0, and w} ™! — w§ = > icCons(ws) Aii [gf
For equation (@), by the deﬁnltlon of Bs we have wi=l = g, MAaX;eCons(z. ) /;
In inequality (&) we keep only the terms that appear in the constraint P; that
gets tight by raising xs. The last equality holds because P; is tight, that is,

ey Aij = bs. 0

The following lemma shows that [Alg. 2] returns integral solutions if the coef-
ficients A;; are 0/1 and the b;’s are integers, thus giving a é-approximation
algorithm for MAXIMUM WEIGHTED b-MATCHING.
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Lemma 3. If A € {0,1}"*™ and b € Z' then the returned packing solution x
is integral, that is, x € Z'".

Proof. Since all non-zero coefficients are 1, the packing constraints are of the
form 37 cvas(p) i < b (Vi). We prove by induction that z € Z'". The base
case is trivial since the algorithm starts with a zero solution. Assume that at
some point we have zt € Z7'. Let x, € D, be the next packing variable to be
raised by the algorithm. We show that z{~! € Z, and thus the resulting solution
remains integral. The algorithm sets 28" = min;econs(s,){bi — Z;n:1 xﬁ,_l} =
MiN; e Cons(z,) {0 — 2721 25} > 0. By the induction hypothesis, each 2% € Z,,

and since b € Z', then 2!~1 is also a non-negative integer. a

3 Distributed Fractional Packing with § = 2

3.1 Distributed model for 6 = 2

We assume the network in which the distributed computation takes place has
vertices for covering variables (packing constraints) and edges for covering con-
straints (packing variables). So, the network has a node w; for every covering
variable y;. An edge e; connects vertices u; and u; if y; and y; belong to the
same covering constraint C, that is, there exists a constraint A;;y; + Ay jys > w;
(6 = 2 so there can be at most 2 variables in each covering constraint). We as-
sume the standard synchronous communication model, where in each round,
nodes can exchange messages with neighbors, and perform some local computa-
tion [2I]. We also assume no restriction on message size and local computation.
(Note that a synchronous model algorithm can be transformed into an asyn-
chronous algorithm with the same time complexity [21].)

3.2 Distributed Algorithm for § = 2

Koufogiannakis and Young show a distributed implementation of for
(fractional) covering with 6 = 2 that runs in O(logn) rounds in expectation
and with high probability [I2]. In this section we augment their algorithm to
distributively compute 2-approximate solutions to the dual fractional packing
problem without increasing the time complexity. The high level idea is similar
to that in the previous section: run the distributed algorithm for covering to
get a partial order of the covering constraints for which steps were performed,
then consider the corresponding dual packing variables in “some reverse” order
raising them maximally. The challenge here is that the distributed algorithm for
covering can perform steps for many covering constraints in parallel. Moreover,
each covering constraint, has just a local view of the ordering, that is, it only
knows its relative order among the covering constraints with which it shares
variables.

Distributed Fractional Covering with 6 = 2. Here is a short description
of the distributed 2-approximation algorithm for fractional covering in
appendix from [12]). In each round, the algorithm does steps on a large subset
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of remaining edges (covering constraints), as follows. Each vertex (covering vari-
able) randomly chooses to be a leaf or a root. A not-yet-satisfied edge e; = (us, u,)
between a leaf u; and a root w, with b;/A;; < b./A,; is active for the round.
Each leaf u; chooses a random star edge (u;, u,) from its active edges. These star
edges form stars rooted at roots. Each root u, then performs steps (of
on its star edges (in any order) until they are all satisfied.

Note that in a round the algorithm performs steps in parallel for edges not
belonging to the same star. For edges belonging to the same star, their root
performs steps for some of them one by one. There are edges for which the algo-
rithm never performs steps because they are covered by steps done for adjacent
edges.

In the distributed setting we define the time at which a step to satisfy C}
is done as a pair (t§%,t9), where 5 denotes the round in which the step was
performed and tf denotes that within the star this step is the tjs—th one. Let
tf = 0 if no step was performed for C;. Overloading Definition [I we redefine
“<” as follows.

Definition 3. Let Cj; < C; (or equivalently xj» < z;) if Vars(Cj)NVars(C;) #
0 (5’ and j are adjacent edges in the distributed network) and (0 < tﬁ < tf/
or [tﬁ =t and tf, <t7)).

The pair (tf, tf ) is enough to distinguish which of two adjacent edges had a step
to satisfy its covering constraint performed first. Adjacent edges can have their
covering constraints done in the same round only if they belong to the same star
(they have a common root), thus they differ in tf . Otherwise they are done in
different rounds, so they differ in tf. Thus the pair (tﬁtf ) and relation “<”
define a partially ordered set D of all edges done by the distributed algorithm

for covering.

Lemma 4. ([12]) [Alg. 3 (for FRACTIONAL COVERING with 6 = 2) finishes in
T = O(logm) rounds in expectation and with high probability. Simultaneously,
[Alg. 5 sets (t5,t5) for each edge e; for which it performs a step (0 < tf <T),
thus defining a poset of edges D, ordered by “<”.

Distributed Fractional Packing with § = 2. implements in
a distributed fashion. First, it runs using the distributed implementation
by [12] (Alg. 5) and recording D. Meanwhile, as it discovers the partial order
D, it begins the second phase of[Alg. 2 raising each packing variable as soon as
it can. Specifically it waits to set a given x; € D until after it knows that (a)
x;j is in D, (b) for each z;; € N(x;) whether z; < z;, and (c) each such z;
is set. In other words, (a) a step has been done for the covering constraint Cj,
(b) each adjacent covering constraint C} is satisfied and (c) for each adjacent
Cj» for which a step was done after C}, the variable x;; has been set. Subject
to these constraints it sets z; as soon as possible. Note that some nodes will be
executing the second phase of the algorithm (packing) while some other nodes
are still executing the first phase (covering). This is necessary because a given
node cannot know when distant nodes are done with the first phase.
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Distributed 2-approximation Fractional Packing with § =2 alg. 3
input: Graph G = (V, E) representing a fractional packing problem instance with
6=2.

output: Feasible x, 2-approximately minimizing w - x.

1. Each edge e; € F initializes x; < 0.
2. Each edge e; € E initializes done; « false. ... this indicates if x; has been set to
its final value

3. Until each edge e; has set its variable x; (done; == true), perform a round:
4.  Perform a round of [Alg. 5 ... covering with 6 = 2 augmented to compute
G

5.  For each node u, that was a root (in[Alg. 5) at any previous round, consider
locally at u, all stars St that were rooted by wu, at any previous round ¢.
For each star S’ perform IncreaseStar(S%).

IncreaseStar(star Sf):
6. For each edge e; € Sf in decreasing order of tJS:
7. If IncreasePackingVar(e;) == UNDONE then BREAK (stop the for loop).

IncreasePackingVar(edge e; = (ui, ur)):
8. If e; or any of its adjacent edges has a non-yet-satisfied covering constraint
return UNDONE.
9. If t? == 0 then:
10.  Set z; = 0 and done; = true.
11.  Return DONE.
12. If done; == false for any edge e; such that z; < ;s then return UNDONE.
13. Set
x; = min { (b — o Ay ) [Aig, (br =325 Arjxj)/Ar} and done; = true.
14. Return DONE.

All z;’s will be determined in 27 rounds by the following argument. After
round 7', D is determined. Then by a straightforward induction on ¢, within
T + t rounds, every constraint C; for which a step was done at round 7' — ¢ of
the first phase, will have its variable x; set.

Theorem 1. For FRACTIONAL PACKING where each variable appears in at most
two constraints there is a distributed 2-approximation algorithm running in
O(logm) rounds in expectation and with high probability, where m is the number
of packing variables.

Proof. By Lemma [l computes a covering solution y in T = O(logm)
rounds in expectation and with high probability. At the same time, the algorithm
sets (tf, tf) for each edge e; for which it performs a step to cover C;, and thus
defining a poset D of edges. In the distributed setting the algorithm does not
define a linear order because there can be edges with the same (tf, ), that is,
edges that are covered by steps done in parallel. However, since these edges must
be non-adjacent, we can still think that the algorithm gives a linear order (as
in the sequential setting), where ties between edges with the same (tf,¢7) are

broken arbitrarily (without changing D). Similarly, we can analyze m as if
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it considers the packing variables in a reverse order of D. Then, by Lemma [I]
and Lemma [2 the returned solution z is 2-approximate.

We prove that the = can be computed in at most T extra rounds after the
initial T" rounds to compute y. First note that within a star, even though its
edges are ordered according to tf they can all set their packing variables in a
single round if none of them waits for some adjacent edge packing variable that
belongs to a different star. So in the rest of the proof we only consider the case
were edges are waiting for adjacent edges that belong to different stars. Note
that 1 < tf < T for each x; € D. Then, at round T, each z; with tf"' =T can be
set in this round because it does not have to wait for any other packing variable
to be set. At the next round, round 7"+ 1, each z; with tf"' =T — 1 can be set;
they are dependent only on variables z; with tﬁ = T which have been already
set. In general, packing variables with tf =t can be set once all adjacent z;
with tf"' >t + 1 have been set. Thus by induction on ¢t = 0,1,... a constraint
C; for which a step was done at round 7' — ¢ may have to wait until at most
round 7"+ t until its packing variable z; is set. Therefore, the total number of
rounds until solution z is computed is 2T = O(logm) in expectation and with
high probability. O

The following theorem is a direct result of Lemma [3] and Thm [l and the fact
that for this problem m = O(n?).

Theorem 2. For MAXIMUM WEIGHTED b-MATCHING on graphs there is a distributed
2-approzimation algorithm running in O(log n) rounds in expectation and with high
probability.

4 Distributed Fractional Packing with General é

4.1 Distributed Model for General 6

Here we assume that the distributed network has a node v; for each covering
constraint C; (packing variable z;), with edges from v; to each node vj if C;
and C}s share a covering variable y{1. The total number of nodes in the network
is m. Note that in this model the role of nodes and edges is reversed as compared
to the model used in Section Bl We assume the standard synchronous model with
unbounded message size.

4.2 Distributed Algorithm

Koufogiannakis and Young [I2] show a distributed §-approximation algorithm for
(fractional) covering problems with at most § variables per covering constraint
that runs in O(log2 m) rounds in expectation and with high probability. Similar
to the 6 = 2 case, here we use this algorithm to get a poset of packing variables
which we then consider in a reverse order, raising them maximally.

4 The computation can easily be simulated on a network with nodes for covering
variables or nodes for covering variables and covering constraints.
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Distributed covering with general 6. Here is a brief description of the dis-
tributed é-approximation algorithm for (fractional) covering from [I2]. To start
each phase, the algorithm finds large independent subsets of covering constraints
by running one phase of Linial and Saks’ (LS) decomposition algorithm, with
any k such that k € ©(Inm)fl [16]. The LS algorithm, for a given k, takes O(k)
rounds and produces a random subset R C {v;|j = 1...m} of the covering
constraints, and for each covering constraint v; € R a “leader” ¢(v;) € R, with
the following properties:

— Each v; € R is within distance k of its leader: (Vv; € R) d(vj, ve(;)) < k.

— Components do not share covering variables (edges do not cross compo-
nents): (Yvj, vy € R) vy(jy # vejry = Vars(vj) N Vars(vyr) = 0.

— Each covering constraint node has a chance tobein R: (Vj = 1...m) Prfv; €
R] > 1/em!* for some ¢ > 1.

Next, each node v; € R sends its information (the constraint and its variables’
values) to its leader vy(;). This takes O(k) rounds because v ;) is at distance O (k)
from v;. Each leader then constructs (locally) the subproblem induced by the
covering constraints that contacted it and the variables of those constraints, with
their current values. Using this local copy, the leader does steps until all covering
constraints that contacted it are satisfied. (Distinct leaders’ subproblems don’t
share covering variables, so they can proceed simultaneously.) To end the phase,
each leader uy returns the updated variable information to the constraints that
contacted vy. Each covering constraint node in R is satisfied in the phase.

To extend the algorithm to compute a solution to the dual packing problem
the idea is similar to the 6 = 2 case, substituting the role of stars by components
and the role of roots by leaders. With each step done to satisfy the covering
constraints C, the algorithm records (tﬁtf), where tf"' is the round and tf
is the within-the-component iteration in which the step was performed. This
defines a poset D of covering constraints for which it performs steps.

Lemma 5. ([12]) The distributed 6-approzimation algorithm for FRACTIONAL
COVERING finishes in T = O(log2 m) rounds in expectation and with high proba-
bility, where m is the number of covering constraints (packing variables). Simul-
taneously, it sets (tf,tf ) for each covering constraint C; for which it performs
a step (0 < tf"' < T), thus defining a poset of covering constraints (packing
variables) D, ordered by “<”.

Distributed packing with general §. (sketch) The algorithm (Alg. 4) is very
similar to the case 6 = 2. First it runs the distributed algorithm for covering,
recording (¢£,¢7) for each covering constraint C; for which it performs a step.
Meanwhile, as it discovers the partial order D, it begins computing the packing
solution, raising each packing variable as soon as it can. Specifically it waits

to set a given x; € D until after it knows that (a) z; is in D, (b) for each

® If nodes don’t know a k € ©(Inm), a doubling technique can be used as a work-
around [12].
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Distributed é6-approximation Fractional Packing with general ¢ alg. 4
input: Graph G = (V, E) representing a fractional packing problem instance.
output: Feasible x, é-approximately minimizing w - x.

1. Initialize = « 0.
2. For each j = 1...m initialize done; « false. ... this indicates if x; has been set
to its final value
3. Until each z; has been set (done; == true) do:
4. Perform a phase of the §-approximation algorithm for covering by [12],
recording (7, 7).
5.  For each node vk that was a leader at any previous phase, consider locally
at vk all components that chose vk as a leader at any previous phase. For
each such component C, perform IncreaseComponent(KC;.).

IncreaseComponent(component fC.):
6. For each j € I, in decreasing order of tf:
7. If IncreasePackingVar(j) == UNDONE then BREAK (stop the for loop).

IncreasePackingVar(j):
8.1f Cj or any C}s that shares covering variables with Cj is not yet satisfied
return UNDONE.
9. If tf == 0 then:
10.  Set x; = 0 and done; = true.
11.  Return DONE.
12. If done; == false for any x;, such that x; < x;; then return UNDONE.
13. Set Ty = minie(;ons(zj) ((bz — Zj' Aij/a:j/)/Aij)) and donej = true.
14. Return DONE.

zj € N(z;) whether z; < -, and (c) each such z;/ is set. In other words, (a)
a step has been done for the covering constraint C;, (b) each adjacent covering
constraint C} is satisfied and (c) for each adjacent Cjs for which a step was done
after Cj, the variable x;; has been set. Subject to these constraints it sets z; as
soon as possible.

To do so, the algorithm considers all components that have been done by
leaders in previous rounds. For each component, the leader considers the com-
ponent’s packing variables x; in order of decreasing tf . When considering x;
it checks if each x; with z; < x; is set, and if yes, then x; can be set and
the algorithm continues with the next component’s packing variable (in order of
decreasing tf ). Otherwise the algorithm cannot yet decide about the remaining
component’s packing variables.

Theorem 3. For FRACTIONAL PACKING where each variable appears in at most 6
constraints there is a distributed 6-approximation algorithm running in O(log2 m)
rounds in expectation and with high probability, where m is the number of packing
variables.

The proofis omitted becauseit is similar to the proof of Thm[I} the d-approximation
ratio is given by Lemma 1 and Lemma[2] and the running time uses T' = O(log2 m)
by Lemma,
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The following theorem is a direct result of Lemma [3l and Thm [3

Theorem 4. For MAXIMUM WEIGHTED b-MATCHING on hypergraphs, there is a dis-
tributed 6-approximation algorithm running in O(log2 m) rounds in expectation
and with high probability, where ¢ is the mazimum hyperedge degree and m is
the number of hyperedges.

5 Conclusions

We show a new non-standard primal-dual method, which extends the (local-ratio
related) algorithms for fractional covering by [I3I12] to compute approximate
solutions to the dual fractional packing problem without increasing the time
complexity (even in the distributed setting).

Using this new technique, we show a distributed 2-approximation algorithm
for FRACTIONAL PACKING where each packing variable appears in at most 2 con-
straints and a distributed 2-approximation algorithm for MAXIMUM WEIGHTED
b-MATCHING on graphs, both running in a logarithmic number of rounds. We also
present a distributed 6-approximation algorithm for FRACTIONAL PACKING where
each variable appears in at most ¢ constraints and a distributed d-approximation
algorithm for MAXIMUM WEIGHTED b-MATCHING on hypergraphs, both running in
O(log® m) rounds, where m is the number of packing variables and hyperedges
respectively.
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[Alg. B shows the distributed 2-approximation algorithm for FRACTIONAL COVER-

ING with § = 2.

Execution starts here.
Follow the arrows

!

Final dual solution:
Xy =0,x;=1

dual cost =5

min y, +y, +y;
sty +y, 21
N+y;25
Yy 20
choose y, +y, >1

nr=L y+=1
primal cost +=2

step

max X, +5x,
s.t.ox, +x; <1 %o = 0,3, =1

X%, 20 dual cost += 1

dual cost increases by 1 because

raise x,, maximally .
* W, increases by 1 and x,,=1

(it remains 0)

min p'+y',+y'Y
sty +y', =21
yi+yi=4
Yy 20
choose y'\+y', =1
step  y\+=1, yy+=1
primal cost += 8

max -x'\,+4x",

v "
st x',+x'; <1 x', =0, x'; =1

X'po X3 20 dual cost += 4

raise x',; maximally

(it becomes 1)

min y"+y "+ p'

st y"+y", 25
y“|+y"3 >4
Yy, 20

" "

max -5x",—4x",
" "

st x",+x", <1

W
x",,x"; =20

Base case

Final primal solution:
»=5y=Ly=4
primal cost = 10

W
X", =x";=0

dual cost =0

Fig. 2. Example of the execution of our greedy primal-dual algorithm (assuming con-

straint y1 + y2 > 1 is chosen first)
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Distributed 2-approximation Fractional Covering with § =2 ([12]) alg.5
input: Graph G = (V, E) representing a fractional covering problem instance with
6=2.
output: Feasible y, 2-approximately minimizing b - y.
1. Each node u; € V initializes y; < 0.
2. Each edge e; € E initializes t? «— 0 and tf — 0. ... auziliary variables for

[Alg- 3

3. Until there is a vertex with unsatisfied incident edges, perform a round:
4. Each node u;, randomly and independently chooses to be a leaf or a root
for the round, each with probability 1/2.

5. Each leaf-to-root edge e; = (u;, ur) with unmet covering constraint is active
at the start of the round if u; is a leaf, u, is a root and b;/A;; < b, /Ar;.
Each leaf u; chooses, among its active edges, a random one for the round.
Communicate that choice to the neighbors. The chosen edges form inde-
pendent stars — rooted trees of depth 1 whose leaves are leaf nodes and
whose roots are root nodes.

6.  For each root node u,, do:

(a) Let S! contain the star edges sharing variable . (at this round ¢).

(b)  Until there exist an unsatisfied edge (covering constraint)

e; = (ui,ur) € St, perform Step(y, e;).

Step(y, €; = (ui, ur)):
7. Let ,Bj — (’UJJ' — A”yz — Arjyr) . mln{bl/Az], bT/ATj}.
8. Set Yi = Yi +ﬂj/bi and Yr = Yr +,8j/br.
9. Set tf to the number of rounds performed so far.
10. Set tJS to the number of steps performed by root u, so far at this round.
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