
Tight Group Renaming on Groups of Size g Is
Equivalent to g-Consensus

Yehuda Afek1, Eli Gafni2, and Opher Lieber1

1 The Blavatnik School of Computer Science, Tel-Aviv University, Israel
2 Computer Science Department, Univ. of California, LA, CA

Abstract. We address two problems, the g-tight group renaming task
and what we call, safe-consensus task, and show the relations between
them. We show that any g-tight group renaming task, the first problem,
implements g processes consensus. We show this by introducing an inter-
mediate task, the safe-consensus task, the second problem, and showing
that g-tight group renaming implements g-safe-consensus and that the
latter implements g-consensus. It is known that with g-consensus g-tight
group renaming is solvable, making the two problems equivalent.

The safe-consensus task, is of independent interest. In it the validity
condition of consensus is weakened as follows: if the first processor to
invoke the task returns before any other processor invokes, i.e., it runs
in solo, then it outputs its input; Otherwise the consensus output can be
arbitrary, not even the input of any process. We show the equivalence
between safe-(set-)consensus and (set-)consensus.

Keywords: consensus, validity, set-consensus, group renaming, solo run.

1 Introduction

The notion of group solvability was introduced in [9]. The paper in [3] introduced
a simpler version of group solvability called tight group solvability and in partic-
ular tackled the task of tight group renaming. The tight group renaming task is
the renaming problem [2] of groups. Groups have to agree on a slot, and different
groups have to agree on different slots. In the g-tight group renaming task there
are g processors in each group. In [3] it was shown that g-consensus is sufficient
to solve g-tight group renaming. The question whether it is also necessary was
left open.

Here we introduce a new task, safe-consensus, a weakening of the classic
consensus problem, and show the relation between this task, the g-tight group
renaming task and the classic g-consensus task. The two basic conditions satisfied
by the consensus problem [8] are, agreement and validity. In the safe-consensus
task we weaken the validity condition of consensus. In the classic consensus
problem the output to a participating processor is the input of a participating
processor. In a safe-consensus task, the validity is weakened to allow the task
to return an arbitrary value if initially the number of participating processors is
two or more. The agreement property is retained.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 111–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

112 Y. Afek, Eli Gafni, and O. Lieber

Our first result shows that g-tight group renaming implements g processes
safe-consensus. Essentially, safe-consensus is an abstraction of tight group re-
naming. In any deterministic solution to the tight group renaming the output
of a solo run is a function of the processor’s id and its group id. Since we do
not restrict the algorithm there may be two solo runs from the same group that
output different values. Thus if two or more processors from the same group
come together any new group name may be output, resembling the behavior of
a safe-consensus task.

Our next result shows that safe-consensus is in fact as powerful as consensus,
which together with the previous result shows its necessity to solve g-tight group
renaming.

Following the introduction of safe-consensus, we next examine ways to weaken
the validity condition of (n, k)-set-consensus. In (n, k)-set-consensus a processor
outputs an input of a participating processor, and the cardinality of the output
set is no larger than k. Hence the problem becomes non-trivial when initially
more than k processors access the task concurrently. Thus the “off-the-cuff”
weakening of the validity condition here is, that if more than k processors par-
ticipate, it can return default non-valid outputs such that the total number of
distinct values returned does not exceed k.

We show that this natural weakening is not equivalent to the original prob-
lem. Indeed it is strictly weaker than (n, k)-set-consensus. Nevertheless, it is
a non-trivial task - it is not read-write wait-free solvable. We then consider
strengthening the validity condition of (n, k)-safe-set-consensus to imitate safe-
consensus: If a non-valid output is returned to any processors then it must be
returned to all. We then show that strong-safe-set-consensus is equivalent to
classic set-consensus.

Related Work: In [10], Guerraoui, and Kuznetsov define the weak consensus
task. Here processors output 0 or 1 with the validity requirement being only that
there exists a run of the task that outputs 0, and there exists a run that outputs
1. They show how weak consensus for n processors can be used to implement
n processor consensus with the standard validity condition. Unlike this paper,
they rely on the fact that they deal with an object, that is a given deterministic
implementation of a task. In fact, they need to drive the implementation into
particular special state (treating it as a white box). We on the other hand deal
just with the specification, i.e., task (as a black box). We do not rely on any
particular implementation of the task.

2 Model and Problem Definitions

We follow the standard model of asynchronous shared memory system as in
[12,11]. There are n processors in the system {1, 2, . . . , n} that communicate by
either atomically reading and writing to the atomic read/write shared memory,
or by applying operations to a shared object such as a consensus object.

Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus 113

The g-tight group renaming problem: We follow the definition from [3]: In a
tight group renaming task with group size g, n processors with id’s from a large
domain {1, 2, . . . , N} are partitioned into m groups with id’s from a large domain
{1, 2, . . . , M}, with at most g processors per group. A tight group renaming task
renames groups from the domain 1..M to 1..l for l << M , where all processors
with the same initial group ID are renamed to the same new group ID, and no
two different initial group id’s are renamed to the same new group ID.
The n-Safe-consensus problem: In this task n processors with id’s 1..n each
proposes an input value, and outputs a value such that:

– Wait-Free: Each processor finishes executing within a finite number of steps.
– Agreement: All processors output the same output value.
– Weak-Validity: If the output of a processor occurs before the invocation of

any other processor then the output is that processor’s proposed input value.

Hence, if no processor initially accesses the Safe-consensus task in solo then
processors may agree on any value. Notice, a similar task but in which the
agreement condition is that each process may return either a fixed default value
or the agreement value is read/write implementable.
The (n, k)-Safe-set-consensus problem: In this task n processors with id’s 1..n
each proposes an input value, and outputs a value such that:

– Wait-Free: Each processor finishes executing within a finite number of steps.
– k-Agreement: At most k distinct values are output.
– Weak-Validity: If the first output occurs after no more than k processors

have invoked, then all processors output a proposed input value.

The Strong (n, k)-Safe-set-consensus problem: In this task n processors with id’s
1..n each proposes an input value, and outputs a value such that:

– Wait-Free: Each processor finishes executing within a finite number of steps.
– Strong k-Agreement: At most k distinct values are output, and if any output

value is not a proposed input value, that output value is the output of all
processors which access the task.

– Weak-Validity: If the first output occurs after no more than k processors
have invoked, then all processors output a proposed input value.

Task equivalence: We use wait-free constructions to compare two tasks, A and
B. We say that “A can implement B” if there is a wait-free algorithm C that
may use any number of copies of task A and read/write atomic registers to solve
task B. If A and B implement each other, the tasks are said to be equivalent.
Atomic Snapshots: In several of the algorithms we utilize the ability to perform
atomic snapshots of shared memory, as defined in [1].

Correctness proofs for all the algorithms are given in Appendix A.

3 g-Tight Group Renaming Implements g-Safe-Consensus

We show that a single g-tight group renaming task can implement g-safe-consensus
so long as it supports at least g + 1 processor invocations. We then show that any
weakening of this requirement is impossible.

114 Y. Afek, Eli Gafni, and O. Lieber

Theorem 1. Any tight group renaming task with group size g supporting n pro-
cessors s.t., n > g and M > l implements 0/1 safe-consensus for g processors.

Given an algorithm A which solves tight group renaming we show how to solve
safe-consensus for g processors with 0/1 inputs (See code in Algorithm 1). We
assume A is of the form A(processor-id,group-id), receiving the processor id
from 1..N and initial group id from 1..M , and returns the new group ID in
range 1..l, and that A cannot be run more than once with the same processor
ID. We also assume that invocation by a single processor in isolation always
returns the same result, i.e., the only “non-determinism” is due to concurrency,
which is true for any deterministic task.

Lemma 2. There are two values k1,k2, s.t., k1 �= k2 and a solo-run of A(k1, k1)
returns the same value as a solo-run of A(k2, k2)

Proof. The pairs < 1, 1 >, < 2, 2 >,...,< l + 1, l + 1 > are all valid values to call
A with, since M > l and N > l. Since A returns values in the range 1..l, there
are at least 2 of the above pairs for which A() will return the same value in a
solo-run.

Denote this returned value k. Let k1,k2 and k be these values for Algorithm A.
(Note that these values can be deduced by running l + 1 instances of algorithm
A, without knowledge of its internal specification, i.e., leaving it as a black-box).

Notice that if more than one processors access the group-renaming concur-
rently, even if from the same group, then their outputs cannot be deduced (or
determined) ahead of time. Their outputs may depend on their interleaving and
other parameters such as their ids.

In an attempt to reach consensus we let all g processors run A with group
ID k1. If k1 renamed to k they decide 0, otherwise they decide 1. By defini-
tion of tight group renaming k1 renames to the same value for all processors,
therefore guaranteeing agreement. To achieve the weak-validity requirement of
safe-consensus we let all processors first register in memory and take a snapshot.
If a processor sees itself alone it runs A(k1, k1), and if it has input 1 it first runs
A(k2, k2). This guarantees that if it runs in solo, either k1 or k2 rename to k
according to whether its input is 0 or 1 respectively.

Weak-Renaming: Note that the above construction applies whether the tight
group renaming is weak-renaming or strong-renaming (i.e., adaptive).

Notice: The above algorithm can be extended to multivalue safe-consensus with
p values, given a g-tight group renaming algorithm which allows at least p groups,
s.t. M > (p − 1)l, while still using only one instance of algorithm A.

3.1 At Least g + 1 Invocations Are Required to Implement
Safe-Consensus

In the above construction we showed that tight group renaming with group size
g solves binary g-consensus when it may be invoked g + 1 times. Taubenfeld

Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus 115

Algorithm 1. g processor 0/1 safe-consensus using a g-tight group renaming
box and R/W memory

Shared Variables:
S[1..g] : initially NULL
temp[1..g] : g distinct processor ID’s which are neither k1 nor k2
A(processor-id,group-id) : a g-tight group renaming algorithm instance

procedure consensus(proposal)
1: S[processor-id] = ’ACTIVE’
2: SS = atomic snapshot of S[1..g]
3: if for all i �= processor-id SS[i] = NULL
4: if proposal = 1 then run A(k2,k2)
5: value = A(k1,k1)
6: else
7: value = A(temp[processor-id],k1)
8: end if
9: if value = k then decide 0 else decide 1

end consensus

then raised the question whether this is a lower bound, i.e., can a tight group
renaming task with group size g which supports at most g processor invocations
solve g-safe-consensus (and thus g-consensus?)

We prove that a g-tight group renaming task that allows at most g processor
invocations cannot solve g-consensus, by showing how to implement such a task
using only (g − 1)-consensus objects and atomic R/W memory.

Theorem 3. g-tight group renaming that may be invoked by at most g proces-
sors can be implemented using only (g − 1)-consensus objects and atomic R/W
memory.

Proof. In Algorithm 2 we present the code to solve g-tight group renaming for
at most g processors in groups of size g. We utilize the fact that n = g, which
means that if there is some group with more than g − 1 processors in it, then
all g processors are from the same group and they can therefore decide some
default value since there are no other groups to collide with.

We associate a (g − 1)-consensus object with each of the possible M initial
group ID’s. We also utilize the result from [3] which shows that tight group
renaming for groups of size g−1 can be implemented using only (g−1)-consensus
objects and atomic R/W memory. All processors register their ID and group ID
in memory and take a snapshot. If there are g processors in the snapshot and
all are from the same group the processor simply decides on a default value 0.
Otherwise it uses its group’s (g − 1)-consensus object to decide on its output as
follows: If all processors in the snapshot are from its group, it proposes the default
value 0, otherwise it accesses a (g − 1)-tight group renaming task (constructed
from (g−1)-consensus objects and r/w memory) and proposes the value returned
from that task (Which returns ID’s in range 1..l and does not collide with 0).
All processors which decide according to their group’s (g − 1)-consensus object

116 Y. Afek, Eli Gafni, and O. Lieber

decide the same value, and the only time a processor does not access the (g −1)-
consensus object is if it sees all g processors in memory and they all have the
same group ID. In this case it returns 0 and so will all others, since they all
propose 0 to the consensus object associated with their group.

Algorithm 2. g-tight group renaming for g processors using (g − 1)-consensus
objects and R/W memory

Shared Variables:
cons[1..M] : M (g − 1)-consensus objects, one for each group
S[1..N] : Shared R/W registers, one for each processor, initially NULL

procedure tight-group-renaming(processor-id,group-id)
1: S[processor-id] := group-id
2: SS := atomic snapshot of S[1..N]
3: count-group := |{i|SS[i] =group-id}|
4: count-total := |{i|SS[i] �= NULL}|
5: if count-group = count-total = g then return 0
6: if count-group = count-total
7: propose := 0
8: else
9: propose := (g − 1)-tight-group-renaming(processor-id,group-id)
10: end if
11: return cons[group-id] (propose)

end consensus

4 Safe-Consensus Implements Consensus

We now show that n-safe-consensus is equivalent to regular n-consensus for any
n, therefore resulting in g-tight group renaming implementing g-consensus for
any g, which complements the result from [3] to prove that g-tight group renam-
ing and g-consensus are equivalent.

Theorem 4. Safe-consensus is equivalent to consensus.

We implement n processor consensus given enough n processor safe-consensus
tasks as black-boxes. Two algorithms are presented, the first one is somewhat
simpler but requires O(2n) copies of the safe-consensus task to solve for n pro-
cessors. The second algorithm uses a slight improvement and requires only O(n2)
copies of safe-consensus.

4.1 Consensus Using O(2n) Safe-Consensus Tasks

For n processors we assume inductively we can solve consensus for n − 1 pro-
cessors. We implement consensus as follows (The code is given in Algorithm 3):
Processors 1..n−1 agree on a value PA recursively using the lower degree version
of the task (Line 2) and write the value to shared memory (Line 3). Processors
2..n−1 then join processor n to recursively agree on a value using another lower

Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus 117

degree version of the task, in which processors 2..n−1 propose PA and processor
n proposes its own input (Line 6), writing the decision, denoted PB , to shared
memory (Line 7).

They now enter an n-processor safe-consensus task (Line 9), proposing their
processor-id, in order to decide between PA and PB. If it returns n they decide
PB, otherwise they decide PA.

Algorithm 3. n-consensus using n-safe-consensus, (n − 1)-consensus tasks and
R/W memory

Variables:
processor-id : ID of the running processor, 1..n
PA,PB : MWMR registers, initially NULL

procedure consensus(proposal)
1: if processor-id < n
2: proposal := (n − 1)-consensusA(proposal)
3: PA := proposal
4: end if
5: if processor-id > 1
6: proposal := (n − 1)-consensusB(proposal)
7: PB := proposal
8: end if
9: winner := n-safe-consensus(processor-id)
10: if winner = n
11: decide PB

12: else
13: decide PA

14: end if
end consensus

Complexity: O(2n) as each recursion calls 2 lower degree instances.

4.2 Consensus Using O(n2) Safe-Consensus Tasks

In Algorithm 4 we implement consensus using only O(n2) safe-consensus black-
boxes. Again, we assume inductively we can solve consensus for n−1 processors.

We split the n processors into 2 groups, processors 1..n − 1 on one side, and
processor n as a singleton on the other (Denote its input PB). Processors 1..n−1
recursively reach consensus among themselves (Line 10), denote this value PA,
and then work together against processor n. The problem here is that with
a single safe-consensus task, processors 1..n − 1 can interfere with each other,
causing the safe-consensus task to return some arbitrary value, without processor
n even being alive. To solve this issue, we use n−1 safe-consensus task instances.
All n processors run all n − 1 instances (Lines 4 and 14). Processors 1..n − 1
each start running at a different safe-consensus task. Notice that this guarantees
that if processor n is not active, then at least one of the n − 1 processors will

118 Y. Afek, Eli Gafni, and O. Lieber

complete a solo-run of a safe-consensus task (The first one to complete running
its first instance) and that task will return PA by definition. On the other hand,
if all processors 1..n−1 are asleep, processor n successfully completes a solo-run
of all n − 1 safe-consensus tasks (Line 4), and they all return PB . We then have
processors 1..n − 1 perform an OR on all their runs, i.e., if at least one of the
n − 1 instances returned PA they decide on it. Processor n performs an AND, if
all instances returned PB it decides on it. If a processor from 1..n − 1 does not
receive PA from any of the tasks (Line 16), then PB must be written in memory
and it can check if processor n was satisfied (Line 17). If it was not, then they
default to deciding PA. On the other hand if processor n did not receive PB from
all the tasks (Line 6), then PA must be written in memory and it defaults to PA

(Line 7) as will processors 1..n − 1.

Algorithm 4. n-consensus using O(n2) safe-consensus tasks and R/W memory
Variables:

PA,PB : MWMR registers for processors 1..n − 1 and n respectively
safe-consensus[1..n − 1] : n − 1 n-processor or more safe-consensus tasks
values[1..n-1] : Local registers for each processor

procedure consensus(proposal)
1: if processor-id = n
2: PB := proposal
3: for i := 1 to n − 1
4: values[i] := safe-consensus[i](proposal)
5: end for
6: if values[i] = proposal for all i = 1..n − 1 then decide PB

7: else decide PA

9: else
10: proposal := (n − 1)-consensus (proposal)
12: PA := proposal
13: for i := 1 to n − 1
14: values[i] := safe-consensus[((i + processorid)mod(n − 1)) + 1](proposal)
15: end for
16: if values[i] = proposal for some i = 1..n − 1 then decide PA

17: elseif values[i] = PB for all i = 1..n − 1 then decide PB

18: else decide PA

20: end if
end consensus

Complexity: n ∗ (n − 1)/2 as it uses n − 1 safe-consensus tasks and recursively
calls one lower degree instance.

Corollary 5. g-tight group renaming solves g-consensus using n∗(n−1)/2 such
black-boxes, and is therefore a g-consensus task for any g.

Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus 119

5 Safe Set-Consensus

What about (n, k)-set-consensus that may deliver arbitrary values? There are a
few possibilities to generalize safe-consensus to a task (n, k)-safe-set-consensus. It
may behave as (n, k)-set-consensus so long as no more than k processors initially
access the task simultaneously. In case more than k processors initially access it
simultaneously, it is allowed to return invalid results (So long as the k-agreement
requirement is still satisfied).

5.1 (n,k)-Safe-Set-Consensus

Theorem 6. Excluding the pair (4, 2), (n, k)-set-consensus is implementable
from (n, k)-safe-set-consensus iff n = k + 1.

For n > k + 1, we show we cannot solve (n, k)-set-consensus using (n, k)-safe-
set-consensus, except for the case of (4,2). We show how to implement (n, k)-
safe-set-consensus using a regular (k, k −1)-set-consensus task for all n (Code in
Algorithm 5): Each processor registers in memory and takes an atomic snapshot.
If it sees at most k processors (at most k will), it runs the (k, k−1)-set-consensus
task, posts the result, and decides it. If a processor sees more than k in its
snapshot, then if it sees some posted output it decides it, otherwise it defaults
to 0. The only time a processor sees more than k in its snapshot but does not
see a posted output is if more than k are concurrently executing the task and no
processor has returned yet, so deciding an invalid value 0 in this case is allowed.

Since regular (k, k−1)-set-consensus can’t solve (n, k)-set-consensus for n/k >
k/(k − 1) [4], (n, k)-safe-set-consensus can’t solve (n, k)-set-consensus for n >
k + 1, except for the (4,2) case, which is not yet classified.

5.2 Strong (n,k)-Safe-Set-Consensus

Here we strengthen the definition of safe-set-consensus so it can implement reg-
ular set-consensus: If an invalid value is returned, all processors output that
value.

We show that this definition of the task does implement (n, k) set-consensus
for all n (See code in Algorithm 6). We use the same idea as in Algorithm 3: We
assume inductively we can solve for (n − 1, k). Processors 1..n − 1 agree upon k
inputs using our (n − 1, k) solution and post the output to a shared vector A[]
(Line 3). Processors 2..n − 1 each take their results and join another (n − 1, k)
set-consensus instance with processor n and post the output to a shared result
vector B[] (Line 7). Each processor then runs the (n, k) safe-set-consensus task
with its processor ID to decide on up to k winners (Line 9). If the winner is n
they go to B[] otherwise they go to A[]. If the ‘winner’ already wrote a value
in its location in the vector, that value is chosen, if not it means the result was

120 Y. Afek, Eli Gafni, and O. Lieber

Algorithm 5. (n, k) Safe-set-consensus using a (k, k−1) set-consensus task and
R/W memory

Shared Variables:
S[1..n] : initialy NULL
RES[1..n] : initialy NULL

procedure Safe-set-consensus(proposal)
1: S[processor-id] := ’ACTIVE’
2: SS := atomic snapshot of S[1..n]
3: count := |{i|SS[i] =’ACTIVE’}|
4: if count ≤ k
5: val := (k, k − 1)-set-cons(proposal)
6: RES[processor-id] := val
7: decide val
8: else
9: if RES[i] = NULL for all i = 1..n decide 0
10: else decide any RES[i] s.t. RES[i] �= NULL
11: end if

end Safe-set-consensus

invalid and the processors choose any value posted in that array (By the new
agreement definition, they all will go to the same array, A[] or B[]).

6 Conclusions

Few questions are left open. We have shown the connection between g-tight group
renaming and g processors safe-consensus. That is, if the members of each group
must decide on 1 value (new name), then it is equivalent to consensus between
the members of the group. The interesting question is then if the members of a
group are allowed to decide on two different values, is that equivalent to some
form of 2-(safe)-set-consensus? Or in general to try to find a connection between
a variant of g-group-renaming which allows up to k new names per group, and
the (g, k)-safe-set-consensus problem. Is this variant of group renaming weaker,
stronger or equivalent to set-consensus?

For (n, k)-safe-set-consensus we have shown a strong variant of the prob-
lem, which is equivalent to (n, k)-set-consensus, and a weaker variant, which is
strictly weaker. Is there, or can there be a tighter characterization of safe-set-
consensus in between? What is the power of the weaker variant? In the weaker
variant of safe-set-consensus, it still remains to show the classification of the
(4, 2)-safe-set-consensus. Can it solve (4, 2)-set-consensus if it is allowed to re-
turn 2 invalid values when 3 or 4 processes access it simultaneously? Another
question is whether the Weak-Validity considered in this paper is in some sense
the weakest validity condition which is still equivalent to the classical consensus
definition.

Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus 121

Algorithm 6. (n, k) set-consensus using Strong (n, k) safe-set-consensus and
R/W memory

Shared Variables:
A[1..n],B[1..n] : Initially NULL
(n − 1, k)set-consensus-A/B : 2 (n − 1, k) set-consensus tasks

procedure set-consensus(proposal)
1: if processor-id < n
2: proposal := (n − 1, k)set-consensus-A(proposal)
3: A[processor-id] := proposal
4: end if
5: if processor-id > 1
6: proposal := (n − 1, k)set-consensus-B(proposal)
7: B[processor-id] := proposal
8: end if
9: winner := safe-set-consensus(processor-id)
10: if winner = n
11: if B[n] �= NULL decide B[n] else decide any B[i] s.t. B[i] �= NULL
12: else
13: if winner in 1..n and A[winner] �= NULL decide A[winner]
14: else decide any A[i] s.t. A[i] �= NULL
15: end if

end set-consensus

Acknowledgements. We are in debt to Gadi Taubenfeld for helpful discussions
and suggestions.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snap-
shots of Shared Memory. Journal of the ACM 40(4), 873–890 (1993)

2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. J. ACM 37(3), 524–548 (1990)

3. Afek, Y., Gamzu, I., Levy, I., Merritt, M., Taubenfeld, G.: Group renaming. In:
Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 58–72.
Springer, Heidelberg (2008)

4. Borowsky, E., Gafni, E.: The Implication of the Borowsky-Gafni Simulation on
the Set-Consensus Hierarchy. Technical Report 930021, Department of Computer
Science, UCLA (1993)

5. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: Simultaneous consensus
tasks: A tighter characterization of set-consensus. In: Chaudhuri, S., Das, S.R.,
Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 331–341.
Springer, Heidelberg (2006)

6. De Prisco, R., Malkhi, D., Reiter, M.: On k-Set Consensus Problems in Asyn-
chronous Systems. IEEE Transactions on Parallel and Distributed Systems 12(1),
7–21 (2001)

7. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation 105, 132–158 (1993)

122 Y. Afek, Eli Gafni, and O. Lieber

8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

9. Gafni, E.: Group-solvability. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274,
pp. 30–40. Springer, Heidelberg (2004)

10. Guerraoui, R., Kuznetsov, P.: The gap in circumventing the impossibility of con-
sensus. J. Comput. Syst. Sci. 74(5), 823–830 (2008)

11. Herlihy, M.P.: Wait-Free Synchronization. ACM Transactions on Programming
Languages and Systems 13(1), 124–149 (1991)

12. Herlihy, M.P., Wing, J.M.: Linearizability: a Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems 12(3), 463–
492 (1990)

A Appendix

A.1 Algorithm 1 Proof of Correctness

Wait-Free: Since A() is wait-free and there are no loops.

Agreement: By the code all processors decide according to the value returned by
A() when invoking it with group ID k1. By the definition of tight group renaming
this value is the same for all invocations, and therefore all the processors receive
either k and decide 0, or a value different than k and decide 1.

Weak-Validity: Let p be a processor that executes the full algorithm in solo.
Processor p therefore sees itself alone in its snapshot. If its input is 1 it first
runs A(k2, k2) in solo which by construction returns k. Hence by the definition
of tight group renaming the call to A(k1, k1) in Line 5 does not return k since
k1 �= k2 and this processor decides 1 in Line 9 and the output is valid. If its
input is 0 it does not run A(k2, k2) and its solo-run of A(k1, k1) returns k. It
therefore decides 0 in Line 9 and the output is valid in this case as well.

It should also be shown that at most g processors invoke A per initial group
ID, and that A is never invoked more than once with the same processor ID: For
each ”real” processor A is run once with group k1 and at most one processor
runs it with group k2, and it is therefore invoked at most g times with k1 and
at most one time with k2 for a total of at most g + 1 invocations.

If no processor sees itself alone then all runs of A are with different processor
ID’s because all the values in temp[] are different. Since at most one processor
can see itself alone, at most one will use values k1 and/or k2 for processor ID’s,
which are in any case different from all the values in temp[], and therefore A()
is never invoked more than once with a given processor ID.

A.2 Algorithm 2 Proof of Correctness

Suppose all processors return in Line 11. In this case each processor decides the
result of its group’s consensus task. At most g − 1 processors from the same
group can reach this line, since at most g can access the task, and if they are
all from the same group, the last one to take an atomic snapshot in line 2 will
attain: count−group = count−total = g and decide in Line 5. Hence neither the

Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus 123

consensus objects nor the (g − 1)-tight group renaming tasks are ever accessed
by more than g − 1 processors from the same group.

Since the consensus for a certain group always returns the same value, all
processors from the same group decide the same value. We need only show
that no two groups decide the same value. We claim only one group can see
count − group = count − total and propose 0. Since the snapshots are atomic,
there cannot be two snapshots in which different group ID’s appear alone. Since
(g − 1)-tight-group-renaming(processor-id,group-id) returns a different value for
each group by definition, and does not return 0, we have that no two processors
from different groups can propose the same value.

We are left with the case that at least one processor does decide in Line 5.
This may happen only if all g processors are from the same group and all of
them appear in the snapshot. In this case, any processor which sees all g in its
snapshot returns 0. All others propose 0 since they all see only their group in
Line 6, therefore all proposals are 0 and the consensus in Line 11 must return 0
as well, and all processors return 0.

A.3 Algorithm 3 Proof of Correctness

Wait-Free: By induction and observing the code, since there are no loops.

Agreement: Let v be the value returned at Line 9, which by definition is the
same for all processors. Only a single value is written to PA at Line 3, the value
returned by the consensus at line 2, and only a single value is written to PB at
line 7, the result of the consensus at line 6. Therefore we only need to show that
if v = n, then PB is not NULL at Line 11, and if v �= n then PA is not NULL at
line 13.

Suppose a processor finishes executing Line 9, and either PA or PB have not
yet been written to. If PB has not yet been written to then this must be processor
1 since processors 2, . . . , n go through line 7. We show that v cannot be n in this
case. Since no processor from 2, . . . , n has executed Line 7 then processor 1 runs
line 9 in solo and by definition receives 1. Now suppose PA has not yet been written
to and a processor completed line 9. This can only be processor n and processors
1, . . . , n − 1 have not yet executed Line 3. Therefore processor n runs in solo at
Line 9 and by definition receives back n and the decision is therefore PB .

Validity: We need only to show that the values written to PA and PB are valid,
i.e., they are proposals of active processors. The result of the consensus at Line
2 is valid, since each processor from 1, . . . , n − 1 proposes its own input there,
therefore PA is valid. PB is the result of the consensus at line 6. The proposals
there are either PA, which is valid, or n’s input if processor n is alive, thus the
result is valid either way.

A.4 Algorithm 4 Proof of Correctness

Wait-Free: By induction: Version n has a constant number of iterations in its
loops (n − 1), and uses version n − 1 of our algorithm once.

124 Y. Afek, Eli Gafni, and O. Lieber

Lemma 7. Only a single value is ever written to PA and a single value to PB,
and any time a processor reads one of these registers in the code, it contains that
single value.

Proof. Processor n only writes once to PB , at the beginning of its code. Proces-
sors 1..n − 1 each write only once to PA, first thing after they reach agreement
with each other at Line 10, therefore only one value is written to PA, the value
agreed upon at Line 10. Now suppose processor n reads PA, it therefore reached
Line 7. It reaches Line 7 only if not all safe-consensus instances return its pro-
posal. Hence processor n did not run a solo-run in at least one of the tasks.
Hence at least one of the other processors from 1..n − 1 ran at least some part
of that safe-consensus task, and it therefore executed its Line 12, therefore PA

contains its value when processor n reads it. Suppose one of the processors from
1..n − 1 reads PB . It therefore reached Line 17. It reaches Line 17 only if none
of the safe-consensus tasks returned its proposal. Suppose by contradiction that
processor n has not executed Line 2 yet. Let p be the first processor from 1..n−1
to finish running the first safe-consensus task it ran (At least one has finished,
since a processor has reached Line 17). Since processor n has not yet executed
line 2, it has not yet executed any part of any of the safe-consensus tasks. Since
each of the processors 1..n − 1 start with a different task instance, processor p
must therefore have completed a solo-run of its first instance. Since all proces-
sors 1..n − 1 use the same proposal, and each task guarantees consensus, then
all processors 1..n − 1 will decide at Line 16, in contradiction to the fact that a
processor from 1..n−1 reached Line 17. Therefore processor n has executed line
2, and its proposal is in PB whenever any processor reads PB .

Validity: Since the values written to PA and PB are one of the processor’s
initial proposals (Either processor n’s proposal, or the agreed upon proposal of
processors 1..n − 1) and from the fact that the only values decided on in the
code are either one of these proposals, or the contents of PA or PB, it holds that
each processor decides on a valid value.

Agreement: If at least one of the safe-consensus tasks return the agreed upon
proposal of processors 1..n−1, they all decide that value at Line 16. If processor
n had that same proposal, then whether it decides at Line 6 or 7, it will be that
value (From the previous lemma we have that it will read that proposal form
PA at line 7). If it did not have the same proposal, it will not decide at Line 6,
since at least one of the safe-consensus tasks returned a value which is not its
proposal. It therefore decides PA at Line 7, which is the agreed upon proposal
of processors 1..n − 1, i.e., all processors decide the same value.

If all safe-consensus tasks return the proposal of processor n, then processor n
decides that value at Line 6. If processors 1..n−1 agreed upon that same proposal,
they too all decide that value at line 16 (Since if all tasks returned it, then at least
one did as well). If processors 1..n − 1 had a different agreed upon value, then
they will not decide at Line 16, since all tasks returned a different value than their
proposal. They therefore read that value at Line 17 (As shown in the previous
lemma), see that all the tasks returned it, and decide that value there.

Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus 125

Otherwise, at least one safe-consensus task returned a value different from
processor n’s proposal, and none of them returned the agreed upon proposal
of processors 1..n − 1. Processor n therefore will not decide at line 6 and will
decide PA at line 7 (Which is updated at this point). Processors 1..n−1 will not
decide at neither lines 16 nor 17 (Since both those checks will fail), and they too
decide PA, and we reach consensus.

A.5 Algorithm 5 Proof of Correctness

Wait-Free: Since (k, k − 1)-set-cons is wait-free so is Algorithm 2 as it has no
loops.

k-Agreement: The set of all possible values decided on in the algorithm are the
k − 1 values returned by the (k, k − 1)-set-consensus task and 0, thus at most k
values are decided upon, and at most one of them is an invalid value.

Weak-Validity: By the definition of safe-set-consensus, we need to show that if
the first processor to output does so after at most k − 1 others invoked, then
all processors decide on a proposed input value. Suppose the first processor
to output does so after no more than k − 1 others have invoked. Denote this
processor p. Since at most k − 1 others have invoked, they all saw at most k
processors in their snapshot and accessed the set-consensus object at Line 5 with
their proposal. Since this is a standard set-consensus object, it always returns
valid values and all these processors therefore decide valid values. Let q be some
processor which invoked after p decided and suppose it saw more than k in its
snapshot. Since p already decided, it already executed Line 6 and its output is
written in memory. Processor q therefore sees a non-NULL value in RES[] and
decides it, i.e., no processor decides 0 and all outputs are valid.

A.6 Algorithm 6 Proof of Correctness

Wait-Free: By induction: Since version n − 1 is wait-free so is our code as we
have no loops.

k-Agreement: We split the proof into two, according to whether the safe-set-
consensus at Line 9 returned an invalid value or not. If it did not, then by
definition it returned at most k valid values, i.e., at most k processor ID’s which
proposed themselves at Line 9. Hence if the winner is n, B[n] is not NULL (Since
n passed Line 7 in order to propose itself), and if the winner is i in 1..n − 1 A[i]
is not NULL since it must have passed Line 3 in order to propose itself. Thus
for each ’winner’ at Line 9 exactly one result is decided on at Line 13 or Line
11. Since there are at most k ’winners’, and since each A[] and B[] are written
only once we have that at most k values are decided on.

Now suppose Line 9 returns an invalid result i. By definition all processors
received this result. If the result is n then all processors decide at Line 11 either
B[n] or any non-NULL value in B[], while if the result is not n they decide at
lines 13 or 14 either A[i] or any non-NULL value in A[]. Since A[] and B[] are

126 Y. Afek, Eli Gafni, and O. Lieber

each filled respectively with results of separate k-value set-consensus tasks, then
at most k values are chosen. It remains only to show that each processor indeed
has some value to choose, i.e., if it needs to decide some non-NULL value in A[]
or B[], then there exists such a value at that point: Since Line 9 returned an
invalid result, then by definition more than k processors invoked before the first
processor returned. Hence at least 2 processors invoked. Therefore any decision
occurs after at least 2 processors reached Line 9. These processors are either 1
and n, or at least one of them is from 2..n − 1 and in any case at least one of
them wrote to A[] and one of them to B[] before reaching Line 9, therefore we
will always have a non-NULL value to choose.

Validity: All proposals to the first k-set-consensus task are valid, since they are
inputs of active processors. Since this is a regular set-consensus task all its results
are valid, and A[] is filled with valid inputs. Since all proposals to the second
k-set-consensus are either results of the first one or the input of processor n,
it too returns only valid values, therefore B[] is filled with valid values as well.
Since all values decided on are non-NULL values from A[] and B[] it holds that
all outputs are valid.

	Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus
	Introduction
	Model and Problem Definitions
	g-Tight Group Renaming Implements g-Safe-Consensus
	At Least g+1 Invocations Are Required to Implement Safe-Consensus

	Safe-Consensus Implements Consensus
	Consensus Using $O(2^{n})$ Safe-Consensus Tasks
	Consensus Using $O(n^{2}$) Safe-Consensus Tasks

	Safe Set-Consensus
	(n,k)-Safe-Set-Consensus
	Strong (n,k)-Safe-Set-Consensus

	Conclusions
	Appendix
	Algorithm 1 Proof of Correctness
	Algorithm 2 Proof of Correctness
	Algorithm 3 Proof of Correctness
	Algorithm 4 Proof of Correctness
	Algorithm 5 Proof of Correctness
	Algorithm 6 Proof of Correctness

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

