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Preface

This volume contains 33 15-page-long regular papers and 15 2-page-long brief
announcements selected for the 23rd International Symposium on Distributed
Computing (DISC 2009), held during September 23-25, 2009, in Elche, Spain.
This volume also includes the citation of the 2009 Edsger W. Dijkstra Prize
in Distributed Computing, which was awarded at DISC this year, as well as
abstracts of talks delivered in a mini symposium honoring the 60th birthdays of
Michel Raynal and Shmuel Zaks.

There were 121 submissions to DISC this year, of which 116 were considered
for regular presentations, and the rest for brief announcements only. Every sub-
mitted paper was read and evaluated by Program Committee members assisted
by external reviewers. The final decisions regarding acceptance or rejection of
each paper were made during the phone-based Program Committee meeting held
during June 2009. Some papers that were not selected for regular presentation
were invited to be presented as brief announcements.

The Program Committee nominated five best papers as candidates for awards.
The award nominees were presented in a special session at DISC 2009, and ap-
pear first in this volume. The winners of the Best Paper Award and Best Student
Paper Award were chosen among these five nominees, and announced at the con-
ference.

Although all submissions were carefully read and evaluated, the papers were
not formally refereed. It is expected that many of these papers will appear in
a more complete and polished form in refereed scientific journals. Revised and
expanded versions of a few best selected papers will be considered for publication
in a special issue of the journal Distributed Computing dedicated to DISC 2009.

Brief announcements present ongoing work or recent results whose full de-
scription is not yet ready; it is expected that full papers containing those results
will soon appear in other conferences or journals.

Five workshops were co-located with DISC this year: “What Theory for
Transactional Memory?” organized by Rachid Guerraoui (EPFL) and Vincent
Gramoli (EPFL and University of Neuchâtel); “BFTW3: Why? When? Where?
(Workshop on Theory and Practice of Byzantine Fault Tolerance)” organized
by Petr Kuznetsov (TU Berlin/Deutsche Telekom Laboratories) and Rodrigo
Rodrigues (Max Planck Institute for Software Systems MPI-SWS); “Workshop
on Reliability and Security in Wireless Networks” organized by Seth Gilbert
(EPFL) and Dariusz Kowalski (University of Liverpool); “Workshop on Game
Theoretic Aspects of Distributed Computing” organized by Chryssis Georgiou
(University of Cyprus) and Paul Spirakis (CTI and University of Patras); and
“Workshop on Theoretical Aspects of Dynamic Distributed Systems (TADDS)”
organized by Roberto Baldoni (University of Rome La Sapienza) and Alexander
A. Shvartsman (University of Connecticut and MIT).



VI Preface

On behalf of the Program Committee, I would like to thank the workshop
organizers, as well as all authors who submitted papers to the conference. I would
also like to thank the numerous additional reviewers who provided valuable input
to the selection process. I am also grateful to Vicent Cholvi Juan and Antonio
Fernández Anta, who played a key role in the success of the conference in their
capacity as the Local Arrangements Chairs.

The following institutions are gratefully acknowledged for providing financial
support, materials, and human resources to DISC 2009: Ministerio de Ciencia
e Innovación, Spain; Microsoft Research; Grupo de Sistemas y Comunicaciones
(GSyC), European Association for Theoretical Computer Science (EATCS); In-
stituto Tecnológico de Informática (ITI), Universidad Politécnica de Valencia
(UPV); Universidad del Páıs Vasco/Euskal Herriko Unibertsitatea (UPV/EHU);
IMDEA Networks; Asociación de Técnicos de Informática (ATI); Tumsme D’Elx;
Cultura D’Elx Universitat Jaume I (UJI); Universidad Rey Juan Carlos (URJC);
Yahoo!

July 2009 Idit Keidar



Organization

DISC is an international symposium on the theory, design, analysis, implemen-
tation and application of distributed systems and networks. DISC is organized
in cooperation with the European Association for Theoretical Computer Science
(EATCS). The symposium was established in 1985 as a biannual International
Workshop on Distributed Algorithms on Graphs (WDAG). The scope was soon
extended to cover all aspects of distributed algorithms as WDAG came to stand
for International Workshop on Distributed AlGorithms, and in 1989 it became
an annual symposium. To reflect the expansion of its area of interest, the name
was changed to DISC (International Symposium on DIStributed Computing) in
1998. The name change also reflects the opening of the symposium to all aspects
of distributed computing. The aim of DISC is to reflect the exciting and rapid
developments in this field.

Program Committee Chair

Idit Keidar Technion, Haifa, Israel

Organization Committee Co-chairs

Vicent Cholvi Juan Universitat Jaume I, Spain
Antonio Fernández Anta Universidad Rey Juan Carlos, Spain

Steering Committee Chair

Rachid Guerraoui EPFL, Switzerland

Program Committee

Ittai Abraham Microsoft Research SVC, USA
Yehuda Afek Tel-Aviv University, Israel
Marcos K. Aguilera Microsoft Research SVC, USA
James Aspnes Yale, USA
Christian Cachin IBM Zurich Research Laboratory, Switzerland
Gregory V. Chockler IBM Haifa Research Laboratory, Israel
Carole Delporte-Gallet University of Paris Diderot, France
Pascal Felber University of Neuchâtel, Switzerland
Seth Gilbert EPFL, Switzerland
Danny Hendler Ben-Gurion University, Israel
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The 2009 Edsger W. Dijkstra Prize in
Distributed Computing

The Edsger W. Dijkstra Prize in Distributed Computing is awarded for an out-
standing paper on the principles of distributed computing, whose significance
and impact on the theory and/or practice of distributed computing has been
evident for at least a decade.

The Dijkstra Award Committee has selected Joseph Halpern and Yoram
Moses as the recipients of this year’s Edsger W. Dijkstra Prize in Distributed
Computing. The prize is given to them for their outstanding paper: “Knowledge
and Common Knowledge in a Distributed Environment” published in Proceed-
ings of the Third Annual ACM Symposium on Principles of Distributed Com-
puting (PODC’84) pp. 50–61, 1984, and in Journal of the ACM (JACM), 37:3.

The “Knowledge and Common Knowledge in a Distributed Environment”
paper presented by Halpern and Moses in PODC 1984 provided an effective
new way of reasoning about distributed systems, which has proven incredibly
influential in ensuing years; its influence continues to be felt today. This influ-
ence extends far beyond the distributed systems community, and can be seen in
current work in AI, security, and game theory. This demonstrates how research
in distributed computing is relevant to and applicable in a variety of settings
involving multi-agent interaction.

The paper provided a novel rigorous and elegant framework supporting the in-
tuition that the most fundamental characteristic of distributed algorithms is the
fact that they must cope with uncertainty (i.e., lack of knowledge). When rea-
soning informally about distributed protocols, researchers naturally think (and
speak) in terms of agents “knowing” certain facts about the global system state.
The key insight of Halpern and Moses was that this informal notion of knowledge
could be given a rigorous mathematical formulation. The resulting new “knowl-
edge framework” shed useful, new light on old results and enabled the discovery
of new ones.

The paper is seminal in many respects. First, the paper introduced a model
of knowledge, which is now essentially standard in the distributed systems, for-
mal methods, and multi-agent systems communities. The second key aspect of
the paper is perhaps its most famous and possibly most cited result: common
knowledge cannot be achieved in systems where the receipt of messages is not
guaranteed. This result, and the role of common knowledge in the associated
“coordinated attack problem”, are now part of the computing folklore; they are
known and cited by many, many researchers, including many who no doubt have
never read the original paper, and are not even part of the distributed systems
community. Although common knowledge had been introduced before, this paper
for the first time identified its role in distributed systems, and particularly coor-
dination problems. Third, the “hierarchies” of knowledge identified in the paper
have been very influential. The different levels of knowledge (distributed/implicit

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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knowledge, through to common knowledge) and their relationships have subse-
quently been extended, challenged, championed, and refined by many others.

For a long while, this paper provided the foundation for many negative and
impossibility results, showing that certain tasks cannot be performed in a dis-
tributed environment, such as the impossibility of gaining common knowledge
where none was initially present. However, subsequent developments have shown
that the terminology and notation of the logic of knowledge introduced in this
seminal paper can also be used in a positive way to derive new distributed algo-
rithms and re-derive existing ones. Thus, the framework developed in this paper
can serve as a high-level language for the natural and intuitive development of
new distributed algorithms. With the recent renewed interest in synthesis of code
from logical specifications we can expect that this foundation will find new and
exciting applications.

In the context of security, since at least the late 1970s, it has been recognized
that matters of belief and knowledge are central to the design and to the un-
derstanding of systems for security-critical tasks. However, the reasoning used
in this context was informal and, although fruitful, also error-prone. Clearly,
more rigorous ways of analyzing belief and knowledge are of great value in this
context. Later research on security protocols relied on more precise definitions
and on more systematic procedures for protocol design and analysis, which were
influenced by the work of Halpern and Moses.

In an explicit attempt to address the common knowledge paradox raised by
the nominated paper, the notion of internal knowledge consistency was later
considered, not only by the distributed computing community, but also by Nobel
laureates in the economics community.

More generally, this paper sparked a considerable effort in the study of logics of
knowledge involving multi-agent settings (most earlier work in philosophy dealt
with the knowledge of a single agent in isolation). Indeed, the excitement and
activity generated by this work had a central role in bringing about the biennial
TARK conference (Theoretical Aspects of Reasoning about Knowledge, recently
renamed Theoretical Aspects of Rationality and Knowledge), with its commu-
nity consisting of theoretical computer scientists, AI researchers, economists and
philosophers.
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Computing, Observing, Controlling,
Checkpointing: Symbiosis Is Even Better Than

Agreement!

Jean-Michel Hélary

Retired from IRISA, University of Rennes 1, France

This talk is a tribute to Michel Raynal, and more precisely to the nice work I had
the great pleasure to share with him during twenty years of close collaboration
(1985-2004).

Why this title “Symbiosis is better than Agreement”? Despite the famous FLP
(1985) impossibility result, Michel and I often succeeded to reach agreement.
Perhaps none of us was faulty? Perhaps our context was not as asynchronous
as it could appear? Well, I don’t believe so! The deep reason lies rather in the
symbiosis that prevailed between Michel (a tree) and me (a mushroom). This
symbiosis not only allowed us to reach agreement, but, more interestingly, to
obtain important and fundamental results in several fields of distributed com-
puting. From “old” problems or paradigms – e.g. Network traversal, Detection of
stable properties, Election of a leader, Mutual exclusion, Distributed evaluation –
to advances in new ones – e.g., related to fault tolerance such as Checkpoint-
ing –, we have always strived to bring out design principles and to obtain generic
solutions.

During these allocated 30’ talk, I will try to overcome another impossibility:
make an exhaustive presentation of those about 25 journal and 30 conference
papers, appeared in such high quality titles such as Acta Informatica, Distributed
Computing, IEEE TPDS, IEEE TSE, Information and Computation, IPL, JCSS,
JPDC, and other journals, and such prestigious conferences such as FTCS/DSN,
ICDCS, OPODIS, PODC, SIROCCO, SRDS, WDAG/DISC, etc.

Let me just recall two examples of what I consider as very significant results:
- The first one is the concept of Non Simultaneous Delayed Evaluation (NSDE)
[1]. In an asynchronous distributed context, the detection of a property generally
rests upon consistent detection of a predicate. This may be very difficult since
it impossible to observe at same time all components of a distributed program,
and this impossibility is the core of the difficulties encountered in the control
of distributed programs. The NSDE concept formalizes this difficulty. Moreover,
an operational solution is proposed. It generalizes to the distributed context the
usual iteration derivation techniques known in the sequential context, namely
the expression of a result as the conjunction of an invariant and a stop condi-
tion. It is based on the new notion of guarded waves, expressing how the re-
peated traversal of the network, necessary to collect values, is submitted to the
satisfaction of an invariant.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 3–4, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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- The second one is the concept of Interval Consistency [2]. In some situations,
consecutive events of a sequential process can be merged into a single interval.
When a set of sequential processes constitute a distributed computation, the
classical Lamport’s precedence relation on events is naturally generalized to a
precedence relation on intervals (I-precedence). The IC concept answers the fol-
lowing question: Is the interval-based abstraction associated with a distributed
computation consistent?. To answer this question, a consistency criterion named
interval consistency (IC) is introduced. Intuitively, this criterion states that an
interval-based abstraction of a distributed computation is consistent if its I-
precedence relation does not contradict the sequentiality of each process. More
formally, IC is defined as a property of a precedence graph. Interestingly, the
IC criterion can be operationally characterized in terms of timestamps (whose
values belong to a lattice). This characterization is used to design a versatile pro-
tocol that, given intervals defined by a daemon whose behavior is unpredictable,
breaks them (in a nontrivial manner) in order to produce an abstraction satisfy-
ing the IC criterion. Applications to communication-induced checkpointing are
suggested.

Clearly, all these nice results are also due to the collaboration with other
talented companions, namely Roberto Baldoni, Jerzy Brzezinski, Achour Moste-
faoui, for the closest of them. In fact, one of the Michel’s quality, as a group
leader, has always been to be able to detect new and promising brilliant fellows,
and to give them the opportunity of an excellent walk in scientific life1. Would it
be only for this, I will stay grateful to Michel for having trusted me and having
allowed me to enjoy a rich and thrilling professional life.

Another notable Michel’s quality is his terrific sense of pedagogy. This is
testified by his numerous text books – and I am very proud to have contributed
to one of the most famous of them2, by his constant implication in his teaching
activities at the University, and by the clearness of his papers. I’m sure that
many brilliant scientific vocations rose out while attending his beautiful lessons
or reading his nice papers. What comes out from his inestimable teaching seems
to me fully summarized in the following aphorism (adapted from Mark Rothko):

Each algorithm should be a revelation, the unexpected and unprecedented
resolution of an eternally familiar necessity.

References
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1 See, more recently, these outstanding young researchers such as Mathieu Roy,
Corentin Travers, Frederic Tronel, to cite just a few.

2 Synchronization and control of Distributed Systems and Programs (J.Wiley, 1990).



What Agreement Problems Owe Michel
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Agreement problems are at the heart of the design of dependable and reliable
distributed services. Distributed systems that run such services may experience
unpredictable processing and communication delays, and some of their com-
ponents can fail in various ways. It has been proved that in such settings,
the consensus problem, the most popular and fundamental of the agreement
problems has no deterministic solution.

Therefore, researchers started investigating ways of circumventing the impossi-
bility result. Two main directions were explored: relaxing the requirements of the
consensus problem, and strengthening the assumptions on the system. At least two
ways of relaxing the consensus requirements have been investigated: randomiza-
tion (termination is achieved only with high probability) and approximate agree-
ment. Also, at least two ways of strengthening the assumptions on the system have
been considered: adding synchrony assumptions to the system and abstracting the
details of how a processor suspects a failure has occurred, without referring to par-
ticular synchrony assumptions by the mean of theUnreliable FailureDetectors that
provides processes with a list of processes suspected to have crashed.

Michel Raynal has contributed to both directions and also to the combina-
tion of the two. He has co-authored more than a hundred papers on the topic.
Moreover, he has with his co-authors initiated and investigated a new direction:
the condition-based approach. The condition-based approach consists in looking
at certain combinations of input values of a given distributed problem. It is of-
ten the case in practice that some combinations of the input values of processes
occur more frequently than others.

After the specification of necessary and sufficient conditions that allow to solve
some problems, a hierarchy of classes of conditions has been exhibited that allow
to solve an agreement problem more and more efficiently when the condition is
more constraining. Then, a first connection has been made with synchronous
systems as the weakest condition that allows to solve consensus in the asyn-
chronous model is the exact condition that allows to solve the same problem
in a synchronous system but in the most efficient way revealing a continuum
between synchronous and asynchronous systems. Moreover, a connection has
been made between the Interactive Consistency agreement problem and error-
correcting codes. Indeed, any error-correcting code can be used to parametrize
a generic agreement protocol to solve the interactive consistency problem.

The talk will present the different facets of the contribution of Michel Raynal
to the understanding of agreement problems (decidability, efficiency, algorithmic
mechanisms, etc.).

I. Keidar (Ed.): DISC 2009, LNCS 5805, p. 5, 2009.
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Shmuel Zaks - The Early Years:
A Combinatorialist in Distributed Computing

Nicola Santoro

School of Computer Science, Carleton University, Ottawa, K1S 5B6, Canada

Abstract. Celebrating Shmuels Zaks’ 60th birthday and his remark-
able career, the focus of this talk is on his early contributions to Dis-
tributed Computing. In particular, in this talk I examine how this young
combinatorialist/graph theorist, upon discovering the beauty and fun
of distributed algorithms, was so captured by the area that he never
left it. In these early explorations, his research contributions have been
many, some very important (e.g. lower bound for election in complete
graphs) and some very beautiful (e.g. guessing games in synchronous
networks). In this talk, a few of these research results are described
and commented, and some of his other contributions to the Distributed
Computing community during those years are highlighted.
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Shmuel Zaks - The Mathematician, Computer
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Abstract. Shmuel Zaks received his BSc (cum laude) and MSc degrees
in Mathematics from the Technion, Haifa, Israel, in 1971 and 1972, re-
spectively, and his PhD degree in Computer Science from the University
of Illinois at Urbana-Champaign in 1979. He is a full professor at the De-
partment of Computer Science at the Technion, where he has been since
1979. He is an author over 100 journal and conference papers, which span
his research interests, including Distributed Computing, ATM networks,
Optical Networks,Graph and Combinatorial Algorithms, and Discrete
Mathematics.

I had the honor to be supervised by Shmuel Zaks (and jointly of
Shlomo Moran) during my MSc studies in years 1982-1985. At that pe-
riod the main research interest of Shmuel was Distributed Algorithms,
and my MSc thesis was on this subject. His numerous contributions to
this field are subject of another talk.

In the first half of the 1990’s his major contributions was in the field
of ATM networks. In part of this talk I will describe a beautiful result
from [CGZ96].

He has numerous contributions in Optical Networks. I had the oppor-
tunity to collaborate with him in part of these works, which are mostly
approximation algorithms to NP-hard optimization problems. In my talk
will describe one of these results ([FMSZ08]).

Shmuel is a father of 4 children and grandfather of 4 grandchildren. It
is impossible to talk about him without mentioning that he is an excep-
tional family man and enjoys helping people at every possible occasion
and in every possible way.
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Abstract. At the heart of distributed computing lies the fundamen-
tal result that the level of agreement that can be obtained in an asyn-
chronous shared memory model where t processes can crash is exactly
t + 1. In other words, an adversary that can crash any subset of size at
most t can prevent the processes from agreeing on t values. But what
about the remaining (22n −n) adversaries that might crash certain com-
bination of processes and not others?

This paper presents a precise way to characterize such adversaries by
introducing the notion of disagreement power: the biggest integer k for
which the adversary can prevent processes from agreeing on k values. We
show how to compute the disagreement power of an adversary and how
this notion enables to derive n equivalence classes of adversaries.

1 Introduction

The theory of distributed computing is largely related to determining what can
be computed against a specific adversary. Most results so far have been devoted
to one specific form of adversaries: those that can control any subset of size t
of the processes, i.e., the t-failures adversary. In particular, a seminal result in
distributed computing says that the level of agreement that can be obtained
deterministically in a shared memory model where t processes can crash is ex-
actly t + 1 [1,2,3]. In other words, an adversary that can crash any subset of
size at most t can prevent the processes from agreeing on t values. In the case
of consensus for instance (t = 1), this translates into FLP [4].

In a sense, these results are very incomplete. Indeed, the t-failures assumption
covers only the n “uniform” adversaries in a system of size n. What about
the other (22n − n) adversaries that can crash certain subsets of processes of a
certain size but not others of the same size? In particular, given any adversary
A, for what k does A prevent k-set agreement [5]? This paper addresses this
question and derives from the answer equivalence classes between adversaries.
More specifically, we characterize the power of an adversary A by the biggest
k for which k-set agreement cannot be solved with A, which we call here the
disagreement power of A. We show how to compute the disagreement power of

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 8–21, 2009.
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an adversary and we show that adversaries within the same class solve the same
set of (colorless1) tasks.

Beyond intellectual curiosity, studying “non-uniform” adversaries might even
be practically motivated by modern multicore architectures where the failures
of processes in the same core might all be correlated [8,9,10].

Determining the disagreement power of certain adversaries is trivial. For oth-
ers, it is not. Consider, in a system of 3 processes, {1, 2, 3}, an adversary A that
can fail either no process, both processes 2 and 3, or process 1 i.e. A = {∅, 232,
1}. It is easy to show that A can prevent consensus but not 2-set agreement.
In this sense, adversary A has the same disagreement power as the 1-failure ad-
versary, i.e., 1. Consider now a more involved scenario: a system of 4 processes
and another adversary A′ that can fail any element of {∅, 4, 23, 14, 12, 134, 124,
123}. What is the disagreement power of A′? We prove in this paper that it is
also 1.

We give a general characterization of adversaries that enables one to auto-
matically compute their disagreement power. Namely, we introduce a structure
predicate on adversaries, parameterized by an integer k, and which, intuitively,
checks for any set of faulty processes of size less or equal k, whether there is some
adequate superset in the adversary. We prove that any adversary that satisfies
the predicate has disagreement power k. We first show (sufficient condition) that
if k-set agreement can be solved with some adversary that satisfies the predicate
for some k, then k-set agreement can be solved with the k-failures adversary
which in turn is known to be impossible [1,2,3]. Hence, an adversary that satis-
fies the predicate has disagreement power at least k. We do this through a new
simulation between adversaries, which we call the conservative back-off simula-
tion, and which we believe is interesting in its own right. The idea underlying
our simulation is the following: a process backs-off and skips its simulation step
if the process thinks that it is faulty in some set where the simulated algorithm
is known to work. Conversely (necessary condition), we show how to solve k-set
agreement with any adversary A that does not satisfy the predicate for some k.
We do this by showing how to implement failure detector k-anti-Ω [11], known
in turn to implement k-set agreement. (Each query to k-anti-Ω returns n − k
process ids; the specification ensures that there is a correct process whose id is
eventually never output.)

We then use our characterization to split the set of all adversaries into n
disjoint equivalence classes, one for every level of disagreement: we show that for
any two adversaries with the same disagreement power, exactly the same set of
(colorless) tasks can be solved. The key to our proof of the equivalence is that
for every adversary with disagreement power k, it is possible to simulate a wait-
free system of k + 1 processes which in turn can simulate every other k-failure
adversary [6,12]. This is technically achieved by implementing (k +1)-anti-Ω for
the adversary and translating it to a vector of k + 1 Ω failure detectors [13] of

1 Intuitively, in a colorless task [6,7] any process can adopt any input or output value
of any other process without violating the task specification.

2 When appropriate, we will use e.g. 23 as shorthand for the set {2, 3}.
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which at least one is a “real” Ω (i.e. it outputs eventually everywhere the same
correct process). Then, each of the k + 1 simulated processes can be associated
with one of the Ω’s and a consensus-object can be built to agree on the simulated
steps of such a process.

Since we can compute automatically the disagreement power of an adversary
(using our structural predicate), we can thus automatically derive results for an
adversary from known results from another adversary with the same disagree-
ment power.

Indirectly, our partitioning contributes to the idea that a very small subset of
results and ad-hoc proofs in distributed computing should suffice to derive all
others. In particular, if indeed needed to reason about (n−1)-set agreement for
the “wait-free” adversary, topology is not needed for all the other ones. Results
concerning other k-failures (“uniform”) adversaries can be deduced by [6,12],
whereas results for all other (“non-uniform”) (22n−n) adversaries can be deduced
from our characterization.

The remainder of the paper is structured as follows. We first define our model
in Section 2. We then introduce our notion of disagreement power and our struc-
tural predicate in Section 3. We present our conservative back-off simulation and
use it in Section 4 to show that any adversary that satisfies the predicate for
k can be reduced to the k-failure adversary (thus the predicate is sufficient for
the simulation). We show in Section 5 how to implement k-set agreement with
any adversary that does not satisfy the predicate (therefore, the predicate is
necessary). We then show that adversaries with the same disagreement power
are actually in the same equivalence class in Section 6 and conclude the paper
with some general remarks in Section 7.

2 Model and Definitions

We assume systems of deterministic processes that communicate asynchronously
using read-write atomic registers. We recall below the necessary elements to
describe our model and introduce the notion of an adversary.

Processes and registers. Our system consists of a set Π = {p1, p2, ..., pn} of n
processes sharing atomic registers. Processes might crash. Processes that crash
are called faulty and a process that never crashes is said to be correct.

Adversaries and runs. Intuitively, an adversary can choose which set of pro-
cesses will crash. More precisely, we represent an adversary as a set of sets of
processes (we call these sets faulty-sets) and the adversary can choose one of
these faulty-sets. Here, we consider only adversaries A for which there is always
at least one correct process, i.e. Π �∈ A.

A run of an algorithm A is an infinite sequence of steps of the processes.
Given an adversary A, associated with every run is a set of processes a ∈ A
that will crash. This set is chosen by the adversary and the processes in a may
crash at any time. The set of processes that make an infinity of steps in some
run associated with a is then exactly Π \ a.
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The classical n process k-failure adversary, denoted Bn
k is the adversary for

which at most k (0 ≤ k ≤ n − 1) processes may crash: Bn
k = {b ⊆ Π | |b| ≤

k ∧ |Π | = n}. Where the number of processes is clear from the context, we will
omit the n (i.e. Bk = Bn

k ).

Tasks. Generally, we say that algorithm A solves a task T in adversary A if
every run of A with associated a ∈ A satisfies the specification of T (we say also
A implements T for adversary A). More specifically, a task is a tuple (I,O, ∆),
where I is a set of vectors of input values and O is a set of vectors of output
values such that the value of every process pi corresponds to the i-th entry of
a vector. ∆ is a total relation from I to O. Then, a task is solved if for input
vector I ∈ I, an output vector O ∈ O is computed such that O ∈ ∆(I).

In the following, we restrict ourselves to specific colorless tasks [6,7]. Let
val(V ) be the set of values in some vector V . A colorless task is such that
if O ∈ ∆(I), then for every I ′ with val(I ′) ⊆ val(I): I ′ ∈ I and ∆(I ′) ⊆ ∆(I).
Furthermore, for every O′ with val(O′) ⊆ val(O): O′ ∈ O and O′ ∈ ∆(I). As
a result, the specification of a colorless task is independent of the number of
processes. In this sense, such a task specifies a family of tasks, one for every
possible number of processes.

k-Set agreement. The canonical example of a colorless task is k-set agreement.
Let S be any set of values with |S| ≥ k +1. In k-set agreement, I and O are the
sets of all vectors of values from S such that for all O ∈ O, |val(O)| ≤ k and for
every I ∈ I: O ∈ ∆(I) iff val(O) ⊆ val(I).

Consensus is 1-set agreement. k-set agreement can be solved in Bl iff 0 ≤ l ≤
k − 1 [1,2,3].

In one of our proofs, we will use a distributed oracle called k-anti-Ω [11]: each
query to k-anti-Ω returns n− k process ids, with the guarantee that there is a
correct process whose id is returned only a finite number of times. If k = 1, k-
anti-Ω is equivalent to the eventual leader Ω failure detector, the weakest failure
detector for consensus [13,14]. If k = n−1, k-anti-Ω is anti-Ω, the weakest failure
detector to solve (n− 1)-set agreement [11].

3 Disagreement Power

We define the disagreement power of an adversary A to be the maximal k for
which it is impossible to implement k-set agreement in A. More precisely:

Definition 1. An adversary A has disagreement power k, denoted dis(A), if
(1) it is impossible to implement k-set agreement in A, and (2) it is possible to
implement (k + 1)-set agreement in A.

If an adversary cannot prevent agreement for any k, then we say that its disagree-
ment power is 0. As established in [1,2,3], it is possible to implement (k + 1)-set
agreement in Bk but it is impossible to implement k-set agreement in Bk. Hence,
the disagreement power of Bk is k.
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Proposition 1. dis(Bk) = k

To compare the power of two adversaries, we define what it means for an adver-
sary to be stronger than another adversary:

Definition 2. An adversary A is stronger than an adversary B (denoted A �
B) if every colorless task that can be solved in A can be solved in B.

We also compare our adversaries with a (structural) domination property with-
out considering the tasks that they can solve. The interesting point, as we will
show later, is that this property captures exactly the power of an adversary. For
our domination property, we implicitly assume that both adversaries are built
upon the same set of processes Π .

Definition 3. Let A and B be any two adversaries. We say that a faulty-set
a ∈ A dominates a faulty-set b ∈ B in A and B (denoted D(a,A, b,B)), if

(a ⊇ b) and (∀b′ ∈ B, b′ � b, ∃a′ ∈ A, a′ ⊇ a : D(a′,A, b′,B))

In the base case, when there is no strict superset of b in B, then this translates to
a ⊇ b. Where A and B are clear from the context, we will simply write D(a, b).
With a slight abuse of the D-symbol, we extend the notion of domination to
adversaries:

Definition 4. We say that an adversary A dominates an adversary B (denoted
D(A,B)) if and only if the following property is satisfied:

∀b ∈ B, ∃a ∈ A : D(a,A, b,B).

This property is intricate. One may think that if for all b0 ⊂ b1 . . . ⊂ bx in B
there exist a0 ⊆ a1 . . . ⊆ ax in A such that bi ⊆ ai for all i then D(A,B). But
this is not the case. Consider the following example:

Example 1. Assume n = 3 and consider two adversaries (we use ij . . . as a
shorthand for the set {pi, pj , . . .}):

A = {∅, 2, 12, 13, 23}
B2 = {∅, 1, 2, 3, 12, 13, 23}

In this example for all b0 ⊂ b1 ⊂ b2 there exist a0 ⊆ a1 ⊆ a2. But ¬D(A,B2),
because for all a ∈ A, ¬D(a, 3).

Example 2. Consider now a slightly different example with n = 4 and the fol-
lowing adversaries :

A = {∅, 12, 34, 123, 124, 134, 234}
B2 = {∅, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34}

In this example, D(A,B2), i.e. for every b ∈ B2 there exists an a ∈ A such that
D(a, b) (e.g. D(∅, ∅), D(12, 2) and D(124, 24)).
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Interestingly, concerning adversary Bk, our definitions induce the following
property:

Theorem 1. Consider any k with 1 ≤ k ≤ n−1 and any element b ∈ Bk. Then
¬D(Bk \ {b},Bk).

Proof. We show that for all a ∈ Bk \ {b}, ¬D(a, b). If |b| = k, then this is imme-
diately clear, because there cannot be any superset of b in Bk \ {b}. Otherwise,
if |b| < k then assume that a ∈ Bk is any set such that D(a, b). Hence, there is
some set b′ � b with |b′| = k such that the number of processes not in a is maxi-
mal in b′. Assume there exists some a′ ⊇ a and a′ ⊇ b′. Then |a′| ≥ |a∪ b′| > k,
because |b′| = k and there is at least one element in a \ b′. Thus a′ �∈ Bk and we
have a contradiction.

4 The Conservative Back-Off Simulation (Sufficient
Condition)

In this section we show that if, for adversariesA and B, we have D(A,B), then A
is stronger than B. Given that k-set agreement cannot be implemented in Bk, we
get a sufficient condition for the impossiblity of implementing k-set agreement,
namely if D(A,Bk), then k-set agreeement cannot be implemented in A.

Assume D(A,B) for some adversaries A and B over the same set of processes
Π . Let Alg be any algorithm which solves a colorless task T in A. Then, the
conservative back-off simulation in Algorithm 1 solves T with Alg in B.

The goal of the simulation is to identify, in every possible run with a set
of faulty processes b∗ ∈ B, a set of processes a∗ ∈ A with b∗ ⊆ a∗ (i.e. more
failures in a∗ than in b∗). Hence, the processes outside a∗ can use the given
algorithm which is known to terminate for every a∗ ∈ A. The processes in a∗

that are not in b∗ can then just back-off and omit to take simulation steps,
since the others are enough to ensure termination. Thus, termination is achieved
by simply letting some correct processes take only finitely many steps, i.e. to
simulate their crashes.

To determine a∗, we first narrow down the possibilities in b∗ in the run. This
is achieved by simply using step-counters. The current estimations are stored
in possibly-faulty. Then, starting from the smallest set b ∈ possibly-faulty, every
process tries to stepwise approximate a∗.

In these steps, our property D(A,B) is needed. For every b ∈ possibly-faulty,
starting from the smallest, some a ∈ A with D(a, b) that is a superset of all other
elements in faulty is deterministically chosen and added to faulty. Since D(a, b),
and every next b′ ∈ possibly-faulty is a superset of b, it is guaranteed that in the
following there will always be an a′ ∈ A that is a superset of a and D(a′, b′).
This sequence of a’s is stored in faulty. Since the subsets of b∗ in possibly-faulty
are stable (i.e. they are eventually always in possibly-faulty), even if the supersets
of b∗ change infinitely often, the a added in the step in b∗ is such that b∗ ⊆ a.
Then, the a∗ we are trying to seek is just the smallest set in faulty where b∗ ⊆ a∗.
Although we do not know which one of the elements of faulty it is, it is safe for a
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process to take a step if it does not belong to some a ∈ faulty and has reason to
believe that all other processes that are not in a are alive. This is simply achieved
by determining which processes took steps since the last own simulation step using
the variable lastsimsteps. A process not in a∗ will not block here forever, because
all non-faulty processes increase their step-counters infinitely often.

If some process decides, it writes its decision value into a special register.
If some other process observes that another process has decided, it adopts its
decision value and decides also.

Consider the adversaries from Example 2: A = {∅, 12, 34, 123, 124, 134, 234},
B2 and n = 4. If the actual faulty-set is 3, then eventually possibly-faulty can only
be: {∅, 3, 23}, {∅, 3, 13} or {∅, 3, 34}, because process 3 takes the least number
of steps. By construction, faulty will be {∅, 34, 234}, {∅, 34, 134} or {∅, 34, 234}
respectively. For the three processes p1, p2 and p4 that take infinitely many
steps, eventually alive ⊆ 124. If one of these processes takes only finitely many
simulation steps, then alive = 124 at this process. In this case, for p1 and p2

there is always the set 34 in faulty such that alive ∪ 34 = Π and p1 respectively
p2 are not in 34. But this is not the case for p4. Thus, p4 takes only finitely
many steps and only processes p1 and p2 take infinitely many steps. Therefore,
the simulated algorithm is executed as if the faulty set is 34.

Algorithm 1. The conservative back-off simulation for process pi and
D(A,B).
Stepci := 0; /* a SWMR register */1

lastsimstepsi := [0, . . . , 0]; /* the state at the last simulated step */2

while true do3

if some other process has decided then adopt its decision value and decide;4

let pi1 , . . . , pin be the processes ordered by increasing Stepc (ties broken5

deterministically);
possibly-faultyi := {∅, {pi1}, {pi1 , pi2}, . . . , {pi1 , . . . , pin−1}} ∩ B;6

faultyi := ∅;7

foreach b ∈ possibly-faultyi, ordered by inclusion do8

add some a ∈ A to faultyi s.t. D(a, b) and ∀a′ ∈ faultyi, a ⊇ a′ (choose9

deterministically);

alivei := {pj | Stepcj > lastsimstepsi[j]};10

if ∃a ∈ faultyi, alivei ∪ a = Π and pi �∈ a then11

execute a step of Alg;12

if decided then write decision value into special register;13

lastsimstepsi := [Stepc1, . . . ,Stepcn];14

Stepci := Stepci + 1;15

Theorem 2. If D(A,B), then A � B.

Proof. We show that Algorithm 1 decides for any algorithm Alg and any colorless
task T in all runs of B. For this, it is sufficient if the simulation of Alg decides,
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because T is a colorless task and every other process can decide on the decision
value of any other decided process.

Let b∗ ∈ B be the actual set of faulty processes in some run. Then, eventually
always b∗ ∈ possibly-faulty and all b ∈ possibly-faulty with b ⊆ b∗ are the same
at all processes, because all the step counters at processes in sets b ⊆ b∗ change
only finitely often and the step counters of some of the processes in all other sets
increase infinitely often.

In the “for”-loop, for every b ∈ possibly-faulty, some a ∈ A with D(a, b) is
chosen such that ∀a′ ∈ faultyi, a ⊇ a′. It is here where we need D(A,B). If b
is the smallest set in possibly-faulty, we simply have to choose some set a where
D(a, b). In all following steps, the recursiveness of the domination predicate is
needed. Let a′ be the set that has been added to faulty in the previous step in
b′ ∈ possibly-faulty. Thus D(a′, b′) and we need in fact some a ⊇ a′ with D(a, b)
where b � b′. And this follows immediately from D(a′, b′).

Let a∗ ∈ A be the smallest set with a∗ ⊇ b∗ that is eventually always added
to faultyi. Such a set has to exist (e.g. the one that is added in the step where
b = b∗). Then, eventually, and at all correct processes, for all sets a ∈ faultyi

where a ∪ alivei = Π, a is a superset of a∗, because for all strict subsets a′ of
a∗ there is at least one process p �∈ a′ that makes only finitely many steps. Since
eventually only processes that are not in such an a take steps, processes in a∗

simulate only finitely many steps of Alg.
Assume some process pj that is not in a∗ simulates only finitely many steps

of Alg. Since a∗ ⊇ b∗, all these processes take infinitely many steps. Therefore,
eventually, alivej ⊇ Π \a∗. But then, alivej∪a∗ = Π. A contradiction to the fact
that pj simulates only finitely many steps of Alg. Therefore, exactly the processes
not in a∗ simulate infinitely many steps. Since a∗ ∈ A, Alg has to terminate.

From this Theorem follows, that if D(A,Bk), then k-set agreement cannot be
implemented in A, since it is impossible in Bk [1,2,3].

Corollary 1. If D(A,Bk), then k-set agreement cannot be implemented in A.

5 k-Set Agreement Protocol (Necessary Condition)

In this section, we show that if for adversaries A and Bk we have ¬D(A,Bk),
then k-set agreement can be implemented in A. By the contrapositive, we get
a necessary condition for the impossibility of implementing k-set agreement,
namely if k-set agreement cannot be implemented in A, then D(A,Bk)

We compare an adversary A with the k-failure adversary which contains all
sets of size less or equal k. We show that if ¬D(A,Bk), then it is possible to
implement k-set agreement for A. For this, it is sufficient to show how to imple-
ment k-anti-Ω, since this is sufficient to implement k-set agreement in adversary
A [11]. Basically, k-anti-Ω outputs, whenever queried, at least n− k processes,
s.t. at least one correct process is output only finitely often. Algorithm 2 imple-
ments k-anti-Ω.
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The key to the implementation is to find a set b∗ such that b∗ contains at least
one non-faulty process, i.e. if the actual set of faulty processes is a∗, then b∗ �⊆ a∗.
It is sufficient though, that we eventually always find supersets of b∗ of size at most
k. The output for k-anti-Ω is then just the complement of these sets.

As in the previous section, we first try to narrow down the possibilities for the
actual faulty set a∗. This is again achieved by using step-counters. The current
estimations are stored in possibly-faulty. Then, we take the smallest set binit ∈ Bk

that is not dominated by any a ∈ A (since ¬D(A,Bk), there has to exist at least
one). Although this set is not dominated by any a, it may contain no correct
process (in particular, binit may be the empty set). However, if so, then by the
recursive nature of the domination property, there has to exist a strict superset
of binit which is not dominated by any a ∈ A with a ⊇ binit (if binit = ∅, then
this applies to all a ∈ A). By an iterated use of this property, for every possible
a ∈ possibly-faulty, the inner “while”-loop ends. Thus, for all a ∈ possibly-faulty:
a �⊇ est for the corresponding est after the loop. Since a∗ is eventually always
in possibly-faulty, we eventually always choose the same b∗ �⊆ a∗ in the step for
a∗. Although the supersets of a∗ in possibly-faulty may differ in each round, our
estimate will eventually always contain b∗, because some prefix in possibly-faulty
is stable.

Consider Example 1 with n = 3 and k = 2: A = {∅, 2, 12, 13, 23} and B2 and
recall that ¬D(A,B2). Then, for example binit = 3 and thus est is initially set
to 3.

Assume first that the actual faulty-set is 1. Eventually possibly-faulty will be
{∅, 12} or {∅, 13}. In any case, if a = ∅ is considered, then est remains 3. If a = 12
is considered, then est remains 3 and thus the failure detector output does not
contain 3.

Assume now that all the processes are correct i.e. the faulty-set is ∅. We have
to avoid, in this case, that the output alternates between 1, 2 and 3. Eventu-
ally possibly-faulty will be {∅, 1, 12}, {∅, 1, 13}, {∅, 2, 12}, {∅, 2, 23}, {∅, 3, 13} or
{∅, 3, 23}. In any case, if a = ∅ is considered, then est remains 3. After that,
est can be augmented, but 3 will eventually never be in the ouput of k-anti-Ω.
Therefore, eventually there is a correct process (3) that is not in the output of
k-anti-Ω.

Theorem 3. For all A, if ¬D(A,Bk), then it is possible to implement k-anti-Ω
in A.

Proof. If ¬D(A,Bk), then:

∃b ∈ Bk, ∀a ∈ A,¬D(a, b).

Thus, this b can be chosen as binit. If a does not dominate b for A and Bk, then

(a �⊇ b) ∨ (∃b′ ∈ Bk, b′ � b, ∀a′ ∈ A, a′ ⊇ a,¬D(a′, b′)). (1)

Let a∗ ∈ A be the actual set of faulty processes in some run. Then, eventually,
possibly-faulty contains a∗ and all a ∈ possibly-faulty, a ⊆ a∗ are the same at all
processes, because all the step counters at these processes change only finitely
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Algorithm 2. Implementation of k-anti-Ω
Stepci := 0; /* a SWMR register */1

binit := some set in Bk s.t. for all a ∈ A, ¬D(a, binit);2

while true do3

let pi1 , . . . , pin be the processes ordered by increasing Stepc (ties broken4

deterministically);
possibly-faultyi := {∅, {pi1}, {pi1 , pi2}, . . . , {pi1 , . . . , pin−1}} ∩ A;5

esti := binit;6

foreach a ∈ possibly-faultyi, ordered by inclusion do7

while a ⊇ esti do8

esti := determin. choose some b ∈ Bk, b � esti s.t. ∀a′ ∈ A, a′ ⊇ a:9

¬D(a′, b);

if |esti| < k then add some processes to esti until |esti| = k10

Stepci := Stepci + 1;11

output Π \ esti;12

often and the step counters of some of the processes in all supersets increase
infinitely often.

Since ¬D(A,Bk), there exists some good binit. For every a ∈ possibly-faulty
in every step in the “for”-loop, ¬D(a, est), because otherwise it would not have
been chosen as binit or in the inner “while”-loop. Thus, either a �⊇ est and the
inner “while”-loop immediately terminates, or it follows from (1), that there
exists some some b ∈ Bk, b � esti s.t. ∀a′ ∈ A, a′ ⊇ a : ¬D(a′, b), i.e. the loop
continues. Since in every step of the inner “while”-loop, est grows and est ∈ Bk,
the loop ends after at most k steps.

Let b∗ ⊇ binit be the maximal set such that b∗ is eventually always a subset
of esti at the end of the “for”-loop. Since the prefix of the subsets of a∗ is stable
in possibly-faulty, a∗ ⊇ b∗, because this is the terminating condition of the inner
“while”-loop. Therefore, a∗ �⊇ b∗ and there exists a process p ∈ b∗ which is not
in a∗ and the properties of k-anti-Ω are fulfilled.

Then, we get:

Corollary 2. If k-set agreement cannot be implemented in A, then D(A,Bk).

If we gather together Theorem 2 and Theorem 3, we obtain a necessary and
sufficient condition in terms of structured predicate under which an adversary
can solve the k-set agreement.

Theorem 4. k-set agreement can be implemented in A if and only if ¬D(A,Bk)

We can now directly derive the disagreement power of an adversary by our
structural predicate:

Theorem 5. dis(A) = k if and only if (1) D(A,Bk), and (2) ¬D(A,Bk+1)
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6 Equivalence Classes

In this section we show that if two adversaries have the same disagreeement
power then they solve exactly the same set of colorless tasks: dis(A) = dis(B) if
and only if A � B and B � A.

Before showing that all adversaries with the same disagreement power solve
the same set of (colorless) tasks, we show that the ability of an adversary to
prevent agreement is independent of the number of processes (as long as n ≥
k + 1). After that, we show that for any two adversaries A and B with the same
disagreement power k, A � B.

6.1 Robustness against the Number of Processes

Before we state our results, we recall a theorem from [6] that, in our notation,
states the following:

Theorem 6. (BG [6]). For all n, for all k with n > k: Bn
k � Bk+1

k .

Theorem 7. For every adversary An built upon a set of n processes, for every
k < n: if k-set agreement for k + 1 ≤ n processes can be implemented in An,
then k-set agreement can be implemented in An.

Proof. Assume k-set agreement can be implemented for k + 1 processes in ad-
versary An. Assume for contradiction that D(An,Bn

k ). Then, with Theorem 2,
k-set agreement for k+1 processes can be implemented in Bn

k and with Theorem
6 it follows that k-set agreement can be implemented in Bk+1

k . A contradiction
to [1,2,3]. Thus, ¬D(An,Bn

k ) which means by Theorem 3 that k-set agreement
can be implemented in An.

Thus, the ability of an adversary to prevent an agreement of k values is inde-
pendent from the number of processes, i.e. if it cannot prevent agreement for
k + 1 processes, then it cannot prevent agreement for any n > k processes. In
this sense, the disagreement power is robust against the number of processes.

6.2 Simulating k Processes with k-anti-Ω

In the following, we will show how to use k-anti-Ω to simulate a set of k processes,
such that at least one of the simulated processes takes infinitely many steps (this
simulation, although seemingly simple, may be of independent interest). With
the simulation, we can show that every colorless task that can be solved in Bk

k−1

can be solved with any adversary A where k-anti-Ω is implementable. We use
here the fact that it is possible to extract an array of k Ω-failure detectors
Ω1, . . . , Ωk from k-anti-Ω with the property that at least one of them is a “real”
Ω (i.e. it eventually outputs everywhere always the same correct process) [11].
Thus we can build k consensus objects [14], one for every Ω and we have the
property, that at least one consensus terminates infinitely often. Note that for
the consensuses associated with a bogus Ω (i.e. one that outputs infinitely often
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faulty processes or does not stabilize on one process), in [14], the agreement and
validity properties of consensus are never violated.

We denote with consensusj,r the r-th invocation of the consensus object as-
sociated with Ωj . Furthermore, we associate with every 1 ≤ j ≤ k a “virtual”
process qj and all processes use the consensusj,r-objects to agree on the simu-
lated steps of qj .

Without loss of generality, we assume that the algorithm that implements the
task in Bk

k−1 uses only one single-writer multiple-reader (SWMR) register per
process. Three types of steps need to be considered:

– a write(v)-step in which a process writes v to its associated SWMR register,
– a read(pj)-step in which a process reads the SWMR register associated to

process pj

– and an internal step which does not involve any registers

These assumptions do not restrict the set of solvable tasks [15].
The simulation works as follows: at the beginning, all processes propose their

initial values to all k consensuses in parallel. Since the algorithm is deterministic,
the internal steps of qj can just be executed. To simulate the write-steps of qj ,
every simulator pi writes the value to be written together with the number of
the currently simulated step to its own register R[i, j]. To simulate a read step
of qj , a process scans all other processes registers associated with qj and returns
the “freshest” value (i.e. the value associated with the maximal step-number).
Then, it proposes this value to the consensus corresponding to qj and returns
the result for the read-operation. In this way, it is ensured that all simulators
will return exactly the same values for every qj and all will simulate exactly the
same steps. If some virtual process qj has decided, the simulator just adopts that
value and halts.

Theorem 8. For every adversary An build upon a set of n processes, for every
k < n, : if ¬D(An,Bn

k ), then Bk
k−1 � An.

Proof. We assume an algorithm that solves a colorless task in Bk
k−1 and use

Theorem 3 to extract k-anti-Ω from An and thus create consensusj,r-objects for
every j and k. Since there is some j such that Ωj contains eventually always a
correct process, all correct processes simulate infinitely many steps of qj .

Furthermore, since the execution of the simulated algorithm depends only on
the values read (i.e. the algorithm is deterministic), for all j, all processes execute
exactly the same steps for virtual process qj . By the definition of colorless tasks,
it is allowed that any process picks up any other processes input and output
value and particularly, it is allowed that several processes have the same input
or output values. It remains to show that every run of the virtual processes is
indeed a run of the simulated algorithm in Bk

k−1, i.e. it is indistinguishable from a
real run. For this, we need to show that the sequence of the simulated operations
on the registers is linearizable. But this follows from the fact that the sequence
of the real registers is linearizable and every simulated operation corresponds to
some operation of the real run.
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Algorithm 3. Simulation of Bk
k−1 for process pi

for 1 ≤ j ≤ k do R[i, j] := (⊥, 0);1

initi := initial value;2

foreach 1 ≤ j ≤ k in parallel do3

initj := consensusj,0(initi);4

rj := 1;5

while qj has not decided do start simulating steps of qj with initial value6

initj

if next step of qj is a write(v)-step then7

R[i, j] := (v, rj);8

else if next step of qj is a read(px)-step then9

select v s.t. r is max. ∀(v, r) where ∃y : R[y, x] = (v, r);10

return consensusj,rj (v) for the read;11

else12

take internal step of qj ;13

rj := rj + 1;14

decide on qj ’s decision value; halt;15

Thus, every simulated run will eventually terminate at at least one virtual
process and every simulator decides.

If we put all other theorems together, we get the following result:

Theorem 9. For any two adversaries A and B: dis(A) = dis(B) if and only if
A � B and B � A

Proof. Since A has disagreement power k, it is impossible to implement k-set
agreement in A. Thus D(A,Bk) (Theorem 3) and therefore A � Bk (Theorem 2).
Furthermore, since B has also disagreement power k, it is possible to implement
(k+1)-set agreement in B. Therefore, since it is impossible to implement (k+1)-
set agreement in Bk+1 [8,9,10]: ¬D(B,Bk+1) (Theorem 2). Thus, with Theorem
8, Bk+1

k � B. With Theorem 6 (BG), Bk � B. If we put all these results together,
A � B. We obtain B � A in the same way.

7 Concluding Remarks

This paper presents a novel way to precisely characterize adversaries: the notion
of disagreement power, i.e., the biggest integer k for which an adversary can
prevent processes from agreeing on k values. This notion partitions the set of all
adversaries into n distinct equivalence classes, one for every disagreement power.
Any two adversaries with the same disagreement power solve exactly the same
set of (colorless) tasks (Section 6). We believe that our result could be extended
to colored tasks but this is subject to future work.

At the heart of our partitioning lies our simulation between adversaries (Sec-
tion 4). Interestingly, the simulation works also if we assume the existence of
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stronger objects than registers or even non-deterministic object types. Further-
more, the simulation (as well as our implementation of k-set agreement with a
given adversary in Section 5) remains correct even if the adversary is known only
eventually, i.e., not necessarily from the beginning.
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Abstract. The (M, W )-controller, originally studied by Afek, Awer-
buch, Plotkin, and Saks, is a basic distributed tool that provides an
abstraction for managing the consumption of a global resource in a dis-
tributed dynamic network. The input to the controller arrives online in
the form of requests presented at arbitrary nodes. A request presented
at node u corresponds to the “desire” of some entity to consume one
unit of the global resource at u and the controller should handle this
request within finite time by either granting it with a permit or denying
it. Initially, M permits (corresponding to M units of the global resource)
are stored at a designated root node. Throughout the execution permits
can be transported from place to place along the network’s links so that
they can be granted to requests presented at various nodes; when a per-
mit is granted to some request, it is eliminated from the network. The
fundamental rule of an (M, W )-controller is that a request should not be
denied unless it is certain that at least M − W permits are eventually
granted. The most efficient (M, W )-controller known to date has message
complexity O(N log2 N log M

W+1 ), where N is the number of nodes that
ever existed in the network (the dynamic network may undergo node
insertions and deletions).

In this paper we establish two new lower bounds on the message com-
plexity of the controller problem. We first prove a simple lower bound
stating that any (M, W )-controller must send Ω(N log M

W+1 ) messages.
Second, for the important case when W is proportional to M (this is the
common case in most applications), we use a surprising reduction from
the (centralized) monotonic labeling problem to show that any (M, W )-
controller must send Ω(N log N) messages. In fact, under a long lasting
conjecture regarding the complexity of the monotonic labeling problem,
this lower bound is improved to a tight Ω(N log2 N). The proof of this
lower bound requires that N = O(M) which turns out to be some-
what inevitable due to a new construction of an (M, M/2)-controller with
message complexity O(N log2 M).
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1 Introduction

1.1 Background

A centralized online algorithm typically makes decisions based on past informa-
tion, lacking any knowledge of what the future holds. In a distributed setting the
input is spread over distant nodes in a network, hence introducing an additional
kind of uncertainty, where nodes should make decisions based on local informa-
tion without knowing what already happened in remote parts of the network.
This paper addresses a basic problem which is affected by both kinds of uncer-
tainties: controlling the consumption of a global resource. (For other problems
that deal with both kinds of uncertainties, see, e.g., [5,20].)

Consider for example the case in which some finite amount of money (the
global resource) resides somewhere in the network (in one node, or in several),
and occasionally different nodes wish to withdraw a certain amount of money.
A withdrawal request made by node u is either granted, in which case the re-
quested amount of money is transferred to u (a portion of the global resource is
consumed), or rejected. We are interested in a distributed bank protocol that han-
dles these withdrawal requests while guaranteeing that a request is not rejected
if there is still enough money available in the network.

Controllers (originally studied in [1] and later in [17]) provide an abstraction
for such a distributed bank protocol and more generally, for global resource
consumption management. Considered as one of the elementary and fundamental
tools in distributed computing (cf. [2]), controllers serve as a key ingredient in the
state of the art solutions for various problems such as majority commitment in a
network where some of the nodes failed before the algorithm started [3,6,13,21],
routing (and other informative labeling problems) in dynamic trees [15,16,18,19],
and dynamic name assignment [1,16,17].

The (M, W )-Controller Problem. We consider a distributed network oper-
ating in an asynchronous environment. Initially, a set of permits resides at some
designated node called the root. A subset of permits may be delivered from node
u to any of its neighbors v by sending a single message from u to v (this message
essentially encodes the number of permits that are being delivered). Therefore
throughout the execution the permits are distributed among the nodes of the
network and different nodes may hold different numbers of permits. The input to
the controller arrives online in the form of requests presented at arbitrary nodes.
When a request is presented at node u, the controller must respond within finite
time in one of the following two manners: (1) it may grant the request by de-
livering a permit to u in which case the permit is eliminated from the network
(corresponding to consuming one unit of the global resource at node u); or (2)
it may reject the request.

In an (M, W )-controller, the number of permits that initially reside at the root
is M , indicating that at most M requests can be granted. On the other hand, the
(M, W )-controller may reject a request only if it is certain that at most W permits
eventually remain in the network. In other words, if an (M, W )-controller rejects
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a request, then it is guaranteed that at least M−W requests were already granted
(or will be granted within finite time).

It is assumed in [1,17] that a spanning tree T rooted at some node r is main-
tained in the network and that the controller relies on the links of T for commu-
nication. The global resource whose consumption is managed by the controller
may be of various types. However, since the concept of an (M, W )-controller
finds many applications in dynamic networks, a special attention has been given
to the case where a request presented at node u represents the desire to perform
a topology change at the vicinity of u. Such a request is referred to as a topo-
logical request. Specifically, the topology changes considered in this context are:
(i) inserting a new child of u as a leaf in T ; (ii) inserting a new child of u as an
internal node in T by subdividing a link that connects u to one of its children;
and (iii) deleting a child v of u and turning the children of v into children of
u (the root r is never deleted). In all three cases the actual topology change is
assumed to occur once the topological request is granted a permit1.

The number of nodes that ever existed in the network (including the deleted
ones) is denoted by N . Note that N cannot exceed the initial network size by
more than M since the insertion of every new node should be granted a permit
by the controller (in fact, the combined number of node insertions and deletions
is at most M).

The efficiency of an (M, W )-controller is measured by means of its message
complexity, namely, the total number of messages sent during the execution.
This is usually expressed as a function of M , W , and N . Consider for example
the following naive implementation for an (M, W )-controller. Upon receiving a
request at node u, the naive controller sends a message to the root r asking for
a permit. The root returns a permit in response to each of the first M − W
arriving messages; afterwards, it broadcasts some “out of permits” message to
all nodes, so that subsequent requests are rejected with no further consideration.
Exchanging messages between u and r in an N -node network may require Ω(N)
messages, hence the message complexity of this naive (M, W )-controller can be
as large as Ω(N(M −W )) even if the requests are spaced in time so that each
request is granted before the next request is presented (which is typically far
from being the case in an asynchronous network).

The Monotonic Labeling Problem. Vital to our techniques is the monotonic
labeling problem. In this (centralized) problem n distinct elements from some
dense totally ordered set S (e.g., the real numbers) are introduced, one at a
time. Upon introduction, each element x ∈ S should be assigned with a label λ(x)
taken from some discrete totally ordered set L of adequate (|L| ≥ n), yet limited,
cardinality (e.g., the integers 1, . . . , |L|). The order of the labels must agree with

1 The protocols responsible for executing the actual topology change may be interest-
ing by their own right, however, for simplicity, previous works ignored the details
of these protocols by assuming that the requesting entity is taking care of perform-
ing the topology change. For further details regarding the dynamic model and its
applications see [17].
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the order of the elements, that is, for every two elements x, y ∈ S, if x < y, then
λ(x) < λ(y). Therefore from time to time some previously introduced elements
must be relabeled to “make room” for new elements. The objective function of an
algorithm for the monotonic labeling problem is to minimize the total number of
labeling operations (including relabeling previously introduced elements). This
is typically measured as a function of n and with respect to the cardinality of
the label set L (clearly, the problem becomes easier as |L| grows).

1.2 Related Work

The most relevant works to this paper, are the works of [1] and [17]. In [1], Afek
et al. construct the first (M, W )-controller which admits message complexity
O(N log2 N log M

W+1 ). It is based on the following principle. The M permits,
which initially reside at the root, are disseminated and moved by the controller
in order to grant arriving requests. At any time, the remaining permits are
stored at specific bins which are organized according to an underlying structure
called the bin hierarchy. This bin hierarchy is employed in order to preserve some
“sparseness” properties of the distribution of the remaining permits which are
essential for the analysis. In terms of topology changes, the controller of Afek et
al. only supports the insertion of leaves.

Korman and Kutten [17] introduce an (M, W )-controller with a similar mes-
sage complexity2 which supports all three types of topology changes (i.e., the
insertion of leaves, the insertion of internal nodes, and the deletion of nodes).
The improvement is achieved by relaxing the hierarchy of bins and constructing
it on the fly, in a more local fashion.

Both the (M, W )-controller of [1] and that of [17] are implemented by first
constructing an (M, M/2)-controller with message complexity O(N log2 N), and
then invoking it in O(log M

W+1 ) iterations. Observe that the iterative argument
does not hold if W is large so that log M

W+1 = o(1). Indeed, it is implicitly
assumed in [1,17] that W ≤ M(1 − Ω(1)). The controller of [17] encodes each
message using O(log N) bits, while the (more restricted) controller of [1] encodes
each message using O(log log N) bits.

On the negative side, it is easy to see that an Ω(N) term in the message
complexity of any (M, W )-controller is inevitable. (In the case of an N -node
path, for example, merely delivering a permit from the root to a request presented
at the other end requires N messages.) However, no non-trivial lower bounds
were previously known.

The monotonic labeling problem is essentially introduced in [14] and studied
further in [9,23,22,11,4,12,7,10], mainly in the context of maintaining an ordered
2 The message complexity of the protocol of [17] is actually sometimes slightly better

than O(N log2 N log M
W+1 ). The total number of messages sent by that protocol is

O(N0 log2 N0 log M
W+1 ) + O(

∑
i log2 Ni log M

W+1 ), where N0 is the initial number of
nodes in the network and Ni denotes the number of nodes after the ith topology
change occurs. The parameter N can be thought of as N0 plus the number of node
insertions. Note, that if M < N0 then the message complexity of both the controller
of [17] and the controller of [1] is O(N log2 N log M

W+1 ).
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data structure. With label sets of cardinality n, n(1+ε), and n1+ε, where ε is any
positive constant, the known upper bounds for the number of labeling operations
are O(n log3 n) [4], O(n log2 n) [14,23,7], and O(n log n) [9,22,11]. An Ω(n log n)
lower bound for the number of labeling operations with label sets of cardinality
polynomial in n is established in [10], thus showing that the upper bound of
[9,22,11] is tight. Based on a lower bound established in [12] for the special
class of smooth algorithms, the authors of [12,10] conjecture that any monotonic
labeling algorithm with O(n) labels requires Ω(n log2 n) labeling operations,
hence the upper bound of [14,23,7] is also tight.

1.3 Our Contribution

In this paper we establish new bounds on the message complexity of the con-
troller problem. As a warm up, we first prove a simple lower bound stating
that any (M, W )-controller must send Ω(N log M

W+1 ) messages. Although this
lower bound is meaningful for small values of W , it is not very informative when
W is proportional to M , which is the typical case in many applications of the
controller problem.3

Subsequently, we turn our attention to the case where W is proportional to
M and prove that for every constant ε > 0, an (M, M(1 − ε))-controller on
a dynamically growing path of initial size M must admit message complexity
Ω(M log M) = Ω(N log N). This lower bound is obtained due to a surprising
reduction from the (centralized) monotonic labeling problem to the (distributed)
controller problem. Through this reduction, the Ω(n log n) lower bound on the
number of labeling operations that must be performed by any monotonic labeling
algorithm with a label set of cardinality polynomial in n translates to the desired
Ω(N log N) lower bound on the message complexity of a controller. In fact, the
reduction holds for monotonic labeling algorithms with label sets of cardinality
O(n), and therefore as it turns out, under the conjecture of [12,10], we obtain a
tight Ω(N log2 N) lower bound on the message complexity of any (M, M(1−ε))-
controller.

Both our lower bounds hold even when the message size is unbounded. Fur-
thermore, they do not rely on concurrency considerations, and therefore remain
valid even if the system is synchronous and the requests are “spaced in time” so
that the next request is presented only after the controller finished handling all
previous ones.

As previously mentioned, the proof of the Ω(N log N) lower bound (and also
of the conjectured tight Ω(N log2 N) lower bound) relies on a network of initial
size M which, in particular, implies that N = Θ(M). It turns out that this
is no coincidence: such a lower bound cannot hold if M is much smaller than
N . We prove it by constructing a novel (M, M/2)-controller with message com-
plexity O(N log2 M). Apart from demonstrating the inherent limitation of our

3 In particular, the case W = M/2 is the one used to derive the state of the art
solutions for the routing problem (and other labeling problems) on dynamic trees
[15,16,18,19] as well as for the dynamic name assignment problem [1,17].
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lower bound proof technique, the new controller is interesting as it can be gen-
eralized (c.f. Section 5 in [1]) to an (M, W )-controller with message complexity
O(N log2 M log M

W+1 ), thus exhibiting an asymptotic improvement to the state
of the art in the case that M is sub-polynomial in N . Moreover, the structure of
our new controller is completely different than the previously known controllers
and bears an independent algorithmic interest.

2 Lower Bounds

2.1 The Ω(N log M
W+1

) Lower Bound

We begin the technical part with a simple lower bound that provides a good
demonstration of the definition of a controller. Let P be an N -node (static) path
and let π be any (M, W )-controller that supports non-topological requests on P .
We prove that there exists a scenario Γ that forces π to send Ω(N log M

W+1 ) mes-
sages. Note that if log M

W+1 = O(1), then the required lower bound is dominated
by the trivial Ω(N) lower bound. We may therefore assume that log M

W+1 = ω(1).
Moreover, we assume for simplicity that both M + 1 and W + 1 are powers of 2.
(The proof can be easily modified to handle an arbitrary choice of parameters.)

Let u and v be the two end nodes of P . The desired request sequence Γ admits
the following two features. First, each request in Γ is presented after all actions
of π in response to the previous request are completed. Second, each request
is presented at either u or v. The sequence Γ is divided to λ = log M+1

W+1 − 1
subsequences denoted Γ = γ1 ·γ2 · · · γλ. For every 1 ≤ i ≤ λ, the ith subsequence
γi consists of (M + 1)/2i requests which are presented (all of them) either at
u or at v. The proof relies on designing the request subsequences γi so that in
response to each one of them, π must send Ω(N) messages.

We construct the request subsequences γi, by induction on i. Let γ0 denote
the empty subsequence. Given 1 ≤ i ≤ λ, assume that the prefix Γi−1 = γ0 ·
γ1 · · · γi−1 is already determined and construct the subsequence γi as follows.

Let γ(u) (respectively, γ(v)) denote a sequence of (M + 1)/2i requests pre-
sented at u (resp., at v). Consider the subsequences

Γ (u) = Γi−1 · γ(u) and Γ (v) = Γi−1 · γ(v) .

Observe, that both Γ (u) and Γ (v) contain

(M + 1)(1− 1/2i−1) + (M + 1)/2i = (M + 1)(1− 1/2i) < M −W

requests (the last inequality follows from the fact that i < log M+1
W+1 ). Therefore

π cannot deny any request in response to either Γ (u) or Γ (v).
Now, consider the request sequence

Γ (u, v) = Γi−1 · γ(u) · γ(v) .

As Γ (u, v) contains

(M + 1)(1− 1/2i−1) + 2(M + 1)/2i = M + 1
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requests, at least one of them should be denied by π. This means that π somehow
“distinguishes” Γ (u, v) from both Γ (u) and Γ (v). More formally, after handling
the prefix Γi−1, either Ω(N) messages are sent in response to γ(u) or Ω(N)
messages are sent in response to γ(v) (or both). If the former is true, then we
fix γi = γ(u); otherwise, we fix γi = γ(v).

To summarize, our construction of the request sequence Γ = γ1 · · · γλ guar-
antees that π sends Ω(N) messages for each 1 ≤ i ≤ λ. This sums up to
Ω(N log M

W+1 ) in total.

2.2 The Ω(N log N) Lower Bound

We now turn to prove the main result of the paper, namely, that for every
constant ε > 0, an (M, M(1 − ε))-controller on a dynamically growing path of
initial size M must send Ω(M log M) = Ω(N log N) messages (recall that N is
proportional to M when the initial size of the network is M).

Our method is based on reducing the monotonic labeling problem to the con-
troller problem. Specifically, we show that an (n, n(1 − ε))-controller that sup-
ports node insertion requests on a path of initial size n with message complexity
f(n) implies an algorithm for the monotonic labeling of n elements with label
set of cardinality 2n that performs O(f(n)) labeling operations. It is known that
such a monotonic labeling algorithm does not exist unless f(n) = Ω(n log n)
[10] and it is conjectured that f(n) must be Ω(n log2 n) [12,10]. This implies the
following theorem.

Theorem 1. The existence of an (n, n(1− ε))-controller with message complex-
ity f(n) for a path of initial size n implies f(n) = Ω(n log n) (f(n) = Ω(n log2 n)
under the conjecture of [12,10]).

To prove Theorem 1, consider some instance of the monotonic labeling problem
on n elements with label set {1, . . . , 2n}. Let x1, . . . , xn denote the n elements in
order of introduction. We label the first �1/ε� elements (x1, . . . , x�1/ε�) arbitrarily
(since ε is constant, this incurs O(1) labeling operations) and deal with the re-
maining elements in iterations. Let ni denote the number of elements which were
already introduced (and labeled) at the beginning of iteration i (n1 = �1/ε�), so
that the elements introduced during this iteration are xni+1, . . . , xni+1 . We label
these ni+1 − ni elements in accordance with the execution of an (ni, ni(1 − ε))-
controller invoked on a path P . This is done as follows.

At all times, the size of P equals the number of elements that were already
introduced. In particular, at the beginning of iteration i we have |P | = ni.
Consider the path P = (u1, . . . , uk) after the elements x1, . . . , xk were introduced
for some ni ≤ k ≤ ni+1. The nodes of P are mapped from left to right to the
elements x1, . . . , xk according to their rank, that is, uj is mapped to the jth

smallest element in x1, . . . , xk. Let x(uj) denote the element to which node uj

is mapped. Note that x(uj) < x(uj+1) for every 1 ≤ j < k.
The labels λ(·) assigned to x1, . . . , xk are determined by the permit distribu-

tion along the path P = (u1, . . . , uk). For every 1 ≤ j ≤ k, the element x(uj)
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is assigned with the label λ(x(uj)) = j + pj , where pj denotes the number of
permits stored in the subpath (u1, . . . , uj−1). Note that this is a valid labeling
scheme since it guarantees that

(i) λ(x(uj)) < λ(x(uj+1)); and
(ii) all labels are taken from the set {1, . . . , 2ni} ⊆ {1, . . . , 2n}.
(To verify that (ii) holds, observe that the sum of |P | and the number of permits
stored in P is 2ni throughout the iteration.)

Upon introduction of the next element xk+1, we present a node insertion
request to P in a position that corresponds to the rank of xk+1 in x1, . . . , xk+1.
If this request is granted, then a new node is inserted into P and xk+1 is labeled
in accordance with the aforementioned scheme (which may cause some relabeling
of previously introduced elements). Otherwise (the request is rejected), iteration
i is halted, ni+1 ← k, and iteration i+1 starts by invoking an (ni+1, ni+1(1−ε))-
controller on a path of initial size ni+1, where the first request corresponds to the
insertion of a node mapped to xk+1 (this was rejected in iteration i). Note that
the invocation of the new (ni+1, ni+1(1 − ε))-controller may change the labels
of elements x1, . . . , xni+1 due to changes in the permit distribution along the
path P .

Let l be the index of the last iteration (in which element xn was labeled).
For every 1 ≤ i < l, we know that the (ni, ni(1− ε))-controller that operates in
iteration i does not reject any request before at least εni requests were granted
(and that many new nodes were inserted into P), thus ni+1 ≥ ni(1 + ε). Since
n1 = �1/ε� and nl < n, we conclude that l = O(log n).

This is a valid monotonic labeling algorithm: each element is labeled upon
introduction and the order of the labels always agrees with the order of the
elements. It remains to bound the number of labeling operations performed by
our monotonic labeling algorithm. In attempt to do so, we distinguish between
two types of labeling operations: (1) those that occur during the execution of
one of the controllers; and (2) those that occur when one iteration halts and
a new iteration begins (recall that when a new iteration begins the labels of
the elements that were already introduced may change). At most ni labeling
operations occur when iteration i begins, hence the total number of labeling
operations of type (2) is bounded from above by

∑l
i=1 ni = O(n).

We now turn to analyze the number of labeling operations of type (1). Suppose
that for every 1 ≤ i ≤ l, we have an (ni, ni(1− ε))-controller that supports node
insertion requests on a path of initial size ni with average message complexity
at most f(ni), where f : Z>0 → Z>0 is a non-decreasing function. This means
that at most 2nif(ni) messages were sent in iteration i, which sums up to at
most

∑l
i=1 2nif(ni) = O(nf(n)) messages all together.

The key argument in our analysis is that each type (1) labeling operation
accounts for at least one message sent by the controllers, and hence the total
number of type (1) labeling operations is O(nf(n)). To justify this argument,
consider the path P = (u1, . . . , uk) at some stage of iteration i and observe
that the element x(uj) is assigned with a new label only when the sum S of the
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number of nodes to the left of uj and the number of permits stored in these nodes
changes. Note that the number of nodes to the left of uj may increase due to the
insertion of a new node in the subpath (u1, uj−1), but this comes together with
the elimination of one permit stored at one of the nodes {u1, . . . , uj−1}. Therefore
the sum S changes only when some permits were shifted from {u1, . . . , uj−1} to
{uj, . . . , uk} or vice versa which requires the exchange of a message along the
path link (uj−1, uj). It follows that our monotonic labeling algorithm performs
O(nf(n)) labeling operations in total, thus establishing Theorem 1.

3 An (M, W )-Controller

In this section we consider a dynamic rooted tree T of initial size N0 and con-
struct an (M, M/2)-controller for T with message complexity O(N0 log2 M) as-
suming that M < N0. This is done in two stages. First, we reduce the (M, M/2)-
controller problem from arbitrary trees to simple paths by a novel technique4

presented in Section 3.1. Therefore the remaining challenge is to construct an
(M, M/2)-controller with message complexity O(N0 log2 M) for simple paths of
initial size N0 > M ; this is done in Section 3.2.

3.1 A Reduction from Trees to Paths

In this section we design a transformation from the (M, M/2)-controller problem
on a tree T to the (M, M/2)-controller problem on a path P . A scenario of requests
on T is translated under this transformation to an induced scenario of requests
on P . An (M, M/2)-controller protocol on P handles this (path) scenario and its
actions are simulated by the nodes of T . A natural attempt to do so is to map every
node in T to a unique node in P (a bijection) so that each tree node simulates
the actions taken by its corresponding path node. The efficiency of this method
depends on the stretch induced by the mapping: delivering a message from node
u to an adjacent node v in P is simulated by delivering a message from u′ to v′ in
T , where u′ and v′ are the preimages of u and v, respectively. Therefore if u′ and
v′ are far apart in T , then many messages should be sent in T in order to simulate
a single message in P and the reduction fails.

Although it is always possible to design a (bijective) mapping that guarantees
a constant stretch for every pair of adjacent path nodes, the methods known
to us that do so are not very simple to describe (we are unaware of previous
works that studied this issue). More importantly, we do not know how to adapt
these methods to the dynamic distributed setting. Instead of relying on such a
bijection, we shall map every node in T to several nodes in P . For simplicity of
presentation, we shall first describe the desired transformation assuming that all
requests are non-topological. In this case, the topology of the tree remains fixed
throughout the execution and in particular, the number of nodes N remains
unchanged.
4 A similar technique was used in [16], where a preliminary version of the current

paper is credited.
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At any given time during the execution, the N -vertex rooted tree T is as-
sociated with a 2N -node path P rooted at its leftmost node. This is done by
associating each tree node with a pair of path nodes, as follows. Recall that a
DFS tour (starting at the root) associates every node u in T with two times-
tamps 1 ≤ d[u] < f [u] ≤ 2N , where d[u] records the time step when u was first
visited and f [u] records the time step when the examination of u was over (see
[8]). (In particular, the root r satisfies d[r] = 1 and f [r] = 2N and if u is a
leaf, then d[u] = f [u]− 1.) Enumerate the 2N nodes in P from left to right by
the integers 1, . . . , 2N and let each vertex u in T be associated with the nodes
d[u] and f [u]. Note that each path node x is associated with a single tree node
pre(x), referred to as the preimage of x.

A scenario of requests in T is translated to a scenario of requests in P as
follows: a request presented at some tree node v is translated to a request pre-
sented at the path node d[v]. This defines an induced request scenario on P for
every request scenario on T . An (M, M/2)-controller for P is invoked on this
induced request scenario. The actions taken by the path nodes are simulated by
their preimages in T . Specifically, if some path node x wishes to send a message
to one of its neighbors y in P , then this message is sent from pre(x) to pre(y)
in T . The permits of the tree controller are subjected to the path controller so
that if x delivers some subset of permits to y, then pre(x) delivers that subset
of permits to pre(y). (Initially, the M permits are stored in the root of the path
whose preimage is the root of the tree.) Recall that a request was presented at
the path node d[v] under the induced scenario only when a request was presented
at the tree node v under the original scenario. If this request is granted a permit
(respectively, rejected) by the path controller, then the corresponding request is
granted a permit (resp., rejected) by the tree controller. The above simulation
clearly implements an (M, M/2)-controller on T .

We argue that the distance in T between the preimages pre(x) and pre(y)
of any two path neighbors x and y is at most 2. Indeed, as demonstrated by
Table 1, pre(x) and pre(y) are either siblings in T or a child and a parent.
Note that in order to simulate the actions of the path controller a tree node u
does not have to know the exact DFS timestamps of its associated path nodes

Table 1. The DFS timestamps of the left and right neighbors of some path node

path node left neighbor right neighbor
d[u] f [v], where v is the left sibling of

u, if u has a left sibling in T ;
d[v], where v is the leftmost child
of u, if u has a child in T ;

d[v], where v is the parent of u, if
u does not have a left sibling in T ;

f [u] if u does not have a child in
T ;

f [u] f [v], where v is the rightmost child
of u, if u has a child in T ;

d[v], where v is the right sibling of
u, if u has a right sibling in T ;

d[u] if u does not have a child in
T ;

f [v], where v is the parent of u, if
u does not have a right sibling in
T ;
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d[u] and f [u], but rather the structure of its local neighborhood in T , that is,
whether it admits any children, whether it admits a left sibling, and whether it
admits a right sibling. The bound on the message complexity of the resulting
(M, M/2)-controller on the tree T follows.

The case of topological requests follows from a similar approach, but requires
some additional technicalities which are omitted from this extended abstract.
This completes the proof of the following theorem.

Theorem 2. An (M, M/2)-controller on a tree can be implemented by an
(M, M/2)-controller on a path with asymptotically the same message complexity.

3.2 An (M, M/2)-Controller for a Path — Overview

In this section we design an (M, M/2)-controller that operates on a path P of
initial size N0. We follow the convention that P is rooted at its leftmost node so
that the sole child of a path node is its right neighbor. The controller supports
topological requests which means that the path may undergo node insertions
and deletions, but since we assume that M < N0, the size of P is O(N0) at all
times. Our controller operates in an asynchronous environment under the FIFO
channel assumption, that is, if node u sends message m1 at time t1 and message
m2 at time t2 > t1, both to the same neighbor v, then m1 is received at v
before m2 (this assumption can be easily lifted by using standard acknowledging
techniques). Due to lack of space, we provide here an overview of the construction
and omit the full detail from this extended abstract.

A central component of our controller is an implicit complete binary tree
T which is simulated by the nodes of P (see also [7]). The height h of T is
proportional to log M . Each vertex x in T is associated with a subpath Px of P
so that every level of T induces a pairwise disjoint partition of P . Moreover, if
x is a child of y in T , then Px is a subpath of Py. The behavior of each vertex
x in T is simulated by some node in Px.

In a preprocess stage the controller spreads the M permits evenly among
the leaves of T . Subsequently, a path node u handles a newcoming request by
sending a message to the leaf � such that u ∈ P� and asking for a permit.
While waiting for the permit, u is locked which means that it does not handle
subsequent requests. A request presented at the locked node u is stored in a
queue denoted by Q(u); when u gets unlocked, the request stored at the head
of Q(u) is dequeued and its handling procedure starts. The protocol guarantees
that � responds to u’s message (by either granting the request with a permit
or denying it) within finite time, thus a request cannot remain in the queue
indefinitely.

A tree vertex x (that may be a leaf) learns that some nodes in Px are waiting
for permits via an invocation of Procedure Update at x. Procedure Update first
makes sure that all nodes in Px are locked. Afterwards it counts how many
permits remained in the leaves of the subtree Tx and how many requests in Px

wait for a permit. If the difference is larger than some threshold ρi that depends
on the level 0 ≤ i ≤ h of x in T , then Procedure Update grants permits to the
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awaiting requests, spreads (evenly) the remaining permits among the leaves of
Tx, and unlocks all nodes in Px. Otherwise, x invokes Procedure Update at its
parent in T . The threshold ρi is designed so that if the root z finds out that
the difference of the number of permits in the leaves of Tz = T to the number
of permit-awaiting requests in Pz = P is smaller than its threshold ρh, then
more than M/2 permits must have been granted and all subsequent requests are
rejected.

It is crucial for the analysis of the message complexity that every leaf in T
is assigned with O(N0/2h) path nodes. For this purpose, Procedure Update is
slightly more complicated than what we described in the previous paragraph.
Since some of the requests that currently wait for permits at Px may be topolog-
ical, granting them may change the size of P� for some leaves � in Tx, hence the
procedure has to ensure that the size of Px does not become too large after the
current requests will be granted. Indeed, if |Px| is soon to exceed some threshold
σi that (just like the threshold ρi) depends on the level i of x in T , then the
execution of Procedure Update at x is halted and the procedure is reinvoked at
the parent of x in T . Otherwise, the nodes in Px are reassigned to leaves in Tx

in a manner that keeps |P�| sufficiently small for all leaves � in Tx. The threshold
σi is designed so that σh = 3N0/2, thus if |P | exceeds the threshold σh , then at
least N0/2 > M/2 node insertion requests must have been granted.

References

1. Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.: Local management of a global
resource in a communication network. J. ACM 43, 1–19 (1996)

2. Afek, Y., Ricklin, M.: Sparser: a paradigm for running distributed algorithms. J.
Algorithms 14(2), 316–328 (1993)

3. Afek, Y., Saks, M.E.: Detecting global termination conditions in the face of uncer-
tainty. In: Proc. 7th ACM Symp. on Principles of Distributed Computing (PODC),
pp. 109–124 (1987)

4. Andersson, A., Lai, T.W.: Fast updating of well-balanced trees. In: Proc. 2nd
Scandinavian Workshop on Algorithm Theory (SWAT), pp. 111–121 (1990)

5. Awerbuch, B., Kutten, S., Peleg, D.: Competitive distributed job scheduling (Ex-
tended Abstract). In: Proc. 24th ACM Symp. on Theory of Computing (STOC),
pp. 571–580 (1992)

6. Bar-Yehuda, R., Kutten, S.: Fault tolerant distributed majority commitment. J.
Algorithms 9(4), 568–582 (1988)

7. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Proc. 10th Ann. European Symp. on
Algorithms (ESA), pp. 152–164 (2002)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge (2001)

9. Dietz, P.F.: Maintaining Order in a Linked List. In: Proc. 14th ACM Symp. on
Theory of Computing (STOC), pp. 122–127 (1982)

10. Dietz, P.F., Seiferas, J.I., Zhang, J.: A tight lower bound for online monotonic list
labeling. SIAM J. Discrete Math. 18(3), 626–637 (2004)

11. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: Proc.
19th ACM Symp. on Theory of Computing (STOC), pp. 365–372 (1987)



34 Y. Emek and A. Korman

12. Dietz, P.F., Zhang, J.: Lower bounds for monotonic list labeling. In: Proc. 2nd
Scandinavian Workshop on Algorithm Theory (SWAT), pp. 173–180 (1990)

13. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

14. Itai, A., Konheim, A., Rodeh, M.: A sparse table implementation of priority queues.
In: Proc. 8th Colloq. on Automata, Languages and Programming (ICALP), pp.
417–431 (1981)

15. Korman, A.: General compact labeling schemes for dynamic trees. J. Distributed
Computing 20(3), 179–193 (2007)

16. Korman, A.: Improved compact routing schemes for dynamic trees. In: Proc. 27th
ACM Symp. on Principles of Distributed Computing (PODC), pp. 185–194 (2008)

17. Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In:
Proc. 26th ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing
(PODC), pp. 175–184 (2007)

18. Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks.
Theory Comput. Syst. 37(1), 49–75 (2004)

19. Korman, A., Peleg, D.: Labeling schemes for weighted dynamic trees. J. Informa-
tion and Computation 205(12), 1721–1740 (2007)

20. Lund, C., Reingold, N., Westbrook, J., Yan, D.C.K.: Competitive on-line algo-
rithms for distributed data management. SIAM J. Comput. 28(3), 1086–1111
(1999)

21. Kutten, S.: Optimal fault-tolerant distributed construction of a spanning forest.
Inf. Process. Lett. 27(6), 299–307 (1988)

22. Tsakalidis, A.K.: Maintaining order in a generalized linked list. Acta Inform. 21,
101–112 (1984)

23. Willard, D.: Maintaining dense sequential files in a dynamic environment. In: Proc.
14th ACM Symp. on Theory of Computing (STOC), pp. 114–121 (1982)



On Set Consensus Numbers

Eli Gafni1 and Petr Kuznetsov2

1 Computer Science Department, University of California, Los Angeles, USA
eli@ucla.edu

2 TU Berlin/Deutsche Telekom Laboratories, Berlin, Germany
pkuznets@acm.org

Abstract. We propose a complete characterization of a large class of
distributed tasks, with respect to a weakened solvability notion called
weak termination. A task is weak-termination solvable if there is an
algorithm by which at least one process outputs.

The proposed categorization of tasks is based on the weakest failure
detectors needed to solve them. We show that every task T in the consid-
ered class is equivalent (in the failure detector sense) to some form of set
agreement, and thus its solvability with weak termination is completely
characterized by its set consensus number : the maximal integer k such
that T can be (weak-termination) solved using read-write registers and
k-set agreement objects.

The characterization goes through showing that ¬Ωk, recently shown
to be the weakest failure detector for the task of k-set agreement, is
necessary to solve any task that is k-resilient impossible.

1 Introduction

One of the central challenges in distributed computing is characterizing the con-
ditions under which a given problem is solvable. In this paper we consider a
large class of problems, called tasks, in a distributed system of n asynchronous
processes, subject to the crash failures, communicating via reading and writing
in the shared memory. Informally, the correctness of a task solution depends only
on the inputs the processes receive in the beginning of the computation and the
outputs they produce at the end of it. A conventional liveness property of a task
solution is wait-freedom: every correct process, i.e., a process that never crashes,
must eventually decide (return a value).

An example of a distributed task is k-set agreement [1], in which each process
starts with an input in {0, . . . , k} and the set of outputs must be a subset of
inputs of size at most k. There is no wait-free solution for k + 1-process k-set
agreement [2,3,4]. More generally, for all n ≥ k + 1, there is no algorithm that
solves n-process k-set agreement (or simply (n, k)-set agreement) tolerating k
faulty processes [4,5]. In other words, the lack of synchrony and the presence of
failures make k-resilient (n, k)-set agreement impossible. To circumvent the im-
possibility, assuming that we still want to tolerate failures, we need to introduce
some synchrony into the system. But how much synchrony is enough?
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Synchrony assumptions can be described using failure detectors [6,7], dis-
tributed oracles that provide processes with some (possibly inaccurate and in-
complete) hints about failures. The exact amount of synchrony needed to
circumvent an asynchronous impossibility is captured through the notion of the
weakest failure detector [7]: D is the weakest failure detector for solving a prob-
lem M if D is both (1) sufficient to solveM, i.e., there exists an algorithm that
solves M using D, and (2) necessary to solve M, i.e., any failure detector that
is sufficient to solve M provides at least as much information about failures as
D does. Every distributed computing problem has a weakest failure detector [8].

It has been recently shown [9,10] that, for all 0 < k < n, the weakest failure
detector for solving k-set agreement is ¬Ωk, regardless of the assumptions on
when and where failures might occur. ¬Ωk outputs, when queried, a set of n− k
processes so that some correct process is output only finitely many times.

In this paper, we show that, for all 0 < k < n, ¬Ωk is necessary to solve
any n-process task that cannot be weak-termination solved k-resiliently, i.e.,
tolerating k faulty processes. Weak termination means here that to solve a task
we only require one process to output. We also show that ¬Ωk is sufficient to
solve any task that can be weak-termination solved actively k−1-resiliently, i.e.,
tolerating k failures among the processes that participate (invoke the task).

Thus, our results provide a complete categorization of tasks which do not
distinguish between k-resilience and active k resilience, i.e., tasks for which k-
resilient solvability implies active k-resilient solvability), for all k. We call these
tasks participation-oblivious, and observe that many popular tasks, including set
agreement, are participation-oblivious.

We derive therefore that the weak-termination solvability of a participation-
oblivious task T is completely characterized by its set consensus number : the
integer k such that T and k-set agreement are, in the failure detector sense,
equivalent. Formally, set consensus number of T is the lowest k such that T can-
not be (weak-termination) solved k-resiliently. As a result, we derive a complete
characterization of participation-oblivious tasks into n equivalence classes (set
consensus hierarchy), each class k = 1, . . . , n consists of tasks that are equivalent
to k-set agreement. In particular, class 1 in the hierarchy consists of “universal”
tasks (e.g., consensus) that can be used to solve any task, and class n consists
of “trivial” tasks that can be solved wait-free.

The sufficiency part of our result builds upon the recently established equiv-
alence of k-set agreement, k-concurrency, and active k-resilience [11]: the set of
tasks that are solvable k-concurrently (when at most k processes are active at
a time) coincides with both the set of tasks that can be wait-free solved using
k-set agreement objects and read-write registers and the set of tasks that are
solvable actively (k−1)-resiliently. This allows us to conclude that any task that
can be solved actively k-resiliently can also be solved using ¬Ωk.

The rest of the paper is organized as follows. Section 2 describes our system
model. Sections 3 proves that ¬Ωk is necessary to solve any k-resilient unsolvable
task, and presents the implications of this result: a characterization criterion for
participation-oblivious distributed tasks. Section 4 overviews the related work
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and Section 5 concludes the paper by discussing limitations of our results and
interesting open questions.

2 Model

We consider a system of n processes Π = {p1, . . . , pn}. Processes communicate
reading and writing in the shared memory and can query the failure detector.
Processes are subject to crash failures. More details on the model can be found
in [7,9].

2.1 Failure Patterns and Failure Detectors

A failure pattern F is a function from the time range T = {0} ∪N to 2Π , where
F (t) denotes the set of processes that have crashed by time t. Once a process
crashes, it does not recover, i.e., ∀t : F (t) ⊆ F (t + 1). We define faulty(F ) =
∪t∈TF (t), the set of faulty processes in F . Respectively, correct(F ) = Π −
faulty(F ). A process p ∈ F (t) is said to be crashed at time t. An environment
is a set of failure patterns. By default, we assume that at least one process is
correct in every failure pattern.

A failure detector history H with range R is a function from Π × T to R.
H(pi, t) is interpreted as the value output by the failure detector module of
process pi at time t. A failure detector D with range RD is a function that maps
each failure pattern to a (non-empty) set of failure detector histories with range
RD. D(F ) denotes the set of possible failure detector histories permitted by
D for failure pattern F . We do not restrict possible ranges of failure detectors.

The failure detector ¬Ωk [12] outputs, at each process and each time, a set of
n − k processes. ¬Ωk guarantees that there is a time after which some correct
is never output. By definition, ¬Ωn−1 is equivalent to anti-Ω [13]. Also, ¬Ω1 is
equivalent to Ω [7].

2.2 Algorithms

We define an algorithm A using a failure detector D as a collection of determin-
istic automata, one automaton Ai for each process pi. In each step of A, process
pi can first invoke an atomic operation on a shared object (in our case - regis-
ter) receive a response or query its module of D and receive a value, and then
perform a state transition according to its automaton and the received value.

If the state transitions of the algorithm automata do not depend on the failure
detector values, we say that the algorithm A is asynchronous.

2.3 Runs

A state of A defines the state of each process and each object in the system. An
initial state I of A specifies an initial state for every automaton Ai and every
shared object.
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A run of algorithm A using a failure detector D in an environment E is a
tuple R = 〈F, H, I, S, T 〉 where F ∈ E is a failure pattern, H ∈ D(F ) is a failure
detector history, I is an initial state of A, S is an infinite schedule, i.e., the
sequence of process ids, and T is a non-decreasing sequence of values in T such
that ∀�: S[k] /∈ F (T [k]).

Let inf (R) denote the set of processes that appear infinitely often in its sched-
ule S. We say that a run R = 〈F, H, I, S, T 〉 is fair if correct(F ) = inf (R), and
k-resilient if |inf (R)| ≥ n− k. A partial run of an algorithm A is a finite prefix
of a run of A. Note that for an asynchronous algorithms, runs that share I and
S are indistinguishable.

2.4 Distributed Tasks

A task is defined through a set I of input n-vectors (one output value for each
process), a set O of output n-vectors (one input value for each process) and a
total relation ∆ that associates each input vector with a set of possible output
vectors. In the n-process k-set agreement task (we simply write (n, k)-set agree-
ment), each process takes a value in {0, . . . , k} as an input, and the set of non-⊥
output values is a subset of the input values of size at most k.

In this paper, we only consider tasks that have finite sets of inputs I.

2.5 Weak Termination

In this paper, we focus on the weak termination condition: a run is considered
terminated based on a finite prefix of it.

More precisely, we say that an algorithm A solves a task T = (I,O, ∆) (with
weak termination) in an environment E using a failure detector D, if in every
fair run 〈F, H, I, S, T 〉 of A, where I is the input vector in I and F ∈ E , at least
one process eventually decides, i.e., reaches a special state with an irrevocable
non-⊥ output value, and the vector O gathering the values output in that run
satisfies (I, O) ∈ ∆. Weak termination condition is sufficient to solve (n, k)-set
agreement: any process that reaches an output writes the output value in the
shared memory and every process that finds the value adopts it as the output.
A state of an algorithm in which some process decides is called deciding.

2.6 Resilience and Active Resilience

A task is can be solved k-resiliently if there is an asynchronous (i.e., without
using a failure detector) algorithm that solves the task in an environment in
which any k processes may fail. A task can be solved actively k-resiliently if an
asynchronous algorithm solves the task in every run in which not more than k
processes that took at least one step fail.

Obviously, if a task is solvable actively k-resiliently, then its is also solvable
k-resiliently. It is shown in [4] that k-set agreement is impossible to solve k-
resiliently, and thus also actively k-resiliently.

We say that a task T is participation-oblivious if for all 0 < k < n, k-resilient
solvability of T implies active k-resilient solvability of T .
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2.7 Comparing Failure Detectors

We say that an algorithm A using D′ extracts the output of D in an environment
E , if A implements a distributed variable D-output such that for every run of
A with failure pattern F ∈ E , there exists H ∈ D(F ) such that for all pi ∈ Π
and t ∈ T, D-outputi(t) = H(pi, t), i.e., the value of D-output at pi at time t is
H(pi, t). We call A a reduction algorithm.

If, for failure detectors D and D′, there is a reduction algorithm that extracts
the output of D using D′ in E , then we say that D is weaker than D′ in E .
D is the weakest failure detector to solve a task M in E if (i) there is an

algorithm that solves M using D in E and (ii) D is weaker than any failure
detector that can be used to solve M in E . Every task can be shown to have
a weakest failure detector [8]. In any environment, ¬Ωk is the weakest failure
detector to solve (n, k)-set agreement [9].

2.8 The BG-Simulation Technique

Borowsky and Gafni proposed a simulation technique (called BG-simulation) by
which k + 1 processes q1, . . . , qk+1, called simulators, can wait-free simulate a k-
resilient execution of any asynchronous n-process protocol [4,5]. Each simulator
tries to promote steps of all simulated processes in the breadth-first-manner, one
by one, by running an agreement protocol for each step. The agreement protocol
is guaranteed to terminate if every simulator that started the protocol is correct.
BG-simulation makes sure that a simulator can block the agreement protocol for
at most one simulated code at a time, and thus, as long as at least one simulator
is live, at most k simulated processes can be faulty (appear only finitely often)
in the simulated execution.

The original BG-simulation technique has been extended in order to reduce
the question of k-resilient solvability of an n-process task T defined for processes
p1, . . . , pn, to wait-free solvability of a k+1-process task T ′ defined for simulators
q1, . . . , qk+1 [14]. Task T ′ is defined as follows. Every simulator qi receives, as
an input in task T ′, an input value of pi in task T and n − k − 1 inputs of
processes pj such that j > i. All inputs must belong to an input vector I of T .
Respectively, an output of qi in T ′ consists of an output value for pi in T as well
as n − k − 1 outputs of processes pj such that j > i. All outputs must belong
to the same output vector O such that (I, O) satisfies the task specification of
T . Task T is solvable k-resiliently if and only if T ′ is solvable wait-free [14].
Unlike [4,5] where simulators did not care about which codes make progress, as
long as there at least n− k of them, the simulation technique of [14] associates
each simulator qi with a distinct process pi, and qi is required to move the code
of pi forward until pi (and at least n− k − 1 codes of processes with ids higher
than i) outputs a value for task T . But since we consider the weak termination
condition, to solve T ′, it is sufficient to make sure that at least one simulator
observes that some simulated process has decided.

In BG-simulation [4,5], every (infinite) schedule (sequence of ids of simulators
q1, . . . , qk+1) σ implies a unique (k-resilient) schedule for the simulated processes
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p1, . . . , pn, denoted BG(σ). Moreover, if σ is fault-free (every simulator appears
infinitely often in σ), then so is BG(σ). If a simulated process pi is blocked in a
finite schedule σ by some simulator qj (qj started the agreement protocol for a
step of pi but has not terminated it), then any qj -free extension σ′ of σ produces
an execution in which pi is faulty, and all appearances of pi in BG(σ′) take place
in BG(σ), a prefix of it.

3 The Main Result

In this section we show that, for any environment E , if a failure detector D solves
a k-resiliently impossible task T in E , then D is stronger than ¬Ωk in E .

3.1 Overview

LetA be the algorithm that solves T in E usingD. We devise a reduction algorithm
that uses A and D to derive, in each run, the output of ¬Ωk, regardless of the
environment, i.e., of the assumptions on when and where failures are supposed to
take place. The reduction algorithm consists of two components that are running
in parallel: the communication component and the computation component.

In the communication component, the run of the reduction algorithm induces
a directed acyclic graph (DAG) that contains a sample of the failure detector his-
tory of this run and captures some causal relations between the values returned
by D to different processes at different times [7]. A vertex [pj , d, m] of the DAG
corresponds to the value d returned to process pj when it queried its module of
D for the m-th time. The DAG contains an edge ([pj , d, m], [p�, d

′, m′]) when the
m-th query performed by pj and returned value d causally precedes the m′-th
query performed by p� and returned value d′.

To maintain its version of the DAG, every process periodically queries its
module of D, creates a new vertex in the graph and adds an edge from every
other vertex to the newly created vertex (Figure 1). Also, the process periodically
writes its version of the graph in the shared memory, scans the memory and
updates its version with the vertices added by other processes. As a result, the
ever-growing DAGs maintained at the correct processes tend to the same infinite
DAG Ḡ every vertex of which originates a path that contains infinitely many
vertices of each correct process. More details on the DAG maintenance can be
found in [7].

In the computation component, every process uses the ever-growing DAG
for simulating locally a number of runs of the whole system and extracting
the output of ¬Ωk from the simulated runs. We use the observation that every
constructed D-based DAG G induces an asynchronous algorithm AG that is
almost like A, except that, instead of D, AG uses G to simulate (finite and
possibly unfair) ever-growing runs of A [13]. We strengthen this observation
slightly and consider algorithm AG,β , where β is a mapping from the set of
vertices of G to N. (We call β a delay map.) To simulate the next step of A at
a process pj , AG,β locates the first vertex [pj , d, m] in G that causally succeeds



On Set Consensus Numbers 41

Shared variables: for all pi ∈ Π : Vi, initially ⊥

1 ki := 0
2 while true do
3 for all pj �= pi do Gj := Vj ; Gi := Gi ∪ Gj

4 di := query failure detector D
5 ki := ki + 1
6 add [pi, di, ki] and edges from all other vertices of Gi to [pi, di, ki], to Gi

7 Vi := Gi

Fig. 1. Communication component of the reduction algorithm (building a DAG): the
code for each process pi

all simulated steps that are currently observed. Then pi takes β([pj , d, m]) local
steps, and if the next step pj takes in A is a failure detector query, then the
simulated step is assumed to return d. These local steps are have no effect on
the simulated run of A, and we use the delay map β to reconcile the evolutions
of DAGs Gi constructed at different processes pi.

The asynchronous algorithm AG,β is safe: the runs produced in the simulated
runs of A comply with the specification of task T . Also, if every correct (in the
current failure pattern F ) process appears in a simulated run of AḠ,β , where Ḡ
is the limit infinite DAG in this run, infinitely often (we call such a run fair),
then the run must be deciding, i.e., every correct process must decide in it [9].

The computation component uses BG-simulation [4,5] to simulate, for each
subDAG G and a delay map β, a number of runs of AG,β on k + 1 simulators
q1, . . . , qk+1. Each simulator qi accepts as an input n − k input values of task
T for pi and n − k − 1 processes of ids higher than i. It is required that all
these inputs are consistent with some input vector of T . In the beginning of
the simulation, each simulator registers its input value in the shared memory.
To simulate a step of a process pi, a simulator qj first checks if pi has an input
value, i.e., if any simulator registered an input containing a value for pi. If no
value is found, then qj tries to simulate a “nop” step that makes no effect on
the shared memory, otherwise it simulated a step of AG,β . In accordance with
our weak termination condition, the run is considered deciding if at least one
simulates process pi returns an output of T at some simulator qj .

The fact that the (k+1)-process task T ′ is not wait-free solvable [14] (see also
Section 2.8) implies that the described BG-simulation must produce at least one
infinite non-deciding run that, in turn, corresponds to an infinite k-resilient non-
deciding run of some AḠ,β . To emulate ¬Ωk, it is thus sufficient to output the
set of n− k processes that appear the latest in the first such run (appropriately
defined). Since every fair run of AḠ,β is deciding [9], at least one correct process
will eventually never be output in that run. Thus, the output of ¬Ωk is extracted.

Of course, we still need to make sure that all correct processes eventually
agree on simulating the same ever-growing non-deciding run. We address this
issue using the corridor-based ordering of the simulated executions introduced
in [9], some details are given below.
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3.2 Preliminaries

Let G and G′ be two finite DAGs, β and β′ be two delay maps defined on G
and G′, respepctively. We say that G′ and β′ extend G and β if G ⊆ G′, and
for every vertex v in G′ −G, β′(v) is more than the length of the longest path
in G. Note that for each input vector I and schedule σ, the run of A produced
by AG′,β′

with I and σ extends the run produced by AG,β. We are going to use
the following result:

Theorem 1. [9] Let Ḡ be the limit DAG produced in a fair run of the algorithm
in Figure 1, with failure pattern F . Let G be any finite subDAG of Ḡ, β be any
delay map on G, and R′ be any run of AG,β with an input vector I and schedule
σ. Then the sequence of steps simulated in R′ belongs to a (partial) run of A,
RA, with I and F . If correct(F ) ⊆ inf (R′), then there exists a subDAG G′ of Ḡ
and a delay map β′ extending G and β, such that the run of AG′,β′

with I and
σ is deciding.

Below we recall the notions of the corridor-based ordering [9].
Let < be any deterministic order on subsets of Q = {q1, . . . , qk+1}, that

is consistent with ⊆: for all distinct Q, Q′ ∈ 2Q, Q ⊆ Q′ ⇒ Q < Q′. A
corridor is a sequence Q1, Q2, ... of non-empty subsets of Q such that ∀� :
Q�+1 ⊆ Q�. Since the elements of an infinite corridor eventually stabilize on
the same non-empty subset Q�, each infinite corridor allows for a finite repre-
sentation Q1, Q2, . . . , Q�−1, (Q�)∗. Corridors C and C′ of the same length are
compared lexicographically, consistently with < (slightly abusing notation we
write C < C′).

We say that a (finite or infinite) schedule σ = qi1 , qi2 , ... belongs to a (finite
or infinite, resp.) corridor C = Q1, Q2, . . . (of the same length), and we write
σ ∈ C, if ∀�, qi�

∈ Q�. Similarly, we say that a corridor C = Q1, Q2, . . . belongs
to a corridor C′ = Q′

1, Q
′
2, . . ., and we write C ⊆ C′, if ∀�, Q� ⊆ Q′

�.
The narrowest corridor of σ, denoted crd(σ), is the smallest corridor σ belongs

to. For an infinite schedule σ, let Q be the non-empty set that crd(σ) eventually
stabilizes on. It is then immediate that live(σ) = Q.

Schedules of the same length are compared lexicographically, consistently with
some deterministic order on Q. This implies a lexicographic order on tuples
(I, C, σ) such that C and σ have the same length, and σ ∈ C.

In the following, let G be any finite subDAG of Ḡ and β be any delay map
on G. We say that a (finite or infinite) schedule σ is deciding with G, β and I,
if the run of AG,β with schedule σ and I produces a deciding run of A. We also
use the following result:

Theorem 2. [9] There exists a tuple (Ĩ , C̃, σ̃), where σ̃ is infinite and C̃ =
crd(σ̃), such that (i) ∀G, β, there exists (I, C, σ) < (Ĩ , C̃, σ̃) such that σ is not
deciding with G, β and I, and (ii) for all (I, C, σ) < (Ĩ , C̃, σ̃), there exist G and
β such that for all (I ′, C′, σ′) ≤ (I, C, σ), σ′ is deciding with G, β and I ′.

In other words, (Ĩ , C̃, σ̃) is the smallest tuple such that, for every finite DAG G,
(Ĩ , C̃, σ̃) is higher than the highest deciding tuple over all subDAGs of G and
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8 repeat forever
9 for all G, subgraphs of Gi, and all β on G do
10 for all I , input vectors of T ′ do
11 BG simulate (on q1, . . . , qk+1) all possible runs of AG,β with I
12 let (I ′, C′, σ′) be the smallest tuple that is higher

than the highest deciding tuple over all G and β
13 ¬Ωk-output := n − k processes that appear the latest in BG(σ′)

Fig. 2. Computational component of the reduction algorithm: code for each process pi

all delay maps β. Intuitively, the existence of such (Ĩ , C̃, σ̃) follows from the fact
that task T ′ on q1, . . . , qk+1 is not wait-free solvable [14].

3.3 Main Result

Our reduction algorithm is described in Figures 1 and 2. In the communication
component (Figure 1), processes simply take a sample of their failure detector
outputs, exchange this information, and maintain ever-growing DAGs that cap-
ture temporal relations between values output by the failure detector at different
processes.

In the computation component (Figure 2), a process pi takes every subgraph G
of its DAG Gi and every delay nap β on G to simulate k+1 processes q1, . . . , qk+1

that, in turn, run the BG-simulation algorithm to simulate k-resilient runs of
AG,β on n processes p′1, . . . , p

′
n. (To avoid confusion, for all 1 ≤ j ≤ n, p′j denotes

here the process that represents pj in the local simulation.) The simulation goes
through all possible input vectors I of the (k +1)-process task T ′ corresponding
to T [14]. 1 Simulating a schedule σ of q1, . . . , qk+1 applied to an input vector
terminates when the simulated run of AG,β with schedule BG(σ) and input
vector I decides or reaches a vertex of Gi that has no causal successors. The
levels of simulation that takes place at every process pi are summarized below:

pi

simulates runs of Extended BG-simulation on
q1, . . . , qk+1

simulate runs of AG,β on
p′
1, p

′
2, . . . , p

′
n−1, p

′
n

simulate runs of A

Then pi chooses (I ′, C′, σ′), the smallest tuple that is higher than the highest
deciding tuple over all G and β (by Theorem 2 it exists). The current output of
¬Ωk is evaluated as the set of n− k processes that appear the latest in BG(σ′)
(here each p′j is replaced with pj).

Theorem 3. Let E be any environment and T be any weak-termination k-
resilient impossible task. Let D be a failure detector that solves T in E. Then D
is stronger than ¬Ωk in E.
1 Here we use the assumption that the set of inputs of T is finite.
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Proof sketch. Consider a run of the reduction algorithm with failure pattern F .
Let Gi be the DAG maintained at a correct process pi and G′ be a subgraph of Gi.
For each G, a subDAG of G and every delay map β, pi periodically simulates all
possible finite schedules of BG-simulation ofAG,β using all possible input vectors
of T ′. For uniformity, we consider schedules of the same length, sufficiently long
to cover all possible runs of A that can be simulated using G. Here we use the
assumption that there are only finitely many input vectors of T .

Let (Ĩ , C̃, σ̃) be the infinite tuple satisfying properties (i) and (ii) of Theo-
rem 2. We observe that there is a time after which for every (I ′, C′, σ′) evalu-
ated by pi in line 12, I ′ = Ĩ, C′ extends longer and longer prefixes of C̃, and
σ′ extends longer and longer prefixes of σ̃. This is because for each (I, C, σ), a
prefix of (Ĩ , C̃, σ̃), there is a time after which pi considers every (I ′′, C′′, σ′′) <
(I, C, σ) “deciding”: there exist G and β such that for every infinite extension
of (I ′′, C′′, σ′′) that is smaller than (Ĩ , C̃, σ̃), the run of AG,β with I ′′ and σ′′ is
deciding. Thus, eventually, the output of ¬Ωk maintained in line 13 consists of
n− k processes that is a subset of live(BG(σ̃)).

Now we observe that live(BG(σ̄)) cannot include all correct (in F ) processes.
Otherwise, by Theorem 1, for some subDAG G and some β, and for all (I, C, σ) ≤
(Ĩ , C̃, σ̃), AG,β produces a deciding run with I and σ — a contradiction with
the definition of (Ĩ , C̃, σ̃).

Finally, the output produced in line 13 consists of n− k processes, and, even-
tually, at least one correct process is never output — the output of ¬Ωk is
extracted. �

3.4 Set Consensus Number: Categorizing Distributed Tasks

It has been recently shown that, for all 0 < k < n, every actively (k−1)-resiliently
solvable task can be solved wait-free if, in addition to read-write registers, we
are allowed to use k-set agreement task as a shared object [11]. By a simple
substitution, we derive that ¬Ωk solves any actively (k − 1)-resiliently solvable
task in any environment. On the other hand, our Theorem 3 implies that every
task T that is not k-resilient solvable requires ¬Ωk, in any environment. Thus:

Corollary 1. Let 0 < k < n. Let task T be actively (k−1)-resilient solvable but
not k-resilient solvable. Then the weakest failure detector to solve T is ¬Ωk.

Corollary 1 implies that the (weak-termination) solvability of any participation-
oblivious task T in any environment is precisely captured by its set consensus
number : the maximal k such that T can be solved wait-free using read-write
registers and k-set agreement objects. If T ’s set consensus number is k, then the
weakest failure detector for solving T is ¬Ωk.

4 Related Work

The notion of the weakest failure detector was introduced by Chandra et al [7]
who showed that Ω, the failure detector that eventually outputs the same cor-
rect process id at every correct process, is the weakest failure detector to solve
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consensus (1-set agreement) in the message-passing model. An extension of this
result to the read-write shared memory model appears in [15,16,9].

Zieliński [12,13] introduced anti-Ω (¬Ωn−1 in our notation) and proved that
it is the weakest failure detector to solve wait-free (n − 1)-set agreement in ev-
ery environment. The result has been recently generalized to the case of ¬Ωk

and k-set agreement in [9]. 2 The reduction algorithm of [9] used both the fact
that ensuring weak termination for k-set agreement implies that every correct
process decides, and the “symmetry” of inputs: every process participating in a
k-set agreement run can give up its input value in favor of any input value it
sees without affecting the correctness of decision. In this paper we generalize the
result to any task that is not k-resiliently solvable with weak termination and
eliminated the input-symmetry requirement. Our reduction algorithm employed
the BG-simulation technique [4,5], and used the equivalence result in [14]. The
DAG-based simulation framework is done following the general strategy pro-
posed in [7], and generalizes our recent result [9]. Unlike [7], the computation
component of our algorithm bases solely on the fact that the given task is k-
resilient impossible. Our task characterization is based on the equivalence of
k-concurrency, k-set agreement, and active k-resilience established in [11].

5 In Place of Conclusion

Viewed collectively, our result imply that n-process participation-oblivious dis-
tributed tasks can be categorized into n equivalence classes, 1, . . . , n. For each
k = 1, . . . , n, the weakest failure detector for solving any task in class k is ¬Ωk.
Class 1 consists of universal task: whenever a universal task is solvable, any other
task is solvable [18]. Class n consists of trivial tasks that can be solved asyn-
chronously. More generally, a task T in class k is equivalent to k-set agreement:
any failure detector that solves T can solve k-set agreement, and vice versa. The
classes are totally ordered in decreasing strength: any failure detector that solves
a task T in class k solves any task in classes k′ ≥ k.

For our reduction algorithm, we make, however, certain restrictions on tasks.
First, we assume that a task has a finite set of inputs. We use the assumption
when we establish that inability to locate a non-deciding run implies that k-set
agreement is solvable k-resiliently which goes through exploring all possible runs
for k+1 BG simulators starting from all possible input vectors. Most of the tasks
we can think of either satisfy this requirement or can be shown equivalent to
such a task (cf. the equivalence between k + 1-valued and multi-valued k-set
agreement).

Another restriction, which looks more serious, is that we reason about solvabil-
ity assuming the weak termination condition, instead of conventional “strong”
termination (“every correct process eventually decides”). Intuitively, we need
the weak-termination assumption for our reduction algorithm because the set of
correct processes is not known in advance, so we may never be able to conclude
2 Two papers [10,17] concurrently derived similar results ([17] for the case of k-resilient

environments).
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that every correct process decided in the simulated run. We therefore consider
deciding any run in which at least one simulated process decides.

But circumventing a weak-termination k-resilient impossibility potentially re-
quires stronger failure detector than the conventional one, which makes our
result weaker: we can imagine k-resilient impossible tasks that can be solved
k-resiliently with weak termination. Consider, for instance, a task T k+1,k which
requires each subset of k+1 processes to solve (k+1, k)-set agreement (T 2,1, the
consensus variant of this task, is considered in [19]). It turns out that this task
is weak-termination solvable k-resiliently. In fact, there is an algorithm which
makes at least n− k − 1 processes decide in every k-resilient run: every process
tries to solve, one by one, k-set agreement for each set of k+1 processes it belongs
to using a k-resilient variant of BG-agreement [4,5]. Since at most k processes
fail, at most one of these (k + 1, k)-set agreements can block forever, and thus,
at least n− k − 1 processes that are not involved in the blocked agreement will
be able to terminate. However, it is impossible to make sure that at least n− k
processes produce outputs in every k-resilient run: otherwise, we could derive a
k-resilient k-set agreement algorithm, contradicting [2,3,4].

We can therefore consider a task T k+1,1
n−k , similar to T k+1,k, in which every

process starts with a set of n − k input values and produces a set of at least
n− k output values, so that all inputs (resp., outputs) belong to the same input
(resp., output) vector of T k+1,k such that the input-output realtion of T k+1,k

is preserved. It is immediate that the task is not solvable k-resiliently with weak
termination, and thus, by our Theorem 3, requires ¬Ωk to be solved.

The missing link now is to establish that every failure detector that circumvents
k-resilient impossibility for a task T , also circumvents the weak-termination im-
possibility for Tn−k. We cannot however expect this claim to hold for all tasks:
there are k-resilient impossible “asymmetric” tasks, specification of which do not
withstand permutations of process ids, that do not require ¬Ωk to be solved. But
we conjecture that for symmetric tasks, like T k+1,k, the claim is indeed true. This,
once proved, gives a natural generalization of the fundamental equivalence re-
sult [19] that solving consensus among any pair of processes requires exactly the
same amount of synchrony as solving consensus among all processes (Ω). So we
have here an intersting open question which can be seen as a generalization of the
“extended BG” equivalence [14] to the world of failure detectors.
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Abstract. A diversity of possible communication assumptions compli-
cates the study of algorithms and lower bounds for radio networks. We
address this problem by defining an Abstract MAC Layer. This service
provides reliable local broadcast communication, with timing guaran-
tees stated in terms of a collection of abstract delay functions applied
to the relevant contention. Algorithm designers can analyze their al-
gorithms in terms of these functions, independently of specific channel
behavior. Concrete implementations of the Abstract MAC Layer over
basic radio network models generate concrete definitions for these delay
functions, automatically adapting bounds proven for the abstract ser-
vice to bounds for the specific radio network under consideration. To
illustrate this approach, we use the Abstract MAC Layer to study the
new problem of Multi-Message Broadcast, a generalization of standard
single-message broadcast, in which any number of messages arrive at
any processes at any times. We present and analyze two algorithms for
Multi-Message Broadcast in static networks: a simple greedy algorithm
and one that uses regional leaders. We then indicate how these results
can be extended to mobile networks.

1 Introduction

The study of bounds for mobile ad hoc networks is complicated by the numer-
ous possible communication assumptions: Do devices operate in slots or asyn-
chronously? Do simultaneous transmissions cause collisions? Can collisions be
detected? Is message reception determined by geographical distances? Or is it
determined by a more complex criteria, such as signal-to-noise ratio? And so on.
This situation causes problems. Results for one set of communication assump-
tions might prove invalid for a slightly different set. In addition, these low-level
assumptions require algorithm designers to grapple with low-level problems such
as contention management, again and again, making it difficult to highlight in-
teresting high-level algorithmic issues. This paper proposes a possible solution
to these concerns. (A technical report with more details is also available [19].)
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The Abstract MAC Layer. We introduce an abstract MAC layer service for mo-
bile ad hoc networks (MANETs). We intend this service to be implemented over
real MANETs, with very high probability. At the same time, we intend it to
be simple enough to serve as a good basis for theoretical work on high-level
algorithms in this setting. The use of this service allows algorithm designers to
avoid tackling issues as contention management and collision detection. They
can instead summarize their effects with abstract delay bounds.

The abstract MAC layer service delivers transmitted messages reliably within
its local neighborhood, and provides feedback to the sender of a message in the
form of an acknowledgement that the message has been successfully delivered
to all nearby receivers. The service does not provide the sender with any feed-
back about particular recipients of the message. The service provides guaranteed
upper bounds on the worst-case amount of time for a message to be delivered
to all its recipients, and on the total amount of time until the sender receives
its acknowledgement. It also may provide a (presumably smaller) bound on the
amount of time for a receiver to receive some message among those currently
being transmitted by neighboring senders. These time guarantees are expressed
using delay functions applied to the current amount of contention among senders
that are in the neighborhoods of the receivers and the sender.

To implement our abstract MAC layer over a physical network one could use
popular contention-management mechanisms such as carrier sensing, backoff,
receiver-side collision detection with NACKs, or perhaps even network coding
methods, such as the ZigZag Decoding approach of Gollakota and Katabi [11].
Our MAC layer encapsulates the details of these mechanisms within the service
implementation, presenting the algorithm designer with a simple abstract model
that involves just message delivery guarantees and time bounds.1 We believe
that this MAC layer service provides a simple yet realistic basis for theoretical
work on high-level algorithms and lower bounds for MANETs.

Multi-Message Broadcast and Regional Leader Election. In this paper, we vali-
date our formalism by studying two problems: Multi-Message Broadcast (MMB)
and Regional Leader Election (RLE). The MMB problem is a generalization of
single-message broadcast; c.f., [1,2,3,4,6,5,7,8,16,14,15,17,18]. In the MMB prob-
lem, an arbitrary number of messages originate at arbitrary processes in the
network, at arbitrary times; the problem is to deliver all messages to all pro-
cesses. We present and analyze two MMB algorithms in static networks, and
indicate how the second of these can be extended to mobile networks.

Our first MMB algorithm is a simple greedy algorithm, inspired by the strat-
egy of the single-message broadcast algorithm of Bar-Yehuda et al. [3]. We an-
alyze this algorithm using the abstract MAC layer delay functions. We obtain
an upper bound on the time for delivery of each message that depends in an

1 Note that MAC layer implementations are usually probabilistic, both because as-
sumptions about the physical layer are usually regarded as probabilistic, and because
many MAC layer implementations involve random choices. Thus, these implementa-
tions implement our MAC layer with very high probability, not absolute certainty.
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interesting way on the progress bound—the small bound on the time for a re-
ceiver to receive some message. Specifically, the bound for MMB to broadcast
a given message m, is of the form O ((D + k)Fprog + (k − 1)Fack), where D is
the network diameter, k is a bound on the number of messages whose broadcast
overlaps m, and Fack and Fprog are upper bounds on the acknowledgement and
progress delay functions, respectively. Note that a dependency on a progress
bound was implicit in the analysis of the single-message broadcast algorithm
in [3]. Our use of the abstract MAC layer allows us to make this dependency
explicit.

Our second MMB algorithm achieves better time complexity by exploiting
geographical information; in particular, it uses a solution to the RLE problem
as a sub-protocol. In the RLE problem, the geographical area in which the net-
work resides is partitioned statically into regions; the problem is to elect and
maintain a leader in each occupied region. Regional leaders could be used to
form a backbone network that could, in turn, be used to solve many kinds of
communication and coordination problems. We give an RLE algorithm whose
complexity is approximately bFprog, where b is the number of bits required to
represent process ids.

Using the RLE algorithm, our second MMB algorithm works as follows: After
establishing regional leaders, the MMB algorithm runs a version of the basic
greedy MMB algorithm, but using just the leaders. In order to transfer messages
that arrive at non-leader processes to leaders, all the processes run a collect
sub-protocol in parallel with the main broadcast algorithm. The complexity of
the resulting MMB algorithm reduces to O (D + k + bFprog + Fack), a significant
improvement over MMB without the use of leaders.

Finally, to extend our second MMB algorithm to the mobile case, we provide
a preliminary theorem that says that the MMB problem is solved given certain
restrictions on mobility and message arrival rates.

Contributions. The contributions of this paper are: (a) the definition of the
abstract MAC layer, and the suggestions for using it as an abstract layer for
writing mobile network algorithms, and; (b) new algorithms for Multi-Message
Broadcast and Regional Leader Election, and their analysis using the abstract
MAC Layer.

2 Model

We model a Mobile Ad Hoc Network (MANET) using the Timed I/O Automata
(TIOA) formalism. Our model captures n user processes, which we label with
{1, ..., n}, in a mobile wireless network with only local broadcast communication.

2.1 System Components

Our system model consists of three component automata, the network automa-
ton, the abstract MAC layer automaton, and the user automaton, connected as
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Fig. 1. The MANET system

shown in Figure 1. The network automaton models the relevant properties of
the physical world: time, mobile node locations, and physical network behavior.
It provides a physical layer interface for low-level communication on the radio
channel. It outputs the time and mobile node locations; we assume here that
this information is accurate. The network automaton comes equipped with a
pair of functions fG and fG′ that map from states to directed graphs whose
vertices V are the mobile nodes. The graph G = (V, E) = fG(s) is the communi-
cation graph in state s, indicating the processes that are within communication
range in s. The graph G′ = (V, E′) = fG′(s) is the interference graph in state s,
indicating the processes within interference range. We consider communication
separately from interference because in many practical radio network models the
interference range exceeds the reliable communication range.2

The abstract MAC layer automaton mediates the communication of messages
between the user processes and the network. Each user process i interacts with
the MAC layer automaton via MAC layer inputs bcast(m)i and abort(m)i and
MAC layer outputs rcv(m)i and ack(m)i, where m is a message from some mes-
sage alphabet. (The abort is used in cases where the sender is satisfied that
“enough” neighbors have already received the message, and so is willing to ter-
minate efforts by the MAC layer to continuing broadcasting.) The abstract MAC
layer automaton connects to the network through the physical layer interface.
Finally, the user automaton models n user processes, numbered 1, . . . , n. Each
process i connects to the MAC layer through the (bcast, abort, rcv, ack) in-
terface described above, and might also receive the network’s location and time
outputs.

2 To capture some physical layer models, notably a Signal to Interference-plus-Noise
Ratio model, we might need to extend our definition of G′ to allow weights on the
edges; that is, capture not just who might interfere but also how much interference
they contribute. We do not make this extension here but leave it as interesting future
work.
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2.2 Guarantees for the Abstract MAC Layer

We assume that the user automaton guarantees some basic well-formedness prop-
erties of system executions, namely, that each execution is user-well-formed in
the sense that: (a) it contains at most one bcast event for each message m (all
messages are unique); (b) No process i performs more than one abort(m)i for
any message m, and performs an abort(m)i only after a bcast(m)i but not after
an ack(m)i; and (c) No process submits a bcast until after its previous bcast (if
any) ended with an abort or ack.

The composition of an abstract MAC layer and network automaton, which
we call a MAC layer, must ensure the constraints described below, for any user-
well-formed execution α. To begin, we assume a cause function that assigns to
every rcv(m)j event in α a preceding bcast(m)i event, where i �= j, and that
assigns to each ack(m)i and abort(m)i a preceding bcast(m)i. This function must
satisfy:

1. Receive correctness: Suppose that bcast(m)i event π causes rcv(m)j event
π′ in α. Then: (a) Proximity: At some point between events π and π′,
(i, j) ∈ E′ (notice, we use the edge set from the interference graph, E′, in-
stead of the edge set from the communication graph, E, because the former
captures edges where communication might occur, while the latter captures
edges where communication is guaranteed to occur); (b) No duplicate re-
ceives: No other rcv(m)j event caused by π precedes π′; and (c) No receives
after acknowledgements: No ack(m)i event caused by π precedes π′;

2. Acknowledgment correctness: Suppose that bcast(m)i event π causes
ack(m)i event π′ in α. Then: (a) Guaranteed communication: If for every
point between events π and π′, (i, j) ∈ E (the edge set of the communi-
cation graph), then a rcv(m)j event caused by π precedes π′; (b) No du-
plicate acknowledgements: No other ack(m)i event caused by π precedes
π′; and (c) No acknowledgements after aborts: No abort(m)i caused by π
precedes π′;

3. Termination: Every bcast(m)i causes either an ack(m)i or an abort(m)i.

We also impose upper bounds on the time from a bcast(m)i event to its
corresponding ack(m)i and rcv(m)j events. These bounds are expressed in terms
of the contention involving i and j during the broadcast interval. Let frcv, fack,
and fprog be monotonically non-decreasing functions from natural numbers to
nonnegative reals. We use these to bound the delay for a specific message to be
delivered, for an acknowledgement to be received, and for some message among
many to be received, all with respect to a given amount of contention. For many
MAC layer implementations, fprog is smaller than fack, because the time to
deliver some message is smaller than the time to deliver a specific message. Let
εa be a small constant, used to bound the amount of time beyond an abort when
the message could still be received somewhere.

We define a “message instance” to be a matched pair of bcasti and acki, or
bcasti and aborti events. Let α be an execution, α′ a closed execution fragment
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within α and j a process. Then contend(α, α′, j) is the set of message instances
in α that intersect with fragment α′, and such that (i, j) ∈ E′ at some point in
this intersection, where i is the sender from the instance in question. These are
the message instances that might reach j during α′. Similarly, connect(α, α′, j) ⊆
contend(α, α′, j) is the set of message instances such that α′ is entirely contained
between the corresponding bcasti and acki events and (i, j) ∈ E for the duration
of α′, where i is the sender. These are the messages instances that must reach
j if α′ is long enough. For an execution α and events π and π′, α[π, π′] denotes
the execution fragment within α that spans from π to π′.

We can now formalize our time bounds with the receive, acknowledgment, and
progress properties. These bound the time for a specific message to be received,
a specific message to be acknowledged at the sender, and some message from
among many to be received, respectively.

5. Receive: Suppose that a bcast(m)i event π causes a rcv(m)j event π′ in α.
Then the time between π and π′ is at most frcv(c), where c is the number
of distinct senders of message instances in contend(α, α[π, π′], j). Thus, the
bound for j’s receipt of m grows with the number of nearby processes (in-
coming neighbors, according to G′) that have message instances intersecting
with the instance in question. Also, if π causes an abort(m)i event π′′, then
π′ occurs at most εa time after π′′.

6. Acknowledgement: Suppose that a bcast(m)i event π causes an ack(m)i

event π′ in α. Let ackcon be the set containing i and every process j such
that there exists a rcv(m)j with cause π. Then the time between π and
π′ is at most fack(c), where c is the number of distinct senders of message
instances in

⋃
j∈ackcon contend(α, α[π, π′], j). This bound is similar to the

receive bound, except that we now consider the contention at the sender
and at all receivers. This is intended to allow enough time for the receivers
to somehow communicate their receipt of the message back to the sender.

7. Progress: For every closed fragment α′ within α, for every process j, and
for every integer c ≥ 1, it is not the case that all three of the following
conditions hold:

(a) The total time described by α′ is strictly greater than fprog(c); (b)
The number of distinct senders of message instances in contend(α, α′, j) is at
most c, and connect(α, α′, j) is non-empty; and (c) No rcv(m)j event from
a message instance in contend(α, α′, j) occurs by the end of α′.

Thus, the time bound for j to receive some message (when at least one
message is being sent by an incoming neighbor in G), grows with the total
number of processes that are in interference range.

Fixed Bounds on Message Delivery. In some results, we will use constant upper
bounds Frcv, Fack, and Fprog on frcv, fack, and fprog, respectively, all defined
with respect to a particular execution α. These upper bounds take the maximum
values of the functions over all graphs that occur in α and all possible amounts
of contention, as defined by the node degrees that occur in those graphs. In the



54 F. Kuhn, N. Lynch, and C. Newport

design of algorithms, we sometimes use F+
rcv, F+

ack, F+
prog, which are defined with

respect to all executions of a given network automaton.

2.3 Implementing an Abstract MAC Layer

It is beyond the scope of this paper to offer a detailed implementation of an
abstract MAC layer automaton. Here we discuss, only informally, some basic
ideas for implementations with the aim of providing some intuition regarding
the type of concrete definitions our delay functions might adopt in practice. We
consider the simple case where G and G′ are the same for all network states
(that is, the network is static) and undirected, and G = G′. (See [12] for an
example of how a scheme could be adapted to tolerate mobility and transient
faults.) We assume a physical network that corresponds to the slotted radio
broadcast model of [2,3,10,20,22,13]. This model assumes that communication
occurs in synchronized slots, and that a message from a sender i is correctly
received by a neighbor j in a time slot s if and only if i is the only neighbor of
j broadcasting during s. The model includes no collision detection—a collision
cannot be distinguished from silence.

In this setting, a simple Decay strategy [2,3] can be used to implement the
abstract MAC layer. In this approach, time is divided into synchronized epochs
of Θ(log ∆) time slots, where ∆ is the maximum degree in G. A process with
a message to broadcast starts broadcasting at the beginning of the next epoch.
During an epoch, a sending process decreases its probability of broadcasting
exponentially, from 1 to 1/∆. It is guaranteed that every process with at least
one neighbor sending a message during an epoch receives at least one message,
with constant probability. Thus, the progress delay function fprog is O(log ∆)
(with high probability). The receive and acknowledgement delay functions, frcv

and fack, are both O(∆ log ∆).

2.4 Multiple Abstract MAC Layer Automata

To simplify the analysis of multiple user protocols running on the same physical
network, it is sometimes useful to include several independent abstract MAC
automata in the same system. In this scheme, each protocol connects with its
own MAC automaton, all of which connect with the same network automa-
ton. Each MAC automaton satisfies the specifications given above, with respect
to the common network. This approach allows an algorithm designer to prove
properties of the behavior of the individual protocols and assert that they still
hold when the protocols are combined, thus evading issues of contention among
the protocols. Note that there are practical realizations of multiple MAC au-
tomata. For example, most radio-equipped computing devices have access to
many communication frequencies. If a device has several transmitters, it can
execute several simultaneous MAC protocols on independent frequencies. If the
device has a single transceiver and/or access to only a single frequency, it can use
a Time-Division Multiplexing scheme to partition use of the frequency among
the logical MAC layers.
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3 Multi-Message Broadcast

The Multi-Message Broadcast (MMB) problem assumes that the environment
submits messages to the user processes at arbitrary times during an execution.
The goal is to propagate every such message to all of the users in the network.
In this section we assume a static network, that is all states generate the same G
and G′ graphs. Furthermore, we assume G = G′ and the graphs are undirected.
We use the notation D(G) to refer to the diameter of graph G.

An MMB protocol for a message alphabet M is a user automaton whose
external interface includes an arrive(m)i input and deliver(m)i output for each
user process i and message m. We say that an execution of an MMB protocol is
MMB-well-formed if it contains at most one arrive(m)i event for each m. (Each
broadcast message is unique). An MMB protocol solves the MMB problem if, for
every MMB-well-formed execution: (a) For every arrive(m)i and every process
j, there is a deliver(m)j ; and (b) For every m and j, there is at most one
deliver(m)j , and it comes after some arrive(m)i.

Our first MMB algorithm is a simple greedy algorithm, inspired by the single-
message broadcast algorithm of Bar-Yehuda et al. [2,3].

The Basic Multi-Message Broadcast (BMMB) Protocol
Every process i maintains a FIFO queue named bcastq and a set named rcvd.
Both are initially empty. If process i is not currently broadcasting a message
(i.e., not waiting for an ack from the MAC layer) and bcastq is not empty, it
broadcasts the message at the head of the queue. If i receives an arrive(m)i

event it immediately performs a deliver(m)i output and adds m to the back
of bcastq. It also adds m to rcvd. If i receives a broadcast message m from the
MAC layer it first checks rcvd. If m ∈ rcvd it discards it. Else, i immediately
performs a deliver(m)i event, and adds m to the back of bcastq and to the
rcvd set.

Theorem 1. The BMMB protocol solves the MMB problem.

The proof is presented in the full version of this paper [19]. We continue with
a collection of definitions used by our complexity proof. In the following, let α
be some MMB-well-formed execution of the BMMB protocol composed with a
MAC layer.

The get Event. We define a get(m)i event with respect to α, for some arbitrary
message m and process i, to be one in which process i first learns about message
m. Specifically, get(m)i is the first arrive(m)i event if message m arrives at
process i, otherwise, get(m)i is the first rcv(m)i event.

The clear Event. Let m ∈ M be a message for which an arrive(m)i event
occurs in α. We define clear(m) to describe the final ack(m)j event in α for any
process j.3

3 Notice, by the definition of BMMB if an arrive(m)i occurs then i eventually broad-
casts m, so ack(m)i occurs. Furthermore, by the definition of BMMB, there can be
at most one ack(m)j event for every process j. Therefore, clear(m) is well-defined.
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The Set K(m). Let m ∈ M be a message such that arrive(m)i occurs in α for
some i. We define K(m) = {m′ ∈ M : an arrive(m′) event precedes the last
deliver(m) event and the clear(m′) event follows the arrive(m)i event}. That
is, K(m) is the set of messages whose processing overlaps the interval between
the the arrive(m)i event and the last deliver(m) event.

The obvious complexity bound would guarantee the delivery of a given mes-
sage m in O(D(G)kFack) time, for k = |K(m)|, as there can be no more than
k messages ahead of m at each hop, and each message is guaranteed to be sent,
received, and acknowledged within Fack time. The complexity theorem below
does better. By separating kFack from the diameter, D(G), instead multiplying
by the smaller progress bound, Fprog. This captures an implicit pipelining effect
that says some message always makes progress in Fprog time.

Theorem 2. Let k be a positive integer and α be an MMB-well-formed execution
of the BMMB protocol composed with a MAC layer. Assume that an arrive(m)i

event occurs in α. If |K(m)| ≤ k then the time between the arrive(m)i and the
last deliver(m)j is at most:

(D(G) + 2k − 2)Fprog + (k − 1)Fack.

Theorem 2 is a direct consequence of the following lemma.

Lemma 1. Let α be an MMB-well-formed execution of the BMMB protocol com-
posed with a MAC layer. Assume that at time t0, arrive(m)i0 occurs in α for
some message m ∈ M and some process i0. Let j be a process at distance
d = dG(i0, j) from the process i0. Further, let M′ ⊆ M be the set of messages
m′ for which arrive(m)i0 precedes clear(m′). For integers � ≥ 1, we define

td,� := t0 + (d + 2�− 2) · Fprog + (�− 1) · Fack.

For all integers � ≥ 1, at least one of the following two statements is true:

(1) The get(m)j event occurs by time td,� and ack(m)j occurs by time td,�+Fack.
(2) There exists a set M′′ ⊆ M′, |M′′| = �, such that, for every m′ ∈ M′′,

get(m′)j occurs by time td,�, and ack(m′)j occurs by time td,� + Fack.

Proofs of Lemma 1 and Theorem 2 are presented in the full version of the
paper [19].

4 Regionalized Networks

Our general model specifies that the network automaton reports node locations,
but does not constrain the geography of these locations or their relationship to
G and G′. Here we define such constraints; we use these to study the leader
election and optimized MMB protocols in Sections 5 and 6, respectively.

Fix L, a set of locations (e.g., points in the plane), R, a set of regions ids, and
reg, a region mapping that maps locations to region ids. Let NR ⊆ N ′

R be two
symmetric neighbor relations among regions in R. We call the graph Gregion =
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(R, NR) a region communication graph and the graph G′
region = (R, N ′

R) a region
interference graph. We assume that Gregion is connected and that the maximum
node degree in G′

region is constant.
We define a physical network N to be regionalized (with respect to L, R, reg,

NR, and N ′
R) provided that the following hold. N uses locations in L; in any

particular state of N , let loc(i) denote the location of node i as encoded by N .
Then at any point in any execution of N : (a) If reg(loc(i)) = reg(loc(j)) or
(reg(loc(i)), reg(loc(j))) ∈ NR, then (i, j) ∈ E; and (b) If (i, j) ∈ E′, then either
reg(loc(i)) = reg(loc(j)) or (reg(loc(i)), reg(loc(j))) ∈ N ′

R. That is, if two nodes
are in the same region or neighboring regions in the region communication graph
Gregion, then they must be connected in G, and if two nodes are connected in
G′ then they are in the same or neighboring regions in the region interference
graph G′

region. Thus, Gregion describes which regions must be in communication
range while G′

region describes which regions might be in interference range.

Fixing a Regionalized Network. For Sections 5 and 6 we fix a static network N
that is regionalized with respect to some parameters L, R, reg, NR, and N ′

R.
As in Section 3 we assume that G = G′ and the graphs are undirected. We
also assume that the network occupies every region in every execution. When
we refer to MAC layers in these sections, we implicitly mean MAC layers that
include N . When we refer to any region r, we implicitly assume that r ∈ R.

5 Leader Election

The BMMB protocol does not take advantage of location information. In Section 6
we describe a new MMB algorithm, the Regional Multi-Message Broadcast algo-
rithm, which leverages this information to achieve a better complexity bound. The
Regional MMB algorithm uses a backbone of leaders—oneper region of the region-
alized network—that are each elected using a local leader election protocol. This
leader backbone forms a connected dominating set (CDS), as studied, for example,
in [23,21,20,24,9]. Our algorithm, however, is simpler than those in prior work, be-
cause we use location information and the abstract MAC layer masks contention.

An Regional Leader Election (RLE) protocol is a user automaton that has a
leader(r)i and notleader(r)i output for every process i and every region r. Such
a protocol solves the RLE problem for region r by time t if in every execution,
by time t, exactly one process i in region r outputs leader(r)i, and every other
process j in region r outputs notleader(r)j .

We begin by describing the Fast Regional Leader Election (FRLE) protocol
whose complexity depends only on F+

prog (which we typically assume to be much
smaller than F+

ack), and the size of the id space. In the following, let b be the
number of bits needed to describe the id space, and let εb be a fixed small
constant. We use this latter value in both leader election protocols to add a
small buffer after the time required to receive a message.4

4 This is required by a technicality of the TIOA definition that allows multiple events
to occur at the same time.
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The r-Fast Regional Leader Election (FRLE) Protocol
In the r-FRLE protocol for some region r, each process i in r behaves as follows.
Let ε′

a = εa + εb. Divide the time interval from 0 to b(F+
prog + ε′

a) into b phases
each of length Fprog + ε′

a. We associate phase p with bit p of the id space. At
the beginning of phase 1, process i broadcasts the phase number and its id if it
has a 1 bit in location 1 of its id. Otherwise it does not broadcast. After F+

prog

time has elapsed in the phase, if i broadcast and has not yet received an ack,
it submits an abort. At the end of the phase (i.e., ε′

a time after the potential
abort), i processes its received messages. If i did not broadcast in this phase
yet received at least one message, it outputs notleader(r)i and terminates the
protocol. Otherwise, it continues with the next phase, which proceeds the same
as before with respect to bit position 2. This continues until i terminates with
a notleader(r)i output or finishes the last phase without terminating. In the
latter case, i submits a leader(r)i output.

Theorem 3. For any region r, the r-FRLE protocol solves the RLE problem for
region r by time b(F+

prog + εa + εb).

FRLE works correctly because it is impossible for all processes that are non-
terminated at the beginning of a phase to submit notleader(r) outputs at the
end of the phase. Moreover, two or more processes cannot survive all b phases to
become leaders, because their ids differ in at least one bit position. The formal
correctness proof is presented in the full version of the paper [19].

We continue by describing the Complete Regional Leader Election (CRLE)
Protocol, which elects a leader in every region. It uses FRLE within each region
and a Time-Division Multiplexing (TDM) strategy to avoid interference among
the FRLE instances. As before, let b be the bits needed to describe the id space.
This protocol uses a minimal-sized region TDMA schedule T defined with respect
to the region interference graph for the regionalized network.5 (Notice, by the
definition of regionalized, |T | = O(1).)

The Complete Regional Leader Election (CRLE) Protocol
In the CRLE protocol each process i behaves as follows. We dedicate b(F+

prog +
ε′
a) time to each set in T . Process i does nothing until the start of the time

dedicated to the single set in T that contains i. Process i runs the reg(loc(i))-
FRLE protocol during the time interval dedicated to this set. It first adds,
however, a fixed offset to the time input used by FRLE to transform the time
at the beginning of the interval to evaluate to 0, as expected by FRLE.

Theorem 4. The CRLE protocol solves RLE problem for every region by time
Θ
(
b · (F+

prog + εa)
)

The proof is presented in the full version [19].

5 That is, T describes minimally-sized sequence of sets of region ids such that: (a)
every region id shows up in exactly one set; (b) no set contains two region ids that
are neighbors in the region interference graph.
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6 Regional Multi-Message Broadcast

The Regional MMB (RMMB) protocol runs a version of the basic greedy MMB
algorithm over a connected backbone of leaders elected by the CRLE protocol.
To transfer messages that arrive at non-leader processes to leaders, the processes
run a Collect protocol in parallel with the main broadcast algorithm. The com-
plexity of RMMB is just O (D + k + bFprog + Fack), a significant improvement
over Basic MMB. The improvement arises because RMMB confines the propa-
gation of messages to the low-degree backbone of leaders elected by CRLE.

The Regional Multi-Message Broadcast (RMMB) Protocol
The protocol uses three independent MAC automata (see Section 2.4), which
we call the Collect, Leader, and Broadcast MAC automata. We use the Leader
MAC to elect regional leaders using CRLE, the Broadcast MAC to run BMMB
on the leader backbone once CRLE terminates, and the Collect MAC to trans-
fer messages that arrive at non-leaders to the regional leaders. The Collect pro-
tocol runs concurrently with the CRLE and BMMB protocols. Before CRLE
completes, all processes running Collect queue messages in case they are elected
leader. Each process i in region r maintains a broadcast queue and an arrive
queue, both initially empty. It also maintains a leader flag, initially false, and
two sets, delivered and rcvd, both initially empty.
Leader Election: Starting at time 0, process i executes the CRLE leader
election protocol, using the Leader MAC. At the end of the protocol, process
i sets its leader flag to true if and only if it performed a leader(r)i output.
Collect: When an arrive(m)i or rcv((m, r))i event occurs, process i adds the
message (m or (m, r)) to its arrive queue. When i’s arrive queue is non-empty
it does the following. If the element at the head of the queue is a single message
m′, process i removes m′ from the arrive queue, outputs deliver(m′)i, adds
m′ to the delivered set and to the broadcast queue, and propagates m′. Then
it moves on to the next element in the arrive queue. The propagate step
depends on the value of the leader flag: If leader = true, then propagate is
a noop. If leader = false then i broadcasts (m′, r) using the Collect MAC,
and then waits for the corresponding ack((m′, r))i. If the element at the head
of the arrive queue is (m′, r), then i removes (m′, r) from the queue, outputs
deliver(m′)i, adds m′ to the delivered set and to the broadcast queue. (It does
not propagate in this case.)
Broadcast: Process i waits for the fixed amount of time required for the CRLE
protocol to complete. If i has leader = true at this point, then it executes
the BMMB protocol using the Broadcast MAC, using the broadcast queue
maintained by the Collect protocol, and using its delivered set in addition to
the list rcvd used by BMMB to determine when to pass along a message. If i
is not a leader, then for each m received from the Broadcast MAC, if m is not
in the delivered set then it outputs deliver(m)i and adds m to the delivered
set.

The proofs to the following theorems are presented in the full version of the
paper [19].

Theorem 5. The RMMB protocol solves the MMB problem.



60 F. Kuhn, N. Lynch, and C. Newport

For the time complexity, the key observation is that RMMB executes on a back-
bone of leaders. So the contention on the broadcast MAC automaton is at most
the maximum degree of G′

region, which is constant, reducing the Fack and Fprog

to constants. For the following theorem, we assume that the rate of arrive events
at each process is O(1/Fack), preventing any process from having more than a
constant number of messages in its arrive queue at once. Let K(m) and D(G)
be defined the same as in Section 3.

Theorem 6. Let k be a positive integer and α be an MMB-well-formed execu-
tion of the RMMB protocol composed with three MAC automata and a network.
Assume that an arrive(m)i event occurs in α. If |K(m)| ≤ k then the length of
the interval between arrive(m)i and the last deliver(m)j is:

O
(
max{b(F+

prog + εa), Fack}+ D(G) + k
)
.

7 Adapting RMMB for Mobile Networks

In the full version of this paper [19] we describe mobile RMMB—a modification
of RMMB for a mobile setting. In addition to the protocol description, we prove
a preliminary theorem that establishes bounds on RMMB’s message delivery,
under certain mobility constraints. We reproduce the theorem below to provide
intuition regarding the type of results that can be proved in a mobile setting.
(The full details of the protocol, and the proof of theorem, are in [19].)

In the statement below, we assume each process maintains a region exit bound
state variable. This variable contains a time value that is no later than the time
when the process will next exit its current region. We assume that while a process
remains within a region, this value does not change. We say a network is T -stable,
for some nonnegative real T , if and only if every process calculates an exit bound
at least T past the current time upon entering a new region, and for all regions
and for all times there exists at least one process with an exit bound at least T
past the current time. Finally, we use tCF to describe the running time of CRLE
and D to describe the maximum diameter of G in the mobile network.

We obtain the following theorem:

Theorem 7. Let k be a positive integer, Fmax
ack and tmax

CF be nonnegative reals,
and T = (D + 1)2kFmax

ack + kFmax
ack . If we restrict the rate of arrive events

such that no more than k such events happen in any interval of length T , and
consider only regionalized (2kFmax

ack + max{kFmax
ack , tmax

CF })-stable networks with
Fack ≤ Fmax

ack , and tCF ≤ tmax
CF , then the mobile RMMB protocol, executed with

kFmax
ack + tmax

CF passed as the parameter to the mobile leader election sub-protocol,
solves the MMB problem.

8 Conclusion

We presented the abstract MAC layer for MANETs. This service is intended
to be implemented over real MANETs, with high probability. It abstracts the
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complexities of programming for this environment—including contention man-
agement and collision behavior—allowing the algorithm designer to focus on the
issues unique to the problem being solved.

This approach generates many interesting open questions. For example, ex-
ploring how we can use the layer to implement basic primitives such as neighbor
discovery and unicast communication, or complex protocols such as spanning
trees and dominating sets. Extensions to the MMB problem, such as calculat-
ing throughput bounds and the cost of sender acks, are also important. Another
direction is to improve the abstract MAC layer formalism itself. We might gener-
alize the G and G′ model to capture the effects of signal to interference-plus-noise
ratios (SINR), or perhaps replace the deterministic delay functions with proba-
bility distributions over the different possible delays. This latter change would
support more advanced analysis of the system’s probabilistic behavior. Finally,
it will prove useful to analyze specific MAC layer strategies for specific radio
network models, providing concrete definitions for the delay functions.
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University of Lisboa, Faculdade de Ciências, LASIGE

Abstract. Wireless ad-hoc networks are being increasingly used in di-
verse contexts, ranging from casual meetings to disaster recovery oper-
ations. A promising approach is to model these networks as distributed
systems prone to dynamic communication failures. This captures transi-
tory disconnections in communication due to phenomena like interference
and collisions, and permits an efficient use of the wireless broadcasting
medium. This model, however, is bound by the impossibility result of
Santoro and Widmayer, which states that, even with strong synchrony
assumptions, there is no deterministic solution to any non-trivial form
of agreement if n − 1 or more messages can be lost per communication
round in a system with n processes. In this paper we propose a novel way
to circumvent this impossibility result by employing randomization. We
present a consensus protocol that ensures safety in the presence of an un-
restricted number of omission faults, and guarantees progress in rounds
where such faults are bounded by f ≤ �n

2 �(n− k)+ k − 2, where k is the
number of processes required to decide, eventually assuring termination
with probability 1.

1 Introduction

Wireless ad-hoc networks are being increasingly used in diverse contexts, ranging
from casual meetings to disaster recovery operations. The ability of distributed
processes to execute coordinated activities despite failures is important to dis-
tributed systems, including those based in wireless ad-hoc networks. Such co-
ordination requires agreement among the processes, a problem that has taken
many incarnations in the literature: consensus, Byzantine generals, and interac-
tive consistency are just a few examples [12,17,23]. The prevalent aspect of these
formulations is that at some point in their execution the processes involved have
to agree on a common item of information.

In the traditional models for distributed systems, faults are static and compo-
nent-bound, i.e., a fault is associated to a particular component that is forever
considered faulty. The faulty component can be a process or a communication
link (e.g., [23,24]). These models are referred to as component failure models.
For systems based on these models to operate correctly, a certain number of
components must not exhibit failures during their entire operation time.
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This approach, however, is not well adapted to wireless ad-hoc networks. First,
in these environments, faults have a more dynamic and transient nature. The
nodes are usually subject to momentary disconnection due to node mobility and
other environmental phenomena such as electromagnetic interference, fading,
collisions, etc. These events may result in message loss or corruption, but should
not be sufficient to permanently assume a process or link as faulty, specially
because they can possibly affect many processes during the lifetime of the system.
Due to the emergence of wireless networks, there is an increasing need for models
that accurately capture the reality of these environments.

Second, the openness of wireless ad-hoc networks provides a natural broad-
casting medium, where the cost of transmitting a message to multiple processes
can be just the same of transmitting it to a single process, as long as they are
within communication range. To take advantage of this feature, it becomes neces-
sary to depart from the common modeling assumption of reliable point-to-point
channels, usually employed by the component failure models. Developing a sys-
tem based on this assumption forces the implementation of end-to-end message
delivery mechanisms (similar to TCP), which significantly increase the medium
access contention, impairing the overall performance. The unreliability inherent
to radio communications has to be dealt with in some other way. Models that
assume unreliable communication links are more adjusted to wireless network-
ing. Tolerance to message loss becomes integrated within the semantics of the
algorithms, instead of being abstracted by typically inefficient implementations.

More adapted to the wireless ad-hoc environments is the communication fail-
ure model [28,27]. This model differs from the component failure models in the
sense that it focuses on the effects of faults rather than their source. On message-
passing systems, any failure, regardless of its nature, will ultimately manifest
itself as transmission faults. For example, a process crash will manifest into a
series of transmission omission faults with the crashed process as sender, and a
process that is attacked and falls under the control of a maliciously adversary
may manifest into a series of transmission corruption faults where the contents
of the messages are modified relative to the original protocol. Such an approach
implicitly allows every component of the system to eventually fail. The only re-
striction is placed on the number of faults that simultaneously manifest in the
system.

Research in this model, however, has been limited mainly due to two funda-
mental reasons. When the model was introduced by Santoro and Widmayer in
1989, a stringent impossibility result came along with it [28]. This result applies
to the k-agreement problem among n processes, in which k out of n processes
must agree on a binary value v ∈ {0, 1}. The Santoro-Widmayer impossibility re-
sult applies to non-trivial agreement, i.e., for k > �n/2�. It states that there is no
finite time deterministic algorithm that allows n processes to reach k-agreement
if more than n − 2 transmission failures occur in a communication step. This
is a very discouraging result since the crashing of a single process necessarily
results in n− 1 transmission failures, rendering this form of agreement impossi-
ble. Moreover, this result is produced under strong time assumptions where both
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the processes’ relative processing times and communication delays are bound by
known constants (i.e., a synchronous system).

The second reason has probably to do with some lack of practical interest of
this model prior to the emergence of wireless ad-hoc communication. For dis-
tributed systems based on wired networks, it was safe and convenient to assume
end-to-end reliable delivery mechanisms, since the implementation of such mech-
anisms did not represent a significant performance overhead. Interestingly, these
models are also bound by an impossibility result: the FLP result [13]. It states
that consensus is impossible to solve deterministically in asynchronous systems
(i.e., where there are no assumptions about the processes’ relative processing
times and communication delays) if just a single process can fail.

Thus, on one hand we have asynchronous systems, bound by the FLP impossi-
bility result, where agreement is impossible even if communication is reliable. On
the other hand, we have systems that are synchronous but the communication
is unreliable so they are bound by the Santoro-Widmayer impossibility result,
also making agreement impossible. While several solutions have been proposed
over the years to circumvent the FLP result (e.g., partial synchrony models [10],
failure detection [7], wormholes [21]), the result of Santoro and Widmayer, for
the reasons stated above, has not received comparable attention. Nevertheless,
getting past the current upper bound of n−2 transmission failures is paramount
to the embracing of the communication failure model for emergent networking
environments.

This paper proposes a protocol that circumvents the Santoro-Widmayer im-
possibility result in both a practical and efficient way. We achieve this by em-
ploying randomization, which has never been applied before in the context of the
communication failure model. The Santoro-Widmayer impossibility result rules
out deterministic solutions to agreement in this model. Randomization takes a
probabilistic approach to the problem, and has been used in the past to solve
consensus in FLP-bound systems (starting with [3,25]). It overcomes previous
limitations by supplying processes with access to random information (e.g., a
coin flip) and combining this with a refinement of the problem statement where
a decision is ensured with a probability of 1.

The paper describes a randomized binary k-consensus algorithm that tolerates
omission faults. The algorithm allows at least k processes to decide on a common
binary value in a system with n processes such that k > n

2 . The safety properties
of consensus (i.e., validity and agreement) are ensured even with an unrestricted
number of faults, while the liveness property (i.e., termination) is ensured if the
number of faults per round does not exceed �n

2 �(n−k)+k−2. This algorithm is
adequate for wireless ad-hoc networks because it allows one to take advantage of
the broadcasting medium in an efficient way and, at the same time, ensures safety
under severe communication problems that lead to many message losses. The
termination is achieved with probability 1 when communication becomes stable,
i.e., when the threshold above is satisfied. Furthermore, the algorithm is efficient
in the sense that it is fast-learning [16], i.e., it terminates in 2 communication
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steps under favorable conditions (i.e., with no message losses, benign patterns
of message losses, and/or all processes having the same initial value).

The remainder of the paper is organized as follows: Section 2 discusses the
related work. Section 3 formalizes the k-consensus problem, and the next sec-
tion presents the system model. Section 5 describes the algorithm, and the cor-
rectness proofs are provided in the following section. Section 7 discusses some
performance aspects of the algorithm, and finally, Section 8 concludes the paper.

2 Related Work

The problem of reaching agreement with unreliable communication links goes
back as far as 1975 when Akkoyunlu et al. pointed out that an agreement be-
tween two processes connected by unreliable communication paths leads to an
infinite exchange of messages [2]. In 1978 Gray identified essentially the same
problem by formulating the generals paradox [14]. He showed that there is no
fixed length protocol that allows agreement between two processes connected
through an unreliable communication link. This problem is often referred to
as the coordinated attack problem from the formalization of Lynch [18]. Vargh-
ese and Lynch later proposed a randomized solution to the coordinated attack
problem where the protocol runs for a fixed number of rounds and agreement is
reached with a probability proportional to the number of rounds [30].

The previous result was generalized to an arbitrary number of processes by
Santoro and Widmayer [28,27]. Their contribution provides an important im-
possibility result. It states that there is no fixed-time solution to the problem of
k-agreement (i.e., k > �n

2 � processes decide the same value 0 or 1) in a system
with n processes if more than n − 2 links are allowed to lose messages. Their
problem statement represents a weaker form of agreement than ours. The def-
inition of k-agreement allows processes to decide different values as long as k
decide the same value, while in our definition (i.e., k-consensus) no process is
allowed to decide a different value.

The work of Chockler et al. presents algorithms that solve consensus in sys-
tems where nodes fail only by crashing and messages can be lost due to colli-
sions [9]. Their solution assumes that processes have access to a collision detector
that determines when message collisions occur, which allows nodes to take recov-
ery measures when messages are lost. Message omissions other than those due
to collisions, however, are not covered by their model. By contrast, our model
assumes message omissions regardless of their nature.

Two other works also solve consensus under dynamic communication failures.
The work of Biely et al. does so by addressing the problem in the context of
the heard-of model of Charron-Bost and Schiper [4,8]. This model permits a
fine-grained specification of the fault patterns allowed in the system, thus being
able to distinguish the cases where the fault pattern exceeds the lower bound
of Santoro and Widmayer but is not harmful to the system as a whole (e.g.,
n − 1 faults are harmful to the system if they originate at the same process,
but may not be if they originate each one at a different process). The work of
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Schmid et al. presents an analogous contribution in the sense that it restricts the
number of faults that each process may experience such that the harmful fault
patterns are avoided [29]. None of these two contributions, however, deal with
the problematic essence of the Santoro-Widmayer impossibility result, which
is the failure of every transmission from a single process rendering consensus
impossible. This implies that consensus remains unsolvable if, for instance, in a
wireless ad-hoc network, a single node falls out of range of every other node for
an unknown period of time.

Crash-recovery models based on failure detection mechanisms can also be
applied to wireless environments because of their ability to capture the discon-
nection and eventual reconnection of processes [11,15,22,1]. The granularity of
these models, however, was not intended to capture connectivity scenarios likely
to arise in wireless environments. For example, consensus cannot be solved in
scenarios where every good process (i.e., one that is not crashed) has some faulty
link to another good process. Such configuration violates the eventual weak ac-
curacy property required by failure detectors.

3 The k-Consensus Problem

The k-consensus problem considers a set of n processes where each process pi

proposes a binary value vi ∈ {0, 1}, and at least k > n
2 of them have to decide on

a common value proposed by one of the processes. The remaining n−k processes
do not necessarily have to decide, but if they do, they are not allowed to decide
on a different value. Our problem formulation is designed to accommodate a
randomized solution and is formally defined by the properties:

Validity. If all processes propose the same value v, then any process that de-
cides, decides v.

Agreement. No two processes decide differently.
Termination. At least k processes eventually decide with probability 1.

4 System Model

The system is composed by a fixed set of n processes Π = {p0, p1, ..., pn−1}.
The timing model is assumed to be synchronous. This implies that (1) there is
a known upper bound on time required by a process to execute a step, (2) there
is a known upper bound on message transmission delays, and (3) every process
has a local clock with a known bounded rate of drift with respect to real-time.

The communication between processes proceeds in synchronous rounds. At
each round, every process pi ∈ Π executes the following actions: (1) transmits a
message m to every process pj ∈ Π , including itself, by invoking broadcast(m),
(2) receives the messages broadcast in the current round by invoking receive(),
and (3) performs a local computation based on its current state and the set of
messages received so far. We should note that the assumption of a broadcast
operation generating n transmissions arises from the necessity of modeling the
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possibility of non-uniform message delivery by the processes. In practice, this
operation can still be implemented efficiently by transmitting a single message.

Processes are modeled so as not to exhibit faulty behavior, i.e., they correctly
follow the protocol until termination. The notion of a faulty process is instead
captured by the assumption of faulty message transmissions. For example, a
crashed process can be expressed by the loss of every message transmitted by
it. The model considers omission transmission failures. A transmission between
two processes pi and pj is subject to an omission failure if the message sent by
pi is not received by pj .

In rounds where omission faults are bounded by f ≤ �n
2 �(n−k)+k−2 out of

the n2 transmissions that occur (where k is the number of processes required to
decide), the protocol necessarily makes some progress that eventually leads to a
decision. Therefore, if enough of these rounds occur, then the protocol ensures
termination with probability 1. Nevertheless, to simplify the correctness proofs
we will assume that there is some unknown time after which at most f faulty
transmissions occur at each round. The number of faults per round prior to this
is unrestricted and can for instance match the total number of transmissions n2.

Finally, every process pi ∈ Π has access to a local random bit generator that
returns unbiased bits observable only by pi, and access to a function #x(V ) that
returns the number of occurrences of an element x in a vector V .

5 The Algorithm

This section presents a k-consensus algorithm (Algorithm 1). The algorithm is
tolerant to omission faults and relies on each process pi having access to a local
coin1 mechanism that returns random bits observable only by pi (e.g., [3,5]).
Safety (i.e., the validity and agreement properties of consensus) is ensured by
the algorithm regardless of the number of omission faults that occur per round,
while liveness (i.e., the termination property) is ensured if, after some arbitrary
number of rounds, the number of omission faults per round does not exceed the
threshold f ≤ �n

2 �(n− k) + k − 2.
The internal state of a process pi is comprised by three variables: (1) the phase

φi ≥ 1, (2) the proposal value vi ∈ {0, 1}, and finally, (3) the decision status
statusi ∈ {decided, undecided}. Each process starts its execution with φi = 1,
statusi = undecided, while vi is set to the initial proposal value indicated by
the input register proposali.

A round of the algorithm is executed as follows. Upon every clock tick (line 5),
each process pi broadcasts a message of the form 〈φi, vi, statusi〉 containing the
variables that comprise its internal state, and receives the messages broadcast
by all processes (lines 6-7). Some of the messages that a process is supposed to
receive may be lost. Any new messages that a process pi receives at every round
are accumulated in a vector Vi (line 8). A message 〈φ, v, status〉 transmitted by
a process pj is considered new if it does not exist in Vi any message with phase
value φ from pj . This implies that it is impossible to accumulate in vector Vi

1 As opposed to a shared coin that returns bits observable by all processes (e.g., [25,6]).
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Algorithm 1. k-consensus algorithm
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}
φi ← 1;1

vi ← proposali;2

statusi ← undecided;3

Vi ← ∅;4

for each clock tick do5

broadcast(〈φi, vi, statusi〉);6

receive();7

Vi ← Vi

⋃
{new messages received in the current round};8

while ∃〈φ,v,status〉∈Vi
: φ > φi do9

φi ← φ;10

vi ← v;11

statusi ← status;12

end13

if #〈φi,∗,∗〉(Vi) > n
2 then14

if φi mod 2 = 1 then /* odd phase */15

if ∃v∈{0,1} : #〈φi,v,∗〉(Vi) > n
2 then16

vi ← v;17

else18

vi ← ⊥;19

end20

else /* φi mod 2 = 0: even phase */21

if ∃v∈{0,1} : #〈φi,v,∗〉(Vi) > n
2 then22

statusi ← decided;23

end24

if ∃v∈{0,1} : #〈φi,v,∗〉(Vi) ≥ 1 then25

vi ← v;26

else27

vi ← coini();28

end29

end30

φi ← φi + 1;31

end32

if statusi = decided then33

decisioni ← vi;34

end35

end36

more than one message with the same phase value φ from any single process.
Based on its current internal state and the messages accumulated so far in vector
Vi, each process pi performs a state transition (i.e., modifies φ, v or status).

Before explaining how a process performs a state transition, it is important
to note the distinction between round and phase. The term round pertains to a
periodic execution of the protocol activated by a synchronous event, a clock tick
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in this case. The term phase pertains to a monotonic variable φi that is part of
the internal state of a process pi, and whose value increases as pi accumulates
messages of a certain form in vector Vi. How exactly φi is updated is explained
below. For now, it is beneficial to retain that for any given round, any two
processes pi and pj can have different phase values φi �= φj .

A process pi performs a state transition when one of two conditions occur:

1. The vector Vi holds one message from some process pj whose phase φj is
higher than the phase φi of pi.

2. The vector Vi holds more than n
2 messages whose phase is equal to the phase

φi of pi.

The first case is straightforward (lines 9-13). When the condition is met (line
9), the process pi updates its state to match exactly the state of the received
message (lines 10-12).

The second case is more complex (lines 14-32). The way a process pi updates
its state depends on whether the current number of its phase φi is odd (i.e.,
φi mod 2 = 1) or even (i.e., φi mod 2 = 0). The odd phase essentially guarantees
that if two processes set their proposal to a value 1 or 0, they do it for the same
value. The even phase is where a process decides if it learns that a majority of
processes have the same proposal value.

If φi mod 2 = 1 (lines 15-20), then the proposal value vi is updated in the
following way: if there are more than n

2 messages of the form 〈φi, v, ∗〉 in Vi with
the same value v, then vi is set to v (lines 16-17), otherwise it is set to a special
value ⊥ /∈ {0, 1} indicating a lack of preference (lines 18-19).

If φi mod 2 = 0 (lines 21-30), then the process sets statusi to decided if there
are more than n

2 messages of the form 〈φi, v, ∗〉 in Vi with the same value v �= ⊥
(lines 22-24). The proposal value vi is updated to v if there is at least one message
of the form 〈φi, v, ∗〉 in Vi with a value v �= ⊥, otherwise vi is set to the value of
function coin(), which returns a random number 0 or 1, each with a probability
1
2 (lines 25-29). Regardless of whether the phase φi is odd or even, its value is
always incremented by one unit at line 31.

At the end of each round, a process pi checks if statusi has been set to decided.
If so, it decides by setting the output variable decisioni to the current proposal
value vi (lines 33-35). Any further accesses to this variable do not alter its value.
Hence, they have no impact on the correctness of the algorithm.

In the presented algorithm, processes do not voluntarily stop sending mes-
sages. The fact that the system stabilization time is unknown combined with
the assumed fault model means that processes have no way of knowing when
other processes have decided. This limitation can be easily overcome by hav-
ing the processes execute for an additional round after deciding, where the
broadcast operation is performed through a reliable (and possibly asynchronous)
channel. Raynal and Roy showed that it is possible to implement reliable and
asynchronous communication on top of an unreliable and synchronous model,
and vice-versa [26]. One can assume the presence of a reliable channel that is
judiciously used in such situations.
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6 Correctness Proof

In this section we prove the correctness of the algorithm. Up to Theorem 2 we
prove validity and agreement properties, which are made on the assumption that
the system might be subject to an unbounded number of faults per round. From
Lemma 4 and on, we address the termination property and assume the number
of faults per round is f ≤ �n

2 �(n− k) + k − 2.

Lemma 1. If every process pi with phase value φi = φ has the same proposal
value vi = v, then every process pj that sets φj = φ + 1 also sets vj = v.

Proof. The lemma is going to be proved by induction on the number of processes
that reach phase φ + 1. Basis: Without loss of generality, let p1 be the first
process that sets φ1 = φ + 1. In this case, process p1 must have received more
than n

2 messages of the form 〈φ, ∗, ∗〉 (Line 14). Since every process pi with
φi = φ has the same value vi = v, every broadcast message of the form 〈φ, ∗, ∗〉
carries the same proposal value v (Line 6). This implies that the more than n

2
messages received by process p1 have the form 〈φ, ∗, ∗〉 with the same value v.
Therefore, p1 must set its proposal value to v (either on Line 17 or 26). Inductive
step: Assume that every process pu with 1 ≤ u ≤ j−1 has φu = φ+1 and vu = v,
and now we want to demonstrate that when pj sets φj = φ + 1 it will also set
vj = v. In order for process pj to set φj = φ + 1 it must have in vector Vj (1)
more than n

2 messages of the form 〈φ, ∗, ∗〉 (Line 14) or (2) at least a message
of the form 〈φ + 1, ∗, ∗〉 (Line 9). Condition (1) corresponds to the basis case,
and therefore it has already been shown that pj sets vj = v. Condition (2) also
results in the same outcome, since by hypothesis message 〈φ+1, ∗, ∗〉 must have
been transmitted by one of the pu processes, and therefore pj also sets φj = φ+1
and vj = v (Lines 10-11). ��

Lemma 2. Let φ be some odd phase (i.e., φ mod 2 = 1). If every process with
phase value φ has the same proposal value v, then every process that sets its
phase to any value φ′ > φ + 1 decides v.

Proof. Since every process with odd phase value φ has the same proposal value
v, by Lemma 1, every process that reaches even phase φ + 1 also has proposal
value v (either on Lines 10-11 or Lines 17 and 31). Let pi be the first process
to set phase value φi = φ + 2. Since there is no other process pj with phase
value φj > φ + 1, the only way for pi to go from phase φ + 1 to φ + 2 is to
receive more than n

2 messages of the form 〈φ + 1, ∗, ∗〉 (Line 14). Since φ + 1 is
even and all these messages carry the same proposal value v, this implies that pi

sets statusi = decided, vi = v and φi = φ + 2 (Lines 23, 26, 31). Consequently,
process pi can now decide v (Line 34).

The next process that sets its phase value to φ + 2 also decides v because
it either accumulates more than n

2 messages with phase value φ + 1 and same
proposal value v (Lines 23, 26, 31 and 34), or receives a message from pi of
the form 〈φ + 2, v, decided〉 (Lines 10-12 and 34). This reasoning can be applied
recursively to any other process that sets its phase value to φ+2. It follows that
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any process that sets its phase value to φ′ ≥ φ+2 must either had been at phase
φ + 2, and hence decided, or it must have received some message from a process
that went through phase φ + 2, and thus also deciding. Therefore, every process
that sets its phase to any value φ′ > φ + 1 decides v. ��

Theorem 1. If all processes propose the same value v, then every process that
decides, decides v.

Proof. If every process has the same initial proposal value v, then they all start
in odd phase 1 and set proposal value to v (Lines 1-2). Therefore, by Lemma 1,
every process pj that sets phase φj = 2 also has proposal value vj = v. Moreover,
by Lemma 2, every process pi that sets its phase to φi > 2, decides v. ��

Lemma 3. In some even phase φ, there are no two process pi and pj that receive
messages of the form 〈φ, 0, ∗〉 and 〈φ, 1, ∗〉, respectively.

Proof. Suppose otherwise. Then pi and pj are two processes with phase value φ
that, respectively, receive a message 〈φ, 0, ∗〉 from pu and a message 〈φ, 1, ∗〉 from
pw. This implies that process pu sets vu = 0 either because on odd phase φ − 1
it accumulated more than n

2 messages of the form 〈φ− 1, 0, ∗〉 (Lines 16-17, 31),
or because it received a message 〈φ, 0, ∗〉 (Lines 10-11) from a process that had
accumulated that majority of 〈φ−1, 0, ∗〉 messages. Using a similar reasoning, in
order for process pw to set vw = 1, some process must have received on odd phase
φ− 1 more than n

2 messages of the form 〈φ− 1, 1, ∗〉. But this is a contradiction
because only one of the proposal values 0 and 1 can be in a majority of the
messages broadcast for any particular phase number. ��

Theorem 2. No two processes decide differently.

Proof. Let pi be the first process to decide, and do so when phase φi = φ (Line
34). Without loss of generality, let the decision value be 1. Then, vector Vi

must contain more than n
2 messages of the form 〈φ− 1, 1, undecided〉, and φ− 1

must be even (to allow the execution of Lines 23, 26, and 31). By Lemma 3,
no other process pj can receive a message of the form 〈φ − 1, 0, ∗〉. Therefore,
every other process pj with phase φj = φ has proposal value vj = 1 either
because it accumulates more than n

2 messages with at least one being of the
form 〈φ − 1, 1, ∗〉 (Line 26), or because it receives a message 〈φ, 1, ∗〉 (Line 11)
transmitted by process pi (or another process that sets its proposal value to
1). Additionally, since all processes with phase φ have proposal value 1, then
by Lemmas 1 and 2, every process that decides in phase φ′ > φ will do it for
value 1. ��

The remainder of the proof serves to prove the termination property of consensus
(Theorem 3) and is made on the assumption that the message scheduling falls
under the control of an adversary that can cause no more than f faults per round
for f ≤ �n

2 �(n− k) + k − 2.

Lemma 4. If some process pi has some phase value φi > 1, then there is a set
of processes S such that ∀pj∈S : φj ≥ φi − 1 and |S| > n

2 .
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Proof. Given a phase number φ > 1, then there must be some process pi that is
the first to set its phase to φi = φ. In order to do this, pi must have more than
n
2 messages of the form 〈φ− 1, ∗, ∗〉 in vector Vi (Line 14). It follows that there
are more than n

2 processes that were at some point in time in phase φ− 1. ��

Lemma 5. If some process pi has phase value φi = φ, then eventually there is
a set of processes S such that ∀pj∈S : φj ≥ φ− 1 and |S| ≥ k.

Proof. Suppose otherwise. By Lemma 4, if some process pi has φi = φ > 1, then
there is a set of processes S such that ∀pj∈S : φj ≥ φ − 1 and |S| > n

2 . Let
R+ = S where n

2 < |R+| < k, and R− be the set of remaining processes, i.e.,
∀pu∈R− : φu < φ− 1 where n− k < |R−| < n

2 .
By assumption, the adversary can create at most f = f1 + f2 message omis-

sions per round, where f1 = �n
2 �(n − k) and f2 = k − 2. In order to prevent

processes in R− from reaching φu ≥ φ− 1, the adversary must omit every mes-
sage from processes of R+ to R− (due to Lines 9-13). This implies the elimination
of more than n

2 messages in more than n − k processes because |R+| > n
2 and

|R−| > n− k. It is clear that after consuming f1 faults, there are at most n− k
processes in R− that do not receive any message from R+.

Since by definition |R−| − (n − k) = k − |R+| > 0, there must be k − |R+|
processes in R− that could still receive messages from every process in R+. Let
R−

∗ denote the set of processes in this situation. To prevent every process pu in
R−∗ from reaching φu ≥ φ − 1, the adversary must create |R+||R−∗ | omissions,
where |R+| + |R−

∗ | = k. However, the adversary only has f2 = k − 2 = |R+| +
|R−

∗ |−2 faults available. This creates a contradiction because |R+||R−
∗ | > |R+|+

|R−∗ | − 2, for all |R+| ≥ 1 and |R−∗ | ≥ 1. This implies that some process in |R−|
always increases its phase value when n

2 < |R+| < k. ��

Lemma 6. Let R+ be the set of processes such that ∀pi∈R+ : φi ≥ φ, with
|R+| = k + α and 0 ≤ α ≤ n− k. Let α or more processes in R+ have phase φ
and the remaining processes of R+ have phase φ+1. Let R− be the set of process
such that ∀pj∈R− : φj < φ, with |R−| = n− k − α. Whenever a round has such
configuration, some process increases its phase value.

Proof. Suppose otherwise. Then, under the Lemma conditions, there must be a
message schedule where at some round no process increases its phase value.

In order to prevent every process in R− from increasing its phase value, the
adversary must omit every message from R+ to R− (due to Lines 9-13). This
requires that |R+||R−| faults must be spent. Since |R+||R−| = (k+α)(n−k−α)
and the total number of omissions per round is f = �n

2 �(n− k)+ k− 2, then the
adversary is left with no more than f − |R+||R−| ≤ (α + �n

2 �+ k − n)α + k − 2
faults.

In order to block each of the α processes in R+ with phase φ, the adversary
must omit all messages from processes in R+ with phase φ + 1 (Line 9) and it
must prevent the reception of more than n

2 messages of the form 〈φ, ∗, ∗〉 also
from processes in R+ (Line 14). This implies that each of the α processes with
phase φ can receive the n − k − α messages from processes in R− and at most
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�n
2 � messages from processes in R+. Therefore, the adversary must create at

least
[
n− (�n

2 �+ n− k − α)
]
α faults to stop the progression of the α processes.

Since
[
n− (�n

2 �+ n− k − α)
]
α = (α+ �n

2 �+ k−n)α, the adversary is left with
no more than k − 2 faults.

For the remaining k processes in R+, there are two possible cases:

1. First consider the two extreme situations, where all k processes either have
phase value φ or φ + 1. Since the adversary only has k − 2 faults left, some
process has to receive more than n

2 messages with the same phase φ or φ+1.
Therefore, some process increases its phase value (Line 14).

2. Second consider that some of the k processes have phase value φ + 1 and
the others have phase value φ. Let H be the set of processes with φ + 1
and L the set of processes with φ, such that |H | + |L| = k. To block the
processes in L, the adversary has to omit |H ||L| messages (due to Line 9).
Since the adversary only has k−2 = |H |+|L|−2 faults left, it cannot prevent
some process from increasing its phase because |H ||L| > |H |+ |L| − 2 for all
|H | ≥ 1 and |L| ≥ 1. ��

Lemma 7. Let φinit = 1 be the initial phase value for all processes. Some pro-
cess pi eventually sets φi > φinit.

Proof. If every process has the same phase value φinit, then according to the
conditions of Lemma 6, this is equivalent of having every process in set R+ with
phase φinit, such that |R+| = n. Therefore, by Lemma 6, some process has to
increase its phase value and set φi > φinit. ��

Lemma 8. If some process has phase value φ, then eventually some process
must have phase value φ + 1.

Proof. If some process has phase value φ, then by Lemma 5, eventually there is
a set R+ of k or more processes such that ∀pi∈R+ : φi ≥ φ− 1. This implies that
the system must reach a configuration where there are two sets of processes R+

and R− according to the conditions of Lemma 6. When this happens, by the
same Lemma, some process will increase its phase. This process can be in one of
three possible cases: (1) a process of R−; (2) a process with phase number φ− 1
of R+; or (3) a process with phase number φ of R+. The system configuration
resulting from cases (1) and (2) falls under the conditions of Lemma 6, and
therefore more processes will continue to increase their phase. Consequently, in
the most extreme scenario, the system will evolve to a configuration where all
process are in phase number φ, and case (3) will necessarily have to occur, and
some process pi will set its phase number to φi = φ + 1. ��

Theorem 3. At least k processes eventually decide with probability 1.

Proof. The proof is organized in two parts. First, we show that as messages are
received, processes make progress on the protocol execution and continue to in-
crease their phase number. Second, we demonstrate that due to this progression,
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eventually the system will reach to a configuration where at least k processes
decide with probability 1.

First part: By Lemma 7, some process pi eventually increases its phase number
from the initial phase number, i.e., φi = φ > φinit. Then, by Lemma 8, some
process will eventually set its phase number to φ + 1. Moreover, by Lemma 5,
k or more processes set their phase value to at least φ. Since these Lemmas can
be applied repeatedly, this ensures that at least a set of k processes continue to
increase their phase numbers.

Second part: By Lemma 3, no two processes with the same even phase value φ
can receive messages 〈φ, 0, ∗〉 and 〈φ, 1, ∗〉. Therefore, any process pi that enters
the if condition of Line 14, and sets φi = φ + 1 (Line 31), must set its proposal
value vi either to a common value v (Line 26) or to a random value 1 or 0 (Lines
28). Let S be the processes that eventually reach phase value φ+1, with |S| ≥ k
due to the above discussion. Then, at least k processes in S will set their proposal
values to the same v with probability p = 2−k. Therefore, the probability that
k processes do not set the same proposal value v is (1− p).

As the protocol progresses, and the phase number of processes increases, the
probability of not existing a phase where k processes propose the same value v is
limφ→∞(1−p)φ = 0. Thus, eventually there will be a phase φt where k processes
have the same proposal value v with probability 1. According to Lemma 2, every
process that sets its phase value to φ > φt decides v. Consequently, at least k
processes decide. ��

7 Performance

The algorithm guarantees the termination property of consensus in a probabilis-
tic fashion. Since the execution of the algorithm may need to extend for any
number of rounds and any process may reach an arbitrarily high phase, even-
tually there will be a phase where all processes flip the same coin value v and
decide (Theorem 3). The number of expected rounds for this to happen is O(2n)
after the system stabilizes in at most f faults per round. Note that this is the
most extreme possible scenario. In fact, the presence of an adversary that en-
forces a worst-case scheduling is very unlikely to happen in practice [19,20]. A
simple inspection of the protocol suffices to observe that the algorithm is fast-
learning, i.e., it decides within two communication rounds in runs with no faults
or with certain fault patterns. This is true even if processes have different initial
proposal values. As long as the fault distribution is benign enough, k processes
will see the majority of one value during the first phase, propose the same value
for the second phase and decide.

8 Conclusions

Despite its usefulness to represent wireless ad-hoc communication environments,
research on the communication failure model has been limited. This is related
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to an associated impossibility result, which states that no agreement is possible
in a synchronous system if at every communication round more than n− 2 mes-
sages can be lost [28,27]. This paper presents a k-consensus algorithm tolerant
to transmission omission faults, the first to circumvent the Santoro-Widmayer
impossibility result using randomization. In a system with n processes, our al-
gorithm makes consensus possible among k > n

2 processes. It maintains safety
despite an unrestricted number of faults and ensures liveness if the number of
omission faults does not exceed �n

2 �(n− k) + k− 2. Furthermore, the algorithm
can be fast learning in the sense that it terminates in two communication steps
under favorable conditions.
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Abstract. The JavaTM developers kit requires a size() operation for
all objects. Unfortunately, the best known solution, available in the Java
concurrency package, has a blocking concurrent implementation that
does not scale. This paper presents a highly scalable wait-free imple-
mentation of a concurrent size() operation based on a new lock-free
interrupting snapshots algorithm for the classical atomic snapshot prob-
lem. This is perhaps the first example of the potential benefit from using
atomic snapshots in real industrial code (the concurrency package is cur-
rently deployed on over 10 million desktops).

The key idea behind the new algorithm is to allow snapshot scans
to interrupt each other until they agree on a shared linearization point
with respect to updates, rather than trying, as was done in the past,
to have them coordinate the collecting of a shared global view. As we
show, the new algorithm scales well, significantly outperforming existing
implementations.

Keywords: atomic, consistent state, fault-tolerance, snapshot, global
state.

1 Introduction

The Java developers kit requires a size () operation, counting the number of el-
ements in the data structure, to be made available for all objects. Accordingly,
the Java concurrency package (currently deployed on over 10 million desktops),
includes a concurrent implementation of the size () operation. Unfortunately,
this implementation has two problems: (a) it is blocking, so non-blocking struc-
tures such as the ConcurrentSkipListMap, unfortunately have a blocking size ()
operation during which other operations on the structure are delayed, and (b)
if all modifying operations update the size, the implementation simply does not
scale. To allow scalability one must update infrequently and accordingly relax the
specification so that size () is only an approximation of the actual data structure
size.

This paper overcomes the above limitations, presenting a wait-free, lineariz-
able, and highly scalable implementation of the Java size () operation that can
be added seamlessly to any concurrent data structure. Our solution is based on a
new interrupting snapshots algorithm for the classical atomic snapshots problem
[1,2].
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1.1 Atomic Snapshots

To implement a scalable size counter, the frequent operations that update size
must have a very low overhead, and the burden of the implementation should be
placed on the relatively infrequent calls to size (). One solution that immediately
pops to mind is to use localized individual counters, one for each of the n threads,
to track changes to the structure. One can then use an atomic snapshot operation
[1,2] to collect an instantaneous coherent view of all the individual counters.

An atomic snapshot object has two operations, an update() that writes to its
given location and a scan() that collects a view of all locations. Unfortunately,
a straightforward application of the above approach will not work.

The approach taken by the Java concurrency package is to attempt a scan()
using a double collect in the style of [1], that is, make several passes over all
counters, hoping to detect no intervening update() between some pair of them.
However, since such intervening updates are quite likely, the scan() in the Java
concurrency package defaults to locking all counters in order to guarantee a valid
snapshot. This results in rather poor non-scalable performance.

The classical wait-free read-write register-based snapshot algorithms such as
[1,2,3] also do not provide a solution since they have an O(n) and higher update
complexity even when contention is low (see [4] for a survey).

The only practical non-blocking algorithm with an O(1) common case update
complexity is the coordinated collect algorithm of Riany et. al [4]. However, it
requires O(n) costly read-modify-write operations (such as compare-and-swap
(CAS)) to shared locations to coordinate the collection of a shared snapshot
view. To implement a scalable size() operation, we must therefore devise a new
type of snapshot algorithm, one that uses a small number of CAS operations to
collect the snapshot view.

1.2 Interrupting Snapshots in a Nutshell

Our quest for an algorithm begins with an implementation of a new lock-free
snapshot algorithm. As a basis, we start out with the single scanner algorithm
of Riany et. al [4] which is in turn based on the single scanner algorithm of [5].
This single scanner algorithm uses an array of 2n entries, a recent and a previous
entry per thread, and a scan sequence number incremented by the single scanner
at the start of every scan (the structure is depicted in part (a) of Fig. 1). The
recent and previous values are tagged with a scan sequence number. Updaters
start by reading the scan counter and then update the recent field as long as
the field’s sequence number is the same as the counter value they read. Upon
detecting a newer scan counter value, the updater performs a “copy on write”,
it copies the recent field to the previous field before writing the new value into
recent. To collect a snapshot, the single scanner, increments the scan counter.
It then traverses the array, collecting, for every location, the recent value if the
sequence number is less than the scan’s sequence number, and the previous value
if the recent sequence number is equal to the scan’s number (because there is a
single scanner it cannot be greater). The collection of values forms a snapshot
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Fig. 1. Sample executions of the algorithm. Part (a) describes an execution of the
single scanner algorithm. A scan increments the global sequence number g seq to 3,
then while it collects its view an updater with value y reads this new global sequence
number. It must therefor copy its old value x from recent to previous and update its
recent field to y with sequence 3. When the scan reads this recent field it will see that
its seq is 3, so it started after the scan, and will therefore use the previous value x. In
part (b) we see a wait-free algorithm with the seq number now shared among scans.
A scan of seq 3 is concurrent with a scan with seq 4, and an updater thread reads 4,
updates its recent field to a new value y with sequence 4. When the scan with seq 3
reads this recent field it will see that its seq 4 is greater than 3 and will be forced to
retry the scan. Even if it misses this update and completes collecting values, it will be
forced to retry when it finally checks that the global sequence number has remained
3. It will perform the retry with a value of 4, unless when it checks the g view field it
finds that the scan with 4 has updated the view, in which case it adopts and returns
this new view.

because the counter increment is a linearization point for the scan: any update
that starts after this point will not be collected as we will always collect the
latest previous value.

To make this algorithm support multiple scanners, one cannot simply have all
scanners increment a shared sequence counter using a CAS operation because
different scanners can collect old and new values forming inconsistent views.
Riany et. al [4] solved the problem by having threads coordinate the collection
of a single shared snapshot view, a process which unfortunately entails using n
CAS operations even in the uncontended case.

The key to our new interrupting snapshots algorithm is to avoid collecting a
shared view. As we noted, we start by describing a lock-free implementation,
and then turn it into a wait-free one. Instead of collecting a shared view, our
algorithm allows scanners to interrupt each other, forcing a retry of the scan.
We add a new shared g view field that contains the sequence number of the last
successful scanner. Each scanner begins by incrementing the shared scan counter
g seq using a CAS (this is done per scan, not per update). It next collects its own
snapshot view, checking to see that there are no updated fields with a sequence
number greater than its own. If there are such sequence numbers, then clearly
a later scan has started concurrently (See the example in part (a) of Fig. 1). If
a scan does complete the collection of values, it checks to see that the shared
g seq counter still contains its own sequence number, and if this number has
changed, it again was interrupted. Our idea then is to have the interrupted scan
retry collecting its snapshot again. However, this time it does not increment
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the shared g seq counter. Instead, it uses the sequence number of the scan that
interrupted it. This way, if no scan succeeds, then eventually all scans agree on
the same sequence number and no longer interrupt each other. The final step in
our algorithm is that each scan that successfully collected a view tries to be the
next successful scan by increasing the g view field to its sequence number. If it
detects that the g view field already has a higher value, then it has failed and
restarts from the beginning, incrementing the g seq etc.

How does this help us in collecting a lock-free scan? Well, as we prove, every
time a scanner is interrupted it must be because it has seen a sequence number
of a later scan, and it adopts this scan’s number. After at most n − 1 threads
have all started a scan, if none of them succeed they will all eventually agree on
the highest sequence number. They will all collect a view and one of them will
succeed in CASing g view to the new sequence number and complete the scan.
Thus, the only way in which new sequence numbers can be continuously gener-
ated and prevent a scanner from completing is if at least one scan successfully
completed and increased the g view field, implying that scans are lock-free.

We can now extend the lock-free interrupting snapshot to implement a wait-
free size () implementation in a straightforward fashion. As in Fig. 1, we add to
g view a field that contains the snapshot view (in our case an integer representing
the collected size) of the last successfully completed scan, and as before, it also
contains its sequence number. Successful scans CAS both their sequence number
and the view they collected into this location. If a thread is interrupted while
performing its lock-free interrupting scan, it checks to see if the g view field has a
sequence greater than its own, that is, it contains a size value collected by some
interrupting scan that has started after it did. If it finds one then it can safely
return that size. Otherwise, it continues in the lock-free collection attempt. The
algorithm is wait-free because either a scanner is eventually not interrupted and
completes a scan, or it must be that there are other successful scans continuously
interrupting it, implying that it can return the size collected by one of them.
Notice that we expect size method calls, and therefore scans, to be relatively
infrequent, so overflow should not be a practical concern.

Our new wait-free size () algorithm thus has a “take the view of some thread
that interrupted you” flavor of former algorithms such as [1], but unlike these
algorithms, the interruptions are between scans, not between scans and updates,
which is the key to the new algorithm’s efficiency.

1.3 Benefits of the New Algorithm

As we prove, unlike existing solutions, our new size algorithm is wait-free, lin-
earizable, and has an update() operation that in the uncontended case requires
only a couple of loads and one store and a scan() operation that requires O(n)
loads and two CAS operations. We show that it can be added to any data struc-
ture to provide a linearizable size () implementation.

We also note that the wait-free size () implementation we presented can be
extended to allow a general scalable wait-free snapshot implementation with a
view larger than a single word (in the case of size () we use the fact that the
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view is contained in a single word to transform the lock-free snapshot scan() to
a wait-free size ()).1

In the performance section we compare our new wait-free size () implementa-
tion to the one offered by the Java concurrency package as well as one
implemented using the practical snapshot algorithm of Riany et. al. [4]. Our
benchmarking was performed on two state-of-the-art multiprocessor machines:
an Azul Vega2 (7200 series) distributed shared memory with up to 768 processors
and a Sun Maramba 128-way multicore machine. As can be seen, our algorithm
shows impressive scalability while the other algorithms simply do not scale.

In summary, the strong progress and coherence properties combined with
high scalability of the new algorithm lead us to suggest that it is a good can-
didate for replacing the current size operation in the Java concurrency pack-
age. It is perhaps satisfying that a theoretically motivated data structure, the
atomic snapshot object, introduced in the late 80s [1,2], can finally find real-world
applicability.

2 The Algorithm

Our computation model and specification of atomic snapshots follows [1,4], with
the small exception of replacing load-linked/store conditional operations (LLSC)
by compare-and-swap (CAS) operations.

Following [1] an atomic snapshot object provides two methods, update() and
scan(), with the usual semantics.

Section 1.2 provided a high level view of our new algorithm. Here we provide
a more detailed walk through the pseudo-code. As we did earlier, we start by
describing our lock-free interrupting snapshots algorithm, and then modify it
into a wait-free size method. The main difference between a size () method and
an atomic snapshot is that to store a full snapshot we need an array of values,
while for size, one integer word is enough.

The pseudo-code of the lock-free snapshot algorithm is provided in Fig. 2.
Each updater maintains two values, recent and previous , each with an associated
sequence number which is the value the updater observed in the global-counter
just before updating this value. The two values together are stored in a struct
called Data (Line 2). The data of thread i is in g mem[i]. To keep track of which
value belongs to which snapshot, we maintain a global g seq counter, which each
scanner atomically fetches and increments when it starts the scan, and each
updater reads before writing a new value. Each scan is identified by the sequence
number it obtained in this atomic fetch and increment at the beginning of the
scan. The scanner obtains a snapshot by reading from the updater’s locations in
Lines 20 to 33. The point in time where the scanner increments g seq is a “line
in the sand”: all updates starting after this point are ignored, and those before
it can be part of the snapshot.
1 The most straightforward practical way to do this is to have a scanner allocate a

structure in which its view is collected and use the CASable shared location to store
a reference to this structure.
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1 struct view { view [1], view [2], . . . , view[n] };
2 struct Data { int value , seq ; }; //a pair <value; seq number>
3 struct Thread {
4 Data recent;
5 Data previous; };
6 int g seq; //global snapshot sequence(counter)
7 Thread∗ g mem; //array of Thread struct, with an entry for each thread
8 int g view seq; //holds the latest global view seq#
9

10 method wait free update(i, new value)
11 if (g seq != g mem[i]. recent . seq) { g mem[i]. previous := g mem[i]. recent ; }
12 g mem[i]. recent := {new value, g seq};
13

14 method lock free scan()
15 start view seq := g view seq;
16 scan seq :=AtomicFetchAndInc(g seq);
17 do
18 n scan := view[1, . . . n ];
19 scan ok := true;
20 for ( i := 0; i < N; ++i) {
21 recent := g mem[i]. recent ;
22 previous := g mem[i]. previous;
23 if (recent. seq < scan seq) {
24 n scan[ i ] := recent. value ;
25 } else if (previous. seq < scan seq) {
26 n scan[ i ] := previous. value ;
27 } else {
28 scan ok := false;
29 start view seq := g view seq;
30 scan seq := g seq;
31 break;
32 }
33 } //end for
34 if (scan ok) {
35 if (CAS (g view seq, start view seq, scan seq))
36 return n scan;
37 start view seq := g view seq;
38 scan seq := g seq;
39 }
40 if (scan seq ≤ start view seq)
41 scan seq := AtomicFetchAndInc(g seq);
42 while (true);

Fig. 2. The lock-free interrupting snapshots algorithm

Consider a read from the j-th location. If thread j’s recent sequence number
is smaller than the scanner’s sequence number, then clearly the value that thread
j had in its recent field (associated with the read sequence number) was its valid
value at the time that the scanner performed its increment of g seq. The scanner
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thus adds this value into the snapshot view (Line 24). If thread j’s recent number
was equal the scanner’s sequence number, then the scanner adds j’s previous
value into the snapshot view. If however, thread j’s recent sequence number is
greater than the scan’s sequence number, then the scanner has been interrupted
by a later scanning thread. In this case the scanner starts a new attempt to collect
a snapshot, this time adopting the higher number of the interrupting scanner
(Line 38). The CAS in Line 35 ensures the linearization of the scan method,
by checking that no scan operation completed during its associated interval.
To see why the algorithm is lock-free, notice that if no scanner succeeds, the
scanners continue to execute forever, and the highest sequence number scanner
must eventually succeed or a new scanner must have joined in. But the number
of scanners is bounded so the algorithm is lock-free.

A scanner that succeeds cannot just return the scan it obtained, because it
may not be linearized with other successful and concurrent scans. To this end we
add a global view location g view seq storing the sequence number of the most
recent scan that successfully collected a view. In effect we guarantee that at any
point of time there is (in retrospect) only one scan that is going to succeed. A
scan will complete and return if it can successfully CAS its sequence number into
the g view seq (Line 35) replacing the global view sequence number it has seen
just before starting its most recent scan attempt. This is also the motivation of
the CAS: to ensure linearizability by maintaining the invariant that at any point
in time, there is in effect only one uninterrupted scan that is going to succeed.

The wait-free update() for thread i is described in Fig. 3. A thread i starts in
Line 8 by checking if there might be a concurrent scan() method that requires
the current recent value (e.g the current g seq is larger than recent’s sequence
number). If such a scan() potentially exists, we copy thread i’s recent value to its
previous one (Line 8). Then, in Line 9, thread i updates its associated location
to the new value tagged with the current g seq value.

The wait-free size () is described in Fig. 3. It is a modification of the lock-free
code presented above. The key to turning the above lock-free snapshot algorithm
into a wait-free size () algorithm, is that either a scanner succeeds in the lock-free
scan attempt, or it is interrupted by another scan with a higher sequence num-
ber. Since such repeated failures can only happen if some thread continuously
succeeds, then if each interrupted scanner checks the g view, it will eventually
observe a value with a larger sequence number than its own in g view. It can
safely adopt the size stored in this view, because the execution interval of the
scan of the interrupting thread started after its own.

In more detail, a thread i starts in Line 13 by assigning to start view the
global-view g view. It then atomically increments the global g view. seq, and as-
signs the new sequence to scan seq. It keeps in first seq the initial scan seq, used
to detect when the scan() started. The for-loop in Line 19 starts the snapshot,
and in each iteration the scanning thread tries to get some thread i’s value with
sequence < scan seq. In Line 23 it adds thread i’s recent . value to the sum, since
recent . value was updated before this scan(). In Line 25, the scanning thread
sums thread i’s previous . value , since recent . value was updated before this
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1 struct Data { int value , seq ; }; //a pair <value; seq number>
2 struct Thread { Data recent; Data previous; };
3 int g seq; //global snapshot sequence(counter)
4 Thread∗ g mem; //array of Thread struct, with an entry for each thread
5 Data g view; //holds the latest size result with its associated seq#
6

7 method wait free update(i, new value) //threads count locally the new value.
8 if (g seq != g mem[i]. recent . seq) { g mem[i]. previous := g mem[i]. recent;}
9 g mem[i]. recent := { new value, g seq};

10

11 method wait free size()
12 smart backoff;
13 start view := g view;
14 scan seq := AtomicFetchAndInc(g seq);
15 first seq := scan seq;
16 do
17 size := 0;
18 scan ok := true;
19 for ( i := 0; i < N; ++i) {
20 recent := g mem[i]. recent ;
21 previous := g mem[i]. previous;
22 if (recent . seq < scan seq) {
23 size += recent. value;
24 } else if (previous. seq < scan seq) {
25 size += previous. value;
26 } else { scan ok := false;
27 start view := g view;
28 scan seq := g seq;
29 break; }
30 } //end for
31 if ( first seq ≤ (g view. seq)) {
32 return (g view. value); }
33 if (scan ok) {
34 if (CAS (g view, start view, [scan seq, size ]))
35 return size;
36 start view := g view;
37 scan seq := g seq;
38 }
39 while (true);

Fig. 3. The wait-free size () algorithm

scan(). When the scanner exits the for-loop, either the snapshot succeed or it
failed (e.g.scan ok is true or false). Regardless of the outcome, in Line 31, the
scanner checks if the global g view has higher sequence than first seq . If it does,
the scanner returns the size field of the global g view. If the snapshot succeed
(Line 34), the thread tries to substitute its new-view with g view using a CAS. If
it succeeds, it can return size , but if it failed to commit its new-view, the scan()
attempt fails, and it starts over.
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2.1 Using the Size Object

To use our wait-free size () object with any linearizable object that has modifying
methods, one adds the update() method as the last operation in the modifying
method.

For example the JDK’s ConcurrentHashMap, there is a local counter per seg-
ment of the table, where segment access is lock protected. The JDK’s size ()
makes two attempts at a successful “double collect” in the style of [1] . If it does
not succeed, it locks all segments and counts the size.

To use our wait-free size () solution, we simply add the new size object to the
JDK’s ConcurrentHashMap, and initialize its number of threads to the number of
threads in the system (i.e., the concurrency level in the JDK). Then we replace
the JDK’s size () method with a call to wait free size (). The add() remove()
methods for a given segment call the wait free update () and no other changed
were required as each thread maintains locally the total number of keys in the
table that it inserted.

3 Performance Evaluation

To test our new approach, we implemented the size () method of the of the
original JDK’s ConcurrentHashMap using four different algorithms. The first
is JDK, the original JDK ConcurrentHashMap with the blocking size (). The
second, NWF, is our new wait-free implementation of size (). The third, NLF, is
our implementation of size () based on the lock-free snapshot. The fourth, RST,
is an implementation of size using the coordinated collect snapshot algorithm
of [4].

We tested the ConcurrentHashMap implementations on two architectures.
The first was a 128-way Sun UltraSPARC R© T2 Plus multicore machine running
SolarisTM 10. It has two eight-core 1.2GHz processors and up to 256GB of mem-
ory. The second is an Azul Vega2 R© Java-machine, the 7200 series contains up
to 768 processing cores on 16 processor chips with 768GB of memory. We did
not test the algorithms on Intel or AMD systems because we only had access
to machines with limited (8-way) concurrency. On such machines we can report
that we found little scalability differences between the algorithms.

Evaluations were performed with micro-benchmarks similar to those used by
[4]. The add() (add a key) and remove() (remove a key) perform update()s and the
scan() method is the equivalent of size () (get the number of keys). The contain()
typical to hash tables has no effect on the size (). In our benchmarks we measured
throughput: the number of successful methods completed per millisecond. Each
point in the graphs, is an average of 5 samples. We used only 1 million keys to
eliminate overheads related to hash table resizing.

3.1 Benchmark I: Mixed Methods Per Thread

In this benchmark we assigned to each thread a predefined mixture of method
calls, where the relative fraction of calls is equal for all threads.
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Fig. 4. Benchmark I: (i) in the upper row throughput as a function of concurrency
with 1% Scans and (ii) in the lower row with 10% Scans

Fig. 5. Benchmark I: (i) in the upper row throughput of a mix of operations, as function
of the % of Scans and (ii) in the lower row as function of % of Updates

In Fig. 4, one can see that on both machines the algorithms show similar
behavior. Our NWF implementation scales nicely on both architectures. On the
other hand, the JDK and RST schemes do not scale at all because JDK essen-
tially ends up locking the structure repeatedly, and RST gives similar behavior
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because if the overheads associated with coordinating the shared collect. We no-
tice that NLF shows scalability on the upper graphs, where 1% scan() is used,
but on the lower graphs with 10% scan() most of the NLF ’s scan() operations
fail and so its performance deteriorates.

In Fig. 5 we test the effect of increasing the fraction of scan() and update()
calls, while maintaining a constant concurrency level. In the upper rows, in-
creasing the fraction of scan()s has no effect on NWF, but the NLF throughput
declines rapidly. In the lower rows, increasing the percentage of update() calls
increases the chances of failure of NWF ’s scan() methods, but still NWF out-
performs the rest.

3.2 Benchmark II: Same Method Per Thread

Fig. 6 is perhaps the more interesting of our benchmarks. In this benchmark each
thread performs only one type of operation, e.g. update(), scan(), or contain(). As
can be seen in the lower row, the JDK is suffering from simple lock contention
on the segment locks and thus has virtually no update throughput scalability.
All the other algorithms have nice update throughput scalability. However, the
successful updates are hurting the scan throughput. The only algorithm that
scales is NWF because it adopts the view of interrupting scans which allows
size () calls to complete even when scans are interrupting each other and then
failing.

Fig. 6. Benchmark II: (i) in the upper row scan throughput as function of concurrency
and (ii) in the lower row update throughput as function of concurrency
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4 Correctness Proof

We provide a correctness proof for the wait-free version of the Interrupting Snap-
shots algorithm. We prove that the update() and scan() methods are wait-free
and linearizable [6,7].

4.1 Model

Interrupting snapshots is an atomic snapshot object [1,2]. We use a shared-
memory model similar to [4], allowing atomic reads and writes from memory
together with CAS operations, together with method invocations and responses.
Without loss of generality one can assume that all machine level operations
in a given execution history can be totally ordered, and that method calls are
sequences of such machine operations starting with an invocation and ending
with a response.

4.2 Sequential Specification

The sequential specification of an Interrupting Snapshot object provides two
kinds of methods for each thread i, (0 ≤ i ≤ N − 1):

– A updatei(d), invocation whose response is ACKi(), where d is the input data
of thread i.

– A scani(), an invocation whose response is RETURNi(V ), where V is an
N -element vector called a view.

A sequence of scan() and update() method calls is a valid execution of an
interrupting snapshot if and only if, for each V returned by a given scan() method
call, for all i, V [i] equals d, the input parameter of the latest preceding updatei(d)
method call. If there is no preceding updatei() method call, then V [i] is the initial
value.

4.3 Proof of Wait-Free Progress

Lemma 1. The wait free update method completes within a bounded number of
machine operations.

Proof. From Figure 3 we can deduce that the execution ends after a constant num-
ber of instructions, regardless of any other scan() or update() method call. ��

Because g seq is updated only in Line 14, it follows that

Lemma 2. The g seq’s value is strictly increasing.

Looking at Lines 23, 25, and 28, we can deduce that scan seq is updated only
to bigger values. It follows that

Lemma 3. The values in the scan()’s local-variable scan seq are strictly
increasing.
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Lemma 4. The g view’s sequence numbers in an execution are strictly
increasing.

Proof. Since scan seq is strictly increasing, we know that first seq ≤ scan seq,
and from Line 31, we deduce that the g view sequence is updated only to larger
values Line 34. ��

Lemma 5. The wait free scan method completes within a bounded number of
machine instructions.

Proof. Assume by way of contradiction that the method does not end after N−1
iterations of the for-loop. This implies that N times either the else in Line 26
was reached, or the if in Line 34 failed. Both imply that g view changed, so by
Lemma 4 we know that g view ’s sequence increased by at least one. But since
there are only N threads, the difference between first seq and g view’s sequence
number is bounded by N − 1, so the if in Line 34 should have succeeded, a
contradiction. ��

The immediate conclusion from Lemma 1 and Lemma 5 is that

Theorem 1. Both the update() and scan() method calls are wait-free.

4.4 Linearizability Proof

An atomic snapshot object has the property that a scan() method call, which
reads all the thread’s data from g mem, can be linearized (i.e. thought of as
occurring at a single point within its execution interval).

Definition 1. A successful-scan is a scan() method call that created new view
(g view), e.g. successfully executed the CAS in Line 34.

We uniquely identify successful scan() method calls in a given execution using
scanj

i to denote the j-th scan which happens to be executed by thread i.

Definition 2. g viewj
i is the new view V with sequence number g view seqj

i that
is returned by a successful scanj

i .

Theorem 2. The interrupting snapshot object with its update() and scan()
methods is linearizable to a sequential snapshot object.

Proof. Let us linearize an updatei(d) method call by a thread i at Line 9, which
is the point of updating g mem[i]. recent to the new value d tagged with g seq.

Let us also linearize a successful scanj
i at the point T j

i in which g seq is in-
cremented using an AtomicFetchAndInc (Line 14) to g view seqj

i . Notice that the
AtomicFetchAndInc could have been executed by another thread. Let us linearize
the unsuccessful scanj

i at the linearization point of the successful scan() whose
view it returned. Let Ij

i be the execution interval of a scanj
i method call.
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For a successful-scan we need to prove two things: (i) that T j
i is in Ij

i , and
that (ii) for all k, the value of g viewj

i [k] is the input d of the latest preceding
updatek(d) method call before T j

i according to the updates linearization points.
Proof of (i): If scanj

i by thread i itself incremented g seq to g view seqj
i in

Line 14, then clearly T j
i is in Ij

i . Otherwise, scanj
i assigned g view seqj

i (g seq)
to scan seq) in Line 28 or 37. But, since the initial value of scan seq is g seq
(Line 14), and since by Lemma 3 g seq are strictly increasing, we know that T j

i

is in Ij
i .

Proof of (ii): Assume by way of contradiction the existence of a successful-
scan, scanj

i , that returned g viewj
i and for at least one index k, had g viewj

i [k]
not equal the input of the latest preceding linearized updatek(d) method call.
There are two cases:

– g viewj
i [k] is equal to the input d of updatek(d) that wrote to g mem[k]

(Line 9) after T j
i . This means that the seq number value the updatek(d) wrote

is greater than the value used by scanj
i because the scan uses g view seqj

i ,
the g seq before the AtomicFetchAndInc. In this case, the value of recent . seq
(Line 22) or previous . seq (Line 24) must be greater than g view seqj

i

(scan seq). But then the values would not have been collected.
– g viewj

i [k] is equal to the input d of an updatek(d) method call that is lin-
earized before the latest preceding updatek() before T j

i . But this could not
have happened because the scanning thread sets its g view. seq before it
reads any location g mem[k]. This value cannot be read from the recent field
in g mem[k] because the latest linearized update was written to recent and
recent is an atomic register. It could thus only be that it read the prob-
lematic value (that was earlier than the latest preceding updatek() before
T j

i ) from the previous field. However, for any update of g mem[k], previous
is read and returned only if the sequence number of recent is greater than
g view. seq (Line 9). We know that for any k, the value of the latest value
written to the recent field must have been copied to the previous (Line 8)
before a new value was written to recent (Line 9). Thus, the value of the
latest preceding updatek() before T j

i must have been copied to previous be-
fore a value of an updatek() with a sequence greater than g view. seq was
written to recent. Since scanj

i first reads and tests recent , and only then
reads previous (Line 22), and since both are atomic registers, it cannot be
that a value earlier than the latest linearized updatek() before T j

i was read.
A contradiction.

For an unsuccessful-scan scanj
i we need only show that the last sequence of

reads of g mem[k] by the successful scan, the ones whose view it returned, is
completely within its execution interval. To see why this is true, notice that
the scanj

i returns in Line 31 the view of another successful-scan whose sequence
number is greater than or equal to the one the scanj

i started with initially. Thus,
this successful scan must have started its sequence of reads of g mem[k] after the
start of scanj

i and it clearly ended this sequence before the end of scanj
i . ��
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Abstract. This paper presents elastic transactions, a variant of the
transactional model. Upon conflict detection, an elastic transaction might
drop what it did so far within a separate transaction that immedi-
ately commits, and initiate a new transaction which might itself be elas-
tic. Elastic transactions are a complementary alternative to traditional
transactions, particularly appealing when implementing search struc-
tures. Elastic transactions can be safely composed with normal ones, but
significantly improve performance if used instead.

1 Introduction

Background. Transactional memory (TM) is an appealing synchronization
paradigm for leveraging modern multicore architectures. The power of the
paradigm lies in its abstract nature: no need to know the internals of shared
object implementations, it suffices to delimit any critical sequence of shared
object accesses using transactional boundaries. Not surprisingly, however, this
abstraction sometimes severely hampers parallelism. This is particularly true
for search data structures where a transaction do not know a priori where to
add an element unless it explores a large part of the data structure. Consider
for instance an integer set that supports search, insert, and remove operations.
Assume furthermore that the set is implemented with a bucket hash table. A
bucket, implemented with a sorted linked list, indicates where an integer should
be stored. Consider a situation where one transaction searches for an integer
whereas another one seeks to insert an integer after a node that has been read
by the first transaction: in a strict sense, there is a read-write conflict, yet this
is a false (search-insert) conflict.

We propose elastic transactions, a new type of transactions that enables to
efficiently implement search data structures and use them with regular transac-
tional applications. As for a regular transaction, the programmer must simply
delimit the blocks of code that represent elastic transactions. Nevertheless, dur-
ing its execution, an elastic transaction can be cut into multiple normal trans-
actions, depending on the conflicts detected. We show that this model is very
effective whenever operations parse a large part of the structure while their
effective update is localized.
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Elastic transactions: a primer. To give an intuition of the idea behind elas-
tic transactions, consider again the integer set abstraction. Each of the insert,
remove, and search operations consists of lower-level operations: some reads and
possibly some writes. Consider an execution in which two transactions, i and
j, try to insert keys 3 and 1 concurrently in the same linked list. Each insert
transaction parses the nodes in ascending order up to the node before which
they should insert their key. Let {2} be the initial state of the integer set and
let h, n, t denote respectively the memory locations where the head pointer, the
single node (its key and next pointer) and the tail key are stored. Let H be
the following resulting history of operations where transaction j inserts 1 while
transaction i is parsing the data structure to insert 3 at its end. (In the following
history examples we indicate only operations of non-aborting transactions, thus,
commit events have been omitted for simplicity.)

H = r(h)i, r(n)i, r(h)j , r(n)j , w(h)j , r(t)i, w(n)i.

This history is clearly not serializable since there is no sequential history that
allows r(h)i to occur before w(h)j and also r(n)j to occur before w(n)i. A
traditional transactional model would detect a conflict between transactions i
and j, and the transactions could not both commit. Nonetheless, history H does
not violate the high-level linearizability of the integer set: 1 appears to be inserted
before 3 in the linked list and both are present at the end of the execution.

To make a transaction elastic, the programmer has simply to label this trans-
action as being so and use its associated operations to access the shared memory.
Assume indeed that transaction i has been labelled as elastic. History H can now
be viewed as a slightly different history, f(H):

f(H) = r(h)i, r(n)i
s1

, r(h)j , r(n)j , w(h)j , r(t)i, w(n)i
s2

.

The elastic transaction i has been cut in two transactions s1 and s2, each being
atomic. The cut is only possible because the value returned by the read of t
has been the successor of n at some point in time. More precisely, the specific
operations inside the elastic transaction ensure that no modifications on n and
t have occurred between r(n)s1 and r(t)s2 . Otherwise, i would have to abort.

Even though a read value has been freshly modified by another transaction, it
might not be necessary to abort and restart from the beginning. Assume that a
transaction i searches for a key that is not in the linked list while a transaction j
is inserting a node after the kth node. Let h, n1, ..., n�, t denote respectively the
memory locations of the linked list: nk denotes the memory location of the kth

node key and its next pointer. In the following history H′, transaction i reads
node nk and detects that it has freshly been modified by another transaction j.

H′ = ..., r(nk)j , r(nk+1)j , r(nk−1)i, w(nk)j , r(nk)i, r(nk+1)i, ...

In this example, transaction i does not have to abort and restart from the be-
ginning because it is the first time it accesses nk and because the preceding node
accessed by i has not been overwritten since then. Hence, after making sure that
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the previously read node nk−1 has not been modified, transaction i can resume
and commit, as if its read of nk was part of a new transaction sk, serialized after
j. Hence, we get the following history.

f(H′) = ..., r(nk)j , r(nk+1)j , r(nk−1)i, w(nk)j , r(nk)i, r(nk+1)i
sk

, ...

E-STM. We propose E-STM, an implementation of our transactional model
that uses timestamps, two-phase-locking, and universal operations. It provides
both normal transactions and elastic transactions, allowing the latter ones to
be cut to achieve high concurrency, but it retains the abstraction simplicity of
transactional memory.

To evaluate the performance and simplicity of our solution, we implement it
on four data structure applications: (i) linked list, (ii) skip list, (iii) red-black
tree, and (iv) hash table. We compare E-STM with three other synchroniza-
tion techniques: (i) regular STM transactions, (ii) lock-based, and (iii) lock-free.
The regular STM technique relies on TinySTM [1], the fastest STM for micro-
benchmarks we know of [1, 2]. The lock-based and lock-free implementations
are based on the algorithms of Herlihy, Luchangco, Shavit et al. [3, 4], and of
Fraser, Harris, and Michael [5, 6, 7], respectively. We also implemented complex
operations, move and sum, to illustrate how transactions can be combined.

The results we obtained indicate that E-STM speeds up regular transactions
on all workloads and with an average speedup factor of 36%. By lack of space,
the detailed experiments are deferred to the companion technical report [8].

Roadmap. In the remainder of this paper, we present our system model (Sec-
tion 2) and our transactional model (Section 3), and we give an implementation
of it, called E-STM (Section 4). Then, we elaborate on the advantages of using
E-STM, by illustrating its use in some data structure applications (Section 5).
Finally, we present the related work (Section 6) before concluding (Section 7).

2 System Model

Our system comprises transactions and objects similarly to [9]. The states of
all objects define the state of the system. A transaction is a sequence of read
and write operations that can examine and modify, respectively, the state of the
objects. More precisely, it consists of a sequence of events that are an operation
invocation, an operation response, a commit invocation, a commit response, and
an abort event.

An operation whose response event occurred is considered as terminated while
a transaction whose commit response or abort event occurred is considered as
completed.

The set of transactions is denoted by T and we consider two types of transac-
tions: normal and elastic. We assume that the type of all transactions is initially
known. The sets of normal transactions and elastic transactions are denoted by
N and E , respectively. The set of possible objects is denoted by X and the set of
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possible values is V . An operation accessing an object x, belonging to a trans-
action t, can be of two types (read or write), and either takes as an argument
or returns a value v. Hence, an operation is denoted by a tuple in X×T×V×type.

Histories. We consider only well-formed sequences of events that consist of a set
of transactions, each satisfying the following constraints: (i) a transaction must
wait until its operation terminates before invoking a new one, (ii) no transaction
both commit and abort, and (iii) a transaction cannot invoke an operation after
having completed. We refer to these well-formed sequences as histories.

A history H is complete if all its transactions are completed. We define a com-
pleting function complete that maps any history H to a set of complete histories
by appending an event q to each non-completed transaction t of H such that:

– q is an abort event if there is no commit request for t in H;
– q is a commit or an abort event if there is a commit request for t in H.

Given a set of transactions T and a historyH, we define H|T , the restriction ofH
to T , to be the subsequence of H consisting of all events of any transaction t ∈ T .
We refer to the set of transactions that have committed (resp. aborted) in H as
committed(H) (resp. aborted(H)). The history of all committed transactions of
a given history H is denoted by permanent(H) = H|committed(H). Similarly,
for a set of objects X we denote by H|X the subsequence of H restricted to X .
For the sake of simplicity, to denote H|{x}, for x ∈ X (resp. H|{t}, for t ∈ T )
we simply write H|x (resp. H|t).

Let →H be the total order on the events in H. We say that t precedes t′ in
H (denoted by t →H t′) if there are no events q ∈ H|t and q′ ∈ H|t′ such that
q′ →H q. Two transactions t and t′ are called concurrent if none precedes the
other, i.e., t �→H t′ and t′ �→H t. A history H is sequential if no two transactions
of H are concurrent.

Operation sequences. For simplicity, we consider a sequence of operations in-
stead of a sequence of events to describe histories and transactions. An operation
π is a pair of invocation event and response event such that the invocation and
response correspond to the same operation, accessing the same object and being
part of the same transaction. A given history H is thus an operation sequence
SH = π1, ..., πn resulting from H where commit and operation invocations that
do not have a matching response have been omitted. Concurrent operations or-
dering is determined by the object serial specification described below. We say
that two histories H and H′ are equivalent if for any transaction t, H|t = H′|t.

The serial specification of an object is the set of acceptable sequences of its op-
erations. Each object x is initialized with a default value vx and accessed either by
a write operation, π(x, v), that writes a value v or by a read operation, π(x ) : v ,
that returns a value v. That is, we only focus on read/write objects the serial spec-
ification of which requires that a read operation on x returns the last value written
on x, or its default value vx (if the value has not been written before). Without
loss of generality, we assume that each written value is unique, hence: let π(x, v)
and π′(x′, v′) be two write operations, if v = v′ then x = x′ and π = π′.
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We refer to a transaction that never writes an object value in the shared
memory as an invisible transaction. Observe that an invisible transaction may,
however, write some metadata (e.g., lock ownership) in the shared memory. An
example is a transaction that acquires some locks before aborting.

3 Elastic Transactions: Definition

An elastic transaction is a transaction the size of which may vary depending on
conflicts. More precisely, such transaction may cut itself upon conflict detection
as if the start of the transaction has moved forward, hence the name elastic.
Next, we explain how a cut is achieved.

First, note that a sequence of operations is a totally ordered set, hence, we
refer to a history H as a tuple 〈SH,→H〉 where SH is the corresponding set of
operations and →H a total order defined over SH. More generally we refer to
any sequence S as a totally ordered set denoted by 〈SS ,→S〉.

A sub-history H′ of history H = 〈SH,→H〉 is a history H′ = 〈SH′ ,→H′〉
such that SH′ ⊆ SH and →H′⊆→H. Next, we define the notion of cut and its
well-formedness.

Definition 1 (Cut). A cut of a history H is a sequence C = 〈SC ,→C〉 of sub-
histories of H such that:

1. each of the cut sub-history contains only consecutive operations of H: for any
sub-history H′ = π1, ..., πn in SC, if there exists πi ∈ H such that π1 →H
πi →H πn, then πi ∈ H′;

2. if one sub-history precedes another in C then the operations of the first precede
the operations of the second in H: for any sub-histories H1 and H2 in SC
and two operations π1 ∈ H1 and π2 ∈ H2, if H1 →C H2 then π1 →H π2;

3. any operation of H is in exactly one sub-history of the cut:
⋃

∀H′∈SC
SH′ =

SH and for any H1,H2 ∈ SC, we have SH1 ∩ SH2 = ∅.

For example, there are four cuts of history a, b, c, denoted by C1 = {a, b ; c},
C2 = {a ; b, c}, C3 = {a ; b ; c}, and C4 = {a, b, c}, where semi-colons are used
to separate consecutive sub-histories of the cut and braces are used for clarity to
enclose a cut. In contrast, neither {a, c ; b} nor {a ; a, b, c} are cuts of H. The
reason it that the former violates property (1) while the latter violates property
(3) of Definition 1.

Definition 2 (Well-formed cut). A cut Ct of history H|t, where t is a trans-
action, is well-formed if for any of its sub-histories si the following properties
are satisfied:

1. if si contains only one operation, then there is no other sj ∈ SCt ;
2. if πi ∈ si and πj ∈ sj are two write operations of t, then si = sj;
3. if πi is the first operation of si, then either πi is a read operation or πi is

the first operation of t.
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For example, consider the following historyH1|t where t is an elastic transaction,
and where r(x) and w(x) refer to a read and a write operation on x. (For the
following examples, we omit the values returned by the read operations and
consider that the object serial specification is satisfied.)

H1|t = r(u), r(v), w(x), r(y), r(z).

There are two well-formed cuts of history H1|t that are C1′ =
{r(u), r(v), w(x), r(y), r(z)} and C2′ = {r(u), r(v), w(x) ; r(y), r(z)}, how-
ever, neither C3′ = {r(u) ; r(v), w(x) ; r(y), r(z)} nor C4′ =
{r(u), r(v) ; w(x), r(y), r(z)} are well-formed. More precisely, the first sub-
history of C3′ contains only one operation violating property (1) of Definition 2
and the second sub-history of C4′ starts with a write operation, that is, property
(3) of Definition 2 is violated. In the remainder of this paper, we only consider
well-formed cuts.

Next, we define a consistent cut with respect to a history of potentially con-
current transactions. This definition is crucial as it indicates the singularity of
elastic transactions. The programmer can label a transaction as elastic if he(she)
does not need this transaction to appear as atomic, but still he(she) requires that
a set of consecutive operations in this transaction appear as atomic, as formal-
ized below. In a history H, a cut is consistent if there are no writes separating
two of its sub-histories each accessing one of the object written by these writes.

Definition 3 (Consistent cut). A cut Ct of H|t is consistent with respect to
history H if, for any operation πi and πj of any two of its sub-histories si and
sj respectively (si �= sj), the two following properties hold:

– there is no write operation π′(x) from a transaction t′ �= t such that
πi(x) →H π′(x) →H πj(x);

– there are no two write operations π′(x) and π′′(y) from transactions t′ �= t
and t′′ �= t such that πi(x) →H π′(x) →H πj(y) and πi(x) →H π′′(y) →H
πj(y).

For example, consider the following history H2 where e is an elastic transaction
and n is a normal transaction, and where r(x)t and w(x)t refer to a read and a
write operation on x in transaction t.

H2 = r(x)e, r(y)e, w(y)n, r(z)e, w(u)e.

Two consistent cuts of H2|e with respect to H2 are possible. One contains two
sub-histories C1 = {r(x)e, r(y)e ; r(z)e, w(u)e} while the other contains one sub-
history C2 = {r(x)e, r(y)e, r(z)e, w(u)e}. Observe that C1 is consistent because
there are no two writes from other transactions that occur at objects between the
accesses of e to these objects, hence r(y)e and r(z)e seem to execute atomically
at the time r(y)e occurs. In contrast, consider history H3 where e is elastic and
n is normal.

H3 = r(x)e, r(y)e, w(y)n, w(z)n, r(z)e, w(u)e.
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There is no consistent cut of H3|e with respect to H3 because n writes y and z
between the times e reads each of them.

Given a cut Ct = st
1, ..., s

t
n ofH|t for each elastic transaction t ∈ H|E , we define

a cutting function fCt that replaces an elastic transaction t by the transactions st
i

resulting from its cut. More precisely, fCt maps a history H = π1, ..., πn to a his-
tory fCt(H) = π′

1, ..., π
′
n where if πi = 〈x, t, v, type〉 ∈ st

i then π′
i = 〈x, st

i, v, type〉,
otherwise πi = π′

i, and if t ∈ committed(H) then st
i ∈ committed(fCt(H)), oth-

erwise st
i ∈ aborted(fCt(H)). We denote the composition of f for a set of cuts

C = {C1, ..., Cm} by fC = fC1 ◦ ... ◦ fCm .
Next, we define an elastic-opaque transactional system, which combines nor-

mal and elastic transactions; this definition relies on Definition 3 of consistent
cut, and the definition of opacity [10].

Definition 4 (Elastic-opacity). A transactional system is elastic-opaque if,
for any history H of this system, there exists a consistent cut Ct for each elastic
transaction t of H|E with C = {Ct}, such that fC(H) is opaque.

As an example, consider the following history H4 and assume e is elastic while
n is normal and both transactions commit:

H4 = r(x)e, r(y)e, r(x)n, r(y)n, r(z)n, w(x)n, r(t)e, w(z)e.

This history would clearly not be serializable in a traditional model (with e and
n two normal transactions) since there is no sequential histories that allow not
only r(x)e to occur before w(x)n but also r(z)n to occur before w(z)e. However,
there exists one consistent cut Ce of H4|e with respect to H4, Ce = s1, s2 where
s1 = r(x)e, r(y)e and s2 = r(t)e, w(z)e such that, for C = {Ce}, we have:

fC(H4) = r(x)s1 , r(y)s1 , r(x)n, r(y)n, r(z)n, w(x)n, r(t)s2 , w(z)s2 .

And H4 is elastic-opaque as fC(H4) is equivalent to a sequential history: s1, n, s2

(and fC(H4) is opaque).

4 Implementation of Elastic Transactions

This section introduces E-STM, a software transactional memory system that
implements elastic transactions. The corresponding pseudocode appears in
Algorithm 1. E-STM combines two-phase locking, timestamp mechanism, and
atomic primitives: compare-and-swap (Lines 79), fetch-and-increment (Line 94),
and atomic loads and stores.

Transaction and variable state. A transaction t starts with a begin(type)
indicating whether its type is elastic or normal. Then, it accesses the memory lo-
cations using read or write operations. Finally, it completes either by a commit call
or by an abort that restarts the same transaction. The try-extend and ver-val-ver
are helper functions. A transaction t may keep track of the variable it has ac-
cessed since it has lastly started using a r-set to log the reads and a w-set to log
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Algorithm 1. E-STM, a transactional memory providing elastic transactions

1: clock ∈ N, initially 0

2: State of variable x:
3: val ∈ V
4: tlk a timestamped lock with fields:
5: owner ∈ T , the lock owner, initially ⊥
6: time ∈ N, a version counter, initally 0
7: w-entry ∈ X × V × N, an entry address
8: initally ⊥
9: // time/w-entry share same location

10: State of transaction t:
11: type ∈ {elastic, normal}, initially the
12: ancestor transaction type or ⊥ (if none)
13: r-set and w-set, sets of entries with fields:
14: addr ∈ X, an address
15: val ∈ V , its value
16: ts ∈ N, its version timestamp
17: last-r-entry ∈ X × N, an entry,
18: initally ⊥
19: lb ∈ N, initially 0 // time lower bound
20: ub ∈ N, initially 0 // time upper bound

21: begin(tx-type)t:
22: ub ← clock
23: lb ← clock
24: // if nested inside a normal, be normal
25: if type �= normal then type ← tx-type

26: try-extend()t:
27: // make sure read values haven’t changed
28: now ← clock
29: for all 〈y, ∗, ts〉 ∈ r-set do
30: ow ← y.tlk .owner
31: last ← y.tlk .time
32: if ow /∈ {t,⊥}∨
33: (ow = ⊥ ∧ last �= ts) then
34: abort()

35: ub ← now

36: ver-val-ver(x, evenlocked)t:
37: // load a versioned value from memory
38: repeat:
39: �1 ← x .tlk
40: v ← x.val
41: �2 ← x .tlk
42: until (�1 = �2∧
43: (�1 .owner = ⊥ ∨ evenlocked))
44: return 〈�1, v〉

45: abort()t:
46: for all 〈x, ∗, ∗〉 ∈ write-set do
47: x .tlk .owner ← ⊥
48: begin(type) // restart from the beginning

49: read(x)t:
50: // log normal reads for later extensions
51: if type = normal ∨ w-set �= ∅ then
52: 〈�x , vx〉 ← ver-val-ver(x, true)
53: if �x.owner /∈ {t, ⊥} then ctn_mgt()
54: else if �x.owner = t then
55: vx ← �x .w-entry.val
56: else // �x.owner = ⊥
57: if �x.time > ub then try-extend()

58: r-set ← r-set ∪ {〈x, vx, �x.time〉}
59: // ...or log only the most recent elastic read
60: if type = elastic ∧ w-set = ∅ then
61: 〈�x , vx〉 ← ver-val-ver(x, false)
62: if �x .time > ub then
63: if last-r-entry �= ⊥ then
64: 〈y, ∗〉 ← last-r-entry
65: 〈�y , ∗〉 ← ver-val-ver(y, false)
66: if �y .time > ub then abort()

67: ub ← �x .time
68: last-r-entry ← 〈x, �x.time〉
69: return vx

70: write(x, v)t:
71: // lock & postpone the write until commit
72: repeat:
73: � ← x .tlk
74: if �.owner /∈ {⊥, t} then ctn_mgt()
75: else if �.time > ub then
76: if type = normal then try-extend()
77: else abort()

78: w-entry ← 〈x, v, �.time〉
79: x .tlk ← 〈t, ∗, w-entry〉 // compare&swap
80: until (x .tlk .owner = t)
81: lb ← max(lb, �.time)
82: w-set ← (w-set \ {〈x, ∗, ∗〉}) ∪ {w-entry}
83: // make sure last value read is unchanged
84: if type = elastic ∧ last-r-entry �= ⊥ then
85: 〈e, timee〉 ← last-r-entry
86: 〈�e, ∗〉 ← ver-val-ver(e, true)
87: ow ← �e .owner
88: last ← �e .time
89: if ow �= t ∨ last �= timee then abort()

90: last-r-entry ← ⊥

91: commit()t:
92: // apply writes to memory and release locks
93: if w-set �= ∅ then
94: ts ← clock++ // fetch&increment
95: if lb �= ts − 1 then try-extend()

96: for all 〈x, v, ts〉 ∈ write-set do
97: x .val ← v
98: x .tlk .time ← ts
99: x .tlk .owner ← ⊥

the writes. More precisely, the entries of these sets contain the variable address,
addr , its value val , and its version ts (Lines 13–16). If t is elastic, it may only
need to keep track of the last read operation, so it uses last-r-entry (Lines 17
and 18) to log a single address and its version instead of the entire set r-set .
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The two last fields of t indicate a lower-bound lb and an upper-bound ub on the
logical times at which t can be serialized (Lines 19 and 20).

For the sake of clarity in the pseudocode presentation, we consider that
each memory location is protected by a distinct lock. We call it the associated
memory location of the lock. More precisely, each shared variable x can be
represented by a value (Line 3) val and a timestamped lock tlk , also called
versioned write-lock [11]. A timestamped lock has three fields: (i) the owner
indicating which transaction has acquired the lock, if any, (ii) the time the
associated memory location of the lock has the most recently been written,
and (iii) w-entry, a reference to the corresponding entry in the owner’s write
set (Lines 4–9). Timestamps are given by a global counter, clock (Line 1), that
does not hamper scalability [11, 12, 1].

Normal transactions. The algorithm restricted to normal transactions builds
upon TinySTM [1] logging all operations. All transactions use two-phase locking
when writing to a memory location. While the location is locked by the transac-
tion at the time it executes the write, all updates are buffered into a write-set,
w-set , until the commit time at which these updates are applied to the mem-
ory. When a transaction performs a write(x, ∗), it acquires the lock of x using a
compare-and-swap (Line 79) and holds it until it commits or aborts. When access-
ing a locked variable, the transaction detects a conflict and calls the contention
manager, which typically aborts the current transaction (Lines 53 and 74). Var-
ious contention management policies could be used instead to handle conflicts
between normal transactions.

When a read request on variable x as part of transaction t is received by
E-STM, the value of x is read in a three-step process called ver-val-ver, which
consists in loading its timestamped lock x.tlk , loading its value x.val , and
re-loading its lock x.tlk . This read-version-value-version is repeated until the
two versions read are identical (Line 42) indicating that the value corresponds
to that version. Only in some cases needs the value be returned unlocked,
hence the use of the boolean evenlocked . The transactions of E-STM use
the extension mechanism of LSA [12, 1]. Each transaction t maintains an
interval of time [lb, ub] indicating the time during which t can be serialized.
More precisely, for a given transaction t, lb and ub represent respectively
lower and upper bounds on the versions of values accessed by t during its
execution. When t reads x, it records the last time x has been modified in
its read-set, r-set , for future potential check. Later on, if t accesses a variable
y that has been recently updated (y.tlk .time > ub), t first tries to extend
its interval of time by calling try-extend(). Transaction t detects a conflict
only if this extension is impossible (Lines 34), meaning that some variables,
among the ones t has read, have been updated by another transaction since
then.

Elastic transactions. An important difference between normal and elastic
transactions is that elastic transactions never use the r-set until they read after
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a write, as there is at most one read operation the transaction has to keep track
of: the most recent one. Hence, elastic transactions use the last-r-entry field to
log the last read operation. In our implementation all reads following a write in
an elastic transaction will use the r-set like normal transactions (Lines 50–58),
however, the implementation could be improved using static analysis to require
this only for reads that are both preceded and succeeded by write operations in
the same transaction.

Upon reading x (without having written before) an elastic transaction must
make sure that the value vx it reads was present at the time the immediately
preceding read occurs. This typically ensures that a thread does not return an
inconsistent value vx after having been pre-empted, for example. If the version
vx of the value is too recent, �x .time > ub, then the read operation must recheck
the value logged in last-r-entry to be sure that the value read has not been
overwritten since then (Lines 62–67). This can be viewed as a partial roll-back
similar to the one provided by nested models, except that no on-abort definition
is necessary and only a single operation would have to be re-executed here. Upon
writing x, a similar verification regarding the last value read is made. If the lock
corresponding to this address has been acquired, ow �= ⊥, or if the version
has changed since then, last �= timee, then the transaction aborts (Line 89). If,
however, no other transaction tried to update this address since it has been read,
then the write executes as normal (Lines 71–82).

Next, we state the theorem on the correctness of our implementation. The
complete proof has been deferred to the companion technical report [8].

Theorem 1. E-STM is elastic-opaque.

5 Evaluation

E-STM is simple to program with for two reasons: (i) it indeed provides a high-
level abstraction that do not expose synchronization mechanisms to the pro-
grammer, and (ii) it enables code composition.

5.1 Abstraction

As with a classical transactional model, the programmer can use E-STM to write
a concurrent program almost as if he (she) was writing a sequential program.
Like all TMs, E-STM provides the programmer with labels begin and commit
that can delimit the transactions. Hence, all calls to reading and writing the
shared memory are redirected to the wrappers read and write of E-STM, but
this redirection does not incur efforts from the programmer and can be made
automatic: some compilers already detect transaction labels and redirect memory
accesses of these transactions automatically even though it is known that over
instrumentation of accesses may unnecessarily impact performance.

To illustrate this, consider the sorted linked list implementation of an
integer set, where integers (node keys) can be searched, removed, and inserted.
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Algorithm 2. Linked list implementation built on E-STM (the lock-free
harris-ll-find function is given for comparison).

1: State of process p:
2: node a record with fields:
3: key, an integer
4: next, a node
5: set a linked-list of nodes with:
6: head at the beginning,
7: tail at the end.
8: Initially, the set contains head and
9: tail nodes, and head.key = min

10: and tail.key = max.

11: free(x)t:
12: // memory disposal is postponed
13: write(x, 0)

14: ll-find(i)p:
15: curr ← set.head
16: while true do
17: next ← read(curr .next)
18: if next.key ≥ i then break

19: curr ← next
20: return 〈curr, next〉

21: ll-insert(i)p:
22: begin(elastic)
23: 〈curr, next〉 ← ll-find(i)
24: in ← (next.key = i)
25: if !in then
26: new-node ← 〈i, next〉
27: write(curr .next, new-node)

28: commit()
29: return (!in)

30: ll-search(i)p:
31: begin(elastic)
32: 〈curr, next〉 ← ll-find(i)
33: in ← (next.key = i)
34: commit()
35: return (in)

36: ll-remove(i)p:
37: begin(elastic)
38: 〈curr, next〉 ← ll-find(i)
39: in ← (next.key = i)
40: if in then
41: n ← read(next.next)
42: write(curr .next, n)
43: free(next)
44: commit()
45: return (in)

46: harris-ll-find(i)p:
47: loop
48: t ← set.head
49: t_next ← read(curr .next)
50: // 1. find left and right nodes
51: repeat:
52: if !is_marked(t_next) then
53: curr ← t
54: curr_next ← t_next
55: curr ← unmarked(next)
56: if !t_next then break

57: t_next ← t.next
58: until is_marked(t_next) ∨ (t.key < i)
59: next = t
60: // 2. check nodes are adjacent
61: if curr_next = next then
62: if (next.next∧
63: is_marked(next.next) then
64: goto line 48
65: else return 〈curr , next〉
66: // 3. remove one or more marked node
67: if cas(curr .next, curr_next, next) then
68: if (next.next∧
69: is_marked(next.next)) then
70: goto line 48
71: else return 〈curr , next〉
72: end loop

Algorithm 2 depicts the entire program that uses E-STM plus a core function
of the lock-free Harris [5] implementation, for comparison purpose. It is pretty
clear that this harris-ll-find function is more complex than its ll-find counter-
parts based on E-STM. In fact, harris-ll-find relies on the use of a mark bit to
indicate that a node is logically deleted, and must physically delete the nodes
that have been logically deleted to ensure that the size of the list does not
grow with each operation. Unlike the Harris lock-free function, E-STM-based
functions are very simple, as all synchronizations are handled transparently un-
derneath by E-STM. The pseudocode is the same as the non-thread-safe version,
except that begin(elastic), and commit have been added at the right places in the
code.
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5.2 Extensibility

E-STM combines elastic transactions with normal transactions which makes it
easily extensible. To illustrate this, we extended the hash table example with
operations move and sum. The pseudocode is presented in Algorithm 3.

More specifically, we implemented the insert, search, and remove operations
using elastic transactions. Since each bucket of the hash table is implemented
with a linked list, we re-used (Lines 12, 18, and 24) the program of the linked
list written above. More complex operations like move and sum have been im-
plemented using normal transactions. The elastic transactions nested inside the
normal transactions of move (Lines 16 and 22) execute in the normal mode. Al-
though an elastic implementation of move is possible, sum cannot be elastic as it
requires an atomic snapshot of all elements of the data structure. This example
illustrates the way elastic and normal transactions can be combined.

Observe that, although moving a value from one node to one of its predecessors
in the same linked list may lead an elastic search not to see the moved value, the
two operations remain correct. Indeed, the search looks for a key associated with
a value while the move changes the key of a value v. Hence, if the search looks
for the initial key k of v and fails in finding it, then search will be serialized after
move, if search looks for the targeted key k′ of v and does not find it, then search
will be serialized before move. In contrast, a less usual search-value operation
looking for the associated value rather than the key of an element would have to
be implemented using normal transactions, otherwise, a concurrent move may
lead to an inconsistent state. Another issue, pointed out in [13], may arise when
one transaction inserts x if y is absent and another inserts y if x is absent. If
executed concurrently, these two transactions may lead to an inconsistent state

Algorithm 3. Hash table implementation built on E-STM and linked list

1: State of process p:
2: node a record with fields:
3: key, an integer
4: next, a node
5: set a mapping from an integer to a
6: linkedlist representing a bucket.
7: Initially, all buckets of the set are
8: empty lists.

9: ht-search(i)p:
10: begin(elastic)
11: a ← hash(i)
12: result ← set[a].ll-search(i)
13: commit()
14: return result

15: ht-insert(i)p:
16: begin(elastic)
17: a ← hash(i)
18: result ← set[a].ll-insert(i)
19: commit()
20: return result

21: ht-remove(i)p:
22: begin(elastic)
23: a ← hash(i)
24: result ← set[a].ll-remove(i)
25: commit()
26: return result

27: ht-sum()p:
28: begin(normal)
29: for each bucket in set do
30: next ← read(bucket.head.next)
31: while next.next �= ⊥ do
32: sum ← sum + read(next.val)
33: next ← read(next.next)
34: commit()
35: return sum

36: ht-move(i, j)p:
37: begin(normal)
38: ht-remove(i)
39: ht-insert(j)
40: commit()
41: return result
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where both x and y are present. Again, our model copes with this issue as
the programmer can use a normal transaction to encapsulate each conditional
insertion. These normal and elastic transactions are safely combined.

Unlike elastic transactions, existing synchronization techniques (e.g., based on
locks or compare-and-swap) cannot be easily combined with normal transactions.
They furthermore introduce a significant complexity. Using a coarse-grained lock
to make the hash table move operation atomic would prevent concurrent accesses
to the data structure. In contrast, using fine-grained locks may lead to a deadlock
if one process moves from bucket �1 to bucket �2 while another moves from �2 to
�1. With a lock-free approach (e.g., based on an underlying compare-and-swap),
one could either modify a copy of the data structure before switching a pointer
from one copy to another, or use a multi-word compare-and-swap instruction.
Unfortunately, the former solution is costly in memory usage whereas the lat-
ter solution requires a rarely supported instruction that is also considered as
inefficient. Implementing a lock-free resize operations reveals even more as this
requires to replace its internal bucket linked lists by a single linked list imposing
to re-implement the whole data structure [14].

5.3 Experiments
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Fig. 1. Performance results when run-
ning 5% ll-insert, 5% ll-remove, and 90%
ll-search operations as elastic (!-STM)
and normal (TinySTM) transactions

Here we compare E-STM and the de-
fault version of TinySTM on a 16 core
machine. We chose TinySTM as it is
the fastest STM on micro-benchmarks we
know of [1,2]. We ran the linked list inte-
ger set implementation of Algorithm 2 on
16 threads with E-STM and we replaced
elastic transaction calls by normal trans-
action calls to run it with TinySTM. In
this experiment, E-STM is almost twice as
fast as TinySTM (1.9x faster on average
and up to 2.3x faster). For the graphs in-
cluding other testbed data structures and
other synchronization techniques, please
refer to the technical report [8].

6 Discussion and Related Work

One programmer may think of cutting normal transactions himself (herself)
instead of using elastic transactions. Nevertheless, hand-crafted cuts must be
defined prior to execution which may lead to inconsistencies. As an example,
consider that a transaction t searches a linked list. A hand-crafted cut of t
between two read operations on x and y may lead to an inconsistent state if
another transaction deletes y (by modifying the next pointers of x and y) between
those reads: t does not detect that it stops parsing the data structure as soon as
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it tries to access y. In contrast, elastic transactions avoid this issue by checking
dynamically if a transaction can be safely cut and aborting otherwise.

Besides elastic transactions, there have been several attempts to extend the
classical transactional model. Open nesting [15] provides sub-transactions that
can commit while the outermost transaction is not completed yet. More precisely,
open nesting makes sub-transactions visible before the outermost transaction
commits. This requires the programmer to define complex roll-backs [16].

Transactional boosting [17] is a methodology for transforming linearizable ob-
jects into transactional objects, which builds upon techniques from the database
literature. Although transactional boosting enhances concurrency by relaxing
constraints imposed by read/write semantics at low-level, it requires the pro-
grammer to identify the commutative operations and to define inverse operations
for non-commutative ones.

Abstract nesting [18] allows to abort partially in case of low-level conflict. As
the authors illustrate, abstract nested transactions can encapsulate independent
sub-parts of regular transactions like insert and remove sub-parts of a move
transaction. In contrast, abstract nested transactions cannot encapsulate sub-
parts of the parsing (as in search/insert/remove) of a data structure. Moreover,
abstract nested transactions aim at reducing the roll-back cost due to low-level
conflicts, but not at reducing the amount of low-level conflicts.

Early release [19] is the action of forgetting past reads before a transaction
ends. This mechanism, presented for DSTM, enhances concurrency by decreasing
the number of low-level conflicts for some pointer structures. It requires the
programmer to carefully determine when and which objects in every transaction
can be safely released [13]: if an object is released too early then the same
inconsistency problem as with hand-crafted cuts arises. Finally, early release
provides less concurrency than elastic transactions. Consider a transaction t that
accesses x and y before releasing x. If y is modified between t accessing x and y
then a conflict is always detected. In contrast, if t is an elastic transaction then
a conflict is detected only if x and y are consecutively accessed by t and both x
and y are modified between those accesses, which is very unlikely in practice.

7 Conclusion

We have proposed a new transactional model that enhances concurrency in a
simple fashion. The core idea relies on the combination of traditional transactions
with a new type of transactions that are elastic in the sense that their size evolves
dynamically depending on conflict detection. We implemented this model in an
STM, called E-STM, that only requires to differentiate elastic from traditional
transactions, making it simple to program with. Comparisons on data structures
have confirmed that elastic transactions are simpler than lock-based and lock-
free techniques and faster than regular transactions. It could be interesting to
investigate how much performance other applications could gain from using this
model. For example, the counter increment on which the rest of the transaction
does not depend.
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A promising approach to programming concurrent applications is provided by transac-
tional synchronization: a transaction aggregates a sequence of resource accesses that
should be executed atomically by a single thread. A transaction ends either by com-
mitting, in which case, all of its updates take effect, or by aborting, in which case, no
update is effective.

The transactional approach to contention management [6,8] guarantees consistency
by making sure that whenever there is a conflict, one of the transactions involved is
aborted. When aborted, a transaction is later restarted from its beginning. Two over-
lapping transactions T1 and T2 conflict, if T1 reads a resource X and T2 executes a
writing access to X while T1 is still pending, or T1 executed a writing access to X and
T2 accesses X while T1 is still pending. Note that a conflict does not mean that consis-
tency is violated, for example, two overlapping transactions [read(X), write(Y )] and
[write(X), read(Z)] can be serialized, despite having a conflict.

A major challenge is guaranteeing progress through a transactional scheduler, by
choosing which transaction to delay or abort and when to restart the aborted transaction,
so as to ensure that work eventually gets done, and all transactions commit. This goal
can also be stated quantitatively as minimizing the makespan—the total time needed to
complete a finite set of transactions. Clearly, the makespan depends on the workload—
the set of transactions and their characteristics, e.g. their arrival times, duration, and,
perhaps most importantly, the resources they read or modify.

The competitive approach for evaluating the performance of a transactional scheduler
A calculates the ratio between the makespan provided by A and by an optimal, clairvoy-
ant scheduler, for each workload separately, and then finds the maximal ratio [2,5]. It
has been shown that the best competitive ratio achieved by simple transactional sched-
ulers is Θ(s), where s is the number of resources [2]. However, these prior studies
assumed write-dominated workloads, in which transactions need exclusive access to
resources for most of their duration.

In many situations generated in transactional memory, the workloads are read-do-
minated: most of their duration, transactions do not need exclusive access to resources.
This includes read-only transactions that only observe data and do not modify it, as well
as mostly-read transactions, e.g., locating an item by searching a list and then inserting
or deleting, or mechanisms that rely on deferred updates (in commit time) [3,6,7].
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Contemporary transactional schedulers, like CAR-STM [4], Adaptive Transaction
Scheduling [9], and Steal-On-Abort [1], do not perform well under read-dominated
workloads. This is because, using somewhat different mechanisms, these schedulers
avoid repeated aborts (and hence, wasted work) by serializing transactions after a con-
flict happens. Thus, they all end up serializing more than necessary, in read-dominated
workloads. We show that there is a bimodal workload, i.e., a workload containing
only mostly-write and read-only transactions, for which these schedulers are at best
Ω(m)-competitive, where m is the number of cores. This means that, for some work-
loads, these schedulers utilize at most one core, while an optimal, clairvoyant sched-
uler exploits the maximal parallelism on all m cores. This can be easily shown to
be a tight bound, since at each time, the schedulers do make progress on at least one
transaction.

These counter-examples motivate our BIMODAL scheduler, which has a competitive
ratio of O(s) on bimodal workloads. BIMODAL alternates between write epochs, in
which it gives priority to writing transactions, and read epochs in which it prioritizes
transactions that have issued only reads so far. Taking τi > 0 to be the execution time
of transaction Ti when it runs uninterrupted to completion, and ωi to be the total time it
requests for exclusive access to resources, we prove:

Theorem 1. The BIMODAL scheduler is O(s)-competitive for bimodal workloads with
equi-length transactions, in which for any writing transaction Ti, 2ωi ≥ τi.

We show that for bimodal traffic, no algorithm can do better than that, extending the
lower bound of [2].

BIMODAL also works when the workload is not bimodal, but its behavior deterio-
rates, and can only be trivially bound to have O(m) competitive makespan when the
workload contains mostly-read transactions. We prove that any non-clairvoyant sched-
uler must suffer a similar degradation, i.e., it is Ω(m) competitive for some work-
load (containing mostly-read transactions); this result assumes that the scheduler is
conservative, i.e., it aborts a transaction whenever a conflict arises.
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Abstract. We address two problems, the g-tight group renaming task
and what we call, safe-consensus task, and show the relations between
them. We show that any g-tight group renaming task, the first problem,
implements g processes consensus. We show this by introducing an inter-
mediate task, the safe-consensus task, the second problem, and showing
that g-tight group renaming implements g-safe-consensus and that the
latter implements g-consensus. It is known that with g-consensus g-tight
group renaming is solvable, making the two problems equivalent.

The safe-consensus task, is of independent interest. In it the validity
condition of consensus is weakened as follows: if the first processor to
invoke the task returns before any other processor invokes, i.e., it runs
in solo, then it outputs its input; Otherwise the consensus output can be
arbitrary, not even the input of any process. We show the equivalence
between safe-(set-)consensus and (set-)consensus.

Keywords: consensus, validity, set-consensus, group renaming, solo run.

1 Introduction

The notion of group solvability was introduced in [9]. The paper in [3] introduced
a simpler version of group solvability called tight group solvability and in partic-
ular tackled the task of tight group renaming. The tight group renaming task is
the renaming problem [2] of groups. Groups have to agree on a slot, and different
groups have to agree on different slots. In the g-tight group renaming task there
are g processors in each group. In [3] it was shown that g-consensus is sufficient
to solve g-tight group renaming. The question whether it is also necessary was
left open.

Here we introduce a new task, safe-consensus, a weakening of the classic
consensus problem, and show the relation between this task, the g-tight group
renaming task and the classic g-consensus task. The two basic conditions satisfied
by the consensus problem [8] are, agreement and validity. In the safe-consensus
task we weaken the validity condition of consensus. In the classic consensus
problem the output to a participating processor is the input of a participating
processor. In a safe-consensus task, the validity is weakened to allow the task
to return an arbitrary value if initially the number of participating processors is
two or more. The agreement property is retained.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 111–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Our first result shows that g-tight group renaming implements g processes
safe-consensus. Essentially, safe-consensus is an abstraction of tight group re-
naming. In any deterministic solution to the tight group renaming the output
of a solo run is a function of the processor’s id and its group id. Since we do
not restrict the algorithm there may be two solo runs from the same group that
output different values. Thus if two or more processors from the same group
come together any new group name may be output, resembling the behavior of
a safe-consensus task.

Our next result shows that safe-consensus is in fact as powerful as consensus,
which together with the previous result shows its necessity to solve g-tight group
renaming.

Following the introduction of safe-consensus, we next examine ways to weaken
the validity condition of (n, k)-set-consensus. In (n, k)-set-consensus a processor
outputs an input of a participating processor, and the cardinality of the output
set is no larger than k. Hence the problem becomes non-trivial when initially
more than k processors access the task concurrently. Thus the “off-the-cuff”
weakening of the validity condition here is, that if more than k processors par-
ticipate, it can return default non-valid outputs such that the total number of
distinct values returned does not exceed k.

We show that this natural weakening is not equivalent to the original prob-
lem. Indeed it is strictly weaker than (n, k)-set-consensus. Nevertheless, it is
a non-trivial task - it is not read-write wait-free solvable. We then consider
strengthening the validity condition of (n, k)-safe-set-consensus to imitate safe-
consensus: If a non-valid output is returned to any processors then it must be
returned to all. We then show that strong-safe-set-consensus is equivalent to
classic set-consensus.

Related Work: In [10], Guerraoui, and Kuznetsov define the weak consensus
task. Here processors output 0 or 1 with the validity requirement being only that
there exists a run of the task that outputs 0, and there exists a run that outputs
1. They show how weak consensus for n processors can be used to implement
n processor consensus with the standard validity condition. Unlike this paper,
they rely on the fact that they deal with an object, that is a given deterministic
implementation of a task. In fact, they need to drive the implementation into
particular special state (treating it as a white box). We on the other hand deal
just with the specification, i.e., task (as a black box). We do not rely on any
particular implementation of the task.

2 Model and Problem Definitions

We follow the standard model of asynchronous shared memory system as in
[12,11]. There are n processors in the system {1, 2, . . . , n} that communicate by
either atomically reading and writing to the atomic read/write shared memory,
or by applying operations to a shared object such as a consensus object.
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The g-tight group renaming problem: We follow the definition from [3]: In a
tight group renaming task with group size g, n processors with id’s from a large
domain {1, 2, . . . , N} are partitioned into m groups with id’s from a large domain
{1, 2, . . . , M}, with at most g processors per group. A tight group renaming task
renames groups from the domain 1..M to 1..l for l << M , where all processors
with the same initial group ID are renamed to the same new group ID, and no
two different initial group id’s are renamed to the same new group ID.
The n-Safe-consensus problem: In this task n processors with id’s 1..n each
proposes an input value, and outputs a value such that:

– Wait-Free: Each processor finishes executing within a finite number of steps.
– Agreement: All processors output the same output value.
– Weak-Validity: If the output of a processor occurs before the invocation of

any other processor then the output is that processor’s proposed input value.

Hence, if no processor initially accesses the Safe-consensus task in solo then
processors may agree on any value. Notice, a similar task but in which the
agreement condition is that each process may return either a fixed default value
or the agreement value is read/write implementable.
The (n, k)-Safe-set-consensus problem: In this task n processors with id’s 1..n
each proposes an input value, and outputs a value such that:

– Wait-Free: Each processor finishes executing within a finite number of steps.
– k-Agreement: At most k distinct values are output.
– Weak-Validity: If the first output occurs after no more than k processors

have invoked, then all processors output a proposed input value.

The Strong (n, k)-Safe-set-consensus problem: In this task n processors with id’s
1..n each proposes an input value, and outputs a value such that:

– Wait-Free: Each processor finishes executing within a finite number of steps.
– Strong k-Agreement: At most k distinct values are output, and if any output

value is not a proposed input value, that output value is the output of all
processors which access the task.

– Weak-Validity: If the first output occurs after no more than k processors
have invoked, then all processors output a proposed input value.

Task equivalence: We use wait-free constructions to compare two tasks, A and
B. We say that “A can implement B” if there is a wait-free algorithm C that
may use any number of copies of task A and read/write atomic registers to solve
task B. If A and B implement each other, the tasks are said to be equivalent.
Atomic Snapshots: In several of the algorithms we utilize the ability to perform
atomic snapshots of shared memory, as defined in [1].

Correctness proofs for all the algorithms are given in Appendix A.

3 g-Tight Group Renaming Implements g-Safe-Consensus

We show that a single g-tight group renaming task can implement g-safe-consensus
so long as it supports at least g + 1 processor invocations. We then show that any
weakening of this requirement is impossible.
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Theorem 1. Any tight group renaming task with group size g supporting n pro-
cessors s.t., n > g and M > l implements 0/1 safe-consensus for g processors.

Given an algorithm A which solves tight group renaming we show how to solve
safe-consensus for g processors with 0/1 inputs (See code in Algorithm 1). We
assume A is of the form A(processor-id,group-id), receiving the processor id
from 1..N and initial group id from 1..M , and returns the new group ID in
range 1..l, and that A cannot be run more than once with the same processor
ID. We also assume that invocation by a single processor in isolation always
returns the same result, i.e., the only “non-determinism” is due to concurrency,
which is true for any deterministic task.

Lemma 2. There are two values k1,k2, s.t., k1 �= k2 and a solo-run of A(k1, k1)
returns the same value as a solo-run of A(k2, k2)

Proof. The pairs < 1, 1 >, < 2, 2 >,...,< l + 1, l + 1 > are all valid values to call
A with, since M > l and N > l. Since A returns values in the range 1..l, there
are at least 2 of the above pairs for which A() will return the same value in a
solo-run.

Denote this returned value k. Let k1,k2 and k be these values for Algorithm A.
(Note that these values can be deduced by running l + 1 instances of algorithm
A, without knowledge of its internal specification, i.e., leaving it as a black-box).

Notice that if more than one processors access the group-renaming concur-
rently, even if from the same group, then their outputs cannot be deduced (or
determined) ahead of time. Their outputs may depend on their interleaving and
other parameters such as their ids.

In an attempt to reach consensus we let all g processors run A with group
ID k1. If k1 renamed to k they decide 0, otherwise they decide 1. By defini-
tion of tight group renaming k1 renames to the same value for all processors,
therefore guaranteeing agreement. To achieve the weak-validity requirement of
safe-consensus we let all processors first register in memory and take a snapshot.
If a processor sees itself alone it runs A(k1, k1), and if it has input 1 it first runs
A(k2, k2). This guarantees that if it runs in solo, either k1 or k2 rename to k
according to whether its input is 0 or 1 respectively.

Weak-Renaming: Note that the above construction applies whether the tight
group renaming is weak-renaming or strong-renaming (i.e., adaptive).

Notice: The above algorithm can be extended to multivalue safe-consensus with
p values, given a g-tight group renaming algorithm which allows at least p groups,
s.t. M > (p− 1)l, while still using only one instance of algorithm A.

3.1 At Least g + 1 Invocations Are Required to Implement
Safe-Consensus

In the above construction we showed that tight group renaming with group size
g solves binary g-consensus when it may be invoked g + 1 times. Taubenfeld
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Algorithm 1. g processor 0/1 safe-consensus using a g-tight group renaming
box and R/W memory

Shared Variables:
S[1..g] : initially NULL
temp[1..g] : g distinct processor ID’s which are neither k1 nor k2
A(processor-id,group-id) : a g-tight group renaming algorithm instance

procedure consensus(proposal)
1: S[processor-id] = ’ACTIVE’
2: SS = atomic snapshot of S[1..g]
3: if for all i �= processor-id SS[i] = NULL
4: if proposal = 1 then run A(k2,k2)
5: value = A(k1,k1)
6: else
7: value = A(temp[processor-id],k1)
8: end if
9: if value = k then decide 0 else decide 1

end consensus

then raised the question whether this is a lower bound, i.e., can a tight group
renaming task with group size g which supports at most g processor invocations
solve g-safe-consensus (and thus g-consensus?)

We prove that a g-tight group renaming task that allows at most g processor
invocations cannot solve g-consensus, by showing how to implement such a task
using only (g − 1)-consensus objects and atomic R/W memory.

Theorem 3. g-tight group renaming that may be invoked by at most g proces-
sors can be implemented using only (g − 1)-consensus objects and atomic R/W
memory.

Proof. In Algorithm 2 we present the code to solve g-tight group renaming for
at most g processors in groups of size g. We utilize the fact that n = g, which
means that if there is some group with more than g − 1 processors in it, then
all g processors are from the same group and they can therefore decide some
default value since there are no other groups to collide with.

We associate a (g − 1)-consensus object with each of the possible M initial
group ID’s. We also utilize the result from [3] which shows that tight group
renaming for groups of size g−1 can be implemented using only (g−1)-consensus
objects and atomic R/W memory. All processors register their ID and group ID
in memory and take a snapshot. If there are g processors in the snapshot and
all are from the same group the processor simply decides on a default value 0.
Otherwise it uses its group’s (g − 1)-consensus object to decide on its output as
follows: If all processors in the snapshot are from its group, it proposes the default
value 0, otherwise it accesses a (g − 1)-tight group renaming task (constructed
from (g−1)-consensus objects and r/w memory) and proposes the value returned
from that task (Which returns ID’s in range 1..l and does not collide with 0).
All processors which decide according to their group’s (g − 1)-consensus object



116 Y. Afek, Eli Gafni, and O. Lieber

decide the same value, and the only time a processor does not access the (g−1)-
consensus object is if it sees all g processors in memory and they all have the
same group ID. In this case it returns 0 and so will all others, since they all
propose 0 to the consensus object associated with their group.

Algorithm 2. g-tight group renaming for g processors using (g − 1)-consensus
objects and R/W memory

Shared Variables:
cons[1..M ] : M (g − 1)-consensus objects, one for each group
S[1..N ] : Shared R/W registers, one for each processor, initially NULL

procedure tight-group-renaming(processor-id,group-id)
1: S[processor-id] := group-id
2: SS := atomic snapshot of S[1..N]
3: count-group := |{i|SS[i] =group-id}|
4: count-total := |{i|SS[i] �= NULL}|
5: if count-group = count-total = g then return 0
6: if count-group = count-total
7: propose := 0
8: else
9: propose := (g − 1)-tight-group-renaming(processor-id,group-id)
10: end if
11: return cons[group-id] (propose)

end consensus

4 Safe-Consensus Implements Consensus

We now show that n-safe-consensus is equivalent to regular n-consensus for any
n, therefore resulting in g-tight group renaming implementing g-consensus for
any g, which complements the result from [3] to prove that g-tight group renam-
ing and g-consensus are equivalent.

Theorem 4. Safe-consensus is equivalent to consensus.

We implement n processor consensus given enough n processor safe-consensus
tasks as black-boxes. Two algorithms are presented, the first one is somewhat
simpler but requires O(2n) copies of the safe-consensus task to solve for n pro-
cessors. The second algorithm uses a slight improvement and requires only O(n2)
copies of safe-consensus.

4.1 Consensus Using O(2n) Safe-Consensus Tasks

For n processors we assume inductively we can solve consensus for n − 1 pro-
cessors. We implement consensus as follows (The code is given in Algorithm 3):
Processors 1..n−1 agree on a value PA recursively using the lower degree version
of the task (Line 2) and write the value to shared memory (Line 3). Processors
2..n−1 then join processor n to recursively agree on a value using another lower
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degree version of the task, in which processors 2..n−1 propose PA and processor
n proposes its own input (Line 6), writing the decision, denoted PB , to shared
memory (Line 7).

They now enter an n-processor safe-consensus task (Line 9), proposing their
processor-id, in order to decide between PA and PB. If it returns n they decide
PB, otherwise they decide PA.

Algorithm 3. n-consensus using n-safe-consensus, (n− 1)-consensus tasks and
R/W memory

Variables:
processor-id : ID of the running processor, 1..n
PA,PB : MWMR registers, initially NULL

procedure consensus(proposal)
1: if processor-id < n
2: proposal := (n − 1)-consensusA(proposal)
3: PA := proposal
4: end if
5: if processor-id > 1
6: proposal := (n − 1)-consensusB(proposal)
7: PB := proposal
8: end if
9: winner := n-safe-consensus(processor-id)
10: if winner = n
11: decide PB

12: else
13: decide PA

14: end if
end consensus

Complexity: O(2n) as each recursion calls 2 lower degree instances.

4.2 Consensus Using O(n2) Safe-Consensus Tasks

In Algorithm 4 we implement consensus using only O(n2) safe-consensus black-
boxes. Again, we assume inductively we can solve consensus for n−1 processors.

We split the n processors into 2 groups, processors 1..n− 1 on one side, and
processor n as a singleton on the other (Denote its input PB). Processors 1..n−1
recursively reach consensus among themselves (Line 10), denote this value PA,
and then work together against processor n. The problem here is that with
a single safe-consensus task, processors 1..n − 1 can interfere with each other,
causing the safe-consensus task to return some arbitrary value, without processor
n even being alive. To solve this issue, we use n−1 safe-consensus task instances.
All n processors run all n − 1 instances (Lines 4 and 14). Processors 1..n − 1
each start running at a different safe-consensus task. Notice that this guarantees
that if processor n is not active, then at least one of the n − 1 processors will
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complete a solo-run of a safe-consensus task (The first one to complete running
its first instance) and that task will return PA by definition. On the other hand,
if all processors 1..n−1 are asleep, processor n successfully completes a solo-run
of all n− 1 safe-consensus tasks (Line 4), and they all return PB . We then have
processors 1..n − 1 perform an OR on all their runs, i.e., if at least one of the
n− 1 instances returned PA they decide on it. Processor n performs an AND, if
all instances returned PB it decides on it. If a processor from 1..n− 1 does not
receive PA from any of the tasks (Line 16), then PB must be written in memory
and it can check if processor n was satisfied (Line 17). If it was not, then they
default to deciding PA. On the other hand if processor n did not receive PB from
all the tasks (Line 6), then PA must be written in memory and it defaults to PA

(Line 7) as will processors 1..n− 1.

Algorithm 4. n-consensus using O(n2) safe-consensus tasks and R/W memory
Variables:

PA,PB : MWMR registers for processors 1..n − 1 and n respectively
safe-consensus[1..n − 1] : n − 1 n-processor or more safe-consensus tasks
values[1..n-1] : Local registers for each processor

procedure consensus(proposal)
1: if processor-id = n
2: PB := proposal
3: for i := 1 to n − 1
4: values[i] := safe-consensus[i](proposal)
5: end for
6: if values[i] = proposal for all i = 1..n − 1 then decide PB

7: else decide PA

9: else
10: proposal := (n − 1)-consensus (proposal)
12: PA := proposal
13: for i := 1 to n − 1
14: values[i] := safe-consensus[((i + processorid)mod(n − 1)) + 1](proposal)
15: end for
16: if values[i] = proposal for some i = 1..n − 1 then decide PA

17: elseif values[i] = PB for all i = 1..n − 1 then decide PB

18: else decide PA

20: end if
end consensus

Complexity: n ∗ (n − 1)/2 as it uses n− 1 safe-consensus tasks and recursively
calls one lower degree instance.

Corollary 5. g-tight group renaming solves g-consensus using n∗(n−1)/2 such
black-boxes, and is therefore a g-consensus task for any g.



Tight Group Renaming on Groups of Size g Is Equivalent to g-Consensus 119

5 Safe Set-Consensus

What about (n, k)-set-consensus that may deliver arbitrary values? There are a
few possibilities to generalize safe-consensus to a task (n, k)-safe-set-consensus. It
may behave as (n, k)-set-consensus so long as no more than k processors initially
access the task simultaneously. In case more than k processors initially access it
simultaneously, it is allowed to return invalid results (So long as the k-agreement
requirement is still satisfied).

5.1 (n,k)-Safe-Set-Consensus

Theorem 6. Excluding the pair (4, 2), (n, k)-set-consensus is implementable
from (n, k)-safe-set-consensus iff n = k + 1.

For n > k + 1, we show we cannot solve (n, k)-set-consensus using (n, k)-safe-
set-consensus, except for the case of (4,2). We show how to implement (n, k)-
safe-set-consensus using a regular (k, k−1)-set-consensus task for all n (Code in
Algorithm 5): Each processor registers in memory and takes an atomic snapshot.
If it sees at most k processors (at most k will), it runs the (k, k−1)-set-consensus
task, posts the result, and decides it. If a processor sees more than k in its
snapshot, then if it sees some posted output it decides it, otherwise it defaults
to 0. The only time a processor sees more than k in its snapshot but does not
see a posted output is if more than k are concurrently executing the task and no
processor has returned yet, so deciding an invalid value 0 in this case is allowed.

Since regular (k, k−1)-set-consensus can’t solve (n, k)-set-consensus for n/k >
k/(k − 1) [4], (n, k)-safe-set-consensus can’t solve (n, k)-set-consensus for n >
k + 1, except for the (4,2) case, which is not yet classified.

5.2 Strong (n,k)-Safe-Set-Consensus

Here we strengthen the definition of safe-set-consensus so it can implement reg-
ular set-consensus: If an invalid value is returned, all processors output that
value.

We show that this definition of the task does implement (n, k) set-consensus
for all n (See code in Algorithm 6). We use the same idea as in Algorithm 3: We
assume inductively we can solve for (n− 1, k). Processors 1..n− 1 agree upon k
inputs using our (n − 1, k) solution and post the output to a shared vector A[]
(Line 3). Processors 2..n− 1 each take their results and join another (n − 1, k)
set-consensus instance with processor n and post the output to a shared result
vector B[] (Line 7). Each processor then runs the (n, k) safe-set-consensus task
with its processor ID to decide on up to k winners (Line 9). If the winner is n
they go to B[] otherwise they go to A[]. If the ‘winner’ already wrote a value
in its location in the vector, that value is chosen, if not it means the result was
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Algorithm 5. (n, k) Safe-set-consensus using a (k, k−1) set-consensus task and
R/W memory

Shared Variables:
S[1..n] : initialy NULL
RES[1..n] : initialy NULL

procedure Safe-set-consensus(proposal)
1: S[processor-id] := ’ACTIVE’
2: SS := atomic snapshot of S[1..n]
3: count := |{i|SS[i] =’ACTIVE’}|
4: if count ≤ k
5: val := (k, k − 1)-set-cons(proposal)
6: RES[processor-id] := val
7: decide val
8: else
9: if RES[i] = NULL for all i = 1..n decide 0
10: else decide any RES[i] s.t. RES[i] �= NULL
11: end if

end Safe-set-consensus

invalid and the processors choose any value posted in that array (By the new
agreement definition, they all will go to the same array, A[] or B[]).

6 Conclusions

Few questions are left open. We have shown the connection between g-tight group
renaming and g processors safe-consensus. That is, if the members of each group
must decide on 1 value (new name), then it is equivalent to consensus between
the members of the group. The interesting question is then if the members of a
group are allowed to decide on two different values, is that equivalent to some
form of 2-(safe)-set-consensus? Or in general to try to find a connection between
a variant of g-group-renaming which allows up to k new names per group, and
the (g, k)-safe-set-consensus problem. Is this variant of group renaming weaker,
stronger or equivalent to set-consensus?

For (n, k)-safe-set-consensus we have shown a strong variant of the prob-
lem, which is equivalent to (n, k)-set-consensus, and a weaker variant, which is
strictly weaker. Is there, or can there be a tighter characterization of safe-set-
consensus in between? What is the power of the weaker variant? In the weaker
variant of safe-set-consensus, it still remains to show the classification of the
(4, 2)-safe-set-consensus. Can it solve (4, 2)-set-consensus if it is allowed to re-
turn 2 invalid values when 3 or 4 processes access it simultaneously? Another
question is whether the Weak-Validity considered in this paper is in some sense
the weakest validity condition which is still equivalent to the classical consensus
definition.
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Algorithm 6. (n, k) set-consensus using Strong (n, k) safe-set-consensus and
R/W memory

Shared Variables:
A[1..n],B[1..n] : Initially NULL
(n − 1, k)set-consensus-A/B : 2 (n − 1, k) set-consensus tasks

procedure set-consensus(proposal)
1: if processor-id < n
2: proposal := (n − 1, k)set-consensus-A(proposal)
3: A[processor-id] := proposal
4: end if
5: if processor-id > 1
6: proposal := (n − 1, k)set-consensus-B(proposal)
7: B[processor-id] := proposal
8: end if
9: winner := safe-set-consensus(processor-id)
10: if winner = n
11: if B[n] �= NULL decide B[n] else decide any B[i] s.t. B[i] �= NULL
12: else
13: if winner in 1..n and A[winner] �= NULL decide A[winner]
14: else decide any A[i] s.t. A[i] �= NULL
15: end if

end set-consensus

Acknowledgements. We are in debt to Gadi Taubenfeld for helpful discussions
and suggestions.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snap-
shots of Shared Memory. Journal of the ACM 40(4), 873–890 (1993)

2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. J. ACM 37(3), 524–548 (1990)

3. Afek, Y., Gamzu, I., Levy, I., Merritt, M., Taubenfeld, G.: Group renaming. In:
Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 58–72.
Springer, Heidelberg (2008)

4. Borowsky, E., Gafni, E.: The Implication of the Borowsky-Gafni Simulation on
the Set-Consensus Hierarchy. Technical Report 930021, Department of Computer
Science, UCLA (1993)

5. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: Simultaneous consensus
tasks: A tighter characterization of set-consensus. In: Chaudhuri, S., Das, S.R.,
Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 331–341.
Springer, Heidelberg (2006)

6. De Prisco, R., Malkhi, D., Reiter, M.: On k-Set Consensus Problems in Asyn-
chronous Systems. IEEE Transactions on Parallel and Distributed Systems 12(1),
7–21 (2001)

7. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation 105, 132–158 (1993)



122 Y. Afek, Eli Gafni, and O. Lieber

8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

9. Gafni, E.: Group-solvability. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274,
pp. 30–40. Springer, Heidelberg (2004)

10. Guerraoui, R., Kuznetsov, P.: The gap in circumventing the impossibility of con-
sensus. J. Comput. Syst. Sci. 74(5), 823–830 (2008)

11. Herlihy, M.P.: Wait-Free Synchronization. ACM Transactions on Programming
Languages and Systems 13(1), 124–149 (1991)

12. Herlihy, M.P., Wing, J.M.: Linearizability: a Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems 12(3), 463–
492 (1990)

A Appendix

A.1 Algorithm 1 Proof of Correctness

Wait-Free: Since A() is wait-free and there are no loops.

Agreement: By the code all processors decide according to the value returned by
A() when invoking it with group ID k1. By the definition of tight group renaming
this value is the same for all invocations, and therefore all the processors receive
either k and decide 0, or a value different than k and decide 1.

Weak-Validity: Let p be a processor that executes the full algorithm in solo.
Processor p therefore sees itself alone in its snapshot. If its input is 1 it first
runs A(k2, k2) in solo which by construction returns k. Hence by the definition
of tight group renaming the call to A(k1, k1) in Line 5 does not return k since
k1 �= k2 and this processor decides 1 in Line 9 and the output is valid. If its
input is 0 it does not run A(k2, k2) and its solo-run of A(k1, k1) returns k. It
therefore decides 0 in Line 9 and the output is valid in this case as well.

It should also be shown that at most g processors invoke A per initial group
ID, and that A is never invoked more than once with the same processor ID: For
each ”real” processor A is run once with group k1 and at most one processor
runs it with group k2, and it is therefore invoked at most g times with k1 and
at most one time with k2 for a total of at most g + 1 invocations.

If no processor sees itself alone then all runs of A are with different processor
ID’s because all the values in temp[] are different. Since at most one processor
can see itself alone, at most one will use values k1 and/or k2 for processor ID’s,
which are in any case different from all the values in temp[], and therefore A()
is never invoked more than once with a given processor ID.

A.2 Algorithm 2 Proof of Correctness

Suppose all processors return in Line 11. In this case each processor decides the
result of its group’s consensus task. At most g − 1 processors from the same
group can reach this line, since at most g can access the task, and if they are
all from the same group, the last one to take an atomic snapshot in line 2 will
attain: count−group = count−total = g and decide in Line 5. Hence neither the
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consensus objects nor the (g − 1)-tight group renaming tasks are ever accessed
by more than g − 1 processors from the same group.

Since the consensus for a certain group always returns the same value, all
processors from the same group decide the same value. We need only show
that no two groups decide the same value. We claim only one group can see
count − group = count − total and propose 0. Since the snapshots are atomic,
there cannot be two snapshots in which different group ID’s appear alone. Since
(g− 1)-tight-group-renaming(processor-id,group-id) returns a different value for
each group by definition, and does not return 0, we have that no two processors
from different groups can propose the same value.

We are left with the case that at least one processor does decide in Line 5.
This may happen only if all g processors are from the same group and all of
them appear in the snapshot. In this case, any processor which sees all g in its
snapshot returns 0. All others propose 0 since they all see only their group in
Line 6, therefore all proposals are 0 and the consensus in Line 11 must return 0
as well, and all processors return 0.

A.3 Algorithm 3 Proof of Correctness

Wait-Free: By induction and observing the code, since there are no loops.

Agreement: Let v be the value returned at Line 9, which by definition is the
same for all processors. Only a single value is written to PA at Line 3, the value
returned by the consensus at line 2, and only a single value is written to PB at
line 7, the result of the consensus at line 6. Therefore we only need to show that
if v = n, then PB is not NULL at Line 11, and if v �= n then PA is not NULL at
line 13.

Suppose a processor finishes executing Line 9, and either PA or PB have not
yet been written to. If PB has not yet been written to then this must be processor
1 since processors 2, . . . , n go through line 7. We show that v cannot be n in this
case. Since no processor from 2, . . . , n has executed Line 7 then processor 1 runs
line 9 in solo and by definition receives 1. Now suppose PA has not yet been written
to and a processor completed line 9. This can only be processor n and processors
1, . . . , n − 1 have not yet executed Line 3. Therefore processor n runs in solo at
Line 9 and by definition receives back n and the decision is therefore PB .

Validity: We need only to show that the values written to PA and PB are valid,
i.e., they are proposals of active processors. The result of the consensus at Line
2 is valid, since each processor from 1, . . . , n − 1 proposes its own input there,
therefore PA is valid. PB is the result of the consensus at line 6. The proposals
there are either PA, which is valid, or n’s input if processor n is alive, thus the
result is valid either way.

A.4 Algorithm 4 Proof of Correctness

Wait-Free: By induction: Version n has a constant number of iterations in its
loops (n− 1), and uses version n− 1 of our algorithm once.
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Lemma 7. Only a single value is ever written to PA and a single value to PB,
and any time a processor reads one of these registers in the code, it contains that
single value.

Proof. Processor n only writes once to PB , at the beginning of its code. Proces-
sors 1..n− 1 each write only once to PA, first thing after they reach agreement
with each other at Line 10, therefore only one value is written to PA, the value
agreed upon at Line 10. Now suppose processor n reads PA, it therefore reached
Line 7. It reaches Line 7 only if not all safe-consensus instances return its pro-
posal. Hence processor n did not run a solo-run in at least one of the tasks.
Hence at least one of the other processors from 1..n− 1 ran at least some part
of that safe-consensus task, and it therefore executed its Line 12, therefore PA

contains its value when processor n reads it. Suppose one of the processors from
1..n− 1 reads PB . It therefore reached Line 17. It reaches Line 17 only if none
of the safe-consensus tasks returned its proposal. Suppose by contradiction that
processor n has not executed Line 2 yet. Let p be the first processor from 1..n−1
to finish running the first safe-consensus task it ran (At least one has finished,
since a processor has reached Line 17). Since processor n has not yet executed
line 2, it has not yet executed any part of any of the safe-consensus tasks. Since
each of the processors 1..n − 1 start with a different task instance, processor p
must therefore have completed a solo-run of its first instance. Since all proces-
sors 1..n − 1 use the same proposal, and each task guarantees consensus, then
all processors 1..n− 1 will decide at Line 16, in contradiction to the fact that a
processor from 1..n−1 reached Line 17. Therefore processor n has executed line
2, and its proposal is in PB whenever any processor reads PB .

Validity: Since the values written to PA and PB are one of the processor’s
initial proposals (Either processor n’s proposal, or the agreed upon proposal of
processors 1..n − 1) and from the fact that the only values decided on in the
code are either one of these proposals, or the contents of PA or PB, it holds that
each processor decides on a valid value.

Agreement: If at least one of the safe-consensus tasks return the agreed upon
proposal of processors 1..n−1, they all decide that value at Line 16. If processor
n had that same proposal, then whether it decides at Line 6 or 7, it will be that
value (From the previous lemma we have that it will read that proposal form
PA at line 7). If it did not have the same proposal, it will not decide at Line 6,
since at least one of the safe-consensus tasks returned a value which is not its
proposal. It therefore decides PA at Line 7, which is the agreed upon proposal
of processors 1..n− 1, i.e., all processors decide the same value.

If all safe-consensus tasks return the proposal of processor n, then processor n
decides that value at Line 6. If processors 1..n−1 agreed upon that same proposal,
they too all decide that value at line 16 (Since if all tasks returned it, then at least
one did as well). If processors 1..n − 1 had a different agreed upon value, then
they will not decide at Line 16, since all tasks returned a different value than their
proposal. They therefore read that value at Line 17 (As shown in the previous
lemma), see that all the tasks returned it, and decide that value there.
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Otherwise, at least one safe-consensus task returned a value different from
processor n’s proposal, and none of them returned the agreed upon proposal
of processors 1..n − 1. Processor n therefore will not decide at line 6 and will
decide PA at line 7 (Which is updated at this point). Processors 1..n−1 will not
decide at neither lines 16 nor 17 (Since both those checks will fail), and they too
decide PA, and we reach consensus.

A.5 Algorithm 5 Proof of Correctness

Wait-Free: Since (k, k − 1)-set-cons is wait-free so is Algorithm 2 as it has no
loops.

k-Agreement: The set of all possible values decided on in the algorithm are the
k − 1 values returned by the (k, k − 1)-set-consensus task and 0, thus at most k
values are decided upon, and at most one of them is an invalid value.

Weak-Validity: By the definition of safe-set-consensus, we need to show that if
the first processor to output does so after at most k − 1 others invoked, then
all processors decide on a proposed input value. Suppose the first processor
to output does so after no more than k − 1 others have invoked. Denote this
processor p. Since at most k − 1 others have invoked, they all saw at most k
processors in their snapshot and accessed the set-consensus object at Line 5 with
their proposal. Since this is a standard set-consensus object, it always returns
valid values and all these processors therefore decide valid values. Let q be some
processor which invoked after p decided and suppose it saw more than k in its
snapshot. Since p already decided, it already executed Line 6 and its output is
written in memory. Processor q therefore sees a non-NULL value in RES[] and
decides it, i.e., no processor decides 0 and all outputs are valid.

A.6 Algorithm 6 Proof of Correctness

Wait-Free: By induction: Since version n − 1 is wait-free so is our code as we
have no loops.

k-Agreement: We split the proof into two, according to whether the safe-set-
consensus at Line 9 returned an invalid value or not. If it did not, then by
definition it returned at most k valid values, i.e., at most k processor ID’s which
proposed themselves at Line 9. Hence if the winner is n, B[n] is not NULL (Since
n passed Line 7 in order to propose itself), and if the winner is i in 1..n− 1 A[i]
is not NULL since it must have passed Line 3 in order to propose itself. Thus
for each ’winner’ at Line 9 exactly one result is decided on at Line 13 or Line
11. Since there are at most k ’winners’, and since each A[] and B[] are written
only once we have that at most k values are decided on.

Now suppose Line 9 returns an invalid result i. By definition all processors
received this result. If the result is n then all processors decide at Line 11 either
B[n] or any non-NULL value in B[], while if the result is not n they decide at
lines 13 or 14 either A[i] or any non-NULL value in A[]. Since A[] and B[] are
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each filled respectively with results of separate k-value set-consensus tasks, then
at most k values are chosen. It remains only to show that each processor indeed
has some value to choose, i.e., if it needs to decide some non-NULL value in A[]
or B[], then there exists such a value at that point: Since Line 9 returned an
invalid result, then by definition more than k processors invoked before the first
processor returned. Hence at least 2 processors invoked. Therefore any decision
occurs after at least 2 processors reached Line 9. These processors are either 1
and n, or at least one of them is from 2..n − 1 and in any case at least one of
them wrote to A[] and one of them to B[] before reaching Line 9, therefore we
will always have a non-NULL value to choose.

Validity: All proposals to the first k-set-consensus task are valid, since they are
inputs of active processors. Since this is a regular set-consensus task all its results
are valid, and A[] is filled with valid inputs. Since all proposals to the second
k-set-consensus are either results of the first one or the input of processor n,
it too returns only valid values, therefore B[] is filled with valid values as well.
Since all values decided on are non-NULL values from A[] and B[] it holds that
all outputs are valid.
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Abstract. We present the family of RedBlue algorithms, a collection
of universal wait-free constructions for linearizable shared objects in an
asynchronous shared-memory distributed system with n processes. The
algorithms are adaptive and improve upon previous algorithms in terms
of their time and/or space complexity.

The first of the algorithms achieves better time complexity than all
previously presented algorithms but it is impractical since it uses large
LL/SC registers. This algorithm comprises the keystone for the design of
the other RedBlue algorithms which are of practical interest. The second
algorithm significantly reduces the size of the required registers and it is
therefore practical in many cases. The last two algorithms work efficiently
for large objects improving previous universal constructions for large
objects presented by Anderson and Moir (PODC 1995).

1 Introduction

In a shared memory system processes communicate by accessing shared ob-
jects, data structures that can be accessed concurrently by several processes.
We present a collection of wait-free universal constructions that we call RedBlue
algorithms. A universal construction is an algorithm that implements any shared
object in an asynchronous system. A universal construction (or any other algo-
rithm) is wait-free [13] if it guarantees that a process completes the operation
it executes in a finite number of its own steps despite the failures or the execu-
tion speed of other processes. The algorithms use LL/SC registers; Herlihy has
proved [13] that such algorithms necessarily use strong primitives (with infinite
consensus number) like LL/SC.

In shared memory systems it is often the case that the total number of pro-
cesses n taking part in a computation is much larger than the actual number of
processes that concurrently access the shared object. For this reason, a flurry of
research [1, 2, 8, 9, 15] has been devoted to the design of adaptive algorithms
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whose time complexity depends on k, the maximum number of processes that
concurrently access the shared object. All RedBlue algorithms are adaptive.

The algorithms use two perfect binary trees of �log2 n� + 1 levels each. The
first tree (red tree) is employed for the estimation of any encountered contention,
while the second tree (blue tree) is used for the synchronization with other pro-
cesses when applying an operation. In each of these trees, a process is assigned
a leaf node (and therefore also a path from this leaf to the root node, or vice
versa). A process that wants to apply an operation to the simulated object,
traverses first its path in the red tree from the root downwards looking for an
unoccupied node in this path. Once it manages to occupy such a node, it starts
traversing the blue tree upwards from the isomorphic blue node to the occupied
red node, transferring information about its operation (as well as about other
active operations) towards the tree’s root. In this way, each operation traverses
at most O(min{k, logn}) nodes in each of the two trees. Once information about
the operation reaches the root, the operation is applied to the simulated object.

The first algorithm (F-RedBlue) has time complexity O(min{k, log n}) which is
better than any previously presented algorithm but it uses big LL/SC registers;
thus it is only of theoretical interest. A lower bound of Ω(log n) on the time com-
plexity of universal constructions that use LL/SC registers is presented in [17].
It holds even if an infinite number of unbounded-size registers are employed. Our
algorithm is therefore optimal in terms of time complexity.

The second algorithm (S-RedBlue) is a slightly modified version of F-RedBlue
that uses smaller registers and it is therefore practical in many cases. S-RedBlue
uses O(n) LL/SC registers, one for each of the trees’ nodes and n+1 single-writer
registers per process. Each register of the red tree has size �log2 n� + 1. Each
register of the blue tree stores n bits, one for each process. One of the registers
(the register corresponding to the blue root) is big. We implement this register by
single-word LL/SC using the technique in [19]. In current systems where registers
of 128 bits are available, S-RedBlue works with single-word LL/SC objects for
up to 128 processes. In fact, even if n/128 = c > 1, where c is any constant, our
algorithm can be implemented by single-word LL/SC registers with the same
time complexity (increased by a constant factor) using the implementation of
multi-word LL/SC from single-word LL/SC [19].

Most of the universal algorithms presented in the past, as well as F-RedBlue
and S-RedBlue, copy the entire state of the object each time an update on it
should be performed by some process. This is not practical for large objects
whose states may require a large amount of storage to maintain. Anderson and
Moir [7] presented a lock-free and a wait-free universal construction that are
practical for large objects. Their algorithms assume that the object state is rep-
resented as a contiguous array which requires B data blocks of size S each for its
storage. Each operation can modify at most T blocks and each process can help
at most M ≥ 2T other processes. We combine some of the techniques introduced
in [7] with the techniques employed by the RedBlue algorithms to design two sim-
ple wait-free constructions which have the nice properties of the constructions
in [7] while achieving better time complexity. More specifically, our algorithms
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are adaptive. The time complexity of the first algorithm is much better than the
wait-free construction presented in [7] but it does not assume an upper bound on
the number of processes a process may help as the wait-free construction in [7]
does. Our last algorithm (BLS-RedBlue) exhibits all the properties of the wait-
free construction in [7] and still achieves better time complexity. In particular,
its time complexity is similar to the time complexity of the wait-free algorithm
in [7] but with k replacing n. The space complexity of the algorithm is the same
as that of the wait-free algorithm in [7]. Our algorithms are much simpler than
the constructions presented in [7], and they improve on time complexity upon
these algorithms. Table 1 provides the exact time complexities and the space
overheads of these algorithms (as well as of other previously published universal
constructions discussed below).

Afek, Dauber and Touitou [3] have presented algorithm GroupUpdate which
also uses a tree technique to keep track of the list of active processes. They then
combine this tree construction with Herlihy’s universal algorithm [13, 14] to get
a universal construction with time complexity O(k log k + W + kD), where W
is the size (in words) of the simulated object state and D is the time required
for performing a sequential operation on it. Our first algorithm retains the basic
structure of GroupUpdate but achieves better time complexity (O(min{k, logn}))
by employing a faster mechanism to discover the encountered contention and by
using large LL/SC registers. Our second algorithm addresses the problem of
using large registers still achieving better time complexity than GroupUpdate.

Although the first of the RedBlue algorithms shares a lot of ideas with GroupUp-
date, it also exhibits several differences: (1) it employs two complete binary trees
each of which has one more level than the single tree employed by GroupUpdate;
in each of these trees, each process is assigned its own leaf node which identifies a
unique path (from the root to this leaf) in the tree for the process; (2) processes
traverse the red tree first in order to occupy a node and this procedure is faster
than a corresponding procedure in GroupUpdate. More specifically, GroupUpdate
performs a BFS traversal of its employed tree in order for a process to occupy
a node of the tree, while each process in any of the RedBlue algorithms always
traverses appropriate portions of its unique path. This results in reduced time
complexity for some of the RedBlue algorithms.

Afek, Dauber and Touitou [3] present a technique that employs indirection to
reduce the size of the registers used by GroupUpdate (each tree register stores a
process id and a pointer to a list of ids of currently active processes). A similar
technique can be applied to the RedBlue algorithms in case n is too large to have n
bits stored in a constant number of LL/SC registers. The resulting algorithms
will have just a pointer stored in each of the blue nodes (thus using smaller
registers than GroupUpdate which additionally stores a process id in each of its
LL/SC registers). However, employing this technique would cause an increase
to the step complexity of our algorithms by an O(k log n) additive term.

Afek, Dauber and Touitou present in [3] a second universal construction (In-
dividualUpdate) that has time complexity O(k(W + D)). IndividualUpdate stores
sequence numbers in registers and therefore it requires unbounded size registers
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Table 1. Summary of Universal Algorithms

Algorithm Primitives Time Complexity Space Overhead

Herlihy [14]
consensus objects, r/w

regs
O(n) O(n3W )

GroupUpdate, Afek et
al. [3]

LL/SC, consensus
objects, r/w regs

O(k log k + W + kD) O(n2W log n)

IndividualUpdate,
Afek et al. [3]

LL/V L/SC O(kD log D) O(nD + W )

F-RedBlue LL/SC O(min{k, log n}) O(n2 + W )

S-RedBlue LL/V L/SC, r/w regs O(k + W ) O(n2 + nW )

Anderson & Moir [6] LL/V L/SC
O((n/ min{k, M/T})

(B + MS + nD))
O(n2 + n(B + MS))

LS-RedBlue LL/V L/SC, r/w regs O(B + k(D + TS)) O(n2 + n(B + kTS))

BLS-RedBlue LL/V L/SC, r/w regs
O((k/ min{k, M/T})

(B + MS + k +
min{k, M/T}D))

O(n2 + n(B + MS))

or registers that support the V L operation in addition to LL and SC. The first
two RedBlue algorithms achieve better time complexity than IndividualUpdate.
Some of our algorithms use single-word registers (however, they also employ
LL/V L/SC objects).

Afek, Dauber and Touitou [3] discuss a method similar to that presented
in [10] to avoid copying the entire object’s state in IndividualUpdate. The resulting
algorithm has time complexity O(kD log D). The work of Anderson and Moir
on universal constructions for large objects [7] follows this work. Our last two
algorithms improve in terms of time complexity upon the constructions presented
in [7]. They achieve this using single-word registers (and the last algorithm with
the same space complexity as the wait-free construction in [7]).

Jayanti [18] presented f-arrays, a generalized version of a snapshot object which
allows the execution of any aggregation function f on the m elements of an array
of m memory cells that can be updated concurrently. As F-RedBlue, f-arrays has
time complexity O(min{k, logn}); the algorithm uses a tree structure similar to
that employed by GroupUpdate and our algorithm. F-RedBlue is universal, thus
achieving wider functionality than f-arrays. Constructions for other restricted
classes of objects with polylogarithmic complexity are presented in [11].

Afek et al. [4, 5] and Anderson and Moir [6] have presented universal al-
gorithms for multi-object operations that support access to multiple objects
atomically. The main difficulty encountered under this setting is to ensure good
parallelism in cases where different operations perform updates in different parts
of the object’s state. We are currently working on designing appropriate versions
of the RedBlue algorithms that can work efficiently for multi-object operations.

2 Model

We consider an asynchronous shared-memory system of n processes which com-
municate by accessing shared objects. A read-write register stores a value from
some set and supports two operations: read returns the value of the register
leaving its content unchanged, and write(v) writes the value v into the register
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and returns ack. An LL/SC register R stores a value from some set and supports
the atomic operations LL and SC; LL(R) returns the current value of R; the
execution of SC(R, v) by a process p must be preceded by the execution of an
LL(R) by p, and SC(R, v) is successful if and only if no process has performed
a successful SC on R since the execution of p’s latest LL on R; if SC(R, v) is
successful the value of R changes to v and true is returned. Otherwise, the value
of R does not change and false is returned. Some LL/SC registers support the
operation V L in addition to LL and SC; V L returns true if no process has
performed a successful SC on R since the execution of p’s latest LL on R, and
false otherwise. A register is multi-writer if all processes can change its content;
on the contrary, a single-writer register can be modified only by one process. A
register is unbounded if the set of values that can be stored in it is unbounded;
otherwise, the register is bounded.

A configuration consists of a vector of n + r values, where r is the number of
registers in the system; the first n attributes of this vector describe the state of
the processes, and the last r attributes are the values of the r registers of the
system. In the initial configuration each process is in an initial state and each
register contains an initial value. A process takes a step each time it accesses one
of the shared registers; a step also involves the execution of any local computation
that is required before the process accesses some shared register again (this may
cause the state of the process to change). An execution is a sequence of steps.

Registers are usually used to simulate more complex objects. A simulation of
an object O (which supports e.g., l operations) by registers uses the registers
to store the data of O and provides l algorithms for each process, to implement
each of the l operations supported by the simulated object. The time complexity
of an operation is the maximum number of steps performed by any process to
execute the operation in any execution of the simulation. The time complexity
of the simulation is defined to be the maximum of the time complexities of its
operations. A universal object simulates all other objects.

A process is active if it has initiated but not yet finished the execution of an
operation op. When this is true, we also say that op is active. The portion of an
execution that starts with the invocation of an operation op and ends with op’s
response is called the execution interval of op. The interval contention of op is
the total number of processes that take steps during the execution interval of op.
The point contention of op is the maximum number of processes that are active
at any configuration during the execution interval of op. The interval (point)
contention of a simulation is the maximum interval (point) contention of any
operation performed in any execution of the simulation. An execution is serial
if for any two steps executed by the same operation, all steps between them are
executed also by the same operation.

We assume that processes may experience crash failures, i.e., they may stop
running at any point in time. A wait-free algorithm [13] guarantees that a process
finishes the execution of an operation within a finite number of its own steps
independently of the speed of the other processes or the faults they experience.
(Lock-freedom is a weaker progress property that allows individual processes
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to starve but guarantees system-wide progress.) We concentrate on linearizable
implementations [16]. Linearizability guarantees that in any execution α of the
simulation, each of the executed operations in α appears to take effect at some
point, called the linearization point, within its execution interval.

3 The F-RedBlue Algorithm

F-RedBlue uses a perfect binary tree (called the blue tree) of �log n� + 1 levels,
each node of which is an LL/SC register. Each process p owns one of the tree
leaves and it is the only process capable of modifying this leaf. For each process
p, there is therefore a unique path pt(p) (called blue path for p) from the leaf node
assigned to p up to the root. The LL/SC register of each node stores an array
of n operation types (and their parameters), one for each process p to identify
the operation that p is currently executing. The root node stores additionally
the state of the simulated object (and for each process, the return value for the
last operation (being) applied to the simulated object by the process).

Whenever p wants to apply an operation op to the object, it moves up its path
until it reaches the root and ensures that the type op tp(op) of op is recorded
in all nodes of the path by executing two LL/SC on each node. If any of the
LL/SC that p executes on a node succeeds, op tp(op) is successfully recorded
in it; otherwise, it can be proved that op tp(op) is recorded for p in the node by
some other process before the execution of the second of the two SC instructions
executed by p. In this way, the type of op is propagated towards the root where
op is applied to the object.

Process p also records in each node the operations executed by other active
processes in an effort to help them finish their executions. Successful SC instruc-
tions executed at the root node may cause the application of several operations
to the simulated object. In this way, the algorithm guarantees wait-freedom.

Once p ensures that op has been applied, it traverses its path from its leaf up to
the root once more to eliminate any evidence of its last operation by overwriting
the operation type of it with the special value ⊥. This allows p to execute
more operations on the simulated object; more specifically, a new operation
op′ executed by p is applied to the simulated object only if its operation type
op tp(op′) reaches the root and finds the value ⊥ stored for p in it.

This relatively simple algorithm requires O(log n) steps to execute. In order
to make it adaptive, we use one more tree (the red tree), isomorphic to the blue
tree. Thus, each process p is assigned a leaf node of the red tree which identifies
a unique path from the root to this leaf (red path for p). The red tree allows
processes to obtain information about the encountered contention which is then
used to shorten the paths that processes traverse in the blue tree (i.e., the process
starts its traversal of its blue path possibly from some internal node of the tree
which is at a level that depends on the encountered contention).

Each node of the red tree stores information about one operation, namely
the operation that is applied by the process that “occupies” the node. More
specifically, each process p first tries to occupy a node of the red tree and then



The RedBlue Adaptive Universal Constructions 133

p r o c e s s e s 1 2 3 4 5 6 7 8

b l u e  t r e e

1

2 3

4 5 6 7

8 9 1 0 1 1 1 2 1 3 1 4 1 5

1 2 3 4 5 6 7 8

l e v e l  1

l e v e l  3

l e v e l  2

l e v e l  4

r e d  t r e e

1

2 3

4 5 6 7

8 9 1 0 1 1 1 2 1 3 1 4 1 5

Fig. 1. The blue and the red tree of F-RedBlue for n = 8

starts traversing (part of) its blue path. In order to occupy a red node, p traverses
its red path downwards starting from the root, until it finds a clean node (i.e.,
a currently unoccupied node with the value (⊥,−1)) and manages to occupy it
by recording its operation type and its id in it. We prove that each red node
is occupied by at most one process at any point in time. An occupied node
identifies a process that is currently active, so as long as p reaches occupied
nodes, it encounters more contention. We prove that p will eventually reach an
unoccupied node and record the appropriate information there. (This, in the
worst case, will be its leaf node.) Once p occupies some red node with id zr,
it starts each of the two traversals of its blue path from the node of the blue
tree that corresponds to zr up to the root. By employing the red tree, processes
traverse shorter paths in the blue tree. This improves the time complexity of the
algorithm to O(min{k, logn}), where k is the interval contention of op.

We continue to provide a technical description of F-RedBlue (Algorithm 1).
Since the blue (red) tree is perfect and there is only one such tree with �log n�+1
levels, we implement it using an array bn (rn) of 2n−1 elements. The nodes of the
tree are numbered so that node z is stored in bn[z] (rn[z], respectively). The root
node is numbered with 1, and the left and right children of any node z are nodes
2z and 2z + 1, respectively. The two trees for n = 8 are illustrated in Figure 1.
Process p, 1 ≤ p ≤ n, is assigned the leaf node numbered n + p− 1. We remark
that traversing up the path from any node z to the root can be implemented in a
straightforward manner: the next node of z in the path is node numbered �z/2�.
However, the downward traversal of the path requires some more calculations
which are accomplished by the lines 5− 10 of the pseudocode.

When a process p wants to execute an operation op of type op tp(op) it first
traverses its red path (lines 1 − 10). For each node z of this path, it checks if
the node is unoccupied (line 3) and if this is so, it applies an SC instruction to
it in an effort to occupy it (line 4). If the SC is successful, the traversal of the
red path ends (line 4). Otherwise, the next node in the path is calculated (lines
5− 10) and one more iteration of the loop is performed.

Once a red node zr has been occupied, op performs two traversals of (a part
of) its blue path starting from the node in the blue tree corresponding ro zr, up
to the root (lines 11− 15). This is accomplished by the two calls to propagate.
Each of these traversals propagates the operation type written into zr to the
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Algorithm 1. Pseudocode of F-RedBlue.
type PINDEX {1, . . . , n};
struct rnode{

operation type op tp;
PINDEX pid;

}

struct bnode{
state st; // field used only at the root node
ret vals vals[n]; // field used only at the root node
operation type ops tp[n];

}
shared struct rnode rn[1..2n − 1] = {< ⊥,−1 >, ..., < ⊥,−1 >};
shared struct bnode bn[1..2n − 1]={<⊥,<0,...,0>,<⊥,...,⊥>>, ...,<⊥,<0,...,0>,<⊥,...,⊥>>};
ret val apply op(operation type op tp, PINDEX p){

int direction = n/2, z = 1, levels = lg(n) + 1, l;
ret vals rv;

1. for(l=levels;l ≥ 1;l--){ // traversal of red path
2. LL(rn[z]);
3. if(rn[z] == < ⊥,−1 >)
4. if(SC(rn[z], <op tp, id>)) break;
5. if(id ≤ direction){ // find the next node in the path

6. direction = direction - 2l−3;
7. z = 2 ∗ z; // move to the left child of z

}
8. else{
9. direction = direction + 2l−3;
10. z = 2 ∗ z + 1; // move to the right child of z

}
}

11. propagate(z, p); // first traversal of blue path: propagating the operation
12. rv = bn[1].vals[id];
13. LL(rn[z]);
14. SC(rn[z], <⊥, p>); // the operation occupying rn[z] starts its deletion phase
15. propagate(z, p); // second traversal of blue path: propagating ⊥
16. LL(rn[z]);
17. SC(rn[z], < ⊥,−1 > ); // re-initialize the occupied red node to ⊥
18. return rv; // return the appropriate value
}
void propagate(int z, PINDEX p){
19. while(z!=0){ // traversal of the blue path
20. for(int i=1 to 2)do{ // two efforts to store appropriate information into each node
21. LL(bn[z]);
22. bt=calculate(z, p);
23. SC(z, bt);

}
24. z =�z/2�;

}
}
struct bnode calculate(int z) {

struct bnode tmp=< ⊥, < 0, . . . , 0 >, < ⊥, . . . ,⊥ >>, blue=bn[z], lc, rc;
struct rnode red = rn[z];

25. if (2 ∗ z + 1 < 2n) { lc = bn[2 ∗ z]; rc = bn[2 ∗ z + 1]; } // if z is an internal node
26. if (z == 1) { tmp.ret val[1..n] = blue.ret val[1..n]; tmp.st = blue.st; }
27. for q = 1 to n do{
28. if (red.pid == q) tmp.ops tp[q] = red.op pt; // if process q occupies node red
29. else if (is predecessor(z,q,2 ∗ z)) tmp.ops tp[q]=lc.op tp[q];
30. else if (is predecessor(z,q,2 ∗ z + 1)) tmp.ops tp[q]=rc.op tp[q];
31. if (z == 1 AND tmp.ops tp[q] �= ⊥ AND tmp.ops tp[q] �= blue.ops tp[q])
32. apply tmp.ops tp[q] to tmp.st and store into tmp.ret vals[q] the return value;

}
33. return tmp;
}
boolean is predecessor(int z, PINDEX p, int pred){
34. int levels = �log n� + 1, total nodes = 2levels − 1, leaf node = �total nodes/2� + p;

35. int pred height=levels − �lg(2 ∗ z)�, real pred=�leaf node/2pred heigth−1�;
36. if (pred < 2 ∗ n AND real pred == pred) return true;
37. else return false;
}
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root node. Notice that p records ⊥, as its operation type, into zr (lines 13− 14)
before it starts its second traversal (we remark that this occurs by performing
one more LL/SC since we assume that an LL/SC register supports only read,
LL, and SC and not write).

On each node z of the traversed path, propagate performs twice the following:
(1) an LL instruction on z (line 21); (2) calculates the appropriate information
to write into z by calling function calculate (line 22); (3) an SC to store the
result of calculate into z (line 23). Finally, it moves up to the next node of the
blue path (line 24). Process p re-initializes its occupied red node by writing in
it the value (⊥,−1) (lines 16− 17) just before it returns.

Function calculate computes a (potentially new) operation type for each
process q (lines 27 − 32) as described below. If q occupies the isomorphic to z
red node (line 28) then q’s new operation type is the one which is recorded into
the red node. Otherwise, the operation type for q is found in the previous node
of z in q’s blue path. In case z is the root node and the calculated operation
type for q is not already written in z and it is different than ⊥ (line 31), then
the operation of q is a new one and should be applied to the simulated object
(line 32). This is simulated by calling function apply.

To prove that F-RedBlue is correct, we first study the execution portion of
an operation op that traverses the red tree. Intuitively, we prove that op man-
ages to occupy exactly one red node, and as long as op is executed, no other
operation succeeds in occupying this red node. We then study the properties
of the execution portion of op that traverses the blue tree. We prove that if op
occupies a red node with id zr, op tp(op) will be recorded into all nodes of the
path starting from the blue node with id zr up to the blue root. Therefore, op
eventually reaches the root node and it is applied to the object. We also prove
that the application of each operation occurs only once and that the calculated
response values are correct. Due to lack of space, the formal proof of correct-
ness for F-RedBlue is presented in [12]. Based on the properties of the red tree
traversal that we prove, it is easy to argue that F-RedBlue has time complexity
O min{k, logn}), where k is the interval contention. A more careful argument
proves that this holds even if k is the point contention.

4 Modified Version of F-RedBlue That Uses Small
Registers

We present S-RedBlue, a modified version of F-RedBlue that uses small registers.
Each red node now stores �log n� + 1 bits. A blue node other than the root
stores n bits. The blue root stores n bits, a process id and the state of the
object. This LL/SC register is implemented by single-word LL/SC registers
using the implementation in [19].

In S-RedBlue, a process p uses a single-writer register to record its current
operation (line 1). As in F-RedBlue, the process starts the execution of any of
its operations by traversing the red tree. However, to occupy a red node, the
process just records its id and sets the bit of the node to true.
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Algorithm 2. Functions of S-RedBlue that are different from those of F-RedBlue.

struct rnode{
boolean op;
PINDEX pid;

}

struct bnode{
state st; // used only at root
PINDEX pid; // used only at root
boolean ops[n];

}
shared struct rnode rn[1..2n − 1] = {< F,−1 >, ..., < F,−1 >};
shared struct bnode bn[1..2n − 1] = {< ⊥,−1, < F, ..., F >>, ..., < ⊥,−1, < F, ..., F >>};
shared ret val rvals[1..n][1..n] = {{⊥, ..., ⊥}, ..., {⊥, ..., ⊥}};
shared operation type ops[1..n] = {⊥, ..., ⊥};
ret val apply op(operation type op tp,

PINDEX p){
int direction = n/2, z = 1;
int levels = lg(n) + 1, l;
ret vals rv;

1. ops[p] = op tp;
2. for(l=levels;l ≥ 1;l--){
3. LL(rn[z]);
4. if(rn[z] == < F,−1 >)
5. if(SC(rn[z], <op tp, id>))

break;
//find the next node

6. lines 5-10 of algorithm 1;
}

7. propagate(z,p);
8. rv = rvals[bn[1].pid][p];
9. LL(rn[z]);
10. SC(rn[z], <F, p>);
11. propagate(z,p);
12. LL(rn[z]);
13. SC(rn[z], < F,−1 > );
14. return rv;
}

struct bnode calculate(int z, PINDEX p) {
struct bnode blue = bn[z], lc, rc;
struct bnode tmp = < ⊥,−1, < F, . . . , F >>;
struct rnode red = rn[z];

15. if (2 ∗ z + 1 < 2n){lc=bn[2 ∗ z]; rc=bn[2 ∗ z + 1];}
16. if (z == 1) {tmp.st = blue.st; tmp.pid = p;}
17. for(int q = 1 to n do){
18. if (red.pid == q) tmp.ops[q] = red.op;
19. else if (is predecessor(z,q,2 ∗ z))
20. tmp.ops[q] = lc.ops[q];
21. else if (is predecessor(z,q,2 ∗ z + 1))
22. tmp.ops[q] = rc.ops[q];
23. if (z==1 AND tmp.ops[q]==T

AND blue.ops[q]==F)
24. apply ops[q] to tmp.st and store into

rvals[p][q] the return value;
25. else if(z==1 AND tmp.ops[q]==T)
26. rvals[p][q] = rvals[b.pid][q];

}
27. return tmp;
}

Similarly, each process, moving up the path to the root of the blue true, just
sets a bit in each node of the path to identify that it is currently executing
an operation. Thus, the bit array of the root identifies all processes that are
currently active.

To avoid storing the return values in the root node, each process p maintains
an array of n single-writer registers, one for each process. When p reaches the
root (during the application of one of its operations), it first records the responses
for the currently active processes in its appropriate single-writer registers (lines
25 − 26). Then, it tries to store the new state of the object in the blue root
together with its id and the set (bit vector) of active processes. A process finds
the response for its current operation in the appropriate single-writer register of
the process whose id is recorded in the root node.

The state is updated only at the root node and only when the bit value for a
process changes from false (F ) to true (T ) in the blue root’s bit array (line 23).
This guarantees that the operation of each process is applied only once to the
simulated object. However, all processes reaching the root, record responses for
each currently active process p in their single-writer registers, independently of
whether they also apply p’s operation to the simulated object. This is necessary,
since the operation of p may be applied to the object by some process q and later
on (and before p reads the root node for finding its response) another process
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q′ may overwrite the root contents. Process q′ will include p in its calculated
active set but it will not re-apply p’s operation to the object, since it will see
that p’s bit in the active set of the root node is already set. Still q′ should record
a response for p in its single-writer registers since p may read q′ and not q in
bn[1].pid when seeking for its response.

The proof that S-RedBlue is correct closely follows the correctness proof of F-
RedBlue. The main difference of the two algorithms is on the way that response
values are calculated. If q is the process that applies some operation op, the
response for op is originally stored in rvals[q][p] and the id of q is written into
the root node. The next process to update the root node will find the id of q
in the root node and (as long as op has not yet read its response by executing
line 8), it will see that tmp.ops[p] = T . Therefore, it will copy the response for
op from rvals[q][p] (line 26) to its appropriate single-writer register. So, when p
seeks for the response of op it will find the correct answer in the single-writer
register of the process recorded at the root node.

S-RedBlue uses O(n) multi-writer LL/SC registers and O(n2) single-writer
read/write registers. One of the multi-writer registers is large and it is imple-
mented using the implementation of a W -word LL/SC object from single-word
LL/V L/SC objects presented in [19]. This implementation achieves time com-
plexity O(W ) for both LL and SC and has space complexity O(nW ). Thus, the
number of registers used by S-RedBlue is O(n2 + nW ). In common cases where
n bits fit in a constant number of single-word registers, the time complexity of
S-RedBlue is O(k+W ) since calculate pays O(k) to record k response values in
the single-writer registers and O(W ) for reading and modifying the root node.

5 Adaptive Universal Constructions for Large Objects

In the universal constructions for large objects presented by Anderson and Moir
in [7] the object is treated as if it were stored in a contiguous array. Moreover,
the user is supposed to provide sequential implementations of the object’s op-
erations which call appropriate read and write procedures (described in [7]) to
perform read or write operations in the contiguous array (see [7, Section 4] for
more information on what the user code should look like and an example). The
universal constructions partition the contiguous array into B blocks of size S
each, and during the application of an operation to the object, only the block(s)
that should be modified are copied locally (and not the entire object’s state).
The authors assume that each operation modifies at most T blocks.

S-RedBlue can easily employ the simple technique of the lock-free construction
in [7] to provide a simple, adaptive, wait-free algorithm (called LS-RedBlue) for
large objects. As illustrated in Algorithm 3, only routine propagate requires
some modifications. Also, data structures similar to those in [7] are needed for
storing the array blocks, having processes making “local” copies of them and
storing back the changed versions of these blocks. More specifically, array BLK
stores the B blocks of the object’s state, as well as a set of copy blocks used
by the processes for performing their updates without any interference by other
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Algorithm 3. Pseudocode of LS-RedBlue.
type INDEX {1, . . . , nkT + B};
struct bnode{

INDEX BANK[B];
PINDEX pid;
boolean ops[n];

}
void propagate(int z, PINDEX p){

bnode b;

1. while(z!=0){
2. for(int i = 1 to 2) do {
3. if(z==1){
4. for(int j = 1 to B) do
5. dirty[j]=F;
6. dcnt = 0;
7. }
8. b=LL(bn[z]);
9. if (z == 1) ptrs = b.BANK;
10. bt=calculate(z,p);
11. if(SC(bn[z], bt) AND z==1)
12. for(int l = 1 to dcnt) do
13. copy[i] = oldlst[i];

}
14. z =�z/2�;

}
}

shared word BLK[1..B + kN ∗ T ][1..S];
private INDEX copy[1..kT ], oldlst[1..kT ];
private pointer ptrs[1..B];
private boolean dirty[1..B];
private INDEX dcnt, blkidx;
private word v;

wordtype read(int addr){
15. v=BLK[ptrs[addrdivS]][addrmodS];
16. if(V L(BANK)==F)
17. goto line 27 of calculate (Algorithm 2);
18. else return v;
}
void write(int addr, wordtype val){
19. blkidx=addr div S;
20. if(dirty[blkidx]==F){;
21. memcpy(BLK[copy[dcnt]],

BLK[ptrs[blkidx]], sizeof(blktype));
22. dirty[blkidx]=T;
23. oldlsl[dcnt]=ptrs[blkidx];
24. ptrs[blkidx]=copy[dcnt];
25. dcnt=dcnt + 1;
26. }
27. BLK[ptrs[blkidx]][addrmodS]=val;
}

processes. Since each operation modifies at most T blocks, a process reaching
the blue root, requires at most kT copy blocks in order to make copies of the kT
state blocks that it should possibly modify. So, BLK contains nkT + B blocks;
initially, the object’s state is stored in BLK[nkT + 1], . . . , BLK[nkT + B] (the
blocks storing the state of the object at some point in time are called active).
The blue root node stores an array named BANK of B indices; the ith entry
of this array is the pointer (i.e., the index in BLK) of the ith active block.
Each process has a private variable ptrs which uses to make a local copy of the
BANK array (line 9).

The application of an active operation to the object is now done by calling
(in calculate) the appropriate sequential code provided by the user. The codes
of the read and write routines (used by the user code) are also presented in
Algorithm 3 (although they are the same as those in [7]). These routines take an
index addr in the contiguous array as a parameter. From this index, the block
number blkidx that should be accessed is calculated as blkidx = addr div S,
and the offset in this block as addr mod S. The actual index in BLK of the
blkidx-th block can be found through the BANK array. However, the process
uses its local copy ptrs of BANK for doing so. Thus, line 15 simply access the
appropriate word of BLK. If the execution of the V L instruction of line 16 by
some process p does not succeed, the SC instruction of line 11 by p will also not
succeed. So, we use the goto to terminate the execution of its calculate.

The first time that p executes a write to the blkidx-th block, it copies it to
one of its copy blocks (line 21). Array dirty is used to identify whether a block is
written for the first time by p. In this case, the appropriate block is copied into
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the appropriate copy block of p (line 21). Indices to the kT copy blocks of p are
stored in p’s private array copy. The dirty bit for this block is set to true (line
22). Counter dcnt counts the number of different blocks written by p thus far in
the execution of its current operation (line 25). The appropriate entry of ptrs
changes to identify that the blkidx-th block is now one of the copy blocks of p
(line 23). The write is performed in the copy block at line 27. A process p uses
its copy blocks to make copies of the blocks that it will modify. If later p’s SC at
line 11 is successful, some of p’s copy blocks become active blocks (substituting
those that have been modified by p). These old active blocks (that have been
substituted) consist the new copy blocks of p which it will use to perform its
next operation. This is accomplished with the code of line 12.

LS-RedBlue is wait-free; it has space overhead Θ(n2 + n(B + kTS)) and time
complexity Θ(B + k(D + TS)). The wait-free universal construction presented
in [7] assumes that each process has enough copy blocks to perform at most
M/T other operations in addition to its own where M ≥ 2T is any fixed
integer. The algorithm uses a quite complicated helping mechanism with re-
turn values written into return blocks which should then be recycled in order
to keep the memory requirements low. The construction has time complexity
O((n/min{n, M/T })(B + nD + MS)). LS-RedBlue achieves much better time
complexity (Θ(B + k(D + TS))) and is adaptive. However, it assumes that pro-
cesses have enough copy blocks to help any number of other active processes.

LS-RedBlue can be slightly modified to disallow processes to help more than
M/T other processes. The resulting algorithm (BLS-RedBlue) is much simpler
than the wait-free construction of [7] since it does not require the complicated
mechanisms of [7] for returning values and verifying the application of an opera-
tion. These tasks are performed in BLS-RedBlue in the same way as in S-RedBlue.

The BLS-RedBlue algorithm is presented in Algorithm 4. Propagate executes
the same code as in S-RedBlue for all nodes other than the root. The code
executed by a process p when it reaches the blue root (lines 27− 36) is similar
to the one of LS-RedBlue. However, lines 32 − 36 may have to execute more
times in order to ensure that p’s operation has been applied to the object. Only
when this has occurred, p’s propagate returns. To speed up this process, we
store one more field, called help, in the blue root node. Each process, applying a
successful SC on the root node, writes there the index of the last active process
it has helped, and next time processes start their helping effort from the next to
this process. This has as a result, the body of the while loop (line 31) to execute
at most min{k, 2M/T } times. Each time that the loop is executed twice, M/T
more active processes are helped. Therefore, after 2k/(min{k, M/T }) iterations,
the operation of p will have been applied to the object.

Each iteration of the loop requires O(B) time to execute lines 27 − 28, 32,
36 and 34. Each execution of calculate applies at most min{k, M/T } opera-
tions. The cost of applying these operations is O(MS + min{k, M/T }D). Fi-
nally, the cost of calculating the return values at each execution of calculate
is O(k). So, the cost of executing the while loop is O(k/(min{k, M/T })(B +
MS + k + min{k, M/T }D)). Given that each process requires only O(log k)
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Algorithm 4. Algorithm BLS-RedBlue.

struct bnode{
INDEX BANK[B]; // used only at root
PINDEX pid; // used only at root
PINDEX help; // used only at root
boolean ops[n];

}

void propagate(int z, int p){
bnode b;

1. while(z!=1){
2. for (int i = 1 to 2) do {
3. b=LL(bn[z]);
4. bt=calculate(z, p);
5. SC(bn[z], bt);

}
6. z =�z/2�;

}

// operations to perform at root
7. b=LL(bn[1]);
8. while (b.ops[p] == F) {
9. for (int j=1 to B) do
10. dirty[j]=F;
11. dcnt = 0;
12. b=LL(bn[1]);
13. ptrs = b.BANK;
14. bt=calculate(1, p);
15. if (SC(bn[1], bt))
16. for (l = 1 to dcnt) do
17. copy[i] = oldlst[i];

}
}

struct bnode calculate(int z, int p) {
struct bnode tmp =< ⊥,−1, < F, . . . , F >>,

blue = bn[z], lc, rc;
struct rnode red = rn[z];
int help=0,q;

17. if (2 ∗ z + 1 < 2n) {
18. lc=bn[2 ∗ z];
19. rc=bn[2 ∗ z + 1];

}

20. if (z==1) {q = blue.help; tmp.pid = p; }
21. else q = 1;
22. for (int i = 1 to n) do{
23. if (red.pid == q) tmp.ops[q] = red.op;
25. else if (is predecessor(z,q,2 ∗ z))
26. tmp.ops[q] = lc.ops[q];
27. else if (is predecessor(z,q,2 ∗ z + 1))
28. tmp.ops[q] = rc.ops[q];
29. if (z == 1 AND tmp.ops[q]==T

AND blue.ops[q]==F) {
30. if (help < M/T) {
31. apply ops[q] and store into

rvals[p][q] the return value;
32. help = help + 1;
33. }
34. else tmp.ops[q] = F;
35. }
36. else if(z == 1 AND tmp.ops[q]==T)
37. rvals[p][q] = rvals[b.pid][q];
38. q = (q + 1) MOD n

}
39. return tmp;
}

steps to reach the root node, it follows that the time complexity of BLS-RedBlue
is O((k/ min{k, M/T })(B+MS+k+min{k, M/T }D)). Obviously, BLS-RedBlue
achieves better time complexity than the wait-free construction of [7] and it is
adaptive. This is achieved without any increase to the required space overhead
which is O(n2 + n(MS + B)) for both algorithms.

In case a return value has size larger than a single word, i.e., it is at most
R words, our algorithms can still work with single-word registers by substitut-
ing the array of single-writer registers held by each process with a bidimen-
sional array of nR words. Then, the time complexity of BLS-RedBlue becomes
O((k/ min{k, M/T })(B +MS + kR+min{k, M/T }D)). The wait-free universal
construction of [7] has time complexity O(n/min{n, M/T }(B+nR+nD+MS))
under this assumption.

If n is very large, a technique like the one used by GroupUpdate [3] can be em-
ployed to store a single pointer instead of the bit vector in each blue node. Then,
the time complexity of BLS-RedBlue becomes O(k log k+(k/ min{k, M/T })(B+
MS+kR+min{k, M/T }D)). We expect that k log k ∈ O((k/ min{k, M/T })(B+
MS + kR + min{k, M/T }D)) for large objects in most cases.
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Abstract. An atomic snapshot object is an object that can be concurrently ac-
cessed by asynchronous processes prone to crash. It is made of m components
(base atomic registers) and is defined by two operations: an update operation that
allows a process to atomically assign a new value to a component and a snapshot
operation that atomically reads and returns the values of all the components. To
cope with the net effect of concurrency, asynchrony and failures, the algorithm
implementing the update operation has to help concurrent snapshot operations so
that they always terminate.

This paper is on partial snapshot objects. Such an object provides a snapshot
operation that can take any subset of the components as input parameter, and atom-
ically reads and returns the values of this subset of components. The paper has
two contributions. The first is the introduction of two properties for partial snap-
shot object algorithms, called help-locality and freshness. Help-locality requires
that an update operation helps only the concurrent partial snapshot operations that
read the component it writes. When an update of a component r helps a partial
snapshot, freshness requires that the update provides the partial snapshot with a
value of the component r that is at least as recent as the value it writes into that
component. (No snapshot algorithm proposed so far satisfies these properties.)
The second contribution consists of an update and a partial snapshot algorithms
that are wait-free, linearizable and satisfy the previous efficiency properties. In-
terestingly, the principle that underlies the proposed algorithms is different from
the one used so far, namely, it is based on the “write first, and help later” strategy.
An improvement of the previous algorithms is also presented. Based on LL/SC
atomic registers (instead of read/write registers) this improvement decreases the
number of base registers from O(n2) to O(n). This shows an interesting tradeoff
relating the synchronization power of the base operations and the number of base
atomic registers when using the “write first, and help later” strategy.

Keywords: Adaptive algorithm, Asynchronous shared memory system, Asyn-
chrony, Atomicity, Efficiency, Concurrency, Linearizability, LL/SC atomic
registers, Locality, Partial snapshot, Process crash, Read/Write atomic register,
Wait-free algorithm.

1 Introduction

1.1 Context of the Study: Snapshot Objects

Shared memory snapshot objects. Snapshot objects have been introduced in [1,4]. Con-
sidering a shared memory system made up of base atomic read/write registers, that can
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be concurrently accessed by asynchronous processes prone to crash, a snapshot object
is an object that (1) consists of m components (each component being a base atomic
register that can contain an arbitrary value), and (2) provides the processes with two
operations, denoted update() and snapshot(). The update() operation allows the in-
voking process to atomically store a new value in an individual component. Differently,
the snapshot() operation returns the values of all the components as if they had been
read simultaneously.

From an execution point of view, a snapshot object has to satisfy the safety property
called linearizability: the update and snapshot operations have to appear as if they had
been executed one after the other, each being instantaneously executed at some point of
the time line comprised between its start event and its end event [20]. From a liveness
point of view, each update or snapshot operation has to terminate if the invoking process
does not crash. This liveness property is called wait-freedom [17]. It means that an
operation issued by a correct process has to terminate whatever the behavior of the
other processes (the fact that some processes crash or are very slow cannot prevent an
operation from terminating, as long as the issuing process does not crash). Wait-freedom
is starvation-freedom despite asynchrony and process failures. In order to implement
the wait-freedom property, a process that issues an update() operation can be required
to help terminate the processes that have concurrently issued a snapshot() operation
(preventing them from looping forever). This helping mechanism is required to ensure
that all the snapshot() operations (issued by processes that do not crash) do always
terminate [1].

The snapshot abstraction. The snapshot object has proved to be a very useful abstrac-
tion for solving many other problems in asynchronous shared memory systems prone
to process crashes, such as approximate agreement, randomized consensus, concurrent
data structures, etc. A snapshot object hides the “implementation details” that are diffi-
cult to cope with in presence of the net effect of concurrency, asynchrony and failures. It
is important to notice that, from a computational point of view, a snapshot object is not
more powerful than the base atomic read/write objects it is built from. It only provides
a higher abstraction level.

Shared memory vs message-passing snapshots. The values returned by a snapshot()
operation is a value of the part of the shared memory that is encapsulated in the cor-
responding snapshot object. It follows from the linearizability property satisfied by a
snapshot object that there is a time instant at which the values returned by a snapshot()
operation were simultaneously present in the shared memory, this time instant belong-
ing to the time interval associated with that snapshot() operation.

The previous observation is in contrast with the notion of distributed snapshot used
to capture consistent global states in asynchronous message-passing systems [12] where
two distributed snapshots obtained by two processes can be consistent but incomparable
in the sense that they cannot be linearized. The set of all the distributed snapshots that
can be obtained from a message-passing distributed execution has only a lattice structure
(basically, they can be partially ordered but not totally ordered). In that sense, the abstrac-
tion level provided by a shared memory snapshot object is a higher abstraction level than
the one offered by message-passing distributed snapshots. It hides more asynchrony.
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Types of snapshot objects. Two types of snapshot objects have been investigated: single-
writer and multi-writer snapshot objects. A single-writer snapshot object has one com-
ponent per process, and the component associated with a process can be written only
by that process. The number of components (m) is then the same as the number of
processes (n). The base registers from which a single-writer snapshot object is built
are then single-writer/multi-reader atomic registers. Wait-free algorithms implement-
ing single-writer snapshot objects for n processes are described in [1]. Their costs is
O(n2) (when counting the number of shared memory accesses). An algorithm whose
cost is O(n log(n)) is described in [10]. An implementation suited to systems with a
possibly infinite number of processes (but where finitely many processes can take steps
in each finite time interval) is described in [3]. An implementation that is adaptive to
total contention (i.e., adaptive to the actual number k ∈ [1..n] of processes that ac-
cess the snapshot object during an entire execution [7]) is described in [8]. Its cost is
O(k log(k)).

A multi-writer snapshot object is a snapshot object of which each component can
be written by any process. So, the base read/write registers on which its implementa-
tion relies are multi-writer/multi-reader atomic registers. Wait-free algorithms imple-
menting multi-writer snapshot objects made up of m base components are described
in [5,23,25]. The algorithm described in [23] has a linear cost O(n). A short survey of
algorithms that implement single-writer and multi-writer snapshot objects is presented
in [13].

The notion of partial snapshot. Usually, when a process invokes the snapshot() op-
eration, it is not interested in obtaining the values of all the components, but in the
values of a given subset of the components. A partial snapshot operation (denoted
p snapshot()) is a generalization of the base snapshot() operation. It takes a sequence
R =< r1, · · · , rx > of component indices as input parameter, and returns a sequence
< v1, · · · , vx > of values such that the value v� is the value of the component whose
index is r� (an invocation of p snapshot() that considers all the components is actually
a snapshot() invocation). As before, the invocations of p snapshot() and update() have
to be linearizable, and their implementation has to be wait-free. The notion of partial
snapshot object has first been introduced and investigated in [9].

1.2 Content of the Paper and Related Work

Related work. This paper is on efficient wait-free implementations of multi-writer/multi-
reader partial snapshot objects in the base read/write shared memory model augmented
with underlying active set objects [2]. Such an object offers three operations: Join(),
Leave() and GetSet(). Basically, Join() adds the invoking process to the active set,
while Leave() suppresses it from this set; GetSet() returns the current value of the
active set. (There are efficient adaptive read/write implementations of an active set, i.e.,
implementations whose number of read/write shared memory accesses depends only on
the number of processes that invoke Join() and Leave() [2]. So, the base model used in
this paper is the read/write atomic register model.)

An algorithm based on read/write atomic registers and an active set object, that im-
plements a partial snapshot object is described in [9] (as far as we know, it is the
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only such algorithm proposed so far)1. That algorithm extends the basic full snap-
shot algorithm described in [1]. It is based on the following principle. Each invoca-
tion of p snapshot(R) first makes public the list R =< r1, · · · , rx > of indices
of the components it wants to read. Then, it sequentially invokes Join(), an internal
embedded snapshot(R) operation, and finally Leave(). The update operation works as
follows. When a process pi invokes update(r, v, i) (where v is the value it wants to as-
sign to the component whose index is r), it first invokes GetSet() to have a view of all
the processes that are concurrently executing a p snapshot() operation. To guarantee the
wait-freedom property (any process that does not crash has to terminate its operations),
pi helps terminate all the concurrent p snapshot() operations. To that end, it executes an
embedded snapshot() operation whose input includes all the components read by the
processes in the active set (whose value has been obtained by the GetSet() invocation).
In that way, if pi does not crash, a concurrent p snapshot() operation can retrieve the
values it is interested in from the values returned by the embedded snapshot() issued
by pi.

Features of the proposed algorithm. The update and partial snapshot algorithms pro-
posed here have several noteworthy features that make them different from the previous
full/partial snapshot algorithms (as far as we know). These features are the “write first,
help later” strategy, and the cheap way helping is realized. They result from the ad-
ditional help-locality and freshness properties the update and snapshot algorithms are
required to satisfy.

Freshness. The aim of the freshness property is to oblige an update operation that helps
a snapshot operation to provide that snapshot with values as recent as possible. More
precisely, let up = update(r, v, i) be an update invoked by the process pi to write the
value v in the component r of the partial snapshot object, and psp = p snapshot(R)
be a concurrent snapshot invocation such that psp starts after up (where “starts” means
“accesses the shared memory for the first time”). Freshness requires that the value re-
turned for the component r be v or a more recent value (as each component is an atomic
register, the notion of “more recent” is well defined)2. Stated in another way, freshness
requires that the updates be linearized at their first shared memory access.

To obtain that property, the update algorithm proposed in the paper uses the “write
first, help later” strategy (differently, the previous algorithms are based on the “help
first, then write” strategy).

Help-locality. This property aims at obtaining more efficient update operations by lim-
iting contention. To that end, it reduces the help provided to the partial snapshot oper-
ations by the update operations.This property is close to the notion of disjoint-access

1 That paper presents also another algorithm implementing a partial snapshot object, that is
based on read/write atomic registers, and more sophisticated registers that support Fetch&Add
and Compare&Swap atomic operations. These more sophisticated registers are mainly used to
obtain an efficient implementation of the underlying active set object. Here we consider the
pure base read/write atomic register model.

2 As far as we know, none of snapshot algorithms proposed so far satisfies the freshness property.
They all provide the snapshot with a component r value that is strictly older than v.



146 D. Imbs and M. Raynal

parallelism defined by Israeli and Rappoport [24]. It differs from disjoint-access paral-
lelism by not placing any restriction on the step complexity of operations, and by being
more restrictive on the contention that it allows. The goal of the help-locality property
is that the underlying shared memory accesses issued by a pair of concurrent operations
update(r, v,−) and p snapshot(R) do not conflict if r /∈ R.

As for freshness, the help-locality property is not ensured by the algorithms proposed
so far to implement the update operation. The snapshot algorithm presented in [1] is
very conservative: each update operation is required to compute one helping full snap-
shot value even when there is no concurrent snapshot. The partial snapshot algorithm
described in [9] is a little bit less conservative: an update(r,−,−) operation concurrent
with no snapshot operation is not required to help, but an update(r,−,−) operation
concurrent with one or more p snapshot(R�) operations (1 ≤ � ≤ z) has to help each
of them, whatever the sets of entries they access, i.e., even the p snapshot(R�) opera-
tions that don’t access the entry updated by the update(r,−,−) operation.

An additional asynchrony feature. An additional feature of the proposed update al-
gorithm lies in its asynchrony and in the size of the helping snapshot values it com-
putes. Previous (partial or full) snapshot implementations use one base atomic register
REG[r] per component r. These registers have to be large. They are made up of several
fields, including a field for the last value written, a field storing a snapshot value used
to help snapshot operations, and a few other fields containing control data. A snapshot
value is made up of one value per component in the case of a full snapshot object, and
one value for a subset of the components in the case of a partial snapshot object. Then,
each update(r, v,−) operation atomically writes into REG [r] both the new value v and
a snapshot value. This means that the implementation of this atomic write can be space
and time expensive.

Differently, thanks to the “write first, help later (and individually)” strategy, the pro-
posed update(r, v,−) algorithm separates the write of the value v into REG [r] and the
individual writes of helping snapshot values, one for each concurrent p snapshot(R�)
operation such that r ∈ R�. The fact that an update(r, v,−) operation first writes v,
and helps, only later and individually, each concurrent partial snapshot that reads the
component r, (1) allows those to obtain a value for the component r that is at least
as recent as v, and (2) allows the use of several independent helping atomic registers
that are written individually (thereby allowing more efficient atomic write operations).
Moreover, the size of these atomic “array-like” registers can be smaller than m3.

Motivation. As the work described in [9], our aim is to better understand synchro-
nization in presence of failures. From a more practical point of view, a p snapshot(R)
operation can be seen as the reading part of a transaction that needs to obtain mutually
consistent and up-to-date values from the base objects specified in R. Such a study can
help better understand the underlying foundations of software transactional memories
[6,14,15,19,18,21,28].

3 If each partial snapshot by a process pi is on at most k components, the atomic “array-like”
registers used to help pi need to have only k entries. If k << m, the writes into such atomic
k-size registers can generate less contention that writes into atomic m-size registers.
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Roadmap. The paper is composed of 6 sections. Section 2 presents the base asyn-
chronous read/write shared memory prone to process crashes, equipped with an active
set object. Section 3 defines the atomic partial snapshot object and the help-locality and
freshness properties. Then, Section 4 presents algorithms implementing the update and
partial snapshot operations, and proves that they satisfy the previous properties. Section
5 discusses the proposed algorithms and presents a version of them based on LL/SC
atomic registers (instead of read/write atomic registers). This improvement, that satis-
fies the help-locality and freshness properties, is more efficient than the base algorithm
from a memory size point of view, namely it requires O(n) LL/SC atomic registers in-
stead of O(n2) read/write atomic registers. Finally, Section 6 provides a few concluding
remarks. (Additional developments are described in [22].)

2 Underlying Shared Memory Model

Asynchronous shared memory model. The system is made up of n processes p1, . . . , pn.
The identity of pi is i. These processes communicate through multi-writer/multi-reader
atomic registers. Atomic means that each read or write operation on a register appears as
if it has been executed sequentially at some point of the time line comprised between its
start and end event. The registers are assumed to be reliable (this assumption is without
loss of generality -from a computability point of view- as it is possible to build atomic
reliable registers on top of crash prone atomic registers [11,16,18,26]).

There is no assumption on the speed of processes: they are asynchronous. Moreover,
up to (n − 1) processes may crash. Before it crashes (if it ever crashes), a process
executes correctly its algorithm. A crash is a premature halt: after it has crashed, a
process executes no more step. Given a run, a process that does not crash is correct in
that run, otherwise it is faulty in that run.

Active set object. We assume that the processes can access an active set objects. Such
an object, first proposed in [2], can be used to solve adaptive synchronization problems
(e.g., [29]). As already indicated, its aim is to allow the processes to have a view of
which of them are concurrently executing operations. To that end, an active set object
provides the processes with three operations, Join(), Leave() and GetSet() (informally
described in the Introduction). These operations are not required to be atomic. (So,
the definition of an operation cannot assume that the concurrent executions of other
operations are both instantaneous and one at a time, they have to explicitly take into
account the fact that their execution spans a finite period of time.)

Notation. The shared memory objects are denoted with capital letters, while the local
variables are denoted with lower case letters (the subscript i denotes then the corre-
sponding process).

3 Definitions

3.1 Partial Snapshot Object

As already said in the Introduction, a multi-writer/multi-reader partial snapshot object
is made up of m components (each being a multi-writer/multi-reader atomic register)
that provides the processes with two operations update() and snapshot() such that:
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– update(r, v, i) is invoked by pi to write the value v in the component r (1 ≤ r ≤ m)
of the snapshot object. That operation returns the control value ok.

– p snapshot(R), where R is a sequence < r1, · · · , rx > of component indexes,
allows a process to obtain the value of each component in R. It returns a corre-
sponding sequence of values < v1, · · · , vx >.

A partial snapshot object is defined by the following properties.

– Termination. Every invocation of update() or p snapshot() issued by a correct pro-
cess terminates.

– Consistency. The operations issued by the processes (except possibly the last op-
eration issued by a faulty process4) appear as if they have been executed one after
the other, each one being executed at some point of the time line between its start
event and its end event.

The termination property is wait-freedom [17] (starvation-freedom despite concur-
rency and process crashes). The consistency property is linearizability [20] (here, it
means that a p snapshot() operation always returns component values that were simul-
taneously present in the shared memory, and are up-to-date).

3.2 Additional Properties Related to the Implementation

These properties, that have been informally presented in the Introduction, do not con-
cern the definition of the partial snapshot problem, but the way it is solved by the algo-
rithms that implement its operations.

As already indicated, the aim of the help-locality property is reduce shared memory
conflicts by preventing an update(r,−,−) to help a concurrent p snapshot(r) when
r /∈ R. More formally, let Lop be the set of (high level) components accessed by opera-
tion op (note that Lop is a singleton if op is an update(r,−,−) operation). Let Mop be
the set of base objects (underlying atomic registers and active set objects) accessed by
operation op.

Definition 1. The algorithms implementing the update and partial snapshot operations
satisfy the help-locality property if, for any pair of concurrent operations op1, op2 that
access a common base object (1) both access a common component, or (2) there exists
an operation op3 concurrent with op1 and op2 such that (2.1) both op1 and op3 access
a common component and (2.2) both op2 and op3 access a common component. More
formally, Mop1 ∩ Mop2 �= ∅ ⇒ (Lop1 ∩ Lop2 �= ∅) ∨ (∃op3 : (Lop1 ∩ Lop3 �=
∅ ∧ Lop3 ∩ Lop2 �= ∅)).

This efficiency-related property follows from the observation that an update(r,−,−)
operation and a p snapshot(R) operation that are concurrent and such that r /∈ R, are
actually independent operations. (This is similar to a read on a register X and a write
on a register Y �= X that are concurrent.) Intuitively, help-locality requires that the
implementation does only what is necessary and sufficient.

4 If such an operation does not appear in the sequence, it is as if it has not been invoked.
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Definition 2. The algorithms implementing the update and partial snapshot operations
satisfy the freshness property if an update(r, v,−) operation always happens as if it
was executed atomically at the time of its first access to shared memory (i.e., the update
is always linearized at its first access to shared memory).

The aim of this property is to provide the partial snapshot operations with values “as
fresh as possible” in the following sense. If update(r, v,−) helps p snapshot(R) (so
we have r ∈ R), then the value returned for r is at least as recent as v. As noticed in the
Introduction, (to our knowledge) no pair of update/snapshot algorithms proposed so far
satisfies help-locality or freshness.

4 An Efficient Partial Snapshot Construction

This section presents a construction (Figures 1 and 2) of a partial snapshot object that
satisfies the help-locality and freshness properties previously defined.

4.1 The Underlying Shared Objects

The algorithms implementing the p snapshot() and update() operations use the fol-
lowing shared variables.

– An array, denoted REG[1..m], of multi-writer/multi-reader atomic registers. The
register REG [r] is associated with the component r of the snapshot object. It is
composed of three fields < value, pid, sn >, whose meaning is the following.
REG[r].value contains the current value of the component r; REG[r].pid and
REG[r].sn are control data associated with that value. REG[r].pid contains the id
of the process that issued the corresponding update() operation, while REG[r].sn
contains its sequence number among all the update() operations issued by that
process.

– An array, denoted AS [1..m], of active set objects. The object AS [r], associated
with the component r of the snapshot object, contains the ids of the processes cur-
rently executing a snapshot() operation on r.

– An array, denoted ANNOUNCE [1..n], of single-writer/multi-reader atomic regis-
ters. The register ANNOUNCE [i] can be written only by pi. This occurs when pi

invokes p snapshot(R): it then stores R in ANNOUNCE [i] (the indexes r1, · · · , rx

of the components it wants to read). In that way, if a process pj has to help pi to
terminate its p snapshot() operation, it only has to read ANNOUNCE [i] to know
the components pi is interested in.

– An array, denoted HELPSNAP [1..n, 1..n], of single-writer/multi-reader atomic
registers. The register HELPSNAP [i, j] can be written only by pi. When, while
executing an update() operation, pi is required to help pj terminate its current
p snapshot(< r1, · · · , rx >) operation, it deposits in HELPSNAP [i, j] a se-
quence of values < v1, · · · , vx > that can be used by pi as the result of its
p snapshot(< r1, · · · , rx >) operation.

The shared variables are denoted with upper case letters. Differently, the local variables
are denoted with lower case letters (those are introduced in the algorithm description).
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4.2 The p snapshot() Operation

The algorithm that implements this operation is described in Figure 1. Similarly to [9],
it borrows its underlying principle from [1]. More precisely, it first uses a “sequential
double scan” to try to terminate by itself. If it cannot terminate by itself, it looks for a
process that could help it terminate (namely, a process that has issued two updates on a
component it wants to read).

operation p snapshot(< r1, · · · , rx >): % (code for pi) %
(01) ANNOUNCE [i] ←< r1, · · · , rx >;
(02) can help mei ← ∅; for each r ∈ {r1, · · · , rx} do AS [r].Join() end for;
(03) for each r ∈ {r1, · · · , rx} do aa[r] ← REG[r] end for;
(04) while true do % Lin point if return at line 08 %
(05) for each r ∈ {r1, · · · , rx} do bb[r] ← REG [r] end for;
(06) if (∀r ∈ {r1, · · · , rx} : aa[r] = bb[r]) then
(07) for each r ∈ {r1, · · · , rx} do AS [r].Leave() end for;
(08) return(< bb[r1].value, · · · , bb[rx].value >)
(09) end if;
(10) for each r ∈ {r1, · · · , rx} such that (aa[r] �= bb[r]) do
(11) can help mei ← can help mei ∪ {< w, sn >} where < −, w, sn >= bb[r]
(12) end for;
(13) if

(
∃ < w, sn1 >, < w, sn2 > ∈ can help mei such that sn1 �= sn2

)
then

(14) for each r ∈ {r1, · · · , rx} do AS [r].Leave() end for;
(15) return(HELPSNAP [w, i])
(16) end if;
(17) aa ← bb
(18) end while.

Fig. 1. An algorithm for the p snapshot() operation

Startup. When it invokes p snapshot(R), a process pi first announces the components
it wants to read (line 01) and invokes AS [r].Join() for each r ∈ R (line 02). This is in
order to allow the processes that concurrently update a component of R to help it.

Sequential double scan. Then, the process pi enters a loop (line 04-18). During each
execution of the loop body, it uses a pair of scans of the registers REG [r] for the com-
ponents it is interested in, namely {r1, . . . , rx}. It is important to notice that these are
sequential [1]: the second scan always starts after the previous one has terminated. The
values obtained by the first scan are kept in the array aa (line 03 for the first loop, and
then line 05 followed by line 17), while the values obtained by the second scan are kept
in the array bb (line 05).

Try first to terminate without help. If, for each r ∈ {r1, . . . , rx}, it observes no change
in REG[r] (test of line 06), pi can conclude that at any point of the time line between the
end of the first scan and the beginning of the second one, no REG[r], r ∈ {r1, . . . , rx},
has been modified. This is called a successful double scan. Hence, the values read in bb
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were simultaneously present in the snapshot object: they can be returned as the result of
the p snapshot(< r1, · · · , rx >) invocation (line 08). In that case, before terminating,
pi invokes AS [r].Leave() for each r ∈ R to announce it does no longer need help
(line 07).

Otherwise, try to benefit from the helping mechanism. While until that point, the state-
ments previously described are the same as the ones used in [1,9], the statements that
follow are different. This difference is mainly due to the “write first, then help” strategy,
and its impact on the way it is exploited by the algorithm.

If the test of line 06 is not satisfied, pi uses the helping mechanism that (from its side)
works as follows. As the test is false, there is at least one component r ∈ {r1, · · · , rx}
that has been updated between the two scans. For each such component r, pi consid-
ers the identity of the last write, namely the pair < w, sn > extracted from bb[r] =<
−, w, sn > (the last writer of REG[r] is pw and sn is the increasing sequence num-
ber it has associated with the corresponding update); pi adds this pair to a local set
can help mei where it stores the processes that could help it (lines 10-12).

Then, pi checks if it can terminate thanks to the helping mechanism (lines 13-16).
The helping termination predicate is as follows: “pi has observed that there is a process
pw that has issued two different updates (on any pair of components)”. From an opera-
tional point of view, this is captured by the fact that pw appears twice in can help mei

(line 13). As we will see in the proof, the fact that this predicate is true means that pw

has determined a set of values < v1, · · · , vx > (kept in HELPSNAP [w, i]) that pi can
use as the result of its p snapshot(< r1, · · · , rx >) operation. In that case, pi invokes
AS [r].Leave() for each r ∈ R to indicate it does no longer need help and returns the
content of HELPSNAP [w, i] (lines 14-15).

Finally, if the helping predicate is false, pi cannot terminate and consequently enters
again the loop body (after having shifted the array bb in the array aa, line 17).

4.3 The Update() Operation

The algorithm for the update() operation is described in Figure 2. The invoking process
pi first writes the new value (line 01, where nbwi is a local sequence number generator),
and then (lines 02-31) asynchronously helps the other processes. As indicated in the
Introduction, the principles that underlie this mechanism differ from the ones used in
previous snapshot/update algorithms. Let update(r, v, i) be an update invocation. The
helping mechanism works as follows.

Are there processes to help? A process pi first invokes AS [r].GetSet() to learn the
set of processes that have concurrently invoked a p snapshot(R) operation such that
r ∈ R (line 02). It then computes the set to helpi of the conflicting processes. (Let
us notice that a process pk returned by AS [r].GetSet() may have ended its current
snapshot operation and started another one between the executions of lines 02 and 04
by pi. If pi helped this other snapshot, it would break the help-locality property. It uses
the array ANNOUNCE to exclude such a pk (lines 03-06).) If there is no conflicting
process (to helpi = ∅), pi does not have to help (help-locality property), and terminates
accordingly (line 07).
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operation update(r, v, i): % (code for pi) %
(01) nbwi ← nbwi + 1; REG[r] ←< v, i, nbwi >; % Lin Point %
(02) readersi ← AS [r].GetSet(); to helpi ← ∅;
(03) for each j ∈ readersi do
(04) announcei [j] ← ANNOUNCE [j];
(05) if (r ∈ announcei [j]) then to helpi ← to helpi ∪ {j} end if
(06) end for;
(07) if (to helpi = ∅) then return(ok) end if;
(08) to readi ←

(⋃
j∈to helpi

announcei [j]
)

expressed as a sequence < rr1, . . . , rry >;
(09) for each j ∈ to helpi do can helpi [j] ← ∅ end for;
(10) for each rr ∈ to readi do aa[rr] ← REG[rr] end for;
(11) while (to helpi �= ∅) do
(12) for each rr ∈ to readi do bb[rr] ← REG[rr] end for;
(13) still to helpi ← ∅;
(14) for each rr ∈ to readi such that aa[rr] �= bb[rr] do
(15) for each j ∈ to helpi such that rr ∈ announcei [j] do
(16) still to helpi ← still to helpi ∪ {j};
(17) can helpi [j] ← can helpi [j] ∪ {< w, sn >} where < −, w, sn >= bb[rr]
(18) end for
(19) end for;
(20) for each j ∈ to helpi\still to helpi do
(21) HELPSNAP [i, j] ←< bb[r1].value, . . . , bb[rx].value >
(22) where < r1, . . . , rx >= announcei [j]
(23) end for;
(24) for each j ∈ still to helpi do
(25) if (∃ < w, sn1 >, < w, sn2 >∈ can helpi [j] such that sn1 �= sn2) then
(26) HELPSNAP [i, j] ← HELPSNAP [w, j]; still to helpi ← still to helpi\{j}
(27) end if
(28) end for;
(29) to helpi ← still to helpi ; to readi ←

(⋃
j∈to helpi

announcei [j]
)
; aa ← bb

(30) end while;
(31) return(ok).

Fig. 2. An algorithm for the update() operation

If to helpi �= ∅, pi has to possibly help the processes in to helpi. To that end,
it first computes the set to readi of the components it has to read to help these pro-
cesses (line 08). It also initializes a local array can helpi to ∅ (line 09). The entry
can helpi [j] contains the processes pw that (to pi’s knowledge) could also help the
conflicting process pj .

How a process helps individually another process. Each process pj in to helpi is
helped individually by pi. This is done in the loop (line 11-30), that terminates when
the set to helpi becomes empty.

In each loop iteration, similarly to what is done in the p snapshot() operation, pi

first executes a double scan (whose values are kept in the local arrays aa and bb) and
does the following.
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– Part 1: lines 13-19. For each component rr such that aa[rr] �= bb[rr], let bb[rr]
=< −, w, sn >, which means that (to pi’s knowledge) pw is the last process that
wrote the component rr (lines 14 and 17). Moreover, this write occurred between
the double scan. According to that observation, pi keeps track of the fact that such
a process pw could help every pj such that rr ∈ announcei [j ]. This is done by
adding the pair < w, sn > to the set can helpi [j] (lines 15-17). Additionally, pi

adds j to the set still to helpi (lines 13 and 16).
– Part 2: lines 20-23. Then, pi looks for the processes that can be helped directly.

Those are the processes pj such that j ∈ to helpi \ still to helpi . The com-
ponents rr they want to read are such that aa[rr] = bb[rr], which means that
the pair (aa, bb) constitutes a successful double scan. Accordingly, pi writes in
HELPSNAP [i, j] a snapshot value that pj can use if its partial snapshot operation
is still pending. This helping snapshot value is < bb[r1].value, . . . , bb[rx].value >
where < r1, . . . , rx >= announcei [j] (line 21).

– Part 3: lines 24-28. For each process pj that it has not previously helped (line 24),
pi looks if there is a process pw that can help pj . The helping termination predicate
(line 25) is the same as the one used in the p snapshot() algorithm (line 13 in
Figure 1): there are two writes issued by a process pw that appear in can helpi [j].
If the predicate is true, the helping value provided to pj by pw is borrowed by pi to
help pj (line 26).

– Part 4: line 29. Finally, pi updates to helpi and to readi before entering again the
loop. If to helpi = ∅, the loop terminates.

4.4 Proof of the Algorithm

The aim of the following definitions is to help prove that the values returned are “con-
sistent”, i.e., they are from the appropriate registers, were simultaneously present in the
snapshot object and are recent5.

Definition 3. The values < v1, · · · , vy > returned by a p snapshot(< r1, . . . , rx >)
operation are well defined if x = y and for each �, 1 ≤ � ≤ x, the value v� has been
read from REG[r�].

Definition 4. The values returned by a p snapshot(< r1, . . . , rx >) operation are mu-
tually consistent if there is a time at which they were simultaneously present in the
snapshot object.

Definition 5. The values returned by a p snapshot(< r1, . . . , rx >) operation are
fresh if, for each �, 1 ≤ � ≤ x, the value v� returned for r� is not older than the
last value written into REG[r�] before the partial snapshot invocation6.

Due to page limitation, the proof of following theorem can be found in [22].

5 Always returning the initial values would provide well-defined and mutually consistent values,
but those would not be fresh and the operations would not be linearizable.

6 Let us recall that, as each REG [r�] is an atomic register, its read and write operations can be
totally ordered in a consistent way. The word “last” is used with respect to this total order.
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Theorem 1. The algorithms described in Figure 1 and Figure 2 satisfy the termination
and consistency properties (stated in Section 3.1) that defines a partial snapshot object.
Moreover, they satisfy the freshness and help-locality properties.

5 Using LL/SC Registers Instead of Read/Write Atomic Registers

An array of LL/SC registers. This section shows that using LL/SC registers instead
of the atomic read/write registers as underlying base registers reduces the number of
base registers from O(n2) to O(n). More precisely, the array ANNOUNCE [1..n] and
the matrix HELPSNAP [1..n, 1..n] both made up of atomic read/write registers can be
replaced by a single array ANNHELP [1..n] such that each of its registers is accessed
by the pair of LL/SC operations.

The LL/SC pair of operations. An LL/SC register is an atomic register that provides
the processes with two operations denoted LL() (Linked Load) and SC() (Store Con-
ditional). Considering an LL/SC register X , X.LL() returns the current value of X . A
conditional store X.SC() issued by a process pi returns true (the write succeeded) or
false (the write failed). Its success depends on the fact that, since the previous X.LL()
issued by pi, other processes have or have not updated X . It succeeds if and only if,
since its last reading (whose value has been obtained by X.LL()), X has not been writ-
ten by another process pj (whatever the value written by pj , that value being possibly
the same as the current value of X). If X.SC() is successful, pi knows that X has not
been updated since its last reading of X .

The array ANNHELP [1..n]. The entry ANNHELP [i] is used both by pi and by any
other process pj �= pi to pass information from one to the other (in both directions). It
can contain three types of values, as described below.

– When it invokes p snapshot(R), the process pi sets ANNHELP [i] to < req, R >
to announce that it wants to read atomically the components of R.

– When it returns from p snapshot(R) without being helped (successful double scan),
the process pi sets ANNHELP [i] to ⊥ to prevent future help from any other
process.

– When it helps pi, a process pj writes into ANNHELP [i] the values corresponding
to the components R that pi wants to read.

So, < req, R >,⊥ and < v1, . . . , vx > are the three types of values that ANNHELP [i]
can contain. Its initial value is ⊥.

Due to page limitation, the LL/SC-based update() and p snapshot() operations are
described [22].

6 Conclusion

The concept of shared memory snapshot object has first been proposed in [1,4]. The
notion of partial snapshot object has then been introduced in [9]. The present paper has
first proposed two efficiency properties related to the implementation of partial snapshot
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objects. It has then addressed the design of a partial snapshot object whose implemen-
tation meets these properties. To attain this goal, the proposed implementation takes
into account the current concurrency pattern and strives to be as efficient as possible.
Its main features are the following7.

1. The proposed algorithm is the first that (to our knowledge) relies on the “write first,
help later and help individually” strategy.

2. An update operation helps a snapshot operation only if needed, and no more. This
is formally captured by the help-locality property that states “no help when no
conflict”.

3. The update algorithms proposed so far issue a single write operation into the shared
memory. Differently, the proposed update algorithm separates the write of a new
value and the writes of helping snapshot values.

4. The update operation satisfies the following freshness property: the value written by
an update operation is visible to other processes from the first access to the shared
memory by this update.

5. The number of underlying base atomic registers can be reduced from O(n2) to
O(n) when these registers can be accessed by the LL/SC pair of operations instead
of the weaker read/write pair of base operations.

More developments can be found in [22].
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Abstract. A contention-sensitive data structure is a concurrent data structure in
which the overhead introduced by locking is eliminated in the common cases,
when there is no contention, or when processes with non-interfering operations
access it concurrently. When a process invokes an operation on a contention-
sensitive data structure, in the absence of contention or interference, the process
must be able to complete its operation in a small number of steps and with-
out using locks. Using locks is permitted only when there is interference. We
formally define the notion of contention-sensitive data structures, propose four
general transformations that facilitate devising such data structures, and illus-
trate the benefits of the approach by implementing a contention-sensitive con-
sensus algorithm, a contention-sensitive double-ended queue data structure, and
a contention-sensitive election algorithm. Finally, we generalize the result to en-
able to avoid locking also when contention is low.

Keywords: Contention-sensitive, synchronization, locks, shortcut code, disable-
free, prevention-free, livelock, starvation, k-obstruction-free, wait-free.

1 Introduction

1.1 Motivation

Concurrent access to a data structure shared among several processes must be synchro-
nized in order to avoid interference between conflicting operations. Mutual exclusion
locks are the de facto mechanism for concurrency control on concurrent data structures:
a process accesses the data structure only inside a critical section code, within which
the process is guaranteed exclusive access. Any sequential data structure can be eas-
ily made concurrent using such a locking approach. The popularity of this approach is
largely due to the apparently simple programming model of such locks.

When using locks, the granularity of synchronization is important. Using a single
lock to protect the whole data structure, allowing only one process at a time to access it,
is an example of coarse-grained synchronization. In contrast, fine-grained synchroniza-
tion enables to lock “small pieces” of a data structure, allowing several processes with
non-interfering operations to access it concurrently. Coarse-grained synchronization is
easier to program but is less efficient compared to fine-grained synchronization.

Using locks may, in various scenarios, degrade the performance of concurrent ap-
plications, as it enforces processes to wait for a lock to be released. Moreover, slow or
stopped processes may prevent other processes from ever accessing the data structure.
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Locks can introduce false conflicts, as different processes with non-interfering opera-
tions contend for the same lock, only to end up accessing disjoint data.

A promising approach is the design of concurrent data structures and algorithms
which avoid locking. The advantages of such algorithms are that they are not subject to
priority inversion, they are resilient to failures, and they do not suffer significant per-
formance degradation from scheduling preemption, page faults or cache misses. On the
other hand, such algorithms may impose too much overhead upon the implementation
and are often complex and memory consuming.

We propose an intermediate approach for the design of concurrent data structures,
which incorporates ideas from the work on data structures which avoid locking. While
the approach guarantees the correctness and fairness of a concurrent data structure under
all possible scenarios, it is especially efficient in the common cases when there is no
(or low) contention, or when processes with non-interfering operations access a data
structure concurrently.

1.2 Contention-Sensitive Data Structures: The Basic Idea

Contention for accessing a shared object is usually rare in well designed systems. Con-
tention occurs when multiple processes try to acquire a lock at the same time. Hence, a
most desired property in a lock implementation is that, in the absence of contention, a
process can acquire the lock extremely fast. However, locks were introduced in the first
place to resolve conflicts when there is contention, and acquiring a lock always intro-
duces some overhead, even in the cases where there is no contention or interference.

We propose an approach which, in common cases, eliminates the overhead involved
in acquiring a lock. The idea is simple: assume that, for a given data structure, it is
known that in the absence of contention or interference it takes some fixed number of
steps, say at most 10 steps, to complete an operation, not counting the steps involved in
acquiring and releasing the lock. According to our approach, when a process invokes an
operation on a given data structure, it first tries to complete its operation, by executing
a short code, called the shortcut code, which does not involve locking. Only if it does
not manage to complete the operation fast enough, i.e., within 10 steps, it tries to access
the data structure via locking. The shortcut code is required to be wait-free. That is,
its execution by a process takes only a finite number of steps and always terminates,
regardless of the behavior of the other processes.

Using an efficient shortcut code, although eliminates the overhead introduced by
locking in common cases, introduces a major problem: we can no longer use a sequen-
tial data structure as the basic building block, as done when using the traditional lock-
ing approach. The reason is simple, many processes may access the same data structure
simultaneously by executing the shortcut code. Furthermore, even when a process ac-
quires the lock, it is no longer guaranteed to have exclusive access, as another process
may access the same data structure simultaneously by executing the shortcut code.

Thus, a central question which we are facing is: if a sequential data structure can not
be used as the basic building block for a general technique for constructing a contention-
sensitive data structure, then what is the best data structure to use? Before we proceed to
discuss formal definitions and general techniques, which will also help us answering the
above question, we demonstrate the idea of using a shortcut code to avoid locking – in
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the absence of synchronization conflicts – by presenting a contention-sensitive solution
to the binary consensus problem using atomic read/write registers and a single lock.

1.3 A Simple Example: Contention-Sensitive Consensus

The consensus problem is to design an algorithm in which all correct processes reach
a common decision based on their initial opinions. While various decision rules can
be considered such as “majority consensus”, the problem is interesting even where the
decision value is constrained only when all processes are unanimous in their opinions,
in which case the decision value must be the common opinion. A consensus algorithm
is called binary consensus when the number of possible initial opinions is two.

Processes are not required to participate in the algorithm, however, once a process
starts participating it is guaranteed that it may fail only while executing the shortcut
code. The algorithm uses an array x[0..1] of two atomic bits, and two atomic registers
y and out. After a process executes a decide() statement, it immediately terminates.

CONTENTION-SENSITIVE BINARY CONSENSUS: program for processpi with input ini ∈ {0, 1}.

shared x[0..1] : array of two atomic bits, initially both 0
y, out : atomic registers which range over {⊥, 0, 1}, initially both ⊥

1 x[ini] := 1 // start shortcut code
2 if y =⊥ then y := ini fi
3 if x[1 − ini] = 0 then out := ini; decide(ini) fi
4 if out �=⊥ then decide(out) fi // end shortcut code

5 lock if out =⊥ then out := y fi unlock ; decide(out) // locking

When a process runs alone (either before or after a decision is made), it reaches a de-
cision after accessing the shared memory at most five times. Furthermore, when all the
concurrently participating processes have the same preference – i.e., when there is no
interference – a decision is also reached within five steps and without locking. Two
processes with conflicting preferences, which run at the same time, will not resolve the
conflict in the shortcut code if both of them find y =⊥. In such a case, some process
acquires the lock and sets the value of out to be the final decision value. The assign-
ment out := y requires two memory references and hence it involves two atomic steps.
Memory barriers may be used to prevent reordering [26].

1.4 Summery of Contributions

The full list of our contributions is as follows,

1. We define contention-sensitive data structures by identifying four properties any
such data structure must satisfy; and discuss three additional “nice to have” prop-
erties. This involves introducing a new notion called a disable-free code segment
(Section 2).

2. We implement a contention-sensitive double-ended queue. To increase the level of
concurrency, two locks are used: one for the left-side operations and the other for
the right-side operations (Section 3).
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3. Three known progress conditions are: (1) livelock-freedom, which guarantees that
in the absence of process failures, some participating process makes progress; (2)
starvation-freedom, which guarantees that in the absence of process failures, every
participating progress makes progress; (3) obstruction-freedom, which guarantees
that a process will be able to complete its pending operations in a finite number
of its own steps, if all the other processes “hold still” (i.e., do not take any steps)
long enough. That is, obstruction-freedom guarantees progress for any process that
eventually executes in isolation long enough. Under contention, obstruction-free
data structures may suffer from livelocks. We presents three transformations:

– Transformation 1, converts any contention-sensitive data structure which satis-
fies livelock-freedom into a corresponding contention-sensitive data structure
which satisfies starvation-freedom. It adds only one memory reference to the
shortcut code (Section 4.1).

– Transformation 2, converts any obstruction-free data structure into the corre-
sponding contention-sensitive data structure which satisfies livelock-freedom
(Section 4.2).

– A new progress condition called prevention-freedom is presented. Transfor-
mation 3, converts any prevention-free data structure into the corresponding
contention-sensitive data structure which satisfies livelock-freedom (Section 4.3).

4. We define the notion of a k-contention-sensitive data structure in which locks are
used only when contention goes above k, and illustrate this notion by implementing
a 2-contention-sensitive consensus algorithm. Then, for each k ≥ 1, we define a
progress condition called k-obstruction-freedom, and present a transformation that
converts any k-obstruction-free data structure into the corresponding k-contention-
sensitive data structure which satisfies livelock-freedom (Section 5).

5. We present a contention-sensitive election algorithm, using atomic registers only
(Section 6).

1.5 Related Work

Mutual exclusion locks were first introduced by Edsger W. Dijkstra in [6]. Since than,
numerous implementations of locks have been proposed [34,40]. Algorithms for sev-
eral concurrent data structures based on locking have been proposed since at least the
1970’s [5,8,20,25]. Speculative lock elision [35], is a hardware technique which allows
multiple processes to concurrently execute critical sections protected by the same lock;
when misspeculation, due to data conflicts, is detected rollback is used for recovery,
and the execution fall back to acquiring the lock and executing non-speculatively.

Implementations of data structures which avoid locking have appeared in many
papers [7,11,14,30,38,42]. Several progress conditions have been proposed for data
structures which avoid locking. The most extensively studied conditions, in order of de-
creasing strength, are wait-freedom [15], non-blocking [19], and obstruction-freedom
[16]. Wait-freedom guarantees that every process will always be able to complete its
pending operations in a finite number of its own steps. Non-blocking guarantees that
some process will always be able to complete its pending operations in a finite number
of its own steps. All strategies that avoid locks are called lockless [18] or lock-free [29].
(In some papers, lock-free means non-blocking.)
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Non-blocking and wait-freedom (although desirable) may impose too much over-
head upon the implementation, and are often complex and memory consuming. Re-
quiring implementations to satisfy only obstruction-freedom can simplify the design of
algorithms, however, since it does not guarantee progress under contention, such algo-
rithms may suffer from livelocks. Various contention management techniques have been
proposed to improve progress of obstruction-free algorithms under contention while
still avoiding locking [12,36]. Other works investigated boosting obstruction-freedom
by making timing assumption [4,9,39] and using failure detectors [13].

It is known that even in the presence of only one crash failure, it is not possible
to solve consensus using atomic read/write registers only [10,23]. Wait-free consensus
algorithms that use read and write operations in the absence of (process) contention,
or even in the absence of step contention, and revert to using strong synchronization
operations when contention occurs, are presented in [2,24]. A wait-free consensus al-
gorithm that in any given execution uses objects with consensus number above k, only
when contention goes above k, appeared in [32].

Consistency conditions for concurrent objects are linearizability [19] and sequential
consistency [22]. A tutorial on memory consistency models can be found in [1]. Trans-
actional memory is a methodology which has gained momentum in recent years as a
simple way for writing concurrent programs [17,37,43]. It has implementations that use
locks and others that avoid locking, but in both cases the complexity is hidden from the
programmer. In [27], a constructive critique of locking and transactional memory: their
strengths, weaknesses, and challenges, is presented.

2 Defining Contention-Sensitive Data Structures

We focus on an architecture in which n processes communicate asynchronously via a
shared memory. Asynchrony means that there is no assumption on the relative speeds of
the processes. Processes may fail by crashing, which means that a failed process stops
taking steps forever. Numerous implementations of locks have been proposed to help
coordinating the activities of the various processes.

We are not interested in implementing new locks, but rather assume that we can use
existing locks. We are not at all interested whether the locks are implemented using
atomic registers, semaphores, etc. We do assume that a lock implementation guarantees
that: (1) no two processes can acquire the same lock at the same time, (2) if a process is
trying to acquire the lock, then in the absence of failures some process, not necessarily
the same one, eventually acquires that lock, and (3) the operation of releasing a lock is
wait-free. (It is possible to consider also using read-write locks, k-exclusion locks, etc.)

An implementation of a contention-sensitive data structure is divided into two con-
tinuous sections of code: the shortcut code and the body code. When a process invokes
an operation it first executes the shortcut code, and if it succeeds to complete the oper-
ation, it returns. Otherwise, the process tries to complete its operation by executing the
body code, where it usually first tries to acquire a lock. If it succeeds to complete the
operation, it releases the acquired lock(s) and returns. The problem of implementing a
contention-sensitive data structure is to write the shortcut code and the body code in
such a way that the following four requirements are satisfied,
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– Fast path: In the absence of contention or interference, each operation
must be completed while executing the shortcut code only.

– Wait-free shortcut: The shortcut code must be wait-free – its execution
should require only a bounded number of steps and must always terminate.
(Completing the shortcut code does not imply completing the operation.)

– Livelock-freedom: In the absence of process failures, if a process is exe-
cuting the shortcut code or the body code, then some process, not neces-
sarily the same one, must eventually complete its operation.

– Linearizability: Although operations of concurrent processes may over-
lap, each operation should appear to take effect instantaneously. In partic-
ular, operations that do not overlap should take effect in their “real-time”
order.

It is possible to consider replacing linearizability with a weaker consistency require-
ment, such as sequential consistency [22]. Livelock-freedom may still allow that indi-
vidual processes may never complete their operations. We will examine also solutions
which do not allow such a behavior.

– Starvation-freedom: In the absence of process failures, if a process is
executing the shortcut code or the body code, then this process, must even-
tually complete its operation.

Next, we define two additional desirable properties. They are “nice to have”, but it is
not required that each correct implementation satisfies them. First, we introduce a new
notion called disable-freedom. A code segment is disable-free, if a process that fails
while executing that code segment may not prevent other processes from completing
their operations.

A disable-free code segment is not necessarily wait-free and vice versa. To illustrate
this point, consider the following program for two processes in which a single atomic
register, called x, is used. Each process executes the following three lines and termi-
nates: (1) x := 0; (2) x := 1; (3) while x �= 1 do skip od. Consider the code segment
which consists of lines 1 and 2. It is clearly wait-free, but it is not disable-free since a
process that fails just before executing line 2 may cause the other process to spin for-
ever (in line 3). On the other hand, the code segment which consists of only line 3 is
disable-free but is not wait-free.

– Disable-free shortcut: A process that fails (or that is very slow) while ex-
ecuting the shortcut code, may not prevent other processes from accessing
the data structure and completing their operations.

We point out that the shortcut code of the consensus algorithm presented in the intro-
duction is disable-free. The second “nice to have” property is,

– Weak-blocking body: Let p be a process that has failed while executing
the body code, and let q be a process that has started executing the shortcut
code after p has failed. Furthermore, assume that the operations of p and q
are non-interfering, and that no other process is concurrently participating.
Then, the fact that p has failed should not prevent q from completing its
operation while executing the shortcut code.

The implementation of the body code can be either coarse-grained, or fine-grained.
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3 A Contention-Sensitive Double-Ended Queue Data Structure

In [16], two obstruction-free CAS-based implementations of a double-ended queue are
presented; the first is implemented on a linear array, the second on a circular array. In the
following, a contention-sensitive double-ended queue data structure implementation,
which is based on the implementations from [16], is presented.

The double-ended queue is implemented on an infinite array (denoted Q) and is
based on load-link/store-conditional/validate (LL/SC/VL) operations. For a given ob-
ject o, the operations LL/SC/VL are defined as follows: (1) LL(o) returns o’s value. (2)
SC(o, v) by process p succeeds if and only if no process has successfully written to
o since p’s last LL on o. If SC succeeds, it changes o’s value to v (or to the value of
v, if v is a variable) and returns true. Otherwise, o’s value remains unchanged and SC
returns false. (3) VL(o) by process p returns true if and only if no process performed a
successful SC on o since p’s last LL on o. Otherwise, VL returns false.

Two locks are used: llock (left lock) is used by the left-side operations and rlock
(right lock) is used by the right-side operations. Two values lnil (left null) and rnil
(right null) that are different from the data values are used, and the following invariant
is maintained: For every two integer values i < j, Q[j] = lnil implies Q[i] = lnil ,
and Q[i] = rnil implies Q[j] = rnil . Two pointers are used: Lptr (left pointer) which
holds the index of the rightmost lnil value, and Rptr (right pointer) which holds the
index of the leftmost rnil value. A rightpush(value) (resp. leftpush(value)) operation
changes the leftmost rnil (resp. rightmost lnil ) value to value . A rightpop (resp. left-
pop) operation changes the rightmost (resp. leftmost) data value to rnil (resp. lnil ) and
returns that value.

The right-side operations, rightpush and rightpop, are shown in Figure 1. The left-
side operations, leftpush and leftpop, are symmetric to the right-side operations, and
hence are not presented.

When a process p invokes a right-side operation, p first reads the Rptr pointer to
find the index of the exact location, say k, it needs to modify in the array Q. Then, it
LL(Q[k]) and also LL Q[k]’s adjacent location Q[k−1]. In order to prevent interference
by another right-side operation, process p first SC to the adjacent location Q[k − 1]
(without changing that location’s value). If this SC succeeds, the process SC to Q[k].
As a result of this approach, two concurrent right-side operations can each cause the
other to retry. In such a case, p tried to acquire the rightlock and, in its critical section,
p continually repeats the above sequence of steps trying to complete its operation.

A concurrent left-side and right-side operations can interfere if they try to apply a
SC to the same memory location. We observe that in such a case if as a result one of
the two type of operations has to retry, then it must be the case that an operation of the
other type must be completed.

Since Rptr is updated using an atomic write operation, the implementation in
Figure 1 does not satisfy the disable-free shortcut and the weak-blocking body prop-
erties. These properties can be easily satisfied by letting each process updating Rptr
(and Lptr ) using (the more expensive) LL/SC/VL operations, whenever a process finds
out that Rptr is not updated. For lack of space, all the proofs were omitted.



164 G. Taubenfeld

CONTENTION-SENSITIVE DOUBLE-ENDED QUEUE: program for each one of the n processes

shared Q[−∞..∞]: infinite array; initially, Q[i] = lnil for all i < 0 and Q[i] = rnil for all i ≥ 0
Lptr ,Rptr : integers; initially, Lptr = −1 and Rptr = 0

local done, empty : boolean; cur , prev : both range over {all data values, lnil , rnil}
k: integer

rightpush(value) // value �∈ {lnil , rnil}
1 k := Rptr ; prev := LL(Q[k − 1]); cur := LL(Q[k]); // k index of leftmost rnil
2 if cur = rnil ∧ prev �= rnil then // Rptr is updated
3 if SC(Q[k − 1], prev) then // prevent interfering operations
4 if SC(Q[k], value) then // push new value
5 Rptr := Rptr + 1; return("ok") fi fi fi // update Rptr
6 lock(rlock )
7 done := false // set local variable
8 repeat
9 k := Rptr ; prev := LL(Q[k − 1]); cur := LL(Q[k]) // k index of leftmost rnil
10 if cur = rnil ∧ prev �= rnil then // Rptr is updated
11 if SC(Q[k − 1], prev) then // prevent interfering operations
12 if SC(Q[k], value) then // push new value
13 Rptr := Rptr + 1; done := true fi fi fi // update Rptr
14 until (done)
15 unlock(rlock ) ; return("ok") // unlocking section

rightpop()
1 k := Rptr ; prev := LL(Q[k − 1]); cur := LL(Q[k]) // k index of leftmost rnil
2 if cur = rnil ∧ prev �= rnil then // Rptr is updated
3 if prev = lnil ∧ VL(Q[k − 1]) then return("empty") // adjacent lnil and rnil
4 else if SC(Q[k], rnil) then // prevent interfering operations
5 if SC(Q[k − 1], rnil) then // pop value
6 Rptr := Rptr − 1; return(prev ) fi fi fi fi // update Rptr
7 lock(rlock )
8 done := false; empty := false // set local variables
9 repeat
10 k := Rptr ; prev := LL(Q[k − 1]); cur := LL(Q[k]) // k index of leftmost rnil
11 if cur = rnil ∧ prev �= rnil then // Rptr is updated
12 if prev = lnil ∧ VL(Q[k − 1]) then empty := true // adjacent lnil and rnil
13 else if SC(Q[k], rnil) then // prevent interfering operations
14 if SC(Q[k − 1], rnil) then // pop value
15 Rptr := Rptr − 1; done := true fi fi fi fi // update Rptr
16 until (done ∨ empty)
17 unlock(rlock ) ; if done then return(prev ) else return("empty") fi // unlocking section

Fig. 1. A contention-sensitive double-ended queue data structure. The left-side operations, left-
push and leftpop, are symmetric to the right-side operations. The first 5 lines (6 lines, resp.) of
the rightpush (rightpop, resp.) operation is the shortcut code. Two locks are used: llock (left lock)
is used by the left-side operations and rlock (right lock) is used by the right-side operations.
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4 Three Transformations

Recall the question raised in the introduction: If a sequential data structure can not
be used as the basic building block for constructing a contention-sensitive data struc-
ture, what is the best data structure to use? The following transformations that facilitate
devising such data structures provide an answer.

4.1 From Livelock-Freedom to Starvation-Freedom

The transformation converts any contention-sensitive data structure, denoted A, which
satisfies livelock-freedom into a corresponding contention-sensitive data structure, de-
noted B, which satisfies starvation-freedom. It adds only one memory reference to the
shortcut code. It is an extension of a known transformation, for the mutual exclusion
problem, that has appeared in [40] (page 83).

It is assumed that A is implemented using a single lock, and that the body of A
is divided into three continuous sections of code: locking, main-body, and unlocking.
When a process invokes an operation on A it first executes the shortcut code of A, and
if it succeeds to complete the operation, it returns. Otherwise, it executes the body code,
where it first tries to acquire the single lock by executing the locking code. If it succeeds
to acquire the lock, it executes the main-body. If it succeeds to complete the operation,
it releases the lock.

Using A, we construct B as follows: In addition to the objects used in A, we use an
atomic register called turn which is big enough to store a process identifier, a boolean
array called flag, and a boolean bit called contention. All the processes can read and
write turn and the contention bit, the processes can read the bit flag[i], but only process
i can write flag[i]. The processes are numbered 1 through n. The statement “await
condition” is used as an abbreviation for “while ¬condition do skip”.

Transformation 1: process i’s program.
Initially: flag[i] = false, contention = false, the initial value of turn is immaterial.

1 if contention = true then goto lock fi // begin shortcut of B
2 shortcut of A // end shortcut of B

3 lock: flag[i] := true // begin body of B
4 await (turn = i or flag[turn] = false)
5 locking of A

6 contention := true
7 main-body of A
8 contention := false

9 flag[i] := false
10 if flag[turn] = false then turn := (turn mod n) + 1 fi
11 unlocking of A // end body of B

Setting the contention bit to true, happens after acquiring the lock which implies that
there has been contention and interference. Evaluating the condition flag[turn] = false
requires two memory references.
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4.2 From Obstruction-Freedom to Livelock-Freedom

Next we present a transformation that converts any obstruction-free data structure, de-
noted DS, into a corresponding contention-sensitive data structure. The idea is to use a
lock to choke down parallelism and eventually eliminate interference on an obstruction-
free data structure. Let us denote by first(DS) the number of steps that a process needs
to take in order to complete its operation of DS when there is no contention.1 The trans-
formation uses a single lock.

Transformation 2: program for a process which invokes operation op.

1 execute up to first(DS) steps of DS // shortcut
2 if op is completed then return response fi
3 lock // body
4 continue to execute steps of DS until op is completed

5 unlock

First a process tries to complete its operation op of DS without holding the lock. If there
is no contention the process will complete its operation without locking. Otherwise, if
after taking first(DS) steps, it does not succeed in completing its operation, it tries to
acquire the lock. As a result of such an approach, a process that is already holding
the lock may experience interference. However, either some process will manage to
complete its operation without holding the lock, or (since the number of processes is
finite) this interference will eventually vanish.

A data structure which is constructed using the above transformation satisfies also
the disable-free shortcut property and the weak-blocking body property.

4.3 From Prevention-Freedom to Livelock-Freedom

For a given implementation of a concurrent data structure, DS, assume that each state-
ment is uniquely numbered by a natural number. Let Si denote the set of all the numbers
of statements in the code of process pi (where i ∈ {1, ..., n}). For s ∈ Si, we say that
process pi is at s if the next step of pi is to execute the statement numbered s. Let Gi

be a subset of Si.

Prevention-freedom: A data structure is prevention-free w.r.t. {G1, ..., Gn}
if it is guaranteed that each process pi will be able to complete its pending
operations in a finite number of its own steps, if all the other processes simul-
taneously “hold still” long enough, where each process pj �= pi “holds still”
(i.e., waits) at some gj ∈ Gj .

Each gj ∈ Gj is called a gate. Prevention-freedom guarantees that if n − 1 processes
are suspended or even crash while each one of them is at a gate, the remaining process
is not effected and can complete its operation. We assume that when a process does not

1 In simple data structures like a queue or a stack the number of first(DS) steps would be a
constant. In a data structure like a search tree the number would depend on the size or depth
of the tree; this value can be stored in a shared location that each process can read and update.
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invoke an operation, it is at a gate. A data structure is obstruction-free if and only if, it
is prevention-free w.r.t. {S1, ..., Sn}. In an obstruction-free data structure each (number
of a) statement is a gate.

Let DS be a data structure that is prevention-free w.r.t. some set {G1, ..., Gn}. We
say that DS is exit-safe if, regardless of contention, it is always the case that after a pro-
cess invokes an operation of DS and takes first(DS) steps, either the process completes
its operation or the process can always continue taking a small number of additional
steps until it reaches a gate. Below we present a transformation which converts any
prevention-free exit-safe data structure, denoted DS, into a corresponding contention-
sensitive data structure. The transformation uses a single lock.

Transformation 3: First a process tries to complete its operation op of DS
without holding the lock. If there is no contention the process will complete its
operation without locking. Otherwise if the process, after taking first(DS) steps,
does not succeed in completing its operation it continues taking steps until it
reaches a gate, and at that point it “exits” the DS code, and tries to acquire the
lock. Once it acquires the lock it “enters” the DS code at the same point where
it left it – i.e., through the gate – and continues taking steps trying to complete
the operation op. If op is completed it releases the lock.

A data structure which is constructed using Transformation 3, does not necessarily sat-
isfy the disable-free shortcut property or the weak-blocking body property.

5 Generalizations

A k-contention-sensitive data structure is a data structure in which contention resolution
(using locks) is used only when contention goes above k. It is defined by modifying the
fast path requirement as follows: When there is contention of at most k processes, or
when there is no interference, each operation must be completed while executing the
shortcut code only. We demonstrate this idea, by presenting a 2-contention-sensitive
consensus algorithm. The algorithm uses atomic registers and a single swap object.2

2-CONTENTION-SENSITIVE CONSENSUS: program for process pi with input vi ∈ {0, 1}.

shared x[0..1] : array of two atomic bits, initially both 0
y, out : atomic registers which range over {⊥, 0, 1}, initially both ⊥
z : a swap object which ranges over {⊥, 0, 1}, initially ⊥

local ini : a register which ranges over {⊥, 0, 1}

0 ini := vi; swap(z, ini); if ini =⊥ then ini := vi fi // start shortcut code
1 x[ini] := 1
2 if y =⊥ then y := ini fi
3 if x[1 − ini] = 0 then out := ini; decide(ini) fi
4 if out �=⊥ then decide(out) fi // end shortcut code

5 lock if out =⊥ then out := y fi unlock ; decide(out) // locking

2 A swap operation takes a shared registers and a local register, and atomically exchange their
values. It is known that there is no wait-free consensus algorithm for more than two processes,
using atomic registers and atomic swap objects [15].
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Processes are not required to participate, however, once a process starts participating it
is guaranteed that it may fail only while executing the shortcut code. Once a process
decides, it immediately terminates. For a set of processes P , let |P | denotes the size of
P . Consider the following generalization of the notion of obstruction-freedom:

k-obstruction-freedom: For any k ≥ 1, the progress condition k-obstruction-
freedom guarantees that for every set of processes P where |P | ≤ k, every
process in P will be able to complete its pending operations in a finite number
of its own steps, if all the processes not in P do not take steps for long enough.

These progress conditions cover the spectrum between obstruction-freedom and wait-
freedom; 1-obstruction-freedom is the same as obstruction-freedom, and in a system of
k processes, k-obstruction-freedom is the same as wait-freedom. The following trans-
formation converts any k-obstruction-free data structure, denoted DS, into a correspond-
ing k-contention-sensitive data structure which satisfies livelock-freedom. Let us denote
by k-first(DS) the number of steps that a process needs to take in order to complete its
operation of DS when the contention level is at most k.

Transformation 4: First a process tries to complete its operation op of DS
without holding the lock. If the contention level is at most k, the process will
complete its operation without locking. Otherwise if the process, after taking
k-first(DS) steps, does not succeed in completing its operation it “exits” the
DS code, and tries to acquire the lock. In this case it is sufficient to use a k-
exclusion lock.3 Once it acquires the lock it “enters” the DS code at the same
point where it left it and continues taking steps trying to complete the operation
op. If op is completed it releases the lock.

A similar transformation can be designed for the following weaker condition:

k-obstacle-freedom: For any k ≥ 1, the condition k-obstacle-freedom guaran-
tees that for every set of processes P where |P | ≤ k, some process in P with
pending operations will be able to complete its operations in a finite number of
its own steps, if all the processes not in P do not take steps for long enough.

We notice that, 1-obstacle-freedom is the same as obstruction-freedom, and in a system
of k processes, k-obstacle-freedom is the same as non-blocking.

6 A Contention-Sensitive Election Algorithm

The election problem is to design an algorithm in which all participating processes
choose one process as their leader. More formally, each process that starts participating
eventually decides on a value from the set {0, 1} and terminates. It is required that
exactly one of the participating processes decides 1. The process that decides 1 is the

3 A k-exclusion lock guarantees that: (1) no more than k processes can acquire the lock at the
same time, (2) if strictly fewer than k processes fail (are delayed forever) then if a process is
trying to acquire the lock, then some process, not necessarily the same one, eventually acquires
the lock, and (3) the operation of releasing a lock is wait-free.
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elected leader. Processes are not required to participate, however, once a process starts
participating it is guaranteed that it will not fail. It is known that in the presence of one
crash failure, it is not possible to solve election using atomic registers only [33,41].

The following algorithm solves the election problem for any number of
processes, and is related to the splitter constructs from [21,28,31]. A single lock is
used. It is assumed that after a process executes a decide() statement, it immediately
terminates.

CONTENTION-SENSITIVE ELECTION: Process i’s program

shared x, z: atomic registers, initially z = 0 and the initial value of x is immaterial
b, y, done: atomic bits, initially all 0

local leader: local register, the initial value is immaterial

1 x := i // begin shortcut
2 if y = 1 then b := 1; decide(0) fi // I am not the leader
3 y := 1
4 if x = i then z := i; if b = 0 then decide(1) fi fi // I am the leader!

// end shortcut

5 lock // locking
6 if z = i ∧ done = 0 then leader = 1 // I am the leader!
7 else await b �= 0 ∨ z �= 0
8 if z = 0 ∧ done = 0 then leader = 1; done := 1 // I am the leader!
9 else leader = 0 // I am not the leader
10 fi
11 fi
12 unlock ; decide(leader) // unlocking

When a process runs alone before a leader is elected, it is elected and terminates after
accessing the shared memory six times. Furthermore, all the processes that start running
after a leader is elected terminate after three steps. The algorithm does not satisfy the
disable-free shortcut property: a process that fails just before the assignment to b in line
2 or fails just before the assignment to z in line 4, may prevent other processes spinning
in the await statement (line 7) from terminating.

7 Discussion

None of the known synchronization techniques is optimal in all cases. Despite the
known weaknesses of locking and the many attempts to replace it, locking still pre-
dominates. There might still be hope for a “silver bullet”, but until then, it would be
constructive to also consider integration of different techniques in order to gain the ben-
efit of their combined strengths. Such integration may involve using a mixture of objects
which avoid locking (also called lockless objects) together with lock-based objects; and,
as suggested in this paper, fusing lockless objects and locks together in order to create
new interesting types of shared objects.
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Brief Announcement: Acceleration by
Contention for Shared Memory Mutual

Exclusion Algorithms

Michiko Inoue, Tsuyoshi Suzuki, and Hideo Fujiwara

Nara Institute of Science and Technology (NAIST), Japan

Introduction. This paper is exploring a possibility of designing distributed
algorithms accelerated by high contention. We propose a mutual exclusion algo-
rithm with such a property for asynchronous read/write shared memory systems
with N processes. In a mutual exclusion algorithm, each process executes its en-
try and exit sections to enter its critical section, where mutual exclusion: at
most one process executes its critical section at any time, and starvation free-
dom: each process that executes its entry section eventually executes its critical
section, are required.

We propose an efficient mutual exclusion algorithm with respect to remote
memory reference (RMR) complexity. Yang et al. [1] proposed an algorithm with
the worst case RMR complexity of O(log N) and Attiya et al. [2] proved the lower
bound of Ω(log N). Though our algorithm has the worst case RMR complexity of
O(log N), it becomes efficient with increasing the number of processes executing
concurrently. We show the efficiency using queuing theory and simulation.

Algorithm. Our algorithm uses an arbitration tree[3] to resolve the mutual
exclusion problem. An arbitration tree for N processes is an N/2-leaf binary
tree where each node resolves 2-process mutual exclusion (2PME). A process
executes the entry sections at 2PMEs from a designated leaf to the root to enter
its critical section. After executing its critical section, the process executes the
exit sections at 2PMEs from the root to the leaf.

In our algorithm Tree Skip (TS), some processes can skip to visit nodes in
the path to the root. To realize such a mechanism, we introduce a waiting array
and one additional 2PME (TOP2PME) (Fig.1). In each 2PME node, if two
processes concurrently execute the entry sections, one process has to wait until
the other process exits the node. In TS, such processes are added and then
retrieved from the waiting array in a FIFO fashion to ensure the starvation-
freedom. The retrieved process goes to TOP2PME to compete for the privilege to
enter the critical section with a process from the arbitration tree to ensure mutual
exclusion. Processes exclusively maintain the waiting array at the beginning of
the exit section before they release the privilege of the critical section.

Each process in its entry section checks if it is added in the waiting array
between 2PME nodes. If it notices that, the process just waits until it is retrieved
from the waiting array. The process is waiting in the array with local spins (a
checking procedure by only local memory accesses).

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 172–173, 2009.
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Evaluation. In TS, every process incurs a constant number of remote memory
accesses in the waiting array, and therefore, the RMR complexity of TS is pro-
portional to the number of nodes that the process visits. This implies that the
proposed TS has the worst case RMR complexity of O(log N).

We then evaluate the average case RMR complexity in the case where all
the processes behave uniformly. We use M/M/1(1) queuing system where we
consider the interval from when a process starts the entry section of some 2PME
node to when the process leaves the node as a service of the node for the process.
Figure 2 shows the expected number of 2PME nodes that one process visits per
one critical section entry in the case where the average service time is fixed.
When the interarrival time is long (not congested case), the numbers of visited
nodes are close to log N + 1 and the numbers converge to 2 with reducing the
interarrival time (congested case).

We also evaluate the performance of TS by simulation. In the simulation, times
for the critical section, one remote memory access, one localmemory access and one
local operation are different among processes. Figure 3 shows the RMR complexity
for Yang’s algorithm (YA), our proposed algorithms Tree Skip (TS) and Fast Tree
Skip (FTS). Since each process maintains the waiting array while making other
processes wait in TS, it has long execution time for both entry and exit sections.
FTS resolves this problem by separating the privilege to maintain the waiting array
from the privilege to execute the critical section. Figure 3 shows that the RMR
complexity is reduced as the average of average critical section (CS) time is longer.
That is our algorithms are accelerated when the system is congested.
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1 Motivation

Design and implementation of distributed algorithms often involve many sub-
tleties due to their complex structure, nondeterminism, and low atomicity as well
as occurrence of unanticipated physical events such as faults. Thus, constructing
correct distributed systems has always been a challenge and often subjects to se-
rious errors. This is essentially due to the fact that we currently lack disciplined
methods for the rigorous design and correct implementation of distributed sys-
tems, mainly for two reasons: (1) formal methods are not easy to use by designers
and developers; and (2) there is a wide gap between modeling formalisms and
automated verification tools on one side, and practical development and deploy-
ment tools on the other side.

In this work, we apply a methodology which consistently integrates modeling,
verification, and performance evaluation techniques, based on the BIP (Behav-
ior, Interaction, Priority) component framework developed at Verimag [3,2]. BIP
is based on a semantic model encompassing composition of heterogeneous com-
ponents. The distributed semantics of BIP allows generating from a high-level
component-based model in BIP an observationally equivalent distributed im-
plementation [2]. BIP uses two families of composition operators for expressing
coordination between components: interactions and priorities. Interactions may
involve multiple components (unlike traditional point-to-point formalisms) and
are expressed by combining two protocols: rendezvous and broadcast. We note
that addition of interactions among components adds no extra behaviors.

We illustrate our methodology using the self-stabilizing distributed reset algo-
rithm due to Arora and Gouda [1]. The algorithm consists of two layers: (1) the
tree layer, where adjacent processes communicate in order to construct and main-
tain a rooted spanning tree throughout the alive processes, and (2) the wave layer,
which achieves a global reset through a diffusing computation. We demonstrate
how BIP allows independent modeling, verification, and analysis of the tree layer
and wave layer and ultimately their safe composition in order to construct a correct
model of distributed reset. This composition involves in addition to interactions,
scheduling constraints expressed as dynamic priorities among interactions.
� This work is sponsored by the COMBEST European project. For all correspondence
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2 Approach and Results

Modeling. We model distributed reset according to the BIP system construc-
tion methodology: (1) designing the behavior of each atomic component (i.e.,
an automaton extended by variables, ports, and possibly C++ functionality),
(2) applying synchronization mechanisms for ensuring coordination of compo-
nents through interactions (i.e., broadcasts and rendezvous), and (3) specifying
scheduling constraints by using priorities. We model each layer based on its
normal operation in the absence of faults and self-stabilizing mechanism in the
presence of faults. Each layer consists of a set of processes modeled by BIP
atomic components. The notion of faults such as process failures and variable
corruptions is captured by internal transitions inside components. Processes in
each layer communicate through interactions constrained by priorities. Upon the
occurrence of faults, components execute their recovery mechanism to reach a
legitimate state within a finite number of steps using the embedded interactions.

Verification. In order to model check the distributed reset algorithm, we con-
struct a finite representation of the overall behavior of the model as a flat labeled
transition system using BIP state-space explorer. States correspond to configu-
rations reached by the algorithm, and transitions are labeled by the interactions
taken to move from one configuration to another. Our properties of interest are:
closure, deadlock-freedom, and finite reachability of the set of legitimate states
starting from any arbitrary state. To reduce the complexity of verification, we
incorporate a compositional approach by showing interference-freedom between
the layers and manually apply model checking techniques such as abstraction,
live analysis, and sequence simplification on the BIP model.

Performance Analysis. The BIP toolset provides us with means for generat-
ing C++ multi-threaded code from high-level BIP models. This feature enables
us to evaluate the performance of distributed algorithms described by high-
level models. It allows us to evaluate the impact of changes to the high-level
model without getting involved with its actual C++ code. We emphasize that
the logical properties and dynamics of the C++ model conform with the high-
level model and an actual C++ implementation. In this context, we measure
the degree of parallelism (i.e., the number of processes working simultaneously),
that the BIP scheduler allows to achieve under different parallelism policies.
Moreover, we analyze the severity of different types of faults and the effect of
specifying stabilizing priorities in performance of the distributed reset algorithm.
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1 Introduction

Applications for networks. Sparse spanners are motivated by routing protocols
used in practical networks, where fast construction of a “skeleton” of the under-
lying network topology is crucial. As recently shown in [1], spanners and their
variants can be efficiently used for routing in ad-hoc networks in view of the
IETF standardized OLSR routing protocol [2].

Sparse spanners, as introduced by Peleg et al. [3,4], and implicitly used in [5], are
key ingredients of various distributed applications, e.g., synchronizers [6], comput-
ing almost shortest paths in distributed networks [7,8], or distance oracles
[9,10,11,12]. Spanners have also found applications in approximation algorithms
for geometric spaces [13], and for solving linear systems [14]. In all of those prob-
lems, the quality of the spanners used directly impacts the quality of the solutions.

Spanners and their variants. Given an undirected unweighted graphG, let dG(u, v)
denote the distance between u and v in G. An (α, β)-spanner of G is a spanning
subgraph H of G such that dH(u, v) ≤ α · dG(u, v) + β for every two nodes u, v.
There are several variations on the concept of spanners. A spanning H that is
not restricted to be a subgraph of G is called an (α, β)-emulator of G [15,16]. A
subgraph H of G that must preserve distances larger than d only is called a d-
preserver for G [17]. Other recent developments can be found in [18]. The paper
will not discuss any of these variants, as well as extensions for digraphs [19].

Constructing sparse spanners. There is an abundant literature on spanners and
related combinatorial objects, which is surveyed, e.g., by Pettie in [20]. It is well-
known that every n-node graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges,
which can be obtained by modification of the Kruskal’s minimum spanning tree al-
gorithm [21]. Moreover, according to Erdös-Simonovits Girth Conjecture [22,23],
it is believed that every (α, β)-spanner with α + β < 2k + 1 must have Ω(n1+1/k)
edges for some worst-case graphs. The lower bound suggests that (α, β)-spanners
such that α + β = 2k − 1 and α < 2k − 1 with O(n1+1/k) edges may exist
for all graphs. Indeed, for α = 1, (1, 2)-spanner of size O(n3/2) [24], and (1, 6)-
spanner of size O(n4/3) [25] exist for all graphs. It is not known whether (1, 4)-
spanners with O(n4/3) edges exist, or if (1, O(1))-spanner with o(n4/3) edges can
exist. Woodruff [26] proved, for every k > 0, that every (1, 2k−2)-spanner requires
Ω(n1+1/k) edges in the worst-case, independently of the Erdös-Simonovits Girth
Conjecture. For α = 1 + ε, and for small ε > 0, Elkin and Peleg [27] showed that
(1 + ε, β)-spanners with O(βn1+1/k) edges exist, where1 β = klog(log k/ε)+O(1).
Thorup and Zwick [16] showed that (1+ε, O(1/ε)k−2)-spanners with O(kn1+1/k)
edges exist. The stretch is worse than in the Elkin-Peleg construction, however it
holds simultaneously for all ε. Note that their construction is not local as it pos-
sibly involves collaboration between nodes at distance Ω(n). (This occurs, for in-
stance, for the n-node path.) Pettie [20,28] addressed the problem of constructing
spanners of linear size. E.g., (1, Õ(n9/16))-spanners2 and (O(1), Õ(1))-spanners
with O(n) edges are presented in [20].
1 All logarithms are in base two.
2 The notation Õ(f(n)) stands for f(n) logO(1) n.
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Distributed algorithms. Efficiently constructing sparse spanners by distributed al-
gorithms is clearly important for network applications. Indeed, distributed algo-
rithms for constructing (2k − 1, 0)-spanners with O(kn1+1/k) edges exist. By the
above discussion, these constructions are essentially optimal in size and stretch
(distortion). A randomized algorithmachieving this performance (with guarantees
on the stretch and expected size) has been presented in [29]. It has been recently
shown in [30] that randomization is actually not required, and that (2k − 1, 0)-
spanners with O(kn1+1/k) edges can be constructed in k rounds. Interestingly, al-
lowing 2k additional rounds, the algorithm can work without any knowledge of n,
and still provide the same guarantee on the maximum spanner size.

When k tends to log n, such constructions achieve Ω(n log n) size only. A series
of (randomized) constructions producing linear or near-linear size has been pre-
sented in [28]. At its sparsest level, (1+ ε, β)-spanners with n · (ε−1 log log n)O(1)

edges are constructed in O(β) time, where β is in the form (ε−1 log log n)O(log log n).
For (1+ε, β)-spanners, only few distributed constructions are known. Actually,

it has been proved in [30,28] that (1, f(k))-spanners (for some function f(k) of
k), which are known to exist for k = 2 and k = 3, cannot be constructed quickly
(say, in polylog time). So the best polylogarithmic-time distributed constructions
one may hope for will yield (1+ε, f(k))-spanners. For k = 2, a (1+ε, 2)-spanner
with O(ε−1n3/2) edges is constructed in [30] in O(ε−1) time.

There were previous attempts to devise a distributed implementation of the
Elkin-Peleg construction of (1 + ε, β)-spanners with β = β(k, ε) and arbitrary
k, ε. However, as pointed out by several authors [31,20], the resulting construc-
tions, while achieving the goal of demonstrating the existence of sparse (1+ ε, β)-
spanners, can hardly serve as a basis for an efficient algorithm. (We refer the reader
to [31] for a discussion on the technical reasons for the difficulty of implementing
these constructions in a distributed setting.) Nevertheless, Elkin and Zhang [32]
proposed a distributed implementation of (1 + ε, β)-spanners (albeit through a
very complicated algorithm). The trade-off for β is worse than the one of [33]
by a factor of roughly klog k (more precisely, in [32], β = O((k log k)/ε)log k =
klog k · klog(log k/ε)+O(1)), and the algorithm is randomized.

Our results. In this article, we come up with an alternative construction of sparse
(1 + ε, β)-spanners, and demonstrate that the new construction leads to signifi-
cant improvements in the current state-of-the-art for the problem of computing
almost shortest paths in distributed settings. It positively answers Pettie’s open
question [28] concerning the deterministic construction of additive spanners.

We present two algorithms. The first (in Section 2) constructs sparse spanners
in constant time, for fixed k and ε. In the spirit of Pettie’s constructions [20], our
algorithm is generic. Depending on the parameters, it can achieve, for instance, a
(2k− 1, 0)-spanner with O(kn1+1/k) edges, or a (1+ ε, O(1/ε)k−2)-spanner with
O(ε−k+1n1+1/k) edges. More specifically, it can produce a (1 + ε, 2− ε)-spanner
with O(ε−1n3/2) edges. Note that this latter construction is optimal even in the
sequential sense, since the absolute lower bound discussed above implies that
α + β = (1 + ε) + (2 − ε) ≥ 3 for such a number of edges. Other trade-offs
produced by our algorithm are summarized in the table of Section 2.2. Finally,
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it has the extra feature that it does not require the nodes to know the value of n,
and still guarantees the desired size. This first contribution provides a positive
answer to Pettie’s open question [28].

Our second construction (Section 3) runs in sub-polynomial time, and relies
on the deterministic computation of maximal independent sets, which is known
to be difficult in the distributed setting [34]. Similarly to the first algorithm, it is
generic and can be parameterized to produce a new family of spanners. In partic-
ular (see the table in Section 3.3 for more details), it provides a (1+ε, β)-spanner
with O(βn1+1/k) edges in sub-polynomial time, where β = klog (log k/ε)+O(1). This
matches the performance of the best existential (sequential) constructions of [33].
As a particular case, our algorithm can also produce a (1 + ε, 8 − ε)-spanner
with O(ε−1n4/3) edges, and a specific construction, with the same number of
edges, actually provides a (1 + ε, 6 − ε)-spanner (Subsection 3.4). We also ob-
serve that using a Las Vegas algorithm for selecting a maximal independent set,
our algorithms can run in poly-logarithmic time while achieving the best known
stretches. Finally, our implementation is considerably simpler than that of [32].

In this paper we consider the classical LOCAL model of computation [35,36],
where in each time unit a node can send any amount of information to its
neighbors and perform any amount of local computations. Although the issue
of message size may be important (see e.g., [32,28]), we do not address it in
this paper, and leave open the question of deterministically constructing similar
spanners with low message complexity.

Open questions. We leave open two main questions for further study. First, can
the performances of the second construction be achieved deterministically in
polylog time without the bottleneck of “breaking symmetry”? and with short
messages? Second, do (1+ε, f(k))-spanners with at most g(k)·n1+1/k edges exist
for all graphs, for fixed ε > 0 and for some f(k) = kO(1)? or even f(k) = O(k)?
As far as we know, the best upper bound is f(k) ≤ klog log k+O(1).

2 A Local Algorithm

2.1 Description of Algorithm Local-Span

A distance sequence is a sequence of strictly positive integers. Given a distance
sequence ρ1, . . . , ρk, denote its partial sums by

ρ[i, j] =
{

ρi + · · ·+ ρj , if i ≤ j,
0, if i > j.

(1)

For every subgraph H of G, denote by BH(u, ρ) the ball of radius ρ in H centered
at u. The subscript is omitted when H = G is clear from the context.

The deterministic distributed algorithm Local-Span is presented next. Infor-
mally, the algorithm operates in k iterations, during which each node u builds a
cluster R(u) around itself. At any stage, the subgraph H consists of all the edges
selected to the spanner so far. This H enjoys the property that at any stage and
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for any node u, the subgraph of H induced by the nodes of the cluster R(u) is
connected. In iteration i, the “target radius” of the constructed cluster is ρ[1, i].
Every node u learns the clusters R(v) of all the nodes v in its ρi-neighborhood,
B(u, ρi). Of those nodes, it keeps in the set W (u) all the candidates to join its
cluster R(u). In an internal loop, it selects up to σ such candidates w from W (u)
and adds their clusters R(w) to its own cluster R(u), by adding to H a shortest
path connecting w and u.

Input: a graph G = (V, E), a distance sequence ρ1, . . . , ρk

Output: a spanner H =
S

u∈V H(u) of G

Set σ to any value in the range [maxv∈B(u,ρ[1,k]) |B(v, ρ[1, k])|1/k, n1/k]1

R(u) := {u} /* cluster around u */2

F (u) := False /* termination flag */3

H(u) := ({u} , ∅) /* spanner edges selected by u */4

for i := 1 to k do5

Node u sends R(u), F (u) to all nodes in B(u, ρi),6

and receives R(v), F (v) from all v ∈ B(u, ρi)7

W (u) := B(u, ρi) \ {v | F (v) = True} /* candidate nodes to be covered */8

� := 09

while ∃w ∈ W (u) and � < σ do10

(a) Pick w ∈ W (u) such that dG(u, w) is minimal11

(b) Add a shortest path in G from u to w to H(u)12

(c) Add R(w) to R(u)13

(d) W (u) := W (u) \ {v ∈ W (u) | R(v) ∩ R(w) �= ∅}14

(e) � := � + 115

if W (u) = ∅ then F (u) := True else F (u) := False16

Algorithm 1. Algorithm Local-Span - Code for a node u

2.2 Results

Theorem 1. AlgorithmLocal-Span computes, for everyn-node graphGanddis-
tance sequence ρ1, . . . , ρk, a spanner H of at most ρ[1, k] ·n1+1/k edges. The stretch
of H and the time complexity ofLocal-Span are summarized in the following table.

stretch size time parameters

(2k − 1, 0) k · n1+1/k O(k) ρ1 = · · · = ρk = 1

(1 + ε, 2 − ε) (1 + 2
ε ) · n3/2 O(ε−1) ρ1 = 1, ρ2 = 2/ε

ε ∈ (0, 2]

(1+ε, 4(1+ 4
ε )k−2−ε) (1 + 4

ε )k−1 ·

n1+1/k
O((1 + 4

ε )k−1) ρ1 = 1, ρi = 4
ε (1 + 4

ε )i−2

ε ∈ (0, 4]
(5, 2k − 4) 5k−1 · n1+1/k O(5k) ↪→ with ε = 4

(3, 4 · 3k−2 − 2) 3k−1 · n1+1/k O(3k) ↪→ with ε = 2
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The correctness of algorithm Local-Span and Theorem 1 are proved in the
next section.

2.3 Analysis of Algorithm Local-Span

Let Hi(u), Ri(u), Fi(u), and Wi(u) denote the values of H(u), R(u), F (u), and
W (u), respectively, at the end of iteration i. The parameter u is omitted from
these notations when u is clear from the context.

Proposition 1. Algorithm Local-Span has time complexity ρ[1, k] if n is
known to each node, and 3ρ[1, k] otherwise.

Proof. At Step i, a node communicates with other nodes at distance at most ρi.
So after ρ[1, k] rounds the algorithm ends. If n is known, then σ can be set imme-
diately to n1/k. If it is not, then σ can be set to maxv∈B(u,ρ[1,k]) |B(v, ρ[1, k])|1/k,
and calculating this value requires 2ρ[1, k] extra rounds. ��

Proposition 2. The resulting spanner H has at most ρ[1, k] · n1+1/k edges.

Proof. Each node u adds to H , in each iteration i of its main loop, up to σ = σ(u)
paths of length at most ρi. Hence the overall contribution of u to the spanner
consists of at most σ · ρ[1, k] edges. The bound follows as σ ≤ n1/k. ��

The following proposition is proved by induction on i.

Proposition 3. For all i ≥ 0, Ri(u) ⊆ BHi(u, ρ[1, i]).

Proposition 4. Let x be a node at distance at most ρi from u and satisfying
Fi−1(x) = False. If Fi(u) = True then dHi(u, x) ≤ dG(u, x) + 2ρ[1, i− 1].

Proof. As Fi−1(x) = False, x is in W (u) before the while loop of iteration i.
As Fi(u) = True, i.e., Wi(u) = ∅, there must exist some w ∈ W (u) such that
Ri−1(w) ∩ Ri−1(x) �= ∅. Consider the first vertex w satisfying this (eventually
w = x) and let z ∈ Ri−1(w) ∩Ri−1(x). By the triangle inequality,

dHi(u, x) ≤ dHi(u, w) + dHi(w, z) + dHi(z, x)
≤ dHi(u, w) + dHi−1 (w, z) + dHi−1(z, x) (2)

The choice of w and step (b) in the while loop imply that dHi(u, w) = dG(u, w) ≤
dG(u, x). In addition, Proposition 3, applied to Ri−1(w) and Ri−1(x), implies
that dHi−1 (w, z) ≤ ρ[1, i − 1] and dHi−1(z, x) ≤ ρ[1, i − 1]. Hence (2) yields
dHi(u, x) ≤ dG(u, x) + 2ρ[1, i− 1].

In the special case i = 1, we indeed have dH1(u, x) = dG(u, x) since W1(u) = ∅

implies that R1(u) contains all nodes in B(u, ρ1). Indeed, as no nodes v satisfy
R0(v) = ∅, W (u) = B(u, ρ1) before the while loop. We then obtain dH1(u, x) ≤
dG(u, x) + 2ρ[1, 0] as claimed because ρ[1, 0] = 0. ��

Define R̄i(u) as the union of the sets R(w) added to R(u) during the while loop
of iteration i.
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Proposition 5. If Fi(u) = False, then

|Ri(u)| ≥ |R̄i(u)| ≥ max
v∈B(u,ρ[i+1,k])

|B(v, ρ[1, k])|i/k.

Proof. By induction on i. The assertion is satisfied for i = 0 as |R0(u)| = 1.
Consider the sets Ri−1(w) added to R(u) in the while loop of iteration i. The
inductive hypothesis implies

|Ri−1(w)| ≥ max
v∈B(w,ρ[i,k])

|B(v, ρ[1, k])|(i−1)/k

≥ max
v∈B(u,ρ[i+1,k])

|B(v, ρ[1, k])|(i−1)/k

since dG(u, w) ≤ ρi. If Fi(u) = False, then

σ = max
v∈B(u,ρ[1,k])

|B(v, ρ[1, k])|1/k ≥ max
v∈B(u,ρ[i+1,k])

|B(v, ρ[1, k])|1/k

sets are added to R(u). As these sets are disjoint, the size of R̄i(u) is thus at
least maxv∈B(u,ρ[i+1,k]) |B(v, ρ[1, k])|i/k. ��

Proposition 6. For all u, Fk(u) = True.

Proof. Suppose, towards contradiction, that Fk(u) = False for some u. Propo-
sition 5 then implies

|R̄k(u)| ≥ max
v∈B(u,ρ[k+1,k])

|B(v, ρ[1, k])|k/k = |B(u, ρ[1, k])|.

Moreover, Proposition 3 implies R̄k(u) ⊆ B(u, ρ[1, k]). We thus deduce R̄k(u) =
B(u, ρ[1, k]). In particular, R̄k(u) contains B(u, ρk). As every node that is added
to R(u) is immediately removed from W (u), all B(u, ρk) is removed from W (u)
and necessarily Wk(u) = ∅. This is in contradiction with the fact that Fk(u) =
False. ��

Proposition 7. For every u, v, we have

dH(u, v) ≤ (1 + ε) · dG(u, v) + 4ρ[1, k − 1]− ε

where ε = max1≤i≤k {4ρ[1, i− 1]/ρi}.

Proof. We prove this by induction on dG(u, v). The claim is obviously satisfied
for dG(u, v) = 0. Now consider u and v at distance δ = dG(u, v) and suppose
that the property is verified for any pair of nodes u′, v′ such that dG(u′, v′) < δ.
Consider a shortest path P from u to v in G. Let xi denote the vertex at distance
ρi from u on P (we set x0 = u for i = 0 and xi = v if ρi ≥ dG(u, v)). Let Pi

denote the sub-path of P from u to xi.
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Consider the lowest value of i such that Fi(y) = True for all y ∈ Pi. (Note
that i ≤ k by Proposition 6). Then Fi−1(y) = False for some y ∈ Pi−1.
As Fi(u) = True and Fi(xi) = True, Proposition 4 implies dHi(u, y) ≤
dG(u, y)+2ρ[1, i−1] and dHi(xi, y) ≤ dG(xi, y)+2ρ[1, i−1]. By the triangle in-
equality, dHi (u, xi) ≤ dHi(u, y)+dHi (y, xi) ≤ dG(u, y)+dG(y, xi)+4ρ[1, i−1] ≤
dG(u, xi) + 4ρ[1, i− 1].

In case xi = v, we thus obtain dH(u, v) ≤ (1 + ε) · dG(u, v) + 4ρ[1, k − 1] −
εdG(u, v) ≤ (1 + ε) · dG(u, v) + 4ρ[1, k − 1]− ε, since dG(u, v) ≥ 1.

In case xi �= v (i.e., dG(u, v) > ρi), we have dG(u, xi) = ρi and dH(u, xi) ≤ ρi+
4ρ[1, i−1]. By the choice of ε, ε ≥ 4ρ[1, i−1]/ρi, and thus dH(u, xi) ≤ ρi +ερi =
(1+ε)ρi. By the induction hypothesis, dH(xi, v) ≤ (1+ε)·(δ−ρi)+4ρ[1, k−1]−ε;
the desired inequality for u, v follows. ��

Consider the sequence defined by ρ1 = 1 and ρi = α (1 + α)i−2 for i ≥ 2, which
is a distance sequence for every α ≥ 1. We have

ρ[1, i− 1] = 1 + α
i−3∑

j=0

(1 + α)j = 1 + α
(1 + α)i−2 − 1

(1 + α) − 1
= (1 + α)i−2 = ρi/α.

This yields ε = maxi {4ρ[1, i− 1]/ρi} = 4/α. By Proposition 7, for every ε ∈
(0, 4], dH(u, v) ≤ (1 + ε) · dG(u, v) + 4 (1 + 4/ε)k−2 − ε. By Proposition 2, the
number of edges of H is no more than (1 + 4/ε)k−1 · n1+1/k. For instance, for
ε = 2, 3 or 4, we get for H the stretches (2, 4 · 5k−2 − 1), (3, 4 · 3k−2 − 2), and
(5, 2k − 4), respectively.

We can obtain a better analysis when ρ1 = · · · = ρk−1.

Proposition 8. If ρ1 = · · · = ρk−1, then for all u, v, we have dH(u, v) ≤
(1 + ε) · dG(u, v) + 2ρ[1, k − 1]− ε where ε = max1≤i≤k {2ρ[1, i− 1]/ρi}.

Proof. In the proof of Proposition 7, consider the highest value of i such that
Fi(u) = False and Fi(x1) = False. Proposition 6 implies i < k. In case i =
k − 1, Proposition 4 implies dH(u, xk) ≤ dG(u, xk) + 2ρ[1, k− 1] since Fk(xk) =
True. In case i < k − 1, we have Fi+1(u) = True or Fi+1(x1) = True.
Proposition 4 then implies dH(u, x1) ≤ dG(u, x1) + 2ρ[1, i]. In both cases, we
have dH(u, xi+1) ≤ dG(u, xi+1) + 2ρ[1, i]. We can then conclude similarly to the
proof of Proposition 7. ��

Consider the distance sequence ρ1 = · · · = ρk = 1. Then ρ[1, k − 1] = k − 1
and ε = max1≤i≤k {2ρ[1, i− 1]/ρi} = 2(k − 1). By Proposition 7, it follows that
dH(u, v) ≤ (2k − 1) · dG(u, v). The number of edges is k · n1+1/k.

For k = 2, consider the distance sequence ρ1 = 1 and ρ2 = 2/ε, for every ε ∈
(0, 2]. We have max1≤i≤k {2ρ[1, i− 1]/ρi} = max {2ρ[1, 0]/1, 2ρ[1, 1]/(2/ε)} = ε,
and also ρ[1, k−1] = 1, which yields, for every ε ∈ (0, 2], a stretch of (1+ε, 2−ε)
for (1 + 2/ε) · n3/2 edges.
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3 An Algorithm Based on Independent Dominating Sets

3.1 Definitions

Let us consider a graph G = (V, E). A triple (v, S, T ) is called a cluster if S ⊆ V ,
v ∈ S, and T is a tree of G spanning3 S. The node v is called the center of the
cluster. Two clusters (v, Sv, Tv) and (w, Sw, Tw) are disjoint if Sv ∩ Sw = ∅.

Let C be a collection of clusters of G. If the clusters of C are pairwise disjoint,
we say that C is a partition of G. We denote by center(C) the set of centers of all
clusters of C. For v ∈ center(C), denote by Sv and Tv the subset and tree such
that (v, Sv, Tv) is a cluster of C.

For two node sets S, S′, let dG(S, S′) = min {dG(v, v′) | v ∈ S, v′ ∈ S′}. Denote
by Gρ(C) the graph whose vertex set is center(C), and whose edge set is the set
of all pairs of centers u, v such that dG(Sv, Sw) ≤ ρ.

Denote by G2 the graph obtained from G by adding an edge between every
two nodes at distance 2 in G. Given a set W of nodes, let G[W ] denote the graph
induced by W in G. Denote by IDS(G, λ) an independent λ-dominating set of
G, i.e., a subset S of non-neighboring nodes such that every node v in G is at
distance at most λ of S (namely, dG(v, S) ≤ λ).

3.2 Description of Algorithm Dom-Span

Algorithm Dom-Span decomposes the node set of G into increasingly denser
clusters using a classical merging technique. The algorithm is formally described
below. Roughly speaking, at each iteration i, sparse unmerged clusters (kept in
the set L) are connected to their neighbors at distance ρi using few shortest paths
(in the loop of line 8). Next, the dense clusters are merged together (in the loop of
line 10). This process is repeated until all the clusters become sparse. Intuitively,
connecting sparse neighboring clusters with long shortest paths allows us to
obtain a small multiplicative stretch, but it can cause the size of the spanner
to increase too much. The general idea of the algorithm is to tune the sequence
ρi according to each iteration i so that not too many edges are added to the
spanner. In fact, as the clusters become dense, the number of clusters decreases
and thus we are allowed to connect clusters that lie at a large distance of each
other, i.e., the denser the clusters in an iteration i, the larger the distances ρi

we can choose.
The condition used to evaluate the sparseness of a cluster (line 4) guarantees

that the size of the clusters increases exponentially. As a consequence, within a
logarithmic number of iterations (in k), all clusters become sparse and all nodes
are connected together in the spanner. Using an independent dominating set X
on the dense clusters (in line 5) allows us to break the symmetry efficiently and
to grow the clusters in parallel.

One key ingredient of our construction is to ensure that the clusters grow
sufficiently in each iteration without overlapping. For that purpose, we use an
3 Note that S itself is not necessarily connected, and the tree T may span also some

nodes that do not belong to S.
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independent dominating set to pick some independent dense clusters at distance
at least 3 from one another (set X of line 5). These independent clusters can
then grow in parallel. In fact, using a consistent coloring technique (in the loop
of line 6), each cluster determines the cluster in the independent set to which
it will be merged. Thus, at least the clusters in the neighborhood of each inde-
pendent cluster can be merged together in parallel without overlap (the loop of
line 10). This process of picking clusters using an independent set allows us to
enlarge them sufficiently while preventing new merged clusters from overlapping.

Input: a graph G = (V, E), a sequence ρ1, . . . , ρK where K = �log k� + 1, λ ≥ 1
Output: a spanner H of G
H := (V, ∅), C :=

S
v∈V (v, {v} , ({v} , ∅))1

for i := 1 to K do2

C′ := ∅, M := Gρi
(C)3

L := {v ∈ center(C) | degM (v) ≤ n1/k |Sv|} /* sparse clusters */4

X := IDS(M2[center(C) \L], λ) /* dominating set for the dense clusters */5

for v ∈ center(C) do6

if dM (v, X) ≤ 2λ then set c(v) to be its closest node of X in M7

(breaking ties by identities), else c(v) := ⊥

for v, w ∈ center(C) such that v, w are neighbors in M and c(v) = ⊥ do8

Add a shortest path in G from Sv to Sw to H9

for v ∈ center(C) ∩ X do10

S := Sv and T := Tv11

for w ∈ center(C) such that c(w) = v do12

Compute a shortest path v = x0, x1, . . . , xt = w in M13

for j := 1 to t do14

Add a shortest path in G from Sxj−1 to Sxj
to H and to T15

Add Sxj
to S, and add Txj

to T16

Add (v, S, T ) to C′
17

C := C′
18

Algorithm 2. Algorithm Dom-Span

3.3 Analysis

Our result is summarized in the following theorem. (Recall the notation (1).)
Due to lack of space, the proof is omitted.

Theorem 2. Algorithm Dom-Span is a deterministic distributed algorithm that,
for all n-node graph G, integers k, λ ≥ 1, and distance sequence ρ1, . . . , ρK where
K = �log k�+ 1, computes for G a spanner H of at most ρ[1, K] · (n1+1/k + n)
edges. The stretch of H and the time complexity of Dom-Span are summarized
in the table below.

In the following table, size and time complexities are stated up to a constant
factor. IDS(n, λ) denotes the complexity of computing (distributively) an inde-
pendent λ-dominating set of an n-node graph. The best currently known bounds
are IDS(n, 1) = 2O(

√
log n ) [37], and IDS(n, 2 logn) = O(log n) (cf. [36]).



186 B. Derbel et al.

stretch size time parameters

(1 + ε, 8− ε) ε−1 · n4/3 ε−1 + IDS(n, 1) ρ1 = 1, ρ2 = 8/ε, k = 3
≤ ε−1 + 2O(

√
log n ) ε ∈ (0, 8]

(1 + ε, β1) β1 · n1+1/k β1 · IDS(n, 1) ρi = (9 �log k� /ε)i−1

β1 = klog(log k/ε)+O(1) ≤ β1 · 2O(
√

log n ) ε ∈ (0, O(log k)]
(1 + ε, β2) β2 · n

β2 · IDS(n, 2 log n) ↪→ k = log n

β2 = (log n/ε)O(log log n) ≤ β2 · log n ε ∈ (0, O(log log n)]

For k = 3, the stretch can be slightly improved as shown in Subsection 3.4.
Observe that an independent dominating set (λ = 1), which is nothing else than
a maximal independent set, can be computed in O(log n) expected time [38],
leading to better performances in our algorithm if Las Vegas algorithms are
considered.

3.4 An Improved Algorithm for k = 3

Finally, we propose a specific construction for k = 3, slightly improving the
stretch over the general algorithms Local-Span and Dom-Span. The construc-
tion, which combines ideas from both algorithms, yields to a (1+ε, 6−ε)-spanner
with O(ε−1n4/3) edges.

Theorem 3. There is a deterministic distributed algorithm that, for every n-
node graph and ε ∈ (0, 6], computes a (1 + ε, 6− ε)-spanner of O(ε−1n4/3) edges
in O(ε−1 + IDS(n, 1)) = O(ε−1) + 2O(

√
log n ) time.

Proof. The proof is based on an ad-hoc construction obtained by merging both
algorithms Local-Span and Dom-Span.

Let us denote by D the set of nodes of degree at least n1/3, the dense nodes.
We first construct a small 2-dominating set X for nodes in D. More formally,
we compute a set X such that for every v ∈ D, dG(v, X) ≤ 2. This can be done
by computing distributively an MIS of G2[D] in O(IDS(n, 1)) time, as done in
Algorithm Dom-Span with λ = 1. We obtain a 2-dominating set X for D with
|X | ≤ n2/3.

From X , we create a partition of D into “clusters”, i.e., a connected subgraph
C(x) centered in each node x of X and of radius at most 2. This can be done in
O(1) time by a vote of each node of D of its closest “dominator” in X , equality
being break in a consistence nanner.

For each node v of G select a set R(v) composed of v and of min
{
degG(v), n1/3

}

of its neighbors. This phase is similar to the first phase of Algorithm Local-Span
with k = 3.

The edges of the spanner H are composed of:

(1) the edges between v and R(v) for each node v of G;
(2) the edges of BFS trees centered at each node x ∈ X and spanning C(x); and
(3) the edges of the shortest paths computed as follows (the next procedure is

similar to the while-loop of Algorithm Local-Span):
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for each node x ∈ X , do (in parallel):

1. W (x) := (B(x, ρ) ∩D) \ C(x), where ρ = 6/ε + 2
2. while W (x) �= ∅ do

(a) pick the closest w ∈W (x) from x;
(b) add a shortest path in G from x to w; and
(c) remove from W (x) all nodes v such that R(v) and R(w) intersect.

Time: The time complexity is O(IDS(n, 1)+ ε−1), since Phase (3) involves only
nodes at distance O(ε−1).

Size: The number of edges for Phase (1) is at most n4/3. For Phase (2) this is at
most n−|X | since {C(x)}x∈X is a partition of the nodes of G. For Phase (3) we
observe that the instructions of the while-loop are executed at most n/n1/3 =
n2/3 times since:

– the w’s selected at Step 2(a) have pairwise disjoint regions R(w);
– once w is picked, at least all nodes of R(w) are removed from G and cannot

be considered any more in W (x), because if v ∈ R(w) then R(v) ∩ R(w)
contains at least v since v ∈ R(v);

– the size of R(w) is n1/3 since w ∈W (x) ⊆ D.

Each path added at Step 2(b) is of length at most ρ, so Phase (3) contributes
for at most |X | · n2/3 · ρ ≤ ρ · n4/3 edges. In total, the number of edges of H is
at most (ρ + 1) · n4/3 + n = O(ε−1n4/3).

Stretch: The stretch analysis is similar to the one of Proposition 7. One consider
two distinct nodes u, v in G, and let P be a shortest path from u to v in G. We
want to show that dH(u, v) ≤ (1+ ε)dG(u, v)+6− ε, that is H is a (1+ ε, 6− ε)-
spanner. We will proceed by induction, prove the result for “small distances”,
and then assume it holds for all distances δ < dG(u, v).

For that, we assume that P is not wholly included in H , since otherwise
dH(u, v) = dG(u, v) and we are done. Let us first show that:

Claim. If 1 ≤ dG(u, v) ≤ ρ− 2, then dH(u, v) ≤ dG(u, v) + 6.

Proof. Let u′, v′ ∈ P respectively be the closest and farthest node from u that
are in D. Both nodes exist otherwise P would be composed of only nodes of
degree less than n1/3 (i.e., not in D), and P ⊆ H : contradiction. Note that
dH(u, u′) = dG(u, u′) and dH(v, v′) = dG(v, v′). So it suffices to prove that
dH(u′, v′) ≤ (1 + ε)d′ + 6− ε, where d′ = dG(u′, v′).

Let x ∈ X such that u′ ∈ C(x). Such x exists, since u′ ∈ D. If v′ ∈ C(x),
we are done dH(u′, v′) ≤ 2. Note that dG(x, v′) ≤ dG(x, u′) + dG(u′, v′) ≤ 2 + d′

that is at most ρ because d′ ≤ dG(u, v) ≤ ρ− 2 by assumption. In other words,
v′ ∈ B(x, ρ). It follows that v′ is in the set W (x) when initialized at Step 1.

Let w be the node picked at Step 2(a) in the while-loop such that v′ is removed
from W (x). Let P ′ be the shortest path added to H from x to w. We have
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R(w) ∩ R(v′) �= ∅ (v′ = w is possible). Since all the edges from a node z
to all its neighbors in R(z) are in H , we have dH(w, v′) ≤ 2. In other words,
there is a route from u′ to v′ through x and P ′, and through w to v′ thanks
to R(w) and R(v′). Note that dG(x, w) ≤ dG(x, v′) by the choice of w. Hence,
the length of P ′ is |P ′| ≤ dG(u′, w) + 2 because dG(u′, x) ≤ 2. So dH(u′, v′) ≤
dH(u′, x) + dH(x, v′) ≤ 2 + |P ′|+ 2 ≤ dG(u′, v′) + 6, completing the proof of the
claim. ��

So, if dG(u, v) ≤ ρ − 2, then dH(u, v) ≤ dG(u, v) + 6 ≤ (1 + ε)dG(u, v) + 6 − ε
since dG(u, v) ≥ 1.

Assume now that dG(u, v) > ρ−2, and let z ∈ P be such that dG(u, z) = ρ−r.
By definition of ρ and the choice of ε ∈ (0, 6], ρ − 2 ≥ 1. Therefore u �= z and
Claim 3.4 applies: dH(u, z) ≤ ρ − 2 + 6. Observe that ε(ρ − 2) ≥ 6, and thus
dH(u, z) ≤ ρ− 2 + ε(ρ− 2) = (1 + ε)(ρ− 2).

By induction hypothesis on the distance between z and v, which is < dG(u, v),
we get: dH(z, v) ≤ (1+ε)dG(z, v)+6−ε = (1+ε)(dG(u, v)−dG(u, z))+6−ε. If
follows that dH(u, v) ≤ dH(u, z) + dH(z, v) ≤ (1 + ε)(ρ− 2) + (1 + ε)(dG(u, v)−
(ρ − 2)) + 6 − ε = (1 + ε)dG(u, v) + 6 − ε. This completes the stretch analysis,
and the proof of Theorem 3. ��
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lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg
(2007)
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Abstract. We present a distributed 2-approximation algorithm for the
minimum vertex cover problem. The algorithm is deterministic, and it
runs in (∆ + 1)2 synchronous communication rounds, where ∆ is the
maximum degree of the graph. For ∆ = 3, we give a 2-approximation
algorithm also for the weighted version of the problem.

1 Introduction

The minimum vertex cover is one of the best-known NP-hard graph problems.
The decision version was one of Karp’s [1] original NP-complete problems, and
it is the first problem in Garey and Johnson’s [2] list.

In a centralised setting, the polynomial-time approximability of the vertex
cover is a long-standing open question. Finding a factor 2 approximation is easy,
and there is some evidence that the problem may be hard to approximate within
factor 2 − ε for any constant ε > 0 [3].

In this work, we study the approximability of the vertex cover problem in a
distributed setting. We present a deterministic distributed algorithm that finds a
2-approximation of a minimum vertex cover in (∆ + 1)2 communication rounds,
where ∆ is an upper bound on the maximum degree of the graph. To our knowl-
edge, this is the first deterministic distributed 2-approximation algorithm for
the vertex cover problem whose running time depends only on ∆ and not on the
number of nodes in the graph.

Prior Work. Several distributed 2-approximation algorithms are known for the
vertex cover problem (see, e.g., Grandoni et al. [4]). In particular, any distributed
algorithm that finds a maximal matching also provides a 2-approximation algo-
rithm for the vertex cover problem; for example, Hańćkowiak et al. [5] present a
distributed algorithm that finds a maximal matching in O(log4 n) rounds, and
Panconesi and Rizzi’s [6] algorithm finds a maximal matching on O(log∗ n + ∆)
rounds. However, the running time of any such algorithm depends on n, the
number of nodes: Linial’s [7] seminal result shows that even if we have unique
node identifiers, and even if the network topology is an n-cycle, it is not possible
to find a maximal matching in o(log∗ n) synchronous communication rounds.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 191–205, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this work, we focus on local algorithms [8,9], in the strict meaning of the
term: a local algorithm is a distributed algorithm whose running time is in-
dependent of the number of nodes. It is known that finding a constant-factor
approximation to the minimum vertex cover requires Ω(log ∆/ log log ∆) com-
munication rounds [10], and hence the best that one can hope for is a local
approximation algorithm in bounded-degree graphs.

Several such algorithms are known. Kuhn et al. [11] present a local ap-
proximation scheme for covering LPs; this scheme, together with determinis-
tic rounding [12], provides a factor 2 + ε approximation in O(log ∆/ε4) rounds
for any ε > 0. Moscibroda [13] gives a (4 + ε)-approximation algorithm that
uses the primal–dual schema. There is also a simple purely combinatorial 3-
approximation algorithm with running time O(∆) [14].

On the negative side, the recent work by Czygrinow et al. [15] and Lenzen and
Wattenhofer [16] has settled that there is no local algorithm for the minimum
vertex cover problem with the approximation factor 2− ε for any ε > 0, and this
holds even in the case ∆ = 2.

Hence for each ε > 0, it is known that there is a local (2 + ε)-approximation al-
gorithm for vertex cover in bounded-degree graphs, and there is no local (2 − ε)-
approximation algorithm. However, the existence of a local 2-approximation
algorithm for the problem has been open.

Contributions. Our work settles the question of the approximability of the ver-
tex cover problem with distributed constant-time algorithms. We show that there
is a local 2-approximation algorithm for the minimum vertex cover problem in
bounded-degree graphs; together with the negative result [15,16] for factor 2 − ε,
this provides a complete characterisation of the constant-time approximability
of vertex cover.

Our algorithm does not require unique node identifiers. The only piece of
symmetry-breaking information that we use is a port numbering, i.e., each node
imposes an ordering on the incident edges. Our algorithm is deterministic, it
runs in (∆ + 1)2 communication rounds, and the size of each message is 2 bits.

The algorithm is presented in Sect. 3. In Sect. 5, we give a different algorithm
for the weighted vertex cover in graphs of maximum degree 3; the need for a
different algorithm is justified by a lower bound construction in Sect. 4.

2 Preliminaries

Model of Distributed Computing. Let G = (V, E) be a simple, undirected
graph. Throughout this work, G is the communication graph of a distributed
system: each node v ∈ V is a computational entity, and if {u, v} ∈ E then the
nodes u and v can exchange messages on each communication round. Let ∆ be
an upper bound on the maximum node degree in G.

We assume that G is an anonymous network with a port numbering, i.e., a node
v ∈ V can refer to its neighbours by numbers 1, 2, . . . , d(v), where d(v) is the
degree of v. No other symmetry-breaking information is assumed; in particular,
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we do not need unique node identifiers. We assume that each node v ∈ V knows
d(v) and ∆.

Every node runs the same deterministic synchronous distributed algorithm. In
one synchronous communication round, the following steps are performed, in this
order: (i) each node performs local computation, (ii) each node sends a message
to each of its neighbours, and (iii) each node receives a message from each of
its neighbours. Finally, after T communication rounds, each node performs local
computation and announces an output – in our case, the node announces whether
it is part of the vertex cover or not. The number of rounds T is the running time
of the algorithm.

We emphasise that the model that we use – deterministic distributed algo-
rithms in anonymous port-numbered networks – is a very weak model of dis-
tributed computing. In particular, in this model it is not possible to break the
symmetry in a symmetric network. For example, finding a maximal matching
in an n-cycle is impossible, regardless of the running time T . The model that
we use is strictly weaker than, for example, Linial’s [7] model; if we had unique
identifiers, we could easily find a port numbering, but the converse is not true.
Constant-time distributed algorithms in this model provide efficient algorithms
in virtually any conceivable model of distributed computing; to give one exam-
ple, standard reductions [17] can be used to construct an efficient self-stabilising
algorithm that stabilises in constant time.

Vertex Covers. A set of nodes C ⊆ V is a vertex cover if each edge e ∈ E is
incident to at least one node in C. A fractional vertex cover is a non-negative
function x : V → [0, 1] such that x(u) + x(v) ≥ 1 for each edge {u, v} ∈ E. A
minimum fractional vertex cover minimises

∑
v x(v). This is an LP relaxation

of the vertex cover problem; a set of nodes C ⊆ V is a vertex cover if and only
if the characteristic function 1C : V → {0, 1} is a fractional vertex cover.

Edge Packings and Matchings. Throughout this work, we consider non-
negative functions y : E → [0, +∞) that assign a weight to each edge. For a
node v ∈ V , let us write s(y, v) =

∑
e∈E:v∈e y(e) for the total weight assigned to

the edges adjacent to v. The function y is an edge packing if s(y, v) ≤ 1 for each
node v ∈ V . A maximum edge packing maximises

∑
e y(e).

A node v ∈ V is saturated in an edge packing y if s(y, v) = 1. An edge
{u, v} is saturated if u or v is saturated. An edge packing y is maximal if each
edge is saturated; put otherwise, we cannot increase y(e) for any e ∈ E without
violating a constraint. We write S(y) = {v ∈ V : s(y, v) = 1} for the set of
saturated nodes.

Edge packings can be interpreted as fractional matchings: a set of edges M ⊆
E is a matching if the characteristic function 1M is an edge packing, and M is
a maximal matching if 1M is a maximal edge packing. We use the shorthand
notation s(X, v) = s(1X , v) for a set of edges X ⊆ E, and we write G[X ] for
the subgraph induced by X . In other words, s(X, v) is the degree of v in the
graph G[X ].
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LP Duality. From the perspective of linear programming, the maximum edge
packing problem is the dual of the minimum fractional vertex cover problem.
From LP duality, one can obtain the following well-known lemma that forms the
basis of our distributed algorithm.

Lemma 1. If y is a maximal edge packing, then S(y) is a 2-approximation of a
minimum vertex cover.

Lemma 1 is a simplified version of a classical result that dates back to Bar-
Yehuda and Even [18]. From a modern perspective, this result can be seen as
an application of the primal–dual schema to obtain an approximation algorithm
for the minimum vertex cover problem [19,20].

In addition to the algorithm by Bar-Yehuda and Even [18], many other approx-
imation algorithms can be interpreted as applications of Lemma 1 and its vari-
ous generalisations and special cases. Hochbaum [12] applies Lemma 1 in the case
where y is a maximum edge packing. The algorithm generally attributed to Fanica
Gavril and Mihalis Yannakakis applies Lemma 1 in the case where y is the char-
acteristic function of a maximal matching; then S(y) consists of the endpoints of
the edges in the matching – see, for example, Papadimitriou and Steiglitz [21].
Gonzalez [22] presents a simple algorithm that uses Lemma 1 directly. Khuller et
al. [23] present a distributed algorithm that applies a relaxation of Lemma 1.

3 Algorithm

In this section, we present a distributed algorithm that finds a maximal edge
packing. The algorithm is purely combinatorial; we do not need to refer to linear
programming and duality in the description and analysis of the algorithm. Once
we have found a maximal edge packing, we can apply Lemma 1 to find a 2-
approximation of a minimum vertex cover.

Our algorithm heavily relies on half-integral edge packings. An edge packing
y is half-integral if y(e) ∈ {0, 1/2, 1} for each e ∈ E. In a half-integral edge
packing we also have s(y, v) ∈ {0, 1/2, 1} for each v ∈ V .

The following definition is central to our work.

Definition 1. A half-integral edge packing y is almost saturating if the following
conditions hold: If s(y, v) = 0 then s(y, u) = 1 for all neighbours u of v. If
s(y, v) = 1/2 then s(y, u) = 1 for at least one neighbour u of v.

If an edge e = {u, v} ∈ E is not saturated by an almost saturating edge packing
y, then s(y, u) = s(y, v) = 1/2; we say that e is half-saturated in y. Furthermore,
both u and v are adjacent to saturated nodes; therefore u and v are incident to
saturated edges. See Fig. 1 for an illustration.

Algorithm Overview. Our algorithm begins with the original graph G0 = G.
In each iteration i = 0, 1, . . . , ∆ − 1, we find an almost saturating edge packing
yi in the graph Gi. Then we form the subgraph Gi+1 of Gi that is induced by the
edges that are half-saturated in yi. See Fig. 2 for an illustration.
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a

b
c

Fig. 1. A graph and two different almost saturating edge packings (see Definition 1).
Double lines are edges with weight 1, single lines are edges with weight 1/2, and dashed
lines are edges with weight 0. Black circles are saturated nodes, grey circles are nodes
with total weight 1/2, and white circles are nodes with total weight 0. Edges a, b and
c are half-saturated.

G:

C:

G0, y0:

G1, y1:

G2, y2:

(a)

(c)

(b)

Fig. 2. Overview of the vertex cover algorithm. (a) An input graph G. (b) The edge
packings y0, y1, and y2 found by the algorithm; see Fig. 1 for the notation. (c) The
resulting vertex cover C.
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Both endpoints of a half-saturated edge are incident to a saturated edge;
therefore the maximum degree of Gi+1 is strictly smaller than the maximum
degree of Gi. Since the maximum degree of G0 is ∆, we conclude that the graph
G∆ is empty.

Extend the domain of yi to E by setting yi(e) = 0 whenever e ∈ E is not an
edge of Gi; now each yi is an edge packing in G. To find a maximal edge packing
in G, construct the function

y =
∆−1∑

i=0

2−iyi. (1)

Lemma 2. The function y in (1) is a maximal edge packing in the graph G.

Proof. Let us first show that y is an edge packing. Consider a node v ∈ V .
Let k be the largest integer such that v is a node in Gk. Then for each i < k,
the node v is incident to an edge that is half-saturated in yi, and therefore
s(yi, v) = 1/2. Furthermore, s(yk, v) ≤ 1 and s(yi, v) = 0 for i > k. We conclude
that s(y, v) ≤ 1.

Let us then show that y is maximal. Consider an edge e ∈ E. Let k be the
largest integer such that e is an edge in Gk. Then for each i < k, the edge e was
half-saturated in Gi by yi, and finally it was saturated in Gk by yk. Let u be an
endpoint of e that was saturated in Gk by yk. Then s(yi, u) = 1/2 for i < k and
s(yk, u) = 1. Therefore s(y, u) = 1, and the edge e is saturated in y. ��

Thus we have found a maximal edge packing, and the saturated nodes form a
2-approximation of a minimum vertex cover by Lemma 1.

Naturally, in an implementation of the algorithm, we do not need to explicitly
compute y. In each iteration i, the nodes with s(yi, v) = 0 are discarded, the
nodes with s(yi, v) = 1 join the vertex cover, and the nodes with s(yi, v) = 1/2
get a second chance on iteration i + 1.

Finding an Almost Saturating Edge Packing. To complete the descrip-
tion of the algorithm, we have to show how to find an almost saturating edge
packing. Our algorithm is based on the idea of forming a maximal matching in
the bipartite double cover of Gi. The same idea has been used in prior work [14]
to find a 3-approximation of a minimum vertex cover.

To construct the bipartite double cover H = Gi × K2 of the graph Gi, replace
each node v ∈ V of Gi by two copies: a black copy v1 and a white copy v2.
Replace each edge {u, v} ∈ E by two edges: {u1, v2} and {u2, v1}. Now H is a
bipartite graph; more importantly, it is 2-coloured, and we can use the colours
to break the symmetry in a distributed algorithm. The nodes in the graph H
inherit the port numbering from the graph G.

Now it is easy to find a maximal matching M in H by a distributed algorithm
in 2∆ synchronous communication rounds [24]: For each j = 1, 2, . . . , ∆, in the
round 2j − 1, unmatched black nodes send proposals to their white neighbour
number j, if any. In the round 2j, all white nodes process the proposals; each
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H:Gi: yi:

(a) (b) (c) (d)

M :

Fig. 3. Using the bipartite double cover to find an almost saturating edge packing.
(a) The input graph Gi. (b) The bipartite double cover H of Gi. (c) A maximal matching
M in H. (d) An almost saturating edge packing yi.

white node accepts the first proposal it gets, breaking the ties with port numbers.
See Fig. 3 for an illustration.

Now we can construct an almost saturating edge packing yi in Gi by setting

yi({u, v}) =
1M

(
{u1, v2}

)
+ 1M

(
{u2, v1}

)

2
. (2)

Here 1M is the characteristic function of M .

Lemma 3. The function yi in (2) is an almost saturating edge packing in Gi.

Proof. For each node v ∈ V we have s(yi, v) = (s(M, v1) + s(M, v2))/2. Since
s(M, v1) ∈ {0, 1} and s(M, v2) ∈ {0, 1}, we have s(yi, v) ≤ 1, and yi is an edge
packing. Since 1M is integral, yi is half-integral.

To show that yi is almost saturating, first consider a node v ∈ V with
s(yi, v) = 0. Then s(M, v1) = s(M, v2) = 0. Now let u be a neighbour of v.
Since M is maximal, v1 is not matched, and u2 is adjacent to v1 in H, we must
have s(M, u1) = 1; similarly, s(M, u2) = 1. Therefore s(yi, u) = 1.

Second, consider a node v ∈ V with s(yi, v) = 1/2. Assume that s(M, v1) = 0
and s(M, v2) = 1; the other case is symmetric. Then there is a neighbour u of v
in Gi such that {v2, u1} ∈ M . Furthermore, u2 is adjacent to v1 in H and v1 is not
matched; therefore u2 must be matched in M . We have s(M, u1) = s(M, u2) = 1
and s(yi, u) = 1. ��

Running Time and Message Complexity. Finding an almost saturating
edge packing yi in Gi takes 2(∆ − i) synchronous communication rounds [24].
Then, in 1 communication round, each node v ∈ V can inform its neighbours
about s(yi, v); after that, each node knows its neighbours in the graph Gi+1.
Therefore iteration i can be completed in 2(∆−i)+1 synchronous communication
rounds, and the total running time is bounded by (∆ + 1)2.
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The algorithm can be implemented by using 2-bit messages. To find an almost
saturating edge packing, the black copies of the nodes send 1-bit messages –
‘proposal’ or ‘no operation’ – and the white copies send 1-bit responses – ‘accept’
or ‘reject’, the latter of which doubles as a ‘no operation’ message. The value of
s(yi, v) can be encoded in 2 bits.

The main result of this section is summarised by the following theorem.

Theorem 1. A maximal edge packing can be found in (∆ + 1)2 communication
rounds, using 2-bit messages.

With Lemma 1, the following corollary is immediate.

Corollary 1. A 2-approximation of a minimum vertex cover can be found in
(∆ + 1)2 communication rounds, using 2-bit messages.

4 Weighted Edge Packing

A natural question is whether the results from the previous section can be gener-
alised to the case when each node v ∈ V has a non-negative weight wv. The defini-
tions from Sect. 2 have straightforward generalisations: A minimum vertex cover
C ⊆ V minimises

∑
v∈C wv, and a minimum fractional vertex cover x : V → [0, 1]

minimises
∑

v wvx(v). An edge packing is a function y : E → [0, +∞) that sat-
isfies s(y, v) ≤ wv for each v ∈ V , and v ∈ V is a saturated node if s(y, v) = wv.

Lemma 1 holds for the weighted graphs verbatim: if y is a maximal edge
packing in a weighted graph, then the set of saturated nodes is a 2-approximation
of a minimum vertex cover. Therefore the key question is whether there is a
weighted counterpart of Theorem 1.

At first sight, there seems to be some hope. In particular, it is possible to find
a maximal edge packing in a weighted 2-coloured graph in 2∆ rounds. However,
the trick of using the bipartite double cover can no longer be applied. Indeed, we
prove the following impossibility result. It shows that in the weighted case, the
running time of any distributed algorithm necessarily depends on the number
of nodes (or the range of the weights) and not only on the maximum degree.

Theorem 2. There is no local algorithm that finds a maximal edge packing in
weighted cycles.

Theorem 2 holds even in Linial’s [7] model: we can assume unique node iden-
tifiers, and we can allow unbounded local computation and arbitrarily large
messages.

Our proof uses ideas that are similar to Czygrinow et al.’s [15] proof of the
inapproximability of the maximum independent set problem. Let A be a local
algorithm that finds a feasible edge packing y in any weighted cycle: for each
edge e = {u, v}, both u and v know the value y(e) when the algorithm A
terminates. Let T be the number of synchronous communication rounds that A
takes; w.l.o.g., we assume that T is even.

Let n 	 T be a constant that we fix later; n only depends on the constant T .
Let N = {1, 2, . . . , n}. For any H ⊆ N , we define the n-cycle CH = (N, EH) as
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CR

BA
CS

v

v
CXX

aT+1
↓

a2T+1
↓

a2T+4
↓

a3T+4
↓

a4T+4
↓

a1
↓

a1
↓

aT+1
↓

↑
a2T+2 = xR

↑
a2T+3 = xS

Fig. 4. Construction of CR and CS. In this illustration, T = 4. The figure also illustrates
the radius-T neighbourhood X of a node v ∈ S ∩ B (see the proof of Lemma 4). The
output of the node v in CS is identical to the output of the node v in CX .

follows. Let k = |H |. Let H = {h1, h2, . . . , hk} and let N \H = {j1, j2, . . . , jn−k}
with h1 < h2 < . . . < hk and ji < j2 < . . . < jn−k. Then the edges of the cy-
cle CH are EH =

{
{h1, h2}, {h2, h3}, . . . , {hk, j1}, {j1, j2}, . . . , {jn−k, h1}

}
. The

following figure illustrates CH in the case n = 100 and H = {2, 7, 10}.
2 7 10 1 3 410099

Finally, we assign the unique identifiers and node weights as follows: for each
node v ∈ N , the unique identifier of v is v, and the weight of v is also v.

Let us now define a function f that assigns a label 0 or 1 to each subset X ⊂ N
with |X | = 2T + 1. Let X = {x1, x2, . . . , x2T+1} with x1 < x2 < . . . < x2T+1.
Consider the execution of A in the cycle CX . If the node xT+1 is saturated in
the edge packing y produced by A, we set f(X) = 1, otherwise we set f(X) = 0.

By Ramsey’s theorem [25], we can choose the value of n so that the following
holds, no matter how we choose the values f(X): there exists a label � ∈ {0, 1}
and a subset A ⊆ N with |A| = 4T + 4 such that f(X) = � whenever X ⊂ A
and |X | = 2T + 1.

Now let A = {a1, a2, . . . , a4T+4} with a1 < a2 < . . . < a4T+4. Let R =
A \ {a2T+3} and S = A \ {a2T+2}; see Fig. 4. Theorem 2 follows from the
following lemma.

Lemma 4. Algorithm A cannot produce a maximal edge packing in both CR

and CS.

Proof. To reach a contradiction, assume that A produces a maximal edge packing
in both CR and CS . Define B = {aT+1, aT+2, . . . , a3T+4}. Let K ∈ {R, S}, and
let yK be the edge packing computed by A in CK .

We first show that each node v ∈ K ∩B is saturated in by yK . To see this, let
X consist of the nodes that are within distance T from v in CK . By construction,
X ⊆ A. We make the following observations. The algorithm A terminates after
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T communication rounds, and in T rounds, information propagates only for T
hops in the cycle CK . Therefore the output of A at the node v only depends
on the identifiers and the weights in the subgraph induced by X . The subgraph
induced by X is identical in CK and CX . Therefore the node v produces the same
output in CK and CX . In particular, v is saturated in CK if and only if f(X) = 1.
By the choice of A, all nodes in K ∩ B are either saturated or non-saturated.
Since we assumed that A produces a maximal edge packing in CK , they must
all be saturated (that is, � = 1).

Therefore the subset K ∩ B in CK forms a chain of saturated nodes with
strictly increasing weights. Let xK = a2T+2 if K = R and xK = a2T+3 if K = S.
With this notation, we have

yK({a3T+3, a3T+4}) = a3T+3 − yK({a3T+2, a3T+3})
= a3T+3 − a3T+2 + yK({a3T+1, a3T+2}) = . . .

= a3T+3 − a3T+2 + . . .

. . . + a2T+5 − a2T+4 + xK − a2T+1 + . . .

. . . + aT+2 − yK({aT+1, aT+2}).

(3)

Since the radius-T neighbourhoods of aT+1 and a3T+4 are identical in CR and
CS , we have

yR({aT+1, aT+2}) = yS({aT+1, aT+2}),
yR({a3T+3, a3T+4}) = yS({a3T+3, a3T+4}).

This is a contradiction with (3) and xR �= xS . ��

Theorems 1 and 2 are one of the few pairs of results where the existence of
weights makes a significant difference from the perspective of local algorithms.
This is unlike problems such as max-min LPs [26], in which the existence of
weights is provably irrelevant as far as local approximability is concerned.

5 Weighted Vertex Cover

Theorem 2 shows that we cannot directly apply the weighted version of Lemma 1
to design a local 2-approximation algorithm for the minimum-weight vertex cover
problem in bounded-degree graphs. This setback suggests the possibility that
there is no local 2-approximation algorithm for the problem. However, we show
that the opposite is the case if ∆ ≤ 3.

Theorem 3. There is a local algorithm that finds a factor 2 approximation of
a minimum-weight vertex cover in graphs with maximum degree 3.

Let G = (V, E) be a node-weighted graph with maximum degree 3, see Fig. 5a.
Let wv ≥ 0 denote the weight of the node v ∈ V ; we call wv the w-weight of v. We
will now present an algorithm for finding a 2-approximation for weighted vertex
cover in G. The algorithm works in three stages. We will construct three sets,
CI, CII, and CIII, the union of which is the vertex cover C that our algorithm
outputs.
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Stage I. Let EI = {{u, v} ∈ E : wu = wv} be the edges whose endpoints
have the same w-weight, see Fig. 5b. Use the algorithm from Sect. 3 to find a
maximal edge packing yI in G[EI]. Pick the nodes saturated by yI into the set
CI; see Fig. 5c.

Stage II. Let EII ⊆ E be the edges not saturated by yI. Since the endpoints
of every edge in EII have different w-weights, the edges in EII can be oriented
according to the w-weight; see Fig. 5d. Add a dummy degree-1 neighbour to
every node with even degree in G[EII], as illustrated in Fig. 5e. The new graph is
oriented and every node has an odd degree, so we can run the Naor–Stockmeyer
algorithm [8,27] to find a weak 2-colouring of the nodes of the new graph; see
black and white nodes in Fig. 5f. Now forget about the dummy nodes and only
consider the original nodes of G[EII]; each node with an odd degree has a neigh-
bour of a different colour.

Consider the edges E′
II ⊆ EII whose endpoints have different colours (heavy

lines in Fig. 5f); the subgraph G[E′
II] is 2-coloured. The proposal–acceptance

procedure for finding a maximal matching in 2-coloured graphs [24] can be mod-
ified to find a maximal edge packing: every proposing node proposes its residual
weight along an edge, and every accepting node accepts its residual weight; at
every proposal–acceptance round each node either saturates at least one adja-
cent edge or learns that at least one adjacent edge is saturated, so the algorithm
completes in 2∆ rounds. Using this procedure, we can find a maximal edge pack-
ing yII in G[E′

II] while giving each node v the weight rv = wv − s(yI, v). Pick the
nodes saturated (w.r.t. r-weights) by yII into the set CII; see Fig. 5g. In other
words, CI ∪ CII consists of the nodes saturated (w.r.t. w-weights) by yI + yII.

Stage III. Let EIII ⊆ E be the edges not saturated by yI + yII; see Fig. 5h.
For each degree-3 node of G, the edge packing yI + yII saturates at least one
adjacent edge. Thus, G[EIII] has maximum degree at most 2, i.e., it consists of
disjoint paths and cycles. Note that by Theorem 2 we cannot find a maximal
edge packing in G[EIII]. Instead, we will find a vertex cover in G[EIII] directly. To
prove that our vertex cover is not too heavy, we exhibit a maximal edge packing
with a comparable weight.

Define two new weights for the nodes of G[EIII]. The c-weight of v ∈ V is
cv = wv − s(yI + yII, v). The cw-weight of v is a pair (cv, wv); see Fig. 5h. Since
adjacent nodes always have different w-weights, the endpoints of each edge can
be ordered lexicographically according to the cw-weight. Hence we can partition
the nodes of G[EIII] in the five sets illustrated below.

T

increasing cw-weight
F

I
S

B

The set B (“bottom”) consists of degree-2 nodes that are a local minimum
w.r.t. cw-weights, T (“top”) consists of degree-2 nodes that are a local maximum
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(2, 3)

(2, 2) (1, 1)

(1, 4)

T -node

G[EIII], (cv, wv)

1

1 3 4 3

31
0

G[E′
II], r (node labels),

yII (edge labels), CII (black nodes)

2

31

G[EII], w
2 1

43

Stage II

2 2

2 2 1 1

1

2

1

12
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yI (edge labels),

CI (black nodes)
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2 2 1 1

2 G[EI], w

Stage I

2 2

2 2 1 1

3431

2 1

2

G, w

CIII (black nodes)

Stage III

Solution

C (black nodes)

T I

I B

(a)

(b)

(c)

(d) (e)

(f) (g)

(h) (i) (j)

(k)

Fig. 5. Overview of the algorithm from the proof of Theorem 3
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w.r.t. cw-weights, I (“internal”) consists of the other degree-2 nodes, S (“start”)
consists of degree-1 nodes that are a local minimum w.r.t. cw-weights, and F
(“finish”) consists of degree-1 nodes that are a local maximum w.r.t. cw-weights.
We use the terminology such as T -nodes to refer to the nodes in the set T , and
TI-edges to refer to the edges that join a T -node and an I-node, etc.

Now let v ∈ T . If both edges incident to v are TB-edges, we say that v is a
BTB-node. Otherwise v is incident to at least one TI-edge or TS-edge; the node
v chooses (arbitrarily, using the port numbers to break the symmetry) one such
edge and nominates it as a hinge edge. The following figure shows a BTB -node
(black) and hinge edges (heavy lines); note that each node is incident to at most
one hinge edge.

T T T T T T

B I I S S SB B SI B I

Finally, we partition the endpoints of the hinge edges into two sets. Let
{u, v} ∈ EIII be a hinge edge and let u be the node with the smaller w-weight;
then we say that u is a cheap hinge node and v is a costly hinge node.

We are now ready to construct the set CIII. It consists of all nodes of G[EIII],
except the following: (i) F -nodes, (ii) BTB -nodes, and (iii) costly hinge nodes.
In the example of Fig. 5i we have chosen one hinge edge. The resulting set CIII

is illustrated in Fig. 5j.
This completes the construction of our vertex cover. Fig. 5k illustrates the

solution C = CI ∪ CII ∪ CIII.

Correctness. By construction, all edges in E \ EIII are covered by CI ∪ CII.
Now consider an edge e ∈ EIII; we show that e is covered by CIII.

Clearly, BTB -nodes cannot be adjacent to other BTB -nodes, F -nodes, or
hinge nodes. Hence if one of the endpoints of e is a BTB -node, the other endpoint
must be in CIII. It remains to be shown that both endpoints of e = {u, v} cannot
be F -nodes or costly hinge nodes. The key observation is that there are no paths
of the form (F, F ), (F, T ), (F, I, T ), or (F, S, T ). Hence F -nodes are not adjacent
to other F -nodes or any kind of hinge nodes. Furthermore, there are no paths of
the form (T, T ), (T, I, T ), (T, S, T ), (T, I, I, T ), (T, S, I, T ), or (T, S, S, T ). Hence
if both u and v are hinge nodes, then e is a hinge edge and one of the nodes u, v
is a cheap hinge node in CIII.

Approximation Ratio. We now exhibit a maximal edge packing y of G. The
set S(y) of nodes saturated by y is then a 2-approximation of a minimum vertex
cover. To complete the proof of Theorem 3, it is enough to show that the total
w-weight of the vertex cover C constructed by our algorithm is not larger than
the total w-weight of S(y).

More specifically, we construct an edge packing yIII of G[EIII] which is maximal
w.r.t. c-weights. Then y = yI + yII + yIII is a maximal edge packing of G w.r.t.
w-weights. We have v ∈ CI ∪ CII if and only if v is saturated by yI + yII; hence
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it is sufficient to show that the set of nodes saturated (w.r.t. c-weights) by yIII

in G[EIII] is at least as heavy (w.r.t. w-weights) as CIII.
We construct yIII by “propagating” c-weights from S-nodes and B-nodes up

towards T -nodes and F -nodes. First we process all non-hinge nodes v, from
bottom to top in the order of increasing cw-weights:

– If v ∈ S, the incident edge gets the weight cv.
– If v ∈ B, both incident edges get the weight cv/2.
– If v ∈ I and we have already assigned the weight to one incident edge, we

choose the weight of the other edge so that v is saturated.

Eventually, we have chosen a weight yIII(e) for each non-hinge edge e ∈ EIII. We
do not exceed the capacity cv of any non-hinge node v: if v ∈ S ∪B ∪ I ∪F , this
follows from the fact that we proceed in the order of non-decreasing c; if v ∈ T ,
then v must be a BTB -node and both incident edges get weights at most cv/2.
Furthermore, the weights yIII saturate all non-hinge nodes in S ∪ B ∪ I (and
possibly some F -nodes and BTB -nodes). Hence the total weight of non-hinge
nodes in CIII is at most the total weight of non-hinge nodes saturated by yIII.

Finally, we augment yIII so that it saturates all hinge edges as well; now yIII

is maximal w.r.t. c-weights. Consider a hinge edge {u, v} with wu < wv. The
edge packing yIII saturates u or v or both, while the set CIII constructed by our
algorithm contains only u and not v. Hence the total weight of hinge nodes in
CIII is at most the total weight of hinge nodes saturated by yIII. This completes
the proof of Theorem 3.
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26. Floréen, P., Kaasinen, J., Kaski, P., Suomela, J.: An optimal local approximation
algorithm for max-min linear programs. In: Proc. 21st Symposium on Parallelism
in Algorithms and Architectures (SPAA). ACM Press, New York (2009)

27. Mayer, A., Naor, M., Stockmeyer, L.: Local computations on static and dynamic
graphs. In: Proc. 3rd Israel Symposium on the Theory of Computing and Systems
(ISTCS 1995), pp. 268–278. IEEE Computer Society Press, Los Alamitos (1995)

http://www.iki.fi/jukka.suomela/local-survey


Distributed Discovery of Large Near-Cliques

Zvika Brakerski1 and Boaz Patt-Shamir2,�

1 Weizmann Institute of Science
zvika.brakerski@weizmann.ac.il

2 Dept. of Electrical Engineering, Tel-Aviv University
boaz@eng.tau.ac.il

Abstract. Given an undirected graph and 0 ≤ ε ≤ 1, a set of nodes
is called ε-near clique if all but an ε fraction of the pairs of nodes in
the set have a link between them. In this paper we present a fast syn-
chronous network algorithm that uses small messages and finds a near-
clique. Specifically, we present a constant-time algorithm that finds, with
constant probability of success, a linear size ε-near clique if there exists
an ε3-near clique of linear size in the graph. The algorithm uses mes-
sages of O(log n) bits. The failure probability can be reduced to n−Ω(1)

in O(log n) time factor, and the algorithm also works if the graph con-
tains a clique of size Ω(n/ logα log n) for some α ∈ (0, 1). Our approach
is based on a new idea of adapting property testing algorithms to the
distributed setting.

1 Introduction

Discovering dense subgraphs is an important task both theoretically and prac-
tically. From the theoretical point of view, clique detection is a fundamental
problem in the theory of computational complexity, and for distributed algo-
rithms, computing useful constructs of the underlying communication graph is
one of the central goals. Let us elaborate a little about that.

Dense graph detection has always been an important problem for cluster-
ing and hierarchical decomposition of large systems for administrative purposes,
for routing and possibly other purposes [4]. Another reason to consider dense
subgraphs is conflicts in radio ad-hoc networks [13]. On top of these low-level
communication-related tasks, dense subgraph detection has recently also at-
tracted considerable interest for Web analysis: as is well known, the ranking
of results generated by search engines such as Google’s PageRank [6] is derived
from the topology of the Web graph; in particular, it can be heavily influenced by
“tightly knit communities” [16], which are essentially dense subgraphs. Hence,
to understand the structure of the web, it is important to be able to identify
such communities. Another dimension where dense subgraphs are interesting for
the Web is time: it has been observed [15] that evolution of links in blogs is, to
some extent, a sequence of significant events, where significant events are char-
acterized as dense subgraphs. Thus, considering the web as a dynamic graph,
identifying large dense subgraphs is useful in understanding its temporal aspect.
� Supported in part by the Israel Science Foundation, grant 664/05.
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Our Contribution. In this paper we give an efficient randomized distributed
algorithm that finds large dense subgraphs. Obviously, our algorithm does not
decide whether there exists a large clique in the graph: that would be impossible
to do efficiently unless P=NP. Instead, our algorithm solves a relaxed problem.
First, we find near-cliques, defined as follows. Given a graph and a constant ε ≥ 0,
a set of nodes D is said to be an ε-near clique if all, except perhaps an ε fraction
of the pairs of nodes of D have an edge between them (see Section 2 for more
details). For example, using this definition, a clique is 0-near clique. Second, our
algorithm only identifies a large near-clique, and it is only guaranteed that the
density of the output is close to the best possible. For example, given a graph G
and a sufficiently small constant1 ε > 0 such that G contains an ε3-near clique
with a linear number of nodes, our algorithm finds at least one ε-near clique of
linear size in G. (Our algorithm can also discover dense subgraphs of sublinear
size for sub-constant values of ε.) Our algorithm is extremely frugal: the output
is computed (with constant probability of success) in constant number of rounds,
and all messages contain O(log n) bits.2 Given any q > 0, it is possible to amplify
the success probability to 1 − q in O(log(1/q)) time factor.

In addition to the direct contribution of the algorithm, we believe that our
methodology is interesting in its own right. Specifically, our work extends ideas
presented in [11] in relation to property testing of the ρ-clique problem (defined
below). Even though our construction does not use the property tester of [11] as
a black box, our approach of deriving a distributed algorithm from graph prop-
erty testers seems to be an interesting idea to consider when approaching other
problems as well. In a nutshell, property testers do very little overall work but
have a “random access” probing capability, namely they can probe topologically
distant edges; distributed algorithms, on the other hand, can do a lot of work
(in parallel), but information flow is local, i.e., an algorithm which runs for T
rounds allows each node to gather information only from distance at most T .
However, quite a few graph property testers exhibit some locality that can be
exploited by distributed algorithms.

Related work. We are not aware of any previous distributed algorithm that
finds large dense subgraphs efficiently. Maximal independent sets, which are
cliques in the complement graph, can be found efficiently distributively [17,2].
In this case, there can be no non-trivial guarantee about their size with respect
to the size of the largest (maximum) independent set in the graph. But on the
positive side, the sets output by these algorithms are strictly independent.

Much more is known about dense subgraphs in the centralized setting. The
fundamental result is that finding the largest clique (i.e., fully connected subset
of nodes) in a graph, or even approximating its size to within a factor of n1−ε

for any constant ε > 0, is computationally hard [14]. Problems that are closely
related to ours have been studied in the centralized model and in the property
testing model. In the centralized model, the Dense k-Subgraph (DkS) problem
was studied. In DkS, the input consists of a graph and a positive integer k,
1 We assume for our analysis that ε < 1/3.
2 See Section 3 for discussion of unbounded message size.
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and the goal is to find a the subset of k nodes with the most number of edges
between them. Feige, Peleg and Kortsarz [9] present a centralized algorithm
approximating DkS within a factor of O(nδ) for a certain δ < 1/3, and it is also
possible to approximate DkS to within roughly n/k [8]. Abello, Resende and
Sudarsky [1] presented a heuristic for finding near-cliques (which they refer to
as “Quasi-Cliques”) in sparse graphs.

Property testing was defined by Rubinfeld and Sudan [22] for algebraic prop-
erties, and extended by Goldreich, Goldwasser and Ron [11] to combinatorial
graph properties. The relevant concepts are the following. In the dense graph
model, the basic action of a property tester is to query whether a pair of nodes is
connected by an edge in the graph. An n-node graph is said to have the ρ-clique
property if it contains a clique of size ρn, for some given parameter 0 ≤ ρ ≤ 1.
The ρ-clique tester of [11] gets an n-node graph G and constants ρ, ε as input,
and decides, using Õ

(
1/ε6

)
queries and with constant probability of being cor-

rect, whether the input graph has a ρ-clique or whether no set of ρn nodes in
G is (ε/ρ2)-near clique. They further present an “approximate find” algorithm
that, provided that the property tester answers in the affirmative, finds an ε-near
clique of size ρn in the graph in O(n) time. Our algorithm is a new variant of
the ideas of [11] and, using a new analysis, gets a better complexity result in the
case of the relaxed assumption of existence of a near-clique.

This relaxation is a special case of tolerant property testing [20], which in
our case can be defined as follows. An (ε1, ε2)-tolerant ρ-clique tester takes pa-
rameters ρ, ε1 and ε2 where ε1 < ε2, and decides whether the graph contains an
ε1-near clique or whether no set of ρn nodes is an ε2-near clique. The general
results of [20] imply that the property tester of [11] is in fact (ε6, ε)-tolerant (our
construction is (ε3, ε)-tolerant). Fischer and Newman [10] prove a general result
(for any property testable in O(1) queries), whose implication to our case is that
it is possible to find the smallest ε for which a graph has an ε-near clique of size
ρn, but the query complexity is an exponent-tower of height poly(ε−1).

A relation between distributed algorithms and property testers was pointed
out by Parnas and Ron in [19], where it is shown for Vertex Cover how to derive
a good property tester from a good distributed algorithm (the reduction goes in
the direction opposite to the one we propose in this paper). Recently, techniques
from property testing were used, along with other techniques by Nguyen and
Onak [18], to present constant-time approximation algorithms for vertex-cover
and maximum-matching in bounded-degree graphs. Their techniques also yield
constant-time distributed algorithms for these problems. Saks and Seshadhri [23]
show how to devise a parallel algorithm that “reconstructs” a noisy monotone
function, again using ideas from property testing.

Paper organization. The problem and main results are stated in Section 2.
Simple solutions are discussed in Section 3. The algorithm is presented in Section
4 and analyzed in Section 5. We conclude in Section 6. Some proofs are omitted
from this extended abstract, we refer the reader to the full version [5] for more
details.
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2 Definitions, Model, Results

Graph concepts. In this paper we assume that we are given a simple undi-
rected graph G = (V, E). We denote n

def= |V |. For any given set U ⊆ V of
nodes, Γ (U) denotes the set of all neighbors of nodes in U . Formally, Γ (U) def=
{v | ∃ u ∈ U. (u, v) ∈ E}.

For counting purposes, we use a slightly unusual approach, and view each
undirected edge {u, v} as two anti-symmetrical directed edges (u, v) and (v, u).
Using this approach, we define the following central concept.

Definition 2.1. Let G = (V, E) be a graph. A set of nodes D ⊆ V is called
ε-near clique if

∣
∣
∣ {(u, v) | (u, v) ∈ D × D and {u, v} ∈ E}

∣
∣
∣ ≥ (1 − ε) · |D| · (|D| − 1).

The density of a node set is the number of edges connecting nodes in the set
divided by the number of node-pairs of the set.

Distributed Algorithms. We use the standard synchronous distributed model
CONGEST as defined in [21]. Briefly, the system is modeled by an undirected
graph, where nodes represent processors and edges represent communication
links. It is assumed that each node has a unique O(log n) bit identifier. An ex-
ecution starts synchronously and proceeds in rounds: in each round each node
sends messages (possibly different messages to different neighbors), receives mes-
sages, and does some local computation. By the end of the execution, each pro-
cessor writes its output in a local register. A key constraint in the CONGEST
model is that the messages contain O(log n) bits, which intuitively means that
each message can describe a constant number of nodes, edges, and polynomially-
bounded numbers. The time complexity of the algorithm is the maximal number
of rounds required to compute all output values. We note that we assume no
processor crashes, and therefore any synchronous algorithm can be executed in
an asynchronous environment using a synchronizer [3].

Problem Statement. In this paper we consider algorithms for finding ε-near
clique. The input to the algorithm is the underlying communication graph and ε.
Each node has an output register, which holds, when the algorithm terminates,
either a special value “⊥” or a label. All nodes with the same output label are
in the same ε-near clique, and ⊥ means that the node is not associated with any
near-clique. Note that there may be more than one near-cliques in the output.

Results. The main result of this paper is given below (see Theorem 5.1 for a
detailed version).

Theorem 2.1. Let ε, δ > 0. If there exists an ε3-near clique D ⊆ V with |D| ≥
δn, then an O(ε/δ)-near clique D′ with |D′| = |D| · (1 − O(ε)) can be found
by a distributed algorithm with probability Ω(1), in 2O(ε−4δ−1 log(ε−1δ−1)) rounds,
using messages of O(log n) bits.
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We stress that the message length is a function of n and is independent of ε, δ.
Let us list a few immediate corollaries to our result. First, for the case where

there are near-cliques of linear size (i.e., δ = Ω (1)).

Corollary 2.1. Let ε be a constant. If there exists an ε3-near clique D ⊆ V
with |D| = Θ(n), then an O(ε)-near clique D′ with |D′| = |D| · (1−O(ε)) can be
found by a distributed algorithm with probability Ω(1), in O(1) rounds and using
messages of O(log n) bits.

Second, for the case where there are strict cliques of (slightly) sublinear size.

Corollary 2.2. If there exists a clique D with |D| ≥ n/ logα log n for a suf-
ficiently small constant α > 0, then an o(1)-near clique D′ with |D′| ≥ (1 −
o(1)) · |D| can be found by a distributed algorithm with probability 1 − o(1), in
polylogarithmic number of rounds and using messages of O(log n) bits.

3 Simple Approaches

In this section we consider, as a warm-up, two simplistic approaches to solving
the near-clique problem, and explain why they fail.

The neighbors’ neighbors algorithm. The first idea is to let each node inform
all its neighbors about all its neighbors. This way, after one communication
round, each node knows the topology of the graph to distance 2, and can therefore
find the largest clique it is a member of. It is easy to kill cliques that intersect
larger cliques (using, say, the smallest ID of a clique as a tie-breaker), and so
we can output a set of locally largest cliques in a constant number of rounds.
Indeed, one can develop a correct algorithm based on these ideas, but there
are two show-stopper problems in this case. First, the size of a message sent in
this algorithm may be very large: a message may contain all node IDs. (This
is the LOCAL model [21].) And second, the algorithm requires each node to
locally solve the largest clique problem, which is notoriously hard to compute.
We thus rule out this algorithm on the basis of prohibitive computational and
communication complexity.

The shingles approach. Based on the idea of shingles [7], one may consider the
following algorithm. Each node picks a random ID (from a space large enough
so that the probability of collision is negligible), sends it out to all its neighbors,
and then selects the smallest ID it knows (among its neighbors and itself) to be
its label. All nodes with the same label are said to be in the same candidate set.
Each candidate set finds its density by letting all nodes send their degree in the
set to the set leader (the namesake of the set label), and only sets with sufficient
size and density survive. Conflicts due to overlapping sets are resolved in favor
of the larger set, and if equal in size, in favor of the smaller label. Call this the
“shingles algorithm.”

Clearly, if there is a clique of linear size in the graph, then with probability
Ω(1) the globally minimal ID will be selected by a node in the clique, in which
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case all nodes in the clique belong to the same candidate set. Unfortunately,
many other nodes not in the clique may also be included in that candidate set,
“diluting” it significantly. Formally, we claim the following.

Claim 3.1. For any constant δ ∈ (0, 1) there exists an infinite family of graphs
{Gn} such that Gn has n nodes and it contains a clique of size δn, but for all
ε < min

{
1−δ
1+δ , 1/9

}
and for sufficiently large n, the shingles algorithm cannot

find an ε-near clique with at least (1 − ε)δn nodes in Gn.

Fig. 1. Crosses represent full con-
nectivity

Proof: Fix δ ∈ (0, 1) and consider, for simplic-
ity, n such that δn, n are even. The graph Gn

is defined as follows. The nodes of Gn are par-
titioned into four sets denoted C1, C2, I1, I2,
where |C1| = |C2| = δn/2, |I1| = |I2| =
(1 − δ)n/2. The sets C1, C2 are complete sub-
graphs and I1, I2 are independent sets (see
Figure 1). The pairs of sets (I1, C1), (C1, C2),
(C2, I2) are connected with complete bipartite
graphs (i.e., every node in I1 is connected to
every node in C1 and similarly for the other
pairs). The resulting graph contains a clique
C = C1 ∪ C2 of size δn.

Let vmin denote the node with the globally
minimal ID in Gn, as drawn by the shingle
algorithm. We proceed by case analysis.
Case 1: vmin ∈ C1 ∪ C2. W.l.o.g assume that vmin ∈ C1. Then vmin’s candidate
set contains exactly C1 ∪ C2 ∪ I1, a set whose density is

(|C1|+|C2|
2

)
+ |I1| · |C1|

(|C1|+|C2|+|I1|
2

) =

(
δn
2

)
+ δ(1 − δ)n2/4
(
(1+δ)n/2

2

) =
2δ

1 + δ
,

and for ε < 1−δ
1+δ the density is less than 1 − ε. Clearly in this case all other

candidates are subsets of I1 ∪ I2 and thus have density 0.
Case 2: vmin ∈ I1 ∪ I2. W.l.o.g assume that vmin ∈ I1. Then vmin’s candidate set
is exactly C1∪{vmin} and thus has size δn/2+1 which is asymptotically smaller
than (1 − ε)δn for any constant ε < 1/2.

Finally, consider the other candidate sets in this case. Clearly all nodes in C2

belong to the same candidate set. Let A denote the set of vertices from I1 ∪ I2

belonging to C2’s candidate set. If |A| < δn/4 then the candidate set size is
|C2| + |A| < 3δn/4 which is less than (1 − ε)δn for all ε ≤ 1/4. If |A| ≥ δn/4
then the candidate set density is at most

(|C2|
2

)
+ |C2| · |A|

(|C2|+|A|
2

) ≤ 1 − 1 − 4/δn

3 · (3 − 4/δn)
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which is asymptotically less than 1−ε for any ε smaller than 1/9. The remaining
candidate sets are subsets of I1 ∪ I2 and thus have density 0. �	
Summary. The simple approaches demonstrate the basic difficulty of the dis-
tributed ε-near clique problem: looking to distance 1 is not sufficient, but looking
to distance 2 is too costly. The algorithm presented next finds a middle ground
using sampling.

4 Algorithm

Below we present the algorithm for finding dense subgraphs. Analysis is pre-
sented in Section 5.

The basic idea. Let V ′ ⊆ V be a set of nodes. Define K(V ′) to be the
set of all nodes which are adjacent to all other nodes in V ′, i.e., K(V ′) def=
{v | Γ (v) ⊇ V ′ \ {v}}. Further define T (V ′) to be the set of nodes in K(V ′) that
are adjacent to all nodes in K(V ′), i.e.,

T (V ′) def= {v ∈ K(V ′) | Γ (v) ⊇ K(V ′) \ {v}} .

Our starting point is the following key observation (essentially made in [11]). If
D is a clique, then D ⊆ K(D), and also, by definition, D ⊆ T (D). Furthermore,
T (D) is a clique since each v ∈ T (D) is adjacent to all vertices in K(D) and in
particular those in T (D).

The algorithm finds a set which is roughly T (D), where D is the existing
near-clique, by random sampling. Suppose that we are somehow given a random
sample X of D. Consider K(X): it is possible that K(X) �⊆ K(D), because K(X)
is the set of nodes that are adjacent to all nodes in X , but not necessarily to all
nodes in D. We therefore relax the definitions of K(X) and T (X) to approximate
ones Kε(X) and Tε(X). Finally, we overcome the difficulty of inability to sample
D directly (because D is unknown), by taking a random sample S of V , trying
all its subsets X ⊆ S (|S| is polynomial in 1/ε), and outputting the maximal
T (X) found.

Description and implementation details. We now present the algorithm in
detail. We shall use the following notation. Let X ⊆ V be a set of nodes, and
let 0 ≤ ε ≤ 1. We denote by Kε(X) the set of nodes which are neighbors of all
but an ε-fraction of the nodes in X , i.e.,

Kε(X) def= {v ∈ V | |Γ (v) ∩ X | ≥ (1 − ε)|X |} . (1)

Using the notion of Kε, we also define

Tε(X) def= Kε(K2ε2(X)) ∩ K2ε2(X) . (2)

The algorithm, presented in Figure 2, works in stages as follows. In the sam-
pling stage, a random sample of nodes S is selected; the exploration stage
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Algorithm DistNearClique

Input: Graph G = (V, E), ε > 0, p ∈ (0, 1).
Output: A label labelv ∈ V ∪ {⊥} at each node v, such that u and v are in the same
near clique iff labelv = labelu �= ⊥.

Sampling stage. Each node joins a set S with probability p (i.i.d). Let G[S] denote
the subgraph of G induced by S.
Exploration stage: Finding near-clique “candidates”.
(1) Construct a rooted spanning tree for each connected component of G[S]. By the

end of this step, each node v ∈ S has a variable parent(v) that points to one of its
neighbors (for the root, parent(v) = NULL).

(2) Each node in S finds the identity of all nodes in its connected component and
stores them in a variable Comp(v).

(3) Each node v ∈ S sends Comp(v) to all its neighbors Γ (v). A node u ∈ Γ (S)
may receive at this step messages from several nodes, that may or may not be in
different components of S. Each node u ∈ Γ (S) sets a parent pointer parentSi

(u)
for each connected component Si of G[S] that u is adjacent to (choosing arbitrarily
between its neighbors from the same Si).

(4) Let u ∈ Γ (S). Let S1, . . . , S� be the different connected components which are
adjacent to u. For each Si where 1 ≤ i ≤ �, the following procedure is executed.
(4a) For all subsets X ⊆ Si, u determines (using the information received in Step

3) if u ∈ K2ε2 (X).
(4b) u sends the results of the computations (2|Si| bits) to all its neighbors, in-

cluding parentSi
(u).

(4c) This information is sent up to the root of Si, summing the counts for each
X along the way, so that the root of Si knows the value of |K2ε2(X)| for each
X ⊆ Si.

(4d) The root sends the values of |K2ε2 (X)|, for all X ⊆ Si, down back to all
nodes in Γ (Si).

(4e) Each node v ∈ Γ (Si) notifies all its neighbors whether it is a member of
K2ε2(X), for all X ⊆ Si.

(4f) Each node u ∈ Γ (Si) finds whether u ∈ Kε(K2ε2(X)) for each X ⊆ Si, and
thus determines whether u ∈ Tε(X) for each X.

Decision stage: Conflict resolution.
(1) For each connected component Si, the size of Tε(X) is computed for each X ⊆ Si

similarly to Steps 4b–4c of the exploration stage. Let X(Si) be the subset that
maximizes |Tε(X)| over all X ⊆ Si.

(2) The root of each component Si sends |Tε(X(Si))| out to all nodes in Γ (Si).
(3) After receiving |Tε(X(Si))| for all relevant connected components, each node sends

an “acknowledge” message to the component reporting the largest |Tε(X(Si))|,
breaking ties in favor of the largest root ID, and an “abort” message to all other
components.

(4) If no node in Γ (Si) sent an “abort” message to Si, the root sends back the result
to all nodes in Tε(X(Si)) (this is done by sending X(Si)). The label of a node in
Tε(X(Si)) is the root ID of Si, and ⊥ otherwise.

Fig. 2. Algorithm DistNearClique.
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generates near-clique candidates by considering Tε(X) for all X ⊆ Si s.t. Si is
a connected component of the induced subgraph G[S]; and the decision stage
resolves conflicts between intersecting candidates. A detailed explanation of the
distributed implementation of Algorithm DistNearClique follows.

The sampling stage is trivial: each node locally flips a biased coin, so that
the node enters S with probability p (p is a parameter to be fixed later). This
step is completely local, and by its end, each node knows whether it is a member
of S or not.

The exploration stage is the heart of our algorithm. To facilitate it, we
first construct a spanning tree for each connected components of G[S] (Step 1
of the exploration stage). This construction is implemented by constructing a
BFS spanning tree of each connected component Si, rooted at the node with the
smallest ID in Si. This is a standard distributed procedure (see, e.g., [21]), but
here only the nodes in S take part, and all other nodes are non-existent for the
purpose of this protocol.

In Step 2 of the exploration stage, all nodes send their IDs to the root. Once
the root has all IDs, it sends them back down the tree.

In Step 3 of the exploration stage, each node in Si sends the identity of all
nodes in Si to all its neighbors. In addition, we effectively add to each spanning
tree all adjacent nodes. This is important so that we avoid over-counting later.
Note that a node of S is member of a single tree (the tree of its connected
component), but a node in V \S may have more than one parent pointer: it has
exactly one pointer for each component it is adjacent to.

Step 4 of the exploration stage determines for each node its membership in
Tε(X) for each subset X of each connected component. Consider a node u ∈
Γ (Si). After Step 3, u knows the IDs of all members of Si, so it can locally
enumerate all 2|Si| subsets X ⊆ Si, and furthermore, u can determine whether
u ∈ K2ε2(X) for each such subset X . Thus, each such node u locally computes
2|Si| bits: one for each possible subset X ⊆ Si. We assume that the coordinates
of the resulting vector are ordered in a well known way (say, lexicographically).
These vectors are sent by each node u ∈ Γ (Si) to all its neighbors, and in
particular to its parent in Si. This is done by u for each Si it is adjacent to.
Step 4c is implemented using standard convergecast on the tree spanning Si:
the vectors are summed coordinate-wise and sent up the tree, so that when
the information reaches the root of Si, it knows the size of K2ε2(X) for each
X ⊆ Si. Finally, using the size of K2ε2(X), and knowing which of its neighbors
is in K2ε2(X), each node u can determine whether u ∈ Kε(K2ε2(X)), and thus
decide whether it is in Tε(X) for each of the possible subsets X .

When the decision stage of Algorithm DistNearClique starts, each connected
component Si of G[S] has a “candidate” near-clique and we need to choose the
largest Tε(X) over all X ’s. The difficulty is that there may be more than one
set that qualifies as a near-clique, and these sets may overlap. Just outputting
the union of these sets may be wrong because in general, the union of ε-near
clique need not be an ε-near clique. The decision stage resolves this difficulty by
allowing each node to “vote” only for the largest subset it is a member of. This
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vote is implemented by killing all other subsets using ‘abort’ messages, which are
routed to the root of the spanning tree constructed in the exploration stage. This
ensures that from each collection of overlapping sets, the largest one survives.
Some small node sets may also have non-⊥ output: they can be disqualified if a
lower bound on the size of the dense subgraph is known.

4.1 Wrappers

To conclude the description of the algorithm, we explain how to obtain a deter-
ministic upper bound on the running time, and how to decrease error probability.

• Bounding the running time. As we argue in Section 5.1, the time complexity of
the algorithm can be bounded with some constant probability. If a deterministic
bound on the running time is desired, one can add a counter at each node, and
abort the algorithm if the running time exceeds the specified time limit.
• Boosting the success probability. The way to decrease the failure probability is
not simply running the algorithm multiple times. Rather, only the sampling and
exploration stages are run several times independently, and then apply a single
decision stage to select the output. More specifically, say we want to achieve
success probability of at least 1 − q for some given q > 0. Let λ

def= log1−r q
(r being the original success probability). To get failure probability at most q,
we run λ independent versions of the sampling and exploration stages (in any
interleaving order). These λ versions are run with a deterministic time bound as
explained above. When all versions terminate, a single decision stage is run, and
in Step 3 of the decision stage, nodes consider candidates from all λ versions,
and choose (by sending “acknowledge”) only the largest of these candidates. This
boosting wrapper increases the running time by a factor of λ: the sampling and
exploration stages are run λ times, and the decision stage is slower by a factor
of λ due to congestion on the links.

5 Analysis

In this section we sketch the analysis of Algorithm DistNearClique presented in
Section 4. Many proofs are omitted from this extended abstract. They can be
found in the full version [5].

5.1 Complexity

We first state the time complexity in terms of the sample size, and then bound
the sample size.

Lemma 5.1. Let S be the set of nodes sampled in the sampling stage of Al-
gorithm DistNearClique. Then the round complexity of the algorithm is at most
O
(
2|S|).

Lemma 5.2. Pr[|S| ≤ 2pn] ≥ 1 − e−
pn
3 .
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5.2 Correctness

In this section we prove that Algorithm DistNearClique finds a large near-clique.
We note that while the algorithm appears similar to the ρ-clique algorithm in
[11], the analysis of Algorithm DistNearClique is different. We need to account
for the fact that the input contains a near-clique (rather than a clique), and we
need to establish certain locality properties to show feasibility of a distributed
implementation.

For the remainder of this section, fix G = (V, E), ε > 0, and δ > 0. Let
|V | = n. Assume that D ⊆ V is an ε3-near clique satisfying |D| ≥ δn. Recall
that G[S] denotes the subgraph of G induced by S. In addition, assume that
ε < 1

3 (larger values are meaningless, see parameters of Theorem 5.1).
Let D′ denote the set of nodes output by Algorithm DistNearClique. Clearly,

D′ = Tε(X) for some X . We first show that every Tε(X) is n
t ε-near clique

where t = |Tε(X)|. In the decision stage, the algorithm selects the largest Tε(X).
In Lemma 5.6, we prove our main technical result, namely that with constant
probability, there exists a subset X∗ ⊆ Si with |Tε(X∗)| ≥ (1 − O(ε)) |D|.
All large Tε(X) are near-cliques. The following lemma proves that any Tε(X)
is a near-clique with a parameter relating to its size.

Lemma 5.3. Let X ⊆ V , and denote t = |Tε(X)|. Then Tε(X) is nε
t -near

clique.

Existence of a large Tε(X). We prove the existence of a connected set X∗ ⊆ S
such that Tε(X∗) is large.

First, let C denote the set of all nodes in the ε3-near clique D that are also
adjacent to all but ε2 fraction of D. Formally: C

def= Kε2(D) ∩ D where D is
ε3-near clique.

We use the following simple property.

Lemma 5.4. |C| ≥ (1 − ε) |D| − 1
ε2 .

Second, we structure the probability space defined by the sampling stage of
Algorithm DistNearClique as follows. In the algorithm, each node flips a coin
with probability p of getting “heads” (i.e., entering S). We view this as a two-
stage process, where each node flips two independent coins: coin1 with probability
p1

def= p/2 of getting “heads” and coin2 with probability p2
def= p−p1

1−p1
> p/2 of

getting “heads.” A node enters S iff at least one of its coins turned out to be
“heads.” The idea is that the net result of the process is that each node enters
S independently with probability p, but this refinement allows us to define two
subsets of S: let S(1) be the set of nodes for which coin1 is heads, and let S(2)

be the set of nodes for which coin2 is heads.
Combining the notions, we define X∗ def= S(1)∩C, i.e., X∗ is a random variable

representing the set of nodes from C for which coin1 is heads. X∗ is effectively
a sample of C where each node is selected with probability p/2. We have the
following.
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Lemma 5.5. X∗ resides within a single connected component of G[S] with prob-
ability at least 1 − e−Ω(δpn).

We now arrive at our main lemma.

Lemma 5.6. With probability at least 1− 1
ε2δ e−Ω(ε4δ·pn) over the selection of S,

there exists a connected component Si of G[S] and a set X∗ ⊆ Si s.t. |Tε(X∗)| ≥
(1 − 7ε) |D| − ε−2.

Proof: Let X∗ be defined as above. It remains to show that Tε(X∗) is large.
Intuitively, X∗ is a random sample of C, and since C contains almost all of D,
X∗ is also, in a sense, a sample of D. Thus K2ε2(X∗) should be very close to
K(·)(C), K(·)(D) for appropriately selected (·). This would complete the proof
since Tε(C) contains almost all of C which, in turn, contains almost all of D.
Formally, we say that X∗ is representative if the following hold.

1. |Kε2(D) \ K2ε2(X∗)| < ε |C|.
2. |K2ε2(X∗) \ K3ε2(C)| < ε2 |C|.

That is, if K2ε2(X∗) is almost fully contained in Kε2(D) and almost fully contains
K3ε2(C).

To complete the proof, we use two claims presented below. Claim 5.7 shows
that if X∗ is representative, then |C \ Tε(X∗)| ≤ 6ε · |C|. Claim 5.8 shows that
X∗ is representative with probability 1− 1

ε2δ e−Ω(ε4δpn). Given these claims, the
proof is completed as follows. By Lemma 5.5 and the claims, we have that with
probability 1 − 1

ε2δ e−Ω(ε4δpn), X∗ resides in a connected component of G[S].
Using also Lemma 5.4, the proof is complete, because |Tε(X∗)| ≥ (1 − 6ε) |C| ≥
(1 − 6ε)

(
(1 − ε) |D| − 1

ε2

)
≥ (1 − 7ε) |D| − 1

ε2 . �	

Claim 5.7. If X∗ is representative, then |C \ Tε(X∗)| ≤ 6ε |C|.

Claim 5.8. Pr [X∗ is representative] ≥ 1 − 1
ε2δ · e−Ω(ε4δpn).

5.3 Summary

We summarize with the following theorem, which is the detailed version of The-
orem 2.1 (in Theorem 2.1, we set p = 1

n · O
(

log( 1
εδ )

ε4δ

)
).

Theorem 5.1. Let G = (V, E), |V | = n. Let D ⊆ V be an ε3-near clique in G

of size |D| ≥ δn. Then with probability at least 1 − 1
ε2δ · e−Ω(ε4δ·pn), Algorithm

DistNearClique, running on G with parameters ε, p, finds, in O
(
22pn

)
communi-

cation rounds, a subgraph D′ such that

(1) D′ is
(

1
(1−7ε) ·

ε
δ

)
-near clique.3

(2) |D′| ≥ (1 − 7ε) |D| − ε−2.

3 For small enough ε, say ε < 1
14 , this is at most 2 ε

δ
.
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Proof: By Lemmas 5.1 and 5.2, the probability that the round complexity ex-
ceeds 2O(2pn) is bounded by e−

pn
3 . By Lemma 5.3, whenever assertion (2) holds,

assertion (1) holds as well. Assertion (2) holds by Lemma 5.6 with probability
at least 1 − 1

ε2δ e−Ω(ε4δ·pn). The theorem follows from the union bound. �	
It may also be interesting to analyze the computational complexity of the vertices
running the algorithm. A simple analysis shows that except for step 4f of the
exploration stage, the operation for each node can be implemented in poly(|S|)
computational steps (on log n bit numbers) per communication round. In step
4f, however, the nodes need to “inspect” all their neighbors in order to determine
whether they reside in Tε(X). It is possible to reduce the complexity in this case
by selecting a sample of the neighbors and estimating, rather than determining,
membership in Tε(X). Thus, the computational complexity can be reduced to
poly(|S|) computational steps per round (for our purposes, |S| ≤ O(log log n)).
The analysis of this modification is omitted.

6 Discussion

On the impossibility of finding a globally maximal ε-near clique. Our
algorithm (when successful) finds a disjoint collection of near-cliques such that
at least one of them is large. We note that it is impossible for a distributed
sub-diameter time algorithm to output just one (say, the largest) clique. To see
that, consider a graph containing an n/2-vertex clique A and an n/4-vertex
clique B, connected by an n/4-long path P . The largest near-clique in this case
is obviously A, and the vertices of B should output ⊥. However, if we delete
all edges in A, the largest near-clique becomes B, i.e., its output must be non-
⊥. Since no node in B can distinguish between the two scenarios in less than
|P | = n/4 communication rounds, impossibility follows.

Deriving distributed algorithms from property testers. Our approach
may raise hopes that other property testers, at least in the dense graph model,
can be adapted into the distributing setting. Goldreich and Trevisan [12] prove
that any property tester in the dense graph model has a canonical form where
the first stage is selecting a uniform sample of appropriate size from the graph
and the second is testing the graph induced by the sample for some (possibly
other) property. Thus, the following scheme may seem likely to be useful:

1. Select a uniform sample of the nodes.
2. Run a (possibly inefficient) distributed algorithm on the graph induced by

the selected nodes to test it for the required property.

In the distributed setting, however, it may be the case that even testing a prop-
erty for a very small graph is impossible to do quickly due to connectivity issues.
As the example above shows, there exist properties which are testable in the
centralized setting but do not admit a fast distributed algorithm. The general
method above, therefore, can only be applied in a “black-box” manner for some
testers.
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Specifically, the ρ-clique tester presented in [11] does not comply with the
above requirements. It can, however, be converted into a near-clique finder, in
the sense defined in this work, using similar ideas and with worse parameters.
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Abstract. We present efficient distributed δ-approximation algorithms
for fractional packing and maximum weighted b-matching in hy-
pergraphs, where δ is the maximum number of packing constraints in
which a variable appears (for maximum weighted b-matching δ is the
maximum edge degree — for graphs δ = 2). (a) For δ = 2 the algorithm
runs in O(log m) rounds in expectation and with high probability. (b)
For general δ, the algorithm runs in O(log2 m) rounds in expectation and
with high probability.

1 Background and Results

Given a weight vector w ∈ IRm
+ , a coefficient matrix A ∈ IRn×m

+ and a vector b ∈
IRn

+, the fractional packing problem is to compute a vector x ∈ IRm
+ to maximize∑m

j=1 wjxj and at the same time meet all the constraints
∑m

j=1 Aijxj ≤ bi (∀i =
1 . . . n). We use δ to denote the maximum number of packing constraints in
which a variable appears, that is, δ = maxj |{i| Aij �= 0}|. In the centralized
setting, fractional packing can be solved optimally in polynomial time using
linear programming. Alternatively, one can use a faster approximation algorithm
(i.e. [11]).

maximum weighted b-matching on a (hyper)graph is the variant where each
Aij ∈ {0, 1} and the solution x must take integer values (without loss of gen-
erality each vertex capacity is also integer). An instance is defined by a given
hypergraph H(V, E) and b ∈ ZZ|V |

+ ; a solution is given by a vector x ∈ ZZ|E|
+ maxi-

mizing
∑

e∈E wexe and meeting all the vertex capacity constraints
∑

e∈E(u) xe ≤
bu (∀u ∈ V ), where E(u) is the set of edges incident to vertex u. For this prob-
lem, n = |V |, m = |E| and δ is the maximum (hyper)edge degree (for graphs
δ = 2).

maximum weighted b-matching is a cornerstone optimization problem in
graph theory and Computer Science. As a special case it includes the ordinary
maximum weighted matching problem (bu = 1 for all u ∈ V ). In the centralized
setting, maximum weighted b-matching on graphs belongs to the “well-solved
class of integer linear programs” in the sense that it can be solved in polyno-
mial time [5,6,19]. Moreover, getting a 2-approximate1 solution for maximum

� Partially supported by NSF awards CNS-0626912, CCF-0729071.
1 Since it is a maximization problem it is also referred to as a 1/2-approximation.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 221–238, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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weighted matching is relatively easy, since the obvious greedy algorithm, which
selects the heaviest edge that is not conflicting with already selected edges, gives
a 2-approximation. For hypergraphs the problem is NP-hard, since it generalizes
set packing, one of Karp’s 21 NP-complete problems [10].

Our results. In this work we present efficient distributed δ-approximation algo-
rithms for the above problems. If the input is a maximum weighted b-matching

instance, the algorithms produce integral solutions. The method we use is of
particular interest in the distributed setting, where it is the first primal-dual
extension of a non-standard local-ratio technique [13,2].

– For fractional packing where each variable appears in at most two con-
straints (δ = 2), we show a distributed 2-approximation algorithm running
in O(log m) rounds in expectation and with high probability. This is the first
2-approximation algorithm requiring only O(log m) rounds. This improves
the approximation ratio over the previously best known algorithm [14]. (For
a summary of known results see Figure 1.)

– For fractional packing where each variable appears in at most δ constraints,
we give a distributed δ-approximation algorithm running in O(log2 m) rounds
in expectation and with high probability, where m is the number of variables.
For small δ, this improves over the best previously known constant factor
approximation [14], but the running time is slower by a logarithmic-factor.

– For maximum weighted b-matching on graphs we give a distributed
2-approximation algorithm running in O(log n) rounds in expectation and
with high probability. maximum weighted b-matching generalizes the well
studied maximum weighted matching problem. For a 2-approximation, our
algorithm is faster by at least a logarithmic factor than any previous algo-
rithm. Specifically, in O(log n) rounds, our algorithm gives the best known
approximation ratio. The best previously known algorithms compute a (1 +
ε)-approximation in O(ε−4 log2 n) rounds [17] or in O(ε−2 + ε−1 log(ε−1n)
log n) rounds [20]. For a 2-approximation both these algorithms need
O(log2 n) rounds.

– For maximum weighted b-matching on hypergraphs with maximum hyper-
edge degree δ we give a distributed δ-approximation algorithm running in
O(log2 m) rounds in expectation and with high probability, where m is the
number of hyperedges. Our result improves over the best previously known
O(δ)-approximation ratio by [14], but it is slower by a logarithmic factor.

Related work for Maximum Weighted Matching. There are several
works considering distributed maximum weighted matching on edge-weighted
graphs. Uehara and Chen present a constant time O(∆)-approximation algo-
rithm [22], where ∆ is the maximum vertex degree. Wattenhofer and Wat-
tenhofer improve this result, showing a randomized 5-approximation algorithm
taking O(log2 n) rounds [23]. Hoepman shows a deterministic 2-approximation
algorithm taking O(m) rounds [7]. Lotker, Patt-Shamir and Rosén give a ran-
domized (4+ε)-approximation algorithm running in O(ε−1 log ε−1 log n) rounds
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problem approx. ratio running time where when

max weighted matching on graphs

O(∆) O(1) [22] 2000
5 O(log2 n) [23] 2004
2 O(m) [7] 2004
O(1)(> 2) O(log n) [14] 2006
(4 + ε) O(ε−1 log ε−1 log n) [18] 2007
(2 + ε) O(log ε−1 log n) [17] 2008
(1 + ε) O(ε−4 log2 n) [17] 2008
(1 + ε) O(ε−2 + ε−1 log(ε−1n) log n) [20] 2008
2 O(log2 n) [17,20] (ε = 1) 2008
2 O(log n) here 2009

fractional packing with δ = 2
O(1)(> 2) O(log m) [14] 2006
2 O(log m) here 2009

max weighted matching on hypergraphs O(δ) > δ O(log m) [14] 2006
δ O(log2 m) here 2009

fractional packing with general δ
O(1) > 12 O(log m) [14] 2006
δ O(log2 m) here 2009

Fig. 1. Distributed algorithms for fractional packing and maximum weighted
matching

[18]. Lotker, Patt-Shamir and Pettie improve this result to a randomized (2+ε)-
approximation algorithm taking O(log ε−1 log n) rounds [17]. Their algorithm
uses as a black box any distributed constant-factor approximation algorithm for
maximum weighted matching which takes O(log n) rounds (i.e. [18]). Moreover,
they mention (without details) that there is a distributed (1+ ε)-approximation
algorithm taking O(ε−4 log2 n) rounds, based on the parallel algorithm by
Hougardy and Vinkemeier [8]. Nieberg presents a (1 + ε)-approximation algo-
rithm in O(ε−2 + ε−1 log(ε−1n) log n) rounds [20]. The latter two results give
randomized 2-approximation algorithms for maximum weighted matching in
O(log2 n) rounds.

Related work for Fractional Packing. Kuhn, Moscibroda and Wattenhofer
show efficient distributed approximation algorithms for fractional packing [14].
They first show a (1+ ε)-approximation algorithm for fractional packing with
logarithmic message size, but the running time depends on the input coeffi-
cients. For unbounded message size they show a constant-factor approximation
algorithm for fractional packing which takes O(log m) rounds. If an integer
solution is desired, then distributed randomized rounding ([15]) can be used.
This gives an O(δ)-approximation for maximum weighted b-matching on (hy-
per)graphs with high probability in O(log m) rounds, where δ is the maximum
hyperedge degree (for graphs δ = 2). (The hidden constant factor in the big-O
notation of the approximation ratio can be relative large compared to a small δ,
say δ = 2).

Lower bounds. The best lower bounds known for distributed packing and
matching are given by Kuhn, Moscibroda and Wattenhofer [14]. They prove that
to achieve a constant or even a poly-logarithmic approximation ratio for frac-
tional maximum matching, any algorithms requires at least Ω(

√
log n/ log log n)

rounds and Ω(log ∆/ log log ∆), where ∆ is the maximum vertex degree.
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Other related work. Forunweightedmaximummatchingon graphs, Israeli and
Itai give a randomized distributed 2-approximation algorithm running in O(log n)
rounds [9]. Lotker, Patt-Shamir and Pettie improve this result giving a random-
ized (1+ ε)-approximation algorithm taking O(ε−3 log n) rounds [17]. Czygrinow,
Hańćkowiak, and Szymańska show a deterministic 3/2-approximation algorithm
which takes O(log4 n) rounds [4]. A (1 + ε)-approximation for maximum weighted

matching on graphs is in NC [8].
The rest of the paper is organized as follows. In Section 2 we describe a non-

standard primal-dual technique to get a δ-approximation algorithm for frac-

tional packing and maximum weighted b-matching. In Section 3 we present
the distributed implementation for δ = 2. Then in Section 4 we show the
distributed δ-approximation algorithm for general δ. We conclude in Section 5.

2 Covering and Packing

Koufogiannakis and Young show sequential and distributed δ-approximation al-
gorithms for general covering problems [13,12], where δ is the maximum num-
ber of covering variables on which a covering constraint depends. As a special
case their algorithms compute δ-approximate solutions for fractional covering

problems of the form min{
∑n

i=1 biyi :
∑n

i=1 Aijyi ≥ wj (∀j = 1..m), y ∈ IRn
+}.

The linear programming dual of such a problem is the following fractional

packing problem: max{
∑m

j=1 wjxj :
∑m

j=1 Aijxj ≤ bi (∀i = 1 . . . n), x ∈ IRm
+ }.

For packing, δ is the maximum number of packing constraints in which a packing
variable appears, δ = maxj |{i| Aij �= 0}|.

Here we extend the distributed approximation algorithm for fractional cov-

ering by [12] to compute δ-approximate solutions for fractional packing using
a non-standard primal-dual approach.

Notation. Let Cj denote the j-th covering constraint (
∑n

i=1 Aijyi ≥ wj) and
Pi denote the i-th packing constraint (

∑m
j=1 Aijxj ≤ bi). Let Vars(S) denote the

set of (covering or packing) variable indexes that appear in (covering or packing)
constraint S. Let Cons(z) denote the set of (covering or packing) constraint in-
dexes in which (covering or packing) variable z appears. Let N(xs) denote the set
of packing variables that appear in the packing constraints in which xs appears,
that is, N(xs) = {xj |j ∈ Vars(Pi) for some i ∈ Cons(xs)} = Vars(Cons(xs)).

Fractional Covering. First we give a brief description of the δ-approximation
algorithm for fractional covering by [13,12]2. The algorithm performs steps to
cover non-yet-satisfied covering constraints. Let yt be the solution after the first t
steps have been performed. (Initially y0 = 0.) Given yt, let wt

j = wj−
∑n

i=1 Aijy
t
i

be the slack of Cj after the first t steps. (Initially w0 = w.) The algorithm is
given by Alg. 1.

2 The algorithm is equivalent to local-ratio when A ∈ {0, 1}n×m and y ∈ {0, 1}n [1,2].
See [13] for a more general algorithm and a discussion on the relation between this
algorithm and local ratio.
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There may be covering constraints for which the algorithm never performs a
step because they are covered by steps done for other constraints with which
they share variables. Also note that increasing yi for all i ∈ Vars(Cs), decreases
the slacks of all constraints which depend on yi.

Our general approach. [13]showsthattheabovealgorithmisaδ-approximation
for covering, but theydon’t showany result formatchingorother packingproblems.
Our general approach is to recast their analysis as a primal-dual analysis, showing
that the algorithm(Alg. 1) implicitly computes a solution to the dual packing prob-
lemof interesthere.Todo thisweuse the tail-recursiveapproach implicit inprevious
local-ratio analyses [3].

greedy δ-approximation algorithm for fractional covering [13,12] alg. 1
1. Initialize y0 ← 0, w0 ← w, t ← 0.
2. While there exist an unsatisfied covering constraint Cs do a step for Cs:
3. Set t = t + 1.
4. Let βs ← wt−1

s · mini∈Vars(Cs) bi/Ais. . . . OPT cost to satisfy Cs given the
current solution

5. For each i ∈ Vars(Cs):
6. Set yt

i = yt−1
i + βs/bi. . . . increase yi inversely proportional to its cost

7. For each j ∈ Cons(yi) update wt
j = wt−1

j − Aijβs/bi. . . . new slacks
8. Return y = yt.

After the t-th step of the algorithm, define the residual covering problem to
be min{

∑n
i=1 biyi :

∑n
i=1 Aijyi ≥ wt

j (∀j = 1..m), y ∈ IRn
+} and the resid-

ual packing problem to be its dual, max{
∑m

j=1 wt
jxj :

∑m
j=1 Aijxj ≤ bi (∀i =

1 . . . n), x ∈ IRm
+ }. The algorithm will compute δ-approximate primal and dual

pairs (xt, yT−t) for the residual problem for each t. As shown in what follows, the
algorithm increments the covering solution x in a forward way, and the packing
solution y in a “tail-recursive” manner.

Standard Primal-Dual approach does not work. For even simple in-
stances, generating a δ-approximate primal-dual pair for the above greedy algo-
rithm requires a non-standard approach. For example, consider min{y1+y2+y3 :
y1 + y2 ≥ 1, y1 + y3 ≥ 5, y1, y2 ≥ 0}. If the greedy algorithm (Alg. 1) does the
constraints in either order and chooses β maximally, it gives a solution of cost 10.
In the dual max{x12 + 5x13 : x12 + x13 ≤ 1, x12, x13 ≥ 0}, the only way to gen-
erate a solution of cost 5 is to set x13 = 1 and x12 = 0. A standard primal-dual
approach would raise the dual variable for each covering constraint when that
constraint is processed (essentially allowing a dual solution to be generated in
an online fashion, constraint by constraint). That can’t work here. For example,
if the constraint y1 + y2 ≥ 1 is covered first by setting y1 = y2 = 1, then the
dual variable x12 would be increased, thus preventing x13 from reaching 1.

Instead, assuming the step to cover y1 + y2 ≥ 1 is done first, the algorithm
should not increase any packing variable until a solution to the residual dual
problem is computed. After this step the residual primal problem is min{y′

1 +
y′
2 + y′

3 : y′
1 + y′

2 ≥ −1, y′
1 + y′

3 ≥ 4, y′
1, y

′
2 ≥ 0}, and the residual dual problem
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is max{−x′
12 + 4x′

13 : x′
12 + x′

13 ≤ 1, x′
12, x

′
13 ≥ 0}. Once a solution x′ to the

residual dual problem is computed (either recursively or as shown later in this
section) then the dual variable x′

12 for the current covering constraint should
be raised maximally, giving the dual solution x for the current problem. In
detail, the residual dual solution x′ is x′

12 = 0 and x′
13 = 1 and the cost of the

residual dual solution is 4. Then the variable x′
12 is raised maximally to give x12.

However, since x′
13 = 1, x′

12 cannot be increased, thus x = x′. Although neither
dual coordinate is increased at this step, the dual cost is increased from 4 to 5,
because the weight of x13 is increased from w′

13 = 4 to w13 = 5. (See Figure 2
in the appendix.) In what follows we present this formally.

Fractional Packing. We show that the greedy algorithm for covering creates
an ordering of the covering constraints for which it performs steps, which we can
then use to raise the corresponding packing variables. Let tj denote the time3 at
which a step to cover Cj was performed. Let tj = 0 if no step was performed for
Cj . We define the relation “Cj′ ≺ Cj” on two covering constraints Cj′ and Cj

which share a variable and for which the algorithm performed steps to indicate
that constraint Cj′ was done first by the algorithm.

Definition 1. Let Cj′ ≺ Cj if Vars(Cj′ ) ∩ Vars(Cj) �= ∅ and 0 < tj′ < tj.

Note that the relation is not defined for covering constraints for which a step
was never performed by the algorithm. Then let D be the partially ordered set
(poset) of all covering constraints for which the algorithm performed a step,
ordered according to “≺”. D is partially ordered because “≺” is not defined
for covering constraints that do not share a variable. In addition, since for each
covering constraint Cj we have a corresponding dual packing variable xj , abusing
notation we write xj′ ≺ xj if Cj′ ≺ Cj . Therefore, D is also a poset of packing
variables.

Definition 2. A reverse order of poset D is an order Cj1 , Cj2 , . . . , Cjk
(or equiv-

alently xj1 , xj2 , . . . , xjk
) such that for l > i either we have Cjl

≺ Cji or the re-
lation “≺” is not defined for constraints Cji and Cjl

(because they do not share
a variable).

Then the following figure (Alg. 2) shows the sequential δ-approximation algo-
rithm for fractional packing.

The algorithm simply considers the packing variables corresponding to cov-
ering constraints that Alg. 1 did steps for, and raises each variable maximally
without violating the packing constraints. The order in which the variables are
considered matters: the variables should be considered in the reverse of the order
in which steps were done for the corresponding constraints, or an order which
is “equivalent” (see Lemma 1). (This flexibility is necessary for the distributed
setting.)
3 In general by “time” we mean some reasonable way to distinguish in which order

steps were performed to satisfy covering constraints. For now, the time at which a
step was performed can be thought as the step number (line 3 at Alg. 1). It will be
slightly different in the distributed setting.
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greedy δ-approximation algorithm for fractional packing alg. 2
1. Run Alg. 1, recording the poset D.
2. Let T be the number of steps performed by Alg. 1.
3. Initialize xT ← 0, t ← T . . . . note that t will be decreasing from T to 0
4. Let Π be some reverse order of D. . . . any reverse order of D works, see

Lemma 1
5. For each variable xs ∈ D in the order given by Π do:
6. Set xt−1 = xt.
7. Raise xt−1

s until a packing constraint that depends on xt−1
s is tight, that is,

set xt−1
s = maxi∈Cons(xj)(bi −

∑m
j=1 Aijx

t−1
j ) .

8. Set t = t − 1.
9. Return x = x0.

The solution x is feasible at all times since a packing variable is increased only
until a packing constraint gets tight.

Lemma 1. Alg. 2 returns the same solution x using (at line 4) any reverse
order of D.

Proof. Let Π = xj1 , xj2 , . . . , xjk
and Π ′ = xj1 , xj2 , . . . , xjk

be two different
reverse orders of D. Let xΠ,1...m be the solution computed so far by Alg. 2 after
raising the first m packing variables of order Π . We prove that xΠ,1...k = xΠ′,1...k.

Assume that Π and Π ′ have the same order for their first q variables, that
is ji = ji for all i ≤ q. Then, xΠ,1...q = xΠ′,1...q. The first variable in which the
two orders disagree is the (q + 1)-th one, that is, jq+1 �= j′q+1. Let s = jq+1.
Then xs should appear in some position l in Π ′ such that q + 1 < l ≤ k. The
value of xs depends only on the values of variables in N(xs) at the time when
xs is set. We prove that for each xj ∈ N(xs) we have xΠ,1...q

j = xΠ′,1...l
j , thus

xΠ,1...q
s = xΠ′,1...l

s . Moreover since the algorithm considers each packing variable
only once this implies xΠ,1...k

s = xΠ,1...q
s = xΠ′,1...l

s = xΠ′,1...k
s .

(a) For each xj ∈ N(xs) with xs ≺ xj , the variable xj should have already
been set in the first q steps, otherwise Π would not be a valid reverse order of
D. Moreover each packing variable can be increased only once, so once it is set
it maintains the same value till the end. Thus, for each xj such that xs ≺ xe,
we have xΠ,1...q

j = xΠ′,1...q
j = xΠ′,1...l

j .
(b) For eachxj ∈ N(xs)with xj ≺ xs, j cannot be in the interval [j′q+1, . . . , j

′
l−1)

of Π ′, otherwise Π ′ would not be a valid reverse order ofD. Thus, for each xj such
that xj ≺ xs, we have xΠ,1...q

j = xΠ′,1...q
j = xΠ′,1...l

j = 0.

So in any case, for each xj ∈ N(xs), we have xΠ,1...q
j = xΠ′,1...l

j and thus
xΠ,1...q

s = xΠ′,1...l
s .

The lemma follows by induction on the number of edges. ��

The following lemma and weak duality prove that the solution x returned by
Alg. 2 is δ-approximate.

Lemma 2. For the solutions y and x returned by Alg. 1 and Alg. 2 respectively,∑m
j=1 wjxj ≥ 1/δ

∑n
i=1 biyi.
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Proof. Lemma 1 shows that any reverse order of D produces the same solution,
so w.l.o.g. here we assume that the reverse order Π used by Alg. 2 is the reverse
of the order in which steps to satisfy covering constraints were performed by
Alg. 1.

When Alg. 1 does a step to satisfy the covering constraint Cs (by increasing yi

by βs/bi for all i ∈ Vars(Cs)), the cost of the covering solution
∑

i biyi increases
by at most δβs, since Cs depends on at most δ variables (|Vars(Cs)| ≤ δ). Thus
the final cost of the cover y is at most

∑
s∈D δβs.

Define Ψ t =
∑

j wt
jx

t
j to be the cost of the packing xt. Recall that xT = 0 so

ΨT = 0, and that the final packing solution is given by vector x0, so the the cost
of the final packing solution is Ψ0. To prove the theorem we have to show that
Ψ0 ≥

∑
s∈D βs. We have that Ψ0 = Ψ0 − ΨT =

∑T
t=1 Ψ t−1 − Ψ t so it is enough

to show that Ψ t−1 − Ψ t ≥ βs where Cs is the covering constraint done at the
t-th step of Alg. 1.

Then, Ψ t−1 − Ψ t is

∑

j

wt−1
j xt−1

j − wt
jx

t
j (1)

= wt−1
s xt−1

s +
∑

j �=s

(wt−1
j − wt

j)x
t−1
j (2)

= wt−1
s xt−1

s +
∑

i∈Cons(xs)

∑

j∈{Vars(Pj)−s}
Aij

βs

bi
xt−1

j (3)

= βsx
t−1
s max

i∈Cons(xs)

Ais

bi
+

∑

i∈Cons(xs)

∑

j∈{Vars(Pj)−s}
Aij

βs

bi
xt−1

j (4)

≥ βs
1
bi

m∑

j=1

Aijx
t−1
j (for i s.t. constraint Pi becomes tight after raising xs)

(5)

= βs (6)

In equation (2) we use the fact that xt
s = 0 and xt−1

j = xt
j for all j �= s. For

equation (3), we use the fact that the residual weights of packing variables in
N(xs) are increased. If xj > 0 for j �= s, then xj was increased before xs (xs ≺
xj) so at the current step wt−1

j > wt
j > 0, and wt−1

j − wt
j =

∑
i∈Cons(xs)

Aij
βs

bi
.

For equation (4), by the definition of βs we have wt−1
s = βs maxi∈Cons(xs)

Ais

bi
.

In inequality (5) we keep only the terms that appear in the constraint Pi that
gets tight by raising xs. The last equality holds because Pi is tight, that is,∑m

j=1 Aijxj = bi. ��

The following lemma shows that Alg. 2 returns integral solutions if the coef-
ficients Aij are 0/1 and the bi’s are integers, thus giving a δ-approximation
algorithm for maximum weighted b-matching.
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Lemma 3. If A ∈ {0, 1}n×m and b ∈ ZZn
+ then the returned packing solution x

is integral, that is, x ∈ ZZm
+ .

Proof. Since all non-zero coefficients are 1, the packing constraints are of the
form

∑
j∈Vars(Pi)

xj ≤ bi (∀i). We prove by induction that x ∈ ZZm
+ . The base

case is trivial since the algorithm starts with a zero solution. Assume that at
some point we have xt ∈ ZZm

+ . Let xs ∈ D, be the next packing variable to be
raised by the algorithm. We show that xt−1

s ∈ ZZ+ and thus the resulting solution
remains integral. The algorithm sets xt−1

s = mini∈Cons(xs){bi −
∑m

j=1 xt−1
j } =

mini∈Cons(xs){bi −
∑m

j=1 xt
j} ≥ 0. By the induction hypothesis, each xt

j ∈ ZZ+,
and since b ∈ ZZn

+, then xt−1
s is also a non-negative integer. ��

3 Distributed Fractional Packing with δ = 2

3.1 Distributed model for δ = 2

We assume the network in which the distributed computation takes place has
vertices for covering variables (packing constraints) and edges for covering con-
straints (packing variables). So, the network has a node ui for every covering
variable yi. An edge ej connects vertices ui and ui′ if yi and yi′ belong to the
same covering constraint Cj , that is, there exists a constraint Aijyi+Ai′jyi′ ≥ wj

(δ = 2 so there can be at most 2 variables in each covering constraint). We as-
sume the standard synchronous communication model, where in each round,
nodes can exchange messages with neighbors, and perform some local computa-
tion [21]. We also assume no restriction on message size and local computation.
(Note that a synchronous model algorithm can be transformed into an asyn-
chronous algorithm with the same time complexity [21].)

3.2 Distributed Algorithm for δ = 2

Koufogiannakis and Young show a distributed implementation of Alg. 1, for
(fractional) covering with δ = 2 that runs in O(log n) rounds in expectation
and with high probability [12]. In this section we augment their algorithm to
distributively compute 2-approximate solutions to the dual fractional packing
problem without increasing the time complexity. The high level idea is similar
to that in the previous section: run the distributed algorithm for covering to
get a partial order of the covering constraints for which steps were performed,
then consider the corresponding dual packing variables in “some reverse” order
raising them maximally. The challenge here is that the distributed algorithm for
covering can perform steps for many covering constraints in parallel. Moreover,
each covering constraint, has just a local view of the ordering, that is, it only
knows its relative order among the covering constraints with which it shares
variables.

Distributed Fractional Covering with δ = 2. Here is a short description
of the distributed 2-approximation algorithm for fractional covering (Alg. 5 in
appendix from [12]). In each round, the algorithm does steps on a large subset
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of remaining edges (covering constraints), as follows. Each vertex (covering vari-
able) randomly chooses to be a leaf or a root. A not-yet-satisfied edge ej = (ui, ur)
between a leaf ui and a root ur with bi/Aij ≤ br/Arj is active for the round.
Each leaf ui chooses a random star edge (ui, ur) from its active edges. These star
edges form stars rooted at roots. Each root ur then performs steps (of Alg. 1)
on its star edges (in any order) until they are all satisfied.

Note that in a round the algorithm performs steps in parallel for edges not
belonging to the same star. For edges belonging to the same star, their root
performs steps for some of them one by one. There are edges for which the algo-
rithm never performs steps because they are covered by steps done for adjacent
edges.

In the distributed setting we define the time at which a step to satisfy Cj

is done as a pair (tRj , tSj ), where tRj denotes the round in which the step was
performed and tSj denotes that within the star this step is the tSj -th one. Let
tRj = 0 if no step was performed for Cj . Overloading Definition 1, we redefine
“≺” as follows.

Definition 3. Let Cj′ ≺ Cj (or equivalently xj′ ≺ xj) if Vars(Cj′ )∩Vars(Cj) �=
∅ (j′ and j are adjacent edges in the distributed network) and ([0 < tRj′ < tRj ]
or [tRj′ = tRj and tSj′ < tSj ]).

The pair (tRj , tSj ) is enough to distinguish which of two adjacent edges had a step
to satisfy its covering constraint performed first. Adjacent edges can have their
covering constraints done in the same round only if they belong to the same star
(they have a common root), thus they differ in tSj . Otherwise they are done in
different rounds, so they differ in tRj . Thus the pair (tRj , tSj ) and relation “≺”
define a partially ordered set D of all edges done by the distributed algorithm
for covering.

Lemma 4. ([12]) Alg. 5 (for fractional covering with δ = 2) finishes in
T = O(log m) rounds in expectation and with high probability. Simultaneously,
Alg. 5 sets (tRj , tSj ) for each edge ej for which it performs a step (0 < tRj ≤ T ),
thus defining a poset of edges D, ordered by “≺”.

Distributed Fractional Packing with δ = 2. Alg. 3 implements Alg. 2 in
a distributed fashion. First, it runs Alg. 1 using the distributed implementation
by [12] (Alg. 5) and recording D. Meanwhile, as it discovers the partial order
D, it begins the second phase of Alg. 2, raising each packing variable as soon as
it can. Specifically it waits to set a given xj ∈ D until after it knows that (a)
xj is in D, (b) for each xj′ ∈ N(xj) whether xj ≺ xj′ , and (c) each such xj′

is set. In other words, (a) a step has been done for the covering constraint Cj ,
(b) each adjacent covering constraint Cj′ is satisfied and (c) for each adjacent
Cj′ for which a step was done after Cj , the variable xj′ has been set. Subject
to these constraints it sets xj as soon as possible. Note that some nodes will be
executing the second phase of the algorithm (packing) while some other nodes
are still executing the first phase (covering). This is necessary because a given
node cannot know when distant nodes are done with the first phase.
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Distributed 2-approximation Fractional Packing with δ = 2 alg. 3
input: Graph G = (V, E) representing a fractional packing problem instance with

δ = 2 .
output: Feasible x, 2-approximately minimizing w · x.

1. Each edge ej ∈ E initializes xj ← 0.
2. Each edge ej ∈ E initializes donej ← false. . . . this indicates if xj has been set to

its final value

3. Until each edge ej has set its variable xj (donej == true), perform a round:
4. Perform a round of Alg. 5. . . . covering with δ = 2 augmented to compute

(tR
j ,tS

j )
5. For each node ur that was a root (in Alg. 5) at any previous round, consider

locally at ur all stars St
r that were rooted by ur at any previous round t.

For each star St
r perform IncreaseStar(St

r).

IncreaseStar(star St
r):

6. For each edge ej ∈ St
r in decreasing order of tS

j :
7. If IncreasePackingVar(ej) == UNDONE then BREAK (stop the for loop).

IncreasePackingVar(edge ej = (ui, ur)):
8. If ej or any of its adjacent edges has a non-yet-satisfied covering constraint

return UNDONE.

9. If tR
j == 0 then:

10. Set xj = 0 and donej = true.
11. Return DONE.

12. If donej′ == false for any edge ej′ such that xj ≺ xj′ then return UNDONE.
13. Set

xj = min
{
(bi −

∑
j′ Aij′xj′)/Aij , (br −

∑
j′ Arj′xj′)/Arj

}
and donej = true.

14. Return DONE.

All xj ’s will be determined in 2T rounds by the following argument. After
round T , D is determined. Then by a straightforward induction on t, within
T + t rounds, every constraint Cj for which a step was done at round T − t of
the first phase, will have its variable xj set.

Theorem 1. For fractional packing where each variable appears in at most
two constraints there is a distributed 2-approximation algorithm running in
O(log m) rounds in expectation and with high probability, where m is the number
of packing variables.

Proof. By Lemma 4, Alg. 5 computes a covering solution y in T = O(log m)
rounds in expectation and with high probability. At the same time, the algorithm
sets (tRj , tSj ) for each edge ej for which it performs a step to cover Cj , and thus
defining a poset D of edges. In the distributed setting the algorithm does not
define a linear order because there can be edges with the same (tRj , tSj ), that is,
edges that are covered by steps done in parallel. However, since these edges must
be non-adjacent, we can still think that the algorithm gives a linear order (as
in the sequential setting), where ties between edges with the same (tRj , tSj ) are
broken arbitrarily (without changing D). Similarly, we can analyze Alg. 3 as if
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it considers the packing variables in a reverse order of D. Then, by Lemma 1
and Lemma 2 the returned solution x is 2-approximate.

We prove that the x can be computed in at most T extra rounds after the
initial T rounds to compute y. First note that within a star, even though its
edges are ordered according to tSj they can all set their packing variables in a
single round if none of them waits for some adjacent edge packing variable that
belongs to a different star. So in the rest of the proof we only consider the case
were edges are waiting for adjacent edges that belong to different stars. Note
that 1 ≤ tRj ≤ T for each xj ∈ D. Then, at round T , each xj with tRj = T can be
set in this round because it does not have to wait for any other packing variable
to be set. At the next round, round T + 1, each xj with tRj = T − 1 can be set;
they are dependent only on variables xj′ with tRj′ = T which have been already
set. In general, packing variables with tRj = t can be set once all adjacent xj′

with tRj ≥ t + 1 have been set. Thus by induction on t = 0, 1, . . . a constraint
Cj for which a step was done at round T − t may have to wait until at most
round T + t until its packing variable xj is set. Therefore, the total number of
rounds until solution x is computed is 2T = O(log m) in expectation and with
high probability. ��

The following theorem is a direct result of Lemma 3 and Thm 1 and the fact
that for this problem m = O(n2).

Theorem 2. For maximum weighted b-matching on graphs there is a distributed
2-approximation algorithm running in O(log n) rounds in expectation andwith high
probability.

4 Distributed Fractional Packing with General δ

4.1 Distributed Model for General δ

Here we assume that the distributed network has a node vj for each covering
constraint Cj (packing variable xj), with edges from vj to each node vj′ if Cj

and Cj′ share a covering variable yi
4. The total number of nodes in the network

is m. Note that in this model the role of nodes and edges is reversed as compared
to the model used in Section 3. We assume the standard synchronous model with
unbounded message size.

4.2 Distributed Algorithm

Koufogiannakis and Young [12] show a distributed δ-approximation algorithm for
(fractional) covering problems with at most δ variables per covering constraint
that runs in O(log2 m) rounds in expectation and with high probability. Similar
to the δ = 2 case, here we use this algorithm to get a poset of packing variables
which we then consider in a reverse order, raising them maximally.
4 The computation can easily be simulated on a network with nodes for covering

variables or nodes for covering variables and covering constraints.
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Distributed covering with general δ. Here is a brief description of the dis-
tributed δ-approximation algorithm for (fractional) covering from [12]. To start
each phase, the algorithm finds large independent subsets of covering constraints
by running one phase of Linial and Saks’ (LS) decomposition algorithm, with
any k such that k ∈ Θ(ln m)5 [16]. The LS algorithm, for a given k, takes O(k)
rounds and produces a random subset R ⊆ {vj|j = 1 . . .m} of the covering
constraints, and for each covering constraint vj ∈ R a “leader” �(vj) ∈ R, with
the following properties:

– Each vj ∈ R is within distance k of its leader: (∀vj ∈ R) d(vj , v�(j)) ≤ k.
– Components do not share covering variables (edges do not cross compo-

nents): (∀vj , vj′ ∈ R) v�(j) �= v�(j′) ⇒ Vars(vj) ∩ Vars(vj′ ) = ∅.
– Each covering constraint node has a chance to be inR: (∀j = 1 . . .m) Pr[vj ∈
R] ≥ 1/cm1/k for some c > 1.

Next, each node vj ∈ R sends its information (the constraint and its variables’
values) to its leader v�(j). This takes O(k) rounds because v�(j) is at distance O(k)
from vj . Each leader then constructs (locally) the subproblem induced by the
covering constraints that contacted it and the variables of those constraints, with
their current values. Using this local copy, the leader does steps until all covering
constraints that contacted it are satisfied. (Distinct leaders’ subproblems don’t
share covering variables, so they can proceed simultaneously.) To end the phase,
each leader u� returns the updated variable information to the constraints that
contacted v�. Each covering constraint node in R is satisfied in the phase.

To extend the algorithm to compute a solution to the dual packing problem
the idea is similar to the δ = 2 case, substituting the role of stars by components
and the role of roots by leaders. With each step done to satisfy the covering
constraints Cj , the algorithm records (tRj , tSj ), where tRj is the round and tSj
is the within-the-component iteration in which the step was performed. This
defines a poset D of covering constraints for which it performs steps.

Lemma 5. ([12]) The distributed δ-approximation algorithm for fractional

covering finishes in T = O(log2 m) rounds in expectation and with high proba-
bility, where m is the number of covering constraints (packing variables). Simul-
taneously, it sets (tRj , tSj ) for each covering constraint Cj for which it performs
a step (0 < tRj ≤ T ) , thus defining a poset of covering constraints (packing
variables) D, ordered by “≺”.

Distributed packing with general δ. (sketch) The algorithm (Alg. 4) is very
similar to the case δ = 2. First it runs the distributed algorithm for covering,
recording (tRj , tSj ) for each covering constraint Cj for which it performs a step.
Meanwhile, as it discovers the partial order D, it begins computing the packing
solution, raising each packing variable as soon as it can. Specifically it waits
to set a given xj ∈ D until after it knows that (a) xj is in D, (b) for each

5 If nodes don’t know a k ∈ Θ(ln m), a doubling technique can be used as a work-
around [12].
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Distributed δ-approximation Fractional Packing with general δ alg. 4
input: Graph G = (V, E) representing a fractional packing problem instance.
output: Feasible x, δ-approximately minimizing w · x.

1. Initialize x ← 0.
2. For each j = 1 . . . m initialize donej ← false. . . . this indicates if xj has been set

to its final value

3. Until each xj has been set (donej == true) do:
4. Perform a phase of the δ-approximation algorithm for covering by [12],

recording (tR
j , tS

j ).
5. For each node vK that was a leader at any previous phase, consider locally

at vK all components that chose vK as a leader at any previous phase. For
each such component Kr perform IncreaseComponent(Kr).

IncreaseComponent(component Kr):
6. For each j ∈ Kr in decreasing order of tS

j :
7. If IncreasePackingVar(j) == UNDONE then BREAK (stop the for loop).

IncreasePackingVar(j):
8. If Cj or any Cj′ that shares covering variables with Cj is not yet satisfied

return UNDONE.
9. If tR

j == 0 then:
10. Set xj = 0 and donej = true.
11. Return DONE.

12. If donej′ == false for any xj′ such that xj ≺ xj′ then return UNDONE.
13. Set xj = mini∈Cons(xj)

(
(bi −

∑
j′ Aij′xj′)/Aij)

)
and donej = true.

14. Return DONE.

xj′ ∈ N(xj) whether xj ≺ xj′ , and (c) each such xj′ is set. In other words, (a)
a step has been done for the covering constraint Cj , (b) each adjacent covering
constraint Cj′ is satisfied and (c) for each adjacent Cj′ for which a step was done
after Cj , the variable xj′ has been set. Subject to these constraints it sets xj as
soon as possible.

To do so, the algorithm considers all components that have been done by
leaders in previous rounds. For each component, the leader considers the com-
ponent’s packing variables xj in order of decreasing tSj . When considering xj

it checks if each xj′ with xj ≺ xj′ is set, and if yes, then xj can be set and
the algorithm continues with the next component’s packing variable (in order of
decreasing tSj ). Otherwise the algorithm cannot yet decide about the remaining
component’s packing variables.

Theorem 3. For fractional packing where each variable appears in at most δ
constraints there is a distributed δ-approximation algorithm running in O(log2 m)
rounds in expectation and with high probability, where m is the number of packing
variables.

Theproof is omittedbecause it is similar to theproof ofThm1; the δ-approximation
ratio is given by Lemma 1 and Lemma 2, and the running time uses T = O(log2 m)
by Lemma 5.
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The following theorem is a direct result of Lemma 3 and Thm 3.

Theorem 4. For maximum weighted b-matching on hypergraphs, there is a dis-
tributed δ-approximation algorithm running in O(log2 m) rounds in expectation
and with high probability, where δ is the maximum hyperedge degree and m is
the number of hyperedges.

5 Conclusions

We show a new non-standard primal-dual method, which extends the (local-ratio
related) algorithms for fractional covering by [13,12] to compute approximate
solutions to the dual fractional packing problem without increasing the time
complexity (even in the distributed setting).

Using this new technique, we show a distributed 2-approximation algorithm
for fractional packing where each packing variable appears in at most 2 con-
straints and a distributed 2-approximation algorithm for maximum weighted

b-matching on graphs, both running in a logarithmic number of rounds. We also
present a distributed δ-approximation algorithm for fractional packing where
each variable appears in at most δ constraints and a distributed δ-approximation
algorithm for maximum weighted b-matching on hypergraphs, both running in
O(log2 m) rounds, where m is the number of packing variables and hyperedges
respectively.
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Appendix

Alg. 5 shows the distributed 2-approximation algorithm for fractional cover-

ing with δ = 2.
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Fig. 2. Example of the execution of our greedy primal-dual algorithm (assuming con-
straint y1 + y2 ≥ 1 is chosen first)
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Distributed 2-approximation Fractional Covering with δ = 2 ([12]) alg. 5
input: Graph G = (V, E) representing a fractional covering problem instance with

δ = 2 .
output: Feasible y, 2-approximately minimizing b · y.

1. Each node ui ∈ V initializes yi ← 0.
2. Each edge ej ∈ E initializes tR

j ← 0 and tS
j ← 0. . . . auxiliary variables for

Alg. 3

3. Until there is a vertex with unsatisfied incident edges, perform a round:
4. Each node ui, randomly and independently chooses to be a leaf or a root

for the round, each with probability 1/2.

5. Each leaf-to-root edge ej = (ui, ur) with unmet covering constraint is active
at the start of the round if ui is a leaf, ur is a root and bi/Aij ≤ br/Arj.
Each leaf ui chooses, among its active edges, a random one for the round.
Communicate that choice to the neighbors. The chosen edges form inde-
pendent stars — rooted trees of depth 1 whose leaves are leaf nodes and
whose roots are root nodes.

6. For each root node ur, do:
(a) Let St

r contain the star edges sharing variable yr (at this round t).
(b) Until there exist an unsatisfied edge (covering constraint)

ej = (ui, ur) ∈ St
r, perform Step(y, ej).

Step(y, ej = (ui, ur)):
7. Let βj ← (wj − Aijyi − Arjyr) · min{bi/Aij , br/Arj}.
8. Set yi = yi + βj/bi and yr = yr + βj/br.
9. Set tR

j to the number of rounds performed so far.
10. Set tS

j to the number of steps performed by root ur so far at this round.
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Abstract. We work on an extension of the Population Protocol model
of Angluin et al. [1] that allows edges of the communication graph, G, to
have states that belong to a constant size set. In this extension, the so
called Mediated Population Protocol model (MPP) [2,3], both uniformity
and anonymity are preserved. We here study a simplified version of MPP,
the Graph Decision Mediated Population Protocol model (GDM), in
order to capture MPP’s ability to decide graph languages. We also prove
some first impossibility results both for weakly connected and possibly
disconnected communication graphs.

1 The GDM Model

A graph decision mediated population protocol (GDM) A consists of a binary
output alphabet Y = {0, 1}, a finite set of agent states Q, an agent output function
O : Q → Y mapping agent states to outputs, a finite set of edge states S, an
output instruction r, a transition function δ : Q×Q×S → Q×Q×S, an initial
agent state q0, and an initial edge state s0.

Let U denote a graph universe, that is, any set of communication graphs.
A graph language L is a subset of U containing communication graphs sharing
some common property. For example, a common graph universe is the set of all
possible directed and weakly connected communication graphs, denoted by G,
and L = {G ∈ G | |E(G)| is even} is a possible graph language w.r.t. G.

A GDM protocol may run on any graph from a specified graph universe. The
graph on which the protocol runs is considered as the input graph of the protocol.
Note that GDM protocols have no sensed input. Instead, we require each agent
in the population to be initially in the initial agent state q0 and each edge of the
communication graph to be initially in the initial edge state s0. So, the initial
network configuration, C0, of any GDM is defined as C0(u) = q0, for all u ∈ V ,
and C0(e) = s0, for all e ∈ E, and any input graph G = (V, E).

We say that a GDM A accepts an input graph G if in any computation of A
on G after finitely many interactions all agents output the value 1 and continue
� This work has been partially supported by the ICT Programme of the European

Union under contract number ICT-2008-215270 (FRONTS).
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doing so in all subsequent (infinite) computational steps. By replacing 1 with
0 we get the definition of the reject case. A GDM A decides a graph language
L ⊆ U if it accepts any G ∈ L and rejects any G /∈ L, and a graph language is
said to be decidable if some GDM decides it.

Theorem 1. The class of decidable graph languages is closed under comple-
ment, union and intersection operations.

Node and edge parity, bounded out-degree by a constant, existence of a node with
more incoming than outgoing neighbors, and existence of some directed path of
length at least k = O(1) are some examples of decidable graph languages, in the
case where the graph universe is G. Also, given that the graph universe is G one
can prove the following.

Theorem 2. There exists no GDM with stabilizing states to decide the graph
language 2C = {G ∈ G | G has at least two nodes u, υ s.t. both (u, υ), (υ, u) ∈
E(G) (in other words, G has at least one 2-cycle)}.
In the case where the graph universe is H, containing all possible directed com-
munication graphs (i.e. also the disconnected ones), we obtain the following
strong impossibility results.

Lemma 1. For any nontrivial graph language L (L is nontrivial if L �= ∅ and
L �= H), there exists some disconnected graph G in L where at least one compo-
nent of G does not belong to L or there exists some disconnected graph G′ in L
where at least one component of G′ does not belong to L (or both).

Theorem 3. Any nontrivial graph language L ⊂ H is undecidable by GDM.

Corollary 1. The graph language C = {G ∈ H | G is (weakly) connected} is
undecidable.

Proof. C is a nontrivial graph language and Theorem 3 applies. �	
A full version of this paper is available at http://fronts.cti.gr/aigaion/
?TR=80
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Social networks are growing exponentially, and one of the most celebrated ex-
amples, Facebook, currently boasts more than 250 million users. A particularly
important task in such networks is polling, such as the recent one about the
terms of service of Facebook [1]. A defining characteristic of such networks is the
one to one mapping between social network identities and real ones (as opposed
to virtual world platforms such as SecondLife). Participants in social networks
are respectable, that is they do care about their reputation: information related
to a user is considered to reflect intimately on the associated real person. We
claim that leveraging the fact that users of social networks are concerned over
their reputation, we can achieve polling in a distributed manner in the presence
of malicious users without the use of heavyweight cryptography.

The polling problem. The goal of polling is to extract some information re-
flecting a tendency on a given subject in a group of users out of the participants’
opinions. In a typical polling application, each participant starts with a value in
a predefined set of possible votes reflecting its opinion and the output of the poll
is the number of users that voted for these values. With distributed polling, the
output of the poll is computed in a collaborative way by the users themselves.

The main requirement that polling shares with voting is privacy, meaning that
a user’s vote must be disclosed neither by the participants nor by organizers dur-
ing the process of counting. To a lesser extent, a polling algorithm must provide
accuracy properties such as deterministic bounds on the error of its outcome. In-
deed, although privacy is of the utmost importance in polling when dealing with
sensitive personal topics such as politics or health, accuracy requirements can be
relaxed as the goal of a poll is mainly to extract a tendency. However, security stan-
dards such as receipt freeness and universal verifiability are not relevant in polling.
Finally, for practical reasons, polling must scale with the number of participants.

In addition to scalability, privacy makes decentralized solutions attractive as
participants might generally not want their vote (and maybe even the result) to
be known by a central entity, be it trusted or not [2], as the subject, votes and
possibly the result of the poll might be very sensitive. While centralized polling
is relatively easy to achieve, the design of a decentralized polling algorithm is
very challenging, especially when the lack of any central entity prevents the use
of asymmetric cryptography, since malicious users might try to disclose other
users’ votes and bias the outcome of the poll.
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Social networks and respectable participants. We advocate the use of an
approach which, instead of masking (e.g., BFT) or preventing (e.g., cryptog-
raphy) malicious behavior, leverages the users’ concern over their privacy to
dissuade malicious behavior. This is achieved by executing, in addition to the
polling algorithm, a distributed verification protocol which tags the profiles of
the participants. For instance, if the testimonies of Alice and Bob demonstrate
that Mallory misbehaved in the process of counting, their profiles are tagged with
“Alice and Bob jointly accused Mallory” and the profile of Mallory is tagged with
“Mallory has been accused by Alice and Bob”. No participant would like to be
tagged as malicious (assuming the verification protocol does not wrongly accuse
participants). Moreover, assuming a system with a large majority of honest par-
ticipants, the risk for a participant to be caught wrongly accusing others is high.
For instance, if a participant is accused only by users that are related in the so-
cial network (i.e., friends forming a coalition), the accusation would seem suspect
and thus not be taken into account and this would eventually backfire on the
accuser. Indeed, the very fact that profiles, and thus tags, are meant to be read
by human beings makes such a coercive tagging system intrinsically resistant
to false accusations. This could also be achieved by using existing automated
techniques to detect suspicious patterns in the graph formed by accusations.

In this context, the behavior of users in a social network can be modelled as
follows: users are either honest or dishonest, but in any case they care about
their reputation. Honest users strictly follow the polling protocol and contribute
to the verifications as long as their privacy is not compromised. More specifically,
honest users always collaborate with verification procedures that do not require
them to reveal their votes (i.e., public verifications). However, they may refuse to
reveal their votes for a verification procedure (i.e., private verification). Dishonest
users may misbehave either to promote their opinion or reveal the opinion of
honest users. Yet, they are rational in the sense that they never behave in such
a way that their reputation is tarnished with certainty, i.e., they do not perform
attacks that can be detected with probability 1 by means of public verification
procedures. In addition, dishonest nodes do not wrongfully blame honest nodes
as it is rather easy for a human reader, when looking at other users’ profiles, to
distinguish between legitimate and wrongful accusations.

This model, which relies only on the fact that members of social networks
are respectable, opens new perspectives for secured distributed computing. A
practical application to polling based on this model is proposed in [3].
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Abstract. We consider the question of locality in distributed comput-
ing in the context of quantum information. Specifically, we focus on the
round complexity of quantum distributed algorithms, with no bounds
imposed on local computational power or on the bit size of messages.
Linial’s LOCAL model of a distributed system is augmented through
two types of quantum extensions: (1) initialization of the system in a
quantum entangled state, and/or (2) application of quantum communi-
cation channels. For both types of extensions, we discuss proof-of-concept
examples of distributed problems whose round complexity is in fact re-
duced through genuinely quantum effects. Nevertheless, we show that
even such quantum variants of the LOCAL model have non-trivial lim-
itations, captured by a very simple (purely probabilistic) notion which
we call “physical locality” (ϕ-LOCAL). While this is strictly weaker
than the “computational locality” of the classical LOCAL model, it
nevertheless leads to a generic view-based analysis technique for con-
structing lower bounds on round complexity. It turns out that the best
currently known lower time bounds for many distributed combinatorial
optimization problems, such as Maximal Independent Set, bounds cannot
be broken by applying quantum processing, in any conceivable way.

1 Introduction

The introduction of computational models based on quantum computing, start-
ing from the works of Deutsch in the 1980’s [11], has led to the advent of a new
branch of complexity theory. Many studies have for instance focused on the com-
plexity class BQP of problems solvable on a quantum computer in polynomial
time with bounded error probability, and its relation to the classical complex-
ity classes. One of the best known algorithmic results in this respect is Shor’s
polynomial-time method of integer factorization [37] based on the Quantum
Fourier Transform, which has recently been partially tested in an experimental
set-up for very small values of problem input. Nevertheless, application of quan-
tum information in centralized computing scenarios still proves extremely costly
and is riddled with technological difficulties resulting from quantum decoherence
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“CÉPAGE”, and by the KBN Grant 4 T11C 047 25.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 243–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



244 C. Gavoille, A. Kosowski, and M. Markiewicz

effects. On the other hand, in an even wider time-frame, properties of quantum-
mechanical systems have proven to be of interest from the perspective of game
theory [4,13,2], information theory [31,22,3], and distributed systems [4,9].

A major line of study (which we briefly look at in the related work section)
concerns the application of quantum effects to reduce communication complex-
ity, i.e., to decrease the number of communication bits required to solve a specific
task performed within a system graph with several distributed agents. The in-
fluence of quantum information on the computing power of distributed systems
with node anonymity and distributed systems in the presence of faults has also
been studied.

This paper focuses on a different aspect of quantum distributed computing:
we do not impose any bounds on the size of communicated messages, but assume
that the system operates in synchronous rounds, and ask to what extent quantum
effects can reduce the number of rounds required to solve combinatorial optimi-
sation problems. The starting point for considerations is the well-established
LOCAL model a.k.a. Linial’s Free model [25,26]. We provide a comparison of
the “computational power” of the quantum and non-quantum models, formalis-
ing the notion of locality in quantum distributed computing, and showing how
it essentially differs from the understanding of locality in the LOCAL model.

1.1 Related Work

One of the most intensively studied problems related to multi-agent quantum sce-
narios, when expressed in the language of distributed computing, is roughly try-
ing to address the question: Can quantum effects be used to enhance distributed
computations with messages of bounded size, i.e., in settings inspired by the
CONGEST distributed model? (See [35] for an introduction to the CONGEST
model.) The quantum variant of CONGEST , widely studied in physics, is known
as the Local Operations and Classical Communication (LOCC) model. It ex-
ploits the key quantum-mechanical concept of an entangled state (see e.g. [31]).
This is achieved by altering the initialization phase of the system to allow for a
starting state entangled among all the processors, which are locally given quan-
tum computation capabilities; however, communication between processors is
still restricted to the exchange of classical information, only. This application
of pre-entanglement has been shown to decrease the number of communication
bits required to solve certain distributed problems with output collected from
one node, and consequently, to decrease the number of required communication
rounds when message sizes are bounded. The first proof-of-concept example was
provided in [6], where the computation of a specific function of input data dis-
tributed among three parties was shown to require at least 3 communicated bits
in the classical case, but only 2 communicated bits if the system is initialized in
a specific quantum entangled state. Many related results and refinements of this
scenario are surveyed in e.g. [7,39].

Other works on the subject have focused on characterising the physical evo-
lution of states attainable in the LOCC model [30,32,8], while other authors
have dealt with the combinatorial complexity of distributing the entangled state



What Can Be Observed Locally? 245

over the whole system in the initialization phase [38]. Other modifications of
the model attempt to show that a denser coding of information in transmit-
ted messages is possible when using quantum channels, as compared to classical
communication links (see e.g. [5,36]).

Very recently, some authors have begun to study the impact of quantum effects
on fundamental concepts of the theory of distributed computing. An overview of
this line of research is contained in the recent survey paper [9]. The advantages of
applying quantum communication in games against a dynamic adversary are dis-
played in [1], where it is shown that a constant number of computational rounds
is sufficient to solve the quantum Byzantine agreement problem for an n-node
system with less than n/3 faulty nodes in such a dynamic setting; corresponding
classical algorithms require Ω(

√
n) rounds. Another especially interesting result

is that the leader election problem can be solved in distributed systems with
quantum links, but no pre-entanglement [40,23]. Some authors have also claimed
that problems related to leader election [33,12] and distributed consensus [12,21]
can be solved in distributed systems aided by quantum pre-entanglement.

1.2 Outline of the Paper

In Subsection 1.3 we briefly outline the LOCAL model and its extensions,
obtained by modifying the initialization of the system set-up and/or adding
quantum communication capabilities on the edges. Whereas this discussion is
self-contained, we also provide a formal mathematical definition of the cor-
responding notions in an extended version of the paper [19]. Subsection 1.4
introduces some notation used when comparing computational models.

In Section 2 we compare the computational power of models based on the
proposed extensions of LOCAL. In particular, we prove that adding quantum
extensions to the LOCAL model decreases the round complexity of certain dis-
tributed problems. This is achieved through simple proof-of-concept examples.

Most importantly, in Section 3 we introduce a probabilistic framework for
proving lower bounds on the distributed time complexity of computational prob-
lems in any quantum (or other unconventional) models based on LOCAL. This
is directly applied to obtain such lower bounds for many combinatorial optimiza-
tion problems, including Maximal Independent Set, Greedy Graph Coloring, and
problems of spanner construction. As a side effect, the simple concept of “physi-
cal locality” formulated in this section, leads to the definition of a computational
model we call ϕ-LOCAL, which appears to be of independent interest.

Finally, in Section 4 we make an attempt to clarify issues with some of the
related work on quantum distributed computing as surveyed by [9]. Making
use of the framework of computational models defined in the previous sections,
we explain why certain claims, saying that problems such as Leader Election
or Distributed Consensus benefit from the application of quantum processing,
should be approached with caution.

Section 5 contains some concluding remarks and suggests directions of future
studies.



246 C. Gavoille, A. Kosowski, and M. Markiewicz

1.3 Preliminaries: Description of Computation Models

The LOCAL Model. The LOCAL model has been the subject of intensive
study in the last 20 years, starting from the seminal works [25,29]. It is assumed
that the distributed system consists of a set of processors V (with |V | = n) and
operates in a sequence of synchronous rounds, each of which involves unbounded
computations on the local state variables of the processors, and a subsequent ex-
change of messages of arbitrary size between pairs of processors which are con-
nected by links (except for round 0, which involves local computations, only).
Nodes can identify their neighbours using integer labels assigned successively
to communication ports. The local computation procedures encoded in all pro-
cessors are necessarily the same, and initially all local state variables have the
same value for all processors, except for one distinguished local variable x(v) of
each processor v which encodes input data. The input of a problem is defined
in the form of a labeled graph Gx, where G = (V, E) is the system graph, while
x : V → N is an assignment of labels to processors. The output of the algorithm
is given in the form of a vector of local variables y : V → N, and the algorithm
is assumed to terminate once all variables y(v) are definitely fixed. Herein we
assume that faults do not appear on processors and links, that local computa-
tion procedures may be randomized (with processors having access to their own
generators of random variables), and that the input labels x need not in general
be distinct for all processors.

In our considerations, it is convenient to assume that the set of processors
V is given before the input is defined. This is used for convenience of notation,
and neither affects the model, nor the anonymity of nodes in the considered
problems.

Extensions of System Initialization (+S and +E). In the LOCAL model, it
is assumed that the initial set-up of all the processors is identical. This assump-
tion can be relaxed by allowing the processors to obtain some information from
a central helper, but only before the start of the distributed process (i.e., inde-
pendently of the input Gx). The initialization procedure is an integral part of
the algorithm used for solving the distributed problem. Several different forms of
initialization can be naturally defined; for clarity of discussion, we consider only
two extensions of the model: the +S extension (for Separable state), which allows
for the most general form of initialization possible in a classical computational
setting, and the more powerful +E extension (for Entangled state), which allows
for the most general form of initialization available in a quantum distributed
system.

The +S extension. We say that a computational model is equipped with the +S
extension if the following modifications are introduced:

– For any computational problem, the computational procedure consists of
the distributed algorithm applied by all the processors during the rounds
of computation, and an additional (randomized) procedure executed in a
centralized way in the initialization phase. The result of the initialization
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procedure is an assignment h : V → N of helper variables to the set of
processors. The helper variables are independent1 of the input Gx.

– For each processor v ∈ V , at the start of round 0, its input label x(v) is
augmented by the value h(v), stored in a helper register of the local memory.

It is straightforward to show that the above formulation has two equivalent char-
acterizations. From a computational perspective, we may equivalently say that
for each processor v, the helper initialization value h(v) encodes: (1) a unique
identifier of v from the range {1, . . . , n}, (2) the value of n, (3) the value of a
random number, chosen from an arbitrarily large range, and shared by all pro-
cessors. All further helper information is unnecessary, since it can be computed
by the processors in round 0 of the distributed computations (simulation of the
centralized assignment of further helper information can be simulated based on
random bits and starting information which is common to all processors).

Alternatively, we may say that through the randomized initialization, accord-
ing to some probability distribution we choose some deterministic initialization
of the set of states of individual processors. This intuition precisely corresponds
to the notion of a state with uncertainty in classical statistical physics, referred
to in quantum-mechanical discussions as a (mixed) separable state of the sys-
tem. It is obviously true to say that whenever a problem is solved in a model
with the +S extension, it may benefit solely from the modification of the system
initialization, and not from the laws of quantum mechanics.

The +E extension. Unlike in classical physics, in quantum mechanics not every
initialization of the system has to follow the above pattern. Consider a scenario in
which we centrally create an initial global state of the whole system of processors,
and spatially distribute “parts” of it to the individual processors (for example,
by sharing out among the nodes a set of quantum-correlated photons). Then,
each of the processors can perform operations on the “part” of the state assigned
to its spatial location; by a loose analogy to processing of classical information,
this is sometimes referred to as each processor “manipulating its own quantum
bits (qubits)”. Given a general initial state of the system, the outcome of such
a physical process, as determined by the processors, may display correlations
which cannot be described using any classical probabilistic framework. Initial
states which can be lead to display such properties are called non-separable, or
entangled states. Quantum entanglement is without doubt one of the predom-
inant topics studied in quantum-mechanical literature of the last decades; we
refer the interested reader to e.g. [31] for an extensive introduction to the topic.

We say that a computational model is equipped with the +E extension if all
processors are equipped with helper quantum information registers h, and the
computational procedure used to solve a problem sets in the initialization phase
in a centralized way some chosen, possibly entangled, quantum state over the
set of quantum information registers h of all processors, in a way independent
of the input graph Gx.
1 Helper variables that do depend on the inputs are referred to in the literature as

Oracles [16,15]. Such extensions are not discussed in this paper.
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Extension of Communication Capabilities (+Q). Whereas the application
of local quantum operations in each processor does not increase the power of the
LOCAL model as such, the situation changes when the processors can interact
with each other using quantum communication channels. Intuitively, such chan-
nels allow for the distribution of an entangled state by a processor over several
of its neighbours in one communication round; such an effect cannot be achieved
using classical communication links.

We say that a computational model is equipped with the +Q extension if all
communication links between processors in the system graph are replaced by
quantum communication channels.

Models with the Extensions. Modifications to the initialization and commu-
nication capabilities of the system are completely independent of each other. For
initialization, we can apply no extension, use a separable state (+S), or an en-
tangled state (+E). For communication, we can apply no extension, or use quan-
tum channels (+Q). Hence, we obtain 6 possible models (LOCAL, LOCAL+S,
LOCAL+E , LOCAL+Q, LOCAL+Q+S, LOCAL+Q+E), which are discussed in
the following section. (Some of these models collapse onto each other.)

1.4 Notation for Comparing the Power of Computational Models

In order to compare the computational power of different models, we introduce
two basic notions: that of the problem being solved, and of an outcome of the
computational process.

Definition 1. A problem P is a mapping Gx �→ {yi}, which assigns to each
input graph Gx a set of permissable output vectors yi : V → N.

Instead of explicitly saying that we are interested in finding efficient (possibly
randomized) distributed algorithms for solving problems within the considered
computational models, we characterize the behavior of such procedures through
the probability distribution of output vectors which they may lead to, known as
an outcome. In fact, such a probability distribution is necessarily well defined,
whereas formally describing the computational process may be difficult in some
unconventional settings (see e.g. the ϕ-LOCAL model in Section 3).

Definition 2. An outcome O is a mapping Gx �→ {(yi, pi)}, which assigns to
each input graph Gx a normalized discrete probability distribution {pi}, such
that: ∀i pi > 0 and

∑
i pi = 1, with pi representing the probability of obtaining

yi : V → N as the output vector of the distributed system.

Definition 3. For any outcome O in a computational model M which is a variant
of LOCAL, we will write O ∈ M[t] if within model M there exists a distributed
procedure which yields outcome O after at most t rounds of computation.

We will say that an outcome O is a solution to problem P with probability p if
for all Gx, we have:

∑
{(yi,pi)∈O(Gx) : yi∈P(Gx)} pi ≥ p. When p = 1, we will

simply call O a solution to P (with certainty).
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By a slight abuse of notation, for a problem P we will write P ∈ M[t] (re-
spectively, P ∈ M[t, p]) if there exists an outcome O ∈ M[t] which is a solution
to problem P (respectively, a solution to problem P with probability p).

For two computational models M1, M2, we say that M1 is not more powerful
than M2 (denoted M1 ⊆ M2) if for every problem P, for all t ∈ N and p > 0,
P ∈ M1[t, p] =⇒ P ∈ M2[t, p]. The relation ⊆ induces a partial order
of models which is naturally extended to say that M1 and M2 are equivalent
(M1 = M2), or that M1 is less powerful than M2 (M1 � M2).

It can easily be proved that M1 ⊆ M2 if and only if for every outcome O, for
all t ∈ N, O ∈ M1[t] =⇒ O ∈ M2[t]. Such an outcome-based characterisation
of models is occasionally more intuitive, since it is not explicitly parameterised
by probability p.

In all further considerations, when proving that M1 � M2, we will do so in
a stronger, deterministic sense, by showing that there exist a problem P and
t ∈ N such that P ∈ M2[t] and P /∈ M1[t].

2 Hierarchy of Quantum Models

The most natural variants of LOCAL which are based on the extensions proposed
in the previous subsection are the classical model with separable initialization
(LOCAL+S), and quantum models with pre-entanglement at initialization, quan-
tum channels, or both (LOCAL+E , LOCAL+Q, and LOCAL+Q+E , respectively).
The strengths of the models can obviously be ordered as follows: LOCAL ⊆
LOCAL+Q ⊆ LOCAL+Q+S ⊆ LOCAL+Q+E , and LOCAL ⊆ LOCAL+S ⊆
LOCAL+E ⊆ LOCAL+Q+E . We now proceed to show that, whereasLOCAL+E =
LOCAL+Q+E , all the remaining inclusions are in fact strict. The hierarchy of the
most important models is shown in Fig. 1.

Proposition 1. LOCAL � LOCAL+S. Moreover, there exists a problem P
such that P ∈ LOCAL+S[0] and P �∈ LOCAL[t] for all t ∈ N.

Proof. Any problem, which can be solved when given unique node identifiers
from the range {1, . . . , n} is clearly in LOCAL+S[0]. On the other hand, there
are many examples of such problems which are not in LOCAL (or require Ω(n)
rounds assuming that the system graph is connected and node labels are unique),
most trivially the problem P of assigning unique node identifiers from the range
{1, . . . , n} to all nodes. �	

More interestingly, one can show that LOCAL+S benefits due to the fact that
helper variables h(v) can encode a value which is set in a randomized way.
Consider as a simple example a problem P ′ whose input is a graph G = (V, E),
of sufficiently large order n, with input labels of the nodes encoding unique node
identifiers {1, . . . , n} and the value of n; moreover, G is restricted to be the
complete graph Kn minus exactly one edge. The goal is to select an edge of the
graph, i.e., output y must be such that for some two nodes u, v ∈ V , with {u, v} ∈
E, we have y(u) = y(v) = 1, and for all other w ∈ V we have y(w) = 0. Even
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Fig. 1. Hierarchy of computational extensions to the LOCAL model. See Section 3 for
a definition of the ϕ-LOCAL model, and Section 1.3 or the extended version [19] for
definitions of all other models.

with the knowledge of node identifiers and n, in the LOCAL model the problem
cannot be solved with high probability without communication, i.e., within 0
rounds: we have P ′ /∈ LOCAL[0, e−1] (the proof is technical and postponed to
the extended version [19]). On the other hand, within the LOCAL+S model this
problem admits a solution in 0 rounds with probability arbitrarily close to 1 for
sufficiently large n. Similar arguments can be applied to display the difference
between the models for more advanced problems which simulate collaborative
mobile agent scenarios, in particular variants of the cops-and-robbers problems
in graphs.

We now point out the difference in power between the classical and quantum
models. The proofs proceed by rephrasing one of the best established results of
quantum interferometry, first introduced in the context of the so called Bell’s
Theorem without inequalities, for a 3-particle quantum entangled state (cf. [20]
for the original paper or [34] for a contemporary exposition). We use its more
algorithmic modulo-4 sum formulation, similar to that found in [41].

Theorem 1. LOCAL+S � LOCAL+E. Moreover, there exists a problem P
such that P ∈ LOCAL+E [0] and P �∈ LOCAL+S[t] for all t ∈ N.

Proof. Let P be a problem defined on a system with 3 nodes. Let the input graph
be empty, and assume that input labels x = (x1, x2, x3) ∈ {0, 1}3 of respective
nodes satisfy the condition x1 + x2 + x3 ∈ {0, 2}. An output y = (y1, y2, y3) ∈
{0, 1}3 is considered valid for input x if and only if 2(y1+y2+y3) ≡ (x1+x2+x3)
mod 4. This problem is not in LOCAL+S, since finding a solution with certainty
would imply that there exist three deterministic functions Y1, Y2, Y3 : {0, 1} →
{0, 1}, such that for any input vector (x1, x2, x3) satisfying the constraints of
the problem, (Y1(x1), Y2(x2), Y3(x3)) is a valid output vector. It is immediate to
show that this is impossible.

The situation is different when the system operates in the LOCAL+E model
starts in an entangled state. The procedure required to obtain a valid solution
is described in detail in [20]. In brief, in the initialization phase we share out
to each of the processors one of 3 entangled qubits, carried e.g. by photons,
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which are in the entangled tripartite state known as the GHZ state (namely
1√
2
(|000〉 + |111〉) in Dirac’s notation for pure states). Each of the processors

then performs a simple transformation on “its own” qubit, in a way dependent
only on the processor’s input xi. Finally, a measurement is performed, and it
can be shown that the probability distribution of obtained output vectors (the
outcome) is that stated in Table 1. Since all of the outputs are accepted as valid
for the considered problem P, this implies that P ∈ LOCAL+E [0]. �	

Table 1. An outcome O which is a solution (with certainty) to the modulo-4 sum
problem on the 3-node empty graph, and belongs to LOCAL+E [0] (see Theorem 1)

Input Probability Output
(x1, x2, x3) pi (yi

1, y
i
2, y

i
3)

(0, 0, 0) 1/4 (0, 0, 0)
1/4 (0, 1, 1)
1/4 (1, 0, 1)
1/4 (1, 1, 0)

Input Probability Output
(x1, x2, x3) pi (yi

1, y
i
2, y

i
3)

(0, 1, 1)
or (1, 0, 1)
or (1, 1, 0)

1/4 (1, 1, 1)
1/4 (1, 0, 0)
1/4 (0, 1, 0)
1/4 (0, 0, 1)

Proposition 2. LOCAL � LOCAL+Q. Moreover, for any t > 0, there exists a
problem P such that P ∈ LOCAL+Q[t] and P �∈ LOCAL[2t − 1].

Proof (sketch). The proof proceeds by a modification of the argument from The-
orem 1. This time, we consider a system on n = 3k+1 nodes, and an input graph
with the topology of a uniformly subdivided star with a central node of degree 3.
The modified problem P ′ consists in solving the problem from Theorem 1, when
the three input and output values are put on the three leaves of the star. Within
LOCAL, this problem requires 2k rounds to solve, whereas within LOCAL+Q,
k rounds are sufficient. �	

Whereas the time distinction between LOCAL+S and LOCAL+E given by
Theorem 1 is remarkable (since it considers the feasibility of solving problems,
or when discussing connected graphs, a speed-up from Ω(n) to 0 communication
rounds), the situation is less clear between LOCAL+Q and LOCAL. Although a
speed-up factor of 2 as expressed by Proposition 2 looks like a natural limit, the
authors know of no conclusive arguments to show that it cannot be increased
further.

Finally, following the argumentation of [9], we observe that LOCAL+E =
LOCAL+Q+E , or in other words that, given access to pre-entanglement, it is
possible to simulate quantum links by means of classical ones. The effect used
to achieve this is known as quantum teleportation [34]; by carefully choosing
an entangled state over the whole system, it can be applied even when the
communicating nodes do not yet know their neighbors’ unique identifiers. The
amount of pre-entanglement provided at initialization must be sufficient to allow
for communication throughout all the rounds of the algorithm.
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To complete a discussion of Fig. 1, we point out that LOCAL+Q is incom-
parable with LOCAL+S. This is because the problem discussed in the proof of
Proposition 1 belongs to LOCAL+S, but not to LOCAL+Q, and the problem
discussed in the proof of Proposition 2 belongs to LOCAL+Q[1], but not to
LOCAL+S[1].

The LOCAL+Q+S model has been left out from discussion, since it appears
to be of little significance. By considering the same problems as before, we have
LOCAL+Q+S � LOCAL+Q+E = LOCAL+E , so LOCAL+Q+S could be placed
directly to the left of LOCAL+E in Fig. 1.

3 Lower Time Bounds Based on Physical Locality
(ϕ-LOCAL)

Proving lower bounds on the power of quantum models is problematic. This
results, in particular, from the fact that there does not exist as yet an easy-to-use
classification of entangled states, or of quantum operations (completely positive
maps) which can be performed to transform one quantum state into another.
However, in the context of distributed computing, it is possible to consider a
more general framework of physical locality, leading to the ϕ-LOCAL model
we define hereafter, which in turn can be used to bound the power of quantum
models.

Within the classical LOCAL model, we can say that the output of any pro-
cessor v after t rounds has to be computed based on the input data which can
be collected from the input graph Gx by performing an exploration up to a
depth of t, starting from node v; we call this the distance-t local view denoted
by Vt(Gx, v). This leads to a simple characterisation of the LOCAL model in
terms of valid outcomes (see the extended version [19] for a formalization).

In order to allow for quantum extensions to local, the assumption of classical
computability needs to be relaxed, while at the same time retaining in some
form the assumption of locality. Given a round-based model with interactions
between nearest neighbors only, the physical understanding of locality is as fol-
lows: Locality is violated if and only if, based on the available output data, we can
conclusively verify that after t rounds some subset S of processors was affected
by input data initially localized outside its view Vt(Gx, S) :=

⋃
v∈S Vt(Gx, v).

Using the above intuition, we now formalize this notion to obtain what we
call the ϕ-LOCAL model, i.e., the weakest possible distributed model which still
preserves physical locality. Given an output distribution {(yi, pi)} acting on V ,
for any subset of vertices S ⊆ V we define its marginal distribution on set S,
{(yi, pi)}[S], as the unique distribution {(yj , pj)} acting on S which satisfies
the condition pj =

∑
{i : yj=yi[S]} pi, where yi[S] is the restriction of output

yi : V → N to nodes from subset S ⊆ V .

Definition 4. An outcome Gx �→ {(yi, pi)} belongs to ϕ-LOCAL[t] if for all sub-
sets S ⊆ V , for any pair of inputs G

(a)
x , G

(b)
x such that Vt(G

(a)
x , S) = Vt(G

(b)
x , S),

the output distributions corresponding to these inputs have identical marginal dis-
tributions on set S, i.e., {(yi(a), pi(a))}[S] = {(yi(b), pi(b))}[S].
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Quantum relaxations of the LOCAL model, whether obtained through applica-
tion of pre-entanglement, quantum channels, or both, lie in terms of strength “in
between” the LOCAL and ϕ-LOCAL model. This is expressed by the following
theorem, whose proof is provided in the extended version of the paper [19].

Theorem 2. LOCAL+Q+E ⊆ ϕ-LOCAL.

The theorem captures the property of locality of nearest-neighbor interactions
in quantum mechanics, and it does not rely in any way on any other physical
concepts, such as causality or speed of information in the theory of relativity.

Although it is not clear whether the containment in the above theorem is strict
(we leave this as an open question), the ϕ-LOCAL model is still sufficiently
constrained to preserve many important lower time bounds known from the
LOCAL model, which are based on arguments of indistinguishability of local
views of a node for different inputs. In particular, by careful analysis, it is easy
to prove the following statements for the ϕ-LOCAL model.

– The problem of finding a maximal independent set in the system graph
requires Ω(

√
log n

log log n ) rounds to solve [24].
– The problem of finding a locally minimal (greedy) coloring of the system

graph requires Ω( log n
log log n ) rounds to solve [18,17].

– The problem of finding a connected subgraph with O(n1+1/k) edges requires
Ω(k) rounds to solve [10,14].

The matter is less clear in the case of the (∆ + 1)-coloring problem. The proof
of the famous lower bound of 1

2 log∗ n − O(1) rounds [26] (and its extension to
randomized algorithms [28]) does not appear to generalize from the LOCAL
model to the ϕ-LOCAL model; we are unaware of any (even constant) bound on
the number of rounds required to find a solution to (∆+1)-coloring in ϕ-LOCAL.
Some indication that the technique of coloring neighborhood graphs, used by
Linial, may not apply in ϕ-LOCAL, is that this technique can likewise be used
to show a lower bound of

⌊
n
2

⌋
− 1 rounds on the time required for 2-coloring the

cycle Cn, where n is even. However, in ϕ-LOCAL the same problem admits a
solution in fewer rounds.

Theorem 3. The problem of 2-coloring the even cycle Cn (given unique node la-
bels x) belongs to ϕ-LOCAL[�n−2

4 �], but does not belong to ϕ-LOCAL[�n−2
4 �−1].

Proof (sketch). For the lower bound, consider the local view of two nodes u, v
which still have disjoint views after �n−2

4 � − 1 rounds. There are at least two
nodes which belong to neither the view of u nor the view of v; hence, u and v
cannot distinguish whether they are at an even or at an odd distance from each
other in the cycle. This directly leads to the lower bound, since the definition
condition of ϕ-LOCAL can be shown to be violated for S = {u, v}.

The upper bound is generated by on outcome O of the 2-coloring problem,
given as follows: each of the 2 legal 2-colorings of Cn is used as the output with
probability 1

2 . Such an outcome O belongs to ϕ-LOCAL[�n−2
4 �]. This can be

easily verified, since for any subset S ⊆ V we either have that S consists of
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exactly two antipodal nodes of Cn, or the view V�n−2
4 �(Cnx , S) is simply an arc

of the cycle. �	
It would be interesting to find a constructive quantum procedure for finding a
2-coloring of Cn in �n−2

4 � rounds. In particular, we have that 2-coloring of C6

belongs to ϕ-LOCAL[1], does not belong to LOCAL+S[1], and do not know if
it belongs to LOCAL+E [1].

4 Simple Problems in a Quantum Setting

In this section, we have a look at some of the related work on quantum dis-
tributed problems, as outlined in the survey [9]. Whereas the discussion in this
section relies on the results and notation from the preceding sections, it can also
be translated into the (not always precisely described) computational models
studied in the considered related work.

Two problems which have been used to exhibit the difference between quan-
tum models and non-quantum models are LeaderElection, where the goal is for
exactly one node of the system graph to output a value of 1 whereas all other
nodes output 0, and a problem which we will call BitPicking, where the goal is
for all nodes to return the same output value, either 0 or 1. These discussions
include the concept of fairness, which in the terminology of this paper means
that we are asking not about the problems as such, but about obtaining specific
(fair) outcomes. More precisely, we will say that FairLeaderElection is the out-
come which puts a uniform probability distribution on the n distinct outputs
valid for LeaderElection (i.e., on all possible leaders), and FairBitPicking is the
outcome which puts a uniform probability distribution on the 2 distinct outputs
valid for BitPicking (i.e., picking 0 or 1).

The focus of [33,12,21] is to show that FairBitPicking and FairLeaderElection
belong to LOCAL+E [0] (even with some additional restrictions on the amount
of allowed pre-entanglement), whereas they do not belong to LOCAL[0]. This
statement is correct, however, this effect is due to the modification of initializa-
tion of the system, and not to quantum mechanics. In fact, we can make the
following obvious statement.

Proposition 3. FairBitPicking and FairLeaderElection belong to the non-quantum
class LOCAL+S[0]. Moreover, they can be solved with only one bit of helper infor-
mation per node, at initialization.

Finally, we relate to the recent claims that the DistributedConsensus can be solved
in a quantum setting without communication. Whereas these claims result from
a misunderstanding of the definition [27] of DistributedConsensus, we point out
that such a result is impossible in any quantum model, since it is even impos-
sible in ϕ-LOCAL (a short proof is provided in the extended version of the
paper [19]). We recall that in DistributedConsensus, given an assignment of input
labels (x1, . . . , xn) to particular processors, the goal is to obtain an output vector
(y, . . . , y), such that y ∈ {x1, . . . , xn}.
Proposition 4. DistributedConsensus /∈ ϕ-LOCAL[0].
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5 Conclusions and Future Work

We have pointed out that the computational power of quantum variants of the
LOCAL model is strictly greater than that of the classical LOCAL model, or
that of the LOCAL model equipped with helper information such as a pool of
shared random bits. It remains to be seen whether a difference can be observed
for any problems of practical significance. It is potentially possible that certain
combinatorial optimization problems may benefit from quantum extensions to
the LOCAL model. However, we can say that the “view-based” limitations of
the LOCAL model still hold in quantum models. So, one specific question which
remains open is whether the (∆+1)-Coloring problem can be solved in a constant
number of rounds in any of the relaxed variants of LOCAL.

Finally, we can ask about a characterization of the limitations of quantum
computability, the most natural question being to establish whether the con-
tainment LOCAL+E ⊆ ϕ-LOCAL is strict. As a matter of fact, further studies
of the ϕ-LOCAL model, which can be seen as the weakest distributed local
model, capturing verifiability rather than computability of outcomes, appear to
be of interest in their own right.
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Abstract. At-most-once semantics is one of the standard models for ob-
ject access in decentralized systems. Accessing an object, such as altering
the state of the object by means of direct access, method invocation, or
remote procedure call, with at-most-once semantics guarantees that the
access is not repeated more-than-once, enabling one to reason about the
safety properties of the object. This paper investigates implementations
of at-most-once access semantics in a model where a set of such actions is
to be performed by a set of failure-prone, asynchronous shared-memory
processes. We introduce a definition of the at-most-once problem for per-
forming a set of n jobs using m processors and we introduce a notion
of efficiency for such protocols, called effectiveness, used to classify algo-
rithms. Effectiveness measures the number of jobs safely completed by
an implementation, as a function of the overall number of jobs n, the
number of participating processes m, and the number of process crashes
f in the presence of an adversary. We prove a lower bound of n−f on the
effectiveness of any algorithm. We then prove that this lower bound can
be matched in the two process setting by presenting two algorithms that
offer a tradeoff between time and space complexity. Finally, we generalize
our two-process solution in the multi-process setting with a hierarchical
algorithm that achieves effectiveness of n−log m·o(n), coming reasonably
close, asymptotically, to the corresponding lower bound.

1 Introduction

The at-most-once semantic for object invocation ensures that an operation ac-
cessing and altering the state of an object is performed no more than once. This
semantic is among the standard semantics for remote procedure calls (RPC)
and method invocations and it provides important means for reasoning about
the safety of critical applications. Uniprocessor systems may trivially provide
solutions for at-most-once semantics by implementing a central schedule for op-
erations. The problem becomes very challenging for autonomous processes in
a shared-memory system with concurrent invocations on multiple objects. Al-
though at-most-once semantics have been thoroughly studied in the context of
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at-most-once message delivery [4, 13, 16, 23] and at-most-once process invocation
for RPC [2, 14, 15, 16, 21], finding effective solutions for asynchronous shared-
memory multiprocessors, in terms of how many at-most-once invocations can be
performed by the cooperating processes, is largely an open problem. This pa-
per brings the attention to the at-most-once problem in multiprocessor settings.
We believe that solving this problem using only atomic memory, and without
specialized hardware support, such as conditional writing, will provide a useful
tool in reasoning about the safety properties of applications developed for a va-
riety of multiprocessor systems, including those not supporting bus-interlocking
instructions and multi-core systems.

We explore at-most-once implementations for asynchronous shared-memory
processors that are prone to crashes. We model accesses to objects as tasks,
where the correctness demands that each task is performed at-most-once. Any
processor is able to perform any task and we aim to maximize the total number
of performed tasks while preserving the at-most-once semantics. We define the
notion of effectiveness used to assess the efficiency of solutions for the prob-
lem. Effectiveness measures the number of tasks performed using at-most-once
semantics as a function of the number of tasks, the number of processors, and
the number of crashes. We provide tight lower bounds for effectiveness, and we
introduce three algorithms that solve the problem. The first two are formulated
for two processors. The third algorithm is stated for an arbitrary number of
processors and it uses a two-processor solution as a building block. We present
rigorous analyses of the algorithms’ work, space complexity, and effectiveness.

Related Work. A wide range of works study at-most-once semantics in a
variety of settings. at-most-once message delivery [4, 13, 16, 23] and at-most-once
semantics for RPC [2, 14, 15, 16, 21], are two areas that have attracted a lot of
attention. Here the problem studied is different from the one we consider. Both
in at-most-once message delivery and RPCs, we have two entities (sender/client
and receiver/server) that communicate by message passing. Any entity may fail
and recover and messages may be delayed or lost. In the first case one wants to
guarantee that duplicate messages will not be accepted by the receiver, while
in the case of RPCs, one wants to guarantee that the procedure called in the
remote server will be invoked at-most-once [22].

Di Crescenzo and Kiayias in [5] demonstrate the use of the semantic in message
passing systems for the sake of security. Driven by the fundamental security re-
quirements of one-time pad encryption, the authors partition a common random
pad among multiple communicating parties. Perfect security can be achieved
only if every piece of the pad is used at most once. The authors show how the
parties maintain security while maximizing efficiency by applying at-most-once
semantics on pad expenditure.

One can also relate the at-most-once problem to the consensus problem [6, 9,
18, 12]; here one can view consensus as an at-most-once distributed decision.

Another related problem is the Write-All problem for the shared memory
model [1, 8, 10, 11, 19]. First presented by Kanellakis and Shvartsman [10], the
Write-All problem is concerned with performing each task at-least-once. We
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note that solutions to Write-All may be adapted to solve at-most-once, provided
safeguards are in place to prevent more-than-once invocations.

Finally we note that the at-most-once problem becomes much simpler when
shared-memory is supplemented by some type of read-modify-write operations.
For example, one can associate a test-and-set bit with each task, ensuring that
the task is assigned to the only processor that successfully sets the shared bit An
efficient implementation can then be easily obtained from a Write-All solution,
such as [1, 8, 11, 20]. Thus, in this paper we deal only with the more challenging
setting where algorithms use atomic read/write registers.

Contributions. Our goal is to explore the feasibility and efficiency of solu-
tions that satisfy the at-most-once semantic in the shared-memory model with
asynchronous processors prone to crash failures. The at-most-once problem is
formulated for m processors and n jobs, where any processor can perform any
job, provided that no job is performed more-than-once. Note that in such a
setting it is impossible to distinguish between a slow and a crashed processor,
consequently it is impossible to determine whether a processor delays while per-
forming a job or if it crashes before performing the job. This means that generally
some jobs may never be performed. Our contributions are as follows.

(1) We define the at-most-once problem and the correctness properties to be
satisfied by any solution. We introduce a complexity measure we call effective-
ness. This measure describes the number of jobs completed (at-most-once) by
an implementation, as a function of the overall number of jobs n, the number of
processors m, and the number of processor crashes f . (Section 2.)

(2) We present a lower bound for the effectiveness of any at-most-once imple-
mentation. In particular, we prove that no at-most-once solution may achieve
effectiveness better than n − f . (Section 3.)

(3) We provide two algorithms that solve the at-most-once problem for 2 pro-
cessors. The algorithms use a collision-avoidance approach. The importance of
these algorithms is twofold: a) they can be used as building blocks to construct
general implementations for larger number of processors, and b) they achieve
optimal effectiveness. The algorithms differ substantially in their space require-
ments and work complexity, demonstrating the trade-offs between efficiency and
space. We analyse work, space, and effectiveness. (Section 4.)

(4) Finally we present a multi-processor algorithm, that employs one of our
two-processor algorithms as a building block. We prove the correctness of the
algorithm, and we perform rigorous analysis of its effectiveness of n− logm ·o(n),
and its work and space complexity. (Section 5.)

The algorithms in this work are motivated by theWrite-All algorithms from
[3, 8], although the problem itself and the correctness criteria are quite differ-
ent. Our work can be viewed as complementary to [5] that considers a similar
problem in message-passing models. Here we use a shared-memory model in a
deterministic setting.

Due to lack of space we omit some of the proofs in this manuscript. We
encourage the reader to contact the authors for the detailed proofs.
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2 Model, Definitions, and Efficiency

We define our model, the at-most-once problem, and measures of efficiency.

2.1 Model and Adversary

We model a multi-processor as m asynchronous, crash-prone processes with
unique identifiers from some set P . Shared memory is modeled as a collection of
atomic memory cells, where the number of bits in each cell is explicitly defined.
We use the Input/Output Automata formalism [18, 17] to specify and reason
about algorithms; specifically, we use the asynchronous shared memory automa-
ton formalization [18, 7]. Each process p is defined in terms of its states statesp

and its actions actsp, where each action is of the type input, output, or internal.
A subset startp ⊆ statesp contains all the start states of p. Each shared variable
x takes values from a set Vx, among which there is initx, the initial value of x.

We model an algorithm A as a composition of the automata for each process
p. Automaton A consists of a set of states states(A), where each state s contains
a state sp ∈ statesp for each p, and a value v ∈ Vx for each shared variable x.
Start states start(A) is a subset of states(A), where each state contains a startp
for each p and an initx for each x. The actions of A, acts(A) consists of actions
π ∈ actsp for each process p. A transition is the modification of the state as a
result of an action and is represented by a triple (s, π, s′), where s, s′ ∈ states(A)
and π ∈ acts(A). The set of all transitions is denoted by trans(A). Each action in
acts(A) is performed by a process, thus for any transition (s, π, s′), s and s′ may
differ only with respect to the state sp of process p that invoked π and potentially
the value of the shared variable that p interacts with during π. We also use triples
({varss}, π, {varss′}), where varss and varss′ are subsets of variables in s and
s′ respectively, as a shorthand to describe transitions without having to specify s
and s′ completely; here varss and varss′ contain only the variables whose value
changes as the result of π, plus possibly some other variables of interest.

We say that states s and t in states(A) are indistinguishable to process p if: 1)
sp = tp, and 2) the values of all shared variables are the same in s and t. Now, if
states s and t are indistinguishable to p and (s, π, s′) ∈ trans(A) for π ∈ actsp,
then (t, π, t′) ∈ trans(A), and s′ and t′ are also indistinguishable to p.

An execution fragment of A is either a finite sequence, s0,π1,s1, . . .,πr,sr,
or an infinite sequence, s0,π1,s1, . . .,πr,sr,. . ., of alternating states and actions,
where (sk, πk+1, sk+1) ∈ trans(A) for any k ≥ 0. If s0 ∈ start(A), then the
sequence is called an execution. The set of executions of A is execs(A). We say
that execution α is fair, if α is finite and its last state is a state of A where no
locally controlled action is enabled, or α is infinite and every locally controlled
action π ∈ acts(A) is performed infinitely many times or there are infinitely many
states in α where π is disabled. The set of fair executions of A is fairexecs(A).
An execution fragment α′ extends a finite execution fragment α of A, if α′ begins
with the last state of α. We let α ·α′ stand for the execution fragment resulting
from concatenating α and α′ and removing the (duplicated) first state of α′.

We model process crashes by action stopp in acts(A) for each process p. If stopp

appears in an execution α then no actions π ∈ actsp appear in α thereafter. We
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then say that process p crashed. Actions stopp arrive from some unspecified ex-
ternal environment, called adversary. In this work we consider an omniscient,
on-line adversary [10] that has complete knowledge of the algorithm. The adver-
sary controls asynchrony and crashes. We allow up to f < m crashes. We denote
by fairexecsf (A) all fair executions of A with at most f crashes.

2.2 At-Most-Once Problem, Effectiveness and Complexity

We consider algorithms that perform a set of tasks, called jobs. Let A be an
algorithm specified for m processes with ids from set P = [0 . . .m− 1], and with
jobs with unique ids from set J = [0 . . . n−1]. We assume that there are at least
as many jobs as there are processes, i.e., n ≥ m. We model the performance of
job j by process p by means of action dop,j . For a sequence β, we let len(β)
denote its length, and we let β|π denote the sequence of elements π occurring
in β. Then for an execution α, len

(
α|dop,j

)
is the number of times process p

performs job j. Now we define the number of jobs performed in an execution.

Definition 1. For execution α we denote by Jα = {j ∈ J | dop,j

occurs in α for some p ∈ P}. The total number of jobs performed in α is de-
fined to be Do(α) = |Jα|.

We next define the at-most-once problem.

Definition 2. Algorithm A solves the at-most-once problem if for each execution
α of A we have ∀j ∈ J :

∑
p∈P len

(
α|dop,j

)
≤ 1. We call any such execution α

an AO-execution (at-most-once execution).

Measures of Efficiency. We analyze our algorithms in terms of three complexity
measures: effectiveness, work, and space. Effectiveness counts the number of jobs
performed by an algorithm in the worst case.

Definition 3. The effectiveness of algorithm A is: EA(n, m, f) =
minα∈fairexecsf (A)(Do(α)), where m is the number of processes, n is the num-
ber of jobs, and f is the number of crashes.

A trivial algorithm can solve the at-most-once problem by splitting the n jobs
in groups of size n

m and assigning one group to each process. Such a solution has
effectiveness E(n, m, f) = (m− f) · n

m (consider an execution where f processes
fail at the beginning of the execution). Thus our goal is to construct algorithms
that achieve higher effectiveness.

Work complexity measures the efficiency of an algorithm in terms of the total
number of memory accesses.

Definition 4. The work of algorithm A, denoted by WA, is the worst case total
number of bits accessed in all memory reads and writes in any execution of A.

Space complexity measures the memory space used by the algorithm.

Definition 5. The space of algorithm A is the total number of bits in shared
and internal variables used by the processes of A.
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3 Lower Bound

We show that any algorithm that solves the at-most-once problem in the presence
of up to f crashes has effectiveness E ≤ n − f . While the proof is subtle, the
result itself is intuitive, based on the observation that one cannot distinguish
a crashed process from a slow one. If an algorithm assigns job j to process p,
and the process crashes, the algorithm is unable to revoke the job and assign it
to another process, since process p may simply be slow and it may ultimately
perform job j, violating at-most-once semantics.

Recall that in our setting we have at least as many jobs as processes (n ≥
m > f). (The case where n ≤ m is less interesting and for this reason is not
presented in this paper.) For our proofs we consider only algorithms that satisfy
Condition 1 below requiring that the algorithm is able to perform at least one
job. Also let us denote by Fα = {p | stopp occurs in α} the set of crashed
processes in execution α.

Condition 1. For all infinite executions α of A, Do(α) ≥ 1 and for all finite
executions α of A, there exists an execution fragment α′, s.t. α · α′ ∈ execs(A)
and Do(α · α′) ≥ 1.

We proceed with a lemma, which shows that one may construct two executions
that contain f failures and their states are indistinguishable to all correct pro-
cesses, for algorithms that solve the at-most-once problem. Moreover we show
that exactly f jobs are performed in the first execution, while no jobs are per-
formed in the second one. Then we use these executions to prove the main the-
orem of this section, which shows that the second execution we construct from
the lemma, cannot be extended to perform more than n− f tasks. This implies
that the effectiveness of any algorithm that solves the at-most-once problem is
at most n − f .

Lemma 1. If algorithm A solves the at-most-once problem in the presence of
f < m crashes and Condition 1 holds, then there exist finite executions α1, α2 ∈
execs(A), s.t. Fα1 = Fα2 , |Fα1 | = |Fα2 | = f , Do(α1) = f , Do(α2) = 0, and the
final states of α1 and α2 are indistinguishable for all processes in P − Fα1 .

Proof. We prove the lemma by induction on the number of crashes f .

Base case: First we find execution α s.t. Do(α) ≥ 1 and Fα = ∅. Such an
execution exists by Condition 1 and the fact that crashes are determined by the
adversary. Let us consider the first do event in α. Let dop,j be that event, and let
s1 and s2 be the states in α before and after dop,j . Since dop,j does not change
shared memory, s1 and s2 differ only in the state of process p and thus are
indistinguishable for all processes in P − {p}. Let α′ = α0 · (s1, dop,j , s2) be the
prefix of α up to event dop,j . Clearly α′ ∈ execs(A). We construct the executions
α1 = α0 ·(s1, dop,j , s2, stopp, s

′
2) and α2 = α0 ·(s1, stopp, s

′
1). These executions are

finite, and since the crashes are controlled by the adversary α1, α2 ∈ execs(A).
Moreover Fα1 = Fα2 = {p} and Do(α1) = 1, Do(α2) = 0. Since stopp affects
only the state of p, s1, s

′
1, s2, s

′
2 are indistinguishable for all processes in P−{p}.
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Inductive step: For k < f assume that there exist finite executions α1, α2 ∈
execs(A), s.t. Fα1 = Fα2 , |Fα1 | = |Fα2 | = k, Do(α1) = k, Do(α2) = 0 and the
final states of α1 and α2 are indistinguishable for all processes in P − Fα1 . We
next construct the needed executions for k + 1 failures.

We first take α2. From Condition 1 there exists execution fragment α that
has no crashes s.t. α2 · α ∈ execs(A) and Do(α2 · α) ≥ 1. Since Do(α2) = 0
only α has do events. Moreover since α2 ·α ∈ execs(A), α has only actions from
processes in P−Fα2 . Let dop,j be the first do event in α, where p ∈ P −Fα2 and
j ∈ J , and let s1, s2 be the states in α before and after dop,j . Clearly s1 and s2

are indistinguishable for all processes in P − {p}. Let us consider the prefix of
α2 ·α up to event dop,j and let us denote this as α2 ·α0 · (s1, dop,j , s2). We have
that α2 · α0 · (s1, dop,j , s2) ∈ execs(A).

Note that since the final states of α1 and α2 are indistinguishable for all
processes in P − Fα2 , and α0 contains only actions from process in P − Fα2 ,
the actions of the execution fragment α0 can extend execution α1 leading to
a state s3 that is indistinguishable for all processes in P − Fα2 from state s1.
This means that there exists execution fragment α′

0 that has the same sequence
of actions with α0, s.t. α1 · α′

0 · (s3, dop,j , s4) ∈ execs(A) and s1, s2, s3, s4 are
indistinguishable for all processes in P−(Fα1∪{p}). Since α1 ·α′

0 ·(s3, dop,j , s4) ∈
execs(A), it must hold that j /∈ Jα1 .

We construct the executions α′
2 = α2 · α0 · (s1, stopp, s

′
1) and α′

1 = α1 · α′
0 ·

(s3, dop,j , s4, stopp, s
′
4). We have that α′

1, α
′
2 ∈ execs(A), Fα′

1
= Fα′

2
= Fα1 ∪{p},

|Fα′
1
| = k + 1, Do(α′

1) = k + 1, Do(α′
2) = 0, states s′1, s

′
4 are indistinguishable

for all processes in P − Fα′
1
.

Theorem 1. If algorithm A solves the at-most-once problem in the presence
of f < m crashes, then there exists an execution α ∈ execs(A), s.t. either α is
infinite and Do(α) ≤ n−f , or α is finite, and there exists no execution fragment
α′, s.t. α · α′ ∈ execs(A) and Do(α · α′) > n − f .

Proof. By contradiction. Assume the theorem to be false, with Condition 1 hold-
ing. Thus from Lemma 1 we can construct finite executions α1, α2 ∈ execs(A),
s.t. Fα1 = Fα2 , |Fα1 | = |Fα2 | = f , Do(α1) = f , Do(α2) = 0 and the final
states of α1 and α2 are indistinguishable for all processes in P −Fα1 . Also from
the assumption, there exists execution fragment α′ s.t. α2 · α′ ∈ execs(A) and
Do(α2 ·α′) > n− f . Since Do(α2) = 0, it must be that Do(α′) > n− f . Clearly
α′ has only actions for processes in P −Fα2 = P −Fα1 . Because the final states
of α1 and α2 are indistinguishable for all processes in P − Fα1 the sequence
of actions in α′ can extend α1 as well. This means that there exists execution
fragment α′′ that has exactly the same actions as α′ s.t. Do(α′′) > n − f and
α1 · α′′ ∈ execs(A). But Do(α1) = f and Jα1 , Jα′′ ⊆ J . Since n = |J | it fol-
lows by the pigeonhole principle that Jα1 ∩ Jα′′ �= ∅ and thus α1 · α′′ is not an
AO-execution, a contradiction.

The main result follows as a corollary to the theorem.
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Corollary 1. For all algorithms A that solve the at-most-once problem with
m processes and n ≥ m jobs in the presence of f < m crashes it holds that
EA(n, m, f) ≤ n − f .

4 Two Process Algorithms for At-Most-Once Problem

We present algorithms for the at-most-once problem that use a collision-
avoidance approach. First we give 2-process algorithms: ao2,n that uses n 1-bit
shared memory variables, and ao

′

2,n that uses two shared memory variables of
log n bits, thus achieving lower space complexity. Both algorithms achieve op-
timal effectiveness. The two-process algorithms can be used as building blocks
to construct algorithms for larger numbers of processes. Here we use algorithm
ao2,n to construct an m-process algorithm for the at-most-once problem.

4.1 Algorithm ao2,n

The algorithm, given in Fig. 1, solves the at-most-once problem for n jobs, using
two processes, numbered 0 and 1, and n 1-bit shared variables. The main idea is
to have the processes move towards each other, with process 0 performing jobs
in the ascending order, and process 1 in the descending order. The processes
avoid a collision, i.e., doing a job twice, by adopting a “look ahead decide for the
current” (LA-DC) approach.

The algorithm uses n shared bit variables x0, . . . , xn−1 as a bookkeeping mech-
anism to record progress. Initially all shared variables are set to 0. If process p
performs job j using action dop,j , then statusp variable is changed to set. This
enables action setp that in turn sets the value of xj to 1. The process decides
whether a job can be performed in action checkp. Using the LA-DC approach,
before a process performs job j, it decides that it is safe to do so, by checking the
shared variable associated with the next job in its path, that is xj+1 for process 0
and xj−1 for process 1. If xj+1 (resp. xj−1) is 0 then process 0 (resp. 1) proceeds
to perform j; otherwise the status of the process is assigned the value end, and
we say that the process terminates. The key idea is that since xj+1 (resp. xj−1)
is 0 then the competing process 1 (resp. process 0), did not yet perform the task
j + 1 (resp. j − 1). Hence it cannot be performing j and collision is avoided.

To show correctness we first prove that if cur0 = k for some k > 0, then all
shared variables “before” xk are set to 1, and respectively that if cur1 = k, then
all shared variables “after” xk are set to 1.

Lemma 2. For any execution α of ao2,n and for any state s in α such that
s.cur0 = k and s.cur1 = k′ for 1 ≤ k ≤ k′ ≤ n − 2, then for i ∈ {0, ..., k − 1} ∪
{k′ + 1, ..., n − 1}, s.xi = 1, and actions do∗,i precede s in α.

Using Lemma 2 we prove that ao2,n solves the at-most-once problem.

Theorem 2. Algorithm ao2,n solves the at-most-once problem.
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Shared Variables: X = {x0, . . . , xn−1}, boolean, initially all 0

Signature:

Input:
stopp, p ∈ {0, 1}

Output:
dop,j, p ∈ {0, 1}, j ∈ J

Internal:
nextp, p ∈ {0, 1}
Read: checkp, p ∈ {0, 1}
Write: setp, p ∈ {0, 1}State:

statusp ∈ {check, set, do, done, end, stopped}, initially check
curp ∈ {0, . . . , n − 1}, initially cur0 = 0 and cur1 = n − 1
stepp ∈ {−1, 1}, initially step0 = 1 and step1 = −1

Transitions of process p:

Internal Read checkp

Precondition:
statusp = check

Effect:
if (curp + stepp) ≥ 0 AND

(curp + stepp) ≤ n − 1
then

if xcurp+stepp = 0
then statusp ← do
else statusp ← end

else
statusp ← end

Internal nextp

Precondition:
statusp = done

Effect:
curp ← curp + stepp

statusp ← check

Internal Write setp
Precondition:

statusp = set
Effect:

xcurp ← 1
statusp ← done

Output dop,j

Precondition:
statusp = do
curp = j

Effect:
statusp ← set

Input stopp

Effect:
statusp ← stopped

Fig. 1. Algorithm ao2,n: Shared Variables, Signature, States and Transitions

4.2 Algorithm ao
′
2,n

This algorithm, also uses the LA-DC idea. The difference is that we use two
integer shared variables, xleft and xright, each of log n bits, that serve as pointers
to the progress of each process. Initially xleft and xright are set to 0 and n − 1
respectively, and thereafter each time process 0 or 1 performs a job with action
do∗,∗, xleft is incremented or xright is decremented respectively at event set. The
decision (made in action check) on whether it is safe to perform a job is based on
the differences xright − cur0 and cur1 − xleft for processes 0 and 1 respectively.
If the difference is greater than 1, then it is safe to perform the job. With similar
arguments as in Theorem 2 the result follows.

Theorem 3. Algorithm ao
′

2,n solves the at-most-once problem.

4.3 Effectiveness, Work and Space Complexity

We now present the efficiency results for both algorithms.

Effectiveness. We show that algorithms ao2,n and ao
′

2,n perform n − 1 jobs
in the presence of at most one stopping failure (optimal given Corollary 1).

Theorem 4. The effectiveness of ao2,n with f < 2 is Eao2,n
(n, 2, f) = n − 1.

Theorem 5. The effectiveness of ao
′

2,n with f < 2 is Eao
′
2,n

(n, 2, f) = n − 1.

Work and Space: Next we asses the work and space complexity of algorithms
ao2,n and ao

′

2,n. Recall that algorithm ao2,n uses single bit shared variables
and ao

′

2,n uses shared variables of log n bits.
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Theorem 6. Algorithm ao2,n has work 2(n + 1) and space n + 2 logn + 8 bits.

Theorem 7. Algorithm ao
′

2,n has work 2(n+1) logn and space 4 log n+10 bits.

5 Multiprocess Solution for the At-Most-Once problem

We now present m-process algorithm aom,n, given in Fig. 2, where m = 2h, and
the number of jobs is n = kh (non-powers are handled using standard padding
techniques). The algorithm is a hierarchical generalization of algorithm ao2,n. It
uses an abstract full k-ary tree of h levels to keep track of progress and guarantee
at-most-once semantics. All processes start at the root of the tree at level 0. At
each node λ at level µ processes are split in two groups according to their process
identifiers and look for subtrees with jobs that are safe to perform in the children
of node λ. Thus at each node λ we can see the processes as two groups, group 0
and group 1, solving a sub-problem with k groups of jobs (the subtrees rooted
at the children of node λ) using the approach of algorithm ao2,n. Group 0 starts
from the leftmost child of node λ and moves to the right, while group 1 starts
from the rightmost child and moves to the left. Both groups use the LA-DC
approach to define whether it is safe to perform a group of jobs (sub-tree rooted
at a child of node λ).

We store the tree on a shared memory array by associating each node with
a shared variable. Variable x0 is associated with the root at level 0, x1, . . . , xk

with the nodes at level 1, xk+1, . . . , xk2 with the nodes at level 2, and so on. In
general the nodes at level µ ∈ [1 . . . h] are associated with the shared variables
xuµ , . . . , xuµ+kµ−1, where uµ = 1+k+k2+k3+. . .+kµ−1. The tree has a total of
v = uh+1 nodes. We denote by node λ the node associated with the shared vari-
able xλ, that has children associated with xλ·k+1, . . . , xλ·k+k and a parent asso-
ciated with x�λ−1

k �. Node λ ∈ [0 . . . v − 1] is at level µ = �logk (λ · (k − 1) + 1)�.
Finally, job j is associated with leaf xuh+j . Next we present aom,n in more detail.

Internal Variables of process p

statusp ∈ {check, set, up, down, do, done, end, stopped} records the status of pro-
cess p and defines its next action as follows: down–p can move to the children of
its current node, up–p finished the current level and can move one level higher,
set–p can set the shared variable associated with its current node to 1, check–p
has to check whether it is safe to work at the current node, do–p is at a leaf and
can perform the associated job, done–p finished working at the current node and
can move to the next, end–p terminated (it is not safe for p to work on the tree),
stopped–p crashed. All processes start at node 0, with statusp = down.

pidp[0 . . . h] is a binary expansion of p into h+1 bits. Note that p ∈ [0, 2h−1]
and thus ∀p ∈ P , pidp[0] = 0.

curp ∈ {0, . . . , v − 1} marks the node at which process p is positioned.
leftp, rightp ∈ {0, . . . , v − 1} keeps the leftmost and rightmost siblings of the

current node.
lvlp ∈ {0, . . . , h} stores the level µ of the current node.
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stepp ∈ {−1, 1} tracks of whether process p is moving from right to left or left
to right at the current level.

Actions of process p

downp: Process p moves one level down. If a leaf is reached, it sets statusp = do
in order for the job associated with the leaf to be performed. If p is at an internal
node, it checks whether pidp[lvlp] is 0 or 1. If it is 0, then p moves to the leftmost
child of node curp, otherwise it moves to the rightmost child. Process p sets lvlp,
curp, leftp, rightp and stepp accordingly. The status of p remains down.

checkp: If p works left-to-right and curp is the rightmost child of its parent, it
sets statusp = up. Similarly if p works right-to-left and curp is the leftmost child
of its parent, it sets statusp = up. Otherwise, p performs a look-ahead read in
shared memory to determine if it is safe to work on the subtree rooted at node
curp. If the shared variable associated with the next node (curp + stepp) is 0,
it is safe to work on the subtree of node curp and thus sets statusp = down.
Otherwise it sets statusp = up.

upp: Process p moves one level up. If it is at level 1 (only root is above), it sets
statusp = end and terminates. If by moving up an internal node is reached, p
updates its internal variables accordingly by checking the proper bit of its pidp

variable, and sets statusp = set.

setp: Process p writes 1 to the shared variable associated with the node curp and
sets statusp = done.

nextp: Process p moves to the next node (left or right, per value of stepp), and
sets statusp = check.

dop,j : Process p preforms job j. Then p sets statusp = set.

stopp: Process p crashes by setting statusp = stopped.

Correctness. We show that algorithm aom,n solves the at-most-once problem.
First we prove that at any internal node λ at level µ, either only processes with
pidp[µ] = 0, or only processes with pidp[µ] = 1 enter the subtree rooted at λ.

Lemma 3. For any execution α of algorithm aom,n if there exist states s, s′ in

α and processes p, q ∈ P s.t.
⌊

s.curp−1
k

⌋
=
⌊

s′.curq−1
k

⌋
= λ, for some node λ at

level µ, then pidp[µ] = pidq[µ].

Proof. For node λ at level µ, if it is the leftmost child of its parent, then from
the first if clause of action checkp, only processes with pidp[µ] = 0 may enter the
subtree rooted at λ. Similarly if node λ is the rightmost child, only processes with
pidp[µ] = 1 may enter the subtree rooted at λ. If node λ is between the leftmost
and rightmost children of its parent

(
λ ∈

[⌊
λ−1

k

⌋
· k + 2 . . .

⌊
λ−1

k

⌋
· k + k − 1

])
,

then processes with pidp[µ] = 0 will approach it from the left, while
processes with pidp[µ] = 1 will approach it from the right. In order to
get a contradiction let us assume that there exists execution α that has
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Shared Variables: X = {x0, . . . , xv−1}, xi boolean initially 0

Signature:

Input:
stopp, p ∈ P

Output:
dop,j , p ∈ P, j ∈ J

Internal:
nextp, p ∈ P
upp, p ∈ P
downp, p ∈ P

Read: checkp, p ∈ P
Write: setp, p ∈ P

State:

statusp ∈ {check, set, up, down, do, done, end, stopped}, initially down

pidp[0 . . . h], where pidp[i] =
⌊

p

2h−i

⌋
mod 2 (the binary expansion of p to h + 1 bits)

curp ∈ {0, . . . , v − 1}, initially 0
leftp ∈ {0, . . . , v − 1}, initially 0
rightp ∈ {0, . . . , v − 1}, initially 0

lvlp ∈ {0, . . . , h}, initially 0
stepp ∈ {−1, 1}, initially undefined

Transitions of process p:

Input stopp

Effect:
statusp ← stopped

Internal Read checkp

Precondition:
statusp = check

Effect:
if (curp + stepp) ≥ leftp

AND (curp + stepp) ≤ rightp

then
if xcurp+stepp = 0
then

statusp ← down
else statusp ← up

else
statusp ← up

Internal nextp

Precondition:
statusp = done

Effect:
curp ← curp + stepp

statusp ← check

Internal upp

Precondition:
statusp = up

Effect:
if lvlp = 1 then

statusp ← end
else

lvlp ← lvlp − 1

curp ←
⌊

curp−1
k

⌋

leftp ←
⌊

curp−1
k

⌋
· k + 1

rightp ←
⌊

curp−1
k

⌋
· k + k

if pidp[lvlp] = 0 then
stepp ← 1

else
stepp ← −1

statusp ← set

Internal Write setp

Precondition:
statusp = set

Effect:
xcurp ← 1
statusp ← done

Internal downp

Precondition:
statusp = down

Effect:
if lvlp = h then

statusp ← do
else

lvlp ← lvlp + 1
leftp ← curp · k + 1
rightp ← curp · k + k
if pidlvlp = 0 then

curp ← leftp

stepp ← 1
else

curp ← rightp

stepp ← −1

Output dop,j

Precondition:
statusp = do
curp = uh + j

Effect:
statusp ← set

Fig. 2. Algorithm aom,n: Shared Variables, Signature, States and Transitions

states s, s′ and processes p, q with pidp[µ] = 0 and pidq[µ] = 1, s.t.
� s.curp−1

k � = � s′.curq−1
k � = λ. This means that both processes have entered

the subtree rooted at node λ. For this to happen, there exist in α tran-
sitions ({curp = λ, statusp = check} , checkp, {curp = λ, statusp = down}) and
({curq = λ, statusq = check} , checkq, {curq = λ, statusq = down}), that pre-
cede s and s′ respectively. Recall that p moves left-to-right and q right-to-left,
and before moving to a new node at a level, they set the shared variable asso-
ciated with the previous node to 1. Hence it follows that either xλ+1 = 1 when
action checkp took place or xλ−1 = 1 when action checkq took place. If the
first case is true, then the state of p becomes {curp = λ, statusp = up} prevent-
ing p from entering the subtree rooted at λ. Otherwise the state of q becomes
{curq = λ, statusq = up} and q never enters the subtree rooted at λ. So it cannot
be the case that both process p and q entered the subtree rooted at node λ in α
and that completes the proof.
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Lemma 4. For any execution α of algorithm aom,n if there exist states s, s′ in

α and processes p, q ∈ P s.t.
⌊

s.curp−1
k

⌋
=
⌊

s′.curq−1
k

⌋
= λ, for some node λ at

level µ, then pidp[0 . . . µ] = pidq[0 . . . µ].

Proof. We prove this by induction on the level µ of node λ.

Base Case: Here we consider level µ = 0, meaning that all processes that reach
the children of the root (node 0) have the same pid∗[0] bit. This holds since
∀p ∈ P , pidp[0] = 0. Thus for any execution α of aom,n, if there exists state s in

α s.t.
⌊

s.curp−1
k

⌋
= 0 for some process p ∈ P , pidp[0] = 0.

Induction Hypothesis: Assume that for any execution α if there exist states
s, s′ and processes p, q s.t. � s.curp−1

k � = � s′.curq−1
k � = λ, for all nodes λ ∈

[uµ . . . uµ + kµ − 1] at level µ, then pidp[0...µ] = pidq[0...µ].

Induction Step: By Lemma 3 we show that ∀λ ∈ [uµ+1 . . . uµ+1 + kµ+1 − 1] at
level µ + 1, for any execution α, if there exist states s, s′ and processes p, q s.t.
� s.curp−1

k � = � s′.curq−1
k � = λ, then pidp[0 . . . µ + 1] = pidq[0 . . . µ + 1].

From Lemma 4 we get Corollary 2 that says, that in any execution α of aom,n,
only one process p, if any, may reach the decision to perform job j associated
with leaf uµ + j. This decision is reflected in α by a state s, where s.curp =
uµ + j, s.statusp = do.

Corollary 2. For any execution α of algorithm aom,n if there exist states s, s′

and processes p, q s.t. s.curp = λ, s.statusp = do and s′.curq = λ, s′.statusp =
do, for some leaf λ ∈ [uh . . . uh + kh − 1], then p = q.

Theorem 8. Algorithm aom,n solves the at-most-once problem.

Work and Space: Next we assess work and space of algorithm aom,n. Ac-
cording to the algorithm specification, only the actions checkp and setp perform
memory accesses, and every time they do so, they access exactly one bit.

Theorem 9. The work complexity of algorithm aom,n is O(n + m logm).

Proof. We observe that for each subtree rooted at an internal node λ at level
µ we have a sub-instance of the problem for kh−µ jobs and 2h−µ processes. All
processes of such sub-instance have the same prefix at the first µ bits of their
pid from Lemma 4. Let Wµ be an upper bound on work of the sub-instance.
Now we consider the first level of the subtree. Processes are split in groups 0
and 1 (with 2h−(µ+1) processes each), according to the value of their pid∗[µ+1].
Group 0 starts at the leftmost child, group 1 at the rightmost child, and they
move towards each other. From Lemma 4 we have that only one of the groups,
if any, will continue to the sub-instance of the next level, thus we have at most
k sub-instances derived at level µ + 1. From algorithm aom,n, we have that
before a process enters a node, it does a look ahead memory read, and when
it leaves a node, it sets the shared variable associated with the node to 1. This
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means that we have a total of k + 2 reads and k writes from the two groups.
Since each group has 2h−(µ+1) processes, we get (k + 2) · 2h−(µ+1) reads and
k · 2h−(µ+1) writes. From the above discussion we have the following recurrence
relation: Wµ = k · Wµ+1 + (2k + 2) · 2h−(µ+1).

Also for level h (k jobs and 2 processes), we have k + 2 reads and k writes by
Theorem 6, thus: Wh = 2k + 2. Combining the above we get:

W0 = k · W1 + (2k + 2) · 2h−1 = (2k + 2) · 2h−1 ·
∑h−1

i=0

(
k
2

)i
.

Case k = 2: (2k + 2) · 2h−1 ·
∑h−1

i=0

(
k
2

)i
= 6 · 2h−1 · h = 5m logm

Case k > 2: (2k + 2) · 2h−1 ·
∑h−1

i=0

(
k
2

)i
= (2k + 2) · 2h−1 · ( k

2 )h−1
k
2−1

= 2k+2
k−2 ·

(n − m) ≤ 8(n−m), where the penultimate relation follows form m = 2h, n = kh.

We conclude that W0 = Θ(n + m logm).

Theorem 10. The space complexity of algorithm aom,n is Θ(n + m log n).

Effectiveness: We now assess the effectiveness of algorithm aom,n.

Theorem 11. Algorithm aom,n has effectiveness Eaom,n(n, m, m − 1) =
(n

1
log m − 1)log m = n − log m · o(n).

Proof. We observe that for each subtree rooted at an internal node λ at level
µ we have a sub-instance of the problem for kh−µ jobs and 2h−µ processes.
Moreover if we consider only the first level of such a sub-instance, we have to
solve a problem of k groups of jobs (with kh−(µ+1) jobs each) and 2 groups
of processes (with 2h−(µ+1) processes each). Furthermore, as we pointed out
before, algorithm aom,n follows the same principles for solving this instance as
algorithm ao2,n. Thus at each level we match the effectiveness of ao2,n that by
Theorem 4 performs Eao2,n

(k, 2, 1) = k − 1 jobs. If we go all the way down to
level h = logk n, we have an exact instance of the 2-process problem (Section 4.1)
and hence by Theorem 4 it follows that Eaom,n

(k, 2, 1) = Eao2,n
(k, 2, 1) = k− 1.

From the above we get the following recurrence:

Eaom,n (n, m, m − 1) = (k − 1) · Eaom,n

(
n
k , m

2 , m
2 − 1

)
= · · · =

= (k − 1)h−1 · Eaom,n

(
n

kh−1 , m
2h−1 , m

2h−1 − 1
)

= (k − 1)h−1 · Eaom,n (k, 2, 1)

Thus Eaom,n
(n, m, m − 1) = (k − 1)h.

Finally, we note that since Eaom,n
(n, m, m − 1) = n − log m · o(n), the effec-

tiveness of the algorithm comes reasonably close, asymptotically in n, to the
corresponding lower bound of n − f .

6 Conclusions

We examined the implementation of at-most-once semantics in an asynchronous
multiprocessor shared memory model. We first defined the problem, proposed a
new efficiency measures, we called effectiveness and counts the number of jobs
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performed by a given implementation, and we showed that at-most-once algo-
rithms that tolerate f failures cannot perform more than n − f jobs. Then we
devised and analyzed two effectiveness-optimal algorithms for 2 processors us-
ing the collision avoidance paradigm, and finally we used those algorithms as
building blocks to construct an algorithm for n processors. Our results reveal
an effectiveness gap as the number of processes in the system increases. Thus
we challenge the discovery of more complex collision detection techniques that
would achieve higher effectiveness. Finally we question the existence and effi-
ciency of algorithms that try to implement at-most-once semantics in systems
with different means of communication, such as message-passing systems.
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Abstract. Optimistic and nonblocking concurrent algorithms are in-
creasingly finding their way into practical use; an important example
is software transactional memory implementations. Such algorithms are
notoriously difficult to design and verify as correct, and we believe com-
plete, formal, and machine-checked correctness proofs for such algorithms
are critical. We have been studying the use of automated tools such as
the PVS theorem proving system to model algorithms and their speci-
fications using formalisms such as I/O automata, and using simulation
proof techniques to show the algorithms implement their specifications.
While it has been relatively rare in the past, optimistic and nonblocking
algorithms often require a special flavour of simulation proof, known as
backward simulation. In this paper, we present what we believe is by far
the most challenging backward simulation proof achieved to date; this
proof was developed and completely checked using PVS.

1 Introduction

Concurrent algorithms are notoriously difficult to design correctly, and nonblock-
ing algorithms that make no use of locks even more so. Formal proofs are often
too long and complicated to construct or check manually. We and others [1,5]
have therefore been exploring the use of automated tools for constructing and
checking complete formal proofs for such algorithms. We are particularly inter-
ested in being able to do this for complex systems such as transactional memory
implementations, which have not received sufficient formal attention to date;
it is critically important for these implementations to be correct if they are to
deliver on their promise of making concurrent programming substantially easier.

In our work so far, we have modelled both specifications and algorithms us-
ing I/O Automata (IOAs) [8], and used simulation proofs to prove that the
algorithm implements the specification. Simulation proofs come in two flavours:
forward and backward. Backward simulations are required when we cannot tell
whether an operation has taken effect until after it has done so. While backward
simulations have rarely been required in the past, we have found that many
nonblocking and optimistic concurrent algorithms require them ([1,4] present
verifications of nonblocking algorithms using backward simulation).

For algorithms that require backward simulation, it is common to define an
intermediate automaton and prove by forward simulation that the algorithm

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 274–288, 2009.
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implements the intermediate automaton and by backward simulation that the
intermediate automaton implements the specification. Backward simulations are
significantly more challenging than forward ones, because they have more com-
plex proof obligations, and require us to think about program execution “back-
wards”, which is less natural than the forward style of thinking to which we
are accustomed. Therefore, it is generally desirable to keep the intermediate au-
tomaton as close as possible to the specification automaton, thus keeping the
part that requires backward simulation very simple.

To our knowledge, in all previous such proofs the intermediate automaton
is close to the specification automaton so the backward simulation is almost
trivial. For example, in our proof of the optimistic LazyList algorithm [1], we
were able to completely automate the backward simulation with a few simple
strategies. Almost all previous backward simulations are manual proofs, and the
few machine checked ones have generally been simple [11].

In this paper, we describe what we believe is by far the most challenging
backward simulation proof completed to date. We developed this proof using the
PVS theorem prover, and it is entirely machine checked. The algorithm we proved
is a corrected version of the Snark [2] concurrent double-ended queue (deque)
algorithm, as presented in [3]. As mentioned in [3], this proof comprises a forward
simulation and a backward simulation. We briefly discuss the Snark algorithm
and explain why it cannot be proved correct with just a forward simulation. The
paper then focuses on the intermediate automaton we defined in order to make
the backward simulation as simple as we could, and the backward simulation
proof itself; these aspects of our work provide more interesting differences over
previous work than the forward simulation proof showing that the corrected
Snark algorithm implements the intermediate automaton.

Lamport [7] described his work using the +CAL language and the TLC model
checker to identify some of the same bugs in the original Snark algorithm that
were revealed by our earlier attempts to prove this algorithm correct [3]. While
the automated nature of model checking is appealing, and provides an invalu-
able tool for quickly discovering bugs and checking putative properties of an
algorithm, convincing ourselves that an algorithm is correct using model check-
ing techniques is not as easily automatable. In some specific cases, abstraction
theorems have been proved that allow an infinite-state algorithm to be proved
correct by exhaustively model checking a finite-state version of it. While these
are valuable directions to explore, these abstraction theorems require significant
intellectual effort to prove, and apply only to a limited class of algorithms. Fur-
thermore, both the proof of the abstraction theorem and verifying that it applies
to a particular algorithm require nontrivial intellectual effort, which in general
has not been mechanically checked, leaving significant room for human error. We
are therefore motivated to pursue methods for constructing correctness proofs
that can be checked mechanically. We do not consider that either approach
subsumes the value of the other; these are complementary research directions.

In Section 2 we present background and preliminaries. Section 3 briefly
describes salient features of the (corrected) Snark algorithm, explains why it
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requires a backward simulation, and motivates the construction of the interme-
diate automaton we used in our proof; this automaton is described in Section 4.
In Section 5, we present the simulation relation used in this proof in detail, and
describe parts of the proof showing that this relation is indeed a backward sim-
ulation relation that implies that the intermediate automaton implements the
deque specification. We plan to make our proof scripts available so that inter-
ested readers can study our proof in detail and learn from our experiences. We
conclude in Section 6.

2 Preliminaries

A deque deq is a triple (deq.seq, deq.left, deq.right) where deq.seq is a function
from integers to some set V , and deq.left and deq.right are integers, satisfying the
constraint that deq.left < deq.right. The value of the deque is the subsequence of
values in deq.seq between positions deq.left and deq.right, not inclusive. A deque
deq is empty, written empty(deq), when deq.left = deq.right − 1.

A deque supports push and pop operations on both sides, specified by the
following functions. The push function takes as arguments a deque value deq, a
side s ∈ SIDE = {left, right} and a value v ∈ V to be pushed. It returns the
deque that is the result of pushing v onto the appropriate side.1

push(deq, s, v) =

⎧
⎪⎪⎨

⎪⎪⎩

(deq.seq ⊕ {deq.left �→ v},
deq.left − 1, deq.right) if s = left

(deq.seq ⊕ {deq.right �→ v},
deq.left, deq.right + 1) otherwise

The pop function returns a new deque value as well as a response value in
V⊥ = V ∪ {⊥} (where ⊥ is not in V , and indicates that the deque is empty).

pop(deq, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(deq, ⊥) if empty(deq)
((deq.seq, deq.left + 1, deq.right),

deq.seq(deq.left + 1)) if s = left
((deq.seq, deq.left, deq.right − 1),

deq.seq(deq.right − 1)) otherwise

I/O Automata. We briefly describe the simplified IOA model and simulation
proofs used in this paper; see [9] for formal details. We omit some structure often
seen in definitions of I/O automata, including features relating to the descrip-
tion of liveness properties. Here, we are interested only in safety properties. An
input/output automaton is a labelled transition system, along with a signature
partitioning its actions into external and internal actions. Formally, an IOA A
consists of: a set states(A) of states; a nonempty set start(A) ⊆ states(A) of start
states; a set acts(A) of actions; a signature, sig(A) = (external(A), internal(A)),
which partitions acts(A); and a transition relation, trans(A) ⊆ states(A) ×
acts(A) × states(A).
1 f ⊕ {x �→ v} denotes the function that is equal to f on every element of its domain,

except at x , which it maps to v .



Nonblocking Algorithms and Backward Simulation 277

We describe the states by a collection of state variables, and the transition
relation by specifying a precondition and effect for each action. A precondition
is a predicate on states, and an effect is a set of assignments showing only those
state variables that change, to be performed as a single atomic action. For states s
and s ′ and action a with precondition prea and effect effa , the transition (s , a, s ′)
is in trans(A), written s a−→ s ′, if and only if prea holds in s (the pre-state) and
s ′ (the post-state) is the result of applying effa to s .

A (finite) execution fragment of A is a sequence of alternating states and ac-
tions of A, π = s0, a1, s1, . . . sn , such that (sk−1, ak , sk ) ∈ trans(A) for k ∈ [1,n].
An execution is an execution fragment with s0 ∈ start(A). We write trace(π)
to denote the sequence of external actions in the execution fragment π. We
also write trace(α) to denote the sequence of external actions in the sequence
α ∈ acts(A)∗, where acts(A)∗ is the set of finite sequences over acts(A). For
α ∈ acts(A)∗, we write s α−→ s ′ to mean that there is an execution fragment be-
ginning with s , ending with s ′, and containing exactly the actions of α. The
set of behaviours of an automaton A is the set of traces of its executions:
traces(A) = {trace(π) | π is an execution of A}. For an “abstract” automa-
ton A, modelling a specification, and a “concrete” automaton C , modelling an
implementation, we say that C implements A iff traces(C ) ⊆ traces(A): every
behaviour of the implementation is allowed by the specification.

One way to prove that C implements A is via forward simulation [9]. We
consider an arbitrary execution of C and inductively construct an execution of
A with the same external actions in the following fashion: Start from the initial
state in C ’s execution, and then for each action in turn, choose a (possibly empty)
sequence of actions for A to execute such that (i) the actions chosen constitute
a valid execution of A, and (ii) whenever C executes an internal action, the
sequence of actions chosen for A has only internal actions, and (iii) whenever
C executes an external action, the sequence of actions chosen for A contains
that same action, and no other external actions. In this way, we ensure that the
constructed execution for A has the same trace as the given execution for C .
To facilitate an inductive proof, we define a simulation relation, a relation R
over states of C and states of A, and require that the initial states of C and
A are related by R, and that the states of C and A after each induction step
are similarly related by R. R captures our understanding of why C implements
A; determining a relation that allows this inductive proof approach is often the
most challenging part of performing a forward simulation proof.

This approach will not work if the actions of A that we should choose for
some action of C depend on the future of the execution. In such cases, we can
use a backward simulation, which is similar in spirit to a forward simulation, but
we start at the end of a given execution of C and work backwards towards the
initial state, thus allowing us to encode in the simulation relation information
about what happens in the “future” of a given step of the given execution. A
formal definition appears in Section 5.

The Abstract Automaton. The standard correctness condition for concurrent
data structures is linearisability [6], which requires that each operation appears
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pushInvp(s,v)
{pcp = idle}
pcp := pushing(s, v)

popInvp(s)
{pcp = idle}
pcp := popping(s)

doPushp(v)
{pcp = pushing(s, v)}
deq := push(deq, s, v),
pcp := pushRPc

doPopp

{pcp = popping(s)}
deq := π1(pop(deq, s)),
pcp :=

popRPc(π2(pop(deq, s)))

pushRespp

{pcp = pushRPc}
pcp := idle

popRespp(r)
{pcp = popRPc(r)}
pcp := idle

Fig. 1. The AbsAut automaton. The variable p ranges over processes, v ranges over V ,
r ranges over V ∪ ⊥, and s ranges over {left, right}. π1(x) denotes the first component
of the pair x and π2(x) denotes the second.

to take effect atomically between its invocation and its response. We capture the
linearisable traces by using a canonical automaton [10] AbsAut, which models a
set of processes operating on a deque. A push operation by process p is mod-
elled by an external invocation action pushIinvp(s , v) for s ∈ {left, right} and
v ∈ V , an external response action pushRespp , and an internal doPushp(v) ac-
tion, v ∈ V . Similarly, pop operations are modelled by external popInvp(s) and
popRespp(r) actions (r ∈ V⊥), and an internal doPopp action. We use p’s pro-
gram counter pcp to ensure that the “do” action occurs between the invocation
and the response.

AbsAut is presented in Figure 1. Preconditions are defined in braces, and
effects are defined using the assignment operator “:=”. During a “do” action,
the operation that p is executing (encoded in pcp) is applied to the deque, and, in
the case of pop operations, the outcome is encoded in pcp . The intitial states of
AbsAut are states in which the deque is empty and no operations are in progress:
start(A) = {ab | empty(ab.deq) ∧ ∀ p • pcp = idle}.

3 The Snark Algorithm

The backward simulation proof described in this paper proves that an inter-
mediate automaton IntAut, described in the next section, implements AbsAut.
Thus, the corrected Snark algorithm [3] for which we developed this proof is
not directly relevant to this paper, and indeed, other deque algorithms could be
proved correct by proving that they implement IntAut. Nonetheless, we describe
some salient features of Snark, and briefly describe elements of the proof that
it implements IntAut, in order to motivate the construction of IntAut. Further
details of the Snark algorithm can be found in [2,3].

Snark represents the deque as a doubly-linked list of nodes, each of which con-
tains a value. Two shared pointers, called hats (leftHat and rightHat) indicate
the leftmost and rightmost nodes when the deque is nonempty. The “outward”
pointers of the leftmost and rightmost deque nodes (e.g., the left pointer of the
leftmost deque node) point to sentinel nodes, whose inward pointers are self
pointers. Figure 2(c) shows a deque containing one value A.
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When the deque is empty, leftHat points to a node with a left self pointer
and rightHat points to a node with a right self pointer. These might be the same
node or different nodes, so Figures 2(a) and (b) present two representations of
the empty deque.

Snark uses the double-compare-and-swap (DCAS) synchronisation primitive, a
generalisation of the well-known compare-and-swap (CAS) operation, that oper-
ates on two locations. DCAS allows a process to atomically compare two memory
locations to respective “old” values, and to store respective “new” values to them
if both comparisons succeed.

As presented in [2,3], the Snark algorithm defines four operations, pushLeft,
pushRight, popLeft and popRight, that push or pop values from the appropri-
ate side of the deque. Snark uses DCAS for both push and pop operations to
atomically modify the relevant hat (leftHat for left-side operations, rightHat
for right-side operations) as well as one of the pointers of the node currently
indicated by that hat. For example, pushRight changes both the rightHat and
the right pointer of the node it indicates to point to a newly-allocated node
initialised to contain the value being pushed. Similarly, a popRight operation
modifies the rightHat to point to the left neighbour of the node it currently
indicates, while changing the left pointer of this node to a self pointer. This
removes the rightmost node from the deque and simultaneously transforms it
into the new right sentinel. Figure 2(c) shows a single-element deque containing
A, and Figure 2(d) shows the deque after the DCAS of a popRight operation
has removed this node. Note that now leftHat points to a node with a left self
pointer, and rightHat points to a node with a right self pointer. Thus, the deque
is empty in this state.

Observe that leftHat and the right pointer of the node it indicates are the
same in Figures 2(c) and 2(d). Therefore, a popLeft operation that was poised

(a) rightHatleftHat

(b) rightHat

Dummy

leftHat

(c)

A

leftHat rightHat

(d)

A

leftHat rightHat

Fig. 2. States of the doubly-linked list



280 S. Doherty and M. Moir

to perform its DCAS in Figure 2(c) can succeed in the state in Figure 2(d),
even though the above-described popRight operation has already removed the
node containing A. In the original Snark algorithm, some additional checks were
used in an attempt to avoid this inconvenient situation. However, as revealed
by our initial attempt to prove that algorithm correct, these checks were not
sufficient, and it was still possible for two competing pop operations to believe
they had removed the same node, albeit via a more complicated sequence of
events than the one described above. This allowed incorrect behaviour in which
both operations return A.

The corrected Snark algorithm acknowledges that this may happen (and is
thus able to simplify the algorithm by eliminating the unsuccessful attempts
to avoid it), and introduces an extra step to ensure that only one process suc-
cessfully returns the value from a node, even if two processes believe they have
removed the node from the list. In this step, the processes use CAS to atomically
replace the value in the node with a special secured value, which is assumed
never to be pushed onto the deque. If this succeeds, then the process has claimed
the value and returns it. If it fails, then the failing process knows that another
process has already claimed the value. At this point, the failing process could
simply retry. However, we show that this process can in fact return “empty”
immediately. Showing that this is correct complicates our proof considerably.

Why we need a backward simulation. Consider now how we might attempt
to prove that the corrected Snark algorithm implements AbsAut using a forward
simulation. Once a node has been removed from the deque, another pop oper-
ation on the same side can remove the next node from that side and return it.
This requires us to consider the pop associated with the first removed node to
occur before the removal of the second node. But, because two processes may
have removed the first node from the deque and not yet decided which of them
will return its value, we cannot decide which process’s doPop action should be
executed in AbsAut when the node is first removed: this requires knowledge of
the future. This explains why we need a backward simulation to prove Snark
implements AbsAut.

Because backward simulations work backward in time, when we encounter
an action in which a process removes a node from the deque, we can tell from
the state whether the process removing the node successfully claims the value
(later in the execution). However, if a process thinks it removes a node that
has actually already been removed from the other end, we cannot consider its
pop operation to occur when it does the removal, as many other operations may
have been completed since the node was removed for the first time. In this case,
although we know which process pops the value, we need to determine when the
pop can be considered to take effect. It turns out that, even in this case, before
executing its DCAS to remove the node from the deque, it reads the relevant
hat at a moment when the node it points to is indeed in the deque. Because the
value was at the appropriate end of the deque at that moment, we can consider
the pop to have occurred then. In essence, every time a pop operation reads the
hat when it points to a deque element, it is safe to consider the pop operation to
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pushInvp(s,v)
{pcp = idle}
pcp := pushing(s, v)

pushRespp

{pcp = pushRPc}
pcp := idle

doPushKp(k)
{pcp = pushing(s, v) ∧ k �∈ used}
pcp := pushRPc,
used := used ∪ {k},
kV al := kV al ⊕ {k �→ v},
(left, right) := pushidx(left, right, s),
keys := keys ⊕ {idx(left, right, s) �→ k}

Fig. 3. The push actions of the automaton IntAut. The assignment (left, right) :=
pushidx(left, right, s) subtracts one from left or adds one to right, depending on the side
s. The expression idx(l , r , s) equals l + 1 or r − 1, depending on the side s.

have occurred at that point, provided the operation subsequently removes the
node from the deque (or thinks it has even though another process already has)
and successfully secures the value from the node. Although we cannot tell if this
will happen in the future in a forward simulation proof, we can tell that this is
a safe point to consider the pop to occur if does happen.

In the next section we present the intermediate automaton IntAut, which al-
lows processes to “observe” that a value it will attempt to remove is at the
appropriate end of the deque. When it succeeds in removing a value from the
deque (or thinks it does), the point at which it previously observed this value
at the appropriate end of the deque is a valid point to consider it to have been
removed. Because the proof that IntAut implements AbsAut is a backward sim-
ulation, when we encounter such an observe action, we can determine whether
the process executing it successfully removes the observed value in the future,
and thus decide whether to consider its pop to have occurred at that point.

4 The Intermediate Automaton

In this section, we describe the intermediate automaton. IntAut is presented
in Figures 3 and 4. IntAut associates each value pushed to the deque with a
unique key; the doPushK action takes a previously unused key, marks it as
used, associates the value being pushed with the key, and pushes the key onto
the appropriate end of a sequence keys, whose domain is specified by the left
and right variables.

The actions related to pop operations are more interesting. When process p
invokes a pop operation, pcp becomes popping(s), where s is the side on which
the pop operation is invoked. While in this state, p can execute multiple observep
actions, which record in keyp the key at the appropriate end of keys.

Having observed a key at the appropriate end of the deque, p can execute a
popNonEmpty action in order to remove that key from (the relevant portion
of) keys by modifying left or right as appropriate, provided it is still there (or
perhaps is again there). In this case, p records that this key has been popped and
that its value is ok to return. Having done so, pcp becomes deciding, so p can
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popInvp(s)
{pcp = idle}
pcp := popping(s)
keyp := ⊥

popEmptyp

{pcp = popping(s) ∧
left = right − 1}
pcp := popRPc(⊥)

contendp

{pcp = popping(s) ∧
left = right − 1 ∧
popped(keyp) ∧
keyp �= ⊥}
pcp := deciding(s)

popRespp(r)
{pcp = popRPc(r)}
pcp := idle

popNonEmptyp

{pcp = popping(s) ∧
left < right − 1 ∧
keyp =

keys(idx(left, right, s))}
pcp := deciding(s),
valOk := valOk ∪ {keyp},
popped := popped ∪ {keyp},
(left, right) :=

popidx(left, right, s)

observep

{pcp = popping(s) ∧
left < right − 1}
keyp :=

keys(idx(left, right, s))

secureValp
{pcp = deciding(s) ∧
keyp ∈ valOk}
pcp := popRPc(kV al(keyp))
valOk := valOk \ {keyp}

loseValp
{pcp = deciding(s) ∧
keyp �∈ valOk}
pcp := popRPc(⊥)

Fig. 4. The pop actions of the automaton IntAut . The assignment (left, right) :=
popidx(left, right, s) adds one to left or subtracts one from right, depending on the
side.

then “secure” the value associated with the key it popped from keys, provided
the value is still ok to return (secureV al action). In this case, it sets pcp in
preparation for returning that value, and removes the key from the valOk set,
indicating that it is no longer ok to return this value. Thus only one process can
perform a secureV al action for a given key.

A process that has observed a key at the appropriate end of keys can also
attempt to secure the value from it if the process successfully executes a contend
action when the key sequence is empty. (As for popNonEmpty, contend sets pcp
to deciding.) If p is deciding, because it has executed either a popNonEmpty
action or a contend action, and its key is no longer in valOk (implying that
another process has already secured it), then p can execute a loseV al action, in
which case it prepares to return ⊥ from the pop operation. When pcp = popping
and keys is empty, p can execute a popEmpty action, and then return ⊥.

5 Verification

We cannot hope to describe all of the details of our proof in the space available.
Instead, we explain how backward simulation proofs work, present the back-
ward simulation relation used by our proof, and describe in detail a few proofs
steps that illustrate important and interesting aspects of our proof. For readers
interested in additional detail, we are making our proof script available2 and
preparing a more detailed description of our proof.

2 These can be downloaded from http://ecs.victoria.ac.nz/Main/SunVUW/
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(∀ is0 ∈ start(IntAut), as •
R(is,as) ⇒ as ∈ start(AbsAut))

(1)

(∀ is • (∃ as • R(is, as))) (2)

(∀ is, is ′, as ′, a •
R(is ′, as ′) ∧ is a−→ as ′ ⇒
(∃ as, β •

R(is, as) ∧ as
β−→ as ′ ∧

trace(β) = trace(〈a〉))

(3)

Fig. 5. A relation R ⊆ states(IntAut) × states(IntAut) is a backward simulation
from IntAut to AbsAut if these conditions hold, where is0 ∈ start(intaut); as0 ∈
start(AbsAut); is, is ′ ∈ states(IntAut); as, as ′ ∈ states(AbsAut); a ∈ acts(IntAut);
β ∈ acts(AbsAut)∗

Figure 5 presents the definition of backward simulation, applied to the au-
tomata IntAut and AbsAut. The definition asserts properties of a relation R ⊆
states(IntAut)× states(AbsAut). The existence of such a relation allows us to in-
ductively construct, for any (finite) execution of IntAut, an execution of AbsAut
with the same trace, as follows. We start from the final state of the execution
of IntAut (call it is) and construct a final state for the abstract execution (call
it as) such that R(is , as). Property 2 guarantees that this is possible. Then,
working backwards along the execution, for each transition is a−→ is ′ of IntAut,
we choose 1) a corresponding sequence of actions β and 2) a state as of AbsAut,

satisfying two properties: as
β−→ as ′ where as ′ is the abstract poststate related

to is ′; and if a is external then β contains the action a and no other external
actions. Property 3 guarantees that this is possible. Finally, Property 1 guaran-
tees that when we reach the first transition of the execution, the AbsAut state
we choose is a start state; thus we have constructed an execution of AbsAut with
the same trace as the IntAut execution, as required.

Thus, it suffices to construct a simulation relation satisfying Properties 1–
3. Our simulation relation is the conjunction of the three predicates SeqOk,
WinnerUnique, and CorrespondenceOk, which we describe below.

SeqOk and WinnerUnique. SeqOk describes the relationship between the
abstract deque and IntAut ’s key sequence. We first consider a simple assertion
that fails to adequately describe this relationship. The variables keys and kV al
of the intermediate automaton together yield a sequence of values, thus:

σ(is) = λ i • is .kV al(is .keys(i)) (4)

It may be tempting to build a simulation relation around a simple relationship
between this sequence and the deq variable of the abstract automaton, i.e.,

as.deq.seq = σ(is) ∧ is.left = as.deq.left ∧ is.right = as.deq.right (5)

However, consider a process p executing a pop operation on the left side of the
deque, that takes a contendp action followed by a secureV alp action, finishing
its operation with an action of the form popRespp(v) with v �= ⊥. It is possible,
given the transition relation of IntAut, that the value v is not the leftmost value
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SeqOk(as, is,m) =̂ ∃m •
∀ i •as.deq.left < i < as.deq.right ⇒

is.left < m(i) ∧ m(i) < is.right ∧ (6)

σ(is)(m(i)) = as.deq.seq(i) ∧ (7)

¬WinnerExists(as, is, is.keys(m(i)))) (8)

∧
(∀ i , j • as.deq.left < i < j < as.deq.right ⇒

m(i) < m(j )) ∧ (9)

(∀ i •is.left < i < is.right ⇒
InMatchRange(as,m, i) ∨ (10)

WinnerExists(as, is, is.keys(i))) (11)

WinnerUnique(as, is) =̂

∀ p, q •as.pcp = popRPc(v1) ∧
as.pcp = popRPc(v2) ∧ is.keyp = is.keyq ∧

v1 �= ⊥ ∧ v2 �= ⊥ ⇒ p = q (12)

Fig. 6. The SeqOk and WinnerUnique predicates

of σ during any of these actions. (The key associated with the value v may be
removed from keys when the key is rightmost, and then secured by a process
popping from the left.) The only point in the execution of p’s operation at which
v must be the leftmost value is when p takes its observep transition. However,
this action does not modify σ, and so we cannot make observekeyp transitions
correspond to the abstract doPopp action, while preserving property 5.

We need a weaker property that allows the key sequence in the intermediate
automaton to contain values that have been removed from the abstract deque,
so that we can (at least under some conditions) choose doPopp for transitions
labelled by observep . The predicate SeqOk, presented in Figure 6, defines such
a property. SeqOk describes states of AbsAut and IntAut and an existentially
quantified match function m : Z → Z, that associates indexes between the lim-
its of the abstract deque with indexes between the limits of IntAut (Clause 6).
For any i between the limits as .deq.left and as .deq.right, this function satisfies
σ(is)(m(i)) = as .deq.seq(i). Thus, m takes each abstract index to an interme-
diate index that is associated with the same value.

We want to allow values to be “already popped” in the abstract automaton,
but remain in the intermediate automaton. Not all indexes of σ between is .left
and is .right are in the range of the function m. Each index between these limits
not in the range of m is associated by keys with a key k that has already been
observed by some process p during a transition that corresponds to a doPopp
transition. If p has executed such an observep action at some earlier point in the
intermediate execution, then we say that p has won the key k . For each index in
the range of m, no process has won the associated key (Clause 8). For a key k ,
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WinnerExists(as, is, k) =̂

∃ p • as.pcp = popRPc(r) ∧
r �= ⊥ ∧ is.keyp = k

InMatchRange(as, m, i) =̂

∃ j • as.deq.left < j < as.deq.right ∧
m(i) = j

OtherDeciderExists(is, p) =̂

∃ q , s • q �= p ∧
is.keyp = is.keyq ∧
is.pcq = deciding(s)

Fig. 7. Auxilliary predicates

CorrespondenceOk(as, is) =̂

∀ p •IdleOk(as, is, p) ∨
PushOk(as, is, p) ∨
FinishedPopOk(as, is, p) ∨
LosingPopOk(as, is, p) ∨
WinningPopOk(as, is, p) ∨
StartingPopOk(as, is, p)

IdleOk(as, is, p) =̂

as.pcp = is.pcp = idle

PushOk(as, is, p) =̂

as.pcp = is.pcp = pushing(s, v) ∨
as.pcp = is.pcp = pushRPc

FinishedPopOk(as, is, p) =̂

as.pcp = is.pcp = popRPc(r)

StartingPopOk(as, is, p) =̂

as.pcp = is.pcp = popping(s)

Fig. 8. CorrespondenceOk, and subpredicates

WinnerExists asserts that some process has observed k during a transition that
corresponds to a doPop transition (Figure 7).

Clause 9 asserts that m preserves the order of its domain. The final conjunct
of SeqOk constrains the properties of indexes in the intermediate automaton.
Each index between is .left and is .right is either in the range of m (Figure 7),
or is associated with a key that has already been won. WinnerUnique (Figure
6) asserts that at most one process wins each key. This property ensures that at
most one pop operation can return the value pushed by each push operation.

CorrespondenceOk requires each process p to satisfy one of six mutually
exclusive predicates, which track the progress of p through its operations. For
example, if IdleOk(as , is , p) holds, then in both the abstract state as and the
intermediate state is , process p is not executing any operation. PushOk(as , is , p)
holds if p is executing a push operation, and there are two disjuncts requiring p
to be at the same stage (either about to apply its operation, or about to return
from it) in both the intermediate and abstract states. The remaining predicates
capture the more interesting relationship between stages of pop operations in
the two automata, which arises because an abstract doPop action corresponds
to different actions of the intermediate automaton in different cases.

Figure 8 presents FinishedPopOk and StartingPopOk. FinishedPopOk asserts
that a process p has completed its pop operation in both abstract and
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WinningPopOk(as, is, p) =̂

(is.keyp �= ⊥ (13)

as.pcp =

popRPc(is.kV al(is.keyp)) ∧ (14)

is.pcp = deciding(s) ∧ (15)

is.keyp ∈ is.popped ∧ (16)

is.keyp ∈ is.valOk) (17)

∨ (18)

(is.keyp �= ⊥ ∧ (19)

is.pcp = popping(s) ∧ (20)

as.pcp =

popRPc(is.kV al(is.keyp)) ∧ (21)

(is.keyp �∈ is.popped ∨
is.keyp ∈ is.valOk)) (22)

LosingPopOk(as, is, p) =̂

(as.pcp = popRPc(⊥) ∧ (23)

is.pcp = deciding(s) ∧ (24)

is.keyp �= ⊥ ∧ (25)

(is.keyp ∈ is.valOk ⇒
WinnerExists(as, is, k) ∧ (26)

OtherDeciderExists(is, p)))

∨
(as.pcp = popping(s) ∧ (27)

is.pcp = deciding(s) ∧ (28)

is.keyp �= ⊥ ∧ (29)

(is.keyp ∈ is.valOk ⇒
WinnerExists(as, is, k))) (30)

Fig. 9. WinningPopOk and LosingPopOk

intermediate states and is waiting to return. StartingPopOk asserts that a pro-
cess p has just begun its pop operation in both abstract and intermediate states.
We choose abstract transitions and prestates for the pop actions so that any
process executing a pop operation satisfies FinishedPopOk at the end of the
operation (prior to returning), and StartingPopOk at the beginning. For exam-
ple, we make intermediate transitions labelled by popEmptyp correspond to the
doPopp action. Then p satisfies FinishedPopOk in the poststate of the action,
and StartingPopOk in the prestate. The situation is more complicated when a
process executing a pop operation does not take the popEmptyp action.

As we “walk back” across the execution of a successful pop operation of a pro-
cess p, we eventually encounter a secureV alp action. We cannot linearize the
operation at this point: we need to linearize it earlier in the execution, when the
secured value is at the appropriate end of the deque. The only such point is at
an observep action. So, we do not make the secureV alp transition correspond
to any abstract action, and instead show that p satisfies the first disjunct of
WinningPopOk for the intermediate prestate and abstract state. This enables us
to prove that CorrespondenceOk(is , as ′), where is is the intermediate prestate
and as ′ is the abstract state related to the intermediate poststate. Below we ex-
plain how the WinningPopOk predicate ensures that we arrive at an appropriate
observep action before we encounter the popInvp action of the operation.

As we continue walking back, we know from the transition relation of IntAut
that we will encounter either a popNonEmptyp or a contendp action, and fur-
thermore, we may encounter contend actions of other processes. Such contend
actions can occur only when IntAut’s key sequence is empty. We can prove
using SeqOk that when this sequence is empty, the abstract deque is empty in
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related states. Therefore, we can linearize any number of failing pop operations
at contend actions. We find it convenient to make each transition labelled by
a contendp action correspond to a sequence containing all eligible doPop ac-
tions: that is, actions doPopq where keyq = keyp in the intermediate states, and
pcq = popRPc(⊥) in the abstract poststate. Note that we do not linearize suc-
cessful pop operations at a contend action. If a process p has pcp = popRPc(v),
for some v ∈ V , in the abstract poststate, then its doPop action is not included
in the abstract action sequence.

The second disjunct of WinningPopOk becomes true for p as we go back past a
popNonEmptyp or contendp action, and is preserved as we continue walking back.
This implies that is .keyp �= ⊥. Therefore, we cannot encounter a popInvp action
(because is .keyp = ⊥ in the poststate of such an action) before we encounter an
observep action that observes p’s key. At this point, we can finally choose a doPopp
abstract action, because p’s key is at the appropriate end of IntAut’s key sequence.
We construct the abstract prestate so that the value eventually returned by this
pop operation appears at the appropriate end of the abstract deque.

Totality lemma. Property 2 in the definition of backward simulation requires
that, for every reachable intermediate state, we can construct a related abstract
state. We do this in such a way that the abstract and intermediate states satisfy
the simple relationship defined by (5) near the beginning of this section. Let is
be the reachable intermediate state. We construct a related abstract state ws, by
setting ws.deq.seq = σ(is), ws.deq.left = is .left and ws.deq.right = is .right.

To satisfy SeqOk, we need to ensure that there is no process p, such that
ws.pcp = popRPc(v) for some v ∈ V , while is .keyp has not yet been removed
from the key sequence. We achieve this by setting ws.pcp = is .pcp whenever
is .pcp �= deciding. (It can be shown that in any reachable intermediate state is
in which is .pcp = deciding, is .keyp is not in the key sequence.)

To satisfy CorrespondenceOk, we need to construct ws so that each process
with is .pcp = deciding satisfies either WinningPopOk or LosingPopOk (those are
the only disjuncts of CorrespondenceOk in which pcp = deciding is possible). For
each key k such that there is some process p where is .keyp = k and is .pcp =
deciding, we choose an arbitrary such process, denoted winner(k), to serve as
the “winner” of the key. Now, for each process p, if is .pcp = deciding, is .keyp ∈
is .valOk and p = winner(is .keyp) we set ws.pcp = popRPc(is .kV al(is .keyp)).
This enables us to prove that each winner(k) satisfies WinningPopOk. Other-
wise, if is .pcp = deciding we set ws.pcp = popRPc(⊥). Then we can prove that
each such process satisfies LosingPopOk.

Proving the totality lemma was surprisingly difficult, compared to the anal-
ogous initial state requirement of forward simulation proofs, which are usually
very simple. We naively left this until last, and had to amend our simulation
relation and redo parts of the proof to enable us to prove the totality lemma.

The backward simulation definition does not require us to prove that the
abstract state ws is reachable. Thus, we cannot use invariants of AbsAut in our
proof: we cannot assume at each step that the abstract poststate is reachable. We
did not find this restriction problematic, and were glad to avoid the onerous task
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of proving the reachability of ws. (Note that the constructed abstract execution
implies that ws is a reachable state, but we did not have to prove it directly.)

6 Concluding Remarks

We have presented what we believe is the most challenging backward simulation
proof to date; it was developed using the PVS theorem proving system, and is en-
tirely machine checked. This proof is interesting because it is significantly more
complicated than simple ones presented in the literature to date. We believe
that proofs in this style are increasingly important as more and more optimistic
and nonblocking concurrent algorithms makes their way into practical use, and
especially because, despite disagreement on many design issues between trans-
actional memory researchers, there is near-univeral agreement that optimistic
read sharing is necessary for acceptable performance; such mechanisms will also
require backward simulation proofs.
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Motivation. Fault-tolerant (FT) distributed protocols represent fundamental
building blocks behind many practical systems. A rigorous design of these proto-
cols is desired given the complexity of manual proofs. The application of model
checking (MC) [2] for protocol verification is attractive with its full automation
and rich property language. However, being an exhaustive exploration method,
its scalability is limited by the number of different system states. Although FT
distributed protocols usually display a high degree of symmetry which stems from
permuting different processes, MC efforts targeting their automated verification
often disregard this symmetry. Therefore, we propose to leverage the framework
of symmetry reduction [6] and improve on existing applications of it. Our sec-
ondary contribution is to define a high-level description language (called FTDP)
to ease the symmetry-aware specification of FT distributed protocols.

Preliminary: Symmetry Reduction with Scalarsets. Formally, symme-
try is a permutation π acting on all reachable system states satisfying that for
every state s and its successor s′ it holds that π(s′) is a successor of π(s) [6].
For example, a state s of a distributed system where two processes assume dif-
ferent local states is symmetric with another state π(s) where these two local
states are swapped. Symmetry reduction eases model checking by exploring a
single (or some) representative states within each set of symmetric states. This
method preserves CTL* temporal logic properties [2] if the property under ver-
ification does not distinguish symmetric states. Unfortunately, the detection of
symmetries is in general prohibitively complex. Therefore, we take the approach
of creating symmetric models by construction. In order to indicate symmetries
in the model the designer uses a special data type called scalarset with a set
of restricted operations [3]. The restrictions guarantee that any permutation of
scalarset values results in symmetric states.

Role-based Symmetry Reduction. FT distributed protocols can be often
defined through r many roles, i.e., different types of independent processes having
non-intersecting states whose state transitions are activated by non-intersecting
sets of incoming messages or internal events. Assume that ni is the number of

� Research supported in part by Microsoft Research, IBM Faculty Award.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 289–290, 2009.
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process instances in role i. In real implementations a protocol is executed by n
physical nodes. Every node is a parallel composition of role instances with at
most one role instance per node. We observe that it is unnecessary to explicitly
model nodes if the properties of the protocol specify roles rather than nodes.
Therefore, in our role-based approach we define each role as a new scalarset of
size ni. This enables us to permute role instances of the same role even if they
are physically located on different nodes.

Role-based symmetries differ from node-based ones (commonly used for sys-
tems with replicated components) where a single scalarset of size n is used. The
node-based approach only allows the permutation of entire nodes together with
all hosted role instances. To compare the maximum achievable reduction assume
that ni = n for all i. The reduction in the number of states of the state graph
using role-based symmetries compared to the unreduced graph can be a factor
of up to (n!)r. This reduction is exponentially higher than the best case benefit
of the node-based approach, which is up to n!.

The FTDP Language. The FTDP language supports automatic verification
of finite FT distributed protocols. First of all, FTDP allows the definition of roles
and forces (using the scalarset approach) that symmetry is not violated. Fur-
thermore, FTDP syntactically enriches low-level specification languages. FTDP
differs from existing algorithm description languages such as +CAL [5] in provid-
ing built-in abstractions for (a) synchronous and asynchronous message-passing
and (b) a variety of fault types. FTDP supports the specification of safety and
liveness properties (specified in CTL*). In fact, FTDP specifications closely re-
semble the pseudocode of common distributed protocols.

Evaluation. We have used our approach to analyze (debug and verify) real
protocols, e.g., Paxos [4]. The Paxos protocol uses three roles: leader, acceptor,
and learner. Our prototype FTDP implementation extends the SS language of
the Murϕ symmetry reduction model checker [3]. The experiments reveal that
(1) the state graph obtained through role-based reduction contains up to twenty
times less states than the unreduced model, (2) the benefit of this reduction
approaches the theoretical maximum of (n!)r, and (3) the node-based approach
visits up to ten times more states than the role-based one. More details about
the role-based approach and the FTDP language can be found in [1].
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Context. The advent of ubiquitous large-scale distributed systems advocates
that tolerance to various kinds of faults and hazards must be included from the
very early design of such systems. Self-stabilization [1] is a versatile technique
that permits forward recovery from any kind of transient fault, while Fault-
tolerance [2] is traditionally used to mask the effect of a limited number of
permanent faults. The seminal works of [3,4] define FTSS protocols as protocols
that are both Fault Tolerant and Self-Stabilizing, i.e. able to tolerate a few crash
faults as well as arbitrary initial memory corruption. In [3], some impossibility
results in asynchronous systems are presented. In [4], a general transformer is
presented for synchronous systems. The transformer of [4] was proved impossible
to transpose to asynchronous systems in [5] due to the impossibility of tight
synchronization in the FTSS context. It turns out that FTSS possibility results
in fully asynchronous systems known to date are restricted to static tasks, i.e.
tasks that require eventual convergence to some global fixed point (tasks such
as naming or vertex coloring fall in this category).

In this work, we consider the more challenging problem of dynamic tasks,
i.e. tasks that require both eventual safety and liveness properties (examples
of such tasks are clock synchronization and token passing). Due to the afore-
mentioned impossibility of tight clock synchronization, we consider the unison
problem, that can bee seen as a local clock synchronization problem. In the
unison problem [6], each node is expected to keep its digital clock value within
one time unit of every of its neighbors’ clock values (weak synchronization),
and increment its clock value infinitely often. Note that in synchronous com-
pletely connected systems where clocks have discrete time unit values, unison
induces tight clock synchronization. Several self-stabilizing solutions exist for this
problem, both in synchronous and asynchronous systems, yet none of those can
tolerate crash faults. As a matter of fact, there exists a number of FTSS results
for dynamic tasks in synchronous systems. In particular, clock synchronization
is well-studied. The reader can find more references in [7].

Contributions. In this work, we tackle the open issue of FTSS solutions to
dynamic tasks in asynchronous systems, using the unison problem as a case
study.

Our first negative results show that whenever two or more crash faults may
occur, FTSS unison is impossible in any asynchronous setting. The remaining
case of one crash fault drives the most interesting results.
� This work was funded in part by ANR project SHAMAN.
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We first extract two key properties satisfied by all previous self-stabilizing
asynchronous unison protocols: minimality and priority. Minimality means that
nodes maintain no extra variables but the digital clock value. Priority means that
whenever incrementing the clock value does not break the local safety predicate
between neighbors, the clock value is actually incremented in a finite number of
activations, even when no neighbor modifies its clock value.

Then, depending on the fairness properties of the scheduling of nodes, we
provide various results with respect to the possibility or impossibility of unison.
When the scheduling is unfair (only global progress is guaranteed), FTSS unison
is impossible. When the scheduling is weakly fair (a processor that is continu-
ously enabled is eventually activated), then it is impossible to solve FTSS unison
by a protocol that satisfies either minimality or priority. The case of strongly fair
scheduling (a processor that is activated infinitely often is eventually activated)
is similar whenever the maximum degree of the graph is at least three. Our neg-
ative results still apply when the clock variable is unbounded and the scheduling
is central (i.e. a single processor is activated at any time).

On the positive side, we propose a FTSS protocol for connected networks of
maximum degree at most two (i.e. rings and chains), that satisfies both minimal-
ity and priority properties. This protocol makes minimal system hypotheses with
respect to the aforementioned impossibility results (maximum degree, schedul-
ing, etc.) and is optimal with respect to the containment radius that is achieved
(no correct processor is ever prevented from incrementing its clock).

The table above provides a summary of the main results of the work. More
details about this work are available in [7].

Unfair Weakly fair Strongly fair
Minimal Priority ∆ ≥ 3 ∆ ≤ 2

Minimal Priority
f = 1 Imp. Imp. Imp. Imp. Imp. Pos.
f ≥ 2 Imp.

Perspectives. Future works follow: fix the remaining open cases, give results with
bounded clocks, and deal with malicious nodes instead of crashes.
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Abstract. We study the convergence times of dynamics in games in-
volving graphical relationships of players. Our model of local interaction
games generalizes a variety of recently studied games in game theory
and distributed computing. In a local interaction game each agent is a
node embedded in a graph and plays the same 2-player game with each
neighbor. He can choose his strategy only once and must apply his choice
in each game he is involved in. This represents a fundamental model of
decision making with local interaction and distributed control. Further-
more, we introduce a generalization called 2-type interaction games, in
which one 2-player game is played on edges and possibly another game is
played on non-edges. For the popular case with symmetric 2 × 2 games,
we show that several dynamics converge in polynomial time. This in-
cludes arbitrary sequential better response dynamics, as well as concur-
rent dynamics resulting from a distributed protocol that does not rely
on global knowledge. We supplement these results with an experimental
comparison of sequential and concurrent dynamics.

1 Introduction

In this paper we examine convergence of dynamics in a fundamental model for
distributed decision making with local interactions movtivated by distributed
computer systems and social networks. We introduce two game-theoretic mod-
els, one a generalization of the other, that combine strategic interaction with
the notion of graph-based locality. This extends a variety of game-theoretic set-
tings that have been studied intensively in the literature. In our model of a local
interaction game there is a graph G along with a 2-player symmetric game, Γ .
Players are the nodes, and the graph models the local interaction possibilities.
In particular, Γ is played along each edge of G, and each player plays the same
strategy against each of their neighbors. The payoff of a player is simply the
sum of the payoffs earned from playing each neighbor. Local interaction games
are a basic framework to capture many different types of real-world phenomena,
e.g., when a person is trying to coordinate with as many of his or her neigh-
bors as possible. Similarly, the graph could encode antipathies and actors could
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strive to anti-coordinate with their neighbors. This is the general incentive in
many computational resource sharing environments like channel assignment in
wireless networks, where nodes try to choose a frequency that minimizes the
number of spatially close nodes using the same frequency. It is thus not surpris-
ing that a large number of specific local interaction games have been studied in
the literature [8, 27, 29, 34].

We also introduce a generalization of local interaction games called 2-type
interaction games. Intuitively, a 2-type interaction game is a graph where one
2-player symmetric game is played on the edges, and another 2-player symmet-
ric game is played on the non-edges. Whereas local interaction games model the
restricted interaction possibilities of players through the topology of the graph,
2-type interaction games also model different types of interactions that occur
between players. This is a natural assumption when considering e.g. social net-
works, as they do not necessarily indicate restrictions of interactions, but rather
show that there is a special relationship, which is likely to alter the incentives of
the involved actors. Our model allows one to specify for example how one per-
son treats a friend differently than a stranger. In addition, it is possible to study
distributed graph clustering problems (such as, e.g., correlation clustering [21])
within this framework.

In many applications that can be modeled with our games there is a crucial
lack of central coordination. Our main interest is thus how the set of players can
quickly arrive at a stable set of decisions – a Nash equilibrium of the game –
using distributed decision making policies. Our main result is that myopic se-
quential better response dynamics converge in polynomial time to a Nash equi-
librium. This also holds for a payoff-relative concurrent protocol without central
coordination. These results hold for local interaction games based on arbitrary
symmetric 2 × 2 games and arbitrary graphs, which encompasses the vast ma-
jority of cases considered previously in related work. For the more general model
of 2-type interaction games with symmetric 2 × 2 games and arbitrary graphs,
we can also show polynomial time convergence of sequential dynamics. While
sequential better response has a natural and intuitive appeal, our concurrent
policy is carefully designed. It exhibits a number of favorable properties, such
as respecting player incentives and relying only on local information. Designing
such policies that yield provably rapid convergence is a major concern in wire-
less networks and distributed control systems (see, e.g. [16, 30]), and our results
contribute to this research agenda. As a byproduct, our dynamics yield efficient
algorithms to compute a Nash equilibrium, which stands in sharp contrast to
other game-theoretic models of restricted (graphical) interaction [12, 26].

The comparison of convergence times for sequential and concurrent dynamics
in local interaction games without dominant strategy reveals that the lack of
central control can result in concurrent dynamics being slower than sequential
ones. This, however, is a worst-case result, and we indicate that in coordina-
tion games concurrent dynamics resulting from our protocol can be significantly
faster. This does not necessarily hold for anti-coordination games, and here a
simple adjustment of our concurrent dynamics to a fixed choice µ for the mi-
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gration probability can yield better results. However, the choice of this value is
delicate, as resulting dynamics might abruptly drown in oscillation. It remains
an interesting open problem to find improved analytical bounds for expected
convergence times in specific classes of local interaction games.

The rest of the paper is structured as follows. We revisit related work in Sec-
tion 1.1 and define the model in Section 1.2. Sequential dynamics are treated in
Section 2, concurrent dynamics in Section 3. In Section 4 we compare sequen-
tial and concurrent convergence times in simple local interaction games. Finally,
Section 5 concludes the paper. Most details and proofs are omitted due to space
constraints and will be given in the full version.

1.1 Related Work

This paper fits into a recent stream of works that study subclasses of local in-
teraction games. For example, our model of local interaction games generalizes
a game considered by Bramoullé [8], which concentrates on the subclass of sym-
metric 2× 2 anti-coordination games on the edges and does not have any games
on the non-edges. A special class of anti-coordination game derived from the
MaxCut problem has been used in [14]. It was studied by Christodoulou et al.
[11] in terms of convergence time to Nash equilibria and social welfare of states
obtained after a polynomial number of best response steps.

Variants of local interaction games with coordination games are central in the
study of threshold phenomena, cascading dynamics, and information diffusion in
networks [29]. Closest to our focus is a recent paper by Montanari and Saberi [34]
who consider local interaction games with 2 × 2 symmetric coordination games
and a class of noisy best response dynamics called logit-response, heat bath, or
Glauber dynamics. For potential games, in the long run, the time this process
spends at a state scales proportional to the potential value and the noise level.
For small noise levels the dynamics thus remain exclusively at global potential
maximizers. For coordination games this is a state in which all players use the
same strategy. The results of [34] are complementary to ours in the sense that
they consider the hitting time of a global potential maximizer in a significantly
more restrictive model. They show that convergence times increase from poly-
nomial to exponential time when the graph becomes more well-connected. This
contrasts our polynomial time bounds for all graphs and arbitrary symmetric
2× 2 games when only convergence to local potential maximizers is required. In
a related work, Kearns and Tan [28] design a voting protocol with polynomial
time convergence in a similar 2-strategy coordination scenario. In contrast to
our work they also require collective unity of choices.

While in our model the graph is fixed and specified in advance, there are sev-
eral works on games with network formation. In particular, 2×2 anti-coordination
games on endogenous graphs were studied in [9]. Much more work [6, 10, 13, 36]
has been done on network formation and 2×2 coordination games. These games
are classes of local interaction games with network creation, i.e., they allow only
connected players to interact. There has been no focus on duration of dynamics,
social welfare, and computation of Nash equilibria and optimal states. Instead,



Dynamics in Network Interaction Games 297

properties of the network structure and payoff properties in Nash equilibria were
analyzed [4], or stochastically stable states were characterized [23, 24].

In the graphical model of evolutionary game theory introduced by Kearns
and Suri [27] all players play a 2-player symmetric game with a randomly cho-
sen neighbor. The authors characterize evolutionary equilibria in terms of the
graph structure. However, they give no notion of dynamics that converge to
equilibrium.

Our concurrent dynamics are closely related to recent work on protocols for
concurrent strategy updating in potential games for distributed control in net-
works [30, 31], some of which are inspired by evolutionary game theory [1, 16, 17].
In addition, there is a large body of related work on strategic learning [20, 37],
various forms of dynamics such as calibrated [18] or regret learning [5, 32, 38]
or best response/ficticious play [2, 11, 14, 19, 33], and a variety of equilibrium
concepts such as correlated Nash [3] or sink equilibria [15, 22].

1.2 Model and Notation

We begin by giving the formal definition of a 2-type interaction game.

Definition 1. A 2-type interaction game is a graph G = (V, E) together with
two, possibly different, 2-player symmetric games Γ c and Γ d, where the set of
strategies is the same in both games.

Intuitively, on each edge e ∈ E connected players play a 2-player symmetric
game Γ c. In addition, for each non-edge the pair of disconnected players play a
possibly different symmetric 2×2 game, Γ d. Each player plays the same strategy
in all games he is participating. In this work, we restrict Γ c and Γ d to be 2 × 2
symmetric games with strategies 1 and 2, and payoffs for Γ c and Γ d are denoted
as shown in Figure 1.

Next we introduce some notation that will allow us to define the utility func-
tion for each player in a 2-type interaction game. We will let Γp = {Γ c, Γ d}. We
denote by n = |V | the number of players, m = |E| the number of edges, deg(v)
the degree of player v. Let S = {1, 2}n be the set of states of the game and
s = (sv)v∈V ∈ S a state, where sv ∈ {1, 2} is the strategy of player v. For a state
s the set of players playing strategy 1 is denoted V1, their number n1 = |V1|. For
a player v the number deg1(v) denotes the number of her neighbors playing 1,
and n−v

1 the number of players except v that play strategy 1. V2, n2, deg2(v),

Γ c 1 2

1 a,a d,c

2 c,d b,b

Γ d 1 2

1 e,e h,g

2 g,h f,f

Fig. 1. Payoffs in the Games
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and n−v
2 are defined similarly for strategy 2. The size of the cut of a state s,

which is the number of edges connecting players that play different strategies, is
denoted by m12. A player v has utility for strategy 1

utilv(1, s−v) = [a·deg1(v)+d ·deg2(v)]+[e ·(n−v
1 −deg1(v))+h ·(n−v

2 −deg2(v)))]

while for strategy 2 he has utility

utilv(2, s−v) = [c ·deg1(v)+b ·deg2(v)]+[g ·(n−v
1 −deg1(v))+f ·(n−v

2 −deg2(v))].

Note that symmetric 2 × 2 games are known to be potential games [6, 36], and
the potential is given as follows:

Φc =
(
a− c 0

0 b− d

)

Φd =
(
e− g 0

0 f− h

)

. (1)

Here the potential for two players playing strategies i and j respectively, where
i, j ∈ {1, 2}, is Φc(i, j) for Γ c and Φd(i, j) for Γ d. Note that each game has a
potential function Φ(s) defined as sum of the corresponding potential values Φc

and Φd of the 2-type interaction games.

2 Sequential Dynamics

In this section, our goal is to examine the duration of sequential iterative better
response dynamics. We provide an analysis of the potential function, whichs
yield polynomial convergence times in 2-type interaction games.

Theorem 1. For every 2-type interaction game every sequence of better re-
sponse moves from any initial state terminates in a pure Nash equilibrium after
at most (n + 1)(m + 1)2 steps.

Proof. Our proof relies on a more insightful characterization for the potential
function. We will simplify the games by subtracting c and g from every entry of
the Γ c and Γ d, respectively. This does not alter payoff differences for the players
and preserves the incentives. We can, in turn, derive yet another game equivalent
to this one which has the doubly symmetric form described by Figure 2. We use
A = a, B = b− d, E = e, and F = f− h. As shown in Chapters 1 and 2 of [35] the
new game exhibits the same potential and Nash Equilibria as the original game.
Note that this game is not equivalent in terms of social welfare, as we alter the
total payoffs in some of the states.

We analyze the underlying characteristic function more closely and denote by
S = A + B, T = E + F, and ∆A = A− E. The potential function of Γp is

Φ(s) =
∑

v∈V1

deg1(v)A + (n1 − 1 − deg1(v))E+
∑

v∈V2

deg2(v)B + (n2 − 1 − deg2(v))F

= n(n − 1)F + 2m(B − F) + Tn2
1 − (2(n − 1)F + T)n1 + (T − S)m12

+(T − S + 2∆A)
∑

v∈V1

deg(v)
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Γ c 1 2

1 A, A 0,0

2 0,0 B, B

Γ d 1 2

1 E, E 0,0

2 0,0 F, F

Fig. 2. Payoffs in games transformed to be doubly symmetric

It is possible to drop the constant terms n(n− 1)F+ 2m(B− F) from every state
and derive a characteristic function Ψ(s) given by

Ψ(s) = Tn2
1 − (2(n − 1)F+ T)n1 + (T− S)m12 + (T− S + 2∆A)

∑

v∈V1

deg(v). (2)

This function depends - in addition to the payoffs - only on three parameters:
the number n1 of players playing strategy 1, their degrees

∑
v∈V1

deg(v) and the
cut size m12. Ψ(s) becomes a potential for all 2 × 2 games by plugging in the
payoffs of the games Γ c and Γ d into parameters A, B, E and F as described above.
Then if we let S = a+ b− d, T = e+ f− h and ∆Ap = a− e, we get a potential
function

Ψp(s) = Tn2
1−((n−1)(2f−2h)+T)n1+(T−S)m12+(T−S+2∆Ap)

∑

v∈V1

deg(v). (3)

For the proof of the theorem observe that n1 can range from 0 to n, which
constitutes the factor n + 1 in the guarantee. Note that m12 and

∑
v∈V1

deg(v)
can take at most m+1 different values each. Hence, the total number of possible
combinations for these parameters yields a total of (n + 1)(m + 1)2 different
values for Φ. As each better response iteration must strictly increase Φ in each
step, every such sequence takes at most this number of iterations to reach a local
optimum of Φ, from any starting state. This proves the theorem. �	

The main technique in the previous proof is transforming any game to an equiv-
alent doubly symmetric game with only four different payoff values. The main
outcome of this is the function Ψ in Equation 2. By using the correct payoff val-
ues, it becomes Ψp, a potential function for our original game with an insightful
representation.

The basis of the previous proof is a simple argument that can be applied
somewhat more generally. Suppose every pair of players plays an exact potential
game, each player can pick his strategy only once for all games, and the pay-
offs he receives are summed up. Then the whole game has an exact potential
function. Consider a local interaction game in which each pair of players plays a
k × k potential game with constant k. We can classify edges into O(k2) classes
depending on the current state of the game on the edge. This yields only a poly-
nomial number of different combinations and potential values. The same holds
if we generalize 2-type interaction games to a constant number of different k× k
potential games with constant k. On the other hand, if we allow on each edge
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a different game, then even with k = 2 we can encode local search in instances
of weighted MaxCut, and therefore worst-case convergence time becomes neces-
sarily exponential. Similarly, in a local interaction game with k × k games and
k ≤ n, it is possible to encode an instance of weighted MaxCut simultaneously
into payoff matrix and graph structure for a subgraph of k/2 nodes. Thus, for
k = Ω(n) strategies this yields games, in which convergence time is necessarily
exponential. A deeper characterization along these lines is left for future work.

3 Concurrent Dynamics

In this section we consider round-based concurrent dynamics, in which in each
round all players simultaneously update their strategy choices. A simple ap-
proach, which is considered frequently in the area of information diffusion in
networks [29], is to allow all players simultaneously play their best responses to
the current state of the game. This approach converges rapidly if all players have
dominant strategies. In fact, we would reach the dominant strategy equilibrium
after the first round, which speeds up the convergence time by a factor of n over
the sequential process considered previously. One might think that concurrent
dynamics should always yield a speed-up of Θ(n) due to the possibility of si-
multaneous updates. However, due to the absence of global coordination, these
dynamics can easily get stuck in oscillations. The main design challenge proves
to be to avoid oscillation and to obtain reasonable convergence times. In order
to do this we follow the idea of [16] and design a policy in order to increase the
potential function in expectation in each round. The challenge here is to enlarge
migration probabilities to converge quickly, yet to guarantee potential increase
in expectation.

To guarantee convergence we introduce the notion of inertia. Suppose each
player independently at random migrates to a better response with a probability
less than 1. This allows for the construction of a Markov chain on the states,
where migration probabilities of the players yield transition probabilities between
states. Note that, due to inertia, with a possibly tiny probability the concurrent
process can resemble any sequential better response dynamics. Thus, the only
absorbing states of the Markov chain are the pure Nash equilibria, to which the
process must converge with probability 1 in the limit (see, e.g., [31]). The bounds
on the convergence time that can be derived from this argument, however, are
usually extremely large.

Subsequently, we analyze a protocol with migration probabilities proportional
to the relative payoff increase. For technical reasons, we here assume that all
payoffs are non-negative integer numbers, i.e. a, b, c, d, e, f, g, h ∈ N. Afterwards,
we consider several preprocessing steps to adjust the payoff values such that
the incentives of players are preserved and convergence is obtained in expected
polynomial time.

In a state s a player v considers changing from strategy x ∈ {1, 2} to strategy
y = 3 − x if utilv(y, s−v) − utilv(x, s−v) > 0. If this is the case, she migrates
with migration probability that depends on her relative payoff increase (see the
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Algorithm 1. Relative Migration Protocol (RMP), repeatedly executed by all
players in parallel.
1: For player v let x ← sv and y ← 3 − x.
2: if utilv(y, s−v) > utilv(x, s−v) then
3: with probability

µxy =
1
λ

· utilv(y, s−v) − utilv(x, s−v)
utilv(y, s−v)

migrate from strategy x to y.
4: end if

Relative Migration Protocol (RMP), Algorithm 1). If every player updates his
strategy choices using the RMP, a new state s′ evolves. We define a vector
∆s = (s′(v) − s(v))v∈V .

Lemma 1. If a = b and e = f in games of the form shown in Figure 1, then
as long as the 2-type interaction game is not in a Nash equilibrium, it holds that
E [Φ(s + ∆s)] > Φ(s).

Say player v could improve his utility by switching to a new strategy. He decides
to switch with a probability based on the action profile of his neighbors. At
the same time as v changes strategy, his neighbors might do so as well. Thus
this proof works by bounding the error in how much v expects to gain before
switching versus how much v actually gains after switching.

Proof. For a state s and a vector ∆s consider a player v. Let y = s(v) denote v’s
current strategy and let x = s(v) + ∆s(v) denote v’s strategy after migration.
The change in v’s utility after migration, assuming no other players change
their strategy is denoted ∆utilv(s−v) = utilv(y, s−v) − utilv(x, s−v). Let the
virtual potential gain be defined as V P (s, ∆s) =

∑
v∈V ∆utilv(s−v). The virtual

potential simply sums all the presumed payoff increases of all players that chose
to migrate. The real potential gain Φ(s + ∆s) − Φ(s) can be different if more
than a single player moves. In this case the simultaneous migration of players u
and v creates an error Fu,v(s, ∆s). Thus,

Φ(s + ∆s) − Φ(s) = V P (s, ∆s) −
∑

u,v∈V

Fu,v(s, ∆s). (4)

In order to show that E [Φ(s + ∆s)] − Φ(s) > 0, and conclude the proof of
Lemma 1, we will relate expected virtual potential gain and expected error,
which are the two terms on the right hand side of Equation 4.

Lemma 2. For any constant λ > 1 it holds that E [Φ(s + ∆s)] − Φ(s) ≥ λ−1
λ ·

E [V P (s, ∆s)].

Proof. We will show that the error terms
∑

u,v∈V E [Fu,v(s, ∆s)] are at most
a constant fraction of E [V P (s, ∆s)], and the lemma will follow by taking the
expection of Eqn. (4). We will relate the expected virtual potential gain between
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each pair of nodes u, v ∈ V to the expected error of the potential gain between
u and v. For simplicity we drop the indices s, ∆s and s−v. Note that

E [V P ] =
∑

v∈V

µv
xy · ∆utilv =

1
λ

∑

v∈V

(∆utilv)2

utilv(y)
,

where µxy is defined in Algorithm 1. We split this expected virtual potential
gain into parts denoted V P u,v, which are accounted towards the pair (u, v) of
players, for every u �= v, u, v ∈ V . For a player v we account a fraction of his gain
depending on the payoff that the game with player u contributes to utilv(y).

The following analysis is done for a player v with s(v) = x = 1 that migrates to
strategy y = 2 and pairs of neighboring players. The arguments can be repeated
similarly for a switch from 2 to 1 and/or disconnected players. We first consider
a neighbor u with s(u) = 2. For player v we account a fraction of

b

utilv(2)
· µv

12 · ∆utilv = b · 1
λ
·
(

∆utilv
utilv(2)

)2

of the expected virtual potential gain to the edge (u, v). Similarly, for u we
account a fraction

a

utilu(1)
· µu

21 · ∆utilu = a · 1
λ
·
(

∆utilu
utilu(1)

)2

to (u, v). Thus, using a = b we have E [V Pu,v] = a· 1λ ·
((

∆utilu
utilu(1)

)2

+
(

∆utilv
utilv(2)

)2
)

.

The expected error is calculated as follows. Player v presumes a change in payoff
of b−c, player u presumes a−d. However, if both players migrate their combined
change in payoff is 0. Thus, the error is a + b − (c + d) = 2a − (c + d), using
a = b. Hence, the expected error is

E [Fu,v] = µu
21µ

v
12 · (2a− (c + d)) = (2a− (c + d)) · 1

λ2
·
(

∆utilu
utilu(1)

· ∆utilv
utilv(2)

)

,

with a, c, d ≥ 0 we again observe E [V Pu,v] ≥ λ · E [Fu,v]. The case for a neighbor
u with s(u) = 1 follows similarly. The same argument can be repeated for all pairs
of players and all possible strategy constellations. Finally, we see that E [V P ] ≥
λ ·

∑
u,v∈V E [Fu,v]. This combined with Equation 4 proves Lemma 2. �	

Note that, as long as at least one payoff value of a, b, c, d is strictly positive,
we make a strictly positive increase in the potential function whenever a player
moves. This proves Lemma 1. �	

In the following we will adjust local interaction games such that we preserve the
incentives of players and the dynamics resulting from the RMP converge to a
Nash equilibrium in expected polynomial time. There is a simple adjustment for
any 2-type interaction game to ensure that a = b and e = f without harming
the incentives of players and at most doubling the maximum payoff. In addition,
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for any local interaction game we can find an equivalent game with the same
player preferences and payoffs are integers in [−2n2, 2n2]. When using the RMP
with suitably perturbed payoffs we can show the following.

Theorem 2. For local interaction games the dynamics resulting from the per-
turbed RMP converge to a Nash equilibrium in expected polynomial time.

The complete proof will be given in full version. We strongly believe that a
similar reduction to polynomial payoff values is also possible in the case of 2-
type interaction games. The technical details are quite tedious and an analysis
of this case is omitted. It is, however, straightforward to argue that if an 2-type
interaction game has payoffs polynomial in n, i.e., in O(nk) for some constant
k, then the perturbed RMP yields an expected potential increase of Ω(n−k) in
each iteration. As in this case the maximum potential value is in O(nk+2), we
have the following corollary.

Corollary 1. For 2-type interaction games with payoffs bounded by O(nk) with
a constant k the dynamics resulting from the perturbed RMP converge to a Nash
equilibrium in expected polynomial time.

4 Comparison of Convergence Times

The bound on convergence times presented in previous sections hold in general
for any 2-type interaction game. However, there are significant differences be-
tween different types of games. We will exhibit these differences experimentally
using the simpler local interaction games. In dominant strategy games concurrent
dynamics have an obvious advantage, because there is no error when allowing
players to migrate. In particular, by appropriately adjusting payoffs to 0 and 1
we can ensure that in the RMP every player migrates with probability 1 to the
dominant strategy. The details are left as exercise to the reader.

If there is no (weakly) dominant strategy, the game Γp is either a coordination
game with A, B > 0, or an anti-coordination game with A, B < 0. For simplicity
we restrict to elementary games, in which a, b, c, d ∈ {0, 1}. For such games
it is possible to show a time bound of O(n2) for sequential dynamics, and of
O(n3) for concurrent dynamics resulting from the RMP, which will will call
RMP dynamics.

4.1 Coordination Games

First we consider elementary coordination games with a = b = 1 and c = d = 0.
The worst-case upper bound for the convergence time of RMP dynamics is a
factor of Θ(n) larger. It is left as an exercise to design a game matching this
difference, i.e. a game in which the RMP dynamics are a factor of Ω(n) slower
than any sequential better response dynamics. In fact, there is a game in which
every concurrent dynamics are at least as slow as any sequential dynamics.
We contrast these worst-case results with the average-case behavior on random
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graphs generated according to the Gn,p model, as is done in the work of [25, 27].
We will observe similar behavior also on random unit disk graphs below. It
turns out that in these games aggressive concurrent dynamics can make very
rapid progress in initial stages.

Theorem 3. Let 0 ≤ c < 1 be a constant and 1
nc ≤ p ≤ 1

2 , and let G be
generated via Gn,p. Consider a state in the elementary coordination game with
at least (1/2 + δ)n nodes playing strategy 1 and at most (1/2− δ) nodes playing
strategy 2, where 1/2 ≥ δ ≥ 0 is a constant. After 1 round of concurrent best
response dynamics all but o(n) nodes will be playing strategy 1.
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Fig. 3. Running times of sequential and concurrent dynamics. (a) Coordination games
on Gn,p with n = 1000 and varying p. (b) Coordination games on Gn,p with p =
log−1(n) and varying n. (c) Anti-coordination games on Gn,p with n = 1000 and
varying p. (d) Anti-coordination games on Gn,p with p = log−1(n) and varying n. (e)
Coordination games on random unit disk graphs with n = 1000 and varying radius r.
(f) Anti-coordination games on random unit disk graphs with n = 1000 and varying
radius r.
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If the dynamics are sequential instead of concurrent, one can show by a similar
argument to the above that after n rounds all but o(n) nodes will be playing
strategy 1.

Next, we show a number of experimental results in Fig. 3. For each value of
n and p we generated 10 random graphs, and on each random graph we chose
25 starting states uniformly at random. From each starting state we initiated 25
runs of RMP dynamics. For the sequential dynamics we deterministically chose
in each round one player that yields the largest payoff gain. The constant λ was
set to λ = 1.1 throughout. Fig. 3(a) shows the average number of rounds for
n = 1000 and p increasing exponentially between 10−5 and 1. When the large
component forms (around p = 0.005) the sequential times are close to n/2, while
the RMP dynamics converge rapidly in a constant number of runs.

Although Theorem 3 does not directly bound the convergence time to Nash
equilibria, it provides the main intuition for the explanation of the results. After
random initialization there are close to n/2 players playing each strategy. Af-
terwards, due to similar neighborhoods and coordination structure of the game,
nearly all players accumulate on one strategy. Although this does not happen
in one step, it still occurs quite rapidly, as each player migrating to a predomi-
nant strategy increases the probability for others to follow. Thus, in essence the
behavior of the RMP dynamics is characterized by the insights from Theorem 3.

The intuition follows similarly for the sequential case, see Fig. 3(b). It depicts
running times on graphs with increasing n and p = log−1(n). Observe that RMP
dynamics yield rapid convergence times that increase only very slightly. Sequen-
tial dynamics need roughly Θ(n) rounds until a Nash equilibrium is reached.

4.2 Anti-coordination Games

The elementary anti-coordination game is the MaxCut game with a = b = 0 and
c = d = 1. For this game the worst-case results are similar to the coordination
case. More specificaly, RMP dynamics are be a factor of Ω(n) slower than any
sequential better response dynamics, and the game reveals that every concurrent
dynamics are at least as slow as any sequential dynamics. We complement this
lower bound with experimental results in Fig. 3. Fig. 3(c) and 3(d) are generated
using the same parameters as for Fig. 3(a) and 3(b), respectively. While for
small p the behavior of both dynamics is similar to the coordination case, it
changes when p ≥ 1

nc for c < 1 which corresponds to roughly p ≥ 10−2 in
Fig. 3(c). Observe the linear increase in running time with growing p for the
RMP dynamics, which for large p leads even to worse convergence times than for
sequential dynamics. A linear dependence on p is also supported by Fig. 3(d), as
here p = log−1(n), and the time growth for the RMP dynamics is proportional
to n log n. In fact, the linear dependence is a result from the RMP dynamics
being too passive. Unlike in the coordination case, players do not accumulate on
one strategy choice. In most iterations there is no significant majority playing
one strategy. Payoff differences remain small, so with degrees growing linear in
p, migration probabilities µv drop to a level proportional to 1/p. The expected
time until a player migrates then grows linearly in p. This effect is present until
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p is very close to 1, in which case the convergence times of sequential dynamics
drop to 0, as uniformly random initialization yields an almost stable profile.
Furthermore, for almost complete graphs, the RMP dynamics yield a sequential
process with high probability. This is because, in very dense graphs almost all
players have the same neighborhood and experience the same changes in payoff.
The migration probabilities in the RMP dynamics of roughly 1/n are balanced
by the Θ(n) players that are willing to migrate in each round, so there is a
roughly constant number of player migrating in each round.

Large running times are due to the payoff-relative update rule of the RMP.
With different choices it is possible to achieve much more rapid convergence.
Fig. 3(c) also depicts the convergence times of concurrent dynamics on graphs
with n = 1000 and varying p where all migration probabilities µv are chosen
as a fixed value µ = 0.27, other values yield similar results. The increased mi-
gration significantly decreases the expected running times below the sequential
times. At some point, however, the dynamics rather abruptly hit an “oscillation
barrier” and convergence times start growing exponentially. Characterizing this
barrier and providing further analytical insights on suitable choices of migration
probabilities in concurrent dynamics remains a fascinating open problem.

Finally, we note that the key observations hold similarly for the case of ran-
dom unit-disk graphs, which are a popular model for interference in distributed
networks. We generated graphs by placing n points uniformly at random in the
unit square. An edge was created between two points if the distance under the
maximum norm was at most r. For each graph we chose 25 starting states uni-
formly at random, and from each state we initiated 25 runs of the dynamics. We
provide average running times in Figure 3(e) and 3(f).

5 Conclusion

We have studied distributed decision making in a fundamental class of network
interaction games with various applications in distributed systems and social net-
working. Our results concern the convergence time of sequential and concurrent
better response dynamics. The analysis reveals polynomial convergence times for
sequential dynamics in both local interaction games and 2-type interaction games.
For concurrent dynamics resulting from the RMP there is polynomial convergence
time in local interaction games, and in 2-type interaction games with polynomi-
ally bounded payoffs. In these games a local potential maximizer – i.e. a pure Nash
equilibrium – can be obtained efficiently using distributed protocols, and thus ef-
ficient distributed decision making is possible. This stands in contrast to noisy
better response dynamics and global potential maximizers, which are NP-hard to
compute in anti-coordination games. Even for coordination games, in which com-
putation is trivial, noisy better response dynamics can take exponential time [34].

While our results establish a general upper bound, the actual convergence
times differ significantly based on the type of interaction and the underlying
network. Using experiments we have shed some light on the influence of incen-
tives and the degree of connectedness. More work is needed to obtain analytical
characterizations for specific games and graph classes of interest.
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9. Bramoullé, Y., López-Pintado, D., Goyal, S., Vega-Redondo, F.: Network formation
and anti-coordination games. Intl. J. Game Theory 33(1), 1–19 (2004)

10. Brock, W., Durlauf, S.: Discrete choice with social interactions. Review of Eco-
nomic Studies 68(2), 235–260 (2001)

11. Christodoulou, G., Mirrokni, V., Sidiropoulos, A.: Convergence and approxima-
tion in potential games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 349–360. Springer, Heidelberg (2006)

12. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a
Nash equilibrium. In: Proc. 38th Symposium on Theory of Computing (STOC
2006), pp. 71–78 (2006)

13. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(5),
1047–1071 (1993)

14. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilib-
ria. In: Proc. 36th Symposium on Theory of Computing (STOC 2004), pp. 604–612
(2004)

15. Fabrikant, A., Papadimitriou, C.: The complexity of game dynamics: BGP oscil-
lations, sink equilibria, and beyond. In: Proc. 19th Symposium on Discrete Algo-
rithms (SODA 2008), pp. 844–853 (2008)

16. Fischer, S.: Dynamic Selfish Routing. PhD thesis, Lehrstuhl für Algorithmen und
Komplexität, RWTH Aachen (2007)
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Organizations opt to reduce costs by contracting their day-to-day computing
needs to service providers who offer large-scale data centers and cloud computing
services. Like other computing commodities, data centers provide paid services
that require careful pricing. Using a Stackelberg game formulation, we present
a demand-based pricing model for maximizing revenue of data center providers
that serve clients who aim to maximize their utilities.

Problem Formulation: Let di denote the demand of client i from the data
center quantified by the number of units of processing power per unit time.
The service provider (data center) charges the client an amount λi per unit
demand. So when serving N clients, the revenue of the service provider is
R(λ,d) =

∑N
i=1 λidi, where λ = (λi : i = 1, . . . , N) and d = (di : i = 1, . . . , N).

Clients share the computing resources of the data center. Therefore, the quality
of service for one client in terms of processing delay at the data center is affected
by the demand of the others. We define the quality-of-service factor of the ith

client by γi(d) = L di∑N
k=1,k �=i dk

, where L ≥ 1 is a job decoupling factor which is

higher for service providers who provide sufficient computing resources to sepa-
rate demands of the different clients from affecting each other. If client’s utility
is logarithmic in the quality of service achieved, then the net utility for user i
can be given by Ui(d, λi) = αilog (1 + γi(d)) − λidi, where the constant αi > 0
converts utility to currency.

We consider selfish clients where each is interested in maximizing his net utility.
Namely, if client i is chargedλi per unit demand, and given the demand of the other
clients (denoted by d−i), the client’s objective is to find d∗i that solves

Client’s problem: max
di≥0

Ui(di, d−i, λi) ∀i.

Given this behavior, the service provider aims to maximize his revenue by impos-
ing optimal prices. The problem can be formulated as a Stackelberg game where
the service provider sets prices and consequently the clients update demands
(required units of processing power per unit time) to maximize their utilities.
Let d∗(λ) = (d∗i (λ) : i = 1, . . . , N), the service provider’s objective is to solve

Service provider’s problem: max
λ>0

R(λ,d∗(λ)).

Methodology and Main Results: We use a backward induction technique
to find Nash Equilibrium (NE) point(s) where neither the service provider nor

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 309–310, 2009.
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any of the clients have the incentive to unilaterally deviate. We start with
the clients’ game and solve for the NE as a function of the price vector λ.
It can be shown that the game of the clients admits a unique NE for any
set of prices λ > 0. In particular, as in [1], index the clients such that if
αi

λi
<

αj

λj
then i > j with the ordering to be picked randomly if αi

λi
= αj

λj
. Let

M∗(λ) be the largest integer M for which the following condition is satisfied:
αM

λM
> 1

L+M−1

∑M
j=1

αj

λj
. The equilibrium demands of the first M∗(λ) clients are

positive and obtained by d∗i (λ) = L
L−1

(
αi

λi
− 1

(L+M∗(λ)−1)

∑M∗(λ)
j=1

αj

λj

)
, where

di(λ)∗ = 0 for i ≥ M∗(λ) + 1. We follow on this and solve for the service
provider’s problem. Namely, let the indexing of the clients be done such that√

αi <
√

αj =⇒ i > j, with the ordering to be picked arbitrarily if
√

αi = √
αj .

If the following condition is satisfied for all M ∈ {1, · · · , N}

√
αM >

1
L + M − 1

M∑

j=1

√
αj , (1)

then the Stackelberg game admits an infinite number of NE points (λ∗,d∗) where

λ∗
i√
αi

=
λ∗

j√
αj

, ∀i, j = 1, · · · , N. (2)

The corresponding demand levels are non-zero and given by

d∗i =
L

(L − 1)
1
λ∗

i

⎛

⎝αi −
√

αi

(L + N − 1)

N∑

j=1

√
αj

⎞

⎠ .

We give a proof of this result in an analogous setup in [2]. Formula (2) devises prices
that are optimal over the set of prices that result in all the clients to have non-zero
demand levels. It has a proportional structure that suggests charging more the
clients that are more willing to pay for their utilities, i.e. higher α’s. Here, if L is
large enough, then condition (1) is satisfied for all M ∈ {1, · · · , N}. Intuitively, the
higher the decoupling factor L is, the better the quality of service for the client and
the lesser the external effect due to the other clients’ demands. Therefore, there
is an incentive for the clients to have non-zero demand levels. We can also show
that if condition (1) is satisfied, it is suboptimal for the service provider to drop
any of the clients by imposing a sufficiently high price. In other words, under that
condition, the suggested prices in (2) are optimal over the set λ > 0.
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Abstract. Research over the past two decades has identified the weakest failure
detectors for several important problems in fault-tolerant distributed computing.
A recent work has shown that, for a certain definition of the term “problem,” ev-
ery problem that is solvable using failure detectors has a weakest failure detector.
In sharp contrast to these results, we prove that a fundamental problem in concur-
rent computing—FCFS Mutual Exclusion—is solvable using failure detectors,
but has no weakest failure detector in the shared memory model. To the best of
our knowledge, this is the first problem that is proved not to have a weakest fail-
ure detector. We also show that, if the FCFS requirement is dropped, the mutual
exclusion problem has a weakest failure detector. In fact, we present the weakest
failure detector for the more general problem of starvation-free k-exclusion, for
any k.

1 Introduction

Several basic problems in fault-tolerant distributed computing are known to be unsolv-
able in asynchronous systems. The unsolvability is often due to the inability of a pro-
cess, when it does not hear from another process p, to distinguish between whether p
has crashed or p is merely being slow. To circumvent such impossibility results, failure
detectors, which augment asynchronous systems, are proposed [5]. A failure detector is
a distributed oracle, with one module at each process that, when queried, responds with
a value that reveals some information about the failures in the system.

Research on failure detectors was spurred [5,4] by the unsolvability of consensus
[10], a fundamental problem in distributed computing. Chandra and Toueg showed that
a surprisingly weak failure detector Ω is sufficient to solve consensus [5]. A later result
by Chandra et al. proves that Ω is the weakest failure detector to solve consensus in
the sense that, if any failure detector D is good enough to solve consensus, then it
is possible to implement Ω from D [4]. Since then, weakest failure detectors have
been identified for several other basic problems in fault-tolerant distributed computing
(e.g., non-blocking atomic commit [6], uniform reliable broadcast [1], implementing
an atomic register in a message-passing system [6], mutual exclusion [7,3], boosting
obstruction-freedom [12], set consensus [16,11], etc.). Going beyond specific problems,
for a certain definition of the term “problem”, it is recently shown that every problem
that is solvable using failure detectors has a weakest failure detector [13].

The main result of this paper runs counter to this overwhelming evidence that all
natural distributed computing problems have weakest failure detectors. Specifically, we
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prove that FCFS Mutual Exclusion, although solvable using failure detectors, has no
weakest failure detector in the asynchronous shared-memory model.

In Mutual Exclusion, which is a fundamental problem in distributed computing [8],
each process repeatedly cycles through four sections of code—Try Section, Critical
Section (CS), Exit Section, and Remainder Section. In the classical version, processes
are assumed not to fail and the task is to design the code for the Try and Exit Sections
satisfying: (1) the mutual exclusion property, which states that at most one process is
in the CS at any time, and (2) some liveness property, for instance, starvation freedom,
which requires a process in the Try Section to eventually enter the CS and a process
in the Exit Section to eventually enter the Remainder Section (on the assumption that
no process stays in the CS forever). When solving this problem in the shared memory
model, an additional desirable property is the First-Come-First-Served (FCFS) fairness
property proposed by Lamport [14]. This property requires that (1) the Try Section
begins with a code segment, called the doorway, that can always be completed within a
bounded number of steps by any process, and (2) if a process p completes the doorway
before a process q enters the doorway, then q does not enter the CS before p.

In the fault-tolerant version of the problem [7], if a process crashes in the CS, another
process is allowed to enter the CS: multiple processes can be in the CS simultaneously
provided that at most one of them is alive and the others have already crashed. Thus, the
classical mutual exclusion property is revised to state that at most one live process is in
the CS at any time. The starvation freedom property is revised to guarantee the progress
of only the correct processes: every correct process in the Try Section eventually enters
the CS and every correct process in the Exit Section eventually enters the Remainder
Section (on the assumption that no correct process stays in the CS forever). Finally, the
FCFS property is revised to state that, if p completes the doorway before q enters the
doorway, then q does not enter the CS before p while p is alive. In other words, q may
enter the CS before p only after p fails.

Our second result is that if the FCFS requirement is dropped and the only properties
required are mutual exclusion and starvation-freedom, then a weakest failure detector
exists. In fact, we consider the more general problem of k-exclusion [9], where up to
k live processes are allowed to be in the CS simultaneously. The starvation-freedom
property for this problem states that every correct process in the Try Section eventually
enters the CS even if at most k−1 correct processes stay in the CS forever. We present a
weakest failure detector for this problem in an arbitrary environment where any process
may fail at any time.

1.1 Explaining the Apparent Contradiction

Our result that there is no weakest failure detector for FCFS Mutual Exclusion appears
to contradict the result in [13] that every problem, which is solvable using failure detec-
tors, has a weakest failure detector. There is, however, no contradiction because FCFS
Mutual Exclusion is outside the class of problems for which the [13] result applies, as
we now explain.

Some problems have the following characteristic: their requirements are such that
(1) given a run, it is possible to determine whether the problem requirements are met
in the run, and (2) an algorithm is considered to solve the problem if every run of the
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algorithm meets the problem requirements. Consensus, for example, is such a problem:
if every run of an algorithm meets the Validity, Agreement, and Termination conditions,
then the algorithm is correct. The result in [13] applies only to this class of problems.
But some problems, e.g., FCFS Mutual Exclusion, do not fall into this class. To see
why, consider the doorway condition that some b ∈ N must exist such that the length of
the doorway is bounded by b in all runs. It is easy to propose algorithms where for each
run there is a bound, but no single bound applies to all runs. For example, consider the
following change to Lamport’s Bakery Algorithm: each process picks a natural number
b non-deterministically once at the start of a run and, each time the process enters the
Try Section, it performs b useless steps before executing the Bakery Algorithm’s Try
Section. Each run of this algorithm looks acceptable (because the length of the doorway
in that run is bounded), but the algorithm does not meet the FCFS requirement as there
is no universal bound that applies to all runs.

Another pertinent difference between [13] and this paper concerns the definition of
“implementing a failure detector.” According to the prevalent definition, the implemen-
tation of a failure detector D should maintain an output variable outputp at each pro-
cess p such that the values of these output variables, over time, are consistent with some
failure detector history of D. This was the definition proposed in the original failure de-
tector papers [5,4] and all of the failure detector papers we know of, with the exception
of [13], use this definition. [13] proposes an alternative definition based on linearizabil-
ity where, instead of interacting via the output variable, each process interacts with the
implementation by initiating a query and later receiving a response from the implemen-
tation. This paper uses the first definition. It is an interesting open question whether a
weakest failure detector exists for FCFS Mutual Exclusion under the second definition
of implementation.

1.2 Related Work

The mutual exclusion problem was stated and solved in a seminal paper by Dijkstra
[8]. The FCFS property and the Bakery algorithm that realizes the property were pro-
posed by Lamport [14]. The surveys by Raynal [15] and Anderson [2] describe the
work on many facets of this problem. Fischer et al. stated and solved the k-exclusion
problem [9]. Delporte et al. studied the fault-tolerant version of mutual exclusion [7].
They proposed a failure detector, which they called the trusting failure detector T , and
showed that it is both necessary and sufficient to solve the starvation-free mutual exclu-
sion problem in an environment where a majority of processes is correct [7]. To solve
the problem in an arbitrary environment in the message passing model, Bhatt et al. [3]
showed that it is both necessary and sufficient to augment the trusting failure detector
with a certain quorum failure detector. To the best of our knowledge, this submission is
the first to investigate the weakest failure detectors for exclusion problems in the shared
memory model.

2 The Model

We consider the asynchronous shared memory model augmented with failure detectors
based on [5]. The model assumes the existence of a discrete global clock; the range of
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this clock’s ticks is N. The system we consider has Π = {1, 2, . . . , n} processes that
communicate through atomic shared registers. Processes are subject to crash failures.
A failure pattern is a function F : N → 2Π , where F (t) is the set of processes that
have crashed through time t. A process p is live at time t if p �∈ F (t); correct(F ) is
the set of processes that don’t fail in F . An environment is a set of failure patterns. The
arbitrary environment is the environment that consists of all possible failure patterns. A
failure detector history describes the behavior of a failure detector during an execution.
Formally, it is a function H : Π × N → {0, 1}∗, where H(p, t) is the value output by
the failure detector module of process p at time t.

A failure detector D is a function that maps every failure pattern F to a nonempty
set of failure detector histories. D(F ) is the set of all possible failure detector histories
that may be output by D when the failure pattern is F .

A run of algorithm A using failure detector D in environment E is a tuple R =
(F, H, I, S, T ) where F is a failure pattern in E , H is a failure detector history in D(F ),
I is an input vector, S is a sequence of steps of algorithmA (S is called a schedule, and
S[i] denotes the i-th step in S), T is a sequence of times in N (intuitively, T [i] is the time
when step S[i] is taken), such that F, H, I, S, and T satisfy the standard conditions. A
step by a process p can be a local computation, read or write operation on some shared
register or a query to its failure detector module Dp, which we also assume to be atomic.

Let A be an algorithm, P be a problem, D a failure detector, and E an environment.

– A solves P using D in E if and only if the set of runs ofA using D in E satisfy the
specification of P .

– D can be used to solve P in E if and only if there is an algorithm that solves P
using D in E .

2.1 Implementing a Failure Detector

Our notion of implementation is exactly the same as described in [5,4]. Let a variable
output be maintained at each process in A. Denote the history of output in run R of A
by outputR, i.e. outputR(p, t) is equal to the value of output at process p at time t. Now
we define the notion of a reduction algorithm TD→D′ which uses failure detector D to
implement failure detector D′.

TD→D′ implements failure detector D′ in environment E if it maintains an variable
output at every process such that, in every run R of TD→D′ in failure pattern F ∈ E ,
outputR ∈ D′(F ). Informally, TD→D′ can implement D′ using D if it can maintain a
valid output for D′ in any failure pattern F ∈ E .

2.2 Comparing Failure Detectors

We say that a failure detector D′ is at most as strong as D in environment E if there is
a reduction algorithm TD→D′ that D′ in E . We denote this by D′ �E D.

For the special case when E is the arbitrary environment (one that contains all possi-
ble failure patterns), we write D′ � D as a shorthand for D′ �E D.

We say a failure detector W is the weakest failure detector for a problem P in an
environment E if (1) W can be used to solve the problem in E , and (2) if a failure
detector D′ can be used to solve P in E , then W �E D.
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3 FCFS Mutual Exclusion Has No Weakest Failure Detector

In an FCFS Mutual Exclusion Algorithm, each process repeatedly executes five sections
of code: doorway, waiting room, CS, exit section, and remainder section. An algorithm
A solves the FCFS Mutual Exclusion Problem using a failure detector D in an environ-
ment E if there is a b ∈ N such that the following conditions are met in every run of A
using D where the failure pattern F is from E :

– Mutual Exclusion: At most one live process is in the CS at any time.
– Starvation Freedom: If every correct process that enters the CS eventually leaves

the CS, then every correct process in the doorway eventually enters the CS. Further,
every correct process in the exit section eventually enters the remainder section.

– Bounded Doorway: Each execution of the doorway by a process completes within
b steps of that process. (We say b is the length of the doorway.)

– FCFS: If a process p completes the doorway before a process q enters the doorway,
then either q does not enter the CS before p or p fails before q enters the CS.

We define the arbitrary environment as the environment that contains all failure pat-
terns. Informally, in an arbitrary environment, any process can crash at any time. We
now state and prove the main result of this paper.

Theorem 1. There is no weakest failure detector for the FCFS Mutual Exclusion prob-
lem in the arbitrary environment.

Proof. The proof is by contradiction and proceeds as follows. Assume that a weakest
failure detectorW exists for FCFS Mutual Exclusion. LetA be an algorithm that solves
FCFS Mutual Exclusion using W . We derive a contradiction by defining a family of
failure detectors Dk, k ∈ N, with three properties:

(P1). Failure detectors in the family are good enough to solve FCFS Mutual Exclusion.
More precisely, for all k ∈ N, FCFS Mutual Exclusion can be solved using
the failure detector Dk. Since W is a weakest failure detector for FCFS Mutual
Exclusion, it follows thatW � Dk, for all k ∈ N.

(P2). Each failure detector in the family is strictly weaker than the preceding ones.
More precisely, for all k ∈ N, Dk+1 � Dk and Dk �� Dk+1.

(P3). Db � W , where b is the length of algorithmA’s doorway.

We prove the above three properties in Lemmas 1, 2, and 3. Since Db � W (by P3)
and W � Db+1 (by P1), by the transitivity of �, it follows that Db � Db+1, which
contradicts P2. Hence, we have the theorem.

In the rest of this section, we defineDk and establish the properties P1, P2, and P3.

3.1 Definition of the Failure Detector Dk

Consider the failure detector P, which is a variation of the perfect failure detector in-
troduced by Chandra and Toueg [5]. P’s output at any process p at any time t is a set of
processes that p suspects to have failed by time t. P satisfies two properties:
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– Accuracy: A process is not suspected before it fails.
In contrast, the accuracy property of Chandra and Toueg’s perfect failure detector
makes a weaker statement that a process is not suspected unless it is faulty. Thus,
their property allows a faulty process to be suspected before it fails.

– Completeness: A faulty process is eventually permanently suspected by all correct
processes.

The failure detectorDk that we define below is similar to, but weaker than, P. Unlike
P where all failures are accurately detected,Dk can be unreliable on how it reports about
processes that fail within the first k units of time. In particular, if a process q fails at
or before time k, all of the following behaviors are possible with Dk: (1) q’s failure is
never suspected by any correct process, (2) q is suspected even before it fails, or (3)
correct processes repeatedly add and remove q from their list of suspects. However,
failures that occur after time k are detected equally well by Dk and P. More precisely,
the failure detector Dk is defined as follows:

Definition 1. For all failure patterns F , H ∈ Dk(F ) if and only if H(p, t) ⊆ Π for all
p ∈ Π and t ∈ N, and satisfies:

– k-Accuracy: Unless a process fails by time k, it is not suspected before it fails.

∀p, q ∈ Π, t ∈ N : (q �∈ F (k) ∧ q ∈ H(p, t)) =⇒ q ∈ F (t)

– k-Completeness: Unless a faulty process fails by time k, it is eventually perma-
nently suspected by all correct processes.
∀p, q ∈ Π, t ∈ N, ∃τ ∈ N : (q �∈ F (k) ∧ q �∈ correct(F ) ∧ p ∈ correct(F )∧,
t > τ) =⇒ q ∈ H(p, t)

3.2 Proof of Property P3

Recall thatW is a weakest failure detector for the FCFS Mutual Exclusion problem;A
is an algorithm that solves FCFS Mutual Exclusion usingW ; and b is the length ofA’s
doorway. The lemma below proves Property P3.

Lemma 1. Db � W

Proof. SinceW is a weakest failure detector for FCFS Mutual Exclusion, it follows that
for all failure detectors D that can be used to solve FCFS Mutual Exclusion, we have
W � D. Instantiating D with W , we have W � W . This means that there is some
algorithm R that implements W from W . Let R(p) denote a process p’s program in
algorithmR; outputp denote the output variable maintained by R(p); and initp denote
the initial value assigned byR to outputp. SinceR implementsW fromW , in any run
R (of R using W) with failure pattern F , the values of outputp, for all p ∈ Π , are
consistent with a failure detector history H ∈ W(F ).

The rest of the proof of Lemma 1 consists of two definitions and two claims. Specifi-
cally, we define a failure detectorW ′ and an algorithmR′ such that two claims hold: (1)
R′ implementsW ′ from W , and (2) Db � W ′. Note that Claim (1) impliesW ′ � W .
This fact, together with Claim (2) and the transitivity of�, implies the lemma. We now
present the two definitions and the two claims.
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Informally, the failure detector W ′ is obtained by limiting the failure detector W to
only those histories where the failure detector’s value at each process p remains constant
at initp for the first b units of time. More precisely,W ′ is defined as follows:

Definition 2. For all failure patterns F , H ∈ W ′(F ) if and only if

H ∈ W(F ) and ∀p ∈ Π, t ∈ N : (t ≤ b) =⇒ (H(p, t) = initp)

Since the algorithm A solves FCFS Mutual Exclusion using W and since W ′(F ) ⊆
W(F ) for all failure patterns F , it follows that A must solve FCFS Mutual Exclusion
also usingW ′. The next proposition states this fact.

Proposition 1. Algorithm A solves FCFS Mutual Exclusion usingW ′.

Next we define the algorithmR′. InR′ each process first executes b null steps and then
executes the same code as in algorithmR. More precisely:

Definition 3. The algorithmR′ is defined by the following two rules:

– R′ assigns the same initial values to output variables as R: for all p ∈ Π , R′

initializes outputp to initp.
– R′(p)—process p’s program in algorithm R′—consists of b NOP operations fol-

lowed byR(p), which is p’s program in algorithmR. More precisely, for all p ∈ Π ,
we have:

R′(p) {
for i = 1 to b

NOP
R(p)

}

Claim. AlgorithmR′ implementsW ′ fromW .

Proof. Consider an arbitrary run R of the algorithm R′ using W , and let F be the
failure pattern in R. We prove the claim by showing that there is a history H ∈ W ′(F )
such that for all p ∈ Π , t ∈ N, H(p, t) = outputp(t), where outputp(t) is the value of
outputp at time t in run R.

First we observe thatR′ implementsW fromW . This observation follows from two
facts: (1) R implements W from W , and (2) the only difference between R′ and R
is the NOP s at the start of R′ and their only effect is to introduce some initial delay,
which is possible even without NOP s because of asynchrony.

SinceR′ implementsW fromW , it follows that the output ofR′ in run R is consis-
tent with some history H ∈ W(F ): i.e., for all p ∈ Π , t ∈ N, H(p, t) = outputp(t).
Further, since the first b steps of each process p are NOP s, it follows that outputp re-
mains at its initial value of initp for at least the first b units of time: i.e., ∀p ∈ Π, t ∈
N : (t ≤ b) =⇒ (H(p, t) = initp). Thus, we have: (1) H ∈ W(F ), and (2)
∀p ∈ Π, t ∈ N : H(p, t) = outputp(t) and, if t ≤ b, H(p, t) = initp. Therefore, by
definition ofW ′, H ∈ W ′(F ). Hence, we have the claim.
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As an immediate consequence of the above claim, we have:

Corollary 1. W ′ � W .

Claim. Db � W ′

Proof. The proof is structured as follows. We prove the claim by exhibiting an algo-
rithm T that implements Db using W ′. We design T as a collection of n(n − 1) co-
routines, one for each ordered pair of processes. The co-routine Dq(p) is a program
that p runs to detect q’s failure, and it guarantees two key properties: (A1) unless q fails
by time b, p does not suspect q before q fails, and (A2) unless q fails by time b, if p
is correct and q is faulty, then p eventually permanently suspects q. In the algorithm
T , each process p concurrently runs n − 1 programs—namely, the programs Dq(p)
for all q ∈ Π − {p}—and combines their outputs to output a set of suspects. Since
each Dq(p) guarantees Properties A1 and A2, it follows that T ’s output satisfies the
b-Accuracy and b-Completeness properties ofDb, thereby establishing the claim. In the
rest of this proof, we describe the program Dq(p) and argue that it satisfies properties
A1 and A2.

Recall Proposition 1, which states that algorithm A solves FCFS Mutual Exclusion
using W ′. Let {r1, r2, . . . , rm} be the set of all shared registers used by algorithm A.
Consider the initial configuration C0 of A, where all processes are in the remainder
section and the shared registers r1, r2, . . . , rm have their initial value. Consider a solo-
run of process q from configuration C0 until q completes its doorway. Since the length
of A’s doorway is b, this solo-run will consist of b steps where, in each step, q samples
the failure detector value, reads or writes a shared register ri, and changes its local state.
On the assumption that each time q samples the failure detector it gets the same value
of initq , compute the values v1, v2, . . . , vm of the shared registers r1, r2, . . . , rm at the
end of q’s solo-run of b steps. Given this setup, we are ready to describe the program
Dq(p). Recall that Dq(p) is not a distributed algorithm; it is a program that p alone runs
to make inferences about q’s failure. The program Dq(p) is described as follows:

– Dq(p) maintains variables r′1, r
′
2, . . . , r

′
m locally at p. These variables are initialized

to v1, v2, . . . , vm, respectively.
– A(p) denotes p’s program in algorithm A. Let A′(p) denote the program obtained

by replacing each reference in A(p) to a shared register ri, with a reference to the
variable r′i (for all 1 ≤ i ≤ m). Thus, for example, if “read r5” is an instruction in
A(p), the corresponding instruction in A′(p) will be “read r′5”.

– The program Dq(p) consists of b NOP instructions, followed by the code ofA′(p).
Initially, p’s program counter points to the first NOP instruction.

– In Dq(p), when p’s program counter points to Critical Section, p permanently sus-
pects q; until then p does not suspect q.

Consider an arbitrary run R of the program Dq(p) using the failure detectorW ′. Let
F be the failure pattern in run R, and H ∈ W ′(F ) be the failure detector history in run
R. We now show that if q does not fail by time b in F , then the following statements
hold in run R: (A1) p does not suspect q before q fails, and (A2) if p is correct and q is
faulty, then p eventually permanently suspects q.
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Assume that q does not fail by time b in F . Let t1, t2, . . . denote the sequence of time
values when p executes the instructions of A′(p) in run R. Since p executes b NOP s
before executing the first instruction ofA′(p), it follows that t1 > b. Based on the run R
(of the program Dq(p) using W ′), in the following we construct a run R′ of algorithm
A usingW ′, and make some observations about this run.

– The failure pattern in R′ is F , the same failure pattern as in R.
– The failure detector history in R′ is H , the same failure detector history as in R.
– In R′, q performs b steps of its doorway during the first b units of time.

These steps by q are possible because of our assumption that q does not fail by time
b in F . Further, in these steps, when q samples the failure detector, it always gets
the same value of initq because, by definition ofW ′, H(q, t) = initq for all t ≤ b.
Consequently, at time b in run R′ (i.e., soon after q completes its doorway in R′),
the values of the shared registers r1, r2, . . . , rm are v1, v2, . . . , vm, respectively.

– In R′, p performs the steps ofA(p) at times t1, t2, . . . (i.e., at the same times that p
performs the steps of A′(p) in the run R).
Since the failure detector history is the same in both runs, the sequence of failure
detector values that p sees in R′ is the same as in R. Further, by the conclusion
made in the previous bullet point, for all 1 ≤ i ≤ m, ri and r′i have the same value
vi just before p starts taking steps in the runs R′ and R, respectively. Consequently,
modulo the name difference between r′i and ri, p cannot distinguish the run R from
the run R′. In particular, p enters the Critical Section in run R at time t if and only
if p enters the Critical Section in run R′ at time t.

To verify that Dq(p) satisfies Property A1, suppose that p suspects q at time t in run
R. Since p suspects q only when p is in the Critical Section, it follows that p is in the
Critical Section at time t in run R. Then, by the conclusion reached above, p is in the
Critical Section at time t in run R′ (of algorithm A using W ′). In run R′, q completes
the doorway before p enters the doorway, and q does not take any steps after completing
the doorway. So, by the specification of FCFS Mutual Exclusion, if p is in the Critical
Section at time t in R′, then q must have failed before time t in R′. Since R and R′ have
the same failure pattern F , it follows that q fails before time t also in R. Hence, Dq(p)
satisfies Property A1.

To verify that Dq(p) satisfies Property A2, suppose that in the failure pattern F of
the runs R and R′, p is correct and q is faulty. Since q is faulty in R′ and all processes
other than p and q are in the remainder sections forever, it follows from the starvation-
freedom property of Mutual Exclusion that p eventually enters the Critical Section in
run R′. Since we already concluded that p enters the Critical Section in R′ if and only
if it enters the Critical Section in R, it follows that p enters the Critical Section in R as
well. Once p enters the Critical Section, by the design of Dq(p), p suspects q forever,
which establishes Property A2. This concludes the proof of the claim.

Lemma 1 follows immediately from Claim 3.2, Corollary 1, and the transitivity of �.

3.3 Proof of Property P2

Lemma 2. For all k ∈ N, Dk+1 � Dk and Dk �� Dk+1
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Proof. Dk+1 � Dk is true by the definition ofDk. We proveDk �� Dk+1 by contradic-
tion. Suppose there exists a reduction algorithm R which implements Dk from Dk+1.
Consider two scenarios a, b ; in a all processes are correct, and in b, process q crashes at
time k + 1 and rest of the processes are correct. Also assume that in both the scenarios
Dk+1 outputs φ forever at all the processes; this is a valid history of Dk+1. Now take
some run Rb ofR in scenario b. By k-Completeness, output ofR in Rb will eventually
include q at every correct process permanently. Let p be the first process where the out-
put of R includes q and say this happens at time t. Take a run Ra in scenario a, such
that all processes take the same steps as in Rb till t; this is a valid run of R in scenario
a. As p cannot distinguish between Ra and Rb, q will be included in p’s output at t.
This violates k-Accuracy property of Dk, a contradiction.

3.4 Proof of Property P1

Lemma 3. The algorithmM given in figure 1 solves FCFS mutual exclusion usingDk.

Proof omitted from this version.

Initialization
tokenp ← 0
choosing[p] ← false

1 for i ← 1 to k
2 NOP
3 choosing[p] ← true
4 tokenp ← 1 + max∀q �=p(tokenq)
5 choosing[p] ← false
6 for ∀q �= p
7 wait till (¬choosing[q] ∨ q ∈ Dk)
8 wait till (tokenq = 0 ∨ (tokenq, q) > (tokenp, p) ∨ q ∈ Dk)
9 Critical-Section
10 tokenp ← 0

Fig. 1. M : a FCFS mutual exclusion algorithm using Dk- process p

4 Weakest Failure Detector for k-Exclusion

The k-exclusion problem is a generalization of mutual exclusion introduced in [9]. Like
mutual exclusion, processes cycle through four sections of the code ; try, CS, exit and
remainder section. An algorithm A solves the k-Exclusion Problem using a failure de-
tector D in an environment E if the following conditions are met in every run ofA using
D where the failure pattern F is from E :

1. k-exclusion: At most k live processes are in the CS at any time.
2. Starvation Freedom: If at most k − 1 correct processes are in CS forever, then

every correct process in the try section enters the CS eventually. Furthermore, every
correct process in the exit section eventually enters the remainder section.
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Note that 1-exclusion has the same properties as the starvation-free mutual exclusion.
Now we define the failure detector Γ k, which is our candidate for the weakest failure
detector to solve k-exclusion in the arbitrary environment.

4.1 Definition of Γ k

Failure detector Γ k = (Trust, Bad). Trust ∈ {T, F} and Bad ⊆ Uk
p , where Uk =

{S|S ⊂ Π, |S| = k}.

– Self trusting : If p ∈ correct(F ) then, eventually Trustp = true forever.
– Accuracy : If S ∈ Badp at time t then at least one process in S has crashed by

time t.
– Completeness : If p ∈ correct(F ), S ∈ Uk, p �∈ S such that S ∩ Faulty(F ) �= φ

and ∀q ∈ S, Trustq = true at some time t, then eventually S ∈ Badp forever.

Failure detector Γ k in some way is an extension of the trusting failure detector T [7],
which was shown to be sufficient to solve (in message passing model) mutual exclusion
when majority of the processes are correct. The same result also showed that T is
necessary for mutual exclusion in the arbitrary environment. Our reduction algorithm
described below, uses some ideas from that result.

4.2 Γ k Is Necessary

Let A be an algorithm which solves starvation free k-exclusion using failure detector
D in the arbitrary environment. Figure 2 shows the reduction algorithmRD→Γ k which
implements Γ k usingA and D. InRD→Γ k , at each process p, the output corresponding
to Γ k is maintained in the pair of single-writer multi-reader registers Trustp and Badp

which are initialized to false and φ respectively. In addition to these registers,RD→Γ k

uses a collection of |Uk| =
(
n
k

)
co-routines of A, each of them corresponding to a set

s ∈ Uk and denoted by As.
Processes use these instances of A to spy on the correctness of sets of size k in the

following way : process p in the beginning, tries to enter CS of all the instance As for
which p ∈ s (line 3 ). Once p gets in CS of As, it never exits. Also any other process
q which is not in s does not try in As till p sets Trustp to true . Hence if p is correct,
it will enter the CS of all instances As for which p ∈ s and set Trustp to true (line
14). This because of the fact mentioned above and starvation freedom ofA, thus output
of R satisfies self-trusting property of Γ k. To spy on the other processes, p first waits
till all the processes in s′ ∈ Uk, p �∈ s′, have set their Trust bit to true (line 6). If
they have, it means that all processes in s′ have entered the CS in As′ . Now p tries to
enter CS of As′ (line 8), if p successfully enters (line 11) or finds some other process
q �∈ s′ to have entered it (line 9), it can assert that some process in s′ has crashed.
Hence it can add s′ to Badp (line 9,16). So one can see that the output of RD→Γ k also
satisfies the accuracy and completeness property of Γ k. Now we formally prove these
claims.
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Initialization
Trustp ← false SWMR register
Badp ← φ SWMR register
∀s ∈ Uk, in-CS[s] ← false local variable
∀s ∈ Uk, spied[s] ← false local variable
As, ∀s ∈ Uk are instances of the A using D
1 begin

2 for ∀s ∈ Uk, p ∈ s 11 upon As.crit
3 As.try() 12 in-CS[s] ← true
4 repeat forever 13 if ∀s ∈ Uk, p ∈ s, in-CS[s] = true
5 for ∀s ∈ Uk, p �∈ s 14 Trustp ← true
6 if(¬ spied[s] ∧q∈s Trustq) 15 if p �∈ s
7 spied[s] ← true 16 Badp ← Badp ∪ s
8 As.try()
9 Badp ← Badp ∪q∈Π Badq

10 end repeat

Fig. 2. Reduction algorithm RD→Γ k - process p

Theorem 2. Let A be an algorithm which solves k-exclusion using D, then Γ k � D.

Proof. We prove this theorem by showing thatRD→Γ k given in fig. 2 is a valid reduc-
tion from D to Γ k in the arbitrary environment. Let F be a failure pattern and R be any
run of RD→Γ k in F . We will show that in R, Trust and Bad registers at any process
satisfy the properties of Γ k. First we make the following simple proposition.

Proposition 2. If a process r �∈ s executes As.try() at some time t (line 8), then ∀q ∈
s, t′ ≥ t, Trustq = true.

Now we will show that the output registers (Trustp, Badp) at any process p satisfy all
the three properties of Γ k.

– Self trusting: Say it is violated, that means p ∈ correct(F ) but there is no time
after which Trustp is true forever. Let s ∈ Uk such that p ∈ s. As Trustp = false
forever, so by proposition 2 only processes in s execute As.try() in R (line 3).
As |s| = k and A satisfies starvation freedom, p will execute As.crit (line 11)
eventually. Hence p executes As.crit, ∀s ∈ Uk, p ∈ s and Trustp = true forever
(line 14), a contradiction.

– Accuracy: Say s ∈ Badp at time t′, which means that either it was added to Badp

at line 9 or line 16. In either case one can see that p �∈ s and there is some process
q �∈ s which executed As.try (line 8) and later executed As.crit say at time t < t′.
By proposition 2, ∀r ∈ s, Trustr = true before time t, which means all processes
in s entered (in-CS[s] = true) CS of As before time t. But as q entered the CS of
As at t, by k-exclusion property of A it means that some process in s has crashed
by time t < t′.
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– Completeness: Let s ∈ Uk such that s∩ faulty(F ) �= φ and ∀q ∈ s, Trustq = true
at some time tq. One can clearly see from the algorithm that once a Trustp = true,
it stays T forever, hence ∀q ∈ s, t ≥ t′, Trustq = true for some t′. Which means
that all the processes from correct(F )/s will eventually execute As.try() (line
8). As s contains a faulty process, by starvation freedom of A, some process in
r ∈ correct(F )/s will eventually get in CS ofAs and add s to its Bad set (line 16).
Then every other process in correct(F )/s eventually add s to its Bad set (line 9).

4.3 Γ k Is Sufficient

In the fig. 3 we present algorithm Mk which solves starvation free k-exclusion in the
arbitrary environment using Γ k. This algorithm is inspired by Lamport’s bakery algo-
rithm [14]. Below we informally describe some ideas of the algorithm.

Each process p first waits till Γ k
p outputs Trustp = true. By the self-trusting property

of Γ k, this will eventually happen for all correct processes. Then p gets a token which
is higher than tokens taken by other processes and then it waits (in the “waiting room”)
till it believes it is safe to enter the critical section. In this waiting room, process p
maintains a set (called conflict set) of processes which possibly have better priority
than p, i.e., those processes who are currently getting their token or whose token is
smaller than p. Following rule is used to compare tokens of any two different process q
and r, (tokenq, q) < (tokenr, r) ⇔ tokenq < tokenr ∨ (tokenq = tokenr ∧ q < r). In
order to properly maintain the conflict set, p first adds all the other processes to this set
and then it goes over all processes q ∈ Π repeatedly and removes q if any one of the
following cases is true :

– q that has obtained a token greater than p’s token.
– q has exited the critical section after p has got its token. It this case p knows q does

not pose any danger as if it tries for critical section again, it will get a bigger token
than p.

– q’s token is equal to zero, this means q is in remainder section.

Processes p will exit the waiting loop when the size of the conflict set is less than k or
it is sure that there are at most k live processes in it. To determine the latter p uses the
routine Safe-set (line 17). This routine takes a set S as an input and checks if all k-sized
subsets of it are included in the Badp. By the accuracy property of Γ k, if all such subsets
are in Badp, then it means there is no k sized subset in S with all live processes, hence
S has at most k − 1 live processes.

To implement the above ideas, each process uses two single-writer multi-reader reg-
isters ; tokenp and choosingp. The register tokenp as the name suggests stores the cur-
rent token (or priority) of p to enter the critical section. While getting the token flag
choosingp is set to true. Apart from these registers every process has a single-writer
single-reader register bypass. Process p uses this register to inform other processes that
it is done with its critical section.

Now we are ready to describe the code of process p. In line 1 p waits for the Trustp
to become true . The flag choosing is set to true in line 2. p grabs the token greater
than all other processes in line 3. The variable bypass[p, q] is set to false in line 4, so
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Initialization
tokenp ← 0 SWMR register
choosingp ← false SWMR register
∀q �= p, bypass[p, q] ← false SWSR register

1 wait till Trustp 16 Safe-set(S)
2 choosingp ← true 17 if (∀S′ ⊆ S, |S′| = k, S′ ∈ Badp)
3 tokenp ← 1 + maxq∈Π(tokenq) 18 return true
4 for ∀q �= p, bypass[p, q] ← false 19 else
5 choosingp ← false 20 return false
6 Cp ← Π − {p}
7 repeat
8 for ∀q �= p
9 if (¬choosingq ∨ bypass[p, q])
10 if (tokenq = 0 ∨ (tokenq, q) > (tokenp, p))
11 Cp ← Cp − {q}
12 till ( |Cp| < k ∨ Safe-set(Cp) )
13 Critical-Section
14 for ∀q �= p, bypass[q, p] ← true
15 tokenp ← 0

Fig. 3. Mk : a starvation free k-exclusion algorithm using Γ k

if p later observes that bypass[p, q] is true , it knows that q finished its critical section.
p sets choosing to false in line 5 and initializes the conflict set (local variable Cp) to
all other processes. In the waiting room (lines 7-12), p removes any process q from Cp

if any of the following cases is true (1) bypass[p, q] = true : this means that q was in
exit section after p got its token, (2) choosingq = false and tokenq = 0 in this case
q is in remainder section and (3) choosingq = false and (tokenq, q) > (tokenp, p),
here again q has a bigger token than p, so it poses no threat. p then waits till |Sp| < k
or Safe-set(Sp) returns true (line 12) before going to critical section. After the critical
section (line 13), p sets all bypass[q, p] to true (line 14), so that if process q is in waiting
room it will know that p has finished its critical section and hence can remove p from its
conflict set Cq . In the last line p sets its token back to zero (line 15). The formal proof
of correctness is omitted form this version.
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Abstract. A distributed algorithm is crash quiescent if it eventually
stops sending messages to crashed processes. An algorithm can be made
crash quiescent by providing it with either a crash notification service or
a reliable communication service. Both services can be implemented in
practical environments with failure detectors. Therefore, crash-quiescent
failure detection is fundamental to system-wide crash quiescence. We
establish necessary and sufficient conditions for crash-quiescent failure
detection in partially synchronous environments where a bounded, but
unknown, number of consecutive messages can be arbitrarily late or lost.
Without a correct majority of processes, not even the weakest oracle
for fault-tolerant consensus, �W, can be implemented crash quiescently.
With a correct majority, however, the eventually perfect failure detector,
�P , is possible. Our �P algorithm is correct in all runs, but improves
performance via crash quiescence in any run with a correct majority. We
also present a refinement of our �P algorithm to mitigate the overhead
of achieving crash quiescence; the resulting bit complexity per utilized
link is asymptotically better than or equal to that of non-crash-quiescent
counterparts.

1 Introduction

A distributed algorithm is called crash quiescent, if, in all runs, correct processes
eventually stop sending messages to crashed processes. Depending on the system
model, crash quiescence may be straightforward, non-trivial, or even impossible.
For example, crash quiescence is straightforward with reliable communication,
even for purely asynchronous systems: every message received generates an ack,
and each process can have at most k unacknowledged messages per process at
any time. Crashed processes — which permanently halt without warning — stop
sending acks, so after the final such ack is delivered, each correct process will
become crash quiescent once k subsequent messages go unacknowledged.

By contrast, crash quiescence with unreliable communication is far more chal-
lenging due to inherent limitations on process coordination in the presence of
both crash faults and message loss. For example, consider any application where
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some correct process i requires acknowledged delivery of a message m to each
correct process. With lossy communication, i must re-send m sufficiently many
times until the corresponding acks are received from each correct process; other-
wise, the application program will be incorrect. For each crashed process, how-
ever, i must eventually stop re-sending m; otherwise, crash quiescence will be
violated. In such systems, correct processes are committed to distinctly different
(and contradictory) communication behaviors, depending on whether messages
are sent to correct or faulty processes.

Since each message can be dropped (due to message loss), or never sent (due
to process crashes), or just late (due to asynchrony), crash-quiescent algorithms
must navigate an intersection of uncertainties. Fortunately, in systems with both
crashes and native message loss, application-layer algorithms can be made crash
quiescent relative to underlying system services for crash detection. As such,
crash-quiescent failure detection is fundamental to system-wide crash quiescence.

A failure detector [1] can be viewed as a distributed oracle that can be queried
for (potentially unreliable) information about process crash faults. Despite such
unreliability, failure detectors can solve many problems that are not solvable
in pure asynchrony [2]: most notably, crash-tolerant consensus [1]. As system
services, failure detection oracles decouple distributed algorithms from explicit
commitments to lower-level timing parameters; more theoretically, such oracles
function as proxies for various degrees of partial or even full synchrony.

One oracle — the eventually perfect failure detector �P — is particularly use-
ful for enabling crash-quiescent applications. Informally, �P suspects all crashed
processes and eventually trusts all correct processes permanently. As such, �P
can suspect correct processes only finitely many times. In an asynchronous sys-
tem augmented with �P , applications can become crash quiescent (despite mes-
sage loss) as follows: so long as the recipient remains trusted by �P , re-send each
(new or buffered) message sufficiently many times until an acknowledgment is
received; otherwise, buffer outbound messages while the recipient is suspected.

The foregoing protocol essentially provides quiescent reliable communication
among correct processes, which is the approach taken by [3] as well. The same
paper proves that — among oracles that output a list of suspected processes —
�P is actually the weakest failure detector for quiescent reliable communication.
Nonetheless, a fundamental problem remains: for system-wide crash quiescence,
it is essential that any underlying oracles are crash quiescent as well.

Contribution. We prove necessary and sufficient conditions for crash-quiescent
failure detection in partially synchronous environments where a bounded, but
unknown, number of consecutive messages can be arbitrarily late or lost. Without
a correct majority of processes, not even the weakest oracle for fault-tolerant
consensus, �W , can be implemented crash quiescently. With a correct majority,
however, �P , is possible. Our �P algorithm is correct in all runs, but improves
performance via crash quiescence in any run with a correct majority. We also
present a refinement of our �P algorithm to mitigate the overhead of achieving
crash quiescence; the resulting bit complexity per utilized link is asymptotically
better than or equal to that of non-crash-quiescent counterparts.
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2 Definitions

System Model. We consider partially-synchronous systems subject to bounded
intervals of message loss and delay. We start with the canonical model M1

from [4,1], and we weaken channel reliability and synchrony guarantees to allow
an infinite number of messages to be lost or arbitrarily delayed. Specifically, we
assume that communication takes place on ADD channels [5]. We informally
describe the system model, which we denote ECLPS (for Communication-Lossy
Partially-Synchronous Environment — pronounced “eclipse”), next.

The system consists of a finite fixed set Π of n processes. We assume that the
set Π is known to all processes. Each process’s local program is represented as
an action system consisting of a finite set of guarded commands. At each step of
a process, the process can receive at most one message from one of its incoming
message buffers, update its local state, and send at most one message to each
process. Each process’ action system includes a special crash action. The crash
action can be executed at most once and permanently disables the guards of all
the program actions, thereby halting the process.

Processes communicate with each other by sending messages over a fully con-
nected communication topology. A send statement by process i causes the indi-
cated message to be added to the channel from i to the recipient process j. When
a message m is in the channel from i to j, a deliver action is enabled whose effect
is to remove m from the channel and place it in the incoming message buffer at
j for sender i.1

Starting from a system state in which channels are empty and local program
variables have specified initial values, a run of an algorithm consists of a poten-
tially infinite sequence of enabled actions (or steps). Each action in the run is
either a local program action of a process, a crash action, or a deliver action of
a channel. If the run is finite, then no program action should be enabled at the
end of the run. A process that has not (yet) crashed is called live. Processes that
never crash are called correct, and processes that crash are called faulty.

In a given run, each step is associated with a non-negative integer, which is the
real time when it occurs; times assigned to steps in a run must be non-decreasing,
but no two steps by the same process may have the same time. This common
way of modeling runs enforces an upper bound on absolute process speed2, but
processes can decelerate indefinitely subject to the following restriction on rela-
tive process speeds: there exists Φ ∈ N such that if (1) processes i and j are both
live during a time interval, and (2) i takes at least Φ steps in the interval, then
j takes at least one step in the interval. The bound Φ is not necessarily known
to the processes and can vary for different runs of the system.

We assume that the actions of each process are locally scheduled by a First-
Come-First-Serve (FCFS) scheduler which executes program actions in the order
1 Our impossibility result holds even if incoming message buffers are infinite, while

our algorithm works with a one-slot buffer whose contents are overwritten by the
execution of each deliver event.

2 This assumption is necessary to implement eventually reliable timeouts using only
action-time clocks [6].



Crash-Quiescent Failure Detection 329

in which they were enabled. Note that such scheduling fairness applies only
to program actions and not to crash actions, which are a modeling device.
Thus, the crash action is always enabled at a correct process but never exe-
cuted, while it is continuously enabled at a faulty process until the action is
executed.

Each channel guarantees that some subset of the messages sent on it will be
delivered in a timely manner and such messages are not too sparsely distributed
in time, i.e., it is an ADD channel [5]. In more detail, consider the channel from
process i to process j. The (real-time) delay of a message is the time elapsed
between the step in which the message is sent and the deliver event for the
message; if there is no deliver event, then the delay is infinite. For each run,
there exist constants ∆ ∈ N and B ∈ N and a subset Sp of the set of messages
sent over the channel (the privileged messages) satisfying the following: (1) The
delay of each message in Sp is at most ∆. (2) For all intervals of time in which i
sends at least B messages to j, at least one of the messages sent over the channel
in that interval is in Sp. The bounds ∆ and B and the set Sp are not necessarily
known to the processes and can be different in different runs of the system.3

As consequences of our model definition, the following properties hold:

Property 1. The maximum number of steps taken by a process during the time
that a privileged message is in transit in a channel is ∆.

Property 2. For every pair of processes i and j, the maximum number of steps
taken by i during a time period in which j takes s steps is (Φ · s).

Eventually Perfect Failure Detector. The eventually perfect failure detector
�P satisfies the following two properties in each run [1]:

– Strong Completeness: Every crashed process is eventually and perma-
nently suspected by every correct process.

– Eventual Strong Accuracy: There exists a time after which no correct
process is suspected by any correct process.

�P is a particularly attractive oracle. First, it is sufficiently powerful to
solve many fundamental problems including fault-tolerant consensus [1], sta-
ble leader election [7], and wait-free dining [8]. Additionally, it is realistically
implementable: in contrast to other relatively powerful oracles — such as Per-
fect [1], Strong [1], and Trusting [9] — �P is actually implementable in classic
models of partial synchrony4.

3 If the bound B is known, then implementing �P in ECLPS with an arbitrary number
of crash faults is straightforward. Simply take a standard ping-ack implementation
of �P for reliable channels, and instead of sending a single ping or a single ack, send
B pings or B acks, respectively.

4 This claim is based on: (a) the many implementations of �P in recent works
(cf. [1, 10, 11, 12, 13, 7, 14, 15]), and (b) the results from [16], where Larrea, et al.,
prove that failure detectors with perpetual accuracy (including P , and S) cannot be
implemented in classic models of partial synchrony [1,4].
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Crash Quiescence. Algorithm A is said to be crash quiescent if, for every run
of A, there exists a time after which no correct process sends messages to any
crashed process.

3 Impossibility of Crash-Quiescent �P in ECLPS

In this section we show that it is impossible to implement �P crash quiescently
in ECLPS without a correct majority of processes. We start by showing that
it is impossible to implement the eventually weak failure detector (�W) [1], a
weaker failure detector than �P , in ECLPS crash-quiescently if at most �n

2 �
processes may crash. The oracle �W satisfies weak completeness, which states
that every crashed process is eventually and permanently suspected by some
correct process, and eventual weak accuracy, which states that some correct
process is eventually and permanently trusted by all correct processes. Since
every implementation of �P is also an implementation of �W , the impossibility
result for �W holds for �P as well.

Theorem 3. It is impossible to implement a deterministic crash-quiescent �W
in ECLPS if up to �n

2 � processes may crash.

Proof. For the purpose of contradiction, assume there is an algorithm A that
implements crash-quiescent �W in ECLPS . Partition the set of processes into
two sets X and Y such that |X | = �n

2 � and |Y | = �n
2 �.

Consider a run αX in which all processes in X are correct and execute in syn-
chronous rounds, all processes in Y crash initially, and all messages are received
(by correct processes) in the next round after they are sent. By the assumed
correctness of A, there exists a round rX after which each process in Y is per-
manently suspected by some process in X , and all processes in X stop sending
messages to processes in Y . Let mX denote the maximum number of messages
sent by any process x ∈ X to any process y ∈ Y during execution αX .

Let αY be a run that is the same as αX except that the roles of X and Y are
reversed; define rY and mY analogously to rX and mX .

Let Lpart be the set of communication links that go between processes in X
and processes in Y .

Now consider a run α in which all processes are correct and execute in syn-
chronous rounds. All messages sent over links in Lpart through round
r = max(rX , rY ) are lost, and all other messages (those sent over the other links
and those sent over Lpart after round r, if any) are delivered with delay of one
round. It can be shown using standard arguments that αX and α are indistin-
guishable to all processes in X through round r, and thus each process in X is
quiescent with respect to all processes in Y at the end of round r of α. Similarly,
αY and α are indistinguishable to all processes in Y through round r, and thus
each process in Y is quiescent with respect to all processes in X at the end of
round r of α. The processes in X remain quiescent with respect to the processes
in Y and each process in Y is permanently suspected by at least one process in X .
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Similarly, the processes in Y remain quiescent with respect to the processes in X
and each process in X is permanently suspected by at least one process in Y .

The link behavior in α conforms to the ADD channel specification with B =
max(mX , mY ). Since A is supposed to work correctly in α but every correct
process is permanently suspected by at least one other correct process (violating
the specification of �W), we have a contradiction. ��

�P implementation for each process i ∈ Π
constant n Total number of processes in Π
constant intermissioni ∈ N+ Min. interval between sending heartbeat pulses
integer next-pulsei := 0 Countdown timer to send next heartbeat pulse
integer estimateij := 1 Predicted interval between heartbeats from j
integer deadlineij := 1 Countdown timer to receive next heartbeat from j
Π × Π boolean matrix Si Suspect matrix: Si(j, k)=true implies j suspected k

�Pi
def
== {∀j ∈ Π : Si(i, j) = true : j} �P output when queried by i

Qi
def
== {∀j, k ∈ Π : Si(i, k) ∧ count(¬Si(i, j) ∧ Si(j, k)) > �n

2 � : k} ∪ {i}Quiescence Set

1 : {next-pulsei = 0} −→ Action 1: Send Pulse
2 : foreach (j /∈ Qi) send 〈�Pi〉 to j Send suspected ids in pulse
3 : foreach (k ∈ Π ) do Si(i, k) := (deadlineik = 0) Update local suspect list
4 : next-pulsei := intermissioni − 1 Schedule next heartbeat pulse

5 : {receive 〈hb〉 from j} −→ Action 2: Receive Heartbeats
6 : if(Si(i, j) = true) Detect a false-positive mistake
7 : Si(i, j) := false Remove j from local suspect list
8 : estimateij := estimateij + 1 Increase predicted interval for j
9 : foreach (k ∈ Π) do Si(j, k) := (k ∈ hb) Update suspect matrix row for j
10 : deadlineij := estimateij Set next heartbeat deadline for j

11 : {true} −→ Action 3: Decrement Timers
12 : next-pulsei := max(0, next-pulsei − 1)
13 : foreach (j ∈ Π) where (j �= i) do deadlineij := max(0, deadlineij − 1)

Alg. 1. Implementation of �P that is correct in all runs and crash quiescent in any
run with a correct majority of processes. Initial values for the suspect matrix can be
arbitrary. Note that deadlineii is initially positive and is never decremented, so each
process i will eventually trust itself permanently.

Corollary 4. It is impossible to implement a crash-quiescent �P in ECLPS if
up to �n

2 � processes may crash.

4 Crash-Quiescent �P in ECLPS with Majority Correct

In contrast to the previous result, we now show that it is possible to implement
crash-quiescent �P in ECLPS if a majority of the processes are correct; fur-
thermore, the implementation is correct, although not crash-quiescent, without
a correct majority of processes.
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Alg. 1 presents one such �P implementation in ECLPS. It is a heartbeat-
based implementation that gains extra information by exchanging suspect lists
with other processes. This extra information is used to achieve crash quiescence.
Specifically, each process i relays its entire suspect list by including it in heart-
beat messages sent to other processes at regular intervals (Action 1, line 2). The
intervals are measured by a step timer next-pulsei which is decremented in Ac-
tion 3 to send the heartbeat messages. Every time next-pulsei expires (counts
down to zero), the process sends heartbeats with its current suspect list to a
subset of processes (Action 1, line 2), determined by a method explained later.

Process i expects to receive heartbeats from each live neighbor at regular
intervals. The upper bound on the inter-arrival time of the heartbeats may be
unknown. Hence, i has an adaptive step timer deadlineij with respect to each
process j that is initialized to the value of estimateij and is decremented in
Action 3. If the timer deadlineij expires (counts down to zero) before i receives
a heartbeat from j (Action 1, line 3), then i suspects j. Every time i receives a
heartbeat from a process j, i trusts j (Action 2) and restarts the timer deadlineij

(Action 2, line 10). However, if j was previously suspected by i, then i also
increases the timer value estimateij (Action 2, line 8).

Recall that processes send their suspect lists in each heartbeat. When a pro-
cess i receives a heartbeat from process j, it records the list of processes suspected
by j, as communicated in that heartbeat (Action 2, line 9), in the jth row of
the suspect matrix Si. Every time next-pulsei expires, process i determines the
set of processes that it will not send a heartbeat to as follows: If a process j is
currently suspected by i, and among the processes that i trusts, more than �n

2 �
suspect j (as communicated through the latest heartbeats received by i), then
i adds j to the quiescence set Qi (as per the definition of Qi in Alg. 1), and i
does not send a heartbeat to j. Also, note that i is always in Qi. The set Qi is
dynamically defined every time next-pulsei expires, so it is possible for i to send
a heartbeat to j in some instances of Action 1 in a run and not in others.

4.1 Proof of Correctness

Theorem 5. Alg. 1 satisfies strong completeness: every crashed process is even-
tually and permanently suspected by all correct processes.

Proof. Upon crashing, each faulty process j stops sending heartbeats. Thus, each
correct process i stops receiving heartbeats from j. Since Action 3 at i is always
enabled and executed infinitely often, eventually estimateij is permanently 0.
After such time, all executions of Action 1 at i suspect j, and j is never trusted
again because no heartbeats from j are received. ��

We prove eventual strong accuracy (eventually no correct process is suspected
by any correct process) through the following lemmas:

Lemma 6. The values taken on by variable estimateij are non-decreasing, and
every time a process j is taken off a process i’s suspect list, the value of estimateij

is increased.
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Proof. Inspection of Alg. 1 reveals that estimateij is never decremented. Fur-
thermore, the only action at i that takes a process j off the suspect list is Action
2 (in line 6–9). However, the same action also increments the value of estimateij

by 1 (in line 9) after j is taken off the suspect list. ��

Since the action system at each process contains n + 1 actions and the local
scheduler is FCFS, we get:

Lemma 7. For each correct process i, the maximum number of steps executed by
i between the time that an action a is enabled at i and the earliest time thereafter
that the action a is executed is n.

Let INT denote the largest intermissioni over all processes i ∈ Π.

Lemma 8. Within every interval in which process i takes n · INT steps, i exe-
cutes Action 1 at least once.

Proof. Inspection of Alg. 1 shows that next-pulsei is always non-negative, it is
set to a value not exceeding INT − 1 in Action 1, and it is decremented by 1 in
Action 3. If Action 3 is executed INT − 1 times, then next-pulsei is guaranteed
to be decremented to 0, enabling Action 1. Since Action 3 is always enabled, by
Lemma 7, we know that within n · (INT − 1) steps by i, Action 1 is enabled at
i. Applying Lemma 7 again, we know that Action 1 will be executed within the
next n steps at i. ��

Lemma 9. If processes i and j are correct and i sends a heartbeat to j infinitely
often, then j sends a heartbeat to i infinitely often.

Proof. If process i sends heartbeats to process j infinitely often, then j receives
heartbeats from i infinitely often. From Action 2, we know that j trusts i upon
receiving a heartbeat from i. Process j continues to trust i until the next execu-
tion of Action 1, guaranteed to occur by Lemma 8. This execution of Action 1
will send a heartbeat to i. ��

Lemma 10. If processes i and j are correct and i sends a heartbeat to j infinitely
often, then i and j eventually trust each other permanently.

Proof. If i sends heartbeats to j infinitely often, then by Lemma 9 j sends
heartbeats to i infinitely often as well. Consequently, i and j trust each other
infinitely often. By Lemma 6 we know that every time i (falsely) suspects j, the
value of estimateij increases in the future when i trusts j again. Similarly, every
time j (falsely) suspects i, the value of estimateji increases in the future when
j trusts i again.

We now show that after i and j suspect each other finitely many times, either
i and j trust each other permanently (thus vacuously satisfying eventual strong
accuracy), or the values of estimateij and estimateji grow sufficiently large such
that: in an infinite suffix, i and j always receive heartbeats from each other before
timers deadlineij and deadlineji (which are reset to estimateij and estimateji,
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respectively) expire. Therefore, i and j eventually and permanently trust each
other.

Let M def
== B ·n ·INT +∆+Φ(n+B ·n ·INT )+∆+n. Consider a time tsuf at

which: (a) either i permanently trusts j or estimateij exceeds M , and (b) either
j permanently trusts i or estimateij exceeds M .

Consider any time tf (subscript f for final) after tsuf at which i receives a
heartbeat from j by executing Action 2. Thus, i trusts j at time tf and deadlineij

is reset to estimateij. By Lemma 8 we know that in the next B · n · INT steps
at i, process i executes Action 1 at least B times. Since estimateij exceeds M ,
which is greater than B ·n·INT , i continues to trust j for B executions of Action
1, and therefore, B heartbeats are sent to j. Note that at least one heartbeat
among the B is privileged. Let m1 be one such heartbeat.

From the system model definitions, the message delay for m1 is at most ∆
time ticks. By Property 1, the maximum number of steps taken by i while m1

is in transit is ∆. Delivery of m1 at j enables Action 2 at j (if it had not been
enabled already).

By Lemma 7, the maximum number of steps by j between the delivery of m1

and the receipt of a heartbeat from i is n. The same argument as above shows
that after j receives a heartbeat from i, j trusts i and within B · n · INT steps
(at j) process j sends a privileged message, m2, to i. Thus, by Property 2 the
maximum number of steps taken by i during the time that j is waiting to take
delivery of a heartbeat from i and to send the B heartbeats (including m2) to i
is Φ(n + B · n · INT ).

A symmetric argument shows that the maximum number of steps taken by i
while m2 is in transit to i and some heartbeat from j is received by i is ∆ + n.

In aggregate, we see that within (B·n·INT+∆+Φ(n+B·n·INT )+∆+n) = M
steps of i after time tf , i gets another heartbeat from j. Since estimateij > M ,
i has been continuing to trust j throughout this interval. Applying the same
argument iteratively, it follows that i never suspects j after time tf .

Reversing the roles of i and j shows that j never suspects i after time tf . ��

Lemma 11. If processes i and j are correct and i sends only finitely many
heartbeats to j, then j sends only finitely many heartbeats to i, and i and j
suspect each other eventually and permanently.

Proof. Let i and j be two correct processes such that i sends only finitely many
heartbeats to j. By the contra-positive of Lemma 9, j sends only finitely many
heartbeats to i as well.

Let tx be the latest time at which a heartbeat from i to j, or from j to i,
is received. After tx, process i never executes Action 2 with respect to j, and j
never executes Action 2 with respect to i. Consequently, timers deadlineij and
deadlineji are never increased, but since Action 3 at both i and j is continuously
enabled, the timers are decremented infinitely often. Eventually, these timers
reach 0 and when i and j execute their respective Action 1 after such time, i
suspects j, and vice versa. Since no more heartbeats are received by i or j from
each other, processes i and j suspect each other permanently. ��
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Lemma 12. If process i is correct, then its suspect list stops changing.

Proof. From Theorem 5 we know that eventually all crashed processes are per-
manently suspected. From Lemmas 10 and 11 we know that i either eventually
and permanently trusts a correct process j, or i eventually and permanently sus-
pects a correct process j. That is, i’s suspect list eventually stops changing. ��

Theorem 13. Alg. 1 satisfies eventual strong accuracy whereby every correct
process is eventually and permanently trusted by all correct processes.

Proof. From Lemma 12 we know that the suspect list at each correct process
stops changing eventually. Consider a run α of Alg. 1. Let tstable be the time
after which the suspect list at each correct process stops changing and all faulty
processes have crashed.

Let i and j be two correct processes in run α. If i sends infinitely many
heartbeats to j, then from Lemma 10 we know that i eventually and perma-
nently trusts j. However, if i sends only finitely many heartbeats to j, then from
Lemma 11 we know i and j eventually and permanently suspect each other. We
will now show that the latter is impossible.

For the purposes of contradiction, let us assume that i sends only finitely many
heartbeats to j. By Lemma 11, i and j eventually and permanently suspect each
other and stop sending heartbeats to each other. By Lemma 12, the suspect
lists of all correct processes eventually stop changing. Hence, eventually, i and
j receive unchanging heartbeats (if at all) from other correct processes in the
system. In other words, eventually, the suspect matrices Si and Sj stay constant.

Since i eventually stops sending heartbeats to j, it implies that j ∈ Qi even-
tually and permanently. That is, i trusts a majority of processes, and therefore,
a majority of processes trust i (follows from Lemma 10 and the fact that i sends
heartbeats in Action 1 to such trusted processes infinitely often). Also, a ma-
jority of processes suspect j. This suspicion information is relayed to i in the
contents of the heartbeats from the trusted processes.

Reversing the roles of i and j in the arguments above, we know that a majority
of processes suspect i for j to stop sending heartbeats to i.

The above arguments establish that a correct majority of processes trust i
permanently for i to stop sending heartbeats to j, but a correct majority of
processes also suspect i permanently for j to stop sending heartbeats to i. This
is a contradiction! Hence, it follows that i and j send heartbeats to each other
infinitely often. Lemma 10 implies that i eventually and permanently trusts j.

Thus, every correct process is eventually and permanently trusted by all cor-
rect processes. ��

Theorem 14. Alg. 1 is crash quiescent if a majority of processes are correct.

Proof. From Theorem 5, we know that every crashed process is suspected by
every correct process. From Theorem 13, we know that every correct process
eventually and permanently trusts every correct process. Hence, every correct
process receives suspect lists from all correct processes infinitely often. Since
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eventually every correct process permanently suspects every crashed process,
the following is eventually and permanently true: for all pairs of processes (i, k)
where i and k are correct, Sk(i, j) is true for all crashed processes j.

Therefore, in all runs where a majority of processes are correct, eventually for
every correct process i, every crashed process j is permanently in the set Qi. In
other words, every correct process i eventually and permanently stops sending
heartbeats to any crashed process. ��

Communication Complexity. Next, we analyze the communication complex-
ity of our algorithm, both in terms of the number of messages and the number of
bits sent. Since processes send messages periodically, and correct processes never
cease doing so, we focus on the number of messages (and bits) sent in each period
(the same approach is used in, for instance, [12]). In every run of a non-crash-
quiescent implementation of �P using heartbeats, eventually all faulty processes
have crashed and every correct process periodically sends heartbeats to all the
processes, resulting in O(c · n) messages per period, where c is the number of
correct processes. By contrast, in runs of Alg. 1 where c > �n

2 �, eventually O(c2)
messages are sent per period. Thus, Alg. 1 offers improved message complex-
ity in majority-correct runs, and this improvement has no penalty in message
complexity for runs where half or more processes crash.

Ironically, the bit complexity of Alg. 1 is greater than that of its non-crash-
quiescent counterparts in all runs. Since the receipt of a “dummy” heartbeat
message devoid of any payload may be sufficient to establish the liveness of
the sender, each heartbeat message in a non-crash-quiescent algorithm requires
just O(log n) bits (for encoding the sender and recipient). But each message
in Alg. 1 requires Θ(n) bits (to encode the suspect list and the sender and
recipient addresses). Thus the total periodic bit complexity of Alg. 1 is Θ(c2 ·n)
as compared to O(c · n · log n) for the non-crash-quiescent version. Thus for
instance, if c is a constant fraction of n, as will be the case if processes have a
fixed probability of failure, the bit complexity of Alg. 1 is asymptotically worse
than that of the non-crash-quiescent version. Yet the purpose of crash-quiescence
is to reduce the overall communication complexity. We address this next.

5 Improving the Communication Bit Complexity

Algorithm. We improve the communication bit complexity of Alg. 1 by insert-
ing a communication sub-layer between Alg. 1 and the communication infrastruc-
ture. This communication sub-layer sends and receives two types of heartbeats:
heavyweight heartbeats and lightweight heartbeats. The heavyweight heartbeats
contain the entire suspect list sent by the process, whereas the light-weight
heartbeats merely contain ‘i-am-alive’ information.

Alg. 2 implements such a communication sub-layer. In the action system,
each process maintains, in the variable prev hbij , the suspect list that the �P
module sent to process j in the previous heartbeat. If the contents of the current
heartbeat to be sent are different from the contents of the previous heartbeat
sent, then the action system generates a new sequence number (Action 1, line 3)
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set prev hbij := ∅ The previous heartbeat sent by the local �P-module to process j
message msgij := 〈0, null, 0〉 The actual heartbeat (HB) sent to j
integer seq numij := 0 The current sequence number for heartbeats to j
integer max seqij := 0 The highest sequence number received from j
integer latest ackij := 0 The latest ack sent to j
message hbij := ∅ The heartbeat (suspect list) sent to the local �P module

1 : {upon exec(�P−send 〈hb〉 to j)} −→ Action 1: Send a heartbeat
2 : if (hb �= prev hbij) Check if the suspect list has changed
3 : increment seq numij by 1 A new sequence number for new suspect list
4 : prev hbij := hb Update local record of the latest heartbeat
5 : msgij := 〈seq numij , hb, latest ackij〉 Construct HB (piggybacked ack)
6 : if (j /∈ hb) send 〈msgij〉 to j Send constructed HB if j is trusted
7 : else send 〈0, null, 0〉 to j Else send a lightweight HB

8 : {upon receive 〈seq, hb, ack〉 from j} −→ Action 2: Receive a heartbeat
9 : if (ack = seq numij) Check if the ack is for latest local suspect list
10 : msgij := 〈0, null, seq〉 Construct a lightweight HB (with piggybacked ack)
11 : latest ackij := seq Record the ack to be sent in the next HB
12 : if (seq > max seqij) Check if the suspect list from j is newer
13 : hbij := hb Update hbj with the new suspect list
14 : max seqij := seq Update the max sequence number received from j
15 : exec(�P−receive 〈hbij〉 from j) Send suspect list to the local �P-module

Alg. 2. Bit-complexity optimizer for the �P algorithm in Alg. 1

and constructs a heavyweight heartbeat (Action 1, line 5). However, it sends the
heavyweight heartbeat only if the recipient is not currently suspected (Action
1, line 6)5; otherwise it sends a lightweight heartbeat (Action 1, line 7). Alg. 2
stores the sequence number of the latest heartbeat received from each process
j in the variable latest seqij (Action 2, line 11) and piggybacks, in the next
heartbeat sent, the sequence number as the ack for the latest heartbeat received
(Action 1, line 5 and Action 2, line 10). The action system continues to send
heavyweight heartbeats until it receives an ack from the recipient process for
the new heavyweight heartbeat (Action 2, lines 9–10). After the ack for the new
heavyweight heartbeat is received, the action system starts sending lightweight
heartbeats until the suspect list changes again.

At the receiver, the communication sub-layer maintains the latest suspect
list received so far from each process j (in the variable hbij). Upon receiving
a heavyweight heartbeat with a suspect list that is newer than the latest one
on record (Action 2, line 12), the communication sub-layer updates its local
information (Action 2, lines 13–14). It then sends the latest heartbeat on record
(stored in the variable hbij) to the local �P module (Action 2, line 15).

5 The condition for trusting a recipient to send a heavyweight heartbeat ensures that
in non-crash-quiescent runs, a correct process does not send an infinite number of
heavyweight heartbeats to a crashed process.
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Correctness. We show that the proof of correctness in Sect. 4.1 applies to Alg. 1
+ 2 as well. Inspection of the action system in Alg. 2 shows that the communi-
cation sub-layer does not change the number of messages sent or received in the
system. It also ensures that the end-to-end communication delay for privileged
messages is bounded in the number of action clock ticks (because messages are
sent or received in a single atomic step).

Additionally, the heartbeat that is sent to the local �P-module is always a
valid suspect list. This fact follows from the observation that the value of hbij

is initialized to a valid suspect list, and the only modification of hbij is in lines
12–13. This change to hbij could result in an invalid suspect list (viz., the value
null) only when a lightweight heartbeat is received. However, all lightweight
heartbeats are sent with sequence number 0, and hence, do not overwrite the
existing (valid) suspect list. Consequently, the heartbeat sent to the local �P-
module is always a valid suspect list.

Strong Completeness. The proof for Theorem 5 is agnostic to the contents of the
heartbeats and is therefore applicable to Alg. 1 + 2 as well. Thus, by Theorem 5,
Alg. 1 + 2 satisfies strong completeness.

Eventual Strong Accuracy. The proofs for Lemmas 6 through 12 are agnostic to
the heartbeat content. Hence, these lemmas are applicable to Alg. 1 + 2 too.

Inspection of the proof for Theorem 13 reveals that the argument for even-
tual strong accuracy is made in the suffix in which all faulty processes have
crashed and the suspect lists at all correct processes have stopped changing (by
Lemma 12). Since Lemma 12 holds for Alg. 1 + 2 as well, every run of Alg. 1
+ 2 has a suffix in which all faulty processes have crashed and the suspect lists
at all correct processes have stopped changing. In such a suffix, each pair (i, j)
of correct processes either (a) trust each other permanently, or (b) suspect each
other permanently (by Lemmas 10 and 11).

In the former case, processes i and j send heavyweight heartbeats for the final
change in their suspect lists until the acks for the reception of such a heavyweight
heartbeat are received; after the reception of these acks, the jth row in i’s suspect
matrix is the same as j’s suspect list, and vice versa. In the latter case, i and
j stop sending heartbeats to each other (Lemma 11). Thus, in this suffix, the
suspect matrices Si and Sj stay constant. The same arguments in the proof for
Theorem 13 show that processes i and j always send heartbeats to each other
infinitely often. Then Lemma 10 implies eventual strong accuracy.

Crash Quiescence. From the eventual strong accuracy property we know that ev-
ery correct process is eventually and permanently trusted by all correct processes.
Thus, the last change in the suspect list at each correct process is successfully
communicated to all other correct processes in the system by Alg. 2. This allows
us to apply the proof for Theorem 14 to Alg. 1 + 2, thus showing that Alg. 1
+ 2 is crash quiescent in majority-correct runs.
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5.1 Communication Bit Complexity

Alg. 2 uses sequence numbers in the heartbeats. Hence, in a finite prefix of
the execution, heartbeat size may be unbounded. However, as we show next,
eventually the processes send only lightweight heartbeats of size O(log(n)) bits.

Consider an infinite suffix of any run of Alg. 1 + 2 that starts after (a) all
processes that crash in the run have already crashed, (b) all correct processes
have started permanently suspecting crashed processes, and (c) no correct pro-
cess is suspected by any correct process. In this suffix, the local suspect list at
each process stops changing.

The finite number of heartbeats that were sent before the start of the suffix are
either dropped or delivered in finite time. Subsequently, all heartbeats in transit
in the system are ones that are sent during the suffix. Since a process continues
to send heavyweight heartbeats until the sending process receives an ack for
the latest change in the suspect list, sufficiently many heavyweight heartbeats
for the final change in the suspect list are guaranteed to be sent. This ensures
that these heartbeats are delivered to their recipients, and the acks for these
heavyweight heartbeats are received by the senders.

Thus, eventually all processes have received acks for the last change in their
suspect list from all correct processes. Consequently, eventually all processes
send only lightweight heartbeats, and hence the piggyback acks are only for
lightweight heartbeats as well. In other words, eventually the heartbeats sent by
all correct processes are lightweight heartbeats with sequence number 0 and ack
number 0. Such heartbeats require O(log(n)) bits (including the bits needed to
encode the sender and the recipient identifier information).

In majority-correct runs, since the asymptotic message complexity is O(c2),
the communication bit complexity is O(c2 log(n)). Similarly, in runs where half
or more processes crash, since the asymptotic message complexity is O(n · c),
the communication bit complexity is O(n · c log(n)).

The asymptotic communication bit complexity of Alg. 1 + 2 for majority-
correct runs is lower than its non-crash-quiescent counterparts, and in runs where
half or more processes crash, the asymptotic bit complexity is no worse than its
non-crash-quiescent counterparts. Thus, we have achieved crash-quiescence for
�P in ECLPS in majority-correct runs with improved message complexity and
(importantly) improved bit complexity.

6 Conclusion

We have proposed a new property of distributed algorithms called crash quies-
cence. An algorithm is said to be crash quiescent if all correct processes eventually
stop sending messages to any crashed process. We have motivated the importance
of crash quiescence in the context of the eventually perfect failure detector �P . We
have shown that in some partially-synchronous environments where a bounded,
but unknown, number of consecutive messages may be arbitrarily late or lost, it
is impossible to achieve crash quiescence for even �W — the weakest failure de-
tector in the Chandra-Toueg hierarchy. However, in such partially synchronous
environments, we have presented an implementation of �P that is correct in all
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runs and that is crash quiescent in runs where a majority of processes are correct.
Furthermore, we have presented a refinement of our �P algorithm to optimize the
message size so that the resulting bit complexity per utilized link is asymptotically
better than or equal to that of non-crash-quiescent counterparts.
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Abstract. This paper addresses the consensus problem in asynchronous
systems prone to process crashes, where additionally the processes are
anonymous (they cannot be distinguished one from the other: they have
no name and execute the same code). To circumvent the three compu-
tational adversaries (asynchrony, failures and anonymity) each process
is provided with a failure detector of a class denoted ψ, that gives it an
upper bound on the number of processes that are currently alive (in a
non-anonymous system, the classes ψ and P -the class of perfect failure
detectors- are equivalent).

The paper first presents a simple ψ-based consensus algorithm where
the processes decide in 2t + 1 asynchronous rounds (where t is an up-
per bound on the number of faulty processes). It then shows one of
its main results, namely, 2t + 1 is a lower bound for consensus in the
anonymous systems equipped with ψ. The second contribution addresses
early-decision. The paper presents and proves correct an early-deciding
algorithm where the processes decide in min(2f +2, 2t+1) asynchronous
rounds (where f is the actual number of process failures). This leads to
think that anonymity doubles the cost (wrt synchronous systems) and it
is conjectured that min(2f +2, 2t+1) is the corresponding lower bound.

The paper finally considers the k-set agreement problem in anonymous
systems. It first shows that the previous ψ-based consensus algorithm
solves the k-set agreement problem in Rt = 2

⌊
t
k

⌋
+ 1 asynchronous

rounds. Then, considering a family of failure detector classes {ψ�}0≤�<k

that generalizes the class ψ(= ψ0), the paper presents an algorithm that
solves the k-set agreement in Rt,� = 2

⌊
t

k−�

⌋
+ 1 asynchronous rounds.

This last formula relates the cost (Rt,�), the coordination degree of the
problem (k), the maximum number of failures (t) and the the strength
(�) of the underlying failure detector. Finally the paper concludes by
presenting problems that remain open.

1 Introduction

Anonymous systems. In a somewhat restrictive way, the aim of a real-time sys-
tem is to master on time computing, and the main aim of parallelism is to obtain
efficient algorithms. Similarly we can say that the central issue of distributed
computing consists in mastering uncertainty. This uncertainty has first appeared
under the form of asynchrony, failure occurrences, and the multiplicity of loci of
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control (also referred as locality). More recently, new facets of uncertainty (such
as dynamicity, scalability and mobility) have appeared and made distributed
computing even more challenging.

Among the many facets of uncertainty that distributed computing has to
cope with, anonymity is particularly important. It occurs when the computing
entities (processes, agents, sensors, etc.) have no name, and consequently cannot
distinguish the ones from the others. It is worth noticing that, from a practical
point of view, anonymity is a first class property as soon as one is interested in
guaranteeing privacy.

One of the very first works (to our knowledge) that addressed anonymous sys-
tems is from D. Angluin [2]. In that paper, considering message passing systems,
she was mainly interested in computability issues, namely answering the question
“which functions can be computed in presence of asynchrony and anonymity?”
The leader election problem is a simple example of a problem that is unsolvable
in such a setting (intuitively, this because symmetry cannot be broken in pres-
ence of asynchrony and anonymity). Failure-free message passing anonymous
systems have also been investigated in [34,35] where is given a characterization
of problems solvable in this context according to which amount on information
about network attributes are initially known by the processes.

Failure-free asynchronous shared memory systems have been studied in the con-
text of anonymity. A characterization of the problems (tasks) that can be solved
in this setting (when additionally the number of processes is not known) is given in
[3]. The use of randomization to cope with crash-prone anonymous shared mem-
ory systems has been addressed in [31], where a randomized wait-free naming
algorithm is given that solves the naming problem when each atomic register is
a single-writer/multi-reader register. Recently, wait-free algorithms implement-
ing snapshot and weak counters have been proposed for anonymous asynchronous
shared memory systems prone to process crash [18]. Wait-free means that every
non-faulty process has to terminate its snapshot or counter operations, whatever
the number of failures and and the concurrency pattern [21].

Consensus in anonymous shared memory systems. Consensus is one of the most
famous distributed computing problem. It is a coordination problem defined
as follows: each process proposes a value, and each non-faulty process has to
decide a value (termination), such that no two processes decide different values
(agreement) and the decided value is a proposed value (validity). While it has a
very simple statement and can be trivially solved in (anonymous or not) failure-
free systems where the number of processes is known, and has simple solutions
in (anonymous or not) crash-prone synchronous systems, the consensus problem
has no solution in asynchronous non-anonymous failure-prone systems, as soon
as (even only) one process can be faulty, be the failure a simple crash and
the communication system a reliable shared memory system [24], or a reliable
message passing system [16]. Trivially, the problem cannot be solved either if
anonymity is added to asynchrony and failures.

An approach based on randomization is presented in [7] to circumvent the
previous impossibility in anonymous crash-prone shared memory systems. As
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noticed in [18], this shows that producing unique identifiers is harder than
consensus.

Another approach to circumvent the previous impossibility consists in con-
sidering a weaker version of the problem. Taking such an approach, [18] looks
for obstruction-free consensus algorithms. Obstruction-freedom is a termination
property weaker than wait-freedom. While wait-freedom requires that every non-
faulty process always decides (see above), obstruction-freedom requires that,
whatever the failure pattern, each non-faulty process p decides when the con-
currency pattern is such that p can execute “long enough” without concurrency.
(From a practical point of view, “long enough” means the time to execute its al-
gorithm.) An obstruction-free consensus algorithm for anonymous shared mem-
ory systems is described in [18]. This algorithm requires O(n) binary atomic
registers (where n is the total number of processes).

Content of the paper. As far as we know, the consensus problem has not been
investigated in anonymous crash-prone message passing systems. This is the
topic addressed in this paper. Several contributions are presented. The first is a
failure detector-based algorithm that solves the consensus problem despite the
net effect of asynchrony, crash failures and anonymity. The second (and, to our
view, a main contribution) is a lower bound on the number of rounds required by
any algorithm that solves consensus in such an uncertainty context. The third
contribution is an early-deciding algorithm, while the last contribution is the
investigation of the k-set agreement problem in anonymous systems.

As consensus cannot be solved in presence of process crashes and asynchrony
in a message passing systems [16], these systems have to be enriched with addi-
tional power in order the problem becomes solvable. Failure detectors are a well-
known approach proposed to provide processes with such an additional power
[8]. Informally, a failure detector provides each process with information on fail-
ures. As we are interested in the most efficient asynchronous message passing
algorithm that solves consensus despite crashes and anonymity (and not in the
weakest Ω-like [9] failure detector to face anonymity), we consider here the failure
detector class denoted ψ. That failure detector class is the strongest of a fam-
ily of failure detector classes that has been introduced in [28,29]. When queried
by a process, such a failure detector returns an over-estimate of the number of
alive processes. Interestingly, ψ and the class P of perfect failure detectors are
equivalent in asynchronous non-anonymous systems. (A failure detector of the
class P provides each process with a set that does not contain the id of a process
before it crashes and eventually contains the ids of all the crashed processes.)

The paper first presents an asynchronous anonymous ψ-based algorithm that
solves the consensus problem in 2t+1 rounds, where t is an upper bound on the
number of processes that are allowed to crash in a run (1 ≤ t ≤ n−1). Then the
paper presents one of its results, namely, a proof that, whatever the crash failure
pattern, 2t + 1 is a lower bound on the number of rounds required to solve the
consensus problem in the proposed round-based model. While t + 1 is a lower
bound on the number of rounds to solve consensus in both synchronous message
passing systems [1,15,23], and asynchronous message passing systems equipped
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with a perfect failure detector [20], we show that 2t + 1 is the corresponding
lower bound for anonymous systems. This is a noteworthy feature of anonymity
as it shows that, when one wants to solve consensus deterministically despite
anonymity, an additional price of t rounds has to be paid.

The paper then considers early decision in anonymous systems enriched with
ψ. It presents an algorithm where the processes decide and halt by min(2f +
2, 2t + 1) rounds (where f is the actual number of faulty processes, 0 ≤ f ≤ t).
This leads to think that min(2f + 2, 2t + 1) could be the lower bound on the
number of rounds for solving consensus in these asynchronous systems.

Finally, the paper focuses on the k-set agreement problem [10] that extends
consensus in the sense it allows up to k values to be decided. It first shows that
the previous ψ-based algorithm (designed for consensus) solves k-set agreement
in 2

⌊
t
k

⌋
+ 1 rounds. As k-set agreement is a weaker problem than consensus,

a failure detector weaker than ψ should be able to solve it. To investigate this
idea, a family of failure detector classes, denoted {ψ�}0≤�<n, is introduced; ψ0 is
ψ, and ψ�+1 is weaker than ψ� (� is the maximal number of alive processes that
can be falsely suspected to have crashed). It is shown that � < k is a sufficient
requirement to solve k-set agreement with the help of ψ�. Moreover a ψ�-based
k-set agreement is presented that requires R = 2� t

k−��+1 rounds. Interestingly,
this formula relates the cost (R), the coordination degree of the problem (k),
and the strength (�) of the underlying failure detector. It also clearly exhibits the
point until which the failure detector class can be weakened while still solving
k-set agreement, namely � should be lesser than k (the threshold value � = k,
i.e. the value from which ψ� is too weak to solve k-set agreement, corresponds
to a division by 0 in the formula).

Roadmap. The paper is made up of 7 sections. Section 2 presents the system
model which includes the failure detector class ψ. Section 3 presents and proves
correct a simple ψ-based algorithm that solves consensus despite asynchrony,
process crashes and anonymity. Then, Section 4 proves a main theorem of the
paper: (2t + 1) is a lower bound on the number of rounds for any algorithm
that solves the consensus problem in that computation model. Then, Section 5
addresses early decision, and Section 6 focuses on the k-set agreement problem.
Finally, Section 7 concludes the paper giving a list of related open problems.

2 Computation Model

2.1 Base Model

Process model. The system is made up of a fixed number n of processes, denoted
p1, . . . , pn. The value of the system parameter n is not known by the processes.
Moreover, the process pi does not know its index i, which means that indexes
are only used for a presentation purpose. Processes are anonymous in the sense
that they have no name and execute the same algorithm. They are asynchronous
in the sense that there is no assumption on their respective speeds.
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Failure model. Up to t processes can crash in a run, 0 ≤ t ≤ n − 1. A process
executes correctly its algorithm until it possibly crashes. A crash is a premature
stop; after it has crashed, a process executes no step. The value of the system
parameter t is know by the processes. A process that does not crash in a run is
correct in that run. Otherwise, it is faulty in that run. Until it crashes (if ever it
does), a process is alive.

Communication. The processes communicate by exchanging messages through
reliable channels. These channels are asynchronous, which means that there is
no assumption on the speed of messages on channels, except that it is positive
(eventually every message arrives).

The processes are provided with a brodcast() communication primitive that
allows the invoking process to send the same message to all the processes (in-
cluding itself). The brodcast() primitive is not reliable in the sense that, if a
process pi crashes while broadcasting a message, that message can be received
by an arbitrary subset of processes. When it receives a message, a process cannot
determine the sender of the message. Moreover, given any set of messages it has
received, a process cannot determine if these messages are from the same sender
or from different senders.

Round-based model. The processes execute asynchronous rounds. During each
round, a process broadcasts a message, receives messages sent during the very
same round and executes local computation. This means that, as in the asyn-
chronous models described in [4,17,25], the rounds are communication-closed.

Notation. Theprevious computationmodel is denotedAARScl
n,t[∅].AARS stands

forAnonymousAsynchronousRound-based System, with communication-closed
rounds, while ∅means there is no additional assumption.

2.2 The Failure Detector Class ψ

As indicated in the introduction this failure detector class has been introduced in
[28,29]. The class ψ is the equivalent of the class of perfect failure detectorsP , when
we consider non-anonymous systems (“equivalent” means that, if we associate dis-
tinct names with each process of an anonymous system, we have the following:
given a failure detector of any one class it is possible to build a failure detector of
the other class. (In [5] appears a bounded transformation from ψ to P .).

Definition. Let f denote the number of processes that crash in a given run
(0 ≤ f ≤ t), and f τ denote the number of processes that have crashed up to
time τ . A failure detector of the class ψ provides each process pi with a positive
integer denoted aa�i (approximate number of a�ive processes) that satisfies the
following properties (where aa�τ

i denotes the value of aa�i at time τ):

– Safety: ∀τ : aa�τ
i ≥ n− f τ .

– Liveness: ∃τ : ∀τ ′ ≥ τ : aa�τ ′

i = n− f .
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The safety property states that aa�i is always an over-estimate of the number of
processes that are still alive, while the liveness property states that it eventually
converges to its exact value1.

2.3 The Computation Model AARScl
n,t[ψ]

This computation model is AARScl
n,t[∅] enriched with ψ and where, in each

round, the number of messages received by a process pi is determined by the
current value of aa�i. More precisely, for each process pi, the algorithms have
the canonical form described on Fig. 1. The local variable ri is the current round
number of pi. Each process pi execute asynchronous rounds until some condition
is satisfied. During its round ri, pi broadcast a message tagged ri, waits until it
has received aa�i messages tagged ri, and executes local computation. (aa�i is
repeatedly read until the wait statement terminates.) Before proceeding to the
next round, the process pi increases ri. (As the model is asynchronous it is up
to each process pi to manage its round number).

ri ← 1;
while (¬ condition) do

begin asynchronous round
broadcast a msg tagged (ri, −);
wait until (aa�i msgs tagged ri have been received);
Local computation;
ri ← ri + 1
end asynchronous round

end while;
Local computation.

Fig. 1. Canonical form of algorithms

Misleading notification. Let us consider Fig. 2 where the rounds r − 1, r and
r + 1 are represented, the processes pa crashes during the round r − 1 (a crash
is represented by a cross in the figure), and the process pb crashes after it has
broadcast its round r message (in the figure, the corresponding crash appears
during the round r +1). The asynchronous notification of each crash appears at
pi as a decrease of aa�i; each is indicated with a dotted line. As pa crashes during
the round r − 1, it will not send round r messages, and so, during the round
r, pi has to wait for at least 3 messages (aa�i = 3). Differently, pi is notified
of the crash of pb (i.e., aa�i is decreased to 2) while it is waiting for round r
messages. As a result pi waits for only two messages and, as it has received
two round r messages (from pb and itself), it terminates its participation to the
round r. Such an early failure notification is called a misleading notification, and
1 In [28], n is known and ψ provides each process pi with an integer anci such that

n = aa�i + anci.
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pa

pb

m

pi
aa�i = 3 aa�i = 2

m′
pj

r r + 1r − 1

Fig. 2. Misleading notification

the message m sent by the corresponding crashed process is called a misleading
message. More precisely, a message m sent at round r is misleading if it allows
its receiver to terminate its round r, while the corresponding sender has crashed
after or during the broadcast of m. These misleading notifications/messages
come from the independence between the asynchronous communication-closed
rounds on one side, and the crash notifications supplied by failure detector ψ on
the other side (it is such an independence that makes the system different from
a synchronous system).

The theorem that follows is central to the AARScl
n,t[ψ] model. It characterizes

exactly the synchronization power of ψ.

Theorem 1. If x processes crash while they execute the round r, no process can
proceed to the round r + 1 while there are still (x + 1) processes that are alive
and execute the round r − 1.

Proof. let τ be the time at which the first process (say pi) progresses from the
round r to the round r + 1. Moreover, let A(τ) be the number of processes
that are alive at time τ , and R(τ, r) be the number of processes that, at time
τ , have entered a round r′ ≥ r. We have R(τ, r) = RA(τ, r) + RC(τ, r) where
RA(τ, r) is the number of processes that, at τ , are alive and execute a round
r′ ≥ r (notice that only pi starts executing r′ = r + 1, the other processes of
RA(τ, r) are executing r), and RC(τ, r) is the number of processes that have
started executing the round r and have crashed by time τ).

– It follows from the safety property of ψ that, when the process pi progresses
from the round r to the round r + 1, we have aa�i(τ) ≥ A(τ). Moreover,
during the round r, pi receives and processes only messages sent during
the same round r, from which we conclude that R(τ, r) ≥ aa�i(τ), and by
transitivity we obtain R(τ, r) ≥ A(τ).

– At time τ , there are A(τ)−RA(τ, r) alive processes that have not yet entered
the round r. As RA(τ, r) = R(τ, r) − RC(τ, r) and 0 ≤ RC(τ, r) ≤ x, we
conclude that there are at most A(τ)−R(τ, r) + x alive processes that have
not yet entered the round r.

Finally, as, at time τ , there are at most A(τ) − R(τ, r) + x alive processes that
have not yet entered the round r, and R(τ, r) ≥ A(τ), we conclude that A(τ)−
R(τ, r) + x ≤ x, which completes the proof of the theorem. ��
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The corollary that follows considers the case x = 0.

Definition 1. We say that a process pi terminates a round r, if r < 2t + 1 and
pi proceeds to r + 1, or r = 2t + 1 and pi decides during that round.

Corollary 1. If no process crashes while executing round r, no process termi-
nates the round r while there are alive processes executing the round r − 1.

3 Solving Consensus in AARScl
n,t[ψ]

A consensus algorithm for the AARScl
n,t[ψ] model is described in Fig. 3. This

algorithm is a simple enrichment of the skeleton described in the previous section
that adapts to AARScl

n,t[ψ] the classical flood set consensus algorithm designed
for synchronous system [4,25,32].

A process pi invokes propose(vi) where vi is the value it proposes to the
consensus. It terminates when it executes the return(esti) statement (line 10)
where esti is the value it decides. The processes execute (2t + 1) asynchronous
rounds (line 02). In each round, each process pi broadcasts its current estimate
(denoted esti and initialized to vi) of the decision value and updates it (by taking
the minimum on the values it has received and taken into account up to now,
lines 05-06).

operation propose(vi):
(01) esti ← vi; ri ← 1;
(02) while (ri ≤ 2t + 1) do
(03) begin asynchronous round
(04) brodcast est(ri, esti);
(05) wait until( aa�i messages est(ri, −) have been received);
(06) esti ← min(est values received at the previous line);
(07) ri ← ri + 1;
(08) end asynchronous round
(09) end while;
(10) return(esti).

Fig. 3. Anonymous consensus in AARScl
n,t[ψ]

Remark. If n is known by the processes, the algorithm can be improved to reduce
the number of rounds in the particular case where t = n − 1 (wait-free case).
Instead of (2t + 1) rounds, the processes can then execute only 2t rounds.

Theorem 2. The algorithm described in Fig. 3 solves the consensus problem in
(2t + 1) rounds in the AARScl

n,t[ψ] model.

Proof of the algorithm. Due to pages limitation, the proof appears in [5].
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4 (2t + 1) Is a Lower Bound

Assuming t < n−1, this section shows that (2t+1) is a lower bound on the num-
ber of rounds to solve the consensus problem in both the model AARScl

n,t[ψ] and
the model AARSop

n,t[ψ] described in the next section devoted to early decision
(the main difference is that AARSop

n,t[ψ] is not round communication-closed).
The proof is by contradiction. Assuming that there is an algorithm A that

solves the binary consensus problem in 2t rounds, it shows that such an algorithm
cannot be designed. (In the binary consensus problem, only the values 0 and 1
can be proposed by the processes. It is easy to see that considering only binary
consensus can be done without loss of generality.)

Structure of the proof. The structure of the proof is as in [1,16]. The contradiction
follows from the following lemmas. The first lemma shows that a configuration
of A after 2(t − 1) rounds is univalent. The second lemma shows that there is
a configuration of A that, after 2(t − 1) rounds, is bivalent. That lemma uses
the fact that, assuming the existence of an algorithm A that solves the binary
consensus problem, there is an initial bivalent configuration.

The proof does not consider all the possible runs of A. It relies only on the runs
of A in which no process crashes in odd rounds, and there is at most one process
crash per even round. As the algorithm described in Fig. 3 needs 2t + 1 rounds,
the 2t + 1 bound proved for these runs is a tight lower bound (Theorem 4). Due
to pages limitation, the proof appears in [5]. (As for Theorem 2, for t = n − 1,
it is possible to show that 2t rounds are necessary and sufficient.)

Theorem 3. Let t < n− 1. There is no consensus algorithm that always termi-
nates in at most 2t rounds in the AARSn,t[ψ] model.

The following theorem is an immediate consequence of the previous theorem and
Theorem 2.

Theorem 4. Let t < n − 1. The algorithm described in Fig. 3 is optimal (for
the number of rounds) in the AARSn,t[ψ] model.

5 Early Decision and Halting

5.1 Early Decision

The aim is here to allow the processes to decide before the round 2t + 1 when
there are few failures. Let f (0 ≤ f ≤ t) be the actual number of faulty pro-
cesses. The corresponding consensus lower bound is min(t + 1, f + 2) rounds
in non-anonymous asynchronous systems equipped with a perfect failure detec-
tor [12] and in non-anonymous synchronous systems [4,23,25,32]. What is the
lower bound in AARScl

n,t[ψ]?
Compared to the previous systems, the new difficulty we have to cope with

in AARScl
n,t[ψ] lies in the fact that, due misleading messages, during a round a

process can miss messages from processes that have not crashed. Providing early
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decision in such a context is a real challenge. Our intuition is that early decision
in AARScl

n,t[ψ] requires the processes to decide simultaneously during the very
same round. The simultaneous agreement problem, introduced in [13,14], has
been shown to be strongly related to the “common knowledge” theory [19], and
has received some attention in the literature (e.g., [26,27]). So, we conjecture
that early decision and halting in AARScl

n,t[ψ] requires simultaneous agreement
and should be attained in 2t + 1−D rounds where D (0 ≤ D ≤ t) is parameter
defined from the actual failure pattern [14].

5.2 The System Model AARSop
n,t[ψ]

This paper addresses early decision in a model, denoted AARSop
n,t[ψ](where op

stands for open), derived from, and less constraining than, AARScl
n,t[ψ]. This

model, that assumes that each process knows initially t and n, is round-based but
not round communication-closed. During any round r, in addition to the messages
tagged r, a process can send or receive and process a round-free message, i.e., a
message that is not tagged by a round number. This model allows the behavior of a
process to be defined by two tasks: a round-based task T 1, and a task T 2 that pro-
cesses the round-free messages. BothAARScl

n,t[ψ] andAARSop
n,t[ψ] assume that t

is knownby eachprocess. AdditionnallyAARSop
n,t[ψ] assumes also thatn is known.

It is interesting to recall that, differently from what can be done in the round-
based synchronous model, a lot of “round-based” asynchronous algorithms do
actually assume a model similar to AARSop

n,t[ψ]. This is the case, for example,
of the round-based consensus algorithms that assume an underlying failure de-
tector such as the eventual leader Ω. Before deciding, a process broadcasts a
decide() that allows its receiver to stop executing its round-based task, and
decide immediately (e.g., [8,9,30]).

5.3 An Early Deciding Algorithm for AARSop
n,t[ψ]

An algorithm that solves the consensus problem in min(2t + 1, 2f + 2) rounds
in the AARSop

n,t[ψ] model is described in Figure 4. As announced, it is made up
of two tasks. The task T 2 is to prevent deadlock: when a process early decides
(line N5), it broadcasts a round-free decide() message and, if a process pi has
not yet decided when it receives such a message, it forwards it and returns the
decided value (and stops accordingly).

The main task T 1 is a round-based task partly similar to the the behavior
described in Figure 3. The lines common to both algorithms have the same
number. M is appended to the number of a line that is modified, while the new
lines are numbered N1, N2, etc.

Each process pi manages the following additional local variables: earlyi initial-
ized to false (its meaning will be explained later), reci that counts the number
of messages received during the current round (line N1), and a variable k whose
current value is such that ri = 2k + 1 in odd rounds and ri = 2k + 2 in even
rounds (line N2). Moreover, a round message now carries the additional boolean
value earlyi (line 04M).
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operation propose(vi):
task T1:
(01M) esti ← vi; ri ← 1; earlyi ← false;
(02) while (ri ≤ 2t + 1) do
(03) begin asynchronous round
(04M) brodcast est(ri, esti, earlyi);
(05) wait until

(
aa�i messages est(ri, −, −) have been received

)
;

(06) esti ← min(est values received at the previous line);
(N1) let reci[ri] = number of messages received at line 05;
(N2) let k =

⌊
ri−1

2

⌋
;

(N3) if (ri is even) ∧ (reci[ri] = n − k)
(N4) ∧ (each est(ri, −, early) received is such that early = true)
(N5) then brodcast decide(esti); return(esti) end if;
(N6) if (ri + 1 is even) then earlyi ← (reci[ri] = n − k) end if;
(07) ri ← ri + 1
(08) end asynchronous round
(09) end while;
(10) return(esti).
===========================================
task T2: when decide(est) is received : brodcast decide(est); return(est).

Fig. 4. Early deciding anonymous consensus in AARSop
n,t[ψ] (n and t are known)

The core of the early decision is at lines N3-N6, namely a process pi early
decides during the round r if the following round-dependent predicate is satisfied:
the round is even, exactly n − k = n −

⌊
r−1
2

⌋
messages est(r,−,−) have been

received and each carries the value true (lines N3-N4). As we will see in the
proof, when satisfied, this locally evaluable predicate says that pi knows (1) the
minimal value (v) of the estj variables of the set of the processes pj that started
the round 2k+1, and (2) that all the processes pj that started the round 2k+2,
know that value v. It follows that the estj values of all the processes that started
the round 2k+2 are equal to v, and consequently no other value can be decided.
The boolean earlyj is used by a process pj to indicate (line 04) if, during an odd
round r = 2k + 1, it has received n− k = n−

⌊
r−1
2

⌋
round r messages (line N6).

Theorem 5. The algorithm described in Figure 4 solves the consensus problem
in min(2f + 2, 2t + 1) rounds in the AARSop

n,t[ψ] model (where f denotes the
actual number of process crashes).

Proof of the early deciding algorithm. Due to pages limitation, the proof appears
in [5].

6 From Consensus to k-Set Agreement

This section considers the k-set agreement problem in anonymous asynchronous
crash-prone message passing systems.
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The k-set agreement problem. The k-set agreement problem has been introduced
in [10] to study how the number of choices (k) allowed to the processes is related
to the maximum number of faulty processes (t). It is defined by the same validity
and termination properties as the consensus problem, and the following agree-
ment property: at most k different values can be decided (so, consensus is 1-set
agreement). The k-set agreement problem cannot be solved in non-anonymous
asynchronous crash-prone systems as soon as k ≤ t [6,22,33]. Differently, it can
always be solved in round-based synchronous systems where

⌊
t
k

⌋
+ 1 is a lower

bound on the number of rounds [11].

6.1 Solving k-Set Agreement in AARScl
n,t[ψ] with t ≤ n − k

The algorithm described in Fig. 3, where 2t + 1 is replaced by 2
⌊

t
k

⌋
+ 1 solves

the k-set agreement in AARScl
n,t[ψ]. The assumption t ≤ n− k generalizes the

assumption t ≤ n − 1 associated with the consensus problem. Due to pages
limitation, the proof appears in [5].

Theorem 6. The algorithm described in Figure 3 (where (2t + 1) is replaced
by 2

⌊
t
k

⌋
+ 1) solves the k-set agreement problem in 2

⌊
t
k

⌋
+ 1 rounds in the

AARScl
n,t[ψ] model where t ≤ n− k.

6.2 Solving the k-Set Agreement with Weaker Failure Detectors

The failure detector class ψ�. As, when k > 1, the k-set agreement problem is
weaker than consensus, it should be possible to use a failure detector weaker than
ψ in order to solve it. So, let us consider the class of failure detectors, denoted
ψ�, 0 ≤ � < n, that is a simple generalization of ψ. It is defined as follows (the
notation is the same as in Section 2.2):

– Safety: ∀τ : aa�τ
i ≥ n− f τ − �.

– Liveness: ∃τ : ∀τ ′ ≥ τ : n− f − � ≤ aa�τ ′

i ≤ n− f .

From this definition, we obtain a family of failure detector classes {ψ�}0≤�<n. It
is easy to see that ψ0 is ψ and ψ� is weaker than ψ�−1.

A k-set algorithm for AARScl
n,t[ψ�]. Interestingly, when the number of rounds

2t+1 is replaced by 2� t
k−��+1, the algorithm described in Fig. 3 solves the k-set

agreement problem in AARScl
n,t[ψ�] (assuming t ≤ n− k + � and � < k). As we

can see, the ψ-based consensus algorithm described in Figure 3 and its ψ-based
k-set agreement variant (described in the previous section), are two particular
instances of the general ψ�-based algorithm. These instances consider � = 0,
i.e., the strongest class in the failure detector family {ψ�}0≤�<n. Due to pages
limitation, the proof appears in [5].

Theorem 7. Let k ≤ t ≤ n − k and 0 ≤ � < k. The algorithm described
in Fig. 3,where (2t + 1) is replaced by 2

⌊
t

k−�

⌋
+ 1, solves the k-set agreement

problem in 2
⌊

t
k−�

⌋
+ 1 rounds in the AARScl

n,t[ψ�] model.
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Discussion. Let us consider the instance of the general ψ�-based algorithm where
thenumber of rounds is fixed to a predeterminedvalueR (instead of 2�t/(k−�)�+1.

– Then, that algorithm instance solves the k-set agreement problem where k
is the smallest value such that R ≥ 2�t/(k − �)�+ 1.

– From a different point of view, the weakest failure detector class ψ� for which
that instance can solve the k-set agreement problem in R rounds is defined
by the greatest value of � < k such that R ≥ 2�t/(k− �)�+1 (if such a value
does exist2).

This clearly shows how the algorithm captures and links its cost (measured by
its time complexity R), the power of the failure detector the system is equipped
with (this power is defined by �, the greater �, the weaker the power of the
underlying failure detector), and the difficulty of the considered set agreement
problem (measured by the coordination degree k: k′-set agreement is more dif-
ficult than k-set agreement if k′ < k). Solving a more difficult problem requires
either more rounds, or a more powerful failure detector class than solving an
easier problem. In the AARSn,t[ψ�] model, the three critical parameters R, k
and � are related by the simple formula R = 2� t

k−��+ 1.

7 Open Problems

This work leaves open problems for future research. Among them there are the
following ones.

– Design a simultaneous consensus algorithm in the AARScl
n,t[ψ] model.

– Prove (or disprove) that min(2f + 2, 2t + 1) rounds is the lower bound for
early decision in the AARSop

n,t[ψ] model.
– Investigate the question of the weakest failure detector class for solving con-

sensus despite asynchrony, anonymity and failures. (An introductory view of
this problem appears in [5].)

– Assuming k < t ≤ n − k, show (or disprove) that there is a ψ�-based k-set
agreement algorithm in the AARScl

n,t[ψ] model if and only if 0 ≤ � < k.
– Design an early deciding k-set agreement algorithm for the AARSop

n,t[ψ]
model.
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Abstract. This work focuses on implementing Omega in the crash-
recovery model. Previously proposed algorithms either use stable stor-
age or have a permanent all-to-all communication pattern. We propose a
more efficient algorithm which does not use stable storage, and in which
eventually, among correct processes, only one keeps sending messages.

1 Motivation

Omega provides an eventual leader election functionality, i.e., eventually all pro-
cesses agree on a common process [1]. Previously proposed algorithms for Omega
in the crash-recovery model [3,4] either use stable storage or have an all-to-all
communication pattern, i.e., periodically every process sends a message to the
rest of processes. We propose here a more efficient algorithm in which eventually
only one correct process, i.e., the leader, sends a message periodically to the rest.

2 The Algorithm

The algorithm, presented in Figure 1, works under the following assumptions on
communication reliability and synchrony: (i) for every correct process p, there
is an eventually timely link from p to every correct and every unstable process,
and (ii) for every unstable process u, there is a fair lossy link from u to every
correct process. A detailed description of the algorithm can be found in [2].

With this algorithm, unstable processes are allowed to disagree with correct
processes. In practice, it is interesting that eventually all the processes that are
up, either correct or unstable, agree on a common and correct leader process.
We propose in [2] an adaptation of the algorithm that makes unstable processes
not trust any process upon recovery, i.e., output a special value ⊥, until either
they trust the leader or crash. The adaptation assumes a majority of processes
in the system to be correct.
� Research partially supported by the Spanish Research Council, under grants

TIN2007-67353-C02-02 and TIN2006-15617-C03-01, and the Comunidad de Madrid,
under grant S-0505/TIC/0285.
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procedure update leader()
leaderp ← process in Candidatesp with smallest associated counter in Recoveredp

Initialization:
leaderp ← p
Candidatesp ← {p}
for all q ∈ Π except p:

Timeoutp[q] ← η
Recoveredp[q] ← 0

Recoveredp[p] ← 1
send (RECOV ERED, p) to all processes except p
start tasks 1, 2 and 3

Task 1:
repeat forever every η time units

if leaderp = p then
send (LEADER, p, Recoveredp) to all processes except p

Task 2:
upon reception of message (RECOV ERED, q) or message (LEADER, q, Recoveredq) do

if message is of type RECOV ERED then
Recoveredp[q] ← Recoveredp[q] + 1

else
for all r ∈ Π:

Recoveredp[r] ← max{Recoveredp[r], Recoveredq [r]}
Timeoutp[q] ← max{Timeoutp[q], Recoveredp[p]}

Candidatesp ← Candidatesp ∪ {q}
update leader()
reset timerp(q) to Timeoutp[q]

Task 3:
upon expiration of timerp(q) do

Timeoutp[q] ← Timeoutp[q] + 1
Candidatesp ← Candidatesp − {q}
update leader()

Fig. 1. Efficient Omega algorithm in the crash-recovery model. Code for process p

Using message relaying it is possible to relax the assumptions on communi-
cation reliability and synchrony of the algorithm, which would work under the
following weaker assumptions: (i’) for every correct process p, there is an eventu-
ally timely path from p to every correct and every unstable process, and (ii’) for
every unstable process u, there is a fair lossy link from u to some correct process.
A consequence of the use of relaying is that the algorithm is no longer efficient.
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Abstract. This paper defines the basic notions of local and non-local tasks, and
determines the minimum information about failures that is necessary to solve any
non-local task in message-passing systems. It also introduces a natural weakening
of the well-known set agreement task, and show that, in some precise sense, it is
the weakest non-local task in message-passing systems.

We investigate the following question: What is the minimum information about failures
that is necessary to solve any non-local task in message-passing systems?

To understand this question, we must first explain what we mean here by “non-local
task”. Roughly speaking, an (input/output) task is a relation between the input and the
output values of processes [1]. In this paper, we consider one-shot tasks where each
process has a single input value drawn from a finite number of possible input values,
and each process outputs a single value. To classify a task as being local or non-local,
we consider its input/output requirement in simple systems with no failures. Intuitively,
a task is local if, in systems with no failures, every process can compute its output value
locally by applying some function on its own input value. A task is non-local if it is not
local.

To illustrate the concept of task locality, consider the trivial “identity” task which
requires that every process simply outputs a copy of its input. Intuitively, this task is
local: every process can compute its output locally, without any message exchange.
Now consider the binary consensus task. This task is not local, in the sense that at least
one process cannot compute its output from its individual input only (this holds even in
a system where all processes are correct). So consensus is a non-local task.

To determine the minimum information about failures that is necessary to solve non-
local tasks, we use the abstraction of failure detectors [2]. Failure detectors have been
used to solve several basic problems of fault-tolerant distributed computing and to cap-
ture the minimum information about failures that is necessary to solve these problems
(e.g., consensus, set agreement, non-blocking atomic commit, mutual exclusion, uni-
form reliable broadcast, boosting obstruction-freedom to wait-freedom, implementing
an atomic register in a message-passing system, etc.).

� Work partially supported by supported by the ANR verso Shaman and the National Science
and Engineering Research Council of Canada.
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In this paper, we show that there is a non-trivial failure detector, denoted FS∗, that
is necessary to solve non-local tasks in message-passing systems. By this we mean that
FS∗ can be extracted from any failure detector that can be used to solve any non-local
task in such systems. We also show that FS∗ is the strongest failure detector with this
property. More precisely, we prove that:

1. NECESSITY: FS∗ is necessary to solve non-local tasks, i.e., if a failure detectorD
can be used to solve a non-local task T then FS∗ is weaker than D, and

2. MAXIMALITY: if a failure detector D∗ is necessary to solve non-local tasks, then
D∗ is weaker than FS∗.

So, intuitively, FS∗ is the greatest lower bound of the set of failure detectors that solve
non-local tasks, and it captures the minimum information about failures necessary for
solving such tasks in message-passing systems.
FS∗ is a very weak failure detector, so one may ask wether it is too weak to solve

any interesting problem. We show that this is not the case: FS∗ can be used to solve a
natural weakening of the well-known set agreement task, that we call weak set agree-
ment (WSA). In fact, we prove that FS∗ is the weakest failure detector for solving this
task. Our results imply that, in some precise sense, WSA is the weakest non-local task
for message-passing systems: for any non-local task T , if T is solvable using a failure
detector D, then WSA is also solvable with D.

Finally, we compare FS∗ to two closely related failure detectors, namely, L and
anti-Ω, which are the weakest failure detectors to solve set agreement in message-
passing and shared memory systems, respectively. We prove that anti-Ω is strictly
weaker than FS∗ and FS∗ is strictly weaker than L, in message-passing systems.

The failure detector FS∗ and the weak set agreement task WSA that we introduce
in this work are both very simple. Intuitively, failure detector FS∗ outputs GREEN or
RED at each process such that (1) if all processes are correct, then FS∗ outputs GREEN

forever at some process, and (2) if exactly one process is correct, then there is a time
after whichFS∗ outputs RED at this process. Weak set agreement is like set agreement,
except that the condition that there are at most n− 1 distinct decision values is required
only for failure-free runs.

A preliminary version of the full paper, which includes a discussion of related results,
is in [3].
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Motivation. In recent years, the quest for weak system assumptions, which add
just enough synchrony resp. failure information to purely asynchronous systems
to circumvent impossibility results, has been an active research topic in dis-
tributed computing. Most work in this area has been devoted to (1) identifying
weak(est) failure detectors (FDs), and (2) identifying synchrony assumptions
just strong enough to implement these weak FDs.

Due to the FLP impossibility result [1], the first focus of this research has been
the consensus problem. More recently, k-set agreement (termed set agreement
for k = n−1) has been identified as a promising target for further exploring the
solvability border in asynchronous systems. As for (1), anti-Ω [2] was shown to
be the weakest FD for set agreement in shared memory systems: Whereas Ω
(the weakest FD for solving consensus [3]) outputs the id of one correct process
infinitely often, anti-Ω outputs the id of one correct process only finitely often.
Subsequently, a generalization called anti-Ωk that returns n−k processes has
been shown to be the weakest FD for k-set agreement in shared memory sys-
tem [4,5]. For message passing systems, only the weakest FD for set agreement
is known, namely, the “loneliness” failure detector L [6]. Concerning (2), a class
of shared memory models for implementing anti-Ωk was presented in [7].

Contributions. In the full paper [8], we generalize L, the weakest FD for (n−1)-
set agreement, to the (n−k)-loneliness detector L(k) that allows to solve k-set
agreement for any k. Like L, L(k) outputs either true or false: While L is
required to perpetually output false on at least one process, L(k) is required
to do so on n−k processes. Moreover, when k or more processes crash, L(k)
detects these crashes by outputting true on at least one correct process, just
like L for n−1 crashes. We prove that L(k) does not allow to solve (k − 1)-
set agreement, and give an algorithm that implements k-set agreement using
L(k) even in anonymous systems, i.e., without unique identifiers (in contrast to
the algorithm for L provided in [6]). We also provide a detailed analysis of the
relationship between L(k) and the limited scope failure detector Sn−k+1 [9].

� This research was supported by the Austrian BM:vit’s FIT-IT programme (proj.
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Moreover, we introduce two system models with weak synchrony requirements
that still allow to implement L. The first model Msink is related to the afore-
mentioned weak timely link models: Instead of a timely source, it is based on
the idea of a sink, i.e., a process with a moving incoming timely link. The other
model Manti is a query-response based model that is, processes send queries to
all their peers from time to time, and wait for responses. Manti requires the ex-
istence of one specific process whose round-trips with itself are never the fastest.
To the best of our knowledge, our models are the first message passing models
where set agreement is solvable but consensus is not.
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At Yahoo!, we have developed a fault-tolerant coordination service called
ZooKeeper [4] that allows large scale applications to implement coordination
tasks such as leader election, status propagation, and rendezvous. ZooKeeper
forgoes locks [2] and instead implements simple wait-free data objects [3] along
with a consistency model that guarantees linearizable updates and FIFO order
for client operations. We have found the service to be flexible with performance
that meets the production demands of the Web-scale applications of Yahoo!.

The ZooKeeper service comprises n ZooKeeper replicas (n ≥ 2f + 1, f is
a threshold on the number of faulty replicas). Among these replicas, there is
a distinguished, elected replica: the leader. The remaining replicas are follow-
ers. Clients of the ZooKeeper service can connect and submit requests through
any ZooKeeper replica. If this request reads the state of ZooKeeper, the replica
serves this request locally. Otherwise, it forwards the request to the leader. The
leader receives ZooKeeper requests and transforms them into idempotent trans-
actions. The transformation corresponds to generating the state modifications
for the given request, as with primary-backup protocols [1]. The leader then sends
transactions as messages using atomic broadcast. As a leader can crash, there
must be an additional leadership election protocol. To elect a leader, ZooKeeper
requires at least �(n + 1)/2� non-faulty replicas.

The failure model and leader-based operation of ZooKeeper makes Paxos [5] a
good option for our atomic broadcast implementation. We found, however, that
for Zab we could simplify some aspects of the protocol. One particular issue we
found difficult to handle with Paxos is the following. Failures or false suspicions
of the leader may cause multiple values to be proposed to a given instance, and
violate the order clients expect. For example, suppose the following case:

– There are two proposers due to failures or false suspicions;
– A client c1 submits operations A and B in this order, and a client c2 submits

C and D in this order. Neither client waits for the previous operation to
return to submit the next one.

In such a scenario, replicas might end up executing A followed by D, which
is not a behavior that typical applications expect. Of course, we could have a
client submitting one operation at time. Such a choice would drastically reduce
the performance of a client as we cannot pipeline several requests under such
a design. Having multiple outstanding requests, however, is quite important in
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some concrete cases, such as when a new primary is elected and needs to read
and reconstruct the metadata of its application as part of the fail-over process.

Highlights of Zab. We assume an unbounded sequence of slots identified by a trans-
action id (zxid), and replicas agree on a proposal for each slot. A zxid is a pair 〈e, c〉,
where e is an epoch number and c is the counter for epoch e. An execution of Zab
therefore proceeds in epochs. An epoch starts when a new leader is elected and
ends upon the election of another leader. To broadcast an operation, the leader of
an epoch proposes the operation with a given zxid (counter c is incremented upon
every proposal), replicas acknowledge the proposal, and the leader commits once
a quorum has acknowledged. The following properties also hold for Zab:

Single leader per epoch: We use a leader election primitive to elect the leader
of an epoch. An epoch has at most one leader, and we enforce it by guar-
anteeing that a replica only exercises the role of leader in an epoch once it
has the support of a quorum of replicas. Moreover, a replica can support the
leadership of at most one replica for a given epoch. Because a quorum has to
support a leader for the leader to be active, we can have at most one active
epoch at any time;

Highest transaction identifier: Our leader election algorithm elects the
replica that has accepted the highest zxid among all replicas that initially
support the new leader;

Skipping instances: Because the leader has the highest transaction identifier
among all replicas in the quorum that supports it and by the intersection
of quorums, the leader must have seen all previously committed proposals.
Consequently, any message it has not seen can be safely skipped;

TCP channels: We use TCP channels between the leader and the followers.
By using TCP channels, we guarantee that there are no gaps in the sequence
of delivered messages and messages are delivered in order for a given channel;

Multiple outstanding requests: Because of TCP channels and pipelined pro-
cessing in all replicas, we guarantee that a prefix of requests of a leader will
be committed even if a leader has multiple operations outstanding.

In our experience, Zab has been simple to implement and maintain in a pro-
duction environment, and yet it provides the performance necessary for demand-
ing Web-scale applications, such as the Yahoo! Crawler.
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Abstract. In a distributed network, a compact multicast scheme is a
routing scheme that allows any source to send messages to any set of
targets. We study the trade-off between the space used to store the
routing table on each node and the stretch factor of the multicast scheme
– the maximum ratio over all sets of nodes between the cost of the mul-
ticast route induced by the scheme and the cost of a steiner tree between
the same set of target nodes. We obtain results in several variants of
the problem: labeled – in which the designer can choose polylogarithmic
node names, name-independent – in which nodes have arbitrarily chosen
names, dynamic – an online version of the problem in which nodes dy-
namically join and leave the multicast service and the goal is to minimize
both the cost of the multicast tree at each stage and the total cost of
control messages needed to update the tree.

1 Introduction

As the Internet becomes increasingly used for wide-scale broadcast of informa-
tion, the ability to send packets to large fractions of the Internet at near-optimal
cost may be the vital step that will allow the Internet to replace traditional
broadcast media. For large multicast groups, there are substantial inefficien-
cies that result from using unicast to send messages to many recipients, both
from the standpoint of the sender, and from the standpoint of wasted aggregate
bandwidth. However, present-day routers cannot possibly incorporate full global
information about all possible multicast sets, nor can they store the complete
network graph and calculate the minimum spanning tree (MST) or minimum
Steiner tree on the set of destinations. Therefore, it is absolutely crucial that
memory is efficiently utilized within the routing fabric.

In this paper, we initiate the study of compact multicast routing. Informally,
the multicast routing problem it to determine the memory held for routing by
each network node, and to devise a routing algorithm that delivers a packet with
multiple targets to its destinations. A routing scheme is compact if it is memory
efficient. Its goodness is measured by its stretch, the total network distance it
utilizes, compared with the shortest multicast path available. Precise problem
definition and performance measures are provided below, and are among the
contributions of this paper. Additionally, we provide multicast routing schemes
whose memory/stretch tradeoffs are comparable to the unicast case.
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There is a very extensive literature on compact unicast routing [10,12]. Sup-
pose we are given a set of n vertices V with distinct labels from {1, . . . , n}, and
a weighted, undirected graph G on those vertices. A routing scheme is a dis-
tributed algorithm that produces a path in G between u, v ∈ V . The stretch of
the scheme is defined as the maximum, over all choices of u, v ∈ V , of the length
of the produced path between u and v divided by the length of the shortest
such path. The memory of the scheme is the maximum amount of information
the algorithm requires to be stored at a node for the node to locally produce
the next hop of any routing path. The header size of the scheme is the amount
of information the scheme requires to be included in each packet to be routed.
The challenge is to produce compact routing schemes that use o(n) memory and
poly-log sized headers, while producing O(1) stretch.

Much is known about these tradeoffs. When nodes are allowed to be renamed,
it is known that producing stretch 2k − 1 requires Õ(n1/k) memory [12], and
this matches the lower bound known for k = 3, 5. For trees, routing requires
O(log2 n/ log log n) memory and header size, and this is known to be optimal [6].
When nodes are given fixed labels, it is known that a stretch 3 scheme exists
requiring Õ(n1/2) memory [2], and a stretch O(k) scheme exists with memory
Õ(kn1/k) [1].

We propose the existence of compact multicast routing schemes, which are
distributed algorithms to deliver a packet from any node u ∈ V to any set of
target nodes A ⊆ V . The memory of the scheme is defined as in the unicast
problem, but stretch is now defined as the maximum, over all choices of u and
A, of the total weight of edges used by the algorithm to deliver the packet to
all nodes of A, divided by the weight of the minimum Steiner tree with A ∪ {u}
as targets. We allow headers to be Õ(|A|) bits in size, so that the packets can
include a list of all destinations, but are similarly restrained, as in the unicast
case, from including full path information.

At first sight, the problem seems daunting. There are 2n − 1 possible desti-
nation subsets. So a complete information scheme should maintain at each node
the next step(s) of the shortest spanning tree, for all possible subsets. So it might
appear that an optimal solution that locally determines how to forward a packet
to each possible target set requires exponential memory. Fortunately, this is not
so, as the entire graph can be stored using Õ(n2) memory (more precisely, us-
ing Õ(|E|) memory), from which a 2-approximation of the optimal solution can
be derived in reasonable computation. Therefore, from here on, we refer to any
solution that stores o(|E|) as compact multicast routing. We are also interested
in the total space consumption of a scheme, and desire to have o(n× |E|).

Contributions. Our contributions include the following.

1. A formulation of the compact multicast routing problem and its performance
measures.

2. A labeled multicast routing scheme whose memory requirement at each node
is Õ(n1/k), uses labels of size Õ(n1/k), employs headers of size Õ(n1/k), whose
stretch is 4k − 2.
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3. A name-independent multicast routing scheme whose total memory is
Õ(kn1+1/k log ∆) with stretch O(k).

4. A name-independent multicast routing scheme for growth bounded networks
whose memory is Õ(kn1/2+1/k) per node with stretch O(k).

5. A definition of the dynamic multicast routing problem, allowing destinations
to be added and removed incrementally to the multicast path.

6. A dynamic multicast scheme that adapts to online node joins with polylog-
arithmic memory per node and O(log2 n) competitive ratio.

7. A dynamic multicast scheme that adapts to online node joins and leaves
with polylogarithmic memory per node and O(log3 n) competitive ratio.

Related work. Our constructions uses building blocks from compact unicast
routing schemes. Among them we use: the labelled tree routing of Thorup &
Zwick [12] and Fraigniaud & Gavoille [6], the distance oracles of Thorup and
Zwick [12,13], the sparse partitions of Awerbuch and Peleg [4]. We details these
results in Section A.

The non-distributed dynamic multicast problem is related to the online steiner
tree problem [8,5] in which a similar join-only problem (without leave events) is
studied in a centralized model. In contrast our problem concerns a distributed
setting and requires nodes to leave the services at a competitive cost. Awerbuch,
Bartal and Fiat study the distributed file allocation problem [3]. The join-only
dynamic multicast problem can be viewed as a variation of their problem limited
to read only requests and serving each request by creating a copy at the reader.
In their setting, they achieve a O(log3 n) competitive ratio, while our join-only
scheme achieves an O(log2 n) ratio. Jia et al. [9] propose a single source uni-
versal scheme in which a single tree provides a O(log4 / log log n) competitive
steiner tree for any target set. Gupta et al. [7] claim to improve the bound to
O(log2 n). We use a construction based on [7] in our dynamic join-leave problem.
Our scheme implicitly builds a universal tree for every target in a non-trivial
manner while storing only a polylogarithmic number of bits per node. Moreover,
our resulting scheme is oblivious, the path from the source to a given target is
irrespective of the current set of other targets. We utilize this fact to efficiently
handle leave events.

2 Preliminaries

Let G = (V, E, ω) be an undirected graph with n = |V | nodes and non-negative
weight function ω : E → �+. For an edge set P ⊆ E let G(P ) be the subgraph of
G induced by the nodes in P . Let the cost of an edge set be the sum of weights
of it edges, for a set of nodes S ⊂ V let dG(S) be their Steiner tree cost, the cost
of the minimum cost edge set P such that S is connected in G(P ) (this must
be a tree). When G is clear from the context we omit it from the notation and
write d(S). When |S| = 2, we write d(u, v) as the cost of the minimal cost path
between u and v. When S = V then d(S) is the cost of a minimal cost spanning
tree on G. Let ∆ be the ratio between max d(u, v) and min d(u, v) (also called
the aspect ratio of G).
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Consider a subset A ⊆ V of ‘target’ nodes, and an origin node s. We denote
by S = {s} ∪ A the set containing both origin and target nodes. Let m = |S|.
Our focus is on the following problems:

– Labeled compact multicast routing scheme. This consists of a labeling
of nodes and a routing function. The source gets a list of all targets and needs
to create a multicast tree.

– Name-independent compact multicast routing scheme. This consists
of a routing function. The source gets a list of all targets and needs to create
a multicast tree. In this model the names of the nodes are chosen arbitrarily
as a permutation of {1, . . . , n}.

– Dynamic compact multicast routing scheme. This consists of a label-
ing of nodes and a routing function. The source gets an arbitrary sequence
join and leave events in an online manner. For each join event it receives the
label of the new target and it adds edges to the multicast to connect the
target.

We measure the performance of a compact multicast scheme based on the fol-
lowing criteria:

Label size: The maximum number of bits of the label assigned to each node.
Header size: The maximum number of bits sent in a message header.
Total space: The total number of bits used used to store the routing tables.
Max space: The maximum number of bits used at any node to store its routing

table.
Stretch: The worst-case ratio, over all sets of destinations, of the sum of the

weights of edges used in multicasting to the destinations to the optimal such
tree.

In Section 6 we give additional competitive measures for the dynamic online
version of the problem.

3 Labeled Compact Multicast Routing

Our first approach builds a multicast route using a Steiner-tree approximation
over an approximation of the graph induced by a distance labeling scheme.

Theorem 1. Let G be a weighted, undirected graph. There is a compact multi-
cast routing scheme for G whose memory requirement at each node is Õ(n1/k),
uses labels of size Õ(n1/k), employs headers of size Õ(n1/k), whose stretch is
4k − 2.

The scheme makes use of the distance labels and handshake routing scheme of
Lemma 9.

Labeling. The labels of nodes and the routing tables are the ones induced by
Lemma 9, i.e., node v is specified by its label TZlabel(v).
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Storage. Each node v maintains the routing table information TZtable(v) in-
duced by Lemma 9.

Routing. For any two nodes u, v let DO(u, v) be the distance estimation induced
by the labels. Let H be a weighted graph on nodes S such that weights between
nodes u, v ∈ S is DO(u, v). Let T be a minimum cost tree on H whose cost
is dH(S). The source computes T in O(m2) time, and creates a header that
contains a current node (initially set to s) and the tree T , where each node u of
T is designated using its label TZlabel(u).

A node u that receives such a header does the following: If u is the current
node of the header then it finds all the edges in T that u needs to send along.
For each such edge (TZlabel(u), TZlabel(v)), it creates a header with current
node v and forwards it using the handshake routing mechanism and the header
information.

Otherwise, if u is not the current node then using the handshake routing
scheme, u forwards to the next hop towards the current destination.

Analysis. The storage andheader sizesof the schemeare immediate fromLemma 9.
We prove the stretch below.

Lemma 1. The stretch of the multicast routing scheme above is 4k − 2

Proof. Let H̄ be a weighted graph on S such that weights between nodes u, v ∈ S
is d(u, v). It is well known that minimum cost tree on H̄ is a 2 approximation1

of the cost of the steiner tree of S on G, dH̄(S) ≤ 2dG(S). Hence we only need
to show that dH(S) ≤ (2k − 1)dH̄(S).

Let T̄ be a minimum cost tree on H̄ whose cost is dH̄(S). Using the fact that
dH(u, v) ≤ (2k − 1)dH̄(u, v) for any u, v, we have that the cost of the tree T̄ on
H is at most (2k− 1)dH̄(S). Since T is a minimum cost tree on H then its cost
is also at most (2k − 1)dH̄(S).

4 Name-Independent Compact Multicast Schemes

The construction in the previous section may require labels of size Ω(n1/k log n)
per node. In this section, we remove the use of labels. That is, we assume that an
origin s is given the set of targets A = {t1, . . . , tm} using their original network
names (for example, taken out of {1, . . . , n}. Hence, this solution variant is called
name-independent. As a consequence of name-independence, we also avoid the
need to carry around lengthy labels in packet headers. Headers in our name-
independent schemes below are of size proportional to the target list, Õ(m).

We remark that a trivial compact name independent multicast scheme can
be derived by requiring each node to maintain the distance oracle of Lemma 9.
Then employ it to map the set of unlabeled destination into a labeled set, and
1 There exist better approximations (e.g., see [11]), which may shave off a factor of

almost two from our scheme. However, our stress in this exposition is on clarity,
rather than optimal constants.
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use the labeled scheme of Section 3 above. The memory requirement at each
node is Õ(n1+1/k). Although this is indeed a compact solution (compared with
Õ(|V |+ |E|) memory per node), the memory at every node is super-linear, which
might be prohibitive for large networks. We can bring down the total memory
consumption by storing information selectively at key points in the network, and
looking it up when needed.

Theorem 2. Let G be a weighted, undirected graph with aspect ratio ∆. There is
a name-independent compact multicast routing scheme for G whose total memory
requirement is Õ(kn1+1/k log ∆), uses the original network labels (of size Õ(1)),
employs headers of size Õ(m), whose stretch is 20k − 10.

The rest of this section is devoted to the proof of Theorem 2. We use the sparse
partitions building block given in Theorem 10: Let I = {0, 1, 2, . . . , �log ∆�}.
The bundle Bk consists for i ∈ I of TCk,2i(G), a sparse cover of radius 2i with
parameter k.

For every T ∈ TCk,2i(G), denote by c(T ) its center node (the center is the
seed node from which the cluster was grown). For any node v and index i ∈ I,
denote by Ti(v) the tree in TCk,2i(G) that contains B(v, 2i).

Storage

1. Each v ∈ V stores TZlabel(c(Ti(v))) for all i ∈ I, where TZlabel(·) is given
by Lemma 9.

2. Each v ∈ V stores the routing table information TZtable(v).
3. For each i ∈ I and T ∈ TCk,2i(G), node c(T ) stores the mapping v −→

TZlabel(v), from node names to labels, for each node v ∈ T .

Lemma 2. The total storage used by all nodes is Õ(kn1+1/k) bits.

Proof. By Lemma 10, for every i ∈ I, every node v belongs to at most 2kn1/k

cover-sets of TCk,2i(G). According to Lemma 9, a label label(v) has size Õ(n1/k).
Therefore, the total memory used for label-maps by all c(T ), where T ∈TCk,2i(G)
is at most n · 2kn1/k · O(n1/k) = O(kn1+1/k). The total memory over all |I|
radii is O(kn1+1/k log ∆). In addition, each node v stores O(log ∆) labels of size
Õ(kn1/k) each. The total memory consumption of Õ(kn1+1/k) bits.

Routing. We need to devise a strategy for an origin s to obtain the labels of the
multicast targets without going too far. This is achieved as follows.

Observe that c = c(Ti(s)) is at distance at most k2i from s, and c stores
label mappings for all v ∈ B(s, 2i). Therefore, with cost O(k2i), s can send S
to c(Ti(s)), and let c(Ti(s)) compute the required multicast route. By repeat-
edly trying for increasing distances 2i, s can find the appropriate c(Ti(s)) at a
competitive cost.

The multicast strategy is as follows. Node s iteratively sends a request for
help containing the target list S to nodes c(Ti(s)) for i ∈ I, until it reaches a
node c = c(Ti(s)) such that c stores the labels of every node in S. Then node c
computes the header as in Theorem 1.
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Lemma 3. The stretch of the multicast routing scheme is 20k − 10.

Proof. Let j be the index such that 2j−1 < maxa∈A d(s, a) ≤ 2j. Then clearly
S ⊆ Tj(s) and 2j < 2d(S). Since the radius of a level 2i cover is (2k− 1)2i then
the cost of going from s to Ti(s) and back is at most 2(2k− 1)2i. And the total
cost to reach Tj(s) is

∑

1≤i≤j

2(2k − 1)2i ≤ 4(2k − 1)2j ≤ 8(2k − 1)d(S)

In addition, the cost of the multicast scheme of Theorem 1 is at most (4k−2)d(S).

5 Balanced Name Independent Compact Multicast
Routing for Growth Bounded Networks

In this section we provide a balanced scheme for growth bounded networks.
Formally, for a node v ∈ V and i ∈ N let Nv(i) denote the i closest nodes to v
with ties broken by lexicographical order.

We assume the network is δ-growth bounded, for δ ≥ 2, such that

diam(Nv(2i)) ≥ δ · diam(Nv(i)) .

The Single Source Directory Scheme (SSD)

We begin by building a single source directory (SSD) scheme. For a network of
n nodes and a parameter k, the scheme requires each node to store Õ(n1/2+1/k)
bit of storage. The scheme allows a fixed source c to find all the labels of a set
A of target nodes with cost that is proportional to the farthest node in A from
c. The result is stated in the following lemma:

Lemma 4 (Single-Source Directory (SSD)). LetF = (V, E, ω) be aweighted
graph, |V | = n, c ∈ V a given source node. There exists a multi-node lookup scheme
as follows.

– Given a set of target nodes A ⊆ V , the source c can find the labels TZlabel(a)
of all nodes a ∈ A, where TZlabel(a) is determined as in Lemma 9.

– The scheme requires each node to store Õ(kn1/2+1/k) bits.
– The length of the path used for finding the labels inA is atmost 4 maxa∈A d(c, a).

SSD Storage. Let c be the source node. Let Γ =
√

n. Enumerate the nodes
in Nc(Γ ) arbitrarily w1, w2, . . . , wΓ . For any integer i < log Γ let the nodes
w2i , w2i+1, . . . , w2i+1−1 store the labels of all the nodes in (Nc(Γ2(i+1))\Nc(Γ2i).
Note that each wj stores

√
n labels. Node c itself stores the labels of Nc(Γ20),

i.e., of the
√

n nodes closest to it.
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SSD Lookup. It is left to show how to obtain the labels of targets with a com-
petitive cost. This is done as follows.

1. If A ⊆ Nc(Γ ), then c has all the labels already.
2. Otherwise, set i = 0, and set A0 = A \ (A ∩ Nc(Γ )). That is, A0 contains

the remaining targets for which c does not have labels yet. Repeat for i =
0, 1, 2, . . . , until Ai is empty:
– Node c queries from w2i , w2i+1, . . . , w2i+1−1 the labels of any target

nodes in Ai. Note that in response, c should obtain the labels of all
nodes in Ai ∩Nc(Γ2i+1).

– Then set Ai+1 = Ai \Nc(Γ2i+1), set i = i + 1, and repeat.

SSD Analysis

Proof (Proof of Lemma 4). let d = diam(Nc(Γ )). An invariant maintained in
the algorithm is as follows. At step i, there is a target a ∈ (A \Nc(Γ2i). Hence,
if step i is reached, there is a target a ∈ Ai whose distance from c is at least
diam(Nc(Γ2i)). By the growth bound,

diam(Nc(Γ2i)) ≥ 2id .

Therefore, maxa∈A d(c, a) ≥ 2id. The total cost of steps j = 1, . . . , i is a geomet-
ric series, whose sum is bounded by

∑
j=0..i 2× 2j ≤ 4× 2i. This yields that the

total distance of lookups is at most 4 maxa∈A d(c, a).

The Full Scheme

As in the un-balanced name-independent multicast scheme of Section 4, we make
use of sparse partitions as given in Theorem 10.

Storage

1. Each v ∈ V stores TZlabel(c(Ti(v))) for all i ∈ I.
2. Each v ∈ V stores the routing table information TZtable(v).
3. For each i ∈ I and T ∈ TCk,2i(G), employ the scheme of Lemma 4 with T

the graph, and c(T ) the source node. (Recall that this allows c(T ) to look
up the labels TZlabel(a) of any set of targets A, such that a ∈ A, with cost
at most 4diam(T ).

Lemma 5. The total storage used by any node is Õ(kn1/2+1/k).

Routing. Given a set of targets A, s computes a Steiner graph spanning A in
two steps: First, it obtains the labels of all the nodes in A; then it computes an
approximate Steiner graph as in the labeled scheme of Section 3.

We need to devise a strategy for an origin s to obtain the labels of the multicast
targets without going too far. This is achieved as follows.

Observe that c = c(Ti(s)) is at distance at most (2k − 1)2i from s. By
Lemma 4, from origin c a lookup of label mappings for all v ∈ B(s, 2i) has
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a cost bounded by 4 × (2k − 1)2i. Therefore, with cost O(k2i), s can send A
to c(Ti(s)), and let c(Ti(s)) return the required labels. By repeatedly trying for
increasing distances 2i, s can find the appropriate c(Ti(s)) at a competitive cost.

The multicast strategy is as follows. Node s iteratively sends a request for
help containing the target list A to nodes c(Ti(s)) for i ∈ I, until it reaches a
node c = c(Ti(s)) such that c can find the labels of every node in A. Then node
c computes the header as in Theorem 1.

Lemma 6. The stretch of the multicast routing scheme is 36k − 18.

Proof. Let j be the index such that 2j−1 < maxa∈A d(s, a) ≤ 2j. Then clearly
S ⊆ Tj(s) and 2j < 2d(S). For every i ≤ j, since the radius of a level 2i

cover is (2k − 1)2i then the cost of going from s to c(Ti(s)) and back is at
most 2(2k − 1)2i. The cost of searching for label mappings in Ti(s) is bounded
according to Lemma 4 by 2(2k−1)2i. Hence, the total cost to collect all required
label mappings is:

∑

1≤i≤j

4(2k − 1)2i ≤ 8(2k − 1)2j ≤ 16(2k − 1)d(S)

Finally, the cost of the Steiner tree computed using these labels is bounded
according to Lemma 1 by an additional (4k − 2)d(S).

6 Dynamic Compact Multicast Routing Schemes

A weakness of all the solutions above is that the multicast dissemination path
must be re-computed each time a target wants to join or eave the multicast
service. In a highly dynamic setting in which the multicast set is constantly
changing rebuilding the multicast tree from scratch after each change may be
unacceptable.

Consider a source node s and a sequence of node join and node leave events.
In such a dynamic setting there are two measures one would like to minimize.
The first is the communication-cost, namely, the total cost of the edges used
during the algorithm while building the multicast trees of the various stages.
The second is the multicast-cost, which for each stage is the cost of the current
multicast tree.

We now explain why communication-cost alone does not suffice to bound the
cost of a multicast scheme. In order to understand this, consider a simple-path
graph s = v1 − v2 − ... − vn, and suppose that the sequence of joins/leaves is
the following: join(vn), join(vn−1), ..., join(v2), join(v1), leave(vn), leave(vn−1),
..., leave(v2). If we consider only the total communication cost, we need not ever
remove edges from the multicast path, which is the whole graph in this case.
In the end, we may be left with a very inefficient multicast graph containing v1

and v2, but the communication cost measure does not capture this. Therefore,
we must also consider the efficiency of the current multicast path at every step,
which is precisely captured by multicast-cost.
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In order to formally bound theses measures, we make use of online analysis .
Specifically we compare both costs to an optimal off-line algorithm. The off-line
algorithm knows the sequence of joins/leaves in advance, and has no extraneous
communication cost in setting up the multicast overlay. The communication-cost
for the online algorithm is therefore the total cost of edges used for the optimal
Steiner trees at different steps.

An on-line algorithm is (α, β) competitive for the dynamic multicast problem
if for any source and for any sequence of join/leave events the total cost of the
set of edges used is at most α times that of the total cost of the set of edges used
by the optimal algorithm and at each stage the cost of the current multicast tree
is at most β times that of the cost of the current optimal algorithm.

Let A be the set of all nodes that joined during a sequence. Then any algorithm
must pay at least d(A∪{s}) for communication-cost, and if A′ is the current set
of nodes of a given stage then any algorithm must pay d(A′∪{s}) multicast-cost
for this stage.

In this extended abstract we handle the labeled variant of this problem in
which nodes are labeled and the sequence of join/leave events are given in an
online manner to the source. In the full paper we will show how to extend these
ideas for a name-independent variant of the problem.

We begin by presenting our first scheme that only allows join events to the mul-
ticast service over time (but no leave events). We prove it is (O(log2 n), O(log2 n))
competitive. This may be appropriate in settings where once a node joins a mul-
ticast service it will not leave until the multicast is complete. Our second scheme
handles both join and leave events at a cost of a being (O(log3), O(log3))
competitive.

6.1 Dynamic Compact Multicast Routing Schemes for Join-Only
Events

Assume the sequence of node joins is A = {a1, a2, . . . }. The scheme employs a
bundle Bk = {TCk,2i(G) | i ∈ I} of Sparse Covers of Lemma 10 with k = log n.
For a node v, denote by B(v) the set of all covers T in the bundle Bk such that
v ∈ T .

Labelling. The label SPlabel(v) stores the label λ(T, c(T )) given by Lemma 9
for each T ∈ B(v). Note that the label size is O(log3 n log ∆/ log log n).

Storage. Each node v stores tree routing information µ(T, v) for all the trees in
its own label SPlabel(v) (recall that SPlabel(v) consists of λ(T, c(T )) for every
tree-cover T ∈ B containing v). The total storage is O(log3 n log ∆/ log log n).

Multicast-graph Construction. The construction of the multicast graph is done
in steps. At step j, node aj is brought into the multicast graph. This entails
informing all relevant nodes in the graph who should become their new neighbors.

For convenience, we denote by Aj = {s, a1, . . . , aj}. The key is to maintain
for each i ∈ I a set Ui ⊂ Aj such that if u, v ∈ Ui then d(u, v) ≥ 2i and for any
v ∈ Aj there exists u ∈ Ui such that Ti(u) ∈ B(v).
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Initially Ui = {s} for all i ∈ I. Given a new node a with label SPlabel(a),
let i∗ be the maximal index i such that B(a) ∩ {Ti(u) | u ∈ Ui} = ∅ then we
connect a to the existing multicast tree by a route from a to c(Ti∗+1(u)) and
from c(Ti∗+1(u)) to u where u ∈ Ui∗+1 and Ti∗+1(u) ∈ B(a). We update the sets
by adding a to Ui for all i ∈ {0, 1, 2, . . . , i∗}. Note that it suffices for s to store
the tuple (u, c(Ti∗+1(u)), TZlabel(Ti∗+1(u), a)) for the multicast route to be able
to reach a.

Analysis. It is immediate to see that for each i ∈ I the set Ui maintains the
property that for any v ∈ Aj there exists u ∈ Ui such that Ti(u) ∈ B(v). To
see that if u, v ∈ Ui then d(u, v) ≥ 2i note that if d(a, u) < 2i for some u ∈ Ui

then it must be that a ∈ Ti(u) so Ti(u) ∈ B(a) and thus a will not be added
to Ui.

Since themodelallowsonly joinevents thecommunicationcostandthemulticast
cost are both bounded by the cost of the Steiner tree on the set of current nodes.

Lemma 7. The dynamic multicast algorithm for joins is O(min{logn, log ∆}
log n) competitive both in communication cost and in multicast cost.

Proof. In the case of joins only, the communication cost and multicast cost of the
off-line algorithm are the same, namely, the cost of optimal Steiner tree of all tar-
gets. For each i ∈ I for which |Ui| > 1 any algorithm must pay at least |Ui|2i−1

since the balls of radius 2i−1 around members of Ui are disjoint. On the other hand
our algorithm pays at most |Ui|2i · 2 logn · 2 for connecting nodes in Ui.

Let d be the diameter of A then for each i ≤ log d ∈ I we pay at most 4 logn
times the optimal. If log ∆ is large we note that it is actually enough to look at
the 4 logn levels {log d, log d− 1, . . . , log d− 4 log n}, as the cost of all the edges
of the lower levels will add only a constant factor to the overall cost.

6.2 Fully Dynamic Compact Multicast Routing Scheme

Consider a finite sequence of node join and node leave events. For each stage j
let Aj be the current set of multicast targets. Note that at each stage either one
node joins or one node leaves, so |Aj+1 �Aj | = 1 (where X � Y is the set of all
nodes x such that either x ∈ X or x ∈ Y but not both). Let A be the set of all
nodes that joined the multicast service.

Recall the following definition from Gupta et al. [7].

Definition 1 (α-padded nodes). Given a hierarchical decomposition P =
(Pi)h

i=0, a node v ∈ V is α-padded in P if for all i ∈ [0, h], the ball B(v, α2i) is
contained in some cluster of Pi.

We use the Theorem 2.2 of Gupta et al. [7] to get a set of O(log n) hierarchi-
cal decompositions P such that for node u there exists P ∈ P such that u is
Ω(1/ logn)-padded in P . We denote the decomposition by P (u). If there exists
several such P ∈ P then define P (u) as the lexicographically first.
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Recall that a hierarchical decomposition P induces a dominating tree T (P )
simply by associating each cluster with the center node of the cluster and the
edge between a cluster and its parent cluster is simply the shortest path between
the two cluster’s centers. Routing on such a dominating tree can be done using
Lemma 8 for deciding which “tree-edge” to take. Each tree edge between a node
u ∈ T that corresponds to a cluster in Pi and a node v ∈ T that corresponds to
a cluster in Pi+1 induces a path in the graph that is part of a shortest path tree
emanating from v and spanning all the nodes corresponding to the cluster in
Pi+1. Hence we use Lemma 8 again for routing on the shortest path in G from
u to v.

A major property of the construction of the multicast graph is that it is
oblivious. The path from the source to a given target is irrespective of the current
set of other targets.

The path of a target a is simply the path induced on G by the path on the
tree T (P (a)) from a to the source. Note that it is possible to route along this
path using Lemma 8 while routing on a shortest path from each node in the
sequence to its neighbor in the sequence.

Due to obliviousness, when other nodes join and leave the multicast service
this does not effect the path taken to a. When a leaves the source simply stops
sending along the edges that are not required any more. This can be implemented
by maintaining a simple reference counter on the edges.

Analysis. For any hierarchical decomposition P and scale i, let XP,i be a 2i−6/
log n-net of the nodes (A ∪ {s}) ∩ Pi (an r-net is a maximal set of nodes whose
distance from each other is at least r). For any P and i, even the optimal offline
solution must pay |XPi |2i−7/ log n. We will now show that the total cost of edges
between clusters of Pi+1 to clusters of Pi+2 is at most |XP,i|2i+3. Summing over
all log ∆ scales and all O(log n) trees (each tree is induced by a hierarchical
decomposition P ∈ P) gives a competitive ratio of O(log2 n min{log ∆, log n}).
To see that the total cost of edges between the centers of clusters of Pi+1 to
centers of clusters of Pi+2 is at most |XP,i|2i+3, consider any a ∈ A that uses P
to reach the souse (hence P (a) = P ). By definition there exists x ∈ XP,i such
that d(x, a) ≤ 2i−6/ logn. Let C(x) be the cluster in Pi+1 that contains x. Since
x is fully padded then a ∈ C(x). Hence the path from a to s and the path from
x to s both meet at the center of C(x) so the total cost of the path from the
center of C(x) to its parent cluster center in Pi+2 for all a ∈ C(x) is at most
2i+3.

7 Conclusions

We have initiated the study of distributed compact multicast routing schemes.
No lower bounds are known (other than the known ones for unicast routing).
It is an interesting open question to find the optimal trade-offs between storage
and space for the various problems considered in this paper.
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A Building Blocks

Our schemes make use of several graph partitioning and routing techniques. For
clarity, we group them in this section.
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Labelled tree routing of Thorup & Zwick [12] and Fraigniaud &
Gavoille [6]:

Lemma 8. [6,12] For every weighted tree T with n nodes there exists a labeled
routing scheme that, given any destination label, routes optimally on T from
any source to the destination. The storage per node in T , the label size, and the
header size are O(log2 n/ log log n) bits. Given the information of a node and the
label of the destination, routing decisions take constant time.

For a tree T containing a node v, we let µ(T, v) denote the routing information
of node v and λ(T, v) denote the destination label of v in T as required from
Lemma 8.

Distance oracles of Thorup and Zwick [12,13]:
We use their distance labels, handshake routing scheme and distance oracles.
The following are simple variations of their results.

Lemma 9 ([12](3.4),(3,1), [13](4.1)). Let G be a weighted graph with aspect
ratio ∆. Let 1 ≤ k ≤ log n be an integer.

1. It is possible to assign to each point v ∈ V an O(n1/k log1−1/k n log(n∆))-
bit label, denoted TZlabel(v), such that given TZlabel(u) and TZlabel(v),
for any two points u, v ∈ V , it is possible to compute, in O(k) time, an
approximation to the distance d(u, v) with stretch of at most 2k − 1.

2. It is possible to assign each node a Õ(kn1/k) bit routing table, denoted
TZtable(v), such that given TZlabel(v) any source u can extract o(log2) bits
and use them as a header to route from the source to u with cost that equals
the cost of the distance estimation obtained by TZlabel(u) and TZlabel(v)
via item (1).

3. It is possible to create a data structure with size O(kn1/k log(n∆)) bits, such
that distance queries can be answered with the same cost of the distance
estimation of item (1). Given TZlabel(u) and TZlabel(v) it is possible to
extract o(log2 n) bits such that routing from source to target will also have
the same cost.

Sparse partitions of Awerbuch and Peleg [4]:

Lemma 10. [4] For every weighted graph G = (V, E, ω), |V | = n and integers
k, ρ ≥ 1, there exists a polynomial algorithm that constructs a collection of rooted
trees TCk,ρ(G) such that:

1. (Cover) For all v ∈ V , there exists T ∈ TCk,ρ(G) such that B(v, ρ) ⊆ T .
2. (Sparse) For all v ∈ V , |{T ∈ TCk,ρ(G) | v ∈ T }| ≤ 2kn1/k.
3. (Small radius) For all T ∈ TCk,ρ(G), there is a root node r ∈ T such that

rad(T ) ≤ (2k − 1)ρ, where rad(T ) = maxu{dT (r, u)}.
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Denote by I = {0, 1, . . . , �log∆(G)�}. Usually, we make use of a bundle Bk =
{TCk,2i(G) | i ∈ I} of covers and in some cases we make use of a bundle Bσ

k =
{TCk,σi (G) | i ∈ {0, 1, . . . , logσ ∆(G)}} .

For every T ∈ TCk,2i(G), denote by c(T ) its center node (the center is the
seed node from which the cluster was grown). For any node v and index i ∈ I,
denote by Ti(v) the tree in TCk,2i(G) that contains B(v, 2i).
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Abstract. We adapt the compact routing scheme by Thorup and Zwick to op-
timize it for power-law graphs. We analyze our adapted routing scheme based
on the theory of unweighted random power-law graphs with fixed expected de-
gree sequence by Aiello, Chung, and Lu. Our result is the first theoretical bound
coupled to the parameter of the power-law graph model for a compact routing
scheme. In particular, we prove that, for stretch 3, instead of routing tables with
Õ(n1/2) bits as in the general scheme by Thorup and Zwick, expected sizes of
O(nγ log n) bits are sufficient, and that all the routing tables can be constructed
at once in expected time O(n1+γ log n), with γ = τ−2

2τ−3 + ε, where τ ∈ (2, 3)
is the power-law exponent and ε > 0. Both bounds also hold with probability at
least 1−1/n (independent of ε). The routing scheme is a labeled scheme, requir-
ing a stretch-5 handshaking step and using addresses and message headers with
O(log n log log n) bits, with probability at least 1−o(1). We further demonstrate
the effectiveness of our scheme by simulations on real-world graphs as well as
synthetic power-law graphs. With the same techniques as for the compact rout-
ing scheme, we also adapt the approximate distance oracle by Thorup and Zwick
for stretch 3 and obtain a new upper bound of expected Õ(n1+γ) for space and
preprocessing.

1 Introduction

Message routing is a fundamental service in communication networks. When routing a
message from a source to a destination in the network, to decide where to forward the
message to, a node may only use its local information, which includes its local rout-
ing table, the destination address, and a message header. A routing scheme is expected
to route messages between all source-destination pairs along shortest or approximate
shortest paths. A key measure of the quality of a routing scheme is its worst-case mul-
tiplicative stretch, which is defined as the maximum ratio of the length of the message
route between a pair of nodes s and t by the scheme and the actual shortest path length
between s and t, among all s-t pairs in the network.

Routing schemes address the tradeoff between stretch and routing table size. A trivial
stretch-1 routing scheme is one in which every node stores for every destination in the
network where to forward the message to. However, for a network with n nodes, this
approach requires unscalable Ω(n log n)-bit routing tables for every node [20]. A com-
pact routing scheme is only allowed to have routing tables with sizes sublinear in n and
message header sizes polylogarithmic in n. There are two classes of compact routing
schemes: Labeled schemes are allowed to add labels to node addresses to encode useful
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information for routing purposes, where each label has length at most polylogarithmic
in n. Name-independent schemes do not allow the renaming of node addresses, instead
they must function with all possible addresses.

Both labeled and name-independent compact routing schemes have been studied ex-
tensively. Universal schemes work for all network topologies [3,4,5,14,28,29]. It has
been shown that with Õ(n1/k)-bit routing tables (as usual, we abbreviate O(f(n) ·
logt n) for some constant t by Õ(f(n))) one can achieve a stretch of O(k), and that
this tradeoff is essentially tight due to a girth conjecture by Erdős.

Due to these impeding lower bounds for general graphs, specialized schemes were
designed for various families of network topologies, including trees [18,23,29], pla-
nar graphs [19,25], fixed-minor-free graphs [2], or graphs with low doubling dimen-
sion [1,21,22]. These topology-specific schemes achieve significant improvements on
the stretch-space tradeoff over universal routing schemes.

Power-law graphs [27] constitute an important family of networks appearing in var-
ious real-world scenarios such as the Internet, the World Wide Web, collaboration net-
works, and social networks [12,17]. In a power-law graph, the number of nodes with
degree x is proportional to x−τ , for some constant τ . The power-law exponent τ for
many real-world networks is in the range between 2 and 3. Power-law graphs do not
seem to belong to any of the well-studied network families such as trees, planar graphs
or low doubling dimension graphs mentioned above.

Despite their high relevance in practice, the family of power-law graphs has not re-
ceived much attention from the compact routing community. There are experimental
studies of compact routing in power-law graphs and Internet-like graphs. Krioukov et
al. [24] evaluate the universal routing scheme of Thorup and Zwick (TZ) [29] on random
power-law graphs [6] and provide experimental evidence of much better performance
(both in terms of stretch and table sizes) than the theoretical worst-case bound. How-
ever, they do not provide a theoretical bound of the TZ scheme on power-law graphs for
neither stretch nor table size. Enahescu et al. [15] propose a landmark selection scheme
that adapts the TZ scheme and they show empirically that their adaptation achieves good
stretch and table sizes for power-law graphs and Internet Autonomous System (AS)
graphs. Unfortunately, their theoretical analysis is for Erdős-Rényi random graphs [16]
instead of power-law graphs. Brady and Cowen [8] give a compact routing scheme tai-
lored for power-law graphs with additive stretch d and header and table sizes O(e log2 n),
where both d and e depend on the graph, and they show experimentally that these val-
ues are reasonably small for certain random power-law graphs [6]. However, there is no
rigorous analysis connecting d and e to the parameter τ of power-law graphs.

Our contribution. In this paper, we bridge the gap in the study of compact routing
schemes for power-law graphs. We provide the first theoretical analysis that directly
links the power-law exponent τ of a random power-law graph to the bound on the
routing table sizes.

More specifically, we adapt the labeled universal compact routing scheme of Thorup
and Zwick [29] to optimize it for unweighted, undirected power-law graphs. Our adap-
tations include (a) selecting nodes with the largest degrees as the landmarks instead of
random sampling, and (b) directly encoding shortest paths in node labels and message
headers instead of relying on a tree routing scheme.
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Our complexity analysis of the routing scheme is based on the random power-law
graph model with expected degree sequence proposed by Aiello, Chung and Lu [6,10,11]
with some minor simplifications. We assume the power-law exponent τ to lie in the range
of (2, 3), which is the so called “finite mean infinite variance” region of the power-law
degree distribution, where most practical power-law networks are assumed to be in.

We prove that for a stretch upper bound of 3, instead of tables of size Õ(n1/2) shown
to be optimal up to a polylogarithmic factor for general graphs [29], expected sizes of
O(nγ log n) bits are sufficient, and that the routing tables can be constructed at once
in expected time O(n1+γ log n), with γ = τ−2

2τ−3 + ε and ε > 0 (which implies ε <
γ < 1/3 + ε). Both bounds also hold with probability at least 1 − 1/n (independent
of ε). This means that for all τ ∈ (2, 3), we have an upper bound of Õ(n1/3+ε) on
the routing table sizes, which is better than the optimal bound of Õ(n1/2) for general
graphs. For values of τ close to 2, for example for τ = 2.1, which is the exponent
that fits the power-law distribution well to the degree distribution of the actual Internet
inter-domain graph [17,24], our bound is O(n1/12+ε). The routing scheme requires a
stretch-5 handshaking (similar to [29, Sec. 4]), and uses addresses and message headers
of size O(log n log log n), with probability at least 1−o(1). The efficient encoding using
O(log n log log n) bits in addresses and headers relies on specific distance properties of
power-law graphs. Our scheme is a fixed-port scheme, meaning that it works for any
permutation of port number assignments on any node.

We provide simulation results for both random power-law graphs and actual router-
level networks, which demonstrate the effectiveness of our adapted compact routing
scheme. With the same techniques as for the compact routing scheme, we also adapt
the approximate distance oracle by Thorup and Zwick for stretch 3 and obtain a new
upper bound of Õ(n1+γ) for space and preprocessing of random power-law graphs.
Complete proofs of the results in this paper as well as the detailed distance oracle results
can be found in a technical report [9].

2 Preliminaries

We adapt the random graph model for fixed expected degree sequence as defined by
Aiello, Chung, and Lu [6,10,11] using the definition from [10, Section 2]. We refer
to the original random graph distribution using the expression Fixed Degree Random
Graph (FDRG).

Definition 1. For a constant τ ∈ (2, 3), the random power-law graph distribution
RPLG(n, τ) is defined as follows. Let the sequence of generating parameters w =
{w1, w2, . . . , wn} obey a power law, that is wk =

(
n
k

)1/(τ−1)
for k ∈ {1, 2, . . . n}. The

edge between vi and vj is inserted into the random graph with probability
min{wiwjρ, 1}, where ρ = 1∑

k wk
.

Note that we adapt the original model by deterministically inserting edges if wiwj >∑
k wk, since in the FDRG model it is required that ∀i, j : wiwj <

∑
k wk , which,

without modification, rules out the values for τ we consider in this paper. In the FDRG
model, the value wi corresponds to the expected degree of vertex vi, and they refer to
w as the expected degree sequence. In our adaptation, the graph is sampled due to the
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generating parameter values wi. Let Di be the random variable denoting the degree of
node vi. In our model, the expected degree E[Di] of node vi is smaller than or equal to
the generating parameter wi.

We require that n = |V (G)| is sufficiently large, specifically, that

n
ε(2τ−3)

τ−1 ≥ 2(τ − 1)
τ − 2

ln n. (1)

Our results do not have any other implicit dependencies on ε.
The core of a graph consists of nodes having large degrees. Let γ = τ−2

2τ−3 + ε for

some ε > 0 and γ′ = 1−γ
τ−1 .

Definition 2. For a power-law degree sequence w and a graph G with n nodes, the
core with degree threshold nγ′

, γ′ ∈ (0, 1), is defined as follows.

coreγ′(w) := {vi : wi > nγ′},
coreγ′(G) := {vi : degG(vi) > nγ′

/4},

where degG(vi) is the degree of vi in G.

For each vertex u of a graph G, we define its ball relative to the core as BG(u) := {v ∈
V (G) : d(u, v) < minv′∈coreγ′(G) d(u, v′)}.

3 The Adapted Compact Routing Scheme

Let the unweighted graph G = (V, E) model the network. Each node v in the network
has a unique �log2 n�-bit static name. Whenever we write v in a routing table, a mes-
sage header, or a node address, we mean its �log2 n�-bit static name representation.
Each node v has deg(v) ports connecting it with its neighbors. These ports are num-
bered by 0, 1, . . . , deg(v) − 1, and thus each port number of v requires �log2 deg(v)�
bits. For every packet, the routing scheme needs to decide which port the packet is to
be forwarded to. Our scheme is a fixed-port scheme, that is, it works with arbitrary
permutations of port number assignments.

The routing algorithm is inspired by and based on [14,29]. We also use a set of
landmarks A ⊆ V , but different from [14,29], we use coreγ′(G) as landmarks instead
of nodes sampled at random. For each node u in G, let �(u) denote u’s closest landmark,
that is, �(u) := arg min

v∈coreγ′ (G)
d(u, v). The local targets of node u are defined as the

elements of its ball BG(u). Similar to the second scheme in [29], each node u stores the
ports to route messages along the shortest paths to all landmarks and to its local targets.
If the target v is neither a landmark nor a local target of u, the message is routed to v’s
closest landmark �(v) and from there to the target v.

The scheme is a labeled scheme. For a node u to know �(v) of any target v, the
address of node v contains an encoding of �(v). Moreover, for a node w on the shortest
path from �(v) to v (w �= �(v) and w �= v), v may not be in BG(w) and thus w may
not know the port to route messages to v. To resolve this issue, we further extend the
address of v by encoding the shortest path from the landmark �(v) to v.
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Let (s = u0, u1, . . . , um = t) denote the sequence of nodes on a shortest path from
s to t. Let SP (s, t) be the encoding of this shortest path as an array with m entries,
wherein SP (s, t)[i] denotes the port to route from ui to ui+1 for all i = 0, 1, . . . , m−1.
Thus SP (s, t) can be encoded with

∑m−1
i=0 log2�deg(ui)� bits. We now provide the

precise definitions of addresses, message headers, and local routing tables.

Definition 3

– The address of node u is addr(u) := (u, �(u), SP (�(u), u)).
– The header of a message from node s to node t is in one of the following formats:

1. header = (route, s, t), where route = local,
2. header=(route, s, addr), where route = toLandmark and addr=addr(t),
3. header = (route, s, t, pos, SP ), where route ∈ {fromLandmark, direct},

pos is a non-negative integer that may be modified along the route, and SP =
SP (s, t) if route = direct or SP = SP (�(t), t) if route = fromLandmark,

4. header = (route, s, t, SP ), where route = handshake and SP is a reversed
shortest path from t to s to be encoded along the path from s to t.

– The local routing table for each node u consists of the information about routes to
the core and the information about local routes:
tbl(u) := {(v, portu(v)) : v ∈ coreγ′(G)} ∪ {(v, portu(v)) : v ∈ BG(u)},
where portu(v) is the local port of u to route messages towards node v along
some shortest path from u to v.

The routing procedure is described in Algorithm 1. It includes pseudocode for the
source node s to determine the method of sending a message to target t (Lines 1–10),
based on whether t is local or not and whether a shortest path to t is known due to an
earlier handshake or not. It also includes pseudocode for an intermediate node u to de-
termine whether to forward the message using its local routing table (Lines 20 and 26),
or to forward the message using the shortest path encoded in the header (Lines 22–24),
or to switch the routing direction from towards the landmark �(t) to towards the target t
(Lines 16–18). The correctness of the algorithm is based on the simple observation that
if t ∈ BG(s) ∪ coreγ′(G) (and thus t is in the routing table of s), then, for all nodes w
on the shortest path from s to t, we also have t ∈ BG(w) ∪ coreγ′(G).

An additional handshake protocol (Algorithm 2) handles the special case when t �∈
BG(s) but s ∈ BG(t). In this case, the basic LANDMARKBALLROUTING scheme only
achieves worst-case stretch 5 instead of 3. However, t knows the reverse path from t
to s. Since the graph is undirected, t can send a special handshake message back to s
(Line 2), and each node along the path encodes the reverse port number such that, in
the end, s knows the shortest path from s to t (Lines 3–10). For simplicity of exposi-
tion we use the reasonable assumption [3] that node u knows the port q on which the
message is received. If this assumption does not hold, our handshake protocol can be
adapted accordingly (see [9]). The performance of Algorithms 1 and 2 is evaluated in
the following theorem, which is proven in the next section.

Theorem 1. LANDMARKBALLROUTING together with the handshake protocol is a
routing scheme with the following properties: (1) the worst-case stretch is 5 without
handshaking, (2) the worst-case stretch is 3 after handshaking, and (3) every routing de-
cision takes constant time. In addition, for random graphs sampled from RPLG(n, τ),
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Algorithm 1. LANDMARKBALLROUTING on node u, with source s, target t �= s, and
header header.
1: if u = s then
2: if t ∈ BG(s) then
3: send packet with header = (local, s, t) using ports(t) stored in tbl(s)
4: else if u knows SP (s, t) /* due to handshake */ then
5: send packet with header = (direct, s, t, 0, SP (s, t)) using port SP (s, t)[0]
6: else
7: send packet with header = (toLandmark, s, addr(t)) using ports(�(t)) stored in

tbl(s)
8: end if
9: exit

10: end if
11: /* u �= s */
12: if u = header.t then
13: exit as the packet arrived.
14: end if
15: if header.route = toLandmark then
16: if u = header.addr.�(t) then
17: header.route ← fromLandmark; header.pos ← 0; header.SP ←

header.addr.SP (�(t), t);
18: forward packet with the new header using port header.SP [0]
19: else
20: forward the packet to portu(header.addr.�(t)) stored in tbl(u)
21: end if
22: else if header.route ∈ {fromLandmark, direct} then
23: header.pos ← header.pos + 1
24: forward the packet using port header.SP [header.pos]
25: else if header.route = local then
26: forward the packet using portu(header.t) stored in tbl(u)
27: end if

the following properties hold: (4) the expected maximum table size is O(nγ log n) bits;
this bound also holds with probability at least 1− 1/n, (5) address length and message
header size are O(log n log log n) bits with probability 1 − o(1), and (6) addresses
and routing tables can be generated efficiently in expected time O(n1+γ log n) and this
bound also holds with probability at least 1− 1/n.

4 Analysis

Stretch. The proofs use the triangle inequality as in [14,29].

Random Power-Law Graphs and their Cores and Balls. We first prove some properties
of the adapted random power-law graph model. Let G be a random graph sampled from
RPLG(n, τ). For a set of nodes S, define its volume Vol(S) as the sum of all its nodes’
wi, that is, Vol(S) :=

∑
vi∈S wi. We abbreviate Vol(G) = Vol(V (G)). Note that

Vol(G) = 1/ρ. Let vol (S) denote the sum of the nodes’ degrees in the actual graph G,
vol(S) :=

∑
vi∈S degG(vi). The following lemma proves that Vol(G) is linear in n.
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Algorithm 2. Handshake protocol on node u upon the receipt of a packet from a port q
with header header.
1: if header.route = fromLandmark and u = header.t and header.s ∈ BG(u) ∪

coreγ′(G) then
2: send packet with header = (handshake, u, header.s, Nil) using portu(header.s)

stored in tbl(u).
3: else if header.route = handshake then
4: header.SP = q · header.SP /* prepend the port q as part of the reverse path */
5: if header.t = u /* reach handshake destination */ then
6: store SP (u, header.s) = header.SP locally for later use (see Line 4 of LAND-

MARKBALLROUTING.)
7: else
8: forward packet with the new header to portu(header.t) stored in tbl(u).
9: end if

10: end if

Lemma 1. Let G be a random graph sampled from RPLG(n, τ). The volume Vol(G)
satisfies n < Vol(G) ≤ τ−1

τ−2n.

In the following, we show concentration results for the actual degree of a vertex and
for the volume of a set of vertices in the adapted RPLG(n, τ) model. The basic idea
to prove the results for the RPLG(n, τ) model is to split the random variable for the
degree Di of node vi into deterministic and random edges and then bound both parts
individually.

Lemma 2. Let n ≥ 4
τ−1

(τ−2)2 . For a random graph sampled from RPLG(n, τ), if wi ≥
32 lnn, for vertex vi, the degree Di satisfies the following: Pr[wi/4 ≤ Di ≤ 3wi] >
1− 2/n4.

Lemma 3. Let G be a random graph sampled from RPLG(n, τ). For a subset of ver-
tices S satisfying Vol(S) ≥ 192 lnn, it holds with probability at least 1 − 2/n3 that
Vol(S)/8 ≤ vol (S) ≤ 4Vol(S).

Corollary 1. The number of edges of a random graph sampled from RPLG(n, τ) is at
most vol (G)/2 ≤ 4(τ−1)

τ−2 n with probability at least 1− 1/n2.

There is an edge between two nodes vi, vj with probability proportional to wi and wj .
This is generalized for sets of nodes S, T ⊆ V (G) in the following and holds for both
FDRG(w) and RPLG(n, τ).

Lemma 4 ([10, Lem. 3.3]). For any two disjoint subsets S and T with Vol(S) ·Vol(T )
> c ·Vol(G), we have Pr[d(S, T ) > 1] ≤ e−c.

Core size. To compute the size of coreγ′(w), we solve the inequality wk > nγ′
and

obtain k < nγ′(1−τ)+1. As γ′ = 1−γ
τ−1 , we have |coreγ′(w)| = �nγ′(1−τ)+1� − 1 =

�nγ� − 1. Even if the same degree threshold nγ′
is used for coreγ′(w) and coreγ′(G),

the two sets of nodes may differ. For a slightly smaller degree threshold nγ′
/4 (as in

Definition 2), the core of the actual graph contains coreγ′(w) with high probability
(apply Lemma 2).
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Lemma 5. Let G be a random graph sampled from RPLG(n, τ). With probability at
least 1− 1/n2 it holds that coreγ′(w) = {vi : wi > nγ′} ⊆ {vi : deg(vi) > nγ′

/4} =
coreγ′(G).

Lemma 6. Let G be a random graph sampled from RPLG(n, τ). With probability at
least 1− 1/n2, |coreγ′(G)| = Θ(nγ).

Ball sizes.

Lemma 7. Let β = γ′(τ−2)+ (2τ−3)ε
τ−1 be a constant. Assume Equation (1) is satisfied.

For a random graph G sampled from RPLG(n, τ), with probability at least 1 − 3/n2,
it holds that for all u ∈ V (G),

|BG(u)| = |{u′ ∈ V (G) : d(u, u′) < d(u, coreγ′(w))}| = O(nβ),
|E(BG(u))| = O(nβ log n),

where E(BG(u)) is the set of internal edges among vertices in BG(u).

Since for RPLG(n, τ) the edges are independent, in our analysis, the existence of every
edge in random graph G is only determined when it is needed, and before that it is
treated as a probability distribution as defined in our random graph model. We call
the determination of the existence of an edge according to its probability distribution
revealing the edge.

For a given vertex u ∈ V (G), we define a sequence of balls as follows: Let V ′ =
V \ coreγ′(w). Now define B0 = {u} and Bi = {v : dG(u, v) ≤ i}. We also define
the circles Ci = Bi \ Bi−1 for i ≥ 0 with B−1 = ∅. Let Ei be the number of edges
between Ci and Ci ∪ Ci+1.

Lemma 8. For circle Ci, the following holds with probability at least 1 − 2/n3: If
Vol(Ci) < 192 lnn, then Ei ≤ 4 · 192 lnn, and if Vol(Ci) ≥ 192 lnn, then Ei ≤
4Vol(Ci).

Since there are at most n circles, Lemma 8 holds for all circles with probability at least
1− 2/n2.

Table Sizes and Computations. The core coreγ′(G) has size Θ(nγ) with probability at
least 1−1/n2 (Lemma 6) and all balls BG(u) have size O(nγ) with probability at least
1− 3/n2 (Lemma 7). Therefore, we have the following result.

Lemma 9. For a random graph G sampled from RPLG(n, τ), for all u ∈ V (G), the
expected table size is at most |tbl(u)| = O(nγ) and all tables can be generated in
expected time at most O(n1+γ log n). These bounds also hold with probability at least
1− 1/n.

Proof. Note that each entry of tbl(u) has O(log n) bits. Thus the total table size per
node is O(nγ log n) bits. Our algorithm is deterministic. The expected time (space)
complexity is the average running time (space) of our algorithm over all graphs from
the random graph distribution RPLG(n, τ).
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Given a graph G with n nodes and m edges, our algorithm computes the core
coreγ′(G) of G with time complexity O(m + n log n). It runs a complete breadth-first
search for each node of the core in time O(m). Let BG(u) be the ball computed in our
algorithm for vertex u. Let T (BG(u)) denote the time to compute BG(u). Therefore,
the time complexity TC and space complexity SC of our algorithm are at most

TC(G) = O

⎛

⎝m · |coreγ′(G)|+
∑

v∈V (G)

T (BG(u))

⎞

⎠ , (2)

SC(G) = O

⎛

⎝n · |coreγ′(G)|+
∑

v∈V (G)

|BG(u)|

⎞

⎠ . (3)

We now know that with probability at least 1−5/n2, all of the following conditions are
true: (1) m = Θ(n) (Corollary 1); (2) |coreγ′(G)| = Θ(nγ) (Lemma 6); (3) |BG(u)| =
O(nβ) for all vertices u (Lemma 7); (4) T (BG(u)) = O(nβ log n) for all vertices u
(Lemma 7). Therefore, from Equations (2) and (3), we know that with probability at
least 1− 5/n2, the space complexity of our algorithm is O(n1+γ + n1+β) and the time
complexity is O(n1+γ + n1+β log n).

Finally, we fix the parameters to obtain a balanced scheme. In a balanced scheme,
the core size and the expected ball sizes are asymptotically equivalent, that is, β = γ.
Together with β = γ′(τ − 2) + (2τ−3)ε

τ−1 and γ′ = 1−γ
τ−1 , we have γ = τ−2

2τ−3 + ε.
Therefore, assuming that Equation (1) is satisfied, the space requirement per node is
O(nγ log n) bits and the preprocessing time is bounded by O(n1+γ log n), which holds
with probability at least 1− 1/n. ��

Address Lengths. We now bound the number of bits for the address of each vertex. For
one vertex u, its address contains the encoding of the shortest path SP (u, �(u)) from
u to its landmark �(u). We need to bound the diameter of a random power-law graph
and the diameter of its core. The proofs in [10] on diameters can be carried over to our
adapted model.

Lemma 10 (Chung and Lu [10, Claim 4.4]). For a random graph sampled from
RPLG(n, τ), with probability at least 1 − o(1), the diameter of its largest connected
component is Θ(log n).

By Lemma 10, the length of SP (u, �(u)) is at most O(log n) asymptotically almost
surely. Therefore, SP (s, t) can be encoded with O(log2 n) bits. This bound can be
improved to O(log n log log n), as proven in the following lemma.

Lemma 11. For a random graph G sampled from RPLG(n, τ), with probability at
least 1 − o(1), it holds that for all s, t ∈ V (G), SP (s, t) can be encoded with
O(log n log log n) bits.

The proof is split into several claims from [10]. We first extend the core.

Definition 4. The extended core of a random graph from RPLG(n, τ) contains all
nodes vi with wi at least n1/ log log n, that is, core+(w) = {vi ∈ V : wi ≥ n1/ log log n}.
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Note that, as τ is a constant, 1/ log log n ≤ γ′ for large enough n, and thus core+(w) ⊇
coreγ′(w). The following lemma constitutes a bound for the diameter of the core.

Lemma 12 (Chung and Lu [10, Claim 4.1]). Let G be a random graph sampled from
RPLG(n, τ). The diameter of the subgraph induced by core+(w) in G is O(log log n)
with probability at least 1− 1/n.

Lemma 13 (Chung and Lu [10, Claim 4.2]). Let G be a random graph sampled from
RPLG(n, τ). There exists a constant C, such that each vertex vi with wi ≥ logC n is
at distance O(log log n) from the extended core, with probability at least 1− 1/n2.

Corollary 2 (Corollary of Lemma 13). Let G be a random graph sampled from
RPLG(n, τ). Let C be the constant in Lemma 13. With probability at least 1 − 1/n,
the distance between any two vertices vi, vj with wi ≥ logC n and wj ≥ logC n is
O(log log n).

Proof (of Lemma 11). Let vi and vj be the first and the last vertex in SP (s, t) from
s to t such that wi and wj both are greater than logC n, where C is the constant from
Lemma 13. By Corollary 2, with probability 1 − 1/n, the portion of the shortest path
SP (s, t) between vi and vj has length at most O(log log n). Therefore, this portion of
the shortest path can be encoded with O(log n log log n) bits, with probability 1− 1/n.

For the rest of the shortest path, each node has wi at most logC n. By Lemma 2,
all such nodes have degree at most 3 logC n with probability at least 1 − 2/n3. To
encode the next neighbor in the shortest path, at most O(log log n) bits are necessary.
Since SP (s, t) contains O(log n) nodes with probability 1− o(1) (Lemma 10), the rest
of the shortest path can also be encoded with O(log n log log n) bits, with probability
1− o(1). ��

5 Experiments

Real-world graphs. The most important application scenario for a compact routing
scheme is arguably a communication network. The router-level topology of a portion
of the Internet, measured by CAIDA [13], is an undirected, unweighted graph with
190, 914 nodes and 607, 610 edges.

Random Power-Law Graphs. We extracted the largest connected component from the
random power-law graphs generated by Brady and Cowen [8] (pre-generated graphs,
N = 10, 000 and τ ∈ (2, 3)). In addition, we generated graphs of 10,000 nodes with the
tool BRITE [26] using the configurations for the Barabási [7] and Waxman [30] mod-
els for an Autonomous System Topology (AS) and a Router Topology (RT). The edge
weights were ignored and the links interpreted as undirected. Note that for all the ran-
dom graphs considered, the generation process does not exactly match the RPLG(n, τ).

Routing schemes. In the specification of our routing scheme LANDMARKBALLROUT-
ING, we use nγ′

/4 as a degree threshold (Definition 2) and obtain a core of size Θ(nγ).
The largest connected components of the graphs generated by Brady and Cowen [8] and
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Table 1. Table sizes: mean and standard deviation

Graph CAIDA [13] ASBarabasi RTBarabasi ASWaxman RTWaxman

random, p = n−1/2 929.84±95.40 204.03±25.57 208.32±22.21 221.95± 24.73 217.75± 28.00
highdeg, �nγ� 173.68±55.80 32.16±41.30 44.95±58.21 139.45±142.94 130.65±131.78

Graphs [8] τ = 2.1 τ = 2.2 τ = 2.3 τ = 2.4 τ = 2.5

random, p = n−1/2 74.90±37.96 74.94±44.78 77.49±50.56 79.74± 55.50 82.54± 60.17
highdeg, �nγ� 55.20±67.48 48.50±54.57 42.20±42.94 43.28± 40.10 43.55± 38.37

Graphs [8] τ = 2.6 τ = 2.7 τ = 2.8 τ = 2.9

random, p = n−1/2 86.88±69.69 85.56±71.35 84.69±73.87 76.65± 71.71
highdeg, �nγ� 45.59±39.59 50.24±46.08 56.48±56.26 46.85± 46.65

Table 2. Stretch: mean and standard deviation

Graph CAIDA [13] ASBarabasi RTBarabasi ASWaxman RTWaxman

random 1.28±0.16 1.38±0.28 1.38±0.25 1.37±0.25 1.38±0.16
highdeg, �nγ� 1.12±0.14 1.15±0.21 1.20±0.22 1.36±0.26 1.35±0.24

Graphs [8] τ = 2.1 τ = 2.2 τ = 2.3 τ = 2.4 τ = 2.5

random, p = n−1/2 1.34±0.24 1.35±0.24 1.35±0.25 1.34±0.26 1.34±0.26
highdeg, �nγ� 1.30±0.24 1.26±0.23 1.23±0.23 1.21±0.23 1.18±0.22

Graphs [8] τ = 2.6 τ = 2.7 τ = 2.8 τ = 2.9

random, p = n−1/2 1.33±0.28 1.31±0.28 1.29±0.29 1.25±0.28
highdeg, �nγ� 1.16±0.22 1.15±0.22 1.15±0.24 1.11±0.22

the graphs generated using BRITE [26] do not contain nodes with such a high degree.
Therefore, for the experiments with our routing scheme, the algorithm selects the �nγ�
nodes with the highest degrees as landmarks. We compare our high-degree selection
strategy with the random selection with probability n−1/2, which is similar to Thorup
and Zwick [29] for k = 2. Recall that their scheme is not optimized for power-law
graphs but works for general, weighted graphs as well. We also compare our scheme
with the values obtained by Brady and Cowen [8].

Settings and results. For the graphs generated by Brady and Cowen [8], the high-degree
selection and the random sampling process were executed five times for each of the
ten graphs per value of τ , which gives a total of 5 · 10 · 9 · 2 = 900 routing scheme
constructions. For each of the remaining graphs (Barabási, Waxman, CAIDA), both
schemes were constructed at least 10 times. We report the table sizes (mean and standard
deviation) in Table 1. For each instance, 200 random (s, t) pairs were generated and
packets routed. The stretch (the length of the route divided by the length of a shortest
path) is reported in Table 2.

In our experiments, the strategy of selecting few high-degree nodes as landmarks al-
ways produces significantly smaller routing tables compared to a large number of land-
marks selected at random. The best results are achieved for the graphs stemming from
the Barabási model, for which the high-degree-based tables are roughly 5 times smaller
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than their random-based counterpart. The average table size for the randomly selected
landmarks is close to

√
n, which means that most balls are actually (almost) empty. As

predicted by our analysis, this indicates that, for power-law graphs, the optimal balance
for randomly selected landmarks may be smaller than O(

√
n).

The average stretch is surprisingly consistent among different datasets. Even though
there are fewer landmarks, the average stretch is better if high-degree nodes are selected
as landmarks. Brady and Cowen [8] claim average stretch 1.18–1.25 for the scheme by
Thorup and Zwick [29]. Our experiments do not confirm this claim: randomly selected
nodes (similar to TZ) did not achieve this stretch. Brady and Cowen also claim average
stretch 1.11–1.22 for their scheme and small values for τ ∈ {2.1, 2.2, 2.3}. Our scheme,
except for the graphs of the Waxman model and for small values of τ ≤ 2.2, also
achieves these average stretch values.

6 Conclusion

Our analysis provides theoretical justification that high-degree nodes in power-lawgraphs
are indeed very important for finding shortest paths in such networks, and thus are ef-
fective in improving the performance of shortest-path-related computations. With the
ubiquity of power-law networks, our result suggests that, when designing network algo-
rithms, optimizing for power-law graphs rather than dealing with general graphs, may
lead to significantly better algorithm performance in real-world networks.

Perhaps the most intriguing question is whether even polylogarithmic tables would
suffice to route with small stretch in power-law graphs. It also remains open whether the
scheme by Thorup and Zwick for general k can be optimized for power-law graphs and
whether similar techniques can be applied to the name-independent scheme by Abraham
et al. [5]. An average-case analysis of the actual scheme by Thorup and Zwick would be
interesting as well as a rigorous analysis of the scheme by Brady and Cowen [8]. Further-
more, the analysis for other random power-law graphs models is an interesting topic.

Acknowledgments. The second author thanks Mikkel Thorup for helpful comments
and interesting discussions.
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Abstract. Virtual Ring Routing (VRR) schemes were introduced in the
context of wireless ad hoc networks and Internet anycast overlays. They
build a network-routing layer using ideas from distributed hash table
design, utilizing randomized virtual identities along a ring. This makes
maintenance practical when nodes may enter or leave.

Previously, VRR was evaluated over a small wireless network and
through medium-scale simulations, exhibiting remarkably good perfor-
mance. In this paper, we provide a formal analysis of a family of VRR-
like schemes. The analysis provides insight into a variety of issues, e.g.,
how well does VRR perform compared with brute force shortest paths
routing? What properties of an underlying network topology make VRR
work well?

Our analysis is backed by extensive simulation over a variety of topolo-
gies. Whereas previous works evaluated VRR over fairly small networks
(up to 200 nodes), we are interested in scaling the simulations so as to
exhibit asymptotic trends. Simulating network sizes beyond 220 results
in a memory explosion: In some of the topologies of interest, such as
a 2-dimensional plane, the total memory taken up by routing tables is
Ω(N3/2) for an N-node network. We devise a simulation strategy that
builds necessary information on the fly using a Luby and Rackoff pseudo-
random permutation, leading to simulations at a scale of 232 nodes.

1 Introduction

Virtual Ring Routing (VRR) schemes were deployed for wireless ad hoc net-
works [4], for anycast Internet routing [5], and for scaling Ethernet [8]. Deviat-
ing drastically from any known method of compact routing [7], these practical
systems borrow ideas from distributed hash table overlays, and use virtual ad-
dresses (aka flat labels) for routing. The vision behind these schemes is to have
node identities that contain no structural information about the network. Hence,
they support mobility naturally, and impose less administrative burden in as-
signing addresses. Additionally, they are easy to maintain, in that adding and
removing nodes from the network is efficient, and incurs updates in only a small
fraction of the nodes. In contrast to the well-founded theory of compact routing,
there exists no rigorous analysis of VRR schemes. This paper tackles the formal
analysis of a family of VRR schemes and provides insight into a variety of issues.
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DHT overlays assign virtual identities (e.g., in the range [0..1], or integers) to
nodes and maintain connections between nodes based on their virtual id’s. When
used for forming a network layer, DHT overlay techniques must be modified
for the following reason. In an overlay network, a node p simply stores the
name of each overlay neighbor q in a local overlay routing table; the lower-
level networking layer facilitates the connection between p and q. However, in
the absence of a network layer, it is not enough for p to remember q’s name in
order to connect to it.

VRR schemes such as [4,5] resolve this issue by maintaining routing informa-
tion between p and q along an entire physical path between them. This means
that every node along a physical path from p to q has a routing table entry
with the destination q in it, storing the next hop toward q. We note that other
techniques that adapt DHT routing to the network layer exist, but are of no
relevance here, e.g., write an entire path on the packet header at p [11], or route
through landmark gateways [12,10,6].

To prevent confusion between routes at the different layers, we introduce some
conventions.

Glossary: The entire node-by-node path determined by a routing scheme is
called the actual routing path. It is induced by a sequence of hops, each hop
between virtual neighbors in the virtual overlay. The physical path toward
a virtual neighbor is carried along a physical segment, potentially composed
of multiple nodes.

Routing efficiency is measured by its stretch: Given a pair of nodes, their
routing stretch is the ratio between their actual routing path length and
their shortest path length.

The overlay topology utilized in [4,5] is a simple ring. Hence, overlay paths may
take a linear number of virtual hops from a source to a destination. For example,
say that we have a ring of nodes numbered [1..30]. The virtual ring route from node
5 to 15 goes through nodes 5, 6, ..., 15 in succession. Each of these virtual hops is
carried along a physical segment in the network. Thus, routing toward a virtual
destination using overlay virtual hops could incur a linear stretch.

Fortunately, VRR allows greedy hops which considerably improve the routing
efficiency. Imagine going along a physical path from node 5 to 6 in the above
virtual path. Quite likely, this path crosses other physical paths, say 10 to 11,
20 to 21 and 28 to 29. When we reach the node en-route from 5 to 6 which is
on the path from 10 to 11, VRR greedily chooses to route toward 11 instead of
continuing toward 6.

Thus far, the advantage of using path intersection in greedy routing in this
manner was evaluated over a small wireless network and through medium-scale
simulations, exhibiting remarkably good performance.

1.1 Technical Approach

The high-level intuition provided in [4] for constant expected stretch of VRR
in a two-dimensional space with uniformly scattered nodes is as follows. The
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routing table at each node is populated with expected O(
√

N) randomly se-
lected destinations. Hence, a greedy hop to the final target is expected after
visiting O(

√
N) physical nodes. Unfortunately, this intuition is not easily turned

into a rigorous analysis because of the subtle dependencies between the routing
tables of neighboring nodes in the topology. Rather, our analysis builds from
the fundamental probability of path intersection. For example, consider the Eu-
clidean grid of dimension d. For reasonable selection of shortest paths between
randomly chosen endpoints, intersection occurs with probability in O(N− d−2

d ).
For the two-dimensional grid, this is constant. We call this the intersection co-
efficient, and denote it by p.

Two factors contribute to bound the routing path length. First, consider the
last 2c/

√
p virtual identities preceding the target, for some constant c. They

determine a collection of c/
√

p physical segments with disjoint endpoints, that
are hence independently assigned in the network. Any additional independently
chosen segment intersects one of the segments in the collection with probability
1 − (1 − p)(c/

√
p). A collection of c/

√
p additional, independently selected, seg-

ments intersects the first collection with probability 1−
(
(1− p)(c/

√
p)
)(c/

√
p) ≈

1 − e−c2
, hence the expected collection size until intersection is in O(1/

√
p).

Intuitively, this bounds the number of physical segments that are traversed to
completion in the actual routing path to expected O(1/

√
p). A more precise ar-

gument, which considers the inter-dependencies among virtual hops in a routing
path, is given in the body of the paper; it gives O(log N/

√
p) expected number

of completed physical segments.
So far, we have bounded the expected number of virtual hops that are made

to completion in an actual routing path. We did not count the nodes in physical
segments that are interrupted by greedy steps. Here, intuition suggests that a
greedy step shortens the virtual distance to the target by an expected factor of
two. However, we were unable to provide a formal proof for this property, due
to the intricate dependency between the conditions imposed by a path traversed
up to some point and the possible remaining virtual identity mappings.

Instead, we slightly modify the scheme to assist with the analysis. We modified
the VRR scheme to allow a greedy hop only when, indeed, it reduces the virtual
distance to the target by at least a constant factor α. Extensive simulation
indicates that the modification has marginal (and even somewhat negative) effect
on the actual routing complexity, e.g., for α = 2. We can then bound the number
of physical segments which terminate with a greedy hop by O(logα(N)). Proving
this for the original VRR scheme remains an open challenge.

1.2 Contribution

Leveraging the analysis we highlight above, we make the following contributions.

– Our analysis relates the path intersection coefficient p with an expected over-
all routing stretch of O(log N/

√
p). We prove that this is tight up to a loga-

rithmic factor, with a matching lower bound of Ω(1/
√

p). Using this insight,
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one can predict the stretch of VRR schemes over any network topology,
as the physical network topology determines path intersection probability
p. For example, in a two-dimensional grid, two pairs of randomly selected
endpoints have intersecting shortest paths with constant probability. The
expected stretch in the two dimensional grid is in O(log N).

More generally, for the Euclidean grid of dimension d, intersection occurs
with probability in O(N− d−2

d ), and the expected stretch is in O(N
d−2
2d log n).

– We readily determine the relationship between the overall routing table mem-
ory and the stretch. The network topology determines the expected number
of overlay paths that pass through a certain node, and thus, the expected
routing table size at a node. For example, in a d-dimensional grid, routing
tables size is in O(N1/d).

Memory-stretch tradeoffs have been studied extensively in the theory
of compact routing, and we can draw a comparison with VRR here. Meth-
ods were suggested that can achieve better characteristics: [1] gives a O(k)-
stretch name-independent routing with O(k2N1/k log3 N) routing table re-
sources per node for arbitrary graphs, and [2] gives a name-independent
scheme for planar graphs with constant stretch and only polylogarithmic
memory at each node. The advantage of VRR schemes is their simplicity
and maintainability.

– We also extend our experiments to two overlay variants, using the same VRR
methodology. One is a ring where each node has outgoing links to its k ring-
successors, for a parameter k. The other is the ring with k − 1 successors,
and a k-th neighbor is selected from the virtual ring using a “small-world”
distribution.

Our analysis is backed by extensive simulation over the two, three and four
dimensional grids. Whereas previous works evaluated VRR over fairly small
networks (up to 200 nodes), we are interested in scaling the simulations so as to
exhibit asymptotic trends. However, directly simulating network sizes beyond 220

results in a memory explosion: In some of the topologies of interest, such as a 2-
dimensional plane, the total memory taken up by routing tables is Ω(N3/2) for an
N -node network. Rather, we devise a simulation strategy that builds necessary
information on the fly using a Luby-Rackoff pseudo-random permutation, leading
to simulations at a scale of 232 nodes.

2 Problem Description

We describe the VRR scheme in greater detail. The system is modeled as an
undirected graph G = (V, E). V is a set of |V | = N nodes. Edges (u, v) ∈
E indicate that u and v know each other, are physically connected and can
communicate directly.

In VRR, every node v has a unique identifier id(v) drawn uniformly at random
from a range R ! N of integers. This defines a natural order on the identifiers
and for the rest of the paper, we assume the identifiers simply define a permu-
tation on [N ]. The node to id mapping is known to all nodes in the system.



396 D. Malkhi et al.

Define the successor of a node v, denoted succ(v), as the node u whose identity
is (id(u) + 1) mod N .

Virtual routes are maintained from every node to its k successors in the iden-
tity space, where k is a parameter of the scheme. In our analysis to simplify
things we assume that k = 1, i.e. the virtual topology is just the ring. For iden-
tities i, j, define dist(i, j) to be the number of edges in the shortest path from
i to j in this virtual overlay network. Thus for the ring case k = 1, dist(i, j) is
j − i if i < j, and N − (i − j) otherwise. In the simulations we tested the case
of larger k.

The virtual topology induces a virtual path between every two nodes. These
paths are realized in the physical network via a set of predetermined physical
segments between each node u and succ(u). These actual physical paths are
ideally shortest paths but are not necessarily so. Denote the nodes in this physical
path as PS(u, succ(u)). Now, every node v has a local routing table with entries
〈dst, nxt〉 for each path PS(w, succ(w)) that contains v (with dst = succ(w)),
such that nxt is the next hop after v in the segment PS(w, succ(w)). The method
in which these paths are chosen and maintained is not within the scope of this
paper. The work in [4],[5] suggests ways of choosing these paths and argues they
are easy to maintain in the face of insertions and deletions.

VRR employs a greedy routing (GR) strategy over the virtual identity space.
When a message with destination T is injected at a source S, an initial packet
header 〈target : T, intermediate target : succ(S)〉 is formed.

When a node u receives a packet with header 〈T, IT 〉, it performs the following:

– If u has a routing-table entry 〈T ′, h′〉, such that T ′ is closer to T than IT (in
the virtual distance dist(·, T )), then u modifies the header by overwriting
intermediate-target with T ′. If there is more than one such T ′, u picks the
one closest to T . It forwards the packet to h′.

– Otherwise, u forwards to h, where 〈IT, h〉 appears in u’s routing table.

The entire node-to-node routing path is called the actual routing path. In this
work, we are interested in analyzing the expected length of the actual routing
path, over the choices of identities for a variety of initial graphs.

3 Stretch Analysis

We first give some intuition on the routes generated by GR. Suppose that GR is
invoked from s to t. The first routing table lookup performed by GR at s finds
an intermediate target m0 with identity between s and t. This intermediate
target may be (s + 1) or some node u such that s lies on a path PS(u, succ(u))
and dist(u, t) < dist(s + 1, t). In this case, s chooses the routing table entry
corresponding to target succ(u).

In this case GR continues to the next table lookup, which is invoked at a
node w following s en route to m0. Note that w must have m0 in its routing
table, or w is m0 itself. Therefore, GR continues with an intermediate target no
farther than m0. However, a change of intermediate target may occur. First, if
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w is m0, then it will find among m0 +1, m0 +2, ..., m0+k an intermediate target
m1 closer to t. We call this a non-greedy transition. Second, w may find in its
routing table an entry m1 closer than m0 to t. Again, this happens when w is
on a path leading to such m1. In this case, GR moves to a route leading towards
m1. We call this a greedy transition.

The route to m1 may get interrupted again, and so on. Finally, a route to
the target t itself will be found, at which point the intermediate target becomes
fixed.

More formally, we have the following definition. For source-destination pair
(s, t), let D(s, t) denote m0, m1, ..., mc = t the sequence of intermediate targets
set by GR. We say that a transition from mi to mi+1 is non-greedy if it was set
at mi from amongst mi + 1, . . . , mi + k, and it is greedy otherwise.

We will upper bound the actual routing path length by bounding the size of
D(s, t) in a conservative way: if Diam is the diameter of the network, the length
of the actual routing path between s and t is at most Diam · |D(s, t)|.

Generally, a greedy hop at step j may depend on the first j hops. Obviously,
it must be caused by a route toward a target closer to the destination than the
intermediate target at step j − 1 is. Additionally, it must be caused by a route
that does not go through any of the first j − 1 hops. In order to handle these
weak dependencies, we introduce a slight generalization of the GR procedure
called GR′. The idea in GR′ is to choose a greedy hop only if this change is a
significant improvement. We do this by introducing a parameter α to the first
routing rule as follows:

– If u has a routing-table entry 〈T ′, h′〉, such that T ′ is closer to T than IT by
factor of α or more, i.e. dist(T ′, T )/dist(IT, T ) < α−1, then u modifies
the header by overwriting intermediate-target with T ′. If there is more than
one such T ′, u picks the one closest to T . It forwards the packet to h′.

Note that GR corresponds to special case of GR′ with α = 1.We now prove some
bounds on the expected actual path length of GR′. First we observe that the
number of greedy virtual hops is at most logarithmic.

Lemma 1. For any source s and target t, the number of greedy transitions in
GR′(s, t) is O(logα(N)).

Proof. We bound the number of greedy transitions by observing that in a greedy
transition from mi to mi+1, the destination mi+1 is closer to t by a factor α.
Hence, after at most logα(dist(s, t)) greedy transitions we reach the target.

It remains to bound the number of non-greedy transitions. Recall that D(s, t)
denotes the total number of intermediate targets seen by the algorithm and that
we bound the path length by bounding the size of D(s, t). The key observation
in this section is that the bound is parameterized by the likelihood of path
intersection, formally defined below.

First recall the definition of intersection coefficient. We refer to a physical seg-
ment between two points chosen uniformly at random as a random virtual hop.
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Definition 1. Let p = p(N) be such that two independent random virtual hops
intersect with probability p. We say that the intersection coefficient of the set of
paths is p.

Now suppose that we were concerned about the probability that a random virtual
hop intersects at least one of l other independent random virtual hops. The
following definition defines conditions under which such probabilities can be
estimated.

Definition 2. A set of virtual hops (s1, t1), . . . , (sl, tl) are said to be almost
mutually exclusive if for a random virtual hop (s, t), the probability that PS(s, t)
intersects one of the paths PS(si, ti) is at least 1

2 lp.

Note that the expected number of i’s such that PS(s, t) intersects PS(si, ti) is in
fact lp. However, these events are not independent, and not mutually exclusive.

Definition 3. Let p = p(N) be such that for a constant c and for any l ∈ [1, 1
cp ],

the probability that | random virtual hops are not almost mutually exclusive is at
most polynomially small in the size of the network. Then we say that the group
intersection coefficient is p.

Lemma 2. With high probability, for all pairs s, t it holds that |D(s, t)| can be
bounded by O(α log(1/p)+logα N√

p ), where the probability is taken over the choice of
mapping id’s to nodes.

Proof. We first give some intuition for the proof. The number of greedy hops is
clearly at most O(logα N). Consider the 1√

p virtual hops (t − j − 1, t − j) for
j ∈ [1, 1√

p ] closest to the destination t in the ring. If we reached one of these
virtual hops within the first 1√

p non-greedy hops in the routing, then we would
get a bound of O( 1√

p + logα N) on |D(s, t)|. What is the likelihood that the first
1√
p non-greedy hops in D(s, t) do not reach this set? For this to happen, each

of the 1√
p completed non-greedy hops must avoid hitting one of the 1√

p virtual
hops close to the destination. Since this gives us O( 1

p ) pairs of virtual hops, and
each pair intersects with probability p, this avoidance is unlikely. Of course there
are dependencies to be taken care of and we formalize the argument below.

For any r, call the virtual hops (t−j−1, t−j) for j ∈ [1, r] the r-last hops. Let
k, l be parameters to be chosen later. We will argue that with high probability,
within l virtual hops when routing from s to t, the current intermediate target
is within distance αk in the virtual space.

Let m0, m1, . . . , ml be the sequence of first l routing destinations set by GR. Of
these, some r < logα N are chosen due to a greedy hop, let these be mi1 , . . . , mir .
Let a configuration C be defined by a set of at most logα N indices i1, . . . , ir.
For a fixed configuration C, we shall bound the probability that any sequence
m0, m1, . . . , ml has not hit the αk-last hops.

Let D′(s, t) be the list of mi’s such that i �∈ {ij, ij − 1, ij + 1}. Let l′ =
� 1

2 |D′(s, t)|�. Clearly, l′ > l
3 −3 logα N . D′(s, t) contains at least l′ disjoint pairs

(mi, mi + 1) such that mi − 1, mi, mi + 1, mi + 2 are all in D(s, t).
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The k-last hops consists of k/2 disjoint virtual hops. Thus except with poly-
nomially small probability, these k/2 virtual hops are almost-mutually exclusive.
Thus the virtual hop (mi, mi+1) intersects one of the k-last hops with proba-
bility at least kp/4 (k is taken to be smaller than 1

cp ). Moreover, this event for
(mi, mi+1) depends only on the random assignment of the virtual identifies mi

and mi+1 to physical nodes, and is therefore independent of the corresponding
event for (mj , mj + 1), for any j : |j − i| > 1.1 Thus the probability that for a
fixed configuration C, a prefix m0, . . . , ml exists that satisfies C but does not
intersect the k-last hops is bounded by

(1 − kp

4
)l′

Unless the prefix m0, . . . , ml has already hit the αk-last hops, any intersection
with the k-last hops is a greedy step that GR′ would have taken. Thus the above
bounds the probability that for a fixed C, the prefix m0, . . . , ml defined by C
has not reached the αk-last hops.

We next bound the number of configurations. There are
(

l
r

)
ways of choosing

the indices i1, . . . , ir, and since r ≤ logα N , the number of configurations is at
most

logα N

(
l

logα N

)

.

On the other hand, for |D(s, t)| to be greater than l + αk, the prefix m0, . . . , ml

must not hit the αk-last hops. Thus the probability

Pr[|D(s, t)| > l + αk)] ≤ logα N

(
l

logα N

)

(1− lp

4
)l/3−3 logα N .

The claimfollows byplugging in thevalue of l = O( logα N√
p ) andk = O( log(1/p)√

p ). ��

Properties of the d-dimensional Grid

In this section we identify the intersection coefficient of the grid for a natural
set of paths. Consider a d-dimensional grid with nd nodes, each node can be
identified by a d-dimensional vector in [0, n − 1]d. Let s = (s1, . . . , sd) and
t = (t1, . . . , td) be two nodes. There are many shortest paths between them.
Natural candidates for a collection of paths are paths that follow more or less the
l2 shortest path between the points. The paths we analyze, and use to drive the
simulation are crude approximations. We randomly sample an intermediate node
w = (w1, . . . , wd) where each wi is uniformly sampled in [si, ti] and then route
through w as follows: first route from from s to w by fixing the coordinates one
after the other, i.e. first go to (w1, s2, . . . , sd) and so on. Once w is reached, route
1 There is in fact a small dependency here: since the mapping is a permutation, mi

cannot be mapped to the same location as mj . However, this excludes at most O(l)
locations for mi and mi+1, and hence conditioning changes the probabilities by at
most a (1 − l

N
) factor, which is negligible and ignored for the rest of the proof.
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to t by fixing the coordinates in reverse order, i.e. first go to (w1, w2, . . . , td) and
so on. The node w is called the intermediate routing node of the path. Denote
by p(c) = cn−(d−2). The next bound states that there is a way to chose c as a
function of d such that p is the intersection coefficient of the network.

Lemma 3. For every d there is c such that for every n, the intersection coeffi-
cient of the nd grid is p = cn−(d−2).

Proof. The proof is by induction on d. For d = 2, p(c) = c so we need to show
that the probability two virtual hops intersect is at least a constant independent
of n. Intuitively this should hold because with constant probability both paths
are roughly diagonals in the two-dimensional grid and thus intersect. A formal
(and rather crude) argument is as follows: say the first source–target pair is
(s(1)

1 , s
(1)
2 ) and (t(1)1 , t

(1)
2 ). Similarly the second pair is (s(2)

1 , s
(2)
2 ) and (t(2)1 , t

(2)
2 ).

With probability 3−6 it holds that s
(1)
1 , s

(1)
2 ≤ n/3 and t

(1)
1 , t

(1)
2 ≥ 2n/3, and their

intermediate node (w(1)
1 , w

(1)
2 ) satisfies that w

(1)
1 , w

(1)
2 ∈ [n/3, 2n/3]. In other

words the path s(1) → t(1) is a diagonal. Similarly with probability 3−6 the path
s(2) → t(2) is the crossing diagonal, i.e. s

(2)
1 , t

(2)
2 ≤ n/3 and t

(2)
1 , s

(2)
2 ≥ 2n/3, and

w
(2)
1 , w

(2)
2 ∈ [n/3, 2n/3]. If both these events occur then the paths intersect.

Now assume d > 2. Let w(1) and w(2) denote the intermediate hops. If w(1) and
w(2) agree in the first (d− 2) co-ordinates, then the probability of intersection is
at least c using the two-dimensional case. Since w(1) and w(2) are drawn from the
same probability distribution, the probability that they agree on the first (d−2)
co-ordinates is at least n−(d−2): the collision probability for a distribution is
maximized when it is uniform, in which case we get the n−(d−2) bound. Moreover,
it is easy to check that the collision probability is at least (an)−(d−2) for a
constant a. The claim follows. ��

Lemma 4. For every d there is c such that for every n, the group intersection
coefficient of the nd grid is p = cn−(d−2).

Proof. The proof is very similar to the previous lemma. For d = 2, there is
nothing to prove since l is at most 1.

Now assume d > 2. Let w(1), . . . , w(l) denote the intermediate hops of the l
virtual hops, and let w(∗) denote the intermediate hop for (s, t). If w(∗) agrees
with one of the w(i)’s in the first (d − 2) co-ordinates, then the probability of
intersection is at least c using the two-dimensional case. Since w(1), . . . , w(l) are
drawn from the same probability distribution and l < 1

cp they span at least l/2
different values for the first (d−2) co-ordinates with high probability. The claim
follows. ��

Lower Bound

Lemma 5. If dist(s, t) = 1
10

√
p then with probability at least 0.99 the size of

D(s, t) is at least 1
10

√
p .
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Proof. We calculate the probability there is a greedy hop in the path. In total
there are 1

100p pairs of paths. Each of them intersects with probability p so on
expectation there are 1/100 intersections. Markov’s inequality implies that the
probability there is at least one greedy hop is at most 0.01. ��

We can also show the following result, the proof of which is omitted from this
extended abstract:

Lemma 6. For 1 < s < t < N − 1, we have

E[D(s, t + 1)] ≥ min{E[D(s, t)],
1

10
√

p
}.

The above two lemmas imply that for randomly chosen s and t the expected size
of D(s, t) is Ω( 1√

p ). Thus our upper bound is tight up to logarithmic factors.

4 Simulation

We simulate a family of VRR schemes over d-dimensional grids. The challenging
aspect of our simulation is scaling. In order to demonstrate asymptotic trends,
we want to test networks of considerable sizes. This cannot be done naively.
The fundamental routing step in VRR scheme involves a routing-table lookup.
Naively simulated, this requires maintaining O(n× routing table size) informa-
tion. For some of the topologies we consider, this prohibits simulating networks
beyond 220 nodes ( ≈ 230 entries ≈ 8GB memory). Though this is already quite
sizable, we devised a simulation technique that can scale even higher. We first
describe the simulation technique, and then present the result.

4.1 Simulation Framework

The underlying (physical) networks in our simulation are d-dimensional grids
with n nodes on each side (and N = nd nodes in total). Nodes have integral
physical identifiers from 0 to nd − 1, assigned so as to allow a node’s position in
the grid to be easily retrieved from its identifier (and vice-versa).

In our simulation, we take sp(u, v), a shortest path, as the physical segment
PS(u, v) between neighboring nodes u and v in the virtual space. In general,
these paths are not unique in a d-dimensional cube; we pick paths that we
analyzed in the previous section.

Supposewe are computing the route to a (virtual) target tand letv be the current
vertex. VRR schemes need to examine v’s routing table and find the intermediate
target t′ that is the closest (in the virtual space) predecessor of t in the ring.

Memory constraints prevent us from storing the routing tables explicitly when
simulating very large networks. Instead, we check all possible candidates for t′

(starting at t, then t − 1, then t − 2, and so on) until we find one that would
actually be an intermediate target in v’s routing table. For each candidate t′, we
must check if there is a physical segment that crosses v. Such a segment would
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have as endpoints t′ and a virtual neighbor of t′, denoted by s′. Let S(t′) be the
set of virtual sources s′ such that (s′, t′) is a physical segment. Note that S(t′) is
just {t′−1} in a simple ring, but in other overlay topologies we experiment with,
it is a set. For each s′ ∈ S(t′), we can check in O(d) time whether v belongs to
the physical segment from s′ to t′. If it does, we can stop: t′ is the best entry in
v’s routing table.

Implicit mapping. Even storing the mapping of nodes to virtual identities (with
quick reverse lookup) is quite costly for sizable networks, and we avoid that.
Our simulation picks as the virtual identifiers a (pseudo-)random permutation
of [0, nd−1]. We do not maintain the permutation explicitly in memory. Instead,
we keep it implicitly with the Luby-Rackoff scheme [9], which works as follows.

Assume node identifiers have exactly 2k bits (i.e., N = 22k). We must define a
permutation π : {0, 1}2k → {0, 1}2k, so that a node with physical identifier x has
virtual identifier π(x). An identifier x = (L, R) can be seen as the concatenation
of its first k bits (L) and last k bits (R). Define π(x) as π(L, R) = (R, f(R) ⊕
L), where f : {0, 1}k → {0, 1}k is an auxiliary pseudorandom function. It is
easy to see that π(x) produces a permutation of all 2k-bit strings. When f is
sampled from a family of one-way functions, Luby and Rackoff proved that it
suffices to iterate π four times, sampling a fresh function each time, to obtain
a pseudo-random permutation. Therefore, to convert a physical identifier x into
the corresponding virtual identifier, we simply compute π∗(x) = π(π(π(π(x)))).
To convert a virtual identifier to a physical identifier, we use the inverse function
π−1(x) = π−1(L, R) = (f(L)⊕R, L), also iterated four times.

To determine f(X) (where X is a k-bit string), our implementation concate-
nates X with a user-defined 32-bit seed s, calculates the 128-bit MD5 hash of
the resulting string, and discards all but the first k bits of the result. These
operations (in particular the MD5 computation) are costly in practice. To speed
up the simulation, we use two levels of caching. We remember the first C pairs
(x, π∗(x)) that we evaluate, as well as the result of every f(X) computation we
ever perform (the corresponding table, with

√
N entries, is small enough to fit

in memory). We used C = 2.5 · 108 in our experiments.

4.2 Results

We start our experiments with the most basic version of VRR, in which each
vertex has a single virtual neighbor in the ring (i.e., |S(v)| = 1 for every v).
Table 1 shows the results obtained for grids with 2, 3, and 4 dimensions and
various sizes. Every entry in the table was computed from 1000 routes. The
endpoints of each route are two nodes picked uniformly at random. Each route
uses a different pseudorandom mapping between physical and virtual nodes.

For each instance size, we report the average shortest path length and the
average actual routing path length. The ratio between these two is the aggregate
stretch, which is our main performance measure and is reported in the last col-
umn. For reference, we also report the 99th percentile of the actual path length
(over all 1000 routes).
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Table 1. Simple ring simulation results. Columns are: Grid dimensionality; network
size; average nodes on shortest path; average nodes on actual routing path; 99th per-
centile of nodes on actual routing path; 99th percentile stretch; aggregate stretch.

dim nodes shrt. nodes stretch
path avg 99th 99th aggr.

2 224 2685 7679 18548 18.75 2.86
226 5539 15494 37511 26.37 2.80
228 10720 31141 70889 23.36 2.90
230 22113 61979 141664 21.80 2.80
232 43456 120237 300127 23.02 2.77

3 212 16 94 212 34.01 5.83
218 65 736 1714 51.00 11.35
224 255 5797 13986 112.76 22.75
230 1031 45180 111140 270.81 43.82

4 220 42 1316 3200 118.05 31.23
224 86 5295 12844 301.34 61.86
228 170 21087 49399 504.08 123.89
232 342 85614 193431 1002.67 250.10

Recall that the intersection coefficient is p ∈ O(N− d−2
d ), and the expected

stretch is proportional to 1/
√

p. Hence, for the two-dimensional case, the ex-
pected stretch is constant; for d = 3, when we grow N by a factor of 26, we
expect the average stretch to grow by a factor (26)1/6 = 2; and for d = 4, when
growing N by factor 24, the stretch is expected to grow by factor (24)1/4 = 2.
Table 1 indeed demonstrates these trends.

Other Overlay Structures. We considered two variations of the simple VRR ring.
As suggested in the original VRR work, we vary the number c of ring successors
to which each node maintains connections.

Additionally, we considered a variation in which the overlay topology has
sublinear hop diameter. The idea here is that even without the effect of path
intersection and greedy hops, the stretch is bounded by the routing complexity
of the overlay network. Specifically, we introduce a small change, one that would
not impair the spirit and practical value of VRR scheme. Borrowing from small
world extensions of ring overlays [3], we replace the c-th neighbor of a node v
with v − 2j, where j is an integer picked uniformly at random from the range
[�log2 c�, (log2 N)− 1].

Table 2 shows the average aggregate stretch (over 1000 seeds) for the various
topologies.

Increasing the size of virtual neighborhoods reduces the average stretch, since
the intersection coefficient increases correspondingly. The asymptotic trends re-
main the same with increased neighborhood sizes (on a simple ring). The effect of
small world links become noticeable only with four dimensions, and fairly large
network size. This is when the polylogarithmic effect of small world routing starts
dominating the simple ring stretch of O(Nd−2/2d) = O(N1/4).
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Table 2. Simulation results with varying overlay topologies, with 1, 2, and 5 virtual
neighbors. The small world variations are denoted with a ‘∗’

network neighborhood size
dim nodes 1 2 2∗ 5 5∗

2 224 2.86 2.24 2.25 1.73 1.68
226 2.80 2.16 2.16 1.76 1.66
228 2.90 2.24 2.29 1.82 1.74
230 2.80 2.23 2.20 1.78 1.72
232 2.77 2.20 2.23 1.80 1.74

3 212 5.83 3.72 3.99 2.47 2.42
218 11.35 6.90 7.45 4.01 3.99
224 22.75 13.34 13.72 7.30 7.21
230 43.82 26.42 24.10 12.51 12.69

4 220 31.23 18.55 17.72 8.98 8.81
224 61.86 34.56 27.70 16.46 15.46
228 123.89 69.58 42.73 31.93 27.27
232 250.10 136.60 66.98 63.12 48.26

Table 3. Average aggregate stretch with different α values

network greedy factor (α)
dim nodes 20 2 1

2 224 3.67 2.95 2.86
226 3.62 2.86 2.80
228 3.65 2.96 2.90
230 3.69 2.92 2.80
232 3.54 2.80 2.77

3 212 8.31 6.10 5.83
218 18.14 12.63 11.35
224 38.63 25.14 22.75
230 77.17 49.97 43.82

4 220 55.14 34.11 31.23
224 108.56 68.85 61.86
228 218.14 138.10 123.89
232 426.98 279.61 250.10

Modified Greedy Routing. Finally, we examine the effect of modifying the greedy
hop criterion as suggested in our analysis section above.We introduce into theVRR
scheme a parameter α, and allow a greedy hop to occur only when the intermediate
routing target is improved by a factor α. When α = 1 (as in the experiments re-
ported so far), the routing algorithm performs every greedy step it can. For larger
values of α, a greedy step (i.e., a change of the intermediate target) happens only
if the gap to the final target (in the virtual space) is reduced by factor α.

Table 3 shows the average aggregate stretch (over 1000 routes) for three values
of α: 20, 2, and 1. The results show that setting α to 2 has little effect on the
performance of the routing algorithm.
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As a final note, while running the experiments above, we observed that in
a typical path most of the hops in a route are close (in the virtual space) to
the target. Let the median target of a route with h nodes be the intermediate
target of the algorithm when the (h/2)-th node is visited. With α = 1, on
average the median target was less than log2 N hops away from the target in
two dimensions. Even in higher dimensions, the average gap was always smaller
than log2 N .

5 Conclusions

We have theoretically and empirically analyzed Virtual Ring Routing. We show
that for a 2-dimensional grid, VRR indeed gives expected path length which is at
most O(log N) times the diameter. On the other hand, for a d-dimensional grid,
we show that the expected path length is at least Ω(N

d−2
2d ) times the diameter

of the graph. We note that for the two-dimensional case, our bound only shows
a bound of O(Diam · log N) on the routing path length. Empirically, VRR does
not seem to exhibit good locality properties. It would be interesting to investigate
this question further.
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Abstract. The minimum spanning tree (MST) construction is a classical prob-
lem in Distributed Computing for creating a globally minimized structure dis-
tributedly. Self-stabilization is versatile technique for forward recovery that
permits to handle any kind of transient faults in a unified manner. The loop-
free property provides interesting safety assurance in dynamic networks where
edge-cost changes during operation of the protocol.

We present a new self-stabilizing MST protocol that improves on previous
known approaches in several ways. First, it makes fewer system hypotheses as
the size of the network (or an upper bound on the size) need not be known to the
participants. Second, it is loop-free in the sense that it guarantees that a spanning
tree structure is always preserved while edge costs change dynamically and the
protocol adjusts to a new MST. Finally, time complexity matches the best known
results, while space complexity results show that this protocol is the most efficient
to date.

1 Introduction

Since its introduction in a centralized context [25,22], the minimum spanning tree (or
MST) construction problem gained a benchmark status in distributed computing thanks
to the influential seminal work of [13]. Given an edge-weighted graph G = (V, E, w),
where w denotes the edge-weight function, the MST problem consist in computing a
tree T spanning V , such that T has minimum weight among all spanning trees of G.

One of the most versatile techniques to ensure forward recovery of distributed sys-
tems is that of self-stabilization [6,7]. A distributed algorithm is self-stabilizing if after
faults and attacks hit the system and place it in some arbitrary global state, the sys-
tem recovers from this catastrophic situation without external (e.g. human) intervention
in finite time. A recent trend in self-stabilizing research is to complement the self-
stabilizing abilities of a distributed algorithm with some additional safety properties
that are guaranteed when the permanent and intermittent failures that hit the system
satisfy some conditions. In addition to being self-stabilizing, a protocol could thus also
tolerate a limited number of topology changes [9], crash faults [15,2], nap faults [10,23],
Byzantine faults [11,3], and sustained edge cost changes [4,20].

This last property is especially relevant when building spanning trees in dynamic
networks, since the cost of a particular edge is likely to evolve through time. If an MST

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 407–422, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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protocol is only self-stabilizing, it may adjust to the new costs in such a way that a previ-
ously constructed MST evolves into a disconnected or a looping structure (of course, in
the abscence of new edge cost changes, the self-stabilization property guarantees that
eventually a new MST is constructed). Of course, if edge costs change unexpectedly
and continuously, an MST cannot be maintained at all times. Now, a packet routing
algorithm is loop free [14,12] if at any point in time the routing tables are free of loops,
despite possible modification of the edge-weights in the graph (i.e., for any two nodes u
and v, the actual routing tables determines a simple path from u to v, at any time). The
loop-free property [4,20] in self-stabilization guarantees that, a spanning tree being con-
structed (not necessarily an MST), then the self-stabilizing convergence to a “minimal”
(for some metric) spanning tree maintains a spanning tree at all times (obviously, this
spanning tree is not “minimal” at all times). The consequence of this safety property in
addition to that of self-stabiization is that the spanning tree structure can still be used
(e.g. for routing) while the protocol is adjusting, and makes it suitable for networks that
undergo such very frequent dynamic changes.

Related works. Gupta and Srimani [18] have presented the first self-stabilizing algo-
rithm for the MST problem. It applies on graphs whose nodes have unique identifiers,
whose edges have integer edge weights, and a weight can appear at most once in the
whole network. To construct the (unique) MST, every node performs the same algo-
rithm. The MST construction is based on the computation of all the shortest paths (for
a certain cost function) between all the pairs of nodes. While executing the algorithm,
every node stores the cost of all paths from it to all the other nodes. To implement this
algorithm, the authors assume that every node knows the number n of nodes in the net-
work, and that the identifiers of the nodes are in {1, . . . , n}. Every node u stores the
weight of the edge eu,v placed in the MST for each node v �= u. Therefore the algo-
rithm requires Ω(

∑
v �=u log w(eu,v)) bits of memory at node u. Since all the weights

are distinct integers, the memory requirement at each node is Ω(n log n) bits.
Higham and Lyan [19] have proposed another self-stabilizing algorithm for the MST

problem. As in [18], their work applies to undirected connected graphs with unique
integer edge weights and unique node identifiers, where every node has an upper bound
on the number of nodes in the system. The algorithm performs roughly as follows:
every edge aims at deciding whether it eventually belongs to the MST or not. For this
purpose, every non tree-edge e floods the network to find a potential cycle, and when
e receives its own message back along a cycle, it uses information collected by this
message (i.e., the maximum edge weight of the traversed cycle) to decide whether e
could potentially be in the MST or not. If the edge e has not received its message back
after the time-out interval, it decides to become tree edge. The core memory of each
node holds only O(log n) bits, but the information exchanged between neighboring
nodes is of size O(n log n) bits, thus only slightly improving that of [18].

To our knowledge, none of the self-stabilizing MST construction protocols is loop-
free. Since the aforementioned two protocols also make use of the knowledge of the
global number of nodes in the system, and assume that no two edge costs can be equal,
these extra hypoteses make them suitable for static networks only.

Relatively few works investigate merging self-stabilization and loop free routing,
with the notable exception of [4,20]. While [4] still requires that a upper bound on the
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Table 1. Distributed Self-Stabilizing algorithms for the MST and loop-free SP problems

metric size known unique weights memory usage loop-free
[18] MST yes yes O(n log n) no
[19] MST upper bound yes O(n log n) no
[4] SP upper bound no Θ(log n) yes
[20] SP no no Θ(log n) yes
This paper MST no no O(log n) yes

network diameter is known to every participant, no such assumption is made in [20].
Also, both protocols use only a reasonable amount of memory (O(log n) bits per node).
However, the metrics that are considered in [4,20] are derivative of the shortest path
(a.k.a. SP) metric, that is considered a much easier task in the distributed setting than
that of the MST, since the associated metric is locally optimizable [17], allowing es-
sentially locally greedy approaches to perform well. By contrast, some sort of global
optimization is needed for MST, which often drives higher complexity costs and thus
less flexibility in dynamic networks.

Our contributions. We describe a new self-stabilizing algorithm for the MST prob-
lem. Contrary to previous self-stabilizing MST protocols, our algorithm does not make
any assumption about the network size (including upper bounds) or the unicity of the
edge weights. Moreover, our solution improves on the memory space usage since each
participant needs only O(log n) bits1, and node identifiers are not needed.

In addition to improving over system hypotheses and complexity, our algorithm pro-
vides additional safety properties to self-stabilization, as it is loop-free. Compared to
previous protocols that are both self-stabilizing and loop-free, our protocol is the first
to consider non-monotonous tree metrics.

The key techniques that are used in our scheme include fast construction of a span-
ning tree, that is continuously improved by means of a pre-order construction over the
nodes. The cycles that are considered over time are precisely those obtained by adding
one edge to the evolving spanning tree. Considering solely that type of cycles reduces
the memory requirement at each node compared to [18,19] because the latter consider
all possible paths connecting pairs of nodes. Moreover, constructing and using a pre-
order on the nodes allows our algorithm to proceed in a completely asynchronous man-
ner, and without any information about the size of the network, as opposed to [18,19].
The main characteristics of our solution are presented in Table 1, where a boldface
denotes the most useful (or efficient) feature for a particular criterium.

2 Model and Notations

We consider an undirected weighted connected network G = (V, E, w) where V is the
set of nodes, E is the set of edges and w : E → R+ is a positive cost function. Nodes

1 Note that one may use the techniques proposed in [1] in order to construct a self-stabilizing
MST starting from non-stabilizing solutions. This technique would increase the memory
complexity.
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represent processors and edges represent bidirectional communication links. Addition-
ally, we consider that G = (V, E, w) is a network in which the weight of the communi-
cation links may change value. We consider anonymous networks (i.e., the processors
have no IDs), with one distinguished node, called the root2. Throughout the paper, the
root is denoted r. We denote by deg(v) the number of v’s neighbors in G. The deg(v)
edges incident to any node v are labeled from 1 to deg(v), so that a processor can
distinguish the different edges incident to a node.

The processors asynchronously execute their programs consisting of a set of vari-
ables and a finite set of rules. The variables are part of the shared register which is used
to communicate with the neighbors. A processor can read and write its own registers
and can read the shared registers of its neighbors. Each processor executes a program
consisting of a sequence of guarded rules. Each rule contains a guard (boolean expres-
sion over the variables of a node and its neighborhood) and an action (update of the
node variables only). Any rule whose guard is true is said to be enabled. A node with
one or more enabled rules is said to be privileged and may make a move executing the
action corresponding to the chosen enabled rule.

A local state of a node is the value of the local variables of the node and the state of
its program counter. A configuration of the system G = (V, E) is the cross product of
the local states of all nodes in the system. The transition from a configuration to the next
one is produced by the execution of an action at a node. A computation of the system
is defined as a weakly fair, maximal sequence of configurations, e = (c0, c1, . . . ci, . . .),
where each configuration ci+1 follows from ci by the execution of a single action of at
least one node. During an execution step, one or more processors execute an action and
a processor may take at most one action. Weak fairness of the sequence means that if
any action in G is continuously enabled along the sequence, it is eventually chosen for
execution. Maximality means that the sequence is either infinite, or it is finite and no
action of G is enabled in the final global state.

In the sequel we consider the system can start in any configuration. That is, the local
state of a node can be corrupted. Note that we don’t make any assumption on the bound
of corrupted nodes. In the worst case all the nodes in the system may start in a corrupted
configuration. In order to tackle these faults we use self-stabilization techniques.

Definition 1 (self-stabilization). Let LA be a non-empty legitimacy predicate3 of an
algorithmAwith respect to a specification predicate Spec such that every configuration
satisfying LA satisfies Spec. AlgorithmA is self-stabilizing with respect to Spec iff the
following two conditions hold:

2 Observe that the two self-stabilizing MST algorithms mentioned in the Previous Work sec-
tion assume that the nodes have distinct IDs with no distinguished nodes. Nevertheless, if the
nodes have distinct IDs then it is possible to elect one node as a leader in a self-stabilizing
manner. Conversely, if there exists one distinguished node in an anonymous network, then it is
possible to assign distinct IDs to the nodes in a self-stabilizing manner [8]. Note that it is not
possible to compute deterministically an MST in a fully anonymous network (i.e., without any
distinguished node), as proved in [18].

3 A legitimacy predicate is defined over the configurations of a system and is an indicator of its
correct behavior.
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(i) Every computation of A starting from a configuration satisfying LA preserves LA
(closure).

(ii) Every computation of A starting from an arbitrary configuration contains a config-
uration that satisfies LA (convergence).

We define bellow a loop-free configuration of a system as a configuration which con-
tains paths with no cycle between any couple of nodes in the system. Given two nodes
u, v ∈ V , we note P (u, v) the path between u and v.

Definition 2 (Loop-Free Configuration). Let Cycle(u, v) be the following predicate
defined for two nodes u, v ∈ V on configuration C: Cycle(u, v) ≡ ∃P (u, v), P (v, u) :
P (u, v) ∩ P (v, u) = ∅.
A loop-free configuration is a configuration of the system which satisfies: ∀u, v ∈
V, Cycle(u, v) = false.

We use the definition of a loop-free configuration to define a loop-free stabilizing
system.

Definition 3 (Loop-Free Stabilization). A distributed system is called loop-free stabi-
lizing if and only if it is self-stabilizing and there exists a non-empty set of configurations
such that the following conditions hold: (i) Every computation starting from a loop-free
configuration reaches a loop-free configuration (closure). (ii) Every computation start-
ing from an arbitrary configuration contains a loop-free configuration (convergence).

In the sequel we study the loop-free self-stabilizing LoopFreeMSTproblem. The legit-
imacy predicate LA for the LoopFreeMSTproblem is the conjunction of the following
two predicates: (i) a tree T spanning the network is constructed. (ii) T is a minimum
spanning tree of G (i.e., ∀T ′, W (T ) ≤ W (T ′), with T ′ be a spanning tree of G and
W (S) =

∑
e∈S w(e) be the cost of the subgraph S).

3 The Algorithm LoopFreeMST

In this section, we describe our self-stabilizing algorithm for the MST problem. We call
this algorithm LoopFreeMST. Let us begin by an informal description of
LoopFreeMST aiming at underlining its main features.

3.1 High Level Description

LoopFreeMST is based on the red rule. That is, for constructing an MST, the algorithm
successively deletes the edges of maximum weight within every cycle. For this purpose,
a spanning tree is maintained, together with a pre-order labeling of its nodes. Given the
current spanning tree T maintained by our algorithm, every edge e of the graph that is
not in the spanning tree creates an unique cycle in the graph when added to T . This
cycle is called fundamental cycle, and is denoted by Ce. (Formally, this cycle depends
on T ; Nevertheless no confusion should arise from omitting T in the notation of Ce). If
w(e) is not the maximum weight of all the edges in Ce, then, according to the red rule,
our algorithm swaps e with the edge f of Ce with maximum weight . This swapping
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procedure is called an improvement. A straightforward consequence of the red rule is
that if no improvements are possible then the current spanning tree is a minimum one.

Algorithm LoopFreeMST can be decomposed in three procedures: (i) Tree con-
struction, (ii) Token label circulation, (iii) Cycle improvement.

The latter procedure (Cycle improvement) is in fact the core of our contribution.
Indeed, the two first procedures are simple modifications of existing self-stabilizing
algorithms, one for building a spanning tree, and the other for labelling its nodes. We
will show how to compose the original procedure “Cycle improvement” with these
two existing procedures. Note that “Cycle improvement” differs from the previous self-
stabilizing implementation of the improvement swapping in [19] by the fact that it does
not require any a priori knowledge of the network, and it is loop-free.

LoopFreeMST starts by constructing a spanning tree of the graph, using the self-
stabilizing loop-free algorithm “Tree construction” described in [21]. The two other
procedures are performed concurrently. A token circulates along the edges of the cur-
rent spanning tree, in a self-stabilizing manner. This token circulation uses algorithms
proposed in [5,24] as follows. A non-tree-edge can belong to at most one fundamen-
tal cycle, but a tree-edge can belong to several fundamental cycles. Therefore, to avoid
simultaneous possibly conflicting improvements, our algorithm considers the cycles in
order. For this purpose, the token labels the nodes of the current tree in a DFS order
(pre-order). This labeling is then used to find the unique path between two nodes in the
spanning tree in a distributed manner, and enables computing the fundamental cycle
resulting from adding one edge to the current spanning tree.

We now sketch the description of the procedure “Cycle improvement” (see Figure 1).
When the token arrives at a node u in a state Done, it checks whether u has some inci-
dent edges not in the current spanning tree T connecting u with some other node v with
smaller label. If it is the case, then enters state Verify. Let e = {u, v}. Node u then
initiates a traversal of the fundamental cycle Ce for finding the edge f with maximum
weight in this cycle. If w(f) = w(e) then no improvement is performed. Else an im-
provement is possible, and u enters State Improve. Exchanging e and f in T results in
a new tree T ′. When the improvement is terminated u enters in State end. The key issue
here is to perform this exchange in a loop-free manner. Indeed, one cannot be sure that

ErrPropag

RI RERV

RV

Done Verify Improve End

RP

RP

RV

Fig. 1. Evolution of the node’s state in cycle improvement module. Rule RD is depicted in plain.
Rule RErr is depicted in bold.
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two modifications of the current tree (i.e., removingf from T , and adding e to T ) that are
applied at two distant nodes will occur simultaneously. And if they do not occur simulta-
neously, then there will a time interval during which the nodes will not be connected by a
spanning tree. Our solution for preserving loop-freedomless relies on a sequence of suc-
cessive local and atomic changes, involving a single variable. This variable is a pointer to
the current parent of a node in the current spanning tree. To get the flavor of our method,
let us consider the example depicted on Figure 2. In this example, our algorithm has to
exchange the edge e = {10, 12} of weight 9, with the edge f = {7, 8} of weight 10
(Figure 2(a)). Currently, the token is at node 12. The improvement is performed in two
steps, by a sequence of two local changes. First, node 10 switches its parent from 8 to
12 (Figure 2(b)). Next, node 8 switches its parent from 7 to 10 (Figure 2(c)). A spanning
tree is preserved at any time during the execution of these changes.

Note that any modification of the spanning tree makes the current labeling globally
inaccurate, i.e., it is not necessarily a pre-order anymore. However, the labeling remains
a pre-order in the portion of the tree involved in the exchange. For instance, consider
again the example depicted on Figure 2(c). When the token will eventually reach node
A, it will label it by some label � > 12. The exchange of e = {10, 12} and f = {7, 8}
has not changed the pre-order for the fundamental cycle including edge {A, 12}. How-
ever, when the token will eventually reach node B and label it �′ > �, the exchange of
e = {10, 12} and f = {7, 8} has changed the pre-order for the fundamental cycle in-
cluding edge {B, 9}: the parent of node labeled 10 is labeled 12 whereas it should have
a label smaller than 10 in a pre-order. When the pre-order is modified by an exchange,
the inaccurately labeled node changes its state to Err, and stops the traversal of the
fundamental cycle. The token is then informed that it can discard this cycle, and carry
on the traversal of the tree.

3.2 Detailed Level Description

We now enter into the details of Algorithm LoopFreeMST. First, let us state all vari-
ables used by the algorithm. Later on, we will describe its predicates and its rules.

Variables. For any node v ∈ V (G), we denote by N(v) the set of all neighbors of v
in G. Algorithm LoopFreeMST maintains the set N(v) at every node v. We use the
following notations:

– parentv: the parent of v in the current spanning tree;
– labelv: the integer label assigned to v;
– dv: the distance (in hops) from v to the root in the current spanning tree;
– statev: the state of node v, with values in {Done,Verify,Improve,End,
Propag,Err}4;

– DefCyclev: Let Ce the current fundamental cycle with e = {x, y}, DefCyclev =
(x, y) .

– VarCyclev: a pair of variables: the first one is the maximum edge-weight in the cur-
rent fundamental cycle; the second one is a (boolean) variable in {Before, After};5

– sucv: the successor of v in the current fundamental cycle.
4 The state Propag is detailed in Consistency rules.
5 For details see paragraph 3.2 Cycle improvement rules.
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Fig. 2. Example of a loop-free improvement of the current spanning tree. The direction of the
edges indicates the parent relation. Edges in the spanning tree are depicted as plain lines; Edges
not in the spanning tree are denoted by dotted lines.

Consistency rules. The first task executed by LoopFreeMST is to check the consis-
tency of the variables of each node see Figure 1. Done is the standard state of a node
when this node does not have the token, or is not currently visited by the traversal of
a fundamental cycle. When the variables of a node are detected to be not coherent, the
state of the node becomes Err thanks to rule RErr. There is one predicate in RErr for
each state, except for state Propag, to check whether the variables of the node are
consistent (see Figure 3). The rule RD allows the node to return to the standard state
Done. More precisely, rule RD resets the variables, and stops the participation of the
node to any improvement.

RErr: (Bad label)
If CoherentCycle(v) ∧ Error(v) ∧ DefCycle[0]v �= labelv ∧ EndPropag(v)
then statev := Err;

RD: (Improvement consistency)
If ¬CoherentCycle(v) ∧ EndPropag(v)
then statev := Done; DefCyclev := (labelv, done); VarCyclev := (0, Before);

sucv := ∅;

Tree construction. LoopFreeMST starts by constructing a spanning tree of the graph,
using the self-stabilizing loop-free algorithm “Tree construction” described in [21].
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CoherentCycle(v) ≡ Coherent Done(v)∨Coherent Verify(v)∨Coherent Improve(v)∨
Coherent End(v) ∨ Coherent Error(v)

Coherent Done(v) ≡ statev = Done ∧ sucv = ∅ ∧ DefCyclev = (labelv, done)∧
VarCyclev = (0, Before)

Coherent Verify(v) ≡ statev = Verify ∧ sucv = Succ(v) ∧ [(Init(v)∧
VarCyclex = (0, Before)) ∨ Nds Verify(v)]

Coherent Improve(v) ≡ statev = Improve ∧ sucv = Succ(v)∧
DefCyclev = DefCycleparent

v
∧ VarCyclev = VarCycleparent

v

Coherent End(v) ≡ statev = End ∧ DefCyclev = DefCycleparent
v
∧ (NdDel(v)∨

Ask EI(v))
Coherent Error(v) ≡ statev = Err ∧ (sucv = Succ(v) = ∅ ∨ Ask E(v))∧

DefCyclev = DefCyclePred(v)

CoherentTree(v) a ≡ (v = r∧dv = 0∧stv = N)∨(v �= r∧dv = dparent
v
+1∧stv = N

∧rwv = dv) ∨ stateparent
v

= Improve∨ stateparent
v

= Propag

Ask V(v) ≡ statePred(v) = Verify

Ask I(v)≡ (statePred(v) = Improve ∧ VarCycle[1]Pred(v) = Before)∨
(statesucv

= Improve ∧ VarCycle[1]sucv
= After)

Ask EI(v) ≡ (∃u ∈ N(v), parentu = v ∧ stateu = End ∧ DefCycleu = DefCyclev)
Ask E(v) ≡ sucv �= ∅ ∧ statesucv

= Err ∧ DefCyclev = DefCyclesucv

Tree Edge(v, u) ≡ parentv = u ∨ parentu = v
C Ancestor(v) ≡ parentv �= sucv ∧ parentv �= Pred(v)
Init(v) ≡ DFS F(v) ∧ DefCycle[0]v = labelv
Nds Verify(v) ≡ [(Ask V(v) ∧ VarCyclev = (Max C(v), Way C(v))) ∨ Ask I(v)]∧

DefCyclev = DefCyclePred(v)

NdDel(v) ≡ stateparent
v
�= Done ∧ stateparent

v
�= Propag ∧ ¬Improve(v)

a In [21], variable stv indicates if v propagates a new distance (state P ) or not (state N ), and
rwv is used to propagate the new distance in the tree.

Fig. 3. Corrections predicates used by the algorithm

This algorithm constructs a BFS, and uses two variables parent and distance. Dur-
ing the execution of our algorithm, these two variables are subject to the same rules as
in [21]. After each modification of the spanning tree, the new distance to the parent is
propagated in sub-trees by Rules RP and R̄P.

RP: (Distance propagation)
If Coherent Done(v) ∧ ¬Ask V(v) ∧ sucv �= parentv ∧ Pred(v) �= parentv∧

dv �= dparentv
+ 1 ∧ (stateparentv

= Improve ∨ stateparentv
= Propag)

then statev := Propag; dv := dparentv
+ 1;

R̄P: (End distance propagation)
If statev = Propag ∧ EndPropag(v)
then statev := Done; DefCyclev := (labelv, done); VarCyclev := (0, Before);

sucv := ∅;
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Token circulation and pre-order labeling. LoopFreeMST uses the algorithm described
in [5] to provide each node v with a label labelv . Each label is unique in the net-
work traversed by the token. This labeling is used to find the unique path between two
nodes in the spanning tree, in a distributed manner. For this purpose, we use the snap-
stabilizing algorithm described in [24] for the circulation of a token in the spanning tree
(a snap-stabilizing algorithm stabilizes in 0 steps thus algorithm in [24] allows to al-
ways have a correct token circulation). We have slightly modified this algorithm because
LoopFreeMST stops the token circulation at a node during the “Cycle improvement”
procedure. A node v knows if it has the token by applying predicate Init(v) (Predicate
DFS F(v) is true at node v if the token was forwarded by its parent). Rule RDFS guides
the circulation of the token. The token carries on its tree traversal if one of the following
three conditions is satisfied: (i) there is no improvement which could be initiated by the
node which holds the token, (ii) an improvement was performed in the current cycle, or
(iii) inconsistent node labels were detected in the current cycle. The latter is under the
control of Predicate ContinueDFS(v).

RDFS: (Continue DFS token circulation)
If CoherentCycle(v) ∧ Init(v) ∧ ContinueDFS(v)
then statev := Done; DefCycle[1]v = done;

Cycle improvement rules. The procedure “Cycle improvement” is the core of
LoopFreeMST. Its role is to avoid disconnection of the current spanning tree, while
successively improving the tree until reaching an MST. The procedure can be decom-
posed in four tasks: (1) to check whether the fundamental cycle of the non-tree edge has
an improvement or not, (2) perform the improvement if any, (3) update the distances,
and (4) resume the token circulation.

Let us start by describing the first task. A node u in state Done changes its state to
Verify if its variables are in consistent state, it has a token, and it has identified a can-
didate (i.e., an incident non-tree edge e = {u, v} whose other extremity v has a smaller
label than the one of u). The latter is under the control of Predicate InitVerify(v), and
the variable VarCyclev contains the label of u and v. If the three conditions are sat-
isfied, then the verification of the fundamental cycle Ce is initiated from node u, by
applying rule RV. The goal of this verification is twofold: first, to verify whether Ce

exists or not, and, second, to save information about the maximum edge weight and
the location of the edge of maximum weight in Ce. These information are stored in the
variable Way C(v). In order to respect the orientation in the current spanning tree, the
node u or v that initiates the improvement depends on the localization of the maximum
weight edge f in Ce. More precisely, let r be the least common ancestor of nodes u
and v in the current tree. If f occurs before r in T in the traversal of Ce from u start-
ing by edge (u, v), then the improvement starts from u, otherwise the improvement
starts from v. To get the flavor of our method, let us consider the example depicted on
Figure 2. In this example, f occurs after the least common ancestor (node 6). There-
fore node 10 atomically swaps its parent to respect the orientation. However, if one
replaces in the same example the weight of edge {11, 6} by 11 instead of 3, then f
would occur before r, and thus node 12 would have to atomically swaps its parent.
The relative places of f and r in the cycle is indicated by Predicate Way C(v) that



A New Self-stabilizing Minimum Spanning Tree Construction 417

Pred(v) ≡ arg min{labelu : u ∈ N(v)∧stateu �= Done∧stateu �= Propag∧sucu = v}
if u exists, ∅ otherwise

MaxLab(v, x) ≡ arg max{labels : s ∈ N(v) ∧ labels < x}

Succ(v) ≡

8
>>>>>>>><

>>>>>>>>:

VarCycle[0]v if DefCycle[1]v = labelv
parentv if (labelv > DefCycle[1]v ∧ statev = Verify)∨

(labelv < DefCycle[1]v∧
(statev = Improve∨ statev = End))

MaxLab(v, DefCycle[1]v) if (labelv < DefCycle[1]v ∧ statev = Verify)
MaxLab(v, labelv) if (labelv > DefCycle[1]v∧

(statev = Improve∨ statev = End))
Max C(v) ≡ max{VarCycle[0]Pred(v), w(v, Pred(v))}

Way C(v) ≡

(
After if VarCycle[0]v �= VarCycle[0]Pred(v) ∧ labelv > labelPred(v)

VarCycle[1]Pred(v) otherwise

LabCand(v)≡ min{labelu : u ∈ N(v) ∧ labelu < labelv ∧ ¬Tree Edge(v, u)∧
labelu � DefCycle[1]v}a if u exists, end otherwise

a � order on neighbor labels for which ’end’ is the biggest element and ’done’ is the smallest
one.

Fig. 4. Predicates used by the algorithm

returns two different values: Before or After. During the improvement of the tree, the
fundamental cycle is modified. It is crucial to save information about this cycle during
this modification. In particular, the successor of a node w in a cycle, stored in the vari-
able sucw, must be preserved. Its value is computed by Predicate Succ(v) which uses
node labels to identify the current examined fundamental cycle. Each node is able to
compute its predecessor in the fundamental cycle by applying Predicate Pred(v). The
state of a node is compared with the ones of its successor and predecessor to detect
potential inconsistent values. At the end of this task, the node u learns the maximum
weight of the cycle Ce and can decide whether it is possible to make an improvement or
not. If not, but there is another non-tree edge e′ that is candidate for potential replace-
ment, then u verifies Ce′ . Otherwise the token carries on its traversal, and rule R̄P is
applied.

RV: (Verify rule)
If CoherentCycle(v) ∧ ¬Error(v) ∧ (InitVerify(v) ∨ [¬Init(v) ∧ (Coherent Done(v) ∨
statev = Propag) ∧ Ask V(v)])
then statev := Verify;

If DFS F(v) then DefCycle[1]v := LabCand(v);
Else DefCyclev := DefCyclePred(v); VarCyclev := (Max C(v), Way C(v));

sucv := Succ(v);

If Ce can yield an improvement, then rule RI is executed. By this rule, a node enters
in state Improve, and changes its parent to its predecessor if VarCycle[1]v = Before
(respectively to its successor if VarCycle[1]v = After). For this purpose, it uses the
variable sucv and the predicate Pred(v) .
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RI: (Improve rule)
If CoherentCycle(v) ∧ ¬Error(v) ∧ Coherent Verify(v) ∧ Improve(v)∧
¬C Ancestor(v) ∧ [(DFS F(v) ∧ Ask V(v)) ∨ Ask I(v)]

then statev := Improve;
If DFS F(v)∨ statePred(v)

= Improve then VarCyclev := VarCyclePred(v)

If (DFS F(v)∧VarCycle[1]v = Before)∨¬DFS F(v) then parentv := Pred(v);
If statesucv

= Improve then VarCyclev := VarCyclesucv
; parentv := sucv;

If w(v, sucv) ≥ VarCycle[0]v then sucv = Succ(v)
dv := dparent

v
+ 1;

At the end of an improvement, it is necessary to inform the node holding the token that
it has to carry on its traversal. This is the role of rule RE. It is also necessary to inform
all nodes impacted by the modification that they have to update their distances to the
root (see Section 3.2).

RE: (End of improvement rule)
If CoherentCycle(v) ∧ ¬Error(v) ∧ End Improve(v) ∧ EndPropag(v)
then statev := End;

Module composition. All the different modules presented, except the tree construction
parts of the correction module, need the presence of a spanning tree in G. Thus, we
must execute the tree construction rules first if an incoherency in the spanning tree is
detected. To this end, these rules are composed using the level composition defined
in [16], i.e., if Predicate CoherentTree(v) (see Fig. 3) is not verified then the tree
construction rules are executed, otherwise the other modules can be executed. The to-
ken circulation algorithm and the naming algorithm are composed together using the
conditional composition described in [5], i.e., the naming algorithm is executed when
a logical expression (based on guards of token circulation algorithm) is true. Finally,
we compose the token circulation algorithm and the cycle improvement module with a
conditional composition using Predicate ContinueDFS(v) (see Fig. 5). This allows to
execute the token circulation algorithm only if the cycle improvement module does not
need the token on a node. Figure 6 shows how the modules are composed together.

Candidate(v) ≡ LabCand(v) �= end
InitVerify(v) ≡ Init(v) ∧ Candidate(v) ∧ (Coherent Done(v) ∨ [Coherent Verify(v)∧

¬Improve(v) ∧ ¬C Ancestor(v) ∧ Ask V(v)])
ImproveF(v, x) ≡ ¬Tree Edge(v, x)) ∧ max(VarCycle[0]v , VarCycle[0]x) > w(v, x)
Improve(v) ≡ ImproveF(v, Pred(v)) ∨ ImproveF(v, sucv)
End Improve(v) ≡ Coherent Improve(v) ∧ (NdDel(v) ∨ Ask EI(v))
ContinueDFS(v) ≡ (Init(v) ∧ [([Coherent Done(v) ∨ (Coherent Verify(v)∧

¬ImproveF(v, Pred(v)) ∧ Ask V(v))] ∧ ¬Candidate(v))∨
Coherent End(v) ∨ Error(v)]) ∨ ¬DFS F(v)

Error(v) ≡ statev �= Done ∧ statev �= Err ∧ (sucv = Succ(v) = ∅ ∨ Ask E(v))
EndPropag(v) ≡ (∀u ∈ N(v), parentu = v ∧ stateu = Done ∧ du = dv + 1)

Fig. 5. Predicates used by the algorithm
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Labeling

Tree construction

Token circulation

Cycle improvement
Level composition

Conditional composition

Fig. 6. Composition of the presented modules

3.3 Complexity

Definition 4 (Red Rule). If C is a cycle in G = (V, E) with no red edges then color in
red the maximum edge weight in C.

Theorem 1 (Tarjan et al. [26]). Let G be a connected graph. If it is not possible to
apply Red Rule then the set of not colored edges forms a minimum spanning tree of G.

Lemma 1. Starting from a configuration where an arbitrary spanning tree is con-
structed, in at most O(mn) rounds the cycle improvement module produces a minimum
spanning tree of G, with respectively m and n the number of edges and nodes of the
network G.

Proof. In a given network G = (V, E), if a spanning tree of G is constructed then there
are exactly m − (n − 1) fundamental cycles in G since there are n − 1 edges in any
spanning tree of G. Thus, a tree edge can be contained in at most m−n+1 fundamental
cycles. Consider a configuration where a spanning tree T of G is constructed and a tree
edge e0 is contained in m− n + 1 fundamental cycles and all tree edges have a weight
equal to 1, except e0 of weight w(e0) > 1. Suppose that T is not a minimum spanning
tree of G such that ∀ei ∈ E, i = 1, . . . , m− n + 1, w(ei−1) > w(ei) with e0 ∈ T and
∀i = 1, . . . , m− n + 1, ei �∈ T and w(ei) > 1 (see the graph of Figure 7(a)). Consider
the following sequence of improvements: ∀i, i = 1, . . . , m− n + 1, exchange the tree
edge ei−1 by the not tree edge ei (see a sequence of improvements in Figure 7). In this
sequence, we have exactly m−n+1 improvements and this is the maximum number of
improvements to obtain a minimum spanning tree since there are m−n+1 fundamental

(b) (c) (d)(a)

e0 e0e0e0e1 e1e1e1e2 e2e2e2e3 e3e3e3

Fig. 7. (a) a spanning tree with plain lines in a graph with m − n + 1 improvements, (b) the
spanning tree obtained after the first improvement, (c) the spanning tree obtained after the second
improvement, (d) the minimum spanning tree of the graph obtained after the third improvement



420 L. Blin et al.

cycles and for each one we apply the Red rule (see Definition 4 and Theorem 1). An
improvement can be initiated in the cycle improvement module by a node with the
DFS token. The DFS token performs a tree traversal in O(n) rounds. Moreover, each
improvement needs to cross a cycle a constant number of times and each cross requires
O(n) rounds. Since at most m− n + 1 improvements are needed to obtain a minimum
spanning tree, at most O(mn) rounds are needed to construct a minimum spanning
tree.

Lemma 2. Starting from a legitimate configuration, after a weight edge modification
the system reaches a legitimate configuration in at most O(mn) rounds.

Proof. After a weight edge change the system is no more in a legitimate configura-
tion in the following cases: (1) the weight of a not tree edge is less than the weight
of the heaviest tree edge in its fundamental cycle, or (2) the weight of a tree edge is
greater than the weight of a not tree edge in one of the fundamental cycles including
the tree edges. In each case above, the algorithm must verify if improvements must be
performed to reach again a legitimate configuration, otherwise the system is still in a
legitimate configuration. Thus, in case (1) it is only sufficient to verify if an improve-
ment must be performed in the fundamental cycle associated to the not tree edge (i.e.
to apply the Red rule a single time). To this end, its fundamental cycle must be crossed
at most three times: the first time to verify if an improvement is possible, a second time
to perform the improvement and a last time to end the improvement, each one needs at
most O(n) rounds. Case (2) is more complicated, indeed the weight of a tree edge can
change which leads to a configuration where at most m− n + 1 improvements must be
performed to reach a legitimate configuration, since a tree edge can be contained in at
most m− n + 1 fundamental cycles as described in proof of Lemma 1. Since each im-
provement phase needs O(n) rounds (see case (1)) at most O(mn) rounds are needed
to reach a legitimate configuration. The complexity of case (2) dominates the complex-
ity of the first case. Therefore, after a weight edge change at most O(mn) rounds are
needed to reach a legitimate configuration.

Note that the presented algorithm uses only a constant number of variables of size
O(log n). Therefore, O(log n) bits of memory are needed at each node to execute the
algorithm. Moreover, due to space constraints correctness proof are given in [27].

4 Concluding Remarks

We presented a new solution to the distributed MST construction that is both self-
stabilizing and loop-free. It improves on memory usage from O(n log n) to O(log n),
yet doesn’t make strong system assumptions such as knowledge of network size or unic-
ity of edge weights, making it particularly suited to dynamic networks. Two important
open questions are raised:

1. For depth first search tree construction, self-stabilizing solutions that use only con-
stant memory space do exist. It is unclear how the obvious constant space lower
bound can be raised with respect to metrics that minimize a global criterium (such
as MST).
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2. Our protocol pionneers the design of self-stabilizing loop-free protocols for non
locally optimizable tree metrics. We expect the techniques used in this paper to be
useful to add loop-free property for other metrics that are only globally optimizable,
yet designing a generic such approach is a difficult task.
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Abstract. The rotor-router model, also called the Propp machine, was
first considered as a deterministic alternative to the random walk. It is
known that the route in an undirected graph G = (V, E), where |V | = n
and |E| = m, adopted by an agent controlled by the rotor-router mecha-
nism forms eventually an Euler tour based on arcs obtained via replacing
each edge in G by two arcs with opposite direction. The process of ush-
ering the agent to an Euler tour is referred to as the lock-in problem. In
recent work [11] Yanovski et al. proved that independently of the initial
configuration of the rotor-router mechanism in G the agent locks-in in
time bounded by 2mD, where D is the diameter of G.

In this paper we examine the dependence of the lock-in time on the
initial configuration of the rotor-router mechanism. The case study is
performed in the form of a game between a player P intending to lock-in
the agent in an Euler tour as quickly as possible and its adversary A
with the counter objective. First, we observe that in certain (easy) cases
the lock-in can be achieved in time O(m). On the other hand we show
that if adversary A is solely responsible for the assignment of ports and
pointers, the lock-in time Ω(m ·D) can be enforced in any graph with m
edges and diameter D. Furthermore, we show that if A provides its own
port numbering after the initial setup of pointers by P , the complexity of
the lock-in problem is bounded by O(m·min{log m, D}). We also propose
a class of graphs in which the lock-in requires time Ω(m · log m). In the
remaining two cases we show that the lock-in requires time Ω(m · D) in
graphs with the worst-case topology. In addition, however, we present
non-trivial classes of graphs with a large diameter in which the lock-in
time is O(m).
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1 Introduction

A graph is a fundamental combinatorial concept used for modeling complex
systems in various application domains including communication, transporta-
tion and computer networks, manufacturing, scheduling, molecular biology, and
peer-to-peer networks. Certain models based on graphs, very often classified
as alternative models of computation, rely on the use of mobile entities called
agents. An agent can be, e.g., a robot servicing a hazardous environment or a
software process navigating the Internet in search of information.

The family of anonymous graphs provides foundations for a model that has
found its application in network communication, graph exploration and stabil-
isation of distributed processes. In principle, due to minimalistic assumptions,
any solution provided in this model constitutes also a valid solution in any other
communication graph-based model. Another important rationale for the use of
anonymous graphs is the intention to study border cases (limits of computation)
in the field of distributed computing.

The rotor-router mechanism was introduced as a deterministic alternative to
the random walk and studied in the context of a wide selection of network
problems, including work on load balancing problems in [6, 5], graph explo-
ration [7,2,8], and stabilisation of distributed processes [9,3,11]. The rotor-router
mechanism is represented by an undirected anonymous graph G = (V, E), where
|V | = n and |E| = m. The nodes in V bear no names, however, the endpoints
of edges in E, called ports, are arranged in a cyclic order at each node. Fur-
thermore, each node is equipped with a pointer that indicates the current exit
port to be adopted by an agent on the conclusion of the next visit to this node.
The rotor-router mechanism guarantees that after each consecutive visit at a
node its pointer is moved to the next port in the cyclic order. Due to a limited
number of configurations in a graph G of a bounded size it is intuitive that a
walk of the agent controlled by the rotor-router mechanism must be locked-in in
a loop eventually. Rather surprisingly, however, Priezzhev et al. [9] proved that
an agent traversing a finite graph gets locked-in in an Euler tour based on arcs
obtained by replacing each edge in G with two arcs having opposite directions.
Later, Bhatt et al. [3] proved that the lock-in time is bounded by O(m ·n). This
bound was further improved by Yanovski et al. in [11] to 2mD, where D is the
diameter of G. Related models of traversal in undirected graphs were studied
in [4].

1.1 Our Contribution and Outline of the Paper

In this paper we examine the influence of the initial configuration of pointers
and port numbers on the time needed to lock-in the agent in an Euler tour.
The case study is performed in the form of a competition between a player P
intending to lock-in the agent in an Euler tour as quickly as possible and its
adversary A having the counter objective. We assume that both the player P
and its adversaryA have unlimited computational power, i.e., we do not take into
account the cost of computation of the initial configuration of ports and pointers
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to be adopted by P and A. The results of our studies are asymptotically tight
in terms of the worst-case choice of the graph topology and the initial location
of the agent.

We start our analysis with border cases. In the case P-all where the player P
is in charge of the initial arrangement of port numbers and pointers we observe
that the lock-in in an Euler tour can be obtained in time O(m). Also the case
A(�)P(f ), where P sets the pointers after the port numbers are assigned by A,
reduces to the border case where P is solely in charge of the initial configuration.
On the other hand, in the case A-all where the adversary A solely decides about
the initial configuration, we show that in any graph with m edges and diameter
D the adversary A is able to enforce the lower bound Ω(m ·D) for the lock-in
matching the upper bound from [11].

Furthermore, we show that if A provides its own port numbering after the
initial setup of pointers by P , case P(f )A(�), the complexity of the lock-in
problem is bounded by O(m ·min{logm, D}). We also propose a respective class
of graphs in which the lock-in requires time Ω(m ·min{log m, D}). At the same
time we point out that, e.g., in Hamiltonian graphs the lock-in is obtained in
time O(m).

We conclude with the proof that in the remaining two cases the lock-in requires
time Ω(m · D) in graphs with the worst-case topology. In the case A(f )P(�)
where P responds by appropriate port assignment to initial setup of pointers by
A, we show that there exist graphs for which the lock-in requires time Ω(m ·D).
At the same time, we present a non-trivial class of graphs with an arbitrarily
large diameter in which an appropriate choice of port numbers leads to the lock-
in in time O(m). Finally, in the case P(�)A(f ) where A sets the pointers after
the assignment of ports is revealed by P , the lower bound Ω(m ·D) argument for
the lock-in follows directly from the previous case. Also, here we propose a non-
trivial class of graphs, this time with an arbitrary diameter D ≤ √n, in which
the lock-in is feasible in time O(m). Our results are summarised in Table 1.

Table 1. Minimum and maximum values of the lock-in time in considered cases

Scenario Worst case Best case

Case P-all Θ(m) Θ(m)
Case A(�)P(f ) Θ(m) Θ(m)
Case P(f )A(�) Θ(m · min{log m, D}) Θ(m)
Case A(f )P(�) Θ(m · D) Θ(m)
Case P(�)A(f ) Θ(m · D) Θ(m) for all D ≤

√
n

Case A-all Θ(m · D) Θ(m · D)

1.2 The Euler Tour Lock-In Problem Revisited

In this section we provide basic definitions and we recall known facts in relation
to performance of the rotor-router mechanism in anonymous graphs. Recall that
G = (V, E) is an input graph in which the starting node is denoted by s.
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Definition 1. For any m and D, D ≤ m, let Gm,D denote the class of graphs
with diameter between D and 4D and a number of edges between m and 4m.

Definition 2. For any v ∈ V let EG(v) denote the set of edges of G that are
incident to node v.

Definition 3. Let H = (X, C) be a connected subgraph of G induced by some
C ⊆ E. We denote by NG(H) the subgraph of G induced by the set

⋃
v∈X EG(v).

Definition 4 (port assignment). A port assignment to the nodes of graph G
is a collection of bijective functions between EG(v) and {1, . . . , deg(v)}, one for
each v ∈ V .

Definition 5 (pointer assignment). An initial pointer assignment to the
nodes of an undirected graph G = (V, E) is a function f : V → E, s.t., for
all v ∈ V , f (v) ∈ EG(v).

Definition 6. A node becomes saturated when all its incident edges are tra-
versed in both directions for the first time.

Note that when a node becomes saturated, its pointer returns to the initial
position for the first time.

Lemma 1 ([3]). Let G = (V, E) be a graph with a starting node s ∈ V , an
assignment of ports and pointers. The Euler tour lock-in in G is performed in
phases {Pi}i≥1. Each phase starts when the mobile agent leaves s via edge f (s)
indicated by the initial assignment of pointers and continues until the agent
traverses all edges incident to s in both directions. The following properties hold:

– While the agent is visiting nodes saturated in some earlier phase, it retraces
the route of phase Pi−1.

– If the agent encounters a node u that has been visited but not saturated in
an earlier phase, it suspends the retracing of the tour of phase Pi−1. A new
tour starts at u and ends there. Node u is now saturated. The tour of phase
Pi−1 is resumed (via port f (s)).

– Every edge is traversed at most once in each direction during each phase.

Eventually all nodes in G get saturated. In other words, there exists integer j ≥ 1,
s.t., starting from the phase Pj the agent adopts the same (Euler) tour in G.

One can conclude from Lemma 1 that during each phase Pi the agent gets locked-
in in a subgraph Gi of G where (1) G0 contains a single node s; (1) each Gi is
a subgraph of Gi+1; and (2) all edges in G that are incident to nodes in Gi are
present in Gi+1, i.e., NG(Gi) ⊆ Gi+1. Since the number of edges in each Gi is
bounded by m the following theorem follows.

Theorem 1 ([11]). For any graph, any starting node, and any initial pointer
and port assignments, the lock-in (which is equivalent with exploration of all
edges in G) is achieved in time O(m ·D).
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2 Case Study of the Lock-In Problem

In this section we study the game between P and A in detail.

2.1 Border Cases

In this section we briefly discuss border cases in which for any graph G the
complexity of the lock-in problem is either Θ(m) or Θ(mD).

Cases with Lock-in Time Θ(m). Consider first the case P-all where the
player P is solely responsible for the initial setup of port numbers and pointers.
Since we assume unbounded computational power of P clearly the player can
choose a configuration that locks-in the agent in an Euler tour right from the
beginning. Similarly, also in the case A(�)P(f ), after the adversary A sets port
numbers, P can respond with an appropriate assignment of pointers that leads
to an Euler tour instantly for any input graph G. Thus in those two cases the
agent visits all edges in G locking-in itself in an Euler tour in time O(m).

Case with Lock-in Time Θ(m ·D). At the other end of the spectrum, in the
case A-all where the adversaryA is solely responsible for the initial configuration
of port numbers and pointers the proof of the complexity Θ(m · D) is more
complex. We start with the following lemma.

Lemma 2. Given an input graph G = (V, E) with a starting node s ∈ V . For
any subset C ⊆ E, s.t. C contains at least EG(s) and also induces a connected
subgraph H = (X, C) of G, there exists an assignment of ports and pointers, s.t.,
the first phase of the exploration of G traverses all edges in C in both directions,
and only these edges.

Proof. Let C be an Euler cycle in H. Fix the corresponding sequence of edge
traversals e1, . . . , e2|C|, s.t. e1 is an edge incident to s (each undirected edge in
C is traversed exactly twice by C, once in each direction). We now define a port
assignment and an assignment of pointers f to the nodes of G.

For any node v ∈ V , let ev1 , . . . , evk
be the order in which its incident edges

are traversed in C, going out of v. It can happen that k < degG(v) if v has
incident edges in E \ C, or even k = 0 if v /∈ X . Define the port assignment for
the node v, s.t., for any i ≤ k, edge evi is the port with number i. If k < degG(v),
extend this port assignment, s.t., edges in E \ C receive higher port numbers
than edges in C. Finally, define f (v) to be the edge ev1 if k ≥ 1, otherwise, define
f (v) to be an arbitrary edge in EG(v).

Now, let E be the sequence of edges traversed by the agent in the first phase
of the exploration of G starting from s. For every node v ∈ V and every i,
consider the i-th time that E visits v. The edge followed then by E is evi , which
coincides with the edge that C followed during the i-th visit at v. It follows that
E coincides with C and therefore E traverses all edges of C in both directions,
and only these edges. ��
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Lemma 3. Let G = (V, E) be an undirected graph with a starting node s ∈ V ,
a given port assignment, and a pointer assignment f for each node of G. Let E be
the sequence of edges traversed by the agent in the first i phases of exploration, for
some i ≥ 1. Let H = (X, C) be the subgraph of G induced by the edges traversed
in E (not necessarily in both directions). The ports and pointers of nodes in V \X
can be modified, s.t., during Phase i+1 of exploration the agent traverses all edges
of NG(H) in both directions, but it traverses no further edges in G.

Proof. Let NG(H) = (Y, D). Clearly, Y ⊇ X and D ⊇ C. Phase i + 1 of the
exploration will saturate all nodes that were visited during the first i phases. This
implies that all edges incident to nodes in X are traversed in both directions
during the second phase. Therefore all edges in D will be traversed in both
directions.

To ensure that no other edges will be traversed, we modify the port assignment
of nodes in Y \X as follows. For each v ∈ Y \X , all edges connecting v to nodes
in X receive smaller port numbers than all edges connecting v to nodes in V \X.
Furthermore, we set f (v) to be the edge with port number 1, for all v ∈ Y \X .

To prove the claim, assume for the sake of contradiction that during Phase
i + 1 the agent traverses some edges in E \D. Let e be the first such edge. The
edge e must have been traversed on the way out from some node v ∈ Y \X . But,
due to the port numbering scheme defined above, the cyclic distance between
the port number of e and the first pointer at node v is greater than the number
of edges that connect v to nodes in X , which implies that at least one of these
edges was traversed at least twice in the same direction (toward v) during Phase
i + 1. This leads to a contradiction, since an edge is never traversed twice in the
same direction during the same phase. ��

Theorem 2. For any graph G = (V, E) in Gm,D there exists a starting node s,
and a port and pointer assignment in G, s.t., the lock-in requires time at least
1
4 ·mD.

Proof. Let T be the BFS tree of G rooted in an arbitrary node u ∈ V . Let r ≥ D
2

be the height of T . Finally, let H be the subgraph of G induced by the nodes of
the lowermost r

2 levels of T , and let H1 = (X, C) be a connected component of
H that contains at least one node from the r-th level of T (Figure 1).

If H1 contains at least m
2 edges, then pick an arbitrary starting node s in H1

and set the ports and pointers, s.t., the first phase of the exploration starting
from s explores exactly G1 = H1. This is feasible due to Lemma 2. Furthermore,
arrange ports and pointers so that for any i ≥ 2, Gi = NG(Gi−1), where Gi

denotes the graph induced by the edges traversed during phase Pi of the explo-
ration. This is feasible by multiple applications of Lemma 3. In this case, the
exploration from s will require at least 2 · m

2 ·
r
2 ≥

1
4 ·mD edge traversals before

visiting all nodes.
Otherwise, the subgraph H2 induced on G by the edge set E \C must contain

at least m
2 edges. Pick a starting node s in H2 and set the ports and pointers,

s.t., G1 = H2 and for any i ≥ 2, Gi = NG(Gi−1). The exploration will again
require at least 1

4 ·mD edge traversals before visiting all nodes. ��
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Fig. 1. The partition of G into subgraphs that is described in the proof of Theorem 2.
Either subgraph H1 or subgraph H2 contains at least half of the edges of G.

2.2 Almost Linear Lock-In – Case P(f )A(�)

In this section we discuss the case where the player P chooses pointers first and
the adversary A responds with the worst-case assignment of ports.

Theorem 3. For any graph G = (V, E) in Gm,D and any starting point s there
exists a pointer assignment, s.t. for any port assignment the lock-in can be ob-
tained in time O(m ·min{logm, D}).

Proof. We show that the player can find an assignment of pointers, s.t. the
lock-in is obtained in Gi, for some i ≤ min{log m, D}.

Take an arbitrary BFS tree T in G rooted in s. For every node in T compute
a rank according to the following rules. Each leaf in T acquires rank 0. For each
internal node v (including the root s) we look at the rank of its children. If
the top rank r belongs to only one child the node v adopts r as its own rank.
Otherwise, i.e., when the top rank is shared by at least two children the node v
adopts the rank r + 1. One can prove that the rank ρ of the root s is the largest
and it does not exceed log m. It does not exceed D either, because we chose a
BFS tree. The rank of the root is known as the Strahler number, a numerical
measure of branching complexity of the tree T [10]. Note that the nodes with
the same rank form a collection of downward chains in T .

After the ranks are introduced to T , the pointer at each node in T is assigned
to the port leading towards a child with the largest rank. This is to ensure that
Gi contains all nodes in T with ranks ≤ ρ − i + 1. And indeed G1 contains all
nodes with rank ρ since as soon as the traversal process is initiated the agent
is forced to visit all nodes with the highest rank (and possibly some others).
Assume now inductively that all nodes with ranks ≤ ρ − i + 1 belong to Gi.
These include the nodes that are connected to downward chains with rank ρ− i
with nodes still not present in Gi. But note that due to Lemma 1 all edges
incident to nodes in Gi are present in Gi+1 which means that each downward
chain with rank ρ − i will be accessed and all of their nodes will be traversed



430 E. Bampas et al.

when Gi+1 is formed. This proves that Gρ contains all nodes from G and Gρ+1

contains all nodes and edges. Since ρ ≤ min{logm, D} and the number of edges
in each Gi is bounded by m, the lock-in time is O(m ·min{logm, D}). ��

Note finally, that if G is Hamiltonian the player P can arrange pointers so that
they form a Hamiltonian tour. This ensures that G2 contains all edges in G and
that the complexity of the lock-in problem in such graphs is O(m).

We now show that there exist graphs for which the lock-in upper bound is
asymptotically matched from below.

Theorem 4. For any m and D ≤ m, there exists a graph G = (V, E) in Gm,D

with a starting node s, s.t., for any pointer assignment there is a port assignment
for which the lock-in requires time Ω(m ·min{log m, D}).

Proof. Consider a graph formed of a complete graph K with Ω(m) edges and
O(
√

m) nodes connected by a path of length max{1, D− logm} with a complete
binary tree B of height min{logm, D}. This is to ensure that G2 contains all the
edges from K. Consider now the arrangement of pointers in each node of B. We
show that independently of the assignment of the pointer at an internal node v,
if i is the smallest integer such that v belongs to Gi, then one of its children is
not present in Gi.

And indeed, assume that Gi is the first graph in which v is visited by the
agent. There are three ports associated with v. One port leads to its parent and
two towards its children. If the player P decides to assign the pointer to the port
leading towards the parent of v after the agent arrives in v (forming a part of Gi)
it immediately returns back to the parent of v. Since each edge in Gi is visited
exactly once in each direction, see Lemma 1, the next visit at v must occur in
Gi+1. Thus none of its children can be present in Gi.

Now assume that the pointer is assigned to a port k leading to one of the
children c1 of v. Since the port numbers available at v are 1,2 and 3, the adversary
A assigns number (k mod 3) + 1 (that follows k in the cyclic order) to the port
leading to the parent of v. This is to ensure that after the agent comes back
from c1 it immediately returns to the parent of v. Since each edge in Gi is
visited exactly once in each direction, see Lemma 1, the next visit at v must
occur in Gi+1. This proves that the other child of v does not belong to Gi.
Thus there is a path from the root of B to some leaf on which neither of two
consecutive nodes belong to the same Gi.

Finally, since the height of B is Ω(min{log m, D}) and each Gi, for i ≤ 2,
contains at least m edges the lock-in requires time Ω(m ·min{log m, D}). ��

2.3 The Two Remaining Cases

In the last part of the paper we discuss two cases with the worst-case complexity
Ω(m · D). We show, however, that here, in contrast to the border case A-all,
there exist non-trivial classes of graphs with a lock-in time of O(m).
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Case A(f )P(�). In the case where the player responds by a port assignment
to the adversary’s initial pointer assignment, we demonstrate a family of graphs
in which locking-in requires time Ω(mD), matching the general worst-case upper
bound from Theorem 1. We also demonstrate a non-trivial family of graphs in
which for any choice of starting point the lock-in is achieved in time O(m).

Theorem 5. For any m and D ≤ m, there is a graph G = (V, E) in Gm,D

with starting node s, and a pointer assignment, s.t. for any port assignment the
lock-in requires time Ω(mD).

Proof. Let G be a lollipop graph obtained by connecting a complete graph Ka

to a path PD with D nodes via a bridging edge. The diameter of G is D + 1
and it is always possible to pick a = Θ(

√
m), s.t., the number of edges of G is

between m and 4m. Thus G ∈ Gm,D. Let s be a node of Ka different from the
node connecting Ka to PD, and let the pointers within Ka point towards s (the
pointer of s can initially be on an arbitrary port). Finally, set the pointers at
each node of PD towards Ka.

It is clear that, no matter which port assignment is chosen by the player,
during the first phase of the exploration initiated in s the agent traverses the
edges connecting s to its neighbors in the clique in both directions, thus visiting
all nodes in Ka. During the second phase the agent will traverse all Θ(m) edges
of Ka in both directions, and it will return to Ka by the first pointer of PD.
During subsequent phases of exploration the agent will progress along the path
at a rate of one edge per phase, until the last node of the path is reached.
Therefore, D phases are required, each of which retraces at least the Θ(m) edges
in Ka; the lower bound of Ω(m ·D) for the lock-in time follows. ��

Theorem 6. For any m and D ≤ m, there is a graph G = (V, E) in Gm,D,
s.t., for any starting node s and for any pointer assignment, there exists a port
assignment for which the lock-in is achieved in time ≤ 24m.

Proof. Let G = (V, E) be a chain of length D of complete bipartite graphs K2,2.
The number of edges in G is equal to 4D ≤ 4m. In the case where 4D < m,
append to G a star consisting of m − 4D + 2 edges, as illustrated in Figure 2.
In both cases, the diameter of G is either D or D + 2 and the number of edges
is between m and 4m, thus G ∈ Gm,D. Let s ∈ V be the starting node in G,
and f be the pointer assignment supplied by the adversary A. Denote the set of

D

V1
V0

u

s

s′

m − 4D 3
2 1

2

3 4

1

2 3

41

Fig. 2. The construction described in the proof of Theorem 6
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nodes of the chain of complete bipartite graphs by X , and the central node of
the appended star by u (if it exists).

For the time being, assume also that s ∈ X and s′ is the node on the opposite
to s side in the chain (i.e., the node that has exactly the same neighbors as s).
Furthermore, let Vi denote the subset of X that contains nodes at distance i from
s (i ≥ 0), with the exception that s′ belongs not to V2 but to V0. We adopt a
port assignment for the nodes of G as follows (refer to Figure 2 for illustration):

– For the special case of s and s′, arrange the port numbers arbitrarily.
– For the node u, assign port 1 to f (u). If f (u) connects u to the chain, assign

port number deg(u) to the other edge that connects u to the chain, and the
rest of the ports arbitrarily. Otherwise, assign port numbers deg(u)− 1 and
deg(u) to the edges connecting u to the chain, and set the rest of the port
numbers arbitrarily.

– For a node v ∈ X at the endpoint of the chain, if v is not connected to u
then set ports arbitrarily. If v is connected to u, then assign port 1 to f (v)
and assign the smallest possible port to the edge connecting v to u (if it is
not f(v)).

– For any other v ∈ X , port 1 is always assigned to f (v). Let i ≥ 1 be the
distance of v from s, thus v ∈ Vi. If f (v) connects v to Vi−1, assign ports
2 and 3 to the edges connecting v to Vi+1, and port 4 to the remaining
edge that connects v to Vi−1. Otherwise, assign port 2 to the remaining edge
connecting v to Vi+1 and ports 3 and 4 to the edges connecting v to Vi−1.

We claim that during the second phase of exploration the agent traverses all
edges in both directions. In order to prove this claim, we first observe that
during the first phase of exploration the agent must visit all the nodes in V1.
Therefore, during the second phase all the edges connecting V0 to V1 are traversed
in both directions. Now, for some i ≥ 1, assume that during the second phase of
exploration the agent traverses all edges connecting Vi to Vi−1 in both directions.
According to the port assignment scheme defined above, for any v ∈ Vi there is
an incident edge e with port number 4 that connects it to some node in Vi−1. By
assumption, e is traversed in both directions during the second phase. But before
the tour of the second phase can use edge e on the way out of v, it is forced
to use all other edges incident to v also on the way out of v, and in particular
the edges that connect v to Vi+1. Since this property holds for all v ∈ Vi, and
since the edges connecting Vi to Vi+1 constitute a cut that disconnects s from
Vi+1, it follows that these edges must be traversed in both directions during the
second phase. It follows by induction that all edges of the chain are traversed in
both directions during the second phase. Furthermore, consider any node v ∈ X
that is connected to u. The edge with the highest port number at v is traversed
in both directions, therefore by the same argument all edges incident to v are
traversed in both directions. Applying the same argument one more time for the
node u concludes the proof of the claim.

Now, if s /∈ X , we set the ports of nodes in X analogously, pretending that
s is one of the endpoints of the chain that are connected to u. After at most
two phases of exploration the agent traverses all edges of the star centered at u,
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and thus it visits the two endpoints of the chain connected to u. Then, by an
analogous argument, during the third phase the agent traverses all edges in G
in both directions.

We have proved that for any starting point and any pointer assignment, after
at most three phases of exploration the agent traverses all edges in G in both
directions. Since during each phase at most 4m edges are traversed in each
direction, the upper bound of 24m for the lock-in time follows. ��

Case P(�)A(f ). In the case where the adversary A responds by a pointer
assignment to player P ’s initial port assignment, we first prove existence of a
family of graphs in which locking-in requires time Ω(mD), matching the general
worst-case upper bound from Theorem 1.

Theorem 7. For any m and D ≤ m, there is a graph G = (V, E) in Gm,D

with a starting node s ∈ V , s.t. for any port assignment there exists a pointer
assignment under which the lock-in time in G is Ω(mD).

Proof. Follows immediately from Theorem 5. ��

We show, however, that there is also a non-trivial class of graphs with diameter
O(
√

n) in which the lock-in time is O(m) in this case.

Theorem 8. For any D ≤ √n, there is a graph G = (V, E) in Gm,D, s.t., for
any starting node s, there is a port assignment, s.t., for any possible pointer
assignment the lock-in time is O(m).

Proof. For any a, let Ga = (V, E) be the graph consisting of a chain of length a
of complete bipartite graphs Ka,a. We will show that for any starting node s,
there is a port assignment, s.t., for any possible pointer assignment the lock-in
time in Ga is bounded by 8m, where m = |E|.

Let s ∈ V be a starting node with eccentricity ε. Let V0 be the subset of nodes
on the same level of the chain as s, and let Vi, 1 ≤ i ≤ ε, be the subset of V \V0

that contains all nodes at distance i from s. Moreover, let Ei denote the set of
edges connecting Vi to Vi+1.

Consider an arbitrary node v ∈ Vi, for some i. The degree of this node is 2a.
Exactly a edges in Ei connect v to nodes in the set Vi+1; call these the outward
edges of v. Moreover, exactly a of these edges connect v to nodes in the set Vi−1;
call these the inward edges of v. We define a port assignment as follows. For
any node v, its outward edges receive the odd port numbers 1, 3, . . . , 2a− 1, and
its inward edges receive the even port numbers 2, 4, . . . , 2a. The ports of nodes
in V0 are assigned arbitrarily.

Regardless of the adversary’s initial pointer assignment f , during the first
phase of the exploration the agent visits at least all neighbors of s, i.e., at least
all nodes in V1. Therefore, during the second phase of exploration all nodes in V1

become saturated which implies that all edges in E0 and in E1 are traversed in
both directions.

For the remaining part of the proof we consider only nodes and edges on the
side of V0 that contains Vε. The proof for the other side is analogous. We claim
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that during the second phase of exploration the agent will visit at least one node
in Vε. For the sake of the proof, first observe that for any node and during any
phase of exploration, if x of the node’s inward edges are traversed on the way
out of v then, due to the alternating port assignment we adopted, at least x− 1
outward edges will be traversed also on the way out of v. Now, for any i ≥ 1 let yi

be the number of edges in Ei that are traversed in the direction (Vi → Vi+1)
during the second phase of exploration. Since Ei separates s from the nodes
in Vi+1, yi edges in Ei must be also traversed in the direction (Vi+1 → Vi) during
the second phase. By the previous observation, at least yi− a edges of Ei+1 will
be traversed in the direction (Vi+1 → Vi+2). Therefore, yi+1 ≥ yi − a. We have
already established that y1 = a2. This recurrence boils down to yi ≥ a2−(i−1)a,
which implies that for i ≤ ε ≤ a we have yi ≥ a. Thus, during the second phase
of exploration the agent visits at least one node at the end-point of the chain.

It follows that every node in the graph is at distance at most 1 from some
node visited during the second phase of exploration. Therefore, during the third
phase the agent visits all nodes in the graph, and in the fourth phase it traverses
all edges of the graph in both directions, achieving the Euler tour lock-in. Since
during each phase the agent traverses at most m edges, each at most once in
each direction, the upper bound of 8m for the lock-in time follows. ��

3 Further Work and Open Problems

Herein we have shown that it is advantageous to be in charge of pointer assign-
ment in the rotor-router model. In all cases where the player P is responsible
for pointer assignment the complexity of the lock-in problem is either linear or
close to linear. In contrast, in all remaining cases where the adversary A con-
trols assignment of pointers the worst-case complexity of the lock-in problem is
always Ω(m ·D), i.e., the worst possible in view of Theorem 1.

In view of results from Subsection 2.3 a detailed study on the lock-in problem
in more specific classes of graphs such as 2D-grids, planar or random graphs
would be highly appreciated. This could be accompanied by a comparative study
with the random walk procedure. Indeed, the lock-in time of a Propp machine
is, in all the studied scenarios, equal up to constant factors to the time required
to visit all the edges of the graph (its edge cover time). For example, in the A-all
scenario, the edge cover time using the Propp machine is precisely Θ(mD). This
compares interestingly to the expected edge cover time of a graph when using
random walk, which can be bounded as O(mD log m). Whereas our bound for
the Propp machine is tight for any graph, the bound for random walks is not;
indeed, for a 2D-grid on k × k nodes we have a worst-case edge cover time of
Θ(k3) using the Propp machine, and an expected edge cover time of Θ(k2 log2 k)
using random walk [1].

One could also imagine a game in which a player and its adversary choose
assignments of ports and pointers in consecutive nodes visited by the agent in
alternative turns. What is the complexity of such a game?
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Abstract. The general omissions failure model, in which a faulty process may
omit both to send and to receive messages is inherently more complex than the
more popular sending omissions model. This fact is exemplified in tasks involv-
ing simultaneous decisions, such as the simultaneous consensus (SC) problem.
While efficient polynomial protocols for SC that are optimal in all runs are known
for the sending omissions model, they do not exists for general omissions. It
has been shown that such a protocol must perform at least NP-hard computa-
tions (in the number of processes n) between rounds. In fact, the best previously
known SC protocol that is optimal in all runs in this model performs PSPACE
(in n) computations between rounds. The current paper closes this twenty-year
old gap by presenting such an optimal SC protocol that performs PNP computa-
tions (polynomial-time computations using an oracle for NP; in fact, a constant
number of accesses to the oracle are needed per round.) The result is based on
a new characterization of common knowledge in the general omissions failure
model.

Keywords: Simultaneous Consensus, synchronous systems, general omissions
failure model, simultaneous action, common knowledge, NP Oracles.

1 Introduction

Fault-tolerant systems often require a means by which independent processes or pro-
cessors can arrive at an exact mutual agreement of some kind. As a result, reaching
consensus is one of the most fundamental problems in fault-tolerant distributed com-
puting, dating back to the seminal work of Pease, Shostak, and Lamport [21]. In the
early consensus algorithms, decisions were reached in the same round of communica-
tion by all correct processes. It was soon discovered, however, that allowing decisions
to be made in different rounds at different sites (“eventual agreement”) gives rise to
simpler protocols in which the processes can often decide much faster than they would
if we insist that decisions be simultaneous [5]. In many cases, eventual agreement suf-
fices: In recording the outcomes of transactions, for example. In some instances, how-
ever, a simultaneous decision or action may be beneficial or even necessary: E.g., when
one distributed algorithm ends and another one begins, and the two may interfere with
each other if executed concurrently. Similarly, many synchronous algorithms are de-
signed assuming that all sites start participating in the same round of communication.
Finally, simultaneity may be motivated by the fact that a distributed system interacts
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with the outside world, and these interactions may need to be simultaneously consis-
tent. A non-simultaneous announcement to financial (stock) markets may enable unfair
arbitrage trading, for example. The simultaneous version of consensus is defined as
follows (cf. [17]):

Simultaneous Consensus (SC). Given is a set P = {1, . . . ,n} of processes, each starting
out with an initial value vi ∈ {0,1}. Desired is a protocol that will satisfy the following
properties in each of its runs.

– Decision. Every nonfaulty process i decides on some value di.
– Validity. Every value di decided on is one of the initial values.
– Agreement. All nonfaulty processes decide on the same value.
– Simultaneous decision. All nonfaulty processes decide at the same time.

Simultaneous Consensus has been studied in a variety of failure models: crash [6],
omission [17,20,19,13,14], and malicious failures [15,12]. One observation from these
analyses (emphasized already in [6]) is that simultaneous consensus admits solutions
satisfying a very strong notion of optimality: protocols that decide in the smallest num-
ber of rounds possible in each and every instance. More formally, let the operating
environment σ of a run consist of the vector of initial values, the identity of the faulty
processes, and the pattern of their faulty behavior. For a deterministic protocol P, we
denote by P(σ) the unique run resulting from executing P with the operating environ-
ment σ. With respect to a given failure model, we define

Definition 1. An SC protocol P is optimal in all runs (or optimum) in a given failure
model if, for every SC protocol P′ and every operating environment σ, the decision (by
the last correct process to decide) in P(σ) takes place at least as early as in P′(σ).

Interestingly, as shown in [17], no protocol can be optimal in all runs for the Even-
tual Consensus problem—in which Decision, Validity and Agreement are required, but
Simultaneity need not hold.

Moreover, there is a significant gap in the computational requirements for optimality
in all runs between two closely related failure models: sending omissions and general
omissions (see [17]). Roughly speaking, under sending omissions, a faulty process may
fail to send an arbitrary subset of its prescribed messages in any given round. Under
general omissions, a faulty process may fail both to receive and to send arbitrary subsets
of its incoming and outgoing messages in every round.

There are very efficient polynomial-time SC protocols that are optimal in all runs
for the crash and the sending omissions failure models [6,13,16,17]. In the case of
general omissions, however, the most efficient known SC protocol that is optimal in
all runs requires the processes to perform PSPACE computations between rounds [17].
Moreover, we have

Proposition 1 (Moses and Tuttle 88). If P �=NP then there exists no polynomial-time
SC protocol that is optimal in all runs for general omissions.

Intuitively, the jump in the computational difficulty between sending and general omis-
sions comes from the uncertainty regarding who to blame for a missing message in the
case of general omissions. In the sending omissions model, a missing message indicates
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that the intended sender is faulty. With general omissions, it implies that (at least) one of
the sender and receiver is faulty, without necessarily determining which of them is faulty.

For general omissions, as well as for more malicious failure models, failure detection
and fault tolerance are facilitated by the construction of a conflict graph [1,7,17,18]. In-
tuitively, this is a graph whose nodes are process names, and where an edge between
two process names implies that at least one of them must be faulty. (In our case, this
edge will correspond to a missed message between the two processes.) The faulty pro-
cesses must at all times form a vertex cover of the conflict graph. Using this observation,
the proof of Proposition 1 in [17] reduces a variant of vertex cover to the problem of
computing whether or not to “decide” in an optimum SC protocol for general omis-
sions. Roughly speaking, the processes must simultaneously decide at a given time iff a
particular vertex cover of the conflict graph does not exist. As a result, the computation
performed by a process in an optimum protocol can be used to implement an oracle for
NP. The gap between the NP-hardness lower bound and the PSPACE upper bound for
general omissions has been open for over twenty years.

The analysis of simultaneous consensus is facilitated by knowledge-based reason-
ing. Dwork and Moses proved that common knowledge about the existence of particu-
lar initial values is a necessary and sufficient condition for deciding in an SC protocol
[6]. The optimum protocols that have been designed for crash and sending omissions
are based on a computationally efficient characterization of such common knowledge.
These techniques for computing common knowledge in the crash and sending omissions
model did not extend to general omissions. In this paper we present a new construction
that characterizes common knowledge for general omissions using PNP computations
(polynomial-time computations with access to an NP oracle). The main contributions
of this paper are:

– A new characterization of common knowledge in the general omissions modelis
presented;

– An SC protocol is derived that is optimal in all runs for general omissions, in which
processes perform computations in PNP between rounds. This improves on the pre-
vious PSPACE solution, and closes a complexity gap that has been open for more
than twenty years;

– The characterization can be used to optimally solve the more general continuous
consensus at the same complexity cost, improving results of [15] for this model; and

– While all of the protocols that we are concerned with here are intractable, the anal-
ysis of optimum behavior and reachability in general omissions is expected to lead
to further insight into the fundamental structure of fault tolerant computation, and
the differences between failure models. Moreover, we expect our techniques and
construction to be applicable to the authenticated Byzantine model, and perhaps
extensible to the (pure) Byzantine model.

This paper is organized as follows: In the next section we define the model.
Section 3 briefly introduces the bit of knowledge theory required for relating SC and
common knowledge for our analysis. In Section 4 we motivate and present a new con-
struction characterizing common knowledge in the general omissions model. Finally,
Section 5 discusses further implications of this work, possible future extensions, and
some conclusions.



Optimum SC for General Omissions Is Equivalent to an NP Oracle 439

2 Model and Preliminary Definitions

Following [17], this paper analyzes protocols in the standard round-synchronous model,
with a set P = {1,2, . . . ,n} of n ≥ 2 possibly unreliable processes, and a bound on
the number of failures. The processes share a discrete global clock that starts out at
time 0 and advances by increments of one. Communication in the system proceeds in a
sequence of rounds, with round k +1 taking place between time k and time k +1. Each
pair of processes is connected by a two-way communication channel. Depending on the
failure pattern, discussed below, a channel is either blocked or not blocked in a given
round. If the channel is blocked, messages sent over it are lost. In a round in which it is
not blocked, messages sent over the channel are delivered, unaltered.

Benign Failure Patterns. Our focus in this paper is on general omission failures, which
are instances of benign failures. Intuitively, a benign failure pattern specifies which
channels are blocked in any given round. Define the set V = P×N of process-time
nodes (or nodes, for short). A node (i,k) ∈ V serves to refer to process i at time k. We
denote by V(k) the set P×{k} ⊂ V of all time k nodes; moreover, for k ≤ � ≤ ∞, we
define V[k, �] = {(i,h)| i ∈ P & k ≤ h≤ �}.1

A failure pattern (for benign failures) is a function ϕ : V→ 2P. The set ϕ(i,k) lists
the processes to which messages sent by i in round k + 1 will not be delivered. In other
words, a message sent by i to j in round k+1 will be delivered iff j /∈ ϕ(i,k).2 In this pa-
per we assume for ease of exposition that a process (implicitly) sends a message to itself
in every round, and its “channel” to itself is never blocked. Thus, formally, i /∈ ϕ(i,k)
for all ϕ, i ∈ P and k ≥ 0.We identify a failure pattern ϕ with a communication graph3

Gϕ = (V,Eϕ), where Eϕ = {〈(i,k),( j,k + 1)〉 : j /∈ ϕ(i,k)}. Notice that ϕ uniquely
determines Gϕ and vice-versa. For a node v = (i,k) ∈ V, we denote by Gϕ(i,k)—or
Gϕ(v)—the subgraph of Gϕ generated by v and all nodes w ∈ V such that there is a
directed path from w to v in Gϕ. This subgraph, illustrated in Figure 1, captures the
potential “causal past” of v under ϕ: all nodes by which v can be affected via communi-
cation, either directly or indirectly. Given a set of nodes S⊆V, we denote by Gϕ(S) the
subgraph of Gϕ obtained by taking the union of the graphs Gϕ(v), taken over all v ∈ S.
By definition, Gϕ( /0) is the empty graph, with no nodes and no edges.

Runs and Protocols. We think of each process i∈P as receiving a message from the en-
vironment at time 0, consisting of its initial value vi ∈ {0,1}. The vector (v1, . . . ,vn) ∈
{0,1}n of initial values is called the input vector and is denoted by I. A run is de-
termined by a tuple r = (Faultsr,ϕr, Ir,λr,µr), where Faultsr ⊆ P is the set of faulty
processes, ϕr is a failure pattern, Ir is an input vector, λr assigns a local state to every

1 There are no nodes (i,h) with h < 0. We will find it convenient to refer to the set V(−1) = /0.
2 Somewhat in the spirit of [3], we treat benign failure patterns as focusing on message loss or

blocked channels, without implying who is to blame for such failures. For problems such as
SC, which are specified in terms of the behavior of the correct processes, however, the set of
faulty processes in a given run must be well-defined. Our definition of a run below will indeed
have a separate component Faultsr defining the set of faulty processes in the run.

3 Communication graphs were first used, informally, in the analysis of consensus by Merritt
[11]. They were formalized in [17,8]. Our modeling is taken from the latter.
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Fig. 1. Subgraph Gϕ(i,k) of the communication graph Gϕ

node of V, and µr assigns a message (or⊥, standing for “no message”) to every edge of
Gϕr (i.e., to every channel not blocked by ϕr). Finally, a (joint) protocol is a sequence
P = (P1, . . . ,Pn), where every Pi determines process i’s outgoing messages and local
state at a node of V as a deterministic function of its previous local state and the mes-
sages on its incoming channels. We consider r to be a run of P if λr and µr are consistent
with P, Ir and ϕr.

t-bounded general omission faults. In the general omissions model, the only source
of failures are process failures. Faultsr defines the set of faulty processes in the run r.
Intuitively, a faulty process may fail to send or to receive arbitrary sets of messages.
More formally, this means that if i ∈ Faultsr then an arbitrary subset of both incom-
ing and outgoing channels to and from nodes (i,k) can be blocked. It is convenient to
define the (potential) conflict graph of a failure pattern ϕ to be an undirected graph
ConfG(ϕ) = (P,EC) whose nodes are the processes, and {i, j} ∈ EC iff there is some
time h for which at least one of j ∈ ϕ(i,h) or i ∈ ϕ( j,h) holds. We say that r is a run
in the general omissions failure model if the processes in Faultsr form a Vertex Cover
of ConfG(ϕr). Let Φgo(t) denote the set of patterns ϕ for which ConfG(ϕ) has a vertex
cover of size ≤ t.

We represent a protocol P in the t-bounded general omissions model by the set
R (P,t) of all runs of P in which there are at most t faulty processes. Notice that R (P,t)
contains exactly one run for every pair (ϕ, I) where ϕ ∈ Φgo(t) and I ∈ {0,1}n is an
input vector. We remark that having Faultsr be an explicit component of a run r allows
a specification such as SC, requiring nonfaulty processes to behave in a prescribed way,
to be well-defined. A failure pattern ϕ determines the blocked channels in a run, and
so it does not uniquely determine the faulty processes in the case of general omissions.
Sometimes, however, ϕ forces a process to be faulty. With respect to a given bound t,
we will say that ϕ condemns i if i belongs to every vertex cover of size t of ConfG(ϕ).
This may happen, for example, if i conflicts with more than t other processes.

3 Simultaneous Consensus and Common Knowledge

Knowledge theory, and specifically the notion of common knowledge, are central to the
study of simultaneously coordinated actions. This connection has been developed and
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described in [10,6,8,17,19,20,14]. For a more complete exposition of knowledge theory
see [8]. Knowledge is analyzed within the context of a system R = R (P,t). A pair (r,k)
where r is a run and k is a time is called a point. We say that i cannot distinguish (r,k)
from (r′,k) if i has the same local state at both points, i.e., if λr(i,k) = λr′(i,k). For
b ∈ {0,1}, we denote by ‘∃b’ the basic fact that “at least one of the initial values is b”.
We consider knowledge formulas to be true or false at a given point (r,k) in the context
of a system R . In the standard definition [8], process i knows a fact such as ∃b at (r,k)
if ∃b holds at all points that i cannot distinguish from (r,k).

For every property X of runs or points we denote by C(X) the fact that X is common
knowledge, which intuitively means that everybody knows X , everybody knows that
everybody knows X , and so on ad infinitum. We define common knowledge formally
in the following way, which can be shown to capture this intuition in a precise sense
(see [17]). We define a reachability relation∼ among points of R to be the least relation
satisfying that (r,k)∼ (r′,k) if either:

1. λr(i,k) = λr′(i,k) holds for some process i /∈ (Faultsr ∪Faultsr′), or
2. for some r′′ ∈ R , both (r,k)∼ (r′′,k) and (r′′,k)∼ (r′,k).

In other words, define the similarity graph over R to be an undirected graph whose
nodes are the points of R , and where two points are connected by an edge if there
is a process, nonfaulty at both points, that cannot distinguish between them. Then
(r,k) ∼ (r′,k) if both points are in the same connected component of the similarity
graph over R . Notice that ∼ is an equivalence relation.

We write (R ,r,k) |= C(X) to state that X is common knowledge to the correct pro-
cesses at time k in r. We formally define:

(R ,r,k) |= C(X) if X is true at (r′,k) for every r′ ∈ R such that (r,k)∼ (r′,k).

The Validity property guarantees that processes cannot decide on a value b unless
∃b holds. An essential observation of [6] is that deciding in simultaneous consensus
requires common knowledge of ∃b:

Theorem 1 ([6,17]). Let P be an SC protocol for general omissions, and let r ∈ R =
R (P,t). If the nonfaulty processes decide on the value b at the end of round k in r, then
(R ,r,k) |= C(∃b).

Analyzing Common Knowledge via Failure Patterns

While Theorem 1 shows that common knowledge is a necessary condition for deciding
in simultaneous consensus, common knowledge has also proved to be a sufficient con-
dition for such decision. This suggests an approach to solving SC by deciding as soon
as some initial value becomes common knowledge. Interestingly, common knowledge
is reached in the fastest possible way in all runs of full information protocols [6,17]. In
fact, it turns out that the round in which initial values become common knowledge in a
full-information protocol depends only on the failure pattern. To simplify the technical
development we now define a notion of reachability at the level of failure patterns.

Definition 2 (Pattern Similarity). Fix t and �≥ 0. We define ‘≈�’ to be the least binary
relation over Φgo(t) satisfying that ϕ≈� ϕ′ if:
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1. Gϕ(i, �) = Gϕ′(i, �) and neither ϕ nor ϕ′ condemns i, or
2. for some ϕ′′ ∈Φgo(t), both ϕ≈� ϕ′′ and ϕ′′ ≈� ϕ′.

As in the case of ∼, the ≈� relation is an equivalence relation. We can use ≈� to de-
termine that certain facts cannot be common knowledge, because, in a precise sense,
reachability at the level of failure patterns refines reachability among points:

Lemma 1. Let r,r′ ∈R (P,t) be runs with the same input vector Ir = Ir′ . Then ϕr ≈� ϕr′

implies (r, �) ∼ (r′, �). Moreover, if P is a full-information protocol then ϕr ≈� ϕr′ is
equivalent to (r, �)∼ (r′, �).

4 The CK Construction

We now turn to characterizing the ≈� relation among failure patterns in Φgo(t). Given
the definition of common knowledge, and Lemma 1, this will determine the earliest
time at which common knowledge of facts about the input and failure pattern is at-
tained, for each failure pattern. Thus, by Theorem 1, this will allow us to obtain tight
bounds on when a decision in simultaneous consensus can be performed, for every in-
dividual failure pattern. Indeed, since common knowledge is related to many additional
simultaneous tasks, such as the firing squad problem and continuous consensus, the
characterization will yield similar bounds for these tasks as well.

Definition 3 (Shut Out and Silenced Nodes). The node v = (i,k) is said to be shut out
in ϕ if ϕ(i,k) = P\{i}, so that i’s adjacent channels are all blocked in round k +1. We
say that the node v = (i,k) is silenced in ϕ if (i,h) is shut out in ϕ for all h≥ k.

We say that ϕ and ψ agree on a set W ⊆ V if ϕ(w) = ψ(w) holds for all w ∈W . For
a pattern ϕ and a node v ∈ V we define (v)ϕ to be the pattern that shuts out the node v
and that agrees with ϕ on all other nodes. Recall that a node is shut out if all of its
outgoing channels, in the round immediately following the node, are blocked. Similarly,
we denote by 〈〈v〉〉ϕ the failure pattern in which v is silenced, and agrees with ϕ on all
remaining nodes.

Intuition and motivation for the construction. Roughly speaking, if ϕ ≈�
〈〈v〉〉ϕ, so that

the node v can be silenced at a reachable pattern, then information available only at v
in ϕ cannot be common knowledge, since 〈〈v〉〉ϕ≈�

〈〈v〉〉ψ, where in 〈〈v〉〉ψ this information
is not true. Examples of such local information are initial values, if v is a time 0 node, or
the set of blocked channels leading into v. The first construction characterizing common
knowledge was presented in [17] for the sending omissions model. It is based on an
analysis showing, essentially, that if k processes are discovered to be faulty by time �
in ϕ, then it is possible to silence every time h nodes in the range �− (t− k) ≤ h ≤ �,
“unblock” all incoming channels to these nodes, and then revive the nodes. (Reviving
a node v in this case means moving from 〈〈v〉〉ψ to the pattern ψ in which none of v’s
outgoing channels is blocked.) In fact, the same can also be done to the time �−(t−k)−
1 nodes belonging to processes that the nonfaulty processes in ϕ know are faulty. If ϕ′
is the result of performing such a silencing-then-reviving step on ϕ, then the number of
faulty processes in ϕ′ is no larger than in ϕ. If it is strictly smaller, then we can perform
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another such step, this time with respect to ϕ′. Clearly, after at most k steps, the number
of failures cannot be further reduced, and performing such a step will yield ϕ′ = ϕ. The
resulting pattern is a fixed point of this process. All nodes that can be silenced in this
process cannot contain information that is common knowledge at time �. Interestingly, it
was shown that all nodes that remain and cannot be silenced in this way at the fixed point
pattern, appears in all ≈�-reachable patterns. Consequently, local information available
at these nodes can become common knowledge.

Extending to general omissions. Following the work of [6] for the crash failure model,
the construction of [17] made essential use of the fact that a missing message implicates
the sender as being faulty. This is no longer the case in the general omissions model. As
a result, the set of time �− (t− k)− 1 nodes that should be silenced-then-revived can-
not be uniquely determined. The new construction, which handles general omissions, is
inspired by a recent improvement of the construction of [17] that appeared in [14]. The
latter construction was still designed for a variant of sending omissions. It required ma-
jor modifications to apply correctly to general omissions. The main technical difference
is that the construction is not based on what the set of nonfaulty processes know. Rather,
there is a careful definition of maskable nodes—essentially the silenceable nodes dis-
cussed above. While failures are not uniquely determined by the missing messages, a
lower bound on their number is obtainable based on the pattern’s conflict graph. In a
precise sense, this now depends not on the view of the elusive set of nonfaulty pro-
cesses, but rather on the view available at the nodes not yet shown to be maskable. We
proceed as follows.

Definition 4 (Maskable Nodes). Let ψ ∈Φgo(t) and let 0≤ k < �. The set of maskable
nodes in ψ is:

Mask(ψ) = V(�) U {v = (i,k) : (v)ψ ∈Φgo(t + k− �+ 1)}.

In other words, a node v = (i,k) is maskable in ψ w.r.t. time � if shutting out v creates
a pattern whose conflict graph has a vertex cover of size t + k− �+ 1. The definition of
maskable nodes is of interest because, for every node v maskable in ϕ, the pattern 〈〈v〉〉ϕ
obtained by silencing v in ϕ is reachable from ϕ:

Lemma 2. If v ∈Mask(ϕ) then ϕ≈�
〈〈v〉〉ϕ.

Another useful property of maskable nodes is

Lemma 3. If (i,k) ∈Mask(ϕ) then V[k + 1, �]⊆Mask(ϕ).

Lemma 3 implies that the transition from maskable to unmaskable nodes is abrupt: In
a given pattern, there is always one time instant after which all nodes are maskable. All
nodes at earlier times are not maskable. The following definition captures this transition
point:

kϕ = min{h≥−1 : V (h + 1)⊆Mask(ϕ)}.
We denote Mask(ϕ,h) = Mask(ϕ) ∩ V(h), the set of maskable time h nodes. By
Lemma 3 we have that if h > kϕ then Mask(ϕ,h) = V(h), while Mask(ϕ,h) = /0 for
h < kϕ. We are interested in the view of the unmaskable time kϕ nodes. We define this
set of nodes by:
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Definition 5. Let ψ ∈Φgo(t), and �≥ 0. Then U[ψ] = (V(kψ)\Mask(ψ,kψ)).

Observe that if V[0, �]⊆ Mask(ψ) then kψ = −1, and since V(−1) = /0 we obtain that
U[ψ] = /0. If kψ �=−1 then Mask(ψ,kψ) �= V(kψ) and thus U[ψ] = V(kψ)\Mask(ψ,kψ)
�= /0.

We will characterize common knowledge in the general omissions model using a
construction that makes use of the sets U[ψ] for a sequence of patterns ψ. By Lemma 2
we have that nodes in the complement Mask(ψ,kψ) of U[ψ] can be silenced. Roughly
speaking, once they are silenced, information that they have about blocked channels can
be discarded, and the channels can be unblocked. For the resulting pattern ψ′ we will
have that Mask(ψ)⊆Mask(ψ′) and possibly U[ψ′] �= U[ψ]. Intuitively, the construction
will consist of repeating the process of computing maskable nodes, eliminating incrim-
inating evidence that only they hold, and obtaining a new, improved, pattern. The latter
step is based on the following operation:

Definition 6 (ϕmodA ). Let A⊆ V. Then ‘ϕmodA’ is the pattern ψ defined, for all
(i,h) ∈V, by

ψ(i,h) = { j ∈ ϕ(i,h) : ( j,h + 1) appears in Gϕ(A)}.

Thus, a channel i→ j is blocked in a given round h + 1 according to ψ = (ϕmodA)
if and only if Gϕ(A) records this channel as being blocked in that round. Channels
about which Gϕ(A) contains no information, as well as ones that the graph records as
unblocked, are not blocked in ϕmodA. We note that in the extreme case of A = /0,
we have that ψmod /0 =©..� , where ©..� is the failure-free pattern. Note that the pattern
ϕmodA is a function of the graph Gϕ(A). In the sequel, the mod operation will be
applied only to sets A ⊆ V(k) for some k, so that all nodes of A come from the same
time slice in V.

The CK Construction, depicted in Figure 2, is a fixed-point construction in the spirit
of the Moses and Tuttle construction in [17]. It accepts as input the values of n and t,
and a point (ϕ, �), and outputs a communication graph. The construction consists of a
set of iterations, each creating a new pattern ϕ̂, with potentially fewer blocked channels,
attempting to increase the set of maskable nodes. Once an iteration no longer reduces
the set of blocked channels, the construction ends, and returns Gϕ(U[ϕ̂]), for the final
pattern ϕ̂ obtained when the construction ends.

In the full paper we show that the CK construction is guaranteed to terminate:

The CK Construction(n,t,ϕ, �):

(01) ϕ̂← ϕ modV(�);

(02) while ϕ̂ �= ϕ mod U[ϕ̂]
(03) do ϕ̂← ϕ mod U[ϕ̂]

(04) return Gϕ(U[ϕ̂])

Fig. 2. Computing the subgraph characterizing common knowledge
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Lemma 4. If ϕ ∈ Φgo(t) and t < n− 1 then the CK construction on input (n, t,ϕ, �)
terminates.

We denote by Ĝck[ϕ, �] the communication graph returned by the construction on input
(n,t,ϕ, �). A careful analysis of the construction, whose details are beyond the scope
of this abstract, we are able to show that the construction completely characterizes ≈�

reachability:

Theorem 2. Let ϕ,ψ ∈Φgo(t) and �≥ 0. Then ϕ≈� ψ iff Ĝck[ϕ, �] = Ĝck[ψ, �].

Based on Theorem 2 we will be able to show that the results of the CK construction
completely characterize decision in optimum SC protocols. Fix t, and for every ϕ ∈
Φgo(t) denote by dec-time(ϕ) the first time � for which Ĝck[ϕ, �] is nonempty. For a
lower bound, we have:

Lemma 5. For every ϕ ∈ Φgo(t), a correct SC protocol P never decides before time
dec-time(ϕ) in runs with pattern ϕ.

More importantly, the CK construction enables us to design a relatively efficient opti-
mum SC protocol for general omissions. Observe that the CK construction is performed
on a run’s failure pattern up to time �. This is a global computation, which cannot be
directly simulated by individual processes, because a process does not have access to
the whole failure pattern. We can, however, use the construction to derive a protocol in
the following manner. First, as in [17], we can define a protocol in which the local state
of a process i at time k a run with pattern ϕ consists of the graph Gϕ(i,k), and where the
time 0 nodes are labeled by their initial values. As a result, local states have size O(n2).
Moreover, this can be done with small messages of size O(n2) and amortized size of
O(n). Since process i has access to Gϕ(i,k) at time k, it can easily construct the pattern
ϕmod(i,k), in which all channels about which it has no information are not blocked.
We can show:

Lemma 6. Let ϕ ∈ Φgo(t), and let ϕi = ϕmod(i, �). If ϕ does not condemn i, then
Ĝck[ϕi, �] = Ĝck[ϕ, �].

This lemma combined with Theorem 2 and Lemma 1 imply that the initial values that
label the time 0 nodes of Ĝck[ϕ, �] are common knowledge. This observation enables us
to reduce the problem of optimum SC to the problem of computing Ĝck[ϕ, �] given the
graph Gϕ(�). Based on the CK construction, we no longer need PSPACE computations
for this. Indeed, we can show:

Theorem 3. There is an optimum SC protocol Opt-go for general omissions in which
computations between rounds of communication are in PNP(n).

Proof. Given that there are well-known SC protocols that terminate in exactly t + 1
rounds, we have by Lemma 5 that dec-time(ϕ)≤ t + 1, and so �≤ t + 1 < n.

We first describe how to compute Ĝck[ϕ, �] from Gϕ(V[0, �]) in PNP(n). Since � < n,
there are O(n2) nodes in V[0, �]. It is easy to compute a pattern ϕ̂modA given ϕ̂ and a
set A ⊆ V(k). It remains to show how to compute the sets A = U[ϕ̂]. The first step is
to compute kϕ̂, which is a time k satisfying that ConfG(ϕ̂) has a vertex cover of size
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t + k− �+ 2 but not one of size t + k− �+ 1. This can be obtained by guessing k = kϕ̂
and a VC of size t + k− �+ 2, and verifying that it has no cover of size t + k− �+ 1.
Denote A = Mask(ϕ̂,kϕ̂), and recall that it is nonempty. We can now guess A and verify
with a single NP query (a co-VC test) that each node in A is not maskable, and by a VC
test that every node in V(kϕ̂)\A is maskable. Thus, with O(n) queries we can compute
ϕ mod U[ϕ̂]. Since there are at most O(n ·�) = O(n2) iterations, it follows that Ĝck[ϕ, �]
can be computed in PNP, as desired.

The Opt-go protocol maintains local states consisting of the local communication
graph as done in [17] and discussed above. In particular, process i’s local state at time �
at a run of Opt-goi with pattern ϕ maintains Gϕ(i, �). The Opt-goi protocol computes
ϕi = ϕmod{(i, �)} and obtains Ĝck[ϕi, �] by the PNP computation just described. It
has process i not decide at time � if Ĝck[ϕi, �] is empty. If Ĝck[ϕi, �] is nonempty, then
process i decides on a value di = 0 if at least one of the initial values recorded an
initial node of Ĝck[ϕi, �] is 0, it decides di = 1 otherwise. Lemma 5 and the fact that i
is nonfaulty imply that the values that appear in Ĝck[ϕi, �] appear in Ĝck[ϕ j, �] for every
other nonfaulty process j as well. Hence, under Opt-go, all nonfaulty processes decide
at time dec-time(ϕ), in a manner that satisfies the four requirements of SC. �

A closer inspection of the PNP computation described in the proof of Theorem 3 shows
that the O(n3) guesses can all be generated in parallel, and consequently the computa-
tion of Ĝck[ϕ, �] can be obtained using two queries to the NP Oracle: One to verify the
VC claims, and one to verify the co-VC claims.

5 Extensions and Conclusions

Moses and Tuttle showed in [17] that there are simultaneous consensus protocols that
are optimal in all runs in the sending omissions and in the general omissions models.
The protocol for sending omissions is computationally efficient—performing polyno-
mial time (in n) computations between rounds, while the one for general omissions
makes use of PSPACE computations between rounds. An accompanying lower bound
showed that any optimum SC protocol for general omissions must require processes
to perform NP-hard computations between rounds. Indeed, this result immediately im-
plies that an NP oracle can be reduced to the computation performed between two
rounds (from the second round on) in such a protocol. The current paper closes the gap
left by [17], presenting an optimum SC protocol that makes use of PNP computations.

Our SC protocol is based on a new characterization of common knowledge in the
general omissions model. As done for crash and omissions models in [17,13], this char-
acterization can be used to solve other simultaneous decision problems such as Firing
Squad [2,4]. Indeed, the characterization readily provides a solution to the much more
general problem of continuous consensus (CC) as done in [13] for crash and sending
omissions models. It therefore improves the results of [15], in which PNP computations
were used to design fast, but not optimum, protocols for continuous consensus for gen-
eral omissions. A continuous consensus service is a perpetual service, for which the
global bound of t on the number of failures is ultimately inappropriate. More appropri-
ate is the (m,t) interval-bounded fault assumption, in which it is assumed that at most t
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processes fail in every interval of m rounds, which was considered for sending omis-
sions in [14]. It is still an open problem to combine our construction with techniques
from [14], in order to handle the (m, t) assumption with general omissions.

The complexity gap between sending and general omissions comes from the ambi-
guity in the latter model concerning the identity of the faulty process that caused an
observed failure. In crash and sending omissions, a missing message proves that the
intended sender is faulty. Similar phenomena are observed in the more malicious au-
thenticated Byzantine failure model. In this case, when one process claims that another
process did not send it a required message, all that can be concluded is that one of them
is faulty. We believe that the techniques developed in the current paper can be extended
to provide a characterization of common knowledge for the authenticated Byzantine
model. Indeed, we expect similar PNP computations to be necessary and sufficient for
optimum SC and CC protocols in this case.

Ambiguity regarding the identity of faulty processes is commonplace also in the
purely malicious case of (non-authenticated) Byzantine failures. It is an interesting open
problem to extend our work to the Byzantine model. An initial attempt at applying
common knowledge to solving SC in this model was made in [12]. In the Byzantine
model we have both a bound of n > 3t on the ratio between the number of processes
and the number of faulty processes [21], and a bound of t + 1 rounds on the worst
case for consensus. Both results are based on reachability arguments (cf. [9]), although
the proofs are very different. An interesting open problem is whether extensions of the
techniques developed in this paper and in [14] can be used to obtain both bounds for
consensus in the Byzantine model in a unified manner.
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Abstract. Byzantine agreement is typically considered with respect to
either a fully synchronous network or a fully asynchronous one. In the
synchronous case, t + 1 communication rounds are necessary for deter-
ministic protocols whereas all known probabilistic protocols require an
expected large number of rounds. In this paper we examine the question
of how many initial synchronous rounds are required for Byzantine agree-
ment in the worst case if we allow to switch to asynchronous operation
afterward. Let n = h+t be the number of parties where h are honest and
t are corrupted. As the main result we show that, in the model with a
public-key infrastructure and signatures (aka authenticated Byzantine
agreement), d + O(1) deterministic synchronous rounds are sufficient
where d is the minimal integer such that n − d > 3(t − d). This im-
proves over the t + 1 necessary deterministic rounds for almost all cases,
and over the exact expected number of rounds in the non-deterministic
case for many cases.

1 Introduction

Two standard timing models are typically considered for the communication
among parties in distributed tasks such as Byzantine agreement or general multi-
party computation. In the synchronous model, the parties operate in synchronous
clock cycles where messages being sent at the beginning of a given clock cycle
are guaranteed to have arrived by the end of the same cycle. In the asynchronous
model, messages being sent at a certain point in time are only guaranteed to be
delivered eventually.

In contrast, Dwork, Lynch, and Stockmeyer [9] considered an initially asyn-
chronous network that will become synchronous only eventually — at some un-
known point in time. They showed that, for authenticated Byzantine agreement
among n parties with t active corruptions in their model, n > 3t is necessary.
Dutta and Gerraoui [8], and, Alistarh, Gilbert, Gerraoui, and Travers [1], for
essentially the same model with f crash corruptions, showed that an eventual
window of f + 2 synchronous rounds is necessary and sufficient for consensus.
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Recently, with respect to multi-party computation, Beerliova, Hirt, and Niel-
sen [3] studied the somehow converse problem of an initially synchronous network
that will eventually be switched to asynchronous operation — the motivation
being to try to minimize the synchronicity requirements by going asynchronous
as soon as possible. Indeed, they were able to show that one single initial syn-
chronous round of broadcast (followed by asynchronous communication) is suffi-
cient to achieve multi-party computation secure against a faulty minority. In this
paper, we address a similar question with respect to Byzantine agreement itself:
what is the worst-case number of initial synchronous rounds required in order to
eventually achieve Byzantine agreement in an asynchronous environment? Com-
bined with the solution in [3] this would in particular characterize the worst-case
number of initial synchronous rounds required in order to achieve general multi-
party computation; but we find the question intriguing in its own right. Let n
be the number of parties, t the number of corrupted parties, and h = n− t the
number of honest parties. We show that, for any n > t, t − h/2 + O(1) initial
synchronous rounds are sufficient. For many parameters this improves over the
straight-forward approach of using a protocol where all rounds are synchronous
— where t+1 is optimal for deterministic protocols [6], and some large constant
number of expected rounds is necessary (but not even guaranteed) for probabilis-
tic protocols [10,12,11]. Note that, in contrast to [9,8,1], this “converse” model
does neither restrict resiliency (n > t can be achieved as in the fully synchronous
model) nor typically require t rounds of synchronous communication.

Finally, our technique also improves over a result by Garay et al. [11] who
considered Byzantine agreement in the standard synchronous-network model in
presence of t = h + k (i.e., a surplus of k) dishonest parties. We show how to
achieve this task in O(k) rounds as opposed to Ω(k2) rounds in [11].

1.1 Model

We consider a complete network of pairwise secure channels among n parties of
which t are corrupted by a Byzantine adversary and h = n− t parties are hon-
est. The parties additionally share a public-key infrastructure (PKI) that allows
them to sign messages and verify signatures from other parties (authenticated
Byzantine agreement). Note that such a “PKI” can in general allow for uncon-
ditionally secure signatures [13] and thus for unconditionally secure Byzantine
agreement. First, communication proceeds in a synchronous manner for a fixed
number of rounds. All succeeding communication is fully asynchronous.

1.2 Motivation, Result, and Comparison

Whereas asynchronous communication is easy to achieve, synchronous communi-
cation is either extremely slow (one day of delay might be necessary to guarantee
delivery under any circumstances) or very hard (if not impossible) to implement
on a wide-area scale with reasonable speed. Furthermore, asynchronous com-
munication can still be optimistically expected to be very fast in most cases. It
is thus a reasonable mode of operation to first run a protocol with a minimal
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number of initial synchronous rounds and then switch to asynchronous commu-
nication as soon as agreement can be guaranteed.

We show that Byzantine agreement can be achieved in � 2t−h+1
2 � + 5 deter-

ministic synchronous rounds followed by a reasonable amount of asynchronous
communication — for any n > t (and even one round less if n > 2t). This stands
in contrast to:

• A lower bound of t + 1 synchronous rounds for deterministic protocols for
any n > t [5,7]. For example, our protocol requires strictly less synchronous
rounds than any deterministic protocol as long as there are at least h =
n− t > 10 honest parties involved.

• An expected large number of O(1) synchronous rounds for probabilistic pro-
tocols if n > 2t − O(1), e.g., 56 in [12] for n > 2t. For example, our proto-
col requires less synchronous rounds than any probabilistic protocol for all
parametrizations where n < 210.

• Expected Θ(k2) synchronous rounds for the probabilistic case if t = h+k [11].
In this case, our protocol requires only O(k) synchronous rounds and does
not require any asynchronous extension, i.e., strictly improves over the prior
result.

Additionally, when compared to the probabilistic protocols, our synchronous-
round complexities are worst-case in contrast to average-case in the probabilistic
case.

2 The Protocol

Definition 1 (Broadcast). A protocol among n parties P = {p1, . . . , pn}
where a sender ps ∈ P inputs xs ∈ {0, 1} and each party pi computes an output
yi ∈ {0, 1} achieves broadcast if the following conditions are satisfied:

1. (Validity). If ps is honest then each honest party pi computes yi = xi.
2. (Consistency). All honest parties compute the same output value.

Definition 2 (Consensus). A protocol among n parties P = {p1, . . . , pn}
where each party pi inputs xi ∈ {0, 1} and each party pi computes an output
yi ∈ {0, 1} achieves consensus if the following conditions are satisfied:

1. (Validity). If every honest party pi holds the same input value xi = b then
every honest pi computes yi = b.

2. (Consistency). All honest parties compute the same output value.

2.1 Overview

With n parties P = {p1, . . . , pn} of which t < n/2 are corrupted, one can achieve
broadcast in �t/2� + 4 synchronous rounds followed by a fully asynchronous
protocol. In general, d + 4 synchronous rounds are sufficient for d such that
3(t− d) < n− d. When t ≥ n/2 we need d + 5 rounds.
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The synchronous part is an n-party protocol that either achieves agreement or
wherein, alternatively, all honest parties detect a common set of some d parties
that are corrupted, similar to a single phase in the protocols by Bar-Noy et
al. [2]. We call this protocol Correct-Or-Detect Broadcast, d-CoD. We
will choose d such that n−d > 3(t−d), i.e., that out of the N = n−d remaining
non-detected parties at most T = t− d < N/3 are corrupted.

Since the commonly detected set of parties is not commonly known (locally,
a larger set can be detected), the d-CoD protocol is followed by a protocol
constructing proofs of participation, called the PoP protocol. There exists a
verification algorithm ver which takes as input a bit string pop and party id
pj and outputs ver(pop, pj) ∈ {0, 1}. Below we write popj to mean that pop
is a bit string for which ver(pop, pj) = 1 and we call such a popj a proof of
participation for pj . After the execution of PoP all honest parties will hold
some popj for all other honest pj . Furthermore, no popj will ever be constructed
for a commonly detected pj . For pj which is not honest nor commonly detected
some honest parties might hold a popj and some might not. In addition the
proofs popj are transferable. I.e., they can be sent along with messages in the
asynchronous phase and will be accepted by the recipient. The PoP protocol
adds one extra synchronous rounds when t ≥ n/2.

After the PoP protocol follows the asynchronous part, which is a consensus
protocol where the parties only consider messages from parties for which they
saw a proof of participation. This will have the effect that the commonly detected
parties will be no more powerful than being fail-stop corrupted. Thus, if d-CoD
achieves common detection of d parties then the asynchronous part basically is
a consensus protocol among N = n − d parties with T = t − d < N/3 active
corruptions or, alternatively, among n parties with T active corruptions and
where d parties are fail-stop corrupted (crashed) from the beginning, and where
n > 3T + d. We refer to the latter case as the pre-crash model. Note that,
typically, the parties will not agree on whether agreement or common detection
happened. The asynchronous part will also guarantee termination even when t
parties are actively corrupted but all honest parties hold the same input. So, if
the initial d-CoD does not achieve common detection of d parties, then it will
achieve agreement, which will still ensure that the asynchronous part terminates.

We now proceed as follows. We give a protocol for synchronous d-CoD in
Section 2.2. In Section 2.3 we describe the construction of proofs of participation
and describe how to use them to implement the pre-crash model with T active
corruptions and where d parties are fail-stop corrupted from the beginning of the
protocol. In Section 2.4 we then give an asynchronous consensus protocol for the
pre-crash model: we call this protocol pre-crash consensus, PCC. This protocol
uses a coin-flip protocol described in Section 2.5. In Section 2.6, we finally show
how to combine d-CoD with PCC.

2.2 Correct-or-Detect Broadcast (CoD)

Definition 3 (d-CoD). A protocol among n parties P = {p1, . . . , pn} where a
sender ps ∈ P inputs xs ∈ {0, 1} and each party pi outputs a triplet
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(yi,Fi, deti) ∈ {0, 1} × 2P × {C,D} achieves Correct-or-Detect Broad-
cast with d (d-CoD) if the following conditions are satisfied:

1. (F-soundness) An honest party’s set Fi only contains corrupted parties.
2. (C-correctness) If any honest party computes deti = C then the protocol

achieves broadcast (Def. 1) with respect to input xs and outputs yi. If broad-
cast is achieved we say that the protocol is correct. Furthermore, if
ps is honest then deti = C for every honest party pi.

3. (D-soundness) If any honest party computes deti = D then
∣
∣
∣
⋂

pj∈H Fj

∣
∣
∣ ≥

d, where H is the set of honest pj. In the case of such common detection of
d parties we say that the protocol has detection.

Let the given instance of the final broadcast protocol to be achieved be defined
by ID number id. The protocol below is a (d+ 4)-round construction for d-CoD.
The protocol basically proceeds like the first d + 4 rounds of the protocol in [7]
for synchronous broadcast. In the first round, if the input is xs = 1, the sender
creates a signature on id and sends it to all parties — input 0 is communicated by
sending nothing. The first time when a party, during some round r− 1, receives
a chain of r − 1 different signatures then he accepts the respective input value,
appends his own signature, and sends the new chain to all parties in round r.
Let ri be the first round where party pi receives such a set of signatures where
ri = d + 4 may also stand for “there is no such round.” Depending on ri party
pi decides in the following way.

ri ≤ d + 1 d + 2 d + 3 d + 4
(yi, deti) (1, C) (1, D) (0, D) (0, C)

It is easy to see that |ri − rj | ≤ 1 for all honest pi, pj . It will also be easy to see
that the parties can commonly detect d corrupted parties if some honest pi has
ri ∈ {d + 2, d + 3}. Furthermore, as can be seen in the table above, if the honest
parties disagree on yi, then (by |ri−rj| ≤ 1) all honest pl have rl ∈ {d+2, d+3}.
In Protocol 1, we use the following notions:

– A party pi’s signature on a value z is denoted by σpi(z).
– A 1-chain is a triplet (id, s, σs) where σs is a valid signature by ps on id.

An �-chain is a tuple (id, pi1 , σi1 , . . . , pi�−1 , σi�−1 , pi�
, σi�

) where C�−1 =
(id, pi1 , σi1 , . . . , pi�−1 , σi�−1) is an (� − 1)-chain and σi�

is a valid signature
by pi�

on C�−1, and where the parties pi1 , . . . , pi�
are distinct.

– An �-chain with respect to pi is an �-chain with i� = i.

Protocol 1: d-CoD
• Round 1:

◦ ps: if the input is xs = 1 then ps sends 1-chain C1 = (id, ps, σs) to all
parties and outputs (ys = 1,Fs = ∅, dets = C). Otherwise, ps sends
nothing and outputs (ys = 0,Fs = ∅, dets = C).

◦ pi (i �= s): ri = d + 4 (sentinel).
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• Rounds 2 ≤ r ≤ d + 4:
◦ pi (i �= s): If an (r − 1)-chain Cr−1 = (id, pj1 , σj1 , . . . , pjr−1 , σjr−1) was

received during round r − 1 (the previous round) then:
∗ If ri = d + 4 then ri := r − 1 (mark first round where a sufficiently

large chain was received)
∗ For one such chain Cr−1, send r-chain Cr = (Cr−1, pi, σpi(Cr−1)) to

all parties.
• Epilogue:

◦ pi (i �= s):
∗ If ri ≤ d + 2 then yi := 1. If d + 2 ≤ ri ≤ d + 3 then deti := D else

deti = C.
∗ For each received �-chain (id, pj1 , σj1 . . . , pj�

, σj�
) add pj1 , . . . , pjri−1

to Fi. �
Let F0

i = Fi. For a party pi with ri < d + 4 we define F1
i to contain exactly the

first ri−2 parties that appear in the (ri +1)-chain it redistributed during round
ri + 1, F1

i = {pj1 , . . . , pjri−2}. If ri = d + 4, we define F1
i = ∅.

Lemma 1. The given protocol efficiently achieves d-CoD in d + 4 rounds.

Proof. If deti = C for some honest party pi then either ri ≤ d + 1 or ri = d + 4.
In the former case, every honest pj has rj ≤ d + 2 and thus yi = yj = 1. In the
latter case, every honest pj has rj ≥ d + 3 and thus yi = yj = 0. Finally, if the
sender ps is honest then yi = xs and deti = C since the adversary cannot forge
signatures. This gives the C-correctness. By construction, no honest pj signs a
chain in round rj or earlier. Since pi knows that rj ≥ ri − 1 for all honest pj ,
party pi knows that no honest pj signed a chain in round ri − 1 or earlier. So,
if pi sees a chain signed by parties pj1 , . . . , pj�

, then pi knows that the parties
pj1 , . . . , pjri−1 are corrupted. This implies F -soundness. From rj ≥ ri − 1, the
party pi knows that when an honest pj saw this chain, then pj added at least
the parties in F1

i to F0
j , i.e., F1

i ⊆ F0
j for all honest pj . Since pi only sets deti = D

if ri ∈ {d + 2, d + 3}, it follows that |F1
i | ≥ ri − 2 ≥ d, which implies

D-soundness. ��

2.3 Proofs of Participation (PoP), Minority Case

After running CoD, the parties construct proofs of participation. This construc-
tion depends on whether t < n/2 or t ≥ n/2. We give the simple construction
for t < n/2. To not interrupt the flow of presentation of the overall protocol, we
defer the description of the construction for t ≥ n/2 to Section 2.7.

When t < n/2 a proof of participation popl for pl is a collection of n− t signa-
tures on (id, part, pl) from distinct parties. These proofs are clearly transferable.
They are constructed asynchronously as follows. Let P0

i = {p1, . . . , pn} − F0
i

and P1
i = {p1, . . . , pn} − F1

i . Each pi will for each pl ∈ P1
i , send a signature on

(id, part, pl) to pj . Since P0
j ⊆ P1

i , pj knows that all n− t honest pi will send a
signature on (id, part, pl) for all pl ∈ P0

j . Therefore pj can wait for n − t such
signatures for all pl ∈ P0

j and thus get a popl for all pl ∈ P0
j , which includes the

honest parties. No honest party signs (id, part, pl) for any commonly detected
pl so, since t < n− t, no popl is constructed for a commonly detected pl.
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2.4 Asynchronous Pre-Crash Consensus (PCC)

Recall that the commonly detected parties during CoD will be ignored by all
honest parties and thus will be treated as having crashed. Also, recall that there
are d commonly detected parties if CoD has not already reached agreement. The
following assumptions model this situation.

Among the n parties, we now assume T to be actively corrupted and d to
have crashed already before the execution of the protocol, and n > 3T + d.
We call the N = n − d parties that have not crashed before the execution
the participating parties in PCC. In particular, we have N > 3T among
the participating parties. In this section, we are allowed to make the following
assumptions:

• All honest parties accept each other as participating, i.e., do not detect each
other as being corrupted — as follows from PoP.

• Once an honest pi accepts pl as participating, all other honest parties accept
pl as participating before they receive their next message from pi — we can
simply make the honest parties ignore pi’s messages until pi’s (transferable)
PoP for pl has arrived.

As usual we assume the adversary to fully control the actively corrupted parties.
From the crashed parties the adversary is allowed to learn their internal states
but the crashed parties send no messages during the PCC-protocol. The honest
parties do not know the identities of the crashed or the actively corrupted parties.

This model is implemented by relaying all newly received proofs of partici-
pation popl with the next outgoing message to each of the other parties and
ignoring all messages from parties pl for which no popl was yet received.

Our PCC protocol is inspired by the protocol in [4]. Some changes have been
made to deal with the fact that we cannot use threshold signature schemes in
our setting (the excluded parties can still create signature shares, lending the
corrupted parties an unfair advantage). Other changes have been made to sim-
plify the protocol. The well-known standard structure stays the same: repeating
rounds over a weak form of agreement (committed crusader consensus) followed
by a weak coin-flip protocol.

Definition 4 (Committed Crusader Consensus (CCC)). A protocol am-
ong n parties P = {p1, . . . , pn} where every party pi inputs xi ∈ {0, 1} and out-
puts a value yi ∈ {0,⊥, 1} is called committed crusader consensus (CCC)
if the following conditions are satisfied:

1. (validity) If all honest parties have the same input x then every honest
party pi outputs yi = x.

2. (consistency) If some honest party pi outputs yi = 0 then no honest party
pj outputs yj = 1.

3. (commitment) As soon as some honest party pi terminates the protocol,
a value y ∈ {0, 1} is fixed such that no honest party pj can terminate the
protocol with output yj = y.

4. (termination) All honest parties terminate the protocol.
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Note that the commitment property defends against the adversary adapting the
crusader-consensus outcome to its following coin-flip outcome. This might be
possible since the protocol is asynchronous.

Protocol 2: Committed Crusader Consensus — CCC (local code of pi)

1. Send a signature on (id, vote, xi) to all parties.
2. Wait for signatures from N − T participating parties and pick ui ∈ {0, 1}

to be the value for which N − 2T signatures on (id, vote, ui) was received.
Then send ui to all parties along with the N − 2T signatures.

3. Wait for N −T participating parties pj to send uj along with N − 2T signa-
tures on (id, vote, uj) from participating parties.
◦ If all uj are identical then let vi be the common value and send ok to all

parties.
◦ Otherwise, let vi = ⊥, pick N −2T of the signatures on (id, vote, 0) and

N − 2T of the signatures on (id, vote, 1) and combine them to a proof
of disagreement, and send this proof to all parties.1

4. Wait to receive ok or a proof of disagreement from N − T participating
parties. If all sent ok, then let yi = vi. Otherwise, let yi = ⊥. Then send
done to all parties.

5. Wait for N − T participating parties to send done, and then terminate with
output yi. �

Lemma 2. The above protocol achieves CCC.

Proof.

1. (validity). Straight forward.
2. (consistency). Assume that pi is honest and that yi = b ∈ {0, 1}. Then

pi received N − T votes uj on b. At least N − 2T of these votes were sent
by honest parties, so any other honest pk sees at least one vote uj on b and
thus outputs b or ⊥.

3. (commitment). Assume that some honest party terminated. This means
that it saw N − T parties send done. Hence at least N − 2T honest parties
sent done. We consider these N − 2T parties and distinguish two cases:
– Assume that one of the considered parties had vi = b ∈ {0, 1}. In this

case it is easy to see that vj = 1 − b is impossible for all other honest
parties pj. Since yj = 1− b implies vj = 1− b, it follows that vj = 1− b
is impossible for each honest party pj .

– Assume that vi = ⊥ for the at least N − 2T considered honest par-
ties. Then these N − 2T parties sent a proof of disagreement to all
parties. Therefore every honest party pj receives at least one proof of
disagreement and thus outputs yj = ⊥, making both values yk ∈ {0, 1}
impossible for every honest party pk.

4. (termination). Straight forward. ��
1 A proof of disagreement shows that at least one honest party had input 0 and that

at least one honest party had input 1.
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We can now combine CCC with an unpredictable coin-flip protocol. We assume
a coin-flip protocol where the parties input (id, flip, r) to flip coin number r
and where they receive an outcome (Cr ∈ {0, 1}, g ∈ {0, 1}). We assume that
if N − T honest parties input (id, flip, r), then they eventually all receive an
outcome (v, g). The outcome should guarantee that if some honest party has
outcome (v, 1), then all honest parties have outcome (v, 1) or (v, 0). Furthermore,
a fraction p of the coins should have the property that all parties output (Cr, 1)
and that Cr cannot be predicted with probability negligibly better than 1

2 until
the first honest party gets input (id, flip, r). We call such a coin good. See
Section 2.5 for the implementation of such a coin.

Protocol 3: Pre-Crash Consensus — PCC (local code of pi)
1. Let r = 1 and let xi be the input.
2. Run CCC on input xi to get an output zi.
3. Input (id, flip, r) to the coin-flip protocol and wait for an output (Cr, g).
4. If zi = Cr and g = 1, then yi := zi but do not terminate.
5. If zi = ⊥ then xi = Cr else xi = zi.
6. Let r := r + 1 and go to Step 2. �

Lemma 3. The above protocol achieves pre-crash consensus (except for termi-
nation) in expected 2/p “rounds”.

Proof. The protocol has the following properties and thus fulfills the claims:

1. (persistence: If the honest parties agree on the xi at the beginning of round
r, then they will all have yi = xi and will end up with the same xi in round
r + 1). This follows from validity of CCC.

2. (validity). Follows from persistence.
3. (matching coin: If no honest party receives output zi = z ∈ {0, 1} from

the CCC protocol and coin Cr is good, then with probability negligibly close
to 1

2 , the coin produces Cr = 1 − z and g = 1 for all parties). When the
first honest party pi inputs (id, flip, r) to the coin-flip protocol, at least pi

terminated the CCC protocol. Therefore there exists z ∈ {0, 1} such that
no honest party can end up with zi = z. Since Cr is unpredictable until the
first honest party inputs (id, flip, r) there is probability negligibly close to
1
2 that Cr = 1− z.

4. (consistency). By the matching-coin condition, all honest parties eventu-
ally end up with the same value yi.

5. (consistency detection: When an honest party pi sees that zi = Cr and
g = 1 then pi knows that all honest parties pj will finally compute output
yj = zi). If this happens then, after Step 5 of the same iteration, all honest
parties will agree on xj = zi which will persist by the persistence condition.

6. (number of “rounds”). Follows from the properties of the coin. ��

As of now, the protocol runs forever. Allowing all honest parties to terminate in
a constant number of rounds can be achieved by adding the following rules to
the above protocol.
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• After computing yi in Step 4, send a signature on (id, result, yi) to all
parties.

• On receiving a valid signature on (id, result, y) by any party, send it to all
parties.

• If for some y ∈ {0, 1} and h = N − T distinct participating parties pj a
valid signature on (id, result, y) by pj has been (received and re)sent to all
parties, terminate.

Theorem 1. The above protocol together with the given termination augmen-
tation achieves pre-crash consensus among n parties with d pre-crashes and T
actively corrupted parties when n > 3T + d. The protocol terminates in 2/p
expected rounds where p is the unpredictability of the coin.

Proof. Follows from Lemma 3 and the above discussion. ��

2.5 The Coin

We describe a generic construction that can be based on any existing coin pro-
tocol in order to get a coin for the pre-crash model that can be set up during
the last synchronous round and opened during the asynchronous part of the pro-
tocol. The coin itself is pre-shared by some designated party pi and is reliable
when pi is honest. The iterations of pre-crash consensus can then be done with
respect to different designated parties. The advantage of this approach is that
1 synchronous round is sufficient and that it can be described generically. The
disadvantage is that expected O(t) asynchronous “rounds” will be required in
order to hit a reliable matching coin.2

Generic Construction. We let each party Pi prepare a coin Ci in the last
synchronous round, by picking Ci ∈ {0, 1} uniformly at random and secret shar-
ing Ci. In asynchronous round i, the parties then try to reconstruct Ci. To get �
coins, each pi prepares �/n coins and the coins of pi are used in rounds i+nq. We
pick � large enough that the PCC protocol will have terminated after � phases
except with negligible probability when there is detection (and thus N > 3T ).
If the parties run out of coins, they conclude that there was not detection, but
agreement already in CoD. In the following, we let Pi = {1, . . . , n} − Fi.

Protocol 4: Coin Flip
• A coin of pi is prepared as follows:

◦ Last synchronous round: pi picks Ci uniformly at random and creates
a Shamir sharing of Ci among n parties with degree T . Let Cij de-
note the share of pj. For pj ∈ Fi it deletes Cij . For pj ∈ Pi it signs
(id, flip, i, j, Cij) and sends it securely to pj .

2 We also have a protocol to produce a coin along the lines of Katz and Koo [12] solely
based on digital signatures (and a PKI). The advantage of this construction is that
only an expected constant number of asynchronous “rounds” will be required to hit
a reliable matching coin. However, more than 1 synchronous round is required to set
it up (but still O(1)).
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• The flipping of the coin proceeds as follows:
◦ pj : On input (id, flip, r = i +nq), send the signed (id, flip, r, j, Cij) to

all pk, if it was received, and otherwise sign and send (id, flip, r, j,⊥).
◦ pk: Wait for N − T participating parties pj from Pk to send either

(id, flip, r, j, Cij) signed by pi or (id, flip, r, j,⊥) signed by pj . If N−2T
participating parties sent a signed (id, flip, r, j,⊥), collect the signatures
to a proof that pi is corrupt,3 and send the proof to all parties. Oth-
erwise, if N − 2T participating parties sent a signed (id, flip, i, j, Cij),
then interpolate a degree T polynomial f(X) with f(j) = Cij for all
N − 2T values, let Ci = f(0) and collect the N − 2T signed values to a
proof that Ci = f(0) is justified, and send the proof to all parties
along with a signature on (id, flip, r, f(0)).

◦ pj : Wait for N−T participating parties pk to send a message as required
above. If one of them sent a proof that pi is corrupt, store this proof.
Otherwise, if one of them sent a proof that Ci = 0 is justified and one of
them sent a proof that Ci = 1 is justified, pool these proofs to a proof
that pi is corrupt. Otherwise, the N − T parties all sent a proof
that Ci = v is justified for the same v. Collect the corresponding
N−T signatures on (id, flip, r, v) to a proof that Ci = v is uniquely
justified.4 In both cases, send the obtained type of proof to all parties.

◦ pk: Wait for N − T participating parties pj to send a proof that pi is
corrupt or that some v is uniquely justified. If all N − T parties sent a
proof that v is uniquely justified, then output (v, 1). If at least one party
sent a proof that v is uniquely justified, then output (v, 0). Otherwise,
output (0, 0)

It is straight-forward to see that at most one value v will have a proof that it
is uniquely justified. Furthermore, all pairs of parties receive a message from at
least one common honest party in the last step. So, as pj having output (v, g = 1)
implies that it received a proof that v is uniquely justified from all parties, it
knows that all other honest parties received at least one such value, and therefore
has output (v, ·). Ergo output (v, 1) implies that all parties agree on the coin.
Finally, if pi is honest, no proof that pi is corrupt will be constructed. Hence
all parties will have output (Ci, 1). So, all coins prepared by honest parties are
good, and they make up a fraction p = (n− t)/n of all coins.

2.6 The Final Protocol: Putting Things Together

We now demonstrate how to combine synchronous d-CoD with asynchronous
pre-crash consensus (PCC).

Let h = n−t be the number of honest parties. Pick T < h/2, let d = t−T and
let N = n − d. We first run Protocol d-CoD with respect to n and t. Protocol
d-CoD is either correct or has detection. The difficulty now is that the parties
3 At least one honest party is claiming that it did not get a signed share from pi.
4 At least N −2T honest parties signed for v and no honest party signs for both 0 and

1. Therefore at most one value v will have such a proof.
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do not necessarily agree on their values det ∈ {C, D} that stands for knowing
that correctness or detection was achieved. Therefore we always unconditionally
append Protocol Pre-Crash Consensus (PCC) which is run among all n parties
and with respect to d crashes and T < N/3 active corruptions. However, only
the parties pi with deti = D will adopt the output of PCC, whereas the parties
with deti = C already accept their outputs from d-CoD. In more detail:

Protocol 5: Broadcast (local code of pi)
1. Run the d-CoD on input xi and let (vi,Fi, deti) be pi’s output.

<From now on everything is asynchronous>
2. If deti = C then output yi = vi but do not terminate.
3. Run PoP to create proofs of participation and use these to simulate a pre-

crash model, where all parties without a proof of participation are considered
crashed.

4. Run PCC on input vi in the simulated pre-crash model; if deti = D then let
yi be the output of PCC. �

The final protocol has the following properties:

1. If deti = C for all honest pi then all honest parties eventually output some
yi and the outputs yi are correct.

Proof. When deti = C for all honest pi all honest pi have yi = vi, where vi

is the output of d-CoD, which is correct since deti = C for some honest Pi.
2. If deti = D for some honest pi, then the asynchronous BA eventually ter-

minates with some common output y which is equal to some vi held by an
honest party pi.

Proof. Even a party with deti = C will run the asynchronous PCC protocol.
Therefore the asynchronous PCC is run by all honest parties, but as if all
parties without a proof of participation were crashed before the protocol
began. The only malicious thing a party without a proof of participation
can do is therefore to leak his secrets to the corrupted parties which do
have proof of participation. Therefore the PCC protocol is essentially run
in a pre-crash model with N being the number of parties with a proof of
participation and T being the number of corrupted parties with a proof
of participation. When deti = D for some honest pi, then N > 3T as no
commonly detected party gets a proof of participation and all honest parties
get a proof of participation. Since N > 3T , it follows from the properties
of PCC that it eventually terminates with some common output y which is
equal to some vi held by an honest party pi.

3. If deti = D for all honest pi, then all parties eventually output some y and
the output y is correct.

Proof. When deti = D for all honest pi, then all honest pi take the output yi

of PCC to be the output of the final protocol. If ps is honest, then no honest
pi has deti = D, so when deti = D for all honest pi, then ps is corrupted and
any common output yi = y is correct. It is therefore sufficient that PCC has
termination and consistency. This follows from Property 2.
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4. If deti = C for some honest pi and detj = D for some honest pj then all
honest parties eventually output some y and the output y is correct.

Proof. From detj = D for some honest pj it follows from Property 2 that
PCC eventually terminates with some common output y, which is equal to
some vi held by an honest party. By deti = C for some honest pi it follows
that the vi held by the honest parties are the same, meaning that each honest
pi gets output yi = vi from PCC where vi is his output from d-CoD. Hence
every honest pi will output vi which is correct as ps must be corrupted. ��

Theorem 2. The above protocol achieves broadcast for n parties secure against
t < n/2 actively corrupted parties in

– � 2t−h+1
2 � + 4 ≤ �t/2� + 4 deterministic synchronous rounds followed by an

expected-O(t)-“round” asynchronous protocol when using the generic coin.
– t − h/2 + O(1) deterministic synchronous rounds followed by an expected-

O(1)-“round” asynchronous protocol when using the specific coin.

Proof. From Property 1, Property 3 and Property 4 it follows that the protocol
achieves broadcast. The rest can be verified by inspection. ��

2.7 Proofs of Participation (PoP), Majority Case

We now describe the construction of proofs of participation for the case t ≥ n/2.
The first modification is that we run CoD for one more round and let the parties
decide as follows.

ri ≤ d + 2 d + 3 d + 4 d + 5
(yi, deti) (1, C) (1, D) (0, D) (0, C)

I.e., just run (d + 1)-CoD. For the (ri + 1)-chain sent in round (ri + 1), pi

adds pi1 , . . . , piri−3 to a set F2
i . In all rounds, for all incoming chains, it adds

pi1 , . . . , piri−2 to a set F1
i and adds pi1 , . . . , piri−1 to a set F0

i . Except in the last
round, it then relays the chain, which will make other parties pj see the chain
and do the same, possibly using rj = ri − 1. It can be seen that this results in
sets with F2

i ⊆ F1
j ⊆ F0

k for all honest pi, pj , pk. The output of this modified d-
CoD is taken to be Fi = F2

i . We call Pb
i = {1, . . . , n}−Fb

i the b-participating
parties (seen by pi) and we have that P0

i ⊆ P1
j ⊆ P2

k for all honest pi, pj, pk.
We need that N > 3T for all sets P l

j when an honest pi has deti = D. This
follows from ri ≥ d + 3.

Now, for b = 2, 1, 0 we define a b-proof of participation for pl (from the
viewpoint of pi) to be 2T + 1 signatures on (id, part, pl) from parties in Pb

i .

Invariant. We will maintain the invariant that if there exists any b-proof of
participation for pl, then at least one honest party did not exclude pl initially
(we say pi excluded pl if pl �∈ P2

i ). In particular, there will exist no b-proof of
participation for a commonly detected party pl. Furthermore, all honest parties
will initially hold a 0-proof of participation for all other honest parties, and 0-
proofs of participation will be transferable. Therefore 0-proofs of participation
can be used to simulate the pre-crash model, as desired.
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Establishing the invariant. Every pi sends a signature on (id, part, pl) for
all pl ∈ P0

i to all pj . Below we call a signature on (id, part, pl) a signature
of participation for pl. Since all honest parties are in all P0

i , and there are
at least N − T honest parties, all honest pj can wait to collect a 0-proof of
participation for all pl ∈ P1

j , which includes all honest parties. Furthermore, if
all honest parties excluded pl, then less than N−T signatures of participation are
constructed for pl, so no b-proof of participation is constructed for a commonly
detected party.

Upgrading. To build transferability, we first observe that if pj holds a 1-proof
of participation for pl, it can upgrade it to a 0-proof of participation: It sends
the 1-proof of participation to all pk. Any pk receiving it will see the N − T
signatures from P1

j . Since P1
j ⊂ P2

k , this will be a 2-proof of participation for
pl to pk. Therefore pk knows, by the invariant, that at least one honest party
did not exclude pl initially. Hence pk can safely sign (id, part, pl) and send the
signature to pj. All honest pk will eventually do this. Since all honest parties are
in P0

j , pj will eventually receive N − T signatures on (id, part, pl) from parties
in P0

j . These signatures pj collects to a 0-proof of participation for pl.

Transfer. Assume now that pi holds a 0-proof of participation for pl. It can
send this to all pj, who will see it at least as a 1-proof of participation, as
P0

i ⊆ P1
j . Therefore pj can upgrade it to a 0-proof of participation for pl. This

gives transferability.

Theorem 3. The above protocol achieves broadcast for n parties secure against
t < n actively corrupted parties where d is the minimal integer for which n−d >
3(t− d)

– in � 2t−h+1
2 � + 5 deterministic synchronous rounds followed by an expected-

O(t)-“round” asynchronous protocol when using the generic coin.
– in t− h/2 + O(1) deterministic synchronous rounds followed by an expected-

O(1)-“round” asynchronous protocol when using the specific coin.

Proof. The theorem follows along the lines of the proof of Theorem 2 and the
above discussion. ��

3 Observations

Multi-Valued Broadcast. Above, our protocols were stated with respect to
a binary value domain. We note that, for arbitrary value domains D, the pro-
tocol can be adapted such that the number of synchronous rounds stays the
same whereas the number of asynchronous rounds remains of same order (one
additional round per coin flip).

Fully Synchronous Byzantine Agreement with a PKI. We observe that
our approach can also be used to improve over the result in [11]. There it was
shown how to achieve Byzantine agreement in the fully synchronous model
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among t = h + k parties (with a minority of h honest parties) in expected
Ω(k2) rounds. Applying our approach together with the specific coin from [12]
directly to the fully synchronous case yields a protocol that requires only ex-
pected k + O(1) rounds. In this case, the coin does not have to be pre-shared as
described in Section 2.5 but the leader can simply dictate it on the spot. Hence
the protocol only relies on signatures and a PKI and works for any value domain.
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Abstract. We address the problem of designing distributed algorithms
for large scale networks that are robust to Byzantine faults. We consider
a message passing, full information synchronous model: the adversary is
malicious, controls a constant fraction of processors, and can view all
messages in a round before sending out its own messages for that round.
Furthermore, each corrupt processor may send an unlimited number of
messages. The only constraint on the adversary is that it must choose
its corrupt processors at the start, without knowledge of the processors’
private random bits. To the authors’ best knowledge, there have been no
protocols for such a model that compute Byzantine agreement without
all-to-all communication, even if private channels or cryptography are
assumed, unless corrupt processors’ messages are limited.

In this paper, we give a polylogarithmic time algorithm to agree on
a small representative committee of processors using only Õ(n3/2) total
bits which succeeds with high probability. This representative set can
then be used to efficiently solve Byzantine agreement, leader election, or
other problems. This work extends the authors’ work on scalable almost
everywhere agreement.

1 Introduction

Increases in frequency, speed and severity of attacks on the Internet have led to
a resurgence of interest in the Byzantine fault model for very large networks, see
for example [3,14]. The goal of this work is to address the problem of designing
distributed algorithms for large scale networks that are robust to Byzantine faults.

Our paper concerns the well-studied message-passing model: n processors are
in a fully connected network and a malicious adversary with full information
controls less than a 1/3− ε fraction of these processors, where ε is any positive
constant. Our main contribution is to show that randomization can be used to
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break the 1985 Ω(n2) barrier [4] for message and bit complexity for Byzantine
agreement in the deterministic synchronous model, if we assume the adversary’s
choice of bad processors is made at the start of the protocol, i.e., independent of
processors’ private coinflips. Our techniques lead to solutions with Õ(n3/2) bit
complexity for leader election and universe reduction. Our protocols are polylog-
arithmic in time and, except for leader election, succeed with high probability.

We overcome the lower bound of [4] by allowing for a small probability of
error. In particular, the lower Ω(n2) lower bound on the number of messages
to compute Byzantine agreement deterministically implies that any randomized
protocol which computes Byzantine agreement with o(n2) messages must err
with some probability ρ > 0, since with probability ρ > 0, an adversary can guess
the random coinflips and cause the protocol to fail when those coinflips occur.
Thus, any randomized algorithm achieving o(n2) messages must necessarily be
a Monte Carlo algorithm.

In 2006, the authors [12] showed that almost everywhere Byzantine agreement,
where (1−1/ logn) fraction of the good processors come to agreement on a good
processor’s input bit, could be computed with high probability in polylogarithmic
time with a polylogarithmic number of bits of communication per processor. It
is easy to see that one round suffices to go from almost everywhere agreement
to everywhere agreement with n(n− 1) additional bits of communication. Each
processor sends every other processor its bit, and each processor decides on the
majority. Is there a way to avoid this last high cost round?

The difficulty of achieving o(n2) messages is illustrated by showing what goes
wrong with the obvious approach: each processor randomly selects O(log n) pro-
cessors to poll and decides a value equal to the majority of their responses. The
problem with this protocol is flooding. That is, bad processors may all bombard
every processor for requests and no processor will be able to respond to all the
requests without incurring a cost of Θ(n2) messages. Previous to this paper we
did not know of any technique of flood avoidance other than to design a protocol
in which each processor predetermines (perhaps using private random bits) at
the start of each round the list of processors it is willing to listen to. That is, this
list does not depend on the list of processors who actually send. This paper uses
a novel technique to deal with flooding that may be of independent interest.

1.1 Model

We assume a fully connected network of n processors, whose IDs are common
knowledge. Each processor has a private coin. Communication channels are au-
thenticated, in the sense that whenever a processor sends a message directly
to another, the identity of the sender is known to the recipient, but we other-
wise make no cryptographic assumptions. We assume a nonadaptive (sometimes
called static) adversary. That is, the adversary chooses the set of t bad processors
at the start of the protocol, where t is a constant fraction, namely, 1/3−ε for any
positive constant ε of the number of processors n. The adversary is malicious: it
chooses the input bits of every processor, bad processors can engage in any kind
of deviations from the protocol, including false messages and collusion, or crash
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failures, while the remaining processors are good and follow the protocol. Bad
processors can send any number of messages.

We consider both synchronous and asynchronous models of communication. In
the synchronous model, communication proceeds in rounds; messages are all sent
out at the same time at the start of the round, and then received at the same time
at the end of the same round; all processors have synchronized clocks. The time
complexity is given by the number of rounds. In the asynchronous model, each
communication can take an arbitrary and unknown amount of time, and there is
no assumption of a joint clock as in the synchronous model. The adversary can
determine the delay of each message and the order in which they are received.
We follow [1] in defining the running time of an asynchronous protocol as the
time of execution, assuming the maximum delay of a message between the time
it is sent and the time it is processed is assumed to be one unit.

We assume full information: in the synchronous model, the adversary is rush-
ing, that is, it can view all messages sent by the good processors in a round before
the bad processors send their messages in the same round. In the asynchronous
model, the adversary can view any sent message before its delay is determined.

1.2 Problems

One of the most well studied problems in distributed computing is the Byzantine
agreement problem. In this problem, each processor begins with either a 0 or 1.
An execution of a protocol is successful if all processors terminate and, upon
termination, agree on a bit held by at least one good processor at the start.
The leader election problem is the problem of all processors agreeing on a good
processor [12]. The universe reduction problem [9] is to bring processors to
agreement on a small subset of processors with a fraction of bad processors
close to the fraction for the whole set. I.e., the protocol terminates and each
good processor outputs the same set of processor ID’s such that this property
holds. For each of these problems, we say the protocol solves the problem with
probability ρ if, given any worst case adversary behavior, including choice of
initial inputs, the probability of success of any execution over the distribution
of private random coin tosses is at least ρ.

Almost everywhere Byzantine agreement, universe reduction, and leader elec-
tion is the modified version of each problem where instead of bringing all good
processors to agreement, a large majority, but not necessarily all, good processors
are brought to agreement.

1.3 Results

We use the phrase with high probability (w.h.p.) to mean that an event happens
with probability at least 1 − 1/nc for every constant c and sufficiently large n.
For readability, we treat log n as an integer throughout. We show:

Theorem 1. [Byzantine agreement] Let n be the number of processors in a
synchronous full information message passing model with a nonadaptive, rushing
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adversary that controls less than 1/3− ε fraction of processors, for any positive
constant ε. Then, there exists a protocol which w.h.p. computes Byzantine agree-
ment, runs in polylogarithmic time, and uses Õ(n3/2) bits of communication.

This result follows easily from the solution to the universe reduction problem
(see the next section) which we present here:

Theorem 2. [Universe reduction] Let ε be any positive constant and let n
be the number of processors in a synchronous fully connected message passing
network with a nonadaptive malicious rushing adversary in the full information
model which controls less than 1/3 − ε fraction of processors. For any positive
constant ε′ < ε, there exists a protocol which uses Õ(n3/2) number of bits of
communication per processor and polylogarithmic number of rounds, such that
w.h.p., all good processors output the same subset of processors, the “represen-
tative set” of size polylogarithmic in n such that 2/3+ ε′ fraction of its elements
are good.

1.4 Techniques

Our results build on the almost everywhere universe reduction protocol of [12]:

Theorem 3. [12] [Almost everywhere universe reduction] Let ε be any
positive constant and let n be the number of processors in a synchronous fully
connected message passing network with a nonadaptive, rushing adversary in the
full information model which controls less than 1/3−ε fraction of processors. For
any positive constant ε′ < ε, there exists a protocol which uses polylogarithmic
number of bits of communication per processor and polylogarithmic number of
rounds, such that w.h.p. 1 − O(1/ log n) fraction of good processors output a
subset of processors of size polylogarithmic in n such that 2/3+ ε′ fraction of its
elements are good.

Our protocol first runs the protocol for almost everywhere universe reduction in
[12] to achieve w.h.p. almost everywhere universe reduction. The technical chal-
lenge is to go from almost everywhere universe reduction to everywhere universe
reduction in o(n2) bits. It is straightforward to go from everywhere universe re-
duction to everywhere agreement for Byzantine agreement and leader election (see
[12] ). The idea is to notice that any “representative” subset of processors can run
a standard Byzantine agreement protocol or leader election protocol (using their
own input bits, in the case of Byzantine agreement) and the outcome for the repre-
sentative subset is a solution to the problem for the whole set. The representative
set need only communicate its results to the other processors, which determine
the correct answer by taking the message sent by the majority.

We actually prove a stronger result than necessary to prove Theorems 1 and 2
from Theorem 3. That is, we can go from almost everywhere universe reduction
to everywhere universe reduction even in the case where (1) only 1/2+ ε fraction
of good processors are in agreement on the representative subset; (2) up to
a 1/2 − ε fraction of the processors are controlled by the adversary; and (3)
communication is in the asynchronous model. Specifically, we show:
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Theorem 4. [Almost everywhere to everywhere universe reduction]
Let ε be any positive constant and assume n processors are connected in the full
information, asynchronous, message passing communication model, with a non-
adaptive adversary. Further, suppose there are (1/2+ε)n good processors that agree
on a subset C of processors containing a majority of good processors. Then there is
a O(n3/2 log3 n|C|) bit protocol which runs in O(log n/ log log n) time steps after
which w.h.p. all good processors agree on C.

We give the Almost Everywhere to Everywhere Universe Reduction Protocol
in Section 3; its proof of correctness in Section 4; and include a sketch of the
Almost Everywhere Universe Reduction Protocol in the Appendix.

2 Related Work

In a 2006 paper, the authors (and collaborators) present a polylogarithmic time
protocol with polylogarithmic bits of communication per processor for almost ev-
erywhere Byzantine agreement, leader election, and universe reduction in the syn-
chronous full information message passing model with a nonadaptive rushing ad-
versary [12]. Also in 2006, [8,2] give logarithmic time protocols which use Ω(n2)
bits of communication for Byzantine agreement in the same model with different
techniques. The algorithm in [2] also solves universe reduction and leader election.

In the asynchronous version of the same model, in a 2008 paper [11], the au-
thors give a polynomial time protocol for Byzantine agreement, leader election,
and universe reduction. While this protocol uses Θ̃(n2) messages (and polyno-
mial time), its structure is very similar to the almost everywhere agreement
protocols [12,13], and we believe it can be implemented as an almost everywhere
agreement protocol with polylogarithmic bits of communication.

In the gossip problem each process starts with an initial value called a rumor and
attempts to learn all the other rumors. In this literature, one concern is the num-
ber of messages sent between processors. A 2008 paper [7] presents a protocol to
solve the gossip problem in the asynchronousmodel with crash failures rather than
Byzantine failures, with an oblivious adversary which sets the timing and crashes
in advance and an assumption of private channels. The protocol in [7] was adapted
to solve the consensus problem using O(n7/4 log2 n) messages. The adversary in [7]
is weaker than ours in several respects, though it is stronger in the sense that the
adversary can set delays in communication, so our results seem incomparable.

Almost everywhere agreement in sparse networks has been studied since 1986.
See [12,13] for references. The problem of almost everywhere agreement for secure
multiparty computation on a partially connected network was defined and solved
in 2008 in [6].

In a 2006 paper [13], the authors give a sparse network implementation of their
protocols from [12]. It is easy to see that everywhere agreement is impossible in a
sparse network where the number of faulty processors t is sufficient to surround
a good processor. To see this, one can use an observation from [10]. Let t be the
number of bad processors. Then any Byzantine agreement protocol where all
n− t good processors have their input bits set to 1 must result in an output of
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1. And this must be true even if the bad processors act like good processors that
have a 0. Moreover, it must be the case that when bad processors act like good
processors that have a 1 and t or fewer good processors have a 0, the output
must be a 1 as well. If a processor is surrounded by bad processors, then all
communication with the processor can be made to simulate any execution of the
protocol consistent with that processor’s input bit. Hence if a single processor
has an input bit of 0, and it is surrounded by bad processors, it will be unable to
distinguish between the case where it must output a 0 because all good processors
have a 0, or a 1 because fewer than t processors have a 0.

A protocol in which processors use o(n) bits may seem as vulnerable to being
isolated as in a sparse network, but the difference is that without access to private
random bits, the adversary can’t anticipate at the start of the protocol where
communication will occur. In [10], it is shown that even with private channels,
if a processor must pre-specify the set of processors it is willing to listen to at
the start of a round, where its choice in each round can depend on the outcome
of its random coin tosses, at least one processor must send Ω(n1/3) messages
to compute Byzantine agreement with probability at least 1/2 + 1/ logn. Hence
the only hope for a protocol where every processor sends o(n1/3) messages is
to design outside this constraint. Note that the protocol here does NOT fall
within this restrictive model, only because of line 8 in our Almost Everywhere
to Everywhere protocol, where the decision of whether a message is listened to
(or acted upon) depends on how many messages are received so far.

3 The Almost Everywhere to Everywhere Universe
Reduction Protocol

In this section, we describe the algorithm that satisfies Theorem 4 by going from
almost everywhere committee election to everywhere committee election.

Precondition: Each processor p starts with an hypothesis of the membership
of C, Cp; this hypothesis may or may not be equal to C or may be empty.
However, the following two assumptions are critical. First, there exists a subset
of the processors, C, of polylogarithmic size, with a majority of good processors.
Second, there is a set S of at least (1/2 + ε)n good processors, such that for all
p ∈ S, Cp = C.

Overview of Algorithm: The main idea of this protocol is for each proces-
sor p to randomly select c log n processors to poll as to the membership of C.
Unfortunately, if these requests are made directly from p, the adversary can
flood the network with “fake” requests so that the good processors are forced
to send too many responses. Thus, the polling request are made through the set
C, which counts the messages received from each processor to enforce that that
total number of polling requests sent out is not too large.

Unfortunately, this approach introduces a new problem: processor p may have
an incorrect guess about the membership of C. We solve this by having p send
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a (type 1) message containing its poll-list (Pollp) to Listp, a set of c log n
√

n
randomly sampled processors. Processor p hopes that at least one processor in
the set Listp will have a correct guess about C and will thus be able to forward
a (type 2) message containing Pollp to C. To prevent these processors q ∈ Listp
from being flooded, each such processor q only forwards a type 2 message from
a processor p if p appears in the set Forwardq , which is a set of

√
n processors

that are randomly sampled in advance. Upon receiving a < Pollp, p > (type 2)
message from any processor q, a processor in C then sends a (type 3) request
with p’s ID to each member s ∈ Pollp. More precisely, a processor in C only
processes the first

√
n such type 2 messages that it receives from any given

processor q: this is the crucial filtering that ensures that the total number of
requests answered is not too large. Upon receiving a type 3 request, < p, 3 >
from a majority of C, s sends Cs to p, a (type 4) message.

There are two remaining technical problems. First, since a confused processor,
p, can have a Cp equal to a mostly corrupt set C′, C′ can overload every confused
processor. Hence we require that any processor, p, who receives an overload
(more than

√
n log2 n) of type 3 requests wait until their own Cp is verified

before responding. Second, the processors in C handle many more requests than
the other processors. The adversary can conceivably exploit this by bombarding
confused processors which think they are in C with type 2 requests. Thus, the
algorithm begins with a verification of membership in C. Each processor p sends
a request message to a randomly selected sample (Pollp) which is responded to
by a polled processor q if and only if p ∈ Cq.

Example: An example run of our algorithm is shown in Figure 1. This figure
follows the technically challenging part of our protocol, steps 6-10, which are

p
q p

Cq

< C ><
Po

ll p
, p

, 1
>

Listp

< Pollp, p,
2 >

< p, 3 >

Pollpp p

Fig. 1. Steps 6-10 of Our Protocol
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described in detail in Algorithm 1 listed below. In Figure 1, time increases in the
horizontal direction. This figure concerns a fixed processor p that concludes p �∈ C
in the earlier parts of the algorithm (steps 2-5). For clarity, in this example, only
messages that are sent on behalf of p that eventually help p to determine C are
shown. Moreover, again for clarity, we show a best case scenario where all nodes
in Pollp are assumed to have received no more than

√
n log2 n type 3 requests.

In the first step of this example, p sends the message < Pollp, p, 1 > to all nodes
in Listp. The node q is the only node in this set such that p ∈ Forwardq , so
q forwards a type 2 message of the form < Pollp, p, 2 > to all the nodes in Cq.
In this example, Cq = C. Next all nodes in Cq send the message < p, 3 > to all
nodes in Pollp. In this example, all nodes in Pollp know the set C, so they all
send the message < C > to p in the final step.

Algorithm 1. Almost Everywhere to Everywhere
Each processor executes the following steps in any order:

1. Each processor p selects uniformly at random, independently, and with replace-
ment three subsets, Listp, Forwardp, and Pollp of processor ID’s where: |Listp| =
c
√

n log n; |Forwardp| =
√

n; |Pollp| = c log n;

Verifying Membership in C:

2. memberp ← FALSE
3. If p ∈ Cp, then p sends a message < Am I in C? > to the members of Pollp;
4. If q receives a message < Am I in C? > from a processor p ∈ Cq, q sends < Y es >

back to the p;
5. If p receives a message < Yes > from a majority of members of Pollp then p sets

memberp ← TRUE;

Determing C:

6. p sends a message < Pollp, p, 1 > (type 1 message) to each processor in Listp;
7. For each q: if < Pollp, p, 1 > is the first type 1 message received from processor

p and p ∈ Forwardq, then q sends < Pollp, p, 2 > (a type 2 message) to every
processor in Cq;

8. For each r: if memberr = TRUE then for every processor q, for the first
√

n type
2 messages of the form < Pollp, p, 2 > which are received from q, send < p, 3 >
(type 3 message) to every processor in Pollp;

9. For each s: for the first
√

n log2 n different type 3 messages of the form
< p, 3 > which are each sent by a majority of processors in Cs, send < Cs, 4 >
(type 4 message) to p;

10. If s receives the same type 4 message < C′, 4 > from a majority of processors in
Polls then
(a) s sets Cs ← C′; and
(b) s answers any remaining type 3 requests that have come from a majority of

the current Cs, i.e. for each such request < p, 3 > s sends < Cs, 4 > to p;



472 V. King and J. Saia

4 Proof of Correctness

First, we point out that the asynchronicity of the model is not a real problem
here because of the following observation:

Observation 1. In the asynchronous model, if p is waiting to hear from a set
of processors such that a majority of processors in the set are good and agree
on the same value, and if each sends that value to p, then the adversary cannot
prevent p from receiving this value in one timestep.

In what follows, we show that with high probability, all transmissions which
processors need to respond to are sent by a majority of good processors which
agree on the same value. We say that a processor is knowledgeable if it is good
and Cp = C.

Lemma 1. W.h.p., more than a 1/2+ε/2 fraction of processors of every poll-list
are knowledgeable at the start of the protocol and these remain knowledgeable.

Proof. Let c′ be any positive constant and c be the constant in the protocol.
Let X be the number of processors which are initially knowledgeable in a fixed
poll-list. Then E[X ] = (1/2 + ε)c log n. The probability that the number of
initially knowledgeable processors on the poll-list is not a majority is less than
the probability that X ≤ (1−δ)E[X ] for δ = (ε/2)/(1/2+ε). Using the Chernoff
bound, this probability is ≤ e(−δ2E[X]/2) ≤ n−c′−1 for c = 8(c′ + 1)(1/2 + ε)/ε2,
i.e., for c a constant, this is 1/nc′+1.

There are no more than n poll-lists for good processors. Thus, the probability
that any poll-list fails to have at least a 1/2 + ε/2 fraction of initially knowl-
edgeable processors is no greater than the sum of the n individual probabilities
of failure or 1/nc′

for any constant c′.
Next, we prove by contradiction that no knowledgeable processor becomes not

knowledgeable. Let p be the first processor which becomes not knowledgeable.
This implies that p resets Cp �= C, which implies that Pollp contains less than a
majority of knowledgeable processors. By assumption, the initially knowledge-
able processors in Pollp are still knowledgeable, which implies there must have
been less than a majority of initially knowledgeable processors in Pollp. But we
have shown this event does not occur w.h.p. for any poll-list.

Lemma 2. W.h.p., if every type 3 message received by every knowledgeable pro-
cessor p is responded to by p within O(log n/ log log n) steps then Theorem 4
holds. Moreover, a total of O(n3/2 log3 n|C|) bits are sent.

Proof. We fix a good processor p and first bound the probability that Pollp
is forwarded to C. The probability that a knowledgeable processor q forwards
a type 1 message sent to it by a good processor p is the probability that
p ∈ Forwardq = 1/

√
n. Since each processor p sends out c

√
n log n type 1

messages, the probability that all fail to be forwarded is the probability that for
every message, the processor q receiving it is either not knowledgeable or q is
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knowledgeable but p /∈ Forwardq . Recall that by assumption, initially no more
than 1/2 − ε fraction of processors are not knowledgeable and by the previous
lemma, this number does not grow. The probability that Pollp is not forwarded
to C by a particular processor q which receives it is therefore bounded above by
(1/2 − ε) + (1/2 + ε)(1 − 1/

√
n) = 1 − 1/2+ε√

n
. The probability that all requests

to forward fail is (1 − (1/2 + ε)/
√

n)c
√

n log n ≤ 1/nc/2.
If Pollp is forwarded by a knowledgeable processor then it is sent to every

processor in C, by the definition of knowledgeable. From the previous lemma,
and a simple Chernoff and union bound, each processor in C verifies it is in C
with high probability. Thus, since a good processor never forwards more than√

n messages, with high probability all good processors in C will send a message
of the form < p, 3 > to each processor in Pollp. In particular, a majority of
processors in C will do so. With high probability (from the previous lemma)
a majority of processors in Pollp are knowledgeable and hence upon receiving
messages from processors in C will send p the correct message which p receives
and decides correctly. Taking the union over all processors p, for any constant c′,
there is a constant c for the algorithm such that the probability of any processor
failing is no greater than 1/nc′

.
The number of bits transmitted by good processors can be calculated as fol-

lows. First we consider bits sent by processors that are knowledgeable. For the
verification phase, the total number of bits is Õ(n log n). For the next phase, each
poll-list contains O(log n) ID’s of O(log n) length for a total of O(log2 n) bits.
Each good processor forwards no more than

√
n poll-lists to the members of C for

a total of O(n3/2|C| log2 n) bits transmitted. With high probability, each mem-
ber of C transmits O(n3/2∗|poll−list|) messages each with at most O(log n) bits
per message to each member of each poll-list in the form of type 3 messages, for
O(n3/2|C| log2 n) bits in total. The knowledgeable processors which receive type
3 messages respond to them all, for a total of O(n3/2|C| log2 n) bits. The total
number of bits transmitted by knowledgable processors is thus O(n3/2|C| log2 n).
In addition, no more than n(

√
n log2 n) type-4 messages are sent by processors

while they are not knowledgeable, for a total of n(
√

n log3 n|C|) bits.

It remains to show:

Lemma 3. W.h.p., every type 3 message received by every knowledgeable pro-
cessor p is responded to by p within O(log n/ log log n) steps.

Proof. A knowledgeable processor is overloaded if there are more than
√

n log2 n
poll-lists received by C which contain it. As there are no more than n3/2 type
2 messages processed by C and each poll-list has size c log n, there can be no
more than cn/ logn processors which receive more than

√
n log2 n type 3 requests

from C.
The adversary can choose its poll lists after seeing the poll lists from all the

good processors. We will denote time step i of our algorithm to begin when i
units of time have elapsed and end just before i + 1 units have elapsed, where
a unit of time is defined to be the maximum delay of a message. We will say
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Knowp = FALSE at time i if p has not yet received the same type 4 message
from a majority of processors in Pollp, i.e. the condition for the if statement in
step 10 of our algorithm has not been satisfied, by time i. Otherwise, we will say
Knowp = TRUE. A processor p is blocked at time i if Knowp = FALSE and p
is overloaded.

Claim: With high probability, for any time step j ≥ 6, if there is a
processor with Knowp = FALSE at time step i + j, then there must
be ((εc log n)/4)i(log log n)i−1 distinct blocked processors at time j, for i =
1, ..., O(log n/ log log n).

Proof of Claim: Let L = |poll − list| = c logn. We note that since j ≥ 6,
by time step j, w.h.p., all type 1, 2 and 3 messages have been sent out and
received. Moreover, the first set of type 4 messages have been sent and received.
This proof is by induction on i.

Fix a processor p. Then we can view p as a root of a tree. Each node is a
processor; the children of each node q are the processors in Pollq. Note that
some processors may appear more than once in the tree. The degree of each
node is L.

Base Case: For i = 1. Suppose there are fewer than (ε/4)L blocked processors in
time step j. Then from Lemma 1, w.h.p., there are (1/2+ε/2)Lprocessorson every
poll-list which are knowledgeable. Then there remain (1/2+ ε/4)L knowledgeable
processors on Pollp who are not blocked and will send type 4 messages to p in the
next timestep. In time j + 1, p will hear from them and decide.

Induction Step: Let xi = (εL/4)i(log log n)i−1. Assume the induction hypothesis
holds for i− 1. Then if there is a processor with Knowp = FALSE at time i + j,
then there must be a set S of size xi−1 of blocked processors at time step j + 1.
Then it must be the case that at time j, reasoning as in the base case, each element
of S must have at least x1 blocked children (i.e., elements of its poll-list). We show
that w.h.p. there is no set S′ of size less than xi which satisfies this condition.

Fix a set S, a set of x1 children for each element of S, and a set S′. Since
the children are picked randomly and independently, the probability of having
x1 children for each element of S coming from S′ is

(xi/n)x1xi−1 ≤ (xi/n)xi log log n.

The number of ways to choose these sets is no more than
(

n

xi−1

)

Lx1xi−1

(
n

xi

)

= (ne/xi−1)xi−1Lx1xi−1(ne/xi)xi ≤ (ne/xi)cxi ;

where the last inequality holds since we can assume that xi ≤ n/2. Taking the
union bound over all possible such sets, we find that the probability of there
existing a set S′ is less than

(xi/n)(log log n−O(1))((εL/4)/ log log n)i

< 1/nc′
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for any constant c′ and xi/n ≤ n/ logn. Taking the union bound over all i yields
the claim.

Remaining Proof of Lemma: For i = O(log n/ log log n), the required number
of blocked processors exceeds cn/ logn, the maximum number the adversary is
able to block. Hence, every processor decides by time O(log n/ log log n).

5 Conclusion and Open Problems

We have shown that classical problems in distributed computing, like Byzan-
tine agreement, universe reduction, and leader election, can be solved with high
probability using only Õ(n3/2) bits of communication, even if the adversary has
unlimited resources.

Several open problems remain including the following. First, we believe that
the protocol from [12] for electing a committee that contains a 2/3+ε fraction of
good processors using polylogarithmic bits per processor can be made to work
in the asynchronous model. This would imply, together with the results in this
paper that universe reduction, Byzantine agreement, and leader election could
all be performed with Õ(n3/2) bits in the asynchronous model.

Second, we conjecture that the number of bits required for Byzantine agree-
ment in the full information model with a nonadaptive adversary is Ω(n3/2) in
both the synchronous and asynchronous models unless a superpolylogarithmic
time is incurred. Third, we ask: Is there is a load-balanced version of the protocol
presented here in which each processor needs to send only Õ(

√
n) bits? Fourth,

we ask: Can this bound be beaten if cryptographic assumptions are incorporated
into the model? Finally, can other problems like secure mulitparty computation
be solved with o(n2) bits of communication?
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Appendix: Sketch of Almost Everywhere Universe
Reduction

Here, we include a sketch of the protocol to compute almost everywhere uni-
verse reduction, excerpted from [12]. The processors are assigned to groups of
polylogarithmic size; each processor is assigned to multiple groups. In parallel,
each group then elects a small number of processors from within their group to
move on. We then recursively repeat this step on the set of elected processors
until the number of processors left is polylogarithmic.

The method used to run elections is a simple adaptation from the atomic
broadcast model to the synchronous distributed model of a subroutine in [5]:

Elect-Subcommittee: Input is processors p1, . . . , pk

with k = Ω(ln8 n).
1 For i = 1 to k,
2 Processor pi randomly selects one of k/(c1 ln3 n)
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“bins” and tells the other processors in its
committee which bin it has selected.

3 The other processors in the committee run
Byzantine Agreement to come to a consensus on
which bin pi has selected.

4 Let B be the bin with the least number of processors
in it, and let SB be the set of processors in that bin.
Arbitrarily add enough processors to SB to ensure
|SB | = c1 ln3 n.

5 Return SB as the elected subcommittee.

Although this approach is intuitively simple, there are several complications
that must be addressed.

(1) The groups must be determined in such a way that the election mechanism
cannot be sabotaged by the bad processors.

(2) After each step, each elected processor must determine the identities of cer-
tain other elected processors, in order to hold the next election.

(3) Election results must be communicated to the processors.
(4) To ensure load balancing, a processor which wins too many elections in

one round cannot be allowed to participate in too many groups in the next
round.

Item (1): we use a layered network with extractor-like properties. Every pro-
cessor is assigned to a specific set of nodes on layer 0 of the network. In order to
assign processors to a node A on layer � > 0, the set of processors assigned to
nodes on layer �−1 that are connected to A hold an election. In other words, the
topology of the network determines how the processors are assigned to groups.
By choosing the network to have certain desired properties, we can ensure that
the election mechanism is robust against malicious adversaries.

To accomplish item (2), we use monitoring sets. Each node A of the layered
network is assigned a set of nodes from layer 0, which we denote m(A). The job
of the processors from m(A) is simply to know which processors are assigned
to node A. Since the processors of m(A) are fixed in advance and known to all
processors, any processor that needs to know which processors are assigned to A
can simply ask the processors from m(A). (In fact, the querying processor only
needs to randomly select a polylogarithmic subset of processors from m(A) in
order to learn the identities of the processors in A with high probability. This
random sampling will be used to ensure load balancing.)

Since the number of processors that need to know the identities of processors
in node A is polylogarithmic, the processors of m(A) will not need to send too
many messages, but they need to know which processors need to know so they
do not respond to too many bad processors’ queries. Hence the monitoring sets
need to inform relevant other monitoring sets of this information.
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Item (3): We use a communication tree connecting monitoring sets of children
in the layered networks with monitoring sets of parents to inform the monitoring
sets which processors won each of their respective elections and otherwise pass
information to and from the individual processors on layer 0.

Item (4) is addressed by having such processors refrain from further
participation.

The protocol results in almost everywhere agreement rather than everywhere
agreement, because the adversary can control a small fraction of the monitoring
sets by corrupting their nodes. Thus communication paths to some of the nodes
are controlled by the adversary.
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We consider the consensus problem in a partially synchronous system with
Byzantine faults. In a distributed system of n processes, where each process has
an initial value, Byzantine consensus is the problem of agreeing on a common
value, even though some of the processes may fail in arbitrary, even malicious,
ways. It is shown in [11] that — in a synchronous system — 3t + 1 processes
are needed to solve the Byzantine consensus problem without signatures, where
t is the maximum number of Byzantine processes. In an asynchronous system,
Fischer, Lynch and Peterson [7] proved that no deterministic asynchronous con-
sensus protocol can tolerate even a single non-Byzantine (= crash) failure. The
problem can however be solved using randomization for benign and Byzantine
faults. For Byzantine faults, Ben-Or [2] and Rabin [12] showed that this requires
5t + 1 processes. Later, Bracha [3] increased the resiliency of the randomized
algorithm to 3t + 1.

In 1988, Dwork, Lynch and Stockmeyer [6], considered an asynchronous sys-
tem that eventually becomes synchronous (called partially synchronous system).
The consensus algorithms proposed in [6], ensure safety in all executions, while
guaranteeing liveness only if there exists a period of synchrony. Recently, several
papers have considered the partially synchronous system model for Byzantine
consensus [4,10,8,1,5]. However, [1,5] point out a potential weakness of these
Byzantine consensus algorithms, namely that they suffer from “performance
failure”. According to [1], a performance failure occurs when messages are sent
slowly by a Byzantine leader, but without triggering protocol timeouts, and the
paper points out that the PBFT leader-based algorithm [4] is vulnerable to such
an attack. Interestingly, all deterministic Byzantine consensus algorithms for
non-synchronous systems are leader-based. This raises the following fundamen-
tal question: is it possible to design a deterministic Byzantine consensus algo-
rithm for a partially synchronous system that is not leader-based? With such an
algorithm, performance failure of Byzantine processes might be harmless.

Results. Our results confirm the existence of a deterministic leader-free Byzan-
tine consensus algorithm in a partially synchronous system that is resilient-
optimal and signature-free. We started from the observation that leader-free
consensus algorithms exist for the synchronous system, both for benign faults
(e.g., the FloodSet algorithm [9]) and for Byzantine faults (e.g., the algorithm
based on interactive consistency [11]). However, these algorithms violate agree-
ment if executed during the asynchronous period of a partially synchronous
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system. Therefore we tried to combine one of these algorithms with a second
algorithm that ensures agreement in an asynchronous system.

We have applied our methodology by combining the synchronous consensus
algorithm of [11] with a new algorithm that employs mechanisms from several
consensus algorithms, e.g., Ben-Or [2], and PBFT [4] with strong validity. Let
us denote these two algorithms by A1, respt. A2. Our combined algorithm is
expressed in a round model. In each round, a correct process sends a message
to all, receives a subset of messages sent, and computes its new state based on
the messages received. Algorithm A1 ensures that at the end of t + 1 rounds,
(i) if q is a correct process, any correct process p receives either vq from q
or nothing, where vq is the value initially sent by process q, and (ii) if q is a
faulty process, any correct process p receives either some common value v from
q or nothing. Moreover, if all t + 1 rounds are executed in synchronous periods,
then all correct processes have the same set of messages at the end of t + 1
rounds. Algorithm A2 ensures safety (i.e., agreement and strong validity), while
algorithm A1 provides liveness (i.e., termination) during periods of synchrony.
Our leader-free Byzantine consensus algorithm requires 3t + 1 processes, and
t + 3 rounds per consensus instance during periods of synchrony.
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Abstract. The paper concerns time-efficient k-shot broadcasting in
undirected radio networks. In a k-shot broadcasting algorithm, each node
in the network is allowed to transmit at most k times. Both known and
unknown topology models are considered. For the known topology model,
the problem has been studied before by Ga̧sieniec et al. [14], who estab-
lished an upper bound of D + O(kn1/(k−2) log2 n) and a lower bound
of D + Ω((n − D)1/2k) on the length of k-shot broadcasting schedules
for n-node graphs of diameter D. We improve both the upper and the
lower bound, providing a randomized algorithm for constructing a k-shot
broadcasting schedule of length D + O(kn1/2k log2+1/k n) on undirected
graphs, and a lower bound of D + Ω(k · (n − D)1/2k), which almost
closes the gap between these bounds. For the unknown topology model,
we provide the first k-shot broadcasting algorithm. Assuming that each
node knows only the network size n (or a linear upper bound on it),
our randomized k-shot broadcasting algorithm completes broadcasting
in O((D + min{D · k, log n}) · n1/(k−1) log n) rounds with high prob-
ability. Moreover, we present an Θ(log n)-shot broadcasting algorithm
that completes broadcasting in at most O(D log n + log2 n) rounds with
high probability. This algorithm matches the broadcasting time of the
algorithm of Bar-Yehuda et al. [3], which assumes no limitation on the
maximum number of transmissions per node.

1 Introduction

In this paper we study the fundamental task of broadcasting in synchronous
radio networks, in both the known and unknown topology models. A radio net-
work consists of stations that can act, at any given time step (round), as either
a transmitter or a receiver. The network is modeled as an undirected graph
G(V, E), where V represents the set of stations and E represents communica-
tion feasibility, i.e., two nodes u, v ∈ V can communicate directly with each
other iff (u, v) ∈ E. In the unknown topology model, we assume that each node
knows only a linear upper bound on the number of nodes n, but does not know
anything else concerning the topology.
� Supported in part by grants from the Minerva Foundation and the Israel Ministry
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We consider a synchronous network, where communication is performed in
rounds and is assumed to have the following property: a node u ∈ V receives a
message M in a given round if and only if on that round it acts as a receiver and
exactly one of its neighbors acts as a transmitter and transmits M . Otherwise,
there are two possibilities: if none of u’s neighbors transmits, then u hears silence,
and if at least two of u’s neighbors transmit simultaneously, then a collision
occurs at u. In both cases, u does not receive any message.

We consider broadcasting, which is the following communication task. A dis-
tinguished node s, called the source, has a message M that has to delivered to
all other nodes in the network. A broadcasting schedule S in a radio network is
a list (T1, T2, . . . , Tt) of subsets of V that describes the order of transmissions:
for each round i = 1, 2, . . . , t, the set Ti ⊆ V specifies the nodes that have to act
as transmitters on round i. We assume that a node v scheduled to act as a trans-
mitter on round t will transmit the source message M iff its already received it
from one of its neighbors in some previous round. The length of the schedule S
is the number of rounds, t, and S is said to complete broadcasting if by time t,
all the network nodes have received M .

Energy efficiency is a central issue in designing the operation of ad-hoc radio
networks and sensor networks, as in many cases the only energy sources for the
stations are limited lifetime batteries. This paper concerns the use of k-shot
algorithms, where each node in the network is allowed to transmit at most k
times, hence energy is preserved at each of the stations.

Our contribution: We study the k-shot broadcasting in undirected radio net-
works.Both theknownandunknowntopologymodel are considered.For theknown
topology model, the problem has been studied before by Ga̧sieniec et al. [14], who
established an upper bound of D + O(kn1/(k−2) log2 n) and a lower bound of D +
Ω((n −D)1/2k) on the length of k-shot broadcasting schedules for n-node graphs
of diameter D. We improve both the upper and the lower bound. Specifically, in
Section 3 we present a randomized algorithm for constructing a k-shot broadcast-
ing schedule of lengthD+O(kn1/2k log2+1/k n) onundirectedgraphs,whichalmost
matches the lower bound. For the lower bound we show that on binomial bipartite
graphs, presented in [14] (see Section 3.5), any broadcasting schedule requires at
leastΩ(k ·n1/2k) rounds in order to complete broadcasting, implying a lower bound
of D + Ω(k · (n−D)1/2k) on arbitrary undirected graphs.

For the unknown topology model, we present in Section 2 a first k-shot broad-
casting algorithm. Assuming that each node knows only the network size n (or a
linear upper bound on it), our randomized k-shot broadcasting algorithm com-
pletes broadcasting in O

(
(D + min{D · k, log n}) · n1/(k−1) log n

)
rounds with

high probability. Moreover, we present a Θ(log n)-shot broadcasting algorithm
that completes broadcasting in at most O(D log n + log2 n) rounds with high
probability. This algorithm matches the broadcasting time of the algorithm
of Bar-Yehuda et al. [3], which assumes no limitation on the maximum num-
ber of transmissions per node (and is, in effect, an O(log2 n)-shot broadcasting
algorithm using expected O(log n) shots per node.) A comparative summary of
these results is provided in Table 1.
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Table 1. Summary of results on n-node networks of diameter D

Topology Our result Previous [14]
Known D + O(kn1/2k log2+1/k n) D + O(kn1/(k−2) log2 n)

D + Ω(k · n1/2k) D + Ω(n1/2k)

Unknown O
(
(D + min{D · k, log n}) · n1/(k−1) log n

)
−

k = Θ(log n): O(D log n + log2 n) −

Related work: Deterministic centralized broadcasting in radio networks was
first studied by Chlamtac and Kutten [4], who formulated the radio network
model. A lower bound of Ω(log2 n) time for broadcasting, even in O(1)-diameter
networks, was established in [1] by showing the existence of a family of radius-2
n-node networks for which any broadcast schedule requires at least Ω(log2 n)
rounds. On the other hand, for the known topology model, a sequence of papers
presented increasingly tighter upper bounds. In [5], Chlamtac and Weinstein pre-
sented an O(D log2 n)-time broadcasting algorithm for n-node radio networks
of diameter D. In [12], Gaber and Mansour proposed an O(D + log5 n)-time
broadcasting algorithm. Subsequently, Elkin and Kortsarz [11] presented a de-
terministic algorithm yielding schedules of length O(D + log4 n), Ga̧sieniec et
al. [13] presented a deterministic algorithm for constructing schedules of length
D + O(log3 n) and a randomized algorithm for computing schedules of length
D + O(log2 n), and finally Kowalski and Pelc [20] gave an optimal deterministic
algorithm yielding schedules of O(D + log2 n) rounds.

For the unknown topology model, Bar-Yehuda et al. [3] were the first to study
distributed broadcasting, and presented a randomized protocol that achieves
successful broadcast within O(D log n + log2 n) rounds with high probability.
(The paper assumes that every node knows its neighborhood, but the result
also holds for a model where each node knows only its own label.) Kushilevitz
and Mansour [21] proved a lower bound of Ω(D log(n/D)) on the problem, and
Czumaj and Rytter [9] and Kowalski and Pelc [18] later showed that this bound is
tight by presenting a randomized broadcasting algorithm whose time complexity
is O(D log(n/D) + log2 n), with high probability.

In the deterministic case, for directed n-node networks of diameter D,
Chrobak et al. [6] showed that there exists a deterministic broadcast algorithm
with time O(n log2 n). Later, Kowalski and Pelc [19] improved this result and
established an O(n log n logD) bound, and recently, De-Marco [10] established
an O(n log n log log n) bound. All proofs are non-constructive. For undirected
n-node networks of diameter D, Kowalski and Pelc [18] presented an algorithm
working in time O(n log n) and later Kowalski [17] improved this result and es-
tablished a broadcast algorithm working in time O(n log D). On the other hand,
a lower bound of Ω (n log D) was given in [8] for directed n-node networks of
diameter D, and a lower bound of Ω(n log n/ log(n/D)) was given in [18] for
undirected n-node networks of diameter D.

Energy efficient radio broadcasting was studied in the context of geometric
networks, where the network nodes are embedded on the Euclidean plane. One
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of the main problems studied in this context is the energy efficient broadcast
tree problem, where the goal is to find a transmission schedule that minimizes
the total power consumption, based on a directed spanning tree rooted at the
source node s. When the stations are spread in d-dimensional Euclidean space
(d > 1), the minimum spanning tree (MST) based algorithm achieves constant
approximation ratio for the problem (see [2,7,16,23]). On the other hand, the
problem is known to be NP-hard [7] and if the distance function is arbitrary,
then the problem has no logarithmic factor approximation unless P = NP [15].

2 A k-Shot Broadcast Algorithm in Unknown Topology

This section considers k-shot broadcasting in an unknown topology, where the
knowledge available to each node is limited to n, the number of nodes in the
network (or a linear upper bound on it). The section is organized as follows. Sub-
section 2.1 presents a k-shot broadcast algorithm that is efficient for k ≤ log n

6 .
In subsection 2.2 we show how to extend this algorithm to a k-shot broadcast
algorithm for large k (i.e., k ≈ (log n)/δ for constant δ ≥ 1), which completes
broadcasting almost as fast as the best broadcast algorithm without any con-
straints on the allowed number of transmissions per node.

2.1 A k-Shot Broadcast Algorithm for Small k

Consider a network G(V, E) of diameter D, where |V | = n. We present a
randomized k-shot broadcast algorithm that completes broadcasting on G in
O((D + min{D · k, log n}) ·n1/(k−1) log n) rounds with high probability. (We say
that an event holds with high probability if its probability is at least 1−n−1/(k−1).)
Let ΓG(w) ⊆ V be the set of neighbors of w in G and let degG(w) = |ΓG(w)|
be w’s degree in G. (We may omit the subscript G when it is clear from the
context.)

The operation of a broadcast algorithm can be viewed from two different
angles. One is the viewpoint of a node v ∈ V that has already received the
message M , and whose goal is to deliver the message M to its neighbors Γ (v).
The other viewpoint is that of a node w ∈ V that has not received M yet;
the goal of the algorithm is to ensure that w does receive M from one of its
neighbors in Γ (w). Our analysis takes the second viewpoint. In our broadcasting
algorithm, time is divided into epochs, with each epoch divided into Ψ phases
(for integer Ψ ≥ 1), and with each phase consisting of O(log n) rounds (time
slots). Consider a node w ∈ V that has not receive M so far, and let Λ(w) ⊆
Γ (w) be a subset of w’s neighbors that have already received M . Assume that
Λ(w) �= ∅. The algorithm assigns each node to a single transmission round, and
its goal (w.r.t. w) is to have a round in which exactly one node of Λ(w) will
transmit, which will ensure that w receives M on that round. In particular, the
broadcasting algorithm invokes Procedure Epoch k times at each node u, and in
each invocation it assigns u to one of Ψ phases. The goal is to assign the set Λ(w)
to a large number of phases among all considered phases. We say that a phase is
active with respect to w if a nonempty subset of w’s neighbors is assigned to this
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phase. For a nonempty subset Λ′(w) ⊆ Λ(w) assigned to the same phase, the
algorithm invokes Procedure Phase, which ensures that there will be a round
with exactly one node of Λ′(w) transmitting, with probability at least 31/48
for |Λ(w)| ≥ 2, and with probability 1 for |Λ(w)| = 1. Thus intuitively, the
broadcast algorithm ensures that for small (respectively, large) Λ(w) there will
be more than |Λ(w)|/2 (resp., Ψ/8) active phases with respect to w with high
probability, which implies that w will receive the message with high probability.

We now turn to describing the broadcasting algorithm in detail. We first
describe a basic 1-shot transmission procedure named Phase. Let T = �log n�+
5. A node that participates in Procedure Phase randomly selects a number r
to be i ∈ {1, ..., T − 1} with probability 2−i and otherwise selects r = T (with
probability 2−T +1). Next, it transmits the message M to all its neighbors on
round T ime ≡ r mod T . The formal code is presented in Figure 1.

Procedure Phase(M, T )

1. Random selection:
(a) Set r′(v) ← i with probability 2−i, for i > 0.

(b) Set r(v) ←
{

r′(v), if r′(v) ≤ T ,
T , otherwise.

2. Send the message M to all neighbors on round T ime ≡ r(v) mod T .

Fig. 1. Procedure Phase

Procedure Phase is a simple 1-shot procedure, where each node transmits in
exactly one round.

Lemma 1. Consider a node w ∈ V . If a nonempty subset of w’s neighbors
executes Procedure Phase during the time interval [1, T ] and they all start at
T ime = 1, then the probability that w receives the message M during this time
interval is at least 31/48.

(Throughout, proofs are deferred to the full version of the paper.)
Next we describe another 1-shot procedure named Epoch, which consists of Ψ

phases (i.e., ΨT rounds). A node executing Procedure Epoch selects uniformly
at random exactly one of Ψ potential phases in which it participates and executes
Procedure Phase. The formal code is presented in Figure 2.

Procedure Epoch takes at most ΨT rounds. We next prove that for any
given node w, if a nonempty subset of w’s neighbors executes Procedure Epoch

Procedure Epoch(M, Ψ, T )

1. Select uniformly at random an integer b from the set {0, 1, ..., Ψ − 1}.
2. On round T ime ≡ bT + 1 mod ΨT , invoke Procedure Phase(M, T ).

Fig. 2. Procedure Epoch
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simultaneously, then w will receive the message M with probability at least
1− 1/Ψ during the ΨT rounds of the procedure.

We start with a lemma stating three technical observations referring to placing
balls in bins. Given x balls and y bins, consider a process in which each ball is
placed uniformly and independently (with repetitions) in a random bin. For
x ≤ y/8, we say that the process ended successfully when there exists a bin
occupied with exactly one ball. In order to give a lower bound for the success
probability, we bound from below the probability that more than x/2 bins are
occupied, which necessarily yields a bin with exactly one ball. For x > y/8,
we say that the process ended successfully when more than y/16 bins are been
occupied. Let P(x, y), (respectively, P ′(x, y)) be the probability of success, i.e.,
of having more than x/2, (resp., y/16) occupied bins.

Lemma 2. Let y ≥ 64. The success probabilities satisfy the following.

(C1) P(x, y) ≥ 1− 1/y, for x = 2, 3,
(C2) P(x, y) ≥ 1− (2e/y)2, for 3 < x ≤ y/8, and
(C3) P ′(x, y) > 1− (2e/y)2, for x > y/8.

Consider a node w ∈ V . The process of placing balls in bins is used to model
a random selection of transmission phases made by w’s neighbors. We say that
a phase is active with respect to w if at least one of its neighbors participates
in that phase. Note that success of the first type (where more than x/2 bins
have been occupied) implies the existence of a phase selected by exactly one
neighbor of w among all considered neighbors, which necessarily yields a round
where exactly one neighbor of w transmits, and thus implies that w will receive
M on that round. Success of the second type (where more than y/16 bins have
been occupied) implies the existence of more than y/16 active phases among all
considered subsets of phases, which implies that w will receive M during these
phases with high probability.

Using Lemmas 1 and 2, we prove the following.

Lemma 3. Let Ψ ≥ 64. Consider a node w ∈ V . If an nonempty subset of w’s
neighbors executes Procedure Epoch during the time interval [1, ΨT ] and they
all start at T ime = 1, then the probability that w receives the message M during
this time interval is at least 1− 1/Ψ .

Now we present our k-shot broadcast algorithm, named Broadcast. In this
algorithm, once node receives the source message M , it executes Procedure
Epoch(M, Ψ, T ) k times, starting on rounds corresponding to T ime ≡ 1 mod
ΨT . The formal code of Algorithm Broadcast is presented in Figure 3.

Relying on Lemma 3, we get the following.

Lemma 4. Let Ψ ≥ 64 and fix the parameter k. Algorithm Broadcast(M, k,
Ψ) is a k-shot algorithm, and it completes broadcasting on an n-node network
of diameter D within O ((D + min{D · k, log n}) · ΨT ) rounds with probability at
least (1− 1/n)(1− n(1/Ψ)k).

For a fixed parameter k, let Ψ = max{64, �2n1/(k−1)�} and T = log n+5. Lemma
4 yields:
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Algorithm Broadcast(M, k, Ψ)

1. Wait until receiving the message M .
2. Do k times:

On round T ime ≡ 1 mod ΨT , execute Procedure Epoch(M, Ψ, T ).

Fig. 3. Algorithm Broadcast

Theorem 1. Algorithm Broadcast(M, k, max{64, �2n1/(k−1)�}) is a k-shot al-
gorithmand it completes broadcasting inO((D + min{D · k, log n})·n1/(k−1) log n)
rounds with probability at least 1− n−1/(k−1).

2.2 A Fast k-Shot Broadcasting Protocol

We now show that for any constant integer parameter δ ≥ 1, setting k =
�(log n)/δ� and Ψ = 4δ, Algorithm Broadcast(M, k, Ψ) is a k-shot algorithm
that completes broadcasting in O(D log n + log2 n) · Ψ = O((D log n) + log2 n)
rounds with probability at least 1− 2/n. For δ > 2, this follows immediately by
Lemma 4. That lemma does not apply for δ = 1, 2, since Ψ must be at least 64
for Lemma 3 to apply. Thus, for δ = 1, 2, we analyze the success probability of
Procedure Epoch directly (using Lemma 2).

Observation 2 Consider a node w ∈ V . If a nonempty subset of w’s neighbors
executes Procedure Epoch(M, 4δ) during the time interval [1, 4δT ] and they all
start at T ime = 1, then the probability that w receives the message M during
this time interval is at least 1− 1/4δ, for δ = 1, 2.

Theorem 3. Consider an n-node network. For constant δ, let k = �(log n)/δ�
and Ψ = 4δ. Algorithm Broadcast(M, k, Ψ) is a k-shot algorithm that com-
pletes broadcasting in O(D log n+log2 n) ·4δ = O((D log n)+log2 n) rounds with
probability at least 1− 2/n.

This result should be compared with the BGI algorithm [3], the fundamen-
tal broadcast algorithm for wireless networks of unknown topology. The BGI
algorithm consists of 2 log n phases. In each phase, each node transmits on av-
erage twice, hence the expected number of transmissions per node is 4 logn and
each node transmits at most 4 log2 n times. Note that for δ = 1, Algorithm
Broadcast is fast as the BGI algorithm, and in addition it is energy efficient,
as each node transmits at most log n times.

3 Near-Optimal k-Shot Broadcasting in Known Topology

Consider a radio network modeled as an n-node directed graph G(V, E). In this
section we present a (centralized) scheduling algorithm generating k-shot broad-
cast schedules of length O(kn1/2k log2+1/k n), which is almost optimal given the
aforementioned lower bound of Ω(k · n1/2k). Specifically, we first present a ran-
domized algorithm named RandSchedule that produces broadcast schedules
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of length at most O(kn1/2k log1+1/k n) on bipartite graphs, and then use the
technique of [14] to extend the algorithm to one applying to arbitrary graphs
(paying an additional logarithmic factor in schedule length).

The randomized algorithm RandSchedule applies to a bipartite graph B =
(U, L, E). Assume that all the nodes of U know the source message M and
the goal is to deliver the message to all nodes of L. Assume that 2 ≤ k <

log n
2 log log n . Note that for k = 1 one can use the efficient deterministic 1-shot
algorithm described in [14], obtaining schedules of length O(

√
n). Moreover, for

k ≥ log n
2 log log n one can execute the broadcast algorithm for unknown topology

presented in Section 2.
Our randomized scheduling algorithm improves upon the broadcast length

of O(k · n1/(k−2) log n) achieved by Algorithm RandBroadcast(k) [14]. The
bottleneck of that broadcast algorithm are nodes of degree at most 3. Our algo-
rithm makes use of a technique of partitioning the schedule into sets in base k
(see Section 3.1) that overcomes this bottleneck, by ensuring that all the nodes
of degree at most 3 will receive the source message with probability 1.

The section is organized as follows. In Section 3.1, we begin with a technical ob-
servation referring to partitions of a set into subsets in base k. Next, in Section 3.2,
we present a scheduling algorithm that produces a broadcast schedule of length
Õ(k · k

√
max{|U |,√n}), only slightly improving on the previous algorithm of [14].

Later, in Section 3.3, we present a composition procedure, and in Section 3.4 we
present our final algorithm, which constructs a broadcast schedule of the desired
length, O(kn1/2k log1+1/k n).

3.1 Partitions of a Set to Subsets in Base k

In this subsection we describe a method for partitioning a set into subsets in base
k, which will assist us in designing the scheduling algorithm. Let x be a positive
integer of the form ψk for integer ψ. For simplicity, denote [y] = {0, 1, ..., y− 1}
and [y]+ = {1, ..., y} for any positive integer y, and denote X = [x] = {0, 1, ..., x−
1}. Consider the representation in base ψ of an integer z ∈ X . Denote the �’th
digit of z in base ψ by i�(z) , i.e., i�(z) = i� = � z

ψ� � mod ψ. Hence,

z = ik−1(z) · ψk−1 + ik−2(z) · ψk−2 + ... + i1(z) · ψ + i0(z).

For a given function f : X → X , define a sequence of projection functions
f0, ..., fk−1, where f� : X → [ψ] yields the �’th digit of f . i.e., f�(z) = i�(f(z)),
for any z ∈ X and � ∈ [k]. In addition, define a partition of X into a sequence
of sets in base k with respect to f as a follows:

X(f)j
� = {z ∈ X | f�(z) = j}.

Let X(f, Z) = {X(f)j
� | X(f)j

� ∩ Z �= ∅, � ∈ [k] and j ∈ [ψ]} and f(Z) = {f(z) |
z ∈ Z} for any subset Z ⊆ X and let f�(Z) = {f�(z) | z ∈ Z} for any subset
Z ⊆ X and any � ∈ [k]. Note that X(f, X) = {X(f)j

� | j ∈ [ψ], � ∈ [k]} is
a collection of k · ψ subset of X , and {X(f)j

� | j ∈ [ψ]}, for any � ∈ [k], is a
partition of X into ψ disjoint subsets.
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We say that f : X → X (respectively, π : X → X) is a random function
(resp., permutation) if it is selected with uniform distribution from the set {f :
X → X | f is a function } (resp., {π : X → X | π is a permutation} of functions
(resp., permutations) over X . Note that when f is a random function, so is f�

for every � ∈ [k], and conversely, if f0, ..., fk−1 : X → [ψ] are random functions,
then their combined function f : X → X (such that f(z) =

∑k−1
�=0 f�(z) · ψ� ) is

random as well. Using Lemma 2 again, we have the following.

Lemma 5. For integers ψ ≥ 64 and k ≥ 1, let x = ψk and X = [x].
For a subset Z ⊆ X, we have:

(C1) If |Z| ≤ 3, then there exist indices � ∈ [k] and j ∈ [ψ] such that
|X(π)j

� ∩ Z| = 1.
(C2) If 4 ≤ |Z| ≤ ψ/8, then the probability that |X(π, Z)| > |Z|/2 (hence

there exists a subset X(π)j
� ∈ X(π, Z) such that |X(π)j

� ∩ Z| = 1) is at least
1− (4e2)k · x−2.

(C3) If |Z| > ψ/8, then the probability that |X(π, Z)| > ψ/16 is at least
1− (4e2)k · x−2.

3.2 A k-Shot Broadcast Schedule of Length Õ(k · k
√

max{|U |, √
n})

on bipartite graphs

Consider a bipartite graph B(U, L, E), where U = {u0, ..., u|U|−1}. In this sub-
section we present an algorithm named RandSchedule−, for finding a k-shot
broadcast schedule whose length depends on max{|U |,

√
n}. The algorithm con-

sists of two stage. The first stage is centralized, and the second stage is local.
The algorithm operates as follows. In the first (centralized) stage, initially set
ψ ← max

{⌈
k
√
|U |

⌉
, 64 � 2k

√
n�
}

, x ← ψk, X ← [x] and T ← 5 + log n. Next,
select uniformity at random a permutation π : X → X . Define a collection of
kψ subsets X(π)j

� of X for every j ∈ [ψ] and � ∈ [k], where X(π)0� , ..., X(π)ψ−1
� ,

for every � ∈ [k], is a partition of X into ψ disjoint subsets.
In the second (local) stage, each node ui ∈ U selects k random numbers

r0(i), ..., rk−1(i) (similarly to the random selection in Procedure Phase of Sub-
section 2.1), where r�(i) is selected to be b ∈ {1, ..., T − 1} with probability 2−b

and r�(i) = T otherwise (with probability 2−T +1), for every � ∈ [k]. Finally,
each subset X(π)j

� is partitioned into T disjoint subsets X(π, r)j
�,b according to

the random number r�(i), i.e., X(π, r)j
�,b ← {i | i ∈ X(π)�

j and r�(i) = b}.
The schedule is now defined as follows. Order the kψT sets X(π, r)j

�,b arbi-
trarily, getting the sequence X1, ..., XkψT . Now, for s = 1, ..., kψT , let all the
vertices ui such that i ∈ Xs transmit simultaneously at round s. Hence the over-
all time required for this broadcasting schedule is kψT rounds. Note that each
vertex belongs to exactly k such subsets.

The formal code of Algorithm RandSchedule− is described in Figure 4.
Using Lemma 5, we get:

Lemma 6. The schedule S returned by Algorithm RandSchedule− maintains
the following properties.
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Algorithm RandSchedule−(B(U, L, E))
/* U = {u0, ..., u|U|−1} and |U ∪ L| = n */

/* Centralized stage */

1. ψ ← max
{⌈

k
√

|U |
⌉

, 64 · � 2k
√

n�
}
, x ← ψk, X ← [x] and T ← 5 + log n;

2. Select a random permutation π : X → X over the set X.
3. Construct the sets X(π)j

�, for every j ∈ [ψ] and � ∈ [k];
/* Local stage */

4. For every ui ∈ U and � ∈ [k] do:
(a) Set r′

�(i) ← b with probability 2−b, for b > 0.

(b) Set r�(i) ←
{

r′
�(i), if r′

�(i) ≤ T ,
T , otherwise.

5. Construct the transmitting sets X(π, r)j
�,b ← {i | i ∈ X(π)j

� and r�(i) = b},
for every j ∈ [ψ], � ∈ [k] and b ∈ [T ]+;

6. Return the schedule S ← 〈{ui | i ∈ X(π, r)j
�,b} : � ∈ [k], j ∈ [ψ], b ∈ [T ]+〉.

Fig. 4. Algorithm RandSchedule−(B(U, L, E))

(C1) S is a k-shot schedule.
(C2) For every w ∈ L, there exists a transmitting set X(π, r)j

�,b ∈ S such that
|Γ (w) ∩X(π, r)j

�,b| = 1 (hence w receives the message), with probability
at least 1− 1/2n.

(C3) Schedule S is broadcasting schedule with probability at least 1/2.

The length of the schedule produced by Algorithm RandSchedule− depends
on max{|U |,

√
n}, but the size of U may be linear in n. Thus the schedule length

is bounded from above by Õ(k · n1/k). In order to reduce the schedule length
to Õ(k · n1/2k), we next develop a composition procedure, presented in the next
section, that reduces the number of nodes in U by merging some of them into
larger ”composed nodes”, while maintaining some restrictions designed to ensure
correctness and efficiency. Later, in Section 3.4, we show how to combine the ideas
of Algorithm RandSchedule− and the composition procedure to design our
final algorithm, named RandSchedule, that produces a broadcasting schedule
of shorter length, Õ(k · n1/2k).

3.3 The Composition Procedure

Consider a bipartite graph B = (U, L, E). This subsection describe a composi-
tion procedure named Comp that transforms a bipartite graph B(U, L, E) into
another bipartite graph C = (U , L, E), where L remains the same and U is a set
of composed nodes. Each composed node consists of a subset of U , and together
they partition U into disjoint subsets, i.e.,

⋃
V∈U V = U and V ′ ∩ V ′′ = ∅ for

every pair of composed nodes V ′,V ′′ ∈ U .
Consider a node w ∈ L. We say that there is an overlap in C with respect

to w, if there exist two neighbors of w in U that were composed into the same
node in U , i.e., there exists a V ∈ U such that |V ∩ ΓB(w)| ≥ 2.



Efficient k-Shot Broadcasting in Radio Networks 491

We use an integral shrinkage parameter ∆ > 1. The composition procedure
maintains the following four properties. First, it ensures that |U| ≤ ∆ ·

√
|L|.

Second, it ensures that if degB(w) ≤ ∆, then ensure that there is no overlap
with respect to w in C, i.e., if degB(w) ≤ ∆, then |V ∩ ΓB(w)| ≤ 1 for every
V ∈ U . Third, if degB(w) ≤ ∆, then Comp preserves the degree of w in C, (i.e.,
degC(w) = degB(w)) and if degB(w) > ∆, then an overlap with respect to w
may occur, but the procedure ensures that degC(w) ≥ ∆. Fourth, it ensures that
there exists an edge (V , w) ∈ E iff there exists a node u ∈ V such that (u, w) ∈ E,
i.e., E = {(V , w) | ΓB(w) ∩ V �= ∅}.

The composition procedure works as follows. First, initialize the set of com-
posed nodes U to be a subset with exactly one node for each node in U , i.e.,
V0 ← {u0}, ...,V|U|−1 ← {u|U|−1}. Then, update the edge set to satisfy the fourth
property, i.e., E = {(Vi, w) | (ui, w) ∈ E}. Next, in a greedy manner, as long as
there exist two composed nodes V ′,V ′′ such that V ′∪V ′′ does not create an over-
lap for any w of degree at most ∆ in C (i.e., degC(w) ≤ ∆), merge these nodes
into a single composed node (deleting the other from U), and then update the
set of edges, i.e., V ′ ← V ′∪V ′′, U ← U \{V ′′} and E ← {(V , w) | ΓB(w)∩V �= ∅}.
The formal code is described in Figure 5.

Procedure Comp(B(U,L, E),∆)

1. For every u ∈ U do: V ← {u};
2. E ← {(Vi, w) | (ui, w) ∈ E};
3. While there exist two composed nodes V ′ and V ′′ such that |(V ′ ∪ V ′′) ∩

ΓB(w)| ≤ 1 for any node w ∈ L of degree at most ∆ in C (i.e., degC(w) ≤ ∆)
do:
(a) V ′ ← V ′ ∪ V ′′;
(b) U ← U \ {V ′′};
(c) E ← {(V, w) | ΓB(w) ∩ V = ∅}; /* Update edges set */

4. Return C (U , L, E);

Fig. 5. Procedure Comp

Lemma 7. The resulting graph C(U , L, E) of Procedure Comp(B(U, L, E), ∆)
maintains the following properties.

(P1) |U| ≤ ∆ ·
√
|L|.

(P2) There is no overlap in C with respect to nodes of degree at most ∆ − 1,
i.e., |ΓC(w) ∩ V| ≤ 1 for any V ∈ U and any w ∈ L such that degC(w) < ∆.

(P3) degC(w) ≥ min{degB(w), ∆}, with equality when degB(w) ≤ ∆.
(P4) There is an edge (V , w) ∈ E if and only if ΓB(w) ∩ V �= ∅.

3.4 A k-Shot Broadcasting Schedule on Bipartite Graphs of Length
O(kn1/2k log1+1/k n)

Now we are ready to design our final algorithm, named RandSchedule, that
produces a k-shot broadcasting schedule of length O(kn1/2k log1+1/k n) on bi-
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partite graphs, which is almost optimal. Consider a bipartite graph B(U, L, E),
where U = {u0, ..., u|U|−1}. Let y = |U | and Y = [y].

Algorithm RandSchedule operates as follows. First we execute Procedure
Comp on B(U, L, E) with parameter ∆ = 8 logn and get a bipartite graph
C(U , L, E). Subsequently, Algorithm RandSchedule is similar to Algorithm
RandSchedule−. In particular, we apply the centralized stage of Algorithm
RandSchedule− on U by setting ψ = max

{⌈
k
√
|U|

⌉
, 64 � 2k

√
n�
}
, x = ψk and

X = [x]. Then we select (uniformly at random) a permutation π : X → X
over the set X and define a collection of kψ subsets X(π)j

� of X for every
j ∈ [ψ] and � ∈ [k]. Note that y may be linear in n, but x is bounded by
O((64k + log n)

√
n), since |U| = O(

√
n log n) by property (P1) of Lemma 7.

Thus ψ = O(n1/2k log1/k n).
In the second stage, similarly to the local stage of AlgorithmRandSchedule−,

each node ui ∈ U selects k random numbers, where r�(i) is randomly set to be
b ∈ {1, ..., T − 1} with probability 2−b and otherwise set to r�(u) = T , for every
� ∈ [k]. Then, we define a collection of kψ subsets Y (π, r, B, C)j

� ⊆ Y , where

Y (π, r, B, C)j
� = {i | ui ∈ Vl and l ∈ X(π)j

�},

for every j ∈ [ψ] and � ∈ [k]. For simplicity, denote Y j
� = Y (π, r, B, C)j

� . Note that
X(π)0� , ..., X(π)ψ−1

� , for any � ∈ [k], is a partition of X into ψ disjoint subsets and
Y 0

� , ..., Y ψ−1
� , for any � ∈ [k], is a partition of Y into ψ disjoint subsets. Finally,

each subset Y j
� is partitioned into T disjoint subsets Y j

�,b = Y (π, r, B, C)j
�,b,

according to the random numbers r�(i), i.e., Y j
�,b ← {i | i ∈ Y j

� and r�(i) = b}.
The schedule is now defined as follows. Order the kψT sets Y j

�,b arbitrarily,
getting the sequence Y1, ..., YkψT . Now for s = 1, ..., kψT , let all the vertices ui

such that i ∈ Ys transmit simultaneously at round s. Hence the over all time
required for this broadcasting schedule is kψT rounds. Note that each vertex
belongs to exactly k such subsets.

The formal code of Algorithm RandSchedule described in Figure 6.
Using Lemmas 5, 6 and 7, we get:

Lemma 8. Algorithm RandSchedule returns a k-shot broadcasting schedule
of length O(kn1/2k log1+1/k n) with probability at least 1/2.

We can execute Algorithm RandSchedule repeatedly until getting a sched-
ule that completes broadcast (failing with negligible probability after n at-
tempts). Therefore, we have the following.

Theorem 4. Algorithm RandSchedule is a randomized k-shot broadcasting
algorithm that constructs (with high probability, in polynomial time) broadcast
schedules of length at most O(k · n1/2k log1+1/k n) on bipartite graphs.

Moreover, the conclusion of [14] that any O(f(n))-time k-shot broadcasting
scheme for bipartite graphs admits D+O(f(n) log n) time broadcast in arbitrary
graphs of diameter D (see the relation between Theorem 4.9 and Corollary 4.10
therein) implies the following.
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Algorithm RandSchedule(B(U, L, E))

1. C(U , L, E) ← Comp(B(U,L, E),∆ = 8 log n);
2. ψ ← max

{⌈
k
√

|U|
⌉

, 64 � 2k
√

n�
}
, x ← ψk, X ← [x] and T ← 5 + log n;

3. Select a random permutation π : X → X over the set X.
4. Construct the sets X(π)j

�, for every j ∈ [ψ] and �[k];
5. Construct the sets Y j

� = {i | ui ∈ Vl and l ∈ X(π)j
�} , for every j ∈ [ψ] and

�[k];
6. For every ui ∈ U and each � ∈ [k] do:

(a) Set r′
�(i) ← b with probability 2−b, for b > 0.

(b) Set r�(i) ←
{

r′(i), if r′(i) ≤ T ,
T , otherwise.

7. Construct the transmitting sets Y j
�,b ← {i | i ∈ Y j

� and r�(i) = b}, for every
j ∈ [ψ], � ∈ [k] and b ∈ [T ]+;

8. Return schedule S ← 〈{ui | i ∈ Y j
�,b} : � ∈ [k], j ∈ [ψ], b ∈ [T ]+〉;

Fig. 6. Algorithm RandSchedule(B(U, L, E))

Corollary 1. There exist a randomized algorithm for generating (with high
probability, in polynomial time) k-shot broadcast schedules of length at most
D + O(k · n1/2k log2+1/k n), in every radio network of size n and diameter D.

3.5 Lower Bound

We establish a lower bound of D +Ω(k · (n−D)1/2k) for broadcasting in known
topologies, improving on the lower bound of D + Ω((n − D)1/2k) presented in
[14]. Namely, we show that there exist radio networks in which every k-shot
broadcasting schedule requires to be of length at least D + Ω(k · (n −D)1/2k).
To prove this, we first show that for any positive integer n there exists an n-
node bipartite graph on which any k-shot broadcasting schedule requires to be
of length at least Ω(k · n1/2k).

Consider the binomial graph B(x) = ({s} ∪ U ∪ L, E) presented in [14]. This
graph contains n = x +

(
x
2

)
+ 1 nodes, where U = {u1, ..., ux} and L = {wij |

1 ≤ i < j ≤ x}. The node s is connected to all the nodes in U , and each node
wij ∈ L (for 1 ≤ i < j ≤ x) is connected to exactly two nodes ui and uj in
U , i.e., E = {(s, u) | u ∈ U}

⋃
{(ui, wij), (uj , wij) | 1 ≤ i < j ≤ x}. In the first

step, the message is transmitted by s to reach all the nodes in U . Our analysis
concerns the process by which the message is disseminated from the nodes of U
to the nodes of L.

Lemma 9. Consider a binomial bipartite graph B(x), where x positive inte-
ger. Then any k-shot broadcasting schedule for B(x) requires at least k·x1/k

e − e
transmission rounds.

Recall that the number of nodes in B(x) is n =
(
x
2

)
+ x + 1 ≥ x2/2, thus t must

be greater than
√

2k·n1/(2k)

e − e, yields our lower bounds for bipartite graphs.
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Theorem 5. There exist bipartite graphs of size n in which any k-shot broad-
casting schedule requires Ω(k · n1/2k) transmission rounds.

Using the same argument as in the proof of Theorem 2.1 in [14], we come to the
following conclusion.
Corollary 2. There exist bipartite graphs of size n and diameter D in which
any k-shot broadcasting schedule requires D + Ω(k · (n−D)1/(2k)) rounds.
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2. Ambühl, C.: An optimal bound for the MST algorithm to compute energy efficient
broadcast trees in wireless networks. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1139–1150.
Springer, Heidelberg (2005)

3. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in
radio networks: an exponential gap between determinism and randomization. J.
Compt. Syst. Science 45, 104–126 (1992)

4. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis
and protocol design. IEEE Trans. Communications 33, 1240–1246 (1985)

5. Chlamtac, I., Weinstein, O.: The wave expansion approach to broadcasting in mul-
tihop radio networks. IEEE Trans. Communications 39, 426–433 (1991)

6. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. In: Proc. 41st Symp. on Foundations of Computer Science (FOCS), pp.
575–581 (2000)

7. Clementi, A.E.F., Crescenzi, P., Penna, P., Rossi, R., Vocca, P.: On the complexity
of computing minimum energy consumption broadcast subgraphs. In: Proc. 18th
Symp. on Theoretical Aspects of Computer Science (STACS), pp. 12–131 (2001)

8. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proc. 22nd ACM-SIAM Symp.
on Discrete Algorithms (SODA), pp. 709–718 (2001)

9. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unkown
topology. In: Proc. 44rd IEEE Symp. on Foundations of Computer Science (FOCS),
pp. 492–501 (2003)

10. De Marco, G.: Distributed broadcast in unknown radio networks. In: Proc. 29th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 208–217 (2008)

11. Elkin, M., Kortsarz, G.: Improved schedule for radio broadcast. In: Proc. 26th
ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 222–231 (2005)

12. Gaber, I., Mansour, Y.: Centralized broadcast in multihop radio networks. Journal
of Algorithms 46(1), 1–20 (2003)

13. Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology ra-
dio networks. In: Proc. 24th ACM symp. on Principles of Distributed Computing
(PODC), pp. 129–137 (2005)

14. Ga̧sieniec, L., Kantor, E., Kowalski, D.R., Peleg, D., Su, C.: Time efficient k-shot
broadcasting in known topology radio networks. Distributed Computing 21(2),
117–127 (2008)

15. Guha, S., Khuller, S.: Improved methods for approximating node-weighted steiner
trees and connected dominating sets. Information and Computation 150, 57–74
(1999)



Efficient k-Shot Broadcasting in Radio Networks 495

16. Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adaptive broadcast con-
sumption (abc), a new heuristic and new bounds for the minimum energy broadcast
routing problem. In: Networking, pp. 866–877 (2004)

17. Kowalski, D.R.: On selection problem in radio networks. In: Proc. 24th ACM symp.
on Principles of Distributed Computing (PODC), pp. 158–166 (2005)

18. Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. In:
Proc. 22nd ACM symp. on Principles of Distributed Computing (PODC), pp. 73–
82 (2003)

19. Kowalski, D.R., Pelc, A.: Faster deterministic broadcasting in ad hoc radio net-
works. In: Proc. 20th Symp. on Theoretical Aspects of Computer Science (STACS),
pp. 109–120 (2003)

20. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology
radio networks. Distributed Computing 19, 185–195 (2007)

21. Kushilevitz, E., Mansour, Y.: An ω(d log(n/d)) lower bound for broadcast in radio
networks. SIAM J. on Computing 27, 702–712 (1998)

22. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University
Press, Cambridge (2005)

23. Wan, P.J., Calinescu, G., Li, X.Y., Frieder, O.: Minimum-energy broadcast routing
in static ad hoc wireless networks. In: Proc. 20th Joint Conf. of the IEEE Computer
and Communications Societies (INFOCOM), pp. 1162–1171 (2001)



Keeping Mobile Robot Swarms Connected

Alejandro Cornejo1, Fabian Kuhn1, Ruy Ley-Wild2, and Nancy Lynch1

1 MIT, Cambridge MA 02139, USA
{acornejo,fkuhn,lynch}@csail.mit.edu

2 CMU, Pittsburgh PA 15213, USA
rleywild@cs.cmu.edu

Abstract. Designing robust algorithms for mobile agents with reliable
communication is difficult due to the distributed nature of computation,
in mobile ad hoc networks (MANETs) the matter is exacerbated by the
need to ensure connectivity. Existing distributed algorithms provide co-
ordination but typically assume connectivity is ensured by other means.
We present a connectivity service that encapsulates an arbitrary motion
planner and can refine any plan to preserve connectivity (the graph of
agents remains connected) and ensure progress (the agents advance to-
wards their goal). The service is realized by a distributed algorithm that
is modular in that it makes no assumptions of the motion-planning mech-
anism except the ability for an agent to query its position and intended
goal position, local in that it uses 1-hop broadcast to communicate with
nearby agents but doesn’t need any network routing infrastructure, and
oblivious in that it does not depend on previous computations.

We prove the progress of the algorithm in one round is at least
Ω(min(d, r)), where d is the minimum distance between an agent and its
target and r is the communication radius. We characterize the worst case
configuration and show that when d ≥ r this bound is tight and the algo-
rithm is optimal, since no algorithm can guarantee greater progress. Fi-
nally we show all agents get ε-close to their targets within O(D0/r+n2/ε)
rounds where n is the number of agents and D0 is the sum of the initial
distances to the targets.

1 Introduction

Motivation. Designing robust algorithms for mobile agents with reliable commu-
nication is difficult due to the distributed nature of computation. If the agents
form a mobile ad hoc network (MANET) there is an additional tension be-
cause communication is necessary for motion-planning, but agent movement may
destabilize the communication infrastructure. As connectivity is the core prop-
erty of a communication graph that makes distributed computation possible,
algorithms for MANETs must reconcile the interaction between communication
and motion planning in order to preserve connectivity.

Existing distributed algorithms for MANETs provide coordination but typi-
cally sidestep the issue of connectivity by assuming it is ensured by other means.
For example, algorithms on routing [1,2], leader election [3], and mutual exclu-
sion [4] for MANETs assume they run on top of a mobility layer that controls the
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trajectories of the agents. Those algorithms deal with connectivity by assuming
the mobility layer guarantees that every pair of nodes that need to exchange a
message are connected at some instant or transitively through time, otherwise
they work on each independent connected cluster. On the other hand, work on
flocking [5,6], pattern formation [7], and leader following [8] provides a mobility
layer for a MANET that determines how agents will move. Again connectivity
is sidestepped by assuming coordination runs atop a network layer that ensures
it is always possible to exchange information between every pair of agents. The
service we present would thus enable to execute the flocking algorithm of [5]
using the routing algorithm of [2], or running the leader follower algorithm of
[8] using the leader election service of [3], with the formal guarantee that con-
nectivity is maintained and progress is made. The connectivity service allows an
algorithm designer to focus on the problems which are specific to the application
(i.e. search and rescue, demining fields, space exploration, etc.) without having
to deal with the additional issues that arise when there is no fixed communica-
tion infrastructure. We expect algorithms designed on top of this service will be
easier to prove correct because the safety and progress properties are maintained
orthogonally by the guarantees of the service.

Related work. The problem of preserving connectivity has been addressed before,
mainly in the control theory community. However, most proposed solutions are
either centralized or preserve connectivity only while performing specific tasks
(i.e. converging to a point). For example [9] models connectivity as a constrained
optimization problem, but as a result the solution is centralized and does not
exploit the locality of distributed computation. Another centralized algorithm
for second-order agents is proposed in [10], however it conservatively preserves
all edges in the graph. The problem of gathering (rendezvous) all agents to a
single point while preserving connectivity is studied in [11,12,13,14]. In [15,16]
the authors evaluate through simulations the problem of connected deployment,
but do not prove in which configurations the algorithms achieve deployment or
preserve connectivity. In contrast in this paper we present a local algorithm that
preserves connectivity while performing an arbitrary task, we focus on providing
formal safety and progress guarantees. A preliminary version of the algorithm
without progress guarantees appeared in [17].

Communication Model. We assume each agent is equipped with a communica-
tion device that permits reliable broadcasting to all other agents within some
communication radius r. Without loss of generality we suppose r = 1 throughout.
The service operates in synchronous rounds, it assumes access to a positioning
device; relative position between neighboring agents is sufficient, but for ease of
exposition we assume absolute position is available. Finally the service assumes
the existence of a motion planner which is queried at each round for the desired
target position, the service produces a trajectory which preserves connectedness
and, when possible, gets closer to the target.
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Contributions. We present a distributed connectivity service that modifies an
existing motion plan to ensure connectivity using only local information and
without making any assumptions of the current and goal configurations. In par-
ticular, even if the goal configuration is disconnected, the service guarantees
connectivity while trying to get each agent as close as possible to its target.
Furthermore, the connectivity service only requires the immediate intended tra-
jectory and the current position, but it is stateless, and hence oblivious. The
service is also robust to the motion of each agent in that the refined plan pre-
serves connectivity irrespective of the agents’ speed changes. Therefore agents
remain connected throughout their motion even if they only travel a fraction
(possibly none) of their trajectory.

Connectivity is a global property, so determining whether an edge can be re-
moved without disconnecting the graph may require traversing the whole graph.
However, exploiting the distributed nature of a team of agents requires allowing
each agent to perform tasks with a certain degree of independence, so commu-
nicating with every agent in the graph before performing each motion is pro-
hibitive. To solve this we parametrize the service with a filtering method that
determines which edges must be preserved and which can be removed, we also
suggest several local algorithms that can be used to implement this filtering step.

We define progress as the quantification of how much closer each agent gets
to its target in a single round. Our algorithm guarantees that the total progress
is at least min(d, r) in configurations where every agent wants to move at least
some distance d and the communication radius is r. Furthermore, we exhibit a
class of configurations where no local algorithm can do better than this bound,
hence under these conditions the bound is tight and the algorithm is asymptot-
ically optimal. In the last section we prove all agents get ε-close to their target
within O(D0/r + n2/ε) rounds where D0 is the total initial distance to the tar-
gets and n is the number of agents. Since the motion of the agents occurs in
a geometric space and the service deals directly with motion planning, most
progress arguments rely on geometrical reasoning.

We introduce some notation and definitions in §2. In §3 we present the inter-
secting disks connectivity service and discuss its parametrization in a filtering
function. We prove the algorithm preserves connectivity and produces robust
trajectories (§4). In §5 we prove that any lower-bound on progress for chains
also applies to general graphs. We start §8 by giving a lower bound on progress
of a very restricted class of chains with only two nodes, and in the rest of the
section we show how to extend this lower bound to arbitrary chains. We give
the termination bound in §9 and conclude in §10.

2 Preliminary Definitions

The open disk centered at p with radius r is the set of points at distance less
than r from p: diskr(p) := {q : ‖p− q‖ < r}. The circle centered at p with radius
r is the set of points at distance r from p: circler(p) := {q : ‖p− q‖ = r}. The
closed disk centered at p with radius r is the set of points at distance at most
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r from p: diskr(p) := circler(p) ∪ diskr(p) = {q : ‖p − q‖ ≤ r}. We abbreviate
disk(p, q) := disk‖p−q‖(p), circle(p, q) := circle‖p−q‖(p), disk(p, q) := disk‖p−q‖(p).
The unit disk of point p is disk1(p).

The lens of two points p and q is the intersection of their unit disks: lens(p, q) :=
disk1(p)∩disk1(q). The cone of two points p and q is defined as the locus of all the
rays with origin in p that pass through lens(p, q) (the apex is p and the base is
lens(p, q)): cone(p, q) := {r : ∃s ∈ lens(p, q).r ∈ ray(p, s)}, where ray(p, q) :=
{p + γ(q − p) : γ ≥ 0}.

A configuration C = 〈I, F 〉 is an undirected graph where an agent i ∈ I
has a source coordinate si ∈ R2, a target coordinate ti ∈ R2 at distance di =
‖si − ti‖, and every pair of neighboring agents (i, j) ∈ F are source-connected
(i.e., ‖si−sj‖ ≤ r) where r is the communication radius. We say a configuration
C is a chain (resp. cycle) if the graph is a simple path (resp. cycle).

3 Distributed Connectivity Service

In this section we present a distributed algorithm for refining an arbitrary mo-
tion plan into a plan that moves towards the intended goal and preserves global
connectivity. No assumptions are made about trajectories generated by the mo-
tion planner, the connectivity service only needs to know the current and target
positions and produces a straight line trajectory at each round; the composed
trajectory observed over a series of rounds need not be linear. The trajectories
output by the service are such that connectivity is preserved even if an adversary
is allowed to stop or control the speed of each agent independently.

The algorithm is parameterized by a filtering function that determines a suffi-
cient subset of neighbors such that maintaining 1-hop connectivity between those
neighbors preserves global connectivity. The algorithm is oblivious because it is
stateless and only needs access to the current plan, hence it is resilient to changes
in the plan over time.

3.1 The Filtering Function

Assuming the communication graph is connected, we are interested in a Fil-
ter subroutine that determines which edges can be removed while preserving
connectivity. Let s be the position of an agent with a set N of 1-hop neighbors,
we require a function Filter(N, s) that returns a subset of neighbors N ′ ⊆ N
such that preserving connectivity with the agents in the subset N ′ is sufficient
to guarantee connectivity.

We will not require for Filter to be symmetric, hence it may deem necessary
for i to preserve j as a neighbor, but not the other way around. However, a
Filter function is valid if preserving symmetric edges is sufficient to preserve
global connectivity, where an edge (i, j) is symmetric if i should preserve j
(sj ∈ N ′

i) and vice versa (si ∈ N ′
j).

The identity function Filter(N, s) := N is trivially valid because connec-
tivity is preserved if no edges are removed. However, ideally we want a Filter
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function that in some way “minimizes” the number of edges kept. A natural
choice is to compute the minimum spanning tree (MST ) of the graph, and re-
turn for every agent the set of neighbors which are its one hop neighbors in
the MST . Although in some sense this would be the ideal filtering function, it
cannot be computed locally and thus it is not suited for the connectivity service.

Nevertheless, there are well known local algorithms that compute sparse con-
nected spanning subgraphs, amongst them is the Gabriel graph (GG) [18], the
relative neighbor graph (RNG) [19], and the local minimum spanning tree
(LMST ) [20]. All these structures are connected and can be computed using
local algorithms. Since we are looking to remove as many neighbors as possible
and MST ⊆ LMST ⊆ RNG ⊆ GG, from the above LMST is best suited.

Remark. The connected subgraph represented by symmetric filtered neighbors
depends on the positions of the agents, which can vary from one round to the
next. Hence, the use of a filtering function enables preserving connectivity with-
out preserving a fixed set of edges (topology) throughout the execution; in fact,
it is possible that no edge present in the original graph appears in the final
graph.

3.2 The Algorithm

We present a three-phase service (cf. Algorithm 1) that consists of a collection
phase, a proposal phase, and an adjustment phase. In the collection phase each
agent queries the motion planner and the location service to obtain its current
and target positions (si and ti respectively). Each agent broadcasts its position
and records the position of neighboring agents discovered within its communi-
cation radius.

Algorithm 1. ConnServ run by agent i


 Collection Phase
si ← query positioning device()
ti ← query motion planner()
broadcast si to all neighbors
Ni ← {sj | for each sj received}


 Proposal Phase
N ′

i ← Filter (Ni, si)
Ri ←

⋂
sj∈N′

i
disk1(sj)

pi ← argminp∈Ri
‖p − ti‖

broadcast pi to all neighbors
Pi ← {pj | for each pj received}


 Adjustment Phase
if ∀sj ∈ N ′

i .‖pj − pi‖ ≤ r then
return trajectory from si to pi

else
return trajectory from si to si + 1

2 (pi − si)
end if
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In the proposal phase the service queries the Filter function to determine
which neighboring agents are sufficient to preserve connectivity. Using the neigh-
bors returned by Filter the agent optimistically chooses a target pi. The target
is optimistic in the sense that if none of its neighboring agents move, then moving
from source si to the target pi would not disconnect the network. The proposed
target pi is broadcast and the proposals of other agents are collected.

Finally in the adjustment phase, each agent checks whether neighbors kept by
the Filter function will be reachable after each agent moves to their proposed
target. If every neighbor will be reachable, then the agent moves from the current
position to its proposed target, otherwise it moves halfway to its proposed target,
which ensures connectivity is preserved (proved in the next section).

4 Preserving Connectivity

In this section we prove the algorithm preserves network connectivity with any
valid Filter function. Observe that since Ri is the intersection of a set of disks
that contain si, it follows that Ri is convex and contains si. By construction
pi ∈ Ri and thus by convexity the linear trajectory between si and pi is contained
in Ri, so the graph would remain connected if agent i were to move from si to
pi and every other agent would remain in place. The following theorems prove a
stronger property, namely, the trajectories output guarantee symmetric agents
will remain connected, even if they slow down or stop abruptly at any point of
their trajectory.

Adjustment Lemma. The adjusted proposals of symmetric neighbors are con-
nected.

Proof. The adjusted proposals of symmetric agents i and j are p′i = si+ 1
2 (pi−si)

and p′j = sj + 1
2 (pj − sj). By construction ‖si − pj‖ ≤ r and ‖sj − pi‖ ≤ r, so

the adjusted proposals are connected:

‖p′i − p′j‖ = ‖si − sj +
1
2
(pi − pj + sj − si)‖ ≤

1
2
(‖si − pj‖+ ‖sj − pi‖) ≤ r

Safety Theorem. If Filter is valid, the service preserves connectivity of the
graph.

Proof. Assuming Filter is valid, it suffices to prove that symmetric neighbors
remain connected after one round of the algorithm. Fix symmetric neighbors i
and j. If ‖pi − pj‖ > r, both adjust their proposals and they remain connected
by the Adjustment lemma. If ‖pi − pj‖ ≤ r and neither adjust, they trivially
remain connected. If ‖pi − pj‖ ≤ r but (wlog) i adjusts but j doesn’t adjust,
then si, pi ∈ disk1(pj), and by convexity p′i ∈ disk1(pj), whence ‖p′i − pj‖ ≤ r.

Even if two agents are connected and propose connected targets, they might
disconnect while following their trajectory to the target. Moreover, agents could
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stop or slow down unexpectedly (perhaps due to an obstacle) while executing
the trajectories. We prove the linear trajectories prescribed by the algorithm for
symmetric neighbors are robust in that any number of agents can stop or slow
down during the execution and connectivity is preserved.

Robustness Theorem. The linear trajectories followed by symmetric neigh-
bors are robust.

Proof. Fix symmetric neighbors i and j, we need to prove that all intermediate
points on the trajectories are connected. Fix points qi := si + γi(pi − si) and
qj := sj + γj(pj − sj) (γi, γj ∈ [0, 1]) on the trajectory from each source to its
proposed target. Since the neighbors are symmetric, si, ti ∈ disk1(sj) ∩ disk1(tj)
and by convexity qi ∈ disk1(sj) ∩ disk1(tj). Similarly sj , tj ∈ disk1(qi) and by
convexity qj ∈ disk1(qi), whence ‖qi − qj‖ ≤ r.

5 Ensuring Progress for Graphs

For the algorithm to be useful, besides preserving connectivity (proved in §4)
it should also guarantee that agents make progress and eventually reach their
intended destination. We start by identifying several subtle conditions with-
out which no local algorithm could both preserve connectivity and guarantee
progress.

Cycles. Consider a configuration where nodes are in a cycle, two neighboring
nodes want to move apart and break the cycle and every other node wants to
remain in place. Clearly no local algorithm can make progress because, without
global information, nodes cannot distinguish between being in a cycle or a chain,
and in the latter case any movement would violate connectivity. As long as the
longest cycle of the graph is bounded by a known constant, say k, using local
LMST filtering over �k/2�-hops will break all cycles. A way to deal with graphs
with arbitrary long cycles without completely sacrificing locality would be to use
the algorithm proposed in this paper and switch to a global filtering function to
break all cycles when nodes detect no progress has been made for some number
of rounds. For proving progress, in the rest of the paper we assume there are no
cycles in the filtered graph.

Target-connectedness. If the proposed targets are disconnected, clearly progress
cannot be achieved without violating connectivity, hence its necessary to assume
the target graph is connected. For simplicity, in the rest of the paper we assume
that the current graph is a subgraph of the target graph, this avoids reasoning
about filtering when proving progress and one can check that as a side effect the
adjustment phase is never required.

5.1 Dependency Graphs

Fix some node in an execution of the ConnServ algorithm, on how many other
nodes does its trajectory depend on? Let region(S) :=

⋂
s∈S disk1(s) and let
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proposal(S, t) := argminp∈region(S) ‖p− t‖, then a node with filtered neighbor set
N ′ and target t depends on k neighbors (has dependency k) if there exists a
subset S ⊆ N ′ of size |S| = k such that proposal(S, t) = proposal(N ′, t) but
proposal(S′, t) �= proposal(N ′, t) for any subset S′ ⊆ N ′ of smaller size |S′| < k.

The dependency of a node can be bounded by the size of its filtered neighbor-
hood. If the filtering function is LMST then the number of neighbors is at most
6 or 5 depending on whether the distances to neighbors are unique (i.e. breaking
ties using unique ID’s). The following lemma gives a tighter upper bound on the
dependency of a neighbor which is independent of the filtering function.

Lemma 6. Every agent depends on at most two neighbors.

Proof. Fix agent i with filtered neighbors N ′ and target t, let R = region(N ′).
If t ∈ R then proposal(N ′, t) = proposal(∅, t) = t and agent i depends on no
neighbors. If t /∈ R then proposal(N ′, t) returns a point p in the boundary of
region R. Since R is the intersection of a finite set of disks it follows that p is
either in the boundary of a single disk so i depends on a single neighbor, or the
intersection of two disks so i depends on at most two neighbors.

Given the above, for any configuration C = 〈I, F 〉 we can consider its dependency
graph D = 〈I, E〉 where there exists a directed edge (u, v) ∈ E iff node u depends
on node v. Hence, D is a directed subgraph of C with maximum out-degree 2.
Moreover since graphs with cycles cannot be handled by any local connectivity
service, then for the purpose of proving progress we assume C has no undirected
cycles. This implies that the only directed cycles in D are simple cycles of length
2, we refer to such dependency graphs as nice graphs.

A prechain H is a sequence of vertices 〈vi〉i∈1..n such that there is a simple cy-
cle between vi, vi+1 (i ∈ 1..n−1). Observe that a vertex v is a singleton prechain.
Below we prove that any nice dependency graph D contains a nonempty prechain
H with no out-edges.

Theorem 7. Every finite nice graph G = 〈V, E〉 contains a nonempty prechain
H ⊆ V with no out-edges.

Proof. Fix a graph G = 〈V, E〉 and consider the graph G′ that results from
iteratively contracting the vertices u, v ∈ V if (u, v) ∈ E and (v, u) ∈ E. Clearly
G′ is also a finite nice graph and any vertex v′ in G′ is a prechain of G, however
G′ does not contain any directed cycles.

We follow a directed path in G′ starting at an arbitrary vertex u′, since the
graph is finite and contains no cycles, we must eventually reach some vertex v′

with no outgoing edges, such a vertex is a prechain and has no outgoing edges,
which implies the theorem.

Therefore by theorem 7 any lower bound on progress for chains also holds for
general configurations. In particular the lower bound of Ω(min(d, r)) for chains
proved in the next section applies for general graphs as well.
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8 Ensuring Progress for Chains

In this section we restrict our attention to chain configurations and show that,
if agents execute the connectivity service’s refined plan, the total progress of the
configuration is at least min(d, r), where d is the minimum distance between
any agent and its target and r is the communication radius. We introduce some
terminology to classify chains according to their geometric attributes, then we
prove the progress bound for a very restricted class of chains. Finally, we establish
the result for all chains by showing that the progress of an arbitrary chain is
bounded below by the progress of a restricted chain.

Terminology. Each agent has a local coordinate system where the source is
the origin (si = 〈0, 0〉) and the target is directly above it (ti = 〈0, di〉). The
left side of agent i is defined as Li := {〈x, y〉 : x ≤ 0} and the right side as
Ri := {〈x, y〉 : x > 0} where points are relative to the local coordinate system.
An agent in a chain is balanced if it has one neighbor on its left side, and the
other on its right side; a configuration is balanced if every agent is balanced.

A configuration is d-uniform if every agent is at distance d from its target
(di = d for every agent i). Given a pair of agents i and j, they are source-
separated if ‖si−sj‖ = 1; they are target-separated if ‖si−sj‖ = 1; and they are
target-parallel if the rays ray(si, ti) and ray(sj , tj) are parallel. An agent i with
neighbors j and k is straight if si, sj and sk are collinear; a chain configuration
is straight if all agents are straight.

Given an agent with source s, target t and a (possibly empty) subset of neigh-
bors S ⊆ N , its proposed target w.r.t. S is defined as t∗ = proposal(S, t). The
progress of the agent would be δ(s, t; S) := ‖s − t‖ − ‖t∗ − t‖, which we abbre-
viate as δi for agent i when the si, ti and Si are clear from context. Observe
that since region(S ∪ S′) ⊆ region(S), δ(s, t; S ∪ S′) ≤ δ(s, t; S). The progress of
a configuration C is the sum every agent’s progress: prog(C) :=

∑
i δi.

Proof Overview. We first characterize the progress of agents in a balanced and
source-separated chain and show the progress bound specifically for chains that
are d-uniform, source- and target-separated, balanced, and straight (§8.2). Then
we show how to remove each of the requirements of a chain being straight,
balanced, source- and target-separated, and d-uniform (§8.3). Ultimately, this
means that an arbitrary target-connected chain configuration C = 〈I, F 〉 can be
transformed into a d-uniform, source- and target-separated, balanced, straight
chain configuration C′ such that prog(C) ≥ prog(C′) ≥ min(d, r), where d is
the minimum distance between each source and its target in the original con-
figuration C (d := mini∈I ‖si − ti‖) and the communication radius is r. At
each removal step we show that imposing a particular constraint on a more
relaxed configuration does not increase progress, so that the lower bound for
the final (most constrained) configuration is also a lower bound for the original
(unconstrained) configuration. The bound shows that straight chains (the most
constrained configurations) are the worst-case configurations since their progress
is a lower bound for all chains. We show the lower bound is tight for d-uniform
configurations by exhibiting a chain with progress exactly min(d, r) (§8.3).
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Fig. 1. Transformation overview from arbitrary to restricted chains

8.1 Progress Function for Balanced and Separated Chains

We explicitly characterize the progress of an agent in a balanced, source-separated
chain. In such a configuration, if an agent has source s with target t, the source-
target distance is d := ‖s−t‖ and the position of its neighbors s−1, s+1 (if any) can
be uniquely determined by the angles of the left (λ := ∠t, s, s−1) and right neigh-
bor (ρ := ∠t, s, s+1). Since an agent’s progress is determined by it’s neighbors, its
progress can be defined as a function δ∠(d, λ, ρ).

If the agent doesn’t depend on either neighbor, it can immediately move to
its target and its progress is d. If it (partially) depends on a single (left or right)
neighbor at angle θ, then progress is δsingle(d, θ) := d + 1 −

√
1 + d2 − 2d cos θ.

If it (partially) depends on both neighbors at angles ρ and λ, then progress is
δboth(d, λ, ρ) := d −

√
2 + d2 − 2d cosρ + 2 cos(ρ + λ)− 2d cosλ. If completely

immobilized by one or both of its neighbors, its progress is 0. Therefore the
progress of an agent is described by the following piecewise function,
parametrized by the source-target distance d and the angle to its neighbors ρ
and λ. Observe that the agent i’s progress function is monotonically decreasing
in ρ and λ.

δ∠(d, λ, ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d ρ ≤ cos−1 d
2 and λ ≤ cos−1 d

2

δsingle(d, ρ) ρ > cos−1 d
2 and sin(ρ + λ) ≥ d sin λ

δsingle(d, λ) λ > cos−1 d
2 and sin(ρ + λ) ≥ d sinρ

δboth(d, λ, ρ) ρ + λ < π and sin(ρ + λ) < d sinρ, d sin λ

0 ρ + λ ≥ π

8.2 Progress for Restricted Chains

We prove a lower bound on progress of min(d, r) for d-uniform, source- and
target-separated, balanced, straight chains with communication radius r. Let
Ck(d, θ) represent a d-uniform, source- and target-separated, straight chain of
k nodes, where ∠ti, si, si+1 = θ for i ∈ 1..n− 1. We first establish the progress
bound for chains of two nodes and then extend it to more than two nodes.

Progress Theorem for Restricted 2-Chains. For any θ ∈ [0, π], the chain
C2(d, θ) makes progress at least min(d, r) (prog(C2(d, θ)) ≥ min(d, r)).

Proof. Suppose θ ≤ arccos d
2 , then if d ≤ r agent 1 makes progress d, if d > r

then agent 1 makes progress at least r. Similarly if θ ≥ π − arccos d
2 and d ≤ r
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agent 2 makes progress d, if d > r then agent 2 makes progress at least r.
Otherwise θ ∈ (arccos d

2 , π−arccos d
2 ) and the progress function from §8.1 yields

δsingle(d, θ) + δsingle(d, π − θ) = 2 + 2d−
√

1 + d2 − 2d cos θ −
√

1 + d2 + 2d cos θ

The partial derivative is d sin θ(1/
√

1 + d2 + 2d cos θ − 1/
√

1 + d2 − 2d cos θ),
whose only root in (0, π) is θ = π

2 , which is a local minimum. We use the first
order Taylor approximation as an upper bound of

√
1 + d2 and since d2 < d:

prog(C2(d, θ)) ≥ prog(C2(d,
π

2
)) ≥ 2δsingle(d,

π

2
)

≥ 2 + 2d− 2
√

1 + d2) ≥ 2 + 2d− 2− d2 ≥ d

Progress Theorem for Restricted n-Chains. Configurations Cn(d, θ) (n >
2) and C2(d, θ) have the same progress (prog(Cn(d, θ)) = prog(C2(d, θ))).

Proof. Since Cn is straight and separated, internal nodes make no progress (δi =
0 for i ∈ 2..n− 1). The first node in Cn (and C2) has a single neighbor at angle
θ, so δn

1 = δ2
1 . Similarly the last node in Cn (and C2) has a single neighbor at

angle π − θ, so δn
n = δ2

2 . Therefore prog(Cn(d, θ)) = prog(C2(d, θ)).

8.3 Progress for Arbitrary Chains

We prove that the progress of an arbitrary chain is bounded by below by the
progress of a restricted chain, hence the progress bound proved in the previous
section for restricted chains extends to all chains. Furthermore, we show the
bound is tight for d-uniform configurations by exhibiting a class of chains for
which progress is exactly min(d, r).

To extend the progress result from restricted to arbitrary chains, we exhibit a
sequence of transformations (cf. Fig 1) that show how to transform an arbitrary
chain to be d-uniform, source-separated, target-separated, balanced and straight.
Each transformation doesn’t increase progress and preserves the configuration’s
properties. The proofs rely heavily on geometric reasoning and are the most
technical part of the progress bound. Due to space restrictions we list the lemmas
without proof, see [21] for the detailed proofs.

Truncation Lemma. Suppose a source s with target t and neighbors S. Let
tT = s+γ(t−s) with γ ∈ [0, 1] be its truncated target, then δ(s, t; S) ≥ δ(s, tT ; S).

Separation Lemma. A d-uniform configuration C can be transformed into a d-
uniform, source- and target-separated configuration C′ with prog(C) ≥ prog(C′).

Balancing Lemma. Fix a configuration C where agent i has neighbors i − 1
and i+1 on the same side. Let C′ be the configuration obtained by reflecting every
sj and tj for j > i (or j < i) around agent i’s y-axis. Then prog(C) ≥ prog(C′).
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Straightening Lemma. Fix a configuration C described by {θi}i∈1..n−1 and
a straight configuration C′ described by {θ′i}i∈1..n−1 where every angle is θn−1

(θ′i := θn−1 for i ∈ 1..n). Then prog(C) ≥ prog(C′).
With these transformations in place we are ready to prove a bound on the

progress of an arbitrary chain.
Progress Theorem for Chains. TheprogressofachainC = 〈I, F 〉 isprog(C) ≥
min(mini∈I di, r).

Proof. By the Truncation lemma we can set all the source-target distances to d =
min(mini∈I di, r) to obtain a d-uniform chain. Using the Separation, Balancing,
and Straightening lemmas there exists an angle θ ∈ [0, π] such that the straight
chain Cn(d, θ) has less progress than C (prog(C) ≥ prog(Cn(d, θ)))).

Finally by the Progress theorem for straight n-chains we have prog(Cn(d, θ)) =
prog(C2(d, θ)), and by the progress lemma progress for 2-chains we have
prog(C2(d, θ)) ≥ d for any θ. Hence, prog(C) ≥ prog(Cn(d, θ)) = prog(C2(d, θ)) ≥
d.

Optimality Theorem. The lower bound on progress is tight for d-uniform
configurations: there are chains that cannot make more than min(d, r) progress
under any local service, and ConnServ achieves exactly that much progress.

Proof. For any n, we exhibit a chain of n agents with progress exactly min(d, r).
Fix n and consider the straight chain Cn(d, 0), the first agent has progress
min(d, r) (δn

1 = min(d, r)) while every other agent has no progress (δn
i = 0

for i > 1), therefore prog(Cn(0, d)) = min(d, r). This class of of chains cannot
make more than min(d, r) progress under any local service and ConnServ achieves
exactly that much progress.

9 Termination

Consider an arbitrary chain of agents running the connectivity service. How
many rounds does it take the agents to get (arbitrarily close) to their target?
Let di[k] be the source-target distance of agent i after round k, we say an agent
is ε-close to its target at round k iff di[k] ≤ ε. Given the initial source-target
distance di[0] of each agent, we will give an upper bound on k to guarantee every
agent is ε-close.

So far we proved that while the target of every agent is outside its commu-
nication radius r, the collective distance traveled is r; moreover this is tight up
to a constant factor. However, once an agent has its target within its commu-
nication radius, we can only argue that collective progress is proportional to
the smallest source-target distance (since we truncate to the smallest distance).
Unfortunately this is not enough to give an upper bound on k.

Let Dk =
∑

i di[k] and dmin[k] = mini di[k], then Dk+1 ≤ Dk−min(dmin[k], r).
However, if dmin[k] = 0 this yields Dk+1 ≤ Dk and we cannot prove termination.
The following lemma allows us to sidestep this limitation. We call a chain almost
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d-uniform if all the inner nodes are d-uniform and the outermost nodes have
source-target distance 0.

Progress Theorem for Almost-Uniform Chains. An almost d-uniform
chain Cn of size n ≥ 3 has progress prog(Cn) ≥ δ∠(d, π

2 , arccos d
2 ) ≥ γ0d where

γ0 := 1−
√

2−
√

3.

Proof. Observe that the Balancing and Separation theorems still apply. More-
over, by the independence lemma and the monotonicity of the progress function
we can assume the endpoints are at an angle of arccos d

2 to their neighboring
source-target vector.

Hence, for n = 3 we need to consider one configuration, and by the target-
connectedness assumption it’s clear that the inner node makes full progress and
hence prog(C3) ≥ d. For n > 3 there is a family of possible chains determined
by the angles between the inner nodes, we proceed by a complete induction on
n. Observe that we can assume the progress of the internal nodes depends on
both of its neighbors, since otherwise we could argue about a smaller subchain.

Case 1. Base case. Let n = 4, clearly only the two internal nodes make progress,
therefore we have prog(C4) = δboth(d, arccos d

2 , α)+δboth(d, π−α, arccos d
2 ) where

α is the angle between the two internal nodes. If α ≤ arccos d
2 or π−α ≤ arccos d

2 ,
then prog(C4) ≥ d. For arccos d

2 ≤ α ≤ π − arccos d
2 we define the restricted

minimization problem α∗ = argminα prog(C4). There is a unique minimum at
α∗ = π

2 and hence prog(C4) ≥ 2δ∠(d, π
2 , arccos d

2 ) ≥ γ0d.

Case 2. Inductive step. Consider a chain of length n > 4 with n − 2 interior
nodes. Let S be the set of angles between the first n−3 interior nodes and let α be
the angle between the last interior nodes. The progress of the chain is prog(Cn) =
p(S, α)+δ∠(d, α, arccos d

2 ), where p(S, α) represents the progress of the first n−3
interior nodes. Similarly for a chain of length n+1 there are n−1 interior nodes,
and its progress is prog(Cn+1) = p(S, α) + δ∠(d, α, β) + δ∠(d, π − β, arccos d

2 ).
We prove the bound by cases on α. If α ≤ π

2 , we can minimize the last
two terms of prog(Cn+1) by solving minα,β δ∠(d, α, β) + δ∠(d, π − β, arccos d

2 ),
which has a single minimum at α = β = π

2 , and thus prog(Cn+1) = p(S, α) +
δ∠(d, α, β) + δ∠(d, π − β, arccos d

2 ) ≥ δ∠(d, π
2 , π

2 ) + δ∠(d, π
2 , arccos d

2 ) ≥ γ0d.
If α > π

2 , by the inductive hypothesis we have prog(Cn) ≥ γ0d and it suffices
to show prog(Cn+1) ≥ prog(Cn). This is equivalent to proving δ∠(d, α, β) +
δ∠(d, π − β, arccos d

2 ) − δ∠(a, α, arccos d
2 ) ≥ 0 for α > π

2 and any β, which also
holds.

Intuitively, the progress theorem for almost-uniform chains proves that once
subset of the agents reach their target, the rest of the agents make almost the
same progress as before. Intuitively, it seems reasonable to expect that if a subset
of the agents get ε-close to their target (for small enough ε) a similar result should
hold. This is at the core of the termination theorem which proves an upper bound
on the number of rounds needed for nodes to be ε-close to their targets.
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We say the targets of two nodes are �-connected if they are at distance � of
each other. So far we have assumed neighboring nodes have connected targets,
that is, they are r-connected. To prove the next theorem we require a stronger
assumption, namely, that targets are (r − 2ε)-connected.

Termination Theorem. Under the (r − 2ε)-connected assumption, nodes get
ε-close within O(D0/r + n2/ε) rounds.

Proof. Since targets are (r − 2ε)-close, we can assume each node stops at the
first round when they are ε-close to their target and the resulting configuration
is connected. Therefore we can consider the source-target distance of a node to
be either greater than ε when it is not ε-close, or zero once it is ε-close.

If initially every node i is at distance di ≥ r from its target, it takes at most
D0/r rounds before there exists some node i with di < r. If there is a node i

with source-target distance di < r it follows that Dk < rn2

2 , we argue that from
this point on we can assume a progress of at least γ0ε per round until every node
reaches its target, therefore the total number of rounds is O(D0/r + n2/ε).

Consider a chain C = 〈I, F 〉 and let the subset Sk ⊆ I represent the set
of agents which are already at their target at round k (i ∈ Sk iff di[k] = 0).
If Sk = I then we are done, otherwise there exists a subchain C′ ⊆ C where
all agents except possibly the endpoints have di[k] > ε. Hence, by the progress
theorem for almost-uniform chains the progress is at least γ0ε.

10 Conclusion

In this paper we present a local, oblivious connectivity service (§3) that encap-
sulates an arbitrary motion planner and can refine any plan to preserve connec-
tivity (the graph of agents remains connected) and ensure progress (the agents
advance towards their goal). We prove the algorithm not only preserves connec-
tivity, but also produces robust trajectories so if an arbitrary number of agents
stop or slow down along their trajectories the graph will remain connected (§4).

We also prove a tight lower bound of min(d, r) on progress for d-uniform
configurations (§8). The truncation lemma allows this lower bound to apply
to general configurations using the minimum distance between any agent and
its goal. Thus, when each agent’s target is within a constant multiple of the
communication radius, the lower bound implies the configuration will move at a
constant speed towards the desired configuration.

As the agents get closer to their goal, this bound no longer implies constant
speed convergence. We prove a bound of O(D0/r + n2/ε) on the number of
rounds until nodes are ε-close. This bound requires assuming targets are (r−2ε)-
connected, though we conjecture that it is possible to remove this assumption.
The D0/r term in the bound is necessary because when the initial source-target
distance is large enough, clearly no service can guarantee robust, connected
trajectories if agents advance faster than one communication radius per round.

It would be tempting to prove agents advance at a rate proportional to the
mean (instead of the minimum) source-target distance, which would imply a
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termination bound of O(D0/r + n log n
ε ). However, it is possible to construct an

example which shows that the progress is less than γ ·mean, for any constant
γ > 0. An alternative approach we intend to pursue in future work is to directly
argue about the number of rounds it takes the agents to reach their target.
This may give a tighter bound on the rate of convergence over quantifying the
distance traveled by the agents in a single round, which necessarily assumes a
worst case configuration at every step.
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two fundamental tasks in distributed computing: consensus and mutual
exclusion. Processes have different labels and communicate through a
multiple access channel. The adversary wakes up some processes in pos-
sibly different rounds. In any round every awake process either listens or
transmits. The message of a process i is heard by all other awake pro-
cesses, if i is the only process to transmit in a given round. If more than
one process transmits simultaneously, there is a collision and no message
is heard. We consider three characteristics that may or may not exist in
the channel: collision detection (listening processes can distinguish col-
lision from silence), the availablity of a global clock showing the round
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nel, we prove that consensus and mutual exclusion are infeasible; if at
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1 Introduction

The background and the problem. We consider deterministic feasibility and time
complexity of two fundamental tasks in distributed computing: consensus and
mutual exclusion. Processes have different integer labels from 1 to n, and each of
them knows its own label. In the sequel we identify processes with their labels.
They communicate through a multiple access channel (MAC) which is a well
known and thoroughly studied communication medium. In order to capture the
notion of collisions, that are the main difficulty of communicating over a MAC,
time is considered as slotted into rounds, similarly as in the literature on radio
communication, cf., e.g., [1,3,7,12,14,16].

The adversary wakes up some processes in possibly different rounds. In each
round every awake process either listens or transmits. Transmitting processes do
not hear anything. The message of process i is heard by all other awake listening
processes, if i is the only process to transmit in a given round. If more than one
process transmits simultaneously, there is a collision and no message is heard.
We consider three features that may or may not exist in the MAC: collision
detection (CD), the availablity of a global clock showing the round number (GC),
and the knowledge of the number n of all processes (KN). Collision detection is
the capacity of listening processes to distiguish collision (when more than one
process transmits in a given round) from “silence” (when no process transmits).
“Silence” is in fact the background noise occurring in the MAC when no process
transmits, and a collision slightly increases the level of this noise. Hence detecting
this difference requires a more sensitive receiving device. Global clock permits
awake processes to see the same round number. In the absence of it, individual
clocks of awake processes tick at the same rate indicating rounds, but each clock
starts at 0 when the process is woken up by the adversary. Finally, knowledge of
the number n of all processes may or may not be available, but we never assume
the knowledge of the number of processes ever woken up or the knowledge of
their waking rounds. We focus on the problem of whether consensus and mutual
exclusion are deterministically feasible, and if so, what is their deterministic time
complexity, depending on which of the features CD, GC, KN are available in the
MAC over which processes communicate. It should be stressed that the fact that
the adversary wakes up an arbitrary unknown subset of processes and that these
processes are woken up in arbitrary rounds, significantly increases the difficulty
of the problem.

The tasks and the power of the adversary. Since communication between pro-
cesses is done over a MAC, we define a transmission schedule that is an infinite
binary sequence π determining the communication actions of a process. For any
non-negative integer i, π(i) = 1 means that the process transmits in round i
after its wakeup, and π(i) = 0 means that the process listens in round i after its
wakeup. Round 0 is the round in which the process is woken up.

We now describe the two tasks under consideration, in the context of the
communication over a MAC, and define the power of the adversary for each
task. The adversary wakes up some of the processes in some, possibly different
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rounds. Every process starts executing its protocol in its wake-up round. Actions
of an awake process in a given round depend on its label, on its input value, on
the previously heard messages (or noise, if collision detection is available), on
the number of rounds since its wake-up, on the global round number, if there is
a global clock, and on the number n of processes, if this number is known.

Consensus
Let {1, ..., α}, for α ≥ 2, be the range of possible input values of processes. The
adversary chooses a function v : {1, ..., n} −→ {1, ..., α} which assigns an input
value to every process. A consensus algorithm is distributedly run by all awake
processes. Each action of a process can be either listening or transmitting some
message and/or deciding a value from {1, ..., α}. The following three conditions
must be satisfied:

Termination: each awake process eventually decides
Validity: a decision is on one of the input values of awake processes
Agreement: all awake processes decide the same value

The time complexity of a consensus algorithm is the maximum number of rounds,
over all awake processes, between the wake-up time and the decision time.

Mutual Exclusion
A mutual exclusion algorithm is distributedly run by all awake processes. Each
process executes a protocol partitioned into the following sections:

Entry (trying): the part of the protocol executed in preparation for entering
the critical section

Critical: the part of the protocol to be protected from concurrent execution
Exit: the part of the protocol executed on leaving the critical section
Remainder: the rest of the protocol

Each process executes these sections cyclically in the order: remainder, entry,
critical, and exit. In the traditional mutual exclusion problem, as defined in [2,31]
in the context of the shared-memory model, the adversary controls the sections
remainder and critical (in particular it controls their duration in each cycle, only
subject to the obvious assumption that this duration in each cycle is finite),
while an algorithm provides a protocol for the entry and exit sections of each
process. In the model of communication over a MAC, each action of a process can
be either listening or transmitting some message, as well as changing sections
of the protocol: entering the critical section, if the process is currently in the
entry section, and entering the remainder section, if the process is currently in
the exit section. We assume that changing sections occurs momentarily between
consecutive rounds, i.e., in each round a process is exactly in one section of the
protocol.

The following assumption is specific for mutual exclusion with communica-
tion over a MAC, replacing the traditional communication by shared variables:
the MAC is not used by the adversary in the sections remainder and critical
(otherwise the adversary would have an unlimited power of creating collisions in
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the MAC, thus preventing communication if collision detection is not available).
Instead, the protocol can use the MAC while a process is in the critical section
by sending the message “occupied”.

Any mutual exclusion algorithm has to satisfy the following two properties:

Exclusion: in every round of any execution, at most one process is in the critical
section.

No deadlock: in every round r of any execution, if there is a process in the entry
section at round r then some process will enter the critical section eventually
after round r.

Note that we do not require the no lockout property, stronger than no deadlock:
in every round r of any execution, if there is a process in the entry section at
round r, then this process will enter the critical section eventually after round r.

The time complexity of a mutual exclusion algorithm, called the makespan, is
the maximum number of rounds in any interval when there is some process in
the entry section and there is no process in the critical section.

Our results. If none of the three characteristics (collision detection, global clock,
knowledge of the number n of all processes) is available in the channel, we prove
that consensus and mutual exclusion are infeasible. If at least one of them is
available, both tasks are feasible and we study their time complexity. Collision
detection is shown to cause an exponential gap in complexity. If it is available,
both tasks can be performed in logarithmic time, which is optimal. More pre-
cisely, consensus with values in the range {1, ..., α} can be performed in time
O(min(log n, logα)) and mutual exclusion in time O(log n), and both these or-
ders of magnitude are tight. If collision detection is not available, we show that
both consensus and mutual exclusion require time Ω(n). We then investigate
both consensus and mutual exclusion in the absence of collision detection, but
under alternative presence of the two other characteristics. With global clock,
we give an algorithm for consensus and mutual exclusion whose time complexity
linearly depends on n and on the wake-up time, and an algorithm whose com-
plexity does not depend on the wake-up time and differs from the linear lower
bound only by a factor O(log2 n). If n is known, we also show an algorithm whose
complexity differs from the linear lower bound only by a factor O(log2 n).

The paper is organized as follows. In Section 2 we show infeasibility of the
considered tasks in the weakest model. In Section 3 we present a consensus
algorithm with collision detection, show that it is optimal and prove a linear lower
bound on the complexity of our tasks without collision detection. In Sections 4
and 5 we present consensus algorithms assuming the availability only of a global
clock, resp. only of the knowledge of the number of processes, in the absence
of the two other characteristics. Section 6 is devoted to presenting a scheme
that transforms a consensus algorithm to a mutual exclusion algorithm. Thus
we obtain corollaries for the complexity of mutual exclusion from the previous
results. Section 7 contains conclusions and open problems. Due to lack of space,
proofs of the results are omitted. They will appear in the full version of the
paper.
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Related work. The multiple access channel (MAC) is a well-studied communi-
cation medium. Research concerning the MAC can be divided into two parts:
one assuming that some communicating processes are woken up by the adver-
sary in possibly different rounds (this is the model used in this paper), and the
other assuming that all processes are awake from the beginning. In the first
model two tasks were mainly studied in the literature: the wake-up problem in
which one process has to transmit alone in some round, thus waking up all other
processes [9,17,24,26] and the continuous broadcast, in which processes start to
broadcast possibly multiple messages in different rounds, the broadcast being
successful when the process transmits alone in some round. The latter problem
is subject to dynamic packet arrival, either modeled by an adversarial queuing
framework (see, e.g., [4,11]), or by queue-free framework (see, e.g., [28]), or by
stochastic distributions (see, e.g., [21]).

One of the fundamental problems investigated assuming that all processes
communicating over a MAC are awake from the beginning is the leader elec-
tion problem. For deterministic leader election without collision detection and
with a known number n of processes, matching bounds on time Ω(n log n) and
O(n log n) follow from [14], with the upper bound being non-constructive. A
constructive upper bound O(n polylog (n)) follows from [24]. For the time of de-
terministic algorithms with collision detection, matching bounds are also known:
Ω(log n) follows from [22], and O(log n) follows from [5,23,35]. For the expected
time of randomized algorithms without collision detection, the same matching
bounds are known: Ω(log n) follows from [30] and O(log n) from [3]. Random-
ized leader election with collision detection can be done faster: matching bounds
Ω(log log n) (for fair protocols) and O(log log n) were proved in [36]. Further
references can be found in [25,32]. Communication with possible failures (e.g.,
crash or Byzantine) has been investigated in the above model, e.g., in [15,18,20].

It should be noted that the MAC is equivalent to a special case of the popular
radio network model, namely when the underlying graph is complete. General
radio networks were intensely studied in the context of the broadcasting prob-
lem, starting with the seminal paper [10]. Most researchers worked in the model
without collision detection: deterministic broadcasting in this model was studied,
e.g., in [8,14,16] and randomized broadcasting in [1,16,29,30]. Fewer papers were
devoted to broadcasting with collision detection, cf. [8,19]. Communication with
possible failures (such as crash, Byzantine, probabilistic) has also been studied
in multi-hop radio network models, see, e.g., [15,27,34]

Consensus and mutual exclusion are two classic problems in distributed com-
puting, mostly studied assuming that processes communicate by shared variables
or through message passing networks [2,31]. In [6], feasibility and complexity of
consensus in a multiple access channel with synchronized starting points and
crash failures were studied in the context of different collision detectors— the
tools introduced in that work by the analogy to classic failure detectors. To the
best of our knowledge, consensus and mutual exclusion were never studied in the
context of a multiple access channel with non-synchronized wake-up times.
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2 Infeasibility in the Weakest Model

We start with a negative result that neither consensus nor mutual exclusion are
feasible in the weakest of all models considered in this paper, the model in which
none of the assumptions CD, GC, KN holds.

Theorem 1. Consensus and mutual exclusion are infeasible without collision
detection, without a global clock and with an unknown number n of processes.

The above impossibility result should be contrasted with the positive solution
of the wake-up problem in the same model. Indeed, it was shown in [17] that
wake-up in a MAC can be achieved in polynomial time without a global clock,
collision detection or the knowledge of the number of processes. Hence wake-up
in the weakest of our models is strictly easier than consensus. This difference can
be also viewed as follows. Consider the special case of the consensus problem in
which the input value of each process is equal to its label. This is called label
consensus and it is clearly equivalent to leader election. While wake-up in the
weakest model is feasible and all other awake processes can elect as the leader
the first process to speak alone, this process itself cannot become aware that it
is the leader.

3 Impact of Collision Detection

Collision detection permits a listening process to distinguish between silence and
collision noise, which occurs when at least two messages are sent. Hence any listen-
ing process hears either the silence, or collision noise, or the content of the message
transmitted. We say that a listening process hears signal µ, if one or more pro-
cesses transmit in the given round. A round is called silent for a listening process
i, if i hears silence in this round, and it is noisy for i, if i hears signal µ.

3.1 Availability of Collision Detection

We first prove a lower bound on the time of consensus and on the makespan of
mutual exclusion even in the strongest of our models.

Theorem 2. Any consensus algorithm, even with collision detection, global clock
and known number n of processes, requires time Ω(min(log n, log α)). Any mu-
tual exclusion algorithm, even with collision detection, global clock and known
number n of processes, has makespan Ω(log n).

We now present a consensus algorithm matching the above lower bound
Ω(min(log n, log α)), if collision detection is available, even without the global
clock or the knowledge of n.

We first design a consensus algorithm working in time O(log α). Let Bv(i) =
b1b2 . . . bl denote the string of bits in the binary representation of the input value
v(i) of process i, written in reverse order, i.e. starting from the least significant
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bit. Only meaningful bits of this representation are considered. Hence the last
bit bl of Bv(i) always equals 1 and |Bv(i)| = �log v(i)�. Consider the first round
r when some process is woken up. In the case when there is only one process
woken up in round r the consensus value is the input value of this process.
Otherwise, the consensus value v(i∗) is the input value of process i∗ woken up
in round r, such that for any process i woken up in round r, Bv(i)  Bv(i∗),
where  denotes the natural lexicographic order of bit-strings (we also write
Bv(i) ≺ Bv(j), if Bv(i)  Bv(j) and Bv(i) �= Bv(j)).

The transmission schedule πi,v(i) begins with 0001 followed by the infinite
sequence of repetitions of bit-string b11b21 . . . bl−11bl001, that we will call the
value transmission pattern. The only message ever transmitted by a process is
the contact message consisting of bit 1. During the algorithm execution each
process i may be either active, when it follows its transmission schedule πi,v(i),
or passive, when it listens forever. At least one process remains active forever.
This process will follow its value transmission pattern periodically and its input
value becomes the consensus value. Passive processes decode this value from a
sequence of silent and noisy rounds.

Algorithm ConsensusCD1 (integer v)

1 active: Listen for three rounds;
if silence is always heard then transmit in round 4 else goto passive;

2 Follow value transmission pattern for v;
if µ is heard at some listening round then goto passive;

3 Decide on v;
4 forever follow value transmission pattern for v periodically.

5 passive: Wait until silence is heard for two consecutive rounds ρ, ρ + 1;
6 Start counting rounds r1, r2, . . . , with r1 = ρ + 2;

Listen until silence is heard in the first odd-numbered round r2k+1;
For each even-numbered round r2j , for 0 < 2j < 2k + 1,

store bit 0 if silence was heard and bit 1 otherwise;
Interpret the reverse of the stored bit-string as a binary

representation of value x;
Decide on x.

Each process i runs Algorithm ConsensusCD1 with its input value v(i) as the
parameter v.

Lemma 1. Algorithm ConsensusCD1 reaches consensus with collision detection
in time O(log α).

We now present our main consensus algorithm with collision detection, work-
ing in time O(min(log n, log α)). It essentially consists in running in parallel
ConsensusCD1(v(i)) and ConsensusCD1(i). This may be done by reserving odd-
numbered rounds for one algorithm and even-numbered rounds for the other one.
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Since global clock is not available, some synchronization is necessary in order for
each process to recognize at some point the round parity. Similarly as before we
consider the string B′

i=b′1b′2 . . . b′m - which is the inverse of the binary representa-
tion of label i. We call the label transmission pattern of process i the sequence of
bits b′11b′21 . . . b′m−11b′m001. Unless specified otherwise, the message transmitted
in each transmission round is the contact message.

Algorithm ConsensusCD2 (integer i, integer v)

1 active: Listen for six rounds;
if silence is always heard then transmit in round 7 else goto passive;

2 Starting from the 7th round after wake-up consider the numbering of
rounds r1, r2, . . .

Follow b11b21 . . . bl−11bl001 - the value transmission pattern of v in
the odd-numbered rounds

Follow b′11b′21 . . . b′m−11b′m001 - the label transmission pattern for i in
the even-numbered rounds

if µ is heard at some listening round in the above patterns
then goto passive;

3 if the end of the value transmission pattern is achieved then
Decide on v
forever follow the pattern 0000011b11b21 . . . bl−11bl periodically;

4 if the end of the label transmission pattern is achieved then
Decide on v
forever follow the pattern 000001 periodically, where v is

transmitted in each transmission round.

5 passive: Listen until silence is heard for five consecutive rounds;
Listen until silence is heard again for five consecutive rounds ρ + 1,

. . . , ρ + 5 and signal µ is heard in round ρ + 6;
6 if silence is heard in round ρ + 7 then

Decide on x (in this case a message was heard in round ρ + 6);
7 else Start counting rounds r1, r2, . . . , with r1 = ρ + 7

Listen until silence is heard in the first odd-numbered round r2k+1

For each even-numbered round r2j , for 2j < 2k + 1,
store bit 0 if silence was heard and bit 1 otherwise

Interpret the reverse of the stored bit-string as a binary
representation of integer x

Decide on x.

Each process i runs Algorithm ConsensusCD2with its label i and its input value
v(i) as the parameters of the algorithm.

Theorem 3. Algorithm ConsensusCD2 reaches consensus with collision detec-
tion in time O(min(log n, log α)).
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3.2 Absence of Collision Detection

The following lower bound on the complexity of consensus and mutual exclusion
in the absence of collision detection shows an exponential gap caused by the lack
of this characteristic of the MAC.

Theorem 4. Any consensus (resp. mutual exclusion) algorithm in the model
without collision detection, even with global clock and known number n of pro-
cesses, requires time (resp. makespan) at least n/2.

4 Global Clock

In this section we assume that a global clock is available to all awake processes,
but we do not assume collision detection or the knowledge of the number n of
processes. We present algorithms for consensus based on the following scheme.

Algorithmic scheme GlobalClock
The set of natural numbers (corresponding to the round numbers given by the
global clock) is partitioned into an infinite family A1, A2, ... of pairwise disjoint
infinite sets. The set Ai is the set of rounds reserved for process i, i.e., no other
process transmits in these rounds. Process i that was woken up in (global) round
t listens in rounds t, t + 1, ..., t′, where t′ + 1 is the first integer larger than t
belonging to Ai. If silence was heard in all these rounds, then process i decides
on its value v(i) and in all rounds larger than t′ transmits value v(i). If some
value w was heard in one of the rounds t, t + 1, ..., t′, then process i decides on
value w and remains silent forever.

Lemma 2. The algorithmic scheme GlobalClock reaches consensus with global
clock, for any family A1, A2, ... of pairwise disjoint infinite sets of natural
numbers.

Depending on the particular family of sets A1, A2, ..., the algorithmic scheme
GlobalClock can produce various consensus algorithms. We show two such algo-
rithms with incomparable complexities. The first one, Algorithm GlobalClock1,
has complexity O(n + t), where t is the largest wake-up round of any process. It
matches the lower bound Ω(n) from Theorem 4, for small values of t.

Algorithm GlobalClock1
It is enough to define the family of sets A1, A2, .... First partition the set N of
natural numbers into consecutive segments C0, C1, ... called blocks. Block Ci has
length 2i. For a fixed i, let r1, ..., r2i be elements of Ci. We define the function
fi : Ci −→ N by fi(rj) = j. This gives the function f : N −→ N defined as fi on
block Ci. The function f corresponds to the sequence (1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5,
6, 7, 8, ...). Now the set Ai is defined as f−1({i}).
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Lemma 3. Algorithm GlobalClock1 reaches consensus with global clock in time
O(n + t), where t is the largest wake-up round of any process.

While the complexity of Algorithm GlobalClock1matches the lower bound Ω(n)
for small values of t, it may be arbitrarily large (as compared to the number of
processes), if processes are woken up late in global history. Hence it is natural
to seek a consensus algorithm whose complexity does not depend on the times
of wake-up of processes by the adversary. Our next algorithm, also based on the
algorithmic scheme GlobalClock, satisfies this requirement.

Algorithm GlobalClock2
Again it suffices to define the family of sets A1, A2, .... First partition the set N of
natural numbers into consecutive blocks B0, B1, .... Block Bi has length 8 · 2i · i2
and it is formed of positions enumerated from 1 to 8 ·2i · i2. We subdivide Bi into
i + 1 pairwise disjoint lists Si(1), ..., Si(i) and Ri. Consider a list Si(l), where
2k−1 ≤ l ≤ 2k − 1 for some 1 ≤ k ≤ �log i�. The consecutive elements of such
Si(l) are positions 2k ·x+2k−1 in Bi for all integers x satisfying x ≡ l (mod 2k−1).
Note that consecutive elements in such Si(l) are at distance 2k · 2k−1 = 22k−1

in Bi.

We now show that for any 1 ≤ l1 < l2 ≤ i the lists Si(l1) and Si(l2) do not
intersect. First, if 2k−1 ≤ l1 < l2 ≤ 2k − 1 for some 1 ≤ k ≤ �log i�, then
values x1 ≡ l1 (mod 2k−1) and x2 ≡ l2 (mod 2k−1) can only be equal when
|l1− l2| > 2k−1, which is impossible. Assume now that 2k1−1 ≤ l1 ≤ 2k1 − 1 and
2k2−1 ≤ l2 ≤ 2k2 − 1, for some 1 ≤ k1 < k2 ≤ �log i�. Note that in this case
integers in Si(l1) are certain multiples of 2k1−1 but not multiples of 2k1 . Since
integers in Si(l2) are certain multiples of 2k2−1 which are multiples of 2k1 when
k2 > k1, the intersection of Si(l1) and Si(l2) is also empty. Finally, the list Ri

contains all remaining positions in Bi, i.e., Ri = Bi \ (Si(1) ∪ · · · ∪ Si(l)).
For each i and for l = 1, ..., i, we now define functions gl : Si(l) −→

{2l−1, ..., 2l − 1} as follows. The function gl assigns elements from the set
{2l−1, ..., 2l−1} to consecutive elements from the list Si(l) in a round-robin fash-
ion, i.e., forming the sequence of values (2l−1, ..., 2l−1, 2l−1, ..., 2l−1, 2l−1, ..., 2l−
1, ...). We additionally define the function hi as the function constantly equal 1
on the domain Ri.

Since the lists Si(1), ..., Si(i), Ri form a disjoint partition of the block Bi, the
above functions define, for each i, a function φi : Bi −→ {1, ..., 2i − 1}. This in
turn gives the function φ : N −→ N defined as φi on block Bi. Now the set Ai

is defined as φ−1({i}).
Lemma 4. Algorithm GlobalClock2 reaches consensus with global clock in time
O(n log2 n).

By interleaving algorithms GlobalClock1 and GlobalClock2 on even and odd
rounds, respectively, listening in the first two rounds after wake-up and keeping
silence on both threads as soon as a process hears some value in one of the
threads, we get the following result.
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Theorem 5. There exists an algorithm reaching consensus with global clock in
time O(min(n+ t, n log2 n)), where t is the largest wake-up round of any process.

5 Known Number of Processes

In this section, we assume that the number n of all processes is known to every
process, but we do not assume global clock or collision detection.

Our consensus algorithm uses the notion of a fixed transmission schedule,
introduced in [17]. A fixed transmission schedule of process i is a finite binary
sequence πi depending only on the label i of the process and on the parameter
n. The interpretation of πi is the following. If process i is woken up in round t,
then i transmits in round t + u− 1 if πi(u) = 1 and i listens in round t + u− 1
if πi(u) = 0. It was proved in [17] that, for every n, there exists a set of fixed
transmission schedules {πi : i = 1, ..., n} of length s ∈ O(n log2 n), such that
regardless of the (non-empty) set of processes woken up by the adversary and
regardless of the wake-up rounds of these processes, there exists a process and a
round t∗ + s′, where t∗ is the earliest wake-up round of any process and s′ ≤ s,
in which this process transmits alone. Thus the easier problem of wake-up can
be solved in time O(n log2 n). Our aim is to give a consensus algorithm with the
same time complexity.

Algorithm KnownNumber
Starting in its wake-up round t, process i listens for s rounds. If it hears some
input value in one of these rounds, it decides on this value and remains silent
forever. If it hears silence in all these s rounds, it starts transmitting its input
value according to the schedule πi. If it hears some input value in one of the
following s rounds, it decides on this value and remains silent forever. If it does
not hear any message in all the 2s rounds, it decides on its own input value and
transmits it according to the schedule πi repeated periodically forever.

Theorem 6. Algorithm KnownNumber reaches consensus in time O(n log2 n),
for any known number n of processes.

6 From Consensus to Mutual Exclusion

In this section we propose a generic mutual exclusion algorithm, called
MacMEx, which uses a consensus algorithm as a subroutine and solves the
problem of mutual exclusion, preserving the complexity of the consensus solu-
tion. Using the consensus algorithms developped in the previous sections, we
obtain mutual exclusion algorithms in the respective models.

Consider our consensus algorithms in the case when the input value of every
process is equal to the label of the process (label consensus). All our algorithms
have the following two properties.
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P1. Every process listens in the round in which it is woken up.
P2. If the decision is on value i, no process other than i transmits in the round

when i makes its decision.

Hence all our consensus algorithms, considered in the case of label consensus,
can be transformed by having the winning process i transmit a special message
“my label i won” in the round r when process i decides on its value and in all
subsequent rounds. Indeed, all processes awake in round r will hear this message
in round r, decide on i and remain silent forever, and all processes woken up in
some round r′ > r will hear this message in round r′, decide on i and remain
silent forever. The complexities of the transformed algorithms remain the same.
Hence we may assume that the label consensus subroutine used by Algorithm
MacMEx has the following two properties.

P’1. Every process listens in the round in which it is woken up.
P’2. Starting from the round in which process i decides on its own value, process

i transmits the message “my label i won” forever, and all other processes
listen forever.

Algorithm MacMEx

Entry section. Process i executes a consensus subroutine satifying properties
P’1 and P’2, with its label as the input value, until one of the following events
occurs:
– process i decides on its own label;

in this case process i enters the critical section
– process i hears either the message “occupied” or the message “my label j

won”;
in this case process i stops the execution of the consensus subroutine and
listens on the MAC in the next round

– process i hears the message “released”;
in this case process i starts a new execution of the consensus subroutine with
its label as the input value.

Critical section. Process i transmits the message“occupied”on the MAC in each
round when it is in the critical section. The rest of the behavior of the process
in this section is controlled by the adversary.
Exit section. Process i transmits the message “released” on the MAC and leaves
the section.

The proof of correctness of Algorithm MacMEx is based on the following in-
variant.

Lemma 5. Exactly one of the following properties holds in any round r:
Q1 the message “occupied” is heard in round r and its sender is the only process

in the critical section in this round; additionally, no process is in the exit
section and no process executes the consensus subroutine in round r; or
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Q2 the message “released” is heard in round r and its sender is the only process
in the exit section in this round; additionally, no process is in the critical
section and no process executes the consensus subroutine in round r; or

Q3 there is at least one process executing the consensus subroutine in round r;
additionally, all such processes are exactly those in the entry section and no
process is in the critical or exit sections in round r; or

Q4 all processes are in the remainder section in round r.

Using Lemma 5 we can prove the following theorem.

Theorem 7. Algorithm MacMEx with a consensus subroutine satisfying prop-
erties P’1 and P’2, is a mutual exclusion algorithm with no deadlock. Moreover,
the makespan of the MacMEx algorithm is the same as the time complexity of
the consensus subroutine.

Combining Theorem 7 with Theorems 3, 5 and 6 for the label-consensus version
of the problem, we derive the following conclusions for mutual exclusion.

Theorem 8. Algorithm MacMEx is a mutual exclusion algorithm with no
deadlock in a multiple access channel having at least one of the following char-
acteristics: collision detection, global clock, or the knowledge of the number n of
processes. The makespan of algorithm MacMEx is:

(i) O(log n), if collision detection is assumed;
(ii) O(min(n + t, n log2 n)), if global clock is assumed and t is the largest round

of the wake-up of any process;
(iii) O(n log2 n), if knowledge of n is assumed.

Moreover, the first bound is tight, while the two others differ from the lower
bound Ω(n) without collision detection at most by a factor of O(log2 n).

7 Conclusion and Open Problems

We provided almost optimal algorithms for consensus and mutual exclusion
with processes communicating over a MAC. It would be interesting to close
the O(log2 n) factor gaps in the models without collision detection but with
global clock or with a known number of processes. (In the model with collision
detection our algorithms have optimal complexity.) It also remains open how
randomization influences the complexity of these problems with MAC commu-
nication. Another set of open problems concerns energy consumption. We may
assume that processes can not only transmit or listen, but can switch off. Then
a natural measure of efficiency is the maximum or average number of rounds in
which a process is active (listens or transmits). Finally, in the case of mutual
exclusion, we guaranteed no deadlock, but not the stronger no lockout property.
It remains open if mutual exclusion with no lockout is feasible in all models
except the weakest one, and if so, what is its complexity.



Consensus and Mutual Exclusion in a Multiple Access Channel 525

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
of Computer and System Sciences 43, 290–298 (1991)

2. Attiya, H., Welch, J.: Distributed Computing. John Wiley and Sons, Inc., Chich-
ester (2004)

3. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity of broadcast in ra-
dio networks: an exponential gap between determinism and randomization. Journal
of Computer and System Sciences 45, 104–126 (1992)

4. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Ad-
versarial contention resolution for simple channels. In: Proceedings, 17th Annual
ACM Symposium on Parallel Algorithms (SPAA), pp. 325–332 (2005)

5. Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Transactions
on Information Theory 25, 505–515 (1979)

6. Chockler, G., Demirbas, M., Gilbert, S., Lynch, N.A., Newport, C.C., Nolte, T.:
Consensus and collision detectors in radio networks. Distributed Computing 21,
55–84 (2008)

7. Chlamtac, I., Kutten, S.: On broadcasting in radio networks - problem analysis
and protocol design. IEEE Transactions on Communications 33, 1240–1246 (1985)

8. Chlebus, B.S., G ↪asieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic
broadcasting in unknown radio networks. Distributed Computing 15, 27–38 (2002)

9. Chlebus, B.S., G ↪asieniec, L., Kowalski, D.R., Radzik, T.: On the wake-up problem
in radio networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 347–359. Springer, Heidelberg
(2005)

10. Chlebus, B.S., Kowalski, D.R.: A better wake-up in radio networks. In: Proceedings,
23rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 266–
274 (2004)

11. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-
access channel. In: Proceedings, 25th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 92–101 (2006)

12. Chrobak, M., G ↪asieniec, L., Kowalski, D.R.: The wake-up problem in multi-hop
radio networks. SIAM J. Comput. 36, 1453–1471 (2007)

13. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. J. Algorithms 43, 177–189 (2002)

14. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Proceedings, 12th Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA), pp. 709–718 (2001)

15. Clementi, A.E.F., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant
broadcasting on wireless networks. In: Meyer auf der Heide, F. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 452–463. Springer, Heidelberg (2001)

16. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. In: Proceedings, 44th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 492–501 (2003)

17. G ↪asieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchronous broadcast
systems. SIAM Journal on Discrete Mathematics 14, 207–222 (2001)

18. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Gossiping in a multi-channel
radio network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222.
Springer, Heidelberg (2007)



526 J. Czyzowicz et al.

19. Fusco, E.G., Pelc, A.: Acknowledged broadcasting in ad hoc radio networks. Infor-
mation Processing Letters 109, 136–141 (2008)

20. Gilbert, S., Guerraoui, R., Newport, C.C.: Of malicious motes and suspicious sen-
sors: On the efficiency of malicious interference in wireless networks. Theor. Com-
put. Sci. 410, 546–569 (2009)

21. Goldberg, L.A., Jerrum, M., Kannan, S., Paterson, M.: A bound on the capacity
of backoff and acknowledgment-based protocols. SIAM J. Comput. 33, 313–331
(2004)

22. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst
case to resolve conflicts deterministically in multiple access channels. J. ACM 32,
589–596 (1985)

23. Hayes, J.F.: An adaptive technique for local distribution. IEEE Transactions on
Communications 26, 1178–1186 (1978)

24. Indyk, P.: Explicit constructions of selectors and related combinatorial structures,
with applications. In: Proceedings, 13th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pp. 697–704 (2002)

25. Jurdzinski, T., Kutylowski, M., Zatopianski, J.: Efficient algorithms for leader elec-
tion in radio networks. In: Proceedings, 21st Annual ACM Symposium on Principles
of Distributed Computing (PODC), pp. 51–57 (2002)
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A wireless ad hoc network is composed of devices that are capable of communi-
cating directly with their neighbors (roughly speaking, nodes that are nearby).
Many such devices are battery-operated, e.g., laptops, smart-phones and PDAs.
Thus, their operational life-time before the battery should be recharged or re-
placed is limited. Among all subsystems operating inside these devices, wireless
communication is accounted for the major consumption of power [1, 2]. Addi-
tionally, platforms enabled with multiple wireless communication interfaces are
becoming quite common. This turns the problem of efficient power usage by the
wireless communication subsystem even more acute.

Known proximity wireless communication technologies include established
standards, such as Blue-Tooth (BT) and WiFi, along with emerging standards,
such as ZigBee and WiMax. These technologies differ dramatically from one an-
other in their maximum transmission range, energy requirements and available
bandwidth [2,3]. Since the power consumed by radios in idle state is on the same
order of magnitude as in active state (i.e., sending and receiving states) [1,2,3], a
systematic approach for creating power-efficient networks is required. Using such
an approach, one should be able to shut down as many power-consuming radios
as possible, while still maintain a connected topology. In addition, in order to
keep latency and network capacity under some predetermined boundaries, a de-
sired property of such a topology is to ensure that the number of low-bandwidth
hops traversed by each transmission is limited by some threshold.

Most previous research on power utilization in wireless networks considers
devices equipped with a single radio. The proposed solutions maintain energy-
efficient topology by selecting overlays of active nodes or by adjusting trans-
mission ranges of the nodes. The drawbacks in both approaches include lost
connectivity and non-trivial assumptions, such as the availability of accurate
location information or the use of radios with variable transmission ranges. In
addition, applying these solutions separately on each of the available interfaces
will not benefit from the potential of an integrated approach.

Our contributions: Our first contribution is the introduction of a formal ap-
proach for reducing the energy consumption of wireless networks consisting of
nodes owning two interfaces, one of which has a smaller transmission range
and a lower power consumption than the other. Specifically, we formulate a
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new optimization problem, which we call k-Weighted Connected Dominating
Set (kWCDS). It is a generalization of the well-known graph theoretic prob-
lem of finding minimal Connecting Dominating Set (CDS). In the definition of
kWCDS, we distinguish between short and long communication edges, corre-
sponding to the interface with shorter and longer transmission ranges, respec-
tively. A solution to the kWCDS problem is a set of nodes, so that every node in
the system is close enough (up to k short communication edges) to some node in
the set, while all nodes in the set form a sub-network connected by long edges. An
arbitrary parameter k controls the latency that applications running on devices
may experience (e.g., instead of passing through one long edge, a message may
pass through up to k short edges). Each node in the system is assigned a weight,
which is set to the reciprocal of the remaining battery power of the node, and we
seek a solution having minimal total weight of nodes in the selected set. Conse-
quently, an optimal solution to the kWCDS problem provides a power-efficient
topology where nodes in the selected set stay with both interfaces turned on,
while all other nodes turn off their power-hungry long range interface.

Second, we provide a centralized kWCDS algorithm with a proven approxima-
tion factor. This protocol includes two phases: building a k-Weighted Dominating
Set (kWDS) and then extending it to a kWCDS. We also prove that whenever
nodes are uniformly distributed, every kWDS is w.h.p. also kWCDS. This is re-
gardless of how the kWDS was obtained. (Notice that this is in contrast to the
CDS problem, where most dominating sets are not connected.) The significance
of this third contribution of our work is that in many practical settings, the second
phase of the protocol can be skipped, and a kWCDS is obtained very efficiently.

Our fourth contribution includes presenting two distributed asynchronous pro-
tocols for the kWCDS problem. The first of these is a distributed version of the
centralized algorithm with a proven approximation factor, which is directly de-
rived from the centralized algorithm. The second protocol is heuristic. It does
not have a proven approximation factor, but in practice behaves similarly in
most settings, yet is much more message efficient. A formal time and message
communication complexity analysis is provided for both.

Finally, we simulate the performance of our algorithms with typical parame-
ters of WiFi and BT technologies and show that as the number of nodes in the
system increases, more than 95% of the nodes may turn off their WiFi radios
while remaining connected to the rest of the network at the BT level.
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1 Introduction

We consider the problem of spreading information in large random networks
with small average degree. Randomized broadcasting is among the most fun-
damental and well-studied communication primitives in distributed computing,
and has also applications in several other disciplines, like e.g. in mathematical
theories of epidemics. A particularly popular example [1] is the maintenance of
consistency in a distributed database, which is replicated at many hundreds or
thousands of sites in a large, heterogeneous network. Obviously, efficient broad-
casting algorithms are crucial in order to ensure that all copies of the database
converge quickly and effectively to the same content.

A classical protocol in the context of randomized broadcasting, which is also
the main topic of our study, is the push model [2,1]. There, initially some infor-
mation is placed on one of the nodes. In each succeeding stage, every informed
node passes the information to another node, that it chooses uniformly at ran-
dom and independently among its neighbors. The crucial question now is: how
long does it take until all nodes have received the information? There are several
advantages of considering a broadcast algorithm like this: it is simple, local, and
scalable, and thus independent of the network topology. Moreover, it is highly
robust against network and link failures, which makes it highly reliable.

In the case where the underlying network is the complete graph on n vertices,
Frieze and Grimmett [2] proved that with high probability1 (w.h.p.) the push
protocol completes the broadcasting of the message within (1± ε)(log2 n + ln n)
stages. In other words, if a node can “talk” to any other node in the network,
then the broadcast time will be almost surely very close to log2 n + ln n. This
bound was later improved by Pittel [3] to log2 n+lnn±α(n), where α(n) is any
function that tends to ∞ when n → ∞. Feige et al. considered in [4] networks
that are different from the complete graph. Among other results, they showed
that if the underlying network is a random graph Gn,p, where p ≥ (1+ε) ln n

n ,
then the message will arrive at all nodes with high probability within Θ(ln n)
stages. Moreover, they also showed that the protocol is efficient on hypercubes,

1 With probability tending to 1 when n → ∞.
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and derived bounds that hold for arbitrary graphs. Elsässer and Sauerwald deter-
mined in [5] similar bounds for several classes of Cayley graphs, thus generalizing
upon [4].

Our Contribution

Let G = (V, E) be a graph on n vertices, where we will assume that V =
{1, . . . , n}. We define T (G) as the number of stages needed by the push protocol
until all vertices have been informed, if the information is initially placed on node
1. Note that regardless of the underlying network topology T (G) ≥ log2 n, as the
number of informed vertices can at most double in each round. Consequently, all
the results mentioned above state that the push model is, up to multiplicative
constants, an asymptotically optimal protocol for disseminating information.

However, it is not at all well-understood how much the structure of the under-
lying network affects the performance of the push model. Although, for example,
we know from the results in [4] that on a random graph Gn,p the protocol re-
quires with high probability at most C ln n rounds, for some C > 0, we have a
priori no bounds that quantify how slower (or faster?) the protocol is compared
to the case where the network is the complete graph. In particular, it is not clear
in which way the average degree of the underlying graph influences the speed
of the protocol. Our main result states that the number of stages is essentially
unaffected by the density of the underlying graph:

Theorem 1. Let 0 < α(n) ≤ ln1/9 n be any function with the property
limn→∞ α(n) = ∞. Let p ≥ α(n) ln n

n . Then w.h.p.

|T (Gn,p)− (log2 n + lnn)| < α(n)−1/7 ln n.

In other words, if the average degree of Gn,p is slightly larger than lnn, then the
broadcast time of the push model essentially coincides with the broadcast time
on the complete graph, which was shown in [2] to be very close to log2 n + lnn.
This confirms the robustness and the efficiency of the push model.
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