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Abstract. Most behavioral detectors of malware remain specific to a
given language and platform, mostly executables for Windows. The ob-
jective of this paper is to define a generic approach for behavioral de-
tection based on two layers respectively responsible for abstraction and
detection. The abstraction layer is specific to a platform and a language.
It interprets the collected instructions, API calls and arguments and clas-
sifies these operations, as well as the objects involved, according to their
purpose in the malware lifecycle. The detection layer remains generic and
interoperable with different abstraction components. It relies on paral-
lel automata parsing attribute-grammars where semantic rules are used
for object typing (object classification) and object binding (data-flow).
Theoretical results are first given with respect to the grammatical con-
straints weighting on the signature construction as well as to the resulting
complexity of the detection. For experimentation purposes, two abstrac-
tion components have then been developed: one processing system call
traces and the other processing the VBScript interpreted language. Ex-
perimentations have provided promising detection rates, in particular for
scripts (89%), with almost no false positives. In the case of process traces,
the detection rate remains significant (51%) but could be increased by
sophisticated collection tools.
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1 Introduction

Malware behavioral detection should theoretically be able to detect, if not inno-
vative malware, at least unknown malware reusing variations of known
techniques. However, most current behavioral detectors rely on specific char-
acteristics, allowing evasion through simple functional modifications. This ar-
ticle aims to provide generic grammars modeling malicious behaviors in order
� This work has been partially supported by the European Commissions through

project FP7-ICT-216026-WOMBAT funded by the 7th framework program. The
opinions expressed in this paper are those of the authors and do not necessarily
reflect the views of the European Commission.

E. Kirda, S. Jha, and D. Balzarotti (Eds.): RAID 2009, LNCS 5758, pp. 81–100, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



82 G. Jacob, H. Debar, and E. Filiol

to build efficient and resilient detection automata. Deterministic finite automata
are attractive because their linear complexity remains acceptable for operational
deployment. In 1995, [1] already used automata to describe the alternative se-
quences of operations making up malicious behaviors. Since then, researches
focusing on the notion of data flow has led to the apparition of tainting tech-
niques to detect malicious uses of data [2]. Control of the data flow has exhibited
significant successes and is now broadly used, in intrusion detection [3] or mal-
ware behavior extraction [4]. These articles use automata to model the sequences
of system calls constituting respectively attacks and behaviors. The data flow
is then captured by analysis of the parameters collected along the calls. On
this principle, [5] focuses on self-reproduction as the discriminating behavior for
detection.

Similarly, our approach of behavioral detection combines automata and data
flow control. The model easily supports multiple behaviors. In fact, malicious be-
haviors are described by attribute-grammars. Syntactic rules describe the possi-
ble combinations of operations making up the behavior, whereas, semantic rules
both control the data flow between the involved objects, and associate them
with a potential purpose in the malware lifecycle (installation, communication,
execution). The detection process is finally achieved by parsing execution traces
to check for the satisfaction of the grammatical behavior descriptions.

Abstraction is needed to translate observed traces into the behavioral model
for detection. By a layered architecture, [6] addresses the semantic gap existing
between the system call traces, understandable by OS specialists, and high-level
behaviors. Similarly, our abstraction layer provides generic descriptions where
the processed data get detached from the specificities of the platform and the
programming language. In fact, the graph-based formalism in [6] is in many
ways equivalent to the grammatical formalism provided here. In effect, AND/OR
graphs may be expressed by the semantic rules of attribute-grammars. Relying
on a well-established formalism, these grammars provide theoretical results in
terms of complexity which also hold for the approach from [6]. In addition, the
present article provides different behaviors, assessed on larger test pools.

With regards to the operations for language abstraction, the identification of
the system objects with a potential use for malware and the generation of the
grammatical behavior descriptions, they all require an initial configuration step
as described in Fig.1. Contrary to other methods, the configuration focuses both
on critical objects, which remain enumerable in a standard environment, and
innovative malware, which are scarce among the numerous variants of known
malware. In a few words, this paper introduces the following contributions:

– A model of malicious behaviors using attribute-grammars with semantic for
object binding (data flow control) and typing (object purposes for malware).

– An abstraction layer to translate observed traces into the model, detaching
detection from the specificities of platforms and programming languages,
with two proofs of concept to analyze executable traces and scripts.

– Some generic automata for behavior detection with an assessment from per-
spectives theoretical (complexity) and operational (coverage, performance).
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Fig. 1. Configuration and detection processes

The article is articulated as follows. Section 2 introduces the behavioral model
based on attribute-grammars. Section 3 presents the abstraction process from
the collected data to the model. Section 4 describes the detection process. An
implementation is given in Section 5 whose results are commented in Section 6.

2 Grammatical Formalization of Behaviors

From a theoretical perspective, an attribute-grammar (Definition 1) is a Context-
Free Grammar (CFG) enriched with semantic attributes and rules [7]. In the for-
malism, each start symbols begins the description of a new malicious behavior.
The terminal symbols of the grammar then correspond to the basic operations
making up the behavior whereas the production rules describe their different
combinations to achieve the behavior. As stated in [8,9], basic operations even-
tually refer to data collected through the abstraction layer (instructions, API
calls, parameters). These common principles are kept along the formalization.

Definition 1. An attribute-grammar GA is a triplet <G, D, E> where:
- G is originally a context-free grammar <V, Σ, S, P>,
- att :X ∈ {V ∪Σ} → att(X)∈Att∗ is an assignment function for attributes and
D=∪α∈AttDα their set of values,
- E is a set of semantic rules such as for any production of P , there is at most one
rule per variable of the form Y.α = f(Y1.α1...Yn.αn) with f : Dα1×...×Dαn →Dα.

2.1 Malicious Behavior Language

A generic programming language is required to describe malicious behaviors:
the Malicious Behavior Language (MBL) has been designed to this purpose. Its
syntax and operational semantics are given in [8]. Most malicious behaviors can
be described by sub-grammars of the MBL generative grammar. The language
principles are object-oriented according to the encapsulation in Fig.2. It provides
internal operations: arithmetic and control operations guaranteeing Turing com-
pleteness, as well as interactions to interface with external objects: commands
(open, create, close, delete, execute) or inputs/outputs (send, receive).

On top of the syntax for operations and interactions, a type system has
been provided for the external objects. These objects are typed according to
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Fig. 2. Malware object encapsulation Fig. 3. Object type poset

their potential use in the malware lifecycle: permanent objects (obj perm), tem-
porary objects (obj temp), booting objects (obj boot), communicating objects
(obj com), self-reference (this). A partial order has been defined on these types
according to their subset inclusion, as shown in the Hasse Diagram of Fig.3.
These inclusions correspond to object specializations. This type system can be
deployed thanks to the semantic attributes enriching attribute-grammars. In
fact, semantic attributes and rules can have several purposes:

Object binding: Object binding identifies the different object instances, and
guarantees they are coherently used. It is achieved by affecting specific
attributes called identifiers to the terminal symbols representing objects (de-
noted objId where Id is an abbreviation for Identifier). Considering interac-
tions, the binding constrains the data-flow between objects. The data flow is
critical in behaviors such as duplication where data transfers are involved.

Object typing: A type attribute can also be affected to a given object (de-
noted objTp where Tp is an abbreviation for Type). Types are attached
to objects according to their potential use. They are critical to distinguish
certain malicious purposes such as booting objects in the case of residency
or communicating objects in the case of propagation. Additional character-
ization of the objects can be achieved through additional attributes. For
example, an attribute can store the object nature (denoted objNat): vari-
able, file, registry key, network socket, mail, etc.

2.2 Descriptions of Malicious Behaviors

Four behaviors are examined: duplication, propagation, residency (automatic
start) and overinfection tests (avoiding reinfection of an infected system). Be-
cause their whole descriptions would be too tedious, only two extracts of the most
prevalent ones are covered: duplication and propagation. Their descriptions, as
well as additional behaviors, had been generated in [8], by manual analysis of a
malware pool. Since these descriptions convey the most generic features of the
malicious behaviors, manual generation can be considered more easily than for
the binary signatures of scanners.

Duplication. Duplication is achieved by copying code from the self-reference to
a permanent object. It is described below by syntactic production rules (grey)
and their related semantic rules (white). The syntactic derivations correspond



Malware Behavioral Detection by Attribute-Automata 85

to different duplication techniques: only single-block read/write is described
above, but the complete description also supports interleaved read/write and
direct copy. The semantic rules guarantee the data-flow through a same variable
between read and write interactions (Binding: <Write>.varId= <Read>.varId).
They also guarantee the behavior maliciousness by constraining read interac-
tions to refer to the self-reference (Typing: <Duplicate>.srcTp = this).

(i) <Duplicate> ::= <Create><Open>
<Read><Write>

| <Open><Create>
<Read><Write>

| <Open><Read>
<Create><Write>

{ <Duplicate>.srcId = <Open>.objId
<Duplicate>.srcTp = this
<Duplicate>.targId = <Create>.objId
<Duplicate>.targTp = obj perm
<Open>.objTp = <Duplicate>.srcTp
<Create>.objTp = <Duplicate>.targTp
<Read>.objId = <Duplicate>.srcId
<Read>.objTp = <Duplicate>.srcTp
<Write>.objId = <Duplicate>.targId
<Write>.objTp = <Duplicate>.targTp
<Write>.varId = <Read>.varId }

(ii) <Create> ::= create object;
{ <Create>.objId = object.objId

object.objTp = <Create>.objTp }
(iii) <Open> ::= open object;
{ <Open>.objId = object.objId

object.objTp = <Open>.objTp }
(iv) <Read> ::=

receive object1 ← object2;
{ <Read>.varId = object1.objId

object1.objTp = var
object2.objId = <Read>.objId
object2.objTp = <Read>.objTp }

(v) <Write> ::=
send object1 → object2;

{ <Write>.varId = object1.objId
object1.objTp = var
object2.objId = <Write>.objId
object2.objTp = <Write>.objTp }

Propagation. Propagation differs from duplication by a different target. The
malware code is copied from the self-reference to a communicating object. Con-
sequently, it shows syntactic similarities with duplication, except adjustments
to insert a format process. The main differences thus lie in adaptations of the
semantic rules. Illustrating typing, the permanent type of the target is replaced
by the communicating type (<Propagate>.targTp= obj com). A communicating
object can either be a network connection, a mail or a shared file. The second
modification specifies, by a disjunction of semantic equations, that the propaga-
tion source can be either the self-reference or the result of a previous duplication
(<Propagate>.srcTp= this or <Propagate>.srcId=<Duplicate>.targId).

(i) <Propagate> ::= <Open><Read><Transmit>
| <Read><Open><Transmit>

{ <Propagate>.srcId = <Read>.objId
(<Propagate>.srcTp = this ∨ <Propagate>.srcId = <Duplication>.targId)
<Propagate>.targId = <Open>.objId
<Propagate>.targTp = obj com
... }

(ii) <Transmit> ::= <Format><Write> | <Write>

3 Model Translation by Abstraction

In the context of behavioral detection, a trace conveying the actions of the moni-
tored program is statically or dynamically collected. Depending on the collection
mechanism, completeness of the data and its nature vary greatly, from simple
instructions to system calls along with their parameters. The trace remains spe-
cific to a given platform and to the language in which the program has been
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coded (native, interpreted, macros). An abstraction layer is thus required for
translation into the behavioral language from Section 2. Translation of basic in-
structions, either arithmetic (move, addition, subtraction...) or control related
(conditional, jump...), into operations of the language is an obvious mapping, not
requiring further explanation. On the opposite, translation of API calls and their
parameters into interactions and objects from the language is detailed thereafter.

3.1 API Calls Translation

For a program to access services and resources, the Application Programming
Interfaces (APIs) constitute a mandatory point enforcing security and consis-
tency [10]. API calls are also denoted system calls when accessing services from
the operating system. For each programming language, the set of available APIs
can be classified into distinct interaction classes. This set being finite and sup-
posedly stable, the translation is defined as a mapping over the interaction
classes, the completeness of the process being guaranteed. Table 1 provides a
mapping for APIs subsets from Windows [11] and VBScript. The table is re-
fined according to the nature of the manipulated objects. The API name, on
its own, is not always sufficient to determine its interaction class. For exam-
ple, network devices and files use common APIs; the distinction is made on their
path (\device\Afd\Endpoint). Sending, receiving packets then depends on control
codes transmitted to NtDeviceIoControlFile (IOCTL AFD RECV, IOCTL AFD SEND). If
required, specific call parameters constitute additional mapping inputs:
{API name} × ({Parameters} ∪ {ε}) → {Interaction class}.

3.2 Parameters Interpretation

In the context of interactions, parameters are important factors to identify the
involved objects and assess their criticality through typing. Parameters interpre-
tation thus complements the initial abstraction from the platform and language
obtained through API translation. Due to their varying nature, parameters can

Table 1. Mapping Windows Native and VBScript APIs to interaction classes
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Fig. 4. Character strings interpretation

not be translated by a simple mapping. Decision trees are more adaptive tools,
capable of interpreting parameters according to their representation:

Simple integers: Integer attributes are mainly constants specific to an associ-
ated API. They may condition the interpretation of its interaction class.

Address and Handles: Addresses and handles identify the different objects
appearing in the collected traces. They are particularly useful to study the
data flow between objects. Considering a variable, it is represented by its
address av and its size sv. Every address a such as av ≤ a ≤ av +sv will refer
to the same variable. Certain addresses with important properties may be
refined by typing: import tables, services table, entry points. These specific
addresses may be interpreted by decision trees partitioning the address space.

Character strings: String parameters contain the richer information. Most of
these parameters are paths satisfying a hierarchical structure where every
element is important: from the root identifying drives, drivers and registry,
passing by the intermediate directories providing object localization, until
the real name of the object. This hierarchical structure is well adapted for a
progressive analysis embedded in a decision tree. A progressive interpretation
of the path elements is shown in Fig.4 with basic examples for Windows and
Linux platforms.

3.3 Decision Trees Generation

Building decision trees requires a precise identification of the critical resources
of a system. Our methodology proceeds by successive layers: hardware, oper-
ating system and applications. For each layer, we define a scope encompassing
the significant components; the resources involved either in the installation, the
configuration or the use of these components are monitored for potential misuse:

Hardware layer: For the hardware layer, the scope can be restricted to the
interfaces open to external locations (Network, CD, USB). The key resources
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to monitor are the drivers used to communicate with these interfaces as well
as additional configuration files (e.g. Autorun.inf files impacting booting).

Operating system layer: OS configuration is critical but unfortunately dis-
persed in various locations (e.g. files, registry, structures in memory). How-
ever, most of the critical resources are already well identified, such as the
boot sequence or the intermediate structures used to access the provided
services and resources (e.g. file system, process table, system call table).

Applicative layer: It is obviously impossible to consider all existing applica-
tions. To restrict the scope, observing malware propagation and interoper-
ability constraints, the analysis is limited to connected and widely deployed
applications (web browsers,messaging,mail, peer-to-peer, IRC clients). Again
are considered resources involved in communication (connections, transit lo-
cations) as well as in configuration (application launch).

Identification of the critical resources potentially used by malware is a manual,
but necessary, configuration step. We believe however that it is less cumbersome
than analyzing the thousands of malware discovered every day, for the follow-
ing reasons. First, critical resources of a given platform are known and limited;
they can thus be enumerated. Their name and location can then be retrieved
in a partially automated way (e.g. listing connected drives, recovering peer-to-
peer clients and their shared folders). In fact, full automation of the parameter
interpretation may be hard to achieve. In [12], an attempt was made to fully au-
tomate their analysis for anomaly-based intrusion detection. The interpretation
relied on deviations from a legitimate model based on string length, character
distribution and structural inference. These factors are significant for intrusions
which mostly use misformatted parameters to infiltrate through vulnerabilities.
It may prove less efficient with malware since they can use legitimate param-
eters, at least in appearance. Moreover, the real purpose of these parameters
would still be unexplained; an additional analysis would be required for type
affectation. Thus, interpretation by decision trees with automated configuration
seems a good trade off between automation and beforehand manual analysis.

4 Detection Using Parsing Automata

Detecting malicious behaviors may be reduced to parsing their grammatical de-
scriptions. To achieve syntactic parsing and attribute evaluation in a single pass,
the attribute-grammars must be both LL grammars and L-attribute grammars:
attribute dependency is only allowed from left to right in the production rules.
These properties are not necessarily satisfied by the MBL generative grammar
but they prove true for the sub-grammars describing the malicious behaviors.
Therefore, detection can be implemented by LL-parsers, capable of building,
from top to down, the annotated leftmost-derivation trees. Basically, LL-parsers
are pushdown automata enhanced with attribute evaluation (Definition 2).

Definition 2. A LL-parser is a particular pushdown automaton A that can be
built as a ten-tuple <Q, Σ, D, Γp, Γs, δ, q0, Zp,0, Zs,0, F > where:
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- Q is the finite set of states, and F ⊂ Q is the subset of accepting states,
- Σ is the alphabet of input symbols and D is the set of values for attributes,
- Γp / Γs are the parsing / semantic stack alphabets,
- q0 ∈ Q is the initial state and Zp,0 / Zs,0 are the stacks start symbols,
- δ is the transition function defining the production rules and semantic routines,
of the form: Q × ({Σ ∪ ε}, D∗) × (Γp, Γs) → Q × ({Γp ∪ ε}, Γs).

Several behaviors are monitored in parallel by dedicated automata. Each au-
tomaton Ak parses several instances of the behavior, storing its progress in in-
dependent derivations (triple made up of a state qk and parsing and semantic
stacks Γpk, Γsk). For each collected events ei containing input symbols and se-
mantic values, all the parsing parallel automata progress along their derivations.
When an irrelevant input is read (an operation interleaved inside the behavior
for example), this input is dropped instead of causing an error state. The global
procedure is defined in the Algorithms 1 and 2 with an explicative figure.

Algorithm 1. A.ll-parse(e,Q,Γp,Γs)
1: if e, Q, Γp, Γs match a transition T ∈ δA then
2: if e introduces a possible ambiguity then
3: duplicate state and stack triple (Q,Γp, Γs).
4: end if
5: Compute transition T to update (Q,Γp, Γs).
6: if Q is an accepting state Q ∈ FA then
7: Malicious behavior detected.
8: else
9: ignore e.

10: end if
11: end if

Algorithm 2. BehaviorDetection(e1,...,et)
Require: events ei are couples of symbol and semantic values: ({Σ ∪ ε}, D∗).
1: for all collected events ei do
2: for all the automata Ak such as 1 ≤ k ≤ n do
3: mk = current number of parallel derivations handled by Ak.
4: for all state and stack triple (Qk,j , Γpk,j , Γsk,j) such as 1 ≤ j ≤ mk do
5: Ak.ll-parse(ei, Qk,j , Γpk,j , Γsk,j)).
6: end for
7: end for
8: end for

4.1 Semantic Prerequisites and Consequences

The present detection method can be related to scenario recognition in intrusion
detection. An intrusion scenario is defined as a sequence of dependent attacks
[13]. For each attack to occur, a set of prerequisites or preconditions must be
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satisfied. Once completed, new consequences are introduced, also called postcon-
ditions. In [14], isolated alerts are correlated into scenarios by parsing attribute-
grammars annoted with semantic rules to guarantee the flow between related
alerts. Similarly, a malicious behavior is a sequence where each operation pre-
pares for the next one. In a formalization by attribute grammars, the sequence
order is led by the syntax whereas prerequisites and consequences are led by
semantic rules of the form Yi.α = f(Y1.α1...Yn.αn) (Definition 1).

Checking prerequisites: Prerequisites are defined by specific semantic rules
where the left-side attributes of the equations are attached to terminal sym-
bols (Yi ∈ Σ). During parsing, semantic values are collected along input
symbols. These values are compared to values computed using inherited and
already synthesized attributes. This comparison corresponds to the matching
step performed on the semantic stack Γs during transitions from δ.

Evaluating consequences: When the left-side attribute is attached to a non-
terminal (Yi∈V ) and right-side attributes are valued, the attribute is evalu-
ated. During transitions from δ, the evaluation corresponds to the reduction
step where the computed value is pushed on the semantic stack Γs.

4.2 Ambiguity Support

All events are fed to the behavior automata. However, some of them may be
unrelated to the behavior or unuseful to its completion. Unrelated events do not
match any transition and are simply dropped. This is insufficient for unuseful
events raising ambiguities: they may be related to the behavior but parsing them
makes the derivation fail unpredictably. Let us take an explicit example for du-
plication. After opening the self-reference, two files are consecutively created.
If duplication is achieved between the self-reference and the first file, parsing
succeeds. If duplication is achieved with the second one, parsing fails because
the automaton has progressed beyond the state of accepting a second creation.
Similar ambiguities may be observed along the variable affectations which alter
the data-flow. The algorithm should thus be able to manage the different objects
and variables combinations. Ambiguities are handled by the detection algorithm
using derivation duplicates. Before transition reduction, if the operation is po-
tentially ambiguous, the current derivation is copied in a new triple containing
the current state and the parsing and semantic stacks. This solution handles
the combinations of events without backtracking. To come back and forth in the
derivation trees would have proved too cumbersome for real-time detection.

4.3 Time and Space Complexity

LL-parsing is linear in function of the number of symbols. Parallelism and ambi-
guities increase the complexity of the detection algorithm. Let us consider calls
to the parsing procedure as the reference operation. This procedure is decom-
posed in three steps: matching, reduction and accept (two comparisons and a
computation). In the worst case scenario, all events are related to the behavior
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automata and all these events introduce ambiguities. In the best case scenario,
no ambiguity is raised. Resulting complexities are given in Proposition 1.

Proposition 1. In the worst case, behavioral detection using attributed automata
has a time complexity in ϑ(k(2n−1)) and a space complexity in ϑ(k2n(2s)) where k
is the number of automata, n is the number of input symbol and s is the maximum
stack size. In the best case, time complexity drops to linear time ϑ(kn) and space
complexity becomes independent from the number of inputs ϑ(k2s).

The worst case complexity is important but it quickly drops as the number
of ambiguous events decreases. The experimentations in Section 6 show that
the ratios of ambiguous events are limited and the algorithm offers satisfactory
performances. Based on these ratios, a new assessment of the average practical
complexity is provided. Besides, these experimentations also show that impor-
tant ratios of ambiguous events are already a sign of malicious activity.

Proof. In a best case scenario, the number of derivation for each automaton
remains constant. Considering the worst case scenario, all events are potentially
ambiguous for all the current derivations. Technically, ambiguities multiply by
two the number of derivations at each iteration of the main loop. Consequently,
each automaton handles 2i−1 different derivations at the ith iteration. The time
complexity is then equivalent to the number of calls to the parsing procedure:

(1) k + 2k + ... + 2n−1k = k(1 + 2 + ... + 2n−1) = k(2n − 1)

The maximum number of derivations is reached after the last iteration where all
automata manage 2n parallel derivations. Each derivation is stored in two stacks
of size s. This moment coincide with the maximum memory occupation:

(2) k2n(2s).

5 Prototype Implementation

The prototype includes the aforementioned two layers: a specific collection and
abstraction layer and a generic detection layer. The overall architecture is de-
scribed in Fig.5. Components of the abstraction layer interpret the specificities
of the languages whereas the common object classifier interprets the specificities
of the platform. As a proof of concept, abstraction components have been imple-
mented for two languages: native code of PE executables and interpreted Visual
Basic Script. Above abstraction, the detection layer based on parallel behavioral
automata parses the interpreted traces independently from their original source.

5.1 Analyzer of Process Traces

Process traces provide useful information about the system activity of an exe-
cutable. The detection method could be deployed in real-time but for a greater
easiness, the experimentations were led off-line. The process traces were thus col-
lected beforehand inside a virtual environment to avoid any risk of infection. The
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Fig. 5. Multi-layer architecture Fig. 6. Collection environment for API calls

prototype deploys an existing tool called NtTrace to collect Windows native calls,
their arguments and returned values [15]. The main point with dynamic collection
mechanisms (real-time or emulation based) is that most behaviors are conditioned
by external objects and events: available target for infection or listening servers
for network propagation. In order to increase the mechanism coverage and col-
lect conditioned behaviors, the virtual environment from Fig.6 has been deployed
over Qemu [16]. Windows XP was installed on the drive image and useful services
and resources were configured: system time, ISP account, Mail and P2P clients,
potential targets (.exe, .jpg, .html). Outside the virtual machine, emulations of
DNS and SMTP servers have been deployed to establish connections and capture
a network activity at the system call level. The weight of the platform and its con-
figuration may seem important but notice that simple call interception would be
sufficient in a real-time deployment without any need for a virtual environment.

Translation is then deployed line by line on the collected traces. It directly
implements the results from Section 3 for API call translation and parameter
interpretation. Only a selection of APIs is classified by mappings; the others are
ignored until their future integration. An object classifier, embedding decision
trees specifically crafted for a Windows configuration as in Fig.4, is then called
on the parameters. During the process, sequences of identical or combined calls
are detected and formatted into loops in order to compress the resulting logs.
Looking specifically at creation and opening interactions, when resolved, a cor-
respondence is established between the names of objects and their references
(addresses, handles). Following interactions check for these references for inter-
pretation. Conversely, on deletion or closing, this correspondence is destroyed
for the remainder of the analysis. Names and identifiers must be unlinked since
a same address or handle number could be reused for a different object.

5.2 Analyzer of Visual Basic Scripts

No collection tool similar to NtTrace was available for VBScript. We have thus
developed our own collection tool, directly embedding the abstraction layer. VB-
Script being an interpreted language, its static analysis is simpler than native
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code because of the visibility of the source but also because of some integrated
safety properties: no direct code rewriting during execution and no arbitrary
transfer of the control flow [17]. For these reasons, path exploration becomes
conceivable. The interest of the static approach with respect to the dynamic one
used for process traces lies in the coverage of the collected data. In effect, the
different potential actions corresponding to the different execution paths will be
monitored. In addition, the visibility over the internal data flow will be increased
likewise. By comparison, the results of the experimentations will eventually be
a good indicator of the impact of the collection mechanism on detection.

Basically, the VBScript analyzer is a partial interpreter using static analysis
for path exploration. The analyzer is divided into three parts:

1) Static analyzer: The static analyzer heavily depends on the syntactic spec-
ifications of the VBScript language [18]. The script is first parsed to localize the
main, the local functions and procedures, as well as to retrieve their signature.
Its structure is then parsed by blocks to recover information about the declared
variables and instantiated managers (file system, shell, network, mail). In ad-
dition, the analyzer also deploys code normalization to remove the syntactic
shortcuts provided by VBScript, but most critically to thwart obfuscation. By
normalization, the current version can handle certain categories of obfuscation
such as integer encoding, string splitting or string encryption.

2) Dynamic interpreter: A partial interpreter has been defined to explore the
different execution paths. It is only partial in the sense that the script code is not
really executed. Only significant operations and dependencies are collected. To
support path exploration, the analyzer handles conditional and loop structures,
but also calls to local functions and procedures. Inside these different blocks, each
line is processed to retrieve the monitored API calls manipulating files, registry
keys, network connections or mails. Calls interpretation is deployed by mapping
as previously defined. Affectations, impacting the data-flow, are thereby also
monitored. Additional analysis is then deployed to process the expressions used
as call arguments, or affected values. In order to control the data-flow, object
references and aliases must be followed up through the processing of expressions:
- Local function/procedure calls: linking signature with the passed parameters,
- Monitored API calls: creating objects or updating their type and references,
- Variable affectations: linking variables with values,
- Calls to execute: evaluating expressions as code.

3) Object classifier: The previous classifier has been reused, as in Fig.5. Scripts
being based on strings, the address classifier part is unused. The string classifier
has been extended to best fit the script particularities, with new constants for
the self-reference for example ("Wscript.ScriptName","ScriptFullName").

5.3 Detection Automata

The transitions corresponding to the different grammar production rules have di-
rectly been coded in a prototype similarly to the algorithms from Section 4. Only
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two enhancements have been brought to the algorithm in order to increase the
performance. A first mechanism avoids duplicate derivations. Coexisting identi-
cal derivations artificially increase the number of iterations without identifying
other behaviors than the ones already detected. The second enhancement is re-
lated to the close and delete interactions. Once again, in order to decrease the
number of iterations, the derivations where no interaction intervene between the
opening/creation and the closing/deletion of an object, are destroyed. These two
mechanisms have proved helpful in regulating the number of parallel derivations.

6 Experimentation and Discussions

For experimentation, hundreds of samples have been gathered, the pool being
divided into two categories: Portable Executables and Visual Basic Scripts. For
each category, about 50 legitimate samples and 200 malware were considered.
According to the repartition in Fig.7, different types of legitimate applications,
selected from an healthy system, and malware, downloaded from repositories
[19,20], have been considered.

1) Coverage: The experimentation has provided significant detection rates with
51% for PE executables and up to 89% for VB Scripts. Results, behavior by be-
havior, are described in Tables 2 and 3. Duplication is the most significant ma-
licious behavior. However the additional behaviors, and in particular residency,
have detected additional malware where duplication was missed. False positives
are almost inexistent according to Tables 4 and 5. The only false positive, related
to residency, can be easily explained: the script was a malware cleaner reinitial-
izing the browser start page to clear the infection. On the opposite, important
false negative spikes can be localized in the PE results (Table 2): the low de-
tection rates for duplication of Viruses and propagation of Net/Mail Worms are
explained by limitations in the collection mechanisms that are assessed in 2).

Comparing VB scripts and PE traces, the false negatives are fewer for VB
scripts. Path exploration and affectation monitoring implemented in the ana-
lyzer provide a greater coverage. The remaining false negatives are explained
by the encryption of the whole malware body which is not supported yet and
the cohabitation in a same script of JavaScript and VBScript which makes the
syntactic analysis fail. Code localization mechanism could solve the problem.
For the analyzer of process traces, the detection rates observed for duplication
are consistent with existing works [5]. The real enhancements are twofolds: the

Fig. 7. Repartition of the test pool
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Table 2. PE Malware detection. (EmW=Email Worms, P2PW= P2P Worms, V= Virii,
NtW=Net Worms, Trj =Trojans, Eng=Functional Polymorphic Engine)

Behaviors EmW P2PW V NtW Trj Global Eng

Duplication 41(68,33%) 31(77,5%) 15(18,29%) 8(53,33%) 6(30%) 46,54% 30(100%)

direct copy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 8(26,67%)
single read/write 41(68,33%) 30(75%) 14(17,07%) 8(53,33%) 6(30%) 45,63% 12(40%)
interleaved r/w 9(15%) 3(7,5%) 3(3,66%) 3(0,2%) 0(0%) 8,29% 10(33,3%)

Propagation 4(6,67%) 19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,44% 17(56,7%)

direct copy 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
single read/write 4(6,67%) 19(47,5%) 3(3,66%) 1(6,67%) 0(0%) 12,44% 17(56,7%)
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)

Residency 36(60%) 22(55%) 5(60,98%) 6(40%) 9(45%) 35,94% 30(100%)

Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)

conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00% 0(0%)

Global detection 43(71,67%) 33(82,50%) 16(19,51%) 8(53,33%) 11(55,00%) 51,15% 30(100%)

Table 3. VBS Malware detection. (EmW=Email Worms, FdW=Flash Drive Worms,
IrcW= IRC Worms, P2PW=P2P Worms, V=Viruses, Gen =Generators variants)

Behaviors EmW FdW IrcW P2PW V Gen Global

Nb string ciphered 1/51 0/4 1/26 0/30 3/61 10/30 15/202
Nb body ciphered 4/51 0/4 0/26 1/30 2/61 0/30 7/202
String encryption 1(100%) 0 0 0(0%) 2(66,67%) 10(100%) 86,67%

Duplication 43(84,31%) 4(100%) 20(76,96%) 22(73,33%) 44(72,13%) 30(100%) 80,70%

direct copy 41(80,39%) 4(100%) 20(76,96%) 22(73,33%) 25(40,98%) 30(100%) 70,30%
single read/write 8(15,69%) 0(0%) 4(15,38%) 3(10%) 21(34,43%) 0(0%) 17,82%
interleaved r/w 1(1,96%) 0(0%) 0(0%) 0(0%) 8(13,11%) 0(0%) 4,46%

Propagation 33(64,71%) 3(75%) 5(19,23%) 25(83,33%) 5(8,20%) 30(100%) 49,99%

direct copy 33(64,71%) 3(75%) 4(15,38%) 25(83,33%) 3(4,92%) 30(100%) 48,52%
single read/write 3(5,88%) 0(0%) 2(7,69%) 1(3,33%) 2(3,28%) 0(0%) 3,96%
interleaved r/w 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Residency 32(62,75%) 4(100%) 20(76,92%) 18(60,00%) 20(32,79%) 30(100%) 61,39%

Overinfection test 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%

conditional 4(7,84%) 1(25%) 1(3,85%) 0(0%) 0(0%) 0(0%) 2,97%
inverse conditional 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 46(90,20%) 4(100%) 25(96,15%) 27(90,00%) 50(81,97%) 30(100%) 90,09%

Table 4. PE Legitimate Samples. (Com=Communication & Exchange Applications,
MM=Multimedia Apps, Off=Office Apps, Sec=Security Tools, SysU=System & Utilities)

Behaviors PE PE PE PE PE PE
ComE MM Off Sec SysU Global

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Table 5. VBS Legitimate Samples. (EmM=Email Managers, InfC=Information Collectors,
Enc=Encoders, DfE=Disk & File Explorers, MwC=Malware Cleaners, RegR=Registry Repairs)

Behaviors VBS VBS VBS VBS VBS VBS VBS
EmM InfC Enc DfE MwC RegR Global

Duplication 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Propagation 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%
Residency 0(0%) 0(0%) 0(0%) 0(0%) 1(12,50%) 0(0%) 1,67%
Overinfection test 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0,00%

Global detection 0(0%) 0(0%) 0(0%) 0(0%) 1(12,5%) 0(0%) 1,67%
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parallel detection of additional behaviors described in the same language, and
the possibility to feed detection with traces from other sources such as those com-
ing from the script analyzer. Additional tests in Table 2 have been led using the
functional polymorphic engine from [9]. For comparison with actual antivirus
products, confronted to the engine, the detection rates were between 15% for
most of them, up to 90% for others, but with numerous false positives.

2) Limitations in trace collection: A significant part of the missed behaviors
are due to limitations in the collection coverage. However, thanks to the layer-
based approach, collection and abstraction can be improved for a given platform
or language without modifying the upper detection layer.

With regards to dynamic analysis (PE traces), the first reason for missed
detections is related to the configuration of the simulated environment. The
simulation must seem as real as possible to satisfy the execution conditions of
malware. Problems can reside in the software configuration. 65% of the tested
Viruses (53/82) did not execute properly: invalid PE, access violations, excep-
tions. These failures may be explained by the detection of virtualization or anti-
debug techniques thwarting dynamic analysis. Problems can also come from the
simulated network. Considering worms, their propagation is conditioned by the
network configuration. 75% of the Mail Worms (45/60) did not show any SMTP
activity because of unreachable servers. Likewise, Net Worms propagate through
vulnerabilities only if a vulnerable target is reachable, explaining that 93% of
them did not propagate (14/15). All actions conditioned by the simulation con-
figuration are difficult to observe: a potential solution could be forced branching.
Notice that this discussion makes sense for off-line analysis but is less of a prob-
lem in real-time conditions where we are only interested in the malicious actions
effectively performed.

Beyond configuration, the level of the collection can also explain the failures.
With a low level collection mechanism, the visibility over the performed actions
and the data flow is increased. All flow-sensitive behaviors such as duplication
can be missed because of breakdowns in the data flow. Such breakdowns can
find their origin sometimes in non monitored system calls and for the most part
in the intervention of intermediate buffers where all operations are executed in
memory. These buffers are often used in code mutation (polymorphism, meta-
morphism). 12% of additional virus duplications (10/82) were missed because of
data flow breakdowns. The problem is identical with Mail Worms where 8% of
the propagations (5/60) were missed because of intermediate buffers intervening
in the Base64 encoding. These problems do not come from the behavioral de-
scriptions but from NtTrace which does not capture processor instructions. More
complete collection tools either collecting instructions [21] or deploying tainting
techniques [22] could avoid these breakdowns in the data flow.

With regards to static analysis (VB scripts), the interpreted language implies a
different context where branching exploration is feasible and the whole data flow
is observable. Implemented in the script analyzer, these features compensate for
the drawbacks of NtTrace and eventually result in better detection rates. How-
ever, contrary to the restricted number of system calls, VBScript offers numerous
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services. A same operation can be achieved using different managers or interfacing
with different Microsoft applications. Additional features could be monitored for
a greater coverage: accesses to Messenger, support of the Windows Management
Instrumentation (WMI). Moreover, like any other static analysis, script analysis is
hindered by encryption and obfuscation. The current version of the analyzer only
partially handles these techniques; code encryption is missing for example. Static
analysis of scripts is nevertheless easier to consider because no prior disassembly
is required and some security locks ease the analysis.

3) Behavior relevance: In addition to data collection, the behavioral model
itself must be assessed. The relevance of each behavior must be individually as-
sessed by checking the coverage of its grammatical model. Some behaviors such
as duplication, propagation and residency are obviously characteristic to mal-
ware. Duplication and propagation are discriminating enough for detection. On
the other hand, residency is likely to occur in legitimate programs, during in-
stallations for example. To avoid certain false positives, its description could be
refined , using additional constraints on the value written to the booting object:
the value should refer to the program itself or to one of its duplicated versions.
On the other hand, the overinfection model does not seem completely relevant.
The problem comes from a description that includes too many restraints limiting
its detection. In particular, the conditional structure intervening in the model
can not be detected in system call traces. Its generalization could increase detec-
tion but the risk of confusion with legitimate error handling would also increase.

4) Performance: Table 6 measures the performances of the different prototype
components. Considering abstraction, the analysis of PE traces is the most time
consuming. The analyzer uses lots of string comparisons which could be avoided
by replacing the off-line analysis by hooking in rel-time for immediate transla-
tion. On the other hand, the VBScript analyzer offers satisfying performances.
With regards to the detection automata, the performances are also satisfying
compared with the worst case complexity. The detection speed remains far be-
low a half second in more than 90% of the cases; the remaining 10% were all
malware. The implementation has also revealed that the required space for the
derivation stacks was very low, with a maximal stack size of 7. In addition, the
number of ambiguities has been measured. If ne denotes the number of events
and na the number of ambiguities, in the worst case, we would have na = 2ne .
But by experience: na << 2ne and na << n2

e and na ≈ αne.

This approximation provides a practical complexity in ϑ(kα(n2+n
2 ))

which is more worth considering. Moreover, the algorithm can easily be
parallelized in multi-core architectures. Figures 8 and 9 provide graphs of the
collected α ratios. It can be observed that above a certain threshold, an
important ambiguity ratio α is already a sign of malicious activity.
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Table 6. Compared performances on mono and multi-core architectures

NtTrace Analyzer
Data reduction from PE traces to logs
Total size: 351Mo Average: 1,3Mo/Trace
Reduced logs: 11Mo Reduction ratio: 29

Execution speed
Core M 1,4GHz Dual core 2,6GHz
1,48 s/trace 0,34 s/trace

VB Script Analyzer
Data reduction from VB scripts to logs
Total size: 1842Ko Average: 7Ko/Script
Reduced logs: 298Ko Reduction ratio: 6

Execution speed
Core M 1,4GHz Dual core 2,6GHz
0,042 s/script 0,016 s/script
+0,50 s/ciphered line +0,21 s/ciphered line

Detection Automata
Execution speed
Core M 1,4GHz Dual core 2,6GHz
NT: 0,44 s/log NT: 0,14 s/log
VBS: 0,002 s/log VBS: <0,001 s/log

Fig. 8. Ambiguity ratios (α) for PE samples

Fig. 9. Ambiguity ratios (α) for VB scripts
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7 Conclusions

Detection by attribute automata provides a good coverage of malware using
known techniques with 51% of detected PE malware and 89% of VB Scripts
malware. The grammatical approach offers a synthetic vision of malicious be-
haviors. Indeed, only four generic, human-readable, behavioral descriptions have
resulted in these detection rates. Unknown malware using variations from these
known behaviors should be detected thanks to the abstraction process. In case
of innovative techniques, this approach eases the update process. The segmen-
tation between abstraction and detection enables independent updates: in the
grammatical descriptions for generic procedures (infrequent), or in the abstrac-
tion components for vulnerable objects and APIs. Up until now, the generation
of the behavioral descriptions is still manual but the process could be combined
with the identification of malicious behaviors by differential analysis proposed
by Christodorescu et al. [4]. The experimentations have also stressed the im-
portance of data collection in the detection process. Collection mechanisms are
already an active research field and future work can be testing more adapted
collection tools deploying tainting.
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