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Abstract. Smart phones are now being used to store users’ identities and
sensitive information/data. Therefore, it is important to authenticate le-
gitimate users of a smart phone and to block imposters. In this paper, we
demonstrate that keystroke dynamics of a smart phone user can be trans-
lated into a viable features’ set for accurate user identification. To this
end, we collect and analyze keystroke data of 25 diverse smart phone users.
Based on this analysis, we select six distinguishing keystroke features that
can be used for user identification. We show that these keystroke features
for different users are diffused and therefore a fuzzy classifier is well-suited
to cluster and classify them. We then optimize the front-end fuzzy clas-
sifier using Particle Swarm Optimization (PSO) and Genetic Algorithm
(GA) as back-end dynamic optimizers to adapt to variations in usage pat-
terns. Finally, we provide a novel keystroke dynamics based PIN (Personal
Identification Number) verification mode to ensure information security
on smart phones. The results of our experiments show that the proposed
user identification system has an average error rate of 2% after the detec-
tion mode and the error rate of rejecting legitimate users drops to zero
in the PIN verification mode. We also compare error rates (in terms of
detecting both legitimate users and imposters) of our proposed classifier
with 5 existing state-of-the-art techniques for user identification on desk-
top computers. Our results show that the proposed technique consistently
and considerably outperforms existing schemes.

1 Introduction

Smart phones1 are pervasively and ubiquitously integrating into our home and
work environments. In particular, due to the enhanced capabilities available on
contemporary smart phones, users – in addition to personal and professional
1 We use the terms smart phone and mobile phone interchangeably throughout this

paper because our proposed system, with the support of OS vendors, can be deployed
on both types of phones.
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contacts’ information – now store sensitive information such as emails, credit
card numbers, passwords, corporate secrets, etc. on mobile phones which make
them an attractive target for imposters [9]. Stolen mobile phones can be used for
identity theft which can then be exploited for malicious and/or unlawful activi-
ties. Various surveys conducted recently show that in case of mobile phone theft,
users (instead of being worried about the cost of the stolen phone) are becoming
more concerned with the misuse of information and services on the stolen phones
[1]. Therefore, it is important to develop intelligent user identification schemes
for mobile phones.

Despite its need and importance, user identification on mobile phones has
received little attention in research literature. User identification systems for
mobile phones are usually based on secret PIN numbers [28]. These identifica-
tion techniques are borrowed from desktop computers’ domain and have not
been very effective on mobile phones [6],[28]. For instance, freely available tools
empower intruders, who have physical access to the Subscriber’s Identity Module
(SIM) and know the Personal Identification Number (PIN), to reverse engineer
the International Mobile Subscriber Identity (IMSI) and the secret key of GSM
mobile phone users [19]. Similarly, token-based authentication schemes devel-
oped for desktops are not suitable for mobile phones because: (1) they cannot
be efficiently implemented on resource-constrained devices [9], and (2) loss of a
token in essence means loss of the device [26]. Biometric hardware for mobile
phones are now being developed to overcome the shortcomings of token-based
authentication [26]. A common drawback of these authentication paradigms is
that they perform one-time identity check at the beginning of a session that
allows imposters to access the smart phones once a session has been logged in.

In this paper, we propose a robust approach to identify a legitimate user of a
mobile phone by learning his/her “in-session” keystroke dynamics. The scheme
requires no additional hardware or software resources and is user-friendly as it
requires minimum user intervention after installation. While keystroke-based
user identification was actively pursued in the domain of desktop computer
[27],[17],[14],[18], its suitability for mobile phones has not been explored, ex-
cept by the preliminary work reported in [7],[15]. To use keystroke information
for user identification, we collect and analyze keystroke data of 25 diverse mo-
bile phone users including researchers, students, and professionals from varying
age groups. Based on our analysis, we select six distinguishing keystroke fea-
tures that can be used for user identification. Two of these features – key hold
time (how long a key is pressed) and error rate (number of times backspace is
pressed) – are borrowed from the desktop domain. We also customize a set of
four features to capture the unique switching behavior across multiplexed mobile
phone keys2 using: (1) Horizontal Digraph: time to switch between horizontally
adjacent keys, (2) Vertical Digraph: time to switch between vertically adjacent

2 This study has been done only for the smart phones with numeric keypads. In these
phones, each key stands for multiple characters that can be produced by pressing
the key a predefined number of times. We thus name the keys of such phones as
multiplexed keys.
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keys, (3) Non-Adjacent Horizontal Digraph: time to switch between non-adjacent
horizontal keys, and (4) Non-Adjacent Vertical Digraph: time to switch between
non-adjacent vertical keys.

We reveal that, while these keystroke features differ across users, leverag-
ing them for accurate user identification on mobile phones is significantly more
challenging than on a desktop computer because on a majority of contemporary
mobile phones: (1) different keys are multiplexed on a small keypad, (2) the vari-
able and discontinuous keystroke usage of a mobile phone user results in a highly
diffused (overlapping) and time-varying feature space that makes it difficult to
cluster and classify different users, and (3) an imposter can get access to a mo-
bile phone at anytime so techniques that rely on static, application-specific or
keyword-specific authentication are not feasible. These challenges are aggravated
by the fact that most of the mobile OS vendors do not provide any mechanism
for key logging. In view of these challenges, we set two accuracy objectives for
the proposed technique: (1) correctly identify imposters and legitimate users us-
ing keystroke dynamics3, and (2) identify an imposter within a small number of
key hits to ensure timely information security. In addition to being accurate, an
effective user authentication scheme for mobile phones must: (1) be able to con-
tinuously adapt to varying usage patterns of a phone user, (2) utilize a classifier
that provides high classification accuracy for a diffused features space, and (3)
have low-complexity so that it can be deployed on resource-constrained mobile
phones.

To meet the above requirements, we propose a keystroke-based user identifi-
cation system which operates in three sequential modes.

Learning Mode. In this mode, we train a fuzzy classifier which maps the dif-
fused feature space of a mobile phone user to his/her profile. Moreover, it utilizes
a hybrid of bio-inspired optimizers – Particle Swarm Optimization (PSO) [16]
and Genetic Algorithm (GA) [11] – at the back-end for continuous evolution of
the fuzzy system in order to cope with the varying usage pattern of the user4.

Imposter Detection Mode. In this mode, the trained classifier is used to
classify real-time keystroke measurements to classify a user as legitimate or im-
poster.

Verification Mode. This mode is only invoked if a user is potentially identified
as an imposter in the detection mode or the user wants to transmit documents
from a mobile phone. In the verification mode, the potential imposter is asked to
type a memorized 8-character PIN of the legitimate user. The system then uses
the keystroke dynamics model to analyze the typing behavior of the potential
imposter. This mode makes it difficult for an imposter to have illegitimate access

3 Throughout the paper we define accuracy in terms of error in detecting an imposter
– False Acceptance Rate (FAR), and error in detecting a legitimate user – False
Rejection Rate (FRR).

4 PSO and GAs are well-known for providing efficient and online solutions to dynamic
and time-varying optimization problems [10],[4].
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by hacking the PIN only; therefore, it serves as the last line of defence after an
imposter has breached all other security layers.

Performance evaluation on the collected dataset shows that the proposed hy-
brid PSO-GA based fuzzy classifier, when trained using a mere 250 keystrokes,
achieves an average error rate of approximately 2% after the detection mode
and an FRR close to zero after the verification mode. We compare the accuracy
of our system with five other state-of-the-art keystroke-based user identifica-
tion techniques and show that our proposed system provides significantly better
accuracy in detecting legitimate users and imposters.

The rest of the paper is organized as follows. Section 2 briefly describes the
related work. We discuss our dataset in Section 3 and explain feature selection
along with a study of existing desktop schemes on these features in Section 4.
In Section 5, we first investigate the feasibility of existing desktop classifica-
tion schemes for mobile phones, and then we discuss the architecture of our
proposed user identification system. In Section 6, we analyze the performance of
our proposed system for varying parameters. The limitations of the proposed sys-
tem and potential countermeasures to overcome these limitations are detailed in
Section 7. Finally, we conclude the paper with an outlook to our future research.

2 Related Work

The idea of using keystroke dynamics for user authentication is not new as
there have been a number of prior studies in this area for desktop computers.
Most of these studies have focused on static or context-independent dynamic
analysis using the inter-keystroke latency method for desktop keyboards only.
From the earliest studies in 1980 [5], the focus has been on the analysis of delay
between two consecutive keystrokes – also called digraph. Later studies [14],[20]
further enhanced the work by identifying additional statistical analysis methods
that provided more reliable results. This section briefly summarizes some of the
prominent research on keystroke based user identification.

One of the earlier works in the area of keystroke dynamics was accomplished
by Umphress and Williams [27] in 1985. They used digraphs as the underlying
keystroke biometric. However, they were only able to achieve an FAR of 6%.
In 1987, Williams and Leggett [17] further extended the work by: (1) increas-
ing the number of users in the study, (2) reducing experimental variables, and
(3) discarding inappropriate digraphs according to latency and frequency. They
managed to reduce the FAR to 5%.

Another extension of the above work was conducted in 1990 by Leggett et
al. [18]. While the results of the static procedure of entering a reference and
testing profiles achieved the same 5% FAR, they were the first ones to utilize the
concept of keystroke dynamics for doing verification in a dynamic environment.
They were able to achieve FAR of 12.8% and FRR of 11.1% using statistical
theory. In a study by Joyce and Gupta [14], the username was compared to
the particular profile for that user. The login had four components – username,
password, first name, and last name. Digraphs were then calculated and basic
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statistical method of means, variances, and standard deviations were used to
determine a match. Using this method, the FAR was just 0.25% but the FRR
was 16.67%. Bleha et al. [3], in 1990, used a different statistical method: the
Bayes classification algorithm. The verification system gave results of 8.1% for
FRR and 2.8% for the FAR. Regarding features’ set, no significant additions
occurred until 1997 when Obaidat and Sadoun [21] introduced key hold times
as another feature of interest. Currently, the most common and widely-known
application that uses keystroke dynamics technology is BioPassword [12]. To the
best of our knowledge, BioPassword is the only product available in the market
that has relatively wide usage.

These studies, however, have focused their research only on desktop com-
puters. Except for [7],[15], no work has been done on user identification using
keystroke dynamics on mobile phones. Clarke et al. [7] have used neural networks
to classify a user by using key hold time and inter-key latency. They performed
three sets of experiments on mobile phone emulators: (1) on PIN verification,
(2) on specific text, and (3) on phone number entry. They achieved FARs of 3%,
15% and 18% respectively for these three experiments, however FRRs were 40%,
28% and 29%, respectively.

3 Data Acquisition

As a first step towards developing a robust mobile phone user identification sys-
tem, we developed an application to log mobile keystroke data. We decided to
develop the application for Symbian OS 3rd Edition because: (1) it had a rela-
tively large customer base in our social network, and (2) it provides developers
with Application Programming Interfaces (APIs) to capture key events. The
application runs in the background so that a user can continue using his/her
mobile phone uninterruptedly. All keys pressed by a user are logged along with
the press/release times of the keys5. In addition to the regular keys, we also
log left soft key, right soft key, left arrow key, right arrow key, up arrow key,
down arrow key, joystick key, menu key, call dial key, call end key, back space
key, camera key, volume up key, volume down key, * key, and # key. A text file
containing all logged key events is stored in the phone memory and is periodi-
cally uploaded to our development server. The application was digitally signed
by Symbian Signed (http://www.symbiansigned.com) before deployment.

Despite security and privacy concerns shown by most volunteers, we were able
to convince 25 mobile phone users to volunteer for this study. The subjects of our
study have different socioeconomic backgrounds (see Table 1) that provides good
diversity in our dataset; we have teenagers, corporate executives, researchers,
students, software developers and even a senior citizen in our list of volunteers.

Another distinguishing feature of this dataset is that it is not a one prototype
model dataset and has been collected from a diverse set of Nokia mobile phones.
We have N-series, E-series and 6xxx series mobile phones all of which have
multiplexed keypad. This diversity in phone sets is important to ensure that
5 We used Active Objects to realize this functionality [2].
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Table 1. Feature table of 25 mobile phone users of this study (cv is coefficient of
variation)

Non- Non-
adjacent adjacent

Key Hold Horizontal Vertical Vertical Horizontal
Total Total Time Digraph Digraph Digraph Digraph

Nokia Social key hit key µ cv µ cv µ cv µ cv µ cv Error
Users model status profiles hits (ms) (sec) (sec) (sec) (sec) (%)

u1 N73 manager 17 4113 61.1 0.08 0.12 2.08 0.15 1.80 0.19 1.21 0.05 1.11 1.25
u2 N95 researcher 48 11901 83.1 0.01 0.32 0.87 0.33 0.87 0.24 1.79 0.09 1.23 3.07
u3 N81 student 12 2939 81.4 0.04 0.35 0.31 0.42 0.45 0.39 1.43 0.07 1.36 2.63
u4 6650 engineer 21 5011 131 0.02 0.26 0.88 0.34 0.38 0.18 1.77 0.13 0.82 0.93
u5 6120 teenager 34 8255 103 0.08 0.21 2.09 0.12 2.33 0.43 1.25 0.11 1.31 2.38
u6 N79 businessman 20 4919 25.3 0.16 0.32 1.68 0.17 3.05 0.53 0.45 0.14 1.23 8.47
u7 N73 student 30 7283 45.1 0.21 0.11 5.72 0.23 2.82 0.12 5.33 0.17 1.11 8.59
u8 6124 manager 33 8209 95.9 0.03 0.12 1.50 0.11 3.09 0.53 0.43 0.09 0.79 5.79
u9 N95 engineer 37 9211 83.2 0.04 0.31 2.45 0.61 0.39 0.32 1.03 0.05 1.09 4.10
u10 N82 advertiser 53 13193 76.6 0.04 0.21 0.62 0.42 0.59 0.52 1.46 0.08 1.23 6.55
u11 E51 student 27 6501 32.1 0.12 0.33 0.87 0.56 1.33 0.32 0.68 0.04 1.01 8.14
u12 6120 researcher 37 9028 67.3 0.03 0.18 1.66 0.82 0.42 0.54 0.62 0.11 0.92 7.85
u13 N81 student 41 10001 11.3 0.16 0.22 1.59 0.28 0.82 0.75 0.88 0.14 1.22 6.02
u14 N77 student 53 13022 35.6 0.07 0.24 1.37 0.48 1.56 0.35 1.22 0.19 0.86 2.47
u15 E65 engineer 55 13713 61.5 0.05 0.33 0.93 0.41 0.95 0.12 1.83 0.16 1.31 3.22
u16 N76 senior citizen 19 4744 15.9 0.13 0.71 0.33 0.86 0.75 0.43 1.55 0.13 0.87 2.37
u17 N81 manager 12 2900 42.1 0.07 0.54 1.40 0.28 1.25 0.65 0.35 0.08 2.01 11.2
u18 6121 engineer 48 11793 57.6 0.07 0.18 1.72 0.48 1.56 0.45 1.20 0.13 1.71 1.35
u19 6120 student 17 4011 21.7 0.01 0.21 3.38 0.19 2.94 0.19 1.21 0.07 1.52 1.21
u20 N73 researcher 47 11529 33.4 0.15 0.15 1.53 0.32 0.81 0.43 1.23 0.15 1.08 2.53
u21 N81 researcher 20 4992 76.3 0.02 0.66 0.51 0.64 0.67 0.64 0.35 0.15 0.57 1.33
u22 N73 director 27 6721 23.3 0.12 0.21 1.04 0.24 3.25 0.24 2.79 0.11 1.14 6.23
u23 N95 student 41 10132 68.2 0.08 0.63 0.61 0.53 0.66 0.15 2.26 0.14 1.16 8.43
u24 N81 researcher 39 9531 79.7 0.05 0.44 0.72 0.31 0.74 0.32 1.71 0.09 1.11 3.11
u25 6120 teenager 33 8193 17.5 0.38 0.25 0.64 0.45 1.66 0.74 0.31 0.07 1.23 2.31

the design of our system and its evaluation spans across a wide range of modern
mobile phones. The complete dataset is available at http://www.nexginrc.org.

For all the analysis provided later in the paper, we use a dataset of 25 users
spanning over 7 days. We quantify the keystrokes into a profile of 250 key-hits6

each, which we call a ‘Key hit profile’. Table 1 shows that people from different
walks of life have different number of key hit profiles in accordance with their
social status. We observe that students, teenagers and professionals use keyboard
of mobile phones aggressively while senior citizens and managers use keyboard
of mobile phone less frequently. For instance, users u10, u14, and u15 have more
than 50 key hit profiles while users u1, u3, u16, u17, and u19 make less than 20
key hit profiles over the same period of 7 days.

After successfully collecting the dataset, we started the next phase of our re-
search – systematically analyzing our raw data to extract useful features for user
identification. We observed that some people tend to type faster with less errors
as compared to others, while some others type very slowly which is uniquely
linked to their social status and age as shown in Table 1. Based on this prelimi-
nary analysis, we observed that if we can identify a keystroke dynamics feature
set that covers all aspects of a persons’ unique typing pattern, we can actually
identify the mobile phone user. Therefore, we extracted 6 features to correctly
identify a user – 2 of these features have been borrowed from the desktop domain
while the remaining 4 are customized for mobile phones’ multiplexed keypads.
A detailed discussion of this features’ set is provided in the next section.

6 A justification for this profile size is given during the discussion of experiments.
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4 Feature Selection and Study of Desktop-Based Schemes

In this section, we first analyze three well-known features that have been used for
user identification on desktop/laptop computers. We then customize these fea-
tures for mobile phones. Finally, we evaluate the accuracies of existing keystroke-
based user identification schemes in identifying mobile phone users.

4.1 Feature Selection

After collecting data of the mobile phone users, we extracted three features
from this data – key hold time, digraph, and error rate. These features have
been used for keystroke-based user identification for desktop/laptop computers
[17],[14]. However, their usability to identify a legitimate user on mobile phones
has not been explored before. These features are defined as:

Key hold time. The time difference between pressing a key and releasing it;

Digraph time. The time difference between releasing one key and pressing the
next one; and

Error rate. The number of times backspace key is pressed.

We observed that identifying a user based on these three features is less chal-
lenging on desktops because of a relatively distinguished feature vector for each
user. As an example, we installed a key-logging application on the laptops of
6 users for a period of 5 days. The plot of these three features extracted from
the desktop key logging data of 6 users is shown in Figure 1. It can be observed
that the features’ set on desktops is well segregated and poses a relatively simple
classification problem. However, once we extracted the same three features from
the mobile phone data of 25 users, their feature vectors are extremely diffused
as shown in Figure 1(a). Keystroke-based user identification problem is more
challenging on mobile phones because they generally have multiplexed keys in
a 4 × 3 matrix. In order to make the data less diffused, we split the feature
“digraph” into four types of digraphs as follows:
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Horizontal Digraph (Da
h). This is the time elapsed between releasing a key

and pressing the adjacent key in the same horizontal row of keys, e.g. the time
between key 1 and key 2, key 5 and key 6, key 0 and key * etc.;

Vertical Digraph (Da
v). This is the time elapsed between releasing a key and

pressing the adjacent key in the same vertical column of keys, e.g. the time be-
tween key 1 and key 4, key 5 and key 8, key # and key 9 etc.;

Non-adjacent Horizontal Digraph (Dna
h ). This is the time elapsed between

releasing a key and pressing the next in the same horizontal row such that the
keys are separated by another key, e.g. time between key 1 and key 3, key 4 and
key 6, key * and key # etc.; and

Non-adjacent Vertical Digraph (Dna
v ). This is the time elapsed between

releasing a key and pressing the next in the same vertical column such that the
keys are separated by another key, e.g. the time between key 1 and key 7, key 0
and key 5, key 3 and key 9 etc.

Once we extracted these features, we calculated the coefficient of variation
(cv) for each feature to determine variation and randomness in the features’
data. From Table 1, we can observe that the coefficient of variation of the key
hold time feature for 25 different users is very small (order of 10−2) which high-
lights that users normally press keys for approximately the same length of time.
However, this parameter is significantly higher for digraph times. The coefficient
of variation of more than 1 shows large randomness in the data. Therefore, in
order to correctly classify a user based on this collective feature set, we need a
classifier that can identify classification boundaries for this highly varying data
which is a result of diffused usage patterns of different users.

4.2 Accuracy Evaluation of Existing Techniques

As a next logical step, we investigate the accuracy of existing classification
schemes, developed for desktop computers, on the mobile phones’ dataset. To this
end, we evaluate five prominent classifiers proposed in [24],[22],[13],[29],[8],[23].
These classifiers are quite diverse. Naive Bayes [24] is a probabilistic classifier;
while Back Propagation Neural Network (BPNN) [22] and Radial Basis Function
Network (RBFN) [13] belong to the category of neural networks. In comparison,
Kstar [8] is a statistical classifier and J48 [23] is a decision tree classifier. In order
to remove any implementation related bias, we have performed our experiments
in WEKA [29].

Ideally, we need a classifier that classifies a user as legitimate or imposter
with 100% accuracy. In our current accuracy evaluation setup, the errors are
of two types: (1) False Acceptance Rate (FAR) is defined as the probability
that an imposter is classified as a legitimate user, and (2) False Rejection Rate
(FRR) is defined as the probability that a legitimate user is classified as an
imposter.

The results of our experiments are tabulated in Table 2. We can see that the
existing classifiers provide an FAR of 30-40% which is not acceptable. Similarly,
FRR of most of the classifiers is approximately 30% or more and this again
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Table 2. A comparative study of techniques on the basis of key hold time, digraph,
and error percentage

Naive Bayes BPNN RBFN Kstar J48
Users FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

u1 51.1 6.31 56.2 12.4 33.2 9.31 13.2 22.1 44.3 39.2
u2 32.4 17.9 31.5 58.4 28.4 11.9 11.2 38.4 31.2 67.4
u3 42.1 11.6 45.3 19.6 22.5 11.2 34.2 11.5 44.3 26.4
u4 56.9 7.28 31.4 11.3 58.3 12.4 49.8 19.5 21.3 32.4
u5 33.1 36.6 44.2 24.5 45.2 21.4 32.1 31.3 33.4 25.8
u6 44.6 17.8 53.4 20.5 48.9 11.5 37.6 18.4 24.6 32.4
u7 40.2 21.3 45.6 18.9 36.7 21.4 43.1 33.4 21.2 24.8
u8 29.8 58.2 37.5 23.6 68.9 18.9 44.6 26.5 24.6 32.1
u9 27.3 62.7 40.4 44.2 44.1 31.3 24.6 21.3 44.3 38.5
u10 24.5 63.2 36.7 72.4 30.9 43.2 27.6 53.2 42.1 79.6
u11 41.6 18.9 42.1 19.6 23.5 12.3 23.2 31.2 21.7 34.5
u12 33.1 37.3 42.1 28.5 33.2 33.5 31.2 43.2 43.8 73.5
u13 32.1 53.4 42.6 61.3 19.5 54.3 24.6 34.2 19.5 75.2
u14 22.5 63.5 28.9 23.1 33.5 31.3 26.6 21.5 43.5 39.3
u15 21.5 38.8 33.4 78.9 20.4 59.6 21.3 31.2 12.4 81.2
u16 43.1 35.8 56.7 19.6 67.5 15.6 52.3 33.4 21.7 30.4
u17 49.6 11.9 61.3 12.4 39.4 13.7 34.6 28.5 41.2 23.2
u18 29.8 63.4 31.2 73.2 34.5 35.6 28.7 39.2 23.5 34.6

u19 52.4 4.16 64.7 13.2 37.4 15.8 38.6 30.5 47.7 32.4
u20 29.8 13.2 22.5 38.6 33.3 66.7 27.9 35.4 33.2 28.3
u21 39.8 19.7 53.7 19.2 28.5 19.8 32.3 31.2 31.4 25.3
u22 39.1 35.6 39.6 44.2 22.1 33.1 19.4 31.3 19.4 28.5

u23 30.9 23.3 28.6 26.7 21.8 32.1 12.5 43.2 23.4 55.3
u24 33.5 21.3 41.4 21.4 31.2 24.1 18.4 22.3 16.4 39.2
u25 42.5 19.7 29.6 19.6 38.2 22.4 21.3 38.2 19.4 18.3

average 36.9 30.5 41.6 32.2 36.0 26.5 29.2 30.8 29.9 40.7
standard deviation 9.50 19.9 11.1 20.8 13.5 15.7 11.0 9.22 10.9 19.2

confirms that their accuracies are not acceptable for real-world deployments
because such a high FRR will simply frustrate legitimate users.

4.3 Discussion

The main reason for poor FAR and FRR performance of these classifiers is that
they are unable to cope with the variation in the feature set that was highlighted
by cv in the previous section. Thus an important outcome of this pilot study is
that we need to design a classifier for our user identification and authentication
system that should meet the following requirements: (1) it should provide low
(< 5%) FAR, (2) it should also provide low (< 5%) FRR, (3) it must have small
detection time to correctly classify a user, (4) the system must be deployable
on real mobile phones, (5) it should continuously adapt to the variation in the
feature set, and (6) it should have low run-time complexity.

Requirement (1) ensures that an imposter does not go undetected. Once this
requirement is combined with requirement (3), we reduce the identification delay
on a mobile phone. Requirement (2) is important because if our system starts
rejecting the legitimate users, it will lead to their frustration and annoyance and
the system will lose its usability appeal. Finally requirement (6) is important
because a highly complex system can not be deployed on resource constrained
mobile phones.

The following section develops a classifier that can simultaneously meet all of
the above requirements.
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5 A Tri-mode System for Mobile Phone User
Identification

Based on the results of the last section, we propose a tri-mode system for mo-
bile phone user identification. To simultaneously cater for the requirements set
above, the system operates in three sequential modes.

Learning Mode. This mode can be further divided into two submodes: initial
(static) learning and continuous (dynamic) learning. In the static learning phase,
a keystroke profile of a user is collected and a feed-forward classifier is trained
on this profile. The dynamic learning phase executes continuously to track and
learn changes in the user’s behavior. These changes are fed back into the feed-
forward detector to allow it to adapt to variations in the user’s behavior.

Detection Mode. In the detection mode, the classifier trained during the learn-
ing mode is used to differentiate between legitimate users and imposters. If the
detector raises an alarm during this mode, the system moves to the verification
mode.

Verification Mode. In the verification mode, a user is asked to type a remem-
bered 8-character PIN. In the verification mode, we not only compare the typed
characters with the stored PIN but also match how the PIN has been typed. In
the worst case, when an imposter already knows the PIN, the imposter would
still have to enter the PIN using the legitimate user’s keystroke dynamics. This
mode acts as a final line of defence against an imposter who has successfully
breached every other protection layer.

Interested readers can find all the technical details and algorithms used in the
development of this tri-mode system in [25]. In subsequent sections, we give a
general overview of the algorithms used in each of the modes described above.

5.1 Algorithms in Learning and Detection Modes

Previous results showed that, due to the variation in the feature-set of differ-
ent users, standard machine learning classifiers cannot provide acceptable error
rates for the present problem of keystroke-based mobile phone user identifica-
tion. Specifically, variation in the features’ set results in a diffused dataset and
consequently it is not possible to assign crisp classification boundaries to differ-
ent users. A study of existing classifiers reveals that classifiers based upon fuzzy
logic [30] are well-suited for such problem. Fuzzy classifiers can provide accept-
able accuracies on diffused datasets because they assign a given data point a
degree of membership to all available classes. The primary task of fuzzy clas-
sification is to determine the boundaries of the decision regions based on the
training datapoints. Once the class-labeled decision regions in the feature space
are determined, classification of an unknown point is achieved by simply iden-
tifying the region in which the unknown point resides. Since fuzzy logic assigns
each data point a degree of membership to different decision regions instead of
a single association to one decision region (thus showing inherent capability to
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deal with fuzzy/diffused datasets), we expect a fuzzy classifier to provide an
accurate and efficient learning mechanism for the diffused mobile phone feature-
set. The remainder of this section develops and evaluates a fuzzy classifier for
mobile phone user classification.

Initial Learning using a Feed-Forward Fuzzy Classifier. We are work-
ing on a two-class classification problem as we need to distinguish between a
legitimate user and an imposter. A fuzzy system is based on a database, rule
base, and a fuzzy inference system. The database is composed of linguistic vari-
ables, fuzzy partitions, and membership functions. We now describe our fuzzy
clustering algorithm and then evaluate its accuracy on the mobile keystrokes
dataset.

In order to determine an initial rule base for fuzzy system, we define the cen-
troid of a cluster in the form of (x1, x2, . . . , xz), where x1, x2, . . . , xz are the
values of the first, second, . . . , zth feature, respectively, where z is the dimen-
sion of the feature vector. It is mentioned earlier that we use z = 6 features.
For a given data point, we search its value in the corresponding fuzzy sets, de-
termine its degree of membership to each fuzzy partition and then assign the
point to the partition with the maximum degree of membership. To determine
the consequent of a rule, we find the density of the cluster of the centroid for
which we are defining an antecedent of the rule. If a cluster has high, medium
or low density then the output belongs to the fuzzy partitions high, medium or
low, respectively, in the consequent of the rule. We repeat this procedure for all
training data points to define a rule-base using the centroids of all the clusters.

To give a preliminary indication of the accuracy of the first phase of our pro-
posed system, the FAR and FRR values of the fuzzy classifier are shown in Table
3. FAR and FRR of approximately 18.6% and 19.0%, respectively – much better

Table 3. A comparative study of the feasible techniques

RBFN Fuzzy PSO-Fuzzy GA-Fuzzy PSO-GA Fuzzy
Users FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

u1 33.2 9.31 18.1 19.3 8.34 7.55 8.32 8.54 2.13 1.76

u2 28.4 11.9 17.3 21.6 9.63 6.43 8.73 8.11 1.61 0.82

u3 22.5 11.2 21.3 17.5 7.43 9.22 6.34 7.63 2.14 1.71

u4 58.3 12.4 17.6 16.2 7.92 8.74 8.91 6.19 1.19 1.56

u5 45.2 21.4 18.3 15.3 8.73 6.12 7.43 8.11 1.87 2.01

u6 48.9 11.5 17.1 18.2 9.54 9.01 8.63 7.23 2.01 2.33

u7 36.7 21.4 18.9 19.9 6.94 5.91 7.23 3.71 1.46 2.15

u8 68.9 18.9 21.6 21.4 7.22 6.42 8.34 9.73 2.14 1.61

u9 44.1 31.3 19.3 19.8 9.02 6.71 9.84 7.29 3.34 1.14

u10 30.9 43.2 17.3 21.2 11.4 9.13 10.1 8.92 1.73 1.28

u11 23.5 12.3 18.3 22.1 7.44 8.21 9.23 9.31 2.43 1.86

u12 33.2 33.5 16.2 17.2 5.22 9.42 9.31 8.22 1.71 1.92

u13 19.5 54.3 19.7 18.1 8.23 6.12 8.34 9.31 3.44 1.81

u14 33.5 31.3 17.3 16.4 9.15 9.84 8.91 8.34 1.29 1.38

u15 20.4 59.6 17.3 16.3 7.97 8.92 7.25 8.81 3.37 1.95

u16 67.5 15.6 18.1 16.9 6.95 7.01 6.33 9.42 2.31 2.11

u17 39.4 13.7 19.2 14.5 9.12 9.21 8.93 7.71 1.82 2.04

u18 34.5 35.6 19.1 22.4 10.1 7.01 11.3 8.73 1.01 1.72

u19 37.4 15.8 15.1 26.8 6.02 5.17 9.61 7.29 1.21 1.04

u20 33.3 66.7 17.5 18.1 9.14 5.95 7.21 6.32 2.04 1.33

u21 28.5 19.8 22.1 17.2 7.05 5.11 8.87 9.82 1.41 2.38

u22 22.1 33.1 19.2 15.5 6.21 9.31 9.94 9.63 2.12 2.24

u23 21.8 32.1 19.8 22.6 9.11 8.01 12.1 8.24 2.02 2.92

u24 31.2 24.1 16.6 21.8 6.22 6.16 10.4 7.31 3.11 1.14

u25 38.2 22.4 22.1 19.3 8.34 8.91 8.22 4.72 2.97 1.19

Avg 36.0 26.5 18.6 19.0 8.09 7.58 8.79 7.94 2.07 1.73

standard deviation 13.5 15.7 1.86 3.00 1.47 1.55 1.46 1.56 0.73 0.47
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compared with existing classifiers in Table 2 – are still far from acceptable. These
accuracy results do not meet the requirements that we have set for our system.
In our performance evaluation, we observed that the main accuracy limiting fac-
tor for the fuzzy classifier was the dynamically changing keystroke behavior of
mobile phone users. Thus the performance of the feed-forward fuzzy classifier
can be improved if we use an online dynamic optimizer that can dynamically
track and provide the changing feature trends as feedback into the fuzzy system.

Prior work has shown that Particle Swarm Optimization (PSO) and Genetic
Algorithms (GAs) have the capability to adapt with changes in datasets [10],[4].
Therefore, in subsequent sections, we study the effect of incorporating a PSO-
and GA-based optimizer into the fuzzy classifier.

Continuous Learning using Dynamic Optimizers. As mentioned above,
after an initial rule base is generated, we use Particle Swarm Optimization (PSO)
and Genetic Algorithms (GAs) to adapt the rule base to dynamically varying
user keystoke behavior.

Particle Swarm Optimization (PSO). The main idea of PSO [16] is to use
a swarm of agents that is spread on the landscape of search space, and these
agents, through local interactions, try to find an optimal solution to the problem.
The characteristic that makes PSO successful is the communication between the
agents which allows agents to converge to the best location. Table 3 tabulates the
results of our fuzzy classifier optimized using PSO. It can be seen that the FAR
and FRR values have improved significantly to approximately 8% (averaged).
However, even after this improvement, a system with an error rate of around 8%
is not usable in the real-world.

Genetic Algorithm (GA). Genetic algorithms are well-known for providing
acceptable solutions to dynamic optimization problems [4]. Unlike PSO, GA
does not utilize feedback explicitly; rather, it uses genetic operators of selection,
crossover and mutation to find the best solution. Use of GA reduces error rate
to approximately 8% (averaged) which is almost the same as obtained by the
fuzzy classifier optimized using PSO.

Hybrid PSO-GA. PSO utilizes the concept of feedback and GA uses the diver-
sity achieved by randomness. Both of these optimizers have improved FAR and
FRR considerably. If we can somehow combine the concept of feedback with
randomness, theoretically the accuracy of our fuzzy classifier should improve.
For this scenario, we use PSO and GA together for optimizing the database and
rule base of the feed-forward fuzzy classifier. The results of the fuzzy classifier
optimized by a hybrid PSO-GA optimizer are tabulated in Table 3. It can be
seen that the FAR and FRR have improved substantially to approximately 2%;
as a result, our hybrid system is able to meet the accuracy requirements set
earlier.

Another important thing to mention here is the standard deviation of the
results. The standard deviation of our proposed hybrid PSO-GA-Fuzzy system
is only 0.73% for FAR and 0.47% for FRR which is negligible. We have repeated
the experiments for our scheme 500 times and the confidence interval of our
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results is 95% using the t-distribution. This shows that the results produced
by our system are statistically significant and the variation in the results is
significantly small.

5.2 Algorithm in Verification Mode

If the detection mode raises an alarm, the system moves to the verification mode.
In this mode, we ask the suspicious user to enter a remembered 8-character
PIN. During the PIN entry process, we observe his/her keystroke patterns and
conclude whether or not the current user is an imposter. In this mode, the system
extracts three features – key hold time, digraph (irrespective of the position of
keys), and error rate – from the key log of the PIN entry process. Note that here
we use only three features because we have empirically determined that these
features are sufficient to achieve approximately 0% error rate.

We have also empirically concluded a rule: if a potential imposter passes the
test twice in three attempts, we declare him/her a legitimate user. We have
arrived at this configuration by running a controlled experiment. We asked 10
of our colleagues to enter their PINs 30 times for training. After training, we
asked all of these 10 colleagues to enter their passwords 5 times. We observed
that each of them was able to enter his/her password with correct behavior at
least two out of the first three attempts. Later, we selected three imposters for
each of those 10 colleagues and told them the correct passwords of respective
legitimate users. We again requested imposters to enter the password 5 times
and it was interesting to note that none of them was able to successfully enter
the password with a correct keystrokes pattern even once.

For PIN verification, we have designed a simple, efficient and accurate classifier
specifically for keystroke dynamics. The motivation behind developing a new
classifier for PIN verification mode was that in case of PIN verification we already
know the correct PIN and consequently we know what to expect from the user.
Thus a classifier with significantly small computational complexity can perform
this task. Our classifier dynamically assigns an impression coefficient (iC) to
a user on the basis of his/her PIN typing pattern. We argue that a legitimate
user is less likely to commit a mistake while entering his/her PIN; therefore,
committing a mistake during the PIN entry process counts negatively towards
the possibility that the current user is the legitimate user. We calculate the
difference between the key hold times of keys of current profile with the key
hold times of all the corresponding keys of the standard profiles of a user and
then sum up all these differences to find the overall difference in the key hold
time. Similarly, we find an overall difference in the digraph time. Finally, we sum
overall key hold time difference and digraph difference to define the impression
coefficient of PIN entry process. If a user commits a mistake during the PIN
entry process, we penalize him/her for each error by adding l milliseconds to the
overall difference value.

Theoverall difference is comparedwitha thresholdvalue that is also dynamically
calculated. If iC of a user is larger than this threshold value, we classify him as an
imposter otherwise he/she is a legitimate user. It is important to emphasize that
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we do not train our system with imposters’ profiles. The mathematical explanation
of our proposed classifier is given in the following text.

The size of the PIN is s characters, the number of keys pressed by the user
to enter s characters is represented by t, and the number of training profiles is
represented by n. P k is a matrix consisting of n rows corresponding to n training
profiles and t columns corresponding to t key hold times. Puk is a row vector
of t columns; each column corresponds to a key hold time for a key press in an
unknown profile. Dk, similarly, is a matrix of dimensions n × t − 1 for digraph
times obtained from training profiles and Duk is a row vector of t − 1 columns
representing the digraph times of an unknown user. The mathematical model is
given in following equations:
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j ∈ Duk; and e represents
the number of backspaces during PIN entry. Moreover, if iC ≥ μ + aσ then the
user is classified as an imposter; otherwise the user is classified as a legitimate
user. We have empirically determined that values of l = 5 and a = 3 provide
0% error. The following section evaluates the accuracy of the proposed tri-mode
system for varying system parameters.

6 Performance Evaluation

In this section, we first evaluate the accuracy of the proposed system for a
fixed training profile. We then systematically evaluate the system’s performance
for different parameters. Specifically, we chronologically answer the following
questions: (1) What is the accuracy of the system for a fixed profile?, (2) What
is the impact of number of profiles on the accuracy of our system?, (3) What is
the relationship between the size of a profile and the accuracy of our system?, (4)
What is the average user identification delay in terms of mobile phone usage (we
report it in terms of the number of SMSs)?, (5) How much damage an imposter
can do in 250 keystrokes?, and (6) What are the training and testing times of
our system?

What is the accuracy of the system for a fixed profile? The accuracy of
our system can be viewed from the Table 4. It can be seen that our tri-mode
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Table 4. Accuracy results after detection mode and verification mode for a fixed profile
size of 250 keystrokes

After After After After
Detection Verification Detection Verification

Mode Mode Mode Mode
Users FAR FRR FAR FRR Users FAR FRR FAR FRR

u1 2.13 1.76 2.13 0 u2 1.61 0.82 1.61 0
u3 2.14 1.71 2.14 0 u4 1.19 1.56 1.19 0
u5 1.87 2.01 1.87 0 u6 2.01 2.33 2.01 0
u7 1.46 2.15 1.46 0 u8 2.14 1.61 2.14 0
u9 3.34 1.14 3.34 0 u10 1.73 1.28 1.73 0
u11 2.43 1.86 2.43 0 u12 1.71 1.92 1.71 0
u13 3.44 1.81 3.44 0 u14 1.29 1.38 1.29 0
u15 3.37 1.95 3.37 0 u16 2.31 2.11 2.31 0
u17 1.82 2.04 1.82 0 u18 1.01 1.72 1.01 0
u19 1.21 1.04 1.21 0 u20 2.04 1.33 2.04 0
u21 1.41 2.38 1.41 0 u22 2.12 2.24 2.12 0
u23 2.02 2.92 2.02 0 u24 3.11 1.14 3.11 0
u25 2.97 1.19 2.97 0 Avg 2.07 1.73 2.07 0
SD 0.73 0.47 0.73 0 — — — — —

system achieves 0% FRR and approximately 2% FAR after the verification mode.
0% FRR indicates that our system is completely user friendly and never rejects
a legitimate user. It also has a very low FAR as compared to other techniques.

What is the impact of number of profiles on the accuracy of our sys-
tem? Scalability analysis is important to determine the minimum number of
profiles/keystrokes required to achieve acceptable accuracy. We take the users
with the most number of profiles (u10, u14, and u15) for our scalability analysis
and tabulate the results in Table 5. Note that each profile is made up of 250
keys. The results in Table 5 suggest a gradual, almost linear decrease in FAR and
FRR as we increase the number of training profiles up to 50. This shows that as
the number of training profiles increases, the accuracy of our system increases.

What is the relationship between the size of a profile and accuracy of
our system? For the same users (u10, u14, and u15,) we now take 50 profiles
of each user and study the relationship between FAR and FRR and the size of
a profile. These results are also tabulated in Table 5. It is obvious from Table 5
that FAR and FRR values degrade for small size profiles, however, for a profile
of 250 keys, the error rates on average are 2%. It can also be seen that increasing
the size of profile from 250 to 350 keys further improves the detection accuracy
but the improvement is not much significant; therefore, we use a profile of 250
keys. Note that increasing the size of profile not only increases the detection ac-
curacy but also the time required to make a profile. Our aim is to get reasonable
detection accuracy with as small a profile size as possible. Profile size of 250 keys
satisfies the criteria.

Table 5. Relationship of number of training profiles and size of a profile with error
rates

Number of profiles (Profile Size = 250) Size of profile (Number of Profiles = 50)
20 30 40 50 150 200 250 300 350

Users FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR

u10 2.32 1.99 2.01 1.51 1.93 1.35 1.74 1.29 11.2 7.28 4.98 3.45 1.74 1.29 1.45 1.11 1.10 1.01

u14 3.21 2.21 1.97 2.01 1.77 1.78 1.30 1.40 9.21 8.12 4.11 4.01 1.30 1.40 1.03 1.21 0.97 1.11

u15 5.89 3.13 5.11 2.72 4.01 2.11 3.39 1.98 17.8 11.5 9.62 6.22 3.39 1.98 2.87 1.23 1.91 0.99
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Table 6. User identification delay

Avg Avg Avg Avg Avg Avg Avg
SMSs / SMSs / SMSs / SMSs / SMSs / SMSs / SMSs /

Users Profile Users Profile Users Profile Users Profile Users Profile Users Profile Users Profile

u1 1.06 u2 1.44 u3 1.25 u4 1.09 u5 1.26 u6 0.65 u7 1.03
u8 1.03 u9 1.11 u10 1.34 u11 1.04 u12 1.27 u13 1.32 u14 1.39
u15 1.33 u16 0.16 u17 1.17 u18 1.15 u19 1.00 u20 1.43 u21 1.25
u22 1.22 u23 1.24 u24 1.13 u25 1.30 — — — — — —

What is the user identification delay? Table 6 shows the average number
of SMS a user types in a single profile. Remember our system tries to classify a
user after every 250 keystrokes using the keystrokes features’ set. It can be seen
from Table 6 that on the average a profile of 250 keystrokes is generated once
a user sends just 1 SMS. So our detection delay is bounded by the time within
which a user sends an SMS. Detection delay is not a significant problem if the
objective of an imposter is to steal the mobile phone. However, this delay will
become very crucial if an imposter wants to steal information from the mobile
phone. We invoke the verification mode of our system to disallow an imposter
to transmit data from the mobile phone.

How much damage can an imposter do in 250 keystrokes? We have done
an interesting study in which we requested 4 of our colleagues in the virology
lab to act as imposters on a trained mobile phone to get an understanding of
how much data they can read in a given document. (Remember that they cannot
upload or copy the data because of the verification mode). We downloaded the
current paper (20 pages long) on a smart phone and told the imposters the exact
directory path of the paper. (Remember that it is the best case scenario for an
imposter; otherwise, he needs to press more keys to search a document). We
asked them to find the line “and the system will lose its usability appeal” in the
paper that happens to be on page 9. We tabulate the number of keys pressed by
each of them in Table 7 to locate the required information. It is interesting to
note that, even in this best case scenario, only one of them was able to locate
the information within 250 keystrokes. We have also done an interesting study
to understand that how far different imposters can scan the given document in
250 keystrokes. i4 appears to be a smart imposter who manages to reach page 14
in 250 keystrokes. Most of the users pressed 250 keystrokes in 8 to 15 minutes.

What are the training and testing times of our system? We now analyze
the training and testing times of different classifiers in Table 8. The training
time of our classifier is 28 seconds, but our testing time is just 520 milliseconds.
Thus, while the system’s run-time complexity is comparable to other existing
algorithms, its training complexity is significantly higher. The main source of this

Table 7. Analysis showing the number of keystrokes to perform the task

Number of Keys Page # Number of Keys Page #
to Perform After to Perform After

Imposters the Task 250 Keys Imposters the Task 250 Keys

i1 332 7 i2 442 6
i3 297 8 i4 189 14
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Table 8. The processing overheads of classifiers on an old 233MHz, 32MB RAM
computer

Algorithm Train Test Algorithm Train Test Algorithm Train Test
(secs) (secs) (secs) (secs) (secs) (secs)

PSO-GA Fuzzy 28 0.52 Naive Bayes 0 0.52 BPNN 4.8 2.0
RBFN 0.41 0.42 Kstar 8 0.21 J48 0.23 0.22

complexity are the back-end dynamic optimizers used in our system. However, we
emphasize that training complexity needs to be incurred very infrequently after
every 5 training profiles (usually after a few hours). Moreover, unlike desktop
computers, mobile phones remain idle much of the time and the retraining can
be performed during these inactivity periods.

7 Limitations and Potential Countermeasures

We now highlight the important limitations and countermeasures of our system.

Identification delay period. Our system can detect an imposter after observ-
ing a minimum of 250 keystrokes. The identification delay is hence a function of
the imposters keyboard usage. We argue that an imposter’s keyboard usage can
belong to one of the following two types: (1) he/she wants to get access to the
sensitive information/documents on the phone, and (2) he/she wants to steal
the mobile phone. In the first case, the imposter must try to quickly get access
to the sensitive information and, as a result, the time to generate a profile of 250
keystrokes, as mentioned before, will reduce to 10-15 minutes. If the imposter
is of the second type, then our system will detect him/her after 250 keystrokes
through our PIN verification procedure.

Accuracy is sensitive to the number of profiles. Another shortcoming of
our approach is that it requires a cold start of 30 or more profiles to accurately
learn the behavior of a user. In this time period, the system might suffer from
relatively high FAR and FRR which are still comparable with the existing tech-
niques (see Tables 2 and 5). But our system provides significantly better FAR
and FRR after collecting just one week of training data, which we believe is
quite reasonable.

Portability to full keyboard smart phones. We have not tested our proto-
type on BlackBerry category of phones that have QWERTY keyboards. While
we believe that the results of our system will scale to these phones, we are
currently soliciting volunteers with full keyboard Nokia phones for testing and
evaluation.

Relatively large training time. Our systems takes 28 seconds on the average
once we retrain it after every 5 profiles. During these 28 seconds after every
few hours, the response time of the mobile phone degrades which might result
in some annoyance to the user. We argue that this cost is worth the benefit of
very low FAR and FRR values of our system. Moreover, as suggested earlier, the
retraining module can be customized to execute during inactivity periods.
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Table 9. Improvement shown by Hybrid PSO-GA Fuzzy system over the other
classifiers

%Improvement %Improvement
Algorithm FAR FRR Algorithm FAR FRR

Naive Bayes 94.4 94.3 BPNN 95.0 94.6
RBFN 94.2 93.5 Kstar 92.9 94.4
J48 93.1 95.7 Fuzzy 88.8 89.1

PSO-Fuzzy 74.4 77.2 GA-Fuzzy 76.4 78.2

Resilience to reinstalling OS. A savvy imposter may reinstall the OS on the
phone, thus circumventing our system. This is a common limitation for all host-
based intrusion detection systems. A solution to this problem is OS virtualization
which is computationally infeasible on contemporary mobile phones.

8 Conclusion and Future Work

We have proposed a user identification system that monitors the keystroke dy-
namics of a mobile phone user to differentiate legitimate users from imposters.
We have used a custom dataset of 25 diverse mobile phone users to show that
the proposed system can provide an error rate of less than 2% after the detec-
tion mode and an FRR of close to zero after the PIN verification mode. We
have also compared our approach with 5 state-of-the-art existing techniques for
keystroke-based user identification. Table 9 shows percentage improvement of
our scheme compared to the existing schemes on our dataset. In future, we in-
tend to incorporate our system in a Symbian mobile phone and then evaluate
its accuracy on-line under real-world usage circumstances. Interested researchers
can also work on the modification of the proposed system for its portability to
the mobile phones with QWERTY keyboards.
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